
Arm® Server Base System Architecture 6.0

Platform Design Document
Non-confidential

Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0029C

Server Base System Architecture

Contents

Release information 5

Non-Confidential Proprietary Notice 7

1 About this document 8
1.1 Terms and abbreviations 8
1.2 References 9
1.3 Feedback 9

2 Background 11

3 Introduction 12

4 SBSA 13
4.1 Level 3 13

4.1.1 PE Architecture 13
4.1.1.1 Security recommendations 14

4.1.2 Expected usage of Secure state 14
4.1.3 Memory Map 14
4.1.4 Interrupt Controller 15
4.1.5 PPI assignments 16
4.1.6 System MMU and Device Assignment 17
4.1.7 Clock and Timer Subsystem 17

4.1.7.1 Summary of the required registers of the CNTControlBase frame 19
4.1.7.2 Summary of the required registers of the CNTReadBase frame 19
4.1.7.3 Summary of the required registers of the CNTCTLBase frame 19
4.1.7.4 Summary of the required registers of the CNTBaseN frame 20

4.1.8 Wakeup semantics 20
4.1.9 Power State Semantics 21
4.1.10 Watchdogs 24
4.1.11 Peripheral Subsystems 25

4.2 Level 3 – firmware 25
4.2.1 Memory Map 26
4.2.2 Clock and Timer Subsystem 26
4.2.3 Watchdogs 26
4.2.4 Peripheral Subsystems 27

4.3 Level 4 27
4.3.1 PE Architecture 27
4.3.2 System MMU and Device Assignment 28
4.3.3 Peripheral Subsystems 28

4.4 Level 5 28
4.4.1 PE Architecture 28
4.4.2 Interrupt Controller 29
4.4.3 System MMU and Device Assignment 29
4.4.4 Clock and Timer Subsystem 29
4.4.5 PPI Assignments 30

4.5 Level 6 30
4.5.1 Level 6 PE requirements 30
4.5.2 System MMU and Device Assignment 31
4.5.3 Armv8 RAS extension requirements 31

A GENERIC WATCHDOG 32
A.1 About 32
A.2 Watchdog Operation 32

Page 2 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

A.3 Register summary 34
A.4 Register descriptions 35

A.4.1 Watchdog Control and Status Register 35
A.4.2 Watchdog Interface Identification Register 35

B GENERIC UART 37
B.1 About 37
B.2 Generic UART register frame 37
B.3 Interrupts 40
B.4 Control and setup 40
B.5 Operation 40

C PERMITTED ARCHITECTURAL DIFFERENCE BETWEEN PES 41

D PCI EXPRESS INTEGRATION 42
D.1 Configuration space 42
D.2 PCI Express Memory Space 43
D.3 PCI Express device view of memory 44
D.4 Message signaled interrupts 44
D.5 GICv3 support for MSI(-X) 45
D.6 Legacy interrupts 45
D.7 System MMU and Device Assignment 45
D.8 I/O Coherency 46

D.8.1 PCI Express I/O Coherency without System MMU 46
D.8.2 PCI Express I/O Coherency with System MMU 46

D.9 Legacy I/O 47
D.10 Integrated end points 47
D.11 Peer-to-peer 47
D.12 PASID support 48
D.13 PCIe Precision Time Measurement 48

E PRESENTING AN ON-CHIP PERIPHERAL AS PCIE DEVICE 49
E.1 Enumeration rules 49

E.1.1 Option 1: The IO peripheral/accelerator as a Root Complex Integrated Endpoint (RCiEP) 49
E.1.2 Option 2: The on-chip peripheral/accelerator as an endpoint behind a Root Port 49
E.1.3 Option 1 and Option 2: A comparison 50
E.1.4 Configuration Address space decoding rules for the RCiEP and the i-EP 51

E.2 Memory space address decoding rules for the RCiEP and i-EP 51
E.3 Option 1 RCiEP required capabilities and registers 51
E.4 Option 2 i-EP required capabilities and registers 53

E.4.1 i-EP: Supported Link Speed Declaration in Link Capabilities 2 and additional capability requirements 56
E.4.1.1 Datalink Feature extended capability 56
E.4.1.2 Physical Layer 16GT/s Extended Capability 56
E.4.1.3 Lane Margining at the Receiver Extended Capability 57

E.5 Root Complex Integrated Endpoint Rules in PCIe specification 57
E.6 Root Complex Event Collector Rules in PCIe specification 57
E.7 Interrupt rules 57
E.8 Ordering rules 57
E.9 Address translation, Isolation and virtual address space rules 58
E.10 Reset rules 58
E.11 Power management rules 58
E.12 ACS rules 58
E.13 I/O Space related rule 59
E.14 Register bit field rules for the RCiEP option 59

E.14.1 RCiEP option: Rules for PCI Express Capabilities Register 59

Page 3 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

E.14.2 RCiEP option: Rules for Device Capabilities Register 59
E.14.3 RCiEP option: Rules for Device Control Register 60
E.14.4 RCiEP option: Rules for device capabilities 2 register 60
E.14.5 RCiEP option: Rules for device control 2 register 60
E.14.6 RCiEP option: Rules for Power Management Capabilities Register 61
E.14.7 RCiEP option: Rules for Power Management Control/Status Register 61
E.14.8 RCiEP option: Rules for Data Register 61

E.15 Register bit field rules for the i-EP option 61
E.15.1 i-EP option: Rules for Type 1 header registers 61
E.15.2 i-EP option: Rules for Power Management Capabilities Register 61
E.15.3 i-EP option: Rules for Power Management Control/Status Register 62
E.15.4 i-EP option: Rules for Data Register 62
E.15.5 i-EP option: Rules for Slot Capabilities Register 62
E.15.6 i-EP option: Rules for Slot Control Register 62
E.15.7 i-EP option: Rules for Slot Status Register 62
E.15.8 i-EP option: Rules for PCI Express Capabilities Register 62
E.15.9 i-EP option: Rules for Device Capabilities Register 62
E.15.10i-EP option: Rules for device control register 63
E.15.11i-EP option: Rules for Device Capabilities 2 register 63
E.15.12i-EP option: Rules for Device Control 2 register 64
E.15.13i-EP option: Rules for Link Capabilities Register 65
E.15.14i-EP option: Rules for Link Control Register 66
E.15.15i-EP option: Rules for Link Status Register 66
E.15.16i-EP option: Rules for Link Capabilities 2 Register 67
E.15.17i-EP option: Rules for Link Status 2 Register 68
E.15.18i-EP option: Rules for Link Control 2 Register 69
E.15.19i-EP option: Rules for Lane Equalization Control Register 69
E.15.20i-EP option: Rules for Link Control 3 Register 69
E.15.21i-EP option: Rules for Margining Lane Control Register and Margining Lane Status Register 70
E.15.22i-EP option: Rules for Margining Port Capabilities Register 70
E.15.23i-EP option: Rules for 16.0 GT/s Status Register 70
E.15.24i-EP option: Rules for 16.0 GT/s Lane equalization control register 71
E.15.25i-EP option: Rules for Data Link Feature Capabilities and Data Link Feature Status 71
E.15.26i-EP option: Rules for 16GT/s registers and Lane Error status register 71

F SMMUV3 INTEGRATION 72

G DEVICEID GENERATION AND ITS GROUPS 73
G.1 ITS groups 73

G.1.1 Introduction 73
G.1.2 Rules 73
G.1.3 Examples of ITS groups 74

G.2 Generation of DeviceID values 74
G.2.1 Introduction 74
G.2.2 Rules 75

G.3 System description of DeviceID and ITS groups from ACPI tables 76
G.4 DeviceIDs from hot-plugged devices 77

Page 4 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Copyright © 2016, 2017, 2018, 2019 Arm Limited. All rights reserved.

Release information

Version 6.0 (16 Sep 2019)

• Armv8.5 requirements (115).
• Instruction to data to instruction coherency (175).
• Nanosecond units for system counter (159).
• Rules for SMMU to ease page sharing between PE and SMMUs (158).
• MSI(-X) must be mapped to LPI (173).
• Mention ServerReady and GIC level-3 clarification (166).
• Clarification on this meaning MSI(-X) (103).
• Typo in word address, changed to addresses (102).
• mislabelling of UARTIMSC in table 15 (101).
• IO virtualization clarifications (112).
• Armv8 RAS extension requirements (133).
• Relaxation of SVE requirement (162).
• Errata clarification on level 5 interrupt controller section of SBSA5.0B (104).
• Level 5 - Section 4.4.2 Interrupt Controller(117).
• SMMU and HTTU support (134).
• SBSA Typo on Level 3 PE requirements for SVE (152).
• PCI Enumeration related requirements (110).
• PCIe RCiEP and iEP related requirements (108).
• MSI support in SMMU for events (194).

Version 5.0 (30 May 2018)

• RAS requirements (5).
• ROP and JOB requirements for SBSA (6).
• SBSA and SVE (7).
• Nested virtualization and SBSA (8).
• MPAM requirements for SBSA (9).
• Invisible caches (ban type 2 caches) AKA Forced WB (10).
• Add Activity Monitor Requirements to SBSA (11).
• Crypto Requirements to SBSA (12).
• Add support for 48-bit operating systems booting on Armv8.2+ systems with 52-bit PA (13).
• Ban non-standard interrupt controller (14).
• Base frequency standardisation (15).
• Assign PPIs for new timers in v8.4 (16).
• Secure EL2 not required (17).
• TLBI range homogeneity (18).
• SVE heterogeneity (19).
• PCIe clarifications (21).
• UART clarifications (22).
• PCIe requirements for assignable devices (23).
• PTM for SBSA-based systems (24).
• PCIe deadlocks (25).
• ACS and Peer-to-peer (26).
• TPM guidance for SBSA (27).
• Deprecate Levels 0, 1, and 2 (28).
• Errata Remove references to Prince Algorithm (29).
• Errata UART Trigger Levels (30).
• Heterogeneity in Server (31).
• Clean to point of persistence support (33).

Page 5 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

• Watchdog scaling in SBSA (36).
• Clarify that PEs must be able to accesses all Non-secure address space (37).
• Appendix I needs to be clearer about RID spaces do not strictly need to supply all 16 bits of width (38).
• Address space input into an SMMU from a device is entirely contiguous, no holes (39).
• Clarify the uniqueness requirements of SPIs that are used to handle legacy PCIe interrupts (A/B/C/D)

(40).
• SBSA Armv8.4 and SMMUv3.2 rules on break before make for page tables (41).
• Add reservation for trace buffer overflow PPI (42).
• FP16 support in SBSA (43).
• Correction on stating devices describe their ability to be virtualised through FW (44).
• Clarify IO BAR usage (45).
• Generalise SMMU requirements (46).
• Relaxations in future GIC PPI reservation for Level 5 (79).

Version 3.0 (01 Feb 2016)

• Initial Release. Non-confidential.

Version 3.1 (01 Feb 2016)

• Change of Proprietary Notice. Addition of release history. Non-confidential.

Page 6 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of
the information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand the scope
and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to
assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to
any partnership relationship with any other company. Arm may make changes to this document at any time
and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of
this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners. Please follow Arm’s trademark
usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2016, 2017, 2018, 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Page 7 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

http://www.arm.com/company/policies/trademarks

Server Base System Architecture

1 About this document

1.1 Terms and abbreviations

Term Meaning

ACS Access control services – A set of features intended for ensuring that
uncontrolled peer-to-peer transaction cannot occur. See PCIe specification [1] for
more details.

AER Advanced Error Reporting. This is a PCIe feature which enables software to
isolate and analyse errors with fine granularity. See PCIe specification [1] for
more details.

ARE Affinity Routing Enable (GICv3 [2]).
Arm ARM Arm Architecture Reference Manual; see [3].
Arm recommends is used in statements when Arm suggests that the implementer do something,

but it is up to the implementer.
Arm strongly
recommends

is used in statements when Arm expects that the implementer do something, but
it is up to the implementer.

ATS Address Translation Services
Base Server System A system compliant with the Server Base System Architecture.
ECAM Enhanced Configuration Access Mechanism
GIC Generic Interrupt Controller.
I/O Coherent A device is I/O Coherent with the PE caches if its transactions snoop the PE

caches for cacheable regions of memory. The PE does not snoop the device’s
cache.

LPI Locality-specific Peripheral Interrupt (GICv3 [2]).
MMIO Memory Mapped Input Output
P2P or Peer-to-peer Traffic that is sent directly between two PCIe endpoints. See PCIe specification

[1] for more details.
PCI Host Bridge (PHB) A PCI Host Bridge (PHB) is a host-to-PCI bridge; this provides a design-time

fixed range of bus and memory/IO resource ranges to the system. A PHB
connects a set of root ports to the host.

PE Processing Element, as defined in the Arm ARM. Typically a single hardware
thread of a PE.

PMU Performance Monitor Unit.
PPI Private Peripheral Interrupt.
PRI Page Request Interface
PTM Precision Time Measurement. PCIe standard specified method for finding the

relationship between a PTM master clock and another clock in a device in the
same hierarchy.

RCEC Root Complex Event Collector
RCiEP Root Complex integrated End Point
Root Complex (RC) A Root Complex (RC) is a collection of PHBs and therefore RPs. A RC might be

conceptually composed of one or more PCIe Host Bridge (PHB). A RC provides
a PCI segment. All PHBs in a RC are on the same segment.

Root Port (RP) A Root Port (RP) is associated with a physical port and appears in PCIe config
space as a PCI bridge with a type 1 header, A RP is the root of a PCIe hierarchy.

SBBR Server Base Boot Requirements [4].
SBSA Server Base System Architecture.
SGI Software Generated Interrupt.
SPI Shared Peripheral Interrupt.
SR-IOV Single Root IO virtualization. This is a method for a PCIe device to be virtualized.

See PCIe specification [1] for more details.

Page 8 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Term Meaning

SRE System Register interface Enable (GICv3 [2]).
System firmware data System description data structures such as ACPI or Flattened Device Tree.
TCG Trusted Computing Group.
TPM Trusted Platform Module (TPM). TPM is a technology, typically implemented

through a secure microcontroller, that can securely store artifacts used to
authenticate a platform, or platform components. The TPM technical specification
is maintained by the TCG consortium.

VM Virtual Machine

1.2 References

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] PCI Express Base Specification Revision 5.0, version 1.0. PCI-SIG.

[2] IHI 0069 Arm® Architecture Specification, GIC architecture version 3.0 and version 4.0. ARM Ltd.

[3] DDI 0487 Arm® Architecture Reference Manual ARMv8, for the ARMv8-A architecture profile. ARM Ltd.

[4] DEN 0044 Server Base Boot Requirements, System Software on Arm® Platforms. ARM Ltd.

[5] Arm® Armv8.5-A extensions. ARM Ltd.

[6] Arm security whitepaper - Speculative processor vulnerability. ARM Ltd.

[7] 11889:2015 standard publication. Information technology — Trusted platform module library. ISO/IEC.

[8] Enhanced Allocation (EA) for Memory and I/O Resources. PCI-SIG.

[9] DEN 0068 CoreSight Base System Architecture. ARM Ltd.

[10] DDI 0587 Arm Reliability, Availability and Serviceability (RAS) specification Armv8, for the Armv8-A
architecture profile. ARM Ltd.

[11] DDI 0183 Arm® PrimeCell® UART (PL011) Technical Reference Manual. ARM Ltd.

[12] PCI Local Bus Specification Revision 3.0. PCI-SIG.

[13] PCI-To-PCI Bridge Architecture Specification 1.2. PCI-SIG.

[14] DEN 0029A Server Base System Architecture Version 3.1. ARM Ltd.

[15] ARM IHI 0062 Arm® System Memory Management Unit Architecture Specification. ARM Ltd.

[16] IHI 0067 Arm® System Memory Management Unit Architecture Specification, 64KB Translation Granule
Supplement. ARM Ltd.

[17] IHI 0048 Arm® Architecture Specification, GIC architecture version 2.0. ARM Ltd.

[18] IHI 0070 Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1. ARM Ltd.

1.3 Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

Page 9 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

• The title (Server Base System Architecture).
• The document ID and version (DEN0029C 6.0).
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Page 10 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

2 Background

Arm processors are used in a wide variety of system-on-chip products in many diverse markets. The
constraints on products in these markets are inevitably very different, and it is impossible to produce a single
product that meets all of the needs of the various markets.

The Arm architecture profiles, Application, Real-time, and Microcontroller, segment the solutions produced by
Arm and align with the varying functional requirements of particular target markets. The differences between
products targeted at different profiles are substantial due to the diverse functional requirements of the market
segments.

However, even within an architectural profile, the wide-ranging use of a product means that there are frequent
requests for features to be removed to save silicon area. This is relevant for products targeted at cost-sensitive
markets, where the cost of customizing software to accommodate the loss of a feature is small compared to
the overall cost saving of removing the feature itself.

In other markets, such as those which require an open platform with complex software, the savings gained
from removing a hardware feature are outweighed by the cost of software development to support the different
variants. In addition, software development is often performed by third parties, and the uncertainty about
whether new features are widely deployed can be a substantial brake to the adoption of those features.

The Arm Application profile must balance these two competing business pressures. It offers a wide range of
features, such as Advanced SIMD and floating point support, and TrustZone system security technology, to
tackle an increasing range of problems. It also provides the flexibility to reduce silicon space by removing
hardware features in cost-sensitive implementations.

Arm processors are built into a large variety of systems. Aspects of this system functionality are crucial to the
fundamental function of system software.

Variability in PE features and certain key aspects of the system impact on the cost of software system
development and the associated quality risks.

Base System Architecture specifications are part of Arm’s strategy of addressing this variability.

Page 11 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

3 Introduction

This document specifies a hardware system architecture, based on Arm 64-bit architecture, that server system
software, such as operating systems, hypervisors and firmware can rely on. It addresses PE features and key
aspects of system architecture.

The primary goal is to ensure sufficient standard system architecture to enable a suitably-built single OS
image to run on all hardware compliant with this specification. A driver-based model for advanced platform
capabilities beyond basic system configuration and boot is required, however this is outside the scope of this
document. Fully discoverable and describable peripherals aid the implementation of such a driver model.

This specification also specifies features that firmware can rely on, allowing for some commonality in firmware
implementation across platforms.

Arm does not mandate compliance to this specification but anticipates that CSPs, OEMs, ODMs and software
providers will require compliance to maximize out of box software compatibility and reliability. In addition,
compliance with this specification is a requirement for the Arm ServerReady program.

The Server Base System Architecture embeds the notion of levels of functionality. Each level adds functionality
over and above a previous level. Unless explicitly stated, all specification items belonging to level N apply to
levels greater than N. Previous versions of the SBSA included levels 0,1,2,3 and 3 Firmware. This version
removes levels 0 to 2, and commences with level 3. All requirements from previous levels that are still valid
have been folded into Level 3. This document also introduces levels 4 and 5.

An implementation is consistent with a level of the Server Base System Architecture if it implements all of the
functionality of that level at performance levels appropriate for the target uses of that level. This means that all
functionality of a level can be exploited by software without unexpectedly poor performance.

Note

This is intended to avoid approaches such as software emulation of functionality that is critical to the
performance of software using the SBSA. It is not intended to act as a restriction of legitimate exploration
of the power, performance, or area tradeoffs that characterize different products, nor to restrict the use of
trapping within a virtualization system.

Implementations that are consistent with a level of the Server Base System Architecture can include additional
features that are not included in the definition of that level. However, software written for a specific level must
run, unaltered, on implementations that include such additional functionality.

Software running on a system including an Arm core inevitably includes code that is system-specific. Such
code is typically partitioned from the rest of the system software in the form of Firmware, Hardware Abstraction
Layers, Board Support Packages, Drivers and similar constructs. This document refers to such constructs as
Hardware Specific Software. The Arm Server Base Boot Requirements (SBBR) specification [4] describes
firmware requirements for an Arm server system. Where this specification refers to system firmware data, it
refers to firmware specified in the SBBR.

This specification uses the phrase software consistent with the Server Base System Architecture to indicate
software that is designed to be portable between different implementations that are consistent with the Server
Base System Architecture. Software that is consistent with the Server Base System Architecture does not
depend on the presence of hardware features that are not mandated in this specification. However, software
might use features that are not included in this specification, after checking that the platform supports the
features, for example by using hardware ID registers or system firmware data.

Page 12 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

4 SBSA

4.1 Level 3

4.1.1 PE Architecture

The PEs referred to in this specification are those that are running the operating system or hypervisor, not
PEs that are acting as devices.

PEs in the base server system are compliant with Armv8 and the following is true:

• The number of PEs in the system must not exceed 228. This reflects the maximum number of PEs GICv3
can support.

• PEs implement Advanced SIMD extensions.
• Whether the Instruction Caches are implemented as VIPT or PIPT is IMPLEMENTATION DEFINED.

Note

Not all PEs are required to support the same Instruction Cache addressing scheme.

• PEs must implement 16-bit ASID support.
• PEs must support 4KB and 64KB translation granules at stage 1 and stage 2.
• All PEs are coherent and in the same Inner Shareable domain.
• Where export restrictions allow, PEs must implement cryptography extensions.
• PEs must implement little-endian support.
• PEs must implement EL2 and EL3.

Note

For systems that implement Armv8.4 PEs, secure EL2 is optional.

• PEs must implement AArch64 at all Exception levels.
• The PMU overflow signal from each PE must be wired to a unique PPI interrupt with no intervening logic.
• Each PE must implement a minimum of six programmable PMU counters.
• Each PE must implement a minimum of six breakpoints, two of which must be able to match virtual

address, contextID or VMID.
• Each PE implements a minimum of four synchronous watchpoints.
• All PEs are architecturally symmetric except for the permitted exceptions laid out in Appendix Section C.
• PEs must implement the CRC32 instructions.
• PEs can implement the Scalable Vector Extension (SVE). In this case, it is strongly recommended that

the performance of well-optimized SVE or SVE2 code is no worse than code which uses the equivalent
NEON instructions.

Note

• Typical operating systems will not be able to take advantage of differences in maximum vector length
among PEs.

• It is consistent with this specification to implement PEs with support for the AArch32 Execution state.

Level 3 systems can be implemented using the Armv8.0 architecture revision or higher. Armv8.2 LPA [3],
large Physical Address (PA) and Intermediate Physical Address (IPA) support, expands the maximum physical

Page 13 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

address width from 48 to 52 bits. Using 52-bit PA requires 64KB translation granule. Server base systems
that make use of Armv8.2 LPA must provide a mode where the memory map is wholly contained inside 248

bytes (256TB). This is required to support operating systems that do not make use of the 64KB granule.

4.1.1.1 Security recommendations

Arm recommends that:

• PEs implement the PSTATE/CPSR SSBS (Speculative Store Bypass Safe) bit and the instructions to
manipulate it. See [5]. This is identified by ID_AA64PFR1_EL1.SSBS==b0001.

• PEs implement the CSDB, SSBB and PSSBB barriers. See [6] [5].
• PEs implement the SB speculation barrier, introduced by the Armv8.5-A extensions, but implementable

on any prior revision of Armv8. This is indicated by ID_AA64ISAR1_EL1.SB==b0001.
• PEs implement the CFP RCTX, DVP RCTX, CPP RCTX instructions to restrict use of information

gathered through control flow, data value prediction, or cache prefetch prediction, from
affecting speculative execution. Introduced by the Armv8.5-A extension, these instructions can
be implemented on any prior version of Armv8. Support for the instructions is indicated by
ID_AA64ISAR1_EL1.SPECRES==b0001.

• Support for the Memory Tagging Extension is optional. Where implemented the following must apply:
– The implementation can be full including instructions, registers and checks, or can just provide

support for the instructions and registers. That is ID_AA64PFR1_EL1.MTE can be b0001 or b0010.
A full implementation (b0010) is recommended.

– All general purpose memory that can be used by an operating system must support memory
tagging.

Note

This avoids the need for the operating system to track which regions can support memory tagging or not,
and also avoids the need to describe this information in UEFI/ACPI.

• Arm recommends that PEs provide support for enhanced virtualization traps as indicated by
ID_AA64MMFR2_EL1.EVT==b0010.

4.1.2 Expected usage of Secure state

The Level 3 base server system is expected to use the PE EL3 and Secure state as a place to implement
platform-specific firmware. The system might choose to implement further functionality in the Secure state,
but this is outside the scope of SBSA Level 3.

SBSA Level 3 does not expect PCI express to be present in the Secure state. This is reflected in the GICv3
architecture, which does not support Secure LPI.

4.1.3 Memory Map

This specification does not mandate a standard memory map. It is expected that the system memory map is
described to system software by system firmware data.

To enable EL2 hypervisors to use a 64KB translation granule at stage 2 MMU translation, the base server
system must ensure that all memory and peripherals can be mapped using 64KB stage 2 pages and must not
require the use of 4KB pages at stage 2. It is expected therefore that peripherals that are to be assigned to
different virtual machines will be situated within different 64KB regions of memory.

Systems will not necessarily fully populate all of the addressable memory space. All memory accesses,
whether they access memory space that is populated or not, must respond within finite time, so as to avoid

Page 14 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

the possibility of system deadlock.

Note

Compliant software must not make any assumptions about the memory map that might prejudice compliant
hardware. For example, the full physical address space must be supported. There must be no dependence
on memory or peripherals being located at certain physical locations.

Where a memory access is to an unpopulated part of the addressable memory space, accesses must be
terminated in a manner that is presented to the PE as either a precise Data Abort, or as a system error
interrupt, or an SPI, or LPI interrupt to be delivered to the GIC.

All Non-secure on-chip masters in a base server system that are expected to be under the control of the
operating system or hypervisor must be capable of addressing all of the Non-secure address space. If the
master goes through a SMMU then the master must be capable of addressing all of the Non-secure address
space when the SMMU is turned off. Equally, all PEs must be able to access all of the Non-secure address
space.

Non-secure off-chip devices that cannot directly address all of the Non-secure address space must be placed
behind a stage 1 System MMU compatible with the Arm SMMUv2 or SMMUv3 specification, that has an
output address size large enough to address all of the Non-secure address space. See Section 4.1.6.

Where it is possible for the forward progress of a memory transaction to depend on a second memory access,
the system must avoid deadlock if the memory access gets ordered behind the original transaction. This can
occur in PCI memory or IO physical address space. For example, in the case of PCI, without an appropriate
mitigation, a deadlock could arise if the memory access was also a PCI transaction, and therefore might be
ordered behind the original PCI transaction. A system is permitted to resolve this dependency by terminating
the memory accesses. A transaction that is terminated in this case might return any value, have any written
data ignored, or be terminated with an error.

Note

• For example, in line with the PCI ordering rules, the completion for a read of an SMMU or GIC table
might be blocked behind an earlier inbound PCI transaction which the SMMU or GIC is blocking, until
the table access completes.

• Because a system is permitted to avoid deadlock by terminating transactions in this way, system
software must not allocate any structures relating to a SMMU or GIC in PCIe address space or IO
address space.

4.1.4 Interrupt Controller

The GICv3 specification introduces support for systems with more than eight PEs, as well as improved support
for larger numbers of interrupts.

A level 3 base server system must implement a GICv3 compliant interrupt controller. The GICv3 interrupt
controller must support two Security states.

The system shall implement at least eight Non-secure SGIs, assigned to interrupt IDs 0-7.

If the base server system includes PCI Express then the GICv3 interrupt controller must implement ITS and
LPI.

All MSI and MSI-X targeting hypervisor and operating system software must be mapped to LPI.

Page 15 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Note

• It is permissible to build a system with no support for SPI, however Arm expects that the peripheral
eco-system will continue to rely on wired level interrupts and expects most systems to support SPI as
well as LPI interrupts. PCI legacy INTA-INTD interrupts are wired interrupts, see Section D.6 for more
details.

• The Arm PL011 UART requires a level interrupt, as does a PCIe root complex, for legacy interrupt
support.

4.1.5 PPI assignments

A level 3 base server system must comply with the PPI mapping laid out in Table 2.

Table 2: PPI assignments

Interrupt ID Interrupt Description

30 Overflow interrupt from
CNTP

Non-secure physical timer
interrupt.

29 Overflow interrupt from
CNTPS

Secure Physical timer interrupt.

28 Overflow interrupt from
CNTHV

Non-secure EL2 virtual timer
interrupt (if PEs are Armv8.1 or
greater).

27 Overflow interrupt from
CNTV

Virtual timer interrupt.

26 Overflow interrupt from
CNTHP

Non-secure EL2 physical timer
interrupt.

25 GIC Maintenance interrupt The virtual PE interface list
register overflow interrupt.

24 CTIIRQ Cross Trigger Interface (CTI)
interrupt.

23 Performance Monitors
Interrupt

Indicates an overflow condition in
the performance monitors unit.

22 COMMIRQ Debug Communication Channel
(DCC) interrupt.

21 PMBIRQ Statistical Profiling Interrupt, if
Statistical Profiling Extensions
are implemented.

20 CNTHPS Secure EL2 physical timer
interrupt (if PEs are Armv8.4 or
greater).

19 CNTHVS Secure EL2 virtual timer interrupt
(if PEs are Armv8.4 or greater).

Note

An implementation might need to reserve a PPI for trace buffer overflow.

Page 16 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

4.1.6 System MMU and Device Assignment

It is IMPLEMENTATION-SPECIFIC whether any given device in a base server architecture system supports
the ability to be hardware virtualized, for example SR-IOV. It is expected that devices that can be hardware
virtualized have that property expressed either by system firmware data, or though hardware discoverability.

If a device is assigned and passed through to an operating system under a hypervisor, then the memory
transactions of the device must be subject to stage 2 translation, allocation of memory attributes, and
application of permission checks, under the control of the hypervisor. This specification collectively refers to
this translation, attribution, and permission checking as policing. The act of policing is referred to as stage 2
System MMU functionality.

Stage 2 System MMU functionality must be provided by a System MMU compatible with the Arm SMMUv2
specification, where:

• Support for stage 1 policing is not required.
• Each context bank must present a unique physical interrupt to the GIC.

Note

This behavior is consistent with Arm MMU-500 implementation. Software can either program stage 2
System MMUs to use the same page tables as the PE or build shadow page tables. Standard PCI Express
ATS support, is included in SMMUv3.

Or the Stage 2 System MMU functionality must be provided by a System MMU compatible with the Arm
SMMUv3 spec where:

• Support for stage 1 policing is not required.
• The integration of the System MMUs is compliant with the specification in Section F.

All the System MMUs in the system must be compliant with the same architecture version.

Note

• System MMUv3 is not backwards compatible with System MMUv2 and as such any system
implementing System MMUv3 MMUs is not strictly backwards compatible with level 2, which requires
System MMUv2.

• Support for broadcast TLB maintenance operations is not required.

• For systems that implement SMMU architecture revision 3.2, if the PEs do not implement secure EL2,
the SMMUs are not required to implement secure EL2.

The base server system might instance an IMPLEMENTATION DEFINED number of SMMU components. It is
expected that these components will be described by system firmware data along with a description of how to
associate them with the devices they police.

Armv8.4 introduces TLB Invalidation instructions which apply to a range of input addresses rather than just to
a single address. If PEs used by the server base system support TLB range instructions, then all OS visible
masters that contain a TLB must support range invalidates.

4.1.7 Clock and Timer Subsystem

The base server system must include the system counter of the Generic Timer as specified in the Arm ARM
[3].

Page 17 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

The system counter of the Generic Timer must run at a minimum frequency of 10MHz. The counter must not
roll over inside a 10 year period.

Note

Previous versions of the SBSA imposed an upper limit of 400Mhz. This is instead replaced by an upper
limit on the roll over period. This permits implementations to target high frequencies for markets where this
is an advantage.

The architecture of the counter mandates that it must be at least 56 bits, and at most 64 bits. From Armv8.4,
for systems that implement counter scaling, the minimum becomes 64 bits.

The Generic Timer system counter also exports its count value, or an equivalent encoded value, through the
system to the timers in the PEs as part of the Generic Timer subsystem. This count must be available to the
PE timers when they are active, which is when the PEs are in power states where the PE timer is required to
be on.

The local PE timers have a programmable count value. When the value expires it generates a Private
Peripheral Interrupt for the associated PE.

The local PE timers can be built so that they are always on. This property is described in the system firmware
data.

Unless all of the local PE timers are always on, the base server system must implement a system wakeup
timer that can be used when PE timers are powered down. The system wakeup timer must in the form of the
memory mapped timer described in the ARMv8 ARM [3]. On timer expiry, the system wakeup timer must
generate an interrupt that must be wired to the GIC as an SPI or LPI. Additionally, the system wakeup timer
can be used to wake up PEs. See Section 4.1.8.

It is recognized that in large system a shared resource like the system wakeup timer can create a system
bottleneck, as access to it must be arbitrated through a system-wide lock. It is anticipated that this will be
dealt with by the platform by having the firmware tables describe the PE timers as always on and remove
the need for the system timer. The platform will either implement hardware always on PE timers or use the
platform firmware to save and restore the PE timers in a performance scalable fashion.

Note

Systems compliant with Level 3 – firmware will have standard hardware that the firmware can use, see
Section 4.1.7

The wakeup timer does not require a virtual timer to be implemented and it is permissible for the virtual offset
register to read as zero. Writes to the virtual offset register in CNTCTLBase frame are ignored. The timer is
not required to have a CNTEL0Base frame.

If the system includes a system wakeup timer, this memory-mapped timer must be mapped on to Non-secure
address space. This is referred to as the Non-secure system wakeup timer. Table 3 summarizes which
address space the register frames must be mapped on to.

Table 3: Generic counter and timer memory mappings

Register Frame

CNTControlBase Secure
CNTReadBase Not required
CNTCTLBase Non-secure and

Secure

Page 18 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Register Frame

CNTBaseN Non-secure

4.1.7.1 Summary of the required registers of the CNTControlBase frame

Offset Name Type Description

0x000 CNTCR RW Counter Control Register
0x004 CNTSR RO Counter Status Register
0x008 CNTCV[31:0] RW Counter Count Value Register
0x00C CNTCV[63:32] RW Counter Count Value Register
0x010-0x01C - RES0 Reserved
0x020 CNTFID0 RO OR RW Frequency modes table, and end

marker. CNTFID0 is the base
frequency, and each CNTFIDn is an
alternative frequency. For more
information see the Arm ARM.

0x020+4n CNTFIDn RO OR RW Frequency modes table, and end
marker. CNTFID0 is the base
frequency, and each CNTFIDn is an
alternative frequency. For more
information see the Arm ARM.

(0x024+4n)-0x0BC - RES0 Reserved
0x0C0-0X0FC - IMPLEMENTATION

DEFINED

Reserved for IMPLEMENTATION

DEFINED registers
0x100-0xFCC - RES0 Reserved
0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11

4.1.7.2 Summary of the required registers of the CNTReadBase frame

Offset Name Type Description

0x000 CNTCV[31:0] RO Counter Count Value Register
0x004 CNTCV[63:32] RO Counter Count Value Register
0x008-0xFCC - RES0 Reserved
0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11

4.1.7.3 Summary of the required registers of the CNTCTLBase frame

Offset Name Type Security Description

0x000 CNTFRQ RW Secure Counter Frequency
register

0x004 CNTNSAR RW Secure Counter Non-secure
Access register

0x008 CNTTIDR RO Both Counter Timer ID
register

0x00C-0x03F - RES0 Both Reserved
0x040+4N CNTACR<N> RW Configurable Counter Access

Control register N
0x060-0x07F - RES0 Both Reserved
0x0C0-0x0FC - UNK/SBZP Both Reserved

Page 19 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Offset Name Type Security Description

0x100-0x7FC - - Both IMPLEMENTATION

DEFINED

0x800-0xFBC - UNK/SBZP Both Reserved
0xFC0-0xFCF - - Both IMPLEMENTATION

DEFINED

0xFD0-0xFFC CounterID<n> RO Both Counter ID registers
0-11

4.1.7.4 Summary of the required registers of the CNTBaseN frame

Offset Name Type Description

0x000 CNTPCT[31:0] RO Physical Count register
0x004 CNTPCT[63:32] RO Physical Count register
0x010 CNTFRQ RO Counter Frequency register
0x020 CNTP_CVAL[31:0] RW Physical Timer Compare Value

register
0x024 CNTP_CVAL[63:32] RW Physical Timer Compare Value

register
0x028 CNTP_TVAL RW Physical Timer Value register
0x02C CNTP_CTL RW Physical Timer Control register
0x040-0xFCF - RES0 Reserved
0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11

4.1.8 Wakeup semantics

Systems implement many different power domains and power states. It is important for the OS or hypervisor,
or both, to understand the relationship between these power domains and the facilities it has for waking PEs
from various low power states.

A key component in controlling the entry to and exit from low-power states is the IMPLEMENTATION DEFINED

power controller. The power controller controls the application of power to the various power domains. On
entry to low-power states hardware-specific software will program the power controller to take the correct
action. On exit from a low-power state, hardware-specific software might need to reprogram the power
controller. Hardware-specific software is required to save and restore system state when entering and exiting
some low-power states.

This specification defines two classes of wakeup methods: interrupts, and always-on power domain wake
events.

The first class of wakeup methods are interrupts. This specification defines interrupts that wake PEs as
wakeup interrupts.

A wakeup interrupt is any interrupt that is any one of the following:

• An SPI that directly targets a PE.
• An SGI.
• A PPI.
• An LPI

In addition, for an interrupt to be a wakeup interrupt, it must be enabled in the distributor. A PE must wake in
response to a wakeup interrupt, independent of the state of its PSTATE interrupt mask bits, which are the A, I,
and F bits, and of the wakeup interrupt priority.

Page 20 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Note

• Typically, a wakeup signal is exported from the GIC to the power controller to initiate the PE wakeup.

• There are some power states where a PE will not wake on an interrupt. It is the responsibility of
system software to ensure there are no wakeup interrupts targeting a PE entering these states.

The local PE timers are an important source of interrupts that can wake the PE. However the local PE timer
might be powered down in some low-power states, as it might be in the same power domain as the PE. In
low-power states where the local PE timer is powered down, system software can use an SGI from other
running PEs to wake the PE, or it can configure the system wakeup timer to send a wakeup interrupt to the
PE to wake it.

In some very deep low-power states the GIC will be powered down. To wake from these states, there is
another class of wakeup methods that can be used; always-on power domain wake events.

If the system supports a low-power state where the GIC is powered down, then there must be an
IMPLEMENTATION DEFINED way to program the power controller to wake a PE on expiry of the system wakeup
timer or the generic watchdog. In this scenario, the system wakeup timer or generic watchdog is still required
to send its interrupt.

There might be other IMPLEMENTATION DEFINED always-on power domain wakeup events that can wake PEs
from deep low-power states, such as PCI Express wakeup events and Wake-on-LAN.

See Section 4.1.9 for a description of the power state semantics that the system must comply with.

Whenever a PE is woken from a sleep or off state the OS or Hypervisor must be presented with an interrupt
so that it can determine which device requested the wakeup. The interrupt must be pending in the GIC at the
point that control is handed back to the OS or Hypervisor from the system-specific software performing the
state restore.

This interrupt must behave like any other: a device sends an interrupt to the GIC, and the GIC sends the
interrupt to the OS or Hypervisor. The OS or Hypervisor is not required to communicate with a system-specific
interrupt controller.

Note

If the wakeup event is an edge then the system must ensure that this edge is not lost. The system must
ensure that the edge wakes the system and is subsequently delivered to the GIC without losing the edge.

An example of an expected chain of events would be:

1. Wakeup event occurs e.g. GPIO or wake-on-LAN.
2. The power controller responds by powering on the necessary resources that include the PE and the

GIC.
3. The PE comes out of reset and hardware-specific software restores state, including the GIC.
4. An interrupt is presented to the GIC representing the wakeup event. In many situations this might be

exactly the same signal as the wakeup event.
5. The system must ensure that, by the time the hardware-specific restore software has delegated to the

OS or Hypervisor, the interrupt is pending in the GIC.
6. The OS or Hypervisor can respond to the interrupt.

4.1.9 Power State Semantics

This specification does not mandate a given hierarchy of power domains, but there are some rules and
semantics that must be followed.

Page 21 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

1 is an example block diagram showing a possible hierarchy of power domains. Note that there are other
examples that conform to this specification that are not subsets of the system in the diagram.

In order for either the OS or hypervisor, or both, to be able to reason about wakeup events and to know which
timers will be available to wake the PE, all PEs must be in a state that is consistent with one of the semantics
described in Table 8 and Table 9. Note that all PEs do not need to be in the same state. It is expected that the
semantics of the power states that a system supports will be described by system firmware data. Table 10
describes the power state semantics in a set of component-specific rules.

System MMUs and GICv3 make use of tables in memory in the power states where GIC is ‘On’. For such
states, system memory must be available and will respond to requests without requiring intervention from
software running on the PEs.

Hardware-specific software is required to save and restore system state when entering and exiting low-power
states.

It is highly likely that many systems will support very low-power states where most system logic is powered
down and the system memory is in self-refresh, but the OS retains control over future wakeup. This is reflected
in power state semantic E. In this state, the GIC can be powered off after system software has saved its state.
In this state, wakeup signals go straight to the system power controller and do not require use of the GIC to
wake the PEs. The system power controller is system-specific. When in a power state of semantic E, the
system power controller wakes an IMPLEMENTATION DEFINED PE, or set of PEs, when the system wakeup
timer expires. Other system-specific events might also cause wakeup from this state, such as a PCI Express
wakeup event. The events that will cause wakeup from this state are expected to be discoverable from system
firmware data.

When the system is in a state where the GIC is powered down devices must not send messaged interrupts to
the GIC.

Page 22 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Figure 1: Example system block diagram showing power domains and timer hierarchy

Table 8: PE Power States

PE State Description

Run The PE is powered up and running code.
Idle_standby The PE is in STANDBYWFI state, but remains powered up. There is full

state retention, and no state saving or restoration are required. Execution
automatically resumes after any interrupt or external debug request
(EDBGRQ). Debug registers are accessible.

Idle_retention The PE is in STANDBYWFI state, but remains powered up. There is full
state retention, and no state saving or restoration are required. Execution
automatically resumes after any interrupt or external debug request
(EDBGRQ). Debug registers are not accessible.

Sleep The PE is powered down but hardware will wake the PE autonomously, for
example, on receiving a wakeup interrupt. No PE state is retained. State
must be explicitly saved. The woken PE starts execution at the reset vector,
and then hardware-specific software restores state.

Page 23 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

PE State Description

Off The PE is powered down and is not required to be woken by interrupts.
The only way to wake the PE is by explicitly requesting the power controller,
for example, from system software running on another PE, or an external
source such as a poweron_reset. This state can be used to support hot
remove of PE. No PE state is retained.

Note

The Timers column in Table 9 applies to System wake timers, system counters and generic watchdogs.

Table 9: Power State Semantics

Semantic

PE and
GIC PE
Interface

PE
timers

GIC
Distributor Timers Note

A Run On On On -
B Idle On On On PE will resume execution on receipt of any interrupt.
C Sleep On On On PE will wake on receipt of a wakeup interrupt.
D Sleep Off On On PE will wake on receipt of a wakeup interrupt, but

local timer is off.
E Sleep Off Off On PE will wake from system timer wakeup event or

other system specific events.
F Off Off On On Some, but not all, PEs are in Off state.
G Off Off Off Off All PEs in Off state.
H Sleep On Off On PE will wake from PE timer, system timer wakeup

event or other system specific events.
I Idle Off On On PE will resume execution on receipt of any interrupt,

but the local timer is off.

Table 10: Component Power State Semantics

PE and GIC PE Interface Individual PEs and their associated GIC PE interface can be in Run, Idle,
Sleep or Off state.

PE timers Must be On if the associated PE is in the Run state.
Might be On or Off if the PE is in Idle or Sleep state.
Must be Off if the PE is in the Off state.

GIC Distributor Must be On if any PE is in the Run or Idle state.
Might be On or Off if all PEs are in either the Sleep or Off
state, with at least one PE in the Sleep state.
Must be Off If all PEs are in the Off state.

System wakeup timers and system counter and generic
watchdog

Must be On if any PE is not in the Off state.
Must be Off if all PEs are in the Off state.

4.1.10 Watchdogs

The base server system implements a Generic Watchdog as specified in Section A. Watchdog Signal 0 is
routed as an SPI or an LPI to the GIC and it is expected this will be configured as an EL2 interrupt, directly

Page 24 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

targeting a single PE.

Watchdog Signal 1 must be routed to the platform. In this context, platform means any entity that is more
privileged than the code running at EL2. Examples of the platform component that services Watchdog Signal
1 are: EL3 system firmware, or a system control processor, or dedicated reset control hardware.

The action taken on the raising of Watchdog Signal 1 is platform-specific.

Note

Only directly-targeted SPI are required to wake a PE; see Section 4.1.8 for further information. Programming
the watchdog SPI to be directly targeted ensures delivery of the interrupt independent of PE power states.
However it is possible to use a 1 of N SPI to deliver the interrupt as long as one of the target PEs is running.

The watchdog must have both its register frames mapped on to Non-secure address space; and is referred to
as the Non-secure watchdog.

4.1.11 Peripheral Subsystems

If the system has a USB2.0 host controller peripheral it must conform to EHCI v1.1 or later.

If the system has a USB3.0 host controller peripheral it must conform to XHCI v1.0 or later.

If the system has a SATA host controller peripheral it must conform to AHCI v1.3 or later.

If a TCG TPM based security model is supported, the server base system needs to provide a TPM
implementation that is compliant to TPM Library Specification, Family 2.0 [7].

Peripheral subsystems which do not conform to the above are permitted, provided that they are not required
to boot and install an OS.

For the purpose of system development and bring up, the base server system must include a Generic UART.
The Generic UART is specified in Section B. The UARTINTR interrupt output is connected to the GIC as an
SPI or an LPI.

The Generic UART required by level 3 and above must be mapped on to Non-secure address space. This is
referred to as the Non-secure Generic UART.

If the system has a PCI Express root complex then it must comply with the rules in Section D.

For systems that include PCI express, the PCI express integration appendix introduces an additional rule
applicable to a level 3 system. See Section D.

The memory attributes of DMA traffic must be one of the following:

• Inner writeback, outer writeback, Inner Shareable.
• Inner Non-cacheable, outer Non-cacheable.
• A device type.

I/O Coherent DMA traffic must have the attribute “Inner writeback, outer writeback, Inner Shareable”.

4.2 Level 3 – firmware

Level 3 – firmware is an optional additional set of requirements for a level 3 system. It is designed to give a
base set of functionality that standard platform firmware can rely on. A system that is compliant with level 3
and not compliant with level 3 – firmware is still a fully compliant level 3 system. It has all the features required
by the operating systems and hypervisors.

Page 25 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

4.2.1 Memory Map

The system must provide some memory mapped in the Secure address space. The memory must not be
aliased in the Non-secure address space. The amount of Secure memory provided is platform-specific as the
intended use of the memory is for platform-specific firmware.

All Non-secure on-chip masters in a base server system that are expected to be used by the platform firmware
must be capable of addressing all of the Non-secure address space. If the master goes through a SMMU then
the master must be capable of addressing all of the Non-secure address space even when the SMMU is off.

4.2.2 Clock and Timer Subsystem

A system compatible with level 3- firmware must also include a Secure wakeup timer in the form of the memory
mapped timer described in the ARMv8 ARM [3] This timer must be mapped into the Secure address space,
and the timer expiry interrupt must be presented to the GIC as an SPI. This timer is referred to as the Secure
system wakeup timer.

The Secure wakeup timer does not require a virtual timer to be implemented and it is permissible for the
virtual offset register to read as zero, where writes to the virtual offset register in CNTCTLBase frame are
ignored. The timer is not required to have a CNTEL0Base frame.

The following table summarizes which address space the register frames related to the Secure wakeup timer
should be mapped on to.

Register Frame

CNTControlBase Secure
CNTReadBase Not required
CNTCTLBase Secure
CNTBaseN Secure

CNTCTLBase might be shared amongst multiple timers, including various Secure and Non-secure timers.
The SBSA specification does not require this.

Note

• GICv3 does not support Secure LPI; therefore the Secure system timer interrupt must not be delivered
as LPI.

• It is recognized that in a large system, a shared resource like the system wakeup timer can create a
system bottleneck, as access to it must be arbitrated through a system-wide lock. Level 3-firmware
requires just a single timer so that standard firmware implementations have a guaranteed timer
resource across platforms. It is anticipated that large PE systems will implement a more scalable
solution such as one timer per PE.

4.2.3 Watchdogs

The required behavior of watchdog signal 1 of the Non-secure watchdog is modified in level 3– firmware and
is required to be routed as an SPI to the GIC. It is expected that this SPI be configured as an EL3 interrupt,
directly targeting a single PE.

A system compatible with level 3- firmware must implement a second watchdog, and is referred to as the
Secure watchdog. It must have both its register frames mapped in the Secure memory address space and
must not be aliased to the Non-secure address space.

Page 26 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Watchdog Signal 0 of the Secure watchdog must be routed as an SPI to the GIC and it is expected this will be
configured as an EL3 interrupt, directly targeting a single PE.

Note

• GICv3 does not support Secure LPI. The Secure watchdog interrupts must not be delivered as LPI.

• Only directly targeted SPI are required to wake a PE. Programming the watchdog SPI to be directly
targeted ensures delivery of the interrupt independent of PE power states. However it is possible
to use a 1 of N SPI to deliver the interrupt provided that one of the target PEs is running. See
Section 4.1.9 for information about SPI waking a PE.

Watchdog Signal 1 of the Secure watchdog must be routed to the platform. In this context, platform means
any entity that is more privileged than the code running at EL3. Examples of the platform component that
services Watchdog Signal 1 are a system control processor, or dedicated reset control hardware.

The action taken on the raising of Watchdog Signal 1 of the Secure watchdog is platform-specific.

4.2.4 Peripheral Subsystems

A system compatible with level 3-firmware must provide a second generic UART, referred to as the Secure
Generic UART, that can be configured to exist in the Secure memory address space. It must not be aliased in
the Non-secure address space. The UARTINTR output of the Secure Generic UART must be connected to
the GIC as an SPI.

Note

GICv3 does not support Secure LPI. The Secure Generic UART interrupt must not be delivered as LPI.

Systems that integrate PCI express should note that PCI express integration appendix introduces an additional
rule applicable to a level 3 system, see Section D.

4.3 Level 4

4.3.1 PE Architecture

In addition to the level 3 requirements, the following must be true of the PEs in the base server system:

• All PEs must implement the RAS extension introduced in Armv8.2.
• All PEs must implement support for 16-bit VMID.
• All PEs must implement virtual host extensions.
• If PEs implement Armv8.3 pointer signing, the PEs must provide the standard algorithm defined by the

Arm architecture [3], identified by ID_AA64ISAR1_EL1[7:4]==0001.
• If the system contains persistent memory that is exposed to the OS, all PEs must support the clean to

point of persistence instruction (DC CVAP). The instruction must be able to perform a clean to the point
of persistence for all memory that is exposed as persistent memory to the OS.

Page 27 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

4.3.2 System MMU and Device Assignment

Stage 1 and 2 System MMU functionality must be provided by a System MMU compatible with the Arm
SMMUv3, or higher, architecture revision where the integration of the System MMUs is compliant with the
specification in Section F.

All the System MMUs in the system must the compliant with the same architecture version.

All addresses output from a device to an SMMU must lie in a continuous space with no holes. All addresses
in said space will be treated equally by the SMMU. There should be no areas within the address space that
receive exceptional treatment, such as bypassing the SMMU.

Note

MSIs from a device are translated in the same way as any other writes from that device.

4.3.3 Peripheral Subsystems

All peripherals intended for assignment to a virtual machine or a user space device driver must be based on
PCI Express.

PCI Express integration is covered appendix Section D. Device assignment requirements are covered in
Section D.7

There must be no OS observable use of PCIe Enhanced Allocation [8].

4.4 Level 5

4.4.1 PE Architecture

In addition to the level 4 requirements, the following must be true of the PEs in the base server system:

• All PEs must provide support for Stage2 control of memory types and cacheability, as introduced by the
Armv8.4 extensions.

• All PEs must implement enhanced nested virtualization, that is provide HCR_EL2.NV2 and the
VNCR_EL2 register.

• All PEs must support changing of page table mapping size using the level 1 or level 2 solution proposed
in the Armv8.4 extension. Level 2 is recommended. See Section 4.4.3 for the equivalent requirements
for the SMMU.

• All PEs must implement pointer signing using the standard algorithm defined by the Arm architecture [3],
as indicated by ID_AA64ISAR1_EL1[7:4]==0001.

• PEs based on Armv8.4 must implement the requirements of the CS-BSA combination C [9].
• All PEs must implement the Activity Monitors Extension.
• Where export control allows, all PEs must implement cryptography support for SHA3 and SHA512.

Note

Arm recommends that SM3 and SM4 is also supported in hardware aimed at the Chinese market.

Implementation of the MPAM extension is optional, however if implemented, the following minimal requirements
must be met:

Page 28 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

• The implementation must provide a minimum of 16 physical partition IDs.

Note

Arm strongly recommends that the number of partition IDs scales with the number of PEs.

• The implementation must provide virtualization support with a minimal of 8 virtual partition IDs.

• The implementation must provide a minimal of 2 performance monitor groups.

• The implementation must provide cache portion partitioning in the last level cache.

Note

Here last level cache refers to an on SoC cache, as opposed to an off chip DRAM cache.

4.4.2 Interrupt Controller

From level 3, a base server system must implement an interrupt controller that is compliant with the GICv3
or higher architecture [2]. From level 5, only this interrupt controller will be visible to hypervisor or operating
system software. Other forms of interrupt controller, such as interrupt combining or forwarding engines, are
not permissible if they require a platform specific kernel driver.

4.4.3 System MMU and Device Assignment

SMMU implementations must be compliant with the Arm SMMUv3.2 architecture revision or higher.

SMMU implementations must provide level 1 or level 2 support for page table resizing. Arm recommends the
SMMU implements level 2. If the SMMU implementation provides level 2, then Arm recommended that the
PE also provides level 2.

Note

MPAM architecture requires that all masters that can access an MPAM controlled resource, must support
passing MPAM ID information. Therefore, an SMMUv3.2 implementation must support the MPAM extension
if the requests it serves access MPAM controlled resources.

4.4.4 Clock and Timer Subsystem

A system compatible with level 5 will implement a generic counter which counts in nanosecond units. This
means that, to the operating system the reported frequency will be 1GHz. Systems are permitted to use the
counter scaling introduced in Armv8.4 as a method to implement this.

Note

Arm strongly recommends that such systems use revision 1 of the generic watchdog, as at 1Ghz the
watchdog timeout refresh period is limited to just over 4s.

Page 29 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

4.4.5 PPI Assignments

In addition to PPI assignment in Table 2 the following PPIs are reserved by the SBSA specification:

Table 12: PPI assignments

Interrupt ID Interrupt Description

1056-1071 Reserved Reserved for future SBSA usage.
1088-1103 Reserved Reserved for future SBSA usage.

4.5 Level 6

4.5.1 Level 6 PE requirements

In addition to the level 5 requirements, the following must be true of the PEs in the base server system:

• PEs must implement restrictions on speculation that are introduced in the Arm v8.5 extensions to the
Arm architecture [5] and SCTXNUM_ELx registers as indicated by ID_AA64PFR0_EL1.CSV2==b0010
and ID_AA64PFR0_EL1.CSV3==b0001.

• The PSTATE/CPSR SSBS (Speculative Store Bypass Safe) bit and the instructions to manipulate it must
be implemented by all PEs. This is identified by ID_AA64PFR1_EL1.SSBS==b0001.

• PEs must implement the CSDB, SSBB and PSSBB barriers. See [6] [5].

• PEs must implement the SB speculation barrier. This is indicated by ID_AA64ISAR1_EL1.SB==b0001.

• PEs must implement the CFP RCTX, DVP RCTX, CPP RCTX instructions. Support for the instructions
is indicated by ID_AA64ISAR1_EL1.SPECRES==b0001.

• PEs must provide support for Branch Target Identification. Support is indicated by register
ID_AA64PFR1_EL1.BT==b0001.

• PEs must protect against timing faults being used to guess page table mappings by implementing the
TCR_EL1.E0PD0 and TCR_EL1.E0PD1 controls, and the same in TCR_EL2. Support is indicated by ID
register ID_AA64MMFR2_EL1.E0PD==b0001.

• PEs will provide support for enhanced virtualization traps as indicated by ID_AA64MMFR2_EL1.EVT==b0010.

• Support for the Memory Tagging Extension is optional. Where implemented the following must apply:

– If MTE is provided, the implementation can be full including instructions and checks, or just provide
support for the instructions.

– All general purpose volatile host memory that can be used by an operating system for applications
will support memory tagging. Dedicated memories for accelarators, or remote memory, or volatile
memory do not need to support it. Firmware tables will indicate the memory ranges to the OS.

• All PEs will implement Armv8.5-PMU.

• If PEs implement the Scalable Vector Extension (SVE) and the Statistical Profiling Extension (SPE), the
PEs must implement Armv8.3-SPE.

• Hardware updates to Access flag and Dirty state in translation tables, as indicated by ID_AA64MMFR1_EL1.HAFDBS
= 0b0010, must be supported.

In addition to these requirements, Arm strongly recommends that, the server base system removes the
need for data cache clean for instruction to data coherency, and instruction invalidation for instruction to data
coherency, as indicated by CTR_EL0.IDC == 0b1 and CTR_EL0.DIC == 0b1 respectively.

Page 30 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

4.5.2 System MMU and Device Assignment

In order to facilitate page table sharing between PE and SMMU, the following SMMU features are required for
an SBSA level 6 compliant system:

• The SMMU must implement support for 16 bit ASID.

• The SMMU must implement support for 16 bit VMID.

• The SMMU will support little-endian for translation table walks, and at a minimum must match the
endianness support of the PEs.

• The SMMU must support the translation granule sizes that are supported by the PEs.

• The DVM capabilities of all DVM receivers (SMMUs and PEs) need to be the same or need to be a
superset of the DVM capabilities of all DVM initiators (PEs). For example, if PEs use Armv8.4 and can
issue TLB range invalidation instructions, the SMMU need to support range invalidation.

Note

From level 3 the PEs must support 4K and 64K granules at stage 1 and stage 2.

• if PEs implement ARMv8.2-LVA (ID_AA64MMFR2_EL1.VARange = 0b0001) the SMMU must support
extended virtual addresses (SMMU_IDR5.VAX = 0b01).

Note

From level 3 the SBSA already requires that a device behind an SMMU must be able to see the
whole physical address space that is visible to PEs. This means that, if PEs implement Armv8.2-LPA
(ID_AA64MMFR0_EL1.PARange = 0b0110) then the SMMU must support a 52-bit output size
(SMMU_IDR5.OAS = 0b0110).

• The SMMU must implement coherent access to in memory structures, queues, and page tables as
indicated by SMMU_IDR0.COHACC = 0b1.

• The SMMU must support hardware translation table update (HTTU) of the Access flag and the Dirty
state of the page for AArch64 translation tables, as indicated by SMMU_IDR0.HTTU = 0b10.

• The SMMU must support Message Signalled Interrupts as indicated by SMMU_IDR0.MSI = 0b1.

4.5.3 Armv8 RAS extension requirements

PEs or other system components that implement the Armv8 RAS extension [10] must:

• Use Private Peripheral Interrupts for ERI or FHI if the only interface available for a RAS node is system
register based.

• Use the generic counter timebase if the timestamp extension is implemented. This means that
ERR<n>FR.TS must be either b00 or b01.

Arm recommends that the Timestamp error extension is implemented.

Support for error injection is optional, however Arm recommends that if error injection is supported, the
standard programming model described in the Armv8 RAS extension version 1.1 is followed. This is indicated
by ERR<n>FR.INJ==b01.

Page 31 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

A GENERIC WATCHDOG

A.1 About

The Generic Watchdog aids the detection of errant system behavior. If the Generic Watchdog is not refreshed
periodically, it will raise a signal, which is typically wired to an interrupt. If this watchdog remains un-refreshed,
it will raise a second signal which can be used to interrupt higher-privileged software or cause a PE reset.

The Generic Watchdog has two register frames, one that contains the refresh register and one for control of
the watchdog.

A.2 Watchdog Operation

The Generic Watchdog has the concept of a Cold reset and a Warm reset. On a Cold reset, certain register
values are reset to a known state. Watchdog Cold reset must only occur as part of the watchdog powering-up
sequence. On a Warm reset, the architectural state of the watchdog is not reset, but other logic such as the
bus interface might be. This is to facilitate the PEs in the system going through a reset sequence, while the
watchdog retains its state so it can be examined when the PEs are running.

The basic function of the Generic Watchdog is to count for a fixed period of time, during which it expects to be
refreshed by the system indicating normal operation. If a refresh occurs within the watch period, the period is
refreshed to the start. If the refresh does not occur then the watch period expires, and a signal is raised and a
second watch period is begun.

The initial signal is typically wired to an interrupt and alerts the system. The system can attempt to take
corrective action that includes refreshing the watchdog within the second watch period. If the refresh is
successful, the system returns to the previous normal operation. If it fails, then the second watch period
expires and a second signal is generated. The signal is fed to a higher agent as an interrupt or reset for it to
take executive action.

The Watchdog uses the Generic Timer system counter as the timebase against which the decision to trigger
an interrupt is made.

Note

The Arm ARM states that the system counter measures the passing of real-time. This counter is sometimes
referred to as the physical counter.

The Watchdog is based on a 64-bit compare value and comparator. When the generic timer system count
value is greater than the compare value, a timeout refresh is triggered.

The compare value can either be loaded directly or indirectly on an explicit refresh or timeout refresh.

When the watchdog is refreshed explicitly, the compare value is loaded with the sum of the zero-extended
watchdog offset register and the current generic timer system count value.

The SBSA 5.0 release introduces revision 1 for the generic watchdog. Revision 1 increases the length the
watchdog offset register to 48 bit. The operation of the watchdog remains the same. Software can determine
which version of the watchdog is implemented through the watchdog interface identification register (W_IID).

Note

Page 32 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Arm strongly recommends that SBSA Level 5 systems use revision 1 of the generic watchdog, as at 1Ghz
the watchdog timeout refresh period is limited to just over 4s.

When the watchdog is refreshed through a timeout, the compare value is loaded with the sum of the
zero-extended watchdog offset register and the current generic timer system count value. See below for
exceptions.

An explicit watchdog refresh occurs when one of a number of different events occur:

• The Watchdog Refresh Register is written.
• The Watchdog Offset Register is written.
• The Watchdog Control and Status register is written.

In the case of an explicit refresh, the Watchdog Signals are cleared. A timeout refresh does not clear the
Watchdog Signals.

The watchdog has the following output signals:

• Watchdog Signal 0 (WS0).
• Watchdog Signal 1 (WS1).

If WS0 is asserted and a timeout refresh occurs, then the following must occur:

• If the system is compliant to SBSA level 0 or level 1, then it is IMPLEMENTATION DEFINED whether the
compare value is loaded with the sum of the zero-extended watchdog offset register and the current
generic timer system count value, or whether it retains its current value.

• If the system is compliant to SBSA level 2 or higher, the compare value must retain its current value.
This means that the compare value records the time that WS1 is asserted.

If both watchdog signals are deasserted and a timeout refresh occurs, WS0 is asserted.

If WS0 is asserted and a timeout refresh occurs, WS1 is asserted.

WS0 and WS1 remain asserted until an explicit refresh or watchdog Cold reset occurs.

WS0 and WS1 are deasserted when the watchdog is disabled.

The status of WS0 and WS1 can be read in the Watchdog Control and Status Register.

Note

The following pseudocode assumes that the compare value is not updated on a timeout refresh when WS0
== 1 and does not show the other permitted behavior.

TimeoutRefresh = (SystemCounter [63:0] > CompareValue [63:0])

If WatchdogColdReset

WatchdogEnable = DISABLED

Endif

If LoadNewCompareValue

CompareValue = new_value

ElseIf ExplicitRefresh == TRUE or (TimeoutRefresh == TRUE and WS0 == FALSE)

CompareValue = SystemCounter [63:0] + ZeroExtend(WatchdogOffsetValue [47:0])

Endif

If WatchdogEnable == DISABLED

WS0 = FALSE

WS1 = FALSE

ElseIf ExplicitRefresh == TRUE

WS0 = FALSE

WS1 = FALSE

ElseIf TimeoutRefresh == TRUE

If WS0 == FALSE

Page 33 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

WS0 = TRUE

Else

WS1 = TRUE

Endif

Endif

The Generic Watchdog must be disabled when the System Counter is being updated, or the results are
UNPREDICTABLE.

A.3 Register summary

This section gives a summary of the registers, relative to the base address of the relevant frames.

All registers are 32 bits in size and should be accessed using 32-bit reads and writes. If an access size other
than 32 bits is used then the results are IMPLEMENTATION DEFINED. There are two register frames, one for a
refresh register, and the other containing the status and setup registers.

The Generic Watchdog is little-endian. Table 13 shows the refresh frame.

Table 13: Refresh Frame

Offset Name Description

0x000-0x003 WRR Watchdog refresh register. A write to this
location causes the watchdog to refresh and
start a new watch period. A read has no effect
and returns 0.

0x004-0xFCB - Reserved.
0xFCC-0xFCF W_IID See Section A.4.2
0xFD0-0xFFF - IMPLEMENTATION DEFINED.

Table 14 shows the watchdog control frame.

Table 14: Watchdog Control Frame

Offset Name Description

0x000-0x003 WCS Watchdog control and status register. A read/write register
containing a watchdog enable bit, and bits indicating the
current status of the watchdog signals.

0x004-0x007 - Reserved.
0x008-0x00B WOR[31:0] Watchdog offset register. A read/write register containing the

lower 32 bits of the unsigned watchdog countdown timer value.
0x00C-0x00F WOR[63:32] Watchdog offset register:

Bits [31:16]
Reserved. Read all zeros,
write has no effect.

Bits [15:0]
Read/write upper 16 bits of
the watchdog countdown
timer.

0x010-0x013 WCV[31:0] Watchdog compare value. Read/write registers
0x014-0x017 WCV[63:32] containing the current value in the watchdog compare register.
0x018-0xFCB - Reserved.

Page 34 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Offset Name Description

0xFCC-0xFCF W_IIDR See Section A.4.2
0xFD0-0xFFF - IMPLEMENTATION DEFINED

Note

In the previous revision of the SBSA generic watchdog, revision 0, the Watchdog offset register was 32 bit,
and offset 0x00C-0x00F was Reserved.

A.4 Register descriptions

A.4.1 Watchdog Control and Status Register

The format of the Watchdog Control and Status Register is:

Bits [31:3]

Reserved. Read all zeros, write has no effect.

Bits [2:1] – Watchdog Signal Status bits

A read of these bits indicates the current state of the watchdog signals; bit [2] reflects the status of
WS1 and bit [1] reflects the status of WS0.

A write to these bits has no effect.

Bit [0] – Watchdog Enable bit

A write of 1 to this bit enables the Watchdog, a 0 disables the Watchdog.

A read of these bits indicates the current state of the Watchdog enable.

The watchdog enable bit resets to 0 on watchdog Cold reset.

A.4.2 Watchdog Interface Identification Register

W_IIDR is a 32-bit read-only register. The format of the register is:

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture version, bits [19:16]

Revision field for the Generic Watchdog architecture. The value of this field depends on the Generic
Watchdog architecture version:

• 0x1 for Generic Watchdog v1.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the component.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Generic Watchdog:

Bits [11:8] The JEP106 continuation code of the implementer.

Page 35 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Bit [7] Always 0.

Bits [6:0] The JEP106 identity code of the implementer.

Page 36 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

B GENERIC UART

B.1 About

This specification of the Arm generic UART is designed to offer a basic facility for software bring up and as
such specifies the registers and behavior required for system software to use the UART to receive and transmit
data. This specification does not cover registers needed to configure the UART as these are considered
hardware-specific and will be set up by hardware-specific software. This specification does not cover the
physical interface of the UART to the outside world, as this is system specific.

The registers specified in this specification are a subset of the Arm PL011 r1p5 UART. An instance of the
PL011 r1p5 UART will be compliant with this specification.

An implementation of the Generic UART must provide a transmit FIFO and a receive FIFO. Both FIFOs must
have the same number of entries, and this number must be at least 32. The generic UART does not support
DMA Features, Modem control features, Hardware flow control features, or IrDA SIR features.

The generic UART uses 8-bit words, equivalent to UARTLCR_H.WLEN == b11.

The basic use model for the FIFO allows software polling to manage flow, but this specification also requires
an interrupt from the UART to allow for interrupt-driven use of the UART.

Table 15 identifies the minimum register set used for SW management of the UART.

B.2 Generic UART register frame

The Generic UART is specified as a set of 32-bit registers. However it is required that implementations support
accesses to these registers using read and writes accesses of various sizes. The required access sizes are
included in Table 15. The base address of each access, independent of access size, must be the same as the
base address of the register being accessed.

If an access size not listed in the table is used, the results are IMPLEMENTATION DEFINED.

The Generic UART is little-endian.

Page 37 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Table 15: Base UART Register Set

Offset Name Description

Permitted
access
sizes/bits

0x000-0x003 UARTDR
Data Register

A 32-bit read/write register.
Bits [7:0]

An 8-bit data
register used to
access the Tx
and Rx FIFOs.

Bits [11:8]
4 bits of error
status used to
detect frame
errors.
Read-only.

Bits [31:12] - Reserved.
(Ref Section 3.3.1 -
PL011TRM [11])

Read: 16,32
Write: 8,16,32

0x004-0x007 UARTRSR/UARTECR
Receive status
and error clear
register

A 32-bit read/write register –
a write clears the bits
Bits [3:0]

Four bits of error
status, used to
detect frame
errors as in the
UARTDR
register, except it
allows clearing of
these bits.

Bits [31:4] - Reserved.
(Ref Section 3.3.2 -
PL011TRM [11])

Read: 16,32
Write: 8,16,32

0x018-0x01c UARTFR
Flag Register

A 32-bit read-only register.
Bits [2:0] - Reserved
Bits [7:3]

Bits indicate
state of UART
and FIFOs, with
operation as
PL011.

Bits [15:8] - Reserved.
(Ref Section 3.3.3 -
PL011TRM [11])

Read: 8, 16, 32

Page 38 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Offset Name Description

Permitted
access
sizes/bits

0x03c-0x03f UARTRIS
Raw Interrupt
Status Register

A 32 bit read-only register.
Bits [3:0] - Reserved.
Bits [10:4]

Bits used
indicate state of
Interrupts.

Bits [31:11] - Reserved.
(Ref Section 3.3.11 -
PL011TRM [11])

Read: 16, 32

0x040-0x043 UARTMIS
Masked Interrupt
Status Register

A 32 bit read-only register.
Bits [3:0] - Reserved.
Bits [10:4]

Bits used
indicate state of
Interrupts.

Bits [31:11] - Reserved.
(Ref Section 3.3.12 -
PL011TRM [11])

Read: 16, 32

0x038-0x03b UARTIMSC
Mask Set/Clear
Register

A 32-bit read/write register
showing the current mask
status.
Bits [3:0]
Write as Ones.
Bits[10:4]

Bits used to set
or clear the mask
bits assigned to
the
corresponding
interrupts:
1 = mask
0 = unmask.

Bits [31:11]
Reserved,
preserve value.

(Ref Section 3.3.10 -
PL011TRM [11])

Read: 16, 32
Write: 16, 32

Page 39 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Offset Name Description

Permitted
access
sizes/bits

0x044-0x047 UARTICR
Interrupt Clear
Register

A 32-bit write-only register.
Bits[3:0]

Reserved
Bits [10:4]

Bits used to clear
the interrupts
whose status is
indicated in
UARTRIS.

Bits[31:11] - Reserved
(Ref Section 3.3.13 -
PL011TRM [11])

Write: 16, 32

B.3 Interrupts

The UARTINTR interrupt output must be connected to the GIC.

B.4 Control and setup

Hardware-specific software is required to set up the UART into a state where the above specification can be
met and the UART can be used.

This setup is equivalent to the following PL011 state:

UARTLCR_H.WLEN == b11 // 8-bit word

UARTLCR_H.FEN == b1 // FIFO enabled

UARTCR.RXE == b1 // receive enabled

UARTCR.TXE == b1 // transmit enabled

UARTCR.UARTEN == b1 // UART enabled

B.5 Operation

The base UART operation complies with the subset of features implemented of the Pl011 Primecell UART,
the operation of which can be found in sections 2.4.1, 2.4.2, 2.4.3, and 2.4.5 of the ARM® PrimeCell® UART
(PL011) Technical Reference Manual [11]. Operations of the IrDA SIR, modem, hardware flow control, and
DMA are not supported.

Page 40 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

C PERMITTED ARCHITECTURAL DIFFERENCE BETWEEN PES

Table 16 shows the permitted differences in architected registers between PEs in a single base server system.
The permitted differences column lists the bit fields for a register that can vary from PE to PE. Where a bit
field is not listed, the value must be the same across all PEs in the system.

Table 16: Permitted architectural differences

Description Short-Form Permitted Differences

AArch64 Memory Features
Register

ID_AA64MMFR0_EL1 Bits [3:0] describing the supported
physical address range.

Main ID Register MIDR_EL1 Part number [15:4], Revision [3:0],
Variant [23:20].

Virtualization Processor ID
Register

VPIDR_EL2 Same fields as MIDR_EL1, writable by
hypervisor.

Multiprocessor ID Register MPIDR_EL1 Bits [39:32] and Bits [24:0]. Affinity fields
and MT bit.

Virtualization Multiprocessor
ID Register

VMPIDR_EL2 Same fields as MPIDR, writable by
hypervisor.

Cache type register CTR_EL0 Bits [15:14] Level 1 Instruction Cache
Policy.

Revision ID Register REVIDR_EL1 Specific to implementation indicates
implementation specific Revisions/ECOs.
All bits can vary.

Cache level ID register CLIDR_EL1 All bits, each PE can have a unique
cache hierarchy.

Cache Size ID Register CCSIDR_EL1 Sets [27:13], Data cache associativity
[12:3]. Caches on different PEs can be
different sizes.

Auxiliary Control Register ACTLR_EL{1,2,3} Specific to implementation, all bits can
vary.

Auxiliary Fault Status
Registers

AFSR{0,1}_EL{1,2,3} Specific to implementation, all bits can
vary.

Note

Not all SBSA compliant operating software supports heterogeneous PEs. SoC designers should factor the
level of support in operating software for a SoC’s target market into their design decisions.

Page 41 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

D PCI EXPRESS INTEGRATION

D.1 Configuration space

Systems must map memory space to PCI Express Configuration Space, using the PCI Express Enhanced
Configuration Access Mechanism (ECAM). For more information about ECAM, see PCI Express Base
Specification Revision 3.1[1].

The ECAM maps Configuration Space to a contiguous region of memory address space, using bit slices of
the memory address to map on to the PCI Express Configuration Space address fields. This mapping is
shown in Table 17.

Table 17: Enhanced Configuration Address Mapping

Memory Address bits
PCI Express Configuration Space address
field

(20 + n - 1):20 Bus Number 1 <= n <= 8.
19:15 Device Number.
14:12 Function Number.
11:8 Extended Register Number.
7:2 Register Number.
1:0 Byte.

To ensure that the enumeration process works correctly, the following requirements must be met by a
combination of host bridge and PCIe Root Port:

• Once boot firmware hands over to the operating system, application processor accesses to ECAM
regions must work with no addition programming. The accesses must not require any OS visible
programming.

• The Configuration Space of all the devices, Root Ports, Root Complex Integrated Endpoints, and
switches behind a host bridge must be in a single ECAM region.

• A Root Port’s Configuration Space must be in the same ECAM region as the Configuration Space of the
Endpoints and switches in the hierarchy that originates at that root port.

• Root Port must appear as a PCI-PCI bridge to software (See Section 7.1 [1]).
– Must have all registers that are part of the Type 1 header as specified in PCIe specification (See

Section 7.5.1.3 [1]).
– Must have all the capabilities required by PCIe specification for a Root Port. This includes the PCI

express capability structure (See Section 7.5.3 [1]).
– All the registers must follow the access attributes (RW/RO etc) specified in the PCIe specification.

• Host bridge, in conjunction with Root Port, must be able to:
– Recognize transactions that are coming in from application PEs as PCIe configuration transactions

if the transaction address is within the ECAM range mapped to the Root Port, or the hierarchy that
originates at that Root Port. This must be done by mapping the address of the incoming memory
transaction to the PCIe Configuration address space, as described in Table 17 (See Section 7.2.2
[1]).

– Must return all 1’s as read response data for Configuration read requests to non-existent functions
and devices on the root bus, that is the primary bus of the Root Port. No error must be reported to
software by the Root Port unless explicitly enabled to do so (See Section 2.3.2 [1]).

– Must return all 1’s as read response data for Configuration read requests that gets an unsupported
request response from downstream Endpoints or switches. No error must be reported to software
by the Root Port unless explicitly enabled to do so (See Section 2.3.2 [1]).

– Must return all 1’s as read response data for Configuration read requests that arrive at the Root

Page 42 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Port when the Root port’s link is in DL_Down state (See Section 2.9.1 [1]).Note that this includes
the case when the link is in L3 and the downstream device is in D3cold. No error must be reported
to software by the Root Port unless explicitly enabled to do so (See Section 2.3.2 [1]).

– Must send out Configuration transactions that are intended for the subordinate bus range of the
Root Port as Type 1 Configuration transactions to downstream devices and switches. Subordinate
bus range is between secondary bus number, exclusive, and the subordinate bus number, inclusive.
(See Section 3.2.2.3.1 [12]).

– Must send out Configuration transactions that are intended for the secondary bus of the Root Port
as Type 0 Configuration transactions to devices and switches downstream (See Section 3.2.2.3.1
[12]).

– Must recognize and consume Configuration transactions intended for the Root Port Configuration
space and read/write the appropriate Root Port Configuration register (See Section 3.2.2.3.1 [12]).

– Must recognize transactions received on the primary side of the Root Port PCI-PCI bridge, targeting
prefetchable or non-prefetchable memory spaces of devices and switches that are on the secondary
side of the bridge:

* Where the address falls within the prefetchable or non-prefetchable memory windows specified
in the type 1 header registers, the transactions must be forwarded to the secondary side (See
Section 6.27.2 [1], Chapter 4 [13]).

* Where the address of the request does not fall within the prefetchable or non-prefetchable
memory windows that are specified in the type 1 header registers, the Root Port must respond
with unsupported request (See Section 6.27.2 [1], Chapter 4 [13]).

– The Root Port must comply with the byte enable rules that are specified in the PCIe specification
(See Section 2.2.5 [1]) and must support 1 byte, 2 byte and 4 byte Configuration read and write
requests.

• Arm strongly recommends that if the Root Port is the requester of a PCIe transaction, then the requestor
ID of the transaction is formed using the bus, device, and function numbers of the Root Port.

• Arm strongly recommends that completer ID for PCIe completions generated by the Root Port, for
example, Completion for a memory read request made earlier from an Endpoint to memory, is formed
using the bus, device ,and function numbers of the Root Port.

• Arm strongly recommends that the Root Port supports Configuration Request Retry Status (CRS)
software visibility feature. (See Section 2.3.2 [1]). If CRS software visibility is supported, then it must be
according to the CRS completion handling rules that are specified in the PCIe specification (See Section
2.3.2 [1]).

The system can implement multiple ECAM regions.

The base address of each ECAM region within the system memory map is IMPLEMENTATION DEFINED and is
expected to be discoverable from system firmware data.

Whether a system supports non-PE agents accessing ECAM regions is system-specific.

Note

Alternative Routing-ID Interpretation (ARI) is permitted. For buses with an ARI device the ECAM field
[19:12] is interpreted as the 8-bit function number.

D.2 PCI Express Memory Space

It is system-specific whether a system supports mapping PCI Express memory space as cacheable.

All systems must support mapping PCI Express memory space as either device memory or non-cacheable
memory. When PCI Express memory space is mapped as normal memory, the system must support unaligned
accesses to that region.

Page 43 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

PCI Type 1 headers, used in PCI-to-PCI bridges, and therefore in root ports and switches, have to be
programmed with the address space resources claimed by the given bridge. For non-prefetchable (NP)
memory, Type 1 headers only support 32-bit addresses. This implies that endpoints on the other end of a
PCI-to-PCI bridge only support 32-bit NP BARs. Systems compliant with SBSA Level 4 or above must support
32-bit programming of NP BARs on such endpoints. This can be achieved in two ways:

Method 1: PE physical address space can be reserved below 4G, whilst maintaining a one to one mapping
between PE physical address space and NP memory address space.

Method 2: It is also possible to use a fixed offset translation scheme that creates a fixed offset indirection
between PE physical address space, and PCI memory. This allows a window in PE physical address
space that is above 4G to be mirrored in PCI memory space below 4G. This requires support in the PHB.
Furthermore, firmware must program the PHB with the fixed offset, and to supply this information to the
OS [4].

Arm recommends Method 1 as it eases peer-to-peer support in NP memory.

D.3 PCI Express device view of memory

Transactions originating from a PCI express device will either directly address the memory system of the base
server system or be presented to a SMMU for optional address translation and permission policing.

For accesses from a PCIe endpoint to the host memory system, in systems compatible with SBSA Level 3 or
above, the following must be true:

• The addresses sent by PCI express devices must be presented to the memory system or SMMU
unmodified.

• In a system where the PCI express does not use an SMMU, the PCI express devices have the same view
of physical memory as the PEs. In a system with a SMMU for PCI express there are no transformations
to addresses being sent by PCI express devices before they are presented as an input address to the
SMMU.

Note

For accesses from a PE to the PCI memory space in a PCIe endpoint, offset based translation is permissible,
as described in Method 2 of section Section D.2

D.4 Message signaled interrupts

Support for Message Signaled Interrupts (MSI/MSI-X) is required for PCI Express devices. MSI and MSI-X
are edge-triggered interrupts that are delivered as a memory write transaction.

The system must implement an interrupt controller compliant with the ARM Generic Interrupt Controller, each
SBSA level specifies which version should be used.

Note

ARM introduced standard support for MSI(-X) in the GICv2m architecture [14], this support is extended in
GICv3.

The intended use model is that each unique MSI(-X) must trigger an interrupt with a unique ID and the MSI(-X)
must target GIC registers requiring no hardware specific software to service the interrupt.

Page 44 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

D.5 GICv3 support for MSI(-X)

GICv3 adds a new class of interrupt, LPI, to address MSI(-X). LPI can be targeted to a single PE.

In GICv3, SPI can be targeted at a single PE or can be “1 of N”, where the interrupt will be delivered to any
one of the PEs in the system currently powered up.

In GICv3, SPI are still limited in scale, but an implementation can support thousands of LPIs.

In GICv3, MSI(-X) can target SPI or LPI.

A single GICD_SETSPI_NSR register is supported for MSI targeting SPI. This is a compatibility break with
GICv2m, and does not support I/O virtualization.

GICv3 provides the GITS_TRANSLATER register for MSI targeting LPI. This register uses a Device_ID to
uniquely identify the originating device to fully support I/O virtualization, and is backed by memory-based
tables to support flexible retargeting of interrupts.

D.6 Legacy interrupts

PCI Express legacy Interrupt messages must be converted to an SPI:

• Each of the four legacy interrupt lines, of all PCI root ports within a PCI host bridge , must be allocated a
unique SPI ID.

• The exact SPI IDs that are allocated are IMPLEMENTATION DEFINED.
• Each legacy interrupt SPI must be programmed as level-sensitive in the appropriate GIC_ICFGR.

IMPLEMENTATION DEFINED registers must not be used to deliver these messages, only registers defined in the
PCI Express specification and the ARM GIC specification.

D.7 System MMU and Device Assignment

Hardware support for function or virtual function assignment to a VM or user space driver is optional, but if
required must use a System MMU compliant with the ARM System MMU specification [15].

Each function or virtual function that can be assigned to a VM or to a user space driver is associated with
a SMMU context. The programming of this association is IMPLEMENTATION DEFINED and is expected to be
described by system firmware data.

SMMU does not support PCI Express ATS until SMMUv3, and as such ATS support is system-specific in
systems that don not have a SMMUv3 or later.

Note

The Server Base System Architecture requires certain versions of the SMMU to be used at particular levels
of the specification.

Functions intended for VM assigment, or assigment to a user space driver must implement function level
reset.

Page 45 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

D.8 I/O Coherency

PCI Express transactions not marked as No_snoop accessing memory that the PE translation tables attribute
as cacheable and shared are I/O Coherent with the PEs.

The PCI Express root complex is in the same Inner Shareable domain as the PEs.

I/O Coherency fundamentally means that no software coherency management is required on the PEs for the
PCI Express root complex, and therefore devices, to get a coherent view of the PE memory.

This means that if a PCI Express device is accessing cached memory then the transactions from the PCI
Express devices will snoop the PE caches.

PCI Express also allows PCI Express devices to mark transactions as No_snoop. The memory accessed by
such transactions must have coherency managed by software.

The following sections summarize the attributes the transactions from the PCI Express root complex must
have and how coherency is maintained.

D.8.1 PCI Express I/O Coherency without System MMU

In the case where there is not a System MMU translating transactions from the root complex, the system
must be able to distinguish between addresses that are targeted at memory and devices. Transactions that
are targeted at devices must be treated as device type accesses. They must be ordered, must not merge
and must not allocate in caches. Transactions that are targeted at memory and that are marked No Snoop
must be presented to the memory system as non-cached. Transactions that are targeted at memory and not
marked as No_snoop must be presented as cached, shared.

The following table shows how coherency is managed for PCI Express transactions. If a memory page is
marked as non-cached in the PE translation tables, all PCI Express transactions accessing that memory must
be marked as No_snoop. Failure to do so can result in loss of coherency.

Table 18: PCI Express transaction types and I/O coherency

PE page table attribute
PCI Express transaction
type

PCI Express transaction
memory attributes

Coherency
management

Cacheable, shared Snoop Cacheable, shared Hardware
No_snoop Non-cached Software

Cacheable, non-shared Snoop Cacheable, shared Software
No_snoop Non-cached Software

Non-cached Snoop Not allowed Not allowed
No_snoop Non-cached Hardware

D.8.2 PCI Express I/O Coherency with System MMU

In the case where the system has a System MMU translating and attributing the transactions from the root
complex, the PCI Express transactions must keep the memory attributes assigned by the System MMU. If the
System MMU-assigned attribute is cacheable then it is IMPLEMENTATION DEFINED if No_snoop transactions
replace the attribute with non-cached.

Page 46 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

D.9 Legacy I/O

The specification does not require a support for legacy I/O transactions. If an implementation supports
legacy I/O, it is supported using a one to one mapping between legacy I/O space and a window in the host
physical address space. However, such schemes must not require a kernel driver to be set up, any necessary
initialization must be performed prior to OS boot.

D.10 Integrated end points

Feedback from OS vendors has indicated that they have seen many ‘almost PCI Express’ integrated endpoints.
This leads to a bad experience and either no OS support for the endpoint or painful bespoke support.

Anything claiming to follow the PCI Express specification must follow all the specification that is software-visible
to ensure standard, quality software support. Detailed rules are given in Section E.

D.11 Peer-to-peer

It is system-specific whether peer-to-peer traffic through the system is supported.

Systems compatible with level 3 or above of the SBSA must not deadlock if PCI express devices attempt
peer-to-peer transactions – even if the system does not support peer-to-peer traffic. This rule is needed to
uphold the principle that a virtual machine and its assigned devices should not deadlock the system for other
virtual machines or the hypervisor.

In a system where the PCIe hierarchy allows peer-to-peer transactions, the root ports in an ARM based SoC
must implement PCIe access control service (ACS) features.

For Root ports this means that the following must be supported:

1. ACS Source Validation. (V)
2. ACS Translation Blocking. (B)
3. ACS P2P Request Redirect (R).
4. ACS P2P Completion Redirect (C).
5. ACS Upstream Forwarding (U).
6. The root port must support redirected request validation by querying an ARM architecture compliant

SMMU to get the final target physical address and access permission information.
7. The root port must support ACS violation error detection, logging and reporting. Logging and reporting

must be through the usage of AER mechanism.

ACS P2P egress control is optional.

If the Root port supports peer-to-peer traffic with other root ports, then it must support the following:

1. Validation of the peer-to-peer transactions prior to sending it to the destination root port using the same
mechanism as ACS redirected request validation. Any ACS violation error generated because of the
request validation should be reported using the standard ACS violation error detection, logging and
reporting mechanism specified in PCIe specification.

2. If the root port supports Address Translation services and peer-to-peer traffic with other root ports, then
it must support ACS direct translated P2P (T).

Since isolation between IO devices can be broken by the presence of any peer-to-peer capable entity in a
PCIe hierarchy, ARM strongly recommends the following for an ARM based system:

• All PCIe switches should support the following features:
1. ACS Source Validation (V).
2. ACS Translation Blocking (B).

Page 47 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

3. ACS P2P Request Redirect (R).
4. ACS P2P Completion Redirect (C).
5. ACS Upstream Forwarding (U).
6. ACS Direct Translated P2P (T).
7. ACS violation error detection, logging and reporting as specified in PCIe specification for ACS.
8. Use of AER capability for logging and reporting ACS violation errors

• All multi-function devices, SR-IOV and non-SR-IOV, that are capable of peer-to-peer traffic between
different functions should support the following features:

1. ACS P2P Request Redirect (R).
2. ACS P2P Completion Redirect (C).
3. ACS Direct Translated P2P (T)
4. The device must support ACS violation error detection, logging and reporting as specified in PCIe

specification for ACS.

D.12 PASID support

SMMUv3 included optional support for PCIe PASID. If the system supports PCIe PASID, then at least 16 bits
of PASID must be supported. This support must be full system support, from the root complex through to the
SMMUv3 and any end points for which PASID support is required.

D.13 PCIe Precision Time Measurement

Any system that implements PCIe Precision Time Measurement (PTM) [1] must use the ARM architecture
defined System Counter [3] as PTM master time source at the PTM root(s).

Page 48 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

E PRESENTING AN ON-CHIP PERIPHERAL AS PCIE DEVICE

E.1 Enumeration rules

Two options are provided for presenting on-chip peripherals as PCIe devices.

E.1.1 Option 1: The IO peripheral/accelerator as a Root Complex Integrated
Endpoint (RCiEP)

In this option, the on-chip peripheral appears to software during enumeration as a Root Complex Integrated
EndPoint (RCiEP) that is connected to the root bus behind a host bridge. Figure 2 shows how the peripheral
would be visible to software with this option.

Figure 2: Peripheral presented as an RCiEP behind a host bridge

In this option, a Root Complex Event Collector (RCEC) must be present if any of the following is true:

• Any of the functions in the RCiEP needs to have Advanced Error Reporting (AER) or PCIe baseline error
reporting. Please refer to Section 6.2 of the PCIe specification for details on baseline and Advanced
error reporting.[1]

• The RCiEP needs to have PCIe PME event signalling. Please refer to Section 6.1.6 of the PCIe
specification for details on PCIe PME support. [1]

E.1.2 Option 2: The on-chip peripheral/accelerator as an endpoint behind a Root
Port

In this option, the on-chip peripheral appears to software during enumeration as an endpoint that is behind a
Root Port, which in turn is behind a host bridge. Figure 3 shows how the peripheral or accelerator would be
visible to software with this option. In this document, the acronym i-EP denotes this combination of Root Port
and the integrated Endpoint.

Page 49 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Figure 3: Peripheral presented as an Endpoint behind a Root Port

Note

If bus number consumption is a concern, then it is recommended that each i-EP has its own segment
group.

E.1.3 Option 1 and Option 2: A comparison

Table 19 lists the key differences between the RCiEP and i-EP options.

Table 19: Comparison between RCiEP and i-EP options

Functional Area RCiEP option i-EP option

Enumeration OS support is available. OS support is available.
RAS: AER based error Requires RCEC. At the time of OS support is available.
logging and reporting support. writing of this specification,

OS support is not available.
Power management: PCIe PME event Requires RCEC.At the time of OS support is available.
reporting and logging. writing of this specification,

OS support is not available.
Link related registers Not required. Required by PCIe specification

in Root Port and the endpoint.
Greater than 8 Physical Functions Not possible since ARI Mode is Possible.
per device not permitted.

Note

AER or PCIe baseline error reporting is necessary only if the RCiEP or the RCEC detects errors that are

Page 50 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

defined by the PCIe specification. See Section 6.2.7 in the PCIe specification for the list of errors.[1]

E.1.4 Configuration Address space decoding rules for the RCiEP and the i-EP

The following functionality must be available:

• An IMPLEMENTATION DEFINED mechanism for providing the bus and device number to each i-EP Root
Port, RCiEP and RCEC.

• The i-EP Root Port must comply with all the enumeration related requirements that are given in
Section D.1.

• The i-EP Endpoint must be able to capture the bus number for each of its functions.

• Ability to recognize read or write requests coming in from PEs as PCIe configuration requests if the
request’s address is within the ECAM range that is allocated to the host bridge of i-EP or RCiEP.

• Ability to identify the specific function that is targeted by a configuration access. A response data of all
1’s must be returned for a configuration read request if the function does not exist in any RCiEP, RCEC,
i-EP Endpoint, or i-EP Root Port. No error must be signalled for this configuration read unless explicitly
enabled by software.

• When a RCiEP, RCEC, or i-EP function is temporarily unable to process a configuration request following
a reset and the reset is one of the valid reset conditions defined in Section 2.3.1 of the PCIe specification
[1], the following are response options:

– Respond as defined in PCIe specification if the following are true:

* Configuration Retry Status (CRS) visibility is present and is enabled.

* The request is a configuration read to an address that includes the two bytes of the Vendor ID
field.

– Otherwise, do not respond to the request until the function is ready.

E.2 Memory space address decoding rules for the RCiEP and i-EP

All BAR registers in an RCiEP, i-EP endpoint and i-EP Root Port must be writeable and readable as per the
PCIe specification. Dynamic re-programming of these BAR registers must be allowed.

E.3 Option 1 RCiEP required capabilities and registers

Option 1 requires implementation of the following:

• All type 0 header registers must be implemented for RCiEP and RCEC. The requirements that need to
be met while implementing these registers are shown in Table 20.

• The registers that are specified in Section 7.5.3 of the PCIe specification [1] for all devices must be
implemented for RCiEP. The requirements that need to be met while implementing these registers are
shown in Table 21.

• All registers of the PCI power management capability must be implemented for RCiEP and RCEC. The
requirements that need to be met while implementing these registers are shown in Table 22.

• The registers that are specified in Section 7.5.3 of the PCIe specification [1] for Root Complex Event
Collectors must be implemented for RCEC. The requirements that need to be met while implementing
these registers are shown in Table 23.

Page 51 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

• All registers of the Root Complex Event Collector Endpoint Association Extended Capability must be
implemented by the RCEC. The requirements that need to be met while implementing these registers
are shown in Table 24.

Table 20: Type 0 header registers required for RCiEP and RCEC

Register Requirement

Device ID Implement as described in PCIe specification.
Vendor ID Implement as described in PCIe specification.
Status Implement as described in PCIe specification.
Command Implement as described in PCIe specification.
Class Code Implement as described in PCIe specification.
Revision ID Implement as described in PCIe specification.
BIST Implement as described in PCIe specification.
Header Type Implement as described in PCIe specification.
Latency Timer Implement as described in PCIe specification.
Cache Line Size Implement as described in PCIe specification.
Base Address Registers Implement as described in PCIe specification.
Cardbus CIS Pointer Implement as described in PCIe specification.
Subsystem ID Implement as described in PCIe specification.
Subsystem Vendor ID Implement as described in PCIe specification.
Expansion ROM Base Address Implement as described in PCIe specification.
Capabilities Pointer Implement as described in PCIe specification.
Max_Lat Implement as described in PCIe specification.
Min_Gnt Implement as described in PCIe specification.
Interrupt Pin Implement as described in PCIe specification.
Interrupt Line Implement as described in PCIe specification.

Table 21: PCI Express Capability registers required for RCiEP

Register Requirement

PCI Express Capabilities Register see Section E.14.1
Next Cap Pointer Implement as described in PCIe specification.
PCI Express CAP ID Implement as described in PCIe specification.
Device Capabilities see Section E.14.2
Device Status Implement as described in PCIe specification.
Device Control see Section E.14.3
Device Capabilities 2 see Section E.14.4
Device Status 2 Implement as described in PCIe specification.
Device Control 2 see Section E.14.5

Registers in Table 22 are required for RCiEP and RCEC.

Table 22: Power management capability registers

Register Requirement

Power Management Capabilities (PMC) see Section E.14.6
Next Capability Pointer Implement as described in PCIe specification.
Capability ID Implement as described in PCIe specification.
Data see Section E.14.8
Power Management Control/Status (PMCSR) see Section E.14.7

Page 52 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Registers in Table 23 are required for RCEC.

Table 23: PCI Express Capability registers

Register Requirement

PCI Express Capabilities Register see Section E.14.1
Next Cap Pointer Implement as described in PCIe specification.
PCI Express CAP ID Implement as described in PCIe specification.
Device Capabilities see Section E.14.2
Device Status Implement as described in PCIe specification.
Device Control see Section E.14.3
Root Capabilities Implement as described in PCIe specification.
Root Control Implement as described in PCIe specification.
Root Status Implement as described in PCIe specification.
Device Capabilities 2 see Section E.14.4
Device Status 2 Implement as described in PCIe specification.
Device Control 2 see Section E.14.5

Registers in Table 24 are required for RCEC.

Table 24: RCEC Endpoint Association Extended Capability registers

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.
Association Bitmap for RCiEPs Implement as described in PCIe specification.
RCEC Associated Bus Numbers Implement as described in PCIe specification.

E.4 Option 2 i-EP required capabilities and registers

Option 2 requires implementation of the following:

• All type 0 header registers must be implemented for i-EP Endpoint. The requirements that need to be
met while implementing these registers are shown in Table 28.

• All type 1 header registers must be implemented for i-EP Root Port. The requirements that need to be
met while implementing these registers are shown in Table 25.

• The registers mandated in Section 7.5.3 of the PCIe specification [1] for an endpoint that is not a RCiEP
must be implemented for i-EP Endpoint. The requirements that need to be met while implementing these
registers are shown in Table 29.

• All registers of the PCI Power Management Capability must be implemented for i-EP Endpoint and Root
Port. The requirements that need to be met while implementing these registers are shown in Table 27.

• The registers mandated in Section 7.5.3 of the PCIe specification [1] for Root Ports must be implemented
for Root Port. The requirements that need to be met while implementing these registers are shown in
Table 26.

Table 25: Type 1 header registers required for Root Port

Register Requirement

Device ID Implement as described in PCIe specification.
Vendor ID Implement as described in PCIe specification.
Status Implement as described in PCIe specification.
Command see Section E.15.1

Page 53 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Register Requirement

Class Code Implement as described in PCIe specification.
Revision ID Implement as described in PCIe specification.
BIST Implement as described in PCIe specification.
Header Type Implement as described in PCIe specification.
Primary Latency Timer Implement as described in PCIe specification.
Cache Line Size Implement as described in PCIe specification.
Base Address Register 0 Implement as described in PCIe specification.
Base Address Register 1 Implement as described in PCIe specification.
Secondary Latency Timer Implement as described in PCIe specification.
Subordinate Bus Number Implement as described in PCIe specification.
Secondary Bus Number Implement as described in PCIe specification.
Primary Bus Number Implement as described in PCIe specification.
Secondary Status Implement as described in PCIe specification.
I/O Limit Implement as described in PCIe specification.
I/O Base Implement as described in PCIe specification.
Memory Limit Implement as described in PCIe specification.
Memory Base Implement as described in PCIe specification.
Prefetchable Memory Limit Implement as described in PCIe specification.
Prefetchable Memory Base Implement as described in PCIe specification.
Prefetchable Memory Base Upper 32 Bits Implement as described in PCIe specification.
Prefetchable Memory Limit Upper 32 Bits Implement as described in PCIe specification.
I/O Base Limit 16 Bits Implement as described in PCIe specification.
I/O Base Upper 16 Bits Implement as described in PCIe specification.
Capabilities Pointer Implement as described in PCIe specification.
Expansion ROM Base Address Implement as described in PCIe specification.
Bridge Control see Section E.15.1
Interrupt Pin Implement as described in PCIe specification.
Interrupt Line Implement as described in PCIe specification.

Table 26: PCI Express Capability registers required for Root Port

Register Requirement

PCI Express Capabilities Register see Section E.15.8
Next Cap Pointer Implement as described in PCIe specification.
PCI Express CAP ID Implement as described in PCIe specification.
Device Capabilities see Section E.15.9
Device Status Implement as described in PCIe specification.
Device Control see Section E.15.10
Link Capabilities see Section E.15.13
Link Status see Section E.15.15
Link Control see Section E.15.14
Slot Capabilities see Section E.15.5
Slot Status see Section E.15.7
Slot Control see Section E.15.6
Root Capabilities Implement as described in PCIe specification.
Root Control Implement as described in PCIe specification.
Root Status Implement as described in PCIe specification.
Device Capabilities 2 see Section E.15.11
Device Status 2 Implement as described in PCIe specification.
Device Control 2 see Section E.15.12
Link Capabilities 2 see Section E.15.16
Link Status 2 see Section E.15.17

Page 54 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Register Requirement

Link Control 2 see Section E.15.18

Table 27: Power management capability registers required for Root Port and Endpoint

Register Requirement

Power Management Capabilities (PMC) see Section E.15.2
Next Capability Pointer Implement as described in PCIe specification.
Capability ID Implement as described in PCIe specification.
Data see Section E.15.4
Power Management Control/Status (PMCSR) see Section E.15.3

Table 28: Type 0 header registers required for Endpoint

Register Requirement

Device ID Implement as described in PCIe specification.
Vendor ID Implement as described in PCIe specification.
Status Implement as described in PCIe specification.
Command Implement as described in PCIe specification.
Class Code Implement as described in PCIe specification.
Revision ID Implement as described in PCIe specification.
BIST Implement as described in PCIe specification.
Header Type Implement as described in PCIe specification.
Latency Timer Implement as described in PCIe specification.
Cache Line Size Implement as described in PCIe specification.
Base Address Registers Implement as described in PCIe specification.
Cardbus CIS Pointer Implement as described in PCIe specification.
Subsystem ID Implement as described in PCIe specification.
Subsystem Vendor ID Implement as described in PCIe specification.
Expansion ROM Base Address Implement as described in PCIe specification.
Capabilities Pointer Implement as described in PCIe specification.
Max_Lat Implement as described in PCIe specification.
Min_Gnt Implement as described in PCIe specification.
Interrupt Pin Implement as described in PCIe specification.
Interrupt Line Implement as described in PCIe specification.

Table 29: PCI Express Capability registers required for Endpoint

Register Requirement

PCI Express Capabilities Register see Section E.14.1
Next Cap Pointer Implement as described in PCIe specification.
PCI Express CAP ID Implement as described in PCIe specification.
Device Capabilities see Section E.15.9
Device Status Implement as described in PCIe specification.
Device Control see Section E.15.10
Link Capabilities see Section E.15.13
Link Status see Section E.15.15
Link Control see Section E.15.14
Device Capabilities 2 see Section E.15.11

Page 55 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Register Requirement

Device Status 2 Implement as described in PCIe specification.
Device Control 2 see Section E.15.12
Link Capabilities 2 see Section E.15.16
Link Status 2 see Section E.15.17
Link Control 2 see Section E.15.18

E.4.1 i-EP: Supported Link Speed Declaration in Link Capabilities 2 and additional
capability requirements

Depending on the supported link speeds declared, PCIe specification mandates that certain additional
capabilities must be present as follows:

If the supported link speeds declared in Link Capabilities 2 includes 8GT/s or higher speeds, then the
Secondary PCI Express Extended Capability Structure must be available for software to read and write. This
capability must be present in both Root Port and the Endpoint. This capability has the registers that are shown
in Table 30.

Table 30: Registers in Secondary PCI Express Extended Capability

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.
Link Control 3 Register see Section E.15.20
Lane Error Status Register see Section E.15.25
Lane Equalization Control Register see Section E.15.24

If the supported link speeds that are declared in Link Capabilities 2 includes speeds that are 16GT/s and
higher, then the following additional capabilities must be available for software to read and write:

• Datalink Feature extended capability
• Physical layer 16GT/s extended capability
• Lane margining at the receiver extended capability

E.4.1.1 Datalink Feature extended capability

Datalink Feature extended capability is required for the Root Port and Endpoint. This capability has the
registers that are shown in Table 31.

Table 31: Registers in Datalink Feature extended capability

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.
Data Link Feature Capabilities Register see Section E.15.25
Data Link Feature Status Register see Section E.15.25

E.4.1.2 Physical Layer 16GT/s Extended Capability

If the supported link speeds declared in Link Capabilities 2 of a Root Port or Endpoint include 16GT/s, then
this capability is required for that Root Port or Endpoint. This capability has the registers that are shown in
Table 32.

Page 56 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Table 32: Registers in Physical Layer 16GT/s Extended Capability

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.
16.0 GT/s Capabilities Register Implement as described in PCIe specification.
16.0 GT/s Control Register Implement as described in PCIe specification.
16.0 GT/s Status Register see Section E.15.23
16.0 GT/s Local Data Parity Mismatch Status Register see Section E.15.26
16.0 GT/s First Retimer Data Parity Mismatch Status Register see Section E.15.26
16.0 GT/s Second Retimer Data Parity Mismatch Status Register see Section E.15.26

E.4.1.3 Lane Margining at the Receiver Extended Capability

Lane Margining at the Receiver Extended Capability is required for the Root Port and the Endpoint. This
capability has the registers that are shown in Table 33.

Table 33: Registers in Lane Margining at the Receiver Extended Capability

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.
Margining Port Status Register Implement as described in PCIe specification.
Margining Port Capabilities Register see Section E.15.22
Margining Lane Status see Section E.15.21
Margining Lane Control see Section E.15.21

E.5 Root Complex Integrated Endpoint Rules in PCIe specification

The RCiEP must obey all the rules that are specified in Section 1.3.2.3 of the PCIe 5.0 specification [1].

E.6 Root Complex Event Collector Rules in PCIe specification

The RCEC must obey all the rules that are specified in Section 1.3.4 of the PCIe 5.0 specification [1].

E.7 Interrupt rules

RCiEP or i-EP Endpoint must generate only MSI or MSI-X interrupts. RCiEP or i-EP Endpoint must not have
any wire-based interrupts.

E.8 Ordering rules

• The RCiEP and the i-EP must obey PCIe ordering rules for the configuration and BAR mapped memory
spaces when accessed in the inbound direction, towards the RCiEP or i-EP.

• PCIe ordering rules must be obeyed while sending out completions for configuration space and BAR
mapped memory space accesses.

Page 57 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

• If the i-EP or RCiEP uses the PCIe producer-consumer model for the interaction with software or peer
devices, then the following must be ensured by the RCiEP or i-EP in collaboration with rest of the system:

• Write requests from the i-EP or RCiEP are observed by other agents in the order required for the
producer-consumer model to work.

• A read request from the i-EP or RCiEP must not overtake previously issued write requests from the
same i-EP or RCiEP if there is a Read after Write dependency between the Read and previously issued
write or writes.

• The Transactions Pending bit must be cleared only after all outstanding reads, atomic requests and write
requests have received responses.

E.9 Address translation, Isolation and virtual address space rules

The RCiEP or i-EP Endpoint must interact with the SMMU in the same way that an external Endpoint does.
This creates the following requirements:

• PCIe ATS capability must be supported if the RCiEP or i-EP has a software visible cache for address
translations.

• PCIe PRI mechanism must be supported if RCiEP or i-EP Endpoint requires memory pages dynamically.
• If the RCiEP or i-EP Endpoint supports PASIDs, the PASID is used as SubStreamID as specified in the

SMMU architecture specification.
• RCiEP or i-EP Endpoint uses its BDF to generate StreamID using rules that are described in Section G.

E.10 Reset rules

• RCiEP or i-EP Endpoint must have Function Level Reset (FLR) support.

• For i-EP, the Root Port must provide the ability to do a hot reset of the Endpoint using the Secondary
Bus Reset bit in bridge Control Register.

• For i-EP, the Root Port must provide the ability to hold the Endpoint in hot reset if the Link Disable bit in
the Link Control Register is set. Refer to the PCIe specification for details on Link Disable, Secondary
Bus Reset and hot reset.

E.11 Power management rules

• RCiEP or i-EP Endpoint and the i-EP Root Port must have D state support and must have PCI Power
management capability as specified in the PCIe specification.

• RCiEP or i-EP Endpoint must support PME messages for wake up signaling if the Endpoint or RCiEP
needs to have a wake-up notification mechanism.

• PM_PME wake messages must be logged in the Root Complex Event collector that is associated with
the RCiEP or in the Root Port for i-EP option.

• The RCiEP or i-EP Endpoint is not expected to use Aux_Current.

E.12 ACS rules

• ACS capability must be present in the RCiEP or i-EP endpoint functions if the RCiEP or i-EP Endpoint is
a multi-function device and supports peer to peer traffic between its functions. It must comply with the

Page 58 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

PCIe specification on specific ACS access controls that must be supported. If the i-EP Endpoint or the
RCiEP has ACS capability, then it must have AER capability for reporting ACS violation errors.

• The i-EP Root Port must have ACS capability if the i-EP Endpoint can send transactions to a peer
endpoint. It must comply with the PCIe specification on specific ACS access controls that must be
supported. If the i-EP Root Port has ACS capability, then it must have AER capability for reporting ACS
violation errors.

• RCiEP requests that target peer Endpoints have to be mediated by the SMMU before proceeding to the
target.

E.13 I/O Space related rule

A RCiEP or i-EP Endpoint, and its i-EP Root Port, must not support IO space claimed through BARs.

E.14 Register bit field rules for the RCiEP option

For all registers that are described in this section, unless otherwise specified, HW implementation and usage
of each field must behave as described by the PCIe specification [1].

In addition, the attributes of all register fields must be as described in PCIe specification.

Any bit or field that is specified as HWIGNORE has the following properties:

• The bit or field is a don’t care for HW and the value of the bit or field will be ignored by hardware.
• The attributes must be as described in the PCIe specification.

E.14.1 RCiEP option: Rules for PCI Express Capabilities Register

RCiEP : Device type must be hardwired as RCiEP type. The rest of the fields in this register must be
implemented as specified in the PCIe specification.

RCEC : Device type must be hardwired as RCEC type. The rest of the fields in this register must be
implemented as specified in the PCIe specification.

E.14.2 RCiEP option: Rules for Device Capabilities Register

Device Capabilities Register Requirement

Role based error reporting RCEC and RCiEP: Hardwired to 1
Endpoint L0s acceptable latency RCEC and RCiEP: Hardwired to 0
L1 acceptable latency RCEC and RCiEP: Hardwired to 0
Captured slot power limit scale RCEC and RCiEP: Hardwired to 0
Captured slot power limit value RCEC and RCiEP: Hardwired to 0
Max payload size See note below
Phantom functions RCEC and RCiEP: Recommendation is to

hardwire this bit to 0.
Extended tag field Hardwired to 1

Note

Page 59 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

For both the RCEC and RCiEP, the value reported in this field must be compliant with the PCIe specification
[1].

E.14.3 RCiEP option: Rules for Device Control Register

Device Control Register field Requirement

Max_Rd_Request Size, Max payload size RCEC and RCiEP: HWIGNORE.
Phantom functions Enable RCEC and RCiEP: Recommended to be hardwired to 0.
Aux power PM enable RCEC and RCiEP: Recommended to be hardwired to 0.
Enable relaxed ordering RCiEP: If HW can set RO or an equivalent attribute

for transactions, then this bit controls RO
attribute setting. Otherwise hardwired to 0.
RCEC: Hardwired to 0.

Enable No Snoop RCiEP:This bit enables/disables HW’s ability
to set non-cacheable attribute for transactions.
RCEC: Hardwired to 0.

Extended Tag field enable RCiEP and RCEC:HWIGNORE.

E.14.4 RCiEP option: Rules for device capabilities 2 register

TPH Completer Supported

• RCiEP: This field must be set to appropriate valid values if the RCiEP can sink transactions with TPH
hints and/or extended TPH hints.

• RCEC: Recommendation is to set this bit to 0.

10-Bit Tag Requester Supported, 10-Bit Tag Completer Supported * HWIGNORE for RCEC and RCiEP.

End-End TLP prefix supported, Max End-End TLP prefixes

• RCiEP: Value of these bit fields are IMPLEMENTATION DEFINED.
• RCEC: Recommendation is to set these bit fields to 0.

FRS Supported

• RCiEP and RCEC: The value of this bit is IMPLEMENTATION DEFINED, based on the capability of the
RCEC HW and associated RCiEP HW. If the RCiEPs support FRS, RCEC must support FRS.

LTR Mechanism Supported

• RCiEP and RCEC: This bit’s value is IMPLEMENTATION DEFINED, based on the capability of the RCEC
HW and associated RCiEP HW. If the RCiEP’s support LTR mechanism, then the RCEC must support
LTR mechanism.

10-bit tag requester supported

• RCiEP and RCEC: Recommendation is that these bits are hardwired to 1.

10-bit tag completer supported, Extended Fmt field supported

• RCiEP and RCEC:It is strongly recommended that this bit is set to 1.

E.14.5 RCiEP option: Rules for device control 2 register

IDO Request Enable:

Page 60 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

• RCiEP: If the RCiEP HW can set an attribute equivalent to that of IDO for requests, then this bit controls
the setting of that attribute. Otherwise, this bit is hardwired to 0.

• RCEC: Hardwired to 0.

IDO Completion Enable:

• RCiEP: If the RCiEP HW is capable of setting an attribute equivalent to that of IDO for completions, then
this bit controls the setting of that attribute. Otherwise, this bit is hardwired to 0.

• RCEC: Hardwired to 0.

E.14.6 RCiEP option: Rules for Power Management Capabilities Register

For RCiEP and RCEC Aux_Current must be hardwired to 0 indicating that the RCiEP/RCEC is self powered.

E.14.7 RCiEP option: Rules for Power Management Control/Status Register

For both RCiEP and RCEC it is recommended that the Data_Select and Data_Scale fields are hardwired to
0.

E.14.8 RCiEP option: Rules for Data Register

For both the RCEC and RCiEP it is recommended that this register is not implemented.

E.15 Register bit field rules for the i-EP option

For all registers that are described in this section, unless otherwise specified, HW implementation and usage
of each field must behave as described by the PCIe specification [1]. In addition, the attributes of all register
fields must be as described in PCIe specification.

Any bit or field specified as HWIGNORE has the following properties:

• The bit or field is a don’t care for HW and the value of the bit or field will be ignored by hardware.
• The attributes must be as described in PCIe specification.

E.15.1 i-EP option: Rules for Type 1 header registers

i-EP Root Port:

• Type 1 header registers.

– In Bridge Control register, setting Secondary bus reset must cause a hot reset of the integrated
Endpoint. Refer to PCIe specification for details on the effect of hot reset on the Endpoint.

– if the Bus Master Enable (BME) bit in Command register is cleared, the i-EP Endpoint must not
generate any memory read or write requests.

E.15.2 i-EP option: Rules for Power Management Capabilities Register

For both i-EP Root Port and Endpoint, Aux_Current must be hardwired to 0, this is to indicate that the i-EP
Root Port/Endpoint is self powered.

Page 61 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

E.15.3 i-EP option: Rules for Power Management Control/Status Register

For both the endpoint and the port, it is recommended that the Data_Select and Data_Scale fields are
hardwired to 0.

E.15.4 i-EP option: Rules for Data Register

For both the endpoint and the port, it is recommended that this register is not implemented.

E.15.5 i-EP option: Rules for Slot Capabilities Register

All bits in this registers must be set to 0.

E.15.6 i-EP option: Rules for Slot Control Register

For the Root Port, Data Link Layer State Changed Enable bit must be implemented as per PCIe specification.
All other bits in this register must be set to 0.

E.15.7 i-EP option: Rules for Slot Status Register

Slot Status Register field Requirement

Data link layer state changed i-EP Root Port: Implement as described in PCIe
specification [1].

Presence detect state i-EP Root Port: Implement as described in PCIe
specification [1].

All other bits i-EP Root Port: Always set to 0.

E.15.8 i-EP option: Rules for PCI Express Capabilities Register

For the i-EP Root Port:

• Device type must be hardwired as Root Port type.

• Slot implemented must be hardwired to 0b.

For the i-EP Endpoint:

• Device type must be hardwired as Endpoint type.

E.15.9 i-EP option: Rules for Device Capabilities Register

Device Capabilities Register Requirement

Role based error reporting i-EP Root Port and Endpoint: Hardwired to 1.
Endpoint L0s acceptable latency i-EP Root Port and Endpoint: Hardwired to 0.
Endpoint L1 acceptable latency i-EP Root Port and Endpoint: Hardwired to 0.
Captured slot power limit scale i-EP Root Port and Endpoint: Hardwired to 0.
Captured slot power limit value i-EP Root Port and Endpoint: Hardwired to 0.
Max payload size i-EP Root Port and Endpoint: Value in this field is

IMPLEMENTATION DEFINED and must be the same in both Root Port

Page 62 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Device Capabilities Register Requirement

and Endpoint.
Phantom functions i-EP Root Port and Endpoint: Recommendation is

to Hardwire this bit to 0.
Function level reset capability i-EP Root Port and Endpoint: Implement as described in

the PCIe specification.
Extended Tag Field supported i-EP Root Port and Endpoint: Hardwired to 1.

E.15.10 i-EP option: Rules for device control register

Device control register field Requirement

Max_Rd_Request Size, Max payload size i-EP Root Port and Endpoint: HWIGNORE.
Phantom functions Enable i-EP Root Port and Endpoint: Recommended to be

hardwired to 0.
Aux power PM enable i-EP Root Port and Endpoint: Recommended to be

hardwired to 0.
Enable relaxed ordering i-EP Root Port: Recommendation is that HW does

not use this bit.
i-EP Endpoint: If HW can set RO or an equivalent
attribute for transactions, then this bit controls RO
attribute setting. Otherwise hardwired to 0.

Enable no Snoop i-EP Root Port: HW must not use this bit.
i-EP Endpoint: This bit enables/disables HW’s ability
to set non-cacheable attribute for transactions.

Extended Tag field enable i-EP Root Port and Endpoint: HWIGNORE.
Initiate FLR i-EP Root Port: Must be hardwired to 0.

i-EP Endpoint:HW implementation and usage as described
in the PCIe spec.

E.15.11 i-EP option: Rules for Device Capabilities 2 register

Table 39: Device Capabilities 2 rules for the Root Port

Device Capabilities 2 register field Requirement

Completion timeout ranges supported This field is hardwired to 0, if Root Port HW
is not involved in transaction forwarding.

Completion timeout disable supported This field is hardwired to 0, if Root Port HW
is not involved in transaction forwarding.

ARI forwarding supported Must be set to 1 f the Endpoint requires
ARI mode.

AtomicOp routing supported Must be set to 1 if the Endpoint needs to
send atomic transactions to peer Endpoints.

32/64bit AtomicOp completer supported Must be set to 1, if the Endpoint can
generate 32 bit/64bit AtomicOps targeted
towards main memory.

128bit CAS completer supported Must be set to 1, if the Endpoint can
generate 128Bit CAS atomic operations
targeted towards main memory.

NO RO enabled PR-PR passing Set to 1 only if the Endpoint sends/receives
peer to peer transactions and needs to

Page 63 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Device Capabilities 2 register field Requirement

have RO bit set in such transactions with
the restriction that posted requests must
not pass older posted requests.

LTR mechanism supported Must be the same value as that in Endpoint
Device Capabilities register.

TPH completer supported Must be set to appropriate valid values if
the Endpoint generates transactions with
the equivalent of TPH hints
and/or extended TPH hints.

LN system CLS Must be set to appropriate values according
to what the Endpoint needs in-terms of an
LN completer.

10-bit tag requester supported Hardwired to 1.
10-bit tag completer supported Hardwired to 1.
OBFF supported Must be set to the same value as that in

Endpoint device capabilities 2 register.
How the OBFF messaging/signalling
implemented is IMPLEMENTATION DEFINED.

Extended Fmt field supported Hardwired to 1.
End-End TLP prefix supported See Note below
Max End-End TLP prefixes See Note below
Emergency power reduction supported Hardwired to 0
Emergency power reduction init required Hardwired to 0
FRS supported Set to 1 if the Endpoint generates FRS

messages.

Note

Must be set to the same value as in the Endpoint Device Capabilities 2 register.

For i-EP Endpoint:

• Emergency power reduction supported, Emergency power reduction initialization required : Arm
recommends that these bits are set to 0.

• End-End TLP prefix supported, Max End-End TLP prefixes : Value of these bit fields are
IMPLEMENTATION DEFINED based on the Endpoint capabilities for sinking TLP prefixes.

• Extended Fmt field supported. Hardwired to 1.
• 10-bit tag requester supported. Hardwired to 1.

E.15.12 i-EP option: Rules for Device Control 2 register

Table 40: Device control 2 rules for the Root Port

Device Control 2 register field Requirement

End-End TLP prefix blocking Implement as described in PCIe specification. If this
bit is set, then any transactions targeting the
endpoint with End-End prefixes must be processed as
described in PCIe specification.

Emergency power reduction request Hardwired to 0. Not used/No effect for Root Port.

Page 64 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Device Control 2 register field Requirement

IDO completion enable Recommendation is that HW does not use this bit.
IDO request enable Recommendation is that HW does not use this bit.
LTR mechanism enable If LTR is supported, and this bit is set then

the HW must have a mechanism of reporting
queueing and reporting LTR messages to the
system from the Endpoint.

OBFF enable If OBFF is supported and this bit is set, then
the HW must have a mechanism of reporting OBFF
states/cases to the Endpoint.

AtomicOp requester enable If the endpoint dos not support AtomicOps as a
completer, then this bit must be hardwired to 0.
If the endpoint supports AtomicOps as a completer,
and this bit is set, then AtomicOp requests from
the host side, requested by PEs or by peer PCIe
or peer non PCIe devices, will be accepted by
the i-EP endpoint. If this bit is not set, then
corresponding transaction will be given an error
response.

AtomicOp egress blocking If this bit is set, then either the Root Port or
the Endpoint HW must discard any atomic requests
that is received and must log an error in the
Root Port error registers/Status register as
appropriate.

Completion timeout value If the Root Port HW is not
involved in forwarding transactions, then this
field is hardwired to 0.

Completion timeout disable If Root Port HW is
not involved in transaction forwarding, this
bit is hardwired to 0.

ARI forwarding enable Implement as described in PCIe specification.
10 bit tag requester enable HWIGNORE.

For the i-EP endpoint:

IDO Request Enable:

• If the i-EP Endpoint HW is capable of setting an attribute equivalent to that of IDO for requests, then this
bit controls the setting of that attribute. Otherwise, this bit is hardwired to 0.

IDO Completion Enable:

• If the i-EP Endpoint HW is capable of setting an attribute equivalent to that of IDO for completions, then
this bit controls the setting of that attribute. Otherwise, this bit is hardwired to 0.

10 bit tag requester enable

• HWIGNORE.

E.15.13 i-EP option: Rules for Link Capabilities Register

Link Capabilities Register fields Requirement

ASPM support i-EP Root Port and Endpoint: Hardwired to 0
L1 exit latency i-EP Root Port and Endpoint: Implement as

Page 65 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Link Capabilities Register fields Requirement

described in PCIe specification.
Clock power management i-EP Root Port and Endpoint: Hardwired to 0
Surprise down error reporting capable i-EP Root Port and Endpoint: Hardwired to 0
Max link speed, Max link width i-EP Root Port and Endpoint: The value in

these fields are implementation
defined but it must obey the following
conditions:
* The value in these fields must be the
same in both Endpoint and Root Port.
* The value must be one of the encodings
defined in PCIe specification [1].

Port number i-EP Root Port:Value is IMPLEMENTATION DEFINED. Must be unique
for each Root Port.
i-EP Endpoint:Value is IMPLEMENTATION DEFINED.

E.15.14 i-EP option: Rules for Link Control Register

Link control register field Requirement

Common clock configuration i-EP Root Port and Endpoint: HWIGNORE.
Extended synch i-EP Root Port and Endpoint: HWIGNORE.
Enable clock power management i-EP Root Port and Endpoint: HWIGNORE.
ASPM control i-EP Root Port and Endpoint: HWIGNORE.
DRS signalling control i-EP Root Port and Endpoint: Implement as

per PCIe specification [1].
RCB control i-EP Root Port and Endpoint: HWIGNORE.
ASPM optionality compliance i-EP Root Port and Endpoint: Implement as described in

PCIe specification.
Link disable i-EP Root Port:If this bit is set, the Endpoint will

be held in reset that is equivalent
to hot reset. Refer to PCIe specification for details.
i-EP Endpoint: Implement as described in PCIe specification.

Retrain Link i-EP Root Port: When a 1 is written to this bit,
and the target link speed value is different from
default in either the EP or the RP, then the current
link speed field must be changed to the minimum of
target link speed value of both EP and the RP.
As per PCIe specification, read of this bit must
always return 0.
i-EP Endpoint: Implement as described in PCIe specification.

E.15.15 i-EP option: Rules for Link Status Register

Link Status Register field Requirement

Current link speed i-EP Root Port and Endpoint: The value in this
field is the minimum of the target link speed
value field of the Root Port and that of the Endpoint.
The Root Port and end point link status
registers must have the same value in this field.

Page 66 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Link Status Register field Requirement

Negotiated link width i-EP Root Port and Endpoint: The value in
this field is IMPLEMENTATION DEFINED, but the Root Port and endpoint
Link Status registers must have the same value.

Slot clock configuration i-EP Root Port and Endpoint: Hardwired to 0.
Link autonomous bandwidth mgnt status i-EP Root Port: Set this bit to 1 on or before

Data Link layer link active bit goes from 0 to 1.
Refer to PCIe specification for details.
i-EP Endpoint:Implement as described in PCIe specification.

Data link layer link active See note below.
Link training i-EP Root Port: Set this bit to 1 whenever the

retrain link bit is set, or an IMPLEMENTATION DEFINED amount of
time after reset de-assertion.Clear this bit
prior to Data Link Layer link active bit is set.
This bit must be cleared only after equalization
status bits are set for speeds where equalization
is required.Default value is 0b.
i-EP Endpoint: Implement as described in PCIe specification.

Link Bandwidth Management Status i-EP Root Port: Set this bit when the retrain link bit
is set. The delay between retrain bit being set
and this bit being set is IMPLEMENTATION DEFINED.
i-EP Endpoint: Implement as described in PCIe specification.

Note

i-EP Root Port and Endpoint: Hardwired to 0 if link speed is less than 5 GT/s. If speed is greater than or
equal to 5GT/s, then this bit must be set to 1 for the following conditions:

• After reset deassertion, the delay between reset de-assertion and this bit going from 0 to 1 is
IMPLEMENTATION DEFINED.

• After a 1 to 0 transition of the link disable bit occurs, the delay between link disable de-assertion and
this bit going from 0 to 1 is IMPLEMENTATION DEFINED.

• After a 1 to 0 transition of the secondary bus reset bit, the delay between secondary bus reset
de-assertion and this bit going from 0 to 1 is IMPLEMENTATION DEFINED.

This bit must be set to 0 for the following conditions:

• After reset assertion.
• After a 0 to 1 transition of the Link disable bit in Link Control Register.
• After a 0 to 1 transition of the secondary bus reset bit in bridge control.

Refer to PCIe specification for details. i-EP Root Port and Endpoint must have the same value for this bit.

E.15.16 i-EP option: Rules for Link Capabilities 2 Register

Link Capabilities 2 Register field Requirement

Supported link speeds vector i-EP Root Port and Endpoint: Value in this field
is IMPLEMENTATION DEFINED. The value must be compliant to
PCIe specification [1]. Both Root Port and
Endpoint must have the same value in this field.

Cross link supported i-EP Root Port and Endpoint: Hardwired to 0

Page 67 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

Link Capabilities 2 Register field Requirement

Lower SKP OS supported speeds vector i-EP Root Port and Endpoint: Hardwired to 0
Lower SKP OS reception
Supported speeds vector i-EP Root Port and Endpoint: Hardwired to 0
Retimer presence detect supported i-EP Root Port and Endpoint: Hardwired to 0
Two retimers presence detect supported i-EP Root Port and Endpoint: Hardwired to 0
DRS supported i-EP Root Port: If the Endpoint needs to support DRS or

FRS, then this bit must be set for the Root Port as well.
i-EP Endpoint: Implement as described in PCIe specification.

E.15.17 i-EP option: Rules for Link Status 2 Register

Link Status 2 Register field Requirement

Current de-emphasis level i-EP Root Port and Endpoint: Value in this field is
IMPLEMENTATION DEFINED and is present for only emulating the link.

Equalization 8.0 GT/s successful i-EP Root Port and Endpoint: See note below
Equalization 8.0 GT/s phase 1 successful i-EP Root Port and Endpoint: See note below
Equalization 8.0 GT/s phase 2 successful i-EP Root Port and Endpoint: See note below
Equalization 8.0 GT/s phase 3 successful i-EP Root Port and Endpoint: See note below
Link equalization request i-EP Root Port and Endpoint: HW must never set this

bit.
Retimer presence detected i-EP Root Port and Endpoint: Hardwired to 0
Two retimers presence detected i-EP Root Port and Endpoint: Hardwired to 0
Crosslink resolution i-EP Root Port and Endpoint: Hardwired to 0
Downstream component presence i-EP Root Port: Only 010, 100 and 101 are allowed.

In addition, when the link state goes from inactive to active,
this field must change in value from 010 to 100/101.
When the link state goes from active to inactive, this field must
change from 100/101 to 010. Refer to PCIe specification for details.
i-EP Endpoint: Implement as described in PCIe specification.

DRS message received i-EP Root Port and Endpoint: Implement as described in
PCIe specification [1].

Note

This bit is set to 1 if the following conditions are true:

• The Data Link Layer Link Active bit has a 0 to 1 transition.
• Supported Link speeds includes 8GT/s and higher speeds.
• 32 GT/s speed is not supported or 32GT/s is supported and Equalization bypass to highest rate

Disable is set in 32GT/s Control Register.

Refer to Section 4.2.3 and 4.2.6.4.2 of the PCIe specification for details or bypass mode. Note that this bit
must go to 1 before the Link Active bit in Data Link Layer goes to 1.

This bit is set to 0 for an IMPLEMENTATION DEFINED amount of time if one of the following conditions is true:

• Link disable bit transitions from 1 to 0.
• Hot reset bit transitions from 1 to 0.

If Retrain Link bit is set to 1, target link speed is 8GT/s and perform equalization bit in Link Control 3 register

Page 68 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

is set, this bit is set to 0 for an IMPLEMENTATION DEFINED amount of time. The perform equalization bit
must be cleared after this bit is set to 0.

The amount of time for which this bit is set to 0 must meet the following constraints:

• Large enough for software polling to succeed.
• Less than the delay between hot reset bit going to 0 and the Data Link Layer link active bit going to 1.
• Less than the delay between link disable bit going to 0 and the Data Link Layer link active bit going to

1.

The Endpoint and Root Port must have the same value for this bit. Refer to PCIe specification for details.

E.15.18 i-EP option: Rules for Link Control 2 Register

Link Control 2 Register field Requirement

Target link speed i-EP Root Port and Endpoint: Implement
as per PCIe specification.The Current link
speed field in the Link Status Register in
Root Port and Endpoint would be the minimum
of Root Port’s target link speed field and end
point’s target link speed field.

Enter compliance i-EP Root Port: HWIGNORE.
i-EP Endpoint:If this field is set to 1, then writes
to Target link speed will take effect. Refer to
PCIe specification for details.

Enter modified compliance i-EP Root Port and Endpoint: HWIGNORE.
Selectable deemphasis i-EP Root Port and Endpoint: HWIGNORE.
Transmit margin i-EP Root Port and Endpoint: HWIGNORE.
Enter modified compliance i-EP Root Port and Endpoint: HWIGNORE.
Compliance SOS i-EP Root Port and Endpoint: HWIGNORE.
Compliance preset/deemphasis i-EP Root Port and Endpoint: HWIGNORE.

E.15.19 i-EP option: Rules for Lane Equalization Control Register

For both the Root Port and Endpoint, all fields in this register must show values that are as per the encoding
specified in the PCIe specification [1].

E.15.20 i-EP option: Rules for Link Control 3 Register

Link Control 3 Register field Requirement

Perform Equalization i-EP Root Port: See note on Equalization Successful bits
in Section E.15.17 and Section E.15.23.
i-EP endpoint: Implement as described in PCIe
specification [1].

Enable Lower SKP OS Generation Vector i-EP Root Port and Endpoint: Attributes as
per PCIe specification. HWIGNORE.

Link Equalization Request Interrupt
Enable i-EP Root Port and Endpoint: HWIGNORE.

Page 69 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

E.15.21 i-EP option: Rules for Margining Lane Control Register and Margining Lane
Status Register

For both Root Port and endpoint, these two registers must emulate the behavior of the same registers in a
Root port with real links. Only time margining needs to be supported and emulated. Healthy margin values
must be presented to software, when software does time margining.

E.15.22 i-EP option: Rules for Margining Port Capabilities Register

For both Root Port and endpoint, the margining uses Driver Software field is set to 0.

E.15.23 i-EP option: Rules for 16.0 GT/s Status Register

16.0 GT/s Status Register field Requirement

Equalization 16.0 GT/s complete i-EP Root Port and Endpoint: See note below
Equalization 16.0 GT/s phase 1 successful i-EP Root Port and Endpoint: See note below
Equalization 16.0 GT/s phase 2 successful i-EP Root Port and Endpoint: See note below
Equalization 16.0 GT/s phase 3 successful i-EP Root Port and Endpoint: See note below
Link equalization request 16 GT/s i-EP Root Port and Endpoint: HW must never

set this bit.

Note

This bit is set to 1 if the following conditions are true:

• The Data Link Layer Link Active bit has a 0 to 1 transition.
• Supported Link speeds includes 16GT/s and higher speeds.
• 32 GT/s speed is not supported or 32GT/s is supported and Equalization bypass to highest rate

Disable is set in 32GT/s Control Register.

Please refer to Section 4.2.3 and 4.2.6.4.2 of the PCIe specification for details on bypass mode.

Note that this bit must go to 1 before the data link layer link active bit goes to 1.

This bit is set to 0 for an IMPLEMENTATION DEFINED amount of time if one of the following conditions is true:

• Link disable bit transitions from 1 to 0.
• Hot reset bit transitions from 1 to 0.

If Retrain link bit is set to 1, target link speed is 16GT/s or higher, and perform link equalization bit in link
Control 3 register is set, this bit is set to 0 for an IMPLEMENTATION DEFINED amount of time. The perform
equalization bit must be cleared after this bit is set to 0.

The amount of time for which this bit is set to 0 must meet the following constraints:

• Large enough for software polling to succeed.
• Less than the delay between hot reset bit going to 0 and the Data Link Layer link active bit going to 1.
• Less than the delay between link disable bit going to 0 and the Data Link Layer link active bit going to

1.

The endpoint and Root Port must have the same value for this bit. Refer to PCIe specification for details.

Page 70 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

E.15.24 i-EP option: Rules for 16.0 GT/s Lane equalization control register

For both i-EP Root Port and Endpoint, this register, which is per lane, must have values in all fields which are
within expected ranges as described in PCIe specification [1].

E.15.25 i-EP option: Rules for Data Link Feature Capabilities and Data Link Feature
Status

For i-EP Root Port:

• These registers must emulate the behavior of the same registers in a port with a real link.

E.15.26 i-EP option: Rules for 16GT/s registers and Lane Error status register

For both i-EP Root Port and endpoint, The following registers if present, must have all bits set to 0:

• 16.0 GT/s Local Data Parity Mismatch Status register
• 16.0 GT/s First Retimer Data Parity Mismatch Status register
• 16.0 GT/s Second Retimer Data Parity Mismatch Status register
• Lane Error Status Register

Page 71 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

F SMMUV3 INTEGRATION

This appendix details rules about the integration of a SMMUv3 SMMU into an SBSA system.

The system is permitted to include any number of SMMUs.

All SMMU translation table walks and all SMMU accesses to SMMU memory structures and queues are I/O
coherent (SMMU_IDR0.COHACC == 1).

SMMUv3 supports two distinct page table fault models: stall on fault, and terminate on fault. Care must be
taken when designing a system to use the stall on fault model.

The system must be constructed so the act of the SMMU stalling on a fault from a device must not stall the
progress of any other device or PE that is not under the control of the same operating system as the stalling
device.

The SMMUv3 spec requires that PCIe root complex must not use the stall model due to potential deadlock.

See Section D.12 for requirements on PCIe PASID support.

See Section G for requirements on how DeviceID and StreamID should be assigned and how ITS groups
should be used.

Page 72 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

G DEVICEID GENERATION AND ITS GROUPS

G.1 ITS groups

G.1.1 Introduction

Every ITS block in the system is a member of a logical ITS group. Devices that send MSIs are also associated
with an ITS group. Devices are only programmed to send MSIs to an ITS in their group. In the simplest case,
the system contains one ITS group which contains all devices and ITS blocks. Devices are assigned DeviceID
values within each ITS group. See Section G.2.

Note

The concept of ITS grouping means the system does not have to support the use of any ITS block from any
device, which can ease system design.

G.1.2 Rules

The system contains one or more ITS group(s).

• An ITS group can contain one or more ITS blocks.
• An ITS block is associated with one ITS group.
• A device that is expected to send an MSI is associated with one ITS group.
• Devices can be programmed to send MSIs to any ITS block within the group.
• If a device sends an MSI to an ITS block outside of its assigned group, the MSI write is illegal and does

not trigger an interrupt that could appear to originate from a different device. See Section G.2.2 for
permitted behavior of illegal MSI writes.

• The association of devices and ITS blocks to ITS groups is considered static by high-level software.
• An ITS group represents a DeviceID namespace independent of any other ITS group.
• All ITS blocks within an ITS group support a common DeviceID namespace size, a common input

EventID namespace size and are capable of receiving an MSI from any device within the group.
• All ITS blocks within an ITS group observe the same DeviceID for any given device in the same ITS

group.

Note

The two preceding rules, allow software to use ITS blocks sharing a common group interchangeably.

• System firmware data, for example, firmware tables such as ACPI/FDT, describe the association of ITS
blocks and devices with ITS groups to high-level software.

Arm recommends that the DeviceID namespace in each group is packed as densely as possible, and that it
starts at 0.

Note

It is not required that all DeviceIDs be entirely contiguous but excessive fragmentation makes the software
configuration of an ITS more difficult.

Page 73 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

G.1.3 Examples of ITS groups

Figure 4: Device and ITS grouping

In Figure 4:

• ITS A serves two devices.
• ITS B and ITS C serve three devices; any of these devices can send an MSI to either of B or C.
• Two unrelated DeviceID namespaces exist. DeviceID 0 in Group 0 is different to DeviceID 0 in Group 1.
• A device in Group 0 can only trigger an MSI on its assigned ITS, A, and should not be configured to do

otherwise. It cannot send an MSI to ITS B as it is in a different group to the device. If this is done, the
MSI write might be ignored or aborted, but in any case does not cause an interrupt that might appear to
be valid.

The properties that system-description structures convey to high-level software are:

• Identification of the two devices that are associated with Group 0, and the three associated with Group 1.
• ITS block A is in Group 0, B and C are in Group 1.
• For each MSI-capable master device, which DeviceID in the group’s namespace the device has been

assigned.

G.2 Generation of DeviceID values

G.2.1 Introduction

Every device master that is expected to send MSIs has a DeviceID associated with it. This DeviceID is used
to program the interrupt properties of MSIs originating from each device. The term “device” is used in the
context of a logical programming interface used by one body of software.

Where a device is a client of an SMMU, that is, behind an SMMU, a granularity of ‘source’ identification is
typically chosen distinguish the client device’s traffic from other clients. This allows the device to be assigned

Page 74 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

to a less-privileged software independent of other SMMU client devices. The system designer assigns a
master-unique StreamID to device traffic input to the SMMU. The simplest way to achieve the same granularity
of interrupt source differentiation and SMMU DMA differentiation is for the device’s DeviceID to be generated
from the device’s SMMU StreamID. It is beneficial for high-level software and firmware system descriptions
to ensure that this relationship is as simple as possible. DeviceID is derived from a StreamID 1:1 or with a
simple linear offset.

When a device is not behind an SMMU, its DeviceID appears to high-level software as though it is assigned
directly by the system designer.

If a master is a bridge from a different interconnect with an originator ID, such as a PCIe RequesterID, and
devices on that interconnect might need to send MSIs, the originator ID is used to generate a DeviceID. The
function to generate the DeviceID should be an identity or a simple offset.

The overall principle of DeviceID and StreamID mapping is that the relationship between one ID space, for
example, a PCIe RequesterID namespace and a DeviceID, be easily described using linear span-and-offset
operations.

When an SMMU is used to allow devices to be programmed by possibly malicious software that is not the
most privileged part of the system, devices that are not designed to directly trigger MSIs could be misused
to direct a DMA write transaction at an ITS MSI target register. The system must not allow this behavior to
trigger an MSI that masquerades as originating from a different master. The system must anticipate that PEs
also have the potential to be misused in this manner. Exposing an ITS to a VM for legitimate MSI purposes
can mean that the untrusted VM software is able to write to the ITS MSI target register from a PE.

G.2.2 Rules

• Every device that is expected to originate MSIs is associated with a DeviceID.
• DeviceID arrangement and system design prevents any mechanism that any software that is not the

most privileged in the system, for example VM, or application, can exploit to trigger interrupts associated
with a different body of software, for example. a different VM, or OS driver.

– A write to an ITS GITS_TRANSLATER from a PE, or from a device that is known at design time
to not support genuine MSIs and is under control of software less privileged than the software
controlling the ITS, is an illegal MSI write and must not be able to trigger an MSI appearing to have
a DeviceID associated with a different device. See Section G.1.2, an MSI sent to an ITS in a group
different to the originating device is also an illegal MSI write.

– An illegal MSI write is permitted to complete with WI semantics, or be terminated with an abort, or
trigger an MSI having a DeviceID that does not alias any DeviceID of a legitimate source.

Note

Devices that are known at design time to only be controlled by the most privileged software in the
system, such as those without an MMU/MPU, can be trusted not to send malicious writes to the
ITS. For these devices no special steps are required to prevent malicious MSI writes. Devices
that have the potential to be controlled by a VM cannot be trusted. Devices that are clients of an
SMMU fall into the latter category.

• If a device is a client of an SMMU, the associated DeviceID is derived from the SMMU’s StreamID with
an identity or simple offset function:

– The SMMU component must output the input StreamID unmodified so it can be used to derive the
DeviceID downstream of the SMMU.

– If two devices have different StreamIDs, they must also have distinct DeviceIDs.

* It is not permitted for >1 StreamID to be associated with 1 DeviceID.
· It is not permitted for >1 DeviceID to be associated with 1 StreamID.

– The generic StreamID to DeviceID relationship is:

* DeviceID = zero_extend(SMMU_StreamID)+ Constant_Offset_A

Page 75 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

– A PCIe Root Complex behind an SMMU generates a StreamID on that SMMU from its RequesterID
with this relationship:

* StreamID = zero_extend(RequesterID[N-1:0])+ (1<<N)*Constant_B

Note

Arm expects N above to be 16 bits, but this is not mandatory.

* This StreamID is then used post-SMMU, as above, to generate a DeviceID.
• DeviceIDs derived from other kinds of system IDs are also created from an identity or simple offset

function.
– For a Root Complex without an SMMU, the relationship is: * DeviceID = zero_extend(RequesterID[N-1:0])+ (1<<N)*Constant_C

• The relationships between a device, its StreamID and its DeviceID are considered static by OS or
hypervisor software. If the mapping is not fixed by hardware, the relationship between a StreamID and a
DeviceID must not change after system initialization, and OS drivers must not be required to set it up.

Am recommends that all devices expected to originate MSIs have a DeviceID unique to their ITS group, even
if the devices are not connected to an SMMU.

Note

Providing separate DeviceIDs for different devices can improve the efficiency of structure allocation in GIC
driver software.

G.3 System description of DeviceID and ITS groups from ACPI tables

The properties of the GIC distributor, Redistributors and ITS blocks such as base addresses will be described
to high-level software by system firmware data. In addition, for any given device expected to send MSIs,
system firmware data tables must ensure that:

• The device’s DeviceID can be determined, either:
– Directly: A device is labeled with a DeviceID value.
– Hierarchically indirect: If a device has a known ID on a sub-interconnect, the transformation between

that interconnect’s ID and the DeviceID namespace is described in a manner that allows the
DeviceID to be derived. This might comprise multiple transformations ascending a hierarchy, where
a device is associated with intermediate IDs (such as a StreamID) which are ultimately used to
generate a DeviceID.

* Example: A PCIe Root Complex without an SMMU is described in terms of the DeviceID range
output for its RequesterID range. The DeviceID of an endpoint served by the Root Complex
is not directly provided, but is derived from the endpoint’s RequesterID given the described
mapping.

* Example: A PCIe Root Complex with an SMMU is described in terms of the transformation of
RequesterID range to SMMU input StreamID range and the transformation of StreamID range
to DeviceID range.

• The device’s association with an ITS group can be determined and the ITS blocks within the group can
be enumerated.

Note

• More compact descriptions result by describing a range of DeviceIDs to allow DeviceIDs to be derived
from a formula instead of directly describing individual DeviceIDs. This is especially pertinent for

Page 76 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

Server Base System Architecture

interconnects such as PCIe.

• PEs and other masters that do not support MSIs are not described as being part of an ITS group;
as they are not intended to invoke valid MSIs, there is no association to an ITS on which it is valid to
invoke MSIs.

The DeviceID and ITS group associations are not expected to be discoverable through a programming
interface of hardware components and a system is not required to provide such an interface.

G.4 DeviceIDs from hot-plugged devices

• If a device is not physically present at system initialization time, values in the DeviceID namespace
appropriate to the potential physical location of future devices must be reserved and associated with the
device when it later becomes present, in a system-specific manner.

• When a device is hot-plugged, it can be enumerated using an interconnect ID whose mapping to
DeviceID was statically described in system description tables and its DeviceID derived from this existing
mapping.

• If a new device’s DeviceID cannot be derived from existing mappings in system description tables, the
hot-plug mechanism, for example via firmware, must provide a means to determine the new device’s
DeviceID.

Note

• These points also apply to a new device’s SMMU StreamID.

• In current systems, hot-plug device masters that are capable of sending MSIs are most likely to
be PCIe endpoints. When a system and PCIe-specific mechanism makes a new endpoint present,
the existing indirect description of the Root Complex’s DeviceID span is used to calculate the new
DeviceID from the new RequesterID.

Arm recommends that description of a sub-interconnect bridge, such as a PCIe Root Complex, includes all
potential endpoints (on PCIe, up to 216) rather than limiting description to the endpoints present at boot time,
if more client endpoints can later become present.

Page 77 of 77 Copyright © 2016, 2017, 2018, 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0029C
6.0

	Non-Confidential Proprietary Notice
	1 About this document
	2 Background
	3 Introduction
	4 SBSA
	A GENERIC WATCHDOG
	B GENERIC UART
	C PERMITTED ARCHITECTURAL DIFFERENCE BETWEEN PES
	D PCI EXPRESS INTEGRATION
	E PRESENTING AN ON-CHIP PERIPHERAL AS PCIE DEVICE
	F SMMUV3 INTEGRATION
	G DEVICEID GENERATION AND ITS GROUPS

