Arm Forge
User Guide

arm
FORGE

Arm Forge 20.2

Document history

Version | Date Confidentiality Change

20.1 25th June, 2020 Non-confidential Document update to version 20.1
20.1.1 31st July, 2020 Non-confidential Document update to version 20.1.1
20.1.2 4th September, 2020 Non-confidential Document update to version 20.1.2
20.1.3 2nd October, 2020 Non-confidential Document update to version 20.1.3
20.2 13th November, 2020 | Non-confidential Document update to version 20.2

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

101136_2020_00_en

Arm Forge 20.2

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of
the information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express
prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any
intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use
or permit others to use the information for the purposes of determining whether implementations infringe
any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NONIN-
FRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCU-
MENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no
analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets,
or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARD-
LESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations
to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of
such export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or
refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through
or signed written agreement covering this document with Arm, then the click through or signed written
agreement prevails over and supersedes the conflicting provisions of these terms. This document may be
translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement
shall prevail.

The Arm corporate logo and words marked with ®or ™are registered trademarks or trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners. Please follow Arm’s
trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright ©2017-2020 Arm Limited (or its affiliates). All rights reserved.
Copyright ©2002-2017 Allinea Software Limited.

Arm Limited. Company 02557590 registered in England. 110 Fulbourn Road, Cambridge, England CB1
9NJ.

LES-PRE-20349

Confidentiality status

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 2
101136_2020_00_en

http://www.arm.com/company/policies/trademarks

Arm Forge 20.2

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by Arm and the party that
Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product status

The information in this document is Final, that is for a developed product.
Web address

http://www.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can
be offensive. Arm strives to lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this
document. If you find offensive terms in this document, please contact terms@arm.com .

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 3
101136_2020_00_en

http://www.arm.com
mailto:terms@arm.com

Arm Forge 20.2 CONTENTS

Contents
Contents 4
I Arm Forge 18
1 Introduction to Arm Forge 18
1.1 ArmDDT . . . e e e 18
1.2 ArmMAP .« . e 19
1.3 Arm Performance Reports i e e 19
1.4 Online reSOUIrCeS v v v v e e e e e e e e e e e e e e e e e 20
2 Installation 21
2.1 Linuxgraphicalinstall 21
2.2 Linuxtext-modeinstall 23
2.3 Macinstallation L. e e e e e e 24
2.4 Windows installation L e 24
2.5 Licensefiles e e e e 25
2.6 Workstation and evaluation licenses o 25
2.7 Supercomputing and other floating licenses 26
2.8 Architecture licensing e e e e e 27
2.8.1 Using multiple architecture licenses 27
2.9 Environment variables 27
2.9.1 Performance Report customization 27
2.9.2 Warning SuUppression v v e i e e e e e e e e e e e e e e 28
29.3 T/Obehavior e e 28
2.9.4 Licensing i i e e e e e e e e e e e e 28
2.9.5 TIMeouts L e e e e e e e e 29
2.9.6 Sampler e e e e e e 29
2.9.7 Simple troubleshooting 31
3 Connecting to a remote system 32
3.1 Remote connectionsdialog L e 32
3.2 Remotelaunchsettings e e 33
321 RemotesCript oo v it e e 34
3.3 Reverse Connect o it i e e e e 35
3.3.1 OVEIVIEW o o e e e e e e e e e e e 35
3.3.2 Usage o e e e e e e e e e e 35
3.3.3 Connectiondetails 36
3.4 Treeserver or general debugging ports oo 36
3.5 Using X forwardingor VNC e 36
4 Starting Arm Forge 38
II DDT 40
5 Getting started 40
5.1 Running a programo i e e e e e e e e e e e e e e e e 41
5.1.1 Application e e e e 41
512 MPI . . e 42
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 4

101136_2020_00_en

Arm Forge 20.2 CONTENTS

5.1.3 OpenMP 42

5.1.4 CUDA . . . e e e 42

5.1.5 Memorydebugging 43

5.1.6 Environmentvariables L o 43

5.1.7 Plugins e e e e e e 43

52 ExpressLaunch e e e 44
5.2.1 Rundialogbox e 45

5.3 remote-execrequiredbysomeMPIs 0. 45
5.4 Debugging single-process programs i . e e e e e e e e e e e . 46
5.5 Debugging OpenMP programs ittt e e e 46
5.6 Manual launching of multi-process non-MPI programs 48
5.7 Debugging MPMD programs i e e e e e e e e e e 49
5.7.1 Debugging MPMD programs without Express Launch 49

5.7.2 Debugging MPMD programs in Compatibility mode 49

5.8 Opening corefiles. e e 50
5.9 Attaching to running programs oo et e e e e e 50
5.9.1 Automatically detected MPIjobs. 51

5.9.2 Attachingtoasubsetofan MPIjob, 51

5.9.3 Manual processselection L L e 51

5.9.4 Configuring attaching toremote hosts 53

5.9.5 Using DDT command-line arguments 53

5.10 Startingajobinaqueue e e 54
5.11 Jobscheduling withjsrun oo o 54
5.12 Using custom MPISCIIptS o o v v i s e e e e e e e e 55
5.13 Starting DDT fromajobscript 57
514 UPC . . . 58
5141 GCCUPC e e e e e e e e e e e e e s e e e 58
5.14.2 Berkeley UPC e e 58

515 Numactl e e e 58
5.15.1 MPIand SLURM e 59
5.15.2 Non-MPIPrograms o v i i it e e e e e e e e e 59

5.16 Pythondebugging e 59
5.16.1 OVEIVIEW L o o e e e e e e 59
5.16.2 Running o e e e e e e e e 60

6 Overview 62
6.1 Saving and loading sessions e e e e e e 63
6.2 Source code e e e e e e 63
6.2.1 Viewing e 63

6.2.2 Editing 63

6.2.3 Rebuilding andrestarting L e 64

6.2.4 Committing changes e 64

6.3 Assembly debugging e 64
6.3.1 Toggling and viewing e 64

6.3.2 Breakpoints e 65

6.4 ProjectFiles e e e e e 65
6.4.1 Application and externalcode oL 66

6.5 Finding lostsource files. e 66
6.6 Finding codeorvariables 67
6.6.1 Find Filesor Functions 67

6.6.2 Find 67

6.6.3 FindinFiles 67
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 5

101136_2020_00_en

Arm Forge 20.2

8

6.7
6.8
6.9
6.10

GoToLine e
Navigating through source code history
Staticanalysis
Version control information

Controlling program execution

7.1 Process control and process groupso i i e e
7.1.1 Detailedview
7.1.2 Summary VIEW e e e e e e e e e e e e e e e
7.2 Focuscontrol
7.2.1 Overview of changing focus
7.2.2 Process group Viewero .o e e e
7.2.3 Breakpoints e
724 Codeviewer e e e
7.2.5 Parallelstackview o
7.2.6 Playingandstepping
7.2.7 Stepthreadstogether
7.2.8 Stepping threadswindow L.
7.3 Starting, stopping and restarting a program e e e ...
7.4 Stepping throughaprogram
7.5 StOPMESSAGES e e e e e e e e e e e e e e e e
7.6 Setting breakpoints L.
7.6.1 Using the source code viewer
7.6.2 Using the Add Breakpointwindow
7.6.3 Pending breakpoints oL
7.6.4 Conditional breakpoints,
7.7 Suspending breakpoints L.
7.8 Deleting abreakpoint e
7.9 Loading and saving breakpoints oL oL,
7.10 Default breakpoints e
7.11 Synchronizing processes v v i i i e e
7.12 Setting awatchpoint e
7.13 Tracepoints o v v e e e e e e e e e e e e e e e
7.13.1 Settingatracepoint« . v vt vt
7.13.2 Tracepoint outpul v v v v v vt e e e e e e e e e e
7.14 Version control breakpoints and tracepoints
7.15 Examining the stack frame
7.16 Alignstacks L. e e e
7.17 Viewing stacksinparallel oL,
7.07.1 Overview e e e e e e e e e
7.17.2 The Parallel Stack Viewindetail
7.18 Browsingsource code e e e e e
7.19 Simultaneously viewing multiple files
7.20 Signalhandling
7.20.1 Custom signal handling (signal dispositions)
7.20.2 Sendingsignals
Variables and data
8.1 Sparklines
8.2 Currentline e
8.3 Localvariables
8.4 Arbitrary expressions and global variables

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.
101136_2020_00_en

CONTENTS

Arm Forge 20.2 CONTENTS
8.4.1 Fortran infrinSics o . o e e e e e e e 94

8.4.2 Changing the language of an expression 94

8.4.3 Macros and #defined constantso 94

8.5 Editing variables L e e e 94
8.6 Help with Fortranmodules 95
8.7 Viewing complex numbers in Fortran oL, 96
8.8 CH+STL SUPPOIt o v o et e e e e e e e e e e e e e e e e e 96
8.9 Custom pretty Printers v v v v i e e e e e e e e e e e e e e 96
8.9.1 Example e e e 97

8.10 Viewing arraydata i e e e e e e e e 97
8.11 UPCSUPPOIt. . . v v v i e 98
8.12 Changingdatavalues 98
8.13 Viewing numbers in differentbases. L. 98
8.14 Examining pointers i e e e e e 98
8.15 Multi-dimensional arrays in the Variable View 99
8.16 Multi-dimensional array viewer (MDA) e 100
8.16.1 Array exXpression v vttt i e e e e e e e e e e e e e e 101

8.16.2 Filteringbyvalue 102

8.16.3 Distributed arrays e e e e e e 102

8.16.4 Advanced: how arrays are laid out in the datatable 102

8.16.5 AutoUpdate i e e e 105

8.16.6 Comparing elements across ProCeSSeS v v v v v v v v v e e e e 105

8.16.7 Statistics o o e 105

8.16.8 EXPOIt. o o e e e e e e e 105

8.16.9 Visualization 106

8.17 Cross-process and cross-thread comparison 107
8.18 Assigning MPIranks o i e e e e e 108
8.19 Viewing regiSters o v i v i e e e e e e e e e e e e e e e e 109
8.20 Processdetails e e 109
8.21 Disassembler e e 109
8.22 Interacting directly with the debugger 110

9 Program input and output 111
9.1 Viewing standard outputand error L. e e 111
9.2 SaviNg OULPUL v v v i e 111
9.3 Sending standard input e e e e e e 111

10 Logbook 113
101 UsSage . . v v e 113
10.2 ANNOtation o L .ot e e e e e e e e e e e e e e e 114
10.3 Comparison wWindow 0L e e e e e e e e e e e 114

11 Message queues 115
11.1 Viewing the message qUEUES ittt e e e e e 115
11.2 Interpreting the message qUEUES v v v vttt e e e e e e 116
11.3 Deadlock e e 117

12 Memory debugging 118
12.1 Enabling memory debugging 118
12.2 CUDA memory debugging e e e e 118
12.3 PMDK Memory Debugging 119
12.4 Configuration o o o e 119
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 7

101136_2020_00_en

Arm Forge 20.2

12.4.1 Staticlinking L
12.4.2 Availablechecks o
12.4.3 Changing settings atruntime
12.5 Pointer error detection and validity checking
12.5.1 Library usage errors
12.5.2 View pointerdetails
12.5.3 Cross-process comparison of pointers
12.5.4 Writing beyond an allocated area
12.5.5 Fencepost checking
12.5.6 Suppressing an error
12.6 Current MEMOIY USAZE . « v v v v v v v v e e e e et e e e e e e e e e
12.6.1 Detecting leaks when using custom allocators/memory wrappers
12.7 Memory Statistics

13 Using and writing plugins
13.1 Supported plugins
13.2 Installing a plugin
13.3 Usingaplugin. e
13.4 Writing a plugin
13.5 Plugin reference

14 CUDA GPU debugging
14.1 Licensing
14.2
14.3

14.4

Preparing todebug GPUcode
Launching the application.
Controlling GPU threads
14.4.1 Breakpoints
14.4.2 Stepping o e e e e e e e e e
14.4.3 Running and pausingo
Examining GPU threads and data
14.5.1 Selecting GPU threads
14.5.2 Viewing GPU thread locations
14.5.3 Understanding kernel progress
14.5.4 Source code viewer
GPU devices information
Attaching to running GPU applications
Opening GPU corefiles
Known issues / limitations,
14.9.1 Debugging multiple GPU processes
14.9.2 Thread control
149.3 General L e
1494 Presm_20GPUs e
14.9.5 Debugging multiple GPU processes on Cray limitations
14.10GPU language support
14.10.1Cray OpenACC o o e e
14.10.2 PGI OpenACC and CUDA Fortran
14.10.3 IBM XLC/XLF with offloading OpenMP

14.5

14.6
14.7
14.8
14.9

15 Offline debugging
15.1 Using offline debugging
15.1.1 Reading a file for standard input
15.1.2 Writing a file from standard output

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.
101136_2020_00_en

CONTENTS

Arm Forge 20.2 CONTENTS

15.2 Offline report output (HTML) et e e e e e o 144
15.3 Offline report output (plaintext) i i it it 147
15.4 Run-time job progress reporting oo e e e e e e e e 147
15.4.1 Periodicsnapshots 147
15.4.2 Signal-triggered snapshots L o . 147
1 MAP 149
16 Getting started 149
16.1 ExpressLaunch e 150
16.1.1 Rundialogbox e 151
16.2 Preparing a program for profiling oL oL oL 152
16.2.1 Debugging symbols 152
16.2.2 Disabling function inlining oL oL 153
16.2.3 Disabling tail call optimization 153
16.2.4 Linking e 153
16.2.5 Dynamic linking on Cray X-Series systems 154
16.2.6 Staticlinking e e e 155
16.2.7 Static linking on Cray X-Series systems 157
16.2.8 Dynamic and static linking on Cray X-Series systems using the modules envi-
(0] 1108 T 0L 158
16.2.9 map-link modules installation on Cray X-Series 158
16.2.10 Unsupported user applications 159
16.3 Profiling aprogram e e e e e e e e e 159
16.3.1 Application e e 159
16.3.2 Duration e e e 160
16.3.3 Metrics o o o e e e e 160
16.3.4 MPIL . . . L o 160
16.3.5 OpenMP L e e e e 161
16.3.6 Environment variables 161
16.3.7 Profiling 161
16.3.8 Profiling only partof aprogram, 162
16.3.8.1 C .o 163
16.3.8.2 Fortran e e e e e 163
16.4 remote-execrequiredbysome MPIs 163
16.5 Profiling a single-process programo el 164
16.6 Sending standardinput L e e e e 164
16.7 Startingajobinaqueue e e 165
16.8 Using custom MPISCripts. o o i e e e e e 166
16.9 Starting MAP fromajobscript 168
16.10Numactl o e e e 169
16.11MAP environment variables L oL 170
17 Program output 173
17.1 Viewing standard output and error e e 173
17.2 Displaying selected processes L. 173
17.3 Restricting output L L e e e e e e e e e e e e e e 173
17.4 Saving output e e e e e e e e 174
18 Source code 175
18.1 VIewWing o o e e e e e e e e e e e e e 175
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 9

101136_2020_00_en

Arm Forge 20.2 CONTENTS

19

20

21

22

23

24

25

26

18.2 OpenMP programs i e e e e e e e e e e e e e 177
18.3 GPU Programs v v v i i e e et e e e e e e e e e e e e e e e e e e 178
18.4 Dealing with complexity: code folding 179
18.5 Editing o o e 179
18.6 Rebuilding and restarting L 180
18.7 Committing changes e e e e 180
Selected lines view 181
19.1 Limitations o o i e e e e e e e e e e e e e e e e e 182
19.2 GPUprofiling o o e 183
Stacks view 184
OpenMP Regions view 185
Functions view 187
Project Files view 188
Metrics View 189
24.1 CPUIRNSIrUCtiONS o v v vt et e e e e e e e e e e e e e e e 190
24.1.1 CPU instruction metrics available on x86_64 systems 190
24.1.2 CPU instruction metrics available on Armv8-A systems 191
24.1.3 CPU instruction metrics available on IBM Power 8 systems 191
24.1.4 CPU instruction metrics available on IBM Power 9 systems 192

242 CPULIME e e e e e e e e e e e e e 192
243 T/O . o o e e e 193
244 MEIMOTY . . v v v v v v e 193
245 MPL . . o e 194
24.6 Detecting MPlimbalance e 195
24.7 Accelerator e e e e 195
248 ENETGY o o e e e e e e e e 195
24.8.1 Requirements v v v v v v i e e e e e e e e e e e e e e e e 196

24.9 LUSIE e e e e e e e e e e e e 196
2410Z00MINEG . .« . v e e e e e e e e e e e e e e e e e e 197
24.11 Viewing totals across processes and nodesl 198
24.12CUStOM MELTICS . . . ¢ v v v v v e et e e e e e e e e e e e e e e e e e e 198
Configurable Perf metrics 200
25.1 PermiSSiOns v i i i e e e e e e e e e e e e e e e e e e 200
25.2 Probingtarget hosts e e e e 201
25.3 Specifying Perf metrics via the command line 201
25.4 Specifying Perf metrics viaafile oL 202
25.5 Specifying Perf metrics viatherunwindow 202
25.6 VIeWING eVENLS i i e e e e e e e e e e e e e e e e e e 203
25.7 Advanced configuration. e e e 203
PAPI metrics 204
26.1 Installation e e e e 204
26.2 PAPIconfigfile e e 204
26.3 PAPl overview metriCsS o v v it e i e e e e e e e e e e e 204
26.4 PAPIcachemisses i i i e 205
26.5 PAPI branch prediction e 205
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 10

101136_2020_00_en

Arm Forge 20.2 CONTENTS
26.6 PAPI floating-point i e e e e e 205

27 Main-thread, OpenMP and Pthread view modes 207
27.1 Mainthreadonlymode e 207
27.2 OpenMP mode e e e e e e e 207
27.3 Pthreadmode e e e e e e 207

28 Processes and cores view 209
29 Running MAP from the command line 210
29.1 Profiling MPMD Programs v v v v v v e et e e e e e e e e e e e 211
29.1.1 Profiling MPMD programs without Express Launch 211

30 Exporting profiler data in JSON format 212
30.1 JSONformat v i i et e e e e e e e e e e e e e e e e 212
30.2 ACHVItIeS e e e e e e e e 213
30.2.1 Description of categories i e e e e e 213

30.2.2 Categories available inmain_threadactivity 214

30.2.3 Categories available in openmp and pthreads activities 215

30.3 MEtIICS . . v o v o e e e e e e e e e e 215
30.4 Example JSON output o v i it e e e e e e e e e 217

31 GPU profiling 220
31.1 Kernel analysis e e e e e e 220
31.2 Compilation e e e e e 222
31.3 Performance impact e e e e e e e e e e 222
31.4 Customizing GPU profiling behavior 223
31.5 Knownissues o i i it e e e e e e e e e e e e e e e e 223

32 Python profiling 224
32.1 Profilea Pythonscript 224
32.2 Known Issues o e e e e e e e 226

33 Performance Analysis with Caliper Instrumentation 228
33.1 GetCaliper o o e e e e 228
33.2 Annotating your Program ¢ v v v v v v e 228
33.2.1 Annotating in C/C++ 0 e e e e e e 228

33.2.2 AnnotatinginFortran. L o 228

33.3 Analyzing your program v e e e e e e e e e e e e e e e e e 229
33.4 Guidelines L e e 229
IV Performance Reports 231
34 Running with an example program 231
34.1 Overview of the example sourcecode 231
342 Compiling e e e e e e 231
34.2.1 Cray X-Series o o v i i e e e e e e e e e e e e 232

34.3 Running i e e e e e e e e e 232
34.4 Generating a performance report e e e e e e e e e 233

35 Running with real programs 234
35.1 Preparing a program for profiling, 234
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 11

101136_2020_00_en

Arm Forge 20.2 CONTENTS

36

37

35.1.1 Linking oo e 234
35.1.2 Dynamic linking on Cray X-Series systems 235
35.1.3 Staticlinking e 236
35.1.4 Static linking on Cray X-Series systems v v v v ... 238
35.1.5 Dynamic and static linking on Cray X-Series systems using the modules envi-
0] 1108 T 0L 239
35.1.6 map-link modules installation on Cray X-Series 239
35.1.7 Unsupported user applications, 239
35.2 Express Launchmode e 239
35.2.1 Compatible MPIs e e 240
35.3 Compatibility Launchmode, 240
35.4 Generating a performance reporto i e e e e e e e e 241
35.5 Specifying output locations e 242
35.6 Support for DCIM SYStems v v v v v e e e e e e e e e e e e e e 242
35.6.1 Customizing your DCIM script i v ittt e e e 242
35.6.2 Customising the gmetriclocation 243
35.7 Enable and disable metrics L 243
Summarizing an existing MAP file 244
Interpreting performance reports 245
37.1 HTML performance reports v v v v v o ot e e e e e e e e e e 245
37.2 REPOTESUMMALY . .« . ¢ v v v v v e v e 247
3721 COMPULE . . . o vt et e 247
37.2.2 MPL . . . e 247
37.2.3 Input/Output o e e e e e e e e e 247
37.3 CPUbreakdown e e 247
37.3.1 Singlecorecode e e e 248
37.3.2 OpenMPcode. i e e e e e e 248
37.3.3 Scalar nUmMeriCc 0ps« v v o e e e e e e e e e e 248
37.3.4 VectOr NUIMETIC OPS « « « v v v v v v e 248
37.3.5 MemOry acCesses . . .« v v v v v v v e e e e e e e e e e e e e e e 248
37.3.6 Waiting for accelerators e 248
37.4 CPU metrics breakdown e 249
37.4.1 Cycles perinstruction v i it 249
37.4.2 Stalledcycles e e 249
37.4.3 L2cachemisses e 249
37.4.4 L3 cache miss perinstruction 249
37.4.5 FLOPS scalarlowerbound 249
37.4.6 FLOPSvectorlowerbound 249
37.4.7 MEMOTIY aCCESSES . « . ¢ v v v v v e 250
37.5 OpenMP breakdown e 250
37.5.1 Computationttt e e e e e e e e e e e e e e e e 250
37.5.2 Synchronization e e 250
37.5.3 Physical core utilization 250
3754 Systemload e e e e 250
37.6 Threads breakdown 251
37.6.1 Computation v ittt e e e e e e e e e e e e e e e e e e 251
37.6.2 Synchronization 251
37.6.3 Physical core utilization e 251
37.6.4 Systemload e 251
37.7 MPIbreakdown L 251
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 12

101136_2020_00_en

Arm Forge 20.2

38

37.7.1
37.7.2
37.7.3
37.7.4

37.8.1
37.8.2
37.8.3
37.8.4
37.8.5

37.9.1
37.9.2
37.9.3

Time in collectivecalls
Time in point-to-pointcalls.
Effective process collectiverate
Effective process point-to-pointrate
37.8 1/O breakdown
Timeinreads
Timeinwrites,
Effective processreadrate
Effective process writerate
Lustremetrics. o oL
37.9 Memory breakdown
Mean process memory Usage
Peak process memory usage
Peak node memory usage
37.10Accelerator breakdown
37.10.1 GPU utilization
37.10.2 Global memory accesses
37.10.3 Mean GPU memory usage
37.10.4 Peak GPU memory usage
37.11Energy breakdown
37.11.1 CPU
37.11.2 Accelerator
37.11.3 System
37.11.4 Mean node power
37.11.5 Peak node power
37.11.6 Requirements
37.12Textual performance reports
37.13CSV performance reports
37.14Worked examples
37.14.1 Code characterization and run size comparison
37.14.2 Deeper CPU metric analysis
37.14.3 I/O performance bottlenecks

Configurable Perf metrics

38.1 Permissions
38.2 Probing target hosts
38.3 Specifying Perf metrics via the command line
38.4 Specifying Perf metrics via a file
38.5 Viewing events
38.6 Advanced configuration

Appendix

Configuration

A.1 Configuring Performance Reports
A.2 Configuration files
Sitewide configuration
Startup scripts. L L e
Importing legacy configuration.
Converting legacy sitewide configuration files
Using shared home directories on multiple systems

A21
A22
A23
A24
A25

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

101136_2020_00_en

CONTENTS

Arm Forge 20.2 CONTENTS

A.2.6 Using a shared installation on multiple systems 265

A.3 Integration with queuing systems e e e 266
A.4 Template tutorial e e e 267
A4.1 Thetemplatescript L e e e e e 267

A.4.2 Configuring queue commandso 268

A.4.3 Configuring how jobsizeischosen 268

A.44 Quickrestart e e e 268

A.5 Connecting to compute nodes and remote programs (remote-exec) 268
A.6 Optional configuration 269
A6 1 System e e e e e e e e e e e e e 269

A.6.2 Jobsubmission 270

A.6.3 Codeviewersettings v v v v i i e e e e e e 270

A.6.4 AppearanCe i e e e e e e e e e e e e 271

B Getting support 272
C Supported platforms 273
C.1 Notes 273
C.2 Forge Remote Client o ot i i i i e e e e e e e e e 274

D Known issues 275
D.1 MAP . . e 275
D.2 XALT WIapPeT . . . o o o e 275
D.3 MPICH 3 e e e e e e 275
D.4 Open MPI e e 275
D.4.1 Open MPI 3.x on IBM Power with the GNU compiler 276

D.5 CUDA . . e e 276
D.6 SLURM e e e e e e e e 277
D.7 PGIlcompilers e e e e e e 277
D.8 64-bit Arm/Power platforms e 277
D.9 Seealso e e e 277

E MPI distribution notes and known issues 278
E.1 Berkeley UPC e e e e e 278
E2 BullMPI e 278
E.3 Cray MPT e e 278
E.3.1 Using DDT with Cray ATP (the Abnormal Termination Process) 279

E.4 HPMPI . . o e e e 279
E.5 IBMPE e e 280
E.6 Intel MPI e e 280
E.7 MPC e e e e 281
E.71 MPCinthe Runwindow 281

E.7.2 MPConthecommandline 282

E.8 MPICH 3 e e e 282
E.9 MVAPICH?2 e e e 282
E.10 Open MPI L e e e e e e 282
E.11 Platform MPI e e e e e e 283
E.12 SGIMPT /SGIAItix e e e e e 283
E.13 SLURM e e e e e 284
E.14 IBM Spectrum MPT o e e e e 284

F Compiler notes and known issues 285
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 14

101136_2020_00_en

Arm Forge 20.2 CONTENTS

G

F.1 AMD OpenCL compiler e et e e 285
F.2 ArmFortrancompiler e e e e e 285
F.3 Berkeley UPCcompiler. e 285
F.4 Cray compiler environment i 0 i e e e e 285
F.4.1 Compile scalar programsonCray v ... 286

FES5 GNU. . . . e 286
F51 GNUUPC e e e s e 287

F6 IBM XLC/XLF e e e e 287
F.7 Intel compilers e e e e e 287
F.8 Pathscale EKO compilers e 289
F.9 Portland Group compilers 289
Platform notes and known issues 291
G.1 CRAY . . . e 291
G.2 GNU/LINUX SYSIEIMS .« v v v v v v e 292
G.2.1 General e e 292
G.2.2 SUSELINUX . . . v v i it e e e e e e e e e e 292
G.23 Ubuntu e e 292
G.24 Attaching 293

G.3 Intel Xeon o oo e e e e 293
G.3.1 Enabling RAPL energy and power counters when profiling 293

G.4 Intel Xeon Phi (Knight’s Landing) 293
G.5 NVIDIA CUDA e e e e e e e e e e e e 294
G.5.1 CUDAKNOWNISSUES o v v it e e e et e e e e e e e 294

G.6 A e e e e 294
G.6.1 Armv8 (AArch64) knownissueso 294

G.7 POWERS8 and POWERY9 (POWER64-bit) 294
G.7.1 Supported features e 294
G.7.2 KnOwnissues i v it e e e e e 295

G.8 MACOS X . . . e e 295
General troubleshooting and known issues 296
H.1 GUI cannot connecttoan X Server v i i v vt it 296
H.2 Licensing e e e e e e e 296
H.2.1 License eIror o o i i i i e e e e e e e e 296
H.2.2 Nolicensesfound. e 297

H.3 F1 cannot display this document, 298
H.4 MPInotdetected e e 299
H.5 Starting aprogram o e e e e e e e e e e 302
H.5.1 Starting scalar programs L. e e 302
H.5.2 Starting scalar programs withaprun 302
H.5.3 Starting scalar programs withsrun 303
H.5.4 Problems when you start an MPI program 303
H.5.5 Starting multi-process programs e e e e e e 303
H.5.6 Noshared homedirectory 304
H.5.7 DDT or MAP cannot find your hosts or the executable 304
H.5.8 The progress bar does not move and Arm Forge timesout 304

H.6 Attaching e e e e 305
H.6.1 The system does not allow connecting debuggers to processes (Fedora, Ubuntu) . 305
H.6.2 The system does not allow connecting debuggers to processes (Fedora, Red Hat) 305
H.6.3 Running processes do not show up in the attach window 305

H.7 Source Viewer. e e e e e 306
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 15

101136_2020_00_en

Arm Forge 20.2 CONTENTS

H.7.1 No variables or line number information. 306
H.7.2 Source code does not appear when you start Arm Forge 306
H.7.3 Code folding does not work for OpenACC/OpenMP pragmas 306
H.8 Input/Output. e e e e e e e 306
H.8.1 Outputtostderrisnotdisplayed 306
H.8.2 Unwind errors o o i i e e e e 307
H.9 Controlling aprogram. o it e e e e 307
H.9.1 Program jumps forwards and backwards when stepping throughit 307
H.9.2 DDT might stop responding when using the Step Threads Together option 307
H.10 Evaluating variables e 307
H.10.1 Some variables cannot be viewed when the program is at the start of a function . 307
H.10.2 Incorrect values printed for Fortranarray 308
H.10.3 Evaluating an array of derived types, containing multiple-dimension arrays . . . 308
H.10.4 C++ STL types are not pretty printed 308
H.11 Memory debugging i e e e e e e e 308
H.11.1 The View Pointer Details window says a pointer is valid but does not show you
which line of code it was allocatedon 308
H.11.2 mprotect fails error when using memory debugging with guard pages . . 308
H.11.3 Allocations made before or during MPI_Init show up in Current Memory Us-
age but have no associated stack backtrace 309
H.11.4 Deadlock when calling printf or malloc from a signal handler 309
H.11.5 Program runs more slowly with Memory Debugging enabled 309
H.12 MAP specificissues o v v i i e e e e e e e e e 309
H.12.1 MPIwrapper libraries 309
H.12.2 Thread support limitations 310
H.12.3 No thread activity while blockingonan MPI call 310
H.12.4 T am not getting enoughsamples 310
H.12.5 I just see main (external code) and nothingelse 311
H.12.6 MAP is reporting time spent in a function definition 311
H.12.7 MAP is not correctly identifying vectorized instructions 311
H.12.8 Linking with the static MAP sampler library fails with an undefined reference to
_real _dlopen 312
H.12.9 Linking with the static MAP sampler library fails with FDE overlap errors 312
H.12.10MAP adds unexpected overhead to my program 313
H.12.11MAP takes an extremely long time to gather and analyze my OpenBLAS-linked
application L e 313
H.12.12MAP over-reports MPI, Input/Output, accelerator or synchronization time 313
H.12.13MAP collects very deep stack traces with boost::coroutine 314
H.13 Excessive MEMOTY USAZE« v v v v v v e e e e e e e e e e e e e e e e 315
H.13.1 Reduce processespernode i i i i it 315
H.13.2 Reduce debug information, 315
H.13.3 MAP / Performance Reports specificsetting 315
H.14 Obtaining support o o v e e e e e e e e e e e e 316
I Queue template script syntax 317
.1 Queuetemplate tags v v v i e e e e e e e e e e e e e e e e e e 317
.2 Defining new tags o o i e e e e e e e e e e e 318
1.3 Specifying default options 320
[.4 Launching e e e e 320
.41 Using AUTO_LAUNCH_TAG ittt et 320
[.42 Using forge-mpirun. L e 321
[.4.3 Scalarprograms e e e e e e 321
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 16

101136_2020_00_en

Arm Forge 20.2 CONTENTS

L5
1.6
L.7

Using PROCS_PER_NODE_TAG o it e e e e e e e e e 322
Job ID regular expression e e e e e e e 322
Arm IPMI Energy Agent i e e e e e e 323
.71 Requirements v v v v v it e e e e e e e e e e e e 323

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 17

101136_2020_00_en

Arm Forge 20.2 1 INTRODUCTION TO ARM FORGE

Part |

Arm Forge

Introduction to Arm Forge

Arm Forge combines Arm DDT, the leading parallel debugger for time-saving High-Performance ap-
plication debugging, and Arm MAP, the trusted performance profiler for invaluable optimization ad-
vice.

Arm Forge supports many parallel architectures and models, including MPI, UPC, CUDA and OpenMP.
Arm Forge is a cross-platform tool, with support for the latest compilers and C++ standards, and Intel,
64-bit Arm, AMD, OpenPOWER and Nvidia GPU hardware.

Arm Forge provides you with everything you need to debug, fix and profile programs at any scale.
One common interface makes it easy to move between Arm DDT and Arm MAP during code devel-
opment.

Arm Forge provides native remote clients for Windows, Mac OS X and Linux. Use a remote client to
connect to your cluster, where you can run, debug, profile, edit and compile your application files.

Arm DDT
Arm DDT is a powerful graphical debugger suitable for many different development environments, in-
cluding:

+ Single process and multithreaded software.

* OpenMP.

Parallel (MPI) software.

» Heterogeneous software, for example, GPU software.

* Hybrid codes mixing paradigms, for example, MPI with OpenMP, or MPI with CUDA.
» Multi-process software including client-server applications.

Arm DDT helps you to find and fix problems on a single thread or across hundreds of thousands of threads.
It includes static analysis to highlight potential code problems, integrated memory debugging to identify
reads and writes that are outside of array bounds, and integration with MPI message queues.

Arm DDT supports:
* C, C++, and all derivatives of Fortran, including Fortran 90.
* Limited support for Python (CPython 2.7).
+ Parallel languages/models including MPI, UPC, and Fortran 2008 Co-arrays.

GPU languages such as HMPP, OpenMP Accelerators, CUDA and CUDA Fortran.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 18
101136_2020_00_en

Arm Forge 20.2 1 INTRODUCTION TO ARM FORGE

Related information

* Chapter 5 provides details about getting started with Arm DDT.

Arm MAP

Arm MAP is a parallel profiler that shows you which lines of code took the most time to run, and why.
Arm MAP does not require any complicated configuration, and you do not need to have experience with
profiling tools to use it.

Arm MAP supports:
* MPI, OpenMP and single-threaded programs.

Small data files. All data is aggregated on the cluster and only a few megabytes written to disk,
regardless of the size or duration of the run.

* Sophisticated source code view, enabling you to analyze performance across individual functions.
* Both interactive and batch modes for gathering profile data.

* A rich set of metrics, that show memory usage, floating-point calculations and MPI usage across
processes, including:

— Percentage of vectorized instructions, including AVX extensions, used in each part of the
code.

— Time spent in memory operations, and how it varies over time and processes, to verify if there
are any cache bottlenecks.

— A visual overview across aggregated processes and cores that highlights any regions of im-
balance in the code.

Related information

+ Chapter 16 provides details about getting started with Arm MAP.

Arm Performance Reports
Arm Performance Reports is a low-overhead tool that produces one-page text and HTML reports sum-
marizing and characterizing both scalar and MPI application performance.

Arm Performance Reports provides the most effective way to characterize and understand the perfor-
mance of HPC application runs.

One single page HTML report elegantly answers a range of vital questions for any HPC site:
* Is this application optimized for the system it is running on?
* Does it benefit from running at this scale?
* Are there I/O or networking bottlenecks affecting performance?
» Which hardware, software or configuration changes can be made to improve performance further?

It is based on MAP’s low-overhead adaptive sampling technology that keeps data volumes collected and
application overhead low:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 19
101136_2020_00_en

Arm Forge 20.2 1 INTRODUCTION TO ARM FORGE

* Runs transparently on optimized production-ready codes by adding a single command to your
scripts.

* Just 5% application slowdown even with thousands of MPI processes.

Chapters 34 to 37 of this manual describe Arm Performance Reports in more detail.

Online resources

You can find tutorials, webinars and white papers on the Arm Developer website.
» Help and tutorials
* Known issues
If you have questions or require further support, please get in touch with our dedicated support team.

Get Arm Forge at Arm Forge downloads.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 20
101136_2020_00_en

https://developer.arm.com/products/software-development-tools/hpc/arm-forge
https://developer.arm.com/products/software-development-tools/hpc
https://developer.arm.com/products/software-development-tools/hpc/arm-forge/known-issues
https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Arm Forge 20.2 2 INSTALLATION

Installation

The following sections describe how to install Arm Forge on Linux, Windows and Mac operating systems,
and include details about the available licensing options.

Linux graphical install
Procedure

1. Download the required package from the Arm Developer website: Arm downloads.
2. Untar the Arm Forge installation package and run the installer executable by using these com-

mands:

tar xf arm-forge-20.2-<distro>-<arch>.tar
cd arm-forge-20.2-<distro>-<arch>
./installer

Note: Replace <distro> and <arch> with the required OS distribution and architecture. For
example, the tarball package for Redhat 7.4 OS and Armv8-A (A Arch64) architecture is:
arm-forge-20.2-Redhat-7.4-aarch64.tar

3. Use the Next and Back buttons to move between the installer pages to specify the installation op-
tions.
Click Cancel to cancel the installation.

4. On the Install Type page, specify for which users to install Arm Forge.
Note: If you are an administrator (root), you can install Arm Forge for All Users in a com-

mon directory such as /opt or /usr/local. Otherwise, the Just For Me option is selected, by
default.

Arm Forge Installer (]

Install Type

Who do you want to install Arm Forge for?

®) Just For Me

< Back ‘ Next > Cancel

Figure 1: Installer—Install type

5. After you select the installation type, enter the directory where you want to install Arm Forge.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 21
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/downloads

Arm Forge 20.2 2 INSTALLATION

Note: For a cluster installation, choose a directory that is shared between the cluster login or fron-
tend node, and the compute nodes. Alternatively, install or copy Arm Forge into the same location

on each node.

Arm Forge Installer £

Destination

Install Arm Forge to:

/home/user/arm/forge|

This directory must be accessible on all the nedes in your cluster.

< Back Next > Cancel

Figure 2: Installer—Destination

6. The progress of the installation displays on the Install page.

Arm Forge Installer 5

Install

Extracting "lib/libQt5Core.s0.5" to "fhomejuser/arm/forge/lib/libQt5Cere.s0.5"

Cancel

Figure 3: Install in progress

Results

The installation adds icons for DDT and MAP to the Development menu in your desktop environment.
After the installation is complete, read the instructions in the RELEASE - NOTES file in the install pack-

age, for details about how to run Arm DDT and Arm MAP.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 22
101136_2020_00_en

Arm Forge 20.2 2 INSTALLATION

Next steps

You can obtain an evaluation license at the following link: Get software.

Arm Forge supports a large number of different site configurations and MPI distributions, therefore you
must ensure that you fully integrate all components into your environment. For example, propagate
environment variables to remote nodes, and ensure that the tool libraries and executables are available on
the remote nodes.

Related information

* Alternatively, use the Linux text-mode install to perform the installation.
* License files
+ Chapter 5 provides details about getting started with Arm DDT.

* Chapter 16 provides details about getting started with Arm MAP.

Linux text-mode install

Install Arm Forge remotely using the textinstall. sh text-mode install script.

Procedure

1. Download the required package from the Arm Developer website: Arm downloads.
2. Untar the Arm Forge installation package and run the textinstall. sh script by using these

commands:

tar xf arm-forge-20.2-<distro>-<arch>.tar
cd arm-forge-20.2-<distro>-<arch>
./textinstall.sh

Note: Replace <distro> and <arch> with the required OS distribution and architecture. For
example, the tarball package for Redhat 7.4 OS and Armv8-A (AArch64) architecture is:
arm-forge-20.2-Redhat-7.4-aarch64.tar

3. When you are prompted, press Return to read the license, and then enter the path of the Arm Forge
installation directory. The directory must be accessible on all the nodes in your cluster.

Related information

* Alternatively, use the Linux graphical install to use the graphical installer.
* License files
+ Chapter 5 provides details about getting started with Arm DDT.

* Chapter 16 provides details about getting started with Arm MAP.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 23
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/allinea-studio/get-software
https://developer.arm.com/tools-and-software/server-and-hpc/downloads

Arm Forge 20.2 2 INSTALLATION

Mac installation

The Arm Forge client for Mac OS X is supplied as an Apple Disk Image (*.dmg) file. The DMG file
includes the Documentation folder and the Arm Forge client application bundle icon. The Docu-
mentation folder contains a copy of this user guide and the release notes.

You do not need to install a license file on a machine running Remote Client for connecting remotely to
Arm Forge products.

Procedure

1. Download the required package from the Arm Developer website: Arm downloads.

2. Drag and drop the Arm Forge client application bundle icon into the Applications directory.

-

‘o0 @

— arm-client-forge-macosx-x86_64

Drag & drop the Arm Forge Client icon
to the Applications folder

arm

Figure 4: Mac Installer—Installation Folder

Related information
+ Chapter 5 provides details about getting started with Arm DDT.
» Chapter 16 provides details about getting started with Arm MAP.
Windows installation

The Arm Forge remote client for Windows is supplied as a Windows executable file.

You do not need to install a license file on a machine running Remote Client for connecting remotely to
Arm Forge products.

Procedure

1. Download the Windows remote client package from the Arm Developer website: Arm downloads.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 24
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/downloads
https://developer.arm.com/tools-and-software/server-and-hpc/downloads

Arm Forge 20.2 2 INSTALLATION

2. Run the Windows file executable to install Arm Forge using a graphical installer.

3. When prompted, input the directory where you want to install Arm Forge.

ﬁl Setup - &rm Forge Client —

Select Destination Location
where should Arm Forge Client be installed?

Setup will install Arm Forge Client into the Following Folder.

To continue, click Mext, IF vou would like to select a different Folder, click Browse,

Browse, .,

At least 79.3 ME of free disk space is required.

< Back Cancel

Figure 5: Windows Installer—Installation Folder

Note: If your user account has administrative privileges, then by default Arm Forge is installed
under C: \Program Files.

If your account does not have administrative privileges, then by default Arm Forge is installed
under C: \Users\%USERNAME%\AppData\Local.

Related information

+ Chapter 5 provides details about getting started with Arm DDT.

* Chapter 16 provides details about getting started with Arm MAP.

License files
You must install a license file on a machine running Arm Forge products. You do not need to install a
license file on a machine running Remote Client for connecting remotely to Arm Forge products.

If you do not have a valid license file, the Arm Forge GUI shows an alert in the lower-left corner, and
you can not run, debug or profile new programs.

Time-limited evaluation licenses are available from the Arm website: Get software.

Workstation and evaluation licenses

Workstation and evaluation license files for Arm Forge do not require Arm Licence Server.

Arm Forge supports separate license files for Arm DDT, Arm MAP, and Arm Performance Reports with
a single installation of Arm Forge.

If there are multiple licenses installed for the same product, Arm Forge uses the license with the most
tokens.

Caution: Do not edit license files because this prevents them from working.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 25
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/allinea-studio/get-software

Arm Forge 20.2 2 INSTALLATION

Procedure
1. Copy your license files directly to { installation-directory}/licences. Forexample:
/home/user/arm/forge/20.2/1licences/Licence.ddt
Note: /opt/arm/licensesand /opt/arm/licences are also valid license file locations.
2. When Arm Forge starts, select Arm DDT or Arm MAP on the Welcome page.

If you would prefer to store the license files in an alternative location, use the environment variable
ALLINEA_LICENCE_DIR to specify it. For example:

export ALLINEA LICENCE_DIR=${HOME}/SomeOtherLicenceDir

Note: ALLINEA_LICENSE_DIR,ALLINEA_LICENCE_DIR,ARM_LICENSE_DIR,and ARM_LICENCE_
DIR can be used interchangeably.

Related information

+ Supercomputing and other floating licenses
« Time-limited evaluation licenses are available from the Arm website: Get software

* Visit Arm support to contact the support team if you have any problems with your license.

Supercomputing and other floating licenses

If you are using floating licenses for an HPC cluster, you need to use Arm Licence Server. Download
the required package from the Arm Forge downloads page on the Arm Developer website: Arm down-
loads.

A floating license consists of two files: the server license (a file named Licence.xxxX) and a client
license file named Licence.

You can find more information about Arm Licence Server on the Arm Licence Server website.

Procedure
1. Copy the client file (Licence)to {installation-directory}/licences.
For example, /home/user/arm/forge/20.2/1icences/Licence.

2. Edit the hostname line to contain the host name or IP address of the machine running the Licence
Server.

3. See the Licence Server user guide on the Arm Licence Server website for instructions on how to
install the server license.

4. Ensure that Arm Licence Server is running on the designated license server machine before you
run Arm Forge.

Related information
» More information about Licence Server on the Arm Licence Server website web page.

» Workstation and evaluation licenses

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 26
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/allinea-studio/get-software
https://www.arm.com/products/development-tools/server-and-hpc/contact-support
https://developer.arm.com/tools-and-software/server-and-hpc/downloads
https://developer.arm.com/tools-and-software/server-and-hpc/downloads
https://developer.arm.com/tools-and-software/server-and-hpc/help/help-and-tutorials/system-administration/licensing/arm-licence-server
https://developer.arm.com/tools-and-software/server-and-hpc/help/help-and-tutorials/system-administration/licensing/arm-licence-server
https://developer.arm.com/tools-and-software/server-and-hpc/help/help-and-tutorials/system-administration/licensing/arm-licence-server

Arm Forge 20.2 2 INSTALLATION

» Time-limited evaluation licenses are available from the Arm website: Get software

* Visit Arm support to contact the support team if you have any problems with your license.

Architecture licensing

Licenses issued after the release of Arm Forge 6.1 specify the compute node architectures with which
they can be used. Licenses issued before this release enable the x86_64 architecture by default. If you
are using another architecture, you will receive a new license to enable your architecture.

Visit Arm support to contact the support team if you have any problems with your license.

Using multiple architecture licenses

If you are using multiple license files to specify multiple architectures, Arm recommends that you follow
these steps.

Procedure

1. Ensure that the default licenses directory is empty.
2. Create a directory for each architecture.

3. When you want to target a specific architecture, set ALLINEA_LICENSE_DIR to the relevant
directory.
Alternatively, set ALLINEA_LICENSE_FILE to specify the license file.

Example

On a site that targets two architectures, x86_64 and AArch64, create a directory for each architecture,
and name them 1icenses_x86_64 and 1icenses_aarch64. Then, to target the architectures, set
the license directories as follows:

To target AArch64:
export ALLINEA LICENSE_DIR=/path/to/licenses/licenses_aarch64

To target x86_64:
export ALLINEA LICENSE_DIR=/path/to/licenses/licenses_x86_64

Environment variables
Performance Report customization

Environment variables to customize your reports:
ALLINEA_NOTES
Any text in this environment variable will be included in all reports produced.

ALLINEA_MAP_TO_DCIM

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 27
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/allinea-studio/get-software
https://www.arm.com/products/development-tools/server-and-hpc/contact-support
https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 2 INSTALLATION

Allows you to specify a . map file when using the - -dcim-output argument.

ALLINEA_DCIM_SCRIPT

Path to the script to use to communicate with DCIM. Default is

\${ALLINEA_TOOLS_PATH}/performance-reports/ganglia-connector/pr-dcim
}.

ALLINEA_GMETRIC

Path to the gmetric instance to use. This is specific to the pr-dcim script. Defaultiswhich gmet -
ric.

Warning suppression

Environment variables for warning suppression (for use when autodetection is resulting in erroneous
messages):

ALLINEA_NO_APPLICATION_PROBE

Do not attempt to auto-detect MPI or CUDA executables.

ALLINEA_DETECT_APRUN_VERSION

Automatically detect Cray MPT by passing - -version to the aprun wrapper and parsing the out-
put.

110 behavior

Environment variables for handling default I/O behavior:
ALLINEA_NEVER_FORWARD_STDIN

Never forward the stdin of the perf-report command stdin to the program being analyzed, even
if not using the GUIL Normally Arm Performance Reports only forwards stdin when running without
the GUI.

ALLINEA_ENABLE_ALL_REPORTS_GENERATION

Enables the option in Arm Performance Reports to generate all types of results at once, using the .all
extension.

Licensing

Environment variables to handle licensing;:

ALLINEA_LICENCE_FILE

Location of the license file. Default is ${ALLINEA_TOOLS_PATH}/Licence
ALLINEA_FORCE_LICENCE_FILE

Location of the license file. This ensures the license file being pointed to is used.
ALLINEA_LICENCE_DIR

Location of the licenses directory. Default is ${ALLINEA_TOOLS_PATH}/licences.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 28
101136_2020_00_en

Arm Forge 20.2 2 INSTALLATION

ALLINEA_MAC_INTERFACE

Specify the host name of the network interface the license is tied to.

Timeouts

Environment variables for handling timeouts:
ALLINEA_NO_TIMEOUT

Do not time out if nodes do not connect after a specified length of time. This may be necessary if the
MPI subsystem takes unusually long to start processes.

ALLINEA_PROCESS_TIMEOUT
Length of time (in ms) to wait for a process to connect to the front end.
ALLINEA_MPI_FINALIZE_TIMEOUT_MS

Length of time (in ms) to wait for MPI_Finalize to end and the program to exit. Default is 300000
(5 minutes). 0 waits forever.

Sampler

Environment variables for handling sampler-related setup, runtime behavior, and backend processing:
ALLINEA_SAMPLER_INTERVAL

Arm Performance Reports takes a sample in each 20 milliseconds period, giving it a default sampling
rate of 50Hz. This will be automatically decreased as the run proceeds to ensure a constant number of
samples are taken. See ALLINEA_SAMPLER_NUM_SAMPLES.

If your program runs for a very short period of time, you may benefit by decreasing the initial sampling
interval. For example, ALLINEA_SAMPLER_INTERVAL=1 sets an initial sampling rate of 1000Hz, or
once per millisecond. Higher sampling rates are not supported.

Increasing the sampling frequency from the default is not recommended if there are lots of threads or
very deep stacks in the target program because this may not leave sufficient time to complete one sample
before the next sample is started.

Note: Custom values for ALLINEA SAMPLER_INTERVAL may be overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS). For more information, see ALLINEA_SAMPLER_INTERVAL_PER_
THREAD.

ALLINEA_SAMPLER_INTERVAL_PER_THREAD

To keep overhead low, Arm Performance Reports imposes a minimum sampling interval based on the
number of threads. By default, this is 2 milliseconds per thread, thus for eleven or more threads Arm
Performance Reports will increase the initial sampling interval to more than 20 milliseconds.

To adjust this behavior set ALLINEA_SAMPLER_INTERVAL_PER_THREAD to the minimum per thread
sample time, in milliseconds.

Lowering this value from the default is not recommended if there are lots of threads as this may not leave
sufficient time to complete one sample before the next sample is started.

Notes:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 29
101136_2020_00_en

Arm Forge 20.2 2 INSTALLATION

» Whether OpenMP is enabled or disabled in Arm Performance Reports, the final script or scheduler
values set for OMP_NUM_THREADS will be used to calculate the sampling interval per thread
(ALLINEA_SAMPLER _INTERVAL_PER_THREAD). When configuring your job for submission,
check whether your final submission script, scheduler or the Arm Performance Reports GUI has a
default value for OMP_NUM_THREADS.

* Custom values for ALLINEA_SAMPLER_INTERVAL will be overwritten by values set from the
combination of ALLINEA _SAMPLER _INTERVAL_PER_THREAD and the expected number of
threads from OMP_NUM_THREADS.

ALLINEA_MPI_WRAPPER

To direct Arm Performance Reports to use a specific wrapper library set ALLINEA_MPI_WRAPPER=
<path of shared object>.

Arm Performance Reports ships with a number of precompiled wrappers, when your MPI is supported
Arm Performance Reports will automatically select and use the appropriate wrapper.

To manually compile a wrapper specifically for your system, set ALLINEA_WRAPPER_COMPILE=1
andMPICCandrun<path to Arm Performance Reports installation>/map/wrapper/
build_wrapper.

This generates the wrapper library ~/ .allinea/wrapper/libmap- sampler-pmpi-<hostname>
. SO with symlinks to the following files:

« ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1

+ ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.s0.1.0

« ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.s0.1.0.0.
ALLINEA_WRAPPER_COMPILE

To direct Arm Performance Reports to fall back to creating and compiling a just-in-time wrapper, set
ALLINEA_WRAPPER_COMPILE=1.

In order to be able to generate a just-in-time wrapper an appropriate compiler must be available on the
machine where Arm Performance Reports is running, or on the remote host when using remote con-
nect.

Arm Performance Reports will attempt to auto detect your MPI compiler, however, setting the MPICC
environment variable to the path to the correct compiler is recommended.

ALLINEA_MPIRUN
The path of mpirun, mpiexec or equivalent.

If set, ALLINEA_MPIRUN has higher priority than that set in the GUI and the mpirun found in
PATH.

ALLINEA_SAMPLER_NUM_SAMPLES

Arm Performance Reports collects 1000 samples per process by default. To avoid generating too much
data on long runs, the sampling rate is automatically decreased as the run progresses to ensure only 1000
evenly spaced samples are stored.

You may adjust this by setting ALLINEA_SAMPLER_NUM_SAMPLES=<positive integer>.

Note: It is strongly recommended that you leave this value at the default setting. Higher values are not
generally beneficial and add extra memory overheads while running your code. With 512 processes, the

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 30
101136_2020_00_en

Arm Forge 20.2 2 INSTALLATION

default setting already collects half a million samples over the job, the effective sampling rate can be very
high indeed.

ALLINEA_KEEP_OUTPUT_LINES

Specifies the number of lines of program output to record in . map files. Setting to © will remove the line
limit restriction, although this is not recommended as it may result in very large . map files if the profiled
program produces lots of output.

ALLINEA_KEEP_OUTPUT_LINE_LENGTH

The maximum line length for program output that will be recorded in . map files. Lines containing more
characters than this limit will be truncated. Setting to © will remove the line length restriction. This is
not recommended because it may result in very large . map files if the profiled program produces lots of
output per line.

ALLINEA_PRESERVE_WRAPPER

To gather data from MPI calls Arm Performance Reports generates a wrapper to the chosen MPI imple-
mentation.

By default, the generated code and shared objects are deleted when Arm Performance Reports no longer
needs them.

To prevent Arm Performance Reports from deleting these files set ALLINEA_PRESERVE_WRAPPER=
1.

Note: If you are using remote launch then this variable must be exported in the remote script.
ALLINEA_SAMPLER_NO_TIME_MPI_CALLS

To prevent Arm Performance Reports from timing the time spent in MPI calls, set ALLINEA_SAMPLER_
NO_TIME_MPI_CALLS.

ALLINEA_SAMPLER_TRY_USE_SMAPS

To allow Arm Performance Reports to use /proc/[pid]/smaps to gather memory usage data, set
this ALLINEA_SAMPLER_TRY_USE_SMAPS. This is not recommended since it slows down sampling
significantly.

MPICC

To create the MPI wrapper Arm Performance Reports will try to use MPICC, then if that fails search for
a suitable MPI compiler command in PATH. If the MPI compiler used to compile the target binary is not
in PATH (or if there are multiple MPI compilers in PATH) then MPICC should be set.

Simple troubleshooting

Environment variables for simple troubleshooting:
ALLINEA_DEBUG_HEURISTICS

To print the weights and heuristics used to autodetect which MPI is loaded, set to 1.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 31
101136_2020_00_en

Arm Forge 20.2 3 CONNECTING TO A REMOTE SYSTEM

Connecting to a remote system

Often you will need to login to a remote system in order to run a job. For example you may use SSH to
login from your desktop machine mydesktop to the login node mycluster-login and then start a job using
the queue submission command qgsub.

mydesktop mycluster-login

e

Compute Nodes

Figure 6: Connecting to a Remote System

The Arm Forge GUI can connect to remote systems using SSH, typically to a login node. It can also
connect using Reverse Connect, typically to a batch compute node. See 3.3 Reverse Connect for more
information on Reverse Connect. The remote client allows you to run the user interface on your local
machine without the need for X forwarding. Native remote clients are available for Windows, Mac OS X
and Linux.

No license file is required by a remote client. The license of the remote system will be used once con-
nected.

Note: The same versions of Arm Forge must be installed on the local and remote systems in order to use
DDT or MAP remotely.

OPTIONS

Remote Launch:
off

QuUIT

Figure 7: Remote Launch—Configure

To connect to a remote system click on the Remote Launch drop down list and select Configure... The Re-
mote connections dialog will open where you can edit the necessary settings.

Remote connections dialog

The Remote Connections Dialog allows you to add, remove and edit connections to remote systems.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 32
101136_2020_00_en

Arm Forge 20.2 3 CONNECTING TO A REMOTE SYSTEM

Configure Remote Connections ES

Add

Duplicate

Remove

Close

Figure 8: Remote Connections Dialog

When adding or editing a host, you are presented with the Remote launch settings for that host.

You may also remove a remote host from the list by clicking the Remove button, or duplicate an existing
host using the Duplicate button.

You can also change the ordering of the hosts using the Move Up or Move Down buttons.

Remote launch settings

Remote Launch Settings x

Connection Name: |login via gateway

Host Name: gateway:2022 legin

How do | connect via a gateway (multi-hop)?

Remote Installation Directory: |jopt/armyforge
Remote Script |fhomefuser/.allineajremote-script
Always look for source files locally
KeepAlive Packets: | | Enable
Interval:
Proxy through login node

Test Remote Launch

Help oK Cancel

Figure 9: Remote Launch Options

Connection Name: An optional name for this connection. If no name is specified, the Host Name is
used.

Host Name: The host name of the remote system you wish to connect to.
The syntax of the host name field is:
[username]@hostname[:port]...
username is an optional user name to use on the remote system. If not specified your local user name
is used instead.
hostname is the host name of the remote system.

port is the optional port number that the remote host’s SSH daemon is listening on. If not specified the
default of 22 is used.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 33
101136_2020_00_en

Arm Forge 20.2 3 CONNECTING TO A REMOTE SYSTEM

To login via one or more intermediate hosts (for example, a gateway) enter the host names in order,
separated by spaces, for example, gateway.arm.com cluster.lan

Note: You must be able to login to the third and subsequent hosts without a password.

Additional SSH options may be specified in the remote - exec script covered in section A.5 Connecting
to compute nodes and remote programs (remote-exec).

Remote Installation Directory: The full path to the Arm Forge installation on the remote system.

Remote Script: This optional script will be run before starting the remote daemon on the remote system.
You may use this script to load the required modules for DDT and MAP, your MPI and compiler. See
the following sections for more details. The script is usually not necessary when using Reverse Con-
nect.

Always look for source files locally: Check this box to use the source files on the local system instead
of the remote system.

KeepAlive Packets: Check this box to enable KeepAlive packets. These are dummy packets sent on
regular intervals to keep some SSH connections from timing out. The interval can be configured from
the spin box below.

Proxy through login node: Check this box to use the local RSA key to connect to both the login and the
batch nodes. This is equivalent to not setting ALLINEA_NO_SSH_PROXYCOMMAND.

When this option is not set, DDT will first connect to the login node using your local RSA key and then
use the key on the remote SSH configuration folder to connect to the batch node. This is equivalent to
setting ALLINEA_NO_SSH_PROXYCOMMAND=1.

Remote script

The script may load modules using the module command or otherwise set environment variables. Arm
Forge will source this script before running its remote daemon (your script does not need to start the
remote daemon itself).

The script will be run using /bin/sh (usually a Bourne-compatible shell). If this is not your usual login
shell, make allowances for the different syntax it might require.

You may install a site-wide script that will be sourced for all users at
/path/to/arm/forge/20.2/remote-init.

You may also install a user-wide script that will be sourced for all of your connections at
$ALLINEA_CONFIG_DIR/remote-init.

Note: SALLINEA_CONFIG_DIR will default to SHOME/ .allinea if not set.
Example Script

Note: This script file should be created on the remote system and the full path to the file entered in the
Remote Script field box.

module load allinea-forge
module load mympi
module load mycompiler

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 34
101136_2020_00_en

Arm Forge 20.2 3 CONNECTING TO A REMOTE SYSTEM

Reverse Connect
Overview
The Reverse Connect feature allows you to submit your job from a shell terminal as you already do, with

a small tweak to your mpirun (or equivalent) to allow that job to connect back to Arm Forge GUI.

Reverse Connect makes it easy to debug and profile jobs with the correct environment. You can easily load
the required modules and prepare all the setup steps that are necessary before launching your job.

Note: Node-locked licenses such as workstation or Arm DDT Cluster licenses do not include the Reverse
Connect feature.

Usage

1. Start Arm Forge and let it connect to your remote system (typically a login node) with SSH.

2. Modify your current mpirun (or equivalent) command line inside your interactive queue alloca-
tion or queue submission script to enable Reverse Connect. In most of the cases it is sufficient
to prefix it with ddt/map --connect. Almost all Arm Forge arguments beside - -offline
and - -profile are supported by Reverse Connect.

Example:

$ mpirun -n 512 ./examples/wave_f

To debug the job using Reverse Connect and 5.2 Express Launch run:

$ ddt --connect mpirun -n 512 ./examples/wave_f

To profile the job using Reverse Connect and 16.1 Express Launch run:

$ map --connect mpirun -n 512 ./examples/wave_f

If your MPI is not yet supported by Express Launch mode you can use Compatibility Mode.

Debug:
$ ddt --connect -n 512 ./examples/wave_f

Profile:
$ map --connect -n 512 ./examples/wave_f

3. After a short period of time the Arm Forge GUI will show the Reverse Connect request including
the host (typically a batch compute node) from where the request was made and a command-line
summary.

Reverse Connect Request

i A new Reverse Connect request is available from mycluster-batch for Arm DDT.
Command Line: --connect mpirun -n 512 ./examples/wave _f
Do you want to accept this request?

Help | Accept ‘ Reject

Figure 10: Reverse Connect request

4. You can accept the request with a click on Accept. Arm Forge will then connect to the specified host
and execute what you specified with the command line. If you do not want to accept the request
just click on Reject.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 35
101136_2020_00_en

Arm Forge 20.2 3 CONNECTING TO A REMOTE SYSTEM

Connection details

If a Reverse Connect is initiated, for example with ddt --connect, Arm Forge starts a server listening
on a port in the range between 4201 and 4240. If this port range is not suitable for some reason, such as
ports are already taken by other services, you can override the port range with the environment variable
ALLINEA REMOTED_PORTS.

$ export ALLINEA_REMOTED_PORTS=4400-4500
$ ddt --connect
The server will now pick a free port between 4400 and 4500 (inclusive).

This connection is between the batch or submit node (where ddt —connect is run from) and the login
node. This connection can also be to a compute node if for example, you are running ddt --connect
mpirun on a single node.

Treeserver or general debugging ports

Connections are made in the following ways, depending on the use case:
Using a queue submission or using X-forwarding:
* A connection is made between the login node and the batch or submit node using ports 4242—4262.

» Connections are made between the batch or submit node and the compute nodes using ports 4242—
4262.

+ Connections are made from compute nodes to other compute nodes using ports 4242—4262.
Using reverse connect:
* See section 3.3.3 for details about login node to batch/submit node ports.

» Connections are made between the batch or submit node and the compute nodes using ports 4242—
4262,

» Connections are made from compute nodes to other compute nodes using ports 4242—4262.

Using X forwarding or VNC

If you do not want to use the Remote Launch feature there are two other methods for running DDT or
MAP on a remote system:

1. X forwarding is effective when the network connection is low latency, such as when the network
spans a single physical site.

2. VNC (or similar Unix-supporting remote desktop software) is strongly recommended when the
network connection is moderate or slow.

* Mac OS X users accessing a Linux or other Unix machine while using a single-button mouse should
be advised that pressing the Command key and the single mouse button will have the same effect
as right clicking on a two button mouse. Right-clicking allows access to some important features
in DDT and MAP.

You can use X forwarding to access the Arm Forge instance running on a remote Linux/Unix system
from a Mac OS X system:

— Start the X11 server (available in the X11User . pkg).

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 36
101136_2020_00_en

Arm Forge 20.2 3 CONNECTING TO A REMOTE SYSTEM

— Set the display variable correctly to allow X applications to display by opening a terminal in
Mac OS X and typing:

export DISPLAY=:0
— Then ssh to the remote system from that terminal, with ssh options - X and - C (X forwarding
and compression). For example:

ssh -CX username@login.mybigcluster.com

— Now start DDT or MAP on the remote system and the window will be displayed on your Mac.

Note: A known issue with the free version of XMing prevents it working well on Arm Forge and
on other Qt5 projects on Windows. Arm recommends using a more up to date X server such as
VeXsrv.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 37
101136_2020_00_en

Arm Forge 20.2 4 STARTING ARM FORGE

Starting Arm Forge

To start Arm Forge simply type one of the following commands into a terminal window:

forge
forge program_name [arguments]

To start Arm Forge on Mac OS X, use the Arm Forge icon or type in the terminal window:

open /Applications/Arm\ Forge/Arm Forge.app [--args program_name [
arguments]]

To launch additional instances of the Arm Forge application, right-click the Dock icon of a running
instance of Arm Forge, and choose “Launch a new instance of Arm Forge”. Alternatively, you can use
the following command in a terminal:

open -n /Applications/Arm\ Forge/Arm Forge.app [--args
program_name [arguments]]

Note: Unless in Express Launch mode, you should not attempt to pipe input directly to the Arm Forge
program. For information about how to achieve the effect of sending input to your program, please read
section 9 Program input and output (DDT) or 29 Running MAP from the command line (MAP).

Once Arm Forge has started it will display the Welcome Page.

Note: In Express Launch mode (see 5.2 Express Launch (DDT) or 16.1 Express Launch (MAP)), the
Welcome Page is not shown and the user is brought directly to the Run Dialog instead. If no valid license
is found, the program is exited and the appropriate message is shown in the console output.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 38
101136_2020_00_en

Arm Forge 20.2 4 STARTING ARM FORGE

File Edit View Control Tools Window Help
arm
FORGE

RUN
Run and debug a program.

ATTACH

0 rm Attach to an already running program
DDT OPEN CORE
Open a core file from a previous run.
MANUAL LAUNCH (ADVANCED)
0 rm Manually launch the backend yourself.
MAP OPTIONS
Remote Launch:
off
QuIT

Support
Tutorials

arm.com

Licence Serial: 11069 ?

Figure 11: DDT Welcome Page

The Welcome Page allows you to choose what tool you would like to use (DDT or MAP). Click the icons
on the left hand side to switch tools.

Once you have selected the tool you want to use, click the buttons in the menu to select a debugging or
profiling activity.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 39
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

Part Il

DDT

Getting started

When compiling the program that you wish to debug, you must add the debug flag to your compile
command. For most compilers this is -g.

It is also advisable to turn off compiler optimizations as these can make debugging appear strange and
unpredictable. If your program is already compiled without debug information you will need to make the
files that you are interested in again.

The Welcome Page allows you to choose what kind of debugging you want to do, for example you
can:

* Run a program from DDT and debug it.

* Debug a program you launch manually (for example, on the command line).
+ Attach to an already running program.

* Open core files generated by a program that crashed.

+ Connect to a remote system and accept a Reverse Connect request.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 40
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

Running a program

Application: /home/fuser/ddt/examples/hello sleepy Details
Application: | /home/user/ddt/examples/hello v

Arguments: |sleepy v

stdin file:

Working Directory: M

v| MPI: 512 processes, Open MPI Details
OpenMP
cuDA

Memory Debugging

Submit to Queue

Environment Variables: none Details
Plugins: none Details
Help Options Run Cancel

Figure 12: Run Window

If you click the Run button on the Welcome Page you see the window above. The settings are grouped
into sections. Click the Details... button to expand a section. The settings in each section are described
below.

Application

Application: The full path name to your application. If you specified one on the command line, this is
filled in. You may browse for an application by clicking on the Browse & button.

Note: Many MPIs have problems working with directory and program names containing spaces. You
are advised to avoid the use of spaces in directory and file names.

Arguments: (optional) The arguments passed to your application. These are automatically filled if you
entered some on the command line.

Note: Avoid using quote characters such as ' and ", as these may be interpreted differently by DDT and
your command shell. If you must use these and cannot get them to work as expected, please contact Arm
support at Arm support.

stdin file: (optional) This allows you to choose a file to be used as the standard input (stdin) for your
program. DDT automatically adds arguments to mpirun to ensure your input file is used.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 41
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 5 GETTING STARTED

Working Directory: (optional) The working directory to use when debugging your application. If this
is blank then DDT’s working directory is used instead.

MPI

Note: If you only have a single process license or have selected none as your MPI Implementation
the MPI options will be missing. The MPI options are not available when DDT is in single process
mode. See section 5.4 Debugging single-process programs for more details about using DDT with a
single process.

Number of processes: The number of processes that you wish to debug. DDT supports hundreds of
thousands of processes but this is limited by your license.

Number of nodes: This is the number of compute nodes that you wish to use to run your program.
Processes per node: This is the number of MPI processes to run on each compute node.

Implementation: The MPI implementation to use. If you are submitting a job to a queue the queue
settings will also be summarized here. You may change the MPI implementation by clicking on the
Change... button.

Notes:

* The choice of MPI implementation is critical to correctly starting DDT. Your system will normally
use one particular MPI implementation. If you are unsure as to which to pick, try generic, con-
sult your system administrator or Arm support. A list of settings for common implementations is
provided in Appendix E MPI distribution notes and known issues.

* If your desired MPI command is not in your PATH, or you wish to use an MPI run command that is
not your default one, you can configure this using the Options window (See section A.6.1 System).

mpirun arguments: (optional): The arguments that are passed to mpirun or your equivalent, usually
prior to your executable name in normal mpirun usage. You can place machine file arguments, if
necessary, here. For most users this box can be left empty. You can also specify mpirun arguments on
the command line (using the - -mpiargs command-line argument) or using the ALLINEA_MPIRUN_
ARGUMENTS environment variable if this is more convenient.

Notes:
* You should not enter the - np argument as DDT will do this for you.

* You should not enter the - -task-nb or --process-nb arguments as DDT will do this for
you.

OpenMP

Number of OpenMP threads: The number of OpenMP threads to run your application with. The OMP_
NUM_THREADS environment variable is set to this value.

CUDA

If your license supports it, you may also debug GPU programs by enabling CUDA support. For more
information on debugging CUDA programs, please see section 14 CUDA GPU debugging.

Track GPU Allocations: Tracks CUDA memory allocations made using cudaMalloc, and similar
methods. See 12.2 CUDA memory debugging for more information.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 42
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

Detect invalid accesses (memcheck): Turns on the CUDA-MEMCHECK error detection tool. See 12.2
CUDA memory debugging for more information.

Memory debugging

Clicking the Details... button will open the Memory Debugging Settings window.

See section 12.4 Configuration for full details of the available Memory Debugging settings.

Environment variables

The optional Environment Variables section should contain additional environment variables that should
be passed to mpirun or its equivalent. These environment variables may also be passed to your pro-
gram, depending on which MPI implementation your system uses. Most users will not need to use this
box.

Note: on some systems it may be necessary to set environment variables for the DDT backend itself. For
example: if /tmp is unusable on the compute nodes you may wish to set TMPDIR to a different directory.
You can specify such environment variables in /path/to/ddt/1ib/environment. Enter one vari-
able per line and separate the variable name and value with =, for example, TMPDIR=/work/user.

Plugins

The optional Plugins section allows you to enable plugins for various third-party libraries, such as the
Intel Message Checker or Marmot. See section 13 Using and writing plugins for more information.

Click Run to start your program, or Submit if working through a queue. See section A.3 Integration with
queuing systems. This runs your program through the debug interface you selected and allows your MPI
implementation to determine which nodes to start which processes on.

Note: If you have a program compiled with Intel ifort or GNU g77 you may not see your code and
highlight line when DDT starts. This is because those compilers create a pseudo MAIN function, above the
top level of your code. To fix this you can either open your Source Code window and add a breakpoint in
your code, then run to that breakpoint, or you can use the Step into function to step into your code.

When your program starts, DDT attempts to determine the MPI world rank of each process. If this fails,
the following error message is displayed:

Arm DDT couldn't find complete MPI rank information for these
processes and has assigned an arbitrary number to each process
instead. You can manually assign ranks with the "Use as MPI rank"”
button inside the cross-process comparison window - check the user
guide for details. Set the environment variable
ALLINEA_IGNORE_MPI_RANK_ERRORS to 1 to avoid seeing this warning

again.
0K

Figure 13: MPI rank error

This means that the number DDT shows for each process may not be the MPI rank of the process. To
correct this you can tell DDT to use a variable from your program as the rank for each process.

See section 8.18 Assigning MPI ranks for details.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 43
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

To end your current debugging session select the End Session menu option from the File menu. This
closes all processes and stops any running code. If any processes remain you may have to clean them up
manually using the kill command, or a command provided with your MPI implementation.

Express Launch
Each of the Arm Forge products can be launched by typing its name in front of an existing mpiexec
command:

$ ddt mpiexec -n 128 examples/hello memcrash
This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see an error message like this:

$ 'Generic' MPI programs cannot be started using Express Launch

syntax (launching with an mpirun command).

Try this instead:
ddt --np=256 ./wave_c 20

Type ddt --help for more information.
This is referred to as Compatibility Mode, in which the mpiexec command is not included and the

arguments to mpiexec are passed viaa - -mpiargs="args here'" parameter.

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts to
run your program under one of the Arm Forge products. This works best for Arm DDT with Reverse
Connect, ddt --connect, for interactive debugging or in offline mode (ddt --offline).

See 3.3 Reverse Connect for more details.

If you can not use Reverse Connect and wish to use interactive debugging from a queue, you might need
to configure DDT to generate job submission scripts for you. More details on this can be found in 5.10
Starting a job in a queue and A.3 Integration with queuing systems.

The following lists the MPI implementations currently supported by Express Launch:
* bullx MPI
* Cray X-Series (MPI/SHMEM/CAF)
* Intel MPI
+ MPICH 3
* Open MPI (MPI/SHMEM)
* Oracle MPT
* Open MPI (Cray XT/XE/XK)
* Spectrum MPI
+ Spectrum MPI (PMIx)
* Cray XT/XE/XK (UPC)

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 44
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

Run dialog box

In Express Launch mode, the Run dialog has a restricted number of options:

Run: mpirun -np 4 examples/wave_c Details
Command: |mpirun -np 4 examples/wave_c

OpenMP

cubDa

Memory Debugging

Plugins: none Details

Help Options | Run | Quit

Figure 14: Express Launch DDT Run dialog box

remote-exec required by some MPIs

When using SGI MPT, MPICH or the MPMD variants of MPICH 3 or Intel MPI, DDT will allow mpirun
to start all the processes, then attach to them while they are inside MPI_Init.

This method is often faster than the generic method, but requires the remote -exec facility in DDT
to be correctly configured if processes are being launched on a remote machine. For more informa-
tion on remote-exec, see section A.5 Connecting to compute nodes and remote programs (remote-
exec).

Note: If DDT is running in the background (for example, ddt &) then this process may get stuck (some
SSH versions cause this behavior when asking for a password). If this happens to you, go to the terminal
and use the g or similar command to make DDT a foreground process, or run DDT again, without using
“&”'

If DDT cannot find a password-free way to access the cluster nodes then you will not be able to use
the specialized startup options. Instead, You can use generic, although startup may be slower for large
numbers of processes.

In addition to the listed MPI implementations above, all MPI implementations except for Cray MPT DDT
require password-free access to the compute nodes when explicitly starting by attaching.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 45
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

Debugging single-process programs

Application: /home/user/ddt/examples/simple Details
Application: | /homejuser/ddt/fexamples/simple -
Arguments: hd
stdin file:
Working Directory: s
Runtime: Open MPI Details
OpenMP
cuba
Memory Debugging

Submit to Queue

Environment Variables: none Details
Plugins: none Details
Help Options Run Cancel

Figure 15: Single-Process Run dialog

Users with single-process licenses will immediately see the Run dialog that is appropriate for single-
process applications.

Users with multi-process licenses can uncheck the MPI check box to run a single process program.

Select the application, either by typing the file name in, or selecting using the browser by clicking the
browse & button. Arguments can be typed into the supplied box.

Click Run to start your program.

Note: If you have a program compiled with Intel ifort or GNU g77 you may not see your code and
highlight line when DDTstarts. This is because those compilers create a pseudo MAIN function, above the
top level of your code. To fix this you can either open your Source Code window and add a breakpoint
in your code and then play to that breakpoint, or you can use the Step Into function to step into your
code.

To end your current debugging session select the End Session menu option from the File menu. This will
close all processes and stop any running code.

Debugging OpenMP programs

When running an OpenMP program, set the Number of OpenMP threads value to the number of threads
you require. DDT will run your program with the OMP_NUM_THREADS environment variable set to the
appropriate value.

There are several important points to keep in mind while debugging OpenMP programs:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 46
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

10.

11.

Parallel regions created with #pragma omp parallel (C)or ! $OMP PARALLEL (Fortran)
will usually not be nested in the Parallel Stack View under the function that contained the #pragma.
Instead they will appear under a different top-level item. The top-level item is often in the OpenMP
runtime code, and the parallel region appears several levels down in the tree.

Some OpenMP libraries only create the threads when the first parallel region is reached. It is
possible you may only see one thread at the start of the program.

You cannot step into a parallel region. Instead, check the Step threads together box and use the
Run to here command to synchronize the threads at a point inside the region. These controls are
discussed in more detail in their own sections of this document.

You cannot step out of a parallel region. Instead, use Run to here to leave it. Most OpenMP libraries
work best if you keep the Step threads together box ticked until you have left the parallel region.
With the Intel OpenMP library, this means you will see the Stepping Threads window and will have
to click Skip All once.

Leave Step threads together off when you are outside a parallel region, as OpenMP worker threads
usually do not follow the same program flow as the main thread.

To control threads individually, use the Focus on Thread control. This allows you to step and play
one thread without affecting the rest. This is helpful when you want to work through a locking
situation or to bring a stray thread back to a common point. The Focus controls are discussed in
more detail in their own section of this document.

Shared OpenMP variables may appear twice in the Locals window. This is one of the many un-
fortunate side-effects of the complex way OpenMP libraries interfere with your code to produce
parallelism. One copy of the variable may have a nonsense value, this is usually easy to recognize.
The correct values are shown in the Evaluate and Current Line windows.

Parallel regions may be displayed as a new function in the stack views. Many OpenMP libraries
implement parallel regions as automatically-generated “outline” functions, and DDT shows you
this. To view the value of variables that are not used in the parallel region, you may need to switch
to thread 0 and change the stack frame to the function you wrote, rather than the outline function.

Stepping often behaves unexpectedly inside parallel regions. Reduction variables usually require
some sort of locking between threads, and may even appear to make the current line jump back to
the start of the parallel region. If this happens step over several times and you will see the current
line comes back to the correct location.

Some compilers optimize parallel loops regardless of the options you specified on the command
line. This has many strange effects, including code that appears to move backwards as well as
forwards, and variables that are not displayed or have nonsense values because they have been
optimized out by the compiler.

The thread IDs displayed in the Process Group Viewer and Cross-Thread Comparison window
will match the value returned by omp_get_thread_num() for each thread, but only if your
OpenMP implementation exposes this data to DDT. GCC’s support for OpenMP (GOMP) needs to
be built with TLS enabled with our thread IDs to match the return omp_get_thread_num(),
whereas your system GCC most likely has this option disabled. The same thread IDs will be
displayed as tooltips for the threads in the thread viewer, but only your OpenMP implementation
exposes this data.

If you are using DDT with OpenMP and would like to tell us about your experiences, please contact Arm
support at Arm support, with the subject title OpenMP feedback.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 47
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 5 GETTING STARTED

Manual launching of multi-process non-MPI programs

DDT can only launch MPI programs and scalar (single process) programs itself. The Manual Launch
(Advanced) button on the Welcome Page allows you to debug multi-process and multi-executable pro-
grams. These programs do not necessarily need to be MPI programs. You can debug programs that use
other parallel frameworks, or both the client and the server from a client/server application in the same
DDT session.

You must run each program you want to debug manually using the forge-client command, similar
to debugging with a scalar debugger like the GNU debugger (gdb). However, unlike a scalar debugger,
you can debug more than one process at the same time in the same DDT session, as long as your license
permits it. Each program you run will show up as a new process in the DDT window.

For example to debug both client and server in the same DDT session:
1. Click the Manual Launch (Advanced) button.

2. Select 2 processes

Manual Launch X

Runtime: manual launch Details
Number of Processes: | 2 -
CUDA
Memory Debugging

Plugins: none Details

Help Options Listen Cancel

Figure 16: Manual Launch Window

3. Click the Listen button.
4. At the command line run:

forge-client server &
forge-client client &

The server process appears as process 0 and the client as process 1 in the DDT window.

All 0 1

client |III

server 0

Figure 17: Manual Launch Process Groups

After you have run the initial programs you may add extra processes to the DDT session, for example
extra clients could be added, using forge-client in the same way.

forge-client client2 &

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 48
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

If you check Start debugging after the first process connects you do not need to specify how many pro-
cesses you want to launch in advance. You can start debugging after the first process connects and add
extra processes later as above.

Debugging MPMD programs

The easiest way to debug MPMD programs is by using Express Launch to start your application.
To use Express Launch, simply prefix your normal MPMD launch line with ddt, for example:

ddt mpirun -n 1 ./master : -n 2 ./worker

For more information on Express Launch, and compatible MPI implementations, see section 5.2.

Debugging MPMD programs without Express Launch
If you are using Open MPI, MPICH 3, or Intel MPI, DDT can be used to debug multiple program, multiple
data (MPMD) programs. To start an MPMD program in DDT:

1. MPICH 3 and Intel MPI only: Select the MPMD variant of the MPI Implementation on the System
page of the Options window, for example, for MPICH 3 select MPICH 3 (MPMD).

2. Click the Run button on the Welcome Page.

3. Select one of the MPMD programs in the Application box, it does not matter what executable you
choose.

4. Enter the total amount of processes for the MPMD job in the Number of processes box.

5. Enter an MPMD style command line in the mpirun Arguments box in the MPI section of the Run
window, for example:

-np 4 hello : -np 4 program2
or:

--app /path/to/my_app_file

6. Click the Run button.

Note: Ensure that the sum of processes in step 5 is equal to the number of processes set in step 4.

Debugging MPMD programs in Compatibility mode
If you are using Open MPI in Compatibility mode, for example, because you do not have SSH access to
the compute nodes, then replace:

-np 2 ./progc.exe : -np 4 ./progf90.exe

in the mpirun Arguments / appfile with this:

-np 2 /path/to/ddt/bin/forge-client ./progc.exe : -np 4
/path/to/ddt/bin/forge-client ./progf90.exe

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 49
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

Opening core files

Open Core Files (]

Executable: |/home/user/ddt/examples/a.out |7

Core files: | fhome/user/core.1234 Add...
Jhome/user/core.2345 =
/home/user/core.3456 ®
Jhome/user/core.4567

Help oK Cancel

Figure 18: The Open Core Files Window

DDT allows you to open one or more core files generated by your application.

To debug using core files, click the Open Core Files button on the Welcome Page. This opens the Open
Core Files window, which allows you to select an executable and a set of core files. Click OK to open
the core files and start debugging them.

While DDT is in this mode, you cannot play, pause or step, because there is no process active. You
are, however, able to evaluate expressions and browse the variables and stack frames saved in the core
files.

The End Session menu option will return DDT to its normal mode of operation.

Attaching to running programs

DDT can attach to running processes on any machine you have access to, whether they are from MPI
or scalar jobs, even if they have different executables and source pathnames. Clicking the Attach to a
Running Program button on the Welcome Page shows DDT’s Attach Window:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 50
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

Attach to local and remote processes X

MPI: OpenMPI |Change MPI... Debug CUDA

Hosts: localhost |Choose Hosts...

Automatically-detected jobs List of all processes

Filter for process names containing: ||

¥| Hide forked children (these may not be part of your job)

Process name Host PID PPID Forked Executable -

(sd-pam) localhost 1779 1778 No

-bash localhost 10240 2600 No J/bin/bash

-bash localhost 20985 2600 No J/bin/bash

-bash localhost 2601 2600 No J/binfbash

-bash localhost 8265 2600 No J/bin/bash

fbin/bash localhost 25313 10240 No J/bin/bash
Nlib/systemd/systemd localhost 1778 1 No Jlib/systemd/systemd
Jopt/ciscofanyconnect/binfacwebhe... localhost 24872 3824 No Jopticiscofanyconnect/
Jopt/ciscofanyconnect/bin/vpnui localhost 3824 1945 No Jopt/ciscofanyconnect/
Jopt/ciscofhostscan/binjcscan localhost 24869 3824 No Jopt/ciscofhostscan/bin
fopt/google/chrome/chrome localhost 20882 1 No Jopt/google/chrome/ch

Jopt/google/chrome/chrome —type... localhost 20925 20897 No Jopt/google/chrome/ch/ L

L L3

Invert selection | | Clear selection

1 nodes scanned.

Help Rescan nodes lgttach to listed processes Cancel

Figure 19: Attach Window

There are two ways to select the processes you want to attach to: you can either choose from a list of
automatically detected MPI jobs (for supported MPI implementations) or manually select from a list of
processes.

Automatically detected MPI jobs

DDT can automatically detect MPI jobs started on the local host for selected MPI implementations. This
also applies to other hosts you have access to, if an Attach Hosts File is configured. See section A.6.1
System for more details.

The list of detected MPI jobs is shown on the Automatically-detected MPI jobs tab of the Attach Window.
Click the header for a particular job to see more information about that job. Once you have found the job
you want to attach to simply click the Attach button to attach to it.

Note: Non-MPI programs that were started using MPI may not appear in this window. For example
mpirun -np 2 sleep 1000

Attaching to a subset of an MPI job

You may want to attach only to a subset of ranks from your MPI job. You can choose this subset using the
Attach to ranks box on the Automatically-detected MPI jobs tab of the Attach Window. You may change
the subset later by selecting the File — Change Attached Processes... menu item. The menu item is only
available for jobs that were attached to, and not for jobs that were launched using DDT.

Manual process selection

You can manually select which processes to attach to from a list of processes using the List of all processes
tab of the Attach Window. If you want to attach to a process on a remote host see section A.5 Connecting

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 51
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

to compute nodes and remote programs (remote-exec) first.

Initially the list of processes is blank while DDT scans the nodes, provided in your node list file, for
running processes. When all the nodes have been scanned (or have timed out) the window appears as
shown above. Use the Filter box to find the processes you want to attach to. On non-Linux platforms
you also need to select the application executable you want to attach to. Ensure that the list shows all
the processes you wish to debug in your job, and no extra/unnecessary processes. You may modify the
list by selecting and removing unwanted processes, or alternatively selecting the processes you wish to
attach to and clicking on Attach to Selected Processes. If no processes are selected, DDT uses the whole
visible list.

On Linux you may use DDT to attach to multiple processes running different executables. When you
select processes with different executables the application box changes to read Multiple applications
selected. DDT creates a process group for each distinct executable.

With some supported MPI implementations (for example, Open MPI) DDT shows MPI processes as chil-
dren of the mpirun (or equivalent) command, as shown in the following figure. Clicking the mpirun
command automatically selects all the MPI child processes.

Process name Host PID PPID Forked Executable -

¥ mpirun loginl 10407 10240 No J/software/mpifopenmpi-3,
hello_c loginl 10412 0 No Jhome/user/arm/forge/ex:
hello_c loginl 10413 0 No Jhome/user/arm/forge/ex:
hello_c loginl 10414 0 No Jhome/user/arm/forge/ex:
hello_c loginl 10415 0 No /home/user/arm/forge/ex:
hello_c loginl 10416 0 No Jhome/user/arm/forge/ex:
hello_c loginl 10419 0 No Jhome/user/arm/forge/ex:
hello_c loginl 10423 0 No Jhome/user/arm/forge/ex:
hello_c loginl 10425 0 No /home/userfarm/forge/ex:
hello_c loginl 10429 0 No Jhome/user/arm/forge/ex:
hello_c loginl 10431 0 No Jhome/user/arm/forge/ex:
hello_c loginl 10433 0 No Jhome/juser/arm/forge/ex: ..

] i ¥

Figure 20: Attaching with Open MPI

When you click the Attach to Selected/Listed Processes button, DDT uses remote-exec to attach a
debugger to each process you selected and proceeds to debug your application as if you had started it
with DDT. When you end the debug session, DDT detaches from the processes rather than terminating
them. This allows you to attach again later if you wish.

DDT examines the processes it attaches to and tries to discover the MPI__COMM_WORLD rank of each pro-
cess. If you have attached to two MPI programs, or a non-MPI program, then you may see the following
message:

I Arm DDT, x|

Arm DDT couldn't find complete MPI rank information for these
processes and has assigned an arbitrary number to each process
instead. You can manually assign ranks with the "Use as MPI rank”
button inside the cross-process comparison window - check the user
guide for details. Set the environment variable
ALLINEA_IGNORE_MPI_RANK_ERRORS to 1 to avoid seeing this warning

again.
OK

Figure 21: MPI rank error

If there is no rank, for example, if you have attached to a non-MPI program, then you can ignore this
message and use DDT as normal. If there is, then you can easily tell DDT what the correct rank for each
process via the Use as MPI Rank button in the Cross-Process Comparison Window. See section 8.18
Assigning MPI ranks for details.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 52
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

Note that the stdin, stderr and stdout (standard input, error and output) are not captured by DDT
if used in attaching mode. Any input/output continues to work as it did before DDT attached to the
program, for example, from the terminal or perhaps from a file.

Configuring attaching to remote hosts

To attach to remote hosts in DDT, click the Choose Hosts button in the attach dialog. This displays the
list of hosts to be used for attaching.

Host Name

v hostl
v host2
V| host3
host4
Add Import...
Help | 0K Cancel

Figure 22: Choose Hosts Window

From here you can add and remove hosts, as well as unchecking hosts that you wish to temporarily
exclude.

To import a list of hosts from a file, click the Import button.

The hosts list populates using the attach Hosts File. To configure the hosts, use the Options window:
File — Options (Arm Forge — Preferences on Mac OS X) .

Each remote host is scanned for processes, and the result is displayed in the attach window. If you have
trouble connecting to remote hosts, please see section A.5 Connecting to compute nodes and remote
programs (remote-exec).

Using DDT command-line arguments

As an alternative to starting DDT and using the Welcome Page, DDT can instead be instructed to attach
to running processes from the command-line.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 53
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

To do so, you need to specify a list of hostnames and process identifiers (PIDs). If a hostname is omitted
then localhost is assumed.

The list of hostnames and PIDs can be given on the command-line using the - -attach option:

mark@holly:~$ ddt --attach=11057,node5:11352

Another command-line possibility is to specify the list of hostnames and PIDs in a file and use the - -
attach-file option:

mark@holly:~$ cat /home/mark/ddt/examples/hello.list

nodel:11057
nodel:11094
node2:11352
node2:11362
node3:12357

mark@holly:~$ ddt --attach-file=/home/mark/ddt/examples/hello.list

In both cases, if just a number is specified fora hostname:PID pair, then localhost: is assumed.

These command-line options work for both single- and multi-process attaching.

Starting a job in a queue

In most cases you can debug a job simply by putting ddt - -connect in front of the existing mpiexec
or equivalent command in your job script. If a GUI is running on the login node or it is connected to it
via the remote client, then a message is displayed prompting you with the option to debug the job when
it starts.

See 5.2 Express Launch and 3.3 Reverse Connect for more details.

If DDT has been configured to be integrated with a queue/batch environment, as described in section A.3
Integration with queuing systems then you may use DDT to submit your job directly from the GUI. In
this case, a Submit button is presented on the Run Window, instead of the ordinary Run button. Clicking
Submit from the Run Window will display the queue status until your job starts. DDT will execute the
display command every second and show you the standard output. If your queue display is graphical or
interactive then you cannot use it here.

If your job does not start or you decide not to run it, click on Cancel Job. If the regular expression you
entered for getting the job id is invalid or if an error is reported then DDT will not be able to remove your
job from the queue. In this case it is strongly recommended that you check the job has been removed
before submitting another as it is possible for a forgotten job to execute on the cluster and either waste
resources or interfere with other debug sessions.

Once your job is running, it connects to DDT and you can debug it.

Job scheduling with jsrun

Launching jobs with jsrun in a job scheduling system enables the topology of processes and threads on
the node to be split into individual resource sets (the number of GPUs, CPUs, threads, and MPI tasks).
You can specify the amount of computational resource allocated to a resource set.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 54
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

How you decide to allocate resources has an impact on the runtime of Arm DDT and Arm MAP. For
example, it is possible to allocate all of the CPUs on the node to just one resource set. Alternatively, you
could allocate each CPU to its own resource set; in this case there are as many resource sets as there are
CPUs on the node.

The more resource sets you have on each node, the longer the runtime is for Arm DDT and Arm MAP. To
minimize runtime, Arm recommends that you aim to reduce the number of resource sets required.

For example, it is recommended to use:
jsrun --rs_per_host=1 --gpu_per_rs=0 --cpu_per_rs=42 --tasks_per_rs
=42
to launch a job with 42 MPI processes per node in a single resource set, instead of:

jsrun --rs_per_host=42 --gpu_per_rs=0 --cpu_per_rs=1 --tasks_per_rs=1

which launches 42 MPI processes per node, but uses 42 resource sets.

Using custom MPI scripts

On some systems a custom ‘mpirun’ replacement is used to start jobs, such asmpiexec. DDT normally
uses whatever the default for your MPI implementation is, so for Open MPI it would look for mpirun
and not mpiexec. This section explains how to configure DDT to use a custom mpirun command for
job start up.

There are typically two ways you might want to start jobs using a custom script, and DDT supports them
both. Firstly, you might pass all the arguments on the command-line, like this:

mpiexec -n 4 /home/mark/program/chains.exe /tmp/mydata

There are several key variables in this line that DDT can fill in for you:
1. The number of processes (4 in the above example).
2. The name of your program (/home/mark/program/chains.exe).
3. One or more arguments passed to your program (/tmp/mydata).

Everything else, like the name of the command and the format of its arguments remains constant. To use
a command like this in DDT, you adapt the queue submission system described in the previous section.
For this mpiexec example, the settings are as shown here:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 55
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

l Syst i ;
Qa- ystem Job Submission Settings
o] Job Submission Submission template file:
&
L Submit command: |mpirun AUTO_MPI_ARGUMENTS_TAG DDT_DEBUGGER_TAG DDT_DEBUGG
| Code \Viewer Regexp for job id:
Cancel command:
@ Appearance
Display command:
__é Vislt
v| Quick Restart What is Quick Restart?
Help Cancel

Figure 23: DDT Using Custom MPI Scripts

As you can see, most of the settings are left blank. There are some differences between the Submit
Command in DDT and what you would type at the command-line:

1. The number of processes is replaced with NUM_PROCS_TAG.
2. The name of the program is replaced by the full path to forge-backend.
3. The program arguments are replaced by PROGRAM_ARGUMENTS_TAG.

Note, it is not necessary to specify the program name here. DDT takes care of that during its own startup
process. The important thing is to make sure your MPI implementation starts forge - backend instead
of your program, but with the same options.

The second way you might start a job using a custom mpirun replacement is with a settings file:

mpiexec -config /home/mark/myapp.nodespec

Where myfile.nodespec might contains something similar to the following:

compOO compO@1l compO@2 compO3 : /home/mark/program/chains.exe /tmp/
mydata

DDT can automatically generate simple configuration files like this every time you run your program, you
need to specify a template file. For the above example, the template file myfile.ddt would contain
the following:

comp@O® comp@l1l comp®2 comp@3 : DDTPATH_TAG/libexec/forge-backend
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_ARGUMENTS_TAG

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 56
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

This follows the same replacement rules described above and in detail in section A.3 Integration with
queuing systems. The options settings for this example might be:

l;'! System Job Submission Settings
o 'T‘ Job Submission Submission template file: |fhomefuser/arm/forge/templates/mytemplate.qtf
-
L Submit command:
D Code Viewer Regexp for job id:
Cancel command:
@ Appearance i
Display command:
__é Vislt
v | Quick Restart What is Quick Restart?
Help Cancel

Figure 24: DDT Using Substitute MPI Commands

Note the Submit Command and the Submission Template File in particular. DDT will create a new file and
append it to the submit command before executing it. In this case what would actually be executed might
bempiexec -config /tmp/ddt-temp-0112 orsimilar. Therefore, any argument like -config
must be last on the line, because DDT will add a file name to the end of the line. Other arguments, if
there are any, can come first.

It is recommended that you read the section on queue submission, as there are many features described
there that might be useful to you if your system uses a non-standard start up command.

If you do use a non-standard command, please contact Arm support at Arm support.

Starting DDT from a job script

The usual way of debugging a program with Arm DDT in a queue/batch environment is with Reverse
Connect and let it connect back from inside the queue to the GUI. See 3.3 Reverse Connect for more
details on Reverse Connect.

To do this replace your usual program invocation with a Arm DDT - -connect command such as the
following:

ddt --connect --start MPIEXEC -n NPROCS PROGRAM [ARGUMENTS]

The following could also be used:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 57
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 5 GETTING STARTED

ddt --connect --start --once --np=NPROCS -- PROGRAM [ARGUMENTS]

In these examples MPTEXEC is the MPI launch command, NPROCS is the number of processes to start,
PROGRAM is the program to run, and ARGUMENTS are the arguments to the program.

The - -once argument tells Arm DDT to exit when the session ends.

The alternative to Reverse Connect for debugging a program in a queue/batch environment is to configure
Arm DDT to submit the program to the queue for you. See section 5.10 Starting a job in a queue.

Some users may wish to start Arm DDT itself from a job script that is submitted to the queue/batch
environment. To do this:

1. Configure Arm DDT with the correct MPI implementation.
2. Disable queue submission in the Arm DDT options.
3. Create a job script that starts Arm DDT using a command such as:

ddt --start MPIEXEC -n NPROCS PROGRAM [ARGUMENTS]

Or the following:

ddt --start --no-queue --once --np=NPROCS -- PROGRAM [
ARGUMENTS]

In these examples MPTEXEC is the MPI launch command, NPROCS is the number of processes to
start, PROGRAM is the program to run, and ARGUMENTS are the arguments to the program.

4. Submit the job script to the queue. The - -once argument tells DDT to exit when the session ends.

UPC

The DDT configuration depends on the UPC compiler used.

GCC UPC

DDT can debug applications compiled with GCC UPC 4.8 with TLS disabled. See section F.5 GNU.

To run a UPC program in DDT you need to select the MPI implementation “GCC libupc SMP (no
TLS)”

Berkeley UPC

To run a Berkeley UPC program in DDT you need to compile the program using - tv flag and then select
the same MPI implementation used in the Berkeley compiler build configuration.

The Berkeley compiler must be build using the MPI transport.

See section F.3 Berkeley UPC compiler.

Numactl

DDT supports launching programs via numactl. DDT supports this feature for MPI programs but has
limited support for non-MPI programs.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 58
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

MPI and SLURM

DDT can attach to MPI programs launched via numactl with or without SLURM. The recommended
way to launch via numact1 is to use express launch mode (5.2 Express Launch).

$ ddt mpiexec -n 4 numactl -m 1 ./myMpiProgram.exe
$ ddt srun -n 4 numactl -m 1 ./myMpiProgram.exe

It is also possible to launch via numactl using compatibility mode (5.1 Running a program). When
using compatibility mode, you must specify the full path to numact1l in the Application box. You can
find the full path by running:

which numactl
Enter the name of the required application in the Arguments field, after all arguments to be passed to

numactl. It is not possible to pass any more arguments to the parallel job runner when using this mode
for launching.

Note: When using memory debugging, with a program launched via numact1, the Memory Statistics
view will report all memory as *Default’ memory type unless allocated with memkind. See 12.7 Memory
Statistics.

Non-MPI Programs

There is a minor caveat to launching non-MPI programs via humactl. If you are using SLURM, set
ALLINEA_STOP_AT_MAIN=1, otherwise DDT will not be able to attach to the program. For example,
the two following commands are examples of launching non-MPI programs via numactl1:

$ ddt numactl -m 1 ./myNonMpiProgram.exe
$ ALLINEA_STOP_AT_MAIN=1 ddt srun \
numactl -m 1 ./myNonMpiProgram.exe

Once launched, the program stops in numactl main. To resume debugging as normal, set a break-
point in your code (optional), then use the play and pause buttons to progress and pause the debugging,
respectively.

Python debugging
Overview

DDT supports Python debugging with the following features:
» Debugs Python scripts running under the CPython interpreter (versions 3.5-3.8 only).
* Decodes the stack to show Python frames, function names and line numbers.

+ Displays both stacks in mixed Python/native applications where the script calls out into a native C
library.

+ Displays Python local variables when a Python frame is selected.
* Evaluations which can also include Python expressions and statements.
 Breakpoints and stepping in Python code.

+ After a module is imported, you can see its Python source files listed in the Project Files view.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 59
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

» Debugs MPI programs written in Python using mpi4py.
This feature is useful when debugging a mixed C, C++, Fortran and Python program.

Note: Python global variables are only shown in the locals view if the selected frame is at the module
level. To see a global variable, you can add it to the Evaluate Window. You can also add globals()
to the Evaluate Window if you wish to see all the global variables.

There are also a few DDT features that are not currently supported in Python debugging:
» Multi-Dimentional Array Viewer is not supported in Python frames.
* Offline Python debugging.
* Manual launch and attaching to a Python process.
+ Python debugging by opening a core file.
» Watchpoints and Tracepoints.
* Python programs with multiple Python threads running concurrently as causes DDT to hang.
* Sub-processing libraries (such as multiprocessing) because it forks separate processes.
+ Stepping from Python frames into native frames.

* Memory debugging only covers the Python interprter.

Running

To debug Python scripts, specify the Python interpreter followed by %allinea_python_debug% and
then the path to the script that you wish to debug. For example:

$ ddt python3 %allinea_python_debug% my-script.py

To debug Python scripts that use MPI, the same applies, except mpirun is also appended to the begin-
ning:

$ ddt mpirun -np 4 python3 %allinea_python_debug% my-mpi-script.py
When passing arguments, they must appear after %allinea_python_debug% and the name of your

script. To run the demo in the examples folder, change into the examples folder and run the following
steps.

1. $ make -f python.makefile
2. $../bin/ddt python3 %allinea_python_debug% python-debugging.py

Note: On loading into DDT you will be inside the C code. This is normal as you are debugging the
python binary. Depending on the interpreter that you are debugging you may also see a message
about missing debug symbols. Pressing Play/Continue once after launching will bring you to the
first line of your script.

Click Run.
Click Play/Continue to run to the first line of the script.
Set a breakpoint on a line inside the call_out_to_a_library function.

Use the ‘add breakpoint’ dialog to set a breakpoint on the function name 1ibrary_function.

N o~ W

Click Play/Continue to run to the Python function and observe that local variables are visible.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 60
101136_2020_00_en

Arm Forge 20.2 5 GETTING STARTED

8. Click Play/Continue again to run to the native function and observe how the stack appears when
calling out of the interpreter.

Note: To disable Python debugging, omit %allinea_python_debug% from the command line.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 61
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

Overview

Arm DDT uses a tabbed-document interface as a method of presenting multiple documents. This allows
you to have many source files open. You can view one file in the full workspace area, or two if the Source
Code Viewer is ‘split’.

Each component of Arm DDT is a dockable window, which can be dragged around by a handle, usually
on the top or left-hand edge. Components can also be double-clicked, or dragged outside of Arm DDT, to
form a new window. You can hide or show most of the components using the View menu. The screenshot
shows the default Arm DDT layout.

Arm DDT - Arm Forge 20.2

File Edit Yiew Control Tools Window Help
= E
CTIRER:! K, +ELErEJEE | OO O
Current Group: ~ [Focus on current: (8 Group () Process () Thread
Al e 512 processes (0-511) Paused: 512 Playing: 0 Finished: 0
Currently selected: R (on comp000, pid 1003}
256 processes (0,2,4,6,8,10,12,14,16,18,20.... (256 total)) Paused: 256 Playing: 0 Finished: 0
171 processes (0,3,6,9,12,15,18,21,24,27,30.... (171 total)) Paused: 171 Playing: 0 Finished: 0
Create Group
Project Files @@ © hello.c X % hello.c X Locals | Current Line(s) — Current Stack
Search (Ctrl+K) o % 13 sprintf(message, "Greetings from process sd!”, my rank); ~ Locals
~ & application Code 131 printf(“sending message from (%d)\n", my_rank); e Name Value C
Y |y 132 dest = 0; argc —1
« B sources 133 /* Use strlen(message)+l to include '\@' */ b argy w:-r.’#o
hallo.C 134 MPI_Send(message, strlen(message) + 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD) beingWatched —o0
. 35 i »
® anon232425780108 135 beinghatched--; bigAmray
& _anon232429780208 e boetes { dest
—anon. 137 /* my_rank = 0 */ » dynamicArray
© _anon232429780308 138 * for (source = 1; source < p; source++) { » environ
® funcl() : void 139 printf("waiting for message from (%d)\n", source); i
® func2() :int 148 MPI_Recv(message, 180, MPI CHAR, source, tag, MPL COMM WORLD, &status); message
® func3() : void 141 printf(*%s\n", message); my_rank
® mainlint argc,ch: rg 142 beingWatched++; P
@ typeOne 143 1 source
@ typeThree 144 } » status
@ typeTwo 145 -] X603
146 for (i =1; i < arge; i++) » tables
147 if (argv[i] && !strcmp(argv[il, "memcrash”)) tag — 50
148 func3(); > test E
149 e B L
q gk v
Input/Output | Breakpoints = Watchpoints | Parallel Stack View | Tracepoints ~ Tracepoint Output | Logbook Evaluate
Parallel Stack View Name Value
" bigAmay(3] — 80003
Processes Function - oy ok 1
511 mmm— main (hello.c:141) " = o0z e
1 main (hello.c:148) e xry

Figure 25: DDT Main Window

The following table shows the key components:

Key

(1) Menu Bar

(2) Process Controls

(3) Process Groups

(4) Find File or Function

(5) Project Files

(6) Source Code

(7) Variables and Stack of Current Process/Thread
(8) Parallel Stack, IO and Breakpoints
(9) Evaluate Window

(10) Status Bar

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 62
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

Note: On some platforms, the default screen size can be insufficient to display the status bar. If this
occurs, you should expand the Arm DDT window until it is completely visible.

Saving and loading sessions

Most of the user-modified parameters and windows are saved by right-clicking and selecting a save option
in the corresponding window.

However, Arm DDT also has the ability to load and save all these options concurrently to minimize
the inconvenience in restarting sessions. Saving the session stores such things as Process Groups, the
contents of the Evaluate window and more. This ability makes it easy to debug code with the same
parameters set time and time again.

To save a session simply use the Save Session option from the File menu. Enter a file name (or select
an existing file) for the save file and click OK. To load a session again simply choose the Load Session
option from the File menu, choose the correct file and click OK.

Source code

Arm Forge provides code viewing, editing and rebuilding features. It also integrates with the Git, Sub-
version and Mercurial version control systems and provides static analysis to automatically detect many
classes of common errors.

The code editing and rebuilding capabilities are not designed for developing applications from scratch,
but they are designed to fit into existing debugging or profiling sessions that are running on a current
executable.

The same capabilities are available for source code whether running remotely (using the remote client)
or whether connected directly to your system.

Viewing

When Arm DDT begins a session, source code is automatically found from the information compiled in
the executable.

Source and header files found in the executable are reconciled with the files present on the front-end
server, and displayed in a simple tree view within the Project Files tab of the Project Navigator window.
Source files can be loaded for viewing by clicking on the file name.

Whenever a selected process is stopped, the Source Code Viewer will automatically leap to the correct
file and line, if the source is available.

The source code viewer supports automatic color syntax highlighting for C and Fortran.

You can hide functions or subroutines you are not interested in by clicking the ’-’ glyph next to the first
line of the function. This will collapse the function. Simply click the ’+’ glyph to expand the function
again.

Editing

Source code can be edited in the code viewer windows of DDT. The actions Undo, Redo, Cut, Copy,
Paste, Select all, Go to line, Find, Find next, Find previous, and Find in files are available from the Edit
menu. Files can be opened, saved, reverted and closed from the File menu.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 63
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

Note: Information from Arm DDT will not match edited source files until the changes are saved, the
binary is rebuilt, and the session restarted.

If the currently selected file has an associated header or source code file, it can be opened by right-clicking
in the editor and choosing Open <filename>.<extension>. There is a global shortcut on function key
F4, available in the Edit menu as Switch Header/Source option.

To edit a source file in an external editor, right-click the editor for the file and choose Open in external
editor. To change the editor used, or if the file does not open with the default settings, open the Options
window by selecting File — Options (Arm Forge — Preferences on Mac OS X) and enter the path to
the preferred editor in the Editor box, for example /usr/bin/gedit.

If a file is edited the following warning will be displayed at the top of the editor:

M This file has been edited.

Figure 26: File Edited Warning

This is to warn that the source code shown is not the source that was used to produce the currently
executing binary. The source code and line numbers may not match the executing code.

Rebuilding and restarting
If source files are edited, the changes will not take effect until the binary is rebuilt and the session restarted.

To configure the build command choose File — Configure Build..., enter a build command and a directory
in which to run the command, and click Apply.

To issue the build command choose File — Build, or press Ctrl+B (Cmd+B on Mac OS X). When a
build is issued the Build Output view is shown. Once a rebuild succeeds it is recommended to restart the
session with the new build by choosing File — Restart Session.

Committing changes

Changes to source files can be committed using one of Git, Mercurial, and Subversion. To commit
changes, choose File — Commit..., enter a commit message in the commit changes dialog and click
Commit.

Assembly debugging

Arm Forge allows you to view disassembly, step over instructions, step into instructions, and set break-
points on instructions in the disassembly viewer when you are in assembly debugging mode.

Toggling and viewing

- H & 5 || Ee Bl Bf BEI BE !

Figure 27: Clicking on the 0101’ button in the toolbar toggles assembly debugging mode.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 64
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

Enabling assembly debugging mode opens the disassembly viewer which allows viewing the disassembly
of the current symbol that contains the program counter and changes the behaviour of the step buttons to
to operate on the instruction level.

006

Project Files B®

Disassembly (main) € wave.c X
Search (Ctrl+K) % 304 unsigned long long allt; -
= o 305
T T Apil'cahon Code 306 /* learn number of tasks and rank in MPI_COMM WORLD */
12 307 rcode = MPI_Init(&arge, &argv):
- Sources 1 0x0000000000400edf <+15>: lea Oxlc(%rsp),3rdi
0x0000000000400ced <+20>: lea 0x10 (%rsp) ,brsi
® do_mathlint i) : void 0x0000000000400ce9 <+25>: callg O0x400cl0 <MPI_Init@plt>
® get_datalvoid) : void 0x0000000000400cE8 <+40>: mov %eax, 0x18e78d2 ($rip) # Oxlce85d0 <rcode>
® init_line(void) : void
® main(int argc.char ** arg) 308 . . o -
® output_mastar(void) : vo 309 clock_gettime (CLOCK MONOTONIC, EStart);
- 20 _0x0000000000400cee <+30>: mov___ §0xGO4E00,%es1
® output_workers{void) : v(0x0000000000400cE3 <+35>: mov $0x1,%edi
® reduce_print{const char g 0x0000000000400cfe <+46>: callg 0x400cal <clock_gettime@plt>
® time_mpi_start() : void z
® time_mpi_stop() : void 310
® update(int left,int right) : 311 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
» & Extemal Code 0x0000000000400d03 <+5 mov $0x1ce85b8, besi
o] 0x0000000000400d08 <+56>: mov $0x6044e0, vedi
[a] 0x0000000000400d0d <+61>: callg 0x400c60 <MPI_Comm rank@plt>
312 MPI_Comm_size (MPT_COMM_WORLD, &ntask);
0x0000000000400d12 <+66>: mov $0xda6150, sesi
. » 0x0000000000400d17 <+71>: mov $0x6044e0, Bedi b

Figure 28: The disassembly viewer tab shows the disassembly of the current symbol with the source code
interleaved.

The disassembly viewer auto updates the disassembly when the current symbol that contains the program
counter changes.

Disabling assembly debugging mode closes the disassembly viewer and reverts the behaviour of the step
buttons back to stepping source lines.

Breakpoints

The Disassembly Viewer allows you to set breakpoints on instructions and also on source lines.

Every breakpoint set is listed in the breakpoints tab towards the bottom of the Arm DDT window and can
be further edited from the breakpoints tab. See section 7.6 Setting breakpoints.

Project Files

The Project Files tree shows a list of source files for your program. Click on a file in the tree to open it
in the Code Viewer. You can also expand a source file to see a list of classes, functions, defined in that
source file (C / C++ / Fortran only).

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 65
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

Project Files (=

Search (Chrl+k !

~ & Application Code
k !
* ¥ Sources
i® _anon9006afac0108
® _ anon2006afac0208
@ _ anon9006afac0308
® funcl() : void
® func2() :int
® func3() : void
i#® main(int argc.char ** arg
i@ typeOne
@ typeThree
i® typeTwo
¢t = Extemal Code

Figure 29: Function Listing

Clicking on any source code element (class, function, and so on) will display it in the Source Code
viewer.

Application and external code

Arm DDT automatically splits your source code into Application Code, which is source code from your
application and External Code, which is code from third party libraries. This allows you to quickly
distinguish between your own code and third party libraries.

You can control exactly which directories are considered to contain Application Code using the Applica-
tion / External Directories window. Right-click on the Project Files tree to open the window.

The checked directories are the directories containing Application Code. Once you have configured them
to your satisfaction click Ok to update the Project Files tree.

Finding lost source files

In some situations, not all source files are found automatically. This can also occur, for example, if the
executable or source files have been moved since compilation. Extra directories to search for source
files can be added by right-clicking while in the Project Files tab, and selecting Add/view Source Direc-
tory(s). You can also specify extra source directories on the command line using the - - source-dirs
command-line argument (separate each directory with a colon).

It is also possible to add an individual file, if this file has moved since compilation, or is on a different (but
visible) file system. To do this right-click in the Project Files tab and select the Add File option.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 66
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

Any directories or files you have added are saved and restored when you use the Save Session and Load
Session commands inside the File menu. If DDT does not find the sources for your project, you might
find these commands save you a lot of unnecessary clicking.

Finding code or variables
Find Files or Functions

The Find Files Or Functions box appears above the source file tree in the Project Files view.

You can type the name of a file, function, or other source code element (such as classes, Fortran modules,
and so on) in this box to search for that item in the source tree. You can also type just part of a name to
see all the items whose name contains the text you typed.

Double-click on a result to jump to the corresponding source code location for that item.

Find Files Or Functions x

3 Matches Found
Name ¥ Type Path
F extreme.fod File /home/user/code/extreme.fo0
2 extremes Function Jhome/userjcode/extreme.f90
M extremes_mod Module /home/user/code/extreme.fo0
Help Show Close

Figure 30: Find Files Or Functions dialog

Find
The Find menu item can be found in the Edit menu, and can be used to find occurrences of an expression
in the currently visible source file.

DDT will search from the current cursor position for the next or previous occurrence of the search term.
Click on the magnifying glass icon for more search options.

Case Sensitive: When checked, DDT will perform a case sensitive search. For example, Hello will
not match hello.

Whole Words Only: When checked, DDT will only match your search term against whole ‘words’ in
the source file. For example Hel1lo would not match Hel1loWor 1ld while searching for whole words
only.

Use Regular Expressions: When this is checked, your search can use Perl-style regular expressions.
Find in Files

The Find In Files window can be found in the Edit menu, and can be used to search all source and header
files associated with your program. The search results are listed and can be clicked to display the file and

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 67
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

line number in the main Source Code Viewer; this can be of particular use for setting a breakpoint at a
function.

Find: |iarr2d| o ‘ Search

Options

Case sensitive Regular Expression Whole words only

Search Results:

Name Line Line in file 1
test_linear_aix.f90 26 INTEGER :: im_iarr2d(-1:1,-2:2)
test_linear_aix.fo0 35 INTEGER :: iarr2di(-1:1,-2:2)
test_linear_aix.fa0 43 INTEGER :: iarr2d(-1:1,-2:2)

test_linear_aix.fa0 74 im_iarr2d, &
test_linear_aix.f90 90 em_iarr2d, &

test linear_aix.f90 111 INTEGER :: iarr2d(-1:1,-2:2)
test_linear_aix.f90 119 INTEGER :: iarr2d(-1:1,-2:2)
test_linear_aix.fO0 135 INTEGER :: |_iarr2d(-1:1,-2:2)
test_linear_aix.fo0 177 |iarr2d(::) =-1
test_linear_aix.f90 181 im_iarr2di(:,:) =-1
test_linear_aix.fa0 182 em_iarr2d(:,:) =-1

test_linear_aix.fo0 199 | dev from_| % iarr2d(:.:) = -1
test_linear_aix.fo0 204 |_dev_from_| % nested(1) % iarr2d(:,:) = -1
test_linear_aix.f90 207 |_dev_from_| % nested(2) % iarr2d(:,:) = -1

test_linear_aix.f0 213 |_dev_from_im % iarr2d(:,:) = -2
test_linear_aix.fo0 218 | dev from_im % nested(1) % iarr2d(:.:)
test_linear_aix.fo0 221 |_dev_from_im % nested(2) % iarr2d(:,:)
test_linear_aix.f90 227 |_dev_from_em % iarr2d(::) = -3
test_linear_aix.f0 232 |_dev_from_em % nested(1) % iarr2d(:,:) = -3 =

-2
-2

Help Close

Figure 31: Find in Files dialog

Case sensitive: When checked, DDT will perform a case sensitive search. For example, He1l10 will not
match hello.

Whole words only: When checked, DDT will only match your search term against whole ‘words’ in
the source file. For example Hel1lo would not match Hel1loWor 1ld while searching for whole words
only.

Regular Expression: When checked, DDT will interpret the search term as a regular expression rather
than a fixed string. The syntax of the regular expression is identical to that described in the appendix 1.6
Job ID regular expression.

Go To Line

DDT has a go to line function which enables the user to go directly to a line of code. This is found in the
Edit menu. A window will be displayed in the centre of your screen. Enter the line number you wish to
see and click OK. This will take you to the correct line providing that you entered a line that exists. You
can use the hotkey CTRL+L to access this function quickly.

Navigating through source code history

After jumping to a source code location or opening a new file, it is possible to return to the previous
location using the ”Navigate backwards in source code history” button on the toolbar or item in the
”Edit” menu. This can be done several times to revisit previous locations in the source code.

After navigating backwards, you can also use the ”Navigate forwards in source code history” toolbar
button or “Edit” menu item to return to the previous location.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 68
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

Static analysis

Static analysis is a powerful companion to debugging. Arm DDT enables the user to discover errors by
code and state inspection along with automatic error detection components such as memory debugging.
Static analysis inspects the source code and attempts to identify errors that can be detected from the source
alone, independently of the compiler and actual process state.

Arm DDT includes the static analysis tools cppcheck and ftnchek. These will by default automati-
cally examine source files as they are loaded and display a warning symbol if errors are detected. Typical
errors include:

* Buffer overflows. Accessing beyond the bounds of heap or stack arrays.

* Memory leaks. Allocating memory within a function and there being a path through the function
which does not deallocate the memory and the pointer is not assigned to any externally visible
variable, nor returned.

* Unused variables, and also use of variables without initialization in some cases.

?:‘ t2 = malloc((typeThree));

A style Variable 't2' is assigned a value that is never used.

A style Variable 't2' is allocated memory that is never used

Left click to add a breakpoint on line 76

CAE A v €t

Figure 32: Static Analysis Error Annotation

Static analysis is not guaranteed to detect all, or any, errors, and an absence of warning triangles should
not be considered to be an absence of bugs.

Version control information

The version control integration in DDT and MAP allows users to see line-by-line information from Git,
Mercurial or Subversion next to source files. Information is color-coded to indicate the age of the source
line.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 69
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

File Edit View Control Tools Window Help

4 A K EE-BIECBIEBE ! O

Current Group: | All ~ |[Focus on current: ®) Group () Process () Thread
o (o]]
Create Group
Project Files B® | ® phello.c X Locals | Current Line(s) | Current Stack
Search (Ctr+K) ~ [[1 months age] AynamicArray[x] = x % 10; = Current Line(s) 2]
~ & Application Code L1 years ago ! Name Value
) f 11 years ago 1 my_rank 0
: mmnteage] s wa\nr, my_ven
-~ Sources 11 years ago
hello.c A *} = %1d\n", (unsigned long) (int), (unsigi

@® _ anon9o06afac0108

® _ anon9006afac0208

® __anon9006afac0308 = -

® funcl() : void 1 »

® func2() : int

e

® func3() : void hello.c X

® main(int argc,char + arg 11 years ago ~ int main(int argc, char** argv, char** environ) -

® typeOne 11 years ago s

@ typeThree typeThree test;

typeThree> t2;
@ typeTwo

_ int i;
» & External Code int my_rank;

int source;

A

A int dest; =
. v 4 - 2

Input/Output ~ Breakpoints ~ Watchpoints | Stacks | Tracepoints Tracepoint Output Logbook Evaluate @®
Stacks am Name Value
Processes Threads Function M
/ I/ B main (hello.c:87)
4 4 - progress_engine (minheap-internal.h:97)
4 4 ~ opal_libevent2022_event_base_loop (event.c:1630)
4 4 - poll_dispatch (poll.c:165)
4 4 _Gl__poll (poll.c:29)
4 4 - opal_libevent2022_event_base_loop (event.c:1630)
4 4 - epoll_dispatch (epoll.c:407)
4 4 epoll_wait (epoll_wait.c:30)
Ready

Figure 33: DDT running with Version Control Information enabled

To enable select the Version Control Information option from the View menu. When enabled columns
to left of source code viewers are shown. In these columns are displayed how long ago the line was
added/modified. Each line in the information column is highlighted in a color to indicate its age. The
lines changed in the current revision are highlighted in red.

Where available lines with changes not committed are highlighted in purple. All other lines are high-
lighted with a blend of transparent blue and opaque green where blue indicates old and green young.

Currently uncommitted changes are only supported for Git. Arm Forge will not show any version control
information for files with uncommitted changes when using Mercurial or Subversion.

11 years ago 38 printf ("They are:\n");
E for (L = 0; 1 < argg; 1++)

commit 698b147lebfc664cbladeace211b7b9c344accda | argv (il) ;

Author:

Date: Tue Oct7 12:31:18 2008 +0000

sort out indentation and compile warnings. .
[hg: 246d93a1e48f default] '

T DIIIICI T T nviron) ;
11 years ago 107 1

Figure 34: Version Control Information—Tooltips

A folded block of code displays the annotation for the most recently modified line in the block.

Hovering the cursor over the information column reveals a tool-tip containing a preview of the commit
message for the commit that last changed the line.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 70
101136_2020_00_en

Arm Forge 20.2 6 OVERVIEW

Copy commit message -
Break at this revision
50;

Trace variables at this revision o
age [100] ;

Figure 35: Version Control Information—Context Menu

To copy the commit message right-click the column on the desired row and from the menu select Copy
Commit Message.

See also Version control breakpoints and tracepoints.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 71
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

Controlling program execution

Whether debugging a multi-process or a single process code, the mechanisms for controlling program
execution are very similar.

In multi-process mode, most of the features described in this section are applied using Process Groups,
which are described in the following sections.

For single process mode, the commands and behaviors are identical, but apply to only a single process,
freeing the user from concerns about process groups.

Process control and process groups

MPI programs are designed to run as more than one process and can span many machines. Arm DDT
allows you to group these processes so that actions can be performed on more than one process at a time.
The status of processes can be seen at a glance by looking at the Process Group Viewer.

The Process Group Viewer is (by default) at the top of the screen with multi-colored rows. Each row
relates to a group of processes and operations can be performed on the currently highlighted group (for
example, playing, pausing and stepping) by clicking on the toolbar buttons. Switch between groups by
clicking on them or their processes. The highlighted group is indicated by a lighter shade. Groups can be
created, deleted, or modified by the user at any time, with the exception of the All group, which cannot
be modified.

Groups are added by clicking on the Create Group button or from a context-sensitive menu that appears
when you right-click on the process group widget. This menu can also be used to rename groups, delete
individual processes from a group and jump to the current position of a process in the code viewer. You
can load and save the current groups to a file, and you can create sub-groups from the processes currently
playing, paused or finished. You can even create a sub-group excluding the members of another group.
For example, to take the complement of the Workers group, select the All group and choose Copy, but
without Workers.

You can also use the context menu to switch between the two different methods of viewing the list of
groups in Arm DDT. These methods are the detailed view and the summary view.

Detailed view

The detailed view is ideal for working with smaller numbers of processes. If your program has 32 pro-
cesses or less, Arm DDT defaults to the detailed view. You can switch to this view using the context
menu if you wish.

CIEIEIG]
Root EI
DEE

Create Group

Figure 36: The Detailed Process Group View

In the detailed view, each process is represented by a square containing its MPI rank (0 through n-1). The
squares are color-coded; red for a paused process, green for a playing process and gray for a finished/dead
process. Selected processes are highlighted with a lighter shade of their color and the current process also
has a dashed border.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 72
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

When a single process is selected the local variables are displayed in the Variable Viewer and displayed
expressions are evaluated. You can make the Source Code Viewer jump to the file and line for the current
stack frame (if available) by double-clicking on a process.

To copy processes from one group to another, simply click and drag the processes. To delete a process,
press the delete key. When modifying groups it is useful to select more than one process by holding down
one or more of the following:

Key Description

Control | Click to add/remove process from selection
Shift Click to select a range of processes

Alt Click to select an area of processes

Note: Some window managers (such as KDE) use Alt and drag to move a window. You must disable
this feature in your window manager if you wish to use the Arm DDT’s area select.

Summary view

The summary view is ideal for working with moderate to huge numbers of processes. If your program
has 32 processes or more, Arm DDT defaults to this view. You can switch to this view using the context
menu if you wish.

All 4 processes (0-3) Paused: 4 Playing: 0 Finished: 0
Root 1 process (0) Paused: 1 Playing: 0 Finished: 0
Workers 3 processes (1-3) Paused: 3 Playing: 0 Finished: 0
| Show processes | currently selected: 1 {on , pid 19199, main thread IWP 19199)

Create Group

Figure 37: The Summary Process Group View

In the summary view, individual processes are not shown. Instead, for each group, Arm DDT shows:
* The number of processes in the group.

*» The processes belonging that group. Here 1-2048 means processes 1 through 2048 inclusive, and
1-10, 12-1024 means processes 1-10 and processes 12—-1024 (but not process 11). If this list
becomes too long, it is truncated with a ‘...". Hovering the mouse over the list shows more details.

+ The number of processes in each state (playing, paused or finished). Hovering the mouse over each
state shows a list of the processes currently in that state.

* The rank of the currently selected process. You can change the current process by clicking here,
typing a new rank and pressing Enter. Only ranks belonging to the current group will be accepted.

The Show processes toggle button allows you to switch a single group into the detailed view and back
again. This is useful if you are debugging a 2048 process program, but have narrowed the problem down
to just 12 processes, which you have put in a group.

Focus control

The focus control allows you to focus on individual processes or threads as well as process groups. When
focused on a particular process or thread, actions such as stepping, playing/pausing, adding breakpoints,

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 73
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

will only apply to that process or thread rather than the entire group.

In addition, the Arm DDT GUI will change depending on whether you are focused on group, process
or thread. This allows Arm DDT to display more relevant information about your currently focused
object.

Focus on current: (® Group Process Thread

Figure 38: Focus options

Overview of changing focus

Focusing in Arm DDT affects a number of different controls in the Arm DDT main window. These are
described here:

Note: Focus controls do not affect Arm DDT windows such as the Multi-Dimensional Array Viewer,
Memory Debugger, Cross-Process Comparison.

Process group viewer

The changes to the process group viewer amongst the most obvious changes to the Arm DDT GUI. When
focus on current group is selected you see your currently created process groups. When switching to focus
on current process or thread you see the view change to show the processes in the currently selected group,
with their corresponding threads.

[All] 0 1 2 3

[Rank 0's threads] @ @ @

Figure 39: The Detailed Process Group View Focused on a Process

If there are 32 threads or more, Arm DDT defaults to showing the threads using a summary view (as in
the Process Group View). The view mode can also be changed using the context menu.

During focus on process, a tooltip is shown that identifies the OpenMP thread ID of each thread, if the
value exists.

Breakpoints

The breakpoints tab in Arm DDT is filtered to only display breakpoints relevant to your current group,
process, thread. When focused on a process, the breakpoint tab displays which thread the breakpoint
belongs to. If you are focused on a group, the tab displays both the process and the thread the breakpoint
belongs to.

Code viewer

The code viewer in Arm DDT shows a stack back trace of where each thread is in the call stack. This is
also filtered by the currently focused item, for example when focused on a particular process, you only

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 74
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

see the back trace for the threads in that process.

Also, when adding breakpoints using the code viewer, they are added for the group, process or thread
that is currently focused.

Parallel stack view

The parallel stack view can also be filtered by focusing on a particular process group, process or thread.

Playing and stepping

The behavior of playing, stepping and the Run to here feature are also affected by your currently focused
item. When focused on a process group, the entire group is affected, whereas focusing on a thread means
that only current thread is executed. The same goes for processes, but with an additional option which is
explained below.

Step threads together

The step threads together feature in Arm DDT is only available when focused on process. If this option
is enabled then Arm DDT attempts to synchronize the threads in the current process when performing
actions such as stepping, pausing and using Run to here.

For example, if you have a process with two threads and you choose Run to here, Arm DDT pauses your
program when either of the threads reaches the specified line. If Step threads together is selected Arm
DDT attempts to play both of the threads to the specified line before pausing the program.

Note: You should always use Step threads together and Run to here to enter or move within OpenMP
parallel regions. With many compilers it is also advisable to use Step threads together when leaving a
parallel region, otherwise threads can get ‘left behind’ inside system-specific locking libraries and may
not enter the next parallel region on the first attempt.

Stepping threads window

When using the step threads together feature it is not always possible for all threads to synchronize at
their target. There are two main reasons for this:

1. One or more threads may branch into a different section of code (and hence never reach the target).
This is especially common in OpenMP codes, where worker threads are created and remain in
holding functions during sequential regions.

2. Asmost of Arm DDT’s supported debug interfaces cannot play arbitrary groups of threads together,
Arm DDT simulates this behavior by playing each thread in turn. This is usually not a problem, but
can be if, for example, thread 1 is playing, but waiting for thread 2 (which is not currently playing).
Arm DDT attempts to resolve this automatically but cannot always do so.

If either of these conditions occur, the Stepping Threads Window appears, displaying the threads which
have not yet reached their target.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 75
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

Stepping threads 0

DDT is waiting for thread 3 to finish before it can
step the rest. You can wait, skip it, or try it again
after the other threads have stepped.

Thread Status
Thread 4 done
Thread 1 done
Thread 2 waiting

| Help Skip Try Later Skip All

Figure 40: The Stepping Threads Window

The stepping threads window also displays the status of threads, which may be one of the following:

* Done: The thread has reached it target (and has been paused).

Skipped: The thread has been skipped and paused. Arm DDT no longer waits for it to reach its
target.

» Playing: This is the thread that is currently being executed. Only one thread may be playing at a
time while the Stepping Threads Window is open.

» Waiting: The thread is currently awaiting execution. When the currently playing thread is done
or has been skipped, the highest waiting thread in the list is executed.

The Stepping Threads Window also lets you interact with the threads with the following options:

» Skip: Arm DDT skips and pauses the currently playing thread. If this is the last waiting thread the
window is closed.

» Try Later: The currently playing thread is paused, and added to the bottom of the list of threads
to be retried later. This is useful if you have threads which are waiting on each other.

+ Skip All: This skips, and pauses, all of the threads and close the window.

Starting, stopping and restarting a program

The File menu can be accessed at almost any time while Arm DDT is running. If a program is running you
can end it and run it again or run another program. When Arm DDT’s start up process is complete your

program should automatically stop either at the main function for non-MPI codes, or at the MPI_Init
function for MPI.

When a job has run to the end, Arm DDT displays a window box asking if you wish to restart the job.
If you select yes then Arm DDT kills any remaining processes and clear up the temporary files and then
restart the session from scratch with the same program settings.

When ending a job, Arm DDT attempts to ensure that all the processes are shut down and any temporary
files are cleared up. If this fails for any reason you may have to manually kill your processes using
kill, or a method provided by your MPI implementation such as 1amclean for LAM/MPIL.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 76
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

Stepping through a program

To continue the program playing click Play/Continue ¥ and to stop it at any time click Pause

For multi-process Arm DDT these start/stop all the processes in the current group (see Process Control
and Process Groups).

Like many other debuggers there are three different types of step available. These are enumerated
here:

1. Step Into moves to the next line of source code unless there is a function call in which case it steps
to the first line of that function.

2. Step Over moves to the next line of source code in the bottom stack frame.

3. Step Out executes the rest of the function and then stop on the next line in the stack frame above.
The return value of the function is displayed in the Locals view. When using Step Out be careful
not to try and step out of the main function, as doing this ends your program.

Stop messages
In certain circumstances your program may be automatically paused by the debugger. There are five
reasons your program may be paused in this way:

1. Tt hit one of Arm DDT’s default breakpoints, for example, exit or abort. See section 7.10
Default breakpoints for more information on default breakpoints.

It hit a user-defined breakpoint, that is a breakpoint shown in the Breakpoints view.
The value of a watched variable changed.

It was sent a signal. See section 7.20 Signal handling for more information on signals.

ok~ N

It encountered a Memory Debugging error. See section 12.5 Pointer error detection and validity
checking for more information on Memory Debugging errors.

Arm DDT displays a message telling you exactly why the program was paused. To copy the message
text to the clipboard select it with the mouse cursor, then right-click and select Copy.

You may want to suppress these messages in certain circumstances, for example if you are playing from
one breakpoint to another. Use the Control — Messages menu to enable or disable stop messages.

Setting breakpoints
Using the source code viewer
First locate the position in your code where you want to place a breakpoint. If you have numerous source

code files and wish to search for a particular function you can use the Find/Find In Files window.

Right-clicking in the Source Code Viewer displays a menu showing several options, including one to add
or remove a breakpoint.

In multi-process mode this sets the breakpoint for every member of the current group. Breakpoints may
also be added by left-clicking the margin to the left of the line number.

Every breakpoint is listed under the breakpoints tab towards the bottom of Arm DDT’s window.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 77
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

If you add a breakpoint at a location where there is no executable code, Arm DDT highlights the line
you selected as having a breakpoint. However, when hitting the breakpoint, Arm DDT stops at the next
executable line of code.

Using the Add Breakpoint window

You can also add a breakpoint by clicking the Add Breakpoint 45 icon in the toolbar. This opens the
Add Breakpoint window.

[Add Breakpoint x|

Location:
®) Line File: |fhome/user/ddt/examples/hello.c
Line Number: =
Function
Applies To:
Process Group | All v
Process: Al T
Thread:
Hit Limits:

Start on the n-th pass: |0

Trigger every n-th pass: | 1

Stop after n hits: Forever

Condition:

Help Add Cancel

Figure 41: The Add Breakpoint window

You may wish to add a breakpoint in a function for which you do not have any source code: for example
inmalloc, exit, or printf from the standard system libraries. Select the Function radio button and
enter the name of the function in the box next to it.

You can specify what group/process/thread you want the breakpoint to apply in the Applies To section.
You may also make the breakpoint conditional by checking the Condition check box and entering a
condition in the box.

Pending breakpoints

Note: This feature is not supported on all platforms.

If you try to add a breakpoint on a function that is not defined, Arm DDT asks you if you want to add
it anyway. If you click Yes the breakpoint is applied to any shared objects that are loaded in the fu-
ture.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 78
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

Conditional breakpoints

Breakpoints %
Processes Threads Flle Line Function Condition Start After Trigger Every Stop After Full path

v| process 0 all hello.c 133 0 1 Forever Jhome/user/ddt/examples/hello.c

vl Al all hello.c 148 my_rank ==3 0 1 Forever fhome/userfddt/examplesfhello.c

Figure 42: The Breakpoints Table

Select the breakpoints tab to view all the breakpoints in your program. You may add a condition to any
of them by clicking on the condition cell in the breakpoint table and entering an expression that evaluates
to true or false.

Each time a process (in the group the breakpoint is set for) passes this breakpoint it evaluates the condi-
tion and breaks only if it returns true (typically any non-zero value). You can drag an expression from
the Evaluate window into the condition cell for the breakpoint and this is set as the condition automati-
cally.

Breakpoints
Processes Threads Flle Line Function Condition Start After Trigger Every Stop After Full path

¥| process 0 all hello.f 55 0 1 Forever fhomefuser/ddt/examples/hello.f

vl Al all hello.f | 49 my_rank .£Q. 3 0 1 Forever fhomefuser/ddtfexamplesfhello.f

Figure 43: Conditional Breakpoints In Fortran

Conditions may be any valid expression for the language of the file containing the breakpoint. This
includes other variables in your program and function calls.

You may want to avoid using functions with side effects as these will be executed every time the break-
point is reached.

The expression evaluation may be more pedantic than your compiler. To ensure the correct interpre-
tation of, for example, boolean operations, it is advisable to use brackets explicitly, to ensure correct
evaluation.

Suspending breakpoints

To deactivate or reactivate a breakpoint, either:
* Check or clear the activated column in the breakpoints panel.
 Right-click the breakpoint icon in the code editor and choose Enable/Disable.
* Hold SHIFT and select a breakpoint icon in the code editor.

Breakpoints that are disabled are grayed out.

Deleting a breakpoint

Breakpoints may be deleted by right-clicking on the breakpoint in the breakpoints panel.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 79
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

They can also be deleted by right-clicking in the file/line of the breakpoint, while in the correct process
group, and right-clicking and selecting delete breakpoint.

They may also be deleted by left-clicking the breakpoint icon in the margin, situated to the left of the line
number in the code viewer.

Loading and saving breakpoints

To load or save the breakpoints in a session right-click in the breakpoint panel and select the load/save
option. Breakpoints are also loaded and saved as part of the load/save session.

Default breakpoints

Arm DDT has a number of default breakpoints that stop your program under certain conditions which
are described below. You may enable/disable these while your program is running using the Control —
Default Breakpoints menu.

* Stop at exit/_exit

When enabled, Arm DDT pauses your program as it is about to end under normal exit conditions.
Arm DDT pauses both before and after any exit handlers have been executed. (Disabled by default.)

* Stop at abort/fatal MPI Error

When enabled, Arm DDT pauses your program as it about to end after an error has been triggered.
This includes MPI and non-MPI errors. (Enabled by default.)

* Stop on throw (C++ exceptions)

When enabled, Arm DDT pauses your program whenever an exception is thrown (regardless of
whether or not it will be caught). Due to the nature of C++ exception handling, you may not be
able to step your program properly at this point. Instead, you should play your program or use the
Run to here feature in DDT. (Disabled by default.)

* Stop on catch (C++ exceptions)

As above, but triggered when your program catches a thrown exception. Again, you may have
trouble stepping your program. (Disabled by default.)

* Stop at fork

Arm DDT stops whenever your program forks (that is, calls the fork system call to create a copy
of the current process). The new process is added to your existing Arm DDT session and can be
debugged along with the original process.

* Stop at exec

When your program calls the exec system call, Arm DDT stops at the main function (or program
body for Fortran) of the new executable.

* Stop on CUDA kernel launch

When debugging CUDA GPU code, this pauses your program at the entry point of each kernel
launch.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 80
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

Synchronizing processes

If the processes in a process group are stopped at different points in the code and you wish to resynchronize
them to a particular line of code this can be done by right-clicking on the line at which you wish to
synchronize them to and selecting Run To Here. This effectively plays all the processes in the selected
group and puts a break point at the line at which you choose to synchronize the processes at, ignoring any
breakpoints that the processes may encounter before they have synchronized at the specified line.

If you choose to synchronize your code at a point where all processes do not reach then the processes that
cannot get to this point will play to the end.

Notes:

» Though this ignores breakpoints while synchronizing the groups it will not actually remove the
breakpoints.

« If a process is already at the line which you choose to synchronize at, the process will still be
set to play. Be sure that your process will revisit the line, or alternatively synchronize to the line
immediately after the current line.

Setting a watchpoint

Watchpoints =]
Processes Scope Expression TiggerOn Implemented in
vl Al beingWatched read and write software

Figure 44: The Watchpoints Table

A watchpoint is a variable or expression that will be monitored by the debugger such that when it is
changed or accessed the debugger pauses the application.

Program Stopped (]

i Processes 0-3:
Process stopped at watchpoint "beingWatched” in main (hello.c:124).

Old value: 0
New value: 1

v Always show this window for watchpoints

|- Continue | Pause |

Figure 45: Program Stopped At Watchpoint being watched

Unlike breakpoints, watchpoints are not displayed in the Source Code Viewer. Instead they are created
by right-clicking on the Watchpoints view and selecting the Add Watchpoint menu item.

It is also possible to add watchpoints automatically dragging a variable to the Watchpoints view from the
Local Variables, Current Line and Evaluate views, or right-clicking over the variable in the Source Code
Viewer and then selecting Add Watchpoint.

The automatic watchpoints are write-only by default.

Upon adding a watchpoint the Add Watchpoint dialog appears allowing you to apply restrictions to the
watchpoint:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 81
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

* Process Group restricts the watch point to the chosen process group (see 7.1 Process control and
process groups).

* Process restricts the watchpoint to the chosen process.
 Expression is the variable name in the program to be watched.
» Language is the language of the portion of the program containing the expression.

» Trigger On allows you to select whether the watchpoint will trigger when the expression is read,
written or both.

You can set a watchpoint for either a single process, or every process in a process group.

Arm DDT automatically removes a watchpoint once the target variable goes out of scope. If you are
watching the value pointed to by a variable, that is, *p, you may want to continue watching the value at
that address even after p goes out of scope. You can do this by right-clicking on *p in the Watchpoints
view and selecting the Pin to address menu item. This replaces the variable p with its address so the
watch is not removed when p goes out of scope.

Modern processors have hardware support for a handful of watchpoints that are set to watch the contents of
amemory location. Consequently, watchpoints can normally be used with no performance penalty.

Where the number of watchpoints used is over this quantity, or the expression being watched is too
complex to tie to a fixed memory address, the implementation is through software monitoring, which
imposes significant performance slowdown on the application being debugged.

The number of hardware watchpoints available depends on the system. The read watchpoints are only
available as hardware watchpoints.

Consequently, watchpoints should, where possible, be a single value that is stored in a single memory
location. While it is possible to watch the whole contents of non-trivial user defined structures or an
entire array simultaneously, or complex statements involving multiple addresses, these can cause extreme
application slow down during debugging.

Tracepoints

Tracepoints allow you to see what lines of code your program is executing, and the variables, without
stopping it. Whenever a thread reaches a tracepoint it will print the file and line number of the tracepoint
to the Input/Output view. You can also capture the value of any number of variables or expressions at
that point.

Examples of situations in which this feature will prove invaluable include:

» Recording entry values in a function that is called many times, but crashes only occasionally. Set-
ting a tracepoint makes it easier to correlate the circumstances that cause a crash.

» Recording entry to multiple functions in a library, enabling the user or library developer to check
which functions are being called, and in which order. An example of this is the MPI History Plugin,
which records MPI usage. See section 13.3 Using a plugin.

» Observing progress of an application and variation of values across processes without having to
interrupt the application.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 82
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

Setting a tracepoint

Tracepoints are added by either right-clicking on a line in the Source Code Viewer and selecting the Add
Tracepoint menu item, or by right-clicking in the Tracepoints view and selecting Add Tracepoint. If you
right-click in the Source Code Viewer a number of variables based on the current line of code are captured
by default.

Tracepoints can lead to considerable resource consumption by the user interface if placed in areas likely
to generate a lot of passing. For example, if a tracepoint is placed inside of a loop with N iterations, then
N separate tracepoint passings will be recorded.

While Arm DDT attempts to merge such data in a scalable manner, when alike tracepoints are passed
in order between processes, where process behavior is likely to be divergent and unmergeable then a
considerable load would result.

If it is necessary to place a tracepoint inside a loop, set a condition on the tracepoint to ensure you only log
what is of use to you. Conditions may be any valid expression in the language of the file the tracepoint
is placed in and may include function calls, although you may want to be careful to avoid functions with
side effects as these will be evaluated every time the tracepoint is reached.

Tracepoints also momentarily stop processes at the tracepoint location in order to evaluate the expressions
and record their values. This means if they are placed inside (for example) a loop with a very large number
of iterations, or a function executed many times per second, then a slowdown in your application will be
noticed.

Tracepoint output

The output from the tracepoints can be found in the Tracepoint Output view.

Tracepoint Processes Values logged =
subdomain (subdomain.f00:59) 16, ranks 0-15 ny: — 16 nx: — 16 nz: — 64

bits (blts.fa0:58) 1, rank 0 m: 1 iend: 16 Idmz: 64 ki 2 ldmx: 16 it 2 Idz: ist: 2 j: 2 Idmy: 16

blts (blts.f90:58) 1, rank 0 m: 2 jend: 16 Ildmz: 64 ki 2 Idmx: 16 it 2 |Idzz ist: 2 j: 2 Idmy: 16

blts (blts.f90:58) 1, rank 0 m: 3 jend: 16 Ildmz: 64 ki 2 Idmx: 16 it 2 Idzz ist: 2 j: 2 Idmy: 16

blts (blts.fa0:58) 1, rank 0 m: 4 jend: 16 Ildmz: 64 k: 2 Idmx: 16 it 2 Idz: st 2 j: 2 Idmy: 16 _

Figure 46: Output from Tracepoints in a Fortran application

Where tracepoints are passed by multiple processes within a short interval, the outputs will be merged.
Sparklines of the values recorded are shown for numeric values, along with the range of values obtained,
showing the variation across processes.

As alike tracepoints are merged then this can lose the order/causality between different processes in trace-
point output. For example, if process 0 passes a tracepoint at time T, and process 1 passes the tracepoint
at T + 0.001, then this will be shown as one passing of both process 0 and process 1, with no ordering
inferred.

Sequential consistency is preserved during merging, in that for any process, the sequence of tracepoints
for that process will be in order.

To find particular values or interesting patterns, use the Only show lines containing box at the bottom of
the panel. Tracepoint lines matching the text entered here will be shown, the rest will be hidden. To search
for a particular value, for example, try “my_var: 34”. In this case the space at the end helps distinguish
between my_var: 34 and my_var: 345.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 83
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

For more detailed analysis you may wish to export the tracepoints. To do this, right-click and choose
Export from the pop-up menu. An HTML tracepoint log will be written using the same format as Arm
DDT’s offline mode.

Version control breakpoints and tracepoints

Version control breakpoint/tracepoint insertion allows you to quickly record the state of the parts of the
target program that were last modified in a particular revision. The resulting tracepoint output may be
viewed in the Tracepoint Output tab or the Logbook tab and may be exported or saved as part of a logbook
or offline log.

File Edit View Control Tools Window Help

4 FEaO K BEEBIETEBIEE ! ©

Current Group: | All = |Focus on current: (® Group Process Thread
" DOEGE
Create Group
Project Files B8 | 9 pelloc X Locals | Current Line(s) | current Stack
Search (Ctrl+K) % [5) ~ Current Line(s) @
—_— icati "horox Name Value
:' Ap::llcauon Code 8 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); my_rank — o0
~ & Sources 11 years ago Q - }
hello.c
® _ anon9006afac0108 o =
® __anon9006afac0208 (o] n", source);
® __anond006afac0308 (o} _CHAR, source, tag, MPI_COMM_WORLD, &status);
® funcl() : void ©
® func2() : int 8 3
® func3() : void 9 years ago o))
® mainlint arge,char ** arg 11" years ago
@ typeOne Q (i =1; i < arge; i++)
@ typeThree Q (argv(i] && !strcmp(argv(il, "memcrash"))
@ typeTwo [¢] func3 () ;
» & Extenal Code
(o] (i=1; i< arge; ite)
fs) (argv[i] && !stremp(argv(il, "gu
(o] dynamicArray[100 /*000%/] = 2;
‘ ¥ 4 »
InputfOutput Breakpoints Watchpoints ~ Stacks = Tracepeints | TracepointOutput Logbook Evaluate ew
Tracepoints @ Name alue
Processes Threads File Line Actual Line Variables Function Condition Start After Trigger *
vl Al all hello.c = 132 132 dest main 0
v Al all helloc 134 134 message, MP|_CHAR, dest, tag, MP_COMM_WORLD main 0
VoAl all hello.c = 135 135 beingWatched main 0
v Al all hello.c 136 138 main 0
VoAl all hello.c | 138 138 source, p main 0
VoAl all hello.c = 138 139 source main o
VoAl all hello.c = 140 140 message, MPI_CHAR, source, tag, MPI_COMM_WORLD, status | main 0 -
. »
Ready

Figure 47: DDT with version control tracepoints

Version control tracepoints may be inserted either in the graphical interactive mode or in offline mode
via a command-line argument.

In interactive mode enable Version Control Information from the View menu and wait for the annotation
column to appear in the code editor. This does not appear for files that are not tracked by a supported
version control system.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 84
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

File Edit BUETN Control Tools Window Help

Fold all
b - §! O
Unfold all
Current Gr Increase code zoom cCri++ Process Thread
All Decrease code zoom Ctrl+-
Create Grou Reset code zoom Ctrl+0
Project Files Show whitespace Alt+.
Search (Ctriy No split I B9 dynamicArray[x] = x % 10;
- = Appli ® Horizontal split 2 }
' / Vertical split : printf({"my rank is %d\n", my

© 50 Version Control Information 93
TENU.C h Y, T printf("sizeof (int) = %1d\nsi

Figure 48: Version Control—Enable from Menu

Right-click a line last modified by the revision of interest and choose Trace Variables At This Revi-
sion.

s (p = 0; p < 100; ptt)
78 bigArray[p]l = 80000 + p;

B0 for (x = 0; x < 12; xt+)
81 for (y = 0; v < 12; y++)
g2 tables[x] [y] = (x + 1} * (y + 1);
B3 MPI_Init(&argc, &aragv);
, TET k (MPI_COMM_WORLD, &my_rank);
Copy commit message e (MPI_COMM _WORLD, &p);

Break at this revision

y - - = malloc(sizeof (int) * 100 /*000%/);
Trace variables at this revision x < 100 /*00%/; x+t) {
dynamichArray[x] = x % 10;

Figure 49: Version Control—Trace at this revision

Arm DDT will find all the source files modified in the revision, detect the variables on the lines modified
in the revision and insert tracepoints (pending if necessary). A progress dialog may be shown for lengthy
tasks.

Both the tracepoints and the tracepoint output in the Tracepoints, Tracepoint Output, and Logbook tabs
may be double-clicked during a session to jump to the corresponding line of source in the code viewer.

In offline mode supply the additional argument - - trace-changes and Arm DDT applies the same
process as in interactive mode using the current revision of the repository.

By default version control tracepoints are removed after 20 hits. To change this hit limit set the environ-
ment variable ALLINEA_VCS_TRACEPOINT_HIT_LIMIT to an integer greater than or equal to O.
To configure version control tracepoints to have no hit limit set this to 0.

See also Version control information.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 85
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

Examining the stack frame

Current Stack ==

Stack Arguments

#9 0x0000000000400d91 in main (arge=
#8 0x00007ffff7ad2ef0 in PMPL_Init () frol
#7 0x00007ffff7abd183 in ompi_mpi_init
#6 0x00007ffff7aba489 in ompi_proc_set
#5 0xD0007ffff7abf7al in ompi_modex_r
#4 0x00007ffff5de03c5 in orte_grpcomm
#3 0x00007ffff7b4f439 in opal_progress
#2 0x00007ffff7b78c5a in opal_event ba
#1 0x0D0007ffff7b43eeb in epoll_dispatch
#0 0x00007ffff6d0dce3 in epoll_wait () fr

L] ¥

Figure 50: The Stack Tab

The stack back trace for the current process and thread are displayed under the Stack tab of the Variables
Window. When you select a stack frame Arm DDT jumps to that position in the code, if it is available,
and will display the local variables for that frame. The toolbar can also be used to step up or down the
stack, or jump straight to the bottom-most frame.

Align stacks

The align stacks button, or CTRL+Shift+A hotkey, sets the stack of the current thread on every process
in a group to the same level as the current process, where it is possible to do so.

This feature is particularly useful where processes are interrupted, by the pause button, and are at different
stages of computation. This enables tools such as the Cross-Process Comparison window to compare
equivalent local variables, and also simplifies casual browsing of values.

Viewing stacks in parallel
Overview

To find out where your program is, in one single view, you can use the Parallel Stack View. It is found
in the bottom area of Arm DDT’s GUI, tabbed alongside Input/Output, Breakpoints and Watches:

Processes Function -
1 = main() (hello.c:123)
1 funcl() (hello.c:40)
3 = main() (hello.c:125)
3 func2() (hello.c:31)

Figure 51: DDT Parallel Stack View

If you want to know where a group’s processes are, click on the group and look at the Parallel Stack View.
This shows a tree of functions, merged from every process in the group (by default). If there is only one
branch in this tree, one list of functions, then all your processes are at the same place.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 86
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

If there are several different branches, then your group has split up and is in different parts of the code.
Click on any branch to see its location in the Source Code Viewer, or hover your mouse over it and a little
popup will list the processes at that location. Right-click on any function in the list and select New Group
to automatically gather the processes at that function together in a new group, labelled by the function’s
own name.

The best way to learn about the Parallel Stack View is to simply use it to explore your program. Click on it
and see what happens. Create groups with it, and watch what happens to it as you step processes through
your code. The Parallel Stack View’s ability to display and select large numbers of processes based on
their location in your code is invaluable when dealing with moderate to large numbers of processes.

The Parallel Stack View in detail

The Parallel Stack View takes over much of the work of the Stack display, but instead of just showing
the current process, this view combines the call trees (commonly called stacks) from many processes
and displays them together. The call tree of a process is the list of functions (strictly speaking frames or
locations within a function) that lead to the current position in the source code.

For example, if main() calls read_input(), and read_input () calls open_file(), and you
stop the program inside open_file(), then the call tree looks like the following:

main()
read_input ()
open_file()

If a function was compiled with debug information (usually -g) then Arm DDT adds extra information,
displaying the exact source file and line number that your code is on.

Any functions without debug information are grayed-out and are not shown by default. Functions without
debug information are typically library calls or memory allocation subroutines and are not generally of
interest. To see the entire list of functions, right-click on one and choose Show Children from the pop-up
menu.

You can click on any function to select it as the ‘current’ function in Arm DDT. If it was compiled
with debug information, then Arm DDT also displays its source code in the main window, and its local
variables and so on in the other windows.

One of the most important features of the Parallel Stack View is its ability to show the position of many
processes at once. Right-click on the view to toggle between:

1. Viewing all the processes in your program at once.
2. Viewing all the processes in the current group at once (default).
3. Viewing only the current process.

The function that Arm DDT is currently displaying and using for the variable views is highlighted in dark
blue. Clicking on another function in the Parallel Stack View selects another frame for the source code
and variable views. It also updates the Stack display, since these two controls are complementary. If the
processes are at several different locations, then only the current process’ location is displayed in dark
blue. The other processes’ locations are displayed in a light blue:

Processes Threads Function s
16 16 ~ main (hello.c:117)
16 16 funcl (hello.c:39)

p

Figure 52: Current Frame Highlighting in Parallel Stack View

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 87
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

In the example above, the processes of the program are at two different locations. One process is in the
main function, at line 147 of hello.c. The other 15 processes are inside a function called funci,
at line 39 of hello.c. To see the line of source code a function corresponds to, and display any local
variable in that stack frame, click on the function.

There are two optional columns in the Parallel Stack View. The first, Processes shows the number of
processes at each location. The second, Threads, shows the number of threads at each location. By
default, only the number of processes is shown. Right-click to turn these columns on and off. Note that
in a normal, single-threaded MPI application, each process has one thread and these two columns will
show identical information.

Hovering the mouse over any function in the Parallel Stack View displays the full path of the filename,
and a list of the process ranks that are at that location in the code:

Input/Output* Breakpoints =~ Watchpoints =~ Stacks | Tracepoints = Tracepoint Output
Stacks

Processes Threads Function =
4 4 = main (hello.c:117)

4 4 = funcl (hello.c:39)

4 4 func2 (hello.c:30)

4 4

4] | 4|

» progress engine {(minheap-internal h-a7)
ﬁﬂJhome!userfarmfforge;’examples;’hello.c:30

4 Processes: ranks 0-3

Figure 53: Parallel Stack View tool tip

Arm DDT is at its most intuitive when each process group is a collection of processes doing a similar
task. The Parallel Stack View is invaluable in creating and managing these groups.

Right-click on any function in the combined call tree and choose the New Group option. This creates a
new process group that contains only the processes sharing that location in code. By default Arm DDT
uses the name of the function for the group, or the name of the function with the file and line number if
it is necessary to distinguish the group further.

Browsing source code

Source code is automatically displayed when a process is stopped, when you select a process, or position
in the stack changed. If the source file cannot be found you are prompted for its location.

Arm DDT highlights lines of the source code to show the current location of your program’s execution.
Lines that contain processes from the current group are shaded in that group’s color. Lines only containing
processes from other groups are shaded in gray.

This pattern is repeated in the focus on process and thread modes. For example, when you focus on a
process, Arm DDT highlights lines containing that process in the group color, and other processes from
that group in gray.

Arm DDT also highlights lines of code that are on the stack, functions that your program will return to
when it has finished executing the current one. These are drawn with a faded look to distinguish them
from the currently-executing lines.

You can hover the mouse over any highlighted line to see which processes/threads are currently on that
line. This information is presented in a variety of ways, depending on the current focus setting:

Focus on Group

A list of groups that are on the selected line, along with the processes in them on this line, and a list of
threads from the current process on the selected line.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 88
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

Focus on Process

A list of the processes from the current group that are on this line, along with the threads from the current
process on the selected line.

Focus on Thread
A list of threads from the current process on the selected line.

The tool tip distinguishes between processes and threads that are currently executing that line, and ones
that are on the stack by grouping them under the headings On the stack and On this line.

Variables and Functions

Right-clicking on a variable or function name in the Source Code Viewer causes Arm DDT to check
whether there is a matching variable or function, and then to display extra information and options in a
sub-menu.

In the case of a variable, the type and value are displayed, along with options to view the variable in the
Cross-Process Comparison Window (CPC) or the Multi-Dimensional Array Viewer (MDA), or to drop
the variable into the Evaluate Window, each of which are described in the next chapter.

Add to Evaluations
Add breakpoint for All Add Watchpoint
Add tracepoint for All (arge, argv, environ) View Array
'e Run t0 here Compare Across Processes
Compare Across Threads
Find In Files...
Type is: int
Value is: 1

Paste
Select All

Open in external editor
Close Ctri+W

Figure 54: Right-Click Menu—Variable Options

In the case of a function, it is also possible to add a breakpoint in the function, or to the source code of
the function when available.

Add breakpoint for All Add Watchpoint
Add tracepoint for All View Array
["¢ Run to here
Find In Files...
Type is: void ()

View source for "func1”
Paste Add breakpoint in "funcl” A

Select All
Open in external editor

Close Crri+w

Figure 55: Right-Click Menu—Function Options

Simultaneously viewing multiple files

Arm DDT presents a tabbed pane view of source files. Occasionally it may be useful to view two files
simultaneously, such as when tracking two different processes.

Inside the code viewing panel, right-click to split the view. This displays a second tabbed pane which
can be viewed beneath the first one. When viewing additional files, the currently ‘active’ panel displays
the file. Click on one of the views to make it active.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 89
101136_2020_00_en

Arm Forge 20.2 7 CONTROLLING PROGRAM EXECUTION

The split view can be reset to a single view by right-clicking in the code panel and deselecting the split
view option.

t hello.c X

Figure 56: Horizontal Alignment Of Multiple Source Files

Signal handling
By default Arm DDT will stop a process if it encounters one of the standard signals. See section 7.20.1
Custom signal handling (signal dispositions). The standard signals include:

* SIGSEGV - Segmentation fault

The process has attempted to access memory that is not valid for that process. Often this will be
caused by reading beyond the bounds of an array, or from a pointer that has not been allocated yet.
The DDT Memory Debugging feature may help to resolve this problem.

* SIGFPE — Floating Point Exception

This is raised typically for integer division by zero, or dividing the most negative number by -1.
Whether or not this occurs is Operating System dependent, and not part of the POSIX standard.
Linux platforms will raise this.

Note that floating point division by zero will not necessarily cause this exception to be raised,
behavior is compiler dependent. The special value Inf or - Inf may be generated for the data,
and the process would not be stopped.

* SIGPIPE - Broken Pipe
A broken pipe has been detected while writing.
* SIGILL - Illegal Instruction

SIGUSR1, SIGUSR2, SIGCHLD, SIG63 and SIG64 are passed directly through to the user process
without being intercepted by DDT.

Custom signal handling (signal dispositions)

You can change the way individual signals are handled using the Signal Handling window. To open the
window select the Control — Signal Handling... menu item.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 90
101136_2020_00_en

Arm Forge 20.2

7 CONTROLLING PROGRAM EXECUTION

Signal Handling x

Signal = Description Action

Defaut (stop
SIGALRM Alarm clock Default (ignore)
SIGBUS Bus error Default (stop)
SIGCHLD Child exited Default (ignore)
SIGCONT Continued Default (ignore)
SIGFPE Floating point exception Default (stop)
SIGHUP Hangup Default (stop)
SIGILL lllegal instruction Default (stop)
SIGIO 1/ possible Default (ignore)
SIGKILL Killed Default (stop)
SIGPIPE Broken pipe Default (stop)
SIGPROF Profiling timer expired Default (ignore)
SIGPWR Power failure Default (stop)
SIGQUIT Quit Default (stop)
SIGSEGV Segmentation fault Default (stop)
SIGSTOP Stopped (signal) Default (ignare)
SIGSYS Bad system call Default (stop)
SIGTERM Terminated Default (stop)
SIGTSTP Stopped Default (ignore)

Cancel

Figure 57: Signal Handling dialog

Set a signal’s action to Stop to stop a process whenever it encounters the given signal, or Ignore to let the
process receive the signal and continue playing without being stopped by the debugger.

Sending signals

The Send Signal window allows a signal to be sent to the debugged processes. Select the Control — Send
Signal... menu item. Select the signal you want to send from the drop-down list and click the Send to

process button.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 91

101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

Variables and data

The Variables Window contains two tabs that provide different ways to list your variables. The Locals
tab contains all the variables for the current stack frame, while the Current Line(s) tab displays all the
variables referenced on the currently selected lines.

Note: Several compilers and libraries (such as Cray Fortran, OpenMP and others) generate extra code,
including variables that are visible in Arm DDT’s windows.

Right-clicking in these windows brings up additional options, including the ability to edit values, to
change the display base, or to compare data across processes and threads. The right-click menu also al-
lows you to choose whether the fields in structures (classes or derived types) should be displayed alpha-
betically by element name or not, which is useful for when structures have many different fields.

Locals & ®)
Name Value
argc —1
b argv D T
beingWatched — 0
b bigArray
dest — 0
¥ dynamicArray 0x81803
b environ D T
i — 0
message
my_rank 0
p — 512
source — 32767
+ status
o2
» tables
tag — 50
+ test
X — 10000
¥ — 12

Figure 58: Displaying Variables

Sparklines

Numerical values may have sparklines displayed next to them. A sparkline is a line graph of process rank
or thread index against value of the related expression. The exact behavior is determined by the focus
control. See section 7.2 Focus control.

If focussed on process groups, then process ranks are used. Otherwise, thread indices are used. The graph
is bound by the minimum and maximum values found, or in the case that all values are equal the line
is drawn across the vertical center of the highlighted region. Erroneous values such as Nan and Inf are
represented as red, vertical bars. If focus is on process groups, then clicking on a sparkline displays the
Cross-Process Comparison window for closer analysis. Otherwise, clicking on a sparkline displays the
Cross-Thread Comparison window.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 92
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

Current line

You can select a single line by clicking on it in the code viewer, or multiple lines by clicking and dragging.
The variables are displayed in a tree view so that user-defined classes or structures can be expanded to
view the variables contained within them. You can drag a variable from this window into the Evaluate
Window. It is then evaluated in whichever stack frame, thread or process you select.

Local variables

The Locals tab contains local variables for the current process’s currently active thread and stack frame.

For Fortran codes the amount of data reported as local can be substantial, as this can include many global
or common block arrays. Should this prove problematic, it is best to conceal this tab underneath the
Current Line(s) tab, as this will not then update after every step.

It is worth noting that variables defined within common blocks may not appear in the local variables tab
with some compilers, this is because they are considered to be global variables when defined in a common
memory space.

The Locals view compares the value of scalar variables against other processes. If a value varies across
processes in the current group the value is highlighted in green.

When stepping or switching processes if the value of a variable is different from the previous position or
process it is highlighted in blue.

After stepping out of function the return value is displayed at the top of the Locals view (for selected
debuggers).

Arbitrary expressions and global variables

Evaluate =
Mame Value

bigArray[3] —— 80003

my_rank 0

Xty — 10012

Figure 59: Evaluating Expressions

Since the global variables and arbitrary expressions do not get displayed with the local variables, you
may wish to use the Current Line(s) tab in the Variables window and click on the line in the Source Code
Viewer containing a reference to the global variable.

Alternatively, the Evaluate panel can be used to view the value of any arbitrary expression. Right-click on
the Evaluate window, click on Add Expression, and type in the expression required in the current source
file language. This value of the expression is displayed for the current process and stack/thread, and is
updated after every step.

Notes:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 93
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

+ At the time of writing Arm DDT does not apply the usual rules of precedence to logical Fortran
expressions, suchas X .ge. 32 .and. x .le. 45.. Fornow, please bracket such expres-
sions thoroughly: (x .ge. 32).and. (x .le. 45).

+ Although the Fortran syntax allows you to use keywords as variable names, Arm DDT is not able
to evaluate such variables on most platforms. Contact Arm support at Arm support if this issue
affects you.

Expressions containing function calls are only evaluated for the current process/thread and sparklines are
not displayed for those expressions, because of possible side effects caused by calling functions. Use
Cross-Process or Cross-Thread Comparison for functions instead. See section 8.17 Cross-process and
cross-thread comparison.

Fortran intrinsics

The following Fortran intrinsics are supported by the default GNU debugger included with Arm DDT:

ABS AIMAG CEILING CMPLX
FLOOR IEEE_IS_FINITE | IEEE_IS_INF | IEEE_IS_NAN
IEEE_IS_NORMAL | ISFINITE ISINF ISNAN
ISNORMAL MOD MODULO REALPART

Support in other debuggers, including the CUDA debugger variants, may vary.

Changing the language of an expression

Ordinarily, expressions in the Evaluate window and Locals/Current windows are evaluated in the lan-
guage of the current stack frame. This may not always be appropriate. For example, a pointer to user
defined structure may be passed as value within a Fortran section of code, and you may wish to view the
fields of the C structure. Alternatively, you may wish to view a global value in a C++ class while your
process is in a Fortran subroutine.

You can change the language that Arm DDT uses for your expressions by right-clicking on the expression,
and clicking Change Type/Language, selecting the appropriate language for the expression. To restore
the default behavior, change this back to Auto.

Macros and #defined constants

By default, many compilers do not output sufficient information to allow the debugger to display the
values of “#defined” constants or macros, as including this information can greatly increase executable
sizes.

With the GNU compiler, adding the “-g3” option to the command line options generates extra definition
information which Arm DDT will then be able to display.

Editing variables

You can edit the values of simple types such as scalars, pointers and c-strings. To edit a value, Right-
click the value in a variable view and select Edit Value. Enter the new value in the Edit Dialog and press

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 94
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 8 VARIABLES AND DATA

Enter.

I Edit Value x|

MNew Value: |Hello world
Applies To:
Process Group: | All -
Process: Al |2
Help 0K Cancel

Figure 60: Editing Variables

Help with Fortran modules

An executable containing Fortran modules presents a special set of problems for developers:

« If there are many modules, each of which contains many procedures and variables (each of which
can have the same name as something else in a separate Fortran module), keeping track of which
name refers to which entity can become difficult.

» When the Locals or Current Line(s) tabs (within the Variables window) display one of these vari-
ables, to which Fortran module does the variable belong?

* How do you refer to a particular module variable in the Evaluate window?
* How do you quickly jump to the source code for a particular Fortran module procedure?
To help with this, Arm DDT provides a Fortran Modules tab in the Project Navigator window.

When Arm DDT begins a session, Fortran module membership is automatically found from the informa-
tion compiled into the executable.

A list of Fortran modules found is displayed in a simple tree view within the Fortran Modules tab of the
Project Navigator window.

Each of these modules can be ‘expanded’ (by clicking on the + symbol to the left of the module name)
to display the list of member procedures, member variables and the current values of those member
variables.

Clicking on one of the displayed procedure names causes the Source Code Viewer to jump to that proce-
dure’s location in the source code. In addition, the return type of the procedure is displayed at the bottom
of the Fortran Modules tab. Fortran subroutines will have a return type of VOID ().

Similarly, clicking on one of the displayed variable names causes the type of that variable to be displayed
at the bottom of the Fortran Modules tab.

A module variable can be dragged and dropped into the Evaluate window. Here, all of the usual Evaluate
window functionality applies to the module variable. To help with variable identification in the Evaluate
window, module variable names are prefixed with the Fortran module name and two colons ::.

Right-clicking within the Fortran Modules tab brings up a context menu. For variables, choices on this
menu includes sending the variable to the Evaluate window, the Multi-Dimensional Array Viewer and the
Cross-Process Comparison Viewer.

Some caveats apply to the information displayed within the Fortran Modules tab:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 95
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

1. The Fortran Modules tab is not displayed if the underlying debugger does not support the retrieval
and manipulation of Fortran module data.

2. The Fortran Modules tab displays an empty module list if the Fortran modules debug data is not
present or in a format understood by Arm DDT.

One limitation of the Fortran Modules tab is that the modules debug data compiled into the executable
does not include any indication of the module USE hierarchy. For example, if module A USEs module B,
the inherited members of module B are not shown under the data displayed for module A. Consequently,
the Fortran Modules tab shows the module USE hierarchy in a flattened form, one level deep.

Viewing complex numbers in Fortran

When working with complex numbers, you may wish to view only the real or imaginary elements of the
number. This can be useful when evaluating expressions, or viewing an array in the Multi-Dimensional
Array Viewer See section 8.16 Multi-dimensional array viewer (MDA).

You can use the Fortran intrinsic functions REALPART and AIMAG to get the real or imaginary parts of
a number, or their C99 counterparts creal and cimag.

Complex numbers in Fortran can also be accessed as an array, where element 1 is the real part, and element
2 is the imaginary part.

Evaluate =
Name Value

c (3.4)

cll) 3

cl2) 4

Figure 61: Viewing the Fortran complex number 3+4i

C++ STL support

Arm DDT uses pretty printers for the GNU C++ STL implementation (versions 4.7 and greater), Nokia’s
Qt library, and Boost, designed for use with the GNU Debugger. These are used automatically to present
such C++ data in a more understandable format.

For some compilers, the STL pretty printing can be confused by non-standard implementations of STL
types used by a compiler’s own STL implementation. In this case, and in the case where you wish to see
the underlying implementation of an STL type, you can disable pretty printing by running DDT with the
environment variable setting ALLINEA_DISABLE_PRETTY_PRINT=1.

Expanding elements in std: : map, including unordered and multimap variants, is not supported
when using object keys or pointer values.

Custom pretty printers

In addition to the pre-installed pretty printers you may also use your own GDB pretty printers.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 96
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

A GDB pretty printer consists of an auto-1load script that is automatically loaded when a particular
executable or shared object is loaded and the actual pretty printer Python classes themselves. To make a
pretty printer available in DDT copy itto ~/.allinea/gdb.

Example

An example pretty printer may be found in {installation-directory}/examples.
Compile the fruit example program using the GNU C++ compiler as follows:
cd {installation-directory}/examples

make -f fruit.makefile

Now start Arm DDT with the example program as follows:

ddt --start {installation-directory}/examples/fruit

After the program has started right-click on line 20 and click the Run to here menu item. Click on the
Locals tab and notice that the internal variable of myFruit are displayed.

Now install the fruit pretty printer by copying the files to ~/ .allinea/gdb as follows:

cp -r {installation-directory}/examples/fruit-pretty-printer/* ~/.
allinea/gdb/

Re-run the program in Arm DDT and run to line 20, as before. Click on the Locals tab and notice that
now, instead of the internal variable of myFruit, the type of fruit is displayed instead.

Viewing array data

Fortran users may find that it is not possible to view the upper bounds of an array. This is due to a lack
of information from the compiler. In these circumstances Arm DDT displays the array with a size of 0,
or simply <unknown_bounds>. It is still possible to view the contents of the array using the Evaluate
window to view array (1), array(2), and so on, as separate entries.

To tell Arm DDT the size of the array right-click on the array and select the Edit Type... menu option.
This opens a window similar to the one below. Enter the real type of the array in the New Type box.

[Edit Type [Language Cx

Variable: arr
Original Type: integer arr(kind=4)(10,%)
New Type: integer arr(kind=4)(10,10) Reset

Language: Fortran =

Help oK Cancel

Figure 62: Edit Type window

Alternatively the MDA can be used to view the entire array.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 97
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

UPC support
Arm DDT supports many different UPC compilers, including the GNU UPC compiler, the Berkeley UPC
compiler and those provided by Cray.

Note: In order to enable UPC support, you may need to select the appropriate MPI/UPC implementation
from DDT’s Options/System menu. See Section 5.14 UPC

Debugging UPC applications introduces a small number of changes to the user interface.

* Processes will be identified as UPC Threads, this is purely a terminology change for consistency
with the UPC language terminology. UPC Threads will have behavior identical to that of separate
processes: groups, process control and cross-process data comparison for example will apply across
UPC Threads.

* The type qualifier shared is given for shared arrays or pointers to shared.

+ Shared pointers are printed as a triple (address, thread, phase). For indefinitely blocked pointers
the phase is omitted.

» Referencing shared items will yield a shared pointer and pointer arithmetic may be performed on
shared pointers.

* Dereferencing a shared pointer (for example, dereferencing * (&x[n] + 1])) will correctly
evaluate and fetch remote data where required.

* Values in shared arrays are not automatically compared across processes: the value of X[1] is
by definition identical across all processes. It is not possible to identify pending read/write to
remote data. Non-shared data types such as local data or local array elements will still be compared
automatically.

+ Distributed arrays are handled implicitly by the debugger. There is no need to use the explicit
distributed dimensions feature in the MDA.

All other components of Arm DDT will be identical to debugging any multi-process code.

Changing data values

In the Evaluate window, the value of an expression may be set by right-clicking and selecting Edit Value.
This allows you to change the value of the expression for the current process, current group, or for all
processes.

Note: The variable must exist in the current stack frame for each process you wish to assign the value
to.

Viewing numbers in different bases
When you are viewing an integer numerical expression you may right-click on the value and use the View

As sub menu to change which base the value is displayed in. The View As — Default option displays the
value in its original (default) base.

Examining pointers

You can examine pointer contents by clicking the + next to the variable or expression. This expands the
item and dereference the pointer.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 98
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

In the Evaluate window, you can also use the View As Vector, Get Address, and Dereference Pointer
menu items. Dereference Pointer wraps the expression in * (). Get Address strips a single layer of * (')
from the expression (if one exists). Both Get Address and Dereference Pointer currently only support
raw pointers and not other pointer implementations, such as, C++11 smart pointers.

See also Multi-dimensional array viewer (MDA).

Multi-dimensional arrays in the Variable View

When viewing a multi-dimensional array in either the Locals, Current Line(s) or Evaluate windows it is
possible to expand the array to view the contents of each cell.

In C/C++ the array expands from left to right, X, y, z will be seen with the x column first, then under
each X cell a y column, whereas in Fortran the opposite will be seen with arrays being displayed from
right to left as you read it so X, Y, z would have z as the first column with y under each z cell.

The first thousand elements in an array are shown in the Locals or Current Line(s) view. Larger arrays
are truncated, but elements after the first thousand can be viewed by evaluating an expression or using
the multi-dimensional array viewer.

Current Line(s) =
MName Value -
* array
= [0]
[0] 1
[1] 2
[2] 3
* [1]
[0] 2
[1] 4
[2] 6
* [2]
[0] 3
[1] 6
[2] 9
= [3]
[0] 4
[1] 8
121 12|~

Figure 63: 2D Array in C: type of array is int[4][3]

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 99
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

Current Line(s) 3
Name Value -
= twodee
=+ [1]
[1]
[2]
[3]
[4]
[5]
* [2]
[1]
[2]
[3]
[4]
[5]
= [3]
[1]
[2]
[31 5] b

|l = L 8 LN Ll R

oL

Figure 64: 2D Array in Fortran: type of twodee is integer(3,5)

Multi-dimensional array viewer (MDA)

Arm DDT provides a Multi-Dimensional Array (MDA) Viewer (fig. 65) for viewing multi-dimensional
arrays.

To open the Multi-Dimensional Array Viewer, right-click on a variable in the Source Code, Locals, Cur-
rent Line(s) or Evaluate views and select the View Array (MDA) context menu option. You can also
open the MDA directly by selecting the Multi-Dimensional Array Viewer menu item from the View
menu.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 100
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

Multi-Dimensionall Array Viewer

Array Expression: | tables[$i][$]] - Evaluate

Distributed Array Dimensions: [None |=| How do | view distributed arrays?

Staggered Array What does this do? v| Align Stack Frames
Range of $i Range of $j Auto-update

From: 0 = From: 0 =

To: 11 - To: 11 -

Display: | Rows x Display: | Columns e

Only show if: See Examples

Data Table | Statistics

- Goto Qvisualize) Export Full Window

1 7 5] 4 5 6 7 8 9 10 11

|~ s W N O

Qo[| &N

12| 16| 20[24| 28| 32| 36| 40 44| 48
10| 15| 20{ 25 30| 35| 40 45 50| 55| 60
12| 18| 24 301 36| 42| 48 54| 60| 66| 72
14| 21| 28 35| 42| 49| 56| 63| 70| 77| 84
16| 24| 32(40| 48| 56| 64| 72| 80| BB 96
18| 27| 36| 45| 54| 63| 72| 81| 90| 99| 108

-

Help Close

Figure 65: Multi-Dimensional Array Viewer

If you open the MDA by right clicking on a variable, Arm DDT will automatically set the Array Expres-
sion and other parameters based on the type of the variable. Click the Evaluate button to see the contents
of the array in the Data Table.

The Full Window button hides the settings at the top of the window so the table of values occupies the
full window, allowing you to make full use of your screen space. Click the button again to reveal the
settings.

Array expression

The Array Expression is an expression containing a number of subscript metavariables that are sub-
stituted with the subscripts of the array. For example, the expression myArray($i, $j) has two
metavariables, $1 and $j. The metavariables are unrelated to the variables in your program.

The range of each metavariable is defined in the boxes below the expression, for example Range of $i.
The Array Expression is evaluated for each combination of $1, $j, and so on, and the results shown in
the Data Table. You can also control whether each metavariable is shown in the Data Table using Rows
or Columns.

By default, the ranges for these metavariables are integer constants entered using spin boxes. However,
the MDA also supports specifying these ranges as expressions in terms of program variables. These ex-
pressions are then evaluated in the debugger. To allow the entry of these expressions, check the Staggered
Array check box. This will convert all the range entry fields from spin boxes to line edits allowing the
entry of freeform text.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 101
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

The metavariables may be reordered by dragging and dropping them. For C/C++ expressions the major
dimension is on the left and the minor dimension on the right, for Fortran expressions the major dimension
is on the right and the minor dimension on the left. Distributed dimensions may not be reordered, they
must always be the most major dimensions.

Filtering by value

You may want the Data Table to only show elements that fit a certain criteria, for example elements that
are zero.

If the Only show if box is checked then only elements that match the boolean expression in the box are
displayed in the Data Table, for example, $value == 0. The special metavariable $value in the
expression is replaced by the actual value of each element. The Data Table automatically hides rows or
columns in the table where no elements match the expression.

Any valid expression for the current language may be used here, including references to variables in
scope and function calls. You may want to be careful to avoid functions with side effects as these will be
evaluated many times over.

Distributed arrays

A distributed array is an array that is distributed across one or more processes as local arrays.

The Multi-Dimensional Array Viewer can display certain types of distributed arrays, namely UPC shared
arrays (for supported UPC implementations), and general arrays where the distributed dimensions are
the most major, that is, the distributed dimensions change the most slowly, and are independent from the
non-distributed dimensions.

UPC shared arrays are treated the same as local arrays, simply right-click on the array variable and select
View Array (MDA).

To view a non-UPC distributed array first create a process group containing all the processes that the
array is distributed over.

If the array is distributed over all processes in your job then you can simply select the All group in-
stead. Right-click on the local array variable in the Source Code, Locals, Current Line(s) or Evaluate
views.

The Multi-Dimensional Array Viewer window will open with the Array Expression already filled in.

Enter the number of distributed array dimensions in the corresponding box. A new subscript metavariable
(such as $p, $q) will be automatically added for each distributed dimension.

Enter the ranges of the distributed dimensions so that the product is equal to the number of processes in
the current process group, then click the Evaluate button.

Advanced: how arrays are laid out in the data table

The Data Table is two dimensional, but the Multi-Dimensional Array Viewer may be used to view arrays
with any number of dimensions, as the name implies. This section describes how multi-dimensional
arrays are displayed in the two dimensional table.

Each subscript metavariable (such as $i, $j, $p, $g) maps to a separate dimension on a hypercube.
Usually the number of metavariables is equal to the number of dimensions in a given array, but this

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 102
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

does not necessarily need to be the case. For example myArray ($i, $j) * $Kk introduces an extra
dimension, $K, as well as the two dimensions corresponding to the two dimensions of myArray.

The figure below corresponds to the expression myArray($i, $j) with $i = 0..3 and $j =
0..4.

Figure 66: myArray($i, $j) with $i = 0..3 and $j = 0..4.

If, by way of example, imagine that myAr ray is part of a three dimensional array distributed across three
processes. The figure below shows what the local arrays look like for each process.

Rank 0 Rank 1 Rank 2

F

Figure 67: The local array myArray($i, $j) with $i = 0..3 and $j = 0..4 on ranks 0-2

And as a three dimensional distributed array with $p the distributed dimension:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 103
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

$)

Figure 68: A three dimensional distributed array comprised of the local array myArray($i, $j) with $i =
0..3 and $j = 0..4 on ranks 0-2 with $p the distributed dimension

This cube is projected (just like 3D projection) onto the two dimensional Data Table. Dimensions marked
Display as Rows are shown in rows, and dimensions marked Display as Columns are shown in columns,
as you would expect.

More than one dimension may viewed as Rows, or more than one dimension viewed as Columns.

The dimension that changes fastest depends on the language your program is written in. For C/C++
programs the leftmost metavariable (usually $1i for local arrays or $p for distributed arrays) changes the
most slowly (just like with C array subscripts). The rightmost dimension changes the most quickly. For
Fortran programs the order is reversed, that is the rightmost is most major, the leftmost most minor.

The figure below shows how the three dimensional distributed array above is projected onto the two
dimensional Data Table:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 104
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

$p
$i

F - .

Figure 69: A three dimensional distributed array comprised of the local array myArray($i, $j) with $i =
0..3 and $j = 0..4 on ranks 0-2 projected onto the Data Table with $p (the distributed dimension) and $j
displayed as Columns and $i displayed as Rows.

Auto Update

If you check the Auto Update check box the Data Table will be automatically updated as you switch
between processes/threads and step through the code.

Comparing elements across processes

When viewing an array in the Data Table, you may double-click or choose Compare Element Across
Processes from the context menu for a particular element.

This displays the Cross-Process Comparison dialog for the specified element.

See 8.17 Cross-process and cross-thread comparison for more information.

Statistics

The Statistics tab displays information which may be of interest, such as the range of the values in the
table, and the number of special numerical values, such as nan or inf.

Export

You may export the contents of the results table to a file in the Comma Separated Values (CSV) or HDF5
format that can be plotted or analysed in your favourite spreadsheet or mathematics program.

There are two CSV export options: List (one row per value) and Table (same layout as the on screen
table).

Note: If you export a Fortran array from Arm DDT in HDF5 format the contents of the array are written
in column major order. This is the order expected by most Fortran code, but the arrays will be transposed
if read with the default settings by C-based HDF5 tools. Most HDF5 tools have an option to switch
between row major and column major order.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 105
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

Visualization
If your system is OpenGL-capable then a 2-D slice of an array, or table of expressions, may be displayed
as a surface in 3-D space through the Multi-Dimensional Array (MDA) Viewer.

You can only plot one or two dimensions at a time. If your table has more than two dimensions the
Visualise button will be disabled.

After filling the table of the MDA Viewer with values (see previous section), click Visualise to open a 3-D
view of the surface.

To display surfaces from two or more different processes on the same plot simply select another process
in the main process group window and click Evaluate in the MDA window, and when the values are
ready, click Visualise again.

The surfaces displayed on the graph may be hidden and shown using the check boxes on the right-hand
side of the window.

The graph may be moved and rotated using the mouse and a number of extra options are available from
the window toolbar.

The mouse controls are:
* Hold down the left button and drag the mouse to rotate the graph.

» Hold down the right button to zoom. Drag the mouse forwards to zoom in and backwards to zoom
out.

* Hold the middle button and drag the mouse to move the graph.
Notes:

* Arm DDT requires OpenGL to run. If your machine does not have hardware OpenGL support,
software emulation libraries such as MesaGL are also supported.

* In some configurations OpenGL is known to crash. A work-around if the 3D visualization crashes
is to set the environment variable LIBGL_ALWAYS_INDIRECT to 1. The precise configuration
which triggers this problem is not known.

Figure 70: DDT Visualization

The toolbar and menu have options to configure lighting and other effects, including a function to save
an image of the surface as it currently appears.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 106
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

Cross-process and cross-thread comparison

The Cross-Process Comparison and Cross-Thread Comparison windows can be used to analyze expres-
sions calculated on each of the processes in the current process group. Each window displays information
in three ways: raw comparison, statistically, and graphically.

This is a more detailed view than the sparklines that are automatically drawn against a variable in the
evaluations and locals/current line windows for multi-process sessions.

To compare values across processes or threads, right-click on a variable inside the Source Code, Locals,
Current Line(s) or Evaluate windows and then choose one of the View Across Processes (CPC) or View
Across Threads (CTC) options. You can also bring up the CPC or CTC directly from the View menu in
the main menu bar. Alternatively, clicking on a sparkline will bring up the CPC if focus is on process
groups and the CTC otherwise.

Cross-Process Comparison View £

Expression: | my_rank -

Processes in current group (All, 4 procs) | align stack frames
Limit comparison to significant figures |w
Only show if: See Examples

¥ Use as MPI Rank = Create Groups [Export Full Window

Values Process(es) Statistics

0 0

1 1 Count: 4

2 2 Mot shown: 0

3 3 Errors: 0
Aggregate: 0
Numerical: 4
sum: 6
Minimum: 0
Maximum: 3
Range: =
Mean: a5
Variance: 1.66667
nan: 0
-nan: 0
inf: 0
-inf: 0
=0: 0
=0: 1
=0 =

Help Close

Figure 71: Cross-Process Comparison—Compare View

Processes and threads are grouped by expression value when using the raw comparison. The precision
of this grouping can be specified (for floating point values) by filling the Limit box.

If you are comparing across processes, you can turn each of these groupings of processes into a Arm
DDT process group by clicking the create groups button. This creates several process groups, one for
each line in the panel. Using this capability large process groups can be managed with simple expres-
sions to create groups. These expressions are any valid expression in the present language (that is,
C/C++/Fortran).

For threaded applications, when using the CTC, if Arm DDT is able to identify OpenMP thread IDs,
a third column will also display the corresponding OpenMP thread IDs for each thread that has each

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 107
101136_2020_00_en

Arm Forge 20.2 8 VARIABLES AND DATA

value. The value displayed in this third column for any non-OpenMP threads that are running depends
on your compiler but is typically -1 or 0. OpenMP thread IDs should be available when using Intel and
PGI compilers provided compiler optimisations have not removed the required information (recompile
with - 00 if necessary). OpenMP thread IDs can only be obtained from GCC compiled programs if the
compiler itself was compiled with TLS enabled, unfortunately this is not the case for the packaged GCC
installs on any of the major Linux distributions at time of writing (Redhat 7, SUSE 12 or Ubuntu 16.04).
The display of OpenMP thread IDs is not currently supported when using the Cray compiler or the IBM
XLC/XLF compilers.

You can enter a second boolean expression in the Only show if box to control which values are displayed.
Only values for which the boolean expression evaluates to true / . TRUE. are displayed in the results
table. The special metavariable $value in the expression is replaced by the actual value. Click the Show
Examples link to see examples.

The Align Stack Frames check box tries to automatically make sure all processes and threads are in the
same stack frame when comparing the variable value. This is very helpful for most programs, but you
may wish to disable it if different processes/threads run entirely different programs.

The Use as MPI Rank button is described in the next section, Assigning MPI Ranks.

You can create a group for the ranks corresponding to each unique value by clicking the Create Groups
button.

The Export button allows you to export the list of values and corresponding ranks as a Comma Separated
Values (CSV) file.

The Full Window button hides the settings at the top of the window so the list of values occupies the full
window, allowing you to make full use of your screen space. Click the button again to reveal the settings
again.

The Statistics panel shows Maximum, Minimum, Variance and other statistics for numerical values.

Assigning MPI ranks

Sometimes, Arm DDT cannot detect the MPI rank for each of your processes. This might be because
you are using an experimental MPI version, or because you have attached to a running program, or only
part of a running program. Whatever the reason, it is easy to tell DDT what each process should be
called.

To begin, choose a variable that holds the MPI world rank for each process, or an expression that calculates
it. Use the Cross-Process Comparison window to evaluate the expression across all the processes. If the
variable is valid, the Use as MPI Rank button will be enabled. Click it, Arm DDT immediately relabels
all of its processes with these new values.

What makes a variable or expression valid? These criteria must be met:
1. It must be an integer.
2. Every process must have a unique number afterwards.

These are the only restrictions. As you can see, there is no need to use the MPI rank if you have an
alternate numbering scheme that makes more sense in your application. In fact you can relabel only a
few of the processes and not all, if you prefer, so long as afterwards every process still has a unique
number.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 108
101136_2020_00_en

Arm Forge 20.2

Viewing registers

8 VARIABLES AND DATA

To view the values of machine registers on the currently selected process, select the Registers window
from the View pull-down menu. These values will be updated after each instruction, change in thread or

change in stack frame.

@

Registers

Name Value
rax — 0x00
rbx — 0x00
rcx — 0x00
rdx — 0x00
rsi — Ox7fffffffbc88 1407...
rdi — 0x11
rbp — Ox7fffffffbba0d 0x7ff...
rsp — Ox7fffffff1c00 0x7ff...
rg — 0Ox2 2
e — 0Ox11
rio — 0x603010 6303760
ril — 0Oxl1
riz —— 0x400ad0 4197072
ri3 — Ox7fffffffbc80 1407...
ria — 0x00
ris — 0x00
rip — 0x400d11 0x400d...

Process details

aflmme

MmN Mc 1

Figure 72: Register View

-

To view the process details dialog select the Process Details menu item from the Tools menu. Details can
be sorted by any columns, in ascending or descending order.

Process Details (]

Rank = Host

0

1

2

3

Help

Disassembler

PID
19198

19199

19200

19201

Main Thread
LWP 19198

LWP 19199
LWP 19200

LWP 19201

Close

Figure 73: Process Details

To view the disassembly (assembly instructions) of a function select the Disassemble menu item from
the Tools menu. By default you will see the disassembly of the current function, but you can view the
disassembly of another function by entering the function name in the box at the top and clicking the

Disassemble button.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 109
101136_2020_00_en

Arm Forge 20.2

Function: |sweepld [Disassemble|

Address Offset_Bytes Instruction
0> 55 ush

[P
> 48 89 e5 mov arsp,srbp
41 54 push 412

53

4883 ec 18 sub $0x18,%rsp
4889 7d 88 m rdi, 0

srdx,
48 89 8d 70 ff ff ff mov srcx, -6x90 (%rbp)
4c 89 85 68 ff £f f mov 4r8, ~0x98(%rbp)

4c 89 8d 60 ff £f £f mov 4r9, -0xa0 (%rbp)

48 8b 85 78 ff £ ff mov -0x88(Srbp) , rax
8b mov (srax), seax

83 co 01 add $0x1, 3eax

48 83 c0 61 add
ba

48 85 co test
48 89 d1 mov ox
48 07 49 c8 e Arax, srcx
48 8b 85 70 ff £ ff mov -0x98 (Srbp) , rax
8b mov (srax), veax
83 e8 01 s $0x1,%eax

98

Help Close

Figure 74: Disassemble Tool

Interacting directly with the debugger

Raw Command (=Es)

Command: ' | I Send

Command sent to All: bt

bt =
#0 0x0000000000400d9¢ in main (argc=1,
argv=0x7fffffffd008, environ=0x7fffffffd018)

at fhome/user/ddt/fexamples/hello.c:84

Figure 75: Raw Command Window

8 VARIABLES AND DATA

Arm DDT provides a Raw Command window that allows you to send commands directly to the debugger
interface. This window bypasses DDT and its book-keeping. If you set a breakpoint here, Arm DDT will

not list this in the breakpoint list.

Be careful with this window. It is recommended you only use it where the graphical interface does not
provide the information or control you require. Sending commands such as quit or kill may cause

the interface to stop responding to Arm DDT.

Each command is sent to the current group or process depending on the current focus. If the current group
or process is running, Arm DDT prompts you to pause the group or process first.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 110

101136_2020_00_en

Arm Forge 20.2 9 PROGRAM INPUT AND OUTPUT

Program input and output

Arm DDT collects and displays output from all processes under the Input/Output tab. Both standard
output and error are shown, although on most MPI implementations, error is not buffered but output is
and consequently can be delayed.

Viewing standard output and error

Input/Qutput | Breakpoints = Watchpoints = Stacks | Tracepoints — Tracepoint Output — Logbook
Input/Output @

waiting for message from (3) <
Greetings from process 3!

all done... (1}

all done...(3}

all done... (2}

all done...(8)

Note: Arm DDT can only send input to the mpirun process with this MPl implementation

Type here ('Enter’ to send): More

Figure 76: DDT Standard Output Window

The Input/Output tab is at the bottom of the screen (by default).
The output may be selected and copied to the clipboard.

MPI users should note that most MPI implementations place their own restrictions on program output.
Some buffer it all until MPI_Finalize is called, and others may ignore it. If your program needs to
emit output as it runs, try writing to a file.

Note: Many systems buffer stdout but not stderr. If you do not see your stdout appearing im-
mediately, try adding fflush(stdout) or equivalent to your code.

Saving output

By right-clicking on the text it is possible to save it to a file. You also have the option to copy a selection
to the clipboard.

Sending standard input

Arm DDT provides an stdin file box in the Run window. This allows you to choose a file to be used as
the standard input (stdin) for your program. Arm DDT will automatically add arguments to mpirun to
ensure your input file is used.

Alternatively, you may enter the arguments directly in the mpirun Arguments box. For example, if using
MPI directly from the command-line you would normally use an option to the mpirun suchas -stdin
filename, then you may add the same options to the mpirun Arguments box when starting your DDT
session in the Run window.

It is also possible to enter input during a session. Start your program as normal, then switch to the
Input/Output panel. Here you can see the output from your program and type input you wish to send.
You may also use the More button to send input from a file, or send an EOF character.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 111
101136_2020_00_en

Arm Forge 20.2 9 PROGRAM INPUT AND OUTPUT

Note: Although input can be sent while your program is paused, the program must then be played to read
the input and act upon it.

The input you type will be sent to all processes.

Input/Output | Breakpoints Watchpoints Stacks Tracepoints = Tracepoint Output | Logbook
Input/Output]

?nter a value for a: -
énter a value for b:

10

éqter a value for c:

gljm is: 30 =
1 k

Type here ('Enter’ to send): More -

Figure 77: DDT Sending Input

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 112
101136_2020_00_en

Arm Forge 20.2 10 LOGBOOK

Logbook

The logbook automatically generates a log of your interaction with Arm DDT, for example, setting a
breakpoint or playing the program. For each stop of the program, the reason and location is recorded
together with the parallel stacks and local variables for one process.

Tracepoint values and output are logged as well.

Time Ranks Message = I
0:00 03 i)at Wed Jun 5 13:08:45 2013 H
’ Executable modified on Fri May 31 11:37:51 2013
0:02 0-3 \'l) Startup complete.
0:02 n/a Select process group All '
0:02 nfa Select process group All v
» 0:02 n/a Select process 0
. Add tracepoint for wave.c:126
0:02 0-3 e Vars: values[i]
- 0:03 ™ output
0:03.928 0 treeserver: Cancel command uid 284, but | sent it 8 response(s) ago. Probably nothing to werr
0:05 0-3 B Play
b 0:05 ™ output
= 0:05 Tracepoints
0:05.351 0-3 79 values[il: - -_ from -0.99999999998892208 to 0.9999999999987691
0:05.351 0-3 79 valueslil: - —_ from -0.99999999771924686 to 0.99999999792626082
0:05.351 0-3 79 values[il: —-_ from -0.99999999150172192 to 0.99999999190590294
0:05.351 0-3 79 values[il: - -_ from -0.99999998133634749 to 0.99999998193769535
0:05.352 0-3 79 values[il: ——_ from -0.99999996722312345 to 0.99999996802163826
0:08 0-3 [l Pause
~ 0:08 0-3 Process paused
» Stacks
» Current Stack
~ Locals
allt <value optimized out>
communication_usec T_"_ 524569 (from 270180 to 524569)
end {tv_sec = 73920, tv_nsec = 251558686} ({tv_sec = 73920, tv_nsec = 250650651})
iterations <value optimized out>
i <value optimized out>
left = -2 (from-2to 2)
overhead {tv_sec = 73920, tv_nsec = 552755649} ({tv_sec = 73920, tv_nsec = 549176810})
overhead_nsec <value optimized out>
right = _ 1{from-2to3)
start {tv_sec = 73917, tv nsec = 517389840} ({tv_sec = 73917, tv_nsec = 520761373})
stop — 0
tvl {tv_sec = 73920, tv_nsec = 554226887} ({tv_sec = 73920, tv_nsec = 552338168})
tv2 {tv_sec = 73920, tv_nsec = 552755615} ({tv_sec = 73920, tv_nsec = 549176764})
2:17 nfa [] My comment after first run
2:19 0-3 B Play
2:20 nfa \ii) Every process in your program has terminated.
b 2:20 @ output -
1 L3

Figure 78: Logbook example of a debug session

The user can export the current logbook as HTML or compare it to a previously exported one.

This enables comparative debugging and repeatability. It is always clear how a certain situation in the
debugger was caused as the previous steps are visible.

Usage
The logbook is always on and does not require any additional configuration. The Logbook tab is located
at the bottom of the main window beside the Tracepoint Output tab.

To export the logbook click the disk icon on the right-hand side of the Logbook View and specify a
filename. Open previously saved logbooks from the Tools menu.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 113
101136_2020_00_en

Arm Forge 20.2 10 LOGBOOK

Annotation

Add annotations to the logbook using either the pencil icon on the right-hand side of the logbook tab or
by right-clicking the logbook and choosing Add annotation.

Comparison window

Two logbooks can be compared side by side with the Logbook Files Comparison window. To run a
comparison, click the ‘compare’ icon on the right-hand side of the Logbook View. Compare the current
logbook with another logbook file, or choose two different files to compare.

To easily find differences, align both logbook files to corresponding entries and choose the Lock icon.
This fixes the vertical and horizontal scrollbars of the logbooks so that they scroll together.

Logbook Files Comparison x
examples/logbook-compare-example-left.html examples/logbook-compare-example-right.html @
Time Ranks Message Time Ranks Message
Launching program fhome/user/code/ddt/examples Launching program /homej/user/code/ddt/examples/r
X = at Wed Jun 5 14:01:14 2013 . = at Wed Jun 5 14:10:45 2013
0:00 0 \l) Executable modified on Wed Jun 5 14:01:04 2013 0:00 0 \l) Executable modified on Wed Jun 5 14:10:38 2013
0:00 0 \'l) Startup complete. 0:00 0 \i) Startup complete.
b 0:00 nfa Select process group All » 0:00 nfa Select process group All
b 0:01 ™ output b 0:01 ™ output
0:02 0 B Play 0:02 0 = Play
Memory error detected in operator delete (dmalloct 0:02 nfa \i) Every process in your program has terminated.
T 002 0 ' a previous write overwrote the reserved memory a
Tip: Use the stack list and the local variables to exp
» Stacks
» Current Stack
* Locals
file 0x4005f7 "270"
pnt Ox7{fff7fcafcs
1 » 1 »

Figure 79: Logbook comparison window with tracepoint difference selected

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 114
101136_2020_00_en

Arm Forge 20.2 11 MESSAGE QUEUES

Message queues

Arm DDT’s Message Queue debugging feature shows the status of the message buffers of MPI. For
example, it shows the messages that have been sent by a process but not yet received by the target.

You can use DDT to detect common errors such as deadlock. This is where all processes are waiting for
each other. You can also use it for detecting when messages are present that are unexpected, which can
correspond to two processes disagreeing about the state of progress through a program.

This capability relies on the MPI implementation supporting this via a debugging support library: the
majority of MPIs provide this. Furthermore, not all implementations support the capability to the same
degree, and a variance between the information provided by each implementation is to be expected.

Viewing the message queues

Open the Message Queues window by selecting Message Queues from the Tools menu. The Message
Queues window will query the MPI processes for information about the state of the queues.

While the window is open, click Update to refresh the current queue information. Note that this will stop
all playing processes. While DDT is gathering the data a “Please Wait” dialog may be displayed and you
can cancel the request at any time.

DDT will automatically load the message queue support library from your MPI implementation (provided
one exists). If it fails, an error message will be shown. Common reasons for failure to load include:

 The support library does not exist, or its use must be explicitly enabled.

Most MPIs will build the library by default, without additional configuration flags. MPICH 3 must
be configured with the - -enable-debuginfo argument. MVAPICH 2 must be configured with
the - -enable-debug and --enable-sharedlib arguments. Some MPIs, notably Cray’s
MPI, do not support message queue debugging at all.

Intel MPI includes the library, but debug mode must be enabled. See E.6 Intel MPI for details.
LAM and Open MPI automatically compile the library.
* The support library is not available on the compute nodes where the MPI processes are running.

Ensure the library is available, and set the environment variable ALLINEA_QUEUE_DLL if nec-
essary to force using the library in its new location.

* The support library has moved from its original installation location.

Ensure the proper procedure for the MPI configuration is used. This may require you to specify
the installation directory as a configuration option.

Alternatively, you can specifically include the path to the support library in the LD_LIBRARY_
PATH, or if this is not convenient you can set the environment variable, ALLINEA_QUEUE_DLL,
to the absolute path of the library itself (for example, /usr/local/mpich-3.3.0/1ib/
libtvmpich.so).

» The MPI is built to a different bit-size to the debugger.

In the unlikely case that the MPI is not built to the bit-size of the operating system, then the debugger
may not be able to find a support library that is the correct size. This is unsupported.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 115
101136_2020_00_en

Arm Forge 20.2

Interpreting the message queues

384

1 |R.. MPI.. Rec... |0x0
2 |R.. MPI.. Rec... |0x0
3 |R.. MPI.. Rec... |0x0
4 |R.. MPI.. Rec... |0x0
1

Help

Text Communicator Queue Pointer From (local)

Message Queues

To (local)
113

From (global)

149 405

135 135 251

190 446 170

112 92

11 MESSAGE QUEUES

Display mode
Process Groups v

Select queues to show

v Send
V| Receive

V| Unexpected

Select communicator

EE., -
MPI_COMM_WORLD

MPI_COMM_SELF

MPI_COMM_NULL

MPI COMMUNICATOR 3 CREATE FROM 0
MPI COMMILIMICATOR 4 CREATE FROM 0™
L] 2

Show Diagram Key

Update

To (global) Tag Length Status Actual local

369 5 |100 Pen... |0
251 5 |100 Pen... |0
426 5 |100 Pen... |0
92 5 |100 Pen... |0

Figure 80: Message Queue Window

To see the messages, you must select a communicator to see the messages in that group. The ranks
displayed in the diagram are the ranks within the communicator (not MPI_COMM_WORLD), if the Show
Local Ranks option is selected. To see the ‘usual’ ranks, select Show Global Ranks. The messages
displayed can be restricted to particular processes or groups of processes. To restrict the display in the
grid to a single process, select Individual Processes in the Display mode selector, and select the rank
of the process. To select a group of processes, select Process Groups in the Display mode selector and
select the ring arc corresponding to the required group. Both of these display modes support multiple

selections.

There are three different types of message queues about which there is information. Different colors are
used to display messages from each type of queue.

Label

Description

Send Queue

Calls to MPI send functions that have not yet completed.

Receive Queue

Calls to MPI receive functions that have not yet completed.

Unexpected Message Queue

Represents messages received by the system but the correspond-
ing receive function call has not yet been made.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

101136_2020_00_en

116

Arm Forge 20.2 11 MESSAGE QUEUES

Messages in the Send queue are represented by a red arrow, pointing from the sender to the recipient.
The line is solid on the sender side, but dashed on the received side (to represent a message that has been
Sent but not yet been Received).

Messages in the Receive queue are represented by a green arrow, pointing from the sender to the recipient.
The line is dashed on the sender side, but solid on the recipient side, to represent the recipient being ready
to receive a message that has not yet been sent.

Messages in the Unexpected queue are represented by a dashed blue arrow, pointing from sender of the
unexpected message to the recipient.

A message to self is indicated by a line with one end at the centre of the diagram.

Please note that the quality and availability of message queue data can vary considerably between MPI
implementations. Sometimes the data can therefore be incomplete.

Deadlock

A loop in the graph can indicate deadlock. This is where every process is waiting to receive from the
preceding process in the loop. For synchronous communications, such as with MPI_Send, this is a
common problem.

For other types of communication it can be the case, with MPI_Send that messages get stuck, for example
in an O/S buffer, and the send part of the communication is complete but the receive has not started. If
the loop persists after playing the processes and interrupting them again, this indicates a deadlock is
likely.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 117
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

Memory debugging

Arm DDT has a powerful parallel memory debugging capability. This feature intercepts calls to the
system memory allocation library, recording memory usage and confirming correct usage of the library
by performing heap and bounds checking.

Typical problems which can be resolved by using Arm DDT with memory debugging enabled include:

* Memory exhaustion due to memory leaks can be prevented by examining the Current Memory
Usage display, which groups and quantifies memory according to the location at which blocks
have been allocated.

* Persistent but random crashes caused by access of memory beyond the bounds of an allocation
block can be diagnosed by using the Guard Pages feature.

* Crashing due to deallocation of the same memory block twice, deallocation via invalid pointers,
and other invalid deallocations, for example deallocating a pointer that is not at the start of an
allocation.

Enabling memory debugging

To enable memory debugging within Arm DDT, from the Run window click on the Memory Debugging
checkbox.

The default options are usually sufficient, but you may need to configure extra options (described in the
following sections) if you have a multithreaded application or multithreaded MPI, such as that found on
systems using Open MPI with Infiniband, or a Cray XE6 system.

With the Memory Debugging setting enabled, start your application as normal. Arm DDT will take care
of ensuring that the settings are propagated through your MPI or batch system when your application
starts.

If it is not possible to load the memory debugging library, a message will be displayed, and you should
refer to the Configuration section in this chapter for possible solutions.

CUDA memory debugging

Arm DDT provides two options for debugging memory errors in CUDA programs, which are found in
the CUDA section of the Run window. See section 14.2 Preparing to debug GPU code before debugging
the memory of a CUDA application.

When the Track GPU allocations option is enabled Arm DDT tracks CUDA memory allocations made
by the host, that is, allocations made using functions such as cudaMalloc. You can find out how much
memory is allocated and where it was allocated from in the Current Memory Usage window.

Allocations are tracked separately for each GPU and the host (enabling Track GPU allocations will au-
tomatically track host-only memory allocations made using functions such as malloc as well). You can
select between GPUs using the drop-down list in the top-right corner of the Memory Usage and Memory
Statistics windows.

The Detect invalid accesses (memcheck) option turns on the CUDA-MEMCHECK error detection tool,
which can detect problems such as out-of-bounds and misaligned global memory accesses, and syscall
errors, such as calling free () in a kernel on an already free’d pointer.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 118
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

The other CUDA hardware exceptions (such as a stack overflow) are detected regardless of whether this
option is checked or not.

For further details about CUDA hardware exceptions, see the NVIDIA documentation.

Known issue: It is not possible to track GPU allocations created by an OpenACC compiler because it
does not directly call cudaMalloc.

PMDK Memory Debugging

DDT Memory Debugging supports tracking all allocations made by libpmemobj, an object store library
that is part of the Persistent Memory Development Kit (PMDK). To use PMDK Memory Debugging,
enable memory debugging in the run dialog. Optionally, a backtrace can be stored for each allocation. If
memory debugging is not enabled, only the call site of the allocation is stored. No other configuration
options have an effect on PMDK.

When the pool is opened with pmemobj_open, all the allocations that exist in the pool are tracked.
The call site is where the pool is opened. The root object of the pool is not tracked. Allocation tracking
persists after an aborted transaction.

When tracking allocations, to see if a pointer was allocated by PMDK, right-click on a pointer in a variable
view and select View Pointer Details. In the pointer details, you also see the backtrace, or call site, of
the allocation. Tools -> Current Memory Usage, and Tools -> Overall Memory Stats, are enabled. By
default, allocations made by libc are shown. To see the memory Usage graphs, Allocation Table, and
Memory Statistics that you see with regular memory debugging, select PMDK in the Allocations from
combo box. The sizes displayed are the sizes returned by pmemobj_alloc_usable_size, not the
sizes you request.

Configuration

While manual configuration is often unnecessary, it can be used to adjust the memory checks and pro-
tection, or to alter the information which is gathered. A summary of the settings is displayed on the Run
dialog in the Memory Debugging section.

To examine or change the options, select the Details button adjacent to the Memory Debugging checkbox
in the Run dialog, which then displays the Memory Debugging Options window.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 119
101136_2020_00_en

http://docs.nvidia.com/cuda/cuda-gdb/#gpu-error-reporting

Arm Forge 20.2 12 MEMORY DEBUGGING

Memory Debugging Options x

v| Preload the memory debugging library Language: | C++, threads v

Mote: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmallec library manually.

Heap Debugging

Fast Balanced Thorough Custom

Enabled Checks: |basic Maore Information

Heap Overflow/Underflow Detection

Add guard pages to detect out of bounds heap access

Advanced

Check heap consistency every heap operations
V| Store stack backtraces for memaory allocations

Only enable for these processes:

Help oK Cancel

Figure 81: Memory Debugging Options

The two most significant options are:

1. Preload the memory debugging library. When this is checked, Arm DDT will automatically load
the memory debugging library. Arm DDT can only preload the memory debugging library when
you start a program in Arm DDT and it uses shared libraries.

Preloading is not possible with statically-linked programs or when attaching to a running process.
See section 12.4.1 Static linking for more information on static linking.

When attaching, you can set the DMALLOC_OPTIONS environment variable before running your
program, or see section 12.4.3 Changing settings at run time below.

2. The box showing C/Fortran, No Threads in the screen shot. Choose the option that best matches
your program. It is often sufficient to leave this set to C++/Threaded rather than continually chang-
ing this setting.

The Heap Debugging section allows you to trade speed for thoroughness. The two most important things
to remember are:

1. Even the fastest (leftmost) setting will catch trivial memory errors such as deallocating memory
twice.

2. The further right you go, the more slowly your program will execute. In practice, the Balanced
setting is still fast enough to use and will catch almost all errors. If you come across a memory
error that is difficult to pin down, choosing Thorough might expose the problem earlier, but you will
need to be very patient for large, memory intensive programs. See also 12.4.3 Changing settings
at run time.

You can see exactly which checks are enabled for each setting in the Enabled Checks box. See section

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 120
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

12.4.2 Available checks for a complete list of available checks.

You can turn on Heap Overflow/Underflow Detection to detect out-of-bounds heap access. See section
12.5.4 Writing beyond an allocated area for more details.

Almost all users can leave the heap check interval at its default setting. It determines how often the
memory debugging library will check the entire heap for consistency. This is a slow operation, so it is
normally performed every 100 memory allocations. This figure can be changed manually. A higher set-
ting (1000 or above) is recommended if your program allocates and deallocates memory very frequently,
for example, inside a computation loop.

If your program runs particularly slowly with Memory Debugging enabled you may be able to get a
modest speed increase by disabling the Store backtraces for memory allocations option. This disables
stack backtraces in the View Pointer Details and Current Memory Usage windows, support for custom
allocators and cumulative allocation totals.

It is possible to enable Memory Debugging for only selected MPI ranks by checking the Only enable for
these processes option and entering the ranks which you want to enable it for.

Note: When you enable this feature, the Memory Debugging library is still preloaded into the other
processes, but no errors are reported. Furthermore, backtraces for memory allocation are not stored and
guard pages are not added for the other processes.

Click on OK to save these settings, or Cancel to undo your changes.

Note: Choosing the wrong library to preload or the wrong number of bits may prevent Arm DDT from
starting your job, or may make memory debugging unreliable. You should check these settings if you
experience problems when memory debugging is enabled.

Static linking

If your program is statically linked then you must explicitly link the memory debugging library with your
program in order to use the Memory Debugging feature in Arm DDT.

To link with the memory debugging library, you must add the appropriate flags from the table below at
the very beginning of the link command. This ensures that all instances of allocators, in both user code
and libraries, are wrapped. Any definition of a memory allocator preceding the memory debugging link
flags can cause partial wrapping, and unexpected runtime errors.

Note: If in doubt use 1ibdmallocthcxx. a.

Multi-thread | C++ | Bits | Linker Flags

no no 64 | -Wl, --allow-multiple-definition, -
-undefined=malloc /path/to/d-
dt/1lib/64/1ibdmalloc.a
yes no 64 | -Wl, --wrap=dlopen, --wrap=dlclose, --allow-
multiple-definition, --undefined=malloc
/path/to/ddt/1ib/64/1ibdmallocth.a
no yes | 64 | -Wl, --allow-multiple-definition, --
undefined=malloc, - -undefined=_ZdaPv /path/-
to/ddt/1lib/64/1ibdmallocxx.a
yes yes | 64 | -Wl, --wrap=dlopen, --wrap=dlclose, --allow-
multiple-definition, --undefined=malloc, -
-undefined=_zdaPv /path/to/d-
dt/1ib/64/1ibdmallocthcxx.a

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 121
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

--undefined=malloc has the side effect of pulling in all libc-style allocator symbols from the li-
brary. - -undefined works on a per-object-file level, rather than a per-symbol level, and the c++ and
c allocator symbols are in different object files within the library archive. Therefore, you may also need
to specify a c++ style allocator such as _ZdaPv below.

- -undefined=_ZdaPvV has the side effect of pulling in all c++ style allocator symbols. It is the c++
mangled name of operator delete[].

To link the correct library, use the full path to the static library. This is more reliable than using the -1
argument of a compiler.

See section F.7 Intel compilers and section F.9 Portland Group compilers for compiler-specific informa-
tion.

Available checks

The following heap checks are available and may be enabled in the Enable Checks box:

Name Description

DEALLOCATE, etc.)

basic Detect invalid pointers passed to memory functions (malloc, free, ALLOCATE,

ers.

check-funcs | Checkthe arguments of addition functions (mostly string operations) for invalid point-

check-heap Check for heap corruption, for example, due to writes to invalid memory addresses.

check-fence | Check the end of an allocation has not been overwritten when it is freed.

alloc-blank | Initialize the bytes of new allocations with a known value.

free-blank | Overwrite the bytes of freed memory with a known value.

freed has been overwritten. Enables alloc-blank and free-blank.

check-blank | Check to see if space that was blanked when a pointer was allocated or when it was

ple, due to realloc).

realloc-copy | Always copy data to a new pointer when reallocating a memory allocation (for exam-

quent read/writes cause a fatal error.

free-protect | Protect freed memory where possible (using hardware memory protection) so subse-

Changing settings at run time

You can change most Memory Debugging settings while your program is running by selecting the Control
— Memory Debugging Options menu item. In this way you can enable Memory Debugging with a
minimal set of options when your program starts, set a breakpoint at a place you want to investigate for
memory errors, then turn on more options when the breakpoint is hit.

Pointer error detection and validity checking

Once you have enabled memory debugging and started debugging, all calls to the allocation and deal-
location routines of heap memory will be intercepted and monitored. This allows both for automatic
monitoring for errors, and for user driven inspection of pointers.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 122
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

Library usage errors

If the memory debugging library reports an error, Arm DDT will display a window similar to the one
shown below. This briefly reports the type of error detected and gives the option of continuing to play
the program, or pausing execution.

Program Stopped 0
‘ Process 0:

Memery error detected in func3 (hello.c:50):

cannot locate pointer in heap

Figure 82: Memory Error Message

If you choose to pause the program then Arm DDT will highlight the line of your code which was being
executed when the error was reported.

Often this is enough to debug simple memory errors, such as freeing or dereferencing an unallocated
variable, iterating past the end of an array and so on, as the local variables and variables on the current
line will provide insight into what is happening.

If the cause of the issue is still not clear, then it is possible to examine some of the pointers referenced
to see whether they are valid and which line they were allocated on, as is explained in the following
sections.

View pointer details

Any of the variables or expressions in the Evaluate window can be right-clicked on to bring up a menu.
If memory debugging is enabled, View Pointer Details will be available. This will display the amount
of memory allocated to the pointer and which part of your code originally allocated and deallocated that
memory:

Pointer Details 4

Variable: global_string (0x0)
Location: The expression points to a valid heap allocation.

Size: 10 bytes

Allocated at: Deallocated at:

#0 func2 (main.c:59) #0 func3 (main.c:29)
#1 funcl (main.c:70) #1 funcl (main.c:86)
#2 main {main.c:152) #2 main (main.c:152)

Clicking on one of the above lines will jump to that location in your code.
These details are for the current thread only. To find the location for all threads, compare across threads.

Figure 83: Pointer details

Clicking on any of the stack frames displays the relevant section of your code, so that you can see where
the variable was allocated or deallocated.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 123
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

Note: Only a single stack frame will be displayed if the Store stack backtraces for memory allocations
option is disabled.

This feature can also be used to check the validity of heap-allocated memory.

Note: Memory allocated on the heap refers to memory allocated by malloc, ALLOCATE, new and so
on. A pointer may also point to a local variable, in which case Arm DDT will tell you it does not point
to data on the heap. This can be useful, since a common error is taking a pointer to a local variable that
later goes out of scope.

Pointer Details

Variable: ptrToLocal (0x0)
Location: The expression points to invalid memory or memory that was not allocated on the heap.

These details are for the current thread only. To find the location for all threads, compare across threads.

Help Close

Figure 84: Invalid memory message

This is particularly useful for checking function arguments, and key variables when things seem to be
going awry. Of course, just because memory is valid does not mean it is the same type as you were
expecting, or of the same size and dimensions, and so on.

Memory Type/Location

As well as invalid addresses, Arm DDT can often indicate the type and location of the memory being
pointed to. The different types are listed here:

* Null pointer.

* Valid heap allocation.

» Fence-post area before the beginning of an allocation.

« Fence-post area beyond the end of an allocation.

* Freed heap allocation.

» Fence-post area before the beginning of a freed allocation.
» Fence-post area beyond the end a freed allocation.

* A valid GPU heap allocation.

* An address on the stack.

» The program’s code section (or a shared library).

» The program’s data section (or a shared library).

 The program’s bss section or Fortran COMMON block (or a shared library).
» The program’s executable (or a shared library).

* A memory mapped file.

* High Bandwidth Memory.

Note: Arm DDT may only be able to identify certain memory types with higher levels of memory de-
bugging enabled. See 12.4 Configuration for more information.

For more information on fence post checking, see 12.5.5 Fencepost checking

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 124
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

Cross-process comparison of pointers
Enabling memory debugging has an impact on the Cross-Process Comparison and Cross-Thread Com-
parison windows, see 8.17 Cross-process and cross-thread comparison.

If you are evaluating a pointer variable then the Cross-Process Comparison window shows a column with
the location of the pointer.

Pointers to locations in heap memory are highlighted in green. Dangling pointers, that is pointers to
locations in heap memory that have been deallocated, are shown in red.

The Cross-Process Comparison of pointers helps you to identify:
* Processes with different addresses for the same pointer.
» The location of a pointer (heap, stack, .bss, .data, .text or other locations).
* Processes that have freed a pointer while other processes have not, null pointers, and so on.

If the Cross-Process Comparison shows the value of what is being pointed at when the value of the
pointer itself is wanted, then modify the pointer expression. For example, if you see the string that a
char* pointer is pointing at when you actually want information concerning the pointer itself, then add
(void ™) to the beginning of the pointer expression.

Writing beyond an allocated area

Use the Heap Overflow / Underflow Detection option to detect reads and writes beyond or before an
allocated block. Any attempts to read or write to the specified number of pages before or after the block
will cause a segmentation violation which stops your program.

Add the guard pages after the block to detect heap overflows, or before to detect heap underflows. The
default value of one page will catch most heap overflow errors, but if this does not work a good rule of
thumb is to set the number of guard pages according to the size of a row in your largest array.

The exact size of a memory page depends on your operating system, but a typical size is 4 kilobytes. In
this case, if a row of your largest array is 64 KiB, then set the number of pages to 64/4 = 16.

Note: Small overflows/underflows (for example, of less than 16 bytes) might not be detected. This is a
result of maintaining correct memory alignment and without this vectorized code may crash or generate
false positives.

To detect small overflows or underflows, enable fencepost checking (see section 12.5.5 Fencepost check-
ing).

Note: Your program will not be stopped at the exact location at which your program wrote beyond the
allocated data, it only stops at the next heap consistency check.

On systems with larger page sizes (e.g. 2MB, 1GB) guard pages should be disabled or used with care as
at least two pages will used per allocation. On most systems you can check the page size with getconf
PAGESIZE.

Fencepost checking

DDT will also perform ‘Fence Post’ checking whenever the Heap Debugging setting is not set to Fast.

In this mode, an extra portion of memory is allocated at the start and/or end of your allocated block, and
a pattern is written into this area.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 125
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

If your program attempts to write beyond your data, say by a few elements, then this will be noticed by
Arm DDT. However, your program will not be stopped at the exact location at which your program wrote
beyond the allocated data, it will only be stopped at the next heap consistency check.

Suppressing an error

If Arm DDT stops at an error but you wish to ignore it (for example, it may be in a third party library
which you cannot fix) then you may check Suppress memory errors from this line in future. This will
open the Suppress Memory Errors window. Here you may select which function you want to suppress
errors from.

Current memory usage

Memory leaks can be a significant problem for software developers. If your application’s memory usage
grows faster than expected, or continues to grow through its execution, then it is possible that memory is
being allocated which is not being freed when it is no longer required.

This type of problem is typically difficult to diagnose, and particularly so in a parallel environment, but
is able to make this task simple.

At any point in your program you can go to Tools — Current Memory Usage and Arm DDT then displays
the currently allocated memory in your program for the currently selected group. For larger process
groups, the processes displayed will be the ones that are using the most memory across that process

group.

Memory Usage for "All" group (17:20:17)

Restrict to the top |8 |7 | processes Allocations from: | Host v

Memory Usage | Allocation Table

Total Across Processes (in Bytes) Current Usage Across Processes (in Bytes)

140,000,000 -

Legend

120,000,000 -

100,000,000 -

Legend
[const_size (leaks.c}
[[Jevent _del_intemal (minheap-internal.h)

[pmix_nash_table_init2

80,000,000 -

[mca_mpool_default_alloc
[[)_GLOBAL_sub_I_eh_alloc.ce(void)
[CJother allocations

60,000,000 -

Allocation Details 40,000,000 -
~ 125,829,120 bytes, 1 allocation
~ const_size (leaks.c:23) (125,829.120 bytes. 1 al...
At: 0x7fffd2c87000, size: 125,829,120 bytes
20,000,000 -

o-

Rank0 Rank10 Rank1l Rank12 Rank13 Rank14 Rank15 Rank 16

Show the top |5 |5/ locations

Help Edit Custom Allocators... Close

Figure 85: Memory Usage Graphs

To view graphical representations of memory usage, select the Memory Usage tab.

The pie chart gives an at-a-glance comparison of the total memory allocated to each process. This gives
an indication of the balance of memory allocations. Any one process taking an unusually large amount
of memory is identifiable here.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 126
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

The stacked bar chart on the right is where the most interesting information starts. Each process is repre-
sented by a bar, and each bar broken down into blocks of color that represent the total amount of memory
allocated by a particular function in your code. Say your program contains a loop that allocates a hundred
bytes that is never freed. That is not a lot of memory. But if that loop is executed ten million times, you
are looking at a gigabyte of memory being leaked! There are 6 blocks in total. The first 5 represent the
5 functions that allocated the most memory allocated, and the 6th (at the top) represents the rest of the
allocated memory, wherever it is from.

As you can see, large allocations show up as large blocks of color. If your program is close to the end, or
these grow, then they are severe memory leaks.

Typically, if the memory leak does not make it into the top 5 allocations under any circumstances then it
may not be significant. If you are still concerned you can view the data in the Table View yourself.

For more information about a block of color, click on the block. This displays detailed information
about the memory allocations comprising it in the bottom-left pane. Scanning down this list gives you
a good idea of what size allocations were made, how many, where from and if the allocation resides in
High Bandwidth Memory. Double-clicking on any one of these will display the Pointer Details view
described above, showing you exactly where that pointer was allocated in your code.

Note: Only a single stack frame will be displayed if the Store stack backtraces for memory allocations
option is disabled.

To view the current memory usage in a tabular format, select the Allocation Table tab.

The table is split into five columns:
+ Allocated by: Code location of the stack frame or function allocating memory in your program.
* Count: Number of allocations called directly from this location.
+ Total Size: Total size (in bytes) of allocations directly from this location.

* Count (including called functions): Number of allocations from this location. This inludes any
allocations called indirectly, for example, by calling other functions.

+ Total Size (including called functions): Total size (in bytes) of allocations from this location,
including indirect allocations.

For example: if func1l calls func2 which calls malloc to allocate 50 bytes. Arm DDT will report an
allocation of 50 bytes against func?2 in the Total Size column of the Current Memory Usage table. Arm
DDT will also record a cumulative allocation of 50 bytes against both functions funcl and func?2 in
the Total Size (including called functions) column of the table.

Another valuable use of this feature is to play the program for a while, refresh the window, play it for a bit
longer, refresh the window and so on. If you pick the points at which to refresh, for example, after units
of work are complete, you can watch as the memory load of the different processes in your job fluctuates
and you will see any areas which continue to grow. These are problematic leaks.

Detecting leaks when using custom allocators/Imemory wrappers

Some compilers wrap memory allocations inside many other functions. In this case Arm DDT may find,
for example, that all Fortran 90 allocations are inside the same routine. This can also happen if you have
written your own wrapper for memory allocation functions.

In these circumstances you will see one large block in the Current Memory Usage view. You can mark
such functions as Custom Allocators to exclude them from the bar chart and table by right-clicking on the

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 127
101136_2020_00_en

Arm Forge 20.2 12 MEMORY DEBUGGING

function and selecting the Add Custom Allocator menu item. Memory allocated by a custom allocator is
recorded against its caller instead.

For example, if myfunc calls mymalloc and mymalloc is marked as a custom allocator, then the
allocation will be recorded against my func instead. You can edit the list of custom allocators by clicking
the “Edit Custom Allocators...” button at the bottom of the window.

Memory Statistics

The Memory Statistics view (Tools — Overall memory Statistics) shows a total of memory usage across
the processes in an application. The processes using the most memory are displayed, along with the mean
across all processes in the current group, which is useful for larger process counts.

Memory Statistics For "All" group (17:17:23)

Restrict to the top | 8 |5 | processes ‘ Refresh Allocations from: | Host -
Graph View | Table View
Total Bytes | Total Calls | Current Bytes

Total bytes allocated/freed

140,000,000 -

120,000,000 -
100,000,000 -
80,000,000 -
Legend
[currently allocated bytes

60.000,000 -

40,000,000 -

20,000,000 -

o I r r r r r 1T)

Mean Process 0 Process & Process 10 Process 11 Process 12 Process 13 Process 14 Process 15

Help Close

Figure 86: Memory Statistics

The contents and location of the memory allocations themselves are not repeated here. Instead this win-
dow displays the total amount of memory allocated and freed since the program began, the current number
of allocated bytes and the number of calls to allocation and free routines.

These can help show if your application is unbalanced, if particular processes are allocating or failing to
free memory and so on. At the end of program execution you can usually expect the total number of calls
per process to be similar (depending on how your program divides up work), and memory allocation calls
should always be greater than deallocation calls. Anything else indicates serious problems.

If your application is using High Bandwidth Memory, the charts and tables in this dialog will be broken
down into each type of memory in use.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 128
101136_2020_00_en

Arm Forge 20.2 13 USING AND WRITING PLUGINS

Using and writing plugins

Plugins are a quick and easy way to preload a library into your application and define some breakpoints
and tracepoints during its use. They consist of an XML file which instructs DDT what to do and where
to set breakpoints or tracepoints.

Examples are MPI correctness checking libraries, or you could also define a library that is preloaded with
your application that could perform your own monitoring of the application. It also enables a message to
be displayed to the user when breakpoints are hit, displaying, for example, an error message where the
message is provided by the library in a variable.

Supported plugins

Arm DDT supports plugins for two MPI correctness-checking libraries:

+ Intel Message Checker, part of the Intel Trace Analyser and Collector (Commercial with free eval-
uation: http://software.intel.com/en-us/intel-trace-analyzer/) version 7.1

» Marmot (Open source: http://www.hlrs.de/organization/amt/projects/marmot), support expected
in version 2.2 and above.

Arm DDT comes with two plugins for the GNU and LLVM compiler sanitizers.
* Address Sanitizer:

The Address Sanitizer (also known as ASan) is a memory error detector for C/C++ code. It can be
used to find various memory-related issues including use after free, buffer overflows, and use after
return.

To enable the Address Sanitizer:

1. Compile your application whilst passing the -fsanitize=address compiler option to
your compiler.

2. Enable the Address Sanitizer plugin within Arm DDT. For more information on how to enable
plugin withing Arm DDT , please refer to the 13.3 Using a plugin section.

When compiling with GNU 7 you must disable leak detection due to a conflict with ptrace and
this aspect of the plugin. To disable leak detection, either:

1. Add the following piece of code into your application:

extern "C" int _ l1san_is_turned_off() { return 1; }

2. Set the LSAN_OPTIONS environment variable at runtime, using:
LSAN_OPTIONS=detect_leaks=0

Note: ASan is not compatible with Arm DDT’s memory debugging.
* Thread Sanitizer:

The Thread Sanitizer (also known as TSan) is a data race detector for C/C++ code. A data race
occurs when two different threads attempt to write to the same memory at the same time.

To enable the Thread Sanitizer:

1. Compile your application whilst passing the -fsanitize=thread compiler option to
your compiler.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 129
101136_2020_00_en

http://software.intel.com/en-us/intel-trace-analyzer/
http://www.hlrs.de/organization/amt/projects/marmot

Arm Forge 20.2 13 USING AND WRITING PLUGINS

2. Enable the Thread Sanitizer plugin within Arm DDT. For more information on how to enable
plugin within Arm DDT , please refer to the 13.3 Using a plugin section.

Note: TSan is not compatible with Arm DDT’s memory debugging.

Installing a plugin
To install a plugin, locate the XML Arm DDT plugin file provided by your application vendor and copy
it to:

{arm-forge installation-directory}/plugins/

It will then appear in Arm DDT’s list of available plugins on the DDT—Run dialog.

Each plugin takes the form of an XML file in this directory. These files are usually provided by third-party
vendors to enable their application to integrate with Arm DDT. A plugin for the Intel Message Checker
(part of the Intel Trace Analyser and Collector) is included with the DDT distribution.

Using a plugin
To activate a plugin in Arm DDT, simply click on the checkbox next to it in the window, then run your
application. Plugins may automatically perform one or more of the following actions:

* Load a particular dynamic library into your program

* Pause your program and show a message when a certain event such as a warning or error occurs

« Start extra, optionally hidden MPI processes. See the Writing Plugins section for more details on
this.

+ Set tracepoints which log the variables during an execution.

If Arm DDT says it cannot load one of the plugins you have selected, check that the application is correctly
installed, and that the paths inside the XML plugin file match the installation path of the application.
Example Plugin: MPI History Library

Arm DDT’s plugin directory contains a small set of files that make a plugin to log MPI communica-
tion.

Makefile — Builds the library and the configuration file for the plugin.

README .wrapper — Details the installation, usage and limitations

« wrapper-config — Used to create the plugin XML config file, used by DDT to preload the
library and set tracepoints which will log the correct variables.

* wrapper-source — Used to automatically generate the source code for the library which will
wrap the original MPI calls.

The plugin is designed to wrap around many of the core MPI functions and seamlessly intercept calls to
log information which is then displayed in Arm DDT. It is targeted at MPI implementations which use
dynamic linking, as this can be supported without relinking the debugged application.

Static MPI implementations can be made to work also, but this is outside the scope of this version.

This package must be compiled before first use, in order to be compatible with your MPI version. It will
not appear in Arm DDT’s GUI until this is done.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 130
101136_2020_00_en

Arm Forge 20.2 13 USING AND WRITING PLUGINS

To install as a non-root user in your local ~/.allinea/plugins directory, type the following com-
mand:

make local

To install as root in the DDT plugins directory, type the following command:
make

Once you have run the above, start Arm DDT and to enable the plugin, click the Details... button to
expand the Plugins section of the Run window. Select History v1.0, and start your job as normal.
DDT will take care of preloading the library and setting default tracepoints.

This plugin records call counts, total sent byte counts, and the arguments used in MPI function calls.
Function calls and arguments are displayed (in blue) in the Input/Output panel.

The function counts are available in the form of a variable:
MPIHistoryCount{function}

The sent bytes counters are accumulated for most functions, but specifically they are not added for the
vector operations such as MPI_Gatherv.

These count variables within the processes are available for use within Arm DDT, in components such
as the cross-process comparison window, enabling a check that, for example, the count of MPI_Barriers
is consistent, or primitive MPI bytes sent profiling information to be discovered.

The library does not record the received bytes, as most MPI receive calls in isolation only contain a
maximum number of bytes allowed, rather than bytes received. The MPI status is logged, the SOURCE
tag therein enables the sending process to be identified.

There is no per-communicator logging in this version.

This version is for demonstration purposes for the tracepoints and plugin features. It could generate
excessive logged information, or cause your application to run slowly if it is a heavy communicator.

This library can be easily extended, or its logging can be reduced, by removing the tracepoints from
the generated history.xml file (stored in ALLINEA_FORGE_PATHor ~/.allinea/plugins).
This would make execution considerably faster, but still retain the byte and function counts for the MPI
functions.

Writing a plugin

Writing a plugin for Arm DDT is described here. An XML plugin file is required that is structured similar
to the following example:

<plugin name="Sample v1.0" description="A sample plugin that
demonstrates DDT's plugin interface.">
<preload name="samplelib1" />
<preload name="samplelib2" />
<environment name="SUPPRESS_LOG" value="1" />
<environment name="ANOTHER_VAR" value="some value" />
<breakpoint location="sample_log" action="log" message_variable
="message" />
<breakpoint location="sample_err" action="message_box"
message_variable="message" />
<extra_control_process hide="last" />
</plugin>

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 131
101136_2020_00_en

Arm Forge 20.2

13 USING AND WRITING PLUGINS

Only the surrounding plugin tag is required. All the other tags are entirely optional.

A complete description of each tag appears in the following table.

Note: If you are interested in providing a plugin for DDT as part of your application bundle, Arm can
provide you with any assistance you need to get up and running. Contact Arm support at Arm support

for more information.

Plugin reference

Tag

Attribute

Description

plugin

name

The plugin’s unique name. This should in-
clude the application/library the plugin is for,
and its version. This is shown in the DDT—
Run dialog.

plugin

description

A short snippet of text to describe the purpose
of the plugin/application to the user. This is
also shown in the DDT—Run dialog.

preload

name

Instructs DDT to preload a shared library of
this name into the user’s application. The
shared library must be locatable using LD_
LIBRARY_PATH, or the OS will not be able
to load it.

environment

name

Instructs DDT to set a particular environment
variable before running the user’s application.

environment

value

The value that this environment wvariable
should be set to.

breakpoint

location

Instructs DDT to add a breakpoint at
this location in the code. The location
may be in a preloaded shared library (see
above). Typically this will be a function
name, or a fully-qualified C++ names-
pace and class name. C++ class members
must include their signature and be en-
closed in single quotes, for example,
‘MyNamespace: :DebugServer::
breakpointOnError(char*)’

breakpoint

action

Only message_box is supported in this re-
lease. Other settings will cause DDT to stop
at the breakpoint but take no action.

breakpoint

message_variable

A char* or const char™* variable that
contains a message to be shown to the user.
DDT will group identical messages from dif-
ferent processes together before displaying
them to the user in a message box.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 132

101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2

13 USING AND WRITING PLUGINS

extra_control_process

hide

Instructs Arm DDT to start one more MPI pro-
cess than the user requested. The optional
hide attribute can be first or last, and will
cause Arm DDT to hide the first or last
process in MPI__COMM_WORLD from the user.
This process will be allowed to execute when-
ever at least one other MPI process is execut-
ing, and messages or breakpoints (see above)
occurring in this process will appear to come
from all processes at once. This is only nec-
essary for tools such as Marmot that use an
extra MPI process to perform various runtime
checks on the rest of the MPI program.

tracepoint

location

See breakpoint location.

tracepoint

variables

A comma-separated list of variables to log on
every passing of the tracepoint location.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 133

101136_2020_00_en

Arm Forge 20.2 14 CUDA GPU DEBUGGING

CUDA GPU debugging

Arm DDT is able to debug applications that use NVIDIA CUDA devices, with actual debugging of the
code running on the GPU, simultaneously while debugging the host CPU code.

Arm supports a number of GPU compilers that target CUDA devices.
* NVIDIA’s CUDA Compiler
* Cray OpenACC
* PGI OpenACC and PGI CUDA Fortran
» IBM XL OpenMP offloading
The CUDA toolkits and their drivers for toolkits, version 8.0 and above, are supported by Arm DDT.

Licensing

In order to debug CUDA programs with Arm DDT, a CUDA-enabled license key is required, which is
an additional option to default licenses. If CUDA is not included with a license, the CUDA options will
be grayed-out on the run dialog of Arm DDT.

While debugging a CUDA program, an additional process from your license is used for each GPU. An
exception to this is that single process licenses will still allow the debugging of a single GPU.

Note: In order to serve a floating CUDA license you will need to use the Licence Servershipped with
Arm DDT 2.6 or later.

Preparing to debug GPU code

In order to debug your GPU program, you may need to add additional compiler command line options to
enable GPU debugging.

For NVIDIA’s nvcc compiler, kernels must be compiled with the “-g -G” flags. This enables genera-
tion of information for debuggers in the kernels, and also disables some optimisations that would hinder
debugging. To use memory debugging in DDT with CUDA “- -cudart shared” mustalso be passed
to nvcc.

For other compilers, please refer to 14.10 GPU language support of this guide and F Compiler notes and
known issues and your vendor’s own documentation.

Note: At this point OpenCL debugging of GPUs is not supported.

Launching the application

To launch a CUDA job, tick the CUDA box on the run dialog before clicking run/submit. You may
also enable memory debugging for CUDA programs from the CUDA section. See section 12.2 CUDA
memory debugging for details.

Attaching to running CUDA applications is not possible if the application has already initialized the driver
in some way, for example through having executed any kernel or called any functions from the CUDA
library.

For MPI applications it is essential to place all CUDA initialization after the MPI_Init call.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 134
101136_2020_00_en

Arm Forge 20.2 14 CUDA GPU DEBUGGING

Controlling GPU threads

Controlling GPU threads is integrated with the standard Arm DDT controls, so that the usual play, pause,
and breakpoints are all applicable to GPU kernels.

As GPUs have different execution models to CPUs, there are some behavioral differences that are de-
scribed in the following sections.

Breakpoints

CUDA Breakpoints can be set in the same manner as other breakpoints in Arm DDT. See section 7.6
Setting breakpoints.

Breakpoints affect all GPU threads, and cause the application to stop whenever a thread reaches the
breakpoint. Where kernels have similar workload across blocks and grids, then threads tend to reach the
breakpoint together and the kernel pauses once per set of blocks that are scheduled, that is, the set of
threads that fit on the GPU at any one time.

Where kernels have divergent distributions of work across threads, timing may be such that threads within
arunning kernel hit a breakpoint and pause the kernel. After continuing, more threads within the currently
scheduled set of blocks will hit the breakpoint and pause the application again.

In order to apply breakpoints to individual blocks, warps or threads, conditional breakpoints can be used.
For example using the built-in variables threadldx.x (and threadldx.y or threadldx.z as appropriate) for
thread indexes and setting the condition appropriately.

Where a kernel pauses at a breakpoint, the currently selected GPU thread will be changed if the previously
selected thread is no longer “alive”.

Stepping
The GPU execution model is noticeably different from that of the host CPU. In the context of stepping
operations, that is step in, step over or step out, there are critical differences to note.

The smallest execution unit on a GPU is a warp, which on current NVIDIA GPUs is 32 threads. All
threads in a warp execute in lockstep, which means that you can not step each thread individually. All
active threads in the warp execute step at the same time.

It is not currently possible to “step over” or “step out” of inlined GPU functions.

Note: GPU functions are often inlined by the compiler. This can be avoided (dependent on hardware) by
specifying the __noinline__ keyword in your function declaration.

Running and pausing
Clicking the “Play/Continue” button in DDT runs all GPU threads. It is not possible to run individual
blocks, warps or threads.

The pause button pauses a running kernel, although it should be noted that the pause operation is not as
quick for GPUs as for regular CPUs.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 135
101136_2020_00_en

Arm Forge 20.2 14 CUDA GPU DEBUGGING

Examining GPU threads and data

Much of the user interface when working with GPUs is unchanged from regular MPI or multithreaded
debugging. However, there are a number of enhancements and additional features that have been added
to help understand the state of GPU applications.

These changes are summarized in the following section.
Selecting GPU threads

CUDA Threads (prefixsumblock) Block Thread |15 |3 Grid size: 1x1x1 Block size: 64x1x1

Figure 87: GPU Thread Selector

The Thread Selector allows you to select your current GPU thread. The current thread is used for the
variable evaluation windows in DDT, along with the various GPU stepping operations.

The first entries represent the block index, and the subsequent entries represent the 3D thread index inside
that block.

Changing the current thread updates the local variables, the evaluations, and the current line displays and
source code displays to reflect the change.

The thread selector is also updated to display the current GPU thread if it changes as a result of any other
operation. For example if:

» The user changes threads by selecting an item in the Parallel Stack View.

* A memory error is detected and is attributed to a particular thread.

» The kernel has progressed, and the previously selected thread is no longer present in the device.
The GPU Thread Selector also displays the dimensions of the grid and blocks in your program.

It is only possible to inspect/control threads in the set of blocks that are actually loaded in to the GPU. If
you try to select a thread that is not currently loaded, a message is displayed.

Note: The thread selector is only displayed when there is a GPU kernel active.

Viewing GPU thread locations

The Parallel Stack View has been updated to display the location and number of GPU threads.

Stacks | Kernel Progress View Tracepoints Tracepoint Output Logbook

8|
/tmp/test/cuda/prefix. cu:64

Kemnel 5: 32 GPU threads
<<<(0,0,0), (32,0,0)>>> ... <<<(0,0,0), (63,0,8)>>> (32 threads)

Figure 88: CUDA threads in the parallel stack view

Clicking an item in the Parallel Stack View selects the appropriate GPU thread, updating the variable
display components accordingly and moving the source code viewer to the appropriate location.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 136
101136_2020_00_en

Arm Forge 20.2 14 CUDA GPU DEBUGGING

Hovering over an item in the Parallel Stack view also allows you to see which individual GPU thread
ranges are at a location, as well as the size of each range.

It is not possible to collect the stack trace for all threads in a timely manner. DDT gathers the stack traces
by collecting one for each thread that has stopped in a unique location.

Understanding kernel progress

Given a simple kernel that is to calculate an output value for each index in an array, it is not easy to check
whether the value at position x in an array has been calculated, or whether the calculating thread has yet
to be scheduled.

This contrasts sharply with scalar programming, where if the counter of a (up-)loop exceeds x then the
value of index x can be taken as being the final value. If it is difficult to decide whether array data is fresh
or stale, then clearly this will be a major issue during debugging.

Arm DDT includes a component that makes this easy, the Kernel Progress display, which appears at the
bottom of the user interface by default when a kernel is in progress.

Input/Output = Breakpoints ~ Watchpoints = Stacks | Kemel Progress View — Tracepoints = Tracepoint Output | Logbook
Kernel Progress View

Kermel
e ‘ |
[y

Kemnels: 1
CUDA thread: <<<(421,0,0),(56.0,0}>>>
Dimensions: <<<(15625,1,1).(64.1,1)>>>

Progress

[] not scheduled [l scheduled [l selected How do | interpret CUDA kernel progress?

Figure 89: Kernel Progress Display

This view identifies the kernels that are in progress. The number of kernels are identified and grouped
by different kernel identifiers across processes. The identifier is the kernel name.

A colored progress bar is used to identify which GPU threads are in progress. The progress bar is a
projection onto a straight line of the (potentially) 6-dimensional GPU block and thread indexing system
and is tailored to the sizes of the kernels operating in the application.

By clicking within the color highlighted sections of this progress bar, a GPU thread will be selected
that matches the click location as closely as possible. Selected GPU threads are colored blue. For de-
selected GPU threads, the ones that are scheduled are colored green whereas the unscheduled ones are
white.

Source code viewer

The source code viewer allows you to visualize the program flow through your source code by highlight-
ing lines in the current stack trace. When debugging GPU kernels, it will color highlight lines with GPU
threads present and display the GPU threads in a similar manner to that of regular CPU threads and pro-
cesses. Hovering over a highlighted line in the code viewer will display a summary of the GPU threads
on that line.

GPU devices information

One of the challenges of GPU programming is in discovering device parameters, such as the number of
registers or the device type, and whether a device is present.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 137
101136_2020_00_en

Arm Forge 20.2 14 CUDA GPU DEBUGGING

In order to assist in this, Arm DDT includes a GPU Devices display. This display examines the GPUs
that are present and in use across an application, and groups the information together scalably for multi-
process systems.

Locals = Current Line(s) = Current Stack = GPU Devices

GPU Devices =
Attribute Name Value
~ Ranks 0
* GV100GL-A 2 Devices
IDs 0-1

Compute Capability sm_70
Number of SMs 80
Warps per 5M 64
Lanes per Warp 32
Registers per Lane 256

Figure 90: GPU Devices
Note: GPU devices are only listed after initialization.

Attaching to running GPU applications
Attaching to a running GPU application and then debugging the GPU threads is possible for all devices
that support CUDA compute capability 2.0 and above.

To attach to a running job, please see the section 5.9 Attaching to running programs and select the Debug
CUDA button on the attach window.

Opening GPU core files

NVIDIA GPU core files can be opened in DDT in exactly the same way as core files generated by CPU
code. See 5.8 Opening core files for details.

Known issues / limitations
Debugging multiple GPU processes
CUDA allows debugging of multiple CUDA processes on the same node. However, each process will

still attempt to reserve all of the available GPUs for debugging.

This works for the case where a single process debugs all GPUs on a node, but not for multiple processes
debugging a single GPU.

A temporary workaround when using Open MPI is to export the following environment variable before
starting DDT:

ALLINEA_CUDA_DEVICE_VAR=OMPI_COMM_WORLD_LOCAL_RANK

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 138
101136_2020_00_en

Arm Forge 20.2 14 CUDA GPU DEBUGGING

This will assign a single device (based on local rank) to each process. In addition:

* You must have Open MPI (Compatibility) selected in the File — Options (Arm Forge — Prefer-
ences on Mac OS X) . (Not Open MPI).

* The device selected for each process will be the only device visible when enumerating GPUs. This
cause manual GPU selection code to stop working (due to changing device IDs, and so on).

Thread control

The focus on thread feature in DDT is not supported, as it can lock up the GPU. This means that it is not
currently possible to control multiple GPUs in the same process individually.

General

» DDT supports versions 8.0 onwards of the NVIDIA CUDA toolkit. In all cases, the most recent
CUDA toolkit and driver versions is recommended.

+ X11 cannot be running on any GPU used for debugging. (Any GPU running X11 will be excluded
from device enumeration.)

* You must compile with -g -G to enable GPU debugging otherwise your program will run through
the contents of kernels without stopping.

» Debugging 32-bit CUDA code on a 64-bit host system is not supported.

+ It is not yet possible to spot unsuccessful kernel launches or failures. An error code is provided by
getCudaLastError () in the SDK which you can call in your code to detect this. Currently
the debugger cannot check this without resetting it, which is not desirable behavior.

» Device memory allocated via cudaMalloc () is not visible outside of the kernel function.
* Not all illegal program behavior can be caught in the debugger, for example, divide-by-zero.

* Device allocations larger than 100 MB on Tesla GPUs, and larger than 32 MB on Fermi GPUs,
may not be accessible.

* Breakpoints in divergent code may not behave as expected.
» Debugging applications with multiple CUDA contexts running on the same GPU is not supported.

+ If CUDA environment variable CUDA_VISIBLE_DEVICES <index> is used to target a particular
GPU, then make sure no X server is running on any of the GPUs.

Note: Any GPU running X will be excluded from enumeration, with can affect the device Ids.

» CUDA drivers requires that applications be debugged in a mode matching their version. If your
system is running with a toolkit version lower than the CUDA driver version, you should force DDT
to use the correct CUDA version by setting the ALLINEA_FORCE_CUDA_VERSION enviroment
variable. For example, if you are using the CUDA 8.0 driver, set ALLINEA_FORCE_CUDA_
VERSION=8.0. Alternatively, you should consider upgrading your CUDA toolkit to match the
CUDA driver.

* If memory debugging and CUDA support are enabled in Arm DDT then only threaded memory
preloads are available.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 139
101136_2020_00_en

Arm Forge 20.2 14 CUDA GPU DEBUGGING

Pre sm_20 GPUs

For GPUs that have SM type less than sm_20 (or when code is compiled targeting SM type less than
sm_20), the following issues may apply.

* GPU code targeting less than SM type sm_20 will inline all function calls. This can lead to be-
havior such as not being able to step over/out of subroutines.

» Debugging applications using textures is not supported on GPUs with SM type less than sm_20.

* If you are debugging code in device functions that get called by multiple kernels, then setting a
breakpoint in the device function will insert the breakpoint in only one of the kernels.

Debugging multiple GPU processes on Cray limitations

It is not possible to debug multiple CUDA processes on a single node on a Cray machine, you must run
with 1 process per node.

GPU language support

In addition to the native nvcc compiler, a number of other compilers are supported.

At this point in time, debugging of OpenCL is not supported on the device.

Cray OpenACC

Cray OpenACC is fully supported by Arm DDT. Code pragmas are highlighted, most variables are visible
within the device, and stepping and breakpoints in the GPU code is supported. The compiler flag - g is
required for enabling device (GPU-based) debugging; - 00 should not be used, as this disables use of the
GPU and runs the accelerated regions on the CPU.

You should be aware of the following known issues:

+ It is not possible to track GPU allocations created by the Cray OpenACC compiler as it does not
directly call cudaMalloc.

« Pointers in accelerator code cannot be dereferenced in CCE 8.0.

* Memory consumption in debugging mode can be considerably higher than regular mode, if issues
with memory exhaustion arise, consider using the environment variable CRAY_ACC_MALLOC_
HEAPSIZE to set total heap size (bytes) used on the device, which can make more memory avail-
able to the application.

PGI OpenACC and CUDA Fortran

Arm DDT supports debugging both the host and CUDA parts of PGI OpenACC and CUDA Fortran
programs compiled with version 14.4 or later of the PGI compiler. Older versions of the PGI compiler
support debugging only on the host.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 140
101136_2020_00_en

Arm Forge 20.2 14 CUDA GPU DEBUGGING

IBM XLCIXLF with offloading OpenMP

Arm DDT supports debugging both the host and CUDA parts of OpenMP programs making use of of-
floading when compiled with version 13.1.7 or later of the IBM XLC/XLF compilers.

For the best debugging experience of offloading OpenMP regions, the following compiler flags are rec-
ommended -g -00 -gsmp=omp:noopt -qoffload -gqfullpath -gnoinline -Xptxas
-00 -X1lvm2ptx -nvvm-compile-options=-opt=0.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 141
101136_2020_00_en

Arm Forge 20.2 15 OFFLINE DEBUGGING

Offline debugging

Offline debugging is a mode of running Arm DDT in which an application is run, under the control of
the debugger, but without user intervention and without a user interface.

There are many situations where running under this scenario will be useful, for example when access to a
machine is not immediately available and may not be available during the working day. The application
can run with features such as tracepoints and memory debugging enabled, and will produce a report at
the end of the execution.

Using offline debugging

To launch Arm DDT in this mode, the - -of f1line argument is specified. Optionally, an output filename
can be supplied with the —output=<filename> argument. A filename with a . html or . htm extension
will cause an HTML version of the output to be produced, in other cases a plain text report is generated.
If the —output argument is not used, DDT generates an HTML output file in the current working directory
and reports the name of that file upon completion.

ddt --offline mpiexec -n 4 myprog argl arg2

ddt --offline -o myjob.html mpiexec -n 4 myprog argl arg2
ddt --offline -o myjob.txt mpiexec -n 4 myprog argl arg2
ddt --offline -o myjob.html --np=4 myprog argl arg2

ddt --offline -o myjob.txt --np=4 myprog argl arg2

Additional arguments can be used to set breakpoints, at which the stack of the stopping processes will be
recorded before they are continued. You can also set tracepoints at which variable values will be recorded.
Additionally, expressions can be set to be evaluated on every program pause.

Settings from your current Arm DDT configuration file will be taken, unless over-ridden on the command
line.

Command line options that are of the most significance for this mode of running are:

* --5ession=SESSIONFILE —run in offline mode using settings saved using the Save Session
option from the Arm DDT File menu.

* --processes=NUMPROCS or -n NUMPROCS — run with NUMPROCS processes
+ --mem-debug[=(fast|balanced]|thorough|off)]—enableand configure memory de-
bugging

+ --snapshot-interval=MINUTES - write a snapshot of the program’s stack and variables to
the offline log file every MINUTES minutes.

See section 15.4 below.

» --trace-at=LOCATION[,N:M:P],VAR1,VAR2,...] [1if CONDITION] - set a tra-
cepoint at location, beginning recording after the N’th visit of each process to the location, and
recording every M’th subsequent pass until it has been triggered P times. Record the value of
variable VAR1, VAR2. The if clause allows you to specify a boolean CONDITION that must be
satisfied for the tracepoint to trigger.

Example:

main.c:22,-:2:-,X

This will record x every 2nd passage of line 22.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 142
101136_2020_00_en

Arm Forge 20.2 15 OFFLINE DEBUGGING

. --break-at=LOCATION[,N:M:P][if CONDITION] -setabreakpointat LOCATION (ei-
ther file:1ine or function), optionally starting after the N’th pass, triggering every M passes
and stopping after it has been triggered P times. The if clause allows you to specify a boolean
CONDITION that must be satisfied for the breakpoint to trigger. When using the if clause the
value of this argument should be quoted.

The stack traces of paused processes will be recorded, before the processes are then made to con-
tinue, and will contain the variables of one of the processes in the set of processes that have paused.

Examples:

--break-at=main
--break-at=main.c:22
--break-at=main.c:22 --break-at=main.c:34

* --evaluate=EXPRESSION] ; EXPRESSION2][;...] — set one or more expressions to be
evaluated on every program pause. Multiple expressions should be separated by a semicolon and
enclosed in quotes. If shell special characters are present the value of this argument should also be
quoted.

Examples:

--evaluate=1
--evaluate="i; (*addr) / x"
--evaluate=1i --evaluate="i * x"

+ --offline-frames=(all|none|n) — specify how many frames to collect variables for,
where n is a positive integer. The default value is all.

Examples:
--offline-frames=all
--offline-frames=none
--offline-frames=1337

The application will run to completion, or to the end of the job.

When errors occur, for example an application crash, the stack back trace of crashing processes is recorded
to the offline output file. In offline mode, Arm DDT always acts as if the user had clicked Continue if
the continue option was available in an equivalent “online” debugging session.

Reading a file for standard input
In offline mode, normal redirection syntax can be used to read data from a file as a source for the exe-
cutable’s standard input.

Examples:

cat <input-file> | ddt --offline -o myjob.html ...
ddt --offline -o myjob.html ... < <input-file>

Writing a file from standard output
Normal redirection can also be used to write data to a file from the executable’s standard output:

ddt --offline -o myjob.html ... > <output-file>

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 143
101136_2020_00_en

Arm Forge 20.2 15 OFFLINE DEBUGGING

Offline report output (HTML)

The output file is broken into four sections, Messages, Tracepoints, Memory Leak Report, and Output.
At the end of a job, Arm DDT merges the four sections of the log output (tracepoint data, error messages,
memory leak data, and program output) into one file. If the Arm DDT process is terminated abruptly, for
example by the job scheduler, then these separate files will remain and the final single HTML report may
not be created.

Note: A memory leak report section is only created when memory debugging is enabled.

offline loghook
Debugging /home/ddt/examples/hello_c

Messages. Tracepoints Output Mozeages | Tracopoints Memory Lesks Output

Messages. Tracepoints

I+1Expand AR [-] Colagse Al

=

Time | Tracepoint |Processes Values
0:05.948 | main (hello.c.92) [0-3 x—o
0:06,061 | main (hello.c.91) 0-3 x — 1000

#[Type| Time |Processes Message
1) [000000]rva Caunching mpirun n 4 fexamp
Mar 10 15:19:38 2016

0:06.725
0:07.329| main
0:07.527]
0.08.109

1) [0:03.6210-

Startup complete.

0:03 823 |/ Select process group Al

0:03.624 0-3 Add breakpoint for hello.c:168
I 0:03.628(0-3 A0 tracepoint for hailo.c 91
Vars: x

0-08 50
0:00.468 | main

Addtional Infermatian

006,878 main (hallo,c.91)[0-3 |x— 8000
0:10.078]main (nell.c:93) [0-3 x: — 9000

CTe S [w] =& =

Messages | Tracepoints Mamory Leaks Output
7| 3 [omsese/na Memory Leak Report

Al 4 ronks

inm
@ | - |o0s061[03 ey —————————————1 T
o | © [eor140[o3 Process stopped ot breakpaint in moin (el c.169). Rank 2: 568,80 k6 i
10 Adstianal Infermation flank 3 588,88 k& .
v st —
- A] — e _bitmap_alloc
I & new_object (dhobject.c)
W cunec

Messages Tiacepoints Memoryleaks Oulput

Output

b Current Stock
] [ooaei[os Py
12| L) |0:00.736|n/a Every process i your program has terminated

|
|
[
[
|
[
|
|
[
|
[
|
[
[
|
[
|
[
[
|
|
|
|
[
|
|
|
|
[
|
|
|
|
|
|
|
|
|
[
1

Figure 91: Offline Mode HTML output

Timestamps are recorded with the contents in the offline log, and even though the file is neatly organized
into four sections, it remains possible to identify ordering of events from the time stamp.

The Messages section contains the following:

+ Error messages: for example if Arm DDT’s Memory Debugging detects an error then the message
and the stack trace at the time of the error will be recorded from each offending processes.

» Breakpoints: a message with the stopped processes and another one with the Stacks, Current Stack
and Locals at this point.

+ Additional Information: after an error or a breakpoint has stopped execution, then an additional
information message is recorded. This message could contain the stacks, current stack and local
variables for the stopped processes at this point of the execution.

— The Stacks table displays the parallel stacks from all paused processes. Additionally, for every
top-most frame the variables (locals and arguments) will be displayed by default. You can
use the - -offline-frames command-line option to display the variables for more frames
or none. If - -offline-frames=none is specified no variables at all will be displayed,
instead a Locals table will show the variables for the current process. Clicking on a function
expands the code snippet and variables in one go. If the stop was caused by an error or crash,
the stack of the responsible thread or process is listed first.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 144
101136_2020_00_en

Arm Forge 20.2

15 OFFLINE DEBUGGING

— The Current Stacks table shows the stack of the current process.

— The Locals table (if - -offline-frames=none) and the Variables column of the Stacks
table shows the variables across the paused processes. The text highlighting scheme is the
same as for the Local variables in the GUI. The Locals table shows the local variables of the
current process, whereas the Variables column shows the locals for a representative process
that triggered the stop in that frame. In either case a sparkline for each variable shows the
distribution of values across the processes.

The Tracepoints section contains the output from tracepoints, similar to that shown in the tracepoints win-
dow in an online debugging session. This includes sparklines displaying the variable distribution.

The Memory Leak Report section displays a graphical representation of the largest memory allocations
that were not freed by the end of the program:

Messages Tracepoints Memory Leak Report

Memory Leak Report

Output

This report shows unfreed memory allocations when the program finished executing. Clicking an item in the bar chart below will show additional details about the allocations, including where they were allocated.

All 8 ranks:

Rank 0: 376.51 kB [NI—

Rank 1: 114.14 kB 1
Rank 2: 114.14 kB []
Rank 3: 114.14 kB []
Rank 4: 114.14 kB [|
Rank 5: 114.14 kB []
Rank 6: 114.14 kB []
Rank 7: 114.14 kB [|

Allocation data can also be exported to CSV format.

Messages Tracepoints Memory Leak Report

Qutput

: Receiving matrices. ..
: Receiving matrices. ..

Size of the matrices: 128x128
Initializing matrices...
Sending matrices...

Receiving matrices...
Receiving matrices. ..
Receiving matrices...
Processing. ..

Receiving matrices...
Receiving matrices...

Sending result matrix...

: Processing. ..

: Processing...

UNENWEG NS DS

Output

Figure 92: Memory leak report

Legend
I main (mmult3.c:139)
ompi_free_list_grow
event_del_internal (minheap-internal.h)
I _10_vasprintf (vasprintf.c)
I _dI_new_object (dl-object.c)

I other

Each row corresponds to the memory still allocated at the end of a job on a single rank. If multiple MPI
ranks are being debugged, only those with the largest number of memory allocations are shown. You can
configure the number of MPI ranks shown with - -1leak-report-top-ranks=X.

The memory allocations on each rank are grouped by the source location that allocated them. Each
colored segment corresponds to one location, identified in the legend. Clicking on a segment reveals a
table of all call paths leading to that location along with detailed information about the individual memory

allocations:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 145

101136_2020_00_en

Arm Forge 20.2 15 OFFLINE DEBUGGING

Messages Tracepoints Memory Leak Report Qutput

Memory Leak Report

This report shows unfreed memory allocations when the program finished executing. Clicking an item in the bar chart below will show additional details about the allocations, including where they were allocated.
All 8 ranks:
Legend
Rank 0: 5.40 MB [T P main (mmult3.c:139)
Rank 1: 114.14 kB event_del_internal (minheap-internal.h)
Rank 2: 114.14 kB __GI__ strdup (strdup.c)
Rank 3: 114.14 kB Other
Rank 4: 114.14 kB
Rank 5: 114.14 kB
Rank 6: 114.14 kB
Rank 7: 114.14 kB

Allocation data can also be exported to CSV format.

Largest allocation call path at [main (mmult3.c:139)] on [rank 0]:

1 unfreed allocation (2.10 MB in total)

Function Source

#0 main (mmult3.c:139) ¥ mat_b = (double*)malloc(size*size*sizeof(double));

136. if(myrank — @)

137, {

138. mat_a = (double*)malloc(size*size*sizeof(double));
139. mat_b = (double*)malloc(size*size*sizeof (double));
14a. mat_c = (double*)malloc(size*size*sizeof(double));
141.

142. printf(“%d: Initializing matrices...\n", myrank);

#1 _ libc start main (libc-start.c:287)
#2 _start

Figure 93: Memory leak report detail

By default all locations that contribute less than 1% of the total allocations are grouped together into the
“Other” item in the legend.

This limit can be configured by setting the ALLINEA_LEAK_REPORT_MIN_SEGMENT environment
variable to a percentage. For example, ALLINEA_ LEAK_REPORT_MIN_SEGMENT=0.5 will only
group locations with less than 0.5% of the total allocated bytes together.

In addition, only the eight largest locations are shown by default. This can be configured with the - -
leak-report-top-locations=Y command-line option.

The raw data may also be exported by clicking the export link.

You may find the following command line options useful:

Option Description
--leak-report-top-ranks=X Limit the memory leak report to the top X ranks (default 8, implies
--mem-debug)

--leak-report-top-locations=Y | Limit the memory leak report to the top Y locations in each rank
(default 8, implies - -mem-debug)

--leak-report-top-call-paths=Z | Limit the memory leak report to the top Z call paths to each allo-
cating function (default 8, implies - -mem-debug)

Output from the application is written to the Output section. For most MPIs this will not be identifiable
to a particular process, but on those MPIs that do support it, Arm DDT will report which processes have
generated the output.

Identical output from the Output and Tracepoints section is, if received in close proximity and order,
merged in the output, where this is possible.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 146
101136_2020_00_en

Arm Forge 20.2 15 OFFLINE DEBUGGING

Offline report output (plain text)

Unlike the offline report in HTML mode, the plain text mode does not separate the tracepoint, breakpoint,
memory leak, and application output into separate sections.

Lines in the offline plain text report are identified as messages, standard output, error output, and trace-
points, as detailed in the Offline Report Output (HTML) section previously.

For example, a simple report could look like the following:

message (0-3): Process stopped at breakpoint in main (hello.c:97).

message (0-3): Stacks

message (0-3): Processes Function

message (0-3): 0-3 main (hello.c:97)

message (0-3): Stack for process 0

message (0-3): #0 main (argc=1, argv=0x7fffffffd378, \
environ=ex7fffffffd388) at /home/ddt/examples/hello.c:97

message (0-3): Local variables for process 0 \
(ranges shown for 0-3)

message (0-3): argc: 1 argv: Ox7fffffffd378 beingwatched: 0 \
dest: 7 environ: Ox7fffffffd388 i: 0 message: ", 1\312\t" \
my r ank: 0 (0-3) p: 4 source: 0 status: t2: ox7ffff7ff7fco \
tables: tag: 50 test: x: 10000 y: 12

Run-time job progress reporting

In offline mode, Arm DDT can be instructed to compile a snapshot of a job, including its stacks and
variables, and update the session log with that information. This includes writing the HTML log file,
which otherwise is only written once the session has completed.

Snapshots can be triggered periodically via a command-line option, or at any point in the session by
sending a signal to the Arm DDT front-end.

Periodic snapshots
Snapshots can be triggered periodically throughout a debugging session with the command-line option
--snapshot-interval=MINUTES. For example, to log a snapshot every three minutes:

ddt --offline -o log.html --snapshot-interval=3 \
mpiexec -n 8 ./myprog

Signal-triggered snapshots

Snapshots can also be triggered by sending a SIGUSR1 signal to the DDT front-end process (called
forge.bin in process lists), regardless of whether or not the - -snapshot-interval command-
line option was specified. For example, after running the following:

ddt --offline -o log.html mpiexec -n 8 ./myprog

A snapshot can be triggered by running (in another terminal):

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 147
101136_2020_00_en

Arm Forge 20.2 15 OFFLINE DEBUGGING

Find PID of DDT front-end:
pgrep forge.bin

> 18032

> 18039

Use pstree to identify the parent if there are multiple PIDs:
pstree -p

Trigger the snapshot:
kill -SIGUSR1 18032

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 148
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

Part Il

MAP

Getting started

Arm MAP is a source-level profiler and can show how much time was spent on each line of code. To
see the source code in MAP, compile your program with the debug flag, which for the most compilers
this is -g. Do not use a debug build as you should always keep optimization flags turned on when
profiling.

You can also use MAP on programs without debug information. In this case inlined functions are not
shown and the source code cannot be shown but other features should work as expected.

To start MAP simply type one of the following shell commands into a terminal window:

map
map program_name [arguments]
map <profile-file>

Where <profile-file> is a profile file generated by a MAP profiling run. It contains the program
name and has a ’.map’ extension.
Notes:

» When starting MAP for examining an existing profile file, a valid license is not needed.

» Unless you are using Express Launch mode (see 16.1 Express Launch), you should not attempt to
pipe input directly to MAP. For information about how to achieve the effect of sending input to
your program, please read section 9 Program input and output.

It is also recommended you add the - - profile argument to MAP. This runs without the interactive GUI
and saves a . map file to the current directory and is ideal for profiling jobs submitted to a queue.

Once started in interactive mode, MAP displays the Welcome Page:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 149
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

Arm MAP - Arm Forge 20.2 X

File Edit View Window Help

arm
FORGE

PROFILE
Profile a program

LOAD PROFILE DATA FILE

0 rm Load a profile data file from a previous
run.
DDT

OPTIONS

Remote Launch:

arm off
MAP

QuIT

Support
Tutorials

arm.com

Licence Serial: 11069 ?

Figure 94: MAP Welcome Page

Note: In Express Launch mode (see 16.1 Express Launch) the Welcome Page is not shown and the user
is brought directly to the Run Dialog instead. If no valid license is found, the program is exited and the
appropriate message is shown in the console output.

The Welcome Page allows you to choose what kind of profiling you want to do. You can choose from
the following:

* Profile a program.
* Load a Profile from a previous run.

+ Connect to a remote system and accept a Reverse Connect request.

Express Launch

Each of the Arm Forge products can be launched by typing its name in front of an existing mpiexec
command:

$ map mpiexec -n 256 examples/wave_c 30
This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see an error message like this:

$ 'Generic' MPI programs cannot be started using Express Launch
syntax (launching with an mpirun command).

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 150
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

Try this instead:
ddt --np=256 ./wave_c 20

Type ddt --help for more information.
This is referred to as Compatibility Mode, in which the mpiexec command is not included and the

arguments to mpiexec are passed viaa - -mpiargs="args here'" parameter.

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts
to run your program under one of the Arm Forge products. This works best for MAP, which gathers
data without an interactive GUI (map --profile) or Reverse Connect (map --connect, see 3.3
Reverse Connect for more details) for interactive profiling.

If you can not use Reverse Connect and wish to use interactive profiling from a queue you may need
to configure MAPto generate job submission scripts for you. More details on this can be found in 16.7
Starting a job in a queue and A.3 Integration with queuing systems.

The following lists the MPI implementations supported by Express Launch:
* bullx MPI
* Cray X-Series (MPI/SHMEM/CAF)
* Intel MPI
 MPICH 3
* Open MPI (MPI/SHMEM)
* Oracle MPT
* Open MPI (Cray XT/XE/XK)
» Spectrum MPI
+ Spectrum MPI (PMIx)
» Cray XT/XE/XK (UPC)

Run dialog box

In Express Launch mode, the Run dialog has a restricted number of options:

Run: mpirun -np 4 examples/wave_c Details

Command: |mpirun -np 4 examples/wave_c

Duration: Sampling entire program Details
Metrics Details
Perf Metrics: None selected, click Details... to configure. Details...

CUDA Kernel analysis

OpenMP

Help Options | Run Quit

Figure 95: Express Launch MAP Run dialog box

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 151
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

Preparing a program for profiling

In most cases, if your program is already compiled with debugging symbols (-g), you do not need to
recompile your program to use it with MAP. However, in some cases it might need to be relinked, as
explained in section 16.2.4 Linking.

You should typically keep optimization flags enabled when profiling (rather than profiling a debug build).
This will give more representative results.

If any difficulties are encountered, the recommended set of compilation flags are:

» Arm Compiler for Linux: -g1 -03 -fno-inline-functions -fno-optimize-sibling-
calls

* Cray: -G2 -03 -h ipa0
* GNU: -g1 -03 -fno-inline -fno-optimize-sibling-calls
« IBM: -g -03 -gnoinline

e Intel: -g1 -03 -fno-inline -no-ip -no-ipo -fno-omit-frame-pointer -fno-
optimize-sibling-calls

* PGI: -g -03 -Meh_frame -Mnoautoinline

These flags preserve most performance optimizations whilst enabling file and line number information
and maximizing stack trace readability by disabling features that might prevent MAP from obtaining
stack traces (such as function inlining and tail call optimization). Minimal debug information is also
used to reduce memory usage during profiling.

See the following subsections for more details.

Debugging symbols

If your compiler supports minimal debug info, consider using it (for file and line number information
only) instead of full debug info. For GCC, Arm Compiler for Linux, and Intel, this means using - g1 for
compiling instead of -g.

Although this can cause inlined functions to not be shown in profiles, it can significantly reduce the
memory overhead when profiling.

This is particularly relevant for complex C++ codes, memory-constrained compute nodes, or when pro-
filing many processes per node.

You can also use MAP on programs without debug information. In this case inlined functions are not
shown and the source code cannot be shown but other features will work as expected.

For some compilers, it is necessary to explicitly enable frame pointer information to ensure stack traces,
particularly when debug information has been disabled. This is normally done with -fno-omit-
frame-pointer (or -Meh_frame for PGI).

Cray compiler
For the Cray compiler Arm recommends using the - G2 option with MAP.
CUDA programs

When compiling CUDA kernels do not generate debug information for device code (the -G or - -device-
debug flag) as this can significantly impair runtime performance. Use - 1ineinfo instead, for exam-
ple:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 152
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

nvcc device.cu -c -o device.o -g -lineinfo -03

Disabling function inlining

While compilers can inline functions, their ability to include sufficient information to reconstruct the
original call tree varies between vendors and is not possible if compiling your program with minimal
(file & line info only) or without debug info.

To maximize readability of call trees, Arm recommends disabling function inlining using the appropriate
compiler-specific flags (see 16.2).

Note: Some compilers might still inline functions even when they are explicitly instructed not to do
s0.

There is typically a small performance penalty for disabling function inlining or enabling profiling infor-
mation.

Disabling tail call optimization

A function can return the result of calling another function, for example:

int someFunction()

{

return otherFunction();

}

In this case, the compiler can change the call to otherFunction into a jump. This means that, when
inside otherFunction, the calling function, someFunction, no longer appears on the stack.

This optimization, called tail recursion optimization, can be disabled passing the -fno-optimize-
sibling-calls argument to most compilers.

Linking

To collect data from your program, MAP uses two small profiler libraries, map - sampler and map-
sampler-pmpi. These must be linked with your program. On most systems MAP can do this auto-
matically without any action by you. This is done via the system’s LD_PRELOAD mechanism, which
allows an extra library into your program when starting it.

Note: Although these libraries contain the word ‘map’ they are used for both Arm Performance Reports
and Arm MAP.

This automatic linking when starting your program only works if your program is dynamically-linked.
Programs may be dynamically-linked or statically-linked, and for MPI programs this is normally deter-
mined by your MPI library. Most MPI libraries are configured with - -enable-dynamic by default,
and mpicc/mpif90 produce dynamically-linked executables that MAP can automatically collect data
from.

The map-sampler-pmpi library is a temporary file that is precompiled and copied or compiled at
runtime in the directory ~/ .allinea/wrapper.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 153
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

If your home directory will not be accessible by all nodes in your cluster you can change where the map -
sampler-pmpi library will be created by altering the shared directory as described in H.5.6
No shared home directory.

The temporary library will be created in the .allinea/wrapper subdirectory to this shared di-
rectory.

For Cray X-Series Systems the shared directory isnotapplicable, instead map-sampler-pmpi
is copied into a hidden .allinea sub-directory of the current working directory.

If MAP warns you that it could not pre-load the sampler libraries, this often means that your MPI library
was not configured with - -enable-dynamic, or that the LD_PRELOAD mechanism is not supported
on your platform. You now have three options:

1. Try compiling and linking your code dynamically. On most platforms this allows MAP to use the
LD_PRELOAD mechanism to automatically insert its libraries into your application at runtime.

2. Link MAP’s map-sampler and map-sampler - pmpi libraries with your program at link time
manually.

See 16.2.5 Dynamic linking on Cray X-Series systems, or 16.2.6 Static linking and 16.2.7 Static
linking on Cray X-Series systems.

3. Finally, it may be that your system supports dynamic linking but you have a statically-linked
MPI. You can try to recompile the MPI implementation with - -enable-dynamic, or find a
dynamically-linked version on your system and recompile your program using that version. This
will produce a dynamically-linked program that MAP can automatically collect data from.

Dynamic linking on Cray X-Series systems

If the LD_PRELOAD mechanism is not supported on your Cray X-Series system, you can try to dynami-
cally link your program explicitly with the MAP sampling libraries.

Compiling the Arm MPI Wrapper Library

First you must compile the Arm MPI wrapper library for your system using the make-profiler -
libraries --platform=cray --lib-type=shared command.

Note: Performance Reports also uses this library.

user@login:~/myprogram$ make-profiler-libraries --platform=cray
--1lib-type=shared

Created the libraries in /home/user/myprogram:
libmap-sampler.so (and .so0.1, .s0.1.0, .s0.1.0.0)
libmap-sampler-pmpi.so (and .so0.1, .s0.1.0, .s0.1.0.0)

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance
Reports:
-g (or '-62' for native Cray Fortran) (and -03 etc.)
linking (both MAP and Performance Reports):
-dynamic -L/home/user/myprogram -lmap-sampler-pmpi -lmap-
sampler -W1, --eh-frame-hdr

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 154
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

Note: These libraries must be on the same NFS/Lustre/GPFS
filesystem as your
program.

Before running your program (interactively or from a queue), set
LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=/home/user/myprogram:$LD_LIBRARY_PATH

map

or add -W1, -rpath=/home/user/myprogram when linking your program.

Linking with the Arm MPI Wrapper Library

mpicc -G2 -0 hello hello.c -dynamic -L/home/user/myprogram \
-lmap-sampler-pmpi -lmap-sampler -Wl, --eh-frame-hdr

PGI Compiler

When linking OpenMP programs you must pass the - Bdynamic command line argument to the compiler
when linking dynamically.

When linking C++ programs you must pass the - pgc++1ibs command line argument to the compiler
when linking.

Static linking

If you compile your program statically, that is your MPI uses a static library or you pass the -static
option to the compiler, then you must explicitly link your program with the Arm sampler and MPI wrapper
libraries.

Compiling the Arm MPI Wrapper Library

First you must compile the Arm MPI wrapper library for your system using the make-profiler -
libraries --1lib-type=static command.

Note: Performance Reports also uses this library.

user@login:~/myprogram$ make-profiler-libraries --lib-type=static

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:

compilation for use with MAP - not required for Performance
Reports:
-g (and -03 etc.)

linking (both MAP and Performance Reports):
-W1l, @/home/user/myprogram/allinea-profiler.1ld

EXISTING_MPI_LIBRARIES

If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)
, then

these must appear *after* the Arm sampler and MPI wrapper
libraries in

the link line. There's a comprehensive description of the link
ordering

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 155
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

requirements in the 'Preparing a Program for Profiling' section
of either

userguide-forge.pdf or userguide-reports.pdf, located in

/opt/arm/forge/20.2/doc/.

Linking with the Arm MPI Wrapper Library

The -W1, @/home/user/myprogram/allinea-profiler . 1d syntax tells the compiler to look
in /home/user/myprogram/allinea-profiler.1d for instructions on how to link with the
Arm sampler. Usually this is sufficient, but not in all cases. The rest of this section explains how to
manually add the Arm sampler to your link line.

PGI Compiler

When linking C++ programs you must pass the - pgc++1ibs command line argument to the compiler
when linking.

The PGI C runtime static library contains an undefined reference to __kmpc_fork_call, which will
cause compilation to fail when linking allinea-profiler.1ld. Add --undefined __wrap_-
__kmpc_fork_call to your link line before linking to the Arm sampler to resolve this.

The PGI compiler must be 14.9 or later. Using earlier versions of the PGI compiler will fail with an
error such as “Error: symbol 'MPI_F_MPI_IN_PLACE' can not be both weak and
common” due to a bug in the PGI compiler’s weak object support.

If you do not have access to PGI compiler 14.9 or later try compiling and the linking Arm MPI wrapper
as a shared library as described in 16.2.5 Dynamic linking on Cray X-Series systems Ommit the option
--platform=cray if you are not on a Cray.

Cray

When linking C++ programs you may encounter a conflict between the Cray C++ runtime and the GNU
C++ runtime used by the MAP libraries with an error similar to the one below:

/opt/cray/cce/8.2.5/CC/x86-64/1ib/x86-64/1ibcray-c++-rts.a(rtti.o)
In function "__ cxa_bad_typeid':

/ptmp/ulib/buildslaves/cfe-82-edition-build/tbhs/cfe/lib_src/rtti.c
:1062: multiple definition of ~_ cxa_bad_typeid'

/opt/gcc/4.4.4/snos/1ib64/1ibstdc++.a(eh_aux_runtime.o):/tmp/peint
/gcc/repackage/4.4.4c/BUILD/snos_objdir/x86_64-suse-linux/
libstdc++-v3/libsupc++/../../../../xt-gcc-4.4.4/1ibstdc++-v3/
libsupc++/eh_aux_runtime.cc:46: first defined here

You canresolve this conflict by removing - 1stdc++and -1gcc_ehfromallinea-profiler.1ld.

-Ipthread

When linking -W1, @allinea-profiler.1ld must go before the - 1pthread command-line argu-
ment if present.

Manual Linking

When linking your program you must add the path to the profiler libraries (-L/path/to/profiler-
libraries), and the libraries themselves (- lmap - sampler -pmpi, - Imap-sampler).

The MPI wrapper library (- lmap-sampler -pmpi) must go:
1. After your program’s object (. 0) files.

2. After your program’s own static libraries, for example -1lmylibrary.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 156
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

3. After the path to the profiler libraries (-L/path/to/profiler-1libraries).
4. Before the MPI’s Fortran wrapper library, if any. For example - Impichf.
5. Before the MPI’s implementation library usually - 1mpi.
6. Before the Arm sampler library - 1map-sampler.
The sampler library - lmap-sampler must go:
1. After the Arm MPI wrapper library.
. After your program’s object (. 0) files.

. After your program’s own static libraries, for example - lmylibrary.

2

3

4. After -W1, - -undefined, allinea_init_sampler_now.

5. After the path to the profiler libraries - L/path/to/profiler-1libraries.
6

. Before -1stdc++, -1gcc_eh, -1rt, -1pthread, -1d1, -1mand - 1c.
For example:

mpicc hello.c -o hello -g -L/users/ddt/arm \
-lmap-sampler-pmpi \
-W1, - -undefined,allinea_init_sampler_now \
-lmap-sampler -lstdc++ -1lgcc_eh -1rt \
-W1, --whole-archive -lpthread \
-W1, --no-whole-archive \
-W1, --eh-frame-hdr \
-1dl \
-1m

mpif90 hello.f90 -o hello -g -L/users/ddt/arm \
-1lmap-sampler-pmpi \
-W1, - -undefined, allinea_init_sampler_now \
-lmap-sampler -1lstdc++ -1lgcc_eh -1rt \
-Wl, - -whole-archive -1lpthread \
-W1, --no-whole-archive \
-W1, --eh-frame-hdr \
-1d1 \
-1m

Static linking on Cray X-Series systems

Compiling the MPI Wrapper Library

On Cray X-Series systems use make-profiler-libraries --platform=cray --lib-type=static
instead:

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance
Reports:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 157
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

-g (or -62 for native Cray Fortran) (and -03 etc.)

linking (both MAP and Performance Reports):
-W1l, @/home/user/myprogram/allinea-profiler.1ld

EXISTING_MPI_LIBRARIES

If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -1lmpi)
, then

these must appear *after* the Arm sampler and MPI wrapper
libraries in

the link line. There's a comprehensive description of the link
ordering

requirements in the 'Preparing a Program for Profiling' section
of either

userguide-forge.pdf or userguide-reports.pdf, located in

/opt/arm/forge/20.2/doc/ .

Linking with the MPI Wrapper Library
cc hello.c -0 hello -g -Wl,@allinea-profiler.ld

ftn hello.f90 -0 hello -g -Wl,@allinea-profiler.1ld

Dynamic and static linking on Cray X-Series systems using the modules
environment

If your system has the Arm module files installed, you can load them and build your application as usual.
See section 16.2.9.

1. module load forge orensure that make-profiler-libraries is in your PATH.

2. module load map-link-static ormodule load map-link-dynamic

3. Recompile your program.

map-link modules installation on Cray X-Series

To facilitate dynamic and static linking of user programs with the Arm MPI Wrapper and Sampler li-
braries Cray X-Series System Administrators can integrate the map-link-dynamic and map-link-static
modules into their module system. Templates for these modules are supplied as part of the Arm Forge
package.

Copy files share/modules/cray/map-1ink-* into a dedicated directory on the system.
For each of the two module files copied:

1. Find the line starting with conflict and correct the prefix to refer to the location the module files
were installed, for example, arm/map-1ink-static. The correct prefix depends on the sub-
directory (if any) under the module search path the map-1ink- * modules were installed.

2. Find the line starting with set MAP_LIBRARIES_DIRECTORY ”NONE?” and replace "ZNONE”
with a user writable directory accessible from the login and compute nodes.

After installed you can verify whether or not the prefix has been set correctly with ‘module avail’, the
prefix shown by this command for the map-link-* modules should match the prefix set in the ‘conflict’
line of the module sources.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 158
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

Unsupported user applications

Ensure that the program to be profiled does not set or unset the SIGPROF signal handler. This interferes
with the MAP profiling function and can cause it to fail.

It is not recommended to use MAP to profile programs that contain instructions to perform MPI profiling
using MPI wrappers and the MPI standard profiling interface, PMPI. This is because MAP’s own MPI
wrappers may conflict with those contained in the program, producing incorrect metrics.

Profiling a program

Application: /home/user/ddt/examples/wave_c Details

Application: | /homejuser/ddt/examples/wave_c -

Arguments: -
stdin file:

Working Directory: v

Duration: Sampling entire program Details
Metrics Details
Perf Metrics: None selected, click Details... to configure. Details...

CUDA Kernel analysis
v MPI: 16 processes, Open MPI Details
Number of Processes: |16 =

Processes per Node
Implementation: Open MPI | Change...

mpirun arguments -

Profile selected ranks: |

OpenMP
Submit to Queue

Environment Variables: none Details

Help Options Run Cancel

Figure 96: Run window

If you click the Profile button on the MAP Welcome Page you will see the window above. The settings
are grouped into sections. Click the Details... button to expand a section. The settings in each section
are described below.

Application
Application: The full path name to your application. If you specified one on the command line, this will
already be filled in. You may browse for an application by clicking on the Browse & button.

Note: Many MPIs have problems working with directory and program names containing spaces. Arm
recommends avoiding the use of spaces in directory and file names.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 159
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

Arguments: (optional) The arguments passed to your application. These will be automatically filled if
you entered some on the command line.

Note: Avoid using quote characters such as ' and ", as these may be interpreted differently by MAP and
your command shell. If you must use these and cannot get them to work as expected, please contact Arm
support at Arm support.

stdin file: (optional) This allows you to choose a file to be used as the standard input (stdin) for your
program. MAP will automatically add arguments to mpirun to ensure your input file is used.

Working Directory: (optional) The working directory to use when running your application. If this is
blank then MAP’s working directory will be used instead.

Duration

Start profiling after: (optional) This allows you to delay profiling by a number of seconds into the run
of your program.

Stop profiling after: (optional) This allows you to specify a number of seconds after which the profiler
will terminate your program.

Metrics

This section allows you to explicitly enable and disable metrics for which data is collected. Metrics
are listed alphabetically with their display name and unique metric ID under their associated metric
group. Select a metric to see a more detailed description, including the metric’s default enabled/disabled
state.

Only metrics that can be displayed in MAP’s metrics view are listed. Metrics that are unlicensed, un-
supported or always disabled are not listed. Additionally, you cannot disable metrics that are always
enabled.

The initial state of enabled/disabled metrics are the combined settings given by the metric XML defin-
tions, the previous GUI session, and those specified with the - -enabled-metricsand - -disable-
metrics command-line options. The command-line options take preference over the previous GUI
session settings, and both take preference over the metric XML defintions settings. Of course, metrics
that are always enabled or always disabled cannot be toggled.

All PAPI metrics displays if installed, and available for enabling/disabling. However, only metrics spec-
ified in the PAPI .conf1ig file are affected.

All CPU instruction metrics available on Armv8-A systems displays if available for enabling/disabling.

MPI

Note: If you only have a single process license or have selected none as your MPI Implementation, the
MPI options will be missing. The MPI options are not available when in single process mode. See section
16.5 Profiling a single-process program for more details about using a single process.

Number of processes: The number of processes that you wish to profile. MAP supports hundreds of
thousands of processes but this is limited by your license. This option may not be displayed if disabled
on the Job Submission options page.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 160
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 16 GETTING STARTED

Number of nodes: This is the number of compute nodes that you wish to use to run your program. This
option is only displayed for certain MPI implementations or if it is enabled on the Job Submission options

page.

Processes per node: This is the number of MPI processes to run on each compute node. This op-
tion is only displayed for certain MPI implementations or if it is enabled on the Job Submission options

page.

Implementation: The MPI implementation to use, for example, Open MPI, MPICH 3. Normally the
Auto setting will detect the currently loaded MPI module correctly. If you are submitting a job to a queue
the queue settings will also be summarized here. You may change the MPI implementation by clicking
on the Change... button.

Note: The choice of MPI implementation is critical to correctly starting MAP. Your system will normally
use one particular MPI implementation. If you are unsure as to which to pick, try generic, consult your
system administrator or Arm support. A list of settings for common implementations is provided in E
MPI distribution notes and known issues.

Note: If your desired MPI command is not in your PATH, or you wish to use an MPI run command that is
not your default one, you can configure this using the Options window. See section A.6.1 System.

mpirun arguments: (optional) The arguments that are passed to mpirun or your equivalent, usually
prior to your executable name in normal mpirun usage. You can place machine file arguments, if
necessary, here. For most users this box can be left empty.

Note: You should not enter the - np argument because MAP will do this for you.

Profile selected ranks: (optional) If you do not want to profile all the ranks, you can use the - -select -
ranks command-line option to specify a set of ranks to profile. The ranks should be separated by
commas, and intervals are accepted. Example: 5,6-10.

OpenMP

Number of OpenMP threads: The number of OpenMP threads to run your program with. This ensures
the OMP_NUM_THREADS environment variable is set, but your program may override this by calling
OpenMP-specific functions.

Environment variables

The optional Environment Variables section should contain additional environment variables that should
be passed to mpirun or its equivalent. These environment variables may also be passed to your pro-
gram, depending on which MPI implementation your system uses. Most users will not need to use this
box.

Profiling

Click Run to start your program, or Submit if working through a queue. See section A.3 Integration with
queuing systems. This will compile up a MPI wrapper library on the fly that can intercept the MPT_INIT
call and gather statistics about MPI use in your program. If this has problems see H.12.1 MPI wrapper
libraries. Then MAP brings up the Running window and starts to connect to your processes.

The program runs inside MAP which starts collecting stats on your program through the MPI interface
you selected and will allow your MPI implementation to determine which nodes to start which processes
on.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 161
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

MATP collects data for the entire program run by default. Arm’s sampling algorithms ensure only a few
tens of megabytes are collected even for very long-running jobs. You can stop your program at any time
by using the Stop and Analyze button. MAP will then collect the data recorded so far, stop your program
and end the MPI session before showing you the results. If any processes remain you may have to clean
them up manually using the kill command, or a command provided with your MPI implementation,
but this should not be necessary.

Arm MAP - Arm Forge 20.2 *

File Edit View Window Help

[home/userfarm/tools/examples/wave c Stop and Analyze

4 | 4 processes running
Started on Wed Nov 4 11:26:12 2020

® Now

After 5 %/ Minutes =

Wave solution running with 4 processes

0: points = 1000880, running for 30 seconds
points / second: 810.4M (202.86M per process)
compute / communicate efficiency: 98% | 98% | 99%

Points for wvalidation:

0:0.00 200000:0.95 400000:0.59 600060:-0.59 BO0OOEO:-0.95 999999:0.00
wave finished

Note: Arm MAP can only send input to the mpirun process with this MPI implementation

Type here ('"Enter' to send): More -~

Figure 97: Running window

Profiling only part of a program

The easiest way to profile only part of a program in MAP is to use the ”Start profiling after” and ”Stop
profiling after” settings in the Run dialog, or the equivalent --start-after=TIME and --stop-
after=TIME command-line options. These allow you to specify a range of wall-clock time (the job
starts at 0 seconds) during which the job should be profiled. Once the - -stop-after time is reached,
the job is terminated rather than letting it run to the end.

Alternatively, for more fine-grained control you may choose to start profiling programmatically at a later
point by instrumenting your code. To do this you must set the ALLINEA_SAMPLER_DELAY_START=1
environment variable before starting your program. For MPI programs it is important that this variable is
set in the environment of all the MPI processes. It is not necessarily sufficient to simply set the variable
in the environment of the MPI command itself. You must arrange for the variable to be set or exported
by your MPI command for all the MPI processes.

You may call allinea_start_sampling and allinea_stop_sampling once each. That is

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 162
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

to say there must be one and only one contiguous sampling region. It is not possible to start, stop, start,
stop. You cannot pause or resume sampling using the allinea_suspend_tracesandallinea_-
resume_traces functions. This will not have the desired effect. You may only delay the start of
sampling and stop sampling early.

16.3.8.1 C

To start sampling programmatically you should #include "mapsampler_api.h" and call the
allinea_start_sampling function. You will need to point your C compiler at the MAP include
directory, by passing the arguments -I <install root>/map/wrapper and also link with the
MAP sampler library, by passing the arguments -L <install root>/1ib/64 -lmap-sampler.
To stop sampling progammatically call the allinea_stop_sampling function.

16.3.8.2 Fortran

To start sampling programmatically you should call the ALLINEA_START_SAMPLING subroutine.
You will also need to link with the MAP sampler library, for example by passing the arguments -
L <install root>/1ib/64 -1lmap-sampler. To stop sampling programmatically call the
ALLINEA_STOP_SAMPLING subroutine.

remote-exec required by some MPIs

When using SGI MPT, or the MPMD variants of MPICH 3 or Intel MPI, MAP allows mpirun to start
all the processes, then attach to them while they are inside MPI_Init.

This method is often faster than the generic method, but requires the remote -exec facility in MAP
to be correctly configured if processes are being launched on a remote machine. For more informa-
tion on remote-exec, see section A.5 Connecting to compute nodes and remote programs (remote-
exec).

Note: If MAP is running in the background, for example using map &, this process might get stuck.
Some SSH versions cause this behavior when asking for a password. If this happens to you, go to the
terminal and use the g or similar command to make MAP a foreground process, or run MAP again,
without using “&”.

If MAP cannot find a password-free way to access the cluster nodes, then you will not be able to use
the specialized startup options. Instead, you can use generic, although startup might be slower for large
numbers of processes.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 163
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

Profiling a single-process program

Application: /home/user/ddt/fexamples/simple busy Details

Application: | /homejuser/ddt/fexamples/simple -

Arguments: | busy -
stdin file:

Working Directory: M

Duration: Sampling entire program Details
Metrics Details
Perf Metrics: None selected, click Details... to configure. Details...

CUDA Kernel analysis
OpenMP
Submit to Queue

Environment Variables: none Details

Help Options Run Cancel

Figure 98: Single-Process Run Window

1. If you have a single-process license, an appropriate Run window for single-process applications
will display. If your license supports multiple processes, you can simply clear the MPI checkbox
to run a single-process program.

2. Select the application, either by typing the file name, or selecting it by clicking the browse &
button in the Run window.

3. Arguments can be entered into the supplied box.

4. If appropriate, select the OpenMP box and select the Number of OpenMP threads to start your
program with.

5. Click Run to start your program.

Sending standard input

MAP provides a stdin file box in the Run window. This allows you to choose a file to be used as the
standard input (stdin) for your program. MAP automatically adds arguments to mpirun to ensure that
your input file is used.

Alternatively, you can enter the arguments directly in the mpirun Arguments box. For example, if you
are using MPI directly from the command-line, you would typically use an option to the mpirun such as

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 164
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

-stdin filename, then you can add the same options to the mpirun Arguments box when starting
your MAP session in the Run window.

You can also enter input during a session. Start your program as usual, then switch to the Input/Output
panel. Here you can see the output from your program and type the input you want to send. You can also
use the More button to send input from a file, or send an EOF character.

[Arm MAP - Arm Forge 20.2 %
File Edit View Window Help

fhome/arm/code/simple_input/input
1/ 1 processes running

Started on Wed Nov 4 11:26:18 2...
Elapsed time: 48s

Stop and Analyze
e Mow

After 5 % || Minutes =

Enter a value for a:
-Enter a value for b:
16

Enter a value for c:

Note: Arm MAP can only send input to the mpirun process with this MPI implementation

Type here ('Enter' to send): |15 More -

Figure 99: MAP Sending Input

Starting a job in a queue

If MAP is configured to be integrated with a queue/batch environment, as described in section A.3 Inte-
gration with queuing systems, then you can use it to launch your job.

In this case, a Submit button is presented on the Run window, instead of the ordinary Run button. Clicking
Submit from the Run window displays the queue status until your job starts. MAP executes the display
command every second and shows you the standard output. If your queue display is graphical or inter-
active, then you cannot use it here.

If your job does not start or you decide not to run it, click Cancel Job. If the regular expression you
entered for getting the job ID is invalid or if an error is reported, then MAP cannot remove your job from
the queue.

Armstrongly recommends that you check the job has been removed before submitting another because
a forgotten job can execute on the cluster and either waste resources or interfere with other profiling
sessions.

After the sampling (program run) phase is complete, MAP starts the analysis phase, collecting and pro-
cessing the distinct samples. This can be a lengthy process depending on the size of the program. For
very large programs, it could be as much as 10 or 20 minutes.

You must ensure that your job does not hit its queue limits during the analysis process. Set the job time
large enough to cover both the sampling and the analysis phases.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 165
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

MAP also requires extra memory, both in the sampling and in the analysis phases. If these fail and your
application alone approaches one of these limits, you might need to run with fewer processes per node or
a smaller data set, to generate a complete set of data.

When your job is running, it connects to MAP and you can profile it.

Using custom MPI scripts

On some systems, a custom mpirun replacement is used to start jobs, such as mpiexec. MAP typically
uses whatever the default for your MPI implementation is, so for Open MPI it would look for mpirun
and not mpiexec, for SLURM it would use srun, and so on. This section explains how to configure
MAP to use a custom mpirun command for job startup.

MAP supports two ways that you typically might want to use for starting jobs using a custom script.
The first way is to pass all the arguments on the command-line, as in the following example:

mpiexec -n 4 /home/<user>/program/chains.exe /tmp/mydata

There are several key variables in this line that MAP can complete for you:
1. The number of processes (4 in the above example).
2. The name of your program (/home/<user>/program/chains.exe).
3. One or more arguments passed to your program (/tmp/mydata).
Everything else, like the name of the command and the format of its arguments, remains constant.

To use a command like this in MAP, the queue submission system is adpated as described in the previous
section. For this mpiexec example, the settings are shown here:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 166
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

ﬁf Job Submission
MPI/UPC Implementation: Open MPI -

D Code Viewer v| Override default mpirun path: | mpiexec

@ Appearance

Debugger:

+ Automatic (recommended) v

Heterogeneous system support

Help oK Cancel

Figure 100: MAP Using Custom MPI Scripts

As you can see, most of the settings are left blank.

There are some differences between the Submit Command in MAP and what you would type at the
command-line:

1. The number of processes is replaced with NUM_PROCS_TAG.

2. The name of the program is replaced by the full path to forge-backend, used by both DDT and
MAP.

3. The program arguments are replaced by PROGRAM_ARGUMENTS_TAG.

Note: It is not necessary to specify the program name here. MAP takes care of that during its own startup
process. The important thing is to make sure your MPI implementation starts forge - backend instead
of your program, but with the same options.

The second way you might start a job using a custom mpirun replacement is with a settings file:

mpiexec -config /home/<user>/myapp.nodespec

Where myfile.nodespec contains something like the following:

comp00@ comp0l comp02 comp03 : /home/<user>/program/chains.exe /tmp
/mydata

If you specify a template file, MAP can automatically generate simple configuration files like this ev-
ery time you run your program. For the above example, the template file myfile.template would
contain the following:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 167
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

comp@O® comp@l1l comp@2 comp@3 : DDTPATH_TAG/libexec/forge-backend
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_ARGUMENTS_TAG

This follows the same replacement rules described above and in detail in section A.3 Integration with
queuing systems.

The options settings for this example might be:

l;l! System Job Submission Settings
or 'T| Job Submission Submission template file: |/home/user/arm/tools/templates/loadleveler.gtf
~
. Submit command: |llsubmit
| Code Viewer Regexp for job id: |"([""]+)".*has been submitted
Cancel command: |licancel JOB_ID_TAG
@ Appearance i
Display command: |lig
¥| Quick Restart What is Quick Restart?
Help oK Cancel

Figure 101: MAP Using Substitute MPI Commands

Note: In particular, see the Submit Command and the Submission Template File. MAP creates a new
file and appends it to the submit command before executing it. So, in this case, what would actually be
executed might be mpiexec -config /tmp/arm-temp-0112 or similar. Therefore, any argu-
ment like - config must be last on the line, because MAP adds a file name to the end of the line. Other
arguments, if there are any, can come first.

Arm recommends reading the section on queue submission, because there are many features described
there that might be useful to you if your system uses a non-standard start-up command.

If you do use a non-standard command, contact Arm at Arm support.

Starting MAP from a job script

While it is common when debugging to submit runs from inside a debugger, for profiling the usual ap-
proach would be to run the program offline, producing a profile file that can be inspected later.

To do this, replace your usual program invocation with a MAP command such as:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 168
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 16 GETTING STARTED

mpirun -n 4 PROGRAM [ARGUMENTS]...

With either of the following examples:
map --profile mpirun -n 4 PROGRAM [ARGUMENTS]...

map --profile --np=4 PROGRAM [ARGUMENTS]...

MAP runs without a GUI, gathering data to a .map profile file. Its filename is based on a combi-
nation of program name, process count, and timestamp, such as program_2p_2012-12-19_10-
51.map.

If you are using OpenMP, the value of OMP_NUM_THREADS is also included in the name after the process
count, such as program_2p_8t_2014-10-21_12-45.map.

This default name can be changed with the - -output argument. To examine this file, either run MAP
and select the Load Profile Data File option, or access it directly with the command:

map program_2p_2012-12-19_10-51.map

Note: When starting MAP for examining an existing profile file, a valid license is not needed.

When running without a GUI, MAP prints a short header and footer to stderr with your program’s output
in between. The - -silent argument suppresses this additional output so that your program’s output is
intact.

As an alternative to - -profile, you can use Reverse Connect (see 3.3 Reverse Connect) to connect
back to the GUI if you wish to use interactive profiling from inside the queue. So the above example
becomes either:

map --connect mpirun -n 4 PROGRAM [ARGUMENTS]...

Or:
map --connect --np=4 PROGRAM [ARGUMENTS]...

Numactl

MAP supports launching programs via numact1 for MPI programs. It works with or without SLURM.
The recommended way to launch via numact1l is to use express launch mode.

map mpiexec -n 4 numactl -m 1 ./myprogram.exe
map srun -n 4 numactl -m 1 ./myprogram.exe

It is also possible to launch via numactl using compatibility mode. If using compatibility mode, you
need to put the full path to numactl in the Application box. If you do not know the full path to nu-
mactl, you can find it by running:

which numactl
Enter the name of the required application in the Arguments field, after all arguments to be passed to

numactl. It is not possible to pass any more arguments to the parallel job runner when using this mode
for launching.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 169
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

MAP environment variables

ALLINEA_SAMPLER_INTERVAL

MAP takes a sample in each 20ms period, giving it a default sampling rate of 50Hz. This is automati-
cally decreased as the run proceeds to ensure a constant number of samples are taken. See ALLINEA__
SAMPLER_NUM_SAMPLES.

If your program runs for a very short period of time, you can benefit by decreasing the initial sampling
interval. For example, ALLINEA_SAMPLER_INTERVAL=1 sets an initial sampling rate of 1000Hz, or
once per millisecond. Higher sampling rates are not supported.

Increasing the sampling frequency from the default is not recommended if there are lots of threads or very
deep stacks in the target program, because this might not leave sufficient time to complete one sample
before the next sample is started.

Note: Custom values for ALLINEA_SAMPLER_INTERVAL can be overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS). For more information, see ALLINEA_SAMPLER_INTERVAL_PER_
THREAD.

ALLINEA_SAMPLER_INTERVAL_PER_THREAD

To keep overhead low, MAP imposes a minimum sampling interval based on the number of threads. By
default, this is 2ms per thread, therefore for eleven or more threads MAP increases the initial sampling
interval to more than 20ms.

You can adjust this behavior by setting ALLINEA_SAMPLER_INTERVAL_PER_THREAD to the mini-
mum per-thread sample time in milliseconds.

Lowering this value from the default is not recommended if there are lots of threads, because this might
not leave sufficient time to complete one sample before the next sample is started.

Note: Whether OpenMP is enabled or disabled in MAP, the final script or scheduler values set for
OMP_NUM_THREADS are used to calculate the sampling interval per thread (ALLINEA_SAMPLER_
INTERVAL_PER_THREAD). When configuring your job for submission, check whether your final sub-
mission script, scheduler, or the MAP GUI has a default value for OMP_NUM_THREADS.

Note: Custom values for ALLINEA_SAMPLER_INTERVAL are overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS).

ALLINEA_MPI_WRAPPER
To direct MAP to use a specific wrapper library set ALLINEA_MPI_WRAPPER=<path of shared object>.

MAP ships with a number of precompiled wrappers. When your MPI is supported, MAP automatically
selects and uses the appropriate wrapper.

To manually compile a wrapper specifically for your system, set ALLINEA_WRAPPER_COMPILE=1
andMPICCandrunMAP-installation-directory/map/wrapper/build_wrapper.

This generates the wrapper library ~/ .allinea/wrapper/libmap- sampler-pmpi-<hostname>
. S0 with symlinks to the following files:

« ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1
+ ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.s0.1.0

« ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.s0.1.0.0.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 170
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

ALLINEA_WRAPPER_COMPILE

To direct MAP to fall back to creating and compiling a just-in-time wrapper, set ALLINEA_WRAPPER_
COMPILE=1.

To be able to generate a just-in-time wrapper, an appropriate compiler must be available on the machine
where MAP is running, or on the remote host when using remote connect.

MAP attempts to auto detect your MPI compiler. However, Arm recommends setting the MPICC envi-
ronment variable to the path to the correct compiler.

ALLINEA_MPIRUN

The path of mpirun, mpiexec, or equivalent.

If this is set, it has higher priority than path set in the GUI and the mpirun found in PATH.
ALLINEA_SAMPLER_NUM_SAMPLES

MAP collects 1000 samples per process, by default. To avoid generating too much data on long runs, the
sampling rate is automatically decreased as the run progresses, to ensure that only 1000 evenly spaced
samples are stored.

You can adjust this by setting ALLINEA_SAMPLER_NUM_SAMPLES=<positive integer>.

Note: Arm strongly recommends that you leave this value at the default setting. Higher values are
not generally beneficial and add extra memory overheads while running your code. Consider that with
512 processes, the default setting already collects half a million samples over the job, and the effective
sampling rate can be very high indeed.

ALLINEA_KEEP_OUTPUT_LINES

Specifies the number of lines of program output to record in . map files. Setting to @ removes the line
limit restriction, although this is not recommended because it can result in very large . map files if the
profiled program produces lots of output.

See 17.3 Restricting output.
ALLINEA_KEEP_OUTPUT_LINE_LENGTH

The maximum line length for program output that is recorded in .map files - lines containing more
characters than this limit are truncated. Setting to @ removes the line length restriction, although this is
not recommended because it can result in very large . map files if the profiled program produces lots of
output per line.

See 17.3 Restricting output.
ALLINEA_PRESERVE_WRAPPER

To gather data from MPI calls, MAP generates a wrapper to the chosen MPI implementation. See 16.2
Preparing a program for profiling.

By default, the generated code and shared objects are deleted when MAP no longer needs them.
To prevent MAP from deleting these files, set ALLINEA_PRESERVE_WRAPPER =1.

Note: If you use remote launch, this variable must be exported in the remote script. See 3.2.1 Remote
script.

ALLINEA_SAMPLER_NO_TIME_MPI_CALLS

Set this to prevent MAP from timing the time spent in MPI calls.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 171
101136_2020_00_en

Arm Forge 20.2 16 GETTING STARTED

ALLINEA_SAMPLER_TRY_USE_SMAPS

Set this to allow MAP to use /proc/[pid]/smaps to gather memory usage data. This is not recom-
mended because it slows down sampling significantly.

MPICC

To create the MPI wrapper MAP attempts to use MPICC, and if that fails, searches for a suitable MPI
compiler command in PATH. If the MPI compiler used to compile the target binary is not in PATH (or if
there are multiple MPI compilers in PATH), set MPICC.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 172
101136_2020_00_en

Arm Forge 20.2 17 PROGRAM OUTPUT

Program output

MAP collects and displays output from all processes under the Input/Output tab. Both standard output
and error are shown. As the output is shown after the program has completed, there are not the problems
with buffering that occur with DDT.

Viewing standard output and error

Input/Output | Project Files = Main Thread Stacks Functions
Input/Output]

They are: -
B: examples/hello c

sending message from (1)
Greetings from process 1!
waiting for message from (2)
Greetings from process 2!
waiting for message from (3)
Greetings from process 3!

I can write to stderr too

I can write to stderr too

I can write to stderr too

I can write to stderr too

Figure 102: MAP Standard Output Window

The Input/Output tab is at the bottom of the screen (by default).

The output may be selected and copied to the X-clipboard.

Displaying selected processes

You can choose whether to view the output for all processes, or just a single process.

Note: Some MPI implementations pipe stdin, stdout and stderr from every process through mpirun or
rank 0.

Restricting output

To keep file sizes within reasonable limits . map files will contain a summary of the program output
limited to the first and last 500 lines (by default).

To change this number, profile with the environment variable ALLINEA_KEEP_OUTPUT_LINES set
to the preferred total line limit (ALLINEA_KEEP_OUTPUT_LINES=20 will restrict recorded output to
the first 10 lines and last 10 lines).

Setting this to © will remove the line limit restriction, although this is not recommended as it may result
in very large . map files if the profiled program produces lots of output.

The length of each line is similarly restricted to 2048 characters. This can be changed with the environ-
ment variable ALLINEA_KEEP_OUTPUT_LINE_LENGTH.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 173
101136_2020_00_en

Arm Forge 20.2 17 PROGRAM OUTPUT

As before setting this to a value of @ will remove the restriction, although this is not recommended as it
risks a large . map file if the profiled program emits binary data or very long lines.

Saving output

By right-clicking on the text it is possible to save it to a file. You also have the option to copy a selection
to the clipboard.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 174
101136_2020_00_en

Arm Forge 20.2 18 SOURCE CODE

Source code

Arm MAP provides code viewing, editing and rebuilding features. It also integrates with most major
version control systems and provides static analysis to automatically detect many classes of common
erTors.

The code editing and rebuilding capabilities are not designed for developing applications from scratch,
but they are designed to fit into existing profiling sessions that are running on a current executable.

The same capabilities are available for source code whether running remotely (using the remote client)
or whether connected directly to your system.

Viewing

Source and header files found in the executable are reconciled with the files present on the front-end
server, and are displayed in a simple tree view within the Project Files tab of the Project Navigator
window. To load source files for viewing, click on the file name.

The source code viewer supports automatic color syntax highlighting for C and Fortran.

To hide functions or subroutines you are not interested in, click the ‘—’ glyph, next to the first line of the
function. Use the ‘—’ glyph to collapse and expand the function.

MPI_COMM SIZE (MPI_COMM_WORLD, nprocs, ierr) -

24 o imbalance
: —— 11 stride
- SverTap

11 MPI_FINALIZE(ierr)

Figure 103: Source Code View

The centre pane shows your source code, annotated with performance information. All the charts you see
in MAP share a common horizontal time axis. Your job starts from the left and ends on the right. Next
to each line of source code are the sparkline charts. The sparkline charts show how the number of cores
executing that line of code varies over time.

What does it mean to say a core is executing a particular line of code? In the source code view, MAP uses
inclusive time, that is, time spent on this line of code or inside functions called by this line. The main()
function of a single-threaded C or MPI program is typically at 100% for the entire run.

Only ‘interesting’ lines generate charts, that is, lines in which at least 0.1% of the selected time range
was spent. In the previous figure, three different lines meet this criteria. The other lines were executed
as well, but a negligible amount of time was spent on them.

The first line is a function call to imbalance, which runs for 30.4% of the wall-clock time. Looking
closer, as well as a large block of green, there is a sawtooth pattern in blue. Color identifies different
kinds of time. In this single-threaded MPI code, there are three colors:

» Dark green Single-threaded computation time. For an MPI program, this is all computation time.
For an OpenMP or multi-threaded program, this is the time the main thread was active and no
worker threads were active.

* Blue MPI communication and waiting time. Time spent inside MPI calls is blue, regardless of
whether that is in MPI_Send or MPI_Barrier. Typically you want to minimize the amount of
blue, because the purpose of most codes is parallel computation, not communication.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 175
101136_2020_00_en

Arm Forge 20.2 18 SOURCE CODE

* Orange I/O time. All time spent inside known I/O functions, such as reading and writing to the
local or networked filesystem, is shown in orange. It is important to minimize the time spent in
I/O. On many systems, the complex data storage hierarchy can cause unexpected bottlenecks to
occur when scaling a code up. MAP always shows the time from the application’s point of view,
so all the underlying complexity is captured and represented as simply as possible.

» Dark purple Accelerator. The time the CPU is waiting for the accelerator to return the control
to the CPU. Typically you want to minimize this time, to make the CPU work in parallel with the
accelerator, using accelerator asynchronous calls.

In the above screenshot, you can see the following:

« First, a function called imbalance is called. This function spends around 55% of its time in
computation (dark green) and around 45% of it in MPI calls (blue). Hovering the mouse over any
graph shows an exact breakdown of the time spent in it. There is a sawtooth pattern to the time
spent in MPI calls that is investigated later.

 Next, the application moves on to a function called st ride, which spends almost all of its time
computing. You will see how to tell whether this time is well spent or not. At the end, you can also
see an MPI synchronization. The triangle shape is typical of ranks finishing their work at different
times, and spending varying amounts of time waiting at a barrier. Triangles in these charts indicate
imbalance.

+ Finally, a function called overlap is called, which spends almost all of its time in MPI calls.

* The other functions in this snippet of source code were active for <0.1% of the total runtime and
can be ignored from a profiling point of view.

Because this example was an MPI program, the height of each block of color represents the percentage
of MPI processes that were running each particular line at any moment in time. The sawtooth pattern of
MPI usage tells us that:

» The imbalance function goes through several iterations.
* In each iteration, all processes begin computing. There is more green than blue.

+ As execution continues, more and more processes finish computing and transition to waiting in an
MPI call. The transition causes the distinctive triangular pattern illustrating a workload imbalance.

* As each triangle ends, all ranks finish communicating and the pattern begins again with the next
iteration.

This is a classic sign of MPI imbalance. In fact, any triangular patterns in MAP’s graphs show that
first a few processes are changing to a different state of execution, then more, then more, until they all
synchronize and move on to another state together. These areas should be investigated.

To explore this example in more detail, open the examples/slow.map file and look at the imbal-
ance function. Can you see why some processes take longer to finish computing than others?

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 176
101136_2020_00_en

Arm Forge 20.2 18 SOURCE CODE

OpenMP programs

™ integrate.cpp X ™ force_lj.cpp X
#pragma or bar I =

neighbor.build (atom) ;

#pragma
timer.stamp (TIME NEIGH) ;

]

force->evilag = (n + 1) % thermo.nstat == 0;
force->compute {(atom, neighbor, comm, comm.me);

Figure 104: OpenMP Source Code View

In an OpenMP or multi-threaded program (or a mixed-mode MPI+OpenMP program) you will also see
these colors used:

 Light green Multi-threaded computation time. For an OpenMP program this is time inside OpenMP
regions. When profiling an OpenMP program you want to see as much light green as possible, be-
cause that is the only time you are using all available cores. Time spent in dark green is a potential
bottleneck because it is serial code outside an OpenMP region.

» Light blue Multi-threaded MPI communication time. This is MPI time spent waiting for MPI
communication while inside an OpenMP region or on a pthread. As with the normal blue MPI
time you will want to minimize this, but also maximize the amount of multi-threaded computation
(light green) that is occurring on the other threads while this MPI communication is taking place.

» Dark Gray Time inside an OpenMP region in which a core is idle or waiting to synchronize with
the other OpenMP threads. In theory, during an OpenMP region all threads are active all of the time.
In practice there are significant synchronization overheads involved in setting up parallel regions
and synchronizing at barriers. These will be seen as dark gray holes in the otherwise happy light
green of optimal parallel computation. If you see these there may be an opportunity to improve
performance with better loop scheduling or division of the work to be done.

+ Pale blue Thread synchronization time. Time spent waiting for synchronization between non-
OpenMP threads (for example, a pthread_join). Whether this time can be reduced depends
on the purpose of the threads in question.

In the screenshot above you can see that 11.1% of the time is spent calling neighbor.build(atom)
and 78.4% of the time is spent calling force->compute(atom, neighbor, comm, comm.me).
The graphs show a mixture of light green indicating an OpenMP region and dark gray indicating
OpenMP overhead. OpenMP overhead is the time spent in OpenMP that is not the contents of an OpenMP
region (user code). Hovering the mouse over a line will show the exact percentage of time spent in over-
head, but visually you can already see that it is significant but not dominant here.

Increasingly, programs use both MPI and OpenMP to parallelize their workloads efficiently. MAP fully
and transparently supports this model of working. It is important to note that the graphs are a reflection
of the application activity over time:

* A large section of blue in a mixed-mode MPI code means that all the processes in the application
were inside MPI calls during this period. Try to reduce these, especially if they have a triangular
shape suggesting that some processes were waiting inside MPI while others were still computing.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 177
101136_2020_00_en

Arm Forge 20.2 18 SOURCE CODE

* A large section of dark green means that all the processes were running single-threaded computa-
tions during that period. Avoid this in an MPI+OpenMP code, or you might as well leave out the
OpenMP sections altogether.

+ Ideally you want to achieve large sections of light green, showing OpenMP regions being effec-
tively used across all processes simultaneously.

» It is possible to call MPI functions from within an OpenMP region. MAP only supports this if the
main thread (the OpenMP master thread) is the one that makes the MPI calls. In this case, the blue
block of MPI time will be smaller, reflecting that one OpenMP thread is in an MPI function while
the rest are doing something else such as useful computation.

GPU programs

In a program using NVIDIA CUDA CPU, time spent waiting for GPU kernels to complete is shown in
Purple.

When CUDA kernel analysis mode is enabled (see Section 31) MAP will display also display data for
lines inside CUDA kernels. These graphs show when GPU kernels were active, and for each kernel a
breakdown of the different types of warp stalls that occurred on that line. The different types of warp
stalls are listed in Section 31.1. Refer to the tooltip or selected line display (Section 19.2) to get the exact
breakdown, but in general:

* Purple Selected. Instructions on this line were being executed on the GPU.

» Dark Purple Not selected. This means warps on this line were ready to execute but that there was
no available SM to do the executing.

* Red (various shades) Memory operations. Warps on this line were stalled waiting for some memory
dependency to be satisfied. Shade of red indicates the type of memory operation.

* Blue (various shades) Execution dependency. Warps on this line were stalled until some other
action completes. Shade of blue indicates the type of execution dependency.

Note that warp stalls are only reported per-kernel, so it is not possible to obtain the times within a kernel
invocation at which different categories of warp stalls occurred. As function calls in CUDA kernels are
also automatically fully inlined it is not possible to see warp stalls for ’time spent inside function(s) on
line’ for GPU kernel code.

double tmpB = Bl[k*pitch]
] 73 | resl += sh Al[k-ks] * tog
res2 += sh A2[k-ks] * tmpE;

}

syncthreads () ; -

Figure 105: Source Code View (GPU Kernel)

In this screenshot a CUDA kernel involving this line was running on this line 13.1% of the time, with
most of the warps waiting for a memory access to complete. The colored horizontal range indicates
when any kernel observed to be using this source line was on the GPU. The height of the colored re-
gion indicates the proportion of sampled warps that were observed to be on this line. See the NVIDIA
CUPTI documentation at http://docs.nvidia.com/cuda/cupti/r_main.html#r_pc_sampling for more infor-
mation on how warps are sampling.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 178
101136_2020_00_en

http://docs.nvidia.com/cuda/cupti/r_main.html#r_pc_sampling

Arm Forge 20.2 18 SOURCE CODE

Dealing with complexity: code folding

Real-world scientific codes do not look much like the examples above. They tend to look more like the
following:

¥ advec_cell kernel.fo0 X

mass_flux x(3,k)=vol_flux x(j,k)*{densityl (donor, k) +limiter)

sigmam=aBs (mass_flux x(j,k))/(densityl (donor.k) *pre_vol {donor.k))
diffuw=energyl (donor, k) -energyl (upwind, k)
diffaw vl (downwind, k) -energyl (denor, k)

- IF (diffuw*diffdw.GT.0.0) THE
- limiter=(1.0_8-sigmam) *wind*MIN (ABS (diffuw) ,ABS (diffdw)&
,one_by_six*(sigma3*ABS (diffuw)+sigmad*ABS (diffdw)))

limiter=0.0
ener flux(i.k)=mass flux x(i.k)*(energvl(donor,k)+limiter) -

Figure 106: Typical Fortran Code in MAP

Here, small amounts of processing are distributed over many lines, and it is difficult to see which parts
of the program are responsible for the majority of the resource usage.

To understand the performance of complex blocks of code like this, MAP allows supports code folding.
Each logical block of code such as an if-statement or a function call has a small [-] next to it. Clicking
this folds those lines of code into one and shows one single sparkline for the entire block:

¥ hydro.fg0 X T clover leaffoo X

time = time + dt =

» (summary_frequency.Ng.0)
» IF (visit_frequency.NE.Q) 1

step_time)
step_time)

» (time+g_small.GT.end _time.OR.step.GE.end_step)
» IF (parallel%boss) THEN

Figure 107: Folded Fortran Code in MAP

Now you can clearly see that most of the processing occurs within the conditional block starting on
line 122.

When exploring a new source file, a good way to understand its performance is to use the View->Fold
All menu item to collapse all the functions in the file to single lines, then scroll through it looking for
functions that take an unusual amount of time or show an unusual pattern of I/O or MPI overhead. These
can then be expanded to show their most basic blocks, and the largest of these can be expanded again and
SO on.

Editing

Source code may be edited in the code viewer windows of MAP. The actions Undo, Redo, Cut, Copy,
Paste, Select all, Go to line, Find, Find next, Find previous, and Find in files are available from the Edit
menu.

Files may be opened, saved, reverted and closed from the File menu.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 179
101136_2020_00_en

Arm Forge 20.2 18 SOURCE CODE

Note that information from MAP will not match edited source files until the changes are saved, the binary
is rebuilt, and a new profile is recreated.

If the currently selected file has an associated header or source code file, it can be opened by right-clicking
in the editor and choosing Open <filename>.<extension>. There is a global shortcut on function key
F4, available in the Edit menu as Switch Header/Source option.

To edit a source file in an external editor, right-click the editor for the file and choose Open in external
editor. To change the editor used, or if the file does not open with the default settings, open the Options
window by selecting File — Options (Arm Forge — Preferences on Mac OS X) and enter the path to
the preferred editor in the Editor box, for example /usr/bin/gedit.

If a file is edited the following warning is displayed at the top of the editor.

M This file has been edited.

Figure 108: File Edited Warning

This is to warn you that the source code shown is not the source that was used to produced the currently
executing binary, so the source code and line numbers may not match the executing code.

Rebuilding and restarting

To configure the build command choose File — Configure Build..., enter a build command and a directory
in which to run the command, and click Apply.

To issue the build command choose File — Build, or press Ctrl+B (Cmd+B on Mac OS X). When a build
is issued the Build Output view is shown.

Committing changes

Changes to source files may be committed using one of Git, Mercurial, and Subversion. To commit
changes choose File — Commit..., enter a commit message to the resulting dialog and click the commit
button.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 180
101136_2020_00_en

Arm Forge 20.2 19 SELECTED LINES VIEW

Selected lines view

Time spent on line 87 2®

Breakdown of the 18.0% time
spent on this line:

Executing instructions 100.0% .
Calling functions 0
Time in instructions executed:

Scalar floating-point
Vector floating point
Scalar integer
Vector integer
Memory access*
Branch

Other instructions

* 8.1% memory access instructions,
70.1% implicit memory accesses in
other instructions, alse counted in
their categories

Figure 109: Selected Lines View

Note: The selected lines view is currently only available for profiles generated on x86_64 systems.

The Selected Lines View view allows you to get detailed information on how one or more lines of code
are spending their time.

To access this view, open one of your program’s source files in the code viewer and highlight a line.

The Selected Lines View, which is by default shown on the right hand side of the source view, automat-
ically updates to show a detailed breakdown of how the selected lines are spending their time.

You can select multiple lines, and MAP will show information for all of the lines together.

You can also select the first line of a collapsed region to see information for the entire code block. See
section 18.1 for more information.

If you use the metrics view to select a region of time, the selected lines view only shows details for the
highlighted region. See section 24 for more information.

The panel is divided into two sections.

The first section gives an overview of how much time was spent executing instructions on this line, and
how much time was spent in other functions.

If the time spent executing instructions is low, consider using the stacks view, or the functions view to
locate functions that are using a lot of CPU time. For more information on the Stacks View see section
20. For more information on the Functions View see section 22.

The second section details the CPU instruction metrics for the selected line.

These largely show the same information as the global program metrics, described in section 24.1, but
for the selected lines of source code.

Unlike the global program metrics, the line metrics are divided into separate entries for scalar and vector
operations, and report time spent in “implicit memory accesses”.

On some architectures, computational instructions (such as integer or vector operations) are allowed to
access memory implicitly. When these types of instruction are used, MAP cannot distinguish between
time performing the operation and time accessing memory, and therefore reports time for the instruction
in both the computational category and the memory category.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 181
101136_2020_00_en

Arm Forge 20.2 19 SELECTED LINES VIEW

The amount of time spent in “explicit” and “implicit” memory accesses is reported as a footnote to the
time spent executing instructions.

Some guidelines are listed here:
* In general, aim for a large proportion of time in vector operations.

« If you see a high proportion of time in scalar operations, try checking to see if your compiler is
correctly optimising for your processor’s SIMD instructions.

+ If you see a large amount of time in memory operations then look for ways to more efficiently
access memory in order to improve cache performance.

+ If you see a large amount of time in branch operations then look for ways to avoid using conditional
logic in your inner loops.

Section 24.1 offers detailed advice on what to look for when optimizing the types of instruction your
program is executing.

Limitations

Modern superscalar processors use instruction-level parallelism to decode and execute multiple opera-
tions in a single cycle, if internal CPU resources are free, and will retire multiple instructions at once,
making it appear as if the program counter “jumps” several instructions per cycle.

Current architectures do not allow profilers such as MAP (or Intel VTune, Linux perftools and others)
to efficiently measure which instructions were “invisibly” executed by this instruction-level parallelism.
This time is typically allocated to the last instruction executed in the cycle.

Most MAP users will not be affected by this for the following reasons:

1. Hot lines in a HPC code typically contain rather more than a single instruction such as nop. This
makes it unlikely that an entire source line will be executed invisibly via the CPU’s instruction-level
parallelism.

2. Any such lines executed “for free” in parallel with another line by a CPU core will clearly show
up as a “gap” in the source code view (but this is unusual).

3. Loops with stalls and mispredicted branches still show up highlighting the line containing the prob-
lem in all but the most extreme cases.

To summarize key points:

» Experts users: those wanting to use MAP’s per-line instruction metrics to investigate detailed CPU
performance of a loop or kernel (even down to the assembly level) should be aware that instructions
executed in parallel by the CPU will show up with time only assigned to the last one in the batch
executed.

» Other users: MAP’s statistical instruction-based metrics correlate well with where time is spent in
the application and help to find areas for optimization. Feel free to use them as such. If you see
lines with very few operations on them (such as a single add or multiply) and no time assigned to
them inside your hot loops then these are probably being executed “for free” by the CPU using
instruction-level parallelism. The time for each batch of such is assigned to the last instruction
completed in the cycle instead.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 182
101136_2020_00_en

Arm Forge 20.2 19 SELECTED LINES VIEW

GPU profiling

Warp stall reasons on line 73 =)
Warp stalls on this line (13.1% of
the time):

Selected 0.1%
Not selected 0.1%
Thread or memory barrier

Pipe busy

Sleeping

Instruction fetch 0.2%
Execution dependency

Memory throttle 0.0%
__constant__ memory 0%
Memory dependency 96.7% I

Texture sub-system

Dropped samples

Other

Unknown 0.0%

Figure 110: Selected lines view (GPU kernel)

When CUDA kernel analysis is enabled (see section 31) and the selected line is executed on the GPU
then a breakdown of warp stall reasons on this line will be shown in this view. For a description of each
of these warp stall reasons, refer to the tooltip for each of the entries or section 31.1.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 183
101136_2020_00_en

Arm Forge 20.2 20 STACKS VIEW

Stacks view

Input/Output Project Files | Main Thread Stacks | Functions
Main Thread Stacks
Total core time ~ MPI__ Function(s) on line Source Position =

~ 2 slow_f [pragram]
- slow
~ stride

slow.f90:1
slow.f90:11
slow.f90:114
slow.f0:127
slow.f90:128
slow.f90:115

19.3% [~
9.7%
2.8%
2.6%

~ 3 others
mpi_barrier_ slow.f90:121
slow.f90:106
slow.f90:113
slow.f90:10
slow.fo0:12

<0.1% |
<0.1%
34.8% NN 16.9% » imbalance

30.0% . . » overlap

Figure 111: MAP Stacks View

The Stacks view offers a good top-down view of your program. It is easy to follow down from the main
function to see which code paths took the most time. Each line of the Stacks view shows the performance
of one line of your source code, including all the functions called by that line.

The sparkline graphs are described in detail in section 18.
You can read the above figure as follows:
1. The first line, s1ow, represents the entire program run.

2. Beneath it, you see a call to the stride function, almost all of which was in single-threaded
compute (dark green).

3. The stride function itself spent most of that time on the line arr_out(i,j)=sqrt(...)
at slow.f90 line 114. 19.3% of the entire run was spent executing this line of code.

4. The 0.3% MPI time inside stride comes from an MPI_Barrier on line 121.

5. The next major function called from program slowisthe overlap function, seen at the bottom
of this figure. A more detailed breakdown is described in section 24. This function ran for 30.0%
of the total time, and almost all of this was in MPI calls.

Clicking on any line of the Stacks view jumps the Source Code view to show that line of code. This
makes it a very easy way to navigate and understand the performance of even complex codes.

The percentage MPI time gives an idea as to how well your program is scaling and shows the location
of any communication bottlenecks. As you discussed in section 18, any sloping blue edges represent
imbalance between processes or cores.

In the above example you can see that the MPI_Send call inside the overlap function has a sloping
trailing edge. This means that some processes took significantly longer to finish the call than others,
perhaps because they were waiting longer for their receiver to become ready.

Stacks view shows which lines of code spend the most time running, computing or waiting. As with most
places in the GUI you can hover over a line or chart for a more detailed breakdown.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 184
101136_2020_00_en

Arm Forge 20.2 21 OPENMP REGIONS VIEW

OpenMP Regions view

Input/Output Project Files ~ OpenMP Stacks = OpenMP Regions | Functions
OpenMP Regions
Total core time + Overhead Function(s) on line Source
~ & wave_openmp [program]
~ % update [OpenMP region 0] time mpi stop();
= do_math do_math (j) ;

newvalli] = (2.0 * values[i]) - oldvallil

~ 1 other
0.2% + (sqtau * (values[i-1] - (2.0 * values(il}) + values[i+1]}};
11.5% gyt o e —n 11.5% <unknown> from fusr/lib/x86_64-linux... <unkncwn> from fusr/lib/x86_64-linux-gnu/libgomp.so.1.0.0 (mo debug info)
4.9% if ((firsc + j - 1 == 1) || (first + j - 1 == cpoints))
~ 2 others
<0.1% | <0.1% allinea_parallel_end(handle, 1);
~ GOMP_parallel REAL (GOMP_parallel,

Figure 112: OpenMP Regions View

The OpenMP Regions view gives insight into the performance of every significant OpenMP region in
your program. Each region can be expanded just as in the Stacks view to see the performance of every line
beneath it across every core in your job. The sparkline graphs are described in detail in section 18.

Note: If you are using MPI and OpenMP, this view summarizes all cores across all nodes and not just
one node.

You can read the above figure as follows:

1. The most time-consuming parallel region is in the update function at line 207. Clicking on this
shows the region in the Source Code view.

2. This region spends most of its time in the do_math function. Hovering on the line or clicking on
the [-] symbol collapses the view down to show the figures for how much time.

3. Ofthelines of code inside do_math, the (sqtau * (values[i-1] ...) onetakeslongest
with 13.7% of the total core hours across all cores used in the job.

4. Calculating sqtau = tau * tau is the next most expensive line, taking 10.5% of the total
core hours.

5. Only 0.6% of the time in this region is spent on OpenMP overhead, such as starting/synchronizing
threads.

From this you can see that the region is optimized for OpenMP usage, that is, it has very low overhead. If
you want to improve performance you can look at the calculations on the lines highlighted in conjunction
with the CPU instruction metrics, in order to answer the following questions:

* Is the current algorithm is bound by computation speed or memory accesses? If the latter, you may
be able to improve cache locality with a change to the data structure layout.

 Has the compiler generated optimal vectorized instructions for this routine? Small things can pre-
vent the compiler doing this and you can look at the vectorization report for the routine to under-
stand why.

* Is there another way to do this calculation more efficiently now that you know which parts of it are
the most expensive to run?

See section 24 for more information on CPU instruction metrics.

Clicking on any line of the OpenMP Regions view jumps the Source Code view to show that line of
code.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 185
101136_2020_00_en

Arm Forge 20.2 21 OPENMP REGIONS VIEW

The percentage OpenMP synchronization time gives an idea as to how well your program is scaling to
multiple cores and highlights the OpenMP regions that are causing the greatest overhead. Examples of
things that cause OpenMP synchronization include:

* Poor load balancing, for example, some threads have more work to do or take longer to do it than
others. The amount of synchronization time is the amount of time the fastest-finishing threads wait
for the slowest before leaving the region. Modifying the OpenMP chunk size can help with this.

» Too many barriers. All time at an OpenMP barrier is counted as synchronization time. However,
omp atomic does not appear as synchronization time. This is generally implemented as a locking
modifier to CPU instructions. Overuse of the atomic operator shows up as large amounts of time
spent in memory accesses and on lines immediately following an atomic pragma.

* Overly fine-grained parallelization. By default OpenMP synchronizes threads at the start and end
of each parallel region. There is also some overhead involved in setting up each region. In general,
the best performance is achieved when outer loops are parallelized rather than inner loops. This
can also be alleviated by using the no_barrier OpenMP keyword if appropriate.

When parallelizing with OpenMP it is extremely important to achieve good single-core performance
first. If a single CPU core is already bottlenecked on memory bandwidth, splitting the computations
across additional cores rarely solves the problem.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 186
101136_2020_00_en

Arm Forge 20.2 22 FUNCTIONS VIEW

Functions view

Input/Output | Project Files =~ OpenMP Stacks = OpenMP Regions | Functions
Functions

Self time + Total Child Overhead Function
28.1% wu mobhit el kbbb sk o 88.3% 60.2% 116 update
11.7% L psi, s it we 11.7% 11.7% [OpenMP overhead (no region active)]
b L —— m wm 11.5% 11.5% <unknown> from /usr/lib/x86_64-linux-gnu/libgomp.s0.1.0.0
5.3% 48.6% 43.3% update [OpenMP region 0]
0.1% | 1 0.1% 0.1 GOMP_parallel
<0.1% 88.3% 883% 116 main

Figure 113: Functions View

The Functions view shows a flat profile of the functions in your program. The first three columns show
different measures of the time spent in a given function:

1. Self shows the time spent in code in the given function itself, but not its callees, that is, not in the
other functions called by that function.

2. Total shows the time spent in code in the given function itself, and all its callees.
3. Child shows the time spent in the given functions’s callees only.

You can use the Functions view to find costly functions that are called from many different places.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 187
101136_2020_00_en

Arm Forge 20.2 23 PROJECT FILES VIEW

Project Files view

- & application Code
vy

¥ Sources

» € simple.c
g oo |
® imbalance
® overlap
E

Figure 114: Project files view

The Project Files view offers an effective way to browse around and navigate through a large, unfamiliar
code base.

The project files view distinguishes between Application Code and External Code. You can choose which
folders count as application code by right-clicking. External Code is typically system libraries that are
hidden away at startup.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 188
101136_2020_00_en

Arm Forge 20.2 24 METRICS VIEW

Metrics View

This section describes how the metrics view works with the source code, the stacks and the project files
views to help you identify and understand performance problems.

Profiled: slow f on 16 processes. 2 nodes Sampled from: Fri Nov 15 11:57:48 2019 GMT for 55.9s Hide Metrics...

e _

CPU floating-point &0 " T R = - B
2T i \\ N / \K {
0 . \f s

287

Memory usage
120 MB

[}

11:57:48-11:58:43 (55.945s): Main thread compute 54.8 %, MPI1 45.2 % Zoom %1 =

Figure 115: Metrics view

The horizontal axis is wall clock time. By default three metric graphs are shown. The top-most is the Main
thread activity chart, which uses the same colors and scales as the per-line sparkline graphs described in
section 18. To understand the Main thread activity chart, read that section first.

For CUDA programs profiled with CUDA kernel analysis mode enabled a “warp stall reasons” graph
is also displayed. This shows the warp stalls for all CUDA kernels detected in the program, using the
same colors and scales as the GPU kernel graphs described in section 31.1). To understand the warp stall
reason chart, read that section first.

All of the other metric graphs show how single numerical measurements vary across processes and time.
Initially, two frequently used ones are shown: CPU floating-point and memory usage. However, there are
many other metric graphs available, and they can all be read in the same way. Each vertical slice of a graph
shows the distribution of values across processes for that moment in time. The minimum and maximum
are clear, and shading is used to display the mean and standard deviation of the distribution.

A thin line means all processes had very similar values. A ‘fat’ shaded region means there is significant
imbalance between the processes. Extra details about each moment in time appear below the metric
graphs as you move the mouse over them.

The metrics view is at the top of the GUI as it ties all the other views together. Move your mouse across
one of the graphs, and a black vertical line appears on every other graph in MAP, showing what was
happening at that moment in time.

You can also click and drag to select a region of time within it. All the other views and graphs now redraw
themselves to show just what happened during the selected period of time, ignoring everything else. This
is a useful way to isolate interesting parts of your application’s execution. To reselect the entire time
range just double-click or use the Select All button.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 189
101136_2020_00_en

Arm Forge 20.2 24 METRICS VIEW

File Edit View Metrics Window Help
Profiled: slow f on 16 processes, 2 nodes, 16 cores (1 per process) Sampled from: Thu Jun 11 11:54:00 2020 for 56.2s Hide Metrics...

Main thread activity

100

CPU floating-point “ R E |
22% \ \ \\‘\\ .
o [t T 5 T \\,

Memory usage 282

109 MB v
]
11:54:39-11:54:50 (11.289s, 20.1% of total): Main thread compute 8.6 %, MP1 91.4 %, File I/0 0.0 %, Sleeping % Zoom &1 = ®
¥ slowfo0 X Time spent on line 41 @&
2% . call MPT_SEND(a, size(a), MPI_REAL, 0, 1, MPI_COMM WORLD, ierr) ~ | Breakdown of the 4.4% time
8 else spent on this line:
hd io from=1,nprocs-1l Executing instructions 100.0% I

1 MPI_RECV (b, size(b), MPI_REAL, from, 1, MPI_COMM WORLD, stat, i
sgrt (b) *sgrt(b+1.1); |
r from",from, sum(b) Time in instructions executed:

Calling functions

Scalar floating-point 74.1% Il -
Input/Output Project Files Main Thread Stacks Functions
Main Thread Stacks [=]E3]
Total core time “ MPI Function(s) on line Source Position =
~ & slow_f [program]
v 7 slow program slow slow.fa0:1
- overlap call overlap slow.f90:12
50.4% .. 50.4% mpi_send_ call » END(a, size(a), MPI_REAL, 0, 1, MPI_corM_ .. slow.f90:37
21.5% B 21 5% mpi_send_ END(a, sizeia), M EAL, 0, 1, MPI_comM .. slow.fo0:57
19.2% —] 19.2% mpi_barrier_ I_BARRIER (MPI_COMM_WORLD, ierr) slow.f90:46
a4% 1,50: b=sgrt(b)*sgre(b+l.1); end do slow.f90:41
150 Ao i=1_50:h=sortibltsare (htl 1) :end do clow fan-R7 b’
Showing data from 3,216 samples taken over 16 processes (201 per process) & Main Thread View

Figure 116: Map with a region of time selected

In the above screenshot a short region of time has been selected around an interesting sawtooth in time
in MPI_BARRIER because PE 1 is causing delays. The first block accepts data in PE order, so is badly
delayed, the second block is more flexible, accepting data from any PE, so PE 1 can compute in paral-
lel. The Code View shows how compute and comms are serialized in the first block, but overlap in the
second.

There are many more metrics other than those displayed by default. Click the Metrics button or right-
click on the metric graphs and you can choose one of the following presets or any combination of the
metrics beneath them. You can return to the default set of metrics at any time by choosing the Preset:
Default option.

CPU instructions

The following sections describe the CPU instruction metrics available on each platform, x86_64, Armv8-
A, Power 8 and Power 9 systems.

Note: Due to differences in processor models, not all metrics are available on all systems.

Tip: When you select one or more lines of code in the code view, MAP will show a breakdown of the
CPU Instructions used on those lines. Section 19 describes this view in more detail.

CPU instruction metrics available on x86_64 systems

These metrics show the percentage of time that the active cores spent executing different classes of in-
struction. They are most useful for optimizing single-core and OpenMP performance.

CPU floating-point: The percentage of time each rank spends in floating-point CPU instructions. This
includes vectorized instructions and standard x87 floating-point. High values here suggest CPU-bound
areas of the code that are probably functioning as expected.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 190
101136_2020_00_en

Arm Forge 20.2 24 METRICS VIEW

CPU integer: The percentage of time each rank spends in integer CPU instructions. This includes vec-
torized instructions and standard integer operations. High values here suggest CPU-bound areas of the
code that are probably functioning as expected.

CPU memory access: The percentage of time each rank spends in memory access CPU instructions,
such as move, load and store. This also includes vectorized memory access functions. High values
here may indicate inefficiently-structured code. Extremely high values (98% and above) almost always
indicate cache problems. Typical cache problems include cache misses due to incorrect loop orderings
but may also include more subtle features such as false sharing or cache line collisions.

CPU floating-point vector: The percentage of time each rank spends in vectorized floating-point instruc-
tions. Optimized floating-point-based HPC code should spend most of its time running these operations.
This metric provides a good check to see whether your compiler is correctly vectorizing hotspots. See
section H.9 for a list of the instructions considered vectorized.

CPU integer vector: The percentage of time each rank spends in vectorized and integer instructions.
Optimized integer-based HPC code should spend most of its time running these operations. This metric
provides a good check to see whether your compiler is correctly vectorizing hotspots. See section H.9
for a list of the instructions considered vectorized.

CPU branch: The percentage of time each rank spends in test and branch-related instructions such as
test, cmp and je. An optimized HPC code should not spend much time in branch-related instructions.
Typically the only branch hotspots are during MPI calls, in which the MPI layer is checking whether a
message has been fully-received or not.

CPU instruction metrics available on Armv8-A systems

Note: These metrics are not available on virtual machines. Linux perf events performance events counters
must be accessible on all systems on which the target program runs.

The CPU instruction metrics available on Armv8-A systems are:

Cycles per instruction The number of CPU cycles to execute an instruction. It is less than 1 when the
CPU takes advantage of instruction-level parallelism.

L2 Data cache miss The percentage of data L2 cache accesses that result in a miss.

Branch mispredicts The rate of speculatively-executed instructions that do not retire due to incorrect
prediction.

Stalled backend cycles The percentage of cycles where no operation was issued because of the backend,
due to a lack of required resources. Data-cache misses can be responsible for this.

Stalled frontend cycles The percentage of cycles where no operation was issued because of the frontend,
due to fetch starvation. Instruction-cache and i-TLB misses can be responsible for this.

CPU instruction metrics available on IBM Power 8 systems

Note: These metrics are not available on virtual machines. Linux perf events performance events counters
must be accessible on all systems on which the target program runs.

The CPU instruction metrics available on IBM Power 8 systems are:

Cycles per instruction The number of CPU cycles to execute an instruction when the thread is not idle.
It is less than 1 when the CPU takes advantage of instruction-level parallelism.

CPU FLOPS lower bound The rate at which floating-point operations completed.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 191
101136_2020_00_en

Arm Forge 20.2 24 METRICS VIEW

Note: This is a lower bound because the counted value does not account for the length of vector opera-
tions.

CPU Memory Accesses The processor’s data cache was reloaded from local, remote, or distant memory
due to a demand load.

CPU FLOPS vector lower bound The rate at which vector floating-point instructions completed.

Note: This is a lower bound because the counted value does not account for the length of vector opera-
tions.

CPU branch mispredictions The rate of mispredicted branch instructions. This counts the number
of incorrectly predicted retired branches that are conditional, unconditional, branch and link, return or
eret.

CPU instruction metrics available on IBM Power 9 systems

Note: These metrics are not available on virtual machines. Linux perf events performance events counters
must be accessible on all systems on which the target program runs.

The CPU instruction metrics available on IBM Power 9 systems are:

Cycles per instruction The number of CPU cycles to execute an instruction when the thread is not idle.
It is less than 1 when the CPU takes advantage of instruction-level parallelism.

L3 cache miss per instruction The ratio of completed L.3 data cache demand loads to instructions.
Branch mispredicts The rate of branches that were mispredicted.

Stalled backend cycles The percentage of cycles where no operation was issued because of the backend,
due to a lack of required resources. Data-cache misses can be responsible for this.

CPU time

These metrics are particularly useful for detecting and diagnosing the impact of other system daemons
on your program’s run.

CPU time This is the percentage of time that each thread of your program was able to spend on a core.
Together with Involuntary context switches, this is a key indicator of oversubscription or interference
from system daemons. If this graph is consistently less than 100%, check your core count and CPU
affinity settings to make sure one or more cores are not being oversubscribed. If there are regular spikes
in this graph, show it to your system administrator and ask for their help in diagnosing the issue.

User-mode CPU time The percentage of time spent executing instructions in user-mode. This should be
close to 100%. Lower values or spikes indicate times in which the program was waiting for a system call
to return.

Kernel-mode CPU time Complements the above graph and shows the percentage of time spent inside
system calls to the kernel. This should be very low for most HPC runs. If it is high, show the graph to
your system administrator and ask for their help in diagnosing the issue.

Voluntary context switches The number of times per second that a thread voluntarily slept, for example
while waiting for an I/O call to complete. This is normally very low for a HPC code.

Involuntary context switches The number of times per second that a thread was interrupted while com-
puting and switched out for another one. This will happen if the cores are oversubscribed, or if other
system processes and daemons start running and take CPU resources away from your program. If this

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 192
101136_2020_00_en

Arm Forge 20.2 24 METRICS VIEW

graph is consistently high, check your core count and CPU affinity settings to make sure one or more
cores are not being oversubscribed. If there are regular spikes in this graph, show it to your system
administrator and ask for their help in diagnosing the issue.

System load The number of active (running or runnable) threads as a percentage of the number of physical
CPU cores present in the compute node. This value may exceed 100% if you are using hyperthreading,
if the cores are oversubscribed, or if other system processes and daemons start running and take CPU
resources away from your program. A value consistently less than 100% may indicate your program is
not taking full advantage of the CPU resources available on a compute node.

110

These metrics show the performance of the I/O subsystem from the application’s point of view. Corre-
lating these with the I/O time in the Application Activity chart helps to diagnose I/O bottlenecks.

POSIX I/0 read rate: The total I/O read rate of the application. This may be greater than Disk read
transfer if data is read from the cache instead of the storage layer.

POSIX I/0 write rate: The total I/O write rate of the application. This may be greater than Disk write
transfer if data is written to the cache instead of the storage layer.

Disk read transfer: The rate at which the application reads data from disk, in bytes per second. This
includes data read from network filesystems (such as NFS), but may not include all local I/O due to page
caching.

Disk write transfer: The rate at which the application writes data to disk, in bytes per second. This
includes data written to network filesystems.

POSIX read syscall rate: The rate at which the application invokes the read system call. Measured in
calls per second, not the amount of data transferred.

POSIX write syscall rate: The rate at which the application invokes the write system call. Measured
in calls per second, not the amount of data transferred.

Notes:

* Disk transfer and I/O metrics are not available on Cray X-series systems as the necessary Linux
kernel support is not enabled.

+ I/0O time in the Application Activity chart done via direct kernel calls will not be counted.

* Even if your application does not perform I/O, a non-zero amount of I/O will be recorded at the
start of profile because of internal I/O performed by MAP.

Memory

Here the memory usage of your application is shown in both a per-process and per-node view. Perfor-
mance degrades severely once all the node memory has been allocated and swap is required. Some HPC
systems, notably Crays, will terminate a job that tries to use more than the total node memory avail-
able.

Memory usage: The memory in use by the processes currently being profiled. Memory that is allocated
and never used is generally not shown. Only pages actively swapped into RAM by the OS are displayed.
This means that you will often see memory usage ramp up as arrays are initialized. The slopes of these
ramps can be interesting in themselves.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 193
101136_2020_00_en

Arm Forge 20.2 24 METRICS VIEW

Note: This means that if you malloc or ALLOCATE a large amount of memory but do not actually use
it the Memory Usage metric will not increase.

Node memory usage: The percentage of memory in use by all processes running on the node, including
operating system processes and user processes not in the list of selected ranks when specifying a subset
of processes to profile. If node memory usage is far below 100% then your code may run more efficiently
using fewer processes or a larger problem size. If it is close to or reaches 100% then the combination of
your code and other system daemons are exhausting the physical memory of at least one node.

MPI

A detailed range of metrics offering insight into the performance of the MPI calls in your application.
These are all per-process metrics and any imbalance here, as shown by large blocks with sloped means,
has serious implications for scalability.

Use these metrics to understand whether the blue areas of the Application Activity chart are problematic or
are transferring data in an optimal manner. These are all seen from the application’s point of view.

An asynchronous call that receives data in the background and completes within a few milliseconds will
have a much higher effective transfer rate than the network bandwidth. Making good use of asynchronous
calls is a key tool to improve communication performance.

In multithreaded applications, MAP only reports MPI metrics for MPI calls from main threads. If an
application uses MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE, the Application Activity
chart will show MPI activity, but some regions of the MPI metrics may be empty if the MPI calls are from
non-main threads.

MPI call duration: This metric tracks the time spent in an MPI call so far. PEs waiting at a barrier (MPI
blocking sends, reductions, waits and barriers themselves) will ramp up time until finally they escape.
Large areas show lots of wasted time and are prime targets for investigation. The PE with no time spent
in calls is likely to be the last one to arrive, so should be the focus for any imbalance reduction.

MPI sent/received: This pair of metrics tracks the number of bytes passed to MPI send/receive func-
tions per second. This is not the same as the speed with which data is transmitted over the network, as
that information is not available. This means that an MPI call that receives a large amount of data and
completes almost instantly will have an unusually high instantaneous rate.

MPI point-to-point and collective operations: This pair of metrics tracks the number of point-to-point
and collective calls per second. A long shallow period followed by a sudden spike is typical of a late
sender. Most processes are spending a long time in one MPI call (very low #calls per second) while one
computes. When that one reaches the matching MPI call it completes much faster, causing a sudden spike
in the graph.

Note: For more information about the MPI standard definitions for these types of operations, see chapters
3 and 5 in the MPI Standard (version 2.1).

MPI point-to-point and collective bytes: This pair of metrics tracks the number of bytes passed to MPI
send and receive functions per second. This is not the same as the speed with which data is transmitted
over the network, as that information is not available. This means that an MPI call that receives a large
amount of data and completes almost instantly will have an unusually high instantaneous rate.

Note: (for SHMEM users) MAP shows calls to shmem_barrier_all in MPI collectives, MPI calls
and MPI call duration. Metrics for other SHMEM functions are not collected.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 194
101136_2020_00_en

https://www.mpi-forum.org/docs/mpi-2.1/mpi21-report.pdf

Arm Forge 20.2 24 METRICS VIEW

Detecting MPI imbalance

The metrics view shows the distribution of their value across all processes against time, so any ‘fat’
regions are showing an area of imbalance in this metric. Analyzing imbalance in MAP works like
this:

1. Look at the metrics view for any ‘fat’ regions. These represent imbalance in that metric during that
region of time. This tells us (A) that there is an imbalance, and (B) which metrics are affected.

2. Click and drag on the metrics view to select the ‘fat’ region, zooming the rest of the controls in to
just this period of imbalance.

3. Now the stacks view and the source code views show which functions and lines of code were
being executed during this imbalance. Are the processes executing different lines of code? Are
they executing the same one, but with differing efficiencies? This tells us (C) which lines of code
and execution paths are part of the imbalance.

4. Hover the mouse over the fattest areas on the metric graph and watch the minimum and maximum
process ranks. This tells us (D) which ranks are most affected by the imbalance.

Now you know (A) whether there is an imbalance and (B) which metrics (CPU, memory, FPU, 1/0) it
affects. You also know (C) which lines of code and (D) which ranks to look at in more detail.

Often this is more than enough information to understand the immediate cause of the imbalance (for
example, late sender, workload imbalance) but for a deeper view you can now switch to DDT and rerun
the program with a breakpoint in the affected region of code. Examining the two ranks highlighted as
the minimum and maximum by MAP with the full power of an interactive debugger helps get to the root
cause of the imbalance behavior.

Accelerator

If you have Arm Forge Professional, the NVIDIA CUDA accelerator metrics are enabled on x86_64.
Please contact Arm Sales at HPCToolsSales@arm.com for information on how to upgrade.

Note: Accelerator metrics are not available when linking to the static MAP sampler library.

GPU utilization: Percent of time that the GPU card was in use, that is, one or more kernels are executing
on the GPU card. If multiple cards are present in a compute node this value is the mean across all the cards
in a compute node. Adversely affected if CUDA kernel analysis mode is enabled (see section 31.1).

GPU memory usage: The memory allocated from the GPU frame buffer memory as a percentage of the
total available GPU frame buffer memory.

Energy

The energy metrics are only available with Arm Forge Professional. All metrics are measured per node.
If you are running your job on more than one node, MAP shows the minimum, mean and maximum
power consumption of the nodes.

Note: energy metrics are not available when linking to the static MAP sampler library.

GPU power usage: The cumulative power consumption of all GPUs on the node, as measured by the
NVIDIA on-board sensor. This metric is available if the Accelerator metrics are present.

CPU power usage: The cumulative power consumption of all CPUs on the node, as measured by the
Intel on-board sensor (Intel RAPL).

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 195
101136_2020_00_en

mailto:HPCToolsSales@arm.com

Arm Forge 20.2 24 METRICS VIEW

System power usage: The power consumption of the node as measured by the Intel Energy Checker or
the Cray metrics.

Requirements

CPU power measurement requires an Intel CPU with RAPL support, for example Sandy Bridge or newer,
and the intel_rapl powercap kernel module to be loaded.

Node power monitoring is implemented through one of two methods: the Arm IPMI energy agent which
can read IPMI power sensors, or the Cray HSS energy counters.

For more information on how to install the Arm IPMI energy agent please see 1.7 Arm IPMI Energy Agent.
The Cray HSS energy counters are known to be available on Cray XK6 and XC30 machines.

Accelerator power measurement requires a NVIDIA GPU that supports power monitoring. This can be
checked on the command-line with nvidia-smi -q -d power. If the reported power values are
reported as “N/A”, power monitoring is not supported.

Lustre

Lustre metrics are enabled if your compute nodes have one or more Lustre filesystems mounted. Lustre
metrics are obtained from a Lustre client process running on each node. Therefore, the data presented
gives the information gathered on a per-node basis. The data presented is also cumulative over all of
the processes run on a node, not only the application being profiled. Therefore, there may be some data
reported to be read and written even if the application itself does not perform file I/O through Lustre.
However, an assumption is made that the majority of data read and written through the Lustre client will
be from an I/O intensive application, not from background processes. This assumption has been observed
to be reasonable. For generated application profiles with more than a few megabytes of data read or
written, almost all of the data reported in Arm MAP is attributed to the application being profiled.

The data that is gathered from the Lustre client process is the read and write rate of data to Lustre, as
well as a count of some metadata operations. Lustre does not just store pure data, but associates this
data with metadata, which describes where data is stored on the parallel file system and how to access it.
This metadata is stored separately from data, and needs to be accessed whenever new files are opened,
closed, or files are resized. Metadata operations consume time and add to the latency in accessing the
data. Therefore, frequent metadata operations can slow down the performance of I/O to Lustre. Arm
MAP reports on the total number of metadata operations, as well as the total number of file opens that are
encountered by a Lustre client. With the information provided in Arm MAP you can observe the rate at
which data is read and written to Lustre through the Lustre client, as well as be able to identify whether
a slow read or write rate can be correlated to a high rate of expensive metadata operations.

Notes:
* For jobs run on multiple nodes, the reported values are the mean across the nodes.

+ If you have more than one Lustre filesystem mounted on the compute nodes the values are summed
across all Lustre filesystems.

* Metadata metrics are only available with Arm Forge Professional.
Lustre read transfer: The number of bytes read per second from Lustre.
Lustre write transfer: The number of bytes written per second to Lustre.

Lustre file opens: The number of file open operations per second on a Lustre filesystem.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 196
101136_2020_00_en

Arm Forge 20.2 24 METRICS VIEW

Lustre metadata operations: The number of metadata operations per second on a Lustre filesystem.
Metadata operations include file open, close and create as well as operations such as readdir, rename, and
unlink.

Note: depending on the circumstances and implementation ‘file open’ may count as multiple operations,
for example, when it creates a new file or truncates an existing one.

Zooming

To examine a small time range in more detail you can horizontally zoom in the metric graphs by selecting
the time-range you wish to see then left-clicking inside that selected region.

All the metric graphs will then resize to display that selection in greater detail. This only effects the metric
graphs, as the graphs in all the other views, such as the code editor, will already have redrawn to display
only the selected region when that selection was made.

A right-click on the metric graph zooms the metric graphs out again.

This horizontal zoom is limited by the number of samples that were taken and stored in the MAP file.
The more you zoom in the more ‘blocky’ the graph becomes.

While you can increase the resolution by instructing MAP to store more samples (see ALLINEA_SAMPLER_
NUM_SAMPLES and ALLINEA_SAMPLER_INTERVAL in 16.11 MAP environment variables) this is
not recommended as it may significantly impact performance of both the program being profiled and of
MAP when displaying the resulting . map file.

You can also zoom in vertically to better see fine-grained variations in a specific metric’s values. The
auto-zoom button beneath the metric graphs will cause the graphs to automatically zoom in vertically
to fit the data shown in the currently selected time range. As you select new time ranges the graphs
automatically zoom again so that you see only the relevant data.

If the automatic zoom is insufficient you can take manual control of the vertical zoom applied to each
individual metric graph. Holding down the CTRL key (or the CMD key on Mac OS X), while either
dragging on a metric graph or using the mouse-wheel while hovering over one, will zoom that graph
vertically in or out, centered on the current position of the mouse.

A vertically-zoomed metric graph can be panned up or down by either holding down the SHIFT key while
dragging on a metric graph or just using the mouse-wheel while hovering over it. Manually adjusting
either the pan or zoom will disable auto-zoom mode for that graph, click the auto-zoom button again to
reapply it.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 197
101136_2020_00_en

Arm Forge 20.2

24 METRICS VIEW

zoom in/out

Ctrl + Drag on a metric graph.

Action Usage Description
Select Drag a range in a metric | Selects a time range to examine. Many
graph. components (but not the metric graphs) will
rescale to display data for this time range only.
Reset Click the Reset icon (under | Selects the entire time range. All components
the metric graphs). (including the metric graphs) will rescale to
< display the entire set of data. All metric
graphs will be zoomed out.
Horizontal Left click aselectioninamet- | Zoom in (horizontally) on the selected time
zoom in ric graph. range.
Horizontal Right-click a metric graph. Undo the last horizontal zoom in action.
zoom out
Vertical Ctrl + mouse scroll wheel or | Zoom a single metric graph in or out.

Vertical pan | Mouse scroll wheel or | Pan a single metric graph up or down.
Shift+Drag on a metric
graph.
Automatic Toggle the Automatic Ver- | Automatically change the zoom of each met-
vertical tical Zoom icon (under the | ric graph to best fit the range of values each
zoom metric graphs). graph contains in the selected time range.
_ Manually panning or zooming a graph will
al disable auto vertical zoom for that graph only.

Viewing totals across processes and nodes

The metric graphs show the statistical distribution of the metric across ranks or compute nodes (depending
on the metric). So, for example, the Nodes power usage metric graph shows the statistical distribution of
power usage of the compute nodes.

If you hover the mouse over the name of a metric to the left hand side of the graph MAP will display a
tool tip with additional summary information. The tool tip will show you the Minimum, Maximum, and
Mean of the metric across time and ranks or nodes.

For metrics which are not percentages the tool tip will also show the peak sum across ranks / nodes. For
example, the Maximum (3 all nodes) line in the tool tip for Nodes power usage shows the peak power
usage summed across all compute nodes. This does not include power used by other components, for
example, network switches.

For some metrics which are rates (for example, Lustre read transfer) MAP will also show the cumulative
total across all ranks / nodes in the tool tip, for example, Lustre bytes read (>, all nodes).

Custom metrics
Custom metrics can be written to collect and expose additional data (for example, PAPI counters) in the
metrics view.

User custom metrics should be installed under the appropriate path in your home directory, for exam-
ple, /home/your_user/.allinea/map/metrics. Custom metrics can also be installed for

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.
101136_2020_00_en

198

Arm Forge 20.2 24 METRICS VIEW

all users by placing them in the MAP installation directory, for example, /arm-installation-
directory/map/metrics. If a metric is installed in both locations, the user installation will take
priority.

Detailed information on how to write custom metrics can be found in supplementary documentation
bundled with the Arm Forge installation inallinea-metric-plugin-interface.pdf.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 199
101136_2020_00_en

Arm Forge 20.2 25 CONFIGURABLE PERF METRICS

Configurable Perf metrics

Note: This feature is available to use only in Arm Forge Professional. Contact Arm Sales at HPC-
ToolsSales@arm.com for details on how to upgrade.

The Perf metrics use the Linux kernel perf_event_open() system call to provide additional CPU
related metrics available for MAP. They can be used on any system supported by the Linux perf command
(also called perf_event). These cannot be tracked on typical virtual machines.

Note: You cannot use configurable Perf metrics when collecting PAPI metrics. Use the PAPI installation
script to uninstall PAPI metrics if required. Additionally, the following features are disabled when using
configurable Perf metrics:

» CPU instruction metrics on Armv8-A (section 24.1.2).
» CPU instruction metrics on IBM Power systems (section 24.1.3 and section 24.1.4).

Perf metrics count the rate of one or more performance events that occur in a program. There are some
software events that the Linux kernel provides, but most are hardware events tracked by the Performance
Monitoring Unit (PMU) of the CPU. Generalized hardware events are event name aliases that the Linux
kernel identifies.

The quantity and combinations (in some cases) of events that can be simultaneously tracked is limited by
the hardware. This feature does not support multiplexing performance events.

If the set of events you requested can not be tracked at the same time, MAP ends the profiling session
immediately with an error message. Try requesting fewer events, or a different combination. See the
PMU reference manual for your architecture for more information on incompatible events.

Permissions

On some systems, using Perf hardware counters can be restricted by the value of /proc/sys/ker -
nel/perf_event_paranoid.

perf_event_paranoid | Description
3 Disable use of Perf events
2 Allow only user-space measurements
1 Allow kernel and user-space measurements
0] Allow access to CPU-specific data, but not raw trace-point sam-
ples.
-1 No restrictions

The value of /proc/sys/kernel/perf_event_paranoid must be 2 or lower to collect Perf
metrics. To set this until the next reboot, run the following commands:

sudo sysctl -w kernel.perf_event_paranoid=2

To permanently set the paranoid level, add the following line to /etc/sysctl.conf:

kernel.perf_event_paranoid=2

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 200
101136_2020_00_en

mailto:HPCToolsSales@arm.com
mailto:HPCToolsSales@arm.com

Arm Forge 20.2 25 CONFIGURABLE PERF METRICS

Probing target hosts

You must probe an example of a typical host machine before using these metrics. As well as other
properties, this collects the CPU ID used to identify the set of potential hardware events for the host, and
tests which generalized events are supported.

Ensure that /proc/sys/kernel/perf_event_paranoid is set to 2 or lower (Permissions) be-
fore performing the probe.

Note: It is not necessary to probe every potential host, a single compute node in a homogeneous cluster
is sufficient.

If your home directory is writable, you can generate a probe file and install it in your config directory by
running the following on the intended host:

/path/to/forge/bin/forge-probe --install=user

If the Forge installation directory is writable, you can generate and install the probe file for the current
host with:

/path/to/forge/bin/forge-probe --install=global

To generate the probe file, but install it manually, execute:

/path/to/forge/bin/forge-probe

The probe is named <hostname>_probe. json and is generated in your current working directory.
You must manually copy it to the location specified in the forge-probe output. This is typically only
necessary when the compute node that you are probing does not have write access to your home file
system.

Check that the expected probe files are correctly installed with:
/path/to/forge/bin/map --target-host=list

This shows something like:

0x0000000042015160 (thunderx2) e.g. node07.myarmhost.com
GenuineIntel-6-4E (skylake) e.g. nodedl.myintelhost.com

If you have exactly one probe file installed, this is automatically assumed to be the target host. If there are
multiple installed probe files, you must specify the intended target whenever you use the configurable Perf
metrics feature. When using the command line, use the - -target-host argument. You can specify
the intended target CPU ID (such as, @x0000000042015160), family name (such as, thunderx2),
or a unique substring of the hostname (myarmhost).

Specifying Perf metrics via the command line

You can list available events for a given probed host using:

/path/to/forge/bin/map --target-host=myarmhost --perf-metrics=avail

Note: Use 1ist instead of avail to see the events listed on separate lines.
Specify the events you want using a semicolon separated list:

/path/to/forge/bin/map --profile --target-host=myarmhost \
--perf-metrics="cpu-cycles; bus-cycles; instructions" mpirun

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 201
101136_2020_00_en

Arm Forge 20.2 25 CONFIGURABLE PERF METRICS

Specifying Perf metrics via a file

The - -perf-metrics argument can also take the name of a plain text file:

/path/to/forge/bin/map --profile --target-host=myhost \
--perf-metrics=./myevents.txt mpirun

myevents. txt lists the events to track on separate lines, such as:

cpu-cycles
bus-cycles
instructions

--perf-metrics=template outputs a more complex template that lists all possible events with
accompanying descriptions. Redirect this output to a file and uncomment the events to track, for exam-
ple:

/path/to/forge/bin/map --target-host=myhost \
--perf-metrics=template > myevents.txt

vim myevents. txt

/path/to/forge/bin/map --profile --perf-metrics=myevents.txt \
mpirun

Specifying Perf metrics via the run window

1. Click Configure Perf metrics in the Run window to open the Perf metrics configuration window.

Configure Perf Metrics X

Target Host: | node0201.cluster (cpu id) ~

Filter available events: | All ~ | |Filter by event name o
Available Events Selected Events

branch-instructions (Generalized hardware) cpu-cycles (Generalized hardware)

Retired branch instructions Total cycles. beware CPU frequency scaling

branch-misses (Generalized hardware)
Mispredicted branch instructions

bus-cycles (Generalized hardware)
Bus cycles

cache-misses (Generalized hardware)
Cache misses, usually last level

cache-references (Generalized hardware)
Cache accesses, usually last level

>

<
instructions (Generalized hardware)
Retired instructions, beware hardware interrupt counts.

ref-cycles (Generalized hardware)
Total cycles, not affected by CPU frequency scaling

stalled-cycles-backend (Generalized hardware)
Stalled cycles during retirement

stalled-cycles-frontend (Generalized hardware)
Stalled cycles during issue

L1-dcache-load-misses (Generalized hardware cache)
L1 data cache miss, read

L1-dcache-loads (Generalized hardware cache) 4
4 »

Command Line: --perf-metrics="cpu-cycles; branch-misses" —target-host="0x00000000410fd080"

5 SHelp o 0k X cancel

Figure 117: Configure Perf metrics window

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 202
101136_2020_00_en

Arm Forge 20.2 25 CONFIGURABLE PERF METRICS

2. Select the target host from the list of installed hosts (see 25.2) in the drop-down menu at the top.
3. Double-click an event, or use the arrow buttons to add or remove events from this list.

Note: On the left of the window is the list of Perf events available on the currently selected host,
and on the right is the list of events you have selected for tracking.

4. Filter the list of available events by typing a substring of characters in the Filter box.

Note: the bottom of the window displays a preview of the section of the command line with the
- -perf-metrics=command, based on the currently selected list of events.

5. In the File menu, open the perf metric selection dialog to help you construct a suitable - - perf -
metrics=command line without starting a job, that you can copy into a queue submission script.

Viewing events

You can view Perf event counts in the Metrics view (24) under the Linux Perf CPU events preset.
All these metrics are reported as events per second with a suitable SI prefix (such as, K, M, G) that is
automatically determined.

You can view the total number of events (over the entire program, or just within a selected time range) in
the tooltip of the legend.

Advanced configuration

You can override the default settings used by MAP when making perf_event_open calls. Specify
one or more flags in a preamble section in square brackets at the start of the perf metrics definition string
(either on the command line or at the top of a template file).

/path/to/forge/bin/map --profile --target-host=myarmhost \
--perf-metrics="[optional, noinherit]; instructions; cpu-cycles"

Possible options are:

* [optional]: Do not abort the program if the requested metrics cannot be collected. Set this if you
wish to continue profiling even if the no Perf metric results is returned.

* [noinherit]: Disable multithreading support (new threads will not inherit the event counter con-
figuration). If you specified events, they are only collected on the main thread (in the case of MPI
programs, the thread that called MPI_thread_init).

* [nopinned]: Disable pinning events on the PMU. If you have specified this, event counting might
be multiplexed. Arm does not recommend doing this as it interacts poorly with the Forge sampling
strategy.

* [noexclude=kernel]: Do not exclude kernel events that happen in kernel space. This might require
a more permissive perf_event_paranoid level.

* [noexclude=hv]: Do not exclude events that happen in the hypervisor. This is mainly for PMUs
that have built-in support for handling this (such as IBM Power). Most machines require extra
support for handling hypervisor measurements.

* [noexclude=idle]: Do not exclude counting software events when the CPU is running the idle task.
This is only relevant for software events.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 203
101136_2020_00_en

Arm Forge 20.2 26 PAPI METRICS

PAPI metrics

Note: Arm Forge Professional is required to make use of this feature. Please contact Arm Sales at
HPCToolsSales@arm.com for details on how to upgrade.

The PAPI metrics are additional metrics available for MAP which use the Performance Application Pro-
gramming Interface (PAPI). They can be used on any system supported by PAPI.

Note: In this release PAPI metrics will be collected from the main thread only.

Due to the limitations of PAPI, some metrics may be unavailable on your system. MAP displays all
available metrics and where metrics are not available error messages are displayed.

As there is a limit on the type and number of events that can be counted together, PAPI metrics have been
split up into small groups of compatible events, so that the user can choose which events to view.

To change which group of metrics MAP uses, navigate to the directory indicated on completion of the
installation process and modify the PAPI.config file.

Installation
To use these metrics, download and install PAPI from http://icl.cs.utk.edu/papi/index.html. Then run the
metrics installer papi_install. sh from the Arm Forge directory.

These metrics can be uninstalled by running the metrics installer papi_install. sh again.

PAPI config file

Once installation has completed, edit the PAPI . conf1ig file to set your configuration as required.

By default a template PAPI . config fileis provided in your installation directory at /arm_installation_
directory/map/metrics. Alternatively, the PAPI.conf1ig file can be located inside your con-
figuration directory as set by the ALLINEA_CONFIG_DIR environment variable. By default your con-
figuration directory is \$HOME/ . allinea.

Touse a PAPI.config file located elsewhere, set and export the ALLINEA_PAPI_CONFIG environ-
ment variable to point to your PAPI .config file. For example:

export ALLINEA_PAPI_CONFIG=/opt/arm/forge/20.2/map/metrics/PAPI.config.
This needs to be set before running MAP.

If you are using a queuing system, be sure that the ALLINEA_PAPI_CONFIG variable is set and ex-
ported to all the compute nodes, by adding the ALLINEA_PAPI_CONFIG export line to the job script
before the MAP command line.

The PAPI config file contains all the metrics sets that can be used and the location of it has been indicated
at the end of the installation process. The default metric set is Overview. If you want to use another
PAPI metrics set, modify the value of the variable called set to the desired PAPI metrics set of either
CacheMisses, BranchPrediction or FloatingPoint

PAPI overview metrics

This group of metrics gives a basic overview of the program which has been profiled.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 204
101136_2020_00_en

mailto:HPCToolsSales@arm.com
http://icl.cs.utk.edu/papi/index.html

Arm Forge 20.2 26 PAPI METRICS

DP FLOPS: The number of double precision floating-point operations performed per second. This uses
the PAPI_DP_OPS (double precision floating-point operations) event. What it actually counts differs
across architectures. Additionally, there are many caveats surrounding this PAPI preset on Intel architec-
tures. See http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops for more details.

Cycles per instruction: The number of CPU cycles per instruction executed. This uses the PAPI_TOT_CYC
(total cycles) and PAPI_TOT_INS (total instructions) events.

L2 data cache misses: The number of 1.2 data cache misses per second. This uses the PAPI_L2_DCM
(L2 data cache misses) event. This metric is only available in this preset if the system has enough hardware
counters (5 at least) to collect the required events.

PAPI cache misses

This group of metrics focuses on cache misses at various levels of cache.

L1 cache misses: The number of L.1 cache misses per second. This uses the PAPI_L.1_TCM (L1 total
cache misses) event, although if this event is unavailable the L1 data cache misses metric (using the
PAPI_L1_DCM event) will be displayed instead.

L2 cache misses: The number of L2 cache misses per second. This uses the PAPI_L2_TCM (L2 total
cache misses) event, although if this event is unavailable the L2 data cache misses metric (using the
PAPI_L2_DCM event) will be displayed instead.

L3 cache misses: The number of L.3 cache misses per second. This uses the PAPI_L3_TCM (L3 total
cache misses) event, although if this event is unavailable the L3 data cache misses metric (using the
PAPI_L3_DCM event) will be displayed instead.

PAPI branch prediction

This group of metrics focuses on branch prediction instructions.

Branch instructions: The number of branch instructions per second. This uses the PAPI_BR_INS
(branch instructions) event.

Mispredicted branch instructions: The number of conditional branch instructions that are mispredicted
each second. This uses the PAPI_BR_MSP (mispredicted branch instructions) event.

Completed instructions: The number completed instructions per second. This uses the PAPI_TOT_INS
event, and is included to provide context for the above other metrics in this group.

PAPI floating-point

This group of metrics focuses on floating-point instructions.

Floating-point scalar instructions: The number of scalar floating-point instructions per second. This
uses the PAPI_FP_INS event.

Floating-point vector instructions: The number of vector floating-point instructions per second. This
uses the PAPI_VEC_SP (single-precision vectorized instructions) and PAPI_VEC_DP (double-precision
vectorized instructions) events, although if those events are unavailable the Vector Instructions metric
will be displayed instead.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 205
101136_2020_00_en

http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops

Arm Forge 20.2 26 PAPI METRICS

Vector instructions: The number of vector instructions (floating-point and integer) per second. This
uses the PAPI_VEC_INS event, but is only displayed if the events needed for the Floating-point vector
instructions metric are not available.

Completed instructions: The number completed instructions per second. This uses the PAPI_TOT_INS
event, and is included to provide context for the above other metrics in this group.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 206
101136_2020_00_en

Arm Forge 20.2 27 MAIN-THREAD, OPENMP AND PTHREAD VIEW MODES

Main-thread, OpenMP and Pthread view modes

The percentage values and activity graphs shown alongside the source code and in the Stacks, OpenMP
Regions and Functions views can present information for multithreaded programs in a variety of different
ways.

MAP will initially choose the most appropriate view mode for your program. However, in some cases,
for example such as when you have written a program to use raw pthreads rather than OpenMP, you may
wish to change the mode to get a different perspective on how your program is executing multiple threads
and using multiple cores. You can switch between view modes from the View menu.

Main thread only mode

In this view mode only the main thread from each process is displayed; the presence of any other thread
is ignored. A value of 100% for a function or line means that all the processes’ main threads are at that
location. This is the best mode to use when exploring single-threaded programs and programs that are
unintentionally/indirectly multithreaded (that is, recent implementations of both Open MPI and CUDA
will start their own thread).

This is the default mode for all non-OpenMP programs. The OpenMP Regions tab is not displayed in
this mode.

Note that the CPU instruction metric graphs (showing the proportion of time in various classes of CPU
instructions: such as integer, floating-point, and vector) are not restricted to the main thread when in the
Main thread only view mode. These metric graphs always represent the data gathered from all the CPU
cores.

OpenMP mode

This view mode is optimized for interpreting programs where OpenMP is the primary source of mul-
tithreaded activity. Percentage values and activity graphs for a line or function indicate the proportion
of the available resources that are being used on that line. For serial code on a main thread this is the
proportion of processes at that location, for OpenMP code the contribution from each process is further
broken down by the proportion of CPU cores running threads that are at that location in the code.

For example, a timeslice of an activity graph showing 50% dark green (serial, main-thread computation)
and 50% light green (computation in an OpenMP region) means that half the processes were in serial
code and half the processes were in an OpenMP region. Of the processes in an OpenMP region 100% of
the available cores (as determined by the cores per process value, see 28 Processes and cores view) were
being used for OpenMP.

This is the default mode for OpenMP programs. It is only available for programs where MAP detected
an OpenMP region.

Pthread mode

This view mode is optimized for interpreting programs that make explicit use of pthreads. Percentage
values and activity graphs reflect the proportion of CPU cores that are being used out of the maximum
number of expected cores per process, see 28 Processes and cores view.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 207
101136_2020_00_en

Arm Forge 20.2 27 MAIN-THREAD, OPENMP AND PTHREAD VIEW MODES

A value of 100% for a function or line means that 100% of the expected number of CPU cores per process
were working at that location. The main thread’s contribution gets no special attention so activity on the
main thread(s) will appear the same height as activity from any other thread.

The advantage of this is that it makes it obvious when the program is not making full use of all the
CPU cores available to it. But it has the downside of it being harder to analyze the performance of the
intentionally serial sections of code performed by each process. This is because activity occurring only
on one thread per process will be restricted to at most 1/n* of a percentage value or height on an activity
graph, where n is the number of cores per process.

This mode is not used by default so must be explicitly selected. It is only available for multithreaded
programs.

The OpenMP Regions tab is not displayed in this mode.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 208
101136_2020_00_en

Arm Forge 20.2 28 PROCESSES AND CORES VIEW

Processes and cores view

Processes and Cores x

Performance data for wave openmp is being shown for:
16 nodes
256 processes
1,024 cores (showing data for |4 |+ | cores per process)
Each node has at most 4 physical cores.
Data was recorded for 4 cores per process. You can show

data for more or fewer cores per process by changing the
value above.

Help oK Cancel

Figure 118: Process and Cores Window

Most modern CPUs support hyperthreading and report multiple logical cores for each physical core.
Some programs run faster when scheduling threads or processes to use these hyperthreaded cores, while
most HPC codes run more slowly. Rather than show all of the sparklines at half-height simply because
the hyperthreaded cores are (wisely) not being used, MAP tries to detect this situation and will rescale its
expectations to the number of physical cores used by your program.

If this heuristic goes wrong for any reason you will see large portions of unusual colors in your sparklines
and the application activity chart (for example, bright red). When that happens, open this dialog and
increase the cores per process setting.

You can find this dialog via the View — Processes and Cores menu or by clicking on the X
cores (Y per process) hyperlinked text in the application details section above the metric graphs.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 209
101136_2020_00_en

Arm Forge 20.2 29 RUNNING MAP FROM THE COMMAND LINE

Running MAP from the command line

MAP can be run from the command line with the following arguments:

--no-mpi

Run MAP with 1 process and without invoking mpirun, mpiexec, or equivalent.
- -gqueue

Force MAP to submit the job to the queueing system.

--No-queue

Run MAP without submitting the job to the queueing system.

--view=VIEW

Start MAP using VIEW as the default view. VIEW must be one of (main|pthread|openmp). If the
selected view is not available, the main view will be displayed.

- -export=0UTPUT.json PROFILEDATA.map

Export PROFILEDATA.map to OUTPUT. json in JSON format, without user interaction. For the for-
mat specification see 30.1 JSON format.

--profile

Generate a MAP profile but without user interaction. This will not display the MAP GUI. Messages
are printed to the standard output and error. The job is not run using the queueing system unless used in
conjunction with - -queue. When the job finishes a map file is written and its name is printed.

--export-functions=FILE

Export all the profiled functions to FILE. Use this in conjunction with - -profile. The output should
be CSV file name. Examples:

map --profile --export-functions=foo.csv ...

--start-after=TIME

Start profiling TIME seconds after the start of your program. Use this in conjunction with - -stop-
after=TIME to focus MAP on a particular time interval of the run of your program.

--stop-after=TIME

Stop profiling TIME seconds after the start of your program. This will terminate your program and
proceed to gather the samples taken after the time given has elapsed.

When running without the GUI, normal redirection syntax can be used to read data from a file as a source
for the executable’s standard input. Examples:

cat <input-file> | map --profile
map --profile ... < <input-file>
Normal redirection can also be used to write data to a file from the executable’s standard output:
map --profile ... > <output-file>
For OpenMP jobs, simply use the OMP_NUM_THREADS environment variable (or leave it blank) exactly

as you usually would when running your application. There is no need to pass the number of threads to
MAP as an argument.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 210
101136_2020_00_en

Arm Forge 20.2 29 RUNNING MAP FROM THE COMMAND LINE

OMP_NUM_THREADS=8 map --profile ... > <output-file>
--enable-metrics=METRICS
--disable-metrics=METRICS

Allows you to specify comma-separated lists which explicitly enable or disable metrics for which data
is to be collected. If the metrics specified cannot be found, or if a metric is both enabled and disabled,
an error message is displayed and MAP exits. Metrics which are always enabled or disabled cannot be
explicitly disabled or enabled, respectively. A metrics source library which has all its metrics disabled,
either in the XML definition or via - -disable-metrics, will not be loaded. Metrics which can be
explicitly enabled or disabled can be listed using the - -1ist-metrics option.

The enabled/disabled metrics settings do not persist when running MAP without the GUI, so they will
need to be specified for each profiling session. When running MAP in GUI mode, the effect of these
settings will be displayed in the Metrics section of the run dialog, where the user can further refine their
settings. These settings will then persist to the next GUI session.

--cuda-kernel-analysis

Enables CUDA kernel analysis mode, providing line level profiling information on CUDA kernels run-
ning on a GPU at the cost of potentially significant overhead. See section 31.

Profiling MPMD programs

The easiest way to profile MPMD programs is by using Express Launch to start your application.

To use Express Launch, simply prefix your normal MPMD launch line with map. For example, to profile
an MPMD application without user interaction you can use:

map --profile mpirun -n 1 ./master : -n 2 ./worker

For more information on Express Launch, and compatible MPI implementations, see section 16.1.

Profiling MPMD programs without Express Launch

The command to create a profile from an MPMD program using MAP is:
map <map mode> --np=<#processes> --mpiargs=<MPMD command> <one
MPMD program>
This example shows how to run MAP without user interaction using the flag - -profile:
map --profile --np=16 --mpiargs="-n 8 ./exel : -n 8 ./exe2" ./exel

First the number of processes used by the MPMD programs is set, in this case 8+8=16. Then an MPMD
style command as an mpi argument is specified, followed by one of the MPMD programs.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 211
101136_2020_00_en

Arm Forge 20.2 30 EXPORTING PROFILER DATA IN JSON FORMAT

Exporting profiler data in JSON format

MAP provides an option to export the profiler data in machine readable JSON format.

To export as JSON, first you need to open a . map file in MAP. Then the profile data can be exported by
clicking File and selecting the Export Profile Data as JSON option.

For a command-line option, see 29 Running MAP from the command line.

JSON format

The JSON document contains a single JSON object containing two object members, info containing
general information about the profiled program, and samples with the sampled information. An exam-
ple of profile data exported to a JSON file is given in Section 30.4.

» info (Object): If some information is not available, the value is null instead.

— command_1line (String): Command line call used to run the profiled application (for ex-
ample aprun -N 24 -n 256 -d 1 ./my_exe).

— machine (String): Hostname of the node on which the executable was launched.

— notes (String): A short description of the run or other notes on configuration and com-
pilation settings. This is specified by setting the environment variable ALLINEA_NOTES
berfore running MAP.

— number_of_nodes (Number): Number of nodes run on.

— number_of_processes (Number): Number of processes run on.

— runtime (Number): Runtime in milliseconds.

— start_time (String): Date and time of run in ISO 8601 format.

— create_version (String): Version of MAP used to create the map file.

— metrics (Object): Attributes about the overall run, reported once per process, each repre-
sented by an object with max, min, mean, var and sums fields, or null, when the metric
is not available. The sums series contains the sum of the metric across all processes / nodes
for each sample. In many cases the values over all nodes will be the same, that is the max, min
and mean values are the same, with variance zero. For example, in homogeneous systems
num_cores_per_node is the same over all nodes.

* wchar_total (Object): The number of bytes written in total by I/O operation system
calls (see wchar in the Linux Programmer’s Manual page ‘proc’: man 5 proc).

* rchar_total (Object): The number of bytes read in total by I/O operation system
calls (see rchar in the Linux Programmer’s Manual page ‘proc’: man 5 proc).

* num_cores_per_node (Object): Number of cores available per node.
* memory_per_node (Object): RAM installed per node.

* nvidia_gpus_count (Object): Number of GPUs per node.

* nvidia_total_memory (Object): GPU frame buffer size per node.

* num_omp_threads_per_process (Object): Number of OpenMP worker threads
used per process.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 212
101136_2020_00_en

Arm Forge 20.2 30 EXPORTING PROFILER DATA IN JSON FORMAT

» samples (Object)

count (Number): Number of samples recorded.

window_start_offset (Array of Numbers): Offset of the beginning of each sampling
window, starting from zero. The actual sample might have been taken anywhere in between
this offset and the start of the next window, that is the window offsets w; and w; 1 define a
semi-open set (w;, w;4+1] in which the sample was taken.

activity (Object): Contains information about the proportion of different types of activity
performed during execution, according to different view modes. The types of view modes
possibly shown are OpenMP, PThreads and Main Thread, described in Section 27. Only
available view modes are exported, for example, a program without OpenMP sections will
not have an OpenMP activity entry.

Note: The sum of the proportions in an activity might not add up to 1, this can happen when
there are fewer threads running than MAP has expected. Occasionally the sum of the propor-
tions shown for a sample in PThreads or OpenMP threads mode might exceed 1. When this
happens, the profiled application uses more cores than MAP assumes the maximum number
of cores per process can be. This can be due to middleware services launching helper threads
which, unexpectedly to MAP, contribute to the activity of the profiled program. In this case,
the proportions for that sample should not be compared with the rest of proportions for that
activity in the sample set.

metrics (Object): Contains an object for each metric that was recorded. These objects
contain four lists each, with the minimum, maximum, average and variance of that metric in
each sample. The format of ametrics entry is given in Section 30.3. All metrics recorded
in a run are present in the JSON, including custom metrics. The names and descriptions of
all core MAP metrics are given in Section 30.3. It is assumed that a user including a custom
metrics library is aware of what the custom metric is reporting. See the Arm Metric Plugin
Interface documentation.

Activities

Each exported object in an activity is presented as a list of fractional percentages (0.0 — 1.0) of sample
time recorded for a particular activity during each sample window. Therefore, there are as many entries
in these list as there are samples.

Description of categories

The following is the list of all of the categories. Only available categories are exported, see sections
30.2.2 and 30.2.3.

normal_compute: Proportion of time spent on the CPU which is not categorized as any of the
following activities. The computation can be, for example, floating point scalar (vector) addition,
multiplication or division.

point_to_point_mpi: Proportion of time spent in point-to-point MPI calls on the main thread
and not inside an OpenMP region.

collective_mpi: Proportion of time spent in collective MPI calls on the main thread and not
inside an OpenMP region.

point_to_point_mpi_openmp: Proportion of time spent in point-to-point MPI calls made
from any thread within an OpenMP region.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 213
101136_2020_00_en

Arm Forge 20.2 30 EXPORTING PROFILER DATA IN JSON FORMAT

* collective_mpi_openmp: Proportion of time spent in collective MPI calls made from any
thread within an OpenMP region.

* point_to_point_mpi_non_main_thread: Proportion of time spent in point-to-point MPI
calls on a pthread, but not on the main thread nor within an OpenMP region.

» collective_mpi_non_main_thread: Proportion of time spent in collective MPI calls on
a pthread, but not on the main thread nor within an OpenMP region.

» openmp: Proportion of time spent in an OpenMP region, that is compiler-inserted calls used to
implement the contents of a OpenMP loop.

» accelerator: Proportion of time spent in calls to accelerators, that is, blocking calls waiting
for a CUDA kernel to return.

* pthreads: Proportion of compute time on a non-main (worker) pthread.

« openmp_overhead_in_region: Proportion of time spent setting up OpenMP structures,
waiting for threads to finish and so on.

« openmp_overhead_no_region: Proportion of time spent in calls to the OpenMP runtime
from an OpenMP region.

» synchronisation: Proportion of time spent in thread synchronization calls, such as pthread_-
mutex_lock.

» 1o_reads: Proportion of time spent in I/O read operations, such as ‘read’.

« 10_writes: Proportion of time spent in I/O write operations. Also includes file open and close
time as these are typically only significant when writing.

» io_reads_openmp: Proportion of time spent in I/O read operations from within an OpenMP
region.

* io_writes_openmp: Proportion of time spent in I/O write operations from within an OpenMP
region.

* mpi_worker: Proportion of time spent in the MPI implementation on a worker thread.
» mpi_monitor: Proportion of time spent in the MPI monitor thread.
« openmp_monitor: Proportion of time spent in the OpenMP monitor thread.

» sleep: Proportion of time spent in sleeping threads and processes.

Categories available in main_thread activity

* normal_compute

e point_to_point_mpi

* collective_mpi

e point_to_point_mpi_openmp
» collective_mpi_openmp

< openmp

» accelerator

« openmp_overhead_in_region

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 214
101136_2020_00_en

Arm Forge 20.2 30 EXPORTING PROFILER DATA IN JSON FORMAT

» openmp_overhead_no_region
* synchronisation

« io_reads

« jo_writes

* io_reads_openmp

« io_writes_openmp

* sleep

Categories available in openmp and pthreads activities

* normal_compute

* point_to_point_mpi

» collective_mpi

e point_to_point_mpi_openmp

* collective_mpi_openmp

e point_to_point_mpi_non_main_thread
» collective_mpi_non_main_thread
« openmp

« accelerator

* pthreads

« openmp_overhead_in_region

« openmp_overhead_no_region

» synchronisation

* io_reads

« io_writes

» io_reads_openmp

* io_writes_openmp

« mpi_worker

* mpi_monitor

e openmp_monitor

» sleep

Metrics

The following list contains the core metrics reported by MAP.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 215
101136_2020_00_en

Arm Forge 20.2 30 EXPORTING PROFILER DATA IN JSON FORMAT

Only available metrics are exported to JSON. For example, if there is no Lustre filesystem then the Lustre
metrics will not be included. If any custom metrics are loaded, they will be included in the JSON, but are
not documented here.

For more information on the metrics see 24 Metrics View.

e CPU Instructions: see 24.1 CPU instructions

instr_fp: See CPU floating-point (percentage)

instr_int: See CPU integer (percentage)

instr_mem: See CPU memory access (percentage)
instr_vector_fp: See CPU floating-point vector (percentage)
instr_vector_int: See CPU floating-point vector (percentage)
instr_branch: See CPU branch (percentage)

instr_scalar_fp: The percentage of time each rank spends in standard x87 floating-
point operations.

instr_scalar_int: The percentage of time each rank spends in standard integer opera-
tions.

instr_implicit_mem: Implicit memory accesses. The percentage of time spent execut-
ing instructions with implicit memory accesses.

instr_other: The percentage of time each rank spends in instructions which cannot be
categorized as any of the ones given above.

e CPU Time: see 24.2 CPU time

cpu_time_percentage: See CPU time

user_time_percentage: See User-mode CPU time
system_time_percentage: See Kernel-mode CPU time
voluntary_context_switches: See Voluntary context switches (1/s)
involuntary_context_switches: See Involuntary context switches (1/s)

loadavg: See System load (percentage)

e I/0: see 24.3 1/0

rchar_rate: See POSIX I/O read rate (B/s)
wchar_rate: See POSIX I/O write rate (B/s)
bytes_read: See Disk read transfer (B/s)
bytes_written: See Disk write transfer (B/s)
syscr: See POSIX read syscall rate (calls/s)

syscw: See POSIX write syscall rate (calls/s)

e Lustre

lustre_bytes_read: Lustre read transfer (B/s)

lustre_bytes_written: Lustre write transfer (B/s)

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 216
101136_2020_00_en

Arm Forge 20.2 30 EXPORTING PROFILER DATA IN JSON FORMAT

— lustre_rchar_total: Lustre bytes read
— lustre_wchar_total: Lustre bytes written
* Memory: see 24.4 Memory
— rss: See Memory usage in bytes (Resident Set Size)
— node_mem_percent: See Node memory usage (percentage)
* MPI: see 24.5 MPI
— mpi_call_time: See MPI call duration (ns)
— mpi_sent: See MPI sent (B/s)
— mpi_recv: See MPI received (B/s)
— mpi_calls: Number of MPI calls per second per process
— mpi_p2p: See MPI P2P (calls/s).
— mpi_collect: See MPI collectives (calls/s)
— mpi_p2p_bytes: See MPI point-to-point bytes
— mpi_collect_bytes: See MPI collect bytes
» Accelerator: see 24.7 Accelerator
— nvidia_gpu_usage: See GPU utilization (percentage)
— nvidia_memory_used_percent: See GPU memory usage (percentage)
— nvidia_memory_used: GPU memory usage in bytes

* Energy: see 24.8 Energy

nvidia_power: See GPU power usage (mW/node)

rapl_power: See CPU power usage (W/node)

system_power: See System power usage (W/node)

rapl_energy: CPU energy, integral of rapl_power (J)

system_energy: CPU energy, integral of system_power (J)

Example JSON output

In this section an example is given of the format of the JSON that is generated from a MAP file. This
illustrates the description that has been given in the previous sections. This is not a full file, but should
be used as an indication of how the information looks after export.

{

"info" : {
"command_line" : "mpirun -np 4 ./exec",
"machine" : "hal9000",
"number_of_nodes" : 30,
"number_of_processes" : 240,
"runtime" : 8300,
"start_time" : "2016-05-13T11:36:31",
"create_version" : "6.0.4"
"metrics": {

wchar_total: {max: 384605588, min: 132, mean: 24075798, var: 546823},

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 217
101136_2020_00_en

Arm Forge 20.2

b
3

rchar_total: {max: 6123987, min: 63, mean: 9873, var: 19287},
num_cores_per_node: {max: 4, min: 4, mean: 4, var: 0},
memory_per_node: {max: 4096, min: 4096, mean: 4096, var: 0},
nvidia_gpus_count: {max: @, min: @, mean: 0, var: 0},
nvidia_total_memory: {max: O, min: O, mean: O, var: 0},
num_omp_threads_per_process: {max: 6, min: 6, mean: 6, var: 0},

"samples" : {
"count" : 4,
"window_start_offsets" : [0, 0.2, 0.4, 0.6],
"activity" : {

"main_thread" : {

"normal_compute" : [0.762, 0.996, 1, 0.971],
"io_reads" : [0.00416, 0.00416, 0, 0.00416],
"io_writes" : [0.233, 0, 0, 0],
"openmp" : [0, 0, 0, 0.01667],

"openmp_overhead_in_region" : [0, 0, 0, 0O.
"openmp_overhead_no_region" [6, 6, 0, O

"sleep" : [0, 0, 0, 0]

4 4

Iy

"openmp" : {
"normal_compute" : [0.762, 0.996, 1, 0.971],
"io_reads" : [0.00416, 0.00416, 0, 0.00416],
"io_writes" : [0.233, 0, 0, 0],
"openmp" : [O, 0, 0, 0.01319],
"openmp_overhead_in_region" : [0, 0, 0, 0],
"openmp_overhead_no_region" [6, 6, 0, 0],
"sleep" : [0, 0, 0, 0]

Iy

"pthreads" : {

"io_reads" : [0.00069, 0.00069, 0, 0.00069],
"io_writes" : [0.0389, 0, 0, 0],

"normal_compute" : [0.1270, 0.1659, 0.1666, 0.1652],
"openmp" : [O, 0, 0, 0.01319]
"openmp_overhead_in_region" : [
"openmp_overhead_no_region" [
"sleep" : [0, 0, 0, 0]

0, 0, 0, 0.02153],
0, 0, 0, 0.00069],

}
s
"metrics" : {
"wchar_total" : {
"mins" [3957, 3957, 3958, 4959],
"maxs" [4504, 4959, 5788, 10059],
"means" : [3965.375, 4112.112, 4579.149, 6503.496],
"vars" [2159.809, 49522.783, 169602.769, 2314522.699],
"sums" [15860, 16448, 18316, 26012]
Iy
"bytes_read" : {
"mins" [6, 6, 0, 0 1],
"maxs" [34647.255020415301, 0, 0, 0],
"means" : [645.12988722358205, 0, 0, 0],
"vars" [9014087.0327749606, 0, 0, 0],
"sums" [2580, 0, 0, 0]
3
"bytes_written" : {
"mins" [6, 6, 0, 0 1],
"maxs" [123, 0, 0, 0],
"means" : [32, 0, 0, 0],
"vars" [12, 0, 0, 0],
"sums" [128, 0, 0, O]
}
}

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

101136_2020_00_en

30 EXPORTING PROFILER DATA IN JSON FORMAT

218

Arm Forge 20.2 30 EXPORTING PROFILER DATA IN JSON FORMAT

13

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 219
101136_2020_00_en

Arm Forge 20.2 31 GPU PROFILING

GPU profiling

When profiling applications that use CUDA 8.0 and above, GPU kernels that can be tracked by NVIDIA’s
CUDA Profiling Tools Interface (CUPTT) will be displayed in a new “GPU Kernels” tab.

Input/Output Project Files OpenMP Stacks OpenMP Regions Functions GPU Kemnels

GPU Kemels 3]
Breakdown + Selected Blocked GPU Kemels Source Position
- & gpuprof.exe [program] GPU: iine-level information requires compilation with -.
25.0% [| % mult_gpu
~ 2 others
0.2% | “ add7_gpu

Figure 119: GPU Kernels View

This lists the CUDA kernels that were detected in the program alongside graphs indicating when those
kernels were active. If multiple kernels were identified in a process within a particular sample they will
have equal weighting in this graph.

Notes:

» CUDA kernels generated by OpenACC, CUDA Fortran, or offloaded OpenMP regions are not yet
supported by MAP.

GPU profiling is only supported with CUDA 8.0 and above.

GPU profiling is not supported if the CUDA driver and toolkit versions do not match (for example,
profiling a CUDA 8.0 program with a CUDA 9.0 driver is not supported).

GPU profiling is not supported when statically linking the MAP sampler library.

Kernel analysis

CUDA kernel analysis mode is an advanced feature that provides insight into the activity within CUDA
kernels. This mode can be enabled from the MAP run dialog or from the command line with - -cuda-
kernel-analysis.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 220
101136_2020_00_en

Arm Forge 20.2 31 GPU PROFILING

Application: /home/user/code/gpucode.exe Details

Application: | /home/user/code/gpucode.exe -

Arguments: -
stdin file:

Working Directory: v

Duration: Sampling entire program Details
Metrics Details
Perf Metrics: None selected, click Details... to configure. Details...
v| CUDA Kernel analysis Details

Kernels may be serialized and memory usage impacted.
Compile kernels using "nvcc -g -lineinfo", but do not use -G
MPI: 1 process, Open MPI
OpenMP
Submit to Queue

Environment Variables: none Details

Help Options Run Cancel

Figure 120: Run window with CUDA kernel analysis enabled

When enabled the “GPU Kernels” tab is enhanced to show a line-level breakdown of warp stalls. The pos-
sible categories of warp stall reasons are as listed inthe enum CUpti_ActivityPCSamplingStall-
Reason inthe CUPTI API documentation (http://docs.nvidia.com/cuda/cupti/group__CUPTI__ ACTIVITY_
_APILhtml):

Selected No stall, instruction is selected for issue.

Instruction fetch Warp is blocked because next instruction is not yet available, because of an instruction
cache miss, or because of branching effects.

Execution dependency Instruction is waiting on an arithmetic dependency.
Memory dependency Warp is blocked because it is waiting for a memory access to complete.
Texture sub-system Texture sub-system is fully utilized or has too many outstanding requests.

Thread or memory barrier Warp is blocked as it is waiting at __syncthreads or at a memory bar-
rier.

__constant__ memory Warp is blocked waiting for __constant__ memory and immediate memory
access to complete.

Pipe busy Compute operation cannot be performed due to required resource not being available.
Memory throttle Warp is blocked because there are too many pending memory operations.
Not selected Warp was ready to issue, but some other warp issued instead.

Other Miscellaneous stall reason.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 221
101136_2020_00_en

http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html
http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html

Arm Forge 20.2 31 GPU PROFILING

Dropped samples Samples dropped (not collected) by hardware due to backpressure or overflow.

Unknown The stall reason could not be determined. Used when CUDA kernel analysis has not been
enabled (see above) or when an internal error occurred within CUPTI or MAP.

Input/Output ~ Project Files ~ OpenMP Stacks =~ OpenMP Regions ~ Functions =~ GPU Kemels

GPU Kemels [=]E]
Breakdown + Selected Blocked GPU Kemnels Source Position -
~ & gpuprof.exe [program] GPU: all functions in kernels are inlined
¥ % mult_gpu
13.1% (] <0.1% 13.1% resl += sh allk-ks] + tmps; device.cu:73
~ 14 others
1.0% <0.1% 1.0% device.cu:69
0.4% <=0.1% 0.4% device.cu:66
0.4% <0.1% 0.3% device.cu:74
<0.1% <0.1% <0.1% device.cu:62
<0.1% <0.1% <0.1% device.cu:72
<0.1% =0.1% <0.1% sh_alltx] = ali*pitel e device.cu:65
<0.1% =0.1% <0.1% clispitch C_nbelem+j] += res

device.cu:81

Figure 121: GPU kernels view (with CUDA kernel analysis)

Note: Warp stalls are only reported per-kernel, so it is not possible to obtain the times within a kernel
invocation at which different categories of warp stalls occurred. As function calls in CUDA kernels are
automatically fully inlined it is not possible to see a stack trace of code within a kernel on the GPU.

Warp stall information is also present in the code editor (section 18.3), the selected line view (sec-
tion 19.2), and in a warp stall reason graph in the metrics view (section 24).

Compilation

When compiling CUDA kernels do not generate debug information for device code (the -Gor - -device-
debug flag) as this can significantly impair runtime performance. Use -1ineinfo instead, for exam-
ple:

nvcc device.cu -c¢ -o device.o -g -lineinfo -03

Performance impact

Enabling the CUPTI sampling will impact the target program in the following ways:

1. A short amount of time will be spent post-processing at the end of each kernel. This will depend
on the length of the kernel and the CUPTI sampling frequency.

2. Kernels will be serialized. Each CUDA kernel invocation will not return until the kernel has fin-
ished and CUPTI post-processing has been performed. Without CUDA kernel analysis mode kernel
invocation calls return immediately to allow CUDA processing to be performed in the background.

3. Increased memory usage whilst in a CUDA kernel. This may manifest as fluctuations between two
memory usage values, depending on whether a sample was taken during a CUDA kernel or not.

Taken together the above may have a significant impact on the target program, potentially resulting in
orders of magnitude slowdown. To combat this profile and analyse CUDA code kernels (with - -cuda-
kernel-analysis)and non-CUDA code (no - -cuda-kernel-analysis) in separate profiling
sessions.

The NVIDIA GPU metrics will be adversely affected by this overhead, particularly the “GPU utilization”
metric. See section 24.7.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 222
101136_2020_00_en

Arm Forge 20.2 31 GPU PROFILING

When profiling CUDA code it may be useful to only profile short subsection of the program so time is
not wasted waiting for CUDA kernels you do not need to see data for. See section 16.3.8 for instructions
on how to do this.

Customizing GPU profiling behavior

The interval at which CUPTI samples GPU warps can be modified by the environment variable ALLINEA_ -
SAMPLER_GPU_INTERVAL. Accepted values are max, high, mid, low, and min, with the default
value being high. These correspond to the values in the enum CUpti_ActivityPCSamplingPe-
riodinthe CUPTI API documentation (http://docs.nvidia.com/cuda/cupti/group__ CUPTI__ACTIVITY_
_APLhtml).

Using CUDA 11.0+ on GPUs with compute capability 7.0+, the interval at which CUPTI samples GPU
warps can also be modified by providing an integer value 5 < x < 31 to the environment variable
ALLINEA_SAMPLER_GPU_INTERVAL. This sets the interval in cycles to exactly 2*.

Reducing the sampling interval means warp samples are taken more frequently. While this may be needed
for very short-lived kernels, setting the interval too low can result in a very large number of warp samples
being taken which then require significant post-processing time once the kernel completes. Overheads
of twice as long as the kernel’s normal runtime have been observed. It is recommended that the CUPTI
sampling interval is not reduced.

Known issues

* GPU profiling is only supported using CUDA 8.0 and above.

» GPU profiling is not supported if the CUDA driver and toolkit versions do not match (for example,
profiling a CUDA 8 program with a CUDA 9 driver is not supported).

» When preparing your program for profiling, it is advised to match the version of the CUDA toolKkit
to that of the CUDA driver.

» CUPTI allocates a small amount of host memory each time a kernel is launched. If your program
launches many kernels in a tight loop this overhead can skew the memory usage figures.

» CUDA kernels generated by OpenACC, CUDA Fortran or offloaded OpenMP regions are not yet
supported by MAP.

» The graphs are scaled on the assumption that there is a 1:1 relationship between processes and
GPUs, each process having exclusive use of its own CUDA card. The graphs may be of an un-
expected height if some processes do not have a GPU, or if multiple processes share the use of a
common GPU.

» Enabling CUDA kernel analysis mode can have a significant performance impact as described in
section 31.3.

» GPU profiling is not supported when statically linking the MAP sampler library.

+ Stopping GPU profiling mid-process can prevent the GPU Kernels tab displaying, and might not
report the kernel samples. This occurs when using - -stop-after or the “Stop and Analyze”
button. For better results, run the process for a longer time period with longer running kernels.
When kernel samples are reported, they can be truncated.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 223
101136_2020_00_en

http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html
http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html

Arm Forge 20.2 32 PYTHON PROFILING

Python profiling

Arm Forge 19.0 adds the Python profiling capabilities you need to find and resolve bottlenecks for your
Python codes.

For the latest information about Python profiling in MAP, see the Python Profiling web page.

Profile a Python script
This task describes how to profile a Python script. This feature is useful when profiling a mixed C, C++,
Fortran, and Python program.

Python profiling replaces main thread stack frames originating from the Python interpreter with Python
stack frames of the profiled Python script. To disable this feature, set ALLINEA_ SAMPLER_DISABLE_
PYTHON_PROFILING=1.

MAP supports Python profiling with the following features:
* Profiles Python scripts running under the CPython interpreter (versions 2.7, and 3.5-3.8).
* Profiles Python scripts running under the Intel Distribution for Python.
* Profiles Python scripts running under the Anaconda Python distribution (version 3.6 not supported).
* Profiles Python scripts running under virtual enviornments.
* Profiles Python scripts that import modules which perform MPI on the main thread, such as mpi4py.
* Profiles Python scripts that import modules which use OpenMP.
* Profiles Python scripts that use the threading module.

Note: MAP will output warnings if the threading model of the MPI module isMPI_THREAD_MULTIPLE,
such as in mpidpy. To prevent these warnings, change the default settings in mpi4py with the following:
mpidpy.rc.threaded = False ormpidpy.rc.thread_level = "funneled"

Note: If you are profiling on a system using ALPS or SLURM and the Python script does not use MPI,
environment variables (section H.5) can be set, or you can import the mpidpy module.

Procedure

1. Check that the Python script runs successfully:
$ python myscript.py

2. To profile the Python script with MAP, prepend the run command with map:
$ map python myscript.py

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 224
101136_2020_00_en

https://developer.arm.com/products/software-development-tools/hpc/arm-forge/arm-map/python-profiling

Arm Forge 20.2

Application: jusr/bin/p;

ython myscript.py

Details

Application: |Iusrfbinfpython

Arguments: | myscript.py

stdin file:

Working Directory:

Duration: Sampling entire program

Metrics

Perf Metrics: None sel

ected, click Defails... to configure.

CUDA Kernel analysis

MPI
OpenMP

Submit to Queue

Environment Variables: none

Help Options

Figure 122: Profiling a Python script

Run

Details
Details

Details...

Details

Cancel

3. Click Run and wait for MAP to finish profiling the Python script.

4. View the profiling results in MAP.

Results

32

PYTHON PROFILING

When MAP finishes profiling the Python script, it saves a . map file in the current working directory and
opens it for viewing in the GUI (unless you are using the offline feature).

Example: Profiling a simple Python script

This section demonstrates how to profile the Python example script python-profiling. py located

in the examples directory.

1. Change into the examples directory and run the makefile to compile the example.

$ make -f python-profiling.makefile

2. Start MAP

$../bin/map python ./python-profiling.py --index 35

3. Click Run.

4. Wait for MAP to finish analyzing samples after the Python script has completed.

Note: The MAP GUI launches showing the Python script and the line in the script where the

most time was spent is selected.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 225

101136_2020_00_en

Arm Forge 20.2 32 PYTHON PROFILING

File Edit View Metrics Window Help
Profiled: python en 1 process, 1 nede Sampled from: Fri Jun 12 15:58:03 2020 for 0.2s Hide Metrics.

m—— _

CPU floating-point &I

0%
o
389 ——

Memory usage

parser.add argument ("--index", dest="index
6 options = parser.parse_args()

t, default=20)

38.9 MB
o

15:58:03-15:58:03 (0.234s): Main thread compute 4.2 %, Python interpreter 95.5 % Zoom &1 i5

. python-profiling.py X Tl S a2 a®
19 = Breakdown of the 93.8% time

2.1% 1 20 def fibonacci_python{index) : spent on this line:

s3.5% [:: return index if index in [0, 1] clsc fibonacci_python(index-1) + fibonacci_python{index-2) Executing instructions 0.0%
= . Calling functions 100.0% M-
23 ef main():
24 parser - argparse.ArgumentParser {description='Compute a Fibonacci number.')

print ("The Fibonacci number at index %s is:\n%s (compute)" % (options.index,
2.25 28 fibonacci_c (options.index),
s3.65 [N > | Eibonacci python (options.index)})
3 f _name__ == "_main__":
57.5% I > main()
Input/Output Project Files | Main Thread Stacks | Functions
Main Thread Stacks @
Total core time = Function(s) on line Source Position
~ & python [program]
~ # python-profiling.py #1/usz/bin/python python-profiling.py:1

main () python-profiling.py:32

fibonacci_python fibonacci_pytr sons. inaex))) python-profiling. py:29

4.2% I bonacci_ fibonacci_c(opticns.index), python-profiling.py:28
2.1%] » ma main () site.py:554

& Main Thread View

Figure 123: Viewing Python profiling results

5. Locate the first fibonacci_c stack frame in the Main Thread Stacks view. The callout to the C
function is appended under main Python stack frame.

Next steps
» Examine the Main Thread Activity graph (section 24) for an overview of time spent in Python code
compared with non-Python code.

* View source code lines (section 18.1) on which time was spent executing Python code and non-
Python code.

» Compare time spent on the selected line executing Python code with non-Python code in the Se-
lected Lines View (section 19).

* View a breakdown of time spent in different code paths in the Main Thread Stacks view (section 20).
Related information

* For more information on using MAP, see section 16.

* For information on debugging Python scripts with DDT, see section 5.16.
Known Issues

» MAP requires a significant amount of time to analyze samples when profiling a Python script that

imports modules which use OpenBLAS, such as NumPy. This is caused by the lack of unwind
information in OpenBLAS. This results in partial trace nodes being displayed in MAP.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 226
101136_2020_00_en

Arm Forge 20.2 32 PYTHON PROFILING

» mpidpy uses some MPI functions that were introduced in MPI version 3. For example MPI_ -
Mrecv. MAP does not collect metrics from these functions, therefore MPI metrics for mpidpy
will be inaccurate. To workaround this, use a custom Python MPI wrapper that only uses functions
that were available before MPI version 3.

* When using reverse connect (- -connect) and quick start (- -start) in conjunction, the full
path to the Python application must be provided.

* The Anaconda Python 3.6.x interpreter is aggressively optimized. This causes multiple startup
issues when profiling with MAP and is not supported.

» MAP is known to fail at startup with ”python did not start properly” for some versions of Python
like Intel Python distributed with the Intel Compiler. This can be worked around by setting the
environment variable ALLINEA_DISABLE_BREAK_BEFORE_MAIN_PROLOGUE=1.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 227
101136_2020_00_en

Arm Forge 20.2 33 PERFORMANCE ANALYSIS WITH CALIPER INSTRUMENTATION

Performance Analysis with Caliper Instrumentation

Caliper is a program instrumentation and performance measurement framework. It is a performance
analysis toolbox in a library, that enables you to insert performance analysis capabilities directly into
applications, and activate them at runtime. Caliper is intended for use with HPC applications, but works
for any C/C++/Fortran program on Unix/Linux.

When MAP profiles a program instrumented with Caliper source code annotations the stack of Caliper
attributes with keys of interest (corresponding to those used by Caliper’s high-level API: function, loop,
statement, annotation) is taken alongside regular samples. In MAP you can see where time was spent in
any set of these key-attribute pairs.

Get Caliper

Download Caliper (version 2.0.1 or later) from GitHub.

Build and install Caliper, then use it to instrument programs of your choice as described in the Caliper
documentation:

* Read a summary
e Full documentation

* Pre-instrumented examples (LULESH?2 and Quicksilver)

Annotating your program

Typically, we integrate Caliper into a program by marking source-code sections of interest with descrip-
tive annotations. MAP can connect to Caliper and access the information provided by these annota-
tions.

Annotating in C/C++

MAP supports Caliper’s high-level C/C++ API for annotating functions, loops (although loop iterations
will not be recorded) and code regions. Refer to the Annotation API in the Caliper documentation, for
details and examples.

Note: Using the low-level API for C/C++ applications is not recommended.

Annotating in Fortran

For Fortran programs the low-level API must be used to emulate the high-level API. Caliper regions
must be nested - close all inner regions before closing an outer region. Only the following label types
are supported: function, loop, statement, annotation (the same attribute names used by the high level
API).

use Caliper
call cali begin_string byname('function', 'myFunction')

call_end_byname('function')

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 228
101136_2020_00_en

https://github.com/LLNL/Caliper/releases
https://github.com/LLNL/caliper
https://llnl.github.io/Caliper/
https://github.com/LLNL/caliper-examples
https://llnl.github.io/Caliper/AnnotationAPI.html

Arm Forge 20.2 33 PERFORMANCE ANALYSIS WITH CALIPER INSTRUMENTATION

Analyzing your program

Use Caliper with MAP to get a quick idea of how much time is spent in the various phases of your
program, to help you decide where to focus your optimization efforts.

Procedure

1. Instrument your program with Caliper annotations (or use one of the Caliper-provided examples).
2. Dynamically link your program against Caliper, and profile it with MAP.

Note: Caliper will be automatically detected and used, you do not need to set any special flags or
options.

When profiling, Caliper may prompt you to enable Caliper services, this is not required. You may
enable Caliper services if you wish but this will increase overhead without providing any additional
data to MAP (although it may produce Caliper output files you could manually examine).

In MAP you will see a ’Selected Regions’ graph (initially empty) underneath the ’Applications
Activity’ graph in the metrics view.

3. Switch to the "Regions’ tab at the bottom of the screen to view the regions in your code that you
annotated with Caliper. Optionally, select the ’Legend column’ in the Regions tab to change the
color used to represent a region.

4. Enable one or more regions. Select one or more regions in the Regions tab, right-click and choose
Enable. Use CTRL+Click or SHIFT+Click to select multiple regions.

Periods of time where the program was inside that region are displayed in the ’Selected Regions’
graph.

5. Enable ’Regions-focused view’ from the *View’ menu (you can also use CTRL+R or the button
next to the ’Selected Regions’ graph). Application activity timeglyphs in the PSVs, Functions tab
and Code Editor will switch to showing the time in the currently selected set of regions.

Guidelines

 The expected usage is that you will only have a few regions enabled at any one time.

Note: The application activity graph will display the ’deepest’ enabled region in any stacks to
display.

* Only the default Caliper channel is sampled by MAP.

* Neither MAP nor Caliper will propagate Caliper attributes set on the main thread to OpenMP
worker threads when entering a OpenMP parallel region.

Next steps

Right-click on a region in the Regions tab to access further options. From here you can:
+ Enable or disable all regions at once.

+ Automatically reassign colors to regions based on the percentage of time in each in the current
selected time range.

» Copy a text representation of the tab, or export it to a file.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 229
101136_2020_00_en

Arm Forge 20.2 33 PERFORMANCE ANALYSIS WITH CALIPER INSTRUMENTATION

Related information

* Refer to the following paper for more background on Caliper:
David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo Gimenez, Matthew
LeGendre, Olga Pearce, and Martin Schulz. Caliper: Performance Introspection for HPC Software
Stacks. In Supercomputing 2016 (SC16), Salt Lake City, Utah, November 13-18, 2016. LLNL-
CONF-699263.

+ Refer to the Annotation API in the Caliper documentation for full details and examples of annota-
tions.

* Read a summary about Caliper
+ Caliper full documentation

* Pre-instrumented examples (LULESH2 and Quicksilver)

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 230
101136_2020_00_en

https://ieeexplore.ieee.org/abstract/document/7877125
https://ieeexplore.ieee.org/abstract/document/7877125
https://llnl.github.io/Caliper/AnnotationAPI.html
https://github.com/LLNL/caliper
https://llnl.github.io/Caliper/
https://github.com/LLNL/caliper-examples

Arm Forge 20.2 34 RUNNING WITH AN EXAMPLE PROGRAM

Part IV

Performance Reports

Running with an example program

This section takes you through compiling and running one of the example programs.

Overview of the example source code
Compiling
Arm provides a simple 1-D wave equation solver that is useful as a profiling example program. Both C
and Fortran variants are provided:
« examples/wave.c

+ examples/wave.f90

Both are built using the same makefile, wave.makefile. To navigate and run wave .makefile,
use:

cd {installation-directory}/examples/

make -f wave.makefile
There is also a mixed-mode MPI+OpenMP variant in examples/wave_openmp.c, which is built
with the openmp . makefile makefile.

Note: The makefiles for all supplied examples are located in the {installation-directory}/
examples directory.

Depending on the default compiler on your system you might see some errors when running the makefile,
for example:

pgf90-Error-Unknown switch: -fno-inline
By default, this example makefile is set up for the GNU compilers. To setup the makefile for a differ-

ent compiler, open the examples/wave.makefile file, uncomment the appriopriate compilation
command for the compiler you want to use, and comment those of the GNU compiler.

Notes:

 The compilation commands for other popular compilers are already present in the makefile, sepa-
rated by compiler.

+ Although the example makefiles include the - g flag, Arm Forge does not require this. Do not use
them in your own makefiles.

In most cases Arm Forge can run on an unmodified binary with no recompilation or linking required.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 231
101136_2020_00_en

Arm Forge 20.2 34 RUNNING WITH AN EXAMPLE PROGRAM

Cray X-series

On Cray X-series systems the example program must either be dynamically linked (using -dynamic)
or explicitly linked with the Arm profiling libraries.

For example:

cc -dynamic -g -03 wave.c -0 wave -1m -1lrt

ftn -dynamic -G2 -03 wave.f90 -0 wave -1lm -1rt

Example showing how to explicitly link with the Arm profiling libraries:

1. Create the libraries using the command make-profiler-libraries --platform=cray

--1ib

-type=static:

Created the libraries in /home/user/examples:

To

libmap-sampler.a
libmap-sampler-pmpi.a

instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance
Reports:
-g (or -62 for native Cray fortran) (and -03 etc.)
linking (both MAP and Performance Reports):
-W1, @/home/user/examplesm/allinea-profiler.1ld
EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -
lmpi), then
these must appear \b{after} the Arm sampler and MPI wrapper
libraries in
the link line. There is a comprehensive description of the
link ordering
requirements in Preparing a program for profiling.

2. Follow the instructions in the output to link the example program with the Arm profiling libraries:

cC

-g -03 wave.c -0 wave -g -Wl,@allinea-profiler.ld -1lm -1rt

ftn -62 -03 wave.f90 -0 wave -G2 -Wl,@allinea-profiler.ld -1m

Running

-1rt

Because this example uses MPI, you must run it on a compute node on your cluster. The help pages and
support staff on your site can tell you exactly how to do this on your machine. The simplest way when
running small programs is often to request an interactive session, as follows:

$ qsub

-I

gqsub: waiting for job 31337 to start
qsub: job 31337 ready

$ cd arm/forge/20.2/examples

$ mpiexec -n 4 ./wave_c

Wave solution running with 4 processes

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 232
101136_2020_00_en

Arm Forge 20.2 34 RUNNING WITH AN EXAMPLE PROGRAM

0: points = 1000000, running for 30 seconds
points / second: 63.9M (16.0M per process)
compute / communicate efficiency: 94% | 97% | 100%

Points for validation:

0:0.00 200000:0.95 400000:0.59 600000:-0.59 800000:-0.95
999999:0.00

wave finished

If you see output similar to this, the example program is compiled and working correctly.

Generating a performance report

Make sure that the Performance Reports component of Arm Forgeinstalled on your system is loaded:

$ perf-report --version

Arm Performance Reports

Copyright (c) 2002-2020 Arm Limited (or its affiliates). All
rights reserved.

When the module is loaded, you can add the per f - repor t command in front of your existingmpiexec
command-line:

perf-report mpiexec -n 4 examples/wave_c

If your program is submitted through a batch queuing system, modify your submission script to load the
Arm module and add the ‘perf-report’ line in front of the mpiexec command for which you want to
generate a report.

The program runs as usual, although startup and shutdown might take a few minutes longer while Arm
Forge generates and links the appropriate wrapper libraries before running, and collects the data at the
end of the run. The runtime of your code (between MPI_Init and MPI_Finalize is not expected to
be affected by more than a few percent at most.

After the run finishes, a performance report is saved to the current working directory, using a name based
on the application executable:

$ 1s -1rt wave_c*
-rwX------ 1 mark mark 403037 Nov 14 03:21 wave_cC
-rw------- 1 mark mark 1911 Nov 14 03:28 wave_c_4p_2013-11-14_03

-rw------- 1 mark mark 174308 Nov 14 03:28 wave_c_4p_2013-11-14 03
-27.html

Note: Both . txt and . html versions are automatically generated.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 233
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

Running with real programs

This section will take you through compiling and running your own programs.

Arm Forge is designed to run on unmodified production executables, so in general no preparation step
is necessary. However, there is one important exception: statically linked applications require additional
libraries at the linking step.

Preparing a program for profiling

In most cases you do not need to recompile your program to use it with Performance Reports, although
in some cases it may need to be relinked, as explained in section 16.2.4 Linking.

Linking

To collect data from your program, Performance Reports uses two small profiler libraries, map - sampler
and map-sampler-pmpi. These must be linked with your program. On most systems Performance
Reports can do this automatically without any action by you. This is done via the system’s LD_PRELOAD
mechanism, which allows an extra library into your program when starting it.

Note: Although these libraries contain the word ‘map’ they are used for both Arm Performance Reports
and Arm MAP.

This automatic linking when starting your program only works if your program is dynamically-linked.
Programs may be dynamically-linked or statically-linked, and for MPI programs this is normally deter-
mined by your MPI library. Most MPI libraries are configured with - -enable-dynamic by default,
and mpicc/mpif90 produce dynamically-linked executables that Performance Reports can automati-
cally collect data from.

The map-sampler-pmpi library is a temporary file that is precompiled and copied or compiled at
runtime in the directory ~/.allinea/wrapper.

If your home directory will not be accessible by all nodes in your cluster you can change where the map -
sampler-pmpi library will be created by altering the shared directory as described in H.5.6
No shared home directory.

The temporary library will be created in the .allinea/wrapper subdirectory to this shared di-
rectory.

For Cray X-Series Systems the shared directory isnotapplicable, instead map-sampler-pmpi
is copied into a hidden .allinea sub-directory of the current working directory.

If Performance Reports warns you that it could not pre-load the sampler libraries, this often means that
your MPI library was not configured with - -enable-dynamic, or that the LD_PRELOAD mechanism
is not supported on your platform. You now have three options:

1. Try compiling and linking your code dynamically. On most platforms this allows Performance Re-
ports to use the LD_PRELOAD mechanism to automatically insert its libraries into your application
at runtime.

2. Link MAP’smap-sampler and map-sampler - pmpi libraries with your program at link time
manually.

See 16.2.5 Dynamic linking on Cray X-Series systems, or 16.2.6 Static linking and 16.2.7 Static
linking on Cray X-Series systems.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 234
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

3. Finally, it may be that your system supports dynamic linking but you have a statically-linked
MPI. You can try to recompile the MPI implementation with - -enable-dynamic, or find a
dynamically-linked version on your system and recompile your program using that version. This
will produce a dynamically-linked program that Performance Reports can automatically collect
data from.

Dynamic linking on Cray X-Series systems

If the LD_PRELOAD mechanism is not supported on your Cray X-Series system, you can try to dynami-
cally link your program explicitly with the Performance Reports sampling libraries.

Compiling the Arm MPI Wrapper Library

First you must compile the Arm MPI wrapper library for your system using the make-profiler -
libraries --platform=cray --lib-type=shared command.

Note: Performance Reports also uses this library.

user@login:~/myprogram$ make-profiler-libraries --platform=cray
--1lib-type=shared

Created the libraries in /home/user/myprogram:
libmap-sampler.so (and .so0.1, .s0.1.0, .s0.1.0.0)
libmap-sampler-pmpi.so (and .so.1, .s0.1.0, .s0.1.0.0)

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance
Reports:
-g (or '-62' for native Cray Fortran) (and -03 etc.)
linking (both MAP and Performance Reports):
-dynamic -L/home/user/myprogram -lmap-sampler-pmpi -lmap-
sampler -W1l, --eh-frame-hdr

Note: These libraries must be on the same NFS/Lustre/GPFS
filesystem as your
program.

Before running your program (interactively or from a queue), set
LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=/home/user/myprogram:$LD_LIBRARY_PATH

map

or add -W1, -rpath=/home/user/myprogram when linking your program.

Linking with the Arm MPI Wrapper Library
mpicc -G6G2 -0 hello hello.c -dynamic -L/home/user/myprogram \
-lmap-sampler-pmpi -lmap-sampler -Wl, --eh-frame-hdr
PGI Compiler

When linking OpenMP programs you must pass the - Bdynamic command line argument to the compiler
when linking dynamically.

When linking C++ programs you must pass the -pgc++1ibs command line argument to the compiler
when linking.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 235
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

Static linking

If you compile your program statically, that is your MPI uses a static library or you pass the -static
option to the compiler, then you must explicitly link your program with the Arm sampler and MPI wrapper
libraries.

Compiling the Arm MPI Wrapper Library

First you must compile the Arm MPI wrapper library for your system using the make-profiler -
libraries --lib-type=static command.

Note: Performance Reports also uses this library.

user@login:~/myprogram$ make-profiler-libraries --lib-type=static

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:

compilation for use with MAP - not required for Performance
Reports:
-g (and -03 etc.)

linking (both MAP and Performance Reports):
-W1l, @/home/user/myprogram/allinea-profiler.1ld

EXISTING_MPI_LIBRARIES

If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -1lmpi)
, then

these must appear *after* the Arm sampler and MPI wrapper
libraries in

the link line. There's a comprehensive description of the link
ordering

requirements in the 'Preparing a Program for Profiling' section
of either

userguide-forge.pdf or userguide-reports.pdf, located in

/opt/arm/forge/20.2/doc/.

Linking with the Arm MPI Wrapper Library

The -W1, @/home/user/myprogram/allinea-profiler. 1d syntax tells the compiler to look
in /home/user/myprogram/allinea-profiler.1d for instructions on how to link with the
Arm sampler. Usually this is sufficient, but not in all cases. The rest of this section explains how to
manually add the Arm sampler to your link line.

PGI Compiler

When linking C++ programs you must pass the - pgc++1ibs command line argument to the compiler
when linking.

The PGI C runtime static library contains an undefined reference to __kmpc_fork_call, which will
cause compilation to fail when linking allinea-profiler.1ld. Add --undefined __ wrap_-
__kmpc_fork_call to your link line before linking to the Arm sampler to resolve this.

The PGI compiler must be 14.9 or later. Using earlier versions of the PGI compiler will fail with an
error such as “Error: symbol 'MPI_F_MPI_IN_PLACE' can not be both weak and
common” due to a bug in the PGI compiler’s weak object support.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 236
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

If you do not have access to PGI compiler 14.9 or later try compiling and the linking Arm MPI wrapper
as a shared library as described in 16.2.5 Dynamic linking on Cray X-Series systems Ommit the option
- -platform=cray if you are not on a Cray.

Cray

When linking C++ programs you may encounter a conflict between the Cray C++ runtime and the GNU
C++ runtime used by the Performance Reports libraries with an error similar to the one below:

/opt/cray/cce/8.2.5/CC/x86-64/1ib/x86-64/1libcray-c++-rts.a(rtti.o)
In function "__cxa_bad_typeid':
/ptmp/ulib/buildslaves/cfe-82-edition-build/tbhs/cfe/lib_src/rtti.c
:1062: multiple definition of “__ cxa_bad_typeid'
/opt/gcc/4.4.4/snos/1ib64/1ibstdc++.a(eh_aux_runtime.o):/tmp/peint
/gcc/repackage/4.4.4c/BUILD/snos_objdir/x86_64-suse-linux/
libstdc++-v3/libsupc++/../../../../xt-gcc-4.4.4/1ibstdc++-v3/
libsupc++/eh_aux_runtime.cc:46: first defined here
You can resolve this conflict by removing - 1stdc++and -1gcc_ehfromallinea-profiler.1d.
-lpthread

When linking -W1, @allinea-profiler.1d must go before the - 1Ipthread command-line argu-
ment if present.

Manual Linking

When linking your program you must add the path to the profiler libraries (-L/path/to/profiler -
libraries), and the libraries themselves (- lmap - sampler -pmpi, - lmap-sampler).

The MPI wrapper library (- lmap -sampler -pmpi) must go:
1. After your program’s object (. 0) files.
2. After your program’s own static libraries, for example - lmylibrary.
3. After the path to the profiler libraries (-L/path/to/profiler-1libraries).
4. Before the MPI’s Fortran wrapper library, if any. For example - Impichf.
5. Before the MPI’s implementation library usually - 1Impi.
6. Before the Arm sampler library - 1lmap - sampler.
The sampler library - Imap - sampler must go:
1. After the Arm MPI wrapper library.
2. After your program’s object (. 0) files.
3. After your program’s own static libraries, for example -1lmylibrary.
4. After -W1, - -undefined,allinea_init_sampler_now.
5. After the path to the profiler libraries - L/path/to/profiler-1libraries.
6. Before -1stdc++, -1gcc_eh, -1rt, -1pthread, -1d1, -1mand -1c.
For example:

mpicc hello.c -o hello -g -L/users/ddt/arm \
-lmap-sampler-pmpi \
-W1, - -undefined,allinea_init_sampler_now \

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 237
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

-lmap-sampler -1lstdc++ -1lgcc_eh -1rt \
-W1, - -whole-archive -lpthread \

-W1, --no-whole-archive \

-W1, --eh-frame-hdr \

-1d1 \

-1m

mpif90 hello.f90 -o hello -g -L/users/ddt/arm \
-lmap-sampler-pmpi \
-Wl, - -undefined, allinea_init_sampler_now \
-lmap-sampler -1lstdc++ -1lgcc_eh -1rt \
-W1, --whole-archive -lpthread \
-W1, - -no-whole-archive \
-W1, --eh-frame-hdr \
-1d1 \
-1m

Static linking on Cray X-Series systems

Compiling the MPI Wrapper Library

On Cray X-Series systems use make-profiler-libraries --platform=cray --lib-type=static
instead:

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:

compilation for use with MAP - not required for Performance
Reports:
-g (or -62 for native Cray Fortran) (and -03 etc.)

linking (both MAP and Performance Reports):
-W1l, @/home/user/myprogram/allinea-profiler.1d ...

EXISTING_MPI_LIBRARIES

If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)
, then

these must appear *after* the Arm sampler and MPI wrapper
libraries in

the link line. There's a comprehensive description of the link
ordering

requirements in the 'Preparing a Program for Profiling' section
of either

userguide-forge.pdf or userguide-reports.pdf, located in

/opt/arm/forge/20.2/doc/.

Linking with the MPI Wrapper Library
cc hello.c -o hello -g -Wl,@allinea-profiler.1ld

ftn hello.f90 -o hello -g -Wl,@allinea-profiler.1ld

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 238
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

Dynamic and static linking on Cray X-Series systems using the modules
environment

If your system has the Arm module files installed, you can load them and build your application as usual.
See section 16.2.9.

1. module load forge orensure that make-profiler-1libraries isin your PATH.

2. module load map-link-static ormodule load map-link-dynamic

3. Recompile your program.

map-link modules installation on Cray X-Series

To facilitate dynamic and static linking of user programs with the Arm MPI Wrapper and Sampler li-
braries Cray X-Series System Administrators can integrate the map-link-dynamic and map-link-static
modules into their module system. Templates for these modules are supplied as part of the Arm Forge
package.

Copy files share/modules/cray/map-1link- * into a dedicated directory on the system.
For each of the two module files copied:

1. Find the line starting with conflict and correct the prefix to refer to the location the module files
were installed, for example, arm/map-1ink-static. The correct prefix depends on the sub-
directory (if any) under the module search path the map-1ink- * modules were installed.

2. Find the line starting with set MAP_LIBRARIES_DIRECTORY NONE” and replace "NONE”
with a user writable directory accessible from the login and compute nodes.

After installed you can verify whether or not the prefix has been set correctly with ‘module avail’, the
prefix shown by this command for the map-link-* modules should match the prefix set in the ‘conflict’
line of the module sources.

Unsupported user applications
Ensure that the program to be profiled does not set or unset the SIGPROF signal handler. This interferes
with the Performance Reports profiling function and can cause it to fail.

It is not recommended to use Performance Reports to profile programs that contain instructions to per-
form MPI profiling using MPI wrappers and the MPI standard profiling interface, PMPI. This is because
Performance Reports’s own MPI wrappers may conflict with those contained in the program, producing
incorrect metrics.

Express Launch mode

Arm Forge can be launched by typing its command name in front of an existing mpiexec command:

$ perf-report mpiexec -n 256 examples/wave_c 30

This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see an error message like this:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 239
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

$ 'Generic' MPI programs cannot be started using Express Launch
syntax (launching with an mpirun command).

Try this instead:
perf-report --processes=256 ./wave_c 20

Type perf-report --help for more information.
This is referred to as Compatibility Mode, in which the mpiexec command is not included and the

arguments to mpiexec are passed via a - -mpiargs="args here'" parameter.

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts to
run your program under one of the Arm Forge products.

Normal redirection syntax may be used to redirect standard input and standard output.

Compatible MPIs

The following lists the MPI implementations supported by Express Launch:
+ Bullx MPI
* Cray X-Series (MPI/SHMEM/CAF)
* Intel MPI
+ MPICH 3
* Open MPI (MPI/SHMEM)
* Oracle MPT
* Open MPI (Cray XT/XE/XK)
* Spectrum MPI
+ Spectrum MPI (PMIx)
» Cray XT/XE/XK (UPC)

Compatibility Launch mode
Compatibility Mode must be used if Arm Forge does not support Express Launch mode for your MPI,
or, for some MPIs, if it is not able to access the compute nodes directly (for example, using ssh).

To use Compatibility Mode replace the mpiexec command with the perf-report command. For
example:

mpiexec --np=256 ./wave_c 20

This would become:

perf-report --np=256 ./wave_c 20
Only a small number of mpiexec arguments are supported by perf-report (for example, -n and -np).
Other arguments must be passed using the - -mpiargs="args here" parameter.

For example:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 240
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

mpiexec --np=256 --nooversubscribe ./wave_c 20

Becomes:

perf-report --mpiargs="--nooversubscribe" --np=256 ./wave_c 20

Normal redirection syntax may be used to redirect standard input and standard output.

Generating a performance report

Make sure the Arm Forge module for your system has been loaded:

$ perf-report --version

Arm Performance Reports

Copyright (c) 2002-2020 Arm Limited (or its affiliates). All
rights reserved.

If this command cannot be found consult the site documentation to find the name of the correct mod-
ule.

Once the module is loaded, you can simply add the perf-report command in front of your existing
mpiexec command-line:

perf-report mpiexec -n 4 examples/wave_c

If your program is submitted through a batch queuing system, then modify your submission script to load
the Arm module and add the ‘perf-report’ line in front of the mpiexec command you want to generate
a report for.

The program runs as usual, although startup and shutdown may take a few minutes longer while Arm
Forge generates and links the appropriate wrapper libraries before running and collects the data at the end
of the run. The runtime of your code (between MPI_Init and MPI_Finalize should not be affected
by more than a few percent at most.

After the run finishes, a performance report is saved to the current working directory, using a name based
on the application executable:

$ 1s -1rt wave_c*
-rwWX------ 1 mark mark 403037 Nov 14 03:21 wave_c
“rwW------- 1 mark mark 1911 Nov 14 03:28 wave_c_4p_2013-11-14_03

“rW=-=-=-=-=--- 1 mark mark 174308 Nov 14 03:28 wave_c_4p_2013-11-14_03
-27.html
Note that both . txt and . html versions are automatically generated.

You can include a short description of the run or other notes on configuration and compilation settings
by setting the environment variable ALLINEA_NOTES before running perf-report:

$ ALLINEA_NOTES="Run with inp421.dat and mc=1" perf-report mpiexec
-n 512 ./parEval.bin --use-mc=1 inp421.dat

The string in the ALLINEA_NOTES environment variable is included in all report files produced.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 241
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

Specifying output locations
By default, performance reports are placed in the current working directory using an auto-generated name
based on the application executable name, for example:
wave_f_16p_2013-11-18_23-30.html
wave_f_2p 8t 2013-11-18 23-30.html

This is formed by the name, the size of the job, the date, and the time. If using OpenMP, the value of
OMP_NUM_THREADS is also included in the name after the size of the job. The name will be made
unique if necessary by adding a _1/_2/...suffix.

You can specify a different location for output files using the - -output argument:

* --output=my-report.txt will create a plain text report in the filemy-report. txt in the
current directory.

« --output=/home/mark/public/my-report.html will create an HTML report in the
file /home/mark/public/my-report.html.

* --output=my-report will create a plain text report in the file my-report.txt and an
HTML report in the file my - report.html, both in the current directory.

e --output=/tmp will create reports with names based on the application executable name in
/tmp/, for example, /tmp/wave_f_16p_2013-11-18_23\-30.txt and /tmp/
wave_f_16p_2013-11-18_23\-30.html.

Support for DCIM systems

Performance Reports includes support for Data Center Infrastructure Management (DCIM) systems.

You can output all the metrics generated by the Performance Reports to a script using the - -dcim-
output argument. By default, the pr - dcimscript is called and the collected metrics are sent to Ganglia
(a System Monitoring tool).

The pr-dcim script looks for a gmetric implementation as part of the Ganglia software, and call it
as many times as there are metrics.

Customizing your DCIM script
The default pr-dcimscriptislocatedin {installation-directory}/performance-reports/
ganglia-connector/pr-dcim.

However, you can use your own custom script by specifying the ALLINEA_DCIM_SCRIPT environ-
ment variable.

This option is recommended if you are using a System Monitoring tool other than Ganglia.

Such a script is expecting arguments as follows, each argument can be specified once per metric:
* -V{METRIC}={VALUE} (mandatory) specifies that the metric METRIC has the value VALUE.
« -U{METRIC}={UNITS} (optional) specifies that the metric METRIC is expressed in UNITS.
* -T{METRIC}={TITLE} (optional) specifies that the metric METRIC has title TITLE.
+ -t{METRIC}={TYPE} (optional) specifies that the metric METRIC has TYPE data type.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 242
101136_2020_00_en

Arm Forge 20.2 35 RUNNING WITH REAL PROGRAMS

Customising the gmetric location
You can specify the path to your gmetr ic implementation by using the ALLINEA_GMETRIC environ-
ment variable.
Your gmetric version must accept the following command-line arguments:
* -n {NAME} (mandatory) specifies the name of the metric (starts with com.allinea).
« -t {TYPE} (mandatory) specifies the type of the metric (for example, double or int32).
» -v {VALUE} (mandatory) specifies the value of the metric.
* -g {GROUP} (optional) specifies which groups the metric belongs to (for example allinea).

* -u {UNIT} (optional) specifies the unit of the metric. For example, %, Watts, Seconds, and
SO on.

-T {TITLE} (optional) specifies the title of the metric.

Enable and disable metrics

--enable-metrics=METRICS
--disable-metrics=METRICS

Allows you to specify comma-separated lists which explicitly enable or disable metrics for which data
is to be collected. If the metrics specified cannot be found, an error message is displayed and Perfor-
mance Reports exits. Metrics which are always enabled or disabled cannot be explicitly disabled or
enabled. A metrics source library which has all its metrics disabled, either in the XML definition or via
--disable-metrics, will not be loaded. Metrics which can be explicitly enabled or disabled can be
listed using the - -1ist-metrics option.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 243
101136_2020_00_en

Arm Forge 20.2 36 SUMMARIZING AN EXISTING MAP FILE

Summarizing an existing MAP file

Arm Performance Reports can be used to summarize an application profile generated by Arm MAP. To
produce a performance report from an existing MAP output file called profile.map, simply run:

$ perf-report profile.map

Command-line options which would alter the execution of a program being profiled, such as specifying
the number of MPI ranks, have no effect. Options affecting how Performance Reports produces its report,
such as - -output, work as expected.

For the best results, ensure that Performance Reports and MAP versions match, for example, Performance
Reports 20.2with MAP 20.2. Performance Reports can use MAP files from versions of MAP as old as
5.0.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 244
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

Interpreting performance reports

This section explains how to interpret the reports produced by Arm Forge.

Reports are generated in both HTML and textual formats for each run of your application, by default.
The information presented in both of these formats is the same.

If you want to combine Arm Forge with other tools, consider using the CSV output format.

See CSV performance reports for more details.

HTML performance reports

Viewing HTML files is best done on your local machine. Many sites have places you can put HTML
files to be viewed from within the intranet. These directories are a good place to automatically send your
performance reports. Alternatively, you can use scp or sshfs to make the reports available on your
computer:

$ scp loginl:arm/forge/20.2/examples/wave_c_4p*.html .
$ firefox wave_c_4p*.html

The following report was generated by running the wave_openmp . c example program with 8 MPI
processes and 2 OpenMP threads per process on a typical HPC cluster:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 245
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

mpirun -np 8 examples/wave openmp 60 Compute

1 node (8 physical, 8 logical cores per node)
arm 15 GiB per node
PERFORMANCE 8 processes, OMP_NUM_THREADS was 2
REPORTS - -
mars N
Tue Nov 7 2017 15:35:50 (UTC) L S
61 seconds (about 1 minutes) MPI 11O
/scratch/user/reports/examples

Summary: wave_openmp is Compute-bound in this configuration

C t 72.6% _ Time spent running application code. High values are usually good.
om pu € e This is high; check the CPU performance section for advice
M Pl 27.4% Time spentin MPI calls. High values are usually bad.

e - This is low; this code may benefit from a higher process count

Time spent in filesystem I/O. High values are usually bad.
This is negligible; there's no need to investigate 1/O performance

/O 0.0% ‘

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
section below.

As little time is spent in MP! calls, this code may also benefit from running at larger scales.

A breakdown of the 72.6% CPU time: A breakdown of the 27.4% MPI time:

single-core code 2.2% | Time in collective calls 1.2% |

OpenMP regions 91.8% [Time in point-to-point calls 98.8% [N

Scalar numeric ops 51% | Effective process collective rate 19.5 kB/s |
Effective process point-to-pointrate 305 kg/s [N

Vector numeric ops 0.0% |

Memory accesses 56.9% A Most of the time is spent in point-to-point calls with a very low
transfer rate. This suggests load imbalance is causing

The per-core performance is memory-bound. Use a profiler to synchronization overhead; use an MPI profiler to investigate.

identify time-consuming loops and check their cache

performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

1/0 OpenMP

A breakdown of the 0.0% I/O time: A breakdown of the 91.8% time in OpenMP regions:

Time in reads 0.0% | Computation 2.9% |

Time in writes 0.0% | synchronization 90.1% [N

Effective process read rate 0.00 bytes/s | Physical core utilization 100.0% [

Effective process write rate 0.00 bytes/s | System load 167.0% [N

No time is spent in |/O operations. There's nothing to optimize Significant time is spent synchronizing threads in parallel regions.
here! Check the affected regions with a profiler.

The system load is high. Ensure background system processes
are not running.

Memory Energy
Per-process memory usage may also affect scaling: A breakdown of how energy was used:
Mean process memory usage 38.6 MiB [CPU not supported % |
Peak process memory usage 53.7 Mis [System not supported % |
Peak node memory usage 17.0% N Mean node power notsupported W |

\

The peak node memory usage is very low. Running with fewer MPI Peak node power 0.00w

processes and more data on each process may be more efficient. . . .
Energy metrics are not available on this system.

CPU metrics are not supported (no intel_rapl module)

Figure 124: A performance report for the wave_openmp.c example

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 246
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

When you run a report on this example program, the results might be different to the report shown here
depending on the performance and network architecture of the machine on which you run it, but the basic
structure of these reports is always the same. This common structure makes comparisons between reports
simple, direct, and intuitive. Each section of the report is described in the following sections.

Report summary
This characterizes how the wall clock time of the application was spent, and is organized by Compute,
MPI, and I/O.

In this example file, you can see that Arm Forge has identified that the program is compute-bound, which
means that most of its time is spent inside application code rather than communicating or using the filesys-
tem.

The pieces of advice that the program offers, such as “this code may benefit from running at larger scales”,
are good starting points for future investigations. They are designed to be informative to scientific users
with no previous MPI tuning experience.

The triangular radar chart, in the top-right corner of the report, reflects the values of these three key
measurements: compute, MPI and I/O. It is helpful to recognize and compare these triangular shapes
when switching between multiple reports.

Compute

Time spent computing. This is the percentage of wall clock time spent in application and in library code,
excluding time spent in MPI calls and I/O calls.

MPI

Time spent communicating. This is the percentage of wall clock time spent in MPI calls such as MPI_ -
Send, MPI_Reduce and MPI_Barrier.

Input/Output
Time spent reading from and writing to the filesystem. This is the percentage of wall clock time spent in
system library calls such as read, write and close.

Note: All time spent in MPI-IO calls is included here, even though some communication between pro-
cesses might also be performed by the MPI library. MPI_File_close is treated as time spent writing,
which is often, but not always, correct.

CPU breakdown

Note: All of the metrics described in this section are only available on x86_64 systems.

This section organizes the time spent in application and library code further by analyzing the kinds of
instructions that this time was spent on.

Note: All percentages here are relative to the compute time, not to the entire application run. Time spent
in MPI and I/O calls is not represented inside this section.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 247
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

Single core code

The percentage of wall clock in which the application executed using only one core per process, rather
than multithreaded or OpenMP code. If you have a multithreaded or OpenMP application, a high value
here indicates that your application is bound by Amdahl’s law and that scaling to larger numbers of threads
will not meaningfully improve performance.

OpenMP code

The percentage of wall clock time spent in OpenMP regions. The higher this is, the better. This metric is
only shown if the program spent a measurable amount of time inside at least one OpenMP region.

Scalar numeric ops

The percentage of time spent executing arithmetic operations such as add, mul, div. This does not
include time spent using the more efficient vectorized versions of these operations.

Vector numeric ops

The percentage of time spent executing vectorized arithmetic operations such as Intel’s SSE2 / AVX
extensions.

Generally it is good if a scientific code spends most of its time in these operations because that is the only
way to achieve anything close to the peak performance of modern processors.

If this value is low, you can check the vectorization report of the compiler to understand why the most time
consuming loops are not using these operations. Compilers need a lot of help to efficiently vectorize non-
trivial loops and the investment in time is often rewarded with 2x—4x performance improvements.

Memory accesses

The percentage of time spent in memory access operations, such as mov, load, store. A portion of the
time spent in instructions that use indirect addressing is also included here. A high figure here shows
the application is memory-bound and is not able to take full advantage of the CPU resources. Often it is
possible to reduce this figure by analyzing loops for poor cache performance and problematic memory
access patterns, improving performance significantly.

A high percentage of time spent in memory accesses in an OpenMP program is often a scalability problem.
If each core spends most of its time waiting for memory, or the L3 cache, then adding further cores rarely
improves matters. Equally, false sharing, in which cores block attempts to access the same cache lines,
and the over-use of the atomic pragma, show up as increased time spent in memory accesses.

Waiting for accelerators

The percentage of time that the CPU is waiting for the accelerator.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 248
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

CPU metrics breakdown

This section presents key CPU performance measurements gathered using the Linux perf event subsys-
tem.

Note: Metrics described in this section are only available on Armv8 and IBM Power systems. These
metrics are not available on virtual machines. Linux perf events performance events counters must be
accessible on all systems on which the target program runs. See section G.6.1 or G.7.2 for details.

Cycles per instruction

The average amount of CPU cycles lapsed for each retired instruction. This metric is affected by CPU
frequency scaling and various issues, particularly hardware interrupt counts.

Stalled cycles

Note: This metric is available on Armv8 and IBM Power 9 systems only.

The percentage of CPU cycles that lapsed, on which operation instructions are not issued.
L2 cache misses

Note: This metric is available on Armv8 systems only.

The percentage of L2 data cache accesses which resulted in a miss.

L3 cache miss per instruction

Note: This metric is available on IBM Power 9 systems only.

The ratio of L3 data cache demand loads to instructions completed.

FLOPS scalar lower bound

This is a lower bound because its value is calculated from FLOPS vector lower bound, which does not
account for the length of vector operations.

Note: This metric is available on IBM Power 8 systems only.

The rate at which floating-point scalar operations finished.

FLOPS vector lower bound

This is a lower bound because the counted value does not account for the length of vector operations.
Note: This metric is available on IBM Power 8 systems only.

The rate at which vector floating-point instructions completed.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 249
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

Memory accesses

Note: This metric is available on IBM Power 8 systems only.

The rate at which the processor’s data cache reloaded from a memory location, including L4 from local,
remote, or distant due to a demand load.

OpenMP breakdown

This section breaks down the time spent in OpenMP regions into computation and synchronization and
includes additional metrics that help to diagnose OpenMP performance problems. It is only shown if a
measurable amount of time was spent inside OpenMP regions.

Computation

The percentage of time threads in OpenMP regions that is spent computing rather than waiting or sleeping.
Keeping this high is one important way to ensure that OpenMP codes scale well. If this is high, look at
the CPU breakdown to see whether that time is being used optimally on floating-point operations for
example, or whether the cores are mostly waiting for memory accesses.

Synchronization

The percentage of time threads in OpenMP regions spent waiting or sleeping. By default, each OpenMP
region ends with an implicit barrier. If the workload is imbalanced and some threads finish sooner and
wait, this value will increase. Also, there is some overhead associated with entering and leaving OpenMP
regions and a high synchronization time might show that the threading is too fine-grained. In general,
OpenMP performance is better when outer loops are parallelized, rather than inner loops.

Physical core utilization

Modern CPUs often have multiple logical cores for each physical cores. This is often referred to as hyper-
threading. These logical cores can share logic and arithmetic units. Some programs perform better when
using additional logical cores, but most HPC codes do not.

If the value here is greater than 100, OMP_NUM_THREADS is set to a larger number of threads than phys-
ical cores that are available and performance can be impacted, usually appearing as a larger percentage
of time in OpenMP synchronization or memory accesses.

System load

The number of active (running or runnable) threads as a percentage of the number of physical CPU cores
that are present in the compute node. This value can exceed 100% if you are using hyper-threading, the
cores are oversubscribed, or other system processes and daemons start running and take CPU resources
away from your program. A value consistently less than 100% might indicate your program is not taking
full advantage of the CPU resources available on a compute node.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 250
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

Threads breakdown

This section organizes the time spent by worker threads (non-main threads) into computation and syn-
chronization, and includes additional metrics that help to diagnose multicore performance problems. This
section is replaced by the OpenMP Breakdown if a measurable amount of application time was spent in
OpenMP regions.

Computation

The percentage of time that worker threads spend computing rather than waiting in locks and synchro-
nization primitives. If this is high, look at the CPU breakdown to see whether that time is used op-
timally on floating-point operations for example, or whether the cores are mostly waiting for memory
accesses.

Synchronization

The percentage of time worker threads spend waiting in locks and synchronization primitives. This only
includes time in which those threads were active on a core and does not include time spent sleeping while
other useful work is being done. A large value here indicates a performance and scalability problem that
can be detected with a multicore profiler such as Arm MAP.

Physical core utilization

Modern CPUs often have multiple logical cores for each physical core. This is often referred to as hyper-
threading. These logical cores can share logic and arithmetic units. Some programs perform better when
using additional logical cores, but most HPC codes do not.

The value here shows the percentage utilization of physical cores. A value over 100% indicates that more
threads are executing than there are physical cores, indicating that hyper-threading is in use.

Only threads actively and simultaneously consuming CPU time are included in this metric. A program
can have many helper threads that do little except sleep, and are not shown.

System load

The number of active (running or runnable) threads as a percentage of the number of physical CPU cores
present in the compute node. This value can exceed 100% if you are using hyper-threading, if the cores
are oversubscribed, or if other system processes and daemons start running and take CPU resources away
from your program. A value consistently less than 100% might indicate your program is not taking full
advantage of the CPU resources available on a compute node.

MPI breakdown

This section organizes the time spent in MPI calls reported in the summary. It is only interesting if the
program spends a significant amount of its time in MPI calls.

All the rates quoted here are inbound and outbound rates. This means that the rate of communication is
being measured from the process to the MPI API, not of the underlying hardware directly.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 251
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

This application-perspective is found throughout Arm Forge, and in this case allows the results to capture
effects such as faster intra-node performance, zero-copy transfers, and other effects.

Note: For programs that make MPI calls from multiple threads (MPI is in MPI_THREAD_SERIALIZED
or MPI_THREAD_MULTIPLE mode), Arm Forge only displays metrics for MPI calls made on the main
thread.

Time in collective calls

The percentage of time spent in collective MPI operations such as MPI_Scatter, MPI_Reduce, and
MPI_Barrier.

Time in point-to-point calls

The percentage of time spent in point-to-point MPI operations such as MPI_Send and MPI_Recv.

Effective process collective rate

The average transfer per-process rate during collective operations, from the perspective of the application
code and not the transfer layer. For example, an MPI_Alltoall that takes 1 second to send 10 Mb
to 50 processes and receive 10 Mb from 50 processes has an effective transfer rate of 10x50x2 = 1000
Mb/s.

Collective rates can often be higher than the peak point-to-point rate if the network topology matches the
application’s communication patterns well.

Effective process point-to-point rate

The average per-process transfer rate during point-to-point operations, from the perspective of the ap-
plication code and not the transfer layer. Asynchronous calls that allow the application to overlap com-
munication and computation such as MPI_ISend can achieve much higher effective transfer rates than
synchronous calls.

Overlapping communication and computation is often a good strategy to improve application perfor-
mance and scalability.

1/O breakdown

This section organizes the amount of time spent in library and system calls relating to I/O, such as read,
write and close. I/O that is generated by MPI network traffic is not included. In most cases, this should
be a direct measure of the amount of time spent reading and writing to the filesystem, whether local or
networked.

Some systems, such as the Cray X-series, do not have I/O accounting enabled for all filesystems. On
these systems only Lustre I/0O is reported in this section.

Even if your application does not perform I/O, a non-zero amount of I/O is reported because of internal
I/O performed by Arm Performance Reports.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 252
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

Time in reads

The percentage of time spent on average in read operations from the perspective of the application, not
the filesystem. Time spent in the stat system call is also included here.

Time in writes

The percentage of time spent on average in write and sync operations from the perspective of the appli-
cation, not the filesystem.

Opening and closing files is also included here, because measurements have shown that the latest net-
worked filesystems can spend significant amounts of time opening files with create or write permis-
sions.

Effective process read rate

The average transfer rate during read operations from the perspective of the application. A cached read has
a much higher read rate than one that has to hit a physical disk. This is particularly important to optimize
for because current clusters often have complex storage hierarchies with multiple levels of caching.

Effective process write rate

The average transfer rate during write and sync operations from the application’s perspective. A buffered
write will have a much higher write rate than one that has to hit a physical disk. However, unless there
is significant time between writing and closing the file, the penalty will be paid during the synchronous
close operation instead. All these complexities are captured in this measurement.

Lustre metrics

Lustre metrics are enabled if your compute nodes have one or more Lustre filesystems mounted. Lustre
metrics are obtained from a Lustre client process that runs on each node. Therefore, the data gives the
information gathered on a per-node basis. The data is also cumulative over all of the processes run on
a node, not only the application being profiled. Consequently, there might be some data reported to be
read and written, even if the application itself does not perform file I/O through Lustre.

However, an assumption is made that the majority of data that is read and written through the Lustre
client will be from an I/O intensive application, not from background processes. This assumption has
been observed to be reasonable. For generated application profiles with more than a few megabytes of
data that is read or written, almost all of the data reported in Arm Performance Reports is attributed to
the application being profiled.

The data that is gathered from the Lustre client process is the read and write rate of data to Lustre, and
a count of some metadata operations. Lustre does not just store pure data, but associates this data with
metadata, which describes where data is stored on the parallel filesystem and how to access it. This
metadata is stored separately from data, and needs to be accessed whenever new files are opened, closed,
or files are resized. Metadata operations consume time and add to the latency in accessing the data.
Therefore, frequent metadata operations can slow down the performance of I/0 to Lustre.

Arm Performance Reports reports on the total number of metadata operations, and also the total number
of file opens that are encountered by a Lustre client. With the information provided in Arm Performance
Reports you can observe the rate at which data is read and written to Lustre through the Lustre client,

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 253
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

and also identify whether a slow read or write rate can be correlated to a high rate of expensive metadata
operations.

Notes:
* For jobs run on multiple nodes, the reported values are the mean across the nodes.

+ If you have more than one Lustre filesystem mounted on the compute nodes, the values are summed
across all Lustre filesystems.

» Metadata metrics are only available if you have the Advanced Metrics Pack add-on for Arm Per-
formance Reports.

Lustre read transfer: The number of bytes read per second from Lustre.
Lustre write transfer: The number of bytes written per second to Lustre.
Lustre file opens: The number of file open operations per second on a Lustre filesystem.

Lustre metadata operations: The number of metadata operations per second on a Lustre filesystem.
Metadata operations include file open, close, and create, as well as operations such as readdir, rename,
and unlink.

Note: Depending on the circumstances and implementation, ‘file open’ might count as multiple opera-
tions, for example, when it creates a new file or truncates an existing one.

Memory breakdown

Unlike the other sections, the memory section does not refer to one particular portion of the job. Instead,
it summarizes memory usage across all processes and nodes over the entire duration. All of these metrics
refer to RSS, meaning physical RAM usage, and not virtual memory usage. Most HPC jobs attempt to
stay within the physical RAM of their node for performance reasons.

Mean process memory usage

The average amount of memory used per-process across the entire length of the job.

Peak process memory usage

The peak memory usage that is seen by one process at any moment during the job. If this varies a lot from
the mean process memory usage, it might be a sign of either imbalanced workloads between processes
or a memory leak within a process.

Note: This is not a true high-watermark, but rather the peak memory seen during statistical sampling.
For most scientific codes, this is not a meaningful difference because rapid allocation and deallocation
of large amounts of memory is generally avoided for performance reasons.

Peak node memory usage

The peak percentage of memory that is seen being used on any single node during the entire run. If this
is close to 100%, swapping might be occurring, or the job might be likely to hit hard system-imposed
limits. If this is low, it might be more efficient in CPU hours to run with a smaller number of nodes and
a larger workload per node.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 254
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS
Accelerator breakdown

Accelerators

A breakdown of how accelerators were used:
GPU utilization a7.8% N

Global memory accesses 1.6% |

Mean GPU memory usage 0.8% |

Peak GPU memory usage 0.8% |

GPU utilization is low; identify CPU bottlenecks with a profiler and
offload them to the accelerator.

The peak GPU memory usage is low. It may be more efficient to
offload a larger portion of the dataset to each device.

Figure 125: Accelerator metrics report

This section shows the utilization of NVIDIA CUDA accelerators by the job.

GPU utilization

The average percentage of the GPU cards working when at least one CUDA kernel is running.

Global memory accesses

The average percentage of time that the GPU cards were reading or writing to global (device) mem-
ory.

Mean GPU memory usage

The average amount of memory in use on the GPU cards.

Peak GPU memory usage

The maximum amount of memory in use on the GPU cards.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 255
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

Energy breakdown

A breakdown of how the Wh was used:
CPU %
System %
Mean node power w
Peak node power W

Significant time is spent on memory accesses. Reducing the
clock frequency could reduce the total

Figure 126: Energy metrics report

This section shows the energy used by the job, organized by component, such as CPU and accelera-
tors.

CPU

The percentage of the total energy used by the CPUs.

CPU power measurement requires an Intel CPU with RAPL support, for example Sandy Bridge or newer,
and the intel_rapl powercap kernel module to be loaded.

Accelerator

The percentage of energy used by the accelerators. This metric is only shown when a CUDA card is
present.

System

The percentage of energy used by other components not shown above. If CPU and accelerator metrics
are not available, the system energy will be 100%.

Mean node power

The average of the mean power consumption of all the nodes in Watts.

Peak node power

The node with the highest peak of power consumption in Watts.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 256
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

Requirements
CPU power measurement requires an Intel CPU with RAPL support, for example Sandy Bridge or newer,
and the intel_rapl powercap kernel module to be loaded.

Node power monitoring is implemented through one of two methods: the Arm IPMI energy agent which
can read IPMI power sensors, or the Cray HSS energy counters.

For more information on how to install the Arm IPMI energy agent please see 1.7 Arm IPMI Energy Agent.
The Cray HSS energy counters are known to be available on Cray XK6 and XC30 machines.

Accelerator power measurement requires a NVIDIA GPU that supports power monitoring. This can be
checked on the command-line with nvidia-smi -q -d power. If the reported power values are
reported as “N/A”, power monitoring is not supported.

Textual performance reports

The same information is presented as described in 37.1 HTML performance reports, but in a format better
suited to automatic data extraction and reading from a terminal:

Command : mpiexec -n 16 examples/wave_c 60

Resources: 1 node (12 physical, 24 logical cores per node, 2
GPUs per node available)

Memory : 15 GB per node, 11 GB per GPU

Tasks: 16 processes

Machine: node042

Started on: Tue Feb 25 12:14:06 2014

Total time: 60 seconds (1 minute)

Full path: /home/user/arm/forge/20.2/examples
Notes:

Summary: wave_c is compute-bound in this configuration

Compute: 82.4% |=======|
MPI: 17.6% |=|
1/0: 0.0% |

This application run was compute-bound. A breakdown of this time
and advice for investigating further is found in the compute
section below.

Because minimal time is spent in MPI calls, this code might also
benefit from running at larger scales.

A combination of grep and sed can be useful for extracting and comparing values between multiple
runs, or for automatically placing this data into a centralized database.

CSV performance reports

A CSV (comma-separated values) output file can be generated using the - -output argument and spec-
ifying a filename with the . csv extension:

perf-report --output=myFile.csv ...

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 257
101136_2020_00_en

Arm Forge 20.2 37 INTERPRETING PERFORMANCE REPORTS

The CSV file will contain lines in a NAME, VALUE format for each of the reported fields. This is
convenient for passing to an automated analysis tool, such as a plotting program. It can also be imported
into a spreadsheet for analyzing values among executions.

Worked examples

The best way to understand how to use and interpret performance reports is by example. You can down-
load several sets of real-world reports with analysis and commentary from the Arm Developer web-
site.

There are three collections available which are described in the following sections.
Code characterization and run size comparison

A set of runs from well-known HPC codes at different scales showing different problems:
Characterization of HPC codes and problems

Deeper CPU metric analysis

Alook at the impact of hyper-threading on the performance of a code as seen through the CPU instructions
breakdown:

Exploring hyperthreading

110 performance bottlenecks

The open source MAD-bench I/O benchmark is run in several different configurations, including on a
laptop, and the performance implications are analyzed:

Understanding 1/0 behavior

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 258
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc
https://developer.arm.com/tools-and-software/server-and-hpc
http://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/documentation/characterizing-hpc-codes-with-arm-performance-reports/
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/resources/tutorials/characterizing-hpc-codes-with-arm-performance-reports
http://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/documentation/about-io-behavior-with-arm-performance-reports/

Arm Forge 20.2 38 CONFIGURABLE PERF METRICS

Configurable Perf metrics

The Perf metrics use the Linux kernel perf_event_open() system call to provide additional CPU
related metrics available for Performance Reports. They can be used on any system supported by the
Linux perf command (also called perf_event). These cannot be tracked on typical virtual machines.

Perf metrics count the rate of one or more performance events occurring in a program. There are some
software events provided by the Linux kernel but most are hardware events tracked by the Performance
Monitoring Unit (PMU) of the CPU. Generalized hardware events are event name aliases that the Linux
kernel identifies.

The quantity and combinations (in some cases) of events that can be simultaneously tracked is limited by
the hardware. This feature does not support multiplexing performance events.

If the set of events you requested can not be tracked at the same time, Performance Reports ends the
profiling session immediately with an error message. Try requesting fewer events, or a different com-
bination. See the PMU reference manual for your architecture for more information on incompatible
events.

Permissions

On some systems, using the Perf hardware counters can be restricted by the value of /proc/sys/k-
ernel/perf_event_paranoid.

perf_event_paranoid | Description
3 Disable use of Perf events
2 Allow only user-space measurements
1 Allow kernel and user-space measurements
0] Allow access to CPU-specific data but not raw trace-point sam-
ples.
-1 No restrictions

The value of /proc/sys/kernel/perf_event_paranoid must be 2 or lower to collect Perf
metrics. To set this until the next reboot, run the following commands:

sudo sysctl -w kernel.perf_event_paranoid=2

To permanently set the paranoid level, add the following line to: /etc/sysctl.conf.
kernel.perf_event_paranoid=2

Probing target hosts

You must probe an example of a typical host machine before using these metrics. As well as other
properties, this collects the CPU ID used to identify the set of potential hardware events for the host, and
tests which generalized events are supported.

Ensure that /proc/sys/kernel/perf_event_paranoid is set to 2 or lower (Permissions) be-
fore performing the probe.

Note: It is not necessary to probe every potential host, a single compute node in a homogeneous cluster
is sufficient.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 259
101136_2020_00_en

Arm Forge 20.2 38 CONFIGURABLE PERF METRICS

If your home directory is writable you can generate a probe file and install it in your config directory by
running the following on the intended host:

/path/to/forge/bin/forge-probe --install=user
If the Forge installation directory is writable, you can generate and install the probe file for the current
host with:

/path/to/forge/bin/forge-probe --install=global

To generate the probe file, but install it manually, execute:

/path/to/forge/bin/forge-probe
The probe is named <hostname>_probe. json and is generated in your current working directory.
You must manually copy it to the location specified in the forge - probe output. This is typically only

necessary when the compute node that you are probing does not have write access to your home file
system.

Check that the expected probe files are correctly installed with:
/path/to/forge/bin/map --target-host=list

This shows something like:
0x0000000042015160 (thunderx2) e.g. node07.myarmhost.com
GenuinelIntel-6-4E (skylake) e.g. nodedl.myintelhost.com

If you have exactly one probe file installed, this is automatically assumed to be the target host. If there are
multiple installed probe files, you must specify the intended target whenever you use the configurable Perf
metrics feature. When using the command line, use the - -target-host argument. You can specify
the intended target CPU ID (such as, @x0000000042015160), family name (such as, thunderx2),
or a unique substring of the hostname (myarmhost).

Specifying Perf metrics via the command line

You can list available events for a given probed host using:
/path/to/forge/bin/perf-report map --target-host=myarmhost \
--perf-metrics=avail
Note: Use 1ist instead of avail to see the events listed on separate lines.
Specify the events you want using a semicolon separated list:

/path/to/forge/bin/perf-report --profile --target-host=myarmhost \
--perf-metrics="cpu-cycles; bus-cycles; instructions" mpirun

Specifying Perf metrics via a file

The - -perf-metrics argument can also take the name of a plain text file:

/path/to/forge/bin/perf-report --profile --target-host=myhost \
--perf-metrics=./myevents.txt mpirun

myevents. txt lists the events to track on separate lines, such as:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 260
101136_2020_00_en

Arm Forge 20.2 38 CONFIGURABLE PERF METRICS

cpu-cycles
bus-cycles
instructions

--perf-metrics=template outputs a more complex template that lists all possible events with
accompanying descriptions. Redirect this output to a file and uncomment the events to track, for exam-
ple:

/path/to/forge/bin/perf-report --target-host=myhost \
--perf-metrics=template > myevents.txt

vim myevents. txt

/path/to/forge/bin/perf-report --profile \
--perf-metrics=myevents.txt mpirun

Viewing events
You can view Perf event counts in the CPU Metrics section. All these metrics are reported as events per
second with a suitable SI prefix (such as, K, M, G) that is automatically determined.
The default values that are reported are the mean of means:
1. The mean value is taken across all processes for each sample (averaging across processes).

2. The mean value is taken of those per-sample results (averaging across time).

Advanced configuration

You can override the default settings used by Performance Reports when making perf_event_open
calls. Specify one or more flags in a preamble section in square brackets at the start of the perf metrics
definition string (either on the command line or at the top of a template file).

/path/to/forge/bin/perf-report --profile --target-host=myarmhost \
--perf-metrics="[optional, noinherit]; instructions; cpu-cycles"

Possible options are:

* [optional]: Do not abort the program if the requested metrics cannot be collected. Set this if you
wish to continue profiling even if the no Perf metric results is returned.

* [noinherit]: Disable multithreading support (new threads will not inherit the event counter con-
figuration). If you specified events, they are only collected on the main thread (in the case of MPI
programs, the thread that called MPI_thread_init).

* [nopinned]: Disable pinning events on the PMU. If you have specified this, event counting might
be multiplexed. Arm does not recommend doing this as it interacts poorly with the Forge sampling
strategy.

* [noexclude=kernel]: Do not exclude kernel events that happen in kernel space. This might require
a more permissive perf_event_paranoid level.

* [noexclude=hv]: Do not exclude events that happen in the hypervisor. This is mainly for PMUs
that have built-in support for handling this (such as IBM Power). Most machines require extra
support for handling hypervisor measurements.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 261
101136_2020_00_en

Arm Forge 20.2 38 CONFIGURABLE PERF METRICS

* [noexclude=idle]: Do not exclude counting software events when the CPU is running the idle task.
This is only relevant for software events.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 262
101136_2020_00_en

Arm Forge 20.2 A CONFIGURATION

PartV

Appendix

Configuration

Arm Forge shares a common configuration file between Arm DDT, Arm MAP, and Arm Performance
Reports. This makes it easy for you to switch between tools without reconfiguring your environment
each time.

Configuring Performance Reports

Performance Reports generally requires no extra configuration before use. If you only intend to use
Performance Reports and you have verified that it works on your system, you can safely ignore most of
the information in this section.

When Performance Reports needs to access another machine as part of starting MPICH 3, Intel MPI, or
SGI MPT, it attempts to use the ssh secure shell by default. However, this might not always be appropriate
if ssh is disabled or running on a different port to the default port 22. If startup fails, see A.5 Connecting
to compute nodes and remote programs (remote-exec).

Configuration files

Arm Forge uses two configuration files: the system wide system.config and the user specificuser .config.
The system wide configuration file specifies properties such as MPI implementation. The user specific
configuration file describes user’s preferences such as font size. The files are controlled by environment
variables:

Environment Variable Default

ALLINEA_USER_CONFIG \${ALLINEA_CONFIG_DIR}/user.config
ALLINEA_SYSTEM_CONFIG | \${ALLINEA_CONFIG_DIR}/system.config
ALLINEA_CONFIG_DIR \${HOME}/.allinea

Sitewide configuration

If you are the system administrator, or have write-access to the installation directory, you can provide a
configuration file which other users are automatically given a copy of the first time that they start Arm
Forge. In this case, users no longer need to provide configuration for site-specific aspects such as queue
templates and job submission.

Configure Arm Forge normally and run a test program to make sure all the settings are correct. When
you are satisfied with your configuration, execute one of the following commands:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 263
101136_2020_00_en

Arm Forge 20.2 A CONFIGURATION

forge --clean-config

The clean--config option removes any user-specific settings from your system configuration file
and creates a system.config file that can provide the default settings for all users on your system.
Instructions about how to do this are printed when - -clean-config completes.

Note: Only the system.config fileis generated. Arm Forge also uses a user-specificuser .config
which is not affected.

If you want to use DDT to attach to running jobs, you must also create a file called nodes in the instal-
lation directory which lists the compute nodes to which you want to attach. See section 5.9 Attaching to
running programs for details.

Startup scripts

When Arm Forge starts, it searches for a sitewide startup script called allinearc in the root of the
installation directory. If this file exists, the software sources it and then starts the tool. When using the
remote client, the software sources this startup script, and then starts any sitewide remote-init remote
daemon startup script.

Similarly, you can also provide a user-specific startup scriptin ~/.allinea/allinearc.

Note: If the ALLINEA_CONFIG_DIR environment variable is set, the software looks in \$ALLINEA__
CONFIG_DIR/allinearc instead. When using the remote client, the software sources the user-
specific startup script followed by the user-specific ~/.allinea/remote-init remote daemon
startup script.

Importing legacy configuration

If you have used a version of Arm DDT prior to version 4.0, your existing configuration is imported
automatically. If the DDTCONFIG environment variable is set, or you use the - -config command-
line argument, the existing configuration is imported. However, the legacy configuration file will not be
modified, and subsequent configuration changes are saved as described in the previous sections.

Converting legacy sitewide configuration files

If you have existing sitewide configuration files from a version of Arm DDT prior to 4.0 you will need to
convert them to the new 4.0 format. This can easily be done using the following command line:

forge --config=oldconfig.ddt --system-config=newconfig.ddt --clean
-config

Note: newconfig.ddt must not exist beforehand.

Using shared home directories on multiple systems

If your site uses the same home directory for multiple systems you may want to use a different configu-
ration directory for each system.

You can do this by specifying the ALLINEA_CONFIG_DIR environment variable before starting Arm
Forge. If you use the module system, you can set ALLINEA_CONFIG_DIR according to the system
on which the module was loaded.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 264
101136_2020_00_en

Arm Forge 20.2 A CONFIGURATION

For example, if you have two systems: harvester with loginnodes harvester-loginlandharvester -
login2, and sandworm with login nodes sandworm-1loginl and sandworm-10gin2, you can
add something like the following code to your module file:

case $(hostname) in
harvester-login*)
ALLINEA CONFIG_DIR=$HOME/.allinea/harvester
"
sandworm-login*)
ALLINEA CONFIG_DIR=$HOME/.allinea/sandworm

rrs

esac

Using a shared installation on multiple systems

If you have multiple systems sharing a common Arm Forge installation, you can have a different default
configuration for each system. You can use the ALLINEA_DEFAULT_SYSTEM_CONFIG environment
variable to specify a different file for each system. For example, you can add something like the following
code to your module file:

case $(hostname) in
harvester-login*)
ALLINEA DEFAULT_SYSTEM_CONFIG=/sw/arm/forge/20.2/harvester.
config
i
sandworm-login*)
ALLINEA DEFAULT_SYSTEM_CONFIG=/sw/arm/forge/20.2/sandworm.
config

esac

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 265
101136_2020_00_en

Arm Forge 20.2 A CONFIGURATION

Integration with queuing systems

system Job Submission Settings
o 'T| Job Submission Submission template file: | /home/userjarm/forge/templates/mytemplate.qtf
™
L Submit command: |llsubmit
D Code Viewer Regexp for job id: |"([""]+)" *has been submitted
Cancel command: |licancel JOB_ID_TAG
@ Appearance i
Display command: |lig
__a Vislt
V| Quick Restart What is Quick Restart?
Help Cancel

Figure 127: Queuing Systems

Arm Forge can be configured to interact with most job submission systems. This is useful if you wish to
debug interactively but need to submit a job to the queue in order to do so.

MAP is usually run as a wrapper around mpirun or mpiexec, via the map --profile argument.
Arm recommends using this to generate .map files instead of configuring MAP to submit jobs to the
queue, but both usage patterns are fully-supported.

In the Options window (Preferences on Mac OS X), you should choose Submit job through queue. This
displays extra options and switches the GUI into queue submission mode.

The basic stages in configuring to work with a queue are:
1. Making a template script.
2. Setting the commands used to submit, cancel, and list queue jobs.

Your system administrator can provide a configuration file containing the correct settings, and remove
the need for individual users to configure their own settings and scripts.

In this mode, Arm Forge can use a template script to interact with your queuing system. The templates
subdirectory contains some example scripts that can be modified to meet your needs. {installation-
directory}/templates/sample.qtf, demonstrates the process of creating a template file in
some detail.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 266
101136_2020_00_en

Arm Forge 20.2 A CONFIGURATION

Template tutorial

Typically, your queue script probably ends in a line that starts mpirun with your target executable. In
most cases, you can replace that line with AUTO_LAUNCH_TAG. For example, if your script currently
has the line:

mpirun -np 16 program_name myargl myarg2

Create a copy of it and replace that line with:

AUTO_LAUNCH_TAG

Select this file as the Submission template file on the Job Submission Settings page of the Options.

Note: You no longer need to explicitly specify the number of processes, and so on. Instead, specify the
number of processes, program name, and arguments in the Run window.

Fill in Submit command with the command you usually use to submit your job, for example qsub or
sbatch. Use the Cancel command with the command you usually use to cancel a job, for example
gdel or scancel. Use the Display command with the command you usually use to display the current
queue status, for example gstat or squeue.

You can usually use (
d+) as the Regexp for job id. This just scans for a number in the output from your Submit com-
mand.

When you have a simple template working, you can go on to make more things configurable from the
GUI. For example, to be able to specify the number of nodes from the GUI, you could replace an explicit
number of nodes with the NUM_NODES_TAG. In this case, replace:

#SBATCH --nodes=100

With:
#SBATCH --nodes=NUM_NODE_TAG

See appendix 1.1 Queue template tags for a full list of tags.

The template script

The template script is based on the file you would typically use to submit your job. This is usually a
shell script that specifies the resources needed, such as number of processes, output files, and executes
mpirun, vmirun, poe or similar, with your application.

The most important difference is that job-specific variables, such as number of processes, number of
nodes, and program arguments, are replaced by capitalized keyword tags, such as NUM_PROCS_TAG.

When Arm Forge prepares your job, it replaces each of these keywords with its value and then submits
the new file to your queue.

To refer to tags in comments without Arm Forge detecting them as a required field, the comment line
must begin with ##.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 267
101136_2020_00_en

Arm Forge 20.2 A CONFIGURATION

Configuring queue commands

When you have selected a queue template file, enter submit, display, and cancel commands.

When you start a session, Arm Forge generates a submission file and appends its file name to the submit
command you give.

For example, if you normally submit a job by typing job_submit -u myusername -f myfile
then you should enter job_submit -u myusername -f asthe submit command.

To cancel a job, Arm Forge will use a regular expression you provide to get a value for JOB_ID_TAG.
This tag is found by using regular expression matching on the output from your submit command. See
appendix 1.6 Job ID regular expression for details.

Configuring how job size is chosen

Arm Forge offers a number of flexible ways to specify the size of a job. You may choose whether Number
of Processes and Number of Nodes options appear in the Run window or whether these should be implicitly
calculated. Similarly you may choose to display Processes per node in the Run window or set it to a Fixed
value.

Note: if you choose to display Processes per node in the Run window and PROCS_PER_NODE_TAG is
specified in the queue template file then the tag will always be replaced by the Processes per node value
from the Run dialog, even if the option is unchecked there.

Quick restart

DDT allows you reuse an existing queued job to quickly restart a run without resubmitting it to the queue,
provided that your MPI implementation supports doing this. Simply check the Quick Restart check box
on the Job Submission Options page.

In order to use quick restart, your queue template file must use AUTO_LAUNCH_TAG to execute your
job.

For more information on AUTO_LAUNCH_TAG, see 1.4.1 Using AUTO_LAUNCH_TAG.

Connecting to compute nodes and remote programs (remote-exec)

When Arm Forge needs to access another machine for remote launch or as part of starting some MPIs, it
attempts to use the ssh secure shell by default.

However, this might not always be appropriate, Ssh can be disabled or run on a different port to the default
port 22. In this case, you can create a file called remote - exec which is located in your ~/.allinea
directory and DDT uses this instead.

Arm Forge looks for the script at ~/ .allinea/remote-exec, and it is executed as follows:
remote-exec HOSTNAME APPNAME [ARG1] [ARG2]
The script must start APPNAME on HOSTNAME with the arguments ARG1 ARG2 without further input (no

password prompts). Standard output from APPNAME appears on the standard output of remote-exec.
For example:

SSH based remote-exec

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 268
101136_2020_00_en

Arm Forge 20.2 A CONFIGURATION

A remote-exec script using Ssh running on a non-standard port might look as follows:

#!1/bin/sh
ssh -P {port-number} $*

For this to work without prompting for a password, generate a public and private SSH key, and ensure
that the public key is added to the ~/.ssh/authorized_keys file on machines you wish to use.
See the ssh-keygen manual page for more information.

Testing

When you have set up your remote -exec script, Arm recommends that you test it from the command
line. For example:

~/ .allinea/remote-exec TESTHOST uname -n

This returns the output of uname -n on TESTHOST, without prompting for a password.

If you are having trouble setting up remote-exec, contact Arm support at Arm support for assis-
tance.

Windows
The functionality is also provided by the Windows remote client. However, there are two differences:
1. The script is named remote-exec.cmd rather than remote-exec

2. The default implementation uses the plink.exe executable supplied with Arm Forge.

Optional configuration

Arm Forge providess an Options window (Preferences on Mac OS X), which allows you to quickly edit
the settings outlined below.

System

MPI Implementation: Allows you to tell Arm Forge which MPI implementation you are using.
Note: If you are not using Arm Forge to work with MPI programs, select none.

Override default mpirun path: Allows you to override the path to the mpirun (or equivalent) com-
mand.

Select Debugger: Tells Arm Forge which underlying debugger to use. Unless a specific debugger is
required, leave this as Automatic.

On Linux systems, Arm Forge ships with the following versions of the GNU GDB debugger: GDB
7.6.2, GDB 7.12.1, GDB 8.1, and GDB 8.2. GDB 7.12.1 is the recommended debugger for and GDB 8.2
is the recommended debugger for DDT. These recommended defaults are selected automatically when
Automatic (recommended) is selected from the System Settings page on the Options window.

Create Root and Workers groups automatically: If this option is selected, DDT will automatically cre-
ate a Root group for rank 0, and a Workers group for ranks 1-n when you start a new MPI session.

Heterogeneous system support: DDT has support for running heterogeneous MPMD MPI applications
where some nodes use one architecture and other nodes use another architecture. This requires a little
preparation of your Arm Forge installation. You must have a separate installation of DDT for each archi-
tecture. The architecture of the machine running the Arm Forge GUTI is called the host architecture. You

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 269
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 A CONFIGURATION

must create symbolic links from the host architecture installation of Arm Forge to the other installations
for the other architectures. For example with a 64-bit x86_64 host architecture (running the GUI) and
some compute nodes running the 32-bit i686 architecture:

In -s /{installation-directory(i686)}/1libexec/forge-backend \
/{installation-directory(x86_64)}/bin/forge-backend.i686

Enable CUDA software pre-emption: Allows debugging of CUDA kernels on a workstation with a
single GPU.

Default groups file: Entering a file here allows you to customize the groups displayed by DDT when
starting an MPI job. If you do not specify a file, DDT creates the default Root and Workers groups if the
previous option is selected.

Note: You can create a groups file while your program is running by right-clicking the Process groups
panel and selecting Save groups.

Attach hosts file: When attaching, DDT fetches a list of processes for each of the hosts listed in this file.
See section 5.9 Attaching to running programs for more details.

Job submission

This section allows you to configure Arm Forge to use a custom mpirun command, or submit your jobs to
a queuing system. For more information on this, see section A.3 Integration with queuing systems.

Code viewer settings

This allows you to configure the appearance of the Arm Forge code viewer, which is used to display your
source code while debugging.

Tab size: Sets the width of a tab character in the source code display. A width of 8 means that a tab
character has the same width as 8 space characters.

Font name: The name of the font used to display your source code. Arm recommends that you use a
fixed-width font.

Font size: The size of the font used to display your source code.

External Editor: This is the program Arm Forge executes if you right-click in the code viewer and
choose Open file in external editor. This command launches a graphical editor. If no editor is specified,
Arm Forge attempts to launch the default editor that is configured in your desktop environment.

Colour Scheme: Color palette to use for the code viewer’s background, text and syntax highlighting.
Defined in Kate syntax definition format in the resource/styles directory of the Arm Forge in-
stall.

Visualize Whitespace: Enables or disables this display of symbols to represent whitespace. Useful for
distinguishing between space and tab characters.

Warn about potential programming errors: This setting enables or disables the use of static analysis
tools that are included with the Arm Forge installation. These tools support F77, C and C++, and analyze
the source code of viewed source files to discover common errors, but can cause heavy CPU usage on
the system running the Arm Forge user interface. You can disable this by clearing this option.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 270
101136_2020_00_en

Arm Forge 20.2 A CONFIGURATION

Appearance
This section allows you to configure the graphical style of Arm Forge, as well as fonts and tab settings
for the code viewer.

Look and Feel: This determines the general graphical style of Arm Forge. This includes the appearance
of buttons, context menus.

Override System Font Settings: This setting can be used to change the font and size of all components
in Arm Forge (except the code viewer).

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 271
101136_2020_00_en

Arm Forge 20.2 B GETTING SUPPORT

Getting support

While this user guide attempts to cover as many parts of the installation, features and uses of our tool as
possible, there will be scenarios or configurations that are not covered, or are only briefly mentioned, or
you might on occasion experience a problem using the product. If the solution to your problem is not in
this guide, contact Arm support at Arm support.

Provide as much detail as you can about the scenario, such as:

* Version number of Arm Forge. For example, forge --version and your operating system,
and the distribution, such as Red Hat Enterprise Linux 6.4. This information is all available by
using the - -version option on the command line of any Arm tool:

bash$ forge --version

Arm DDT

Part of Arm Forge.

Copyright (c) 2002-2020 Arm Limited (or its affiliates). All
rights reserved.

Version: 18.0.2

Build ID: 556f23c4895e

Build Platform: Ubuntu 16.04 x86_64
Build Date: Jan 25 2018 21:15:53

Frontend 0S: Ubuntu 16.04.2 LTS
Nodes' 0S: unknown
Last connected forge-backend: unknown

» The compiler in use and its version number.

The MPI library and CUDA toolkit version, if appropriate.
* A description of the issue: what you expected to happen and what actually happened.

* An exact copy of any warning or error messages that you have encountered.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 272
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2

Supported platforms

C SUPPORTED PLATFORMS

This table describes the architectures, operating systems, MPI distributions, compilers and accelerators
that are supported by Arm Forge, including DDT, MAP, and Performance Reports.

Architecture Operating sys- | MPI Compilers Accelerators
tems
Intel and AMD | Red Hat Enterprise | Open MPI 2.x.x to | GNU Nvidia CUDA
(x86_64) Linux/CentOS 7 | 4.0.x C/C++/Fortran Toolkit 8.0 to 11.0
and 8 MPICH 3.1t0 3.2 | Compiler 4.3.x to
SuSE Linux Enter- | MVAPICH2 2.0 to | 8.3.x
prise Server 12 and | 2.3 Intel Parallel Stu-
15 Intel MPI 5.1.x to | dio XE 2015.x to
Ubuntu 16.04 to | 2019.7 2020.1
20.04 Cray MPT 6.3.1 to | PGI Compiler 15.4
Open SuSE 12, 13, | 7.7.1 to 20.1
42.3, and 15.0 SGI MPT 2.10 to | Cray = Compiling
2.15 Environment 8.3.x
HPE MPI 1.1 to 8.7.x
Armv8 (AArch64) | Red Hat Enterprise | Open MPI 2.x.x to | GNU Nvidia CUDA
Linux/CentOS 7 | 4.0.x C/C++/Fortran Toolkit 11.0
and 8 MPICH 3.1t0 3.2 | Compiler 4.3.x to
SuSE Linux Enter- | MVAPICH2 2.0 to | 8.3.x
prise Server 12 and | 2.3 Arm Compiler for
15 Cray MPT 7.7.1 Linux 18.0 to 20.3
Ubuntu 16.04 to | HPE MPI 1.1 Cray Compiling
20.04 Environment 8.7.x
IBM Power | Red Hat Enterprise | Open MPI 2.x.x to | GNU Nvidia CUDA
(ppc64le) Linux/CentOS 4.0.x C/C++/Fortran Toolkit 9.2 to 10.2
7.2+ IBM Spectrum | Compiler 4.3.x to
MPI 10.2 8.3.x
IBM XL C/C++
Compiler 13.1.x
IBM XL Fortran
Compiler 15.1.x
IBM XL Compiler
16.1.x
PGI Compiler 18.1
to 20.1

See section E.13 SLURM for more details about SLURM support.

For Ubuntu 19.04 and later, you must install the libncurses5 and libtinfo5 packages on your system.

Notes

DDT

* Pretty printing of C++ types is supported for GNU and Intel compilers.

» Message queue debugging is supported for Intel MPI, MPICH, MVAPICH, and Open MPI.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

101136_2020_00_en

273

Arm Forge 20.2 C SUPPORTED PLATFORMS

MAP

» The following MPIs are also covered by our precompiled wrappers: Open MPI 3.x.x to 4.0.x, Intel
MPI 5.x.x, 2017.x, 2018.x and 2019.x, Cray MPT, MVAPICH 2.x.x.

» The Arm profiling libraries must be explicitly linked with statically linked programs which mostly
applies to the Cray X-Series.

Performance Reports

 The following MPIs are also covered by our precompiled wrappers: Open MPI 3.x.x to 4.0.x, Intel
MPI 5.x.x, 2017.x, 2018.x and 2019.x, Cray MPT, MVAPICH 2.x.x.

» The Arm profiling libraries must be explicitly linked with statically linked programs which mostly
applies to the Cray X-Series.

Forge Remote Client

The Arm Forge Remote Client is available for the following x86_64 platforms:
* MacOS 10.13 (High Sierra) and above.
» Windows 7 and above.

* Any of the Linux platforms mentioned above.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 274
101136_2020_00_en

Arm Forge 20.2 D KNOWN ISSUES

Known issues

The most significant known issues for the latest release are summarized here:

MAP

The following known issues affect MAP and Performance Reports.
* I/O metrics are not available on some systems, including Cray systems.
+ CPU instruction metrics are only available on x86_64 systems.

» Thread activity is not sampled while a process is inside an MPI call with a duration spanning
multiple samples. This can appear as ‘uncategorized’ (white) time in the Application activity bar,
when in the Pthread View. The uncategorized time coincides with long running MPI calls.

* MAP and Performance Reports do not support code that spawns new processes, such as fork,
exec and MPI_Comm_spawn. In these cases, MAP and Performance Reports only profile the
original process.

* Performance Reports might fail to finalize a profiling session if the cores are oversubscribed on
AArch64 architectures. For example, this occurs when attempting to profile a 64 process MPI
program on a machine with only 8 cores. This appears as a hang after finishing a profile.

XALT Wrapper

The XALT wrapper is known to cause several issues when used in conjunction with Arm Forge, such
as:

* MPI programs cannot be debugged due to a hang during start up.
+ Error messages are reported relating to the permissions on gqstat.

For each case, the workaround is to disable the XALT wrapper. To disable the XALT wrapper, unload
the XALT module.

MPICH 3

MPICH 3.0.3 and 3.0.4 do not work with the Arm Forge due to an MPICH defect. MPICH 3.1 is fully
supported.

Open MPI
Message queue debugging does not work in Open MPI 1.8.1 to 1.8.5. This issue is fixed in Open MPI
1.8.6.

The following versions of Open MPI do not work with Arm Forge because of bugs in the Open MPI
debug interface:

* Open MPI 2.1.0 to 2.1.2.

+ Open MPI 3.0.0 when compiled with the Arm Compiler for Linux on Arm®v8 (AArch64) systems.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 275
101136_2020_00_en

Arm Forge 20.2 D KNOWN ISSUES

» Open MPI 3.0.x when compiled with some versions of the GNU compiler on Arm®v8 (AArch64)
systems.

* Open MPI <= 3.x.4 and <= 4.0.1 when compiled with some versions of IBM XLC/XLF or PGI
compilers.

* Open MPI 3.1.x or 4.0.x when compiled with -02 or - 03 optimization flags and PGI 19.x or 20.1
compilers.

* Open MPI 3.1.0 and 3.1.1.
» Open MPI 3.x with any version of PMIx < 2.
* Open MPI 4.0.1 with PMIx 3.1.2.

To resolve any of the above issues, select Open MPI (Compatibility) for the MPI Implementation.

Open MPI 3.x on IBM Power with the GNU compiler

To use Open MPI versions 3.0.0 to 3.0.4 (inclusive) and Open MPI versions 3.1.0 to 3.1.3 (inclusive)
with the GNU compiler on IBM Power systems, you might need to configure the Open MPI build with
CFLAGS=-fasynchronous-unwind-tables. Configuring the Open MPI build with CFLAGS=-
fasynchronous-unwind-tables fixes a startup bug where Arm Forge is unable to step out of
MPI_Init into your main function. The startup bug occurs because of missing debug information and
optimization in the Open MPI library. If you already configure with -g, you do not need to add this extra
flag. An example configure command is:

./configure --prefix=/software/openmpi-3.1.2
CFLAGS=-fasynchronous-unwind-tables

If you do not have the option to recompile your MPI, an alternative workaround is to select Open MPI
(Compatibility) for the MPI Implementation. This issue is fixed in later versions.

CUDA

The following known issues affect CUDA:

+ To debug or profile a CUDA program, compile the program with a version of the CUDA toolKkit
that matches the version of the installed CUDA driver. For example, if the CUDA 8.0 driver is
installed, you must use the CUDA 8.0 toolkit to compile your program.

Notes:

— Compiling with mismatched CUDA toolkit and CUDA driver versions causes errors when
debugging or profiling.

— To force DDT to use a particular version of the CUDA debugger, set the ALLINEA_FORCE_
CUDA_VERSION environment variable to a version number. For example, ALLINEA_
FORCE_CUDA_VERSION=8.0 for CUDA 8.0. This can cause issues due to CUDA ver-
sion incompatibilities.

» NVIDIA Linux driver 418.43 or later might restrict GPU profiling to users with administrative priv-
ileges (CAP_SYS_ADMIN capability set). See the following NVIDIA page for details and instruc-
tions for disabling this restriction: https://developer.nvidia.com/nvidia-development-tools-solutions-ERR _
NVGPUCTRPERM-permission-issue-performance-counters

* GPU profiling is only supported when using a CUDA 8.0+ toolkit with a matching CUDA driver.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 276
101136_2020_00_en

https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters
https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters

Arm Forge 20.2 D KNOWN ISSUES

* Cray CCE 8.1.2 OpenACC and previous releases will fail to generate debug information for local
variables in accelerated regions. Please install CCE 8.1.3.

* When debugging a CUDA application, adding watchpoints on either host or kernel code is not
supported.

* When debugging a CUDA application, using the Step threads together box and Run to here to step
into OpenMP regions is not supported. Breakpoints can be used to stop at the desired line.

 Stepping multiple warps simultaneously (such as those in the same block or kernel) is not supported
in CUDA 9.0 and above. Individual warps can be stepped sequentially to achieve the same effect.

» When CUDA is set to Detect invalid accesses (memcheck), placing breakpoints in CUDA kernels
is only supported in CUDA 10.1 or later.

* A driver issue in CUDA 9.1 prevents DDT from debugging CUDA GPU applications on Cray
machines using Cray MPT (aprun). As a workaround launch the CUDA application outside of
DDT and attach to it.

SLURM

On Cray X-series systems only native SLURM is supported, hybrid mode is not supported.

PGI compilers

Version 14.9 or later of the PGI compilers is required to compile the Arm MAP MPI wrappers as a static
library.

64-bit Arm/Power platforms

For best operation, DDT and MAP require debug symbols for the runtime libraries to be installed in
addition to debug symbols for the program itself.

See also

See also additional known issues here:

Category Known Issues
MPI Distribution | E MPI distribution notes and known issues
Compiler F Compiler notes and known issues
Platform G Platform notes and known issues
General H General troubleshooting and known issues
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 277

101136_2020_00_en

Arm Forge 20.2 E MPIDISTRIBUTION NOTES AND KNOWN ISSUES

MPI distribution notes and known issues

This appendix has brief notes on many of the MPI distributions supported by Arm DDT, Arm MAP, and
Arm Performance Reports.

Advice on settings and problems particular to a distribution are given here. Note that MAP supports
fewer MPI distributions than DDT. See C Supported platforms for more details.

Berkeley UPC

Only the MPI transport is supported. Programs must be compiled with the - tv flag, for example:

upcc hello.c -o hello -g -tv

Bull MPI

Performance Reports only supports Bull X-MPI. Bull MPI 1, MPI 2 and Bull X-MPI are supported by
DDT and MAP. For Bull X-MPI, select the Open MPI or Open MPI (Compatibility) MPIs, depending on
whether ssh is allowed. If ssh is allowed, choose Open MPI, or if not choose Open MPI Compatibility
mode.

Select Bull MPI or Bull MPI 1 for Bull MP1 1, or Bull MPI 2 for Bull MPI 2 from the MPI implementations
list. In the mpirun arguments box of the Run window you may also wish to specify the partition that you
wish to use by adding the following:

-p partition_name

You should ensure that prun, the command used to launch jobs, is in your PATH before starting DDT.

Cray MPT

This section only applies when using aprun. For srun (‘Native’ SLURM mode) see section E.13
SLURM.

DDT and MAP have been tested with Cray XT 5/6, XE6, XK6/7, and XC30 systems. DDT is able to
launch and support debugging jobs in excess of 700,000 cores. Performance Reports has been tested with
Cray XK7 and XC30 systems.

A number of template files for launching applications from within the queue, using Arm’s job submission
interface, are included in the distribution. These may require some minor editing to cope with local
differences on your batch system.

To attach to a running job on a Cray system the MOM nodes, that is those nodes where aprun is launched,
must be reachable via ssh from the node where DDT is running, for example on a login node. DDT must
connect to these nodes in order to launch debugging daemons on the compute nodes. Users can either
specify the aprun host manually in the attach dialog when scanning for jobs, or configure a hosts list
containing all MOM nodes.

Preloading of the memory debugging libraries is not supported with aprun.

If the program is dynamically linked, MAP and Performance Reports support preloading of the sam-
pling libraries with aprun (requires aprun/ALPS 4.1 or later). Preloading is not supported in MPMD
mode. If preloading is not supported, MAP and Performance Reports requires Arm’s sampling libraries

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 278
101136_2020_00_en

Arm Forge 20.2 E MPIDISTRIBUTION NOTES AND KNOWN ISSUES

to be linked with the application before running on this platform. See 16.2.4 Linking for a step-by-step
guide.

By default scripts wrapping Cray MPT will not be detected, but you can force the detection by setting
the ALLINEA_DETECT_APRUN_VERSION environment variable to “yes” before starting DDT, MAP,
or Performance Reports.

Using DDT with Cray ATP (the Abnormal Termination Process)

DDT is compatible with the Cray ATP system, which will be default on some XE systems. This runtime
addition to applications automatically gathers crashing process stacks, and can be used to let DDT attach
to a job before it is cleaned up during a crash.

To debug after a crash when an application is run with ATP but without a debugger, initialize the ATP_
HOLD_TIME environment variable before launching the job. For a large Petascale system, a value of 5
is sufficient, giving 5 minutes for the attach to complete.

The following example shows the typical output of an ATP session:

n10888@kaibab:~> aprun -n 1200 ./atploop

Application 1110443 is crashing. ATP analysis proceeding. ..

Stack walkback for Rank 23 starting:

_start@start.S:113

_ libc_start_main@libc-start.c:220

main@atploop.c:48

__kill@ex4b5be7

Stack walkback for Rank 23 done

Process died with signal 11: 'Segmentation fault'

View application merged backtrace tree file 'atpMergedBT.dot'
with 'statview'

You may need to 'module load stat'.

atpFrontend: Waiting 5 minutes for debugger to attach...

To debug the application at this point, launch DDT.

DDT can attach using the Attaching dialogs described in Section 5.9 Attaching to running programs, or
given the PID of the aprun process, the debugging set can be specified from the command line.

For example, to attach to the entire job:

ddt --attach-mpi=12772
If a particular subset of processes are required, then the subset notation could also be used to select
particular ranks.

ddt --attach-mpi=12772 --subset=23,100-112,782,1199

HP MPI

Select HP MPI as the MPI implementation.

A number of HP MPI users have reported a preference to using mpirun -f jobconfigfile instead
of mpirun -np 10 a.out for their particular system. It is possible to configure DDT to support this
configuration using the support for batch (queuing) systems.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 279
101136_2020_00_en

Arm Forge 20.2 E MPIDISTRIBUTION NOTES AND KNOWN ISSUES

The role of the queue template file is analogous to the - jobconfigfile.
If your job config file normally contains:

-h nodedl1 -np 2 a.out
-h node®2 -np 2 a.out

Then your template file should contain:

-h node01 -np PROCS_PER_NODE_TAG /usr/local/ddt/libexec/forge-
backend

-h node02 -np PROCS_PER_NODE_TAG /usr/local/ddt/libexec/forge-
backend

Also the Submit Command box should be filled with the following:
mpirun -f
Select the Template uses NUM_NODES_TAG and PROCS_PER_NODE_ TAG radio button. After this has

been configured by clicking OK, you will be able to start jobs. Note that the Run button is replaced with
Submit, and that the number of processes box is replaced by Number of Nodes.

IBM PE

Ensure that poe is in your path, and select IBM PE as the MPI implementation.

A sample Loadleveler script, which starts debugging jobs on POE systems, is included inthe {installation-
directory}/templates directory.

To attach to already running POE jobs, SSH access to the compute nodes is required. Without SSH, DDT
has no way to connect to the ranks running on the nodes.

Known issue: IBM PE 2.1 and newer currently do not provide the debugging interface required for MPI
message queue debugging.

Intel MPI

Select Intel MPI from the MPI implementation list. DDT, MAP and Performance Reports have been
tested with Intel MPI 4.1.x, 5.0.x, and later.

Make sure to pay attention to the changes in the mpivars. sh script with Intel MPI 5.0. You can pass
it an argument to say whether you want to use the debug or release version of the MPI libraries. The
default, if you omit the argument, is the release version, but message queue debugging will not work if
you use this version. The debug version must be explicitly used.

DDT also supports the Intel Message Checker tool that is included in the Intel Trace Analyser and Col-
lector software. A plugin for the Intel Trace Analyser and Collector version 7.1 is provided in DDT’s
plugins directory. Once you have installed the Intel Trace Analyser and Collector, you should make sure
that the following directories are in your LD_LIBRARY_PATH:

{path to intel install directory}/itac/7.1/1ib
{path to intel install directory}/itac/7.1/slib

The Intel Message Checker only works if you are using the Intel MPI. Make sure Intel’s mpiexec is in
your path, and that your application was compiled against Intel’s MPI, then launch DDT, check the plugin

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 280
101136_2020_00_en

Arm Forge 20.2 E MPIDISTRIBUTION NOTES AND KNOWN ISSUES

checkbox and debug your application as usual. If one of the above steps has been missed out, DDT may
report an error and say that the plugin could not be loaded.

Once you are debugging with the plugin loaded, DDT will automatically pause the application whenever
Intel Message Checker detects an error. The Intel Message Checker log can be seen in the standard error
(stderr) window.

Note that the Intel Message Checker will abort the job after 1 error by default. You can modify this
by adding -genv VT_CHECK_MAX_ERRORS 0 to the mpiun arguments box in the Run window. See
Intel’s documentation for more details on this and other environment variable modifiers.

Attach dialog: DDT cannot automatically discover existing running MPI jobs that use Intel MPI if the
processes are started using the mpiexec command (which uses the MPD process starting daemon). To
attach to an existing job you will need to list all potential compute nodes individually in the dialog.

Please note the mpiexec method of starting MPI processes is deprecated by Intel and you are encouraged
to use mpirun or mpiexec.hydra (which use the newer scalable Hydra process starting daemon).
All processes that are started by either mpirun and mpiexec. hydra are discovered automatically by
Arm DDT.

If you use Spectrum LSF as workload manager in combination with Intel MPI and you get for example
one of the following errors:

» <target program> exited before it finished starting up. One or more processes were killed or died
without warning

» <target program> encountered an error before it initialised the MPI environment. Thread 0 termi-
nated with signal SIGKILL

or the job is killed otherwise during launching/attaching then you may need to set/export I_MPI_LSF_
USE_COLLECTIVE_LAUNCH=1 before executing the job. See Using IntelMPI under LSF quick guide
and Resolve the problem of the Intel MPI job ...hang in the cluster for more details.

MPC

DDT supports MPC version 2.5.0 and upwards. MPC is not supported by MAP.

In order to debug an MPC program, a script needs adding to the MPC installation. This script is obtained
from Download MPC script and should be saved into the bin/mpcrun_opt subdirectory of your MPC
framework installation.

MPC in the Run window

When the MPC framework is selected as the MPI implementation, there is an additional field in the MPI
configuration within the Run window:

Number of MPC Tasks: The number of tasks that you wish to debug. MPC uses threads to split these
tasks over the number of processes specified.

Also, the mpirun arguments field is replaced with the field:

mpcrun arguments: (optional): The arguments that are passed to mpcrun. This should be used for
arguments to mpcrun not covered by the number of MPC tasks and number of processes fields.

An example usage is to override default threading model specified in the MPC configuration by entering -
-multithreading=pthreads for POSIX threadsor - -multithreading=ethreads foruser-
level threads.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 281
101136_2020_00_en

http://www-01.ibm.com/support/docview.wss?uid=isg3T1023404
http://www-01.ibm.com/support/docview.wss?uid=isg3T1020816
http://content.allinea.com/hidden/mpcrun_mpiexec_allinea

Arm Forge 20.2 E MPIDISTRIBUTION NOTES AND KNOWN ISSUES

The documentation for these arguments can be found at http://mpc.paratools.com/UsersGuide/Running.
This field is only displayed if the selected MPI implementation is the MPC framework.

Note: The OpenMP options are not available in the Run window, as MPC uses the number of tasks to
determine the number of OpenMP threads rather than OMP_NUM_THREADS.

MPC on the command line

There are two additional command-line arguments to DDT when using MPC that can be used as an
alternative to configuration in the GUI.

- -mpc-task-nb The total number of MPC tasks to be created.

--mpc-process-nb The total number of processes to be started by mpcrun.

MPICH 3

MPICH 3.0.3 and 3.0.4 do not work with Arm Forge. MPICH 3.1 is supported.

There are two MPICH 3 modes, Standard and Compatibility. If the standard mode does not work on your
system select MPICH 3 (Compatibility) as the MPI Implementation on the System Settings page of the
Options window.

The message queue data provided by the MPICH debugging support library is limited and results in
unreliable information in the DDT Message Queue debugging feature.

MVAPICH 2

Known issue: If memory debugging is enabled in DDT, this will interfere with the on-demand con-
nection system used by MVAPICH?2 above a threshold process count and applications will fail to start.
This threshold default value is 64. To work around this issue, set the environment variable MV2_ON_
DEMAND_THRESHOLD to the maximum job size you expect on your system and then DDT will work
with memory debugging enabled for all jobs. This setting should not be a system wide default as it may
increase startup times for jobs and memory consumption.

MVAPICH 2 now offers mpirun_rsh instead of mpirun as a scalable launcher binary. To use this
with DDT, from File — Options (Arm Forge — Preferences on Mac OS X) go to the System page, check
Override default mpirun path and enter mpirun_rsh. You should also add -hostfile <hosts>,
where <hosts> is the name of your hosts file, within the mpirun_rsh arguments field in the Run win-
dow.

To enable message Queue Support MVAPICH 2 must be compiled with the flags - -enable-debug
--enable-sharedlib. These are not set by default.

Open MPI

Open MPI 2.1.3 works with Arm Forge. Previous versions of Open MPI 2.1.x do not work due to a bug
in the Open MPI debug interface.

There are three different Open MPI choices in the list of MPI implementations to choose from in Arm
Forge when debugging or profiling for Open MPI.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 282
101136_2020_00_en

http://mpc.paratools.com/UsersGuide/Running

Arm Forge 20.2 E MPIDISTRIBUTION NOTES AND KNOWN ISSUES

* Open MPI — the job is launched with a custom ‘launch agent’ that, in turn, launches the Arm
daemons.

* Open MPI (Compatibility) — mpirun launches the Arm daemons directly. This startup method does
not take advantage of Arm’s scalable tree.

* Open MPI for Cray XT/XE/XK/XC — for Open MPI running on Cray XT/XE/XK/XC systems. This
method is fully able to use Arm’s scalable tree infrastructure.

To launch with aprun (instead of mpirun) simply type the following on the command line:

ddt --mpi="OpenMPI (Cray XT/XE/XK)" --mpiexec aprun [arguments]
or
map --mpi="OpenMPI (Cray XT/XE/XK)" --mpiexec aprun [arguments]

The following section lists some known issues:

+ Early versions of Open MPI 1.8 do not properly support message queue debugging. This is fixed
in Open MPI 1.8.6.

* Message queue debugging does not work with the UCX or Yalla PML, due to UCX and Yalla not
storing the required information.

* The version of Open MPI packaged with Ubuntu has the Open MPI debug libraries stripped. This
prevents the Message Queues feature of DDT from working.

* On Infiniband systems, Open MPI and CUDA can conflict in a manner that results in failure to
start processes, or a failure for processes to be debuggable. To enable CUDA interoperability with
Infiniband, set the CUDA environment variable CUDA_NIC_INTEROP to 1.

Platform MPI

Platform MPI 9.x is supported, but only with the mpirun command. Currently mpiexec is not sup-
ported.

SGI MPT | SGI Altix

For SGI use one of the following configurations:
* If using SGI MPT 2.10+, select SGI MPT (2.10+, batch) as the MPI implementation.
* If using SGI MPT 2.08+, select SGI MPT (2.08+, batch) as the MPI implementation.
+ If using an older version of SGI MPT (2.07 or before) select SGI MPT as the MPI implementation.

If you are using SGI MPT with PBS or SLURM and would normally use mpiexec_mpt to launch
your program you will need to use the pbs-sgi-mpt.qtf queue template file and select SGI MPT
(Batch) as the MPI implementation.

If you are using SGI MPT with SLURM and would normally use mpiexec_mpt to launch your program
you will need to use Srun - -mpi=pmi2 directly.

mpiexec_mpt from versions of SGI MPT prior to 2.10 may prevent MAP from starting when preload-
ing the Arm profiler and MPI wrapper libraries. Arm recommends you explicitly link your programs
against these libraries to work around this problem.

Preloading the Arm profiler and MPI wrapper libraries is not supported in express launch mode. Arm
recommends you explicitly link your programs against these libraries to work around this problem.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 283
101136_2020_00_en

Arm Forge 20.2 E MPIDISTRIBUTION NOTES AND KNOWN ISSUES

Some SGI systems cannot compile programs on the batch nodes (one reason might be because the gcc
package is not installed). If this applies to your system you must explicitly compile the Arm MPI wrapper
library using the make-profiler-libraries command and then explicitly link your programs
against the Arm profiler and MPI wrapper libraries.

The mpio. h header file shipped with SGI MPT 2.09 and SGI MPT 2.10 contains a mismatch between
the declaration of MPI_File_set_view and some other similar functions and their PMPI equivalents,
for example PMPI_File_set_view. This prevents MAP from generating the MPI wrapper library.
Please contact SGI for a fix.

SGI MPT 2.09 requires the MPI_SUPPORT_DDT environment variable to be set to 1 to avoid startup
issues when debugging with DDT, or profiling with MAP.

SLURM

To start MPI programs using the srun command instead of your MPI’s usual mpirun command (or
equivalent) select SLURM (MPMD) as the MPI Implementation on the System Settings page of the Op-
tions.

While this option will work with most MPIs, it will not work with all. On Cray, ‘Hybrid’ SLURM mode
(that is, SLURM + ALPS) is not supported. Instead, you must start your program with Cray’s aprun.
See Section E.3 Cray MPT.

SLURM may be used as a job scheduler with DDT and MAP through the use of a queue template file.
See templates/slurm. qtf inthe Arm Forge installation for an example and section A.3 Integration
with queuing systems for more information on how to customize the template.

IBM Spectrum MPI

IBM Spectrum MPI 10.2 is supported for IBM Power (PPC64le little-endian) with the mpirun and
mpiexec commands. IBM Spectrum MPI 10.2 is additionally supported with the jsrun (PMIx mode)
command.

Arm Forge launches its backend components using the filesystem by default. If starting a job with Arm
Forge fails, due to the filesystem not being available on the compute nodes, you can try with the en-
vironment variable ALLINEA_DISABLE_SPECTRUMMPI_SCALABLE_SHIPOUT set to “no”. This
launches the backend components using a shipout mechanism provided by IBM Spectrum MPI. The
shipout mechanism is only available when using the jsrun command.

DDT supports debugging of jobs launched using Spindle (jsrun --use_spindle=1), but you need
to make sure that Spindle does not strip debug information from shared object files. The option to con-
figure debug information stripping is JSMD_SPINDLE_OPT_STRIP and needs to be set to O either in
the system configuration (usually /opt/ibm/spectrum_mpi/jsm_pmix/etc/jsm.conf)orin
your user configuration (~/jsm.conf). Please be aware that changing the configuration will only take
effect in subsequent bsub jobs.

MAP does not currently support Spindle.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 284
101136_2020_00_en

Arm Forge 20.2 F COMPILER NOTES AND KNOWN ISSUES

Compiler notes and known issues

When compiling for a DDT debugging session, always compile with a minimal amount of optimization,
or no optimization. Some compilers reorder instruction execution and omit debug information when
compiling with optimization enabled.

For a list of supported compiler versions, refer to section C.

AMD OpenCL compiler

Not supported by MAP and Performance Reports.

The AMD OpenCL compiler can produce debuggable OpenCL binaries. However, the target must be
the CPU rather than the GPU device. The build flags -g -00 must be used when building the OpenCL
kernel, typically by setting the environment variable:

AMD_OCL_BUILD_OPTIONS_APPEND="-g -00"

Run the example codes in the AMD OpenCL toolkit on the CPU by adding the parameter - -device
cpu. With the above environment variable set, this results in debuggable OpenCL.

Arm Fortran compiler

Debugging of Fortran code might be incomplete or inaccurate. For more information, check the known
issues section in the ARM HPC Compiler release notes.

Berkeley UPC compiler

Not supported by MAP and Performance Reports.

The Berkeley UPC compiler is fully supported by Arm DDT, but only when using the MPI conduit (other
conduits are not supported).

Warning: If you do not compile the program fixing the number of threads (using the - fupc - threads -
<numberOfThreads> flag), a known issue arises at the end of the program execution.

Note: Source files must end with the extension . upc in order for UPC support to be enabled.

Cray compiler environment

DDT supports Cray fast-track debugging. However, only certain versions of GDB support it:
« In DDT 20.1, it is supported in GDB 8.2, 8.1 and 7.12.1.
* In DDT 19.0, it is supported in GDB 8.1 and 7.12.1.
» InDDT 18.2.1, it is supported in GDB 7.12.1 and 7.2.
» In DDT 5.0, it is only supported when using GDB 7.2, and not when using GDB 7.6.2.

To enable the supported versions of GDB, access the Systems Settings options by selecting File > Options
> System (or Options > System, from the Welcome page), then choose from the Debugger options. To
enable fast-track debugging, compile your program with -Gfast instead of -g.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 285
101136_2020_00_en

Arm Forge 20.2 F COMPILER NOTES AND KNOWN ISSUES

See the Using Cray Fast-track Debugging section of the Cray Programming Environment User’s Guide
for more information.

Call-frame information can also be incorrectly recorded, which can sometimes lead to DDT stepping into
a function instead of stepping over it. This might also result in time being allocated to incorrect functions
in MAP.

C++ pretty printing of the STL is not supported by DDT for the Cray compiler.

Known Issue: If you are compiling static binaries, then linking in the DDT memory debugging library
is not straightforward for F90 applications. You will need to do the following;:

1. Manually rerun the compiler command with the -Vv (verbose) option to get the linker command
line. It is assumed that the object files are already created.

2. Run 1d manually to produce the final statically linked executable. For this, the following path
modifications will be needed in the previous 1d command: Add -L{ddt-path}/1ib/64 -
ldmalloc immediately prior to where - 1c is located. For multi-threaded programs you have to
add -1dmallocth -1pthread before the -1c option.

See CUDA/GPU debugging notes for details of Cray OpenMP Accelerator support.
Arm DDT fully supports the Cray UPC compiler. Not supported by MAP and Performance Reports.

Compile scalar programs on Cray

To launch scalar code with aprun, using Arm Forge on Cray, you must link your program with Cray PMI.
With some configurations of the Cray compiler drivers, Cray PMI is discarded during linking. For static
executables, consider using the -W1, -u, PMI_Init compilation flags to preserve Cray PMIL.

If using Arm MAP or Arm Performance Reports, see 16.2.4 Linking. If using aprun to launch your
program, see H.5.2 Starting scalar programs with aprun. If using SLURM, see H.5.3 Starting scalar
programs with srun

GNU

The compiler flag - fomit-frame-pointer must not be used in an application which you intend to
debug or profile. Doing so can mean Arm Forge cannot properly discover your stack frames and you will
be unable to see which lines of code your program has stopped at.

For GNU C++, large projects can often result in vast debug information size, which can lead to large
memory usage by DDT’s back end debuggers. For example, each instance of an STL class used in
different object files will result in the compiler generating the same information in each object file.

The -foptimize-sibling-calls optimization (used in -02, -03 and -0s) interfere with the
detection of some OpenMP regions. If your code is affected by this issue, add -fno-optimize-
sibling-calls to disable it and allow MAP and Performance Reports to detect all the OpenMP
regions in your code.

Using the -dwarf -2 flag together with the -strict-dwarf flag could cause problems in stack un-
winding, resulting in a “cannot find the frame base” error. DWARF 2 does not provide all the information
necessary for unwinding the call stack, so many compilers add DWARF 3 extensions with the missing
information. Using the -strict-dwar f flag prevents compilers from doing so, and the error message
is reported. Removing -strict-dwarf fixes this problem.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 286
101136_2020_00_en

Arm Forge 20.2 F COMPILER NOTES AND KNOWN ISSUES

GNU UPC

DDT also supports the GCC-UPC compiler (upc_threads_model_process only; the pthread-
t1s threads model is not supported). MAP and Performance Reports do not support this.

To compile and install GCC UPC 4.8 without TLS you must modify the configuration file path/to/
upc/source/code/directory/libgupc/configure, replacing all the entries upc_cv_gcc_-
tls_supported=“yes” to upc_cv_gcc_tls_supported=“no”.

To run a UPC program in DDT, select the MPI implementation “GCC libupc SMP (no TLS)”

IBM XLC/XLF

To ensure that source files can be found automatically when they are in directories that are different from
the directory which contains the executable, Arm recommends that you pass the -qfullpath option
to the IBM compilers (XLC/XLF). This option has been known to fail for mpxIf95. If the compilation
fails, right-click in the project navigator and add the paths to the additional source files.

Module data items behave differently between 32-bit and 64-bit mode, with 32-bit mode generally en-
abling access to more module variables than 64-bit mode.

Using IBM XL compilers with optimization level -02 or higher can lead to some partial traces. This
occurs because MAP does not have enough information to fully unwind the call stack.

Missing debug information in the binaries produced by XLF can prevent DDT from showing the values in
Fortran pointers and allocatable arrays correctly, and assumed-size arrays cannot be shown at all. Please
update to the latest compiler version before reporting this to Arm support at Arm support.

Sometimes, when a process is paused inside a system or library call, DDT is not able to display the stack,
or the position of the program in the Code view. To work around this, try selecting a known line of code
and choose Run to here. If this bug affects you, please contact Arm support at Arm support.

For the best OpenMP debug experience, compile your code with -gsmp=omp :noopt instead of -
gsmp=omp. For more information about the issues you could encounter when debugging OpenMP, see
5.5 Debugging OpenMP programs.

DDT has been tested against the C compiler xlc version 13.1 and Fortran/Fortran 90 compiler xIf version
15.1 on Linux.

To view Fortran assumed size arrays in DDT, right-click on the variable, select Edit Type.. and enter the
type of the variable with its bounds, for example integer arr(5).

MAP and Performance Reports only support xlc and xIf on Linux.

For the best experience when debugging CUDA code built with IBM XL, Arm recommends that you
disable all GPU optimizations. To disable the GPU optimizations, use the flags in the following example
command line:
xlc -g -00 -qsmp=omp:noopt -qoffload -qfullpath -qnoinline -Xptxas
-X11lvm2ptx -nvvm-compile-options=-opt=0 target_examplel.c -o
target_examplel.exe

Intel compilers

Refer to section C for a list of supported versions.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 287
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support
https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 F COMPILER NOTES AND KNOWN ISSUES

If you experience problems with missing or incomplete stack traces (for example, [partial trace]
entries in MAP or no stack traces for allocations in DDT’s View Pointer Details window) try recompiling
your program with the - fno-omit-frame-pointer argument. The Intel compiler might omit frame
pointers by default, which can mean that Arm Forge can not properly discover your stack frames and you
will not be able to see which lines of code your program has stopped at.

Some optimizations performed when - ax options are specified to IFC/ICC can result in programs which
cannot be debugged. This is due to the reuse by the compiler of the frame-pointer, which makes DDT
unable to obtain a stack trace.

Some optimizations performed using Interprocedural Optimization (IPO), which is implicitly enabled by
the -03 flag, can interfere with the ability of MAP to display call stacks, making it more difficult to
understand what the program is doing. To prevent this, Armrecommends that you disable IPO by adding
-no-1ip or -no-1ipo to the compiler flags. The - no-1ip flag disables IPO within files, and -no-ipo
disables IPO between files.

The Intel compiler does not always provide enough information to correctly determine the bounds of
some Fortran arrays when they are passed as parameters, in particular the lower-bound of assumed-shape
arrays.

The Intel OpenMP compiler always optimizes parallel regions, regardless of any -00 settings. This
means that your code might jump around unexpectedly when stepping inside such regions, and that any
variables which might have been optimized out by the compiler could be shown with incorrect values.
There have also been problems reported in viewing thread-private data structures and arrays. If these
affect you, please contact Arm support at Arm support.

Files with a . F or . F90 extension are automatically preprocessed by the Intel compiler. This can also
be turned on with the - fpp command-line option. Unfortunately, the Intel compiler does not include
the correct location of the source file in the executable produced when preprocessing is used. If your
Fortran file does not make use of macros and does not need preprocessing, you can rename its extension
to . T or . 90 and/or remove the - fpp flag from the compile line instead. Alternatively, to help DDT
discover the source file, right-click in the Project Files window, select Add/view source directory, and
add the correct directory.

Some versions of the compiler emit incorrect debug information for OpenMP programs which might
cause some OpenMP variables to show as <not allocated>.

By default Fortran PARAMETERS are not included in the debug information output by the Intel com-
piler. You can force them to be included by passing the -debug-parameters all option to the
compiler.

Known Issue: If compiling static binaries, for example on a Cray XT/XE machine, then linking in the
DDT memory debugging library is not straightforward for F90 applications. You need to manually rerun
the last 1d command (as seen with ifort -v)to include -L{ddt-path}/1ib/64 -1ldmalloc
in two locations:

1. Immediately prior to where -1c is located.
2. Include the -zmuldefs option at the start of the 1d line.

STL sets, maps and multi-maps cannot be fully explored, because only the total number of items is
displayed. Other data types are unaffected.

To disable pretty printing, set the environment variable ALLINEA_DISABLE_PRETTY_PRINTING to
1 before starting DDT. This enables you to manually inspect the variable in the case of, for example, the
incomplete std: : set implementations.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 288
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 F COMPILER NOTES AND KNOWN ISSUES

Pathscale EKO compilers

Not supported by MAP.
Be aware of the following known issues:

* The default Fortran compiler options might not generate enough information for DDT to show
where memory was allocated from. View Pointer Details does not show which line of source code
memory was allocated from. To enable this, compile and link with the following flags:

-W1, - -export-dynamic -TENV:frame_pointer=0N -funwind-tables

* For C programs, it is sufficient to compile with -g.

» When using the Fortran compiler, you might need to place breakpoints in myfile. i instead of
myfile.f90 ormyfile.F90. Arm is currently investigating this. Please contact Arm support
at Arm support if this applies to your code.

* Procedure names in modules often have extra information appended to them. This does not other-
wise affect the operation of DDT with the Pathscale compiler.

» The Pathscale 3.1 OpenMP library has an issue which makes it incompatible with programs that
call the fork system call on some machines.

» Some versions of the Pathscale compiler (for example, 3.1) do not emit complete DWARF debug-
ging information for typedef’ed structures. These might be displayed in DDT with a void type
instead of the expected type.

» Multi-dimensional allocatable arrays can also be given incorrect dimension upper or lower bounds.
This has only been reproduced for large arrays, small arrays seem to be unaffected. This has been
observed with version 3.2 of the compiler, newer and older versions might also exhibit the same
issue.

Portland Group compilers

DDT has been tested with Portland Tools 9 onwards.

MAP and Performance Reports have been tested with version 14 and later of the PGI compilers. Older
versions are not supported because they do not allow line-level profiling. Always compile with -Meh__-
frame to provide sufficient information for profiling.

If you experience problems with missing or incomplete stack traces (that is [partial trace] entries
in MAP or no stack traces for allocations in the View Pointer Details window of DDT), try recompiling
your program with the -Mframe argument. The PGI compiler might omit frame pointers by default
which can mean Arm Forge cannot properly discover your stack frames and you will be unable to see
which lines of code your program has stopped at.

Some known issues are listed here:

* Included files in Fortran 90 generate incorrect debug information with respect to file and line in-
formation. The information gives line numbers which refer to line numbers from the included file
but give the including file as the file.

* The PGI compiler might emit incorrect line number information for templated C++ functions or
omit it entirely. This could cause DDT to show your program on a different line to the one expected,
and also mean that breakpoints might not function as expected.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 289
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 F COMPILER NOTES AND KNOWN ISSUES

* The PGI compiler does not emit the correct debugging tags for proper support of inheritance in
C++, which prevents viewing of base class members.

* When using memory debugging with statically-linked PGI executables (-Bstatic) because of
the in-built ordering of library linkage for F77/F90, you must add a 1ocalrc file to your PGI
installation which defines the correct linkage when using DDT and (static) memory debugging. To
your {pgi-path}/bin/localrc append the following:

switch -Bstaticddt is

help(Link for DDT memory debugging with static binding)
helpgroup(linker)

append (LDARGS=--eh-frame-hdr -z muldefs)
append(LDARGS=-Bstatic)

append (LDARGS=-L{DDT-Install-Path}/1ib/64)

set (CRTL=$if (-Bstaticddt, -1dmallocthcxx -1lc -1ns$(PREFIX)c
-1$(PREFIX)c, -1lc -1ns$(PREFIX)c -1$(PREFIX)c))

set(LC=$if(-Bstaticddt, -1dmallocthcxx -lgcc -lgcc_eh -lc -
1gcc
-lgcc_eh -1c, -1lgcc -1lc -lgcc));

pgf90 -help now lists -Bstaticddt as a compilation flag. You should use that flag for
memory debugging with static linking.

This does not affect the default method of using PGI and memory debugging, which is to use
dynamic libraries.

Note that some versions of 1d (notably in SLES 9 and 10) silently ignore the - -eh-frame-hdr
argument in the above configuration, and a full stack for F90 allocated memory is not shown in
DDT. You can work around this limitation by replacing the system 1d, or by including a more
recent 1d earlier in your path. This does not affect memory debugging in C/C++.

* When you pass an array splice as an argument to a subroutine that has an assumed shape array
argument, the offset of the array splice is currently ignored by DDT. Please contact Arm support
at Arm support if this affects you.

» DDT might show extra symbols for pointers to arrays and some other types. For example, if your
program uses the variable ialloc2d then the symbol ialloc2d$sd might also be displayed.
The extra symbols are added by the compiler and can be ignored.

» The Portland compiler also wraps F90 allocations in a compiler-handled allocation area, rather than
directly using the systems memory allocation libraries directly for each allocate statement. This
means that bounds protection (Guard Pages) cannot function correctly with this compiler.

» DDT passes on all variables that the compiler has told gdb to be in scope for a routine. For the
PGI compiler this can include internal variables and variables from Fortran modules even when the
only clause has been used to restrict access. DDT is unable to restrict the list to variables actually
used in application code.

* Versions of the PGI compiler prior to 14.9 are unable to compile a static version of the Arm MPI
wrapper library. Attempting to do this results in messages such as “Error: symbol 'MPI_-
F_MPI_IN_PLACE' can not be both weak and common”. Thisis due toabugin the
PGI compiler’s weak object support.

For information concerning the Portland Accelerator model and debugging this with DDT, refer to
section 14 CUDA GPU debugging.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 290
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/contact-support

Arm Forge 20.2 G PLATFORM NOTES AND KNOWN ISSUES

Platform notes and known issues

This chapter notes any particular issues affecting platforms. If a supported machine is not listed in this
chapter, it is because there is no known issue.

CRAY

There are a number of issues you should be aware of:

* MAP users on Cray need to read 16.2.1 Debugging symbols and 16.2.7 Static linking on Cray X-
Series systems. Arm supplies module files in FORGE_INSTALLATION_PATH/share/mod-
ules/cray.

See 16.2.8 Dynamic and static linking on Cray X-Series systems using the modules environment.

* Note that the default mode for compilers on this platform is to link statically. Section F.9 Portland
Group compilers describes how to ensure that DDT’s memory debugging capabilities will work
with the PGI compilers in this mode.

* Message queue debugging is not provided by the XT/XE/XK environment.

* Cray GPU debugging requires a working TMPDIR to be available, if /tmp is not available. It is
important that this directory is not a shared filesystem such as NFS or Lustre. To set TMPDIR for
the compute nodes only use the DDT_BACKEND_TMPDIR environment variable instead. DDT
will automatically propagate this environment variable to the compute nodes.

» Running single process scalar codes, that is non-MPI/SHMEM/UPC applications, on the compute
nodes requires an extra step, as these are required to be executed by aprun but aprun will not
execute these via the ordinary debug-supporting protocols.

The preferred and simple workaround is to use the . qt f templates, forexample cray-slurm.qtf
or cray-pbs.qtf, which handle this automatically by (for non-MPI codes) ensuring that an al-
ternative protocol is followed. To use these qtf files, select File — Options (Arm Forge —
Preferences on Mac OS X), go to the Job Submission page and enable submission via the queue,
and ensure that the Also submit scalar jobs via the queue setting is enabled. The change is to
explicitly use aprun for non-MPI processes and this can be seen in the provided queue template

files:
if ["MPI_TAG" == "none"]; then
aprun -n 1 env AUTO_LAUNCH_TAG
else
AUTO_LAUNCH_TAG
fi

* Running a dynamically-linked single process non-MPI program that will run on a compute node,
that is non-MPI CUDA or OpenACC code, will require an additional flag to the compiler: -
target=native. This prevents the compiler linking in the MPI job launch routines that will
otherwise interfere with debuggers on this platform. Alternatively, convert the program to an MPI
one by adding MPI_Init and MPI_Finalize statements and run it as a one-process MPI job.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 291
101136_2020_00_en

Arm Forge 20.2 G PLATFORM NOTES AND KNOWN ISSUES

GNU/Linux systems
General

There are a number of items you should be aware of:

» When using a 64-bit Linux please note that it is essential to use the 64-bit version of Arm Forge on
this platform. This applies regardless of whether the debugged program is 32-bit or 64-bit.

» POSIX thread cancellation does not work when running under a debugger. This is because the
‘signal info’ associated with a signal is lost when the signal is intercepted and sent again by the
debugger, causing the cancellation request to be ignored by the receiving thread. More generally
the ‘signal info’ associated with a signal is not available when running under a debugger.

» Some 64-bit GNU/Linux systems which have a bug in the GNU C library, specifically 1ibthread_ -
db.so.1. This can crash the debugger when debugging multi-threaded programs. Check with
your Linux distribution for a fix. As a workaround you can try compiling your program as a stati-
cally linked executable using the - static compiler flag.

+ This error notification can display when launching the application on Linux:
Unable to load the Qt Plugins.

It can mean that the ’1ibX11-xcb1’ package required by Qt-5 is not installed on your system. The
package is available for installation on all of the Forge supported platforms.

For more information, see C Supported platforms.

* For the Arm architecture breakpoints can be unreliable and will randomly be passed without stop-
ping for some multicore processors (including the NVIDIA Tegra 2) unless a kernel option (fix) is
built-in. The required kernel option is:

CONFIG_ARM_ERRATA_720789=y

This option is not present by default in many kernel builds.

SUSE Linux

There are a number of known issues you should be aware of:

» The implementation of 1ibnss_nis.so.2 attempts to resolve symbol names using its direct
dependencies before using the global namespace. This causes the libc implementation of, for ex-
ample, free to be linked instead of the intended 1ibdmalloc implementation.

If you encounter this crash, then the only solution is to disable memory debugging and contact
SUSE about the availability of a fix.

* There is a known issue with SUSE 11 using the 2.6 kernel where some small fraction of samples
may have invalid or incorrect stack traces. This has been observed on the 2.6.27.19-5 kernel and
typically affected <1% of samples. This is caused by some bad unwind information in the kernel’s
vdso, the Virtual Dynamic Shared Object. The solution is to upgrade to a newer version of the
kernel (>3).

Ubuntu

On Ubuntu 19.04 and later you need to install the 1ibncurses5 and 1ibtinfo5 packages. These
packages can be installed using the command:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 292
101136_2020_00_en

Arm Forge 20.2 G PLATFORM NOTES AND KNOWN ISSUES

$ sudo apt install libncurses5 libtinfo5

Attaching

To attach to a running job:
1. Open the Attach window by clicking on the Attach button on the Welcome page.

2. DDT needs to know which login / batch node runjob is running on. Click the Choose Hosts
button to add the necessary login / batch node if not already present. You must be able to SSH into
the login / batch node without a password.

3. Select the Automatically-detected jobs tab. Do not use the List of processes tab.
4. Optionally specify a subset of ranks to attach to in the Attach to processes box.
5. Click the Attach to button.
The following caveats apply:
* Reattaching to a job is not supported. You may only attach to a job once.
* No other tool must be attached, or have been attached, to the job.

+ Itis possible to attach to a subset of ranks. However, because reattaching is not supported, it is not
possible to subsequently change the subset.

+ It may take a little time for a job to show up in the Attach window after you submit it. If a newly
started job does not show up wait a while then click Rescan nodes.

Intel Xeon

Intel Xeon processors starting with Sandy Bridge include Running Average Power Limit (RAPL) coun-
ters. can use the RAPL counters to provide energy and power consumption information for your pro-
grams.

Enabling RAPL energy and power counters when profiling

To enable the RAPL counters to be read by you must load the intel_rapl kernel module.

The intel_rapl module is included in Linux kernel releases 3.13 and later. For testing purposes
Arm have backported the powercap and intel_rapl modules for older kernel releases. You may
download the backported modules from:

Download backported modules

Note: These backported modules are unsupported and should be used for testing purposes only. No sup-
port is provided by Arm, your system vendor or the Linux kernel team for the backported modules.

Intel Xeon Phi (Knight’s Landing)

The Intel Xeon Phi Knight’s Landing platform is only supported in self-hosted mode, like an x86_64
platform.

You may experience higher than normal overhead when using MAP on this platform.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 293
101136_2020_00_en

http://content.allinea.com/downloads/allinea-powercap-backport-20150601.tar.bz2

Arm Forge 20.2 G PLATFORM NOTES AND KNOWN ISSUES

See section H.12.10 for more information.

NVIDIA CUDA
CUDA known issues

There are a number of issues you should be aware of:
* DDT’s memory leak reports do not track GPU memory leaks.
» Debugging paired CPU/GPU core files is possible but is not yet fully supported.
* CUDA metrics in MAP and Performance Reports are not available for statically-linked programs.

* CUDA metrics in MAP are measured at the node level, not the card level.

Arm
Armv8 (AArch64) known issues

There are a number of issues you should be aware of:

* For best operation, DDT requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, DDT may show the incorrect values for
local variables in program code if the program is currently stopped inside a runtime library. At a
minimum Arm recommends the glibc and OpenMP (if applicable) debug symbols are installed.

* For best operation, MAP and Performance Reports require debug symbols for the runtime libraries
to be installed in addition to debug symbols for the program itself. In particular, MAP may report
time in partial traces or unknown locations without debug symbols. At a minimum, Arm recom-
mends the glibc and OpenMP (if applicable) debug symbols are installed.

* MAP and Performance Reports might fail to finalize a profiling session if the cores are oversub-
scribed on AArch64 platforms. For example, this issue is likely to occur when attempting to profile
a 64 process MPI program on a machine with only 8 cores. This issue will appear as a hang after
finishing a profile or after pressing the ‘Stop and analyze’ button in MAP.

POWERS8 and POWER9 (POWER 64-bit)
Supported features

Split DWAREF (Fission) and compressed DWARF are supported by DDT and MAP. Benefits include
smaller debug information size, and potentially less memory consumption in DDT due to the ability to
load debug symbols on demand. For example if you use the following flags with GCC (which requires
using the Binutils Gold linker):

gcc -gdwarf-4 -gsplit-dwarf -fdebug-types-section -Wl, -fuse-ld=gold
, --gdb-index, - -compress-debug-sections=z1lib myprogram.c
IBM XLC 13.1.7 requires these flags. Configure the compiler to use the gold linker:

qdebug=NDWFSTR -gsplit-dwarf -Wl, --gdb-index, --compress-debug-
sections=zlib

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 294
101136_2020_00_en

Arm Forge 20.2 G PLATFORM NOTES AND KNOWN ISSUES

Known issues

Please be aware of the following:

* For best operation, DDT, MAP, and Performance Reports require debug symbols for the runtime
libraries to be installed in addition to debug symbols for the program itself. Without debug symbols,
DDT may show the incorrect values for local variables in program code if the program is currently
stopped inside a runtime library. Similarly, MAP may report time in partial traces or unknown
locations without debug symbols. At a minimum Arm recommends the glibc and OpenMP (if
applicable) debug symbols are installed. Please refer to your operating system’s documentation for
instructions on how to install debug symbols.

* Due to issues with the Data Address Watchpoint Register (DAWR) on POWERY, hardware watch-
points are not available as of Linux kernel version 4.17. In this case DDT will fall back to (much
slower) software watchpoints. More information can be found at this GitHub page.

* On very rare occasions, Arm Forge can trigger a kernel bug on the POWERS. The bug is a soft
lockup and has been observed with kernel version 3.10.0-327.36.3.el7. If the soft lockup occurs,
stale forge-backend processes are left running at high CPU usage and affected nodes might
eventually lockup completely. It is not possible to interact with these stale processes, for example,
when sending kill or terminate signals. The only solution to this issue is to reboot affected nodes.

MAC OS X

The following menu items are not supported:
» Edit — Special Characters...
* Edit — Start Dictation
» View — Enter Full Screen

» View — Show Tab Bar

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 295
101136_2020_00_en

https://github.com/torvalds/linux/blob/master/Documentation/powerpc/dawr-power9.rst

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

General troubleshooting and known issues

If you have problems with Arm Forge products, the topics in this section might help you.

Also, check the support pages on the Arm Developer website, and make sure that you have the latest
version of the product.

GUI cannot connect to an X Server

Arm Forge does not open and you cannot connect to it when running on a remote server. “Map cannot
connect to X server” displays.

The DISPLAY variable is not set correctly

The DISPLAY variable ensures that Arm Forge can connect to the X server.

Solution

1. Check that the DISPLAY variable is set to:
export DISPLAY=:0

2. Ensure that you can run simple X applications, such as xterm from the same command line.

If you continue to experience problems, contact Arm support.

Related information

Connecting to a remote system

Licensing

If you are using Arm Licence Server, but Arm Forge products cannot connect to it, see the Arm Licence
Server user guide for more troubleshooting information.

License error

The Arm Forge GUI opens, but shows the message “Licence error ?” at the bottom of the sidebar.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 296
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/documentation/101169/latest//Using-Arm-Licence-Server
https://developer.arm.com/documentation/101169/latest//Using-Arm-Licence-Server

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Arm MAP - Arm Forge (<)

File Edit View Window Help

arm
FORGE

PROFILE
Profile a program

LOAD PROFILE DATA FILE

arm Load a profile data file from a previo
rrrrr

DDT

OPTIONS

Remote Launch:

arm off
MAP

Quit

rt
Utorials

_'F'
5

arm.com

IQ Licence error 7

Figure 128: License error notification

Invalid license file

Your license file has been edited, or you are not able to connect to the license server.

Solution

» Click ? to see more information about the error.

Licence error (~]
& Licence error

Arm MAP

Licence 12345 in file "fhome/user/arm/forge/licences/Licence"” is
invalid.

Licence file has been modified (invalid hash code).

oK

Figure 129: License error message

* Verify that you have a license file for the correct product in the license directory.
* Check the expiry date inside the license to ensure the license is still valid.

If you continue to experience problems, contact Arm support.

Related information

+ Installation
» Using Arm Licence Server

» Arm Allinea Studio Licensing

No licenses found

The Arm Forge GUI opens, but it is unresponsive and shows the message “No licences found” at the
bottom of the sidebar.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 297
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/documentation/101169/latest/Using-Arm-Licence-Server
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/licensing

Arm Forge 20.2

H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Arm MAP - Arm Forge (]

File Edit View

arm
FORGE

arm
DDT

Window Help

PROFILE
Profile a program.

LOAD PROFILE DATA FILE
Load a profile data file from a previous

OPTIONS

Remote Launch
off

quir

Figure 130: No licences found error notification in Arm Forge

Invalid license file

Arm Forge requires a license file so that it can run, debug, and profile your programs.

Solution
* Buy a license, or get a free trial license from the Arm website.
+ If you continue to experience problems, contact Arm support.
Related information

* Installation
» Using Arm Licence Server

» Arm Allinea Studio Licensing

F1 cannot display this document

A blank screen displays instead of this document when you press F1.

Corrupt files prevent Qt Assistant starting

There might be corrupt files that are preventing the documentation system (Qt Assistant) from start-
ing.

Solution

Remove the stale files, which are found in $HOME/ . 1local/share/data/Allinea.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 298
101136_2020_00_en

https://www.arm.com/products/development-tools/server-and-hpc/allinea-studio/get-software
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/documentation/101169/latest/Using-Arm-Licence-Server
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/licensing

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

MPI not detected

When you run an Forge product (DDT, MAP, or Performance Reports), you are notified about a failure.
The nature of the failure is dependent on which product you are running and whether you are running it
offline using command-line instructions, or using the Arm Forge GUI.

MPI settings not configured

When you first run an Arm Forge product, the system. config file is created in your home directory
under the .allinea folder. This file contains settings for enabling the product to auto detect the correct
MPI implementation, and for specifying the default implementation. The failure to run MPI can arise if
either of these settings are not configured.

Solution

To permanently enable auto detect, and to specify a default MPI type, edit the system.config file
MPI section in your home directory and ensure that your Arm Forge product can run applications using
MPI.

[mpi]
auto detect = yes
type = openmpi

Solution

To permanently set the default MPI type, launch the Arm Forge GUI from the command-line interface,
and select an implementation from the list in MPI implementation in the Run dialog.

1. Get a list of supported MPIs using - -1ist-mpis:

$ map --list-mpis

2. Specify an MPI type for running your program using - -mpi.

$ map --mpi=openmpi-compat -n 1 ./wave_c

The GUI launches to display the MPI type you specified on the command line.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 299
101136_2020_00_en

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Application: /homejuser/arm/forge/examples/hello ¢ Details

Application: | /home/userfarm/forge/examples/hello_c -

Arguments: -
stdin file:

Working Directory: v

v MPI: 4 processes, Open MPI (Compatibility) Details

Number of Processes: |4 -

Processes per Node

Implementation: Open MPI (Compatibility) | Change...

mpirun arguments

OpenMP
CUDA
Memory Debugging

Submit to Queue

Environment Variables: none Details
Plugins: none Details
Help Options Run Cancel

Figure 131: Setting the MPI Implementation in the GUI

Solution

To change the MPI type, use the Arm Forge GUI and set the MPI implementation in the Run dialog:

Select an MPI implementation, in the Run dialog click MPI >Details > Implementation: Change,
and select an implementation from the menu in Options > System Settings > MPI/UPC implementa-
tion.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 300
101136_2020_00_en

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

\ﬁ.f Job Submission

I MPI/UPC Implementation: OpenI_‘MPI (Compatibility) - I
D Code Viewer Override default mpirun path: |e.g. /usr/local/bin/moirun

Appearance

Debugger:
__é Vislt

+" Automatic (recommended) >

Create Root and Workers groups automatically
Heterogeneous system support

Enable CUDA software pre-emption
Default groups file:

Attach hosts file:

Figure 132: Setting the MPI Implementation in System Settings

Note: This permanently modifies the MPI section in the system. config file with the MPI type you se-
lect, and persists for future sessions. However, ifauto detectisnotsettoyesinsystem.config,
you can still encounter a problem using MPI in subsequent sessions.

Solution

To set the MPI type for the current session only, use the command-line interface.
1. Get a list of supported MPIs using - -1ist-mpis:

$ map --list-mpis

2. Specify an MPI type for running your program using - -mp1i.

$ map --profile --mpi=openmpi -n 8 ./hello_c

Note: This change persists only for the current session and does not modify the system.config
file.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 301
101136_2020_00_en

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Related information

See Starting Arm Forge.

Starting a program
Starting scalar programs

There are a number of potential sources for issues.

MPI problem

The most common issue arises when the software reports a problem with MPI and you know your program
is not using MPI.

Solution

Before attempting to start a program, check Compiler notes and known issues and ensure it is compiled
correctly. Select the Run Without MPI Support checkbox. If you have selected this option and the software
still refers to MPI, contact Arm support.

Other issues starting a program

Other potential problems are:

» A previous Arm session is still running, or has not released resources required for the new session.
Usually this can be resolved by killing stale processes. The most obvious symptom of this is a
delay of approximately 60 seconds and a message stating that not all processes connected. You
might also see a QServerSocket message in the terminal.

* The target program does not exist or is not executable.

» Arm Forge products’ backend daemon, forge -backend, is missing from the bin directory. In
this case, check your installation, and contact Arm support.

Starting scalar programs with aprun

For compilation, see F.4.1 Compile scalar programs on Cray. Ensure that you export the following envi-
ronment variables:

export ALLINEA_MPI_INIT=main
export ALLINEA_HOLD_MPI_INIT=1
Instead of setting a breakpoint in the default MPI_TInit location, these environment variables set a

breakpoint in main, and hold the program there.

If using compatibility launch with a scalar program, the Run dialog automatically detects Cray MPI even
though it is a non-MPI program. Keep MPI selected, set one process, then click Run.

If the above environment variables do not work, try an alternative solution by exporting:

export ALLINEA_STOP_AT_MAIN=1

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 302
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

ALLINEA_STOP_AT_MAIN holds the program wherever it was when it attached. This can be before
main. For Arm DDT, set a breakpoint in the main of your program, then select Play/Continue to run to
this breakpoint.

Starting scalar programs with srun

Export the following environment variables:

export ALLINEA_MPI_INIT=main

export ALLINEA_HOLD_MPI_INIT=1

Instead of setting a breakpoint in the default MPI_Init location, these environment variables set a

breakpoint in main, and hold the program there.

If you are using compatibility launch mode with a scalar program, the Run dialog automatically detects
SLURM. Keep MPI selected, set one process, then click Run.

If the above environment variables do not work, try an alternative solution by exporting:
export ALLINEA_STOP_AT_MAIN=1
ALLINEA_STOP_AT_MAIN holds the program wherever it was when it attached. This can be before

main. For Arm DDT, set a breakpoint in the main of your program, then select Play/Continue to run to
this breakpoint.

Problems when you start an MPI program

You encounter problems when you start an MPI program.

Solution

* Check whether you can run a single-process (non-MPI) program such as a trivial “Hello, World!”
program, resolve any issues that arise, and repeat the attempt to run a multi-process job. Use any
issues that you encounter as the starting point for diagnosing the problem.

* Verify that MPI is working correctly by running a job without any of Arm Forge products applied,
such as the example in the examples directory.

mpirun -np 8 ./a.out

* Verify that mpirun is in the PATH, or the environment variable

ALLINEA_MPIRUN is set to the full pathname of mpirun.

Starting multi-process programs

If the progress bar does not report that at least process 0 has connected, the remote forge-backend
daemons cannot be started or cannot connect to the GUI.

Sometimes problems are caused by environment variables not propagating to the remote nodes while
starting a job. To a large extent, the solution to these problems depends on the MPI implementation that
is being used.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 303
101136_2020_00_en

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Solution

+ If only one, or very few, processes connect, it might be because you have not chosen the correct
MPI implementation. Examine the list and look carefully at the options. If you can find no other
suitable MPI, contact Arm support.

« If a large number of processes are reported by the status bar to have connected, it is possible that
some have failed to start because of resource exhaustion, timing out, or, unusually, an unexplained
crash.

To check for time-out problems, set the ALLINEA_NO_TIMEOUT environment variable to 1 be-
fore launching the GUI and see if further progress is made. This is not a solution, but aids the
diagnosis. If all processes can start, contact Arm support.

No shared home directory

Your home directory is not accessible to all the nodes in your cluster, and your jobs might fail to start.

Solution

1. Open the file ~/.allinea/system.config in a text editor.

2. Change the shared directory option in the [startup] section so that it points to a di-
rectory that is available and shared by all the nodes. If no such directory exists, change the use
session cookies option to nNo instead.

DDT or MAP cannot find your hosts or the executable

This can happen when attempting to attach to a process running on other machines. Ensure that the host
names that DDT reports issues with can be reached, using ping.

If DDT fails to find the executable, ensure that it is available in the same directory on every machine.

See section A.5 Connecting to compute nodes and remote programs (remote-exec) for more information
on configuring access to remote machines.

The progress bar does not move and Arm Forge times out

It is possible that the program forge -backend has not been started by mpirun or has aborted. You
can log onto your nodes and confirm this by looking at the process list before clicking Ok when Forge
times out. Ensure that forge -backend has all the libraries it needs and that it can run successfully on
the nodes using mpirun.

Alternatively, there might be one or more processes (forge-backend, mpirun, rsh) that could not
be terminated. This can happen if Forge is killed during its startup or due to MPI implementation issues.
You must kill the processes manually, using ps X to get the process ids, then kill or kill -9 to
terminate them.

This issue can also arise formpich - p4mpd, and the solution is explained in Appendix E MPI distribution
notes and known issues.

If your intended mpirun command is not in your PATH, you can either add it to your PATH or set the
environment variable ALLINEA_MPIRUN to contain the full pathname of the correct mpirun.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 304
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

If your home directory is not accessible by all the nodes in your cluster, your jobs might fail to start by
this method.

See section H.5.6 No shared home directory.

Attaching

The system does not allow connecting debuggers to processes (Fedora,
Ubuntu)

The Ubuntu ptrace scope control feature does not allow a process to attach to other processes that it did
not launch directly.

See http://wiki.ubuntu.com/Security/Features#ptrace for details.
To disable this feature until the next reboot, run the following command:
echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope
To disable it permanently, add this lineto /etc/sysctl.d/10-ptrace.conf (or/etc/sysctl.
conf):

kernel.yama.ptrace_scope = 0

This will take effect after the next reboot.

On Fedora, ptrace might be blocked by SELinux in addition to Yama. See section H.6.2.

The system does not allow connecting debuggers to processes (Fedora,
Red Hat)

The deny_ptrace boolean in SELinux, used by Fedora and Red Hat, does not allow a process to attach
to other processes it did not launch directly.

See http://fedoraproject.org/wiki/Features/SELinuxDenyPtrace for details.
To disable this feature until the next reboot, run the following command:

setsebool deny_ptrace 0

To disable it permanently run this command:
setsebool -P deny_ptrace 0

As of Fedora 22, ptrace might be blocked by Yama in addition to the SELinux boolean. See sec-
tion H.6.1.

Running processes do not show up in the attach window
Running processes that do not show up in the attach window is usually a problem with either your
remote-exec script or your node list file.

Ensure that the entry in your node list file corresponds with either localhost, if you are running on your
local machine, or with the output of hostname on the desired machine.

Try running /path/to/arm/forge/20.2/1ibexec/remote-exec manually.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 305
101136_2020_00_en

http://wiki.ubuntu.com/Security/Features#ptrace
http://fedoraproject.org/wiki/Features/SELinuxDenyPtrace

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Forexample, /path/to/arm/forge/20.2/1ibexec/remote-exec <hostname> 1ls,and
check the output of this.

If running manually fails, there is a problem with your remote-exec script. If rsh is still being used
in your script, check that you can rsh to the desired machine. Otherwise, check that you can attach to
your machine in the way specified in the remote-exec script.

For more information, see A.5 Connecting to compute nodes and remote programs (remote-exec).

If you still experience problems with your script, contact Arm support for assistance.

Source Viewer
No variables or line number information

You must compile your programs with debug information included. You can usually do this, depending
on your compiler, by adding the - g option to your compile command.

Source code does not appear when you start Arm Forge

If you cannot see any text, the default selected font might not be installed on your system. If not, to
resolve the issue, go to File — Options (Arm Forge — Preferences on Mac OS X) and choose a fixed
width font such as Courier.

If you see a screen of text telling you that Forge could not find your source files, follow the instructions
given. If you still cannot see your source code, check that the code is available on the machine you are
running the software on, and that the correct file and directory permissions are set. If some files are
missing and others found, try adding source directories and rescanning for further instruction.

If the problem persists, contact Arm support.

Code folding does not work for OpenACC/OpenMP pragmas

This is a known issue. If an OpenACC or OpenMP pragma is associated with a multi-line loop, the loop
block might be folded instead.

Input/Output

Output to stderr is not displayed

Forge automatically captures anything written to stdout / stderr and displays it.

Some shells, such as csh, do not support this feature and you might see your stderr mixed with
stdout, or it might not display at all.

Arm strongly recommends writing program output to files instead, since the MPI specification does not
cover stdout / stderr behavior.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 306
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Unwind errors

When using MAP, you might see these errors reported in the output of the form:

Arm Sampler: 3 libunwind: Unspecified (general) error (4/172 samples)
Arm Sampler: 3 Maximum backtrace size in sampler exceeded, stack too
deep. (1/172 samples)

These indicate that MAP was only able to obtain a partial stack trace for the sample. If the proportion of
samples that generate such errors is low, they can safely be ignored.

If a large proportion of samples exhibit these errors, consult the advice on partial traces in F.7 Intel
compilers or F.9 Portland Group compilers if you are using these compilers.

If this does not help, contact Arm support.

Controlling a program
Program jumps forwards and backwards when stepping through it

If you have compiled with any sort of optimizations, the compiler shuffles your program instructions
into a more efficient order. This is what you are seeing. Arm recommends compiling with -00 when
debugging, which disables this behavior and other optimizations.

If you are using the Intel OpenMP compiler, the compiler generates code that appears to jump in and out
of the parallel blocks regardless of your - 00 setting. Therefore, Armrecommends not stepping inside
parallel blocks.

DDT might stop responding when using the Step Threads Together op-
tion

DDT might stop responding if a thread exits when the Step Threads Together option is enabled. This is
most likely to occur on Linux platforms using NPTL threads. This might happen if you try to Play to
here to a line that is never reached. In this case, your program would run to the end and then exit.

A workaround is to set a breakpoint at the last statement executed by the thread and turn off Step Threads
Together when the thread stops at the breakpoint.

If this problem affects you, contact Arm support.

Evaluating variables

Some variables cannot be viewed when the program is at the start of a
function

Some compilers produce faulty debug information, forcing DDT to enter a function during the prologue,
or the variable might not yet be in scope.

In this region, which appears to be the first line of the function, some variables have not been initialized
yet. To view all the variables with their correct values, it might be necessary to play or step to the next
line of the function.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 307
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Incorrect values printed for Fortran array

Pointers to non-contiguous array blocks (allocatable arrays using strides) are not supported.
If this issue affects you, contact Arm support for a workaround or fix.

There are also many compiler limitations that can cause this. See Appendix F for details.

Evaluating an array of derived types, containing multiple-dimension ar-
rays

The Locals, Current Line and Evaluate views might not show the contents of these multi-dimensional
arrays inside an array of derived types.

However, you can view the contents of the array by clicking its name and dragging it into the evaluate
window as an item on its own, or by using the MDA.

C++ STL types are not pretty printed

The pretty printers provided with DDT are compatible with GNU compilers version 4.7 and above, and
Intel C++ version 12 and above.

Memory debugging

The View Pointer Details window says a pointer is valid but does not show
you which line of code it was allocated on

The Pathscale compilers have known issues that can cause this.

See the compiler notes in section C of this appendix for more details.

The Intel compiler might need the - fp argument to allow you to see stack traces on some machines.

If this happens with another compiler, contact Arm support with the vendor and version number of your
compiler.

mprotect fails errorwhen using memory debugging with guard pages
This can happen if your program makes more than 32768 allocations; a limit in the kernel prevents DDT
from allocating more protected regions than this. Your options are:

*« Runecho 123456 >/proc/sys/vm/max_map_count (requires root) which increases the
limit to 61728 (123456 / 2, because some allocations use multiple maps).

* Disable guard pages completely. This hinders the ability of DDT to detect heap over/underflows.

* Disable guard pages temporarily. You can disable them at program start, add a breakpoint before
the allocations you wish to add guard pages for, and then reenable the feature.

See 12.4 Configuration for information on how to disable guard pages.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 308
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Allocations made before or during MPI_Init show up in Current Memory
Usage but have no associated stack back trace

Memory allocations that are made before or during MPI_Init appear in Current Memory Usage along
with any allocations made afterwards.

However, the call stack at the time of the allocation is not recorded for these allocations and does not
show up in the Current Memory Usage window.

Deadlock when calling printf or malloc from a signal handler
The memory allocation library calls (for example, malloc) provided by the memory debugging library
are not async-signal-safe unlike the implementations in recent versions of the GNU C library.

POSIX does not require malloc to be async-signal-safe but some programs might expect this behav-
ior.

For example, a program that calls printf from a signal handler can deadlock when memory debugging
is enabled in DDT, because the C library implementation of printf might call malloc.

The web page below has a table of the functions that can be safely called from an asynchronous signal
handler:

http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03/

Program runs more slowly with Memory Debugging enabled
The Memory Debugging library performs more checks than the memory allocation routines of normal
runtime. However, checks make the library slower.

If your program runs too slowly when Memory Debugging is enabled, there are several options you can
change to speed it up.

« Try reducing the Heap Debugging option to a lower setting. For example, if it is currently on High,
try changing it to Medium or Low.

* Increase the heap check interval from the default of 100 to a higher value. The heap check interval
controls how many allocations might occur between full checks of the heap, which can take some
time.

+ A higher setting (1000 or above) is recommended if your program allocates and deallocates memory
very frequently, for example from inside a computation loop.

* You can disable the Store backtraces for memory allocations option, at the expense of losing back-
traces in the View Pointer Details and Current Memory Usage windows.

MAP specific issues
MPI wrapper libraries

Unlike DDT, MAP wraps MPI calls in a custom shared library. A precompiled wrapper is copied that is
compatible with your system, or one is built for your system each time you run MAP.

See C Supported platforms for the list of supported MPIs.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 309
101136_2020_00_en

http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03/

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

You can also try setting ALLINEA_WRAPPER_COMPILE=1 and MPICC directly:

$ MPICC=my-mpicc-command bin/map -n 16 ./wave_c

If you have problems, contact Arm support.

Thread support limitations

MAP and Performance Reports provide limited support for programs when threading support is set to
MPI_THREAD_SERIALIZED orMPI_THREAD_MULTIPLEinthecalltoMPI_Init_thread.

MPI activity on non-main threads contributes towards the MPI-time of the program, but not the MPI
metric graphs.

Additionally, MPI activity on a non-main thread can result in additional profiling overhead due to the
mechanism employed by MAP and Performance Reports for detecting MPI activity.

Arm recommends using the pthread view mode for interpreting MPI activity instead of the OpenMP
view mode, because OpenMP view mode scales MPI-time depending on the resources requested. As a
result, non-main thread MPI activity might provide nonintuitive results when detected outside of OpenMP
regions.

Warnings are displayed when the user initiates and completes profiling a program that sets MPI_THREAD__
SERIALIZED or MPI_THREAD_MULTIPLE as the required thread support.

MAP and Performance Reports both fully support making calls to MPI_Init_thread using either
MPI_THREAD_SINGLE or MPI_THREAD_FUNNELED to specify the required thread support.

Note: The MPI specification requirements for programs using MPI_THREAD_FUNNELED are the same
as the MAP and Performance Reports requirements: all MPI calls must be made on the thread that called
MPI_Init_thread.

In many cases, multi-threaded MPI programs can be refactored so that they comply with this restric-
tion.

No thread activity while blocking on an MPI call
MAP and Performance Reports are currently unable to record thread activity on a process where a long-
duration MPI call is in progress.

If you have an MPI call that takes a significant amount of time to complete, as indicated by a sawtooth
on the MPI call duration metric graph, MAP displays no thread activity for the process executing that
call for most of the duration of that MPI call.

See also section 24.5.

I am not getting enough samples
By default, the starting sampling interval is every 20ms. You can change the sampling rate if you get
warnings about too few samples on a fast run, or want more detail in the results.

To increase the interval to every 10ms, set environment variable ALLINEA_SAMPLER_INTERVAL=
10.

Note: Sampling frequency automatically decreases over time to ensure a manageable amount of data is
collected, and does not depend on the length of the run.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 310
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Armdoes not recommend increasing the sampling frequency if there are lots of threads or very deep stacks
in the target program because this might not leave sufficient time to complete one sample before the next
sample is started.

Note: Whether OpenMP is enabled or disabled in MAP or Performance Reports, the final script or sched-
uler values set for OMP_NUM_THREADS is used to calculate the sampling interval per thread (ALLINEA_
SAMPLER_INTERVAL_PER_THREAD). When configuring your job for submission, check whether
your final submission script, scheduler or the MAP GUI has a default value for OMP_NUM_THREADS.

Note: Custom values for ALLINEA_SAMPLER_INTERVAL are overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS).

| just see main (external code) and nothing else
This can happen if you compile without -g. It can also happen if you move the executable out of the
directory it was compiled in.

Check that your compile line includes -g, right-click the Project Files panel in MAP, and choose Add
Source Directory....

If you have any further issues, contact Arm support.

MAP is reporting time spent in a function definition

Any overheads involved in setting up a function call (such as pushing arguments to the stack) are usually
assigned to the function definition. Some compilers might assign them to the opening brace ‘{’ and
closing brace ‘}’ instead.

If this function has been inlined, the situation becomes further complicated and any setup time, such as
time for allocating space for arrays, is often assigned to the definition line of the enclosing function.

MAP is not correctly identifying vectorized instructions

The instructions identified as vectorized (packed) are listed here:

+ Packed floating-point instructions: addpd addps addsubpd addsubps andnpd and-

nps andpd andps divpd divps dppd dpps haddpd haddps hsubpd hsubps maxpd
maxps minpd minps mulpd mulps rcpps rsqrtps sqrtpd sqrtps subpd subps

» Packed integer instructions: mpsadbw pabsb pabsd pabsw paddb paddd paddq paddsb
paddsw paddusb paddusw paddw palignr pavgb pavgw phaddd phaddsw phaddw
phminposuw phsubd phsubsw phsubw pmaddubsw pmaddwd pmaxsb pmaxsd pmaxsw
pmaxub pmaxud pmaxuw pminsb pminsd pminsw pminub pminud pminuw pmuldqg

pmulhrsw pmulhuw pmulhw pmulld pmullw pmuludq pshufb pshufw psignb
psignd psignw pslld psllg psllw psrad psraw psrld psrlg psrlw psubb
psubd psubg psubsb psubsw psubusb psubusw psubw

Arm also identifies the AVX-2 variants of these instructions, with a “v” prefix.

If you think that your code contains vectorized instructions that have not been listed and are not being
identified in the CPU floating-point/integer vector metrics, contact Arm support.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 311
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Linking with the static MAP sampler library fails with an undefined refer-
enceto ___real_dlopen

When linking with the static MAP sampler library, you might get undefined reference errors similar to
the following:

../1ib/64/1ibmap-sampler.a(dl.o): In function °“__ _wrap_dlopen':
/build/overnight/ddt-2015-01-28-12322/code/ddt/map/sampler/build64-
static/../src/dl.c:21: undefined reference to "_ real dlopen'

../1lib/64/1ibmap-sampler.a(dl.o): In function ~__wrap_dlclose':
/build/overnight/ddt-2015-01-28-12322/code/ddt/map/sampler/buildé4-
static/../src/dl.c:28: undefined reference to "_ real _dlclose'

collect2: 1d returned 1 exit status

To avoid these errors, follow the instructions in section 16.2.6 Static linking.

Note: Look at the use of the -W1, @/home/user/myprogram/allinea-profiler.1d syn-
tax.

Linking with the static MAP sampler library fails with FDE overlap errors

When linking with the static MAP sampler library, you might get FDE overlap errors similar to:

1d: .eh_frame_hdr table[791] FDE at 0000000000822830 overlaps table
[792] FDE at 0000000000825788

This can occur when the version of binutils on a system has been upgraded to 2.25 or later and is most

commonly seen on Cray machines using CCE 8.5.0 or later.

To fix this issue, rerun make-profiler-libraries --lib-type=static and use the freshly
generated static libraries and allinea-profiler. 1d to link these with your program.

See section 16.2.6 Static linking for more details.

If you are not using a Cray or SUSE build of Forge and you require a binutils 2.25 compatible static
library, contact Arm support .

The error message occurs because the version of 1ibmap-sampler.a you attempted to link was not
compatible with the version of 1d in binutils versions > 2.25.

For Cray machines, there is a separate library called 1ibmap-sampler-binutils-2.25.a which
is provided for use with this updated linker.

The make-profiler-libraries script automatically selects the appropriate library to use based
on the version of 1d found in your PATH.

If you erroneously attempt to link 1ibmap-sampler-binutils-2.25. a with your program using
a version of 1d prior to 2.25, the following errors can occur:

/usr/bin/1ld.x: libmap-sampler.a(dl.o): invalid relocation type 42

If this happens, check that the correct version of 1d is in your PATH and rerun make-profiler -
libraries --lib-type=static.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 312
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

MAP adds unexpected overhead to my program

The MAP sampler library adds a small overhead to the execution of your program. Usually, this is less
than 5% of the wall clock execution time.

Under some circumstances, however, the overhead can exceed this, especially for short runs. This is par-
ticularly likely if your program has high OpenMP overhead, for example, if it is greater than 40%.

In this case, the measurements reported by MAP are affected by this overhead and therefore less reliable.
Increasing the run time of your program, for example, by changing the size of the input, decreases the
overall overhead, although the initial few minutes still incur the higher overhead.

Athigh per-process thread counts, for example on the Intel Xeon Phi (Knights Landing), the MAP sampler
library can incur a more significant overhead.

By default, when MAP detects a large number of threads, it automatically reduces the sampling interval
to limit the performance impact.

Sampling behavior can be modified by setting the ALLINEA_SAMPLER_INTERVAL and ALLINEA_
SAMPLER_INTERVAL_PER_THREAD environment variables. For more information on the use of these
environment variables, see 16.11.

MAP takes an extremely long time to gather and analyze my OpenBLAS-
linked application

OpenBLAS versions 0.2.8 and earlier incorrectly stripped symbols from the . symtab section of the
library, causing binary analysis tools such as MAP and objdump to see invalid function lengths and
addresses.

This causes MAP to take an extremely long time disassembling and analyzing apparently overlapping
functions containing millions of instructions.

A fix for this was accepted into the OpenBLAS codebase on October 8th 2013. Version 0.2.9 and later
are not affected.

To work around this problem without updating OpenBLAS, run strip libopenblas*.so to re-
move the incomplete . symtab section without affecting the operation or linkage of the library.

MAP over-reports MPI, Input/Output, accelerator or synchronization time

MAP employs a heuristic to determine which function calls to consider as MPI operations.

If your code defines any function that starts with MPI_ (case insensitive), those functions are treated as
part of the MPI library resulting in the time spent in MPI calls to be over-reported by the activity graphs
and the internals of those functions to be omitted from the Parallel Stack View.

Do not append the prefix MPI_ to your function names. This is explicitly forbidden by the MPI spec-
ification. This is described on page 19 sections 2.6.2 and 2.6.3 of the MPI 3 specification document
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49:

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must not
declare names, for example, for variables, subroutines, functions, parameters, derived types,
abstract interfaces, or modules, beginning with the prefix MPI_.

Similarly MAP categorizes I/O functions and accelerator functions by name.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 313
101136_2020_00_en

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Other prefixes to avoid starting your function names with include PMPI_, _PMI_, OMPI_, omp_-
, GOMP_, shmem_, cuda_, __cuda, cu[A-Z][a-z] andallinea_.

All of these prefixes are case-insensitive.

Do notname a function sStart_pes orany name also used by a standard I/O or synchronization function,
suchaswrite, open, pthread_join, and sem_wait.

MAP collects very deep stack traces with boost::coroutine

A known bug in Boost (https://svn.boost.org/trac/boost/ticket/12400) prevents MAP from unwinding the
call stack correctly.

This can be worked around by applying the patch attached to the bug report to your boost installation, or
by specifying a manual stack allocator that correctly initializes the stack frame.

Add the following custom stack allocator:

#include <boost/coroutine/coroutine.hpp>
#include <boost/coroutine/stack_context. hpp>

struct custom_stack_allocator {
void allocate(
boost: :coroutines: :stack_context & ctx,
std::size_t size) {

void * limit = std::malloc(size);
if (! limit)
throw std::bad_alloc();

//Fix. RBP in the 1st frame of the stack will contain 0
const int fill=0;

std::size_t stack_hdr_size=0x100;

if (size<stack_hdr_size)
stack_hdr_size=size;

memset (static_cast< char * >(limit)+size-stack_hdr_size,
fill,
stack_hdr_size);

ctx.size = size;
ctx.sp = static_cast< char * >(limit) + ctx.size;

}

void deallocate(bhoost::coroutines::stack_context & ctx) {
void * limit = static_cast< char * >(ctx.sp) - ctx.size;
std: :free(limit);

};

Modify your program to use the custom allocator whenever a coroutine is created:

boost::coroutines::coroutine<int()> my_coroutine(<func>,
boost::coroutines::attributes(),custom_stack_allocator());

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 314
101136_2020_00_en

https://svn.boost.org/trac/boost/ticket/12400

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

For more information, see the boost : : coroutine documentation on stack allocators for your version
of Boost.

Excessive memory usage

If you are running out of memory when using a Forge tool, consider the following actions:

Reduce processes per node

If your code allows it, run with fewer MPI processes per node. You can reduce the number of MPI
processes in total or spread the processes out over more nodes.

Most tool-based memory usage is incurred per-process not per-thread, so you might want to increase the
number of threads to compensate.

Obviously, this impacts where your application spends its time so this might not be applicable when using
MAP or Performance Reports.

Reduce debug information

Reduce the memory load by compiling some or all of your application with reduced debug informa-
tion.

Depending on your use case, it might be appropriate to use minimal (file and line information only), or
no debug information for some or all of your code. Minimal debug is enabled by the compiler option
-g1 (GCC, Arm Compiler for Linux and Intel). You can disable debug information by not specifying
any - g option to the compiler or by using - go.

DDT Full debug information is required for code that is to be debugged. Consider using split DWARF
(-gsplit-dwarf) if your compiler supports it. Split DWARF allows full debug information to
be lazily loaded with finer granularity, potentially saving memory.

Alternatively, parts of the code that you are sure will not need to be debugged can be compiled with
minimal debug information.

MAP Only minimimal debug info (file and line numbers only) is required for most functionality. Stack
frames that have been inlined can only be displayed if full debug information for that area of code
is available).

Performance Reports It is not required to compile with debug information enabled, but avoid stripping
binaries of debug information after they have been compiled because this might remove required
information.

MAP | Performance Reports specific setting

If your program appears to run correctly during profiling, but runs out of memory while MAP or Perfor-
mance Reports collects the results, define ALLINEA_REDUCE_MEMORY_USAGE=1 in your environ-
ment and then rerun MAP.

This environment variable causes the results for each process on a node to be processed sequentially
instead of in parallel. This reduces the amount of free memory needed on each node but takes longer to
complete.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 315
101136_2020_00_en

Arm Forge 20.2 H GENERAL TROUBLESHOOTING AND KNOWN ISSUES

Obtaining support

If you are unable to find the information you need in this guide, contact Arm support with a detailed
report.

If possible, obtain a log file for the problem. To generate a log file, either select the Help — Logging —
Automatic menu option or start Forge with the - -debug and - - 10g arguments:

$ ddt --debug --log=<logfilename>
$ map --debug --log=<logfilename>

Where <logfilename> is the name of the log file to generate.

Reproduce the problem using as few processors and commands as possible, and when complete, close
the program as usual.

On some systems, this file might be quite large. If so, compress it using a program such as gzip or
bzip2 before sending it to support.

If your problem can only be replicated on large process counts, do not use the Help — Logging — Debug
menu item or - -debug argument because these generate very large log files. Instead, use the Help —
Logging — Standard menu option or the - - 10g argument.

If you are connecting to a remote system, the log file is generated on the remote host and copied back to
the client when the connection is closed. The copy does not happen if the target application crashes or
the network connection is lost.

In these cases, the remote copy of the log file is in the tmp subdirectory of the Arm configuration direc-
tory for the remote user account. The directory is ~/.allinea, unless overridden by the ALLINEA_
CONFIG_DIR environment variable.

Sometimes it might be helpful to illustrate your problem with a screenshot of the Forge main window. To
take a screenshot, choose the Take Screenshot. .. option under the Window menu. You are prompted for a
file name when you save the screenshot.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 316
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Arm Forge 20.2

I QUEUE TEMPLATE SCRIPT SYNTAX

Queue template script syntax

Queue template tags

Each of the tags that will be replaced is listed in the following table, and an example of the text that will
be generated when Arm Forge submits your job is given for each.

Note: It is often sufficient to simply use AUTO_LAUNCH_TAG. See section A.4.1 The template script

for an example.

Tag

Description

After Submission Example

AUTO_LAUNCH_TAG

This tag expands to the entire
replacement for your ‘mpirun’
command line.

forge-mpirun -np 4
myexample.bin

DDTPATH_TAG

The path to the Arm Forge instal-
lation

/opt/arm/forge/20.2

TAG

for mpirun (can vary with MPI
implementation)

WORKING_DIRECTORY_TAG | The working directory Arm | /users/ned
Forge was launched in
NUM_PROCS_TAG Total number of processes 16
NUM_PROCS_PLUS_ONE_ Total number of processes + 1 17
TAG
NUM_NODES_TAG Number of compute nodes 8
NUM_NODES_PLUS_ONE_ Number of compute nodes + 1 9
TAG
PROCS_PER_NODE_TAG Processes per node 2
PROCS_PER_NODE_PLUS_ Processes per node + 1 3
ONE_TAG
NUM_THREADS_TAG Number of OpenMP threads per | 4
node (empty if OpenMP if “off”)
OMP_NUM_THREADS_TAG Number of OpenMP threads per | 4
node (empty if OpenMP is “off”)
MPIRUN_TAG mpirun binary (can vary with | /usr/bin/mpirun
MPI implementation)
AUTO_MPI_ARGUMENTS_ Required command-line flags | -np 4

EXTRA_MPI_ARGUMENTS_
TAG

Additional mpirun arguments
specified in the Run window

-partition DEBUG

PROGRAM_TAG

Target path and filename

/users/ned/a.out

PROGRAM_ARGUMENTS_TAG

Arguments to target program

-myarg myval

INPUT_FILE_TAG

The stdin file specified in the
Run window

/users/ned/input.dat

Additionally, any environment variables in the GUI environment ending in _TAG are replaced throughout
the script by the value of those variables.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

101136_2020_00_en

317

Arm Forge 20.2

I QUEUE TEMPLATE SCRIPT SYNTAX

Defining new tags

As well as the pre-defined tags listed in the table above you can also define new tags in your template
script whose values can be specified in the GUI.

Tag definitions have the following format:

EXAMPLE_TAG: { keyl=valuel, key2=value2,

}

Where key1, key2, are attribute names and valuel, value2, are the corresponding values.

The tag will be replaced wherever it occurs with the value specified in the GUI, for example:

#PBS -option EXAMPLE_TAG

The following attributes are supported:

Attribute Purpose Example
type text: General text input. type=text

select: Select from two or more options.

check: Boolean.

file: File name.

number: Real number.

integer: Integer number.
label The label for the user interface widget. label="Account"
default Default value for this tag default="interactive"

text type

mask Input mask: mask="09:09:09"

0: ASCII digit permitted but not required.

9: ASCII digit required. 0-9.

N: ASCII alphanumeric character required.

A-Z, a—z, 0-9.

n: ASCII alphanumeric character permitted

but not required.

options type
options Options to use, separated by the | character options="not_-
shared|shared"
check type
checked Value of a check tag if checked. checked="enabled"
unchecked Value of a check tag if unchecked. unchecked="enabled"
integer and number types

min Minimum value. min="0"
max Maximum value. max="100"
step Amount to step by when the up or down ar- | step="1"

rows are clicked.
decimals Number of decimal places. decimals="2"
suffix Display only suffix (will not be included intag | suffix="s"

value).
prefix Display only prefix (will not be included in | prefix="$"

tag value).

file type
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 318

101136_2020_00_en

Arm Forge 20.2 I QUEUE TEMPLATE SCRIPT SYNTAX

mode open-file: an existing file. mode="open-file"
save-file: anew or existing file.
existing-directory: anexisting direc-
tory.

open-files: one or more existing files,
separated by spaces.

caption Window caption for file chooser. caption="Select File"
dir Initial directory for file chooser. dir="/work/output"
filter Restrict the files displayed in the file chooser | filter="Text files
to a certain file pattern. (*.txt)"
Examples

JOB_TYPE_TAG: {type=select,options=parallel| \
serial, label="Job Type", default=parallel}

WALL_CLOCK_ LIMIT_TAG: {type=text,label="Wall Clock Limit", \
default="00:30:00",mask="09:09:09"}

NODE_USAGE_TAG: {type=select,options=not_shared| \
shared, label="Node Usage",6 default=not_shared}

ACCOUNT_TAG: {type=text,label="Account",6 global}

See the template files in {installation-directory}/templates for more examples.

To specify values for these tags click the Edit Template Variables button on the Job Submission Options
page (see Figure 127 Queuing Systems shown previously) or the Run window. You will see a window

similar to the one below:

Job Type: parallel -
Wall Clock Limit: |00:30:00

Node Usage: not_shared -
Account: user

Class: general -

| OK | Cancel

Figure 133: Queue Parameters Window

The values you specify are substituted for the corresponding tags in the template file when you run a
job.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 319
101136_2020_00_en

Arm Forge 20.2 I QUEUE TEMPLATE SCRIPT SYNTAX

Specifying default options

A queue template file may specify defaults for the options on the Job Submission page so that when a
user selects the template file these options are automatically filled in.

Name Job Submission Setting Example
submit Submit command | qsub -n NUM_NODES_TAG
Note: the command might | -t WALL_CLOCK_LIMIT._-
include tags. TAG --mode script -A
PROJECT_TAG
display Display command The output | gstat

from this command is shown
while waiting for a job to start.

job regexp Job regexp (\d+)

cancel Cancel command qdel JOB_ID_TAG

submit scalar Also submit scalar jobs through | yes
the queue

show num_procs Number of processes: Specify in | yes
Run window

show num_nodes Number of nodes: Specify in | yes
Run Window

show procs_per_node Processes per node: Specify in | yes
Run window

procs_per_node Processes per node: Fixed 16

Example

submit: qsub -n NUM_NODES_TAG -t WALL_CLOCK LIMIT_TAG \
--mode script -A PROJECT_TAG

display: qstat

job regexp: (\d+)

cancel: qdel JOB_ID TAG

Launching

Usually, your queue script will end in a line that starts mpirun with your target executable.

In a template file, this needs to be modified to run a command that will also launch the Arm Forge backend
agents.

Some methods to do this are mentioned in this section.

Using AUTO_LAUNCH_TAG

This is the easiest method, and caters for the majority of cases. Simply replace your mpirun com-
mand line with AUTO_LAUNCH_TAG. Arm Forge will replace this with a command appropriate for your
configuration (one command on a single line).

For example an mpirun line that looks like this:

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 320
101136_2020_00_en

Arm Forge 20.2 I QUEUE TEMPLATE SCRIPT SYNTAX

mpirun -np 16 program_name myargl myarg2

Becomes:

AUTO_LAUNCH_TAG

AUTO_LAUNCH_TAG is roughly equivalent to:

DDT_MPIRUN_TAG DDT_DEBUGGER_ARGUMENTS_TAG \
MPI_ARGUMENTS_TAG PROGRAM_TAG ARGS_TAG

A typical expansion is:

/opt/arm/forge/20.2/bin/forge-mpirun --ddthost logini,192.168.0.191
\

--ddtport 4242 --ddtsession 1 \

--ddtsessionfile /home/user/.allinea/session/logini-1 \

--ddtshareddirectory /home/user --np 64 \

--npernode 4 myprogram argl arg2 arg3

Using forge-mpirun
If you need more control than is available using AUTO_LAUNCH_TAG, Arm Forge also provides a drop-in
mpirun replacement that can be used to launch your job.

Note: This is only suitable for use in a queue template file when Arm Forge is submitting to the queue
itself.

You should replace mpirun with DDTPATH_TAG/bin/forge-mpirun
For example, if your script currently has the line:

mpirun -np 16 program_name myargl myarg2

Then (for illustration only) the equivalent that Arm Forge needs to use would be:
DDTPATH_TAG/bin/forge-mpirun -np 16 program_name myargl myarg2

For a template script you use tags in place of the program name, arguments and so on, so they can be

specified in the GUI rather than editing the queue script each time:

DDTPATH_TAG/bin/forge-mpirun -np NUM_PROCS_TAG \
EXTRA_MPI_ARGUMENTS_TAG DDTPATH_TAG/libexec/forge-backend \
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

See 1.1 Queue template tags for more information on template tags.

Scalar programs

If AUTO_LAUNCH_TAG is not suitable, you can also use the following method to launch scalar jobs with
your template script:

DDTPATH_TAG/bin/forge-client DDT_DEBUGGER_ARGUMENTS_TAG \
PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 321
101136_2020_00_en

Arm Forge 20.2 I QUEUE TEMPLATE SCRIPT SYNTAX

Using PROCS_PER_NODE_TAG

Some queue systems allow you to specify the number of processes, others require you to select the number
of nodes and the number of processes per node.

The software caters for both of these but it is important to know whether your template file and queue sys-
tem expect to be told the number of processes (NUM_PROCS_TAG) or the number of nodes and processes
per node (NUM_NODES_TAG and PROCS_PER_NODE_TAG).

If these terms seem strange, see sample. qtf for an explanation of the queue template system.

Job ID regular expression

The Regexp for job id regular expression is matched on the output from your submit command. The first
bracketed expression in the regular expression is used as the job ID. The elements listed in the table are
in addition to the conventional quantifiers, range and exclusion operators.

Element Matches
C A character represents itself
\t A tab
. Any character
\d Any digit
\D Any non-digit
\s White space
\S Non-white space
\w Letters or numbers (a word character)
\W Non-word character

For example, your submit program might return the output job id j1128 has been submit-
ted. One possible regular expression for retrieving the job ID is id\s(.+)\shas.

If you would normally remove the job from the queue by typing job_remove j1128 then you should
enter job_remove JOB_ID_TAG as the cancel command.

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 322
101136_2020_00_en

Arm Forge 20.2 I QUEUE TEMPLATE SCRIPT SYNTAX

Arm IPMI Energy Agent

The Arm IPMI Energy Agent allows Arm MAP and Arm Performance Reports to measure the total energy
consumed by the compute nodes in a job.

Note: Measuring energy with IPMI Energy agent requires Arm Forge Professional.

The IPMI Energy Agent is available to download from our website: IPMI Energy Agent.

Requirements

» The compute nodes must support [IPMI.
* The compute nodes must have an IPMI exposed power sensor.

 The compute nodes must have an OpenIPMI compatible kernel module installed, such as ipmi_ -
devintf.

+ The compute nodes must have the corresponding device node in /dev, for example /dev/ipmi0.
* The compute nodes must run a supported operating system.
» The IPMI Energy Agent must be run as root.

To list the names of possible IPMI power sensors on a compute node use the following command:

ipmitool sdr | grep 'Watts'

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 323
101136_2020_00_en

https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/resources/tutorials/ipmi-energy-agent

Index

Arm DDT Mac OS X, 38
Controlling program execution, 72 MAP file, 244
Getting started, 40
Getting Support, 272 Accelerator, 176
Installation, 21 Accelerator breakdown, 255
Introduction, 18 Global memory accesses, 255
Logbook, 113 GPU utilization, 255
Overview, 62 Mean GPU memory usage, 255
Program input and output, 111 Peak GPU memory usage, 255
Running a program, 41 Align stacks, 86
Starting a program AMD
From a job script, 57 OpenCL, 285
Starting, stopping and restarting, 76 Apple
Arm MAP Mac OS X, 36
Cray MPT, 278 Application, 41, 159
Custom metrics, 198 Arbitrary expressions and global variables, 93
Displaying selected processes, 173 Architecture licensing, 27
Environment variables, 170 Multiple architectures, 27
Functions view, 187 Arm (AArch64), 294
Getting started, 149 Array
Getting Support, 272 Distributed, 102
Installation, 21 Expression, 101
Introduction, 19 Filtering, 102
JSON, 212 Multi-dimensional
Activities, 213 Viewing, 100
Categories, 213 Array data
Example, 217 Viewing, 97
Metrics, 215 Arrays
Metrics view, 189 Auto Update, 105
Program output, 173 Comparing elements across processes, 105
Project files view, 188 Export, 105
Restricting output, 173 Layout
Running from the command line, 210 Data table, 102
Saving output, 174 Multi-dimensional, 99
Standard error, 173 Statistics, 105
Standard output, 173 Visualization, 106
Starting from job script, 168 Assembly debugging, 64
View modes, 207 Breakpoints, 65
Main thread only, 207 Toggling and viewing, 64
OpenMP mode, 207 Attaching, 50, 53, 138
Pthread mode, 207 Choose hosts, 53
Viewing totals, 198 Command line, 53
Arm Performance Reports Configuring
Cray MPT, 278 Remote hosts, 53
Getting Support, 272 Hosts file, 53
Installation, 21 Attaching to running programs, 50
Introduction, 19 AUTO_LAUNCH_TAG, 320

Arm IPMI Energy Agent, 323

Requirements, 323 Backtrace, 86

Berkeley UPC, 278

324

Arm Forge 20.2

Bounds checking, 118
Branch instructions, 205
Branch mispredicts, 191, 192
Breakpoints, 77
Conditional, 79
CUDA, 80
Default, 80
Deleting, 79
Focus, 74
Loading, 80
Saving, 80
Setting, 77
Pending, 78
Using source code viewer, 77
Using the Add Breakpoint window, 78
Buffer overflow, 69
Building applications, 64, 180
Bull MP], 278

C++ STL, 308
C++ STL support, 96
Caliper, 228
Colour Scheme, 270
Compatibility Launch, 240
Compilers
AMD, 285
Cray, 285
GNU, 286
IBM XLC/XLF, 287
Intel, 287
Known issues, 285
OpenCL, 285
Pathscale EKO compilers, 289
Portland Group, 289
Completed instructions, 205, 206
Complex numbers, 96
Configuration, 46, 263
Appearance, 271
Code viewer, 270
Configuration files, 263
Configuring Performance Reports, 263
Connecting to compute nodes and remote pro-
grams, 268
Converting legacy sitewide configuration files,
264
Importing legacy, 264
Job size, 268
Job submission, 270
Optional, 269
Queue commands, 268
Queuing systems, 266
Quick restart, 268

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

INDEX

Sitewide, 263
Startup scripts, 264
System, 269
Template script, 267
Template tutorial, 267
Using a shared installation on multiple systems,
265
Using shared home directories on multiple sys-
tems, 264
Connecting to a remote system, 32
Consistency checking
Heap, 121
Core Files, 138
Core files, 50
CPU branch, 191
CPU branch mispredictions, 192
CPU breakdown, 247
Memory accesses, 248
OpenMP code, 248
Scalar numeric ops, 248
Single core code, 248
Vector numeric ops, 248
Waiting for accelerators, 248
CPU floating-point, 190
CPU floating-point vector, 191
CPU FLOPS lower bound, 191
CPU FLOPS vector lower bound, 192
CPU instructions, 190
CPU integer, 190
CPU integer vector, 191
CPU memory access, 191
CPU Memory Accesses, 192
CPU metrics breakdown, 249
Cycles per instruction, 249
FLOPS scalar lower bound, 249
FLOPS vector lower bound, 249
L2 cache misses, 249
L3 cache miss per instruction, 249
Memory accesses, 250
Stalled cycles, 249
CPU power usage, 195
CPU time, 192
Cray, 140, 291
Compiling scalar programs, 286
Starting scalar programs, 302
Cray ATP, 279
Cray compiler environment, 285
Cray MPT, 278
Cray Native SLURM, 284, 291
Cray X, 278
Cray X-Series, 154, 157, 158, 234, 235, 238, 239

325

101136_2020_00_en

Arm Forge 20.2

Cray XKB6, 291
Cross-process comparison, 107, 125
Cross-thread comparison, 107
CSV performance reports, 257
CUDA
Breakpoints, 80, 135
Controlling GPU threads, 135
CUDA Fortran, 140
DDT: CUDA, 134

Debugging multiple GPU processes, 138
Examining GPU threads and data, 136

GPU Debugging, 134
GPU device information, 137

IBM XLC/XLF with offloading OpenMP, 141

Launching, 134
Licensing, 134
Memory debugging, 118
NVIDIA, 134
Preparing to debug, 134
Running, 42
Running and pausing, 135
Selecting GPU threads, 136
Source code viewer, 137
Stepping, 135
Thread control, 139
Understanding kernel progress, 137
Viewing GPU thread locations, 136
CUDA profiling, 220
Current line, 93
Custom DCIM, 242
Custom gmetric, 243
Custom MPI scripts, 166
Cycles per instruction, 191, 192, 205
Cycles per instruction (Armv8-A), 191

Data

Changing, 98
DCIM output, 242
Deadlock, 117
Debugging

Scalar, 46
Debugging symbols, 152
Detecting leaks, 127
Disassembler, 109
Disk read transfer, 193
Disk write transfer, 193
DP FLOPS, 204
Duration, 160
Dynamic linking

Cray X-Series, 154, 235

Editing source code, 63, 179

Editing variables, 94
Enable and disable metrics, 243
End Session, 44
Energy breakdown, 256
CPU, 256
Mean node power, 256
Peak node power, 256
System, 256
Energy metrics
Requirements, 196, 257
Environment variables, 27, 43, 161
Example, 231
Compiling, 231
Cray, 232

Generating a performance report, 233

Overview, 231
Running, 232
Express Launch, 44, 150, 239
Compatible MPIs, 240
Run dialog box, 45
Expression
Changing language, 94
External Editor, 270

Fencepost checking, 125
Files
Viewing multiple, 89
Find in Files, 67
Floating-point scalar instructions, 205
Floating-point vector instructions, 205
Focus
Breakpoints, 74
Changing, 74
Code viewer, 74
Parallel stack view, 75
Playing, 75
Process group viewer, 74
Step threads together, 75
Stepping, 75
Stepping threads window, 75
Focus control, 73
Font, 270
Fortran intrinsics, 94
Fortran Modules, 95
Function Listing, 66
Functions view, 187

Generating a report, 241
GNU compiler, 286
GNU UPC, 287
GNU/Linux systems, 292
Go To Line, 68

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

101136_2020_00_en

INDEX

326

Arm Forge 20.2

GPU, 134
Attaching, 138
Device information, 137
GPU Language support, 140
GPU kernels tab, 220
GPU memory usage, 195
GPU power usage, 195
GPU profiling, 220
GPU utilization, 195

Heap Overflow, 125
HP MPI, 279
HTML reports, 245

I/0, 193
I/0 breakdown, 252

Effective process read rate, 253
Effective process write rate, 253

Lustre metrics, 253
Time in reads, 253
Time in writes, 253
I/0 time, 176
IBM XLC/XLF, 287
Inf, 90
Installation, 21
Mac OS X, 24
Linux
Graphical, 21
Text-mode install, 23
Windows, 24
Intel Compiler, 43
Intel compiler, 287
Intel Message Checker, 280
Intel MPI, 280
MPMD, 49
remote-exec, 45
Intel Xeon, 293
Intel Xeon RAPL, 293
Interpreting, 245
Introduction, 18
Involuntary context switches, 192
IPMI, 323

Job ID regular expression, 322

Job scheduling, 54

Job submission, 54, 165
Cancelling, 54, 165
Custom, 55

Regular expression, 54, 165, 322

JSON, 212
Jump To Line
Double clicking, 72

INDEX

Kernel-mode CPU time, 192
Known issues

Arm Forge times out, 304
MAP adds unexpected overhead, 313
MAP collects very deep stack traces with boost::coroutine,
314
MAP not correctly identifying vectorized in-
structions, 311
MAP over-reports MPI time, 313
MAP reporting time spent in function defini-
tion, 311
MAP specific issues, 309
MAP takes long time to analyze OpenBLAS
app, 313
Arm (AArch64), 292
Attaching, 305
Cannot find executable, 304
Cannot find hosts, 304
Compiler, 285
Compiler inlining functions, 153
Controlling a program, 307
DDT stops responding, 307
Program jumps while stepping, 307
Cray, 291
Deadlock callings printf or malloc from a sig-
nal handler, 309
Evaluating variables, 307
C++ STL are not pretty printed, 308
Evaluating an array of derived types, 308
Incorrect values printed for Fortran array, 308
Variables cannot be viewed, 307
F1 Help, 298
General, 296
Input/Output, 306
Output to stderr not displayed, 306
Unwind errors, 307
Linking with static MAP sampler library fails,
312
Memory debugging, 308
MPI, 278
MPI wrapper libraries, 309
mprotect fails, 308
No shared home directory, 304
Not enough samples, 310
Only main code visible, 311
Platform, 291
Programs run slowly, 309
Progress bar does not move, 304
Running processes do not show up in the attach
window, 305
Source code, 306

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 327

101136_2020_00_en

Arm Forge 20.2 INDEX

No variables or line number information, 306 Cray X-Series, 158, 239
Source code does not appear, 306 Memory breakdown, 254
Source code folding does not work, 306 Mean process memory usage, 254
Starting scalar programs, 302 Peak node memory usage, 254
System does not allow debuggers to connect to Peak process memory usage, 254
rocesses, 305 Memory debugging, 118, 308
p y geing
Tail call optimization, 153 Available checks, 122
Thread support limitations, 310 Changing settings at run time, 122
Configuration, 118, 119
L1 cache misses, 205 Cray MPT, 278
L2 cache misses, 205 Detecting leaks, 127
L2 Data cache miss, 191 Enabling, 43
L2 data cache misses, 205 Library usage errors, 123
L3 cache miss per instruction, 192 Memory Statistics, 128
L3 cache misses, 205 mprotect fails, 308
Licensing PMDK, 119
Architecture licensing, 27 Pointer error detection, 122
Multiple architectures, 27 Static linking, 121
Fl.oating liicenses, 26 Suppressing an error, 126
L‘1cense files, 2? Validity checking, 122
Single process license, 46 Writing beyond an allocated area, 125
Single-process license, 164 Memory leak, 69
Supercomputing and other floating licenses, 26 Memory leak report, 145
Workstation and evaluation licenses, 25 Memory usage, 126, 193
Linking, 153, 234 Message Queues, 280
Dynamic Message queues, 115
On Cray X-Series using modules environ- Deadlock. 117
ment, 158, 239 Interpreting, 116
Static, 155, 236 Viewing, 115
On Cray X-Series using modules environ- Metrics, 160
ment, 158, 239 Accelerator, 176, 195
Local. variables, 93 Accelerator breakdown, 255
Log file, 316 Branch mispredicts (Armv8-A), 191
Logbook Branch mispredicts (Power 9), 192
Arm DDT Logbook, 113 Computation, 250, 251
Annotation, 114 Compute, 247
Comparison window, 114 CPU branch. 191
Usage, 113 CPU branch mispredictions, 192
Lustre file opens, 196 CPU breakdown. 247
Lustre metadata operations, 196 CPU floating-point, 190
Lustre read transfer, 196 CPU floating-point vector, 191
Lustre write transfer, 196 CPU FLOPS lower bound. 191
MAC OS X, 295 CPU 'FLOPS.Vector lower bound, 192
CPU instructions, 190
Macros, 94

CPU integer, 190

CPU integer vector, 191
CPU memory access, 191
CPU Memory Accesses, 192
CPU metrics breakdown, 249
CPU power usage, 195

CPU time, 192

Manual launch
Debugging multi-process non-MPI programs,
48
forge-client, 48
Manual process selection, 51
map-link modules, 158, 239
Installation

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 328
101136_2020_00_en

Arm Forge 20.2 INDEX

Cycles per instruction, 191, 192, 249 MPI sent and received, 194
Cycles per instruction (Armv8-A), 191 Node memory usage, 194
Detecting MPI imbalance, 195 OpenMP
Disk read transfer, 193 Multi-threaded computation time, 177
Disk write transfer, 193 Multi-threaded MPI computation time, 177
Effective process collective rate, 252 Overhead, 177
Effective process point-to-point rate, 252 Thread synchronization time, 177
Effective process read rate, 253 Time inside an OpenMP region, 177
Effective process write rate, 253 OpenMP breakdown, 250
Energy, 195 OpenMP code, 248
Accelerator, 256 OpenMP Overhead, 177
CPU, 256 Peak GPU memory usage, 255
Mean node power, 256 Peak node memory usage, 254
Peak node power, 256 Peak process memory usage, 254
System, 256 Physical core utilization, 250, 251
Energy breakdown, 256 POSIX 1I/0O read rate, 193
FLOPS scalar lower bound, 249 POSIX I/0O write rate, 193
FLOPS vector lower bound, 249 POSIX read syscall rate, 193
Global memory accesses, 255 POSIX write syscall rate, 193
GPU memory usage, 195 Scalar numeric ops, 248
GPU power usage, 195 Single core code, 248
GPU Utilization, 255 Single-threaded computation time, 175
GPU utilization, 195 Stalled backend cycles, 191, 192
1/0, 193 Stalled cycles, 249
I/0 breakdown, 252 Stalled frontend cycles, 191
I/0O time, 176 Synchronization, 250, 251
Input/Output, 247 System load, 193, 250, 251
Involuntary context switches, 192 System power usage, 195
Kernel-mode CPU time, 192 Threads breakdown, 251
L2 cache misses, 249 Time in collective calls, 252
L2 Data cache miss, 191 Time in point-to-point calls, 252
L3 cache miss per instruction, 192, 249 Time in reads, 253
Lustre, 196 Time in writes, 253
Lustre file opens, 196 User-mode CPU time, 192
Lustre metadata operations, 196 Vector numeric ops, 248
Lustre metrics, 253 Voluntary context switches, 192
Lustre read transfer, 196 Waiting for accelerators, 248
Lustre write transfer, 196 Zooming, 197
Mean GPU memory usage, 255 Metrics view, 189
Mean process memory usage, 254 Mispredicted branch instructions, 205
Memory, 193 MOM nodes, 278
Memory accesses, 248, 250 MPC, 281
Memory breakdown, 254 mpirun, 281
Memory usage, 193 MPI, 160
MPI, 194, 247 Distributions, 278
MPI breakdown, 251 Function Counters, 131
MPI call duration, 194 History/Logging, 130
MPI communication and waiting time, 175 MPI rank, 72
MPI point-to-point and collective bytes, 194 MPI Ranks, 108
MPI point-to-point and collective operations, mpirun, 42
194 Running, 42
Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 329

101136_2020_00_en

Arm Forge 20.2

MPI breakdown, 251

Effective process collective rate, 252

Effective process point-to-point rate, 252

Time in collective calls, 252

Time in point-to-point calls, 252
MPI call duration, 194
MPI communication and waiting time, 175
MPI job

Attaching to a subset, 51

Automatic detection, 51
MPI point-to-point and collective bytes, 194
MPI point-to-point and collective operations, 194
MPI sent and received, 194
MPI wrapper libraries, 309
MPI_Init

remote-exec, 45
MPICH, 163
MPICH 3, 282

MPMD, 49

remote-exec, 45
mpirun

remote-exec, 45
mpirun_rsh, 282
MPMD

Compatibility mode, 49

Intel MPI, 49

MPICH 3, 49

remote-exec, 163

Running, 49, 211
MPMD programs

Debugging, 49

Compatibility mode, 49
Without Express Launch, 49

Multi-dimensional array viewer (MDA), 100
Multi-threaded computation time, 177
Multi-threaded MPI computation time, 177
MVAPICH 2, 282

Navigating through source code history, 68
Node memory usage, 194
Numactl
DDT, 58
MAP, 169
Number bases
Viewing, 98
nvcee, 134
Nvidia CUDA, 294
Known issues, 294
NVIDIA Tegra 2, 292

Obtaining Help, 272
Obtaining support, 316

INDEX

Offline debugging, 142
HTML report, 144
Periodic snapshots, 147
Plain text report, 147
Reading a file for standard input, 143
Run-time job progress reporting, 147
Signal-triggered snapshots, 147
Using, 142
Writing a file from standard output, 143
Offloading OpenMP, 141
Online resources, 20
Open MPI, 282
MPMD, 49
Compatibility mode, 49
OpenACC
Cray, 140
PGI, 140
OpenCL, 134
OpenGL, 106
OpenMP, 161
Debugging, 46
Offloading, 141
OMP_NUM_THREADS, 46
Regions, 185
Running, 42, 46
OpenMP breakdown, 250
Computation, 250
Physical core utilization, 250
Synchronization, 250
System load, 250
OpenMP overhead, 177
OpenMP Regions view, 185
Output locations, 242

PAPI, 204
Branch instructions, 205
Branch prediction, 205
Cache misses, 205
Completed instructions, 205, 206
Config file, 204
Cycles per instruction, 205
DP FLOPS, 204
Floating-point, 205
Floating-point scalar instructions, 205
Floating-point vector instructions, 205
Install, 204
L1 cache misses, 205
L2 cache misses, 205
L2 data cache misses, 205
L3 cache misses, 205
Metrics, 204
Mispredicted branch instructions, 205

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.
101136_2020_00_en

330

Arm Forge 20.2 INDEX

Overview metrics, 204 Preparing a program, 152, 234
Vector instructions, 205 Program part, 162
Parallel Stack View, 87 Programming errors, 270
Pathscale EKO compilers, 289 Python
Pending breakpoints, 78 Running, 59
Perf, 200, 259 Python Profiling, 224
—target-host, 201, 260 Python profiling known issues, 226
advanced configuration, 203, 261
Command line, 201, 260 Queue submission, 54
Metrics, 200, 259 Cancelling, 54
Probe, 201, 259 Queue submission via Express Launch, 54
Run window. 202 Queue template syntax, 317
Template file’, 202, 260 Environment variables
Viewing, 203, 261 PROCS_PER_NODE_TAG, 322
perf_event_paranoid, 200, 259 Queue template tags, 317
Performance reports Defining new tags, 318
Energy breakdown Environment variable
Accelerator, 256 AUTO_LAUNCH_TAG, 320
Threads breakdown Launching, 320
Synchronization, 251 Specifying default options, 320
Platform MPI, 283 Using forge-mpirun, 321

Plugins, 129
Enabling, 43
Installing, 130
Reference, 132
Supported, 129

Raw command, 110

Raw Command Window, 110
Rebuilding applications, 64, 180
Receive queue, 117

Registers

Using, 130 Viewing, 109
Writing, 131 Remote Client
PMDK, 119 Installation
Pointer details, 123, 125
e o 120 MacOS X, 24
ointer error detection, Windows, 24

Pointers, 98
Portland Group, 289
POSIX I/0 read rate, 193
POSIX I/0O write rate, 193
POSIX read syscall rate, 193
POSIX write syscall rate, 193
POWERS8 and POWERSY, 294
Pretty printers, 96
Problem starting the GUI: Cannot connect to an X
Server, 296

Process details, 109
Process Group Viewer, 72
Process groups, 72

Deleting, 72

Detailed view, 72

Summary view, 73
Processes and cores view, 209
PROCS_PER_NODE_TAG, 322
Profile a Python script, 224
Profiling, 159, 161

Remote client, 32
Configuration, 32
Multiple hops, 33
Remote launch, 33
Remote script, 34
Using X forwarding or VNC, 36
remote-exec
Required, 45
Report summary, 247
Compute, 247
Input/Output, 247
MPI, 247
Requirements
Energy metrics, 196, 257
Restarting, 76
Reverse Connect, 35
Run-time
Job progress reporting, 147
Running, 234
MPMD, 49, 211

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 331
101136_2020_00_en

Arm Forge 20.2

Scalar, 46
Running a program, 41
Running programs
Attaching, 50
Manual process selection, 51

Saving output, 111
Scalar
Debugging, 46
Running, 46
Scalar programs, 321
Search, 67
Selected Lines View, 181
Send queue, 117
Send signal, 91
Sending signals, 91
Session
Saving, 63
Session menu, 76
SGI, 283
SGI MPT
remote-exec, 45
Shared arrays, 98
Signal Handling
Divisions by zero, 90
Floating Point Exception, 90
Segmentation fault, 90
SIGFPE, 90
SIGILL, 90
SIGPIPE, 90
SIGSEGYV, 90
SIGUSR1, 90
SIGUSR2, 90
Signal handling, 90
Custom, 90
Sending signals, 91
Single stepping, 77

Single-threaded computation time, 175

SLURM, 284
Slurm
Starting scalar programs, 303
Source Code, 63
Source code, 88, 175

Application and external code split, 66

Commiting, 64
Committing, 180
Editing, 63, 179
Find in Files, 67
Missing files, 66
Project files, 65
Rebuilding, 64, 180
Searching, 67

Viewing, 63, 175
Sparkline, 107
Sparklines, 92
Spectrum MPI, 284
Spindle, 284
Stack frame, 86
Stacks table, 144
Stacks view, 184
Stalled backend cycles, 191, 192
Stalled frontend cycles, 191
Standard error, 111
Standard input, 111, 164
Standard output, 111
Starting Arm Forge, 38
Starting MAP, 149
Static analysis, 69
Static checking, 270
Static linking, 155, 236

On Cray X-Series, 157, 238
Step threads together, 75
Stop messages, 77
Stopping, 76
Supported platforms, 273
Suspending breakpoints, 79
Synchronizing processes, 81
System load, 193
System power usage, 195

Tab size, 270
Tail call optimization, 153
Textual performance reports, 257
Thread synchronization time, 177
Threads breakdown, 251
Computation, 251
Physical core utilization, 251
System load, 251
Time inside an OpenMP region, 177
Time spent on selected lines, 181
Tracepoints, 82
Setting, 83
Tracepoint output, 83

Unexpected queue, 117
Unified Parallel C, 285, 287
Unwind errors, 307
UPC, 98

Berkeley, 285

GNU, 287
User-mode CPU time, 192
Using custom MPI scripts, 55

Validity checking, 122

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved.

101136_2020_00_en

INDEX

332

Arm Forge 20.2 INDEX

Variables, 92

Searching, 67

Unused variables, 69
Vector instructions, 205
Version control

Breakpoints and tracepoints, 84
Version control information, 69
Viewing multiple files, 89
Viewing stacks, 86

Overview, 86

Parallel Stack View, 87
Viewing stacks in parallel, 86
Visualize Whitespace, 270
VNC, 36
Voluntary context switches, 192

Warning Symbols, 69
Watchpoints, 81
Welcome Page, 38
Welcome Screen, 150
Worked examples, 258
Code characterization and run size comparison,
258
Deeper CPU metric analysis, 258
I/0O performance bottlenecks, 258

X forwarding, 36
XK®6, 291

Zooming, 197

Copyright © 2002-2020 Arm Limited (or its affiliates). All rights reserved. 333
101136_2020_00_en

	Contents
	I Arm Forge
	1 Introduction to Arm Forge
	1.1 Arm DDT
	1.2 Arm MAP
	1.3 Arm Performance Reports
	1.4 Online resources

	2 Installation
	2.1 Linux graphical install
	2.2 Linux text-mode install
	2.3 Mac installation
	2.4 Windows installation
	2.5 License files
	2.6 Workstation and evaluation licenses
	2.7 Supercomputing and other floating licenses
	2.8 Architecture licensing
	2.8.1 Using multiple architecture licenses

	2.9 Environment variables
	2.9.1 Performance Report customization
	2.9.2 Warning suppression
	2.9.3 I/O behavior
	2.9.4 Licensing
	2.9.5 Timeouts
	2.9.6 Sampler
	2.9.7 Simple troubleshooting

	3 Connecting to a remote system
	3.1 Remote connections dialog
	3.2 Remote launch settings
	3.2.1 Remote script

	3.3 Reverse Connect
	3.3.1 Overview
	3.3.2 Usage
	3.3.3 Connection details

	3.4 Treeserver or general debugging ports
	3.5 Using X forwarding or VNC

	4 Starting Arm Forge

	II DDT
	5 Getting started
	5.1 Running a program
	5.1.1 Application
	5.1.2 MPI
	5.1.3 OpenMP
	5.1.4 CUDA
	5.1.5 Memory debugging
	5.1.6 Environment variables
	5.1.7 Plugins

	5.2 Express Launch
	5.2.1 Run dialog box

	5.3 remote-exec required by some MPIs
	5.4 Debugging single-process programs
	5.5 Debugging OpenMP programs
	5.6 Manual launching of multi-process non-MPI programs
	5.7 Debugging MPMD programs
	5.7.1 Debugging MPMD programs without Express Launch
	5.7.2 Debugging MPMD programs in Compatibility mode

	5.8 Opening core files
	5.9 Attaching to running programs
	5.9.1 Automatically detected MPI jobs
	5.9.2 Attaching to a subset of an MPI job
	5.9.3 Manual process selection
	5.9.4 Configuring attaching to remote hosts
	5.9.5 Using DDT command-line arguments

	5.10 Starting a job in a queue
	5.11 Job scheduling with jsrun
	5.12 Using custom MPI scripts
	5.13 Starting DDT from a job script
	5.14 UPC
	5.14.1 GCC UPC
	5.14.2 Berkeley UPC

	5.15 Numactl
	5.15.1 MPI and SLURM
	5.15.2 Non-MPI Programs

	5.16 Python debugging
	5.16.1 Overview
	5.16.2 Running

	6 Overview
	6.1 Saving and loading sessions
	6.2 Source code
	6.2.1 Viewing
	6.2.2 Editing
	6.2.3 Rebuilding and restarting
	6.2.4 Committing changes

	6.3 Assembly debugging
	6.3.1 Toggling and viewing
	6.3.2 Breakpoints

	6.4 Project Files
	6.4.1 Application and external code

	6.5 Finding lost source files
	6.6 Finding code or variables
	6.6.1 Find Files or Functions
	6.6.2 Find
	6.6.3 Find in Files

	6.7 Go To Line
	6.8 Navigating through source code history
	6.9 Static analysis
	6.10 Version control information

	7 Controlling program execution
	7.1 Process control and process groups
	7.1.1 Detailed view
	7.1.2 Summary view

	7.2 Focus control
	7.2.1 Overview of changing focus
	7.2.2 Process group viewer
	7.2.3 Breakpoints
	7.2.4 Code viewer
	7.2.5 Parallel stack view
	7.2.6 Playing and stepping
	7.2.7 Step threads together
	7.2.8 Stepping threads window

	7.3 Starting, stopping and restarting a program
	7.4 Stepping through a program
	7.5 Stop messages
	7.6 Setting breakpoints
	7.6.1 Using the source code viewer
	7.6.2 Using the Add Breakpoint window
	7.6.3 Pending breakpoints
	7.6.4 Conditional breakpoints

	7.7 Suspending breakpoints
	7.8 Deleting a breakpoint
	7.9 Loading and saving breakpoints
	7.10 Default breakpoints
	7.11 Synchronizing processes
	7.12 Setting a watchpoint
	7.13 Tracepoints
	7.13.1 Setting a tracepoint
	7.13.2 Tracepoint output

	7.14 Version control breakpoints and tracepoints
	7.15 Examining the stack frame
	7.16 Align stacks
	7.17 Viewing stacks in parallel
	7.17.1 Overview
	7.17.2 The Parallel Stack View in detail

	7.18 Browsing source code
	7.19 Simultaneously viewing multiple files
	7.20 Signal handling
	7.20.1 Custom signal handling (signal dispositions)
	7.20.2 Sending signals

	8 Variables and data
	8.1 Sparklines
	8.2 Current line
	8.3 Local variables
	8.4 Arbitrary expressions and global variables
	8.4.1 Fortran intrinsics
	8.4.2 Changing the language of an expression
	8.4.3 Macros and #defined constants

	8.5 Editing variables
	8.6 Help with Fortran modules
	8.7 Viewing complex numbers in Fortran
	8.8 C++ STL support
	8.9 Custom pretty printers
	8.9.1 Example

	8.10 Viewing array data
	8.11 UPC support
	8.12 Changing data values
	8.13 Viewing numbers in different bases
	8.14 Examining pointers
	8.15 Multi-dimensional arrays in the Variable View
	8.16 Multi-dimensional array viewer (MDA)
	8.16.1 Array expression
	8.16.2 Filtering by value
	8.16.3 Distributed arrays
	8.16.4 Advanced: how arrays are laid out in the data table
	8.16.5 Auto Update
	8.16.6 Comparing elements across processes
	8.16.7 Statistics
	8.16.8 Export
	8.16.9 Visualization

	8.17 Cross-process and cross-thread comparison
	8.18 Assigning MPI ranks
	8.19 Viewing registers
	8.20 Process details
	8.21 Disassembler
	8.22 Interacting directly with the debugger

	9 Program input and output
	9.1 Viewing standard output and error
	9.2 Saving output
	9.3 Sending standard input

	10 Logbook
	10.1 Usage
	10.2 Annotation
	10.3 Comparison window

	11 Message queues
	11.1 Viewing the message queues
	11.2 Interpreting the message queues
	11.3 Deadlock

	12 Memory debugging
	12.1 Enabling memory debugging
	12.2 CUDA memory debugging
	12.3 PMDK Memory Debugging
	12.4 Configuration
	12.4.1 Static linking
	12.4.2 Available checks
	12.4.3 Changing settings at run time

	12.5 Pointer error detection and validity checking
	12.5.1 Library usage errors
	12.5.2 View pointer details
	12.5.3 Cross-process comparison of pointers
	12.5.4 Writing beyond an allocated area
	12.5.5 Fencepost checking
	12.5.6 Suppressing an error

	12.6 Current memory usage
	12.6.1 Detecting leaks when using custom allocators/memory wrappers

	12.7 Memory Statistics

	13 Using and writing plugins
	13.1 Supported plugins
	13.2 Installing a plugin
	13.3 Using a plugin
	13.4 Writing a plugin
	13.5 Plugin reference

	14 CUDA GPU debugging
	14.1 Licensing
	14.2 Preparing to debug GPU code
	14.3 Launching the application
	14.4 Controlling GPU threads
	14.4.1 Breakpoints
	14.4.2 Stepping
	14.4.3 Running and pausing

	14.5 Examining GPU threads and data
	14.5.1 Selecting GPU threads
	14.5.2 Viewing GPU thread locations
	14.5.3 Understanding kernel progress
	14.5.4 Source code viewer

	14.6 GPU devices information
	14.7 Attaching to running GPU applications
	14.8 Opening GPU core files
	14.9 Known issues / limitations
	14.9.1 Debugging multiple GPU processes
	14.9.2 Thread control
	14.9.3 General
	14.9.4 Pre sm_20 GPUs
	14.9.5 Debugging multiple GPU processes on Cray limitations

	14.10 GPU language support
	14.10.1 Cray OpenACC
	14.10.2 PGI OpenACC and CUDA Fortran
	14.10.3 IBM XLC/XLF with offloading OpenMP

	15 Offline debugging
	15.1 Using offline debugging
	15.1.1 Reading a file for standard input
	15.1.2 Writing a file from standard output

	15.2 Offline report output (HTML)
	15.3 Offline report output (plain text)
	15.4 Run-time job progress reporting
	15.4.1 Periodic snapshots
	15.4.2 Signal-triggered snapshots

	III MAP
	16 Getting started
	16.1 Express Launch
	16.1.1 Run dialog box

	16.2 Preparing a program for profiling
	16.2.1 Debugging symbols
	16.2.2 Disabling function inlining
	16.2.3 Disabling tail call optimization
	16.2.4 Linking
	16.2.5 Dynamic linking on Cray X-Series systems
	16.2.6 Static linking
	16.2.7 Static linking on Cray X-Series systems
	16.2.8 Dynamic and static linking on Cray X-Series systems using the modules environment
	16.2.9 map-link modules installation on Cray X-Series
	16.2.10 Unsupported user applications

	16.3 Profiling a program
	16.3.1 Application
	16.3.2 Duration
	16.3.3 Metrics
	16.3.4 MPI
	16.3.5 OpenMP
	16.3.6 Environment variables
	16.3.7 Profiling
	16.3.8 Profiling only part of a program
	16.3.8.1 C
	16.3.8.2 Fortran

	16.4 remote-exec required by some MPIs
	16.5 Profiling a single-process program
	16.6 Sending standard input
	16.7 Starting a job in a queue
	16.8 Using custom MPI scripts
	16.9 Starting MAP from a job script
	16.10 Numactl
	16.11 MAP environment variables

	17 Program output
	17.1 Viewing standard output and error
	17.2 Displaying selected processes
	17.3 Restricting output
	17.4 Saving output

	18 Source code
	18.1 Viewing
	18.2 OpenMP programs
	18.3 GPU programs
	18.4 Dealing with complexity: code folding
	18.5 Editing
	18.6 Rebuilding and restarting
	18.7 Committing changes

	19 Selected lines view
	19.1 Limitations
	19.2 GPU profiling

	20 Stacks view
	21 OpenMP Regions view
	22 Functions view
	23 Project Files view
	24 Metrics View
	24.1 CPU instructions
	24.1.1 CPU instruction metrics available on x86_64 systems
	24.1.2 CPU instruction metrics available on Armv8-A systems
	24.1.3 CPU instruction metrics available on IBM Power 8 systems
	24.1.4 CPU instruction metrics available on IBM Power 9 systems

	24.2 CPU time
	24.3 I/O
	24.4 Memory
	24.5 MPI
	24.6 Detecting MPI imbalance
	24.7 Accelerator
	24.8 Energy
	24.8.1 Requirements

	24.9 Lustre
	24.10 Zooming
	24.11 Viewing totals across processes and nodes
	24.12 Custom metrics

	25 Configurable Perf metrics
	25.1 Permissions
	25.2 Probing target hosts
	25.3 Specifying Perf metrics via the command line
	25.4 Specifying Perf metrics via a file
	25.5 Specifying Perf metrics via the run window
	25.6 Viewing events
	25.7 Advanced configuration

	26 PAPI metrics
	26.1 Installation
	26.2 PAPI config file
	26.3 PAPI overview metrics
	26.4 PAPI cache misses
	26.5 PAPI branch prediction
	26.6 PAPI floating-point

	27 Main-thread, OpenMP and Pthread view modes
	27.1 Main thread only mode
	27.2 OpenMP mode
	27.3 Pthread mode

	28 Processes and cores view
	29 Running MAP from the command line
	29.1 Profiling MPMD programs
	29.1.1 Profiling MPMD programs without Express Launch

	30 Exporting profiler data in JSON format
	30.1 JSON format
	30.2 Activities
	30.2.1 Description of categories
	30.2.2 Categories available in main_thread activity
	30.2.3 Categories available in openmp and pthreads activities

	30.3 Metrics
	30.4 Example JSON output

	31 GPU profiling
	31.1 Kernel analysis
	31.2 Compilation
	31.3 Performance impact
	31.4 Customizing GPU profiling behavior
	31.5 Known issues

	32 Python profiling
	32.1 Profile a Python script
	32.2 Known Issues

	33 Performance Analysis with Caliper Instrumentation
	33.1 Get Caliper
	33.2 Annotating your program
	33.2.1 Annotating in C/C++
	33.2.2 Annotating in Fortran

	33.3 Analyzing your program
	33.4 Guidelines

	IV Performance Reports
	34 Running with an example program
	34.1 Overview of the example source code
	34.2 Compiling
	34.2.1 Cray X-series

	34.3 Running
	34.4 Generating a performance report

	35 Running with real programs
	35.1 Preparing a program for profiling
	35.1.1 Linking
	35.1.2 Dynamic linking on Cray X-Series systems
	35.1.3 Static linking
	35.1.4 Static linking on Cray X-Series systems
	35.1.5 Dynamic and static linking on Cray X-Series systems using the modules environment
	35.1.6 map-link modules installation on Cray X-Series
	35.1.7 Unsupported user applications

	35.2 Express Launch mode
	35.2.1 Compatible MPIs

	35.3 Compatibility Launch mode
	35.4 Generating a performance report
	35.5 Specifying output locations
	35.6 Support for DCIM systems
	35.6.1 Customizing your DCIM script
	35.6.2 Customising the gmetric location

	35.7 Enable and disable metrics

	36 Summarizing an existing MAP file
	37 Interpreting performance reports
	37.1 HTML performance reports
	37.2 Report summary
	37.2.1 Compute
	37.2.2 MPI
	37.2.3 Input/Output

	37.3 CPU breakdown
	37.3.1 Single core code
	37.3.2 OpenMP code
	37.3.3 Scalar numeric ops
	37.3.4 Vector numeric ops
	37.3.5 Memory accesses
	37.3.6 Waiting for accelerators

	37.4 CPU metrics breakdown
	37.4.1 Cycles per instruction
	37.4.2 Stalled cycles
	37.4.3 L2 cache misses
	37.4.4 L3 cache miss per instruction
	37.4.5 FLOPS scalar lower bound
	37.4.6 FLOPS vector lower bound
	37.4.7 Memory accesses

	37.5 OpenMP breakdown
	37.5.1 Computation
	37.5.2 Synchronization
	37.5.3 Physical core utilization
	37.5.4 System load

	37.6 Threads breakdown
	37.6.1 Computation
	37.6.2 Synchronization
	37.6.3 Physical core utilization
	37.6.4 System load

	37.7 MPI breakdown
	37.7.1 Time in collective calls
	37.7.2 Time in point-to-point calls
	37.7.3 Effective process collective rate
	37.7.4 Effective process point-to-point rate

	37.8 I/O breakdown
	37.8.1 Time in reads
	37.8.2 Time in writes
	37.8.3 Effective process read rate
	37.8.4 Effective process write rate
	37.8.5 Lustre metrics

	37.9 Memory breakdown
	37.9.1 Mean process memory usage
	37.9.2 Peak process memory usage
	37.9.3 Peak node memory usage

	37.10 Accelerator breakdown
	37.10.1 GPU utilization
	37.10.2 Global memory accesses
	37.10.3 Mean GPU memory usage
	37.10.4 Peak GPU memory usage

	37.11 Energy breakdown
	37.11.1 CPU
	37.11.2 Accelerator
	37.11.3 System
	37.11.4 Mean node power
	37.11.5 Peak node power
	37.11.6 Requirements

	37.12 Textual performance reports
	37.13 CSV performance reports
	37.14 Worked examples
	37.14.1 Code characterization and run size comparison
	37.14.2 Deeper CPU metric analysis
	37.14.3 I/O performance bottlenecks

	38 Configurable Perf metrics
	38.1 Permissions
	38.2 Probing target hosts
	38.3 Specifying Perf metrics via the command line
	38.4 Specifying Perf metrics via a file
	38.5 Viewing events
	38.6 Advanced configuration

	V Appendix
	A Configuration
	A.1 Configuring Performance Reports
	A.2 Configuration files
	A.2.1 Sitewide configuration
	A.2.2 Startup scripts
	A.2.3 Importing legacy configuration
	A.2.4 Converting legacy sitewide configuration files
	A.2.5 Using shared home directories on multiple systems
	A.2.6 Using a shared installation on multiple systems

	A.3 Integration with queuing systems
	A.4 Template tutorial
	A.4.1 The template script
	A.4.2 Configuring queue commands
	A.4.3 Configuring how job size is chosen
	A.4.4 Quick restart

	A.5 Connecting to compute nodes and remote programs (remote-exec)
	A.6 Optional configuration
	A.6.1 System
	A.6.2 Job submission
	A.6.3 Code viewer settings
	A.6.4 Appearance

	B Getting support
	C Supported platforms
	C.1 Notes
	C.2 Forge Remote Client

	D Known issues
	D.1 MAP
	D.2 XALT Wrapper
	D.3 MPICH 3
	D.4 Open MPI
	D.4.1 Open MPI 3.x on IBM Power with the GNU compiler

	D.5 CUDA
	D.6 SLURM
	D.7 PGI compilers
	D.8 64-bit Arm/Power platforms
	D.9 See also

	E MPI distribution notes and known issues
	E.1 Berkeley UPC
	E.2 Bull MPI
	E.3 Cray MPT
	E.3.1 Using DDT with Cray ATP (the Abnormal Termination Process)

	E.4 HP MPI
	E.5 IBM PE
	E.6 Intel MPI
	E.7 MPC
	E.7.1 MPC in the Run window
	E.7.2 MPC on the command line

	E.8 MPICH 3
	E.9 MVAPICH 2
	E.10 Open MPI
	E.11 Platform MPI
	E.12 SGI MPT / SGI Altix
	E.13 SLURM
	E.14 IBM Spectrum MPI

	F Compiler notes and known issues
	F.1 AMD OpenCL compiler
	F.2 Arm Fortran compiler
	F.3 Berkeley UPC compiler
	F.4 Cray compiler environment
	F.4.1 Compile scalar programs on Cray

	F.5 GNU
	F.5.1 GNU UPC

	F.6 IBM XLC/XLF
	F.7 Intel compilers
	F.8 Pathscale EKO compilers
	F.9 Portland Group compilers

	G Platform notes and known issues
	G.1 CRAY
	G.2 GNU/Linux systems
	G.2.1 General
	G.2.2 SUSE Linux
	G.2.3 Ubuntu
	G.2.4 Attaching

	G.3 Intel Xeon
	G.3.1 Enabling RAPL energy and power counters when profiling

	G.4 Intel Xeon Phi (Knight's Landing)
	G.5 NVIDIA CUDA
	G.5.1 CUDA known issues

	G.6 Arm
	G.6.1 Armv8 (AArch64) known issues

	G.7 POWER8 and POWER9 (POWER 64-bit)
	G.7.1 Supported features
	G.7.2 Known issues

	G.8 MAC OS X

	H General troubleshooting and known issues
	H.1 GUI cannot connect to an X Server
	H.2 Licensing
	H.2.1 License error
	H.2.2 No licenses found

	H.3 F1 cannot display this document
	H.4 MPI not detected
	H.5 Starting a program
	H.5.1 Starting scalar programs
	H.5.2 Starting scalar programs with aprun
	H.5.3 Starting scalar programs with srun
	H.5.4 Problems when you start an MPI program
	H.5.5 Starting multi-process programs
	H.5.6 No shared home directory
	H.5.7 DDT or MAP cannot find your hosts or the executable
	H.5.8 The progress bar does not move and Arm Forge times out

	H.6 Attaching
	H.6.1 The system does not allow connecting debuggers to processes (Fedora, Ubuntu)
	H.6.2 The system does not allow connecting debuggers to processes (Fedora, Red Hat)
	H.6.3 Running processes do not show up in the attach window

	H.7 Source Viewer
	H.7.1 No variables or line number information
	H.7.2 Source code does not appear when you start Arm Forge
	H.7.3 Code folding does not work for OpenACC/OpenMP pragmas

	H.8 Input/Output
	H.8.1 Output to stderr is not displayed
	H.8.2 Unwind errors

	H.9 Controlling a program
	H.9.1 Program jumps forwards and backwards when stepping through it
	H.9.2 DDT might stop responding when using the Step Threads Together option

	H.10 Evaluating variables
	H.10.1 Some variables cannot be viewed when the program is at the start of a function
	H.10.2 Incorrect values printed for Fortran array
	H.10.3 Evaluating an array of derived types, containing multiple-dimension arrays
	H.10.4 C++ STL types are not pretty printed

	H.11 Memory debugging
	H.11.1 The View Pointer Details window says a pointer is valid but does not show you which line of code it was allocated on
	H.11.2 mprotect fails error when using memory debugging with guard pages
	H.11.3 Allocations made before or during MPI_Init show up in Current Memory Usage but have no associated stack back trace
	H.11.4 Deadlock when calling printf or malloc from a signal handler
	H.11.5 Program runs more slowly with Memory Debugging enabled

	H.12 MAP specific issues
	H.12.1 MPI wrapper libraries
	H.12.2 Thread support limitations
	H.12.3 No thread activity while blocking on an MPI call
	H.12.4 I am not getting enough samples
	H.12.5 I just see main (external code) and nothing else
	H.12.6 MAP is reporting time spent in a function definition
	H.12.7 MAP is not correctly identifying vectorized instructions
	H.12.8 Linking with the static MAP sampler library fails with an undefined reference to __real_dlopen
	H.12.9 Linking with the static MAP sampler library fails with FDE overlap errors
	H.12.10 MAP adds unexpected overhead to my program
	H.12.11 MAP takes an extremely long time to gather and analyze my OpenBLAS-linked application
	H.12.12 MAP over-reports MPI, Input/Output, accelerator or synchronization time
	H.12.13 MAP collects very deep stack traces with boost::coroutine

	H.13 Excessive memory usage
	H.13.1 Reduce processes per node
	H.13.2 Reduce debug information
	H.13.3 MAP / Performance Reports specific setting

	H.14 Obtaining support

	I Queue template script syntax
	I.1 Queue template tags
	I.2 Defining new tags
	I.3 Specifying default options
	I.4 Launching
	I.4.1 Using AUTO_LAUNCH_TAG
	I.4.2 Using forge-mpirun
	I.4.3 Scalar programs

	I.5 Using PROCS_PER_NODE_TAG
	I.6 Job ID regular expression
	I.7 Arm IPMI Energy Agent
	I.7.1 Requirements

