Arm’ Architecture Reference Manual

Supplement
Armv8, for Armv8-R AArch64 architecture profile

arm

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0600A.c (ID090320)

Arm Architecture Reference Manual Supplement
Armv8, for Armv8-R AArch64 architecture profile

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Release Information

The following changes have been made to this document.

Release history

Date Issue Confidentiality Change

14 January 2020 Aa Confidential Beta release

19 June 2020 Ab Confidential Second beta release

7 September 2020 Ac Non-Confidential Initial EAC release of the PMSA

architecture, first Beta release of
the VMSA architecture

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

In this document, where the term Arm is used to refer to the company it means “Arm or any of its affiliates as appropriate”.

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Note

. The term Arm can refer to versions of the Arm architecture, for example Armv8 refers to version 8 of the Arm architecture.
The context makes it clear when the term is used in this way.

. This document describes only the Armv8-R AArch64 architecture profile. For the behaviors required by the Armv8-A
architecture, see the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

This manual covers two memory system architectures, Protected Memory System Architecture (PMSAvS-64) and Virtual Memory
System Architecture (VMSAvS-64). The information related to PMSAv8-64 as described in Chapter C1 Protected Memory System
Architecture is at EAC quality. EAC quality means that all features of the specification are described in the manual.

The information related to VMSAv8-64 as described in Chapter D1 Virtual Memory System Architecture is at Beta quality. Beta
quality means that:

. All major features of the specification are described in the manual, some details might be missing.
. Information can be used for software development at risk.

. Information should not be used for hardware development.

Web Address

http://www.arm.com
Limitations of this issue

This issue of the Arm"™ Architecture Reference Manual Supplement Armv8, for Armv8-R AArch64 architecture profile contains
many improvements and corrections. Validation of this document has identified the following issues that Arm will address in
future issues:

. The references to LDLAR, LDLARH, and SMC instructions are present in register descriptions.

. In Part I Architectural Pseudocode:

— The functions that address both AArch32 and AArch64 functionality might contain cases, comments, or references
that apply to only AArch32 state, EL3 Exception level, Monitor mode, Non-secure state, or other features that are
not supported in Armv8-R AArch64, and are therefore not applicable to the Armv8-R AArch64 architecture.

— Some functions and comments might contain information that is related to the short-descriptor format that is not
applicable to the Armv8-R AArch64 architecture.

. Assertions that are not applicable to Armv8-R AArch64 might be present.
. Enumerations might contain values that are not applicable to Armv8-R AArch64.
. Tests might contain clauses that always return TRUE or FALSE in AArch64 state and there could be potentially redundant

tests in the Armv8-R AArch64 architecture. For example, in Armv8-R AArch64:
— UsingAArch32() always returns FALSE.
— IsSecure always returns TRUE.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. iii
Non-Confidential

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Contents
Arm Architecture Reference Manual Supplement
Armv8, for Armv8-R AArch64 architecture profile

Preface
About this SUPPIEMENTccoi e X
USING thiS DOOK ... Xi
[O70] 01T o111] o PSR xiii
AdditioNal FTEAINGveiiiii e Xiv
[=T=To | o= Tod QUSRI XV
Part A Introduction and Architecture Overview
Chapter A1 Architecture Overview
A1A1 About the Armv8 architeCture ..o A1-20
A1.2 Architecture profiles ..o A1-21
A1.3 The Armv8-R AArch64 architecture profile ... A1-22
Al4 Architecture exteNSIONS ... A1-23
A1.5 Supported extensions in Armv8-R AAIChB4ccoooeiiiieeiiiiiiie e A1-26
Part B Differences between the Armv8-A AArch64 and the
Armv8-R AArch64 Profiles
Chapter B1 Differences between the Armv8-A AArch64 and the Armv8-R AArch64
Profiles
B1.1 Differences from the Armv8-A AArch64 application level architecture B1-30
B1.2 Differences from the Armv8-A AArch64 system level architecture B1-31
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

1D090320 Non-Confidential

Part C Armv8-R AArch64 Protected Memory System Architec-

ture
Chapter C1 Protected Memory System Architecture
C11 About the Protected Memory System Architectureccocciiiiiiiiiiiie C1-36
C1.2 Memory Protection Uitooiiiiiiieee e s C1-37
C1.3 Address translation regimescocceriiiiieiiiee e C1-38
C14 Default MEMOIY MaP ..o e e e e e st ee e e s enees C1-39
C1.5 ArmV8-A MEMOIY VIEBW ..eoiiiiiiiiiiiiiiie ettt sttt ettt st e e e b C1-40
C1.6 MPU memory translations and faultscccccoviiiiiiiiii C1-41
C1.7 Protection region attributes and access permissionsccccccceveveviniieincienennee. C1-49
C1.8 [V | O =01 =Yg oo To [T g To 1 C1-53
Cc1.9 PMSAV8-64 implications for CAChescccceeiiiiiiiiii e C1-54
C1.10 Address tagging and pointer authentication supportcccccoeeviiiiieniiiieneene C1-55
C1.11 SeCUritY MOAEI ..ooeeeiiiiiieeit et C1-56
C1.12 VIUAKZAION ..ot C1-59
Part D Armv8-R AArch64 Virtual Memory System Architecture
Chapter D1 Virtual Memory System Architecture
D1.1 About the Virtual Memory System Architectureccccoeeiiiiciiie e D1-64
D1.2 Architecture extensions in VMSAV8-64ccccoiiiiiiiiiiieeiie e D1-65
D1.3 Support for VMSAV8-64 in Armv8-R AArchB4cccoviiiiiiiiieiiiee e D1-66
D1.4 System registers access CONtrolcccooooiiiiiiii i D1-67
D1.5 VirtualiZationcoooiiiiiiii e D1-68
D1.6 SyStem OPEratiONScoeiiiiiiiiieiiiie e e e et e e e e e enee e snaeeean D1-69
Part E A64 Instruction Set for Armv8-R AArch64
Chapter E1 A64 Instruction Set for Armv8-R AArch64
E1.1 INStrUCtion €NCOAINGSeeiiiiiieiieie e et e e e e e E1-74
E1.2 AB4 instructions in Armv8-R AAIrChG4c.ooooiiiiie e E1-75
Part F The A64 System Instructions
Chapter F1 The A64 System Instructions
F1.1 SySEM INSIIUCHIONS ...t F1-84
Part G Armv8-R AArch64 System Registers
Chapter G1 System Registers in a PMSA Implementation
G1.1 System register QroUPSooiie i G1-88
G1.2 Accessing MPU memory region registerscccoocvviieeieiiiiieeeeiiiiiee e ciieeeee G1-91
G1.3 General system control registersccooueeiiiiiiiiiie e G1-92
G1.4 DebUQG FEGISLEISoiieiiieiee e e G1-228
G1.5 Performance Monitors regisSters ..o G1-245
Chapter G2 System Registers in a VMSA Implementation
G2.1 General system control registerscoocviirieeiiiie e G2-258
Vi Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Part H Armv8-R AArch64 External Debug Registers

Chapter H1

External Debug Registers Descriptions
H1.1 About the external debug registers

... H1-266
H1.2 External debug registersccoeviiiiiiiiii e H1-267
Part | Architectural Pseudocode
Chapter 1 Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArchB64 operationscccceeieiiiiiieiceciiiiee e 11-290
11.2 Shared PSEUAOCOTEccuvveiiiiiiiie e et e e e e e 11-374

Glossary

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

vii
Non-Confidential

viii Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Preface

This preface introduces the Arm® Architecture Reference Manual Supplement ArmvS, for Armv8-R AArch64

architecture profile. It contains the following sections:

About this supplement on page X.
Using this book on page xi.
Conventions on page Xiii.
Additional reading on page xiv.
Feedback on page xv.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

Preface
About this supplement

About this supplement

This supplement describes the changes that are introduced by the Armv8-R AArch64 architecture. For a summary
of these changes, see The Armv8-R AArch64 architecture profile on page A1-22.

The supplement must be read with the most recent issue of the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Together, that manual and this supplement provide a full description of the Armv8-R
AArch64 architecture.

This manual is organized into parts as described in Using this book on page xi.

X Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Preface
Using this book

Using this book

The purpose of this book is to describe the changes that are introduced by the Armv8-R AArch64 architecture. It
describes the Armv8-R AArch64 profile in terms of how it differs from the Armv8-A AArch64 profile.

This book is a supplement to the Arm®™ Architecture Reference Manual Armv8, for Armv8-A architecture profile,
(ARM DDI 0487), and is intended to be used with it. There might be inconsistencies between this supplement and
the Armv8-A Architecture Reference Manual due to some late-breaking changes. Therefore, the Armv8-A
Architecture Reference Manual is the definitive source of information about Armv8-A.

It is assumed that the reader is familiar with the Armv8-A and Armv8-R architectures.

The information in this book is organized into parts, as described in this section:

Part A, Introduction and Architecture Overview

Chapter Al Architecture Overview

Provides an introduction to the Armv8 architecture, the Armv8-R AArch64 architecture profile, and
the architecture extensions supported in Armv8-R AArch64.
Part B, Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles

Chapter B1 Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles

Describes the system level and application level architectural differences between the Armv§-A
AArch64 and the Armv8-R AArch64 profiles.
Part C, Protected Memory System Architecture

Chapter C1 Protected Memory System Architecture
Read this for a system level view of the Armv8-R A Arch64 Protected Memory System Architecture.

Part D, Virtual Memory System Architecture

Chapter D1 Virtual Memory System Architecture
Read this for a system level view of the Armv8-R AArch64 Virtual Memory System Architecture.

Part E, A64 Instruction Set for Armv8-R AArch64

Chapter E1 464 Instruction Set for Armv8-R AArch64
Read this for descriptions of the A64 instructions that are added or affected by the Armv8-R

AArch64 architecture profile.
Part F, The A64 System Instructions

Chapter F1 The A64 System Instructions

Read this for the descriptions of A64 System instructions.

Part G, Armv8-R AArch64 System Registers
Part G describes the System registers for Armv8-R AArch64. It contains the following chapters:

Chapter G1 System Registers in a PMSA Implementation

Read this for descriptions of Armv8-R AArch64 System registers in a Protected Memory System
Architecture (PMSAv8-64) implementation.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. Xi
ID090320 Non-Confidential

Preface
Using this book

Chapter G2 System Registers in a VMSA Implementation
Read this for descriptions of Armv8-R AArch64 System registers in a Virtual Memory System

Architecture (VMSAVS-64) implementation.
Part H, Armv8-R AArch64 External Debug Registers

Chapter H1 External Debug Registers Descriptions
Read this for descriptions of the External debug registers that are added or affected by the Armv8-R

AArch64 architecture profile.
Part |, Architectural Pseudocode

Chapter I1 Armv8-R AArch64 Pseudocode

Contains pseudocode that describes various features of the Armv8-R AArch64 architecture profile.

Glossary
Defines terms used in this document that have a specialized meaning.
Note
Terms that are generally well understood in the microelectronics industry are not included in the Glossary.
Xii Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Conventions

Preface
Conventions

The following sections describe conventions that this book can use:

. Typographic conventions.
. Signals.

. Numbers.

. Pseudocode descriptions.

Typographic conventions

The following table describes the typographic conventions:

Typographic conventions

Style Purpose

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in assembler
syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, and are included in the Glossary in the
Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Colored text

Indicates a link. This can be:

. A URL, for example https://developer.arm.com.

. A cross-reference, that includes the page number of the referenced information if it is not on the current
page, for example, Pseudocode descriptions.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that defines the
colored term, for example Chapter Al.

Signals

Numbers

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

. HIGH for active-HIGH signals.
. LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers are normally written in decimal. Binary numbers are preceded by @b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. Xiii
Non-Confidential

Preface
Ad(ditional reading

Additional reading
This section lists relevant publications from Arm and third parties.

See Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications
. Arm® Architecture Reference Manual, Armv7-A and Armv7-R edition (ARM DDI 0406).
. Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile (ARM DDI 0487).
. Arm® CoreSight™ Architecture Specification v3.0 (ARM IHI 0029).
. Arm® Embedded Trace Macrocell Architecture Specification, ETMv4.0 to ETMv4.5 (ARM IHI 0064).

. Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4
(ARM IHI 0069).

Other publications

. JEDEC Solid State Technology Association, Standard Manufacturer s Identification Code, JEP106.

Xiv Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Feedback

Preface

Feedback on this book

Feedback
Arm welcomes feedback on its documentation.
If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
. The title, Arm"™ Architecture Reference Manual Supplement Armv8, for Armv8-R AArch64 architecture
profile.
. The number, ARM DDI 0600A.c.
. The page numbers to which your comments apply.
. A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. XV
Non-Confidential

Preface
Feedback

XVi Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Part A

Introduction and Architecture Overview

Chapter A1
Architecture Overview

This chapter introduces the Armv8 architecture, the architecture profiles it defines, and the Armv8-R A Arch64
profile that this manual defines. It contains the following sections:

. About the Armv8 architecture on page A1-20.

. Architecture profiles on page A1-21.

. The Armv8-R AArch64 architecture profile on page A1-22.
. Architecture extensions on page A1-23.

. Supported extensions in Armv8-R AArch64 on page A1-26.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. A1-19
ID090320 Non-Confidential

Architecture Overview
A1.1 About the Armv8

architecture

A1.1 About the Armv8 architecture

The Arm architecture that this Architecture Reference Manual describes, defines the behavior of an abstract
machine, referred to as a processing element (PE). The implementations that are compliant with the Arm
architecture must conform to the described behavior of the PE. This manual does not describe how to build an
implementation of the PE, nor does it limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the Arm architecture must be the same as a simple sequential execution of the program on the PE.
This programmer-visible behavior does not include the execution time of the program.

The Arm Architecture Reference Manual also describes rules for software to use the PE.
The Arm architecture includes definitions of:
. An associated debug architecture.

. Associated trace architectures, which define trace macrocells that implementers can implement with the
associated processor hardware.

The Arm architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC
architecture features:

. A large uniform register file.

. A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

. Simple addressing modes, with all load/store addresses determined from register contents and instruction
fields only.

The architecture defines the interaction of the PE with memory, including caches, and includes a memory translation
system. It also describes how multiple PEs interact with each other and with other observers in a system. This
document defines the Armv8-R AArch64 architecture profile. See The Armv8-R AArch64 architecture profile on
page A1-22 for more information.

The Arm architecture supports implementations across a wide range of performance points. Implementation size,
performance, and low power consumption are key attributes of the Arm architecture.

See Conventions on page xiii for information about conventions used in this manual, including the use of SMALL
CAPS for particular terms that have Arm-specific meanings that are defined in the Glossary.

A1.11 See also

In the Arm Architecture Reference Manual

. Introduction to the Armv8 Architecture.
. Armv8 architectural concepts.
A1-20 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Architecture Overview
A1.2 Architecture profiles

A1.2 Architecture profiles

The Arm architecture has evolved significantly since its introduction, and Arm continues to develop it. Eight major
versions of the architecture have been defined to date, denoted by the version numbers 1 to 8. Of these, the first three
versions are now obsolete.

Armv8 defines three architecture profiles:

A Application profile:

. Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

. Supports the A32, T32, and A64 instruction sets.

R Real-time profile:
. Supports the AArch64 or AArch32 Execution states.
. Supports A64, or A32 and T32 instruction sets.

. Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

. Supports a VMSA based on an MMU.

M Microcontroller profile:
. Implements a programmers’ model that is designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

. Supports a PMSA based on an MPU.

. Supports a variant of the T32 instruction set.

For more information, see Introduction to the Armv8 Architecture chapter of the Arm®™ Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. A1-21
Non-Confidential

Architecture Overview

A1.3 The Armv8-R AArch64 architecture profile

A13 The Armv8-R AArch64 architecture profile

The Armv8-R AArch64 architecture profile is described in terms of Armv8-A Exception levels. Armv8-R AArch64
implementations support ELO, EL1, and EL2 Exception levels.

The main features of the Armv8-R AArch64 profile are:

A1.31 See also

Support for one Execution state, AArch64.
No EL3 Exception level. Secure monitor is not supported in the Armv8-R AArch64 profile.
A PMSA that defines memory ordering and memory management in 64-bit address space and provides:

— A model for defining protection regions at EL1 and EL2 using two 64-bit registers to specify a base
address and a limit address.

— A minimum protection region size of 64 bytes.
— No support for overlapping protection regions.
The PE is always in Secure state.

A programmers’ model and its interfaces to AArch64 registers with EL1 and EL2 PMSA registers that
control most PE and memory system features, and provide status information.

Support for Advanced SIMD and floating-point instructions.

The Armv8-R AArch64 virtualization model, which provides:

— Support for the EL2 Exception level.

— A second MPU that provides stage 1 memory protection for memory accesses from EL2 and provides
stage 2 memory protection for accesses from EL1 and EL0. These protection stages act as address
translation regimes in the Armv8-R A Arch64 profile.

ETMv4.5 with Armv8-R AArch64 extension.

The Arm architecture includes definitions of associated trace architectures, which define trace macrocells

that implementers can implement with the associated processor hardware. For more information, see Arm®

Embedded Trace Macrocell Architecture Specification, ETMv4.0 to ETMv4.5 (ARM IHI 0064).

Support for GICv3 or GICv4. For more information, see Arm® Generic Interrupt Controller Architecture

Specification, GIC architecture version 3 and version 4 (ARM THI 0069).

The Armv8 AArch64 Debug architecture that provides software access to debug features.

Optional support for Virtual Memory System Architecture (VMSAv8-64) extension. VMSAvS-64 provides
virtual memory addressing support.

In the Arm Architecture Reference Manual

The AArch64 Application Level Programmers’ Model.
The AArch64 Application Level Memory Model.

The AArch64 System Level Programmers” Model.
AArch64 Self-hosted Debug.

AArch64 Self-hosted Trace.

The AArch64 System Level Memory Model.

The AArch64 Virtual Memory System Architecture.

A1-22

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Al1.4 Architecture extensions

Architecture Overview
A1.4 Architecture extensions

An implementation of the Armv8-R AArch64 architecture is based on the Armv8.4-A architecture. Table A1-1 lists
the features supported by the Armv8-R AArch64 architecture.

Table A1-1 Armv8-A features supported in Armv8-R AArch64

Feature Description

FEAT SSBS Speculative Store Bypass Safe
FEAT CSV2 Cache Speculation Variant 2
FEAT CSV3 Cache Speculation Variant 3
FEAT SB Speculation Barrier

FEAT SPECRES

Speculation restriction instructions

FEAT SHAI

Advanced SIMD SHA1 instructions

FEAT SHA256

Advanced SIMD SHA256 instructions

FEAT AES

Advanced SIMD AES instructions

FEAT PMULL

Advanced SIMD PMULL instructions

FEAT PCSRv8

PC Sample-based Profiling Extension

FEAT DGH Data Gathering Hint

FEAT LSE Large System Extensions

FEAT RDM Advanced SIMD rounding double multiply accumulate
instructions

FEAT PAN Privileged access never

FEAT VMIDI16

FEAT PMUv3pl

16-bit VMID

PMU Extensions v3.1

FEAT XNX Translation table stage 2 Unprivileged Execute-never

FEAT UAO Unprivileged Access Override control

FEAT PAN2 AT S1E1R and AT S1E1W instruction variants affected
by PSTATE.PAN

FEAT DPB DC CVAP instruction

FEAT Debugv8p2

FEAT ASMv8p2

Debug v8.2

Armv8.2 changes to the A64 ISA

FEAT IESB Implicit Error Synchronization event
FEAT DPB2 DC CVADP instruction
FEAT FP16 Half-precision floating-point data processing
FEAT LVA Large VA support
FEAT LPA Large PA and IPA support
FEAT VPIPT VMID-aware PIPT instruction cache
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. A1-23

ID090320

Non-Confidential

Architecture Overview

A1.4 Architecture extensions

Table A1-1 Armv8-A features supported in Armv8-R AArch64 (continued)

Feature

Description

FEAT PCSRv8p2

PC Sample-based profiling

FEAT DotProd

Advanced SIMD dot product instructions

FEAT SHA3

FEAT SHAS512

Advanced SIMD SHA3 instructions

Advanced SIMD SHAS512 instructions

FEAT SM3 Advanced SIMD SM3 instructions

FEAT SM4 Advanced SIMD SM4 instructions

FEAT FHM Floating-point half-precision multiplication
instructions

FEAT PAuth Pointer authentication

FEAT JSCVT JavaScript conversion instructions

FEAT LRCPC Load-acquire RCpc instructions

FEAT FCMA Floating-point complex number instructions

FEAT DoPD Debug over Powerdown

FEAT CCIDX Extended cache index

FEAT PAuth2

Enhancements to pointer authentication

FEAT FPAC Faulting on AUT* instructions

FEAT SEL2 Secure EL2

FEAT S2FWB Stage 2 forced Write-Back

FEAT DIT Data Independent Timing instructions
FEAT IDST ID space trap handling

FEAT FlagM Flag Manipulation instructions v2
FEAT LSE2 Large System Extensions v2

FEAT LRCPC2

FEAT TLBIOS

Load-acquire RCpc instructions v2

TLB invalidate instructions in OQuter Shareable domain

FEAT TLBIRANGE

TLB invalidate range instructions

FEAT CNTSC

Generic Counter Scaling

FEAT RASvIpl

RAS Extension v1.1

FEAT Debugv8p4
FEAT PMUv3p4

FEAT TRF

Debug v8.4
PMU Extensions v3.4

Self-hosted Trace Extensions

The Armv8-R AArch64 architecture supports concurrent modification and execution of instructions as defined by
the Armv8-A architecture. FEAT IDST feature is extended to include MPUIR _EL1 register.

A1-24

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential

ID090320

Architecture Overview
A1.4 Architecture extensions

For the architectural features supported by Armv8-R AArch64, whether a feature is mandatory or optional depends
on whether the feature is mandatory or optional in the Armv8.4-A architecture.

In a PMSAv8-64 only implementation, the FEAT TLBIOS and FEAT TLBIRANGE features are optional.

A1.4.1 See also

In the Arm Architecture Reference Manual

. Armv8-A Architecture Extensions.
. The Armv8.1 architecture extension.
. The Armv8.2 architecture extension.
. The Armv8.3 architecture extension.
. The Armv8.4 architecture extension.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. A1-25

1D090320 Non-Confidential

Architecture Overview
A1.5 Supported extensions in Armv8-R AArch64

A1.5 Supported extensions in Armv8-R AArch64

A1.51 Advanced SIMD and Floating-point extensions
The support for Advanced SIMD and floating-point instructions must conform to the Armv8-A AArch64
specifications.

A1.5.2 See also

In the Arm Architecture Reference Manual
. Advanced SIMD and floating-point support.
. A64 Advanced SIMD and Floating-point Instruction Descriptions.

A1-26 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Part B

Differences between the Armv8-A AArch64 and the
Armv8-R AArch64 Profiles

Chapter B1
Differences between the Armv8-A AArch64 and the
Armv8-R AArch64 Profiles

This chapter describes the system level and application level architectural differences between Armv8-R AArch64
and Armv8-A AArch64. It contains the following sections:

. Differences from the Armv8-A AArch64 application level architecture on page B1-30.
Differences from the Armv8-A AArch64 system level architecture on page B1-31.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. B1-29
ID090320 Non-Confidential

Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
B1.1 Differences from the Armv8-A AArch64 application level architecture

B1.1 Differences from the Armv8-A AArch64 application level architecture

B1.1.1 Differences from the Armv8-A AArch64 application level programmers’ model

The Armv8-R AArch64 application level programmers’ model differs from the Armv8-A AArch64 profile in the
following ways:

. Armv8-R AArch64 supports only a single Security state, Secure.

. EL2 is mandatory.

. EL3 is not supported.

. Armv8-R AArch64 supports the A64 ISA instruction set with some modifications.

See The AArch64 Application Level Programmers’ Model chapter of the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

B1.1.2 Differences from the Armv8-A AArch64 application level memory model

Armv8-R AArch64 redefines Data Memory Barrier and Data Synchronization Barrier, and adds an instruction, Data
Full Barrier.

B1.1.3 See also

In the Arm Architecture Reference Manual

. Memory barriers.

. Data Memory Barrier (DMB).

. Data Synchronization Barrier (DSB).

. Use of ASIDs and VMIDs to reduce TLB maintenance requirements.

B1-30 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
B1.2 Differences from the Armv8-A AArch64 system level architecture

B1.2 Differences from the Armv8-A AArch64 system level architecture
B1.2.1 Differences from the Armv8-A AArch64 system level programmers’ model

Virtualization

Armv8-R AArch64 provides a PMSA-based virtualization model.

Generic Interrupt Controller
Armv8-R AArch64 supports GICv3 or GICv4. The GIC architecture is defined by the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4 (ARM IHI 0069).

B1.2.2 Differences from the Armv8-A AArch64 system level memory model

Address space

Armv8-R AArch64 uses flat mapping from the virtual address (VA), used by the PE, to the physical address (PA),
and can support address bits up to 52 if FEAT LPA is enabled, otherwise 48 bits.

Address translation

In PMSAVS8-64 address translation flat-maps the VA to the PA, and determines the access permissions and memory
attributes of the target PA.

System register support for IMPLEMENTATION DEFINED memory features

The type, presence, and accessibility of Tightly Coupled Memory to EL1 and ELO, or to EL2, is IMPLEMENTATION
DEFINED.

B1.2.3 Protected Memory System Architecture, PMSAv8-64

The Armv8-R A Arch64 implementation supports the Protected Memory System Architecture (PMSAv8-64) at EL1
and EL2. See Chapter C1 Protected Memory System Architecture.

B1.2.4 See also

In the Arm Architecture Reference Manual

. The Arm Generic Interrupt Controller System registers.
. About the GIC System registers.
. Address generation.
. Address space.
. Address size configuration.
. Address translation instructions.
. A64 System instructions for address translation.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. B1-31

1D090320 Non-Confidential

Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
B1.2 Differences from the Armv8-A AArch64 system level architecture

B1-32 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Part C

Armv8-R AArch64 Protected Memory System
Architecture

Chapter C1
Protected Memory System Architecture

This chapter provides a system-level view of the Protected Memory System Architecture for any implementation

that is compliant with the Armv8-R AArch64 architecture. It contains the following sections:

About the Protected Memory System Architecture on page C1-36.
Memory Protection Unit on page C1-37.

Address translation regimes on page C1-38.

Default memory map on page C1-39.

Armv8-A memory view on page C1-40.

MPU memory translations and faults on page C1-41.

Protection region attributes and access permissions on page C1-49.
MPU fault encodings on page C1-53.

PMSAvS-64 implications for caches on page C1-54.

Address tagging and pointer authentication support on page C1-55.
Security model on page C1-56.

Virtualization on page C1-59.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C1-35

Protected Memory System Architecture
C1.1 About the Protected Memory System Architecture

C11 About the Protected Memory System Architecture
The Armv8-R AArch64 implementation supports the Protected Memory System Architecture (PMSAvS-64) at EL1
and EL2. The PMSAv8-64 is based on MPUs that provide a memory protection scheme by defining protection
regions in the address space.
The PMSAv8-64:
. Supports a unified memory protection scheme where an MPU manages instruction and data access. It does
not provide separate instruction protection regions and data protection regions in the address map.
. Defines MPU faults that are consistent with VMSAv8-64 fault definitions and reuses IFSC and DFSC fault
encodings.
. Does not support virtual addressing and flat maps input address to output address.
For general information about the Arm memory model, see The AArch64 Application Level Memory Model and The
AArch64 System Level Memory Model chapters of the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.
C1.11 Protection regions
An MPU defines protection regions in the address map. A protection region is a contiguous memory region for
which the MPU defines the memory attributes and the access permissions.
Protection regions:
. Are defined by a pair of registers, a Base Address Register, and a Limit Address Register, see Memory
Protection Unit on page C1-37.
. Have a minimum size of 64 bytes.
. Have a maximum size of the entire address map.
. Must not overlap.
The definition of a protection region specifies the start and the end of the region, the access permissions, and the
memory attributes for the region.
C1.1.2 Address range
The maximum supported address bit size is 48, or 52 if FEAT LPA is enabled. A PE can choose to implement a
smaller PA range and the actual implemented physical address range is provided by the
ID AA64MMFRO_EL1.PARange field. Any access to physical memory address outside the address range results
in a memory fault.
C1-36 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Protected Memory System Architecture
C1.2 Memory Protection Unit

C1.2 Memory Protection Unit

An MPU checks whether the address used by a memory access matches a defined protection region. The MPU uses
a Base Address Register and a Limit Address Register to define a protection region and its associated access
permissions and memory attributes. The minimum supported size of a protection region is 64-bytes.

The PMSAv8-64 defines two MPUs:

EL1 MPU

EL2 MPU

The EL1 MPU can be configured from EL1 or EL2. The EL1 MPU controls the stage 1 of the Secure
EL1&0 translation regime that defines the protection regions for accesses from EL1 and ELO. The
PMSAvS8-64 uses SCTLR _EL1.M to enable and disable the EL1 MPU. The EL1 MPU also supports
a Background region, controlled by SCTLR_EL1.BR.

The EL2 MPU can be configured only from EL2. The EL2 MPU controls:

. Stage 1 of the Secure EL2 translation regime that defines the protection regions for accesses
from EL2.
. Stage 2 of the Secure EL1 &0 translation regime that defines the protection regions for

accesses from EL1 and ELO.

The PMSAv8-64 uses SCTLR_EL2.M to enable and disable the EL2 MPU. The EL2 MPU also
supports a Background region, controlled by SCTLR_EL2.BR.

Note

When HCR_EL2.VMis 1 and SCTLR_EL2.M s 1, then EL2 MPU modifies the access permissions
and memory attributes that are assigned by the EL1 MPU.

See Protection region attributes and access permissions on page C1-49. PMSAv8-64 supports a default memory
map as a Background region for memory region checks at both EL1 and EL2. See Default memory map on

page C1-39.

C1.21 MPU Default Cacheability

The PMSAv8-64 supports Default Cacheability for the stage 1 of the Secure EL1&0 translation regime access and
follows the same rule as ArmvS§-A.

For more information, see chapter A4rch64 System Register Descriptions of the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-37

Non-Confidential

Protected Memory System Architecture
C1.3 Address translation regimes

C1.3 Address translation regimes

In PMSAv8-64:

. Address translation describes the process of flat mapping the VA used by the PE, to the PA accessed in the
memory system, and determining the access permissions and memory attributes of the target PA.

. A translation regime maps a VA to a PA using one or two stages of address translation to assign the access
permissions and memory attributes of the target PA. When two translation stages are used, the intermediate
address is treated as an intermediate physical address (IPA).

The Armv8-R AArch64 architecture supports two translation regimes:

. Secure EL1&0 translation regime.

. Secure EL2 translation regime.

Secure EL1&0 translation regime

The Secure EL1&0 translation regime assigns the access permissions and memory attributes for any
access from EL1 or ELO.

This translation regime has one or two stages of translation:

. All accesses from EL1 or ELO are translated by the EL1 MPU. This translation is a stage 1
translation.

. When the value of HCR_EL2.VM is 1 and SCTLR EL2.M is 1, the accesses are further
translated by the EL2 MPU. This translation is a stage 2 translation, and can modify the
access permissions and memory attributes that are assigned by the stage 1 translation.

For the EL1&0 stage 1 translation, an ADDRESS is in the protection region 7 if and only if:
PRBAR<n> EL1.BASE:'000000' <= ADDRESS <= PRLAR<n> EL1.LIMIT:'111111".

Secure EL2 translation regime

The Secure EL2 translation regime assigns the access permissions and memory attributes for any
access from EL2.

This translation regime has a single stage of translation, stage 1, that is performed by the EL2 MPU.
For the EL2 stage 1 translation, an ADDRESS is in the protection region # if and only if:
PRBAR<n> EL2.BASE:'000000' <= ADDRESS <= PRLAR<n> EL2.LIMIT:'111111".

The attributes for a protection region are defined by the combination of:

. The values that are programmed into the Base Address Registers and Limit Address Registers. The registers
are PRBAR EL1, PRLAR ELI1, PRBAR EL2, and PRLAR EL2.

. A Memory Attributes Indirection register that is indexed by the values MAIR EL1 and MAIR_EL2.

C1-38 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Protected Memory System Architecture
C1.4 Default memory map

C1.4 Default memory map

For PMSAv8-64, the Background region is enabled and disabled using SCTLR ELx.BR. If the Background region
is enabled, then the MPU uses the default memory map as the Background region for generating the memory
attributes when MPU is disabled.

The default memory map of the Armv8-R AArch64 architecture is IMPLEMENTATION DEFINED. Therefore, the
Armv8-R AArch64 architecture defines only the condition to access the default memory map, but not the memory
map itself. The memory attributes, access permissions, and Security state of the memory regions in the default
memory map are also IMPLEMENTATION DEFINED.

Any access outside the implemented physical address range in the default memory map results in a fault.

If the IMPLEMENTATION DEFINED default memory map is discontinuous, then the implementation must also define
a generic permission and attribute to be used for memory access to all memory regions that are not covered by the
default memory map. However, an implementation can also select a default memory map so that the accesses to
these discontinuous memory regions, where no memory attributes are allocated, always result in memory faults.

Note
The default memory map is same for EL1 and EL2 MPUs.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-39
Non-Confidential

Protected Memory System Architecture
C1.5 Armv8-A memory view

C1.5 Armv8-A memory view
The PMSAvV8-64 uses same controls as VMSAv8-64 to enable and disable translation stages.

If the MPU and the Background region are not enabled for stage 1 translation stage, then PMSAv8-64 uses the same
memory attributes as defined by VMSAv8-64 when stage 1 translation is disabled.

C1-40 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Protected Memory System Architecture
C1.6 MPU memory translations and faults

C1.6 MPU memory translations and faults

This section provides information on memory attributes and the MPU faults for the stage 1 Secure EL1&0, stage 1
Secure EL2, and the stage 2 Secure EL1&0 translation regimes.

For the EL1 MPU memory translations, this section describes the following:
. Stage 1 EL1&0 memory attributes.

. Stage 1 MPU faults for EL1 access.

. Stage 1 MPU faults for ELO access.

. EL1 MPU fault types.

. MPU fault check sequence for the stage 1 Secure EL1&0 translation.

For the EL2 MPU memory translations, this section describes the following:
. Stage 1 EL2 memory attributes.

. Stage 1 MPU faults for EL2 access.

. Stage 2 EL1&0 memory attributes.

. Stage 2 EL1&0 MPU faults.

. EL2 MPU fault types.

. MPU fault check sequence for the stage 1 Secure EL2 translation.

. MPU fault check sequence for the stage 2 Secure EL1&0 translation.

C1.6.1 EL1 MPU memory translations

The EL1 MPU controls the stage 1 of the Secure EL1&0 translation regime. Based on the values of HCR_EL2.DC
and SCTLR_EL1.{M, BR}, the stage 1 of the Secure EL1&0 translation regime can have the following
configurations for memory attributes, as described in Table C1-1.

Table C1-1 Stage 1 EL1&0 memory attributes

HCR_EL2 SCTLR_EL1

MPU hit Memory attribute

DC M BR

1 X X - Default Cacheability

0 0 0 - Armv8-A AArch64 memory view
0 0 1 - Default memory map

0 1 0 No Not applicable, MPU Fault

0 1 0 Yes MPU memory map

0 1 1 No Default memory map

0 1 1 Yes MPU memory map

Note

Armv8-A AArch64 memory view is the stage 1 memory attribute defined by the Armv8-A architecture for
accessing a memory location when stage 1 address translation is disabled (SCTLR _ELx.M = 0).

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-41
ID090320 Non-Confidential

Protected Memory System Architecture
C1.6 MPU memory translations and faults

Table C1-2 lists the configurations for the stage 1 MPU faults for EL1 access.

Table C1-2 Stage 1 MPU faults for EL1 access

HCR_EL2 SCTLR_EL1

MPU hit MPU faults

DC M BR

1 X X - No Fault or Address size fault

0 0 0 - No Fault or Address size fault

0 0 1 - No Fault, or Background region Translation fault, or Background region
Permission fault

0 1 0 No Translation fault

0 1 0 Yes No Fault or Permission fault

0 1 1 No No Fault, or Background region Translation fault, or Background region
Permission fault

0 1 1 Yes No Fault or Permission fault

Table C1-3 lists the configurations for the stage 1 MPU faults for ELO access.

Table C1-3 Stage 1 MPU faults for EL0 access

HCR_EL2 SCTLR_EL1

MPU hit MPU faults
DC M BR
1 X X - No Fault or Address size fault
0 0 0 - No Fault or Address size fault
0 0 1 - No Fault, or Background region Translation fault, or Background region
Permission fault
0 1 X No Translation fault
0 1 X Yes No Fault or Permission fault
Note

If HCR_EL2.{DC, TGE} is not {0, 0}, then the PE behaves as if the value of the SCTLR_EL1.BR is 0 for all
purposes other than returning the value of a direct read of the field.

C1.6.2 EL1 MPU faults
Each EL1 MPU protection region is defined using the PRBAR_EL1 and PRLAR_EL1 registers. The MPU checks
the input address with each protection region, and an address is considered to match a region if:
Address >= PRBAR_EL1.BASE:'000000' && Address <= PRLAR_EL1.LIMIT:'111111'

C1-42 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Protected Memory System Architecture
C1.6 MPU memory translations and faults

Based on MPU protection region checks, the EL1 MPU can raise the following responses as described in
Table C1-4.

Table C1-4 EL1 MPU fault types

Protection region match Permission MPU response

No match - Translation fault

Multiple - Translation fault

Single Denied Permission fault
Allowed Valid

Ifthe EL1 MPU is disabled and the input address is larger than the implemented PA size, then a level 0 address size
fault is generated. If the EL1 MPU is enabled and the input address is larger than the implemented PA size, then a
level 0 translation fault is generated. Permitted transactions are then presented to stage 2 permission checks by the
EL2 MPU.

Depending on the configuration in the PMSAv8-64 registers, the memory attributes of an address can be defined by
an MPU protection region, a Background region, or it may have Armv8-A AArch64 memory view.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-43
ID090320 Non-Confidential

Protected Memory System Architecture
C1.6 MPU memory translations and faults

MPU fault check for the stage 1 Secure EL1&0 translation

C1.63
Figure C1-1 shows the MPU fault check sequence for the stage 1 of the Secure EL1&0 translation regime.

Memory address

Alignment

check required? Check address alignment ‘

Aligned? Alignment fault

s Defaul
Cacheability
enabled?

MPU
enabled?

Check for MPU region match

'

\ 4
Use Default Cacheability attributes Multiple
?
N Background Matches?
egion enabled? Y
4
Use v8-A AArch64 memory
view
Back d 4
ackgroun . >
Use default memory map egion enabled? Translation fault
A
)) N
Valid attributes?
Y
dl
hal
\ 4
o Check for access
L permission
Permission fault
Y

N address <
Address size fault implemented PA
range

Figure C1-1 MPU fault check sequence for the stage 1 Secure EL1&0 translation

C1-44 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Protected Memory System Architecture
C1.6 MPU memory translations and faults

C1.64 EL2 MPU memory translations

Based on the values of SCTLR_EL2.{M, BR}, the stage 1 of the Secure EL2 translation regime can have the
following configurations for memory attributes, as described in Table C1-5.

Table C1-5 Stage 1 EL2 memory attributes

SCTLR_EL2
MPU hit Memory attributes
M BR
0 0 - Armv8-A AArch64 memory view
0 1 - Default memory map
1 0 No Not applicable. MPU Fault.
1 0 Yes MPU memory map
1 1 No Default memory map
1 1 Yes MPU memory map

Table C1-6 lists the configurations for stage 1 MPU faults for EL2 access.

Table C1-6 Stage 1 MPU faults for EL2 access

SCTLR_EL2
MPU hit MPU faults
M BR
0 0 - No Fault or Address size fault
0 1 - No Fault, or Background region Translation fault, or Background region Permission fault
1 0 No Translation fault
1 0 Yes No Fault or Permission fault
1 1 No No Fault, or Background region Translation fault, or Background region Permission fault
1 1 Yes No Fault or Permission fault

Based on HCR_EL2.VM and SCTLR_EL2.{M, BR}, the stage 2 of the Secure EL1&0 translation regime can have
the following configurations for memory attributes, as described in Table C1-7.

Table C1-7 Stage 2 EL1&0 memory attributes

HCR_EL2 SCTLR_EL2

MPU hit Memory attribute

VM M BR
0 X X - Stage 2 translation disabled
1 0 0 - CONSTRAINED UNPREDICTABLE
1 0 1 - Default memory map
1 1 X No Not applicable. MPU Fault.
1 1 X Yes MPU memory map
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-45

1D090320 Non-Confidential

Protected Memory System Architecture
C1.6 MPU memory translations and faults

Table C1-8 lists the configurations for MPU faults for the stage 2 of the Secure EL1&0 translation regime.

Table C1-8 Stage 2 EL1&0 MPU faults

HCR_EL2 SCTLR_EL2
MPU hit MPU faults

VM M BR

0 X X - No Fault

1 0 0 - CONSTRAINED UNPREDICTABLE

1 0 1 - No Fault, or Background region Translation fault, or Background region Permission

fault, or Translation fault due to Secure Check, if enabled.

1 1 X No Translation fault

1 1 X Yes No Fault, or Permission fault, or Translation fault due to Secure Check, if enabled.
There are no separate configurations for the protection regions for the stage 1 of the Secure EL2 and the stage 2 of
the Secure EL1&0 translations. Memory accesses for both translations are controlled by the same MPU
configuration registers, PRBAR EL2 and PRLAR EL2.

Note
In Armv8-A, there are separate translation table base registers for the stage 1 of the Secure EL2 and the stage 2 of
the Secure EL1&0 translation regimes.
C1.6.5 EL2 MPU faults

Each EL2 MPU protection region is defined using PRBAR EL2 and PRLAR EL2. The MPU checks the input
address with each protection region and an address is considered to match a region if:

Address >= PRBAR_EL2.BASE:'000000' & Address <= PRLAR_EL2.LIMIT:'111111'

Based on MPU protection region checks, the EL2 MPU can raise the following responses as described in
Table C1-9.

Table C1-9 EL2 MPU fault types

Protection region match Permission MPU response

No match - Translation fault
Multiple - Translation fault
Single Denied Permission fault
Single Allowed Valid

If the EL2 MPU is disabled for the stage 1 of the Secure EL2 translation regime, then any access to an address
outside the implemented PA range raises a level 0 address size fault. If the EL2 MPU is enabled for the stage 1 of
the Secure EL2 translation regime, and the input address is larger than the implemented PA range, then a level 0
translation fault is generated.

C1-46

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Protected Memory System Architecture
C1.6 MPU memory translations and faults

C1.6.6 MPU fault check for the stage 1 Secure EL2 translation

Figure C1-2 shows the MPU fault check sequence for the stage 1 of the Secure EL2 translation regime.

Memory address

Alignment

check required? Check address alignment ‘

Alignment fault

MPU enabled?

Multiple
Matches?

Background
egion enabled?

Use v8-A AArch64 memory
view

Background
region enabled?

Use default memory map Translation fault

Valid attributes?

4
Check for access permission

Valid permission? Permission fault

address <
implemented PA
range

Address size fault Output address

Figure C1-2 MPU fault check sequence for the stage 1 Secure EL2 translation

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-47
ID090320 Non-Confidential

Protected Memory System Architecture
C1.6 MPU memory translations and faults

C1.6.7 MPU fault check for the stage 2 Secure EL1&0 translation

Figure C1-3 shows the MPU fault check sequence for the stage 2 of the Secure EL1&0 translation regime.

Memory address

Stage-2
Translation
Enabled?

MPU Enabled? Check for MPU Region Match

A 4
No stage-2 translation ‘

) 4

Matched?

Background

egion Enabled? N

Translation Fault

v
N
SecureCheck
Enabled?
Y
) 4
N .
NS matched? Translation Fault
Y
<
A
Check for Access
Permission
) 4
. . N o
Valid Permission? Permission Fault
Y

address <
implemented
PA range

Y
Output Address

@

Address Size Fault

Figure C1-3 MPU fault check sequence for the stage 2 Secure EL1&0 translation

C1-48 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Protected Memory System Architecture
C1.7 Protection region attributes and access permissions

C1.7 Protection region attributes and access permissions

The protection region attribute fields control the Memory type, Cacheability, and Shareability attributes of the
region. PMSAvV8-64 uses the same memory types and memory attributes as VMSAv8-64 in Armv8-A.

The memory attributes and access permissions for a protection region are defined by:
. The PRBAR EL1 and PRLAR_ELI1 registers, or the PRBAR EL2 and PRLAR EL2 registers that define
the protection region.

. The MAIR_EL1.Attr<n> or MAIR EL2.Attr<n> field that is indexed by PRLAR EL1.AttrIndx or
PRLAR_EL2.AttrIndx, respectively.

See also Memory attributes and access permission mappings on page C1-51.

For the Secure EL1&0 translation regime, when HCR_EL2.VM is 1, the stage | memory attribute and access
permission assignments are combined with the stage 2 assignments, as described in Combining memory attributes
and access permissions on page C1-51.

C1.71 Protection region attributes

The PMSAv8-64 uses the same memory attributes defined by the VMSAv8-64, and the MPU enables configuration
of the attributes for each protection region using MAIR EL1 and MAIR EL2. The PMSAv8-64 also enables
configuration of each protection region to map to Secure or Non-secure address space using the NS bit in the EL1
and EL2 MPU configuration registers.

Note

Writes to MPU registers are only guaranteed to be visible following a Context synchronization event and DSB
operation.

If there are multiple protection regions allocated to the same coherency granule, then Armv8-R AArch64 follows
the Armv8-A mismatched memory attributes rules to access any byte within that coherency granule. If the Security
states of protection regions are different, then implementation must ensure that these regions are not allocated to the
same coherency granule.

The PMSAvS8-64 uses the same memory attributes defined by the VMSAv8-64 using MAIR EL1 and MAIR EL2
for the stage 1 EL1&0 and EL2 translations. For the stage 2 EL1&0 translations, memory attributes encoding in the
MAIR_EL2 register is defined in Table C1-10.

Table C1-10 Meaning of Attr[7:4]

Attr [7:6] Attr [5:4] Memory type Outer cache policy

00 00 Device memory ~ Not Applicable (NA)
00 =00 Normal memory Write-Through (WT)
01 00 Normal memory Non Cacheable (NC)
01 1=00 Normal memory Write-Back (WB)
10 XX Normal memory Write-Through (WT)
11 XX Normal memory Write-Back (WB)

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-49

1D090320 Non-Confidential

Protected Memory System Architecture
C1.7 Protection region attributes and access permissions

C1.7.2

When Attr[7:4] is 0b0000, Attr[3:0] defines the type of Device memory. In this case, Attr[1:0] != 0b00 gives
UNPREDICTABLE behavior as defined by Armv8-A. Table C1-11 describes the meaning of Attr<3.0> when Attr[7:4]
is 0b0000.

Table C1-11 Attr<3.0> Meaning when Attr[7:4] is 0b0000

Attr [3:2] Attr [1:0] Memory type

00 00 Device-nGnRnE
01 00 Device-nGnRE
10 00 Device-nGRE
11 00 Device-GRE

When Attr[7:4] is not 0b0000, Attr[3:0] defines the Inner Cache Policy, and Attr[3:0] = 0b0000 gives UNPREDICTABLE
behavior as defined by Armv8-A. Table C1-12 describes the meaning of Attr<3.0> when Attr[7:4] is not 0b0000.

Table C1-12 Attr<3.0> Meaning when Attr[7:4] is not 0b0000

Attr [3:2] Attr[1:0] Memory type Inner Cache Policy

00 1=00 Normal memory Write-Through (WT)
01 00 Normal memory Non Cacheable (NC)
01 1=00 Normal memory Write-Back (WB)
10 XX Normal memory Write-Through (WT)
11 XX Normal memory Write-Back (WB)

For more information, see chapter The AArch64 Virtual Memory System Architecture of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

Access control

The access permission and security configuration bits, such as AP, XN, and NS in the VMSAv8-64 translation table
descriptors are present in the MPU configuration registers in PMSAv8-64.

Access granted in the stage 1 of the Secure EL1&0 translation regime by the EL1 MPU is subject to further
qualification by the EL2 MPU in the stage 2 of the Secure EL1&0 translation regime.

The AP, XN, and NS bits in PMSAv8-64 are interpreted in the same way as defined by VMSAv8-64. For selecting
memory attributes and defining access permissions, PMSAv8-64 follows the same prioritization rules defined by
VMSAVS-64 in Armv8-A.

PMSAVS-64 does not support hierarchical control bits defined in the VMSAv8-64 table descriptors. PMSAvS-64
also does not support Privileged execute-never (PXN) and Unprivileged execute-never (UXN) bits. PMSAv8-64
behaves as PXN = XN and UXN = XN, and follows the same rule defined by VMSAVS8-64 in combining permission
attributes.

If the value of SCTLR _ELx.{M, BR} is {0, 1}, where ELx is the highest Exception level of the translation regime,
then PE behaves as if the value of SCTLR_ELx.WXN is 0 for all purposes other than returning the value of a direct
read of the field.

If the value of SCTLR_EL1.{M, BR} is {0, 1}, then for the Secure EL1&0 translation regime, any memory region
that is writable at ELO0, is also executable from EL1 if that address is marked as executable by the Background
region.

Armv8-R AArch64 supports FEAT PAN as defined by the Armv8-A architecture. If the value of SCTLR _EL1.M
is 1, FEAT PAN is applied to the stage 1 of the Secure EL1&0 translation regime.

C1-50

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Protected Memory System Architecture
C1.7 Protection region attributes and access permissions

C1.7.3 Memory attributes and access permission mappings

Memory attributes, Security states, and access permission information present in the translation table descriptors of
VMSAvV8-64 are mapped to MPU configuration registers in PMSAv8-64, as described in Table C1-13.

Table C1-13 Memory attributes and access permission mappings

Attributes and permissions MPU register fields

Description

Non-secure (NS) PRLAR ELI1.NS

PRLAR_EL2.NS

Access Permission (AP) PRBAR_EL1.AP

PRBAR_EL2.AP

Execute Never (XN) PRBAR_EL1.XN

PRBAR_EL2.XN

Shareability (SH) PRBAR_ELI1.SH

PRBAR_EL2.SH

Specifies whether the translated address is in the Secure or
Non-secure address space.

Defines the Access permissions for the protection region.

Defines the Execute-never attribute for the protection
region.

Defines the Shareability for a Normal memory region. For
any type of Device memory or Normal Non-cacheable
memory, the value of the SH[1:0] field is IGNORED.

Attribute Index (AttrIndx) PRLAR_ELI1.AttrIndx

PRLAR_EL2.AttrIndx

Indexes an Attr<n> field in the MAIR _EL1 or MAIR EL2
register, which gives the memory type and memory
attributes.

C1.74 Combining memory attributes and access permissions

Armv8-R AArch64 uses the same architecture rules as Armv8-A for combining stage 1 and stage 2 memory
attributes and the access permissions for the Secure EL1&0 translation regime.

Stage 2 forced Write-Back Feature

If FEAT S2FWB is enabled (HCR_EL2.FWB=1), the Inner and Outer Memory attributes for the stage 2 of the
Secure EL1&0 translation regime must be the same with the same encoding, otherwise the combined attribute is

UNKNOWN.

. If FEAT S2FWB is enabled and the memory attributes for the stage 2 of the Secure EL1&0 translation
regime are Write-Back (WB) with Attr[7:6] = @b11, then the combined attribute is WB. If the memory
attribute is assigned by the MPU, the attribute encoding is derived from MAIR EL2.Attr[7:6]. If the memory
attribute is assigned from Background region, then the encoding is derived from the memory region

configuration in the Background region.

. IfFEAT S2FWB is not enabled, then stage 1 and stage 2 memory attributes of the Secure EL1&0 translation
regime are combined using Armv8-A rule for combining memory attributes when FEAT S2FWB is not

enabled.

Note

In Armv8-A, the memory attribute encoding that enables FEAT S2FWB is MemAttr[4:2] = 0b110 in stage 2 block
or page descriptor of the Secure EL1&0 translation regime, while in Armv8-R AArch64, itis MAIR EL2.Attr[7:6]
= 0b11. Therefore, FEAT S2FWB architecture rules defined for the @b110 encoding in Armv8-A must be applied to

the 0b11 encoding in Armv8-R AArch64.

For more information, see the Stage 2 memory region type and Cacheability attributes when Armv8.4-S2FWB is
implemented section of the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-51

Non-Confidential

Protected Memory System Architecture
C1.7 Protection region attributes and access permissions

C1.7.5 Enabling and disabling the caching of memory accesses

The Armv8-R AArch64 architecture follows the same rule as the Armv8-A AArch64 architecture for enabling and
disabling cache, and can force all memory locations with the Normal memory type to be treated as Non-cacheable
regardless of their assigned Cacheability attribute using SCTLR_ELx.{I,C} and HCR_EL2.{ID,CD}. For a
PMSAVS-64 based address translation, Armv8-R AArch64 extends the functionality of SCTLR ELx.{I,C} and
HCR _EL2.{ID,CD} for accesses to Background region also.

C1.7.6 Enabling and disabling stages in translation regimes

The EL1 MPU controls the stage 1 of the Secure EL1&0 translation regime. The EL2 MPU controls the stage 2 of
the Secure EL1&0 translation regime and the stage 1 of the Secure EL2 translation regime.

For the Secure EL1&0 translation regime:
. If SCTLR_ELI1.{M, BR} is {0, 0}, then stage 1 translation is disabled.
. If HCR_EL2.VM is 0, then stage 2 translation is disabled.

. IfHCR EL2.VMis 1 and SCTLR_EL2.{M, BR} is {0, 0}, then the behavior is CONSTRAINED
UNPREDICTABLE with the following permitted values:

— The stage 2 memory attribute becomes UNKNOWN.
— Raise stage 2 level 0 translation fault.

For the Secure EL2 translation regime if SCTLR _EL2.{M, BR} is {0, 0}, then translation is disabled.

C1-52 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

C1.8 MPU fault encodings

PMSAvVS-64 defines MPU faults that are consistent with the VMSAv8-64 fault definitions and reuses IFSC and
DFSC fault encodings. Each MPU raises faults on invalid memory accesses, including accesses to memory regions
outside address ranges and the accesses without sufficient permissions. Table C1-14 describes the MPU fault

encodings mapped from VMSAvS-64.

Protected Memory System Architecture
C1.8 MPU fault encodings

Table C1-14 PMSAv8-64 fault encodings

MPU fault di
Memory faults autt encodings

Description

mapped from VMSAv8-64
Alignment fault Alignment fault Unaligned memory access.
Translation fault Translation fault, level 0 Invalid input address. There is no valid mapping or
valid memory attributes for the input address.
Permission fault Permission fault, level 0 Insufficient access permissions.
(0b001100)
Address size fault Address size fault, level 0 Generated output address is out of range of the

implemented physical address.

Access flag fault

Not applicable for PMSAv8-64.

TLB conflict abort

Not applicable for PMSAv8-64.

Synchronous abort
(translation table walk)

Not applicable for PMSAv8-64.

C1.8.1 See also

In the Arm Architecture Reference Manual
. Program counter and stack pointer alignment.

. FEAT LSE, Large System Extensions.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-53

Non-Confidential

Protected Memory System Architecture
C1.9 PMSAv8-64 implications for caches

C1.9 PMSAVvV8-64 implications for caches

Enabling, reconfiguring, or reprogramming any memory region can result in new and different memory attributes
for a previously accessed or speculatively accessed address. In this case, the rules for mismatched memory attributes
apply. See the Mismatched memory attributes section of the Arm®™ Architecture Reference Manual Armv8, for the
Armv8-A architecture profile.

C1.91 Cache line length

The PMSAvS8-64 permits the definition of memory regions that might be smaller than a cache line in the
implementation. Therefore, the following rules apply:

. If the MPU is configured so that multiple differing attributes apply to a single cache line, then for any access
to that cache line, the rules for mismatched memory attributes apply.
. Marking any part of a cache line as Write-Back permits the entire line to be treated as Write-Back.
C1-54 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Protected Memory System Architecture
C1.10 Address tagging and pointer authentication support

C1.10 Address tagging and pointer authentication support

The Armv8-R AArch64 architecture supports Address tagging defined in Armv8-A architecture. In PMSAv8-64,
TCR_EL1.TBI1 is RAZ.

The Armv8-R AArch64 architecture supports FEAT PAuth2 feature defined in Armv8-A architecture with a
modified definition of PAC field as described below:

. When Address tagging is used, the PAC field is Xn[54:bottom_PAC bit].
. When Address tagging is not used, the PAC field is Xn[63:56, 54:bottom_PAC _bit].

In PMSAv8-64, the bottom PAC _bit is the maximum physical address size as indicated by
ID AA64AMMFRO EL1.PARange.

C1.10.1 See also

In the Arm Architecture Reference Manual

. Features added to the Armv8.3 extension in later releases.
. Pointer authentication in AArch64 state.
. System register control of pointer authentication.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-55

ID090320

Non-Confidential

Protected Memory System Architecture

C1.11 Security model

C1.11 Security model

The Armv8-R AArch64 architecture defines the security model based on Armv8-A AArch64 with the following
changes:
. The Armv8-R AArch64 architecture does not support EL3.
. The Armv8-R AArch64 architecture always executes code in Secure state with EL2 as the highest Exception
level and:
— Itis not possible to switch to Non-secure state.
— ELO, EL1, and EL2, all run in Secure state.

C1.111 Secure EL2

The Armv8-R AArch64 architecture adopts FEAT SEL2 feature from Armv8.4-A architecture extension and
introduces it as PMSAv8-64 based architecture feature. The protection region configuration registers for EL1 and
EL2 MPUs, PRLAR_EL1 and PRLAR_EL2, are extended to include the NS bit that has the same behavior as NS
bit in the translation table descriptor of VMSAvV8-64. Security controls for translation table walks are not supported
in PMSAv8-64.

The NS bit in the PRLAR_EL1 and PRLAR_EL2 specifies whether the output address is in the Secure or
Non-secure address space. Each protection region can be independently configured to the Secure or Non-secure
address space.

The configuration bits required to implement Secure and Non-secure states in VMSAv8-64 are mapped to
PMSAVS-64 as described in Table C1-15.

Table C1-15 VMSAv8-64 and PMSAv8-64 security configuration

VMSAv8-64 PMSAv8-64

NS bit in translation table PRLAR EL1.NS/PRLAR _EL2.NS

NSTable bit in translation table NA

VSTCR_EL2.SW NA
VSTCR_EL2.SA VSTCR_EL2.SA
VTCR_EL2.NSW NA

VTCR_EL2.NSA VTCR_EL2.NSA

See also

In the Arm Architecture Reference Manual

. The VMSAv8-64 address translation system.

. VMSAvV8-64 translation table format descriptors.
. Security state of translation table lookups.

. Translation tables and the translation process.

Secure EL1&0 translation

As the stage 2 of the Secure EL1&0 translation regime is controlled by the EL2 MPU and there is no page-based
address translation or translation table walk, the following modifications are added to Armv8-R AArch64

FEAT SEL2:

. VTCR_EL2.NSW and VSTCR_EL2.SW control bits are RESO.

. VSTTBR_EL2 register is not present.

. Adds a secure check control, VSTCR_EL2.SC.

C1-56

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Protected Memory System Architecture
C1.11 Security model

In addition, VSTCR_EL2.SA and VTCR_EL2.NSA controls are also supported and have the same functionality as
FEAT_SEL2 but are applied to PA in the Secure EL1&0 translation regime.

VSTCR_EL2.SC has no effect on the Secure EL2 translation regime. Table C1-16 describes the behavior of
VSTCR_EL2.SC for the Secure EL1&0 translation regime.

Table C1-16 Secure check behavior in the Secure EL1&0 translation regime

EL1 MPU EL2 MPU

VA NS attribute IPA NS attribute SCPA

Secure 0 Secure 0 X Secure
Secure 1 Non-secure 1 X Non-secure
Secure 0 Secure 1 0 Non-secure
Secure 0 Secure 1 1 Fault
Secure 1 Non-secure 0 0 Non-secure
Secure 1 Non-secure 0 1 Fault

EL1 and ELO access is further subjected to VSTCR_EL2.SA and VTCR_EL2.NSA controls as defined by
Armv8.4-A.

Table C1-17 describes the behavior of VSTCR_EL2.SA and VTCR_EL2.NSA in the Secure EL1&0 translation
regime.

Table C1-17 VSTCR_EL2.SA and VTCR_EL2.NSA behavior in the Secure EL1&0 translation
regime

PA.NS VSTCR_EL2.SA VTCR_EL2.NSA PA.NS (final)

0 0 X 0
0 1 Behaves as 1 1
1 0 0 0
1 0 1 1
1 1 X 1

The Armv8-R AArch64 architecture follows the Armv8-A architecture rules on whether VSTCR _EL2.SA and
VTCR_EL2.NSA controls should be applied.

. IfHCR _EL2.VM=1 and SCTLR_EL2.M=1 or SCTLR_EL2.BR=1, then stage 2 Secure EL1&0 translation
is enabled.

. If HCR_EL2.VM=0, then stage 2 Secure EL1&0 translation is disabled.

C1.11.2 Secure EL2 translation

The Armv8-R AArch64 architecture implements PMSAv8-64 at the stage 1 of the Secure EL2 translation regime.
Therefore, there is no translation table walk and address mapping. The NS bit in the EL2 MPU protection region
register determines whether the output address must be looked in Secure or Non-secure address space.

C1.11.3 See also

In the Arm Architecture Reference Manual
. The Armv8-A security model.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-57
ID090320 Non-Confidential

Protected Memory System Architecture
C1.11 Security model

. The AArch64 System Level Programmers” Model.
. The Armv8.4 architecture extension.
. ARMvV8.4-SecEL2, Secure EL2.

C1-58 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Protected Memory System Architecture
C1.12 Virtualization

C1.12 \Virtualization

Armv8-R AArch64 implements a permission-based containerization by introducing a stage 2 translation using an
MPU controlled by a hypervisor running at EL2. The MPU does not perform address mapping and only checks
permissions. Therefore, Armv8-R AArch64 relies on hypervisor configured permission attributes of the memory
region to implement containerization.

For more information, see chapter The AArch64 System Level Programmers’ Model of the Arm®™ Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

c1.121 Support for Guest operating systems

The hypervisor supports Guest operating systems using PMSAv8-64 on a per guest basis. PMSAvS-64 guests have
access to the EL1 MPU for sandboxing individual tasks. Memory accesses by PMSAv8-64 guests are further
validated by the EL2 MPU, controlled by the hypervisor.

If multiple PMSAVS-64 guests are present, then these guests must be configured to use non-conflicting physical
memory addresses. Virtualization is supported by the EL2 MPU at the stage 2 of the Secure EL1&0 translation
regime.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. C1-59
Non-Confidential

Protected Memory System Architecture
C1.12 Virtualization

C1-60 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Part D

Armv8-R AArch64 Virtual Memory System Architecture

Chapter D1

Virtual Memory System Architecture

This chapter provides a system-level view of the Virtual Memory System Architecture (VMSAvS-64) for any
implementation that is compliant with the Armv8-R AArch64 architecture. It contains the following sections:

About the Virtual Memory System Architecture on page D1-64.
Architecture extensions in VMSAvS-64 on page D1-65.
Support for VMSAvS-64 in Armv8-R AArch64 on page D1-66.
System registers access control on page D1-67.

Virtualization on page D1-68.

System operations on page D1-69.

Note

The information related to VMSAvV8-64 as described in this chapter is at Beta quality.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. D1-63
Non-Confidential

Virtual Memory System Architecture
D1.1 About the Virtual Memory System Architecture

D1.1 About the Virtual Memory System Architecture
This chapter describes the Virtual Memory System Architecture (VMSAv8-64) for the Armv8-R AArch64
architecture profile.
VMSAvV8-64 provides a Memory Management Unit (MMU) that controls address translation, access permissions,
and memory attribute determination and checking, for memory accesses made by the PE. The process of address
translation maps the virtual addresses (VAs) used by the PE onto the physical addresses (PAs) of the physical
memory system.
Armv8-R AArch64 supports VMSAvVS-64 as an optional memory system architecture at the stage 1 of the Secure
EL1&0 translation regime, and supports general purpose operating systems, such as Linux and Android at EL1.
With VMSAv8-64 supported at EL1, the Armv8-R AArch64 architecture profile can have the following memory
system configurations:
. PMSAvVS8-64 at EL1 and EL2.
. PMSAv8-64 or VMSAvV8-64 at EL1, and PMSAv8-64 at EL2.
For more information, see The AArch64 Virtual Memory System Architecture chapter of the Arm" Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

D1-64 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

D1.2 Architecture extensions in VMSAv8-64

Implementations of Armv8-R AArch64 with VMSAv8-64 at EL1 support the following Armv8-A features listed in

Table D1-1.

Virtual Memory System Architecture
D1.2 Architecture extensions in VMSAv8-64

Table D1-1 Armv8-A features supported for implementations with VMSAv8-64

Feature

Description

FEAT HPDS

Hierarchical permission disables

FEAT _HAFDBS

Hardware management of the Access flag and dirty state

FEAT HPDS2

Translation table page-based hardware attributes

FEAT TTCNP

FEAT TTL

Translation table Common not private translations

Translation Table Level

FEAT BBM

Translation table break-before-make levels

FEAT TTST

Small translation tables

FEAT EOPD

Preventing ELO access to halves of address maps

FEAT TLBIOS

TLB invalidate instructions in Outer Shareable domain

FEAT TLBIRANGE

TLB invalidate range instructions

Control fields for the architecture features, which are RESO in some contexts if the value of VTCR_EL2.MSA =0,
are treated as RESO in all contexts if an implementation does not support VMSAv8-64. For the architectural features
supported by Armv8-R AArch64, whether a feature is mandatory or optional depends on whether the feature is

mandatory or optional in the Armv8.4-A architecture.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. D1-65

Non-Confidential

Virtual Memory System Architecture
D1.3 Support for VMSAv8-64 in Armv8-R AArch64

D1.3

Support for VMSAv8-64 in Armv8-R AArch64

The MSA and MSA_frac fields in the ID. AA64AMMFRO_EL1 register identify the memory system configurations
supported at EL1.

In Armv8-R AArch64, the only permitted value for ID AA64AMMFRO_EL1.MSA is 0b1111. When
ID_ AA6AMMFRO EL1.MSA frac is 0b0010, the stage 1 of the Secure EL1&0 translation regime can enable
PMSAvV8-64 or VMSAVS-64 architecture.

If PE supports both PMSAv8-64 and VMSAv8-64 at EL1, then VTCR_EL2.MSA determines the memory system
architecture enabled at the stage 1 of the Secure EL1&0 translation regime. Depending on the memory system
architecture, the stage 1 of the Secure EL1&0 translation regime is controlled by either an EL1 MPU for
PMSAv8-64, or an MMU for VMSAv8-64.

The stage 2 of the Secure EL1&0 translation regime and the stage 1 of the Secure EL2 translation regime are
controlled by EL2 MPU. Armv8-R AArch64 uses the same translation table format and fault encodings as
Armvg-A.

For more information, see The AArch64 Virtual Memory System Architecture chapter of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

D1-66

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Virtual Memory System Architecture
D1.4 System registers access control

D1.4 System registers access control

When EL1 is running PMSAv8-64 based Guest operating system, access to TTBR1_EL1 is UNDEFINED. When EL 1
is running a VMSAv8-64 based Guest operating system, EL1 access to the PMSAv8-64 registers is UNDEFINED.

The following EL1 PMSAv8-64 registers are UNDEFINED from EL1 in a VMSA context:

MPUIR_ELI.
PRBAR_ELI.
PRBAR<n> ELI.
PRLAR_ELI.
PRLAR<n> ELI.
PRSELR_ELI.
PRENR_ELI.

Note

TTBR1 _ELI is UNDEFINED from EL1 in a PMSA context. If an implementation supports only PMSAv8-64 at EL1,
then accessing VMSAv8-64 register, TTBR1_EL1, is UNDEFINED from both EL1 and EL2.

Both VMSAv8-64 and PMSAVS-64 registers are accessible from EL2 independent of whether a Guest operating
system at EL1 uses PMSAv8-64 or VMSAvS-64.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. D1-67
Non-Confidential

Virtual Memory System Architecture
D1.5 Virtualization

D1.5 Virtualization

For Armv8-R AArch64, the hypervisor running at EL2 selects the memory system architecture for each Guest
operating system by configuring the VTCR_EL2.MSA bit. This enables the hypervisor to support multiple Guest
operating systems utilizing either PMSAv8-64 or VMSAV8-64 on a per guest basis. Memory accesses by both
VMSAvVS8-64 and PMSAv8-64 guests at EL1 are further validated at the stage 2 of the Secure EL1&0 translation
regime.

If multiple VMSAv8-64 or PMSAv8-64 guests are present, then these guests must be configured to use
non-conflicting physical memory addresses.

Note

Secure Check control, VSTCR_EL2.SC does not differentiate between translation table walk or memory access.

For more information, see The AArch64 Virtual Memory System Architecture chapter of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

D1-68 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Virtual Memory System Architecture
D1.6 System operations

D1.6 System operations

D1.6.1 Address translation instructions

When executed from EL2, address translation instructions use VTCR_EL2.MSA to determine whether the EL1
context is PMSAv8-64 or VMSAv8-64.

D1.6.2 TLB maintenance instructions

Armv8-R AArch64 permits an implementation to cache stage | VMSAv8-64 and stage 2 PMSAvS-64 attributes as
a common entry for the Secure EL1&0 translation regime.

Stage 1 VMSAv8-64 is permitted to cache stage 2 PMSAv8-64 MPU configuration as a part of the translation
process. Visibility of stage 2 MPU updates for stage | VMSAv8-64 contexts requires associated TLB invalidation
for stage 2. The stage 2 TLB invalidation is not required to apply to caching structures that combine stage 1 and
stage 2 attributes.

D1.6.3 See also

In the Arm Architecture Reference Manual
. A64 Instruction Set Overview.

. The A64 System Instruction Class.

. A64 System instructions for TLB maintenance.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. D1-69
ID090320 Non-Confidential

Virtual Memory System Architecture
D1.6 System operations

D1-70 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Part E
A64 Instruction Set for Armv8-R AArch64

Chapter E1
A64 Instruction Set for Armv8-R AArch64

This chapter describes the instructions in Armv8-R AArch64. It contains the following sections:
Instruction encodings on page E1-74.
A64 instructions in Armv8-R AArch64 on page E1-75.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. E1-73
ID090320 Non-Confidential

A64 Instruction Set for Armv8-R AArch64
E1.1 Instruction encodings

E1.1 Instruction encodings

This section contains the encodings for the Armv8-R AArch64 instructions. The encodings in this section are
decoded from the Branches, Exception Generating, and System instructions chapter of the Arm® Architecture

Reference Manual Armv8, for Armv8-A architecture profile.

131 30 29 28|27 26 25 24|23 22 21 2019 18 17 16/15 14 13 12|11

8|7

5 4|

[11010101000000110011]

CRm

| op2 | Rt

Table E1-1 Decode fields and Instructions

Decode fields

Instruction Details

CRm op2 Rt

- 000 - Unallocated

- 001 != 11111 Unallocated

- 010 11111 CLREX

- 101 11111 DMB

- 110 11111 ISB

- 111 != 11111 Unallocated

- 111 11111 SB

1= 0x00 100 11111 DSB

0000 100 11111 SSBB

0001 011 - Unallocated

001x 011 - Unallocated

01xx 011 - Unallocated

0100 100 11111 PSSBB

1xxx 011 - Unallocated
E1-74 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64

E1.2 A64 instructions in Armv8-R AArch64

This section describes the A64 instructions in Armv8-R AArch64.

®

For more information, see Definition of the Armv8 memory model in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. E1-75
ID090320 Non-Confidential

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64

E1.2.1 Data Full Barrier
Data Full Barrier is a memory barrier that ensures the completion of memory accesses. If executed at EL2, this
instruction orders memory accesses irrespective of their Exception level or associated VMID. If executed at EL1 or
ELDO, this instruction behaves as DSB SY.
This instruction is an alias of the DSB instruction. This means that:
. The encodings in this description are named to match the encodings of DSB.
. The description of DSB gives the operational pseudocode for this instruction.
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16]15 14 13 12|11 8/7 6 5 4|3 2 1 0]
[1 10101010 0][ofooJo1 1[o0 1111 00[1]00[1 111 1]
CRm opc
Encoding
DFB
is equivalent to
DSB #12
and is always the preferred disassembly.
Operation
The description of DSB gives the operational pseudocode for this instruction.
E1-76 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64

E1.2.2 Data Memory Barrier
Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses.

The ordering requirements for Data Memory Barrier are as follows:
. EL1 and ELO memory accesses are ordered only with respect to the memory accesses using the same VMID.
. EL2 memory accesses are ordered only with respect to other EL2 memory accesses.

|31 30 29 28/27 26 25 24/23 22 21 20/19 18 17 16]15 14 13 12|11 817 6 5 4|3 2 1 0]

[1 10101010 0][ofooJo11[o01 1] crRm [1]o 1[1 1 1 1 1]
opc

Encoding

DMB <option> |#<imm>

Decode for this encoding

case CRm<3:2> of
when '00' domain = MBRegDomain_QOuterShareable;
when '01' domain = MBRegDomain_Nonshareable;
when '10' domain = MBRegDomain_InnerShareable;
when '11"' domain = MBRegDomain_FullSystem;
case CRm<1:0> of
when '00' types = MBReqTypes_Al1l; domain = MBRegDomain_FullSystem;
when '01' types = MBReqTypes_Reads;
when '10' types = MBReqTypes_Writes;
when '11" types = MBReqTypes_Al1;

Assembler symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. E1-77
ID090320 Non-Confidential

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64

OSH

OSHST

OSHLD

Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the #<imm>
syntax. All unsupported and reserved options must execute as a full system barrier operation, but
software must not rely on this behavior. For more information on whether an access is before or after
a barrier instruction, see Data Memory Barrier (DMB) in Arm®™ Architecture Reference Manual
Armv8, for Armv8-A architecture profile or see Data Synchronization Barrier (DSB) in Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

vmid_sensitive = (PSTATE.EL != EL2) && (CRm<1:0> != '00');
DataMemoryBarrier(domain, types, vmid_sensitive);

E1-78

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64

E1.2.3 Data Synchronization Barrier
Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses.

The ordering requirements for Data Synchronization Barrier are as follows:
. EL1 and ELO memory accesses are ordered only with respect to the memory accesses using the same VMID.
. EL2 memory accesses are ordered only with respect to other EL2 memory accesses.

This instruction is used by the alias DFB. See Alias conditions for details of when each alias is preferred.

131 30 29 28|27 26 25 24(23 22 21 20[19 18 17 16|15 14 13 12[11 8/!7 6 5 4[3 2 1 0]

[1 10101010 0]ofooJo1 1[o0 1 1] =o0xo0 [1]0 of1 1 1 1 1]
CRm opc

Encoding

DSB <option>|#<imm>

Decode for this encoding

case CRm<3:2> of
when '00' domain = MBRegDomain_QOuterShareable;
when '01' domain = MBRegDomain_Nonshareable;
when '10' domain = MBRegDomain_InnerShareable;
when '11"' domain = MBRegDomain_FullSystem;
case CRm<1:0> of
when '00' types = MBReqTypes_Al1l; domain = MBRegDomain_FullSystem;
when '01' types = MBReqTypes_Reads;
when '10' types = MBReqTypes_Writes;
when '11" types = MBReqTypes_Al1;

Alias conditions

Alias is preferred when

DFB CRm == '1100' && op2 == '100'

Assembler symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. E1-79
ID090320 Non-Confidential

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64

<imm>

Operation

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b@110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm, other than the values 0b0000 and 00100, that are not listed above are
reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more
information on whether an access is before or after a barrier instruction, see Data Memory Barrier
(DMB) in Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile or see Data
Synchronization Barrier (DSB) in Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Note
The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

vmid_sensitive = (PSTATE.EL != EL2) && (CRm<1:0> != '00');
DataSynchronizationBarrier(domain, types, vmid_sensitive);

E1-80

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Part F
The A64 System Instructions

Chapter F1
The A64 System Instructions

This chapter describes the A64 System instruction class, and the System instruction class encoding space, that is a
subset of the System registers encoding space. It contains the following section:

. System instructions on page F1-84.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. F1-83
ID090320 Non-Confidential

The A64 System Instructions
F1.1 System instructions

F1.1 System instructions

The Armv8-R AArch64 architecture supports all System instructions defined by Armv8-A. The behavior of these
instructions is the same as that in Armv8-A with no EL3. The MPU register updates are guaranteed to be visible to
all PMSAvS8-64 translation regimes following a Context synchronization event operation.

F1.1.1 Address translation instructions

In PMSAv8-64, the VA, IPA, and PA are all the same and translation operations are reduced to memory attributes,
security checks, and permission checks. If multiple memory regions are enabled in a 4KB memory boundary, AT
instruction gives correct memory region attributes in a successful transaction and PAR_EL1 provides only 4KB

memory boundary aligned address.

For more information, see 464 Instruction Set Overview and The A64 System Instruction Class chapters of the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

F1-84 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Part G
Armv8-R AArch64 System Registers

Chapter G1
System Registers in a PMSA Implementation

This chapter describes the system control registers in a PMSA implementation. The registers are described in
alphabetical order. It contains the following sections:

System register groups on page G1-88.

Accessing MPU memory region registers on page G1-91.
General system control registers on page G1-92.

Debug registers on page G1-228.

Performance Monitors registers on page G1-245.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

G1-87

System Registers in a PMSA Implementation
G1.1 System register groups

G1.1 System register groups

System registers provide control and status information of architected features. Armv8-R AArch64 System registers
are grouped according to whether they only exist in the Armv8-R AArch64 profile or whether they have been
modified from the equivalent Armv8-A System registers. All other registers are described in Arm® Architecture

Reference Manual Armv8, for Armv8-A architecture profile.

Table G1-1 lists the Armv8-R AArch64 registers.

Table G1-1 Alphabetical index of Armv8-R AArch64 registers

Register Description

MPUIR_EL1 MPU Type Register (EL1)

MPUIR _EL2 MPU Type Register (EL2)

PRBAR_EL1 Protection Region Base Address Register (EL1)
PRBAR_EL2 Protection Region Base Address Register (EL2)

PRBAR<n> EL1

Protection Region Base Address Registern (EL1)

PRBAR<n> EL2

PRENR EL1

Protection Region Base Address Registern (EL2)

Protection Region Enable Register (EL1)

PRENR EL2

Protection Region Enable Register (EL2)

PRLAR EL1

Protection Region Limit Address Register (EL1)

PRLAR EL2

Protection Region Limit Address Register (EL2)

PRLAR<n> ELI

Protection Region Limit Address Registern (EL1)

PRLAR<n> EL2

PRSELR ELL1

Protection Region Limit Address Registern (EL2)

Protection Region Selection Register (EL1)

PRSELR EL2

Protection Region Selection Register (EL2)

VSCTLR_EL2

Virtualization System Control Register (EL2)

Table G1-2 lists the modified AArch64 registers.

Table G1-2 Alphabetical index of modified AArch64 System registers

Register

Description

CPACR_EL1
CPTR_EL2

DBGBCR<n> EL1

Architectural Feature Access Control Register
Architectural Feature Trap Register (EL2)

Debug Breakpoint Control Registers

HCR_EL2

Hypervisor Configuration Register

ID_AA64DFRO_ELI

AArch64 Debug Feature Register 0

ID_AAGAISARO ELI

AArch64 Instruction Set Attribute Register 0

ID_AAG4ISAR1_ELI

ID_AA64MMFRO ELL1

AArch64 Instruction Set Attribute Register 1

AArch64 Memory Model Feature Register 0

G1-88 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

System Registers in a PMSA Implementation
G1.1 System register groups

Table G1-2 Alphabetical index of modified AArch64 System registers (continued)

Register

Description

ID_ AA64MMFR1 _EL1

AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_ELI

AArch64 Memory Model Feature Register 2

ID_AAG64PFRO_ELI1

ID_AA64PFR1_EL1

AArch64 Processor Feature Register 0

AArch64 Processor Feature Register 1

MAIR_EL1 Memory Attribute Indirection Register (EL1)
MAIR_EL2 Memory Attribute Indirection Register (EL2)
MDCR _EL2 Monitor Debug Configuration Register (EL2)
MDSCR_EL1 Monitor Debug System Control Register

PMCCFILTR_ELO

PMCR_ELO

Performance Monitors Cycle Count Filter Register

Performance Monitors Control Register

PMEVTYPER<n> ELO

Performance Monitors Event Type Registers

SCTLR _EL1 System Control Register (EL1)

SCTLR_EL2 System Control Register (EL2)

TCR_EL1 Translation Control Register (EL1)

TCR_EL2 Translation Control Register (EL2)

TTBRO_EL1 Translation Table Base Register 0 (EL1)

VTCR _EL2 Virtualization Translation Control Register
VSTCR EL2 Virtualization Secure Translation Control Register

Table G1-3 lists the external registers.

Table G1-3 Alphabetical index of modified external registers

Register

Description

DBGBCR<n> ELI

Debug Breakpoint Control Registers

EDAA32PFR

External Debug Auxiliary Processor Feature Register

EDPFR
PMCCFILTR_ELO

PMCR _ELO

External Debug Processor Feature Register
Performance Monitors Cycle Counter Filter Register

Performance Monitors Control Register

PMEVTYPER<n> ELO

Performance Monitors Event Type Registers

ARM DDI 0600A.c

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

G1-89

System Registers in a PMSA Implementation
G1.1 System register groups

Table G1-4 lists the Armv8-A System registers that are not supported in Armv8-R AArch64.

Table G1-4 Alphabetical index of System registers that are not supported in Armv8-R AArch64

Register Description

VSTTBR_EL2 Virtualization Secure Translation Table Base Register

VTTBR_EL2 Virtualization Translation Table Base Register

TTBRO_EL2 Translation Table Base Register 0 (EL2)

TTBR1 EL2 Translation Table Base Register 1 (EL2)

TTBR1 _ELI Translation Table Base Register 1 (EL1)2

a. TTBRI1_ELI is present only in the VMSAv8-64 extension.

Note

The exceptions caused by an EL1 register access being UNDEFINED is at priority level 18. Hence, any exception
taken to EL2 because of HCR_EL2.{TID1, TVM, TRVM} trap controls, has higher priority, priority level 16. The
VSCTLR_EL2 register reuses the encoding of TTBRO_EL2 in Armv8-A.

Table G1-5 disambiguates the general names of the PMSA memory region registers used in this chapter.

Table G1-5 Disambiguation of PMSA memory region registers by Exception level

General form ELO EL1 EL2
PRBAR<n> ELx - PRBAR<n> EL1 PRBAR<n> EL2
PRBAR ELx - PRBAR EL1 PRBAR EL2
PRLAR<n> ELx - PRLAR<n> EL1 PRLAR<n> EL2
PRLAR ELx - PRLAR EL1 PRLAR EL2
PRSELR_ELx - PRSELR_EL1 PRSELR_EL2
MPUIR_ELx - MPUIR _EL1 MPUIR _EL2
SCTLR ELx - SCTLR_ELI1 SCTLR_EL2
G1.1.1 See also
In the Arm Architecture Reference Manual
. AArch64 System Register Descriptions.
G1-90 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

System Registers in a PMSA Implementation
G1.2 Accessing MPU memory region registers

G1.2 Accessing MPU memory region registers

The MPU memory region in PMSAv8-64 is defined by a set of registers, PRBAR ELx and PRLAR ELx. These
registers define the memory region base address, memory region size, and memory attributes. Each MPU region
can be independently configured and the MPUIR _ELx register identifies the actual number of implemented regions.

The MPU provides two register interfaces to program the MPU regions:
. Access to any of the MPU regions via PRSELR ELx, PRBAR<n> ELx, and PRLAR<n> ELx.

. Access to MPU regions at offsets from the aligned value of PRSELR ELx.REGION via PRBAR ELx and
PRLAR ELx.

When n=0, the encoding of PRBAR<n> ELx and PRLAR<n> ELx corresponds to PRBAR ELx and
PRLAR_ELXx respectively.

When n !=0, then the encoding of PRBAR<n> ELx and PRLAR<n> ELx corresponds to the configuration of m-th
MPU region:

m=rin

where r = PRSELR_ELx.REGION<7:4> and
n IN {0..15}

Access to MPU region registers beyond the number of implemented regions is CONSTRAINED UNPREDICTABLE. The
value of n can be between 0 and 15 and is encoded using the CRm and op2 fields.

Table G1-6 Register encoding scheme for PRBAR<n>_ELx and PRLAR<n>_ELXx

Register CRm op2

PRBAR<n> ELx I:n<3:1> n<0>:00

PRLAR<n>_ELx I:n<3:1> n<0>:01

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-91
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3 General system control registers

This section lists the System registers in Armv8-R AArch64 that are not part of one of the other listed groups.

G1-92 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.31 CPACR_ELA1, Architectural Feature Access Control Register

The CPACR_ELI1 characteristics are:

Purpose

Controls access to trace, SVE, Advanced SIMD and floating-point functionality.

Configurations

When HCR_EL2.{E2H, TGE} == {1, 1}, the fields in this register have no effect on execution at
ELO and EL1. In this case, the controls provided by CPTR_EL2 are used.

Attributes

CPACR_EL1 is a 64-bit register.

Field descriptions

The CPACR_ELL1 bit assignments are:

63 " 29 28 27 3 22212019 3 0
(C (49 (49
RESO RESO FPEN RESO
)))))
(C (49 (49
TTA
Bits [63:29]
Reserved, RESO.
TTA, bit [28]
Traps ELO and EL1 System register accesses to all implemented trace registers to EL1, or to EL2
when it is implemented and enabled for the current Security state and HCR_EL2.{E2H, TGE} is
{0,1}, from both Execution states as follows:
. In AArch64 state, accesses to trace registers are trapped, reported using EC syndrome value
0x18.
. In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using EC
syndrome value 0x05.
. In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using
EC syndrome value 0x0C.
0b0 This control does not cause any instructions to be trapped.
0bl This control causes EL0O and EL1 System register accesses to all implemented trace
registers to be trapped.
Note
. The ETMv4 architecture does not permit ELO to access the trace registers. If the PE trace unit
implements FEAT ETMv4, ELO accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the
value of CPACR_ELI1.TTA is 1.
. The Armv8-A architecture does not provide traps on trace register accesses through the
optional memory-mapped interface.
System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.
If System register access to the trace functionality is not implemented, this bit is RESO.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-93

ID090320

Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

This field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RESO.

FPEN, bits [21:20]
Traps ELO and EL1 accesses to the SVE, Advanced SIMD, and floating-point registers to EL1,
reported using EC syndrome value 0x07, or to EL2 reported using EC syndrome value 0x00, when
EL2 is implemented and enabled for the current Security state and HCR_EL2.{E2H, TGE} is {0,1},
from both Execution states as follows:

. In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers
VO0-V31, including their views as D0-D31 registers or S0-31 registers.

. In AArch32 state, FPSCR, and any of the SIMD and floating-point registers Q0-15, including
their views as D0-D31 registers or S0-31 registers.

0b00 This control causes any instructions at ELO or EL1 that use the registers associated with
SVE, Advanced SIMD and floating-point execution to be trapped, unless they are
trapped by CPACR_EL1.ZEN.

0bo1 This control causes any instructions at ELO that use the registers associated with SVE,
Advanced SIMD and floating-point execution to be trapped, unless they are trapped by
CPACR_EL1.ZEN, but does not cause any instruction at EL1 to be trapped.

0b10 This control causes any instructions at ELO or EL1 that use the registers associated with
SVE, Advanced SIMD and floating-point execution to be trapped, unless they are
trapped by CPACR_EL1.ZEN.

0b11 This control does not cause any instructions to be trapped.

Writes to MVFRO, MVFR1 and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE
and whether these accesses can be trapped by this control depends on implemented CONSTRAINED
UNPREDICTABLE behavior.

Note
. Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
. Accesses from ELO to FPSID, MVFRO, MVFR1, MVFR2, and FPEXC are UNDEFINED, and

any resulting exception is higher priority than an exception that would be generated because
the value of CPACR_EL1.FPEN is not 0b11.

This field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RESO.

Accessing the CPACR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1
or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2

Ob11 0b000 0b0001 0b0000 0b010

if PSTATE.EL == EL@ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPTR_EL2.TCPAC == '1' then

G1-94 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

AArch64.SystemAccessTrap(EL2, 0x18);
else
return CPACR_EL1;
elsif PSTATE.EL == EL2 then
return CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2

Obll 0b000 0b0001 0b0000 0b010

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if CPTR_EL2.TCPAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
CPACR_ELL = X[t];
elsif PSTATE.EL == EL2 then
CPACR_ELL = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-95
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

G1.3.2 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose
Controls:
. Trapping to EL2 of access to CPACR, CPACR_EL 1, trace functionality, and to SVE,
Advanced SIMD and floating-point functionality.
. EL2 access to trace functionality, and to SVE, Advanced SIMD and floating-point
functionality.
Configurations
If EL2 is not implemented, this register is RESO from EL3.
This register has no effect if EL2 is not enabled in the current Security state.
Attributes

CPTR_EL2 is a 64-bit register.

Field descriptions

The CPTR_EL2 bit assignments are:

63 3 323130 5y 212019 3 1413121110 9 3 0
(%9 (49 (%9 (%9
RESO RESO RESO RES1
1 12 1 1
LI |
TCPAC TFP
RESO
RES1
TTA
This format applies in all Armv8.0 implementations.
Bits [63:32]
Reserved, RESO.
TCPAC, bit [31]
Traps EL1 accesses to CPACR_EL1, reported using EC syndrome value 0x18 and accesses to
CPACR, reported using EC syndrome value 0x03, to EL2 when EL2 is enabled in the current
Security state.
0b0 This control does not cause any instructions to be trapped.
0bl EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2 when EL2 is enabled in
the current Security state.
When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.
Note
CPACR_EL1 and CPACR are not accessible at ELO.
This field resets to an architecturally UNKNOWN value.
Bits [30:21]
Reserved, RESO.
G1-96 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

TTA, bit [20]
Traps System register accesses to all implemented trace registers to EL2 when EL2 is enabled in the

current Security state, from both Execution states as follows:

. In AArch64 state, accesses to trace registers with op0=2, op1=1 are trapped to EL2, reported
using EC syndrome value 0x18.

. In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1 are
trapped to EL2, reported using EC syndrome value 0x05.

. In AArch32 state, MRRC or MCRR accesses to trace registers with cpnum=14, opcl1=1 are
trapped to EL2, reported using EC syndrome value 0x@C.

0b0 This control does not cause any instructions to be trapped.

0bl Any attempt at ELO, EL1, or EL2, to execute a System register access to an
implemented trace register is trapped to EL2 when EL2 is enabled in the current
Security state, unless it is trapped by CPACR.TRCDIS or CPACR_ELI1.TTA.

Note

. The ETMv4 architecture does not permit ELO to access the trace registers. If the PE trace unit
implements FEAT ETMv4, ELO accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the
value of CPTR_EL2.TTA is 1.

. EL2 does not provide traps on trace register accesses through the optional memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not supported, this bit is RESO.

This field resets to an architecturally UNKNOWN value.

Bits [19:14]
Reserved, RESO.

Bits [13:12]
Reserved, RES1.

Bit [11]
Reserved, RESO.

TFP, bit [10]
Traps accesses to SVE, Advanced SIMD and floating-point functionality to EL2 when EL2 is
enabled in the current Security state, from both Execution states, as follows:

. In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x07:

— FPCR, FPSR, FPEXC32 EL2, any of the SIMD and floating-point registers V0-V31,
including their views as D0-D31 registers or S0-31 registers.

. In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x07:

— MVFRO, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point
registers Q0-15, including their views as DO-D31 registers or SO-31 registers. For the
purposes of this trap, the architecture defines a VMSR access to FPSID from EL1 or
higher as an access to a SIMD and floating point register. Otherwise, permitted VMSR
accesses to FPSID are ignored.

0b0 This control does not cause any instructions to be trapped.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-97
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

0bl Any attempt at ELO, EL1 or EL2, to execute an instruction that uses the registers
associated with SVE, Advanced SIMD and floating-point execution is trapped to EL2
when EL2 is enabled in the current Security state, subject to the exception prioritization
rules, unless it is trapped by CPTR _EL2.TZ.

Note

FPEXC32 EL2 is not accessible from ELO using AArch64.
FPSID, MVFRO, MVFR1, and FPEXC are not accessible from ELO using AArch32.

This field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES1.

Accessing the CPTR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CPTR_EL2

op0 op1 CRn CRm op2
Obll 0b100 0b0001 0b0001 0b010
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return CPTR_ELZ;
MSR CPTR_EL2, <Xt>
op0 op1 CRn CRm op2
Obll 0b100 0b0001 0b0001 0b010
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
CPTR_EL2 = X[t];
MRS <Xt>, CPACR_EL1
op0 op1 CRn CRm op2
Obll 0b000 0b0001 0b0000 0b010

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if CPTR_EL2.TCPAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else

G1-98

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

return CPACR_EL1;
elsif PSTATE.EL == EL2 then
return CPACR_EL1;

MSR CPACR_EL1, <Xt>

System Registers in a PMSA Implementation
G1.3 General system control registers

op0 op1

CRn CRm op2

Ob11 0b000

0b0001 0b0000 0b010

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if CPTR_EL2.TCPAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
CPACR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
CPACR_EL1 = X[t];

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-99

Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.3

HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

Provides configuration controls for virtualization, including defining whether various operations are

If EL2 is not implemented, this register is RESO from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register

if EL2 is not enabled in the current Security state.

Purpose

trapped to EL2.
Configurations
Attributes

HCR_EL2 is a 64-bit register.

Field descriptions

The HCR_EL2 bit assignments are:

63 54 53 5248 47 46 4542 41 40 39 38 37 36 35 34 33 32 3130292827 26 2524 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
< ¢ ¢

D BSUFB| VI
)))
| ¢ T¢ | | 143 1
RESO — VM
EnSCXT swio
RESO PTW
FIEN FMO
FWB IMO
RESO AMO
AP VF
APK VSE
RESO DC
MIOCNCE ™wWI
TEA TWE
TERR RESO
RESO TID1
cD TID2
RAO/WI TID3
TRVM TsC
HCD TIDCP
TDZ TACR
TGE TSw
TVM TPCP
TPU
TTLB
Bits [63:54]
Reserved, RESO.
EnSCXT, bit [53]
When FEAT _CSV2 is implemented:
Enable Access to the SCTXNUM_EL1 and SCTXNUM_ELO registers. The defined values are:
0b0 When (HCR_EL2.TGE==0 or HCR_EL2.E2H==0) and EL2 is enabled in the current
Security state, EL1 and ELO access to SCTXNUM_ELO and EL1 access to
SCTXNUM _ELI is disabled by this mechanism, causing an exception to EL2, and the
values of these registers to be treated as 0.
When ((HCR_EL2.TGE==1and HCR_EL2.E2H==1) and EL2 is enabled in the current
Security state, ELO access to SCTXNUM_ELDO is disabled by this mechanism, causing
an exception to EL2, and the value of this register to be treated as 0.
G1-100 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

0bl This control does not cause accesses to SCTXNUM_ELO or SCTXNUM_ELL to be
trapped.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at ELO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bits [52:48]

Reserved, RESO.

FIEN, bit [47]
When FEAT RASvIpl is implemented:

Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCDN_EL1,
ERXPFGCTL _ELI, and ERXPFGF _ELI registers from EL1 generate a Trap exception to EL2,
when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18.

0b0 Accesses to the specified registers from EL1 are trapped to EL2, when EL2 is enabled
in the current Security state.

0bl This control does not cause any instructions to be trapped.
If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0bl.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record
accessible using System registers is owned by a node that implements the RAS Common Fault
Injection Model Extension, then this bit might be RESO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

FWB, bit [46]
When FEAT S2FWB is implemented:
Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.
0b0 When this bit is 0, then:

. The combination of stage 1 and stage 2 translations on memory type and
cacheability attributes are as described in the Armv8.0 architecture. For more
information see 'Combining the stage 1 and stage 2 attributes, EL1&0 translation
regime'.

. The encoding of the stage 2 memory type and cacheability attributes is derived
from MAIR_EL2 register as described in the Armv8-R AArch64 architecture.

0bl When this bit is 1, then:

. The inner and outer memory attributes for stage 2 EL1&0 translation regime
must be the same with the same encoding, otherwise, the combined attribute is
UNKNOWN.

. If stage 2 EL1&0 translation regime memory attribute is Write-Back with
MAIR_EL2.Attr[7:6] = 0b11, then the combined attribute is Normal Write-Back.
For all other encodings, the combination of stage 1 and stage 2 translations on
memory type and cacheability attributes are as described in the Armv8.0
architecture.

This bit is permitted to be cached in a TLB.
This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-101
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

Bits [45:42]

API, bit [41]

Reserved, RESO.

When FEAT PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

. In ELO, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated
SCTLR_EL1.En<N><M>==1.

. In EL1, the associated SCTLR EL1.En<N><M>==1.

Traps are reported using EC syndrome value 0x09. The Pointer Authentication instructions trapped
are:

. AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB.

. PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA 1716, PACIASP, PACIAZ,
PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB.

. RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ,
BLRABZ.

. ERETAA, ERETAB, LDRAA and LDRAB.

0bo The instructions related to Pointer Authentication are trapped to EL2, when EL2 is
enabled in the current Security state and the instructions are enabled for the EL1&0
translation regime, from:
. ELO when HCR_EL2.TGE==0 or HCR_EL2.E2H==0.
. EL1.

IfHCR_EL2.NVis 1,the HCR_EL2.NV trap takes precedence over the HCR_EL2.API
trap for the ERETAA and ERETAB instructions.

If EL2 is implemented and enabled in the current Security state and
HFGITR_EL2.ERET == 1, execution at EL1 using AArch64 of ERETAA or ERETAB
instructions is reported with EC syndrome value 0x1A with its associated ISS field, as
the fine-grained trap has higher priority than the HCR_EL2.API == 0.

0bl This control does not cause any instructions to be trapped.

IfFEAT PAuthisimplemented but EL2 is not implemented or disabled in the current Security state,
the system behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

APK, bit [40]

Reserved, RESO.

When FEAT PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following
registers from EL1 to EL2, when EL2 is enabled in the current Security state, reported using EC
syndrome value 0x18:

« APIAKeyLo ELI, APIAKeyHi ELI, APIBKeyLo ELI1, APIBKeyHi ELI,

APDAKeyLo EL1, APDAKeyHi EL1, APDBKeyLo EL1, APDBKeyHi ELI,
APGAKeyLo EL1, and APGAKeyHi EL1.

0bo Access to the registers holding "key" values for pointer authentication from EL1 are
trapped to EL2, when EL2 is enabled in the current Security state.
0bl This control does not cause any instructions to be trapped.
G1-102 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

Note

If FEAT PAuth is implemented but EL2 is not implemented or is disabled in the current Security
state, the system behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bit [39]
Reserved, RESO.

MIOCNCE, bit [38]
Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

0bo For the EL1&0 translation regimes, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there must be
no loss of coherency if the Inner Cacheability attribute for those accesses differs from
the Outer Cacheability attribute.

0bl For the EL1&0 translation regimes, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there might be
aloss of coherency if the Inner Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

For more information see 'Mismatched memory attributes'.
This field can be implemented as RAZ/WI.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TEA, bit [37]
When FEAT RAS is implemented:
Route synchronous External abort exceptions to EL2.
0bo This control does not cause exceptions to be routed from ELO and EL1 to EL2.

0bl Route synchronous External abort exceptions from ELO and EL1 to EL2, when EL2 is
enabled in the current Security state, if not routed to EL3.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

TERR, bit [36]
When FEAT RAS is implemented:
Trap Error record accesses. Trap accesses to the RAS error registers from EL1 to EL2 as follows:

. If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2,
reported using EC syndrome value 0x18:

— ERRIDR _EL1, ERRSELR EL1, ERXADDR ELI, ERXCTLR EL1, ERXFR ELI1,
ERXMISCO _EL1, ERXMISC1_EL1, and ERXSTATUS_EL1.

— When FEAT RASvlpl is implemented, ERXMISC2 EL1, and ERXMISC3 ELI.
0b0 This control does not cause any instructions to be trapped.

0bl Accesses to the specified registers from EL1 generate a Trap exception to EL2, when
EL2 is enabled in the current Security state.

This field resets to an architecturally UNKNOWN value.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-103
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

Otherwise:

Reserved, RESO.

Bits [35:34]

Reserved, RESO.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is
enabled in the current Security state and HCR_EL2.VM==1, this control forces all stage 2
translations for instruction accesses to Normal memory to be Non-cacheable.

Note

The behavior is same irrespective of whether the instruction accesses is to MPU region or
Backgroud Region.

0bo This control has no effect on stage 2 of the EL1&0 translation regime.

0bl Forces all stage 2 translations for instruction accesses to Normal memory to be
Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

CD, bit [32]

Bit [31]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled
in the current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for
data accesses and translation table walks to Normal memory to be Non-cacheable.

Note

The behavior is same irrespective of whether the data accesses is to MPU region or Backgroud
Region.

0bo This control has no effect on stage 2 of the EL1&0 translation regime for data accesses
and translation table walks.

0bl Forces all stage 2 translations for data accesses and translation table walks to Normal
memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

Reserved, RAO/WI.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps EL1 reads of the virtual memory control registers to
EL2, when EL2 is enabled in the current Security state, as follows:

. IfEL1 is using AArch64 state, the following registers are trapped to EL2 and reported using
EC syndrome value 0x18.

— SCTLR_EL1, TTBRO_ELI1, TTBR1 EL1, TCR _ELI1, ESR ELI, FAR ELI,
AFSRO_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_ELI1.

G1-104

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

— IfELI is in PMSAv8-64 context, the following registers are also trapped to EL2 and
reported using EC syndrome value 0x18 - PRENR _EL1, PRSELR ELI,
PRBAR _EL1, PRBAR<n> EL1, PRLAR ELI1, PRLAR<n> ELI1

0bo This control does not cause any instructions to be trapped.
0bl EL1 read accesses to the specified Virtual Memory controls are trapped to EL2, when
EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note

EL2 provides a second stage of address translation, that a hypervisor can use to remap the address
map defined by a Guest OS. In addition, a hypervisor can trap attempts by a Guest OS to write to
the registers that control the memory system. A hypervisor might use this trap as part of its
virtualization of memory management.

This field resets to an architecturally UNKNOWN value.

HCD, bit [29]

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states,
when EL2 is enabled in the current Security state, reported using EC syndrome value 0x00.

0b0 HVC instruction execution is enabled at EL2 and EL1.

0bl HVC instructions are UNDEFINED at EL2 and EL1. Any resulting exception is taken to
the Exception level at which the HVC instruction is executed.

Note
HVC instructions are always UNDEFINED at ELO.

This field resets to an architecturally UNKNOWN value.

TDZ, bit [28]

Trap DC ZVA instructions. Traps ELO and EL1 execution of DC ZVA instructions to EL2, when
EL2 is enabled in the current Security state, from AArch64 state only, reported using EC syndrome

value 0x18.
0b0 This control does not cause any instructions to be trapped.
0bl In AArch64 state, any attempt to execute an instruction this trap applies to at EL1, or at

ELO when the instruction is not UNDEFINED at ELO, is trapped to EL2 when EL2 is
enabled in the current Security state.

Reading the DCZID ELO returns a value that indicates that the instructions this trap
applies to are not supported.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TGE, bit [27]
Trap General Exceptions, from ELO.
0b0 This control has no effect on execution at ELO.

0bl When EL2 is not enabled in the current Security state, this control has no effect on
execution at ELO.

When EL2 is enabled in the current Security state, in all cases:
. All exceptions that would be routed to EL1 are routed to EL2.

. If EL1 is using AArch64, the SCTLR_EL1.M field is treated as being 0 for all
purposes other than returning the result of a direct read of SCTLR_EL1.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-105
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

TVM, bit [26]

TTLB, bit [25]

. If stage 1 EL1&0 translation regime is in PMSAvS8-64 context, the
SCTLR_EL1.BR field is treated as being 0 for all purposes other than returning
the result of a direct read of SCTLR_ELI.

. All virtual interrupts are disabled.

. Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are
disabled.

. An exception return to EL1 is treated as an illegal exception return.

. The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are treated as being 1 for
all purposes other than returning the result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state, if:

. HCR_EL2.E2H is 0, the Effective values of the HCR_EL2.{FMO, IMO, AMO}
fields are 1.

. HCR_EL2.E2H is 1, the Effective values of the HCR_EL2.{FMO, IMO, AMO}
fields are 0.
For further information on the behavior of this bit when E2H is 1, see 'Behavior of
HCR _EL2.E2H'.
HCR_EL2.TGE must not be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Trap Virtual Memory controls. Traps EL1 writes to the virtual memory control registers to EL2,

when EL2 is enabled in the current Security state, as follows:

. If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using
EC syndrome value 0x18:

— SCTLR ELI, TTBRO ELI, TTBR1 ELI, TCR ELI, ESR _ELI, FAR ELI,
AFSRO_ELI1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_ELI.

— IfEL1 is in PMSAv8-64 context, the following registers are also trapped to EL2 and
reported using EC syndrome value 0x18 - PRENR _EL1, PRSELR ELI,
PRBAR_ELI, PRBAR<n> ELI, PRLAR_ELI1, PRLAR<n> ELI

0bo This control does not cause any instructions to be trapped.

0bl EL1 write accesses to the specified EL1 virtual memory control registers are trapped to
EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

This field resets to an architecturally UNKNOWN value.

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2,
when EL2 is enabled in the current Security state, as follows:

. When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x18:
— TLBI VMALLELI, TLBI VAEL, TLBI ASIDE1, TLBI VAAE1, TLBI VALEI1, TLBI
VAALEL.
— TLBI VMALLEIIS, TLBI VAEIIS, TLBI ASIDEI1IS, TLBI VAAEIIS, TLBI
VALEI1IS, TLBI VAALEIIS.

— If FEAT TLBIOS is implemented, this trap applies to TLBI VMALLE10S, TLBI
VAE10S, TLBI ASIDE10S, TLBI VAAE10S, TLBI VALE1OS, TLBI VAALEIOS.

— IfFEAT TLBIRANGE is implemented, this trap applies to TLBI RVAE1, TLBI
RVAAEI, TLBI RVALE1, TLBI RVAALEI1, TLBI RVAEI1IS, TLBI RVAAELIS,
TLBI RVALELIS, TLBI RVAALEIIS.

G1-106 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

TPU, bit [24]

TPCP, bit [23]

System Registers in a PMSA Implementation
G1.3 General system control registers

— IfFEAT TLBIOS and FEAT TLBIRANGE are implemented, this trap appplies to
TLBI RVAE10S, TLBI RVAAE10S, TLBI RVALE10S, TLBI RVAALE10S.

0bo This control does not cause any instructions to be trapped.

0bl EL1 execution of the specified TLB maintenance instructions are trapped to EL2, when
EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note
The TLB maintenance instructions are UNDEFINED at ELO.

This field resets to an architecturally UNKNOWN value.

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as
follows:

. If ELO is using AArch64 state and the value of SCTLR_EL1.UCl is not 0, the following
instructions are trapped to EL2 and reported with EC syndrome value 0x18:

— ICIVAU, DC CVAU. If the value of SCTLR _EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

. IfEL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
with EC syndrome value 0x18:

— ICIVAU, ICIALLU, IC IALLUIS, DC CVAU.

Note

An exception generated because an instruction is UNDEFINED at ELO is higher priority than this trap
to EL2. In addition:

. IC IALLUIS and IC TALLU are always UNDEFINED at ELO using A Arch64.

0bo This control does not cause any instructions to be trapped.

0bl Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

When FEAT DPB is implemented:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or
Persistence. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled
in the current Security state as follows:

. If ELO is using AArch64 state and the value of SCTLR _EL1.UCI is not 0, the following
instructions are trapped to EL2 and reported using EC syndrome value 0x18:

— DC CIVAC, DC CVAC, DC CVAP. If the value of SCTLR_EL1.UCI is O these
instructions are UNDEFINED at ELO and any resulting exception is higher priority than
this trap to EL2.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-107

Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

. If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x18:

— DCIVAC, DC CIVAC, DC CVAC, DC CVAP.
If FEAT DPB2 is implemented, this trap also applies to DC CVADP.

Note

. An exception generated because an instruction is UNDEFINED at ELO is higher priority than
this trap to EL2. In addition:

— AArch64 instructions which invalidate by VA to the Point of Coherency are always
UNDEFINED at ELO using AArch64.

. In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2 it is named TPCP.

0b0 This control does not cause any instructions to be trapped.

0bl Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

IfHCR _EL2.{E2H, TGE} is setto {1, 1}, this field behaves as 0 for all purposes other than a direct
read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current
Security state as follows:

. If ELO is using AArch64 state and the value of SCTLR _EL1.UCI is not 0, accesses to the
following registers are trapped and reported using EC syndrome value 0x18:

— DCCIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCl is 0 these
instructions are UNDEFINED at ELO and any resulting exception is higher priority than
this trap to EL2.

. IfEL1 is using AArch64 state, accesses to DC IVAC, DC CIVAC, DC CVAC are trapped and
reported using EC syndrome value 0x18.
Note

. An exception generated because an instruction is UNDEFINED at ELO is higher priority than
this trap to EL2. In addition:

— AArch64 instructions which invalidate by VA to the Point of Coherency are always
UNDEFINED at ELO using AArch64.

. In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2 it is named TPCP.

0bo This control does not cause any instructions to be trapped.

0bl Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

G1-108 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of
those cache maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security
state as follows:

. IfEL1 is using AArch64 state, accesses to DC ISW, DC CSW, DC CISW are trapped to EL2,
reported using EC syndrome value 0x18.

Note

An exception generated because an instruction is UNDEFINED at ELO is higher priority than this trap
to EL2, and these instructions are always UNDEFINED at ELO.

0bo This control does not cause any instructions to be trapped.

0bl Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

This field resets to an architecturally UNKNOWN value.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2,
when EL2 is enabled in the current Security state, as follows:

. If EL1 is using AArch64 state, accesses to ACTLR _EL1 to EL2, are trapped to EL2 and
reported using EC syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

0bl EL1 accesses to the specified registers are trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note

ACTLR_EL1 is not accessible at EL0O

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that might implement
global control bits for the PE.

This field resets to an architecturally UNKNOWN value.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for
IMPLEMENTATION DEFINED functionality to EL2, when EL2 is enabled in the current Security state
as follows:

. In AArch64 state, access to any of the encodings in the following reserved encoding spaces
are trapped and reported using EC syndrome 0x18:

IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and
SYSL, with CRn == {11, 15}.

— IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR
with the S3_<op1> <Cn> <Cm>_ <op2> register name.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this
functionality accessed from ELO is trapped to EL2. If it is not, then it is UNDEFINED, and any attempt
to access it from ELO generates an exception that is taken to EL1.

0bo This control does not cause any instructions to be trapped.
0bl EL1 accesses to or execution of the specified encodings reserved for IMPLEMENTATION
DEFINED functionality are trapped to EL2, when EL2 is enabled in the current Security
state.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-109

1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

TSC, bit [19]

TID3, bit [18]

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional
controls, to give finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

Arm expects the trapping of ELO accesses to these functions to EL2 to be unusual, and used only
when the hypervisor is virtualizing ELO operation. Arm strongly recommends that unless the
hypervisor must virtualize ELO operation, an ELO access to any of these functions is UNDEFINED, as
it would be if the implementation did not include EL2. The PE then takes any resulting exception
to EL1.

The trapping of accesses to these registers from EL1 is higher priority than an exception resulting
from the register access being UNDEFINED.

This field resets to an architecturally UNKNOWN value.

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the
current Security state.

If execution is in AArch64 state the trap is reported using EC syndrome value 0x17.

Note

HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing control for the SMC
exception. Trap exceptions and SMC exceptions have different preferred return addresses.

0b0 This control does not cause any instructions to be trapped.

0bl If EL3 is not implemented, FEAT NV is implemented, and HCR_EL2.NV is 1, then
any attempt to execute an SMC instruction at EL1 using AArch64 is trapped to EL2,
when EL2 is enabled in the current Security state.

If EL3 is not implemented, and either FEAT NV is not implemented or HCR_EL2.NV
is 0, then it is IMPLEMENTATION DEFINED whether:

. Any attempt to execute an SMC instruction at EL1 is trapped to EL2, when EL2
is enabled in the current Security state.

. Any attempt to execute an SMC instruction is UNDEFINED.
SMC instructions are UNDEFINED at ELO.

IfEL3 is not implemented and HCR_EL2.NV is 0, it is IMPLEMENTATION DEFINED whether this bit
is:

. RESO.
. Implemented with the functionality as described in HCR_EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

This field resets to an architecturally UNKNOWN value.

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current
Security state, as follows:

In AArch64 state:
. Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:

— ID_PFRO_ELI, ID PFRI_ELI,ID PFR2 ELI, ID DFRO ELI, ID_AFRO ELI,
ID_MMFRO_ELI, ID MMFRI_EL1, ID MMFR2 ELI, ID_ MMFR3 ELI,
ID_ISARO ELI, 1D ISARI ELI,ID ISAR2 ELI, ID ISAR3 ELI,

ID_ISAR4 ELI,ID ISARS EL1, MVFRO ELI, MVFRI EL1, MVFR2 ELI.

G1-110 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

— ID_AAG4PFRO ELI, ID_AAG64PFRI_ELI,ID AA64DFRO ELI,
ID_AAG64DFR1_ELI, D _AA64ISARO ELI, ID_AAG4ISARI ELI,
ID_AA64MMFRO_ELI, ID_AA64MMFRI1 _EL1,ID_AAG64AFRO ELI,
ID_AA64AFR1_ELI.

— ID_MMFR4 EL1 and ID MMFRS5 EL1 are trapped to EL2, unless implemented as
RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID MMFR4 EL1 or
ID_MMFRS _EL1 are trapped to EL2.

— ID_AA64MMFR2 EL1andID ISAR6 EL1 are trapped to EL2, unless implemented
as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to
ID_AA64MMFR2 _EL1 and ID_ISAR6_EL1 are trapped to EL2.

— Otherwise, it is IMPLEMENTATION DEFINED whether this field traps MRS accesses to
registers in the following range that are not already mentioned in this field description:
Op0==3, opl == 0, CRn == c0, CRm == {c2-c7}, op2 == {0-7}.
0b0 This control does not cause any instructions to be trapped.

0bl The specified EL1 read accesses to ID group 3 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

This field resets to an architecturally UNKNOWN value.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state, as follows:

. IfEL1 is using AArch64, reads of CTR_ELO, CCSIDR_EL1, CCSIDR2 EL1, CLIDR ELI1,
and CSSELR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.

. If ELO is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_ELO are
trapped to EL2, reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT
is 0 then ELO reads of CTR_ELO are UNDEFINED and any resulting exception takes
precedence over this trap.

. If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC
syndrome value 0x18.

0bo This control does not cause any instructions to be trapped.

0bl The specified EL1 and ELO accesses to ID group 2 registers are trapped to EL2, when
EL2 is enabled in the current Security state.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the
current Security state as follows:

. Accesses of MPUIR _EL1, REVIDR EL1, AIDR _EL1, reported using EC syndrome value
0x18.

0b0 This control does not cause any instructions to be trapped.

0bl The specified EL1 read accesses to ID group 1 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

This field resets to an architecturally UNKNOWN value.
Bit [15]

Reserved, RESO.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-111
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

TWE, bit [14]

Traps ELO and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current
Security state, from both Execution states, reported using EC syndrome value 0x01.

0b0 This control does not cause any instructions to be trapped.

0bl Any attempt to execute a WFE instruction at ELO or EL1 is trapped to EL2, when EL2
is enabled in the current Security state, if the instruction would otherwise have caused
the PE to enter a low-power state and it is not trapped by SCTLR.nTWE or
SCTLR_EL1.nTWE.

Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state,
see 'Wait for Event mechanism and Send event'.

This field resets to an architecturally UNKNOWN value.

TWI, bit [13]
Traps ELO and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current
Security state, from both Execution states, reported using EC syndrome value 0x01.

0bo This control does not cause any instructions to be trapped.

0bl Any attempt to execute a WFI instruction at ELO or EL1 is trapped to EL2, when EL2
is enabled in the current Security state, if the instruction would otherwise have caused
the PE to enter a low-power state and it is not trapped by SCTLR.nTWI or
SCTLR_EL1.nTWL

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see
'Wait for Interrupt'.

This field resets to an architecturally UNKNOWN value.

DG, bit [12]

Default Cacheability.
0b0 This control has no effect on the EL1&0 translation regime.
0bl In both Security states:

. When EL1 is using AArch64, the PE behaves as if the value of the
SCTLR_ELI1.M field is O for all purposes other than returning the value of a
direct read of SCTLR _ELI.

. If stage 1 EL1&0 translation regime is in PMSAv8-64 context, the PE behaves as
if the value of the SCTLR _EL1.BR field is O for all purposes other than returning
the value of a direct read of SCTLR_ELI.

. The PE behaves as if the value of the HCR_EL2.VM field is 1 for all purposes
other than returning the value of a direct read of HCR_EL2.

G1-112 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

. The memory type produced by stage 1 of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer
Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.
This field is permitted to be cached in a TLB.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this field.

This field resets to an architecturally UNKNOWN value.
BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied
to any barrier instruction executed from EL1 or ELO:

0b00 No effect.

0bo1 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same
principles as combining the shareability attributes from two stages of address translation.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0b00 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable
domain when executed from EL1:

AArch64: TLBI VMALLEL, TLBI VAEI1, TLBI ASIDEI1, TLBI VAAEI1, TLBI VALEI, TLBI
VAALE], ICTALLU, TLBI RVAEI1, TLBI RVAAEL, TLBI RVALE1, TLBI RVAALE].

0b0 This field has no effect on the operation of the specified instructions.

obl When one of the specified instruction is executed at EL1, the instruction is broadcast
within the Inner Shareable shareability domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

This field resets to an architecturally UNKNOWN value.

VSE, bit [8]
Virtual SError interrupt.
0bo This mechanism is not making a virtual SError interrupt pending.
0bl A virtual SError interrupt is pending because of this mechanism.
The virtual SError interrupt is only enabled when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

This field resets to an architecturally UNKNOWN value.

VI, bit [7]
Virtual IRQ Interrupt.
0b0 This mechanism is not making a virtual IRQ pending.
0bl A virtual IRQ is pending because of this mechanism.
The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.
This field resets to an architecturally UNKNOWN value.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-113
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

VF, bit [6]
Virtual FIQ Interrupt.
0bo This mechanism is not making a virtual FIQ pending.
0bl A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

This field resets to an architecturally UNKNOWN value.

AMO, bit [5]
Physical SError interrupt routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

. Physical SError interrupts are not taken to EL2.

. When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical SError interrupts are not taken unless they are routed to EL3
by the SCR_EL3.EA bit.

. Virtual SError interrupts are disabled.
0bl When executing at any Exception level, and EL2 is enabled in the current Security state:
. Physical SError interrupts are taken to EL2, unless they are routed to EL3.
. When the value of HCR_EL2.TGE is 0, then virtual SError interrupts are
enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

. Regardless of the value of the AMO bit physical asynchronous External aborts and SError
interrupts target EL2 unless they are routed to EL3.

. When FEAT VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

. When FEAT VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

This field resets to an architecturally UNKNOWN value.

IMO, bit [4]
Physical IRQ Routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

. Physical IRQ interrupts are not taken to EL2.

. When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical IRQ interrupts are not taken unless they are routed to EL3 by
the SCR_EL3.IRQ bit.

. Virtual IRQ interrupts are disabled.
0bl When executing at any Exception level, and EL2 is enabled in the current Security state:
. Physical IRQ interrupts are taken to EL2, unless they are routed to EL3.
. When the value of HCR_EL2.TGE is 0, then Virtual IRQ interrupts are enabled.
If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

. Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are
routed to EL3.

. When FEAT VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

. When FEAT VHE is implemented and HCR _EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

G1-114 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

For more information, see 'Asynchronous exception routing'.

This field resets to an architecturally UNKNOWN value.

FMO, bit [3]
Physical FIQ Routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

. Physical FIQ interrupts are not taken to EL2.

. When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical FIQ interrupts are not taken unless they are routed to EL3 by
the SCR_EL3.FIQ bit.

. Virtual FIQ interrupts are disabled.

0bl When executing at any Exception level, and EL2 is enabled in the current Security state:
. Physical FIQ interrupts are taken to EL2, unless they are routed to EL3.
. When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

. Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are
routed to EL3.

. When FEAT VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

. When FEAT VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

This field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a
stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type
attributes from the two stages of translation means the access might be made to a type of Device
memory. If this occurs, then the value of this bit determines the behavior:

0bo The translation table walk occurs as if it is to Normal Non-cacheable memory. This
means it can be made speculatively.

0bl The memory access generates a stage 2 Permission fault.
This field is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

This field resets to an architecturally UNKNOWN value.
SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way
instructions to perform a data cache clean and invalidate by set/way:

0bo This control has no effect on the operation of data cache invalidate by set/way
instructions.

0bl Data cache invalidate by set/way instructions perform a data cache clean and invalidate
by set/way.

When the value of this bit is 1:
AArch64: DC ISW performs the same invalidation as a DC CISW instruction.
This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-115
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

VM, bit [0]

This field resets to an architecturally UNKNOWN value.

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when
EL2 is enabled in the current Security state.

0b0 EL1&0 stage 2 address translation disabled.
0bl EL1&0 stage 2 address translation enabled.

IfHCR_EL2.VM s 1 and SCTLR_EL2.{M, BR} is {0, 0}, then the behavior is a CONSTRAINED
UNPREDICTABLE choice of:

. The memory attribute becomes UNKNOWN.
. Raise stage-2 level 0 translation fault.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data
cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless
of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Accessing the HCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, HCR_EL2

if PSTATE.EL ==

UNDEFINED;

elsif PSTATE.EL

UNDEFINED;

elsif PSTATE.EL

return HCR_EL2;

MSR HCR_EL2, <Xt>

if PSTATE.EL ==

UNDEFINED;

elsif PSTATE.EL

UNDEFINED;

elsif PSTATE.EL

op0 op1 CRn CRm op2
Obll 0b100 0b0001 0b0001 0b000
ELO then
== EL1 then
== EL2 then
op0 op1 CRn CRm op2
Obll 0b100 0b0001 0b0001 0b000
ELO then
== EL1 then
== EL2 then

HCR_EL2 = X[t];

G1-116

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.34 ID_AA64DFRO_EL1, AArch64 Debug Feature Register 0

The ID_ AA64DFRO_EL1 characteristics are:

Purpose
Provides top level information about the debug system in AArch64 state.
For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations
The external register EDDFR gives information from this register.

Attributes

ID_AA64DFRO_EL1 is a 64-bit register.

Field descriptions

The ID_ AA64DFRO_EL1 bit assignments are:

63,,4443 ., 4039 ., 363532 31 2827))2423”2019”16 15))12 11 w87, 43,0
¢ t¢ t¢ t¢ t¢ 1¢ t¢ t¢ t¢ {¢ t

RESO | TraceFilt [DoubleLock|RESO|CTX_CMPs|RESO[WRPs|RESO|BRPs|PMUVer| TraceVer |DebugVer|

))))) J))))))
¢ 143 143 143 143 49 143 143 143 149 T

Bits [63:44]

Reserved, RESO.

TraceFilt, bits [43:40]
Armv8.4 Self-hosted Trace Extension version. Defined values are:
0b0000 Armv8.4 Self-hosted Trace Extension not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension implemented.
All other values are reserved.
FEAT TRF implements the functionality identified by the value 0b00@1.
From Armv8.4, if an Embedded Trace Macrocell Architecture PE Trace Unit is implemented, the
value 0b0000 is not permitted.
DoubleLock, bits [39:36]
OS Double Lock implemented. Defined values are:
0b0000 OS Double Lock implemented. OSDLR_EL1 is RW.
0b1111 OS Double Lock not implemented. OSDLR_EL1 is RAZ/WI.
All other values are reserved.
FEAT DoubleLock implements the functionality identified by the value 0b0000.
In Armv8.0, the only permitted value is 0b0000.

If FEAT Debugv8p2 is implemented and FEAT DoPD is not implemented, the permitted values
are 0b0000 and 0b1111.

If FEAT DoPD is implemented, the only permitted value is 0b1111.
Bits [35:32]

Reserved, RESO.
CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered
breakpoints.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-117
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

Bits [27:24]

Reserved, RESO.

WRPs, bits [23:20]

Bits [19:16]

BRPs, bits [15

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Reserved, RESO.

:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMU Ver, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in

'Alternative ID scheme used for the Performance Monitors Extension version'
Defined values are:
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension, PMUv3 implemented.
0b0100 PMUv3 for Armv8.1. As 0b0001, and also includes support for:
. Extended 16-bit PMEVTYPER<n> EL0.evtCount field.
. If EL2 is implemented, the MDCR_EL2.HPMD control bit.

0b0101 PMUV3 for Armv8.4. As 000100, and also includes support for the PMMIR _EL1
register.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT PMUv3 implements the functionality identified by the value 0b0001.

FEAT PMUv3pl implements the functionality identified by the value 0b0100.
FEAT PMUv3p4 implements the functionality identified by the value 0b@101.

From Armv8.1, if FEAT PMUV3 is implemented, the value 0b0001 is not permitted.
From Armv8.4, if FEAT PMUV3 is implemented, the value 0b0100 is not permitted.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented.
Defined values are:

0b0000 PE trace unit System registers not implemented.
0b0001 PE trace unit System registers implemented.
All other values are reserved.

See the ETM Architecture Specification for more information.

A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented.

A PE trace unit might nevertheless be implemented without a System register interface.

DebugVer, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

0b0110 Armv8 debug architecture.

0bo111 Armv8 debug architecture with Virtualization Host Extensions.
0b1000 Armv8.2 debug architecture.

0b1001 Armv8.4 debug architecture.

G1-118 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential ID090320

ARM DDI 0600A.c

System Registers in a PMSA Implementation
G1.3 General system control registers

All other values are reserved.

FEAT Debugv8p2 adds the functionality identified by the value 0b1000.
FEAT Debugv8p4 adds the functionality identified by the value 0b1001.
In Armv8.1, the value 0b0110 is not permitted.

In Armv8.2, the value 0b0111 is not permitted.

From Armv8.4, the value 0b1000 is not permitted.

Accessing the ID_AA64DFRO_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_AA64DFRO_EL1

op0 op1 CRn CRm op2

Ob11 0b000 0b0000 0b0101 0b000

if PSTATE.EL == EL@ then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_AA64DFRO_EL1;
elsif PSTATE.EL == EL2 then
return ID_AA64DFRO_EL1;

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-119
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.5 ID_AAG4ISARO_EL1, AArch64 Instruction Set Attribute Register 0

The ID_AA64ISARO_EL1 characteristics are:

Purpose
Provides information about the instructions implemented in AArch64 state.
For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.
Configurations
There are no configuration notes.
Attributes

ID_AA64ISARO ELI1 is a 64-bit register.

Field descriptions

The ID_AA64ISARO_EL1 bit assignments are:

N
o2}
o

[6)]
O
=
»

[6)]
ol
Mo
N

[6)]
A
n
[o¢]

N

~
N
N

N
A
o

0 39 36 35 32 31)?8 27,24 23,,20 19))1615))12 11))8 7,04 3,,0
t¢ {¢ t¢ t¢ t¢ t¢ t¢ {¢ t¢ t

RESO| TLB | TS |FHM| DP | SM4 [SM3 |SHA3| RDM |RESO|Atomic|CRC32|SHA2|SHA1| AES [RESO

))) J) J) J)))))))))))
¢ 49 49 149 49 49 143 149 143 143 143 143 143 149 143 T

Bits [63:60]
Reserved, RESO.
TLB, bits [59:56]

Indicates support for Outer shareable and TLB range maintenance instructions. Defined values are:

0b0000 Outer shareable and TLB range maintenance instructions are not implemented.
0b0001 Outer shareable TLB maintenance instructions are implemented.
0b0010 Outer shareable and TLB range maintenance instructions are implemented.

All other values are reserved.

FEAT TLBIOS implements the functionality identified by the values 0b0001 and 0b0010.
FEAT TLBIRANGE implements the functionality identified by the value 0b0010.

From Armv8.4, the only permitted value is 0b0010.

TS, bits [55:52]
Indicates support for flag manipulation instructions. Defined values are:
0b0000 No flag manipulation instructions are implemented.
0b0001 CFINV, RMIF, SETF16, and SETFS instructions are implemented.
All other values are reserved.
FEAT FlagM implements the functionality identified by the value 0b@0@1.
In Armv8.2, the permitted values are 0b0000 and 0b0001.
In Armv8.4, the only permitted value is 0b0001.

FHM, bits [51:48]
Indicates support for FMLAL and FMLSL instructions. Defined values are:
0b0000 FMLAL and FMLSL instructions are not implemented.
0b0001 FMLAL and FMLSL instructions are implemented.

All other values are reserved.

G1-120 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

FEAT FHM implements the functionality identified by the value 0b00o1.
From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [47:44]
Indicates support for Dot Product instructions in AArch64 state. Defined values are:
0b0000 No Dot Product instructions implemented.
0b0001 UDOT and SDOT instructions implemented.
All other values are reserved.
FEAT DotProd implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.

SM4, bits [43:40]
Indicates support for SM4 instructions in AArch64 state. Defined values are:
0b0000 No SM4 instructions implemented.
0b0001 SM4E and SM4EKEY instructions implemented.
All other values are reserved.
If FEAT SM4 is not implemented, the value 0b0001 is reserved.
From Armv8.2, the permitted values are 0b0000 and 0b0001.
This field must have the same value as ID__ AA64ISARO_EL1.SM3.

SM3, bits [39:36]
Indicates support for SM3 instructions in AArch64 state. Defined values are:
0b0000 No SM3 instructions implemented.

0b0001 SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTWI1, and
SM3PARTW?2 instructions implemented.

All other values are reserved.

If FEAT SM3 is not implemented, the value 0b0001 is reserved.

FEAT SM3 implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_ AA64ISARO_EL1.SM4.

SHAZ3, bits [35:32]
Indicates support for SHA3 instructions in AArch64 state. Defined values are:
0b0000 No SHA3 instructions implemented.
0b0001 EOR3, RAXI1, XAR, and BCAX instructions implemented.
All other values are reserved.
If FEAT SHA3 is not implemented, the value 0b0001 is reserved.
FEAT SHAS3 implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.
If the value of ID_AA64ISARO_EL1.SHA1 is 0b0000, this field must have the value 0b0000.
If the value of this field is 0b0001, ID AA64ISARO _EL1.SHA2 must have the value 0b0010.

RDM, bits [31:28]

Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values
are:

0b0000 No RDMA instructions implemented.
0b0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-121
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

FEAT RDM implements the functionality identified by the value 0b@0@1.
From Armv8.1, the only permitted value is 0b0001.

Bits [27:24]
Reserved, RESO.

Atomic, bits [23:20]
Indicates support for Atomic instructions in AArch64 state. Defined values are:
0b0000 No Atomic instructions implemented.

0b0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX, LDUMIN,
CAS, CASP, and SWP instructions implemented.

All other values are reserved.
FEAT LSE implements the functionality identified by the value 0b00160.
From Armv8.1, the only permitted value is 0b0010.

CRC32, bits [19:16]
Indicates support for CRC32 instructions in AArch64 state. Defined values are:
0b0000 No CRC32 instructions implemented.

0b0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, and
CRC32CX instructions implemented.

All other values are reserved.
In Armv8.0, the permitted values are 0b0000 and 0b0001.
From Armv8.1, the only permitted value is 0b0001.

SHAZ2, bits [15:12]
Indicates support for SHA?2 instructions in AArch64 state. Defined values are:
0b0000 No SHA?2 instructions implemented.
0b0001 Implements instructions: SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.
0b0010 Implements instructions:
. SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.
. SHAS12H, SHAS512H2, SHAS12SUO, and SHAS12SU1.
All other values are reserved.
FEAT SHA256 implements the functionality identified by the value 0b00o1.
FEAT SHAS512 implements the functionality identified by the value 0b0010.
In ArmvS8, the permitted values are 0b0000 and 0b0001.
From Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.
If the value of ID__AAG64ISARO_EL1.SHAI1 is 0b0000, this field must have the value 0b0000.
If the value of this field is 0b0010, ID_ AA64ISARO_EL1.SHA3 must have the value 0b0001.

SHAL, bits [11:8]
Indicates support for SHA1 instructions in AArch64 state. Defined values are:
0b0000 No SHA1 instructions implemented.

0b0001 SHAI1C, SHA1P, SHA1M, SHA1H, SHA1SUO, and SHA1SU1 instructions
implemented.

All other values are reserved.

FEAT SHAI implements the functionality identified by the value 0b0001.

From Armv8, the permitted values are 0b@000 and 0b0001.

If the value of ID__AAG64ISARO_EL1.SHA2 is 0b0000, this field must have the value 0b0000.

G1-122 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

AES, bits [7:4]
Indicates support for AES instructions in AArch64 state. Defined values are:
0b0000 No AES instructions implemented.
0b0001 AESE, AESD, AESMC, and AESIMC instructions implemented.
0b0010 As for 0b0001, plus PMULL/PMULL?2 instructions operating on 64-bit data quantities.
All other values are reserved.
From ArmvS, the permitted values are 0b0000 and 0b0010.
Bits [3:0]

Reserved, RESO.

Accessing the ID_AA64ISARO_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_AA64ISARO_EL1

op0 op1 CRn CRm op2

Obl1l 0b000 0b0000 0b0110 0b000

if PSTATE.EL == EL@ then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_AAG4ISARO_EL1;
elsif PSTATE.EL == EL2 then
return ID_AAG4ISARO_EL1;

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-123
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.6 ID_AAG64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
The ID_AA64ISAR1_EL1 characteristics are:
Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme

for fields in ID registers.

Configurations

IfID_AA64ISAR1_ELI1.{API, APA} == {0000, 0000}, then:

. The TCR_ELI1.{TBID,TBID0}, TCR_EL2.{TBIDO,TBID1}, TCR_EL2.TBID and
TCR_EL3.TBID bits are RESO.

. APIAKeyHi_ELI1, APIAKeyLo _EL1, APIBKeyHi EL1, APIBKeyLo EL1,
APDAKeyHi_EL1, APDAKeyLo_EL1, APDBKeyHi_EL1, APDBKeyLo ELI are not
allocated.

. SCTLR_ELx.EnIA, SCTLR _ELx.EnIB, SCTLR_ELx.EnDA, SCTLR_ELx.EnDB are all
RESO.

IfID_AA64ISAR1_ELI1.{GPI, GPA, API, APA} == {0000, 0000, 0000, 0000}, then:

. HCR_EL2.APK and HCR_EL2.API are RESO.

. SCR_EL3.APK and SCR_EL3.API are RESO.

Attributes

ID_AA64ISAR1_ELLI is a 64-bit register.

Field descriptions

The ID_AA64ISAR1_EL1 bit assignments are:

63)5251”4847”4443 9 4039))3635))3231”2827”2423”2019))16 15))12 11))8 7))4 3) 0
¢ 144 144 144 s 144 s (s (s 144 144 144 144 t

RESO | DGH |RESO[SPECRES| SB |RESO| GPI [GPA [LRCPC|FCMA|JSCVT| API | APA | DPB

))))))))))))))
((¢ (¢ (¢ £ (¢ £ £ £ (¢ (¢ (¢ (¢ {

Bits [63:52]
Reserved, RESO.
DGH, bits [51:48]
Indicates support for the Data Gathering Hint instruction. Defined values are:
0b0000 Data Gathering Hint is not implemented.
0b0001 Data Gathering Hint is implemented.
All other values are reserved.
FEAT DGH implements the functionality identified by 0b0001.
From ARMV8.0, the permitted values are 00000 and 0b@0o1.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this
field is 0b0000.

Bits [47:44]

Reserved, RESO.

G1-124 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

SPECRES, bits [43:40]
Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:
0b0000 CFP RCTX, DVP RCTX, and CPP RCTX instructions are not implemented.
0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are implemented.
All other values are reserved.
FEAT PredInv implements the functionality identified by 0b0001.
In Armv8-R, the only permitted value is 0b0001.

SB, bits [39:36]
Indicates support for SB instruction in AArch64 state. Defined values are:
0b0000 SB instruction is not implemented.
0b0001 SB instruction is implemented.
All other values are reserved.
FEAT SB implements the functionality identified by 0b00@1.
In Armv8-R, the only permitted value is 0b0001.

Bits [35:32]
Reserved, RESO.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic
code authentication in AArch64 state. Defined values are:

0b0000 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not
implemented.
0b0001 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is implemented.

This includes the PACGA instruction.
All other values are reserved.
From Armv8.3, the permitted values are 0b0000 and 0b0001.
If the value of ID__AA64ISAR1_EL1.GPA is non-zero, this field must have the value 0b000o.

GPA, bits [27:24]

Indicates whether QARMA or Architected algorithm is implemented in the PE for generic code
authentication in AArch64 state. Defined values are:

0b0000 Generic Authentication using an Architected algorithm is not implemented.

0b0001 Generic Authentication using the QARMA algorithm is implemented. This includes the
PACGA instruction.

All other values are reserved.
From Armv8.3, the permitted values are 0b0000 and 0b0001.
If the value of ID_AA64ISAR1_EL1.GPI is non-zero, this field must have the value 0b0000.

LRCPC, bits [23:20]
Indicates support for weaker release consistency, RCpc, based model. Defined values are:
0b0000 The LDAPR*, LDAPUR*, and STLUR* instructions are not implemented.

0b0001 The LDAPR* instructions are implemented.
The LDAPUR¥*, and STLUR* instructions are not implemented.

0b0010 The LDAPR*, LDAPUR*, and STLUR¥* instructions are implemented.
All other values are reserved.

FEAT LRCPC implements the functionality identified by the value 6b0001.

FEAT LRCPC2 implements the functionality identified by the value 0b0010.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-125
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

In Armv8.2, the permitted values are 0b0000, 0bo001, and 0b0010.
In Armv8.3, the permitted values are 0b0001 and 0b0010.
From Armv8.4, the only permitted value is 0b0010.

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in
vectors. Defined values are:

0b0000 The FCMLA and FCADD instructions are not implemented.
0b0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

FEAT FCMA implements the functionality identified by the value 0b0001.
In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.
JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers
in AArch64 state. Defined values are:

0b0000 The FICVTZS instruction is not implemented.

0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

FEAT JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address
authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than
the PACGA instruction. Defined values are:

0b0000 Address Authentication using an IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPA C() function returning TRUE, and the HaveEnhancedPAC2()
function returning FALSE.

0b0011 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPA C2() function returning TRUE, and the HaveEnhancedPAC()
function returning FALSE.

0b0100 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function
returning TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

G1-126 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

0b0101 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function
returning TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.
FEAT PAuth2 implements the functionality added by the value 0b@011.

FEAT FPAC implements the functionality added by the values 0b@100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID__AA64ISAR1_EL1.APA is non-zero, this field must have the value 0b000o.

APA, bits [7:4]

Indicates whether QARMA or Architected algorithm is implemented in the PE for address
authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than
the PACGA instruction. Defined values are:

0b0000 Address Authentication using an Architected algorithm is not implemented.

0b0001 Address Authentication using the QARMA algorithm is implemented, with the
HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA algorithm is implemented, with the
HaveEnhancedPAC() function returning TRUE and the HaveEnhancedPAC2() function
returning FALSE.

0b0011 Address Authentication using the QARMA algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
FALSE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.
FEAT PAuth2 implements the functionality added by the value 0b0011.

FEAT FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of the ID_ AA64ISAR1_EL1.API is non-zero, this field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in
AArch64 state. Defined values are:

0b0000 DC CVAP not supported.

0b0001 DC CVAP supported.

0b0010 DC CVAP and DC CVADP supported.

All other values are reserved.

FEAT DPB implements the functionality identified by the value 0b0001.
FEAT DPB2 implements the functionality identified by the value 0b0o1e.
In Armv8.2, the permitted values are 0b0001 and 0b0010.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-127
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

In Armv8-R, the only permitted value is 0b0010

Accessing the ID_AA64ISAR1_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_AAG64ISAR1_EL1

op0 op1 CRn CRm

op2

Obl11 0b000 0b0000 0b0110

0b001

if PSTATE.EL == ELO then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then
return ID_AA64ISARL_EL1;

G1-128

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.7 ID_AA64MMFRO_EL1, AArch64 Memory Model Feature Register 0

The ID. AA64AMMFRO_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

Attributes

Field descriptions

There are no configuration notes.

ID_AA64AMMFRO _EL1 is a 64-bit register.

The ID_ AA64AMMFRO_EL1 bit assignments are:

6)56 55 ., 52 51))4847))32 31))28 27 9 24 23 9 20 19 5y 16 15 N 12 11))8 75 4 3 N 0
C (49 (%9 (%9 (%9 (49 (49 (%9 (%9 (49 (%9 {
RESO| MSA_frac | MSA |RESO|TGran4| TGran64|TGran16|BigEndELO [SNSMem|BigEnd[ASIDBIts[PARange]
)))))))))))))))
C (49 (%9 (%9 (%9 [£9 [£9 (%9 (%9 [£9 (%9 {

Bits [63:56]

MSA _frac, bits [S5:52]

Reserved, RESO.

Memory System Architecture fractional field. This holds the information on additional Memory
System Architectures supported. Defined values are:

0b0000
0b0001
0b0010

PMSAVS-64 not supported in any translation regime.

PMSAvVS8-64 supported in all translation regimes. No support for VMSAv8-64.

PMSAvVS-64 supported in all translation regimes. In addition to PMSAv8-64, stage 1
EL1&0 translation regime also supports VMSAv8-64.

All other values are reserved.
The permitted values are 0b0001 and 0b0010.
This field is valid only when ID AA64MMFRO EL1.MSA is 0b1111.

MSA, bits [51:48]

Memory System Architecture ID field. This holds the information on Memory System
Architectures supported. Defined values are:

0b0000
0b1111

VMSAv8-64 supported in all translation regimes. No support for PMSAv8-64.

See ID_ AA6AMMFRO_EL1.MSA _frac for the Memory System Architectures
supported.

All other values are reserved.

In Armv8-R, the only permitted value is 0b1111.

Bits [47:32]

Reserved, RESO.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

G1-129

System Registers in a PMSA Implementation
G1.3 General system control registers

TGrand, bits [31:28]
Indicates support for 4KB memory translation granule size. Defined values are:
0b0000 4KB granule supported.
0b1111 4KB granule not supported.

All other values are reserved.

TGran64, bits [27:24]
Indicates support for 64KB memory translation granule size. Defined values are:
0b0000 64KB granule supported.
0b1111 64KB granule not supported.

All other values are reserved.

TGranl6, bits [23:20]
Indicates support for 16KB memory translation granule size. Defined values are:
0b0000 16KB granule not supported.
0b0001 16KB granule supported.
All other values are reserved.

BigEndELO, bits [19:16]
Indicates support for mixed-endian at ELO only. Defined values are:
0b0000 No mixed-endian support at ELO. The SCTLR_EL1.EOE bit has a fixed value.
0b0001 Mixed-endian support at ELO. The SCTLR_EL1.EOE bit can be configured.
All other values are reserved.
This field is invalid and is RESO if ID_ AA64MMFRO_EL1.BigEnd is not 0b0000.

SNSMem, bits [15:12]

Indicates support for a distinction between Secure and Non-secure Memory. Defined values are:

0b0000 Does not support a distinction between Secure and Non-secure Memory.
0b0001 Does support a distinction between Secure and Non-secure Memory.
Note

If EL3 is implemented, the value 0b@000 is not permitted.

All other values are reserved.

BigEnd, bits [11:8]
Indicates support for mixed-endian configuration. Defined values are:

0b0000 No mixed-endian support. The SCTLR _ELx.EE bits have a fixed value. See the
BigEndELO field, bits[19:16], for whether ELO supports mixed-endian.

0b0001 Mixed-endian support. The SCTLR_ELx.EE and SCTLR_EL1.EOQE bits can be
configured.

All other values are reserved.

ASIDBits, bits [7:4]
Number of ASID bits. Defined values are:
0b0000 8 bits.
0b0010 16 bits.

All other values are reserved.

G1-130 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

PARange, bits [3:0]
Physical Address range supported. Defined values are:
0b0000 32 bits, 4GB.
0b00o1 36 bits, 64GB.
0b0010 40 bits, 1TB.
0b0011 42 bits, 4TB.
0b0100 44 bits, 16TB.
0b0101 48 bits, 256TB.
0b0110 52 bits, 4PB.
All other values are reserved.

The value 0b0110 is permitted only if the implementation includes FEAT LPA, otherwise it is
reserved.

Accessing the ID_AA64MMFRO_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_AA64MMFRO_EL1

op0 op1 CRn CRm op2

Obl11 0b000 0b0000 0b0111 0b000

if PSTATE.EL == ELO then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_AA64MMFRO_EL1;
elsif PSTATE.EL == EL2 then
return ID_AAG4MMFRO_EL1;

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-131
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.8 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
The ID_ AA64AMMFR1_EL1 characteristics are:
Purpose
Provides information about the implemented memory model and memory management support in
AArch64 state.
For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.
Configurations
There are no configuration notes.
Attributes
ID_AA64AMMFRI1_EL1 is a 64-bit register.
Field descriptions
The ID_ AA64AMMFR1_EL1 bit assignments are:
63 N 3231))2827 N 2423))2019))1615))1211))8 7 3 4 3 3 0
(%9 (%9 (%9 (%9 (%9 (%9 (%9 (%9 (49
RESO XNX | SpecSEl PAN | RESO [HPDS | RESO | VMIDBits | HAFDBS
)))))))))))))))) y)
(%9 (X9 (%9 (%9 (%9 (%9 (%9 (%9 [£9
Bits [63:32]
Reserved, RESO.
XNX, bits [31:28]
Indicates support for execute-never control distinction by Exception level at stage 2. Defined values
are:
0b0000 Distinction between ELO and EL1 execute-never control at stage 2 not supported.
0b0001 Distinction between ELO and EL1 execute-never control at stage 2 supported.
All other values are reserved.
FEAT XNX implements the functionality identified by the value 0b@0@1.
From Armv8.2, the only permitted value is 0b0001.
SpecSEl, bits [27:24]
Describes whether the PE can generate SError interrupt exceptions from speculative reads of
memory, including speculative instruction fetches. The defined values of this field are:
0b0000 The PE never generates an SError interrupt due to an External abort on a speculative
read.
0b0001 The PE might generate an SError interrupt due to an External abort on a speculative
read.
All other values are reserved.
PAN, bits [23:20]
Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2,
SPSR_EL3, and DSPSR_ELO. Defined values are:
0b0000 PAN not supported.
0b0001 PAN supported.
0b0010 PAN supported and AT SIEIRP and AT S1E1WP instructions supported.
All other values are reserved.
G1-132 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

FEAT PAN implements the functionality identified by the value 0b00@1.
FEAT PAN?2 implements the functionality added by the value 0b0010.
In Armv8.1, the permitted values are 0b0001 and 0b0011.

From Armv8.2, the permitted values are 0b0010 and 0b@011.

Bits [19:16]
Reserved, RESO.

HPDS, bits [15:12]

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation
tables. Defined values are:

0b0000 Disabling of hierarchical controls not supported.

0b0001 Disabling of hierarchical controls supported with the TCR_EL1.{HPD1, HPDO},
TCR_EL2.HPD or TCR_EL2.{HPD1, HPDO}, and TCR_EL3.HPD bits.

0b0010 As for value 00001, and adds possible hardware allocation of bits[62:59] of the
translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED
use.

All other values are reserved.

FEAT HPDS implements the functionality identified by the value 0b00@1.
FEAT HPDS2 implements the functionality identified by the value 0b@010.
From Armvs8.1, the value 0b0000 is not permitted.

Bits [11:8]

Reserved, RESO.

VMIDBits, bits [7:4]
Number of VMID bits. Defined values are:
0b0000 8 bits
0b0010 16 bits
All other values are reserved.
FEAT VMID16 implements the functionality identified by the value 0b0010.
From Armvs8.1, the permitted values are 0b0000 and 0b0010.

HAFDBS, bits [3:0]
Hardware updates to Access flag and Dirty state in translation tables. Defined values are:
0b0000 Hardware update of the Access flag and dirty state are not supported.
0b0001 Hardware update of the Access flag is supported.
0b0010 Hardware update of both the Access flag and dirty state is supported.
All other values are reserved.
FEAT HAFDBS implements the functionality identified by the values 0b0001 and 0b0010.
From Armv8.1, the permitted values are 0b0000, 0b0001, and 0b0010.

Accessing the ID_AA64MMFR1_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-133
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

MRS <Xt>, ID_AA64MMFR1_EL1

op0 op1 CRn

CRm

op2

Obl1 0b000 0b0000

0b0111

0b001

if PSTATE.EL == EL@ then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_AAGAMMFRI_EL1;
elsif PSTATE.EL == EL2 then
return ID_AAG4AMMFR1_EL1;

G1-134 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.9 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

The ID. AA64AMMFR2_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

Attributes

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RESO from EL1, EL2, and EL3.

ID_AA64AMMFR2_EL1 is a 64-bit register.

Field descriptions

The ID_ AA64AMMFR2_EL1 bit assignments are:

63,,56 55,52 51, 48 47, 44 43, 40 39, 36 35 32 31,28 27,24 23,2019 ,, 161512 11,8 7,,4 3,0
¢ (¢ {¢ (¢ {¢ (¢ {¢ {¢ {¢ {¢ {¢ {¢ {¢ (¢ {

RESO | BBM
)

TTL

RESO[FWB | IDS | AT | ST |RESO|CCIDX[VARange|lESB|RESO| UAO | CnP

))
¢ ¢

)
43

Bits [63:56]

)))))))))))) J))
¢ 43 ¢ 43 43 43 43 43 43 43 ¢ T

Reserved, RESO.

BBM, bits [55:52]

Allows identification of the requirements of the hardware to have break-before-make sequences
when changing block size for a translation.

0b0000 Level 0 support for changing block size is supported.

0b0001 Level 1 support for changing block size is supported.

0b0010 Level 2 support for changing block size is supported.

All other values are reserved.

FEAT BBM implements the functionality identified by the values 0b0000, 0b0001, and 0b0010.
From Armv8.4, the permitted values are 0b0000, 0b0001, and 0b0010.

TTL, bits [51:48]

Indicates support for TTL field in address operations. Defined values are:

0b0000 TLB maintenance instructions by address have bits[47:44] as RESO.

0b0001 TLB maintenance instructions by address have bits[47:44] holding the TTL field.
All other values are reserved.

FEAT TTL implements the functionality identified by the value 0b0001.

This field affects TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI IPAS2E10S, TLBI IPAS2LE!, TLBI
IPAS2LELIS, TLBI IPAS2LE1OS, TLBI VAAE1, TLBI VAAEI1IS, TLBI VAAE10S, TLBI
VAALEI1, TLBI VAALEIIS, TLBI VAALEIOS, TLBI VAEI1, TLBI VAEIIS, TLBI VAE10S,
TLBI VAE2, TLBI VAE2IS, TLBI VAE20S, TLBI VAE3, TLBI VAE3IS, TLBI VAE30S,TLBI
VALEL, TLBI VALEI1IS, TLBI VALE10S, TLBI VALE2, TLBI VALE2IS, TLBI VALE2OS,
TLBI VALE3, TLBI VALE3IS, TLBI VALE3OS.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-135

Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

Bits [47:44]

From Armv8.4, the only permitted value is 0b0001.

Reserved, RESO.

FWB, bits [43:40]

Indicates support for HCR_EL2.FWB. Defined values are:

0b0000 HCR_EL2.FWB bit is not supported.

0b0001 HCR_EL2.FWB is supported.

All other values reserved.

FEAT S2FWB implements the functionality identified by the value 0b0001.
From Armv8.4, the only permitted value is 0b0001.

IDS, bits [39:36]

Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the
feature ID space. Defined values are:

0b0000 An exception which is generated by a read access to the feature ID space, other than a
trap caused by HCR_EL2.TIDx, SCTLR_EL1.UCT, or SCTLR_EL2.UCT, is reported
by ESR_ELx.EC == 0x0.

0b0001 All exceptions generated by an AArch64 read access to the feature ID space are reported
by ESR_ELx.EC == 0x18.

All other values are reserved.

The Feature ID space is defined as the System register space in AArch64 with op0==3, op1=={0,
1, 3}, CRn==0, CRm=={0-7}, op2=={0-7}.

FEAT IDST implements the functionality identified by the value 0b0001.
From Armv8.4, the only permitted value is 0b0001.

AT, bits [35:32]

Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:
0b0000 Unaligned single-copy atomicity and atomic functions are not supported.

0b0001 Unaligned single-copy atomicity and atomic functions with a 16-byte address range
aligned to 16-bytes are supported.

All other values are reserved.

FEAT LSE2 implements the functionality identified by the value 0b@0@1.
In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

ST, bits [31:28]

Bits [27:24]

Identifies support for small translation tables. Defined values are:

0b0000 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is
39.

0b0001 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is 48
for 4KB and 16KB granules, and 47 for 64KB granules.

All other values are reserved.
FEAT TTST implements the functionality identified by the value 0b0001.
If FEAT SEL2 is implemented, the only permitted value is 0b0001.

In an implementation which does not support FEAT SEL2, the permitted values are 0b0000 and
0b0001.

Reserved, RESO.

G1-136 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

CCIDX, bits [23:20]
Support for the use of revised CCSIDR_EL1 register format. Defined values are:
0b0000 32-bit format implemented for all levels of the CCSIDR_EL1.
0b0001 64-bit format implemented for all levels of the CCSIDR_EL1.
All other values are reserved.
FEAT CCIDX implements the functionality identified by the value 0b00@1.
From Armv8.3, the permitted values are 0b0000 and 0b0001.

VARange, bits [19:16]
Indicates support for a larger virtual address. Defined values are:
0b0000 VMSAv8-64 supports 48-bit VAs.

0b0001 VMSAvV8-64 supports 52-bit VAs when using the 64KB translation granule. The other
translation granules support 48-bit VAs.

All other values are reserved.
FEAT LVA implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.

IESB, bits [15:12]
Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:
0b0000 IESB bit in the SCTLR_ELx registers is not supported.
0b0001 IESB bit in the SCTLR _ELx registers is supported.
All other values are reserved.

FEAT IESB implements the functionality identified by the value 0b0001.

Bits [11:8]

Reserved, RESO.

UAO, bits [7:4]
User Access Override. Defined values are:
0b0000 UAO not supported.
0b0001 UAO supported.
All other values are reserved.
FEAT UAO implements the functionality identified by the value 0b00@1.
From Armv8.2, the only permitted value is 0b0001.
CnP, bits [3:0]
Indicates support for Common not Private translations. Defined values are:
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.
All other values are reserved.
FEAT TTCNP implements the functionality identified by the value 0b0001.
From Armv8.2, the only permitted value is 0b0001.

Accessing the ID_AA64MMFR2_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-137
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

MRS <Xt>, ID_AA64MMFR2_EL1

op0 op1 CRn CRm op2

Obl1 0b000 0b0000 0b0111 0b010

if PSTATE.EL == EL@ then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED "ID_AA64MMFR2 trapped by
HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL2 then
return ID_AAG4MMFR2_EL1;

G1-138 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.10 ID_AAG64PFRO_EL1, AArch64 Processor Feature Register 0

The ID_ AA64PFRO_EL1 characteristics are:

Purpose
Provides additional information about implemented PE features in AArch64 state.
For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.
Configurations
The external register EDPFR gives information from this register.
Attributes

ID_AA64PFRO_EL1 is a 64-bit register.
Field descriptions

The ID_AA64PFRO_EL1 bit assignments are:

63,)60 59))56 55))52 51))48 47))40 39))36 35))32 31))28 27))24 23 3
¢ t¢ t¢ t¢ t¢ t¢ t¢ t¢ t¢ t¢

2019))1615”12 11))8 7,4 3,,0
{¢ t¢ t¢ t¢ t
CSV3|CSV2|RESO| DIT [RESO|SEL2[RESO| RAS | GIC |AdvSIMD| FP | EL3 | EL2 | EL1 | ELO
)))))) J)))))))))))))))
¢ t¢ t¢ t¢ 1¢ t¢ t¢ t¢ {¢ t¢ {¢ t¢ t¢ t¢ t
CSV3, bits [63:60]

Speculative use of faulting data. Defined values are:

0b0000 This Device does not disclose whether data loaded under speculation with a permission
or domain fault can be used to form an address or generate condition codes or SVE
predicate values to be used by instructions newer than the load in the speculative
sequence

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form
an address or generate condition codes or SVE predicate values to be used by
instructions newer than the load in the speculative sequence

All other values are reserved.

FEAT CSV3 implements the functionality identified by the value 0b0001.
In Armv8.0, the permitted values are 0b0000 and 0b0001.

In Armv8-R, the only permitted value is 0b0001.

If FEAT EOPD is implemented, FEAT CSV3 must be implemented.

CSV2, bits [59:56]
Speculative use of out of context branch targets. Defined values are:

0b0000 This Device does not disclose whether branch targets trained in one hardware described
context can affect speculative execution in a different hardware described context.

0b0001 Branch targets trained in one hardware described context can only affect speculative
execution in a different hardware described context in a hard-to-determine way.
Contexts do not include the SCXTNUM_ELX register contexts, and these registers are
not supported.

0b0010 Branch targets trained in one hardware described context can only affect speculative
execution in a different hardware described context in a hard-to-determine way.
Contexts include the SCXTNUM_ELx register contexts, and these registers are
supported.

In Armv8-R, the only permitted values are 0b0001 or 0b0010.

All other values are reserved.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-139
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

Bits [55:52]

Reserved, RESO.

DIT, bits [51:48]
Data Independent Timing. Defined values are:
0b0000 AArch64 does not guarantee constant execution time of any instructions.

0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee constant execution time
of certain instructions.

All other values are reserved.
FEAT DIT implements the functionality identified by the value 0b0001.
From Armv8.4, the only permitted value is 0b0001.

Bits [47:40]

Reserved, RESO.

SEL2, bits [39:36]
Secure EL2. Defined values are:
0b0000 Secure EL2 is not implemented.
0b0001 Secure EL2 is implemented.
All other values are reserved.

FEAT SEL2 implements the functionality identified by the value 0b@0@1.

Bits [35:32]

Reserved, RESO.

RAS, bits [31:28]
RAS Extension version. Defined values are:
0b0000 No RAS Extension.
0b0001 RAS Extension present.
0b0010 FEAT RASvlpl present. As 0b0001, and adds support for:
. Additional ERXMISC<m>_ EL1 System registers.

. Additional System registers ERXPFGCDN_EL1, ERXPFGCTL EL1, and
ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

FEAT RASvlpl and FEAT DoubleFault implement the functionality identified by the value
0b0010.

In Armv8.0 and ArmvS8.1, the permitted values are 0b@000 and 0b0001.
In Armv8.2, the only permitted value is 0b0001.
From Armv8.4, when FEAT DoubleFault is not implemented, and ERRIDR_EL1.NUM is zero, the
permitted values are IMPLEMENTATION DEFINED 0b0001 or 0b0010. Otherwise from Armv8.4, the
only permitted value is 0b0010.
GIC, bits [27:24]
System register GIC CPU interface. Defined values are:
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

G1-140

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.
AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:
0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD

operations:

. Integer byte, halfword, word and doubleword element operations.

. Single-precision and double-precision floating-point arithmetic.

. Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.
0b1111 Advanced SIMD is not implemented.
All other values are reserved.
This field must have the same value as the FP field.
The permitted values are:

. 0b0000 in an implementation with Advanced SIMD support that does not include the
FEAT FP16 extension.

. 0b0001 in an implementation with Advanced SIMD support that includes the FEAT FP16
extension.

. 0b1111 in an implementation without Advanced SIMD support.
FP, bits [19:16]

Floating-point. Defined values are:

0b0000 Floating-point is implemented, and includes support for:
. Single-precision and double-precision floating-point types.
. Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.
0b1111 Floating-point is not implemented.
All other values are reserved.
This field must have the same value as the AdvSIMD field.
The permitted values are:

. 0b0000 in an implementation with floating-point support that does not include the
FEAT FP16 extension.

. 0b0001 in an implementation with floating-point support that includes the FEAT FP16
extension.

. 0b1111 in an implementation without floating-point support.

EL3, bits [15:12]

EL3 Exception level handling. In Armv8-R, the only permitted value is 0b0000. All other values are
reserved.

0b0000 EL3 is not implemented.

EL2, bits [11:8]

EL2 Exception level handling. In Armv8-R, the only permitted value is 0b0001. All other values are
reserved.

0b0001 EL2 can be executed in AArch64 state only.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-141
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

EL1, bits [7:4]

EL1 Exception level handling. In Armv8-R, the only permitted value is 0b0001. All other values are
reserved.

0b0001 EL1 can be executed in AArch64 state only.

ELQO, bits [3:0]

ELO Exception level handling. In Armv8-R, the only permitted value is 0b0001. All other values are
reserved.

0b0001 ELO can be executed in AArch64 state only.

Accessing the ID_AA64PFRO_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_AA64PFRO_EL1

op0 op1 CRn CRm op2

Obl11 0b000 0b0000 0b0100 0b000

if PSTATE.EL == ELO then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_AA64PFRO_EL1;
elsif PSTATE.EL == EL2 then
return ID_AA64PFRO_ELL;

G1-142

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.11 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_ AA64PFR1_EL1 characteristics are:

Purpose
Reserved for future expansion of information about implemented PE features in AArch64 state.
For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations
There are no configuration notes.

Attributes

ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64PFR1 _EL1 bit assignments are:

63 9 16 15 121 5w 87 5,43 ,,0
1¢ t¢ 1¢ t¢
RESO RAS_frac RESO SSBS RESO
J)) J)))
1¢ t¢ 1¢ t¢

Bits [63:16]

Reserved, RESO.

RAS_frac, bits [15:12]
RAS Extension fractional field. Defined values are:
0b0000 IfID_AA64PFRO_EL1.RAS == 0b0001, RAS Extension implemented.
0b0001 IfID_AA64PFRO_EL1.RAS == 0b0001, as 0b0000 and adds support for:
. Additional ERXMISC<m>_ EL1 System registers.

. Additional System registers ERXPFGCDN_EL1, ERXPFGCTL EL1, and
ERXPFGF EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS, and support for the optional
RAS Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.
FEAT RASvlpl implements the functionality identified by the value 0b0001.
This field is valid only if ID_AA64PFRO_EL1.RAS == 0b0001.
Bits [11:8]
Reserved, RESO.
SSBS, bits [7:4]
Speculative Store Bypassing controls in AArch64 state. Defined values are:
0b0000 AArch64 provides no mechanism to control the use of Speculative Store Bypassing.

0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypass Safe.

0b0010 AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypassing Safe, and the MSR and MRS instructions to directly read and write the
PSTATE.SSBS field.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-143
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

All other values are reserved.
FEAT SSBS implements the functionality identified by the value 0b0001.
FEAT SSBS implements the functionality identified by the value 0b0010.

Bits [3:0]

Reserved, RESO.

Accessing the ID_AA64PFR1_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_AA64PFR1_EL1

op0 op1 CRn CRm op2

Obl1 0b000 0b0000 0b0100 0b001

if PSTATE.EL == EL@ then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then
return ID_AAG64PFR1_EL1;

G1-144

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

G1.3.12

MAIR_EL1, Memory Attribute Indirection Register (EL1)

The MAIR_ELI characteristics are:

Purpose

System Registers in a PMSA Implementation
G1.3 General system control registers

If VMSAvVS8-64 is enabled at stage 1 of EL1&0 translation regime, this register provides the memory
attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format

translation table entry for stage 1 translations at EL1.

If PMSAV8-64 is enabled at stage 1 of EL1&0 translation regime, this register provides the memory
attribute encodings corresponding to the possible AttrIndx values in PRLAR_EL1 register for stage
1 translations.

Configurations

Attributes

There are no configuration notes.

MAIR_EL1 is a 64-bit register.

Field descriptions

The MAIR_EL1 bit assignments are:

63

56 55

48 47

40 39

32 31

24 23

16 15

8

7

)
(¢

Attr7

)
(¢

Attré

)
£

Attr5

)
£

Attrd

)
(¢

Attr3
)

)
(¢

Attr2
)

)
(¢

Attr1
b))

)
£

Attr0
)

))
(

)
(

))
C

J)
149

MAIR_ELL1 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n=0to 7

The memory attribute encoding for an Attrindx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

(

(

(

(%9

Attr

Meaning

0b0000dd00

Device memory. See encoding of 'dd' for the type of Device memory.

0b0000ddxx, (xx != 00)

UNPREDICTABLE

0booooiiii, (0000 != 0000 and iiii != 0000)

Normal memory. See encoding of '0000' and 'iiii' for the type of Normal Memory.

0b11110000

If FEAT MTE is implemented, then: Tagged Normal Memory. Inner+Outer
Write-Back Non-transient memory, Inner+Outer Read-Allocate, Inner+Outer

Write-Allocate. Otherwise,UNPREDICTABLE.

0bxxxx0000, (xxxx != 0000 and xxxx != 1111)

UNPREDICTABLE

'dd' is encoded as follows:

dd Meaning

0b0o Device-nGnRnE memory
0bo1 Device-nGnRE memory
0b10 Device-nGRE memory
0b11l Device-GRE memory

ARM DDI 0600A.c

ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

G1-145

System Registers in a PMSA Implementation
G1.3 General system control registers

'0000' is encoded as follows:

‘0000’ Meaning

0b0000 See encoding of Attr

0bOORW, RW notob0@ Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

O0bO1RW, RW notob@@ Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0bl11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

i’ Meaning

0b0000 See encoding of Attr

0bOORW, RW not0b@@ Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0bO1RW, RW notob0@ Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

Ob11RW Normal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in '0ooo0' and 'iiii' fields have the following meanings:

RorwW Meaning
0bo No Allocate
0bl Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR EL1 or
MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

G1-146 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

MRS <Xt>, MAIR_EL1

System Registers in a PMSA Implementation
G1.3 General system control registers

op0

op1

CRn CRm op2

Obl1

0b000

0b1010 0b0010 0b000

if PSTATE.EL == ELQ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);

else
return MAIR_EL1;
elsif PSTATE.EL == EL2 then
return MAIR_EL1;

MSR MAIR_EL1, <Xt>

op0

op1

CRn CRm op2

Ob11

0b000

0b1010 0b0010 0b000

if PSTATE.EL == EL@ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);

else
MAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
MAIR_EL1 = X[t];

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-147
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.13 MAIR_EL2, Memory Attribute Indirection Register (EL2)
The MAIR_EL2 characteristics are:
Purpose
Provides the memory attribute encodings corresponding to the possible AttrIndx values in
PRLAR EL2 for stage 1 EL2 translation regime and for stage 2 EL1&0 translation regime.
For stage 2 EL1&0 translations, the memory attributes are derived from MAIR_EL2 register as
described in the Armv8-R AArch64 architecture.
Configurations
If EL2 is not implemented, this register is RESO from EL3.
This register has no effect if EL2 is not enabled in the current Security state.
Attributes
MAIR_EL2 is a 64-bit register.
Field descriptions
The MAIR_EL2 bit assignments are:
63 3 56 55 9 48 47 9 40 39 " 32 31 3 24 23 3 16 15 9 8 7 9 0
(49 (49 (9 (C (49 (49 (49 (9
Attr7 Attré Attrd Attrd Attr3 Attr2 Attr1 Attr0
)))))) y)))))))))
(49 (49 (9 (C (49 (49 (49 (9
MAIR_EL2 is permitted to be cached in a TLB.
Attr<n>, bits [8n+7:8n], forn=0 to 7
The memory attribute encoding for an Attrindx[2:0] gives the value of <n> in Attr<n>.
Attr is encoded as follows:
Attr Meaning
0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000ddxx, (xx != 00)

UNPREDICTABLE

0booooiiii, (0000 != 0000 and iiii = 0000)

Normal memory. See encoding of '0ooo0' and 'iiii' for the type of Normal Memory.

0b11110000

If FEAT MTE is implemented, then: Tagged Normal Memory. Inner+Outer
Write-Back Non-transient memory, Inner+Outer Read-Allocate, Inner+Outer
Write-Allocate. Otherwise,UNPREDICTABLE.

Obxxxx0000, (xxxx != 0000 and xxxx !=1111)

UNPREDICTABLE

'dd' is encoded as follows:

dd Meaning

0b0o Device-nGnRnE memory
0bo1 Device-nGnRE memory
0b10 Device-nGRE memory
0b11 Device-GRE memory

G1-148

Non-Confidential

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

'0000' is encoded as follows:

‘0000’ Meaning

0b0000 See encoding of Attr

0bOORW, RW notob0@ Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

O0bO1RW, RW notob@@ Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0bl11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

i’ Meaning

0b0000 See encoding of Attr

0bOORW, RW not0b@@ Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0bO1RW, RW notob0@ Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

Ob11RW Normal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in '0ooo0' and 'iiii' fields have the following meanings:

RorwW Meaning
0bo No Allocate
0bl Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR EL2 or
MAIR_EL1 is not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-149
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

MRS <Xt>, MAIR_EL2

if PSTATE.EL ==
UNDEFINED;

elsif PSTATE.EL
UNDEFINED;

elsif PSTATE.EL
return MAIR

ELO then
== EL1 then

== EL2 then
EL2;

MSR MAIR_EL2, <Xt>

if PSTATE.EL ==
UNDEFINED;

elsif PSTATE.EL
UNDEFINED;

elsif PSTATE.EL

ELO then

== EL1 then

== EL2 then

MAIR_EL2 = X[t];

MRS <Xt>, MAIR_EL1

if PSTATE.EL == ELQ then

UNDEFINED;

elsif PSTATE.EL == EL1 then

if HCR_EL2.TRWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else

return MAIR_ELL;
elsif PSTATE.EL == EL2 then
return MAIR_EL1;

MSR MAIR_EL1, <Xt>

if PSTATE.EL == ELQ then

UNDEFINED;

elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else

MAIR_EL1 = X[t];

op0 op1 CRn CRm op2
Obll 0b100 0b1010 0b0010 0b000
op0 op1 CRn CRm op2
Obll 0b100 0b1010 0b0010 0b000
op0 op1 CRn CRm op2
Obll 0b000 0b1010 0b0010 0b000
op0 op1 CRn CRm op2
Obll 0b000 0b1010 0b0010 0b000

G1-150

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

elsif PSTATE.EL == EL2 then
MAIR_EL1 = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-151
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.14 MPUIR_EL1, MPU Type Register (EL1)

The MPUIR _ELI characteristics are:

Purpose

Identifies the number of regions supported by the EL1 MPU.
Configurations

There are no configuration notes.
Attributes

MPUIR_EL1 is a 64-bit register.

Field descriptions

The MPUIR_EL1 bit assignments are:

63 » 8 7 y 0
(%9 (%9
RESO REGION
))
(%9 (%9
Bits [63:8]

Reserved, RESO.

REGION, bits [7:0]
The number of EL1 MPU regions supported.

Accessing the MPUIR_ELA1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MPUIR_EL1

op0 op1 CRn CRm op2

Obl11 0b000 0b0000 0b0000 0b100

if PSTATE.EL == ELO then
if IsFeatureImplemented("FEAT_IDST") then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TID1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
return MPUIR_EL1;
elsif PSTATE.EL == EL2 then
return MPUIR_EL1;

G1-152 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.15 MPUIR_EL2, MPU Type Register (EL2)

63

The MPUIR_EL2 characteristics are:

Purpose

Identifies the number of regions supported by the EL2 MPU.
Configurations

There are no configuration notes.
Attributes

MPUIR_EL2 is a 64-bit register.

Field descriptions

The MPUIR_EL2 bit assignments are:

))))
(49

(

RESO REGION

))
43 43

Bits [63:8]

Reserved, RESO.

REGION, bits [7:0]
The number of EL2 MPU regions supported.

Accessing the MPUIR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MPUIR_EL2

op0 op1 CRn CRm op2
Obll 0b100 0b0000 0b0000 0b100
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return MPUIR_EL2;
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-153

ID090320

Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.16 PRBAR_EL1, Protection Region Base Address Register (EL1)

The PRBAR_ELI characteristics are:

Provides access to the base addresses for the EL1 MPU region. PRSELR_EL1.REGION determines

All bits above implemented physical address range in this register should be treated as RESO.

Purpose

which MPU region is selected.
Configurations
Attributes

PRBAR_EL1 is a 64-bit register.

Field descriptions

The PRBAR_EL1 bit assignments are:

63 9 52 51 48 47 %

6 543210

(%9

RESO BASE[47:6]
2 2

XN

¢
BASE[51:48]

Bits [63:52]
Reserved, RESO.
BASE[51:48], bits [51:48]
When FEAT LPA is implemented:

|
I— RESO

AP[2:1]
SHI1:0]

Extension to BASE[47:6]. When FEAT LPA is implemented, BASE[51:48] form the upper part of
the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RESO.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

BASE[47:6], bits [47:6]

Bits[47:6] of the lower inclusive limit of the selected EL1 MPU memory region. This value is zero

extended to provide the base address to be checked against.

This field resets to an architecturally UNKNOWN value.

SHJ[1:0], bits [5:4]
Shareability attribute.

0b00 Non-shareable

0bo1 Reserved, CONSTRAINED UNPREDICTABLE
0b10 Outer Shareable

0b11 Inner Shareable

This field resets to an architecturally UNKNOWN value.

G1-154 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

AP|2:1], bits [3:2]

Access Permission attributes.

0b0o Read/write at EL1, no access at ELO
0bo1 Read/write at EL1 and ELO
0b10 Read-only at EL1, no access at ELO
0b11 Read-only at EL1 and ELO

This field resets to an architecturally UNKNOWN value.

XN, bit [1]
Execute Never
0bo Execution of instructions fetched from the region is permitted.
0bl Execution of instructions fetched from the region is not permitted.
This field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RESO.

Accessing the PRBAR_ELA1

Any access to MPU region register PRBAR_EL1 above the number of implemented regions specified by
MPUIR_EL1.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:
. Reads of unimplemented PRBAR EL1 register return an UNKNOWN value.
. Writes to unimplemented PRBAR_EL1 register make all PRBAR EL1 registers value UNKNOWN.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRBAR_EL1

op0 op1 CRn CRm op2

Obl11 0b000 0b0110 0b1000 0b000

if PSTATE.EL == ELQ then

UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
return PRBAR_EL1;
elsif PSTATE.EL == EL2 then
return PRBAR_EL1;

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-155
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

MSR PRBAR_EL1, <Xt>

op0 op1

CRn

CRm

op2

Obl1 0b000

0b0110

0b1000

0b000

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
PRBAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
PRBAR_EL1 = X[t];

G1-156 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.17 PRBAR_EL2, Protection Region Base Address Register (EL2)

The PRBAR_EL2 characteristics are:

Purpose
Provides access to the base addresses for the EL2 MPU region. PRSELR_EL2.REGION determines
which MPU region is selected.
Configurations
All bits above implemented physical address range in this register should be treated as RESO.
Attributes

PRBAR_EL2 is a 64-bit register.

Field descriptions

The PRBAR_EL2 bit assignments are:

63 ()2 52 51 48 47 ()2 6 543 210
RESO BASE[47:6] XN
2 2
— o
BASE[51:48] AP[2:1]

SHI1:0]

Bits [63:52]
Reserved, RESO.

BASE|[51:48], bits [51:48]
When FEAT LPA is implemented:

Extension to BASE[47:6]. When FEAT LPA is implemented, BASE[51:48] form the upper part of
the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RESO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

BASE[47:6], bits [47:6]

Bits[47:6] of the lower inclusive limit of the selected EL2 MPU memory region. This value is zero
extended to provide the base address to be checked against.

This field resets to an architecturally UNKNOWN value.
SHJ1:0], bits [5:4]
Shareability attribute.

0b00 Non-shareable

0bo1 Reserved, CONSTRAINED UNPREDICTABLE
0bl10 Outer Shareable

0b11 Inner Shareable

This field resets to an architecturally UNKNOWN value.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-157
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

AP|2:1], bits [3:2]

XN, bits [1:0]

Access Permission attributes.

0b0o Read/write at EL2, no access at EL1 or ELO
0bo1 Read/write at EL2, EL1 and ELO
0b10 Read-only at EL2, no access at EL1 or ELO
0b11 Read-only at EL2, EL1 and ELO

This field resets to an architecturally UNKNOWN value.

Execute Never. For

. Stage 1 EL2 translation regime and

. Stage 2 EL1&0 translation regime when FEAT XNX is not implemented

XN[1] determines whether execution of the instructions fetched from the MPU memory region is

permitted. In this case, XN[0] is RESO

For stage 2 EL1&0 translation regime when FEAT XNX is implemented, the behavior of XN[1:0]
is same as that defined by VMSAvS8-64 for EL1&0 stage 2 translation table XN[1:0],bits[54:53]

field in Armv8-A architecture.

0b00 Execution of instructions fetched from the region is permitted.

0bo1 Execution of instructions fetched from the region is not permitted.

This field resets to an architecturally UNKNOWN value.

Accessing the PRBAR_EL2

Any access to MPU region register PRBAR EL2 above the number of implemented regions specified by
MPUIR_EL2.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

. Reads of unimplemented PRBAR_EL2 register return an UNKNOWN value.

. Writes to unimplemented PRBAR_EL2 register make all PRBAR EL2 registers value UNKNOWN.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRBAR_EL2

op0 op1 CRn

CRm op2

Obl11 0b100 0b0110

0b1000 0b000

if PSTATE.EL == ELQ then

UNDEFINED;

elsif PSTATE.EL == EL1 then

UNDEFINED;

elsif PSTATE.EL == EL2 then
return PRBAR_EL2;

G1-158

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

MSR PRBAR_EL2, <Xt>

System Registers in a PMSA Implementation
G1.3 General system control registers

op0 op1 CRn CRm op2
Obl11 0b100 0b0110 0b1000 0b000
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
PRBAR_EL2 = X[t];
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-159

ID090320

Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.18 PRBAR<n>_ELA1, Protection Region Base Address Register n (EL1),n=1-15

The PRBAR<n> ELI characteristics are:

Purpose
Provides access to the base address for the MPU region determined by the value of 'n' and
PRSELR _EL1.REGION as PRSELR EL1.REGION<7:4>:n.
Configurations
All bits above implemented physical address range in this register should be treated as RESO.
Attributes

PRBAR<n> EL1 is a 64-bit register.

Field descriptions

The PRBAR<n> EL1 bit assignments are:

63

52 51 48 47 6 543210

)
£

(%9

RESO
))

BASE[47:6]
)
¢

XN

(%9

I_l_l

BASE[51:48]

Bits [63:52]

Reserved, RESO.

BASE[51:48], bits [51:48]

When FEAT LPA is implemented:

I— RESO

AP[2:1]

SHI1:0]

Extension to BASE[47:6]. When FEAT LPA is implemented, BASE[51:48] form the upper part of
the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RESO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

BASE[47:6], bits [47:6]

Bits[47:6] of the lower inclusive limit of the selected EL1 MPU memory region. This value is zero

extended to provide the base address to be checked against.

This field resets to an architecturally UNKNOWN value.

SH[1:0], bits [S:4]

Shareability attribute.

0b00 Non-shareable

0bo1 Reserved, CONSTRAINED UNPREDICTABLE
0b10 Outer Shareable

0b11 Inner Shareable

This field resets to an architecturally UNKNOWN value.

G1-160

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

AP|2:1], bits [3:2]

Access Permission attributes.

0b0o Read/write at EL1, no access at ELO
0bo1 Read/write at EL1 and ELO
0b10 Read-only at EL1, no access at ELO
0b11 Read-only at EL1 and ELO

This field resets to an architecturally UNKNOWN value.

XN, bit [1]
Execute Never
0bo Execution of instructions fetched from the region is permitted.
0bl Execution of instructions fetched from the region is not permitted.
This field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RESO.

Accessing the PRBAR<n>_EL1

Any access to MPU region register PRBAR<n> EL1 above the number of implemented regions specified by
MPUIR_EL1.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:
. Reads of unimplemented PRBAR<n> EL1 return an UNKNOWN value.
. Writes to unimplemented PRBAR<n> EL1 register make all PRBAR_EL1 registers value UNKNOWN.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRBAR<n>_EL1

op0 op1 CRn CRm op2

Obl11 0b000 0b0110 Ob1:n[3:1] n[0]:0b00

if PSTATE.EL == ELQ then

UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
return PRBAR_EL1[UInt(CRm<2:0>:0p2<2>)];
elsif PSTATE.EL == EL2 then
return PRBAR_EL1[UInt(CRm<2:0>:0p2<2>)];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-161
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

MSR PRBAR<n>_EL1, <Xt>

op0 op1

CRn

CRm

op2

Obl1 0b000

0b0110

Obl:n[3:1]

n[0]:0600

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
PRBAR_EL1[UInt(CRm<2:0>:0p2<2>)] = X[t];
elsif PSTATE.EL == EL2 then
PRBAR_EL1[UInt(CRm<2:0>:0p2<2>)] = X[t];

G1-162 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.19 PRBAR<n>_EL2, Protection Region Base Address Register n (EL2),n =1 -15

The PRBAR<n> EL2 characteristics are:

Purpose
Provides access to the base address for the MPU region determined by the value of 'n' and
PRSELR EL2.REGION as PRSELR EL2.REGION<7:4>:n.
Configurations
All bits above implemented physical address range in this register should be treated as RESO.
Attributes

PRBAR<n> EL2 is a 64-bit register.

Field descriptions

The PRBAR<n> EL2 bit assignments are:

63 ()2 52 51 48 47 ()2 6 543 210
RESO BASE[47:6] XN
2 2
— o
BASE[51:48] AP[2:1]

SHI1:0]

Bits [63:52]
Reserved, RESO.

BASE|[51:48], bits [51:48]
When FEAT LPA is implemented:

Extension to BASE[47:6]. When FEAT LPA is implemented, BASE[51:48] form the upper part of
the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RESO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

BASE[47:6], bits [47:6]

Bits[47:6] of the lower inclusive limit of the selected EL2 MPU memory region. This value is zero
extended to provide the base address to be checked against.

This field resets to an architecturally UNKNOWN value.
SHJ1:0], bits [5:4]
Shareability attribute.

0b00 Non-shareable

0bo1 Reserved, CONSTRAINED UNPREDICTABLE
0bl10 Outer Shareable

0b11 Inner Shareable

This field resets to an architecturally UNKNOWN value.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-163
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

AP|2:1], bits [3:2]

Access Permission attributes.

0b0o Read/write at EL2, no access at EL1 or ELO
0bo1 Read/write at EL2, EL1 and ELO
0b10 Read-only at EL2, no access at EL1 or ELO
0b11 Read-only at EL2, EL1 and ELO

This field resets to an architecturally UNKNOWN value.

XN, bits [1:0]
Execute Never. For
. Stage 1 EL2 translation regime and
. Stage 2 EL1&0 translation regime when FEAT XNX is not implemented

XN[1] determines whether execution of the instructions fetched from the MPU memory region is
permitted. In this case, XN[0] is RESO

For stage 2 EL1&0 translation regime when FEAT XNX is implemented, the behavior of XN[1:0]
is same as that defined by VMSAvS8-64 for EL1&0 stage 2 translation table XN[1:0],bits[54:53]
field in Armv8-A architecture.

0b00 Execution of instructions fetched from the region is permitted.
0bo1 Execution of instructions fetched from the region is not permitted.

This field resets to an architecturally UNKNOWN value.

Accessing the PRBAR<n>_EL2

Any access to MPU region register PRBAR<n> EL2 above the number of implemented regions specified by
MPUIR_EL2.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:
. Reads of unimplemented PRBAR<n> EL2 return an UNKNOWN value.
. Writes to unimplemented PRBAR<n> EL2 register make all PRBAR_EL2 registers value UNKNOWN.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRBAR<n>_EL2

op0 op1 CRn CRm op2

Obl11 0b100 0b0110 Ob1:n[3:1] n[0]:0b00

if PSTATE.EL == ELQ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return PRBAR_EL2[UInt(CRm<2:0>:0p2<2>)];

G1-164 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

MSR PRBAR<n>_EL2, <Xt>

op0 op1 CRn CRm op2

0bl1 0b100 0b0110 0bl:n[3:1] n[0]:0600

if PSTATE.EL == EL@ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
PRBAR_EL2[UInt(CRm<2:0>:0p2<2>)] = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-165
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.20 PRENR_ELA1, Protection Region Enable Register (EL1)

63

The PRENR_EL1 characteristics are:

Purpose

Provides direct access to the PRLAR_EL1.EN bits of EL1 MPU regions from 0 to 31.
Configurations

There are no configuration notes.
Attributes

PRENR _EL1 is a 64-bit register.
Field descriptions

The PRENR_EL1 bit assignments are:

~ 32 31 ~ 0
{¢

{¢
RESO ENABLE<n>, bit [n]

))
43 43

Bits [63:32]

Reserved, RESO.

ENABLE<n>, bit [n], for n =0 to 31

Enable bit. Each bit, n, enables or disables the respective EL1 MPU region. The bits associated with
the unimplemented MPU regions are RAZ/WI.

0bo Disables the EL1 MPU n region.
0bl Enables the EL1 MPU n region.
This field resets to 0.

Accessing the PRENR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRENR_EL1

op0 op1 CRn CRm op2

Ob11 0b000 0b0110 0b0001 0b001

if PSTATE.EL == ELO then

UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
return PRENR_EL1;
elsif PSTATE.EL == EL2 then
return PRENR_EL1;

G1-166

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

MSR PRENR_EL1, <Xt>

op0 op1 CRn CRm op2

Obl1 0b000 0b0110 0b0001 0b001

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
PRENR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
PRENR_EL1 = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-167
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.21 PRENR_EL2, Protection Region Enable Register (EL2)
The PRENR_EL2 characteristics are:
Purpose
Provides direct access to the PRLAR_EL2.EN bits of EL2 MPU regions from 0 to 31.
Configurations
There are no configuration notes.
Attributes
PRENR _EL2 is a 64-bit register.
Field descriptions
The PRENR_EL2 bit assignments are:
63 N 32 31 N 0
(49 (49
RESO ENABLE<n>, bit [n]
y) y)
(%9 (%9
Bits [63:32]
Reserved, RESO.
ENABLE<n>, bit [n], for n =0 to 31
Enable bit. Each bit, n, enables or disables the respective EL2 MPU region. The bits associated with
the unimplemented MPU regions are RAZ/WI.
0bo Disables the EL2 MPU n region.
0bl Enables the EL2 MPU n region.
This field resets to 0.
Accessing the PRENR_EL2
Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PRENR_EL2
op0 op1 CRn CRm op2
Obl11 0b100 0b0110 0b0001 0b001
if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return PRENR_EL2;
G1-168 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

MSR PRENR_EL2, <Xt>

System Registers in a PMSA Implementation
G1.3 General system control registers

op0 op1 CRn CRm op2
Obl11 0b100 0b0110 0b0001 0b001
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
PRENR_EL2 = X[t];
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-169

ID090320

Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.22 PRLAR_EL1, Protection Region Limit Address Register (EL1)

The PRLAR_EL1 characteristics are:

Purpose
Provides access to the limit addresses for the EL1 MPU region. PRSELR_EL1.REGION determines
which MPU region is selected.
Configurations
All bits above implemented physical address range in this register should be treated as RESO.
Attributes

PRLAR EL1 is a 64-bit register.

Field descriptions

The PRLAR EL1 bit assignments are:

63 2 52 51 48 47 2 6 54 3 10

RESO LIMIT[47:6] NS
22 2

(49 I__I
LIMIT[51:48] I— EN

Attrindx[2:0]
RESO

Bits [63:52]

Reserved, RESO.

LIMIT[51:48], bits [51:48]
When FEAT LPA is implemented:

Extension to LIMIT[47:6]. When FEAT LPA is implemented, LIMIT[51:48] form the upper part
of the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RESO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

LIMIT([47:6], bits [47:6]

Bits[47:6] of the upper inclusive limit of the selected EL1 MPU memory region. This value is
concatenated with the value 0x3F to provide the limit address to be checked against.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RESO.

NS, bit [4]
Non-secure bit. Specifies whether the output address is in the Secure or Non-secure memory.
0b0 Output address is in Secure address space.
0bl Output address is in Non-secure address space.

This field resets to an architecturally UNKNOWN value.

G1-170 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register.
0b000 Select the Attr0 field from MAIR_EL1.
0b001 Select the Attrl field from MAIR ELI.
0b010 Select the Attr2 field from MAIR_EL1.
0b011 Select the Attr3 field from MAIR ELI.
0b100 Select the Attr4 field from MAIR_EL1.
0b101 Select the Attr5 field from MAIR _ELI.
0b110 Select the Attr6 field from MAIR_EL1.
0b111 Select the Attr7 field from MAIR ELI.
This field resets to an architecturally UNKNOWN value.

EN, bit [0]
Region enable bit.
0bo Region disabled.
0bl Region enabled.

This field resets to 0.

Accessing the PRLAR_EL1

Any access to MPU region register PRLAR_EL1 above the number of implemented regions specified by
MPUIR _EL1.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:
. Reads of unimplemented PRLAR_EL1 register return an UNKNOWN value.
. Writes to unimplemented PRLAR_EL1 register make all PRLAR_EL1 registers value UNKNOWN.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRLAR_EL1

op0 op1 CRn CRm op2

Ob11 0b000 0b0110 0b1000 0b001

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
return PRLAR_EL1;
elsif PSTATE.EL == EL2 then
return PRLAR_EL1;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-171
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

MSR PRLAR_EL1, <Xt>

op0 op1

CRn

CRm

op2

Obl1 0b000

0b0110

0b1000

0b001

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
PRLAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
PRLAR_EL1 = X[t];

G1-172 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.23 PRLAR_EL2, Protection Region Limit Address Register (EL2)

The PRLAR_EL2 characteristics are:

Purpose
Provides access to the limit addresses for the EL2 MPU region. PRSELR_EL2.REGION determines
which MPU region is selected.
Configurations
All bits above implemented physical address range in this register should be treated as RESO.
Attributes

PRLAR _EL2 is a 64-bit register.

Field descriptions

The PRLAR EL2 bit assignments are:

63 2 52 51 48 47 2 6 54 3 10

RESO LIMIT[47:6] NS
22 2

(49 I__I
LIMIT[51:48] I— EN

Attrindx[2:0]
RESO

Bits [63:52]

Reserved, RESO.

LIMIT[51:48], bits [51:48]
When FEAT LPA is implemented:

Extension to LIMIT[47:6]. When FEAT LPA is implemented, LIMIT[51:48] form the upper part
of the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RESO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

LIMIT([47:6], bits [47:6]

Bits[47:6] of the upper inclusive limit of the selected EL2 MPU memory region. This value is
concatenated with the value 0x3F to provide the limit address to be checked against.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RESO.

NS, bit [4]
Non-secure bit. Specifies whether the output address is in the Secure or Non-secure memory.
0b0 Output address is in Secure address space.
0bl Output address is in Non-secure address space.

This field resets to an architecturally UNKNOWN value.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-173
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register.

0b000 Select the Attr0 field from MAIR_EL2.
0b001 Select the Attrl field from MAIR EL2.
0b010 Select the Attr2 field from MAIR_EL2.
0b011 Select the Attr3 field from MAIR EL2.
0b100 Select the Attr4 field from MAIR_EL2.
0b101 Select the Attr5 field from MAIR _EL2.
0b110 Select the Attr6 field from MAIR_EL2.
0b111 Select the Attr7 field from MAIR EL2.
This field resets to an architecturally UNKNOWN value.

EN, bit [0]
Region enable bit.
0bo Region disabled.
0bl Region enabled.

This field resets to 0.

Accessing the PRLAR_EL2

Any access to MPU region register PRLAR_EL2 above the number of implemented regions specified by

MPUIR _EL2.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

. Reads of unimplemented PRLAR_EL?2 register return an UNKNOWN value.

. Writes to unimplemented PRLAR_EL2 register make all PRLAR_EL2 registers value UNKNOWN.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRLAR_EL2

op0 op1 CRn CRm op2
Obll 0b100 0b0110 0b1000 0b001
if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return PRLAR_EL2;
MSR PRLAR_EL2, <Xt>
op0 op1 CRn CRm op2
Obll 0b100 0b0110 0b1000 0b001

if PSTATE.EL == ELO then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

G1-174

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

elsif PSTATE.EL == EL2 then
PRLAR_EL2 = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-175
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.24 PRLAR<n>_EL1, Protection Region Limit Address Register n (EL1),n=1-15

The PRLAR<n> EL1 characteristics are:

Purpose
Provides access to the limit address for the MPU region determined by the value of 'n' and
PRSELR _EL1.REGION as PRSELR EL1.REGION<7:4>:n.
Configurations
All bits above implemented physical address range in this register should be treated as RESO.
Attributes

PRLAR<n> EL1 is a 64-bit register.

Field descriptions

The PRLAR<n> EL1 bit assignments are:

63 2 52 51 48 47 2 6 54 3 10

RESO LIMIT[47:6] NS
22 2

(49 I__I
LIMIT[51:48] I— EN

Attrindx[2:0]
RESO

Bits [63:52]

Reserved, RESO.

LIMIT[51:48], bits [51:48]
When FEAT LPA is implemented:

Extension to LIMIT[47:6]. When FEAT LPA is implemented, LIMIT[51:48] form the upper part
of the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RESO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

LIMIT([47:6], bits [47:6]

Bits[47:6] of the upper inclusive limit of the selected EL1 MPU memory region. This value is
concatenated with the value 0x3F to provide the limit address to be checked against.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RESO.

NS, bit [4]
Non-secure bit. Specifies whether the output address is in the Secure or Non-secure memory.
0b0 Output address is in Secure address space.
0bl Output address is in Non-secure address space.

This field resets to an architecturally UNKNOWN value.

G1-176 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register.
0b000 Select the Attr0 field from MAIR_EL1.
0b001 Select the Attrl field from MAIR ELI.
0b010 Select the Attr2 field from MAIR_EL1.
0b011 Select the Attr3 field from MAIR ELI.
0b100 Select the Attr4 field from MAIR_EL1.
0b101 Select the Attr5 field from MAIR _ELI.
0b110 Select the Attr6 field from MAIR_EL1.
0b111 Select the Attr7 field from MAIR ELI.
This field resets to an architecturally UNKNOWN value.

EN, bit [0]
Region enable bit.
0bo Region disabled.
0bl Region enabled.

This field resets to 0.

Accessing the PRLAR<n>_ELA1

Any access to MPU region register PRLAR<n>_EL1 above the number of implemented regions specified by
MPUIR _EL1.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:
. Reads of unimplemented PRLAR<n>_EL1 return an UNKNOWN value.
. Writes to unimplemented PRLAR<n> EL1 register make all PRLAR_EL1 registers value UNKNOWN.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRLAR<n>_EL1

op0 op1 CRn CRm op2

Ob11 0b000 0b0110 Ob1:n[3:1] n[0]:0b01

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
return PRLAR_ELL[UInt(CRm<2:0>:0p2<2>)];
elsif PSTATE.EL == EL2 then
return PRLAR_ELI[UInt(CRm<2:0>:0p2<2>)];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-177
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

MSR PRLAR<n>_EL1, <Xt>

op0 op1

CRn

CRm

op2

Obl1 0b000

0b0110

Obl:n[3:1]

n[0]:0601

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
PRLAR_EL1[UInt(CRm<2:0>:0p2<2>)] = X[t];
elsif PSTATE.EL == EL2 then
PRLAR_EL1[UInt(CRm<2:0>:0p2<2>)] = X[t];

G1-178 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.25 PRLAR<n>_EL2, Protection Region Limit Address Register n (EL2),n=1-15

The PRLAR<n> EL2 characteristics are:

Purpose
Provides access to the limit address for the MPU region determined by the value of 'n' and
PRSELR EL2.REGION as PRSELR EL2.REGION<7:4>:n.
Configurations
All bits above implemented physical address range in this register should be treated as RESO.
Attributes

PRLAR<n> EL2 is a 64-bit register.

Field descriptions

The PRLAR<n> EL2 bit assignments are:

63 2 52 51 48 47 2 6 54 3 10

RESO LIMIT[47:6] NS
22 2

(49 I__I
LIMIT[51:48] I— EN

Attrindx[2:0]
RESO

Bits [63:52]

Reserved, RESO.

LIMIT[51:48], bits [51:48]
When FEAT LPA is implemented:

Extension to LIMIT[47:6]. When FEAT LPA is implemented, LIMIT[51:48] form the upper part
of the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RESO.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

LIMIT([47:6], bits [47:6]

Bits[47:6] of the upper inclusive limit of the selected EL2 MPU memory region. This value is
concatenated with the value 0x3F to provide the limit address to be checked against.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RESO.

NS, bit [4]
Non-secure bit. Specifies whether the output address is in the Secure or Non-secure memory.
0b0 Output address is in Secure address space.
0bl Output address is in Non-secure address space.

This field resets to an architecturally UNKNOWN value.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-179
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register.

0b000 Select the Attr0 field from MAIR_EL2.
0b001 Select the Attrl field from MAIR EL2.
0b010 Select the Attr2 field from MAIR_EL2.
0b011 Select the Attr3 field from MAIR EL2.
0b100 Select the Attr4 field from MAIR_EL2.
0b101 Select the Attr5 field from MAIR _EL2.
0b110 Select the Attr6 field from MAIR_EL2.
0b111 Select the Attr7 field from MAIR EL2.
This field resets to an architecturally UNKNOWN value.

EN, bit [0]
Region enable bit.
0bo Region disabled.
0bl Region enabled.

This field resets to 0.

Accessing the PRLAR<n>_EL2

Any access to MPU region register PRLAR<n>_EL2 above the number of implemented regions specified by

MPUIR _EL2.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

. Reads of unimplemented PRLAR<n>_ EL2 return an UNKNOWN value.

. Writes to unimplemented PRLAR<n> EL2 register make all PRLAR_EL2 registers value UNKNOWN.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRLAR<n>_EL2

op0 op1 CRn

CRm op2

Ob11 0b100 0b0110

Obl:n[3:1] n[0]:0b01

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return PRLAR_EL2[UInt(CRm<2:0>:0p2<2>)];

MSR PRLAR<n>_EL2, <Xt>

op0 op1 CRn

CRm op2

Ob11 0b100 0b0110

Ob1:n[3:1] n[0]:0b01

if PSTATE.EL == ELO then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

G1-180

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

elsif PSTATE.EL == EL2 then
PRLAR_EL2[UInt(CRm<2:0>:0p2<2>)] = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-181
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.26 PRSELR_ELA1, Protection Region Selection Register (EL1)
The PRSELR _ELI characteristics are:
Purpose
Selects the region number for the EL1 MPU region associated with the PRBAR _EL1 and
PRLAR _ELI registers.
Configurations
There are no configuration notes.
Attributes
PRSELR_ELI1 is a 64-bit register.
Field descriptions
The PRSELR_EL1 bit assignments are:
63 3 8 7 3 0
(49 (49
RESO REGION
))))
(49 (49
Bits [63:8]
Reserved, RESO.
REGION, bits [7:0]
The number of the current EL1 MPU region visible in PRBAR _EL1 and PRLAR_EL1. For N
implemented MPU regions, memory region numbering starts at 0 and increments by 1 to the value
N-1.
Writing a value greater than or equal to the number of implemented MPU regions specified by
MPUIR_EL1.REGION, results in CONSTRAINED UNPREDICTABLE behavior.
CONSTRAINED UNPREDICTABLE behavior is that PRSELR_EL1 register becomes UNKNOWN.
This field resets to an architecturally UNKNOWN value.
Accessing the PRSELR_EL1
Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PRSELR_EL1
op0 op1 CRn CRm op2
Obl1 0b000 0b0110 0b0010 0b001
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VTCR_EL2.MSA == '1' then
UNDEFINED;
else
return PRSELR_EL1;
elsif PSTATE.EL == EL2 then
return PRSELR_EL1;
G1-182 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

MSR PRSELR_EL1, <Xt>

op0 op1 CRn CRm op2

Obl1 0b000 0b0110 0b0010 0b001

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '1' then
UNDEFINED;
else
PRSELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
PRSELR_EL1 = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-183
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.27 PRSELR_EL2, Protection Region Selection Register (EL2)

The PRSELR_EL2 characteristics are:

Purpose
Selects the region number for the EL2 MPU region associated with the PRBAR EL2 and
PRLAR_EL2 registers.

Configurations
There are no configuration notes.

Attributes

PRSELR_EL2 is a 64-bit register.

Field descriptions

The PRSELR_EL2 bit assignments are:

63 3 8 7 3 0
144 144

RESO REGION

))))
((

Bits [63:8]

Reserved, RESO.

REGION, bits [7:0]

The number of the current EL2 MPU region visible in PRBAR EL2 and PRLAR_EL2. For N
implemented MPU regions, memory region numbering starts at 0 and increments by 1 to the value
N-1.

Writing a value greater than or equal to the number of implemented MPU regions specified by
MPUIR_EL2.REGION, results in CONSTRAINED UNPREDICTABLE behavior.

CONSTRAINED UNPREDICTABLE behavior is that PRSELR_EL2 register becomes UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the PRSELR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PRSELR_EL2

op0 op1 CRn CRm op2
Obll 0b100 0b0110 0b0010 0b001
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return PRSELR_ELZ;
G1-184 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

MSR PRSELR_EL2, <Xt>

if PSTATE.EL == EL@ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
PRSELR_EL2 = X[t];

System Registers in a PMSA Implementation
G1.3 General system control registers

op0 op1

CRn

CRm

op2

Obl1 0b100

0b0110

0b0010

0b001

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

G1-185

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.28 SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and ELO.
Configurations

There are no configuration notes.
Attributes

SCTLR_EL1 is a 64-bit register.

Field descriptions

The SCTLR_EL1 bit assignments are:

63 ,, 454443 ,,32313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
1<

C
RESO RESO BR| | C|A|M
) b))
C (49
L LI
DSSBS 4 ‘ I— SA
EnlA SAO0
EniB RESO
RES1 nAA
EnDA RES1
UCl UMA
EE EnRCTX
EOE RES1
SPAN EnDB
RES1 DZE
IESB UcTtT
TSCXT nTWI
nTWE
WXN
Bits [63:45]
Reserved, RESO.
DSSBS, bit [44]
When FEAT SSBS is implemented:
Default PSTATE.SSBS value on Exception Entry. The defined values are:
0bo PSTATE.SSBS is set to 0 on an exception to EL1.
0bl PSTATE.SSBS is set to 1 on an exception to EL1.
In a system where the PE resets into EL1, this field resets to an IMPLEMENTATION DEFINED value.
Otherwise:
Reserved, RESO.
Bits [43:32]
Reserved, RESO.
G1-186 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

EnlIA, bit [31]
When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0bo Pointer authentication (using the APIAKey EL1 key) of instruction addresses is not
enabled.
0bl Pointer authentication (using the APIAKey EL1 key) of instruction addresses is
enabled.
Note

This field controls the behavior of the AddPACIA and AuthlA pseudocode functions. Specifically,
when the field is 1, AAdPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthlA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

EnlIB, bit [30]
When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APIBKey EL1 key) of instruction addresses is not
enabled.
0bl Pointer authentication (using the APIBKey EL1 key) of instruction addresses is
enabled.
Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.
Bits [29:28]
Reserved, RES].
EnDA, bit [27]
When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0bo Pointer authentication (using the APDAKey EL1 key) of data addresses is not enabled.
0bl Pointer authentication (using the APDAKey EL1 key) of data addresses is enabled.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-187

1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AAdPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

UCI, bit [26]

EE, bit [25]

EOE, bit [24]

Reserved, RESO.

Traps ELO execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT DPB2 is implemented, this trap also applies to DC CVADP.

0b0 Execution of the specified instructions at EL0 using AArch64 is trapped.
0bl This control does not cause any instructions to be trapped.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, or clean and invalidate instruction that operates by
VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate by VA to the Point of Unification
instruction can be trapped when the value of this control is 1.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation
regime.

The possible values of this bit are:

0bo Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are little-endian.

0bl Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than ELO0, this
bit is RESO.

If an implementation does not provide Little-endian support at Exception Levels higher than ELO,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

In a system where the PE resets into EL1, this field resets to an IMPLEMENTATION DEFINED value.

Endianness of data accesses at ELO.

G1-188 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

The possible values of this bit are:
0b0 Explicit data accesses at ELO are little-endian.
0bl Explicit data accesses at ELO are big-endian.

If an implementation only supports Little-endian accesses at ELO then this bit is RESO. This option
is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at ELO then this bit is RES1. This option is
not permitted when SCTLR_EL1.EE is RESO.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions
executed at EL1.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SPAN, bit [23]
When FEAT PAN is implemented:
Set Privileged Access Never, on taking an exception to EL1.
0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.
0bl The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RES1.

Bit [22]

Reserved, RES].

IESB, bit [21]
When FEAT IESB is implemented:
Implicit Error Synchronization event enable. Possible values are:
0bo Disabled.
0bl An implicit error synchronization event is added:
. At each exception taken to EL1.
. Before the operational pseudocode of each ERET instruction executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field
is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL1
and before each DRPS instruction executed at EL1, in addition to the other cases where it is added.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.
TSCXT, bit [20]
When FEAT CSV?2 is implemented:
Trap ELO Access to the SCTXNUM_ELO register, when ELO is using AArch64. The defined values

are:
0bo ELO access to SCTXNUM_ELO is not disabled by this mechanism.
0bl ELO access to SCTXNUM_ELO is disabled, causing an exception to EL1, or to EL2
when it is implemented and enabled for the current Security state and HCR_EL2.TGE
is 1.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-189

1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

The value of SCTXNUM_ELDO is treated as 0.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

WXN, bit [19]

Reserved, RES1.

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN. The possible values of this bit are:

0b0 This control has no effect on memory access permissions.

0bl Any region that is writable in the EL1&0 translation regime is forced to XN for accesses
from software executing at EL1 or ELO.

This bit applies only when SCTLR_EL1.M bit is set.
The WXN bit is permitted to be cached in a TLB.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

BR, bit [17]

Traps ELO execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an
ESR_ELx.EC value of 0x01.

0bo Any attempt to execute a WFE instruction at ELO is trapped, if the instruction would
otherwise have caused the PE to enter a low-power state.
0bl This control does not cause any instructions to be trapped.
Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WEFTI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

When VICR EL2.MSA == 0:

Background region enable for EL1 MPU memory regions.
0bo Background region disabled for stage 1 EL1&0 translation regime.
0bl Background region enabled for stage 1 EL1&0 translation regime.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then PE behaves as if the value of the
SCTLR_ELI1.BR field is 0 for all purposes other than returning the value of a direct read of the field.

Ifan EL1 MPU is enabled, then ELO access that does not match the EL1 MPU region always results
in a Translation fault.

In a system where the PE resets into EL1, this field resets to 0.

Otherwise:

Reserved, RESO.

G1-190 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

nTWI, bit [16]

Traps ELO execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an
ESR_ELx.EC value of 0x01.

0b0 Any attempt to execute a WFI instruction at ELO is trapped, if the instruction would
otherwise have caused the PE to enter a low-power state.

0bl This control does not cause any instructions to be trapped.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WEFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

UCT, bit [15]

Traps ELO accesses to the CTR_ELO to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an
ESR_ELx.EC value of 0x18.

0bo Accesses to the CTR_ELO from ELO using AArch64 are trapped.
0bl This control does not cause any instructions to be trapped.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps ELO execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an
ESR_ELx.EC value of 0x18.

0bo Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is
trapped.
Reading DCZID_EL0.DZP from ELO returns 1, indicating that the instructions this trap
applies to are not supported.

0bl This control does not cause any instructions to be trapped.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

EnDB, bit [13]
When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0bo Pointer authentication (using the APDBKey ELI key) of data addresses is not enabled.
0bl Pointer authentication (using the APDBKey EL1 key) of data addresses is enabled.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-191

1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at ELO and EL1:

0bo All instruction access to Stage 1 Normal memory from ELO and EL1 are Stage 1
Non-cacheable.
If stage 1 EL1&0 translation is in VMSAv8-64 context and the value of SCTLR_EL1.M
is 0, then instruction accesses from stage 1 are to Normal, Outer Shareable, Inner
Non-cacheable, Outer Non-cacheable memory.
If stage 1 EL1&0 translation is in PMSAv8-64 context and the value of
SCTLR_EL1.{BR, M} = {0, 0}, then instruction accesses from stage 1 are to Normal,
Outer Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0bl This control has no effect on the Stage 1 Cacheability of instruction access to Stage 1
Normal memory from ELO and EL1.
If stage 1 EL1&0 translation is in VMSAv8-64 context and the value of SCTLR_EL1.M
is 0, then instruction accesses from stage 1 are to Normal, Outer Shareable, Inner
Write-Through, Outer Write-Through memory.
If stage 1 EL1&0 translation is in PMSAv8-64 context, and the value of
SCTLR_EL1.{BR, M} = {0, 0}, then instruction accesses from stage 1 are to Normal,
Outer Shareable, Inner Write-Through, Outer Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from ELO

and EL1 are Cacheable regardless of the value of the SCTLR_EL1.1 bit.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has

no effect on the PE.

In a system where the PE resets into EL1, this field resets to 0.

Bit [11]

Reserved, RES].

EnRCTX, bit [10]
When FEAT SPECRES is implemented:
Enable ELO Access to the following instructions:
. AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.
The defined values are:

0bo ELO access to these instructions is disabled, and these instructions are trapped to EL1,
or to EL2 when it is implemented and enabled for the current Security state and
HCR _EL2.TGEis 1.

0b1 ELO access to these instructions is enabled.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

G1-192 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

UMA, bit [9]

User Mask Access. Traps ELO execution of MSR and MRS instructions that access the PSTATE. {D,
A, I, F} masks to EL1, or to EL2 when it is implemented and enabled for the current Security state
and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

0b0 Any attempt at ELO using AArch64 to execute an MRS, MSR(register), or MSR(immediate)
instruction that accesses the DAIF is trapped.

0bl This control does not cause any instructions to be trapped.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Bits [8:7]

Reserved, RES].

nAA, bit [6]
When FEAT LSE?2? is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and ELO under certain
conditions.

0bo LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, and
STLURH generate an Alignment fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes for accesses.

0bl This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH,
LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH,
STLR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being
accessed are not within a single 16-byte quantity, aligned to 16 bytes.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bit [5]
Reserved, RESO.

SA0, bit [4]

SP Alignment check enable for ELO. When set to 1, if a load or store instruction executed at ELO
uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment
fault exception is generated. For more information, see 'SP alignment checking'.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the

SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault

exception is generated. For more information, see 'SP alignment checking'.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has

no effect on the PE.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-193

1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

C, bit [2]

A, bit [1]

M, bit [0]

Stage 1 Cacheability control, for data accesses.

0bo All data access to Stage 1 Normal memory from ELO and EL1, and all Normal memory
accesses from unified cache to the EL1&0 Stage 1 translation tables, are treated as Stage
1 Non-cacheable.

0bl This control has no effect on the Stage 1 Cacheability of:
. Data access to Normal memory from ELO and EL1.
. Normal memory accesses to the EL1&0 Stage 1 translation tables.

When the value of the HCR_EL2.DC bit s 1, the PE ignores SCTLR.C. This means that Non-secure
ELO and Non-secure EL1 data accesses to Normal memory are Cacheable.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

In a system where the PE resets into EL1, this field resets to 0.

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and ELO .

0b0 Alignment fault checking disabled when executing at EL1 or ELO.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0bl Alignment fault checking enabled when executing at EL1 or ELO.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

MMU or MPU enable for EL1&0 stage 1 address translation.

This is the enable bit for:

. MPU, if stage 1 EL1&0 translation is in PMSAv8-64 context.
. MMU, if stage 1 EL1&0 translation is in VMSAv8-64 context.

0bo EL1 MPU (PMSAv8-64) or MMU(VMSAVS-64) disabled
See the SCTLR_EL1.I field for the behavior of instruction accesses to Normal memory.
0bl EL1 MPU (PMSAv8-64) or MMU(VMSAv8-64) enabled

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the
value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read
of the field.

When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

In a system where the PE resets into EL1, this field resets to 0.

Accessing the SCTLR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

G1-194 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

MRS <Xt>, SCTLR_EL1

System Registers in a PMSA Implementation
G1.3 General system control registers

op0

op1

CRn CRm op2

Obl1

0b000

0b0001 0b0000 0b000

if PSTATE.EL == ELQ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);

else
return SCTLR_EL1;
elsif PSTATE.EL == EL2 then
return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0

op1

CRn CRm op2

Ob11

0b000

0b0001 0b0000 0b000

if PSTATE.EL == EL@ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);

else
SCTLR_ELL = X[t];
elsif PSTATE.EL == EL2 then
SCTLR_EL1 = X[t];

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-195
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.29 SCTLR_EL2, System Control Register (EL2)
The SCTLR_EL2 characteristics are:
Purpose
Provides top level control of the system, including its memory system, at EL2.
When FEAT VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these
controls apply also to execution at ELO.
Configurations
If EL2 is not implemented, this register is RESO from EL3.
This register has no effect if EL2 is not enabled in the current Security state.
Attributes
SCTLR_EL2 is a 64-bit register.
Field descriptions
The SCTLR_EL2 bit assignments are:
63 " 4544 43 3 323130292827 262524232221201918171615141312 11 10))7 6 543210
(C (49 (49
RESO RESO BR| | RESO C|A|M
12 b 2
L1 LI 1
DSSBS Q ‘ I— SA
EnlA RES1
EniB nAA
RES1 RES1
EnDA EnDB
RESO RESO
EE RES1
RESO RES1
RES1 WXN
IESB RESO
This format applies in all Armv8.0 implementations, and from Armv8.1 when the Effective value of
HCR EL2.{E2H, TGE} !={I, 1}.
Bits [63:45]
Reserved, RESO.
DSSBS, bit [44]
When FEAT SSBS is implemented:
Default PSTATE.SSBS value on Exception Entry.
0b0 PSTATE.SSBS is set to 0 on an exception to EL2.
0bl PSTATE.SSBS is set to 1 on an exception to EL2.
In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.
Otherwise:
Reserved, RESO.
Bits [43:32]
Reserved, RESO.
G1-196 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

EnlIA, bit [31]
When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey EL1 key) of instruction addresses
in the EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0bo Pointer authentication (using the APIAKey EL1 key) of instruction addresses is not
enabled.
0bl Pointer authentication (using the APIAKey EL1 key) of instruction addresses is
enabled.
Note

This field controls the behavior of the AddPACIA and AuthlA pseudocode functions. Specifically,
when the field is 1, AAdPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthlA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

EnlIB, bit [30]
When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey EL1 key) of instruction addresses
in the EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APIBKey EL1 key) of instruction addresses is not
enabled.
0bl Pointer authentication (using the APIBKey EL1 key) of instruction addresses is
enabled.
Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.
Bits [29:28]
Reserved, RES].
EnDA, bit [27]
When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey EL1 key) of instruction addresses
in the EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0bo Pointer authentication (using the APDAKey EL1 key) of data addresses is not enabled.
0bl Pointer authentication (using the APDAKey EL1 key) of data addresses is enabled.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-197

1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AAdPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bit [26]

EE, bit [25]

Bit [24]

Bits [23:22]

IESB, bit [21]

Reserved, RESO.

Reserved, RESO.

Endianness of data accesses at EL2.
0b0 Explicit data accesses at EL2 are little-endian.
0bl Explicit data accesses at EL2 are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than ELO0, this
bit is RESO.

If an implementation does not provide Little-endian support at Exception Levels higher than ELO,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Reserved, RESO.

Reserved, RES].

When FEAT IESB is implemented:

Implicit Error Synchronization event enable.
0bo Disabled.
0bl An implicit error synchronization event is added:
. At each exception taken to EL2.
. Before the operational pseudocode of each ERET instruction executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field
is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL2
and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bit [20]

Reserved, RESO.

Reserved, RESO.

G1-198

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit
can force all memory regions that are writable to be treated as XN:

0b0 This control has no effect on memory access permissions.

0bl Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN for
accesses from software executing at EL2.

This bit applies only when SCTLR_EL2.M bit is set.
The WXN bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [18]

Reserved, RES].

BR, bit [17]
Background region enable for EL2 MPU memory regions.

0b0 Background region disabled for stage 1 EL2 translation regime and stage 2 EL1&0
translation regime.

0bl Background region enabled for stage 1 EL2 translation regime and stage 2 EL1&0
translation regime.

If EL2 MPU is enabled, then ELO and EL1 access that does not match an EL2 MPU region always
results in a Translation fault.

In a system where the PE resets into EL2, this field resets to 0.
Bit [16]

Reserved, RES].

Bits [15:14]

Reserved, RESO.

EnDB, bit [13]
When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey EL1 key) of instruction addresses
in the EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0bo Pointer authentication (using the APDBKey EL1 key) of data addresses is not enabled.
0bl Pointer authentication (using the APDBKey EL1 key) of data addresses is enabled.
Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

I, bit [12]
Instruction access Cacheability control, for accesses at EL2:
0bo All instruction accesses to Normal memory from EL2 are Non-cacheable for all levels
of instruction and unified cache.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-199

1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

If the value of SCTLR_EL2.{BR, M} = {0, 0}, then instruction accesses from stage 1
of the EL2 translation regime are to Normal, Outer Shareable, Inner Non-cacheable,
Outer Non-cacheable memory.

0bl This control has no effect on the Cacheability of instruction access to Normal memory
from EL2.

If the value of SCTLR_EL2.{BR, M} = {0, 0}, then instruction accesses from stage 1
of the EL2 translation regime are to Normal, Outer Shareable, Inner Write-Through,
Outer Write-Through memory.

This bit has no effect on the EL1&0 or EL3 translation regimes.
In a system where the PE resets into EL2, this field resets to 0.

Bit [11]

Reserved, RES].

Bits [10:7]
Reserved, RESO.

nAA, bit [6]
When FEAT LSE? is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL2 under certain
conditions.

0bo LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, and
STLURH generate an Alignment fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes for accesses.

0bl This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH,
LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH,
STLR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being
accessed are not within a single 16-byte quantity, aligned to 16 bytes.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bits [5:4]

Reserved, RES].

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault
exception is generated. For more information, see 'SP alignment checking'.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

C, bit [2]
Cacheability control, for data accesses.

0bo All data accesses to Normal memory from EL2 are Non-cacheable for all levels of data
and unified cache.

0bl This control has no effect on the Cacheability of:

. Data access to Normal memory from EL2.
This bit has no effect on the EL1&0 or EL3 translation regimes.
In a system where the PE resets into EL2, this field resets to 0.

G1-200 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

System Registers in a PMSA Implementation

Alignment fault checking disabled when executing at EL2.

G1.3 General system control registers

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

Alignment fault checking enabled when executing at EL2.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

A, bit [1]

0bo

0bl

of the value of the A bit.
M, bit [0]

MPU enable for EL2 stage 1 and EL1&0 stage 2 address translation.

0bo MPU disabled for EL2 and EL1&0 stage 2 address translation.

0bl

See the SCTLR_EL2.1I field for the behavior of instruction accesses to Normal memory.

Accessing the SCTLR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, SCTLR_EL2

MPU enabled for EL2 and EL1&0 stage 2 address translation.
In a system where the PE resets into EL2, this field resets to 0.

op0 op1 CRn CRm op2
Obl1 0b100 0b0001 0b0000 0b000
if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return SCTLR_EL2;
MSR SCTLR_EL 2, <Xt>
op0 op1 CRn CRm op2
Obl1 0b100 0b0001 0b0000 0b000
if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
SCTLR_EL2 = X[t];
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-201

ID090320

Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2

Obl1 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return SCTLR_EL1;
elsif PSTATE.EL == EL2 then
return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2

Ob11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
SCTLR_ELL = X[t];
elsif PSTATE.EL == EL2 then
SCTLR_EL1 = X[t];

G1-202 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.30 TCR_ELA1, Translation Control Register (EL1)

The TCR_ELI characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.
Configurations

In a PMSAvVS-64 only implementation, this register is UNDEFINED.
Attributes

TCR_ELI1 is a 64-bit register.

Field descriptions

The TCR_EL1 bit assignments are:

63 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 3534 323130292827 262524 232221161514 131211109 8 7 6 5,0
¢ (%9 (%9 {

IPS | TG1 | SH1 T1SZ| TGO | SHO T0SZ
¢ ¢ T ¢ T {
RESO — I— RESO
TBID1 EPDO
TBIDO L IRGNO
HWU162 ORGNO
HWU161 A1
HWU160 EPD1
HWU159 IRGN1
HWU02 ——— ORGN1
HWUO061
HWUO060
HWUO059
HPD1
HPDO
HD
HA
TBI
TBIO
AS
RESO
Any of the bits in TCR_ELI, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to
be cached in a TLB.
Bits [63:53]
Reserved, RESO.
TBIDI, bit [52]
When VICR_EL2.MSA == I and FEAT PAuth is implemented:
Controls the use of the top byte of instruction addresses for address matching.
For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.
For more information, see 'Address tagging in AArch64 state'.
0bo TCR_ELI1.TBII applies to Instruction and Data accesses.
0bl TCR_ELI1.TBII applies to Data accesses only.
This affects addresses where the address would be translated by tables pointed to by TTBR1_ELI.
This field resets to an architecturally UNKNOWN value.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-203

1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

When VICR_EL2.MSA == 0 and FEAT PAuth is implemented:
Controls the use of the top byte of instruction addresses for address matching.
Reads as 0b0.

Otherwise:

Reserved, RESO.

TBIDO, bit [51]
When VICR_EL2.MSA == 1 and FEAT PAuth is implemented:
Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.
0b0 TCR_EL1.TBIO applies to Instruction and Data accesses.
0bl TCR_EL1.TBIO applies to Data accesses only.
This affects addresses where the address would be translated by tables pointed to by TTBRO_EL1.
This field resets to an architecturally UNKNOWN value.
When FEAT PAuth is implemented and VTCR_EL2.MSA == 0:
Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.
0bo TCR_ELI1.TBIO applies to Instruction and Data accesses.
0bl TCR_EL1.TBIO applies to Data accesses only.
This affects addresses where the address would be translated by EL1 MPU.
This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

HWU162, bit [S0]
When VICR_EL2.MSA == 1 and FEAT _HPDS?2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0bo For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0bl For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or

Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

G1-204

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

HWU161, bit [49]
When VICR_EL2.MSA == 1 and FEAT _HPDS?2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0bo For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0bl For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or

Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

HWU160, bit [48]
When VICR_EL2.MSA == 1 and FEAT HPDS?2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR1_ELI.

0bo For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0bl For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or

Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

HWU159, bit [47]
When VICR_EL2.MSA == 1 and FEAT _HPDS?2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0bo For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0bl For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or

Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-205
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

HWU062, bit [46]
When VICR_EL2.MSA == 1 and FEAT _HPDS?2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBRO_EL1.

0bo For translations using TTBRO_EL 1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0bl For translations using TTBRO_EL1, bit[62] of each stage 1 translation table Block or

Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPDO is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPDO is 0.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

HWU061, bit [45]
When VICR_EL2.MSA == 1 and FEAT HPDS?2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBRO_ELI.

0bo For translations using TTBRO_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0bl For translations using TTBRO_EL1, bit[61] of each stage 1 translation table Block or

Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPDO is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPDO is 0.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

HWU060, bit [44]
When VICR_EL2.MSA == 1 and FEAT _HPDS?2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBRO_EL1.

0bo For translations using TTBRO_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0bl For translations using TTBRO_EL1, bit[60] of each stage 1 translation table Block or

Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPDO is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPDO is 0.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

G1-206 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

HWUO059, bit [43]
When VICR_EL2.MSA == 1 and FEAT _HPDS?2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBRO_EL1.

0bo For translations using TTBRO_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0bl For translations using TTBRO_EL1, bit[59] of each stage 1 translation table Block or

Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPDO is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPDO is 0.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

HPD1, bit [42]
When VICR_EL2.MSA == 1 and FEAT HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_ELI.

0bo Hierarchical permissions are enabled.
0bl Hierarchical permissions are disabled.
When disabled, the permissions are treated as if the bits are zero.
This field resets to an architecturally UNKNOWN value.
When VICR_EL2.MSA == 0:
Reserved, RESO.
Otherwise:

Reserved, RESO.

HPDO, bit [41]
When VICR_EL2.MSA == 1 and FEAT HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBRO_ELI.

0bo Hierarchical permissions are enabled.
0bl Hierarchical permissions are disabled.
When disabled, the permissions are treated as if the bits are zero.
This field resets to an architecturally UNKNOWN value.
When VICR_EL2.MSA == 0:
Reserved, RESO.
Otherwise:

Reserved, RESO.

HD, bit [40]
When VTCR_EL2.MSA == 1 and FEAT HAFDBS is implemented:
Hardware management of dirty state in stage 1 translations from ELO and EL1.
0bo Stage 1 hardware management of dirty state disabled.
0bl Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.
This field resets to an architecturally UNKNOWN value.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-207
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

When VICR EL2.MSA == 0:
Reserved, RESO.
Otherwise:

Reserved, RESO.

HA, bit [39]

When VTCR_EL2.MSA == 1 and FEAT HAFDBS is implemented:
Hardware Access flag update in stage 1 translations from ELO and EL1.
0bo Stage 1 Access flag update disabled.
0bl Stage 1 Access flag update enabled.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
Reserved, RESO.

Otherwise:

Reserved, RESO.

TBIL, bit [38]
When VICR_EL2.MSA == 1:

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the
TTBR1_ELI region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.
0bl Top Byte ignored in the address calculation.

This affects addresses generated in ELO and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR1_ELI1. It has an effect whether the EL1&0 translation
regime is enabled or not.

If FEAT PAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then
bits[63:56] of that target address are also set to 1 before the address is stored in the PC, in the
following cases:

. A branch or procedure return within ELO or EL1.
. An exception taken to EL1.
. An exception return to ELO or EL1.

This field resets to an architecturally UNKNOWN value.
When VICR_EL2.MSA == 0:

Top Byte ignored.

Reads as 0b0.
Otherwise:

Reserved, RESO.
TBIO, bit [37]
When VICR EL2.MSA ==1:

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the
TTBRO_ELI region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.
0bl Top Byte ignored in the address calculation.
G1-208 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

This affects addresses generated in ELO and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBRO_ELI. It has an effect whether the EL1&0 translation
regime is enabled or not.

If FEAT PAuth is implemented and TCR_EL1.TBIDO is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBIO is 1 and bit [55] of the target address to be stored to the PC is 0, then
bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the
following cases:

. A branch or procedure return within ELO or EL1.
. An exception taken to EL1.

. An exception return to ELO or EL1.

This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:

Top Byte ignored. Indicates whether the top byte of an address is used for an address match for the
EL1 MPU regions, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.
0bl Top Byte ignored in the address calculation.

This affects addresses generated in ELO and EL1, where the address would be translated by the EL1
MPU.

If FEAT PAuth is implemented and TCR_EL1.TBIDO is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBIO is 1 and bit [55] of the target address to be stored to the PC is 0, then
bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the
following cases:

. A branch or procedure return within ELO or EL1.
. An exception taken to EL1.
. An exception return to ELO or EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

When VICR_EL2.MSA == 1:

ASID Size.

0b0 8 bit - the upper 8 bits of TTBRO_EL1 and TTBR1_EL1 are ignored by hardware for
every purpose except reading back the register, and are treated as if they are all zeros for
when used for allocation and matching entries in the TLB.

0bl 16 bit - the upper 16 bits of TTBR0O_EL1 and TTBR1_EL1 are used for allocation and

matching in the TLB.
If the implementation has only 8 bits of ASID, this field is RESO.

This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:

ASID Size.

0bo 8 bit - the upper 8 bits of TTBRO_EL1 are ignored by hardware for every purpose except
reading back the register, and are treated as if they are all zeros when used for address
matching.

0bl 16 bit - the upper 16 bits of TTBRO_EL1 are used for address matching.

If the implementation has only 8 bits of ASID, this field is RESO.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-209

Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

This field resets to an architecturally UNKNOWN value.

Otherwise:

Bit [35]

Reserved, RESO.

Reserved, RESO.

IPS, bits [34:32]
When VICR_EL2.MSA == 1I:

Intermediate Physical Address Size.
0b00o 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0bo11 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated
as 0b110, then bits[51:48] of every translation table base address for the stage of translation
controlled by TCR_EL1 are 0b0000.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

TG1, bits [31:30]
When VTCR_EL2.MSA == I:

Granule size for the TTBR1_EL1.

0bo1 16KB.
0bl10 4KB.
0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

G1-210 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

SH1, bits [29:28]
When VICR_EL2.MSA == 1:
Shareability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Non-shareable.
0b10 Outer Shareable.
0bl1l Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
iS CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

ORGN1, bits [27:26]
When VICR_EL2.MSA == 1:
Outer cacheability attribute for memory associated with translation table walks using TTBR1_ELI.

0b0o Normal memory, Outer Non-cacheable.

0bo1 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

IRGN1, bits [25:24]
When VICR_EL2.MSA == 1:

Inner cacheability attribute for memory associated with translation table walks using TTBR1_ELI.

0b00 Normal memory, Inner Non-cacheable.

0bo1 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

EPDL, bit [23]
When VICR_EL2.MSA == 1I:

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR1 _ELI1. The encoding of this bit is:

0bo Perform translation table walks using TTBR1_ELI.

0bl A TLB miss on an address that is translated using TTBR1_EL1 generates a Translation
fault. No translation table walk is performed.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-211
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

Al, bit [22]
When VICR_EL2.MSA == 1:
Selects whether TTBRO_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:
0b0 TTBRO_EL1.ASID defines the ASID.
0bl TTBR1_EL1.ASID defines the ASID.
This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

T1SZ, bits [21:16]
When VICR_EL2.MSA ==1:
The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T152) bytes.

The maximum and minimum possible values for TISZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.
TGO, bits [15:14]
When VICR_EL2.MSA == 1:
Granule size for the TTBRO_EL1.

0b00 4KB
0bol 64KB
0b10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.
SHO, bits [13:12]
When VICR_EL2.MSA == 1:
Shareability attribute for memory associated with translation table walks using TTBRO_EL1.

0b00 Non-shareable
0b10 Outer Shareable
obl1l Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
iS CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

G1-212 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

ORGNO, bits [11:10]
When VICR_EL2.MSA == 1:
Outer cacheability attribute for memory associated with translation table walks using TTBRO_EL1.

0b00 Normal memory, Outer Non-cacheable.

0bo1 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.
IRGNO, bits [9:8]
When VICR EL2.MSA ==1:

Inner cacheability attribute for memory associated with translation table walks using TTBRO ELI1.

0b0o Normal memory, Inner Non-cacheable.

0bo1 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

EPDO, bit [7]
When VICR EL2.MSA ==1:

Translation table walk disable for translations using TTBRO_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBRO_ELI. The encoding of this bit is:

0b0 Perform translation table walks using TTBRO ELI.

0bl A TLB miss on an address that is translated using TTBRO_EL1 generates a Translation
fault. No translation table walk is performed.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bit [6]
Reserved, RESO.

TOSZ, bits [5:0]
When VICR_EL2.MSA == 1:
The size offset of the memory region addressed by TTBRO_EL1. The region size is 2(64-T052) ytes.

The maximum and minimum possible values for TOSZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-213
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

Accessing the TCR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TCR_EL1

op0 op1 CRn CRm op2
0Obl1 0b000 0b0010 0b0000 0b010
if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return TCR_EL1;
elsif PSTATE.EL == EL2 then
return TCR_EL1;
MSR TCR_EL1, <Xt>
op0 op1 CRn CRm op2
0Obl1 0b000 0b0010 0b0000 0b010
if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
TCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
TCR_ELL = X[t];
G1-214 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.31 TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

Purpose
The control register for stage 1 of the EL2, or EL2&0, translation regime:
. When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2
translation regime, that supports a single VA range, translated using TTBRO_EL2.
. When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation
regime, that supports both:
— A lower VA range, translated using TTBRO_EL2.
— A higher VA range, translated using TTBR1_EL2.
Configurations
If EL2 is not implemented, this register is RESO from EL3.
This register has no effect if EL2 is not enabled in the current Security state.
Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

The TCR_EL2 bit assignments are:

63 3 3231302928) 24 2322212019 5y 0
(%9 (%9 (49
RESO RESO RESO
1 12 12
| L1
RES1 TBI
RESO RESO
TBID RES1
Any of the bits in TCR_EL2 are permitted to be cached in a TLB.
Bits [63:32]
Reserved, RESO.
Bit [31]
Reserved, RES].
Bit [30]
Reserved, RESO.
TBID, bit [29]
When FEAT PAuth is implemented:
Controls the use of the top byte of instruction addresses for address matching.
For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.
For more information, see 'Address tagging in AArch64 state'.
0b0 TCR_EL2.TBI applies to Instruction and Data accesses.
0bl TCR_EL2.TBI applies to Data accesses only.
This affects addresses where the address would be translated by EL2 MPU.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-215

1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.3 General system control registers

This field resets to an architecturally UNKNOWN value.

Otherwise:

Bits [28:24]

Bit [23]

Bits [22:21]

TBI, bit [20]

Bits [19:0]

Reserved, RESO.

Reserved, RESO.

Reserved, RES].

Reserved, RESO.

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the EL2
MPU regions, or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state'.
0b0 Top Byte used in the address calculation.
0bl Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by
the EL2 MPU. It has an effect whether the EL2 translation regime is enabled or not.

If FEAT PAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data
accesses.

If the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is
stored in the PC, in the following cases:

. A branch or procedure return within EL2.
. An exception taken to EL2.
. An exception return to EL2.

This field resets to an architecturally UNKNOWN value.

Reserved, RESO.

Accessing the TCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TCR_EL2

op0 op1 CRn CRm op2
Obl11 0b100 0b0010 0b0000 0b010
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return TCR_EL2;
G1-216 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

MSR TCR_EL2, <Xt>

System Registers in a PMSA Implementation
G1.3 General system control registers

op0

op1

CRn CRm op2

Obl1

0b100

0b0010 0b0000 0b010

if PSTATE.EL == EL@ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
TCR_EL2 = X[t];

MRS <Xt>, TCR_EL1

op0

op1

CRn CRm op2

Obl1

0b000

0b0010 0b0000 0b010

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return TCR_EL1;
elsif PSTATE.EL == EL2 then
return TCR_ELL;

MSR TCR_EL1, <Xt>

op0

op1

CRn CRm op2

Obll

0b000

0b0010 0b0000 0b010

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
TCR_ELL = X[t];
elsif PSTATE.EL == EL2 then
TCR_EL1 = X[t];

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-217
Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.32 TTBRO_ELA1, Translation Table Base Register 0 (EL1)

The TTBRO_EL1 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the lower VA range in the EL1&0 translation regime, and other information for this
translation regime.

Configurations
There are no configuration notes.

Attributes

TTBRO_ELI is a 64-bit register.

Field descriptions

The TTBRO_EL1 bit assignments are:

63 9 48 47 3 10
144 144
ASID BADDR
)))

((

I— CnP

ASID, bits [63:48]
When VICR_EL2.MSA == 1:

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBRO _EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RESO.
This field resets to an architecturally UNKNOWN value.

When VICR_EL2.MSA == 0:
An ASID for addresses defined by the current EL1 MPU configuration.
If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RESO.
This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.
BADDR, bits [47:1]
When VICR_EL2.MSA == 1:
Translation table base address, A[47:x] or A[51:x], bits[47:1].
Note

. Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation
that includes FEAT LPA and is using the 64KB translation granule.

. A translation table must be aligned to the size of the table, except that when using a
translation table base address larger than 48 bits the minimum alignment of a table containing
fewer than eight entries is 64 bytes.

G1-218 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.3 General system control registers

In an implementation that includes FEAT LPA, if the value of TCR_ELI1.IPS is 0b110, then:

. Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is
determined as follows:

— Ifx>=6 then z=x.
— Otherwise, z=6.
. Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.

. When z>x register bits[(z-1):x] are RESO, and bits[(z-1):x] of the translation table base
address are zero.

. When x>6 register bits[(x-1):6] are RESO.
. Register bit[1] is RESO.
. Bits[5:2] of the stage 1 translation table base address are zero.

. In an implementation that includes FEAT TTCNP bit[0] of the stage 1 translation table base
address is zero.

Note
. In an implementation that includes FEAT LPA a TCR_ELI1.IPS value of 0b110, that selects
an IPA size of 52 bits, is permitted only when using the 64KB translation granule.

. When the value of ID AA64AMMFRO_EL1.PARange indicates that the implementation does
not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB
translation granule when the Effective value of TCR_ELI1.IPS is 0b110 and the value of
register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of TCR_EL1.IPS is not 9b110 then:
. Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
. Register bits[(x-1):1] are RESO.

. If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table
base addresses used in this stage of translation are 0b@0@o.

Note
This definition applies:
. To an implementation that includes FEAT LPA and is using a translation granule smaller
than 64KB.

. To any implementation that does not include FEAT LPA.

Ifany TTBRO_EL1[47:0] bit that is defined as RESO has the value 1 when a translation table walk
is performed using TTBRO_EL1, then the translation table base address might be misaligned, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

. Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or
zero.

. The result of the calculation of an address for a translation table walk using this register can

be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of TCR_EL1.TOSZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-219
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

CnP, bit [0]
When VICR_EL2.MSA == 1 and FEAT _TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBRO_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBRO_EL1.CnPis 1.

0bo The translation table entries pointed to by TTBRO_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBRO_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

. The value of TTBRO_EL1.CnP on those other PEs.
. The value of the current ASID.

. If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.
0bl The translation table entries pointed to by TTBRO_EL1 are the same as the translation

table entries for every other PE in the Inner Shareable domain for which the value of
TTBRO_ELI1.CnP is 1 and all of the following apply:

. The translation table entries are pointed to by TTBRO_ELI.
. The translation tables relate to the same translation regime.
. The ASID is the same as the current ASID.

. If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This field is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the TTBRO_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBRO_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values'.

This field resets to an architecturally UNKNOWN value.
When VICR_EL2.MSA == 0:

Reserved, RESO.
Otherwise:

Reserved, RESO.

Accessing the TTBRO_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TTBRO_EL1

op0 op1 CRn CRm op2
Obll 0b000 0b0010 0b0000 0b000
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TRWM == '1' then
G1-220 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

AArch64.SystemAccessTrap(EL2, 0x18);
else
return TTBRO_EL1;
elsif PSTATE.EL == EL2 then
return TTBRO_EL1;

MSR TTBRO_EL1, <Xt>

op0 op1 CRn CRm op2

Obll 0b000 0b0010 0b0000 0b000

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
TTBRO_ELL = X[t];
elsif PSTATE.EL == EL2 then
TTBRO_EL1 = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-221
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.33 VSCTLR_ELZ2, Virtualization System Control Register (EL2)

The VSCTLR_EL2 characteristics are:

Purpose
Provides configuration information for VMSAv8-64 and PMSAvS-64 virtualization using stage 2
of EL1&0 translation regime.

Configurations
There are no configuration notes.

Attributes

VSCTLR_EL2 is a 64-bit register.

Field descriptions

The VSCTLR_EL2 bit assignments are:

63 3 56 55 3 48 47 " 10
144 144 s

VMID[15:8] VMID[7:0] RESO

)))) J)
((149

S—

VMID[15:8], bits [63:56]
When FEAT VMIDI16 is implemented and VTCR_EL2.VS == I:
Extension to VMID[7:0]. See VSCTLR_EL2.VMID[7:0] for more details.
If the implementation has an 8-bit VMID, this field is RESO.
This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

VMID[7:0], bits [55:48]
The VMID for the EL1-Guest-OS.
The VMID is 8 bits when any of the following are true:
. The VTCR_EL2.VS is 0.
. FEAT VMIDI6 is not implemented.

This field resets to an architecturally UNKNOWN value.

Bits [47:1]

Reserved, RESO.

CnP, bit [0]
When FEAT TTCNP is implemented and VICR_EL2.MSA == 1:

Common not Private. This bit indicates whether stage 2 of EL1&0 translations are a member of a
common set that can be used by every PE in the Inner Shareable domain for which the value of
VSCTLR_EL2.CnP is 1.

0bo The stage 2 translations of the EL1&0 translation regime are permitted to differ in other
PEs in the Inner Shareable domain. This is not affected by the value of the current
VMID.
G1-222 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.3 General system control registers

0bl The stage 2 translations of the EL1&0 translation regime are the same for every other
PE in the Inner Shareable domain for which the value of VSCTLR_EL2.CnP is 1 and
the VMID is the same as the current VMID.

Note

If the value of VSCTLR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
the stage 2 EL1&0 translation does not point to the same configurations when using the current
VMID, then the results of the translations are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED
UNPREDICTABLE behaviors due to caching of control or data values'.

In an implementation that does not support VMSAv8-64 at stage 1 EL1&0 translation regime this
field is RESO.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

Accessing the VSCTLR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, VSCTLR_EL2

op0 op1 CRn CRm op2
Obl11 0b100 0b0010 0b0000 0b000
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return VSCTLR_EL2;
MSR VSCTLR_EL 2, <Xt>
op0 op1 CRn CRm op2
Obl11 0b100 0b0010 0b0000 0b000
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
VSCTLR_EL2 = X[t];
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-223

ID090320

Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.34 VSTCR_ELZ2, Virtualization Secure Translation Control Register

The VSTCR_EL2 characteristics are:

Purpose
The control register for stage 2 of the Secure EL1&0 translation regime.

Configurations
This register is present only when FEAT SEL2 is implemented. Otherwise, direct accesses to
VSTCR_EL2 are UNDEFINED.
This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSTCR_EL2 is a 64-bit register.

Field descriptions

The VSTCR_EL2 bit assignments are:

63 " 32 313029 9" 212019 3" 0
(49 (X9 (%9
RESO RESO RESO
y)))))
(49 | (X9 (%9
RES1 SC
SA

Any of the bits in VSTCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]
Reserved, RESO.

Bit [31]
Reserved, RES].

SA, bit [30]
Secure stage 2 translation output address space.
0bo All stage 2 translations for the Secure PA space access the Secure PA space.
0bl All stage 2 translations for the Secure PA space access the Non-secure PA space.
This field resets to an architecturally UNKNOWN value.

Bits [29:21]
Reserved, RESO.

SC, bit [20]
NS check enable bit.
0bo Least secure NS configuration is selected from the stage 1 and stage 2 EL1&0

translation regime for the given address.
0bl Stage 2 NS configuration is checked against stage 1 NS configuration in EL1&0
translation regime for the given address, and generate a fault if they are different.

This field resets to an architecturally UNKNOWN value.

Bits [19:0]
Reserved, RESO.

G1-224 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Accessing the VSTCR_EL2

System Registers in a PMSA Implementation
G1.3 General system control registers

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, VSTCR_EL2

op0 op1 CRn CRm op2
Obl1 0b100 0b0010 0b0110 0b010
if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return VSTCR_EL2;
MSR VSTCR_EL2, <Xt>
op0 op1 CRn CRm op2
Obll 0b100 0b0010 0b0110 0b010

if PSTATE.EL == EL@ then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
VSTCR_EL2 = X[t];

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

G1-225

System Registers in a PMSA Implementation
G1.3 General system control registers

G1.3.35 VTCR_ELZ2, Virtualization Translation Control Register

The VTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the EL1&0 translation regime.
Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.
Attributes

VTCR_EL2 is a 64-bit register.

Field descriptions

The VTCR_EL2 bit assignments are:

63 " 32 3130 29 3" 201918 ' 0
(49 (%9 (%9

RESO RESO VS| RESO

)))
£ | (¢ (¢

MSA
NSA

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RESO.

MSA, bit [31]

When ID_AA64MMFRO_EL1.MSA_frac == 0b0010:
Stage 1 EL1&0 translation regime memory system architecture.
0bo Stage 1 EL1&0 translation regime uses PMSAv8-64 memory architecture.
0bl Stage 1 EL1&0 translation regime uses VMSAvS-64 memory architecture.
This field resets to an architecturally UNKNOWN value.

When ID_AA64MMFRO_ELI1.MSA_frac == 0b0001:
Reserved, RESO.

Otherwise:

Reserved, RES].

NSA, bit [30]
When FEAT SEL?2 is implemented:
Non-secure stage 2 translation output address space.

0bo All stage 2 translations for the Non-secure PA space of the Secure EL1&0 translation
regime access the Secure PA space.

0bl All stage 2 translations for the Non-secure PA space of the Secure EL1&0 translation
regime access the Non-secure PA space.

This bit behaves as 1 for all purposes other than reading back the value of the bit when the value of
VSTCR_EL2.SA is 1.

This field resets to an architecturally UNKNOWN value.

G1-226 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Otherwise:
Reserved, RESO.
Bits [29:20]
Reserved, RESO.
VS, bit [19]
When FEAT VMID16 is implemented:
VMID Size.

System Registers in a PMSA Implementation
G1.3 General system control registers

0bo 8 bit - the upper 8 bits of VSCTLR_EL?2 is ignored by the hardware, and treated as if
they are all zeros, for every purpose except when reading back the register.

0bl 16 bit - the upper 8 bits of VSCTLR _EL2 is used for allocation and matching in the

TLB.

If the implementation only supports an 8-bit VMID, this field is RESO.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

Bits [18:0]

Reserved, RESO.

Accessing the VTCR_EL2

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, VTCR_EL2

op0 op1 CRn CRm op2
Obl11 0b100 0b0010 0b0001 0b010
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return VTCR_ELZ2;
MSR VTCR_EL2, <Xt>
op0 op1 CRn CRm op2
Obl1 0b100 0b0010 0b0001 0b010

if PSTATE.EL == ELO then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
VTCR_EL2 = X[t];

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

G1-227

System Registers in a PMSA Implementation
G1.4 Debug registers

G1.4 Debug registers

This section lists the Debug System registers in Armv8-R AArch64, in alphabetical order.

G1-228 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.4 Debug registers

G1.41 DBGBCR<n>_EL1, Debug Breakpoint Control Registers,n=0 - 15

The DBGBCR<n> ELI characteristics are:

Purpose
Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_ELI.

Configurations
AArch64 System register DBGBCR<n> EL1[31:0] is architecturally mapped to External register
DBGBCR<n> ELI1[31:0].
If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGBCR<n> ELI is a 64-bit register.

Field descriptions

The DBGBCR<n> EL1 bit assignments are:

63 9 2423))2019))1615141312))9 8))5432 10
{¢ t¢ {¢ t¢ t¢
RESO BT LBN |SSC RESO RES1 PMC|E
J))))))))
1¢ t¢ {¢ t¢ t¢
‘ I_l_I—RESO

HMC

Bits [63:24]

Reserved, RESO.

BT, bits [23:20]
Breakpoint Type. Possible values are:

0b0000 Unlinked instruction address match. DBGBVR<n> EL1 is the address of an
instruction.

0b0001 As 0b0000, but linked to a Context matching breakpoint.

0b0010 Unlinked Context ID match. When FEAT VHE is implemented, EL2 is using
AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing
at ELO with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_ EL1.ContextID must match the CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n>_ELI1.ContextID must match the CONTEXTIDR EL1 value

0b0011 As 0b0010, with linking enabled.

0b0110 Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR ELI.

0b0111 As 0b0110, with linking enabled.

0b1000 Unlinked VMID match. DBGBVR<n> EL1.VMID is a VMID compared against
VSCTLR_EL2.VMID.

0b1001 As 0b1000, with linking enabled.

0b1010 Unlinked VMID and Context ID match. DBGBVR<n> EL1.ContextID is a Context ID
compared against CONTEXTIDR EL1, and DBGBVR<n> EL1.VMID is a VMID
compared against VSCTLR EL2.VMID.

0b1011 As 0b1010, with linking enabled.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-229
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers

0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBVR<n> EL1.ContextID2 is a Context ID
compared against CONTEXTIDR EL2.

0b1101 As 0b1100, with linking enabled.

0b1110 Unlinked Full Context ID match. DBGBVR<n> EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n> EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.

All other values are reserved. Constraints on breakpoint programming mean other values are
reserved under some conditions.

For more information on the operation of the SSC, HMC, and PMC fields, and on the effect of
programming this field to a reserved value, see 'Execution conditions for which a breakpoint
generates Breakpoint exceptions' and 'Reserved DBGBCR<n> EL1.BT values'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n> EL1.E is 0.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields.

For more information on the operation of the SSC, HMC, and PMC fields, and the effect of
programming the fields to a reserved set of values, see 'Execution conditions for which a breakpoint
generates Breakpoint exceptions' and 'Reserved DBGBCR<n> EL1.{SSC, HMC, PMC} values'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

HMCG, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions
for which a breakpoint generates Breakpoint exceptions'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.
Bits [12:9]

Reserved, RESO.

Bits [8:5]
Reserved, RES].
Bits [4:3]
Reserved, RESO.
G1-230 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.4 Debug registers

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n> EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions
for which a breakpoint generates Breakpoint exceptions'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

E, bit [0]
Enable breakpoint DBGBVR<n> EL1.
0b0 Breakpoint disabled.
0bl Breakpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGBCR<n>_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, DBGBCR<n>_EL1

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b101

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif OSLSR_EL1.0SLK == 'Q' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);
else
return DBGBCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
if OSLSR_EL1.0SLK == '@' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);
else
return DBGBCR_EL1[UInt(CRm<3:0>)];

MSR DBGBCR<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b101

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif OSLSR_EL1.0SLK == '@' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);
else

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-231
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers

DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
if OSLSR_EL1.0SLK == '@' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);
else
DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];

G1-232 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a PMSA Implementation
G1.4 Debug registers

G1.4.2 MDCR_EL2, Monitor Debug Configuration Register (EL2)

The MDCR_EL2 characteristics are:

Purpose

Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.
Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.
Attributes

MDCR _EL2 is a 64-bit register.

Field descriptions

The MDCR_EL2 bit assignments are:

63 3" 20191817 16 3" 121109 8 7 6 5 4 3" 0
(%9 (%9 (%9
RESO RESO HPMN
))))))
(49 (49 (49
‘ I— TPMCR
TPM
HPME
TDE
TDA
TDOSA
TDRA
HPMD
RESO
TTRF
Bits [63:20]
Reserved, RESO.
TTRE, bit [19]
When FEAT TRF is implemented:
Traps use of the Trace Filter Control registers at EL1 to EL2, as follows:
. Access to TRFCR_EL1 is trapped to EL2, reported using EC syndrome value 0x18.
0bo Accesses to TRFCR_EL1 and TRFCR at EL1 are not affected by this control.
0bl Accesses to TRFCR_EL1 and TRFCR at EL1 generate a trap exception to EL2 when
EL2 is enabled in the current Security state.
Otherwise:
Reserved, RESO.
Bit [18]
Reserved, RESO.
HPMD, bit [17]
When FEAT PMUv3pl is implemented:
Guest Performance Monitors Disable. This control prohibits event counting at EL2.
0b0 Event counting allowed at EL2.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-233

1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.4 Debug registers

0bl Event counting prohibited at EL2.

If FEAT Debugv8p2 is not implemented, event counting is prohibited unless enabled
by the IMPLEMENTATION DEFINED authentication interface
ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:
. The event counters in the range [0..(MDCR_EL2.HPMN-1)].
. If PMCR_ELO.DP is set to 1, PMCCNTR_ELO.

The other event counters are unaffected, and when PMCR_ELO.DP is set to 0, PMCCNTR_ELO is
unaffected.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RESO.

Reserved, RESO.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps System register accesses to the Debug ROM
registers to EL2 when EL2 is enabled in the current Security state as follows:

. IfEL1 is using AArch64 state, accesses to MDRAR_EL]1 are trapped to EL2, reported using
EC syndrome value 0x18.

0bo This control does not cause any instructions to be trapped.

0bl ELO and EL1 System register accesses to the Debug ROM registers are trapped to EL2
when EL2 is enabled in the current Security state, unless it is trapped by
DBGDSCRext.UDCCdis or MDSCR_EL1.TDCC.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

« MDCR_EL2.TDE == 1.
« HCR _EL2.TGE==1.

Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped
external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDOSA, bit [10]
When FEAT DoubleLock is implemented:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to EL2, from both Execution states as follows:

. In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— OSLAR_ELI1, OSLSR_EL1, OSDLR_EL1, and DBGPRCR_EL1.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

0b0 This control does not cause any instructions to be trapped.

0bl EL1 System register accesses to the powerdown debug registers are trapped to EL2
when EL2 is enabled in the current Security state.

G1-234

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.4 Debug registers

Note

These registers are not accessible at ELO.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

«+ MDCR _EL2.TDE==1.
. HCR EL2.TGE == 1.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to EL2, from both Execution states as follows:

. In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— OSLAR _ELI1, OSLSR_EL1, and DBGPRCR_EL1.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to OSDLR _EL1 are trapped.
0bo This control does not cause any instructions to be trapped.

0bl EL1 System register accesses to the powerdown debug registers are trapped to EL2
when EL2 is enabled in the current Security state.

Note

These registers are not accessible at ELO.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

. MDCR_EL2.TDE ==1.
. HCR_EL2.TGE == 1.
Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped
external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]
Trap Debug Access. Traps ELO and EL1 System register accesses to debug System registers that are
not trapped by MDCR_EL2.TDRA or MDCR_EL2.TDOSA, as follows:

. In AArch64 state, accesses to the following registers are trapped to EL2 reported using EC
syndrome value 0x18:

— MDCCSR_ELO0, MDCCINT ELI1, OSDTRRX EL1, MDSCR ELI,
OSDTRTX EL1, OSECCR_EL1, DBGBVR<n> EL1, DBGBCR<n> EL1l,
DBGWVR<n> EL1, DBGWCR<n> Ell, DBGCLAIMSET ELI,
DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1.

— When not in Debug state, DBGDTR_EL0, DBGDTRRX ELO, DBGDTRTX_ ELO.

0b0 This control does not cause any instructions to be trapped.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-235
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.4 Debug registers

TDE, bit [8]

HPME, bit [7]

0bl ELO or EL1 System register accesses to the debug registers are trapped from both
Execution states to EL2 when EL?2 is enabled in the current Security state, unless the
access generates a higher priority exception.

Traps of AArch64 accesses to DBGDTR _EL0O, DBGDTRRX ELO, and DBGDTRTX ELO are
ignored in Debug state.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

- MDCR EL2.TDE ==
« HCR _EL2.TGE ==

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Trap Debug Exceptions. Controls routing of Debug exceptions, and defines the debug target
Exception level, ELp.

0bo The debug target Exception level is EL1.

0bl If EL2 is enabled for the current Effective value of SCR_EL3.NS, the debug target
Exception level is EL2, otherwise the debug target Exception level is EL1.

The MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as being 1 for all purposes
other than returning the result of a direct read of the register.

For more information, see 'Routing debug exceptions'.
This field is treated as being 1 for all purposes other than a direct read when HCR_EL2.TGE == 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT PMUv3 is implemented:

[MDCR_EL2.HPMN..(N-1)] event counters enable.
0bo Event counters in the range [MDCR_EL2.HPMN..(PMCR_ELO0.N-1)] are disabled.

0bl Event counters in the range [MDCR_EL2.HPMN..(PMCR_ELO0.N-1)] are enabled by
PMCNTENSET ELO.

If MDCR_EL2.HPMN is less than PMCR_ELO.N or PMCR.N, the event counters in the range
[MDCR_EL2.HPMN..(PMCR_ELO0.N-1)] or [HDCR.HPMN..(PMCR.N-1)], are enabled and
disabled by this bit. Otherwise this bit has no effect on the operation of the event counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit applies regardless of whether EL2 is
enabled in the current Security state.

For more information see the description of the HPMN field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

G1-236

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.4 Debug registers

TPM, bit [6]
When FEAT PMUv3 is implemented:
Trap Performance Monitors accesses. Traps ELO and EL1 accesses to all Performance Monitor

registers to EL2 when EL2 is enabled in the current Security state, from both Execution states, as
follows:

. In AArché64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— PMCR_ELO, PMCNTENSET_ELO, PMCNTENCLR_ELO, PMOVSCLR_ELO,
PMSWINC_ELO, PMSELR_ELO, PMCEIDO0_ELO, PMCEID1_ELDO,
PMCCNTR_ELO,PMXEVTYPER ELO,PMXEVCNTR ELO,PMUSERENR ELO,
PMINTENSET ELI1, PMINTENCLR_EL1, PMOVSSET ELO,
PMEVCNTR<n> ELO, PMEVTYPER<n> ELO, PMCCFILTR_ELO.

— If FEAT PMUv3p4 is implemented, PMMIR EL1
0b0 This control does not cause any instructions to be trapped.
0bl ELO and EL1 accesses to all Performance Monitor registers are trapped to EL2 when
EL2 is enabled in the current Security state.
Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

TPMCR, bit [5]
When FEAT PMUv3 is implemented:

Trap PMCR_ELO or PMCR accesses. Traps ELO and EL1 accesses to EL2, when EL2 is enabled in
the current Security state, as follows:

. In AArch64 state, accesses to PMCR_ELO are trapped to EL2, reported using EC syndrome

value 0x18.
0b0 This control does not cause any instructions to be trapped.
0bl ELO and EL1 accesses to the PMCR_ELO or PMCR are trapped to EL2 when EL2 is

enabled in the current Security state, unless it is trapped by PMUSERNR.EN or
PMUSERNR _ELO.EN.
Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

HPMN, bits [4:0]
When FEAT PMUv3 is implemented:

Defines the number of event counters that are accessible from EL3, EL2, EL1, and from ELO if
permitted.

If HPMN is less than PMCR _ELO.N, HPMN divides the Performance Monitors into two ranges:
[0..(HPMN-1)] and [HPMN..(PMCR_ELO.N-1)].

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-237
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.4 Debug registers

For an event counter in the range [0..(HPMN-1)]:

The counter is accessible from EL3, EL2, and EL1, and from ELO if permitted by

PMUSERNR_ELO or PMUSERNR.

The counter is enabled by PMCR_ELO0.E or PMCR.E and bit <n> of PMCNTENSET_ELO.

Note

If HPMN is equal to PMCR_ELO.N, this applies to all event counters.

IfHPMN is less than PMCR_ELO.N, for an event counter in the range [HPMN..(PMCR_ELO.N-1)]:

The counter is accessible from EL2 and EL3.

If FEAT SEL2 is disabled or is not implemented, the counter is also accessible from Secure
EL1, and from Secure ELO if permitted by PMUSERNR_ELO.

The counter is enabled by MDCR_EL2.HPME or HDCR.HPME and bit <n> of

PMCNTENSET ELO.

If this field is set to 0, or to a value larger than PMCR_ELO.N, then the following CONSTRAINED
UNPREDICTABLE behaviors apply:

The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.

Either:

— An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE
behaves as if MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than or

equal to PMCR_ELO.N.

— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible

from EL1 and ELO.

On a Warm reset, this field resets to the value in PMCR_ELO.N.

Otherwise:

Reserved, RESO.

Accessing the MDCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MDCR_EL2

op0 op1 CRn CRm op2
Obl1l 0b100 0b0001 0b0001 0b001
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
return MDCR_EL2;
G1-238 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

MSR MDCR_EL2, <Xt>

System Registers in a PMSA Implementation
G1.4 Debug registers

op0 op1 CRn CRm op2
Obl11 0b100 0b0001 0b0001 0b001
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
MDCR_EL2 = X[t];
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-239

ID090320

Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers

G1.4.3 MDSCR_EL1, Monitor Debug System Control Register

The MDSCR_EL1 characteristics are:

Purpose

Main control register for the debug implementation.
Configurations

There are no configuration notes.
Attributes

MDSCR _EL1 is a 64-bit register.

Field descriptions

The MDSCR_EL1 bit assignments are:

63 9 32 313029 28 27 26 2524 2322 212019 18 161514131211))7 6 5))1 0
(X4 (49 (X4
RESO RESO RESO [SS
2) 3) 2)
(49 | I I (49 | (49
TFO ERR
RXfull TDCC
TXfull KDE
RESO HDE
RXO MDE
TXU RAZ/WI
RESO RESO
INTdis TDA
Bits [63:32]
Reserved, RESO.
TFO, bit [31]
When FEAT TRF is implemented:
Trace Filter override. Used for save/restore of EDSCR.TFO.
When OSLSR_EL1.0SLK == 0, software must treat this bit as UNK/SBZP.
When OSLSR_EL1.0SLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this
bit are indirect accesses to EDSCR.TFO.
Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.
Otherwise:
Reserved, RESO.
RXfull, bit [30]
Used for save/restore of EDSCR.RXfull.
When OSLSR_EL1.0SLK == 0, software must treat this bit as UNK/SBZP.
When OSLSR_EL1.0SLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this
bit are indirect accesses to EDSCR.RXfull.
The architected behavior of this field determines the value it returns after a reset.
G1-240 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.4 Debug registers

Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.

TXfull, bit [29]
Used for save/restore of EDSCR.TXfull.
When OSLSR_EL1.0SLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.0SLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this
bit are indirect accesses to EDSCR.TXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.

Bit [28]

Reserved, RESO.

RXO, bit [27]
Used for save/restore of EDSCR.RXO.
When OSLSR_EL1.0SLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this
bit are indirect accesses to EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.

TXU, bit [26]
Used for save/restore of EDSCR.TXU.
When OSLSR_EL1.0SLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this
bit are indirect accesses to EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RESO.

INTdis, bits [23:22]
Used for save/restore of EDSCR.INTdis.
When OSLSR_EL1.0SLK == 0, and software must treat this bit as UNK/SBZP.

When OSLSR_EL1.0SLK == 1, this field holds the value of EDSCR.INTdis. Reads and writes of
this field are indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-241
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers

TDA, bit [21]
Used for save/restore of EDSCR.TDA.
When OSLSR_EL1.0SLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this
bit are indirect accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.

Bits [20:19]

Reserved, RESO.

Bits [18:16]
Reserved, RAZ/WI.
Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.
MDE, bit [15]
Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.
0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
obl Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDE, bit [14]
Used for save/restore of EDSCR.HDE.
When OSLSR_EL1.0SLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this
bit are indirect accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.

KDE, bit [13]

Local (kernel) debug enable. If ELp is using AArch64, enable debug exceptions within ELp.
Permitted values are:

0bo Debug exceptions, other than Breakpoint Instruction exceptions, disabled within ELp.
0bl All debug exceptions enabled within ELp.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDCC, bit [12]

Traps ELO accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when
it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both
Execution states, as follows:

. In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped,
reported using EC syndrome value 0x18:

— MDCCSR_ELO.
— Ifnot in Debug state, DBGDTR_ELO, DBGDTRTX_EL0, and DBGDTRRX_ELO.

0bo This control does not cause any instructions to be trapped.

G1-242 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Bits [11:7]

ERR, bit [6]

Bits [5:1]

SS, bit [0]

System Registers in a PMSA Implementation
G1.4 Debug registers

0bl ELO using AArch64: ELO accesses to the AArch64 DCC registers are trapped.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Reserved, RESO.

Used for save/restore of EDSCR.ERR.
When OSLSR_EL1.0SLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.0SLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this
bit are indirect accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
. When OSLSR_EL1.0SLK == 1, access to this field is RW.
. When OSLSR_EL1.0SLK == 0, access to this field is RO.

Reserved, RESO.

Software step control bit. If ELp is using AArch64, enable Software step. Permitted values are:
0bo Software step disabled
0bl Software step enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MDSCR_EL1

Individual fields within this register might have restricted accessibility when OSLSR_EL1.0SLK == 0 (the OS lock
is unlocked). See the field descriptions for more detail.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MDSCR_EL1

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b010

if PSTATE.EL == ELO then

UNDEFINED;

elsif PSTATE.EL == EL1 then
if MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

else

return MDSCR_EL1;
elsif PSTATE.EL == EL2 then
return MDSCR_EL1;

ARM DDI 0600A.c

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-243

Non-Confidential

System Registers in a PMSA Implementation

G1.4 Debug registers

MSR MDSCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b010
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
MDSCR_ELL = X[t];
elsif PSTATE.EL == EL2 then
MDSCR_EL1 = X[t];
G1-244 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

G1.5 Performance Monitors registers

This section lists the Performance Monitoring registers in Armv8-R AArch64, in alphabetical order.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-245
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.5 Performance Monitors registers

G1.5.1

PMCCFILTR_ELO, Performance Monitors Cycle Count Filter Register

63

The PMCCFILTR _ELO characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_ELO, increments.

Configurations

Attributes

AArch64 System register PMCCFILTR _ELO[31:0] is architecturally mapped to External register
PMCCFILTR_ELO[31:0].

This register is present only when FEAT PMUYV3 is implemented. Otherwise, direct accesses to
PMCCFILTR_ELO are UNDEFINED.

PMCCFILTR_ELO is a 64-bit register.

Field descriptions

The PMCCFILTR_ELO bit assignments are:

5y 32 313029 28 27 26 9 0

RESO PlU RESO

(X9 X9

) J)

Bits [63:32]

P, bit [31]

U, bit [30]

Bits [29:28]

NSH, bit [27]

Bits [26:0]

t¢ t¢
| |

NSH
RESO

Reserved, RESO.

Privileged filtering bit. Controls counting in EL1.
0b0 Count cycles in EL1.
0bl Do not count cycles in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

User filtering bit. Controls counting in ELO.
0b0 Count cycles in ELO.
0bl Do not count cycles in ELO.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Reserved, RESO.

EL2 (Hypervisor) filtering bit. Controls counting in EL2.
0b0 Do not count cycles in EL2.
0bl Count cycles in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Reserved, RESO.

G1-246

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

Accessing the PMCCFILTR_ELO
PMCCFILTR_ELO can also be accessed by using PMXEVTYPER ELO with PMSELR ELO.SEL set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PMCCFILTR_ELO

op0 op1 CRn CRm op2

Ob11 0b011 Ob1110 Obl1111 0b111

if PSTATE.EL == EL@ then
if PMUSERENR_ELO.EN == '@' then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
elsif MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return PMCCFILTR_ELO;
elsif PSTATE.EL == EL1 then
if MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return PMCCFILTR_ELO;
elsif PSTATE.EL == EL2 then
return PMCCFILTR_ELO;

MSR PMCCFILTR_ELO, <Xt>

op0 op1 CRn CRm op2

Obl11 0b011 0b1110 Ob1111 0Ob111

if PSTATE.EL == EL@ then
if PMUSERENR_ELO.EN == '@' then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
elsif MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
PMCCFILTR_ELO = X[t];
elsif PSTATE.EL == EL1 then
if MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
PMCCFILTR_ELO = X[t];
elsif PSTATE.EL == EL2 then
PMCCFILTR_ELO = X[t];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-247
1D090320 Non-Confidential

System Registers in a PMSA Implementation

G1.5 Performance Monitors registers

G1.5.2 PMCR_ELO, Performance Monitors Control Register

The PMCR_ELO characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

Attributes

AArch64 System register PMCR_ELO0[7:0] is architecturally mapped to External register
PMCR_ELO0[7:0].

This register is present only when FEAT PMUv3 is implemented. Otherwise, direct accesses to
PMCR_ELO are UNDEFINED.

PMCR_ELO is a 64-bit register.

Field descriptions

The PMCR_ELO bit assignments are:

63 9 32 31 9 24 23 9 16 15 9 1110))7 6 543210
(49 (49 (9 (49 (49
RESO IMP IDCODE N RESO DP{ X C|P|E
)))))))))
(%9 (%9 (49 (%9 (%9
‘ I— RESO
RES1
Bits [63:32]
Reserved, RESO.
IMP, bits [31:24]
Implementer code.
If this field is zero, then PMCR_ELO0.IDCODE is RESO and software must use MIDR_EL1 to
identify the PE.
Otherwise, this field and PMCR_ELO.IDCODE identify the PMU implementation to software. The
implementer codes are allocated by Arm. A non-zero value has the same interpretation as
MIDR_ELI1.Implementer.
Use of this field is deprecated.
This field reads as an IMPLEMENTATION DEFINED value.
Access to this field is RO.
IDCODE, bits [23:16]
When PMCR_ELO.IMP != 0x00:
Identification code. Use of this field is deprecated. This field has an IMPLEMENTATION DEFINED
value.
Each implementer must maintain a list of identification codes that are specific to the implementer.
A specific implementation is identified by the combination of the implementer code and the
identification code.
Access to this field is RO.
Otherwise:
Reserved, RESO.
G1-248 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111.
If the value is 0b00000 then only PMCCNTR_ELO is implemented. If the value is @b11111
PMCCNTR_ELO and 31 event counters are implemented.

When EL2 is implemented and enabled for the current Security state, reads of this field from EL1
and ELO return the value of MDCR_EL2.HPMN.

Access to this field is RO.

Bits [10:7]

Reserved, RESO.

Bit [6]

Reserved, RES].

DP, bit [5]
When FEAT PMUv3pl is implemented:
Disable cycle counter when event counting is prohibited.
0bo Cycle counting by PMCCNTR_ELO is not affected by this bit.

0bl When event counting for counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited, cycle counting by PMCCNTR_ELO is disabled.

For more information see 'Prohibiting event counting'.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

X, bit [4]
When the implementation includes a PMU event export bus:
Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.
0b0 Do not export events.
0bl Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RAZ/WI.
Bit [3]
Reserved, RESO.
C, bit [2]
Cycle counter reset. The effects of writing to this bit are:
0bo No action.

0bl Reset PMCCNTR_ELO to zero.
This bit is always RAZ.

Note
Resetting PMCCNTR_ELO does not change the cycle counter overflow bit.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-249
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

The value of PMCR_ELO0.LC is ignored, and bits [63:0] of all affected event counters are reset.

Access to this field is WO.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

0bo No action.

0bl Reset all event counters accessible in the current Exception level, not including

PMCCNTR_ELO, to zero.

This bit is always RAZ.

In ELO and EL1:

. If EL2 is implemented and enabled in the current Security state, and MDCR_EL2.HPMN is
less than PMCR_ELO.N, a write of 1 to this bit does not reset event counters in the range
[MDCR _EL2.HPMN..(PMCR _ELO.N-1)].

. If EL2 is not implemented, EL2 is disabled in the current Security state, or
MDCR_EL2.HPMN equals PMCR_ELO.N, a write of 1 to this bit resets all the event
counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note
Resetting the event counters does not change the event counter overflow bits.
Access to this field is WO.
E, bit [0]

Enable.

0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_ELDO, are disabled.

0bl All event counters in the range [0..(PMN-1)] and PMCCNTR_ELDO, are enabled by

PMCNTENSET_ELO.
If EL2 is implemented, then:
. If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.

. If PMN is less than PMCR_ELO.N, this bit does not affect the operation of event counters in
the range [PMN..(PMCR_ELO.N-1)].

If EL2 is not implemented, PMN is PMCR_ELO.N.

Note
The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit always applies if
EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2

is enabled in the current Security state. For more information, see the description of
MDCR_EL2.HPMN or HDCR.HPMN.

On a Warm reset, this field resets to 0.

Accessing the PMCR_ELO

Accesses to this register use the following encodings in the System instruction encoding space:

G1-250 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

MRS <Xt>, PMCR_ELO

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

op0 op1

CRn CRm op2

Obl1 0b011

0b1001 0b1100 0b000

if PSTATE.EL == EL@ then
if PMUSERENR_ELO.EN == '@' then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
elsif MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return PMCR_ELO;
elsif PSTATE.EL == EL1 then
if MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return PMCR_ELO;
elsif PSTATE.EL == EL2 then
return PMCR_ELO;

MSR PMCR_ELO, <Xt>

op0 op1

CRn CRm op2

Obl11 0b011

0b1001 0b1100 0b000

if PSTATE.EL == ELO then
if PMUSERENR_ELO.EN == '@' then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
elsif MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
PMCR_ELO = X[t];
elsif PSTATE.EL == EL1 then
if MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
PMCR_ELO = X[t];
elsif PSTATE.EL == EL2 then
PMCR_ELO = X[t];

ARM DDI 0600A.c
1D090320 Non-Confidential

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-251

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

G1.5.3 PMEVTYPER<n>_ELO, Performance Monitors Event Type Registers, n =0 - 30

The PMEVTYPER<n> ELO characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configurations
AArch64 System register PMEVTYPER<n> ELO[31:0] is architecturally mapped to External
register PMEVTYPER<n> ELO0[31:0].
This register is present only when FEAT PMUYV3 is implemented. Otherwise, direct accesses to
PMEVTYPER<n> ELO are UNDEFINED.

Attributes

PMEVTYPER<n> ELO is a 64-bit register.

Field descriptions

The PMEVTYPER<n> ELO bit assignments are:

63 3 323130292827262524 , 1615 10 9 ’) 0
{s (¢ (¢
RESO PluU RESO evtCount[15:10] evtCount[9:0]
02 2 2
NSH
RESO
MT
Bits [63:32]
Reserved, RESO.
P, bit [31]
Privileged filtering bit. Controls counting in EL1.
0bo Count events in EL1.
0bl Do not count events in EL1.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
U, bit [30]
User filtering bit. Controls counting in ELO.
0bo Count events in ELO.
0bl Do not count events in ELO.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Bits [29:28]
Reserved, RESO.
NSH, bit [27]
EL2 (Hypervisor) filtering bit. Controls counting in EL2.
0bo Do not count events in EL2.
0bl Count events in EL2.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
G1-252 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

Bit [26]
Reserved, RESO.
MT, bit [25]
When an IMPLEMENTATION DEFINED multi-threaded PMU Extension is implemented:

Multithreading.

0bo Count events only on controlling PE.

0bl Count events from any PE with the same affinity at level 1 and above as this PE.
Note

. When the lowest level of affinity consists of logical PEs that are implemented using a

multi-threading type approach, an implementation is described as multi-threaded. That is, the
performance of PEs at the lowest affinity level is highly interdependent.

. Events from a different thread of a multithreaded implementation are not Attributable to the
thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bits [24:16]

Reserved, RESO.

evtCount[15:10], bits [15:10]
When FEAT PMUv3pl is implemented:
Extension to evtCount[9:0]. See evtCount[9:0] for more details.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_ELO.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU
event number space’.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the value written:

. For the range 0x0000 to 9x003F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

. If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and
the value returned by a direct or external read of the evtCount field is the value written to the
field.

. For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,

and the value returned by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-253
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>_ELO

PMEVTYPER<n> ELO can also be accessed by using PMXEVTYPER ELO with PMSELR ELO0.SEL set to n.

If <n> is greater than or equal to the number of accessible event counters, then reads and writes of
PMEVTYPER<n> ELO are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

. Accesses to the register are UNDEFINED.
. Accesses to the register behave as RAZ/WI.

. Accesses to the register execute as a NOP.

. If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from ELO are trapped to EL2.

Note
In ELO, an access is permitted if it is enabled by PMUSERNR_ELO.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and ELO, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of

implemented event counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PMEVTYPER<n>_ELO

op0 op1 CRn

CRm op2

Obl11 0b011 0b1110

0b11:n[4:3] n[2:0]

if PSTATE.EL == ELO then
if PMUSERENR_ELO.EN == '@' then
if HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
elsif MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return PMEVTYPER_ELO[UInt(CRm<1:0>:0p2<2:0>)];
elsif PSTATE.EL == EL1 then
if MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return PMEVTYPER_ELO[UInt(CRm<1:0>:0p2<2:0>)];
elsif PSTATE.EL == EL2 then
return PMEVTYPER_ELO[UInt(CRm<1:0>:0p2<2:0>)];

MSR PMEVTYPER<n>_ELO, <Xt>

op0 op1 CRn

CRm op2

Ob11 0b011 Ob1110

Obl11:n[4:3] n[2:0]

if PSTATE.EL == EL@ then
if PMUSERENR_ELO.EN == '@' then
if HCR_EL2.TCGE == '1' then

G1-254

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
elsif MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
PMEVTYPER_ELO[UInt(CRm<1:0>:0p2<2:0>)]
elsif PSTATE.EL == EL1 then
if MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
PMEVTYPER_ELO[UInt(CRm<1:0>:0p2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then
PMEVTYPER_ELO[UInt(CRm<1:0>:0p2<2:0>)] = X[t];

X[tl;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G1-255
1D090320 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers

G1-256 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Chapter G2
System Registers in a VMSA Implementation

This chapter describes the System registers in a VMSA implementation. It contains the following section:

General system control registers on page G2-258.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G2-257
ID090320 Non-Confidential

System Registers in a VMSA Implementation
G2.1 General system control registers

G2.1 General system control registers

This section lists the System registers in a VMSA implementation of Armv8-R AArch64.

G2-258 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

System Registers in a VMSA Implementation
G2.1 General system control registers

G211 TTBR1_ELA1, Translation Table Base Register 1 (EL1)

The TTBR1_EL1 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the higher VA range in the EL1&0 stage 1 translation regime, and other information
for this translation regime.

Configurations
In a PMSAv8-64 only implementation, this register is UNDEFINED.

Attributes

TTBR1_ELI is a 64-bit register.

Field descriptions

The TTBR1 _EL1 bit assignments are:

63 9

48 47 3 10

(

ASID
)

(

BADDR
)

(

(

I— CnP

ASID, bits [63:48]

When VICR_EL2.MSA == 1:

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBRO _EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RESO.
This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

BADDR, bits [47:1]

When VICR_EL2.MSA == 1:
Translation table base address, A[47:x] or A[51:x], bits[47:1].
Note

. Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation
that includes FEAT LPA and is using the 64KB translation granule.

. A translation table must be aligned to the size of the table, except that when using a
translation table base address larger than 48 bits the minimum alignment of a table containing
fewer than eight entries is 64 bytes.

In an implementation that includes FEAT LPA, if the value of TCR_ELI1.IPS is 0b110, then:

. Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is
determined as follows:

— Ifx>=6 then z=x.
— Otherwise, z=6.

. Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G2-259
Non-Confidential

System Registers in a VMSA Implementation

G2.1 General system control registers

. When z>x register bits[(z-1):x] are RESO, and bits[(z-1):x] of the translation table base
address are zero.

. When x>6 register bits[(x-1):6] are RESO.

. Register bit[1] is RESO.

. Bits[5:2] of the stage 1 translation table base address are zero.

. In an implementation that includes FEAT TTCNP bit[0] of the stage 1 translation table base
address is zero.

Note

. In an implementation that includes FEAT LPA a TCR_ELI1.IPS value of 0b110, that selects
an IPA size of 52 bits, is permitted only when using the 64KB translation granule.

. When the value of ID AA64AMMFRO_EL1.PARange indicates that the implementation does
not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB
translation granule when the Effective value of TCR_ELI1.IPS is 0b110 and the value of
register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of TCR_EL1.IPS is not 0b110 then:
. Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
. Register bits[(x-1):1] are RESO.

. If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table
base addresses used in this stage of translation are 0b0000.

Note
This definition applies:
. To an implementation that includes FEAT LPA and is using a translation granule smaller
than 64KB.

. To any implementation that does not include FEAT LPA.

If any TTBR1_EL1[47:0] bit that is defined as RESO has the value 1 when a translation table walk
is performed using TTBR1_EL1, then the translation table base address might be misaligned, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

. Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or
Zero.

. The result of the calculation of an address for a translation table walk using this register can

be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of TCR_EL1.T1SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

Otherwise:

CnP, bit [0]

Reserved, RESO.

When VICR_EL2.MSA == 1 and FEAT _TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1 _EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL1.CnPis 1.

0bo The translation table entries pointed to by TTBR1_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR1 _EL1
for other PEs in the Inner Shareable domain. This is not affected by:

. The value of TTBR1_EL1.CnP on those other PEs.
. The value of the current ASID.

G2-260 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

System Registers in a VMSA Implementation
G2.1 General system control registers

. If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.
0bl The translation table entries pointed to by TTBR1_ELI are the same as the translation

table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL1.CnP is 1 and all of the following apply:

. The translation table entries are pointed to by TTBR1_ELI.
. The translation tables relate to the same translation regime.
. The ASID is the same as the current ASID.

. If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This field is permitted to be cached in a TLB.
When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,

that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR1_ELT1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values'.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Accessing the TTBR1_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TTBR1_EL1

op0 op1 CRn CRm op2
0bl1 0b000 0b0010 0b0000 0b001
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if ID_AA64MMFRO_EL1.MSA == '1111"' && ID_AA64MMFRO_EL1.MSA_frac == '0001' then
UNDEFINED;

elsif HCR_EL2.TRWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif VICR_EL2.MSA == '@' then
UNDEFINED;

else
return TTBR1_EL1;

elsif PSTATE.EL == EL2 then

if ID_AAGAMMFRO_EL1.MSA == '1111" && ID_AA64MMFRO_EL1.MSA_frac == '0001' then
UNDEFINED;

else
return TTBR1_EL1;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. G2-261
1D090320 Non-Confidential

System Registers in a VMSA Implementation
G2.1 General system control registers

MSR TTBR1_EL1, <Xt>

op0 op1 CRn CRm

op2

Obl1 0b000 0b0010 0b0000

0b001

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if ID_AAGAMMFRO_EL1.MSA == '1111" && ID_AAG64MMFRO_EL1.MSA_frac == '0001' then
UNDEFINED;
elsif HCR_EL2.TWM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif VICR_EL2.MSA == '@' then
UNDEFINED;
else
TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
if ID_AAGAMMFRO_EL1.MSA == '1111" && ID_AAG64MMFRO_EL1.MSA_frac == '0001' then
UNDEFINED;
else
TTBR1_EL1 = X[t];

G2-262 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Part H

Armv8-R AArch64 External Debug Registers

Chapter H1
External Debug Registers Descriptions

This chapter provides the information on the external debug registers that are supported in Armv8-R AArch64. It
contains the following sections:

. About the external debug registers on page H1-266.
External debug registers on page H1-267.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-265
ID090320 Non-Confidential

External Debug Registers Descriptions
H1.1 About the external debug registers

H1.1 About the external debug registers

Armv8-R AArch64 supports both self-hosted and external debug as defined in the Armv8.4-A debug architecture,

without the EL3 Exception level.

. Self-hosted debug: The PE hosts a debugger. The debugger programs the PE to generate debug exceptions.
Debug exceptions are accommodated in the Armv8-R AArch64 Exception model.

. External debug: The PE is controlled by an external debugger. The debugger programs the PE to generate
debug events that cause the PE to enter the debug state. In the debug state, the PE is halted.

For more information, see chapter External System Control Register Descriptions of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

H1-266 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

External Debug Registers Descriptions
H1.2 External debug registers

H1.2 External debug registers

This section describes the modified external debug registers for Armv8-R AArch64.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-267
ID090320 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

H1.2.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers,n =0 -15
The DBGBCR<n> ELI characteristics are:
Purpose
Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_ELI.
Configurations
External register DBGBCR<n> EL1[31:0] is architecturally mapped to AArch64 System register
DBGBCR<n> ELI1[31:0].
DBGBCR<n> ELl is in the Core power domain.
If breakpoint n is not implemented then accesses to this register are:
. RESO when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess().
. A CONSTRAINED UNPREDICTABLE choice of RESO or ERROR otherwise.
Attributes
DBGBCR<n> ELI is a 32-bit register.
Field descriptions
The DBGBCR<n> EL1 bit assignments are:
31 24 23 2019 16 1514 13 12 9 8 543210
RESO BT LBN SSC RESO RES1 PMC|E
|_I— RESO
HMC
When the E field is zero, all the other fields in the register are ignored.
Bits [31:24]
Reserved, RESO.
BT, bits [23:20]
Breakpoint Type. Possible values are:
0b0000 Unlinked instruction address match. DBGBVR<n> EL1 is the address of an
instruction.
0b0001 As 0b0000 but linked to a Context matching breakpoint.
0b0010 Unlinked Context ID match. When FEAT VHE is implemented, EL2 is using
AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing
at ELO with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n> EL1.ContextID must match the CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n> EL1.ContextID must match the CONTEXTIDR_EL1 value.
0b0011 As 0b0010, with linking enabled.
0b0100 Unlinked instruction address mismatch. DBGBVR<n> EL1 is the address of an
instruction to be stepped.
0b0101 As 000100, with linking enabled.
0b0110 Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR ELI.
0b0111 As 0b0110, with linking enabled.
H1-268 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

External Debug Registers Descriptions
H1.2 External debug registers

0b1000 Unlinked VMID match. DBGBVR<n> EL1.VMID is a VMID compared against
VSCTLR_EL2.VMID.

0b1001 As 0b1000, with linking enabled.

0b1010 Unlinked VMID and Context ID match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR EL1, and DBGBVR<n> EL1.VMID is a VMID
compared against VSCTLR EL2.VMID.

0b1011 As 0b1010, with linking enabled.

0b1100 Unlinked CONTEXTIDR EL2 match. DBGBVR<n> EL1.ContextID2 is a Context ID
compared against CONTEXTIDR EL2.

0b1101 As 0b1100, with linking enabled.

0b1110 Unlinked Full Context ID match. DBGBVR<n> EL1.ContextID is compared against
CONTEXTIDR EL1, and DBGBVR<n> EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.
Constraints on breakpoint programming mean some values are reserved under certain conditions.

For more information on the operation of the SSC, HMC, and PMC fields, and on the effect of
programming this field to a reserved value, see 'Execution conditions for which a breakpoint
generates Breakpoint exceptions' and 'Reserved DBGBCR<n> EL1.BT values'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n> EL1.E is 0.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved
DBGBCR<n>_ELI1.{SSC, HMC, PMC} values'.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions
for which a breakpoint generates Breakpoint exceptions'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

HMCG, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see DBGBCR<n> EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions
for which a breakpoint generates Breakpoint exceptions'.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-269
ID090320 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Bits [12:9]

Reserved, RESO.

Bits [8:5]

Reserved, RES].

Bits [4:3]

Reserved, RESO.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n> EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions
for which a breakpoint generates Breakpoint exceptions'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

E, bit [0]
Enable breakpoint DBGBVR<n> EL1. Possible values are:
0bo Breakpoint disabled.
0bl Breakpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGBCR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGBCR<n> ELI1 can be accessed through the external debug interface:

Component Offset Instance

Debug 0x408 + (16 *n) DBGBCR<n> ELI

This interface is accessible as follows:

. When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

. When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
ISoftwareLockStatus() accesses to this register are RW.

. Otherwise accesses to this register generate an error response.

H1-270

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

External Debug Registers Descriptions
H1.2 External debug registers

H1.2.2 EDAA32PFR, External Debug Auxiliary Processor Feature Register

The EDAA32PFR characteristics are:

Purpose

Provides information about implemented PE features.

Note

The register mnemonic, EDAA32PFR, is derived from previous definitions of this register that
defined this register only when AArch64 was not supported at any Exception level.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

Attributes

It is IMPLEMENTATION DEFINED whether EDAA32PFR is implemented in the Core power domain
or in the Debug power domain.

EDAAJ32PFR is a 64-bit register.

Field descriptions

The EDAA32PFR bit assignments are:

63 " 2019 1615 ;01211 0 87 ., 43 00
1< {¢ {¢ ¢ 1<

RESO MSA_frac EL3 EL2 PMSA VMSA
J)))) J)

Bits [63:20]

(%9 ((((%9

Reserved, RESO.

MSA _frac, bits [19:16]

When EDAA32PFR.PMSA == 0b0000 and EDAA32PFR.VMSA == 0b1111:

Memory System Architecture fractional field. This holds the information on additional Memory
System Architectures supported. Defined values are:

0b0001 PMSAvS-64 supported in all translation regimes. VMSAv8-64 not supported.

0b0010 PMSAVS8-64 supported in all translation regimes. In addition to PMSAv8-64, stage 1
EL1&0 translation regime also supports VMSAv8-64.

All other values are reserved.

In Armv8-R AArch64, the only permitted values are 0b0001 and 0b0010.

Otherwise:

Reserved, RESO.

EL3, bits [15:12]

When EDPFR.EL3 == 0b0000:

AArch32 EL3 Exception level handling. Defined values are:
0b0000 EL3 is not implemented or can be executed in AArch64 state.
0b0001 EL3 can be executed in AArch32 state only.

All other values are reserved.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-271

Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

Note
EDPFR.{EL1, ELO} indicate whether EL1 and ELO can only be executed in AArch32 state.

Otherwise:
Reserved, RAZ.
EL2, bits [11:8]
When EDPFR.EL2 == 0b0000:
AArch32 EL2 Exception level handling. Defined values are:
0b0000 EL2 is not implemented or can be executed in AArch64 state.
0b0001 EL2 can be executed in AArch32 state only.

All other values are reserved.

Note
EDPFR.{EL1, ELO} indicate whether EL1 and ELO can only be executed in AArch32 state.

Otherwise:

Reserved, RAZ.

PMSA, bits [7:4]
Indicates support for a 32-bit PMSA. Defined values are:
0b0000 PMSA-32 not supported.
0b0100 PMSAVS8-32 supported.

All other values are reserved.

VMSA, bits [3:0]
When EDAA32PFR.PMSA != 0b0000:
Indicates support for a VMSA in addition to a 32-bit PMSA Defined values are:
0b0000 VMSA not supported.
All other values are reserved.
When EDAA32PFR.PMSA == 0b0000:
Defined values are:

0b0000 VMSAv8-64 supported.
PMSAvVS-64 not supported.

0b1111 Memory system architecture described by EDAA32PFR.MSA_frac.
All other values are reserved.
In Armv8-R AArch64, the only permitted value is 0b1111.

Otherwise:

Reserved, RAZ.

Accessing the EDAA32PFR:

EDAA32PFR can be accessed through the external debug interface:

Component Offset Instance

Debug 0xD60 EDAA32PFR

H1-272 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

External Debug Registers Descriptions
H1.2 External debug registers

This interface is accessible as follows:
. When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.

. Otherwise accesses to this register are IMPDEF.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-273
ID090320 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

H1.2.3 EDPFR, External Debug Processor Feature Register

The EDPFR characteristics are:

Purpose
Provides information about implemented PE features.
For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations
It is IMPLEMENTATION DEFINED whether EDPFR is implemented in the Core power domain or in the
Debug power domain.

Attributes
EDPEFR is a 64-bit register.

Field descriptions

The EDPFR bit assignments are:

63)52 51 3 48 47))44 43 3 40 39))36 35))32 31 N 28 27))24 23 3 20 19))16 15))12 11))8 7))4 3) 0
C (%9 (49 (%9 (%9 (%9 (%9 (%9 (49 (%9 (49 (%9 (%9 {
RESO [UNKNOWN|RESO |UNKNOWN]| SEL2 | RESO |lUNKNOWN] GIC |AdvSIMD| FP | EL3 | EL2 | EL1 | ELO
))) y))))))))))) y))))))))))

C (%9 (49 (%9 (%9 (%9 (%9 (%9 [£9 (%9 (49 (X9 (%9 {

Bits [63:52]
Reserved, RESO.
UNKNOWN, bits [51:48]
From Armv8.4:
Reserved, UNKNOWN.
Otherwise:
Reserved, RESO.
Bits [47:44]
Reserved, RESO.
UNKNOWN, bits [43:40]
From Armv8.2:
Reserved, UNKNOWN.
Otherwise:
Reserved, RESO.
SEL2, bits [39:36]
Secure EL2. Defined values are:
0b0000 Secure EL2 is not implemented.
0b0001 Secure EL2 is implemented.
All other values are reserved.
Bits [35:32]
Reserved, RESO.
H1-274 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

External Debug Registers Descriptions
H1.2 External debug registers

UNKNOWN, bits [31:28]
From Armv8.2:
Reserved, UNKNOWN.
Otherwise:

Reserved, RESO.

GIC, bits [27:24]
System register GIC interface support. Defined values are:
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.
All other values are reserved.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_ AA64PFR0O_EL1.GIC.
AdvSIMD, bits [23:20]
Advanced SIMD. Defined values are:
0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD

operations:

. Integer byte, halfword, word and doubleword element operations.

. Single-precision and double-precision floating-point arithmetic.

. Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.
0b1111 Advanced SIMD is not implemented.
All other values are reserved.
This field must have the same value as the FP field.
The permitted values are:

. 0b0000 in an implementation with Advanced SIMD support, that does not include the
FEAT FP16 extension.

. 0b0001 in an implementation with Advanced SIMD support, that includes the FEAT FP16
extension.

. 0b1111 in an implementation without Advanced SIMD support.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_ AA64PFRO_EL1.AdvSIMD.

FP, bits [19:16]

Floating-point. Defined values are:

0b0000 Floating-point is implemented, and includes support for:
. Single-precision and double-precision floating-point types.
. Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.
0b1111 Floating-point is not implemented.
All other values are reserved.

This field must have the same value as the AdvSIMD field.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-275
ID090320 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

The permitted values are:

. 0b0000 in an implementation with floating-point support, that does not include the
FEAT FP16 extension.

. 0b0001 in an implementation with floating-point support, that includes the FEAT FP16
extension.

. 0b1111 in an implementation without floating-point support.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_ AA64PFRO_EL1.FP.
EL3, bits [15:12]
AArch64 EL3 Exception level handling. Defined values are:
0b0000 EL3 is not implemented or cannot be executed in AArch64 state.
0b0001 EL3 can be executed in AArch64 state only.
0b0010 EL3 can be executed in both Execution states.
When the value of EDAA32PFR.EL3 is non-zero, this field must be 0b0000.
All other values are reserved.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_ AA64PFRO_EL1.EL3.
EL2, bits [11:8]
AArch64 EL2 Exception level handling. Defined values are:
0b0000 EL2 is not implemented or cannot be executed in AArch64 state.
0b0001 EL2 can be executed in AArch64 state only.
0b0010 EL2 can be executed in both Execution states.
All other values are reserved.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_ AA64PFRO_EL1.EL2.
EL1, bits [7:4]
AArch64 EL1 Exception level handling. Defined values are:
0b0000 EL1 cannot be executed in AArch64 state.
0b0001 EL1 can be executed in AArch64 state only.
0b0010 EL1 can be executed in both Execution states.
All other values are reserved.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_ AA64PFRO_EL1.EL1.
ELO, bits [3:0]
AArch64 ELO Exception level handling. Defined values are:
0b0000 ELO cannot be executed in AArch64 state.
0b0001 ELO can be executed in AArch64 state only.
0b0010 ELO can be executed in both Execution states.
All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_AA64PFRO_EL1.ELO.

H1-276 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

External Debug Registers Descriptions
H1.2 External debug registers

Accessing the EDPFR:

EDPFR[31:0] can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0xD20 EDPFR 31:0

This interface is accessible as follows:

. When IsCorePowered() and !DoubleLockStatus() accesses to EDPFR[31:0] are RO.

. Otherwise accesses to EDPFR[31:0] are IMPDEF.

EDPFR[63:32] can be accessed through the external debug interface:
Component Offset Instance Range
Debug 0xD24 EDPFR 63:32

This interface is accessible as follows:

. When IsCorePowered() and !DoubleLockStatus() accesses to EDPFR[63:32] are RO.

. Otherwise accesses to EDPFR[63:32] are IMPDEF.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-277

ID090320

Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

H1.2.4 PMCCFILTR_ELO, Performance Monitors Cycle Counter Filter Register

The PMCCFILTR _ELO characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_ELO, increments.

Configurations

External register PMCCFILTR ELO[31:0] is architecturally mapped to AArch64 System register

PMCCFILTR_ELO[31:0].
PMCCFILTR_ELO is in the Core power domain.

On a Warm or Cold reset, RW fields in this register reset:

. To architecturally UNKNOWN values if the reset is to an Exception level that is using

AArch64.

. To 0 if the reset is to an Exception level that is using AArch32.

The register is not affected by an External debug reset.

Attributes
PMCCFILTR_ELO is a 32-bit register.

Field descriptions

The PMCCFILTR_ELO bit assignments are:

31 30 29 28 27 26 25 24 23 0
PlU RESO
I:I_I L1
RESO
NSH
RESO
SH
P, bit [31]
Privileged filtering bit. Controls counting in EL1.
0bo Count cycles in EL1.
obl Do not count cycles in EL1.
U, bit [30]
User filtering bit. Controls counting in ELO.
0bo Count cycles in ELO.
obl Do not count cycles in ELO.
Bits [29:28]
Reserved, RESO.
H1-278 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

External Debug Registers Descriptions
H1.2 External debug registers

NSH, bit [27]
EL2 (Hypervisor) filtering bit. Controls counting in EL2.
0bo Do not count cycles in EL2.
obl Count cycles in EL2.

Bits [26:25]

Reserved, RESO.

SH, bit [24]
When ARMvS.4-SecEL?2 is implemented:
Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMCCFILTR ELO0.NSH bit, cycles in Secure
EL2 are counted.

Otherwise, cycles in Secure EL2 are not counted.
If Secure EL2 is disabled, this field is RESO.
Otherwise:
Reserved, RESO.
Bits [23:0]

Reserved, RESO.

Accessing the PMCCFILTR_ELDO:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCCFILTR_ELO can be accessed through the external debug interface:

Component Offset Instance

PMU 0x47C PMCCFILTR_ELO

This interface is accessible as follows:

. When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

. When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

. Otherwise accesses to this register generate an error response.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-279
ID090320 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

H1.2.5

PMCR_ELO, Performance Monitors Control Register

The PMCR_ELO characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

External register PMCR_ELO[7:0] is architecturally mapped to AArch64 System register
PMCR_ELO0[7:0].

PMCR_ELO is in the Core power domain.

Attributes
PMCR_ELO is a 32-bit register.

Field descriptions

The PMCR_ELO bit assignments are:

31 1110 76543210

RAZ/WI RESO DP[X C|P|E

Bits [31:11]
Reserved, RAZ/WI.
Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.
Bits [10:7]
Reserved, RESO.

Bit [6]

Reserved, RES].

DP, bit [5]
When ARMvS.1-PMU is implemented :
Disable cycle counter when event counting is prohibited. The possible values of this bit are:
0bo Cycle counting by PMCCNTR_ELO is not affected by this bit.

obl When event counting for counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited, cycle counting by PMCCNTR_ELO is disabled.

For more information, see 'Prohibiting event counting'.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field it resets to:

. A value that is architecturally UNKNOWN if the reset is into an Exception level that is using
AArch64.

H1-280

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

External Debug Registers Descriptions
H1.2 External debug registers

Otherwise:

Reserved, RESO.

X, bit [4]
When the implementation includes a PMU event export bus:
Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.
0bo Do not export events.

obl Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field it resets to:

. A value that is architecturally UNKNOWN if the reset is into an Exception level that is using
AArch64.

Otherwise:
Reserved, RAZ/WI.
Bit [3]
Reserved, RESO.
C, bit [2]
Cycle counter reset. The effects of writing to this bit are:
0bo No action.
obl Reset PMCCNTR_ELO to zero.

This bit is always RAZ.

Note
Resetting PMCCNTR_ELO does not change the cycle counter overflow bit.

Access to this field is WO.

P, bit [1]
Event counter reset. The effects of writing to this bit are:
0bo No action.
obl Reset all event counters, not including PMCCNTR_ELDO, to zero.

This bit is always RAZ.

Note

Resetting the event counters does not change the event counter overflow bits.

Access to this field is WO.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-281
ID090320 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

E, bit [0]
Enable.
0bo All event counters in the range [0..(PMN-1)] and PMCCNTR_ELO, are disabled.
0bl All event counters in the range [0..(PMN-1)] and PMCCNTR_ELO, are enabled by

PMCNTENSET_ELO.

If EL2 is implemented then:
. If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.

. If PMN is less than PMCR_ELO.N, this bit does not affect the operation of event counters in
the range [PMN..(PMCR_ELO.N-1)].

If EL2 is not implemented, PMN is PMCR_ELO.N.

Note

The effect of the following fields on the operation of this bit applies if EL2 is implemented
regardless of whether EL2 is enabled in the current Security state:

. MDCR_EL2.HPMN. See the description of MDCR_EL2.HPMN for more information.

On a Warm reset, this field resets to 0.

Accessing the PMCR_ELO:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCR_ELO can be accessed through the external debug interface:

Component Offset Instance

PMU 0xE04 PMCR _ELO

This interface is accessible as follows:

. When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

. When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

. Otherwise accesses to this register generate an error response.

H1-282

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

External Debug Registers Descriptions
H1.2 External debug registers

H1.2.6 PMEVTYPER<n>_ELO, Performance Monitors Event Type Registers, n =0 - 30
The PMEVTYPER<n> ELO characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

External register PMEVTYPER<n> ELO0[31:0] is architecturally mapped to AArch64 System
register PMEVTYPER<n> ELO0[31:0].

PMEVTYPER<n> ELO is in the Core power domain.
If event counter n is not implemented then accesses to this register are:

. RESO when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalPMUAccess().

. A CONSTRAINED UNPREDICTABLE choice of RESO or ERROR otherwise.

Attributes
PMEVTYPER<n> ELO is a 32-bit register.

Field descriptions

The PMEVTYPER<n> ELO bit assignments are:

31 30 29 28 27 26 25 24 23 16 15 10 9 0
PlU RESO evtCount[15:10] evtCount[9:0]
RESO 4I_I_I ‘
NSH
RESO
MT
SH
P, bit [31]
Privileged filtering bit. Controls counting in EL1.
0b0 Count events in EL1.
obl Do not count events in EL1.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
U, bit [30]
User filtering bit. Controls counting in ELO.
0bo Count events in ELO.
0bl Do not count events in ELO.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Bits [29:28]
Reserved, RESO.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-283

1D090320 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

NSH, bit [27]
EL2 (Hypervisor) filtering bit. Controls counting in EL2.
0bo Do not count events in EL2.
obl Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bit [26]
Reserved, RESO.
MT, bit [25]
When an IMPLEMENTATION DEFINED multi-threaded PMU Extension is implemented:
Multithreading.
0b0 Count events only on controlling PE.
obl Count events from any PE with the same affinity at level 1 and above as this PE.
Note
. When the lowest level of affinity consists of logical PEs that are implemented using a

multi-threading type approach, an implementation is described as multi-threaded. That is, the
performance of PEs at the lowest affinity level is highly interdependent.

. Events from a different thread of a multithreaded implementation are not Attributable to the
thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

SH, bit [24]
When ARMv8.4-SecEL?2 is implemented:
Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n> EL0.NSH bit, events in
Secure EL2 are counted.

Otherwise, events in Secure EL2 are not counted.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RESO.
Bits [23:16]
Reserved, RESO.
evtCount[15:10], bits [15:10]
When ARMvS.1-PMU is implemented:
Extension to evtCount[9:0]. See evtCount[9:0] for more details.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

H1-284 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

External Debug Registers Descriptions
H1.2 External debug registers

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_ELO.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU
event number space’.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the value written:

. For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

. If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and
the value returned by a direct or external read of the evtCount field is the value written to the
field.

. For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,

and the value returned by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>_ELDO:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMEVTYPER<n> ELO can be accessed through the external debug interface:

Component Offset Instance

PMU 0x400 +4n PMEVTYPER<n> ELO

This interface is accessible as follows:

. When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

. When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

. Otherwise accesses to this register generate an error response.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. H1-285
ID090320 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers

H1-286 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Part |

Architectural Pseudocode

Chapter I1
Armv8-R AArch64 Pseudocode

This chapter contains the pseudocode that describes many features of the Armv8-R AArch64 architecture. It
contains the following sections:

. Pseudocode for AArch64 operations on page 11-290.
. Shared pseudocode on page 11-374.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-289
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

1.1 Pseudocode for AArch64 operations
This section provides the architectural pseudocode for execution in AArch64 state. Functions that are listed in this
section are identified as AArch64. FunctionName.
This section is organized by functional groups, with the functional groups being indicated by hierarchical path
names, for example aarch64/debug/breakpoint.
The top-level sections of the AArch64 pseudocode hierarchy are:
. aarch64/debug.
. aarch64/exceptions on page 11-297.
. aarch64/functions on page 11-312.
. aarch64/instrs on page 11-343.
. aarch64/translation on page 11-350.
1.1.1 aarch64/debug
This section includes the following pseudocode functions:
. aarch64/debug/breakpoint/AArch64.BreakpointMatch.
. aarch64/debug/breakpoint/AArch64.BreakpointValueMatch on page 11-291.
. aarch64/debug/breakpoint/AArch64.StateMatch on page 11-292.
. aarch64/debug/enables/AArch64.GenerateDebugExceptions on page 11-293.
. aarch64/debug/enables/AArch64. GenerateDebugExceptionsFrom on page [1-293.
. aarch64/debug/pmu/AArch64.CheckForPMUOverflow on page 11-293.
. aarch64/debug/pmu/AArch64.CountEvents on page 11-294.
. aarch64/debug/statisticalprofiling/TimeStamp on page 11-295.
. aarch64/debug/takeexceptiondbg/AArch64. TakeExceptionlnDebugState on page 11-295.
. aarch64/debug/watchpoint/AArch64. WatchpointByteMatch on page 11-295.
. aarch64/debug/watchpoint/AArch64. WatchpointMatch on page 11-296.
aarch64/debug/breakpoint/AArch64.BreakpointMatch
// AArch64.BreakpointMatch()
//
// Breakpoint matching in an AArch64 translation regime.
boolean AArch64.BreakpointMatch(integer n, bits(64) vaddress, integer size)
assert !ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(ID_AA64DFRO_EL1.BRPs);
enabled = DBGBCR_EL1[n].E == '1';
ispriv = PSTATE.EL != ELO;
Tinked = DBGBCR_EL1[n].BT == '0x01';
isbreakpnt = TRUE;
Tinked_to = FALSE;
state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, DBGBCR_EL1[n].HMC, DBGBCR_EL1[n].PMC,
Tinked, DBGBCR_EL1[n].LBN, isbreakpnt, ispriv);
value_match = AArch64.BreakpointValueMatch(n, vaddress, Tinked_to);
if HaveAnyAArch32() && size == 4 then // Check second halfword
// If the breakpoint address and BAS of an Address breakpoint match the address of the
// second halfword of an instruction, but not the address of the first halfword, it is
// CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
// event.
match_i = AArch64.BreakpointValueMatch(n, vaddress + 2, 1inked_to);
if lvalue_match && match_i then
value_match = ConstrainUnpredictableBool();
11-290 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

match = value_match & state_match && enabled;

return match;

aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

// AArch64.BreakpointValueMatch()

boolean AArch64.BreakpointValueMatch(integer n, bits(64) vaddress, boolean 1linked_to)

// "n" is the identity of the breakpoint unit to match against.

// "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
// matching breakpoints.

// "Tinked_to" is TRUE if this is a call from StateMatch for Tinking.

// If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
// no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
if n > UInt(ID_AA64DFRO_EL1.BRPs) then

(c, n) = ConstrainUnpredictableInteger(@, UInt(ID_AA64DFRO_EL1.BRPs));

assert ¢ IN {Constraint_DISABLED, Constraint_UNKNOWN};

if ¢ == Constraint_DISABLED then return FALSE;

// If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
// call from StateMatch for linking).

if DBGBCR_EL1[n].E == '@' then return FALSE;

context_aware = (n >= UInt(ID_AA64DFRO_EL1.BRPs) - UInt(ID_AA64DFRO_EL1.CTX_CMPs));

// If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
dbgtype = DBGBCR_EL1[n].BT;

if ((dbgtype IN {'011x','11xx'} && !HaveV82Debug()) || // Context matching
dbgtype == '010x' || // Reserved
(dbgtype != '0x0x' && !context_aware) || // Context matching
(dbgtype == "lxxx' && !HaveEL(EL2))) then // EL2 extension

(c, dbgtype) = ConstrainUnpredictableBits();

assert ¢ IN {Constraint_DISABLED, Constraint_UNKNOWN};

if ¢ == Constraint_DISABLED then return FALSE;

// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

// Determine what to compare against.
match_addr = (dbgtype == '0x0x');
match_vmid = (dbgtype == '10xx');
match_cidl = (dbgtype == 'xx1x');
match_cid2 = (dbgtype == '11xx');
Tinked = (dbgtype == "xxx1');

// If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
// WMID and/or context ID match, of if not context-aware. The above assertions mean that the
// code can just test for match_addr == TRUE to confirm all these things.

if Tinked_to && (!1inked || match_addr) then return FALSE;

// If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
if !Tinked_to && Tlinked && !match_addr then return FALSE;

// Do the comparison.
if match_addr then
byte = UInt(vaddress<1:0>);
assert byte == 0; // "vaddress" is word aligned
byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1
top = AddrTop(vaddress, TRUE, PSTATE.EL);
BVR_match = vaddress<top:2> == DBGBVR_EL1[n]<top:2> && byte_select_match;
elsif match_cidl then
BVR_match = (PSTATE.EL IN {EL@, EL1} &% CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);
if match_vmid then
if !Havel6bitVMID() || VTCR_EL2.VS == '@' then

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-291
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

vmid = ZeroExtend(VSCTLR_EL2.VMID<7:0>, 16);
bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);
else
vmid = VSCTLR_EL2.VMID;
bvr_vmid = DBGBVR_EL1[n]<47:32>;
BXVR_match = (PSTATE.EL IN {ELO, EL1} & EL2Enabled() &&
vmid == bvr_vmid);
elsif match_cid2 then
BXVR_match = (HaveV82Debug() && EL2Enabled() &&
DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2);

bvr_match_valid = (match_addr || match_cidl);
bxvr_match_valid = (match_vmid || match_cid2);

match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match)

return match;

aarch64/debug/breakpoint/AArch64.StateMatch

// AArch64.StateMatch()

//

// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

boolean AArch64.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean Tlinked, bits(4) LBN,

only

boolean ishreakpnt, boolean ispriv)
// "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
// "Tinked" is TRUE if this is a linked breakpoint/watchpoint type.
// "LBN" is the Tinked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
// "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
// "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

// If parameters are set to a reserved type, behaves as either disabled or a defined type
(c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);

if ¢ == Constraint_DISABLED then return FALSE;

// Otherwise the HMC,SSC,PxC values are either valid or the values returned by

// CheckvalidStateMatch are valid.

EL3_match = HaveEL(EL3) && HMC == '1' && SSC<0> == '0';

EL2_match = HaveEL(EL2) && ((HMC == '1" && (SSC:PxC != '1000')) || SSC == '11");
EL1_match = PxC<0> == '1";

ELO_match = PxC<1> == '1’';

if lispriv && !isbreakpnt then
priv_match = ELO_match;
else
case PSTATE.EL of
when EL3 priv_match = EL3_match;
when EL2 priv_match = EL2_match;
when EL1 priv_match = EL1_match;
when ELO priv_match = ELO_match;

case SSC of
when '00' security_state_match = TRUE; // Both
when '01' security_state_match = !IsSecure(); // Non-secure only
when '10' security_state_match = IsSecure(); // Secure only

when '11"' security_state_match

(HMC == "1" || IsSecure()); // HMC=1 -> Both, @ -> Secure

if Tinked then
// "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
// it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
// UNKNOWN breakpoint that is context-aware.
Tbn = UInt(LBN);
first_ctx_cmp = (UInt(ID_AA64DFRO_EL1.BRPs) - UInt(ID_AA64DFRO_EL1.CTX_CMPs));
Tast_ctx_cmp = UInt(ID_AA64DFRO_EL1.BRPs);
if (Tbn < first_ctx_cmp || Tbn > last_ctx_cmp) then

11-292

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

(c, Tbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
assert ¢ IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};

case c of
when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE Tinked = FALSE; // No Tinking

// Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint
if Tinked then
vaddress = bits(64) UNKNOWN;
Tinked_to = TRUE;
Tinked_match = AArch64.BreakpointValueMatch(1bn, vaddress, Tinked_to);

return priv_match & security_state_match & (!linked || linked_match);

aarch64/debug/enables/AArch64.GenerateDebugExceptions

// AArch64.GenerateDebugExceptions()
//

booTlean AArch64.GenerateDebugExceptions()
return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure(), PSTATE.D);

aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

// AArch64.GenerateDebugExceptionsFrom()
//

boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from, boolean secure, bit mask)

if OSLSR_EL1.0SLK == '1' || DoubleLockStatus() || Halted() then
return FALSE;

route_to_e12 = HaveEL(EL2) && (!secure || IsSecureEL2Enabled()) && (HCR_EL2.TGE == '1' |
MDCR_EL2.TDE == '1'");

target = (if route_to_el2 then EL2 else EL1);

enabled = TRUE;

if from == target then

enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';
else

enabled = enabled && UInt(target) > UInt(from);

return enabled;

aarch64/debug/pmu/AArch64.CheckForPMUOverflow

// AArch64.CheckForPMUOverflow()
//

// Signal Performance Monitors overflow IRQ and CTI overflow events

boolean AArch64.CheckForPMUOverflow()

pmuirg = PMCR_ELO.E == '1' &% PMINTENSET_EL1<31> == '1' && PMOVSSET_EL0<31> == '1';
for n = 0 to UInt(PMCR_ELO.N) - 1
if HaveEL(EL2) then
E = (if n < UInt(MDCR_EL2.HPMN) then PMCR_ELQ.E else MDCR_EL2.HPME);
else
E = PMCR_ELO.E;
if E == '1" & PMINTENSET_EL1<n> == '1' && PMOVSSET_ELO@<n> == '1' then pmuirq = TRUE;

SetInterruptRequestlevel(InterruptID_PMUIRQ, if pmuirg then HIGH else LOW);
CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

// The request remains set until the condition is cleared. (For example, an interrupt handler

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-293
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_ELO.)

return pmuirg;

aarch64/debug/pmu/AArch64.CountEvents

// AArch64.CountEvents()
//

// Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

boolean AArch64.CountEvents(integer n)
assert n == 31 || n < UInt(PMCR_ELO.N);

// Event counting is disabled in Debug state
debug = Halted();

// In Non-secure state, some counters are reserved for EL2
if HaveEL(EL2) then
E =if n < UInt(MDCR_EL2.HPMN) || n == 31 then PMCR_ELO.E else MDCR_EL2.HPME;
else
E = PMCR_ELOQ.E;
enabled = E == '1"' && PMCNTENSET_ELO<n> == '1';

// Event counting in Secure state is prohibited unless any one of:
// + EL3 1is not implemented

// * EL3 is using AArch64 and MDCR_EL3.SPME ==

prohibited = FALSE;

// Event counting at EL2 is prohibited if all of:

// * The HPMD Extension is implemented

// * Executing at EL2

// = PMNx is not reserved for EL2

// * MDCR_EL2.HPMD == 1

if !prohibited && HaveEL(EL2) && HaveHPMDExt() && PSTATE.EL == EL2 && (n < UInt(MDCR_EL2.HPMN) || n
== 31) then

prohibited = (MDCR_EL2.HPMD == '1');

// The IMPLEMENTATION DEFINED authentication interface might override software controls
if ExternalSecureNoninvasiveDebugEnabled() then
prohibited = FALSE;

// For the cycle counter, PMCR_ELO.DP enables counting when otherwise prohibited
if prohibited & n == 31 then prohibited = (PMCR_ELQ.DP == '1');

// Event counting can be filtered by the {P, U, NSK, NSU, NSH, M, SH} bits
filter = if n == 31 then PMCCFILTR_EL@[31:0] else PMEVTYPER_ELO[n]<31:0>;

P = filter<3l>;

U = filter<30>;

NSK = if HaveEL(EL3) then filter<29> else '0';
NSU = if HaveEL(EL3) then filter<28> else '0';
NSH = if HaveEL(EL2) then filter<27> else '0';
M = if HaveEL(EL3) then filter<26> else '0';

case PSTATE.EL of
when ELO filtered = if IsSecure() then U == '1' else U != NSU;
when EL1 filtered = if IsSecure() then P == '1' else P != NSK;
when EL2 filtered = (NSH == '0'");
when EL3 filtered = (M != P);

return !debug && enabled & !prohibited && !filtered;

11-294 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/debug/statisticalprofiling/TimeStamp

enumeration TimeStamp {

TimeStamp_None, // No timestamp

TimeStamp_CoreSight, // CoreSight time (IMPLEMENTATION DEFINED)
TimeStamp_Physical, // Physical counter value with no offset
TimeStamp_Virtual }; // Physical counter value minus CNTVOFF_EL2

aarch64/debug/takeexceptiondbg/AArch64.TakeExceptioninDebugState

// AArch64.TakeExceptionInDebugState()
/!

// Take an exception in Debug state to an Exception Level using AArch64.

AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception)
assert HaveEL(target_el) && !'ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

sync_errors = HaveIESB() && SCTLR[target_el].IESB == '1';
// SCTLR[].IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool() then

sync_errors = FALSE;

SynchronizeContext();

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero
from_32 = UsingAArch32();

if from_32 then AArch64.MaybeZeroRegisterUppers();

AArch64.ReportException(exception, target_el);

PSTATE.EL = target_el;

PSTATE.nRW = 'Q';

PSTATE.SP = '1';

SPSR[] = bits(32) UNKNOWN;
ELR[] = bits(64) UNKNOWN;

// PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;

PSTATE.IL = '0';

if from_32 then // Coming from AArch32
PSTATE.IT = '00000000';
PSTATE.T = '0'; // PSTATE.J is RES@

if HavePANExt() && PSTATE.EL == EL1 &% SCTLR_EL1.SPAN == '0' then
PSTATE.PAN = '1"';

if HaveUAOExt() then PSTATE.UAO = 'Q';

if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;

DLR_EL® = bits(64) UNKNOWN;
DSPSR_EL® = bits(32) UNKNOWN;

EDSCR.ERR = '1'";
UpdateEDSCRFields(); // Update EDSCR processor state flags.

if sync_errors then
SynchronizeErrors();

EndOfInstruction();

aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

// AArch64.WatchpointByteMatch()
/!

boolean AArch64.WatchpointByteMatch(integer n, bits(64) vaddress)

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-295
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

el = PSTATE.EL;

top = AddrTop(vaddress, FALSE, el);

bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR_EL1[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');

mask = UInt(DBGWCR_EL1[n].MASK);

// If DBGWCR_EL1[n].MASK 1is non-zero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
// DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then
byte_select_match = ConstrainUnpredictableBool();

else
LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
if 1IsZero(MSB AND (MSB - 1)) then // Not contiguous
byte_select_match = ConstrainUnpredictableBool();
bottom = 3; // For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 && mask <= 2 then

(c, mask) = ConstrainUnpredictableInteger(3, 31);

assert ¢ IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};

case c of
when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE mask = 0; // No masking

// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

if mask > bottom then
WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match && !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then
WVR_match = ConstrainUnpredictableBool();
else
WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;

return WVR_match && byte_select_match;

aarch64/debug/watchpoint/AArch64.WatchpointMatch

// AArch64.WatchpointMatch()
/!

// Watchpoint matching in an AArch64 translation regime.

boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size, boolean ispriv,
boolean iswrite)
assert !ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(ID_AA64DFRO_EL1.WRPs);

// "ispriv" is FALSE for LDTR/STTR instructions executed at EL1 and all

// load/stores at EL@, TRUE for all other Toad/stores. "iswrite" is TRUE for stores, FALSE for
// loads.

enabled = DBGWCR_EL1[n].E == '1';

Tinked = DBGWCR_EL1[n].WT == '1';

isbreakpnt = FALSE;

state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
Tinked, DBGWCR_EL1[n].LBN, isbreakpnt, ispriv);

Ts_match = (DBGWCR_EL1[n].LSC<(if iswrite then 1 else @)> == '1');
value_match = FALSE;
for byte = 0 to size - 1
value_match = value_match || AArch64.WatchpointByteMatch(n, vaddress + byte);

return value_match && state_match & 1s_match && enabled;

11-296 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

11.1.2 aarch64/exceptions

This section includes the following pseudocode functions:

aarch64/exceptions/aborts/AArch64.Abort.
aarch64/exceptions/aborts/AArch64.AbortSyndrome on page 11-298.
aarch64/exceptions/aborts/AArch64.CheckPCAlignment on page 11-298.
aarch64/exceptions/aborts/AArch64.DataAbort on page 11-298.
aarch64/exceptions/aborts/AArch64.InstructionAbort on page 11-299.
aarch64/exceptions/aborts/AArch64.PCAlignmentFault on page 11-299.
aarch64/exceptions/aborts/AArch64.SPAlignmentFault on page 11-299.
aarch64/exceptions/asynch/AArch64. TakePhysical FIQException on page 11-300.
aarch64/exceptions/asynch/AArch64.TakePhysicalIRQException on page 11-300.
aarch64/exceptions/asynch/AArch64. TakePhysicalSErrorException on page 11-300.
aarch64/exceptions/asynch/AArch64. TakeVirtual FIQException on page 11-301.
aarch64/exceptions/asynch/AArch64. TakeVirtual[RQException on page 11-301.
aarch64/exceptions/asynch/AArch64. TakeVirtualSErrorException on page 11-301.
aarch64/exceptions/debug/AArch64.BreakpointException on page 11-302.
aarch64/exceptions/debug/AArch64.SoftwareBreakpoint on page 11-302.
aarch64/exceptions/debug/AArch64.SoftwareStep Exception on page 11-302.
aarch64/exceptions/debug/AArch64.VectorCatchException on page 11-303.
aarch64/exceptions/debug/AArch64. WatchpointException on page 11-303.
aarch64/exceptions/exceptions/AArch64.ExceptionClass on page 11-303.
aarch64/exceptions/exceptions/AArch64.ReportException on page 11-304.
aarch64/exceptions/exceptions/AArch64.ResetControlRegisters on page 11-305.
aarch64/exceptions/exceptions/AArch64.TakeReset on page 11-305.
aarch64/exceptions/ieeefp/AArch64.FPTrappedException on page 11-305.
aarch64/exceptions/syscalls/AArch64.CallHypervisor on page 11-306.
aarch64/exceptions/syscalls/AArch64.CallSecureMonitor on page 11-306.
aarch64/exceptions/syscalls/AArch64.CallSupervisor on page 11-306.
aarch64/exceptions/takeexception/AArch64. TakeException on page 11-307.
aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap on page 11-308.
aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps on page 11-308.
aarch64/exceptions/traps/AArch64.CheckF'PAdvSIMDEnabled on page 11-308.
aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap on page 11-309.
aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap on page 11-309.
aarch64/exceptions/traps/AArch64.CheckForWFxTrap on page 11-309.
aarch64/exceptions/traps/AArch64.ChecklllegalState on page 11-309.
aarch64/exceptions/traps/AArch64.MonitorModeTrap on page 11-310.
aarch64/exceptions/traps/AArch64.SystemAccessTrap on page 11-310.
aarch64/exceptions/traps/AArch64.SystemAccess TrapSyndrome on page 11-310.
aarch64/exceptions/traps/AArch64.UndefinedFault on page 11-311.
aarch64/exceptions/traps/AArch64. WFxTrap on page I11-311.
aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64 on page 11-311.

aarch64/exceptions/aborts/AArch64.Abort

// AArch64.Abort()

// Abort and Debug exception handling in an AArch64 translation regime.

AArch64.Abort(bits(64) vaddress, FaultRecord fault)

if IsDebugException(fault) then

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-297
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if fault.acctype == AccType_IFETCH then
AArch64.BreakpointException(fault);
else
AArch64.WatchpointException(vaddress, fault);
elsif fault.acctype == AccType_IFETCH then
AArch64.InstructionAbort(vaddress, fault);
else
AArch64.DataAbort(vaddress, fault);

aarch64/exceptions/aborts/AArch64.AbortSyndrome

// AArch64.AbortSyndrome()
/!
// Creates an exception syndrome record for Abort and Watchpoint exceptions
// from an AArch64 translation regime.

ExceptionRecord AArch64.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(64) vaddress)
exception = ExceptionSyndrome(exceptype);

d_side = exceptype IN {Exception_DataAbort, Exception_Watchpoint};

exception.syndrome = AArch64.FaultSyndrome(d_side, fault);
exception.vaddress = ZeroExtend(vaddress);
if IPAvValid(fault) then
exception.ipavalid = TRUE;
exception.NS = fault.ipaddress.NS;
exception.ipaddress = fault.ipaddress.address;
else
exception.ipavalid = FALSE;

return excepti on;

aarch64/exceptions/aborts/AArch64.CheckPCAlignment

// AArch64.CheckPCATignment()
//

AArch64.CheckPCATignment()
bits(64) pc = ThisInstrAddr();
if pc<1:0> !'= '00' then
AArch64.PCATignmentFault();
aarch64/exceptions/aborts/AArch64.DataAbort

// AArch64.DataAbort()
//

AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)
route_to_el3 = FALSE;
route_to_el2 = (PSTATE.EL IN {ELO, EL1} &% EL2Enabled() && (HCR_EL2.TGE == '1' ||
(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
IsSecondStage(fault)));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);
if PSTATE.EL == EL3 || route_to_el3 then

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

11-298 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/exceptions/aborts/AArch64.InstructionAbort

// AArch64.InstructionAbort()
/!

AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
route_to_el3 = FALSE;
route_to_el2 = (PSTATE.EL IN {ELO, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || IsSecondStage(fault) |
(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault))));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = AArch64.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);

if PSTATE.EL == EL3 || route_to_el3 then

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.PCAlignmentFault

// AArch64.PCATignmentFault()
//

// Called on unaligned program counter in AArch64 state.

AArch64.PCATignmentFault()

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_PCAlignment);
exception.vaddress = ThisInstrAddr();

if UInt(PSTATE.EL) > UInt(EL1) then

AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
elsif EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.SPAlignmentFault

// AArch64.SPATignmentFault()

/!
// Called on an unaligned stack pointer in AArch64 state.

AArch64.SPATignmentFault()

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SPAlignment);

if UInt(PSTATE.EL) > UInt(EL1) then

AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
elsif EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-299
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/exceptions/asynch/AArch64.TakePhysicalFIQException

// AArch64.TakePhysicalFIQException()
/!

AArch64.TakePhysicalFIQException()

route_to_el3 = FALSE;

route_to_el2 = (PSTATE.EL IN {ELO, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1" || HCR_EL2.FMO == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();

vect_offset = 0x100;

exception = ExceptionSyndrome(Exception_FIQ);

if route_to_el3 then

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then

assert PSTATE.EL != EL3;

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

assert PSTATE.EL IN {ELO, EL1};

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakePhysicallRQException
// AArch64.TakePhysicalIRQException()

//
// Take an enabled physical IRQ exception.

AArch64.TakePhysicalIRQException()

route_to_el3 = FALSE;

route_to_el2 = (PSTATE.EL IN {ELO, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1"));

bits(64) preferred_exception_return = ThisInstrAddr();

vect_offset = 0x80;

exception = ExceptionSyndrome(Exception_IRQ);

if route_to_el3 then

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then

assert PSTATE.EL != EL3;

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

assert PSTATE.EL IN {ELO, EL1};

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakePhysicalSErrorException

// AArch64.TakePhysicalSErrorException()
/!

AArch64.TakePhysicalSErrorException(boolean impdef_syndrome, bits(24) syndrome)

route_to_el3 = FALSE;

route_to_el2 = (PSTATE.EL IN {ELO, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1"));

bits(64) preferred_exception_return = ThisInstrAddr();

vect_offset = 0x180;

exception = ExceptionSyndrome(Exception_SError);
exception.syndrome<24> = if impdef_syndrome then '1' else '0';
exception.syndrome<23:0> = syndrome;

ClearPendingPhysicalSError();

11-300

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if PSTATE.EL == EL3 || route_to_el3 then

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakeVirtualFIQException

// AArch64.TakeVirtualFIQException()
/!

AArch64.TakeVirtualFIQException()
assert PSTATE.EL IN {ELO, EL1} && EL2Enabled();
assert HCR_EL2.TGE == 'Q' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x100;

exception = ExceptionSyndrome(Exception_FIQ);

AMArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakeVirtuallRQException

// AArch64.TakeVirtualIRQException()
/!

AArch64.TakeVirtualIRQException()
assert PSTATE.EL IN {ELO, EL1} && EL2Enabled();
assert HCR_EL2.TGE == 'Q' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x80;

exception = ExceptionSyndrome(Exception_IRQ);

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakeVirtualSErrorException

// AArch64.TakeVirtualSErrorException()
//

AArch64.TakeVirtualSErrorException(boolean impdef_syndrome, bits(24) syndrome)

assert PSTATE.EL IN {ELOQ, EL1} && EL2EnabTed();
assert HCR_EL2.TGE == 'Q' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x180;

exception = ExceptionSyndrome(Exception_SError);

if HaveRASExt() then
exception.syndrome<24> = VSESR_EL2.IDS;
exception.syndrome<23:0> = VSESR_EL2.ISS;

else
exception.syndrome<24> = if impdef_syndrome then '1l' else 'Q';
if impdef_syndrome then exception.syndrome<23:0> = syndrome;

ClearPendingVirtualSError();
AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-301
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/exceptions/debug/AArch64.BreakpointException

// AArch64.BreakpointException()
/!

AArch64.BreakpointException(FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {ELOQ, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1"));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

vaddress = bits(64) UNKNOWN;
exception = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress);

if PSTATE.EL == EL2 || route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

// AArch64.SoftwareBreakpoint()
/!

AArch64.SoftwareBreakpoint(bits(16) immediate)

route_to_el2 = (PSTATE.EL IN {ELO, EL1} &&
EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'))

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SoftwareBreakpoint);
exception.syndrome<15:0> = immediate;

if UInt(PSTATE.EL) > UInt(EL1) then

AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
elsif route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareStepException

// AArch64.SoftwareStepException()
/!

AArch64.SoftwareStepException()
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {ELO, EL1} && EL2Enabled() &&
(HCR_EL2.TCE == '1" || MDCR_EL2.TDE == '1"));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SoftwareStep);
if SoftwareStep_DidNotStep() then
exception.syndrome<24> = '0';
else
exception.syndrome<24> = '1';
exception.syndrome<6> = if SoftwareStep_SteppedEX() then 'l' else '0';

11-302 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if PSTATE.EL == EL2 || route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.VectorCatchException

// AArch64.VectorCatchException()

/!
// Vector Catch taken from EL@ or EL1 to EL2. This can only be called when debug exceptions are
// being routed to EL2, as Vector Catch is a legacy debug event.

AArch64.VectorCatchException(FaultRecord fault)
assert PSTATE.EL != EL2;
assert EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1");

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

vaddress = bits(64) UNKNOWN;
exception = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress);

AMArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.WatchpointException

// AArch64.WatchpointException()
/!

AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {ELO, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1" || MDCR_EL2.TDE == '1'"));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress);

if PSTATE.EL == EL2 || route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/exceptions/AArch64.ExceptionClass
// AArch64.ExceptionClass()

/!
// Returns the Exception Class and Instruction Length fields to be reported in ESR

(integer,bit) AArch64.ExceptionClass(Exception exceptype, bits(2) target_el)
il = if ThisInstrLength() == 32 then '1l' else '0';
from_32 = UsingAArch32();
assert from_32 || il = '1'; // AArch64 instructions always 32-bit

case exceptype of

when Exception_Uncategorized ec = 0x00; i1 = '1';

when Exception_WFxTrap ec = 0x01;

when Exception_CP15RTTrap ec = 0x03; assert from_32;
when Exception_CP15RRTTrap ec = 0x04; assert from_32;
when Exception_CP14RTTrap ec = 0x05; assert from_32;
when Exception_CP14DTTrap ec = 0x06; assert from_32;
when Exception_AdvSIMDFPAccessTrap ec = 0x07;

when Exception_FPIDTrap ec = 0x08;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-303

1D090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

when Exception_PACTrap ec = 0x09;

when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
when Exception_IllegalState ec = OxQE; i1 = '1';

when Exception_SupervisorCall ec = Ox11;

when Exception_HypervisorCall ec = 0x12;

when Exception_MonitorCall ec = 0x13;

when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
when Exception_PACFail ec = Ox1C;

when Exception_InstructionAbort ec = 0x20; il = '1';

when Exception_PCATignment ec = 0x22; i1 = '1";

when Exception_DataAbort ec = 0x24;

when Exception_SPATignment ec = 0x26; i1 = '1"; assert !from_32;
when Exception_FPTrappedException ec = 0x28;

when Exception_SError ec = Ox2F; il = '1';

when Exception_Breakpoint ec = 0x30; il = '1";

when Exception_SoftwareStep ec = 0x32; il = '1";

when Exception_Watchpoint ec = 0x34; il = '1';

when Exception_SoftwareBreakpoint ec = 0x38;

when Exception_VectorCatch ec = Ox3A; i1 = '1"; assert from_32;
otherwise Unreachable();

if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
ec = ec + 1;

if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
ec = ec + 4;

return (ec,il);

aarch64/exceptions/exceptions/AArch64.ReportException

// AArch64.ReportException()
//

// Report syndrome information for exception taken to AArch64 state.

AArch64.ReportException(ExceptionRecord exception, bits(2) target_el)
Exception exceptype = exception.exceptype;

(ec,i1) = AArch64.ExceptionClass(exceptype, target_el);
iss = exception.syndrome;

// IL is not valid for Data Abort exceptions without valid instruction syndrome information
if ec IN {0x24,0x25} && iss<24> == '0' then
i1 ="1";

ESR[target_el] = ec<5:0>:71:1ss;

if exceptype IN {Exception_InstructionAbort, Exception_PCAlignment, Exception_DataAbort,
Exception_Watchpoint} then
FAR[target_el] = exception.vaddress;
else
FAR[target_el] = bits(64) UNKNOWN;

if target_el == EL2 then
if exception.ipavalid then
HPFAR_EL2<43:4> = exception.ipaddress<51:12>;
if IsSecureEL2Enabled() && IsSecure() then
HPFAR_EL2.NS = exception.NS;
else
HPFAR_EL2.NS = '0';
else
HPFAR_EL2<43:4> = bits(40) UNKNOWN;

return;

11-304

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.
AArch64.ResetControlRegisters(boolean cold_reset);

aarch64/exceptions/exceptions/AArch64.TakeReset
// AArch64.TakeReset()

//
// Reset into AArch64 state

AArch64.TakeReset(boolean cold_reset)
assert !HighestELUsingAArch32();

// Enter the highest implemented Exception level in AArch64 state
PSTATE.nRW = 'Q"';
if HaveEL(EL3) then
PSTATE.EL = EL3;
elsif HaveEL(EL2) then
PSTATE.EL = EL2;
else
PSTATE.EL = EL1;

// Reset the system registers and other system components
AArch64.ResetControlRegisters(cold_reset);

// Reset all other PSTATE fields

PSTATE.SP = '1'; // Select stack pointer

PSTATE.<D,A,I,F> = '1111'; // A11 asynchronous exceptions masked

PSTATE.SS = '0'; // Clear software step bit

PSTATE.DIT = 'Q'; // PSTATE.DIT 1is reset to @ when resetting into AArch64
PSTATE.IL = '0'; // Clear I1legal Execution state bit

// A1l registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
// below are UNKNOWN bitstrings after reset. In particular, the return information registers
// ELR_ELx and SPSR_ELx have UNKNOWN values, so that it

// is impossible to return from a reset in an architecturally defined way.
AArch64.ResetGeneralRegisters();

AArch64.ResetSIMDFPRegisters();

AArch64.ResetSpecialRegisters();

ResetExternalDebugRegisters(cold_reset);

bits(64) rv; // IMPLEMENTATION DEFINED reset vector
rv = RVBAR_EL2;

// The reset vector must be correctly aligned
assert IsZero(rv<63:PAMax()>) && IsZero(rv<1:0>);

BranchTo(rv, BranchType_RESET);

aarch64/exceptions/ieeefp/AArch64.FPTrappedException

// AArch64.FPTrappedException()
/!

AArch64.FPTrappedException(boolean is_ase, integer element, bits(8) accumulated_exceptions)
exception = ExceptionSyndrome(Exception_FPTrappedException);
if is_ase then
if boolean IMPLEMENTATION_DEFINED "vector instructions set TFV to 1" then

exception.syndrome<23> = '1'; // TRV
else
exception.syndrome<23> = '0'; // TRV
else
exception.syndrome<23> = '1'; // TRV
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-305

ID090320

Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

exception.syndrome<10:8> = bits(3) UNKNOWN; // VECITR
if exception.syndrome<23> == '1' then

exception.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF

else
exception.syndrome<7,4:0>

bits(6) UNKNOWN;
route_to_el2 = EL2Enabled() &% HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

if UInt(PSTATE.EL) > UInt(EL1) then

AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallHypervisor
// AArch64.CallHypervisor()

//
// Performs a HVC call

AArch64.CalTHypervisor(bits(16) immediate)
assert HaveEL(EL2);

SSAdvance();
bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_HypervisorCall);
exception.syndrome<15:0> = immediate;

if PSTATE.EL == EL3 then

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

// AArch64.Call1SecureMonitor()
/!

AArch64.Cal1SecureMonitor(bits(16) immediate)
assert HaveEL(EL3) && !'ELUsingAArch32(EL3);
SSAdvance();
bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_MonitorCall);
exception.syndrome<15:0> = immediate;

AMArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSupervisor

// AArch64.Cal1Supervisor()

//
// Calls the Supervisor

AArch64.CallSupervisor(bits(16) immediate)

SSAdvance();
route_to_el2 = PSTATE.EL == ELO &% EL2Enabled() && HCR_EL2.TGE == '1';

11-306

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode

11.1 Pseudocode for AArch64 operations

bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SupervisorCall);
exception.syndrome<15:0> = immediate;

if UInt(PSTATE.EL) > UInt(EL1) then

AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/takeexception/AArch64.TakeException

// AArch64.TakeException()
/!

// Take an exception to an Exception Level using AArch64.

AArch64.TakeException(bits(2) target_el, ExceptionRecord exception,

bits(64) preferred_exception_return, integer vect_offset)
assert HaveEL(target_el) && !'ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

sync_errors = HaveIESB() && SCTLR[target_el].IESB == '1';
if sync_errors && InsertIESBBeforeException(target_el) then
SynchronizeErrors();
iesb_req = FALSE;
sync_errors = FALSE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

SynchronizeContext();

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero

from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();

if UInt(target_el) > UInt(PSTATE.EL) then
booTean Tower_32;
if target_el == EL3 then
if EL2Enabled() then
Tower_32 = ELUsingAArch32(EL2);
else
Tower_32 = ELUsingAArch32(EL1);
else
Tower_32 = ELUsingAArch32(target_el - 1);
vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);

elsif PSTATE.SP == '1' then
vect_offset = vect_offset + 0x200;

spsr = GetPSRFromPSTATE();

if !(exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then
AArch64.ReportException(exception, target_el);

PSTATE.EL = target_el;
PSTATE.nRW = '0"';
PSTATE.SP = '1';

SPSR[] = spsr;
ELR[] = preferred_exception_return;

PSTATE.SS = '0';

PSTATE.<D,A,I,F> = '1111";

PSTATE.IL = '0"';

if from_32 then // Coming from AArch32

PSTATE.IT = '00000000';

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-307

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

PSTATE.T = '0"; // PSTATE.] is RES@
if HavePANExt() && PSTATE.EL == EL1 && SCTLR_EL1.SPAN == '0' then
PSTATE.PAN = '1"';
if HaveUAOExt() then PSTATE.UAO = '0';
if HaveSSBSExt() then PSTATE.SSBS = SCTLR[].DSSBS;

BranchTo(VBAR[]<63:11>:vect_offset<10:0>, BranchType_EXCEPTION);
if sync_errors then
SynchronizeErrors();
iesb_req = TRUE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

EndOfInstruction();

aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

// AArch64.AdvSIMDFPAccessTrap()

/!
// Trapped access to Advanced SIMD or FP registers due to CPACR[].

AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

route_to_el2 = (target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1');

if route_to_el2 then
exception = ExceptionSyndrome(Exception_Uncategorized);
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
exception.syndrome<24:20> = ConditionSyndrome();
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

return;

aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

// AArch64.CheckCP15InstrCoarseTraps()

/!
// Check for coarse-grained AArch32 CP15 traps in HSTR_EL2 and HCR_EL2.

boolean AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

// Check for coarse-grained Hyp traps

if PSTATE.EL IN {ELO, EL1} && EL2Enabled() then
// Check for MCR, MRC, MCRR and MRRC disabled by HSTR_EL2<CRn/CRm>
major = if nreg == 1 then CRn else CRm;

// Check for MRC and MCR disabled by HCR_EL2.TIDCP
if (HCR_EL2.TIDCP == '1' && nreg == 1 &&
((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 1) ||
(CRn == 10 && CRm IN {0,1, 4, 8 1B Il
(CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then
return TRUE;

return FALSE;

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

// AArch64.CheckFPAdvSIMDEnabled()

/!
// Check against CPACR[]

AArch64.CheckFPAdvSIMDEnabled()

11-308 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if PSTATE.EL IN {ELO, EL1} then
// Check if access disabled in CPACR_EL1
case CPACR_EL1.FPEN of
when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == ELO;
when '11' disabled = FALSE;
if disabled then AArch64.AdvSIMDFPAccessTrap(ELL);

AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

// AArch64.CheckFPAdvSIMDTrap()
//
// Check against CPTR_EL2 and CPTR_EL3.

AArch64.CheckFPAdvSIMDTrap()
if PSTATE.EL IN {ELO, EL1, EL2} && EL2Enabled() then
// Check if access disabled in CPTR_EL2
if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

return;

aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

// AArch64.CheckForSMCUndefOrTrap()
//
// Check for UNDEFINED or trap on SMC instruction

AArch64.CheckForSMCUndefOrTrap(bits(16) imm)
if PSTATE.EL == ELO then UNDEFINED;
route_to_el2 = FALSE;
if !HaveEL(EL3) || PSTATE.EL == ELO then
UNDEFINED;
route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';
if route_to_el2 then
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = ExceptionSyndrome(Exception_MonitorCall);
exception.syndrome<15:0> = jmm;
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForWFxTrap
// AArch64.CheckForWFxTrap()

/!
// Check for trap on WFE or WFI instruction

AArch64.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
assert HaveEL(target_el);

case target_el of
when EL1
trap = (if is_wfe then SCTLR[].nTWE else SCTLR[].nTWI) == '0';
when EL2
trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';

if trap then
AArch64.WFxTrap(target_el, is_wfe);
aarch64/exceptions/traps/AArch64.ChecklllegalState
// AArch64.CheckI1legalState()

/!
// Check PSTATE.IL bit and generate Illegal Execution state exception if set.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-309
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

AArch64.CheckI1legalState()
if PSTATE.IL == '1' then
route_to_el2 = PSTATE.EL == ELQ &% EL2Enabled() && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_ITlegalState);

if UInt(PSTATE.EL) > UInt(EL1) then

AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
elsif route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.MonitorModeTrap
// AArch64.MonitorModeTrap()

//

// Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

AArch64 .MonitorModeTrap()
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_Uncategorized);
if IsSecureEL2Enabled() then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
AMArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
aarch64/exceptions/traps/AArch64.SystemAccessTrap
// AArch64.SystemAccessTrap()
//

// Trapped access to AArch64 system register or system instruction.

AArch64.SystemAccessTrap(bits(2) target_el, integer ec)
assert HaveEL(target_el) && target_el != ELO && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.SystemAccessTrapSyndrome(ThisInstr(), ec);
AMArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome
// AArch64.SystemAccessTrapSyndrome()

/!
// Returns the syndrome information for traps on AArch64 MSR/MRS instructions.

ExceptionRecord AArch64.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
ExceptionRecord exception;
case ec of
when 0x0 // Trapped access due to unknown
reason.
exception = ExceptionSyndrome(Exception_Uncategorized);
when 0x7 // Trapped access to SVE, Advance
SIMD&FP system register.
exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
exception.syndrome<24:20> = ConditionSyndrome();
when 0x18 // Trapped access to system
register or system instruction.

11-310 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

exception = ExceptionSyndrome(Exception_SystemRegisterTrap);
instr = ThisInstr();

exception.syndrome<21:20> = instr<20:19>; // 0p@
exception.syndrome<19:17> = instr<7:5>; // 0p2
exception.syndrome<16:14> = instr<18:16>; // Opl
exception.syndrome<13:10> = instr<15:12>; // CRn
exception.syndrome<9:5> = instr<4:0>; // Rt
exception.syndrome<4:1> = instr<11:8>; // CRm
exception.syndrome<0> = instr<21>; // Direction
otherwise
Unreachable();

return excepti on;

aarch64/exceptions/traps/AArch64.UndefinedFault

// AArch64.UndefinedFault()
//

AArch64.UndefinedFault()

route_to_el2 = PSTATE.EL == ELO & EL2Enabled() && HCR_EL2.TGE == '1';
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_Uncategorized);

if UInt(PSTATE.EL) > UInt(EL1) then

AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
elsif route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.WFxTrap

// AArch64 .WFxTrap()
/] ====m=mmmmmm==m=s

AArch64.WFxTrap(bits(2) target_el, boolean is_wfe)
assert UInt(target_el) > UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_WFxTrap);
exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<@> = if is_wfe then '1' else '0';

if target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

// CheckFPAdvSIMDEnabled64()

/!
// AArch64 instruction wrapper

CheckFPAdvSIMDEnabled64()
AArch64.CheckFPAdvSIMDEnabled();

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-311
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

11.1.3 aarch64/functions

This section includes the following pseudocode functions:

. aarch64/functions/aborts/AArch64.CreateFaultRecord on page 11-313.

. aarch64/functions/aborts/AArch64.FaultSyndrome on page 11-314.

. aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass on page 11-314.
. aarch64/functions/exclusive/AArch64.1sExclusiveVA on page 11-315.

. aarch64/functions/exclusive/AArch64.MarkExclusiveVA on page 11-315.

. aarch64/functions/exclusive/AArch64.SetExclusiveMonitors on page 11-315.
. aarch64/functions/fusedrstep/FPRSqrtStepFused on page 11-315.

. aarch64/functions/fusedrstep/FPRecipStepFused on page 11-316.

. aarch64/functions/memory/AArch64.CheckAlignment on page 11-317.

. aarch64/functions/memory/AArch64.MemSingle on page 11-317.

. aarch64/functions/memory/AArch64. TranslateAddressForAtomicAccess on page 11-318.
. aarch64/functions/memory/CheckSPAlignment on page 11-318.

. aarch64/functions/memory/IsBlockDescriptorNTBitValid on page 11-318.

. aarch64/functions/memory/Mem on page 11-319.

. aarch64/functions/memory/MemAtomic on page 11-320.

. aarch64/functions/memory/MemAtomic CompareAndSwap on page 11-320.

. aarch64/functions/pac/addpac/AddPAC on page 11-321.

. aarch64/functions/pac/addpacda/AddPACDA on page 11-322.

. aarch64/functions/pac/addpacdb/AddPACDB on page 11-322.

. aarch64/functions/pac/addpacga/AddPACGA on page 11-323.

. aarch64/functions/pac/addpacia/AddPACIA on page 11-323.

. aarch64/functions/pac/addpacib/AddPACIB on page 11-324.

. aarch64/functions/pac/auth/AArch64.PACFailException on page 11-324.

. aarch64/functions/pac/auth/Auth on page 11-324.

. aarch64/functions/pac/authda/AuthDA on page 11-325.

. aarch64/functions/pac/authdb/AuthDB on page 11-326.

. aarch64/functions/pac/authia/AuthlA on page 11-326.

. aarch64/functions/pac/authib/AuthIB on page 11-327.

. aarch64/functions/pac/calcbottompachit/CalculateBottomPACBit on page 11-327.
. aarch64/functions/pac/computepac/ComputePAC on page 11-328.

. aarch64/functions/pac/computepac/PACCelllnvShuffle on page 11-328.

. aarch64/functions/pac/computepac/PACCellShuffle on page 11-329.

. aarch64/functions/pac/computepac/PACInvSub on page 11-329.

. aarch64/functions/pac/computepac/PACMult on page 11-330.

. aarch64/functions/pac/computepac/PACSub on page 11-330.

. aarch64/functions/pac/computepac/RotCell on page 11-330.

. aarch64/functions/pac/computepac/TweakCellInvRot on page 11-331.

. aarch64/functions/pac/computepac/TweakCellRot on page 11-331.

. aarch64/functions/pac/computepac/TweakInvShuffle on page 11-331.

. aarch64/functions/pac/computepac/TweakShuffle on page 11-331.

. aarch64/functions/pac/pac/HaveEnhancedPAC on page 11-332.

. aarch64/functions/pac/pac/HaveEnhancedPAC2 on page 11-332.

. aarch64/functions/pac/pac/HaveFPAC on page 11-332.

. aarch64/functions/pac/pac/HaveFPACCombined on page 11-332.

. aarch64/functions/pac/pac/HavePACExt on page 11-332.

. aarch64/functions/pac/pac/PtrHas UpperAndLowerAddRanges on page 11-333.
. aarch64/functions/pac/strip/Strip on page 11-333.

. aarch64/functions/pac/trappacuse/TrapPACUse on page 11-333.

11-312 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

. aarch64/functions/ras/AArch64.ESBOperation on page 11-333.

. aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome on page 11-334.

. aarch64/functions/ras/AArch64.ReportDeferredSError on page 11-334.

. aarch64/functions/ras/AArch64.vESBOperation on page 11-334.

. aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers on page 11-334.
. aarch64/functions/registers/AArch64.ResetGeneralRegisters on page 11-335.
. aarch64/functions/registers/AArch64.ResetSIMDFPRegisters on page 11-335.
. aarch64/functions/registers/AArch64.ResetSpecialRegisters on page 11-335.
. aarch64/functions/registers/AArch64.ResetSystemRegisters on page 11-336.
. aarch64/functions/registers/PC on page 11-336.

. aarch64/functions/registers/SP on page 11-336.

. aarch64/functions/registers/V on page 11-336.

. aarch64/functions/registers/Vpart on page 11-337.

. aarch64/functions/registers/X on page 11-337.

. aarch64/functions/sysregisters/CNTKCTL on page 11-338.

. aarch64/functions/sysregisters/CNTKCTLType on page 11-338.

. aarch64/functions/sysregisters/CPACR on page 11-338.

. aarch64/functions/sysregisters/CPACRType on page 11-338.

. aarch64/functions/sysregisters/ELR on page 11-338.

. aarch64/functions/sysregisters/ESR on page 11-339.

. aarch64/functions/sysregisters/ESRType on page 11-339.

. aarch64/functions/sysregisters/FAR on page 11-339.

. aarch64/functions/sysregisters/MAIR on page 11-340.

. aarch64/functions/sysregisters/MAIRType on page 11-340.

. aarch64/functions/sysregisters/MPUIR on page 11-340.

. aarch64/functions/sysregisters/MPUIR Type on page 11-340.

. aarch64/functions/sysregisters/PRBARn on page 11-340.

. aarch64/functions/sysregisters/PRBARnType on page 11-341.

. aarch64/functions/sysregisters/PRLARn on page 11-341.

. aarch64/functions/sysregisters/PRLARnType on page 11-341.

. aarch64/functions/sysregisters/SCTLR on page 11-341.

. aarch64/functions/sysregisters/SCTLR Type on page 11-341.

. aarch64/functions/sysregisters/VBAR on page 11-341.

. aarch64/functions/system/AArch64.CheckSystemAccess on page 11-342.

. aarch64/functions/system/AArch64. ExecutingATS 1xPInstr on page 11-342.

. aarch64/functions/system/AArch64.SysInstr on page 11-342.

. aarch64/functions/system/AArch64.SysInstrWithResult on page 11-343.

. aarch64/functions/system/AArch64.SysRegRead on page 11-343.

. aarch64/functions/system/AArch64.SysRegWrite on page 11-343.

aarch64/functions/aborts/AArch64.CreateFaultRecord

// AArch64.CreateFaultRecord()
//

FauTtRecord AArch64.CreateFaultRecord(Fault statuscode, bits(52) ipaddress, boolean NS,
integer level, AccType acctype, boolean write, bit extflag,
bits(2) errortype, boolean secondstage, boolean s2fslwalk)

FaultRecord fault;

fault.statuscode = statuscode;

fault.domain = bits(4) UNKNOWN; // Not used from AArch64
fault.debugmoe = bits(4) UNKNOWN; // Not used from AArch64
fault.errortype = errortype;

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-313
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

fault.ipaddress.NS = if NS then '1' else '0';
fault.ipaddress.address = ipaddress;
fault.level = Tlevel;

fault.acctype = acctype;

fault.write = write;

fault.extflag = extflag;

fault.secondstage = secondstage;
fault.s2fslwalk = s2fslwalk;

return fault;

aarch64/functions/aborts/AArch64.FaultSyndrome

// AArch64.FaultSyndrome()
/!
// Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
// an Exception Level using AArch64.

bits(25) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(25) iss = Zeros();
if HaveRASExt() && IsExternalSyncAbort(fault) then iss<12:11> = fault.errortype; // SET
if d_side then
if IsSecondStage(fault) && !fault.s2fslwalk then iss<24:14> = LSInstructionSyndrome();
if fault.acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_IC, AccType_AT} then
iss<8> = '1'; iss<6> = '1';
else
iss<6> = if fault.write then '1' else '0';
if IsExternalAbort(fault) then iss<9> = fault.extflag;
iss<7> = if fault.s2fslwalk then '1' else '0';
iss<5:0> = EncodelLDFSC(fault.statuscode, fault.level);

return iss;

aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

// AArch64.ExclusiveMonitorsPass()
/!

// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size)

// It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens

// before or after the check on the local Exclusives monitor. As a result a failure
// of the Tocal monitor can occur on some implementations even if the memory

// access would give an memory abort.

acctype = AccType_ATOMIC;
iswrite = TRUE;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

passed = AArch64.IsExclusiveVA(address, ProcessorID(), size);
if !Ipassed then
return FALSE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

passed = IsExclusivelocal(memaddrdesc.paddress, ProcessorID(), size);

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

ClearExclusivelocal(ProcessorID());

if passed then
if memaddrdesc.memattrs.shareable then
passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

return passed;

aarch64/functions/exclusive/AArch64.IsExclusiveVA

// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.

//

// It is permitted (but not required) for this function to return FALSE and

// cause a store exclusive to fail if the virtual address region is not

// totally included within the region recorded by MarkExclusiveVA().

/!
// It is always safe to return TRUE which will check the physical address only.
boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.MarkExclusiveVA

// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.

AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);
aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

// AArch64.SetExclusiveMonitors()
//

// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.

AArch64.SetExclusiveMonitors(bits(64) address, integer size)

acctype = AccType_ATOMIC;
iswrite = FALSE;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
return;

if memaddrdesc.memattrs.shareable then
MarkExcTusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

MarkExclusivelLocal(memaddrdesc.paddress, ProcessorID(), size);

AArch64.MarkExclusiveVA(address, ProcessorID(), size);

aarch64/functions/fusedrstep/FPRSqrtStepFused

// FPRSqrtStepFused()
// ==================

bits(N) FPRSqrtStepFused(bits(N) opl, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
opl = FPNeg(opl);

FPRounding rounding = FPRoundingMode(FPCR);

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-315
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

(typel,signl,valuel) = FPUnpack(opl, FPCR);
(type2,sign2,value2) = FPUnpack(op2, FPCR);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, FPCR);

if !done then
infl = (typel == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (infl & zero2) || (zerol && inf2) then
result = FPOnePointFive('0");
elsif infl || inf2 then
result = FPInfinity(signl EOR sign2);
else
// Fully fused multiply-add and halve
result_value = (3.0 + (valuel = value2)) / 2.0;
if result_value == 0.0 then
// Sign of exact zero result depends on rounding mode
sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
result = FPZero(sign);
else
result = FPRound(result_value, FPCR, rounding);

return result;

aarch64/functions/fusedrstep/FPRecipStepFused

// FPRecipStepFused()
/| ==================

bits(N) FPRecipStepFused(bits(N) opl, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
opl = FPNeg(opl);

FPRounding rounding = FPRoundingMode(FPCR);

(typel,signl,valuel) = FPUnpack(opl, FPCR);
(type2,sign2,value2) = FPUnpack(op2, FPCR);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, FPCR);

if !done then
infl = (typel == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (infl & zero2) || (zerol && inf2) then
result = FPTwo('0");
elsif infl || inf2 then
result = FPInfinity(signl EOR sign2);
else
// Fully fused multiply-add
result_value = 2.0 + (valuel = value2);
if result_value == 0.0 then
// Sign of exact zero result depends on rounding mode
sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
result = FPZero(sign);
else
result = FPRound(result_value, FPCR, rounding);
return result;

11-316 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/functions/memory/AArch64.CheckAlignment

// AArch64.CheckAlignment()
/!

boolean AArch64.CheckAlignment(bits(64) address, integer alignment, AccType acctype,
boolean iswrite)

aligned = (address == Align(address, alignment));
atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,
AccType_ORDEREDATOMICRW };

ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_ORDEREDATOMIC,
AccType_ORDEREDATOMICRW };
vector = acctype == AccType_VEC;
if SCTLR[].A == '1' then check = TRUE;
elsif HaveLSE2Ext() then
check = (UInt(address<0+:4>) + alignment > 16) && ((ordered && SCTLR[].nAA == '0') || atomic);
else check = atomic || ordered;

if check && !aligned then
secondstage = FALSE;
AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));

return aligned;

aarch64/functions/memory/AArch64.MemSingle

// AArch64.MemSingle[] - non-assignment (read) form
//

// Perform an atomic, little-endian read of 'size' bytes.

bits(sizex8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned]
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
bits(size«8) value;
iswrite = FALSE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Memory array access

accdesc = CreateAccessDescriptor(acctype);
value = _Mem[memaddrdesc, size, accdesc];
return value;

// AArch64.MemSingle[] - assignment (write) form
//

// Perform an atomic, little-endian write of 'size' bytes.

AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned] = bits(sizex8)
value

assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
iswrite = TRUE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-317
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if memaddrdesc.memattrs.shareable then
ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// Memory array access

accdesc = CreateAccessDescriptor(acctype);
_Mem[memaddrdesc, size, accdesc] = value;
return;

aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess

// AArch64.TranslateAddressForAtomicAccess()
/!

// Performs an alignment check for atomic memory operations.
// Also translates 64-bit Virtual Address into Physical Address.

AddressDescriptor AArch64.TranslateAddressForAtomicAccess(bits(64) address, integer sizeinbits)
boolean iswrite = FALSE;
size = sizeinbits DIV 8;

assert size IN {1, 2, 4, 8, 16};
aligned = AArch64.CheckAlignment(address, size, AccType_ATOMICRW, iswrite);

// MMU or MPU Tookup
memaddrdesc = AArch64.TranslateAddress(address, AccType_ATOMICRW, iswrite, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareable then
ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

return memaddrdesc;

aarch64/functions/memory/CheckSPAlignment
// CheckSPAlignment()
// Check correct stack pointer alignment for AArch64 state.

CheckSPATignment()
bits(64) sp = SP[];
if PSTATE.EL == EL@ then
stack_align_check = (SCTLR[].SA@ != '0");
else
stack_align_check = (SCTLR[].SA != '0");

if stack_align_check && sp != Align(sp, 16) then
AArch64.SPATignmentFault();

return;

aarch64/functions/memory/isBlockDescriptorNTBitValid

// If the implementation supports changing the block size without a break-before-make
// approach, then for implementations that have level 1 or 2 support, the nT bit in
// the block descriptor is valid.

boolean IsBlockDescriptorNTBitValid();

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/functions/memory/Mem

// Mem[] - non-assignment (read) form
/!
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch64.MemSingle directly.

bits(sizex8) Mem[bits(64) address, integer size, AccType acctype]
assert size IN {1, 2, 4, 8, 16};
bits(sizex8) value;
boolean iswrite = FALSE;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
atomic = aligned;
else
// 128-bit SIMD&FP Toads are treated as a pair of 64-bit single-copy atomic accesses
// 64-bit aligned.
atomic = address == Align(address, 8);

if latomic then
assert size > 1;
value<7:0> = AArch64.MemSingle[address, 1, acctype, aligned];

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
if laligned then
¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_FAULT, Constraint_NONE};
if ¢ == Constraint_NONE then aligned = TRUE;

for i =1 to size-1
value<8+«i+7:8«i> = AArch64.MemSingle[address+i, 1, acctype, aligned];
elsif size == 16 & acctype IN {AccType_VEC, AccType_VECSTREAM} then
value<63:0> = AArch64.MemSingle[address, 8, acctype, aligned];
value<127:64> = AArch64.MemSingle[address+8, 8, acctype, aligned];
else
value = AArch64.MemSingle[address, size, acctype, aligned];

if BigEndian() then
value = BigEndianReverse(value);
return value;

// Mem[] - assignment (write) form

//

// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Mem[bits(64) address, integer size, AccType acctype] = bits(sizex8) value
boolean iswrite = TRUE;

if BigEndian() then
value = BigEndianReverse(value);

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
atomic = aligned;
else
// 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
// 64-bit aligned.
atomic = address == Align(address, 8);

if latomic then
assert size > 1;
AArch64.MemSingle[address, 1, acctype, aligned] = value<7:0>;

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-319
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// not, so we must be changing to a new translation page.
if laligned then

¢ = ConstrainUnpredictable();

assert ¢ IN {Constraint_FAULT, Constraint_NONE};

if ¢ == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
AArch64.MemSingle[address+i, 1, acctype, aligned] = value<8«i+7:8+1>;
elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
AArch64.MemSingle[address, 8, acctype, aligned] = value<63:0>;
AArch64.MemSingle[address+8, 8, acctype, aligned] = value<127:64>;
else
AArch64.MemSingle[address, size, acctype, aligned] = value;
return;

aarch64/functions/memory/MemAtomic
// MemAtomic()
// Performs Toad and store memory operations for a given virtual address.

bits(size) MemAtomic(bits(64) address, MemAtomicOp op, bits(size) value, AccType Tdacctype, AccType
stacctype)

bits(size) newvalue;

memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);

ldaccdesc = CreateAccessDescriptor(ldacctype);

staccdesc = CreateAccessDescriptor(stacctype);

// A11 observers in the shareability domain observe the
// following Toad and store atomically.
oldvalue = _Mem[memaddrdesc, size DIV 8, ldaccdesc];
if BigEndian() then
oldvalue = BigEndianReverse(oldvalue);

case op of
when MemAtomicOp_ADD newvalue = oldvalue + value;
when MemAtomicOp_BIC newvalue = oldvalue AND NOT(value);
when MemAtomicOp_EOR newvalue = oldvalue EOR value;
when MemAtomicOp_ORR newvalue = oldvalue OR value;
when MemAtomicOp_SMAX newvalue = if SInt(oldvalue)
when MemAtomicOp_SMIN newvalue = if SInt(oldvalue)
when MemAtomicOp_UMAX newvalue = if UInt(oldvalue)
when MemAtomicOp_UMIN newvalue = if UInt(oldvalue)
when MemAtomicOp_SWP newvalue = value;

> SInt(value) then oldvalue else value;
> SInt(value) then value else oldvalue;
> UInt(value) then oldvalue else value;
> UInt(value) then value else oldvalue;
if BigEndian() then

newvalue = BigEndianReverse(newvalue);
_Mem[memaddrdesc, size DIV 8, staccdesc] = newvalue;

// Load operations return the old (pre-operation) value
return oldvalue;

aarch64/functions/memory/MemAtomicCompareAndSwap

// MemAtomicCompareAndSwap()
/!
// Compares the value stored at the passed-in memory address against the passed-in expected

// value. If the comparison is successful, the value at the passed-in memory address is swapped
// with the passed-in new_value.

bits(size) MemAtomicCompareAndSwap(bits(64) address, bits(size) expectedvalue,
bits(size) newvalue, AccType ldacctype, AccType stacctype)
memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
Tdaccdesc = CreateAccessDescriptor(ldacctype);
staccdesc = CreateAccessDescriptor(stacctype);

11-320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// A1l observers in the shareability domain observe the
// following Toad and store atomically.
oldvalue = _Mem[memaddrdesc, size DIV 8, Tdaccdesc];
if BigEndian() then
oldvalue = BigEndianReverse(oldvalue);

if oldvalue == expectedvalue then
if BigEndian() then
newvalue = BigEndianReverse(newvalue);
_Mem[memaddrdesc, size DIV 8, staccdesc] = newvalue;
return oldvalue;

aarch64/functions/pac/addpac/AddPAC
// AddPAC()

// Calculates the pointer authentication code for a 64-bit quantity and then
// inserts that into pointer authentication code field of that 64-bit quantity.

bits(64) AddPAC(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data)
bits(64) PAC;
bits(64) result;
bits(64) ext_ptr;
bits(64) extfield;
bit selbit;
boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
integer top_bit = if thi then 55 else 63;

// If tagged pointers are in use for a regime with two TTBRs, use bit<55> of
// the pointer to select between upper and lower ranges, and preserve this.
// This handles the awkward case where there is apparently no correct choice between
// the upper and lower address range - ie an addr of 1xxxxxxx@... with TBIQ=0 and TBIl=1
// and Oxxxxxxx1l with TBI1=0 and TBIO=1:
// This include EL1/EL® in both VMSA and PMSA context.
if PSTATE.EL == EL1 || PSTATE.EL == EL@ then
assert SlTranslationRegime() == EL1;
if S1TranslationRegime() == EL1 then
// EL1 translation regime registers
if data then
if TCR_EL1.TBI1 == '1' || TCR_EL1.TBIQ == '1' then
selbit = ptr<55>;
else
selbit = ptr<63>;
else
if ((TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||
(TCR_EL1.TBIQ == '1' && TCR_EL1.TBIDO == '0')) then
selbit = ptr<55>;
else
selbit = ptr<63>;
else selbit = if thi then ptr<55> else ptr<63>;

integer bottom_PAC_bit = CalculateBottomPACBit(selbit);

// The pointer authentication code field takes all the available bits in between
extfield = Replicate(selbit, 64);

// Compute the pointer authentication code for a ptr with good extension bits
if tbi then

ext_ptr = ptr<63:56>:extfield<(56-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;
else

ext_ptr = extfield<(64-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;

PAC = ComputePAC(ext_ptr, modifier, K<127:64>, K<63:0>);

// Check if the ptr has good extension bits and corrupt the pointer authentication code if not
if 1IsZero(ptr<top_bit:bottom_PAC_bit>) && !IsOnes(ptr<top_bit:bottom_PAC_bit>) then
if HaveEnhancedPAC() then

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-321
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

PAC = 0x0000000000000000<63:0>;
elsif !HaveEnhancedPAC2() then
PAC<top_bit-1> = NOT(PAC<top_bit-1>);

// preserve the determination between upper and lower address at bit<55> and insert PAC
if !HaveEnhancedPAC2() then
if thi then
result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
else
result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
else
if tbi then
result = ptr<63:56>:selbit:(ptr<54:bottom_PAC_bit> EOR
PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
else
result = (ptr<63:56> EOR PAC<63:56>):selbit:(ptr<54:bottom_PAC_bit> EOR
PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
return result;

aarch64/functions/pac/addpacda/AddPACDA
// AddPACDA()

// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication

// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APDAKey_EL1.

bits(64) AddPACDA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1l) Enable;
bits(128) APDAKey_EL1;

APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeylLo_EL1<63:0>;
if PSTATE.EL IN {EL@, EL1} then
assert SlTranslationRegime() == EL1 ;
Enable = SCTLR_EL1.EnDA;
TrapEL2 = HCR_EL2.API == '0';
elsif PSTATE.EL == EL2 then
Enable = SCTLR_EL2.EnDA;
TrapEL2 = FALSE;
else
Unreachable();

if Enable == '@' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
else return AddPAC(X, Y, APDAKey_EL1, TRUE);

aarch64/functions/pac/addpacdb/AddPACDB
// AddPACDB()

// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication

// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APDBKey_EL1.

bits(64) AddPACDB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
if PSTATE.EL IN {ELO, EL1} then

11-322 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

assert SlTranslationRegime() == EL1;
Enable = SCTLR_EL1.EnDB;
TrapEL2 = HCR_EL2.API == '0';
elsif PSTATE.EL == EL2 then
Enable = SCTLR_EL2.EnDB;
TrapEL2 = FALSE;
else
Unreachable();

if Enable == '0' then return X;

elsif TrapEL2 then TrapPACUse(EL2);
else return AddPAC(X, Y, APDBKey_EL1, TRUE);

aarch64/functions/pac/addpacga/AddPACGA

// AddPACGA()

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// Returns a 64-bit value where the Tower 32 bits are @, and the upper 32 bits contain
// a 32-bit pointer authentication code which is derived using a cryptographic

// algorithm as a combination of X, Y and the APGAKey_EL1.

bits(64) AddPACGA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(128) APGAKey_EL1;

APGAKey_EL1 = APGAKeyHi_EL1<63:0> : APGAKeylLo_EL1<63:0>;
if PSTATE.EL IN {ELO, EL1} then
TrapEL2 = HCR_EL2.API == '0';
elsif PSTATE.EL == EL2 then
TrapEL2 = FALSE;
else
Unreachable();

if TrapEL2 then TrapPACUse(EL2);

else return ComputePAC(X, Y, APGAKey_EL1<127:64>, APGAKey_EL1<63:0>)<63:32>:Zeros(32);

aarch64/functions/pac/addpacia/AddPACIA

// AddPACIA()
/] =mmmmmmen

// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y, and the

// APIAKey_EL1.

bits(64) AddPACIA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1l) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0>:APIAKeylLo_EL1<63:0>;
if PSTATE.EL IN {ELO, EL1} then
assert SlTranslationRegime() == EL1;
Enable = SCTLR_EL1.EnIA;
TrapEL2 = HCR_EL2.API == '0';
elsif PSTATE.EL == EL2 then
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
else
Unreachable();

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
else return AddPAC(X, Y, APIAKey_EL1, FALSE);

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-323

Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/functions/pac/addpacib/AddPACIB
// AddPACIB()

// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication

// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APIBKey_EL1.

bits(64) AddPACIB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeylLo_EL1<63:0>;
if PSTATE.EL IN {ELO@, EL1} then
assert SlTranslationRegime() == EL1;
Enable = SCTLR_EL1.EnIB;
TrapEL2 = HCR_EL2.API == 'Q';
elsif PSTATE.EL == EL2 then
Enable = SCTLR_EL2.EnIB;
TrapEL2 = FALSE;
else
Unreachable();

if Enable == '@' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
else return AddPAC(X, Y, APIBKey_EL1, FALSE);

aarch64/functions/pac/auth/AArch64.PACFailException

// AArch64.PACFaiTlException()

/!
// Generates a PAC Fail Exception

AArch64.PACFaiTException(bits(2) syndrome)
route_to_el2 = PSTATE.EL == ELO &% EL2Enabled() && HCR_EL2.TGE == '1';
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_PACFail);
exception.syndrome<1:0> = syndrome;
exception.syndrome<24:2> = Zeros(); // RESO

if UInt(PSTATE.EL) > UInt(EL@) then

AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
elsif route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(ELL, exception, preferred_exception_return, vect_offset);

aarch64/functions/pac/auth/Auth

// Auth()

/] ======

// Restores the upper bits of the address to be all zeros or all ones (based on the

// value of bit[55]) and computes and checks the pointer authentication code. If the

// check passes, then the restored address is returned. If the check fails, the

// second-top and third-top bits of the extension bits in the pointer authentication code
// field are corrupted to ensure that accessing the address will give a translation fault.

bits(64) Auth(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data, bit key_number, boolean

is_combined)
bits(64) PAC;
bits(64) result;

11-324

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

bits(64) original_ptr;
bits(2) error_code;
bits(64) extfield;

// Reconstruct the extension field used of adding the PAC to the pointer
boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';

integer bottom_PAC_bit = CalculateBottomPACBit(ptr<55>);

extfield = Replicate(ptr<55>, 64);

if thi then
original_ptr

else
original_ptr = extfield<64-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

ptr<63:56>:extfield<56-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

PAC = ComputePAC(original_ptr, modifier, K<127:64>, K<63:0>);
// Check pointer authentication code
if thi then
if !'HaveEnhancedPAC2() then
if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> then
result = original_ptr;
else
error_code = key_number:NOT(key_number);
result = original_ptr<63:55>:error_code:original_ptr<52:0>;
else
result = ptr;
result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
if HaveFPACCombined() || (HaveFPAC() && !is_combined) then
if result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit)) then
error_code = (if data then '1' else '0'):key_number;
AArch64.PACFailException(error_code);
else
if !'HaveEnhancedPAC2() then
if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> && PAC<63:56> == ptr<63:56> then
result = original_ptr;
else
error_code = key_number:NOT(key_number);
result = original_ptr<63>:error_code:original_ptr<60:0>;
else
result = ptr;
result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
result<63:56> = result<63:56> EOR PAC<63:56>;
if HaveFPACCombined() || (HaveFPAC() && !is_combined) then
if result<63:bottom_PAC_bit> != Replicate(result<55>, (64-bottom_PAC_bit)) then
error_code = (if data then '1' else '0'):key_number;
AArch64.PACFailException(error_code);
return result;

aarch64/functions/pac/authda/AuthDA
// AuthDA()

// Returns a 64-bit value containing X, but replacing the pointer authentication code

// field bits with the extension of the address bits. The instruction checks a pointer

// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACDA().

bits(64) AuthDA(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1l) Enable;
bits(128) APDAKey_EL1;

APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeylLo_EL1<63:0>;
if PSTATE.EL IN {ELO, EL1} then

assert SlTranslationRegime() == EL1;

Enable = SCTLR_EL1.EnDA;

TrapEL2 = HCR_EL2.API == '0';

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-325
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

elsif PSTATE.EL == EL2 then
Enable = SCTLR_EL2.EnDA;
TrapEL2 = FALSE;

else
Unreachable();

if Enable == '@' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
else return Auth(X, Y, APDAKey_EL1, TRUE, '@', is_combined);

aarch64/functions/pac/authdb/AuthDB
// AuthDB()

// Returns a 64-bit value containing X, but replacing the pointer authentication code

// field bits with the extension of the address bits. The instruction checks a

// pointer authentication code in the pointer authentication code field bits of X, using
// the same algorithm and key as AddPACDB().

bits(64) AuthDB(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1l) Enable;
bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeylLo_EL1<63:0>;
if PSTATE.EL IN {ELO, EL1} then
assert SlTranslationRegime() == EL1;
Enable = SCTLR_EL1.EnDB;
TrapEL2 = HCR_EL2.API == '0';
elsif PSTATE.EL == EL2 then
Enable = SCTLR_EL2.EnDB;
TrapEL2 = FALSE;
else
Unreachable();

if Enable == '@' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
else return Auth(X, Y, APDBKey_EL1, TRUE, '1l', is_combined);

aarch64/functions/pac/authia/AuthlA
// AuthIA()

// Returns a 64-bit value containing X, but replacing the pointer authentication code

// field bits with the extension of the address bits. The instruction checks a pointer

// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACIA().

bits(64) AuthIA(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0> : APIAKeylLo_EL1<63:0>;
if PSTATE.EL IN {EL@, EL1} then
assert SlTranslationRegime() == EL1;
Enable = SCTLR_EL1.EnIA;
TrapEL2 = HCR_EL2.API == '0';
elsif PSTATE.EL == EL2 then
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
else
Unreachable();

11-326

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
else return Auth(X, Y, APIAKey_EL1, FALSE, '@', is_combined);

aarch64/functions/pac/authib/AuthlB
// AuthIB()

// Returns a 64-bit value containing X, but replacing the pointer authentication code

// field bits with the extension of the address bits. The instruction checks a pointer

// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACIB().

bits(64) AuthIB(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeylLo_EL1<63:0>;
if PSTATE.EL IN {EL@, EL1} then
assert SlTranslationRegime() == EL1;
Enable = SCTLR_EL1.EnIB;
TrapEL2 = HCR_EL2.API == '0';
elsif PSTATE.EL == EL2 then
Enable = SCTLR_EL2.EnIB;
TrapEL2 = FALSE;
else
Unreachable();

if Enable == '0' then return X;

elsif TrapEL2 then TrapPACUse(EL2);

else return Auth(X, Y, APIBKey_EL1, FALSE, '1', is_combined);
aarch64/functions/pac/calcbottompacbit/CalculateBottomPACB:it

// CalculateBottomPACBit()
/!

integer CalculateBottomPACBit(bit top_bit)
integer tsz_field;

if PtrHasUpperAndLowerAddRanges() then
assert SlTranslationRegime() == EL1;
tsz_field = if top_bit == '1' then UInt(TCR_EL1.T1SZ) else UInt(TCR_EL1.TOSZ);
using6dk = if top_bit == '1' then TCR_EL1.TGl == '11' else TCR_EL1.TGO == '01';

max_limit_tsz_field = (if !'HaveSmallPageThl1Ext() then 39 else if using64k then 47 else 48);
if tsz_field > max_limit_tsz_field then
// TCR_ELX.TySZ is out of range
¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_FORCE, Constraint_NONE};
if ¢ == Constraint_FORCE then tsz_field = max_limit_tsz_field;
tszmin = if using64k && VAMax() == 52 then 12 else 16;
if tsz_field < tszmin then
¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_FORCE, Constraint_NONE};
if ¢ == Constraint_FORCE then tsz_field = tszmin;
return (64-tsz_field);
else
// For EL2 and EL1 with PMSA context.
return PAMax();

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-327
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/functions/pac/computepac/ComputePAC

array bits(64) RC[0..4];

bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key@, bits(64) keyl)

bits(64) workingval;

bits(64) runningmod;

bits(64) roundkey;

bits(64) modko;

constant bits(64) Alpha = 0xCOAC29B7C97C50DD<63:0>;

RC[0]

0x0000000000000000<63:0>;

RC[1] = 0x13198A2E03707344<63:0>;

RC[2]
RC[3]

0xA4093822299F31D0<63:0>;
0x082EFA98ECAE6(C89<63:0>;

RC[4] = 0x452821E638D01377<63:0>;

modkd = key@<0>:key0<63:2>:(key@<63> EOR key0<l>);

runningmod =
workingval =
for i =0 to

roundkey

modifier;

data EOR key®;

4

= keyl EOR runningmod;

workingval = workingval EOR roundkey;
workingval = workingval EOR RC[i];

ifi>0

then

workingval = PACCel1Shuffle(workingval);
workingval = PACMult(workingval);
workingval = PACSub(workingval);
runningmod = TweakShuffle(runningmod<63:0>);
roundkey = modk@ EOR runningmod;

workingval =
workingval =
workingval =
workingval
workingval =
workingval
workingval =
workingval =
workingval =
workingval =
workingval =
workingval =
workingval =
for i =0 to

workingval EOR roundkey;
PACCe11Shuffle(workingval);
PACMuTt(workingval);

= PACSub(workingval);

PACCe11Shuffle(workingval);

= PACMuTt(workingval);

keyl EOR workingval;
PACCe11InvShuffle(workingval);
PACInvSub(workingval);
PACMult(workingval);
PACCe11InvShuffle(workingval);
workingval EOR key®;
workingval EOR runningmod;

4

workingval = PACInvSub(workingval);

ifi<4

then

workingval = PACMult(workingval);
workingval = PACCel1InvShuffle(workingval);
runningmod = TweakInvShuffle(runningmod<63:0>);

roundkey

= keyl EOR runningmod;

workingval = workingval EOR RC[4-i];
workingval = workingval EOR roundkey;
workingval = workingval EOR Alpha;

workingval =

workingval EOR modko;

return workingval;

aarch64/functions/pac/computepac/PACCelllnvShuffle

// PACCel1InvShuffle()

//

bits(64) PACCel1InvShuffle(bits(64) indata)
bits(64) outdata;

outdata<3:0>
outdata<7:4>

= indata<15:12>;
= indata<27:24>;

outdata<ll:8> = indata<51:48>;

11-328 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

outdata<l5:
outdata<19:
outdata<23:
outdata<27:
outdata<3l:
outdata<35:
outdata<39:36>
outdata<43:40>
outdata<47
outdata<51:48>
outdata<55:
outdata<59:56>
outdata<63:60>
return outdata;

20>

28>

12> =
16> =

24> =

32> =

44> =

52> =

indata<39:36>;
indata<59:56>;
indata<47:44>;
indata<7:4>;
indata<19:16>;
indata<35:32>;
indata<55:52>;
indata<31:28>;
indata<11:8>;
indata<23:20>;
indata<3:0>;
indata<43:40>;

= indata<63:60>;

aarch64/functions/pac/computepac/PACCellShuffle

// PACCel1Shuffle()

e

bits(64) PACCel1Shuffle(bits(64) indata)
bits(64) outdata;

outdata<3:0> = indata<55:52>;
outdata<7:4> = indata<27:24>;

outdata<ll:
outdata<15:
outdata<19:
outdata<23:
outdata<27:
outdata<3l:
outdata<35:
outdata<39:
outdata<43:40>
outdata<47
outdata<51:48>
outdata<55:
outdata<59:
outdata<63:60>
return outdata;

12>
16>
20>

28>

32> =
36> =

52> =
56> =

24> =

144> =

8> = indata<47:44>;

indata<3:0>;
indata<31:28>;
indata<51:48>;
indata<7:4>;
indata<43:40>;
indata<35:32>;
indata<15:12>;
indata<59:56>;
indata<23:20>;
indata<11:8>;
indata<39:36>;
indata<19:16>;
indata<63:60>;

aarch64/functions/pac/computepac/PACInvSub

// PACInvSub()
e

bits(64) PACInvSub(bits(64) Tinput)

// This is a 4-bit substitution from

bits(64) Toutput;

for i =0 to 15

case Tinput<4xi+3:4xi> of

when '0000' Toutput<d«i+3:4si
when '0001' Toutput<4«i+3:4si
when '0010' Toutput<4=i+3:

when '0011' Toutput<4+i+3:4+i
when '0100' Toutput<4«i+3:4si
when '0101' Toutput<4«i+3:

when '0110' Toutput<dxi+3:4xi
when '0111" Toutput<4«i+3:4=i
when '1000' Toutput<4«i+3:

when '1001' Toutput<4«i+3:4si
when '1010' Toutput<d=i+3:4xi
when '1011' Toutput<4«i+3:4=i
when '1100"' Toutput<d=i+3:4xi
when '1101' Toutput<4+i+3:4+i

the PRINCE-family cipher

= 'e101';
= '1110";
= '1101";
= '1000";
= '1010";
= '1011";
= '0001";
= '1001';
= '0010";
= '0110";
= '1111";
= '0000";
= '0100';
= '1100";

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-329

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

when '1110'
when '1111'

return Toutput;

Toutput<4=i+3:4«i>
Toutput<4xi+3:4=i>

'0111";
'0011";

aarch64/functions/pac/computepac/PACMult

// PACMuTt()
/{ e

bits(64) PACMult(bits(64) Sinput)

bits(4) t0;
bits(4) t1;
bits(4) t2;
bits(4) t3;

bits(64) Soutput;

for i =0 to 3

t0<3:0> = RotCelT(Sinput<4=(i+8)+3:4%(i+8)>, 1) EOR RotCell(Sinput<dx(i+4)+3:4=(i+4)>, 2);

t0<3:0> = t0<3:0> EOR RotCell(Sinput<ds(i)+3:4«(i)>, 1);

t1<3:0> = RotCell1(Sinput<4:(i+12)+3:4%(i+12)>, 1) EOR RotCell(Sinput<d:(i+4)+3:4«(i+4)>, 1);

t1<3:0> = t1<3:0> EOR RotCell(Sinput<4s(i)+3:4=(i)>, 2);

t2<3:0> = RotCel1(Sinput<4s(i+12)+3:4%(i+12)>, 2) EOR RotCell1(Sinput<d:(i+8)+3:4«(i+8)>, 1);

12<3:0> = t2<3:0> EOR RotCell(Sinput<4s(i)+3:4«(i)>, 1);

13<3:0> = RotCell1(Sinput<d=(i+12)+3:4+(i+12)>, 1) EOR RotCell(Sinput<dx(i+8)+3:4x(i+8)>, 2);

t3<3:0> = t3<3:0> EOR RotCell(Sinput<ds(i+4)+3:4x(i+4)>, 1);
Soutput<4xi+3:4«i>

13<3:0>;

Soutput<d=(i+4)+3:4%(i+4)> = t2<3:0>;
Soutput<d#(i+8)+3:4x(i+8)> = t1<3:0>;
Soutput<dx(i+12)+3:4x(i+12)> = t0<3:0>;

return Soutput;

aarch64/functions/pac/computepac/PACSub

// PACSub()
/e

bits(64) PACSub(bits(64) Tinput)

// This 1is a 4-bit substitution from

bits(64) Toutput;

for i =0 to 15

case Tinput<4xi+3:4xi> of

when '0000'
when '0001'
when '0010'
when '0011'
when '0100'
when '0101'
when '0110'
when '0111'
when '1000'
when '1001'
when '1010'
when '1011'
when '1100'
when '1101'
when '1110'
when '1111'

return Toutput;

Toutput<4si+3:4+i
Toutput<4=i+3:4=i
Toutput<4s+i+3:4=i
Toutput<4=i+3:
Toutput<4+i+3:4+i
Toutput<4si+3:4+i
Toutput<4=i+3:
Toutput<4+i+3:4=i
Toutput<4+i+3:4+i
Toutput<4=i+3:
Toutput<4si+3:4+i
Toutput<4s=i+3:4=i
Toutput<4=i+3:
Toutput<4+i+3:4+i
Toutput<4+i+3:4+i
Toutput<4=i+3:4=i

= '1011";
= '0110";
= '1000";
= '1111";
= '1100";
= '0000";
= '1001';
= '1110";
= '0011";
= '0111";
= '0100";
= '0101';
= '1101";
= '0010";
= '0001";
= '1010';

aarch64/functions/pac/computepac/RotCell

// RotCel1()
/] mmmmmen

bits(4) RotCell(bits(4) incell, integer amount)

bits(8) tmp;

the PRINCE-family cipher

11-330

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode

11.1 Pseudocode for AArch64 operations

bits(4) outcell;

// assert amount>3 || amount<l;
tmp<7:0> = incell1<3:0>:incel1<3:0>;
outcell = tmp<7-amount:4-amount>;
return outcell;

aarch64/functions/pac/computepac/TweakCellinvRot

// TweakCel1InvRot()

bits(4) TweakCellInvRot(bits(4)incell)

bits(4) outcell;

outcell<3> = incell<2>;

outcell<2> = incell<l>;

outcell<l> = incell<0>;

outcell<@> = incell<@> EOR incell<3>;
return outcell;

aarch64/functions/pac/computepac/TweakCellRot

// TweakCeT1Rot()

bits(4) TweakCellRot(bits(4) incell)

bits(4) outcell;

outcell<3> = incell<0> EOR incell<l>;
outcell<2> = incell<3>;

outcell<l> = incell<2>;

outcell<@> = incell<l>;

return outcell;

aarch64/functions/pac/computepac/TweakinvShuffle

// TweakInvShuffle()

bits(64) TweakInvShuffle(bits(64)indata)

bits(64) outdata;

outdata<3:0> = TweakCellInvRot(indata<51:48>);
outdata<7:4> = indata<55:52>;

outdata<ll:8> = indata<23:20>;

outdata<l5:12> = indata<27:24>;

outdata<19:16> = indata<3:0>;

outdata<23:20> = indata<7:4>;

outdata<27:24> = TweakCellInvRot(indata<11:8>);
outdata<31:28> = indata<15:12>;

outdata<35:32> = TweakCellInvRot(indata<31:28>);
outdata<39:36> = TweakCellInvRot(indata<63:60>);
outdata<43:40> = TweakCellInvRot(indata<59:56>);
outdata<47:44> = TweakCellInvRot(indata<19:16>);
outdata<51:48> = indata<35:32>;

outdata<55:52> = indata<39:36>;

outdata<59:56> = indata<43:40>;

outdata<63:60> = TweakCellInvRot(indata<47:44>);
return outdata;

aarch64/functions/pac/computepac/TweakShuffle

// TweakShuffle()

bits(64) TweakShuffle(bits(64) indata)

bits(64) outdata;

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-331

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

outdata<3:0> = indata<19:16>;

outdata<7:4> = indata<23:20>;

outdata<ll:8> = TweakCellRot(indata<27:24>);
outdata<15:12> = indata<31:28>;
outdata<19:16> = TweakCelTRot(indata<47:44>);
outdata<23:20> = indata<ll:8>;

outdata<27:24> = indata<15:12>;
outdata<31:28> = TweakCelTRot(indata<35:32>);
outdata<35:32> = indata<51:48>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<59:56>;
outdata<47:44> = TweakCellRot(indata<63:60>);
outdata<51:48> = TweakCelTRot(indata<3:0>);
outdata<55:52> = indata<7:4>;

outdata<59:56> = TweakCelTRot(indata<43:40>);
outdata<63:60> = TweakCellRot(indata<39:36>);
return outdata;

aarch64/functions/pac/pac/HaveEnhancedPAC
// HaveEnhancedPAC()
// Returns TRUE if support for EnhancedPAC is implemented, FALSE otherwise.
boolean HaveEnhancedPAC()
return (HavePACExt()
&& boolean IMPLEMENTATION_DEFINED "Has enhanced PAC functionality");
aarch64/functions/pac/pac/HaveEnhancedPAC2
// HaveEnhancedPAC2()
;; Ez:i:;:=;EEE=T;=::pport for EnhancedPAC2 is implemented, FALSE otherwise.
boolean HaveEnhancedPAC2()
return HasArchVersion(ARMv8p3) && boolean IMPLEMENTATION_DEFINED "Has enhanced PAC 2 functionality";
aarch64/functions/pac/pac/HaveFPAC
// HaveFPAC()
// Returns TRUE if support for FPAC is implemented, FALSE otherwise.
booTean HaveFPAC()
return HaveEnhancedPAC2() && boolean IMPLEMENTATION_DEFINED "Has FPAC functionality";
aarch64/functions/pac/pac/HaveFPACCombined

// HaveFPACCombined()

// Returns TRUE if ;;pport for FPACCombined is implemented, FALSE otherwise.
boolean HaveFPACCombined()
return HaveFPAC() && boolean IMPLEMENTATION_DEFINED "Has FPAC Combined functionality";
aarch64/functions/pac/pac/HavePACExt
// HavePACExt()
// Returns TRUE if support for the PAC extension is implemented, FALSE otherwise.

boolean HavePACExt()
return HasArchVersion(ARMv8p3);

11-332 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges

// PtrHasUpperAndLowerAddRanges()
/!

// Returns TRUE if the pointer has upper and lower address ranges, FALSE otherwise.

boolean PtrHasUpperAndLowerAddRanges()
return IsStagelVMSA() && (PSTATE.EL == EL1 || PSTATE.EL == ELO);

aarch64/functions/pac/strip/Strip
// Strip()

// Strip() returns a 64-bit value containing A, but replacing the pointer authentication
// code field bits with the extension of the address bits. This can apply to either

// instructions or data, where, as the use of tagged pointers is distinct, it might be
// handled differently.

bits(64) Strip(bits(64) A, boolean data)
bits(64) original_ptr;
bits(64) extfield;
boolean tbhi = EffectiveTBI(A, !data, PSTATE.EL) == '1';
integer bottom_PAC_bit = CalculateBottomPACBit(A<55>);
extfield = Replicate(A<55>, 64);

if thi then

original_ptr = A<63:56>:extfield< 56-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;
else

original_ptr = extfield< 64-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;

return original_ptr;

aarch64/functions/pac/trappacuse/TrapPACUse
// TrapPACUse()

// Used for the trapping of the pointer authentication functions by higher exception
// levels.

TrapPACUse(bits(2) target_el)
assert HaveEL(target_el) && target_el != ELO & UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();

ExceptionRecord exception;

vect_offset = 0;

exception = ExceptionSyndrome(Exception_PACTrap);

AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/functions/ras/AArch64.ESBOperation

// AArch64.ESBOperation()

/!
// Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
// ESB in AArch32 state when SError interrupts are routed to an Exception Tevel using
// AArchéd

AArch64.ESBOperation()

route_to_el3 = FALSE;
route_to_e12 = (EL2Enabled() &&
(HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1"));

target = if route_to_el3 then EL3 elsif route_to_el2 then EL2 else ELL;

if target == EL1 then
mask_active = PSTATE.EL IN {ELOQ, EL1};

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-333
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

else
mask_active = PSTATE.EL == target;

mask_set = PSTATE.A == '1';
intdis = Halted() || ExternalDebugInterruptsDisabled(target);
masked = (UInt(target) < UInt(PSTATE.EL)) || intdis || (mask_active && mask_set);

// Check for a masked Physical SError pending that can be synchronized
// by an Error synchronization event.
if masked & IsSynchronizablePhysicalSErrorPending() then
impTicit_esb = FALSE;
syndrome = AArch64.PhysicalSErrorSyndrome(implicit_esh);
DISR_EL1 = AArch64.ReportDeferredSError(syndrome)<31:0>;
ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0

return;

aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

// Return the SError syndrome
bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esh);

aarch64/functions/ras/AArch64.ReportDeferredSError

// AArch64.ReportDeferredSError()

//

// Generate deferred SError syndrome

bits(64) AArch64.ReportDeferredSError(bits(25) syndrome)

bits(64) target;

target<3l> = '1'; // A
target<24> = syndrome<24>; // IDS
target<23:0> = syndrome<23:0>; // ISS
return target;

aarch64/functions/ras/AArch64.vESBOperation

// AArch64.vESBOperation()

//

// Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
// executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state

AArch64.vESBOperation()

assert PSTATE.EL IN {ELO, EL1} && EL2Enabled();

// If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual
// SError interrupt might be pending

vSEI_enabled = HCR_EL2.TGE == 'Q' && HCR_EL2.AMO == '1';

VSEI_pending = vSEI_enabled && HCR_EL2.VSE == '1';

vintdis Halted() || ExternalDebugInterruptsDisabled(EL1);

vmasked = vintdis || PSTATE.A == '1';

// Check for a masked virtual SError pending

if vSEI_pending && vmasked then
VDISR_EL2 = AArch64.ReportDeferredSError(VSESR_EL2<24:0>)<31:0>;
HCR_EL2.VSE = '0'; // Clear pending virtual SError

return;

aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

// AArch64.MaybeZeroRegisterUppers()

//

// On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
// 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

11-334

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

AArch64.MaybeZeroRegisterUppers()
assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

if PSTATE.EL == ELO && !ELUsingAArch32(EL1) then
first = 0; Tlast = 14; dinclude_R15 = FALSE;

elsif PSTATE.EL IN {ELO, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) then
first = 0; Tlast = 30; include_R15 = FALSE;

else
first = 0; Tlast = 30; include_R15 = TRUE;

for n = first to last
if (n != 15 || include_R15) && ConstrainUnpredictableBool() then
_R[n]<63:32> = Zeros()

return;

aarch64/functions/registers/AArch64.ResetGeneralRegisters

// AArch64.ResetGeneralRegisters()
/!

AArch64.ResetGeneralRegisters()

for i =0 to 30
X[1] = bits(64) UNKNOWN;

return;

aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

// AArch64.ResetSIMDFPRegisters()
//

AArch64.ResetSIMDFPRegisters()

for i =0 to 31
V[i] = bits(128) UNKNOWN;

return;

aarch64/functions/registers/AArch64.ResetSpecialRegisters

// AArch64.ResetSpecialRegisters()
/!

AArch64.ResetSpecialRegisters()

// AArch64 special registers
SP_ELO = bits(64) UNKNOWN;
SP_EL1 = bits(64) UNKNOWN;
SPSR_EL1 = bits(32) UNKNOWN;
ELR_EL1 = bits(64) UNKNOWN;
if HaveEL(EL2) then
SP_EL2 = bits(64) UNKNOWN;
SPSR_EL2 = bits(32) UNKNOWN;
ELR_EL2 = bits(64) UNKNOWN;
if HaveEL(EL3) then
SP_EL3 = bits(64) UNKNOWN;
SPSR_EL3 = bits(32) UNKNOWN;
ELR_EL3 = bits(64) UNKNOWN;

// AArch32 special registers that are not architecturally mapped to AArch64 registers
if HaveAArch32EL(EL1) then

SPSR_fiq = bits(32) UNKNOWN;

SPSR_irq = bits(32) UNKNOWN;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-335
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

SPSR_abt = bits(32) UNKNOWN;
SPSR_und = bits(32) UNKNOWN;

// External debug special registers
DLR_EL® = bits(64) UNKNOWN;
DSPSR_EL® = bits(32) UNKNOWN;

return;

aarch64/functions/registers/AArch64.ResetSystemRegisters

AArch64.ResetSystemRegisters(boolean cold_reset);

aarch64/functions/registers/PC

// PC - non-assignment form

//

// Read program counter.

bits(64) PC[]
return _PC;

aarch64/functions/registers/SP
// SP[] - assignment form

//
// Write to stack pointer from either a 32-bit or a 64-bit value.

SP[] = bits(width) value
assert width IN {32,64};
if PSTATE.SP == 'Q' then
SP_ELO = ZeroExtend(value);
else
case PSTATE.EL of
when ELO SP_ELO = ZeroExtend(value);
when EL1 SP_EL1 = ZeroExtend(value);
when EL2 SP_EL2 = ZeroExtend(value);
return;

// SP[] - non-assignment form

/!
// Read stack pointer with implicit slice of 8, 16, 32 or 64 bits.

bits(width) SP[]
assert width IN {8,16,32,64};
if PSTATE.SP == '@' then
return SP_ELO<width-1:0>;
else
case PSTATE.EL of
when ELO return SP_ELO<width-1:0>;
when EL1 return SP_EL1<width-1:0>;
when EL2 return SP_EL2<width-1:0>;

aarch64/functions/registers/V

// VI[] - assignment form
//
// Write to SIMD&FP register with implicit extension from
// 8, 16, 32, 64 or 128 bits.

V[integer n] = bits(width) value
assert n >= 0 & n <= 31;
assert width IN {8,16,32,64,128};
_V[n] = ZeroExtend(value);
return;

11-336 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// VI1 - non-assignment form
//
// Read from SIMD&FP register with implicit slice of 8, 16
// 32, 64 or 128 bits.

bits(width) V[integer n]
assert n >= 0 & n <= 31;
assert width IN {8,16,32,64,128};
return _V[n]<width-1:0>;

aarch64/functions/registers/Vpart

// Vpart[] - non-assignment form
//
// Reads a 128-bit SIMD&FP register in up to two parts:

// part @ returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
// part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit
// value held in the register.

bits(width) Vpart[integer n, integer part]
assert n >= 0 && n <= 31;
assert part IN {0, 1};
if part == 0 then
assert width IN {8,16,32,64};
return _V[n]<width-1:0>;
else
assert width IN {32,64};
return _V[nl<(width = 2)-1:width>;

// Vpart[] - assignment form
//
// Writes a 128-bit SIMD&FP register in up to two parts:

// part @ zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
// part 1 inserts a 64-bit value into the top half of the register.

Vpart[integer n, integer part] = bits(width) value
assert n >= 0 && n <= 31;
assert part IN {0, 1};
if part == 0 then
assert width IN {8,16,32,64};
_V[n] = ZeroExtend(value);
else
assert width == 64;
_V[n]l<(width % 2)-1:width> = value<width-1:0>;

aarch64/functions/registers/X
// X[1 - assignment form

//

// Write to general-purpose register from either a 32-bit or a 64-bit value.

X[integer n] = bits(width) value
assert n >= 0 && n <= 31;
assert width IN {32,64};
if n != 31 then

_R[n] = ZeroExtend(value);
return;

// X[1 - non-assignment form
//
// Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.

bits(width) X[integer n]
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64};

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-337
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if n != 31 then

return _R[n]<width-1:0>;
else

return Zeros(width);

aarch64/functions/sysregisters/CNTKCTL

// CNTKCTL[] - non-assignment form
//

CNTKCTLType CNTKCTL[]
bits(32) r;
r = CNTKCTL_EL1;
return r;

aarch64/functions/sysregisters/CNTKCTLType

type CNTKCTLType;

aarch64/functions/sysregisters/CPACR

// CPACR[] - non-assignment form
/!

CPACRType CPACRI[]
bits(32) r;
r = CPACR_EL1;
return r;

aarch64/functions/sysregisters/CPACRType

type CPACRType;

aarch64/functions/sysregisters/ELR

// ELR[] - non-assignment form

//

bits(64) ELR[bits(2) el]
bits(64) r;
case el of
when EL1 r = ELR_ELI;
when EL2 r = ELR_EL2;
otherwise Unreachable();
return r;

// ELR[] - non-assignment form

/!

bits(64) ELR[]
assert PSTATE.EL != ELO;
return ELR[PSTATE.EL];

// ELR[] - assignment form
//

ELR[bits(2) el] = bits(64) value
bits(64) r = value;
case el of
when EL1 ELR_EL1 = r;
when EL2 ELR_EL2 = r;
otherwise Unreachable();
return;

11-338 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode

11.1 Pseudocode for AArch64 operations

// ELR[] - assignment form
//

ELR[] = bits(64) value
assert PSTATE.EL != ELO;
ELR[PSTATE.EL] = value;
return;

aarch64/functions/sysregisters/ESR

// ESR[] - non-assignment form

//

ESRType ESR[bits(2) regime]
bits(32) r;
case regime of
when EL1 r = ESR_ELI;
when EL2 r = ESR_EL2;
otherwise Unreachable();
return r;

// ESR[] - non-assignment form

//

ESRType ESR[]
return ESR[S1TranslationRegime()];

// ESR[] - assignment form
//

ESR[bits(2) regime] = ESRType value
bits(32) r = value;
case regime of
when EL1 ESR_EL1 = r;
when EL2 ESR_EL2 = r;
otherwise Unreachable();
return;

// ESR[] - assignment form
/!

ESR[] = ESRType value
ESR[S1TranslationRegime()] = value;

aarch64/functions/sysregisters/ESRType

type ESRType;

aarch64/functions/sysregisters/FAR

// FAR[] - non-assignment form
//

bits(64) FAR[bits(2) regime]
bits(64) r;
case regime of
when EL1 r = FAR_ELL;
when EL2 r = FAR_EL2;
otherwise Unreachable();
return r;

// FAR[] - non-assignment form

//

bits(64) FAR[]
return FAR[S1TranslationRegime()];

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

1D090320 Non-Confidential

11-339

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// FAR[] - assignment form
//

FAR[bits(2) regime] = bits(64) value
bits(64) r = value;
case regime of
when EL1 FAR_EL1 = r;
when EL2 FAR_EL2 = r;
otherwise Unreachable();
return;

// FAR[] - assignment form
/!

FAR[] = bits(64) value
FAR[S1TranslationRegime()] = value;
return;

aarch64/functions/sysregisters/MAIR

// MAIR[] - non-assignment form
//

MAIRType MAIR[bits(2) regime]
bits(64) r;
case regime of
when EL1 r = MAIR_EL1;
when EL2 r = MAIR_EL2;
otherwise Unreachable();
return r;

// MAIR[] - non-assignment form
/!

MAIRType MAIR[]
return MAIR[S1TranslationRegime()];

aarch64/functions/sysregisters/MAIRType

type MAIRType;

aarch64/functions/sysregisters/MPUIR

// MPUIR[] - non-assignment form
/!

MPUIRType MPUIR[bits(2) regime]
bits(32) r;
case regime of
when EL1 r = MPUIR_EL1;
when EL2 r = MPUIR_EL2;
otherwise Unreachable();
return r;

aarch64/functions/sysregisters/MPUIRType

type MPUIRType;

aarch64/functions/sysregisters/PRBARN

// PRBARn[] - non-assignment form
//

11-340 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

PRBARNnType PRBARn[bits(2) regime, integer index]
bits(64) r;
case regime of

when EL1 r = PRBARn_EL1[index];
when EL2 r = PRBARn_EL2[index];
otherwise Unreachable();

return r;

aarch64/functions/sysregisters/PRBARNType

type PRBARNnType;

aarch64/functions/sysregisters/PRLARN

// PRLARn[] - non-assignment form

PRLARNnType PRLARn[bits(2) regime, integer index]
bits(64) r;
case regime of

when EL1 r = PRLARn_EL1[index];
when EL2 r = PRLARn_EL2[index];
otherwise Unreachable();

return r;

aarch64/functions/sysregisters/IPRLARNType

type PRLARnType;

aarch64/functions/sysregisters/SCTLR

// SCTLR[] - non-assignment form

SCTLRType SCTLR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = SCTLR_EL1;
when EL2 r = SCTLR_EL2;
otherwise Unreachable();

return r;

// SCTLR[] - non-assignment form

SCTLRType SCTLR[]
return SCTLR[S1TranslationRegime()];

aarch64/functions/sysregisters/SCTLRType

type SCTLRType;

aarch64/functions/sysregisters/VBAR

// VBAR[] - non-assignment form

bits(64) VBAR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = VBAR_ELL;
when EL2 r = VBAR_EL2;
otherwise Unreachable();

ARM DDI 0600A.c

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-341
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

return r;

// VBAR[] - non-assignment form
/!

bits(64) VBAR[]
return VBAR[S1TranslationRegime()];

aarch64/functions/system/AArch64.CheckSystemAccess

// AArch64.CheckSystemAccess()
/!
// Checks if an AArch64 MSR, MRS or SYS instruction is allowed from
// the current exception level and security state. Also checks for
// traps by TIDCP to IMPLEMENTATION DEFINED registers and for NV access.

AArch64.CheckSystemAccess(bits(2) op@, bits(3) opl, bits(4) crn,
bits(4) crm, bits(3) op2, bits(5) rt, bit read)
need_secure = FALSE;

case opl of

when '00x'

min_EL = EL1;
when '010'

min_EL = EL1;
when '011'

min_EL = ELO;
when '100'

min_EL = EL2;
when '101'

min_EL = EL2;
when '110'

min_EL = EL3;
when '111'

min_EL = EL1;

need_secure = TRUE;

if UInt(PSTATE.EL) < UInt(min_EL) then
UNDEFINED;

elsif need_secure & !IsSecure() then
UNDEFINED;

aarch64/functions/system/AArch64.ExecutingATS1xPlInstr
// AArch64.ExecutingATS1xPInstr()

//
// Return TRUE if current instruction is AT S1EIR/WP

boolean AArch64.ExecutingATS1xPInstr()
if !HavePrivATExt() then return FALSE;

instr = ThisInstr();
if instr<22+:10> == '1101010100' then
opl = instr<16+:3>;
CRn = instr<12+:4>;
CRm = instr<8+:4>;
op2 = instr<5+:3>;

return opl == '000' & CRn == '0111' & CRm == '1001' && op2 IN {'000','001'};

else
return FALSE;

aarch64/functions/system/AArch64.SyslInstr

// Execute a system instruction with write (source operand).

AArch64.SysInstr(integer op@, integer opl, integer crn, integer crm, integer op2, bits(64) val);

11-342 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/functions/system/AArch64.SysInstrWithResult

// Execute a system instruction with read (result operand).
// Returns the result of the instruction.
bits(64) AArch64.SysInstriWithResult(integer op@, integer opl, integer crn, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegRead

// Read from a system register and return the contents of the register.
bits(64) AArch64.SysRegRead(integer op@, integer opl, integer crn, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegWrite

// Write to a system register.
AArch64.SysRegWrite(integer op@, integer opl, integer crn, integer crm, integer op2, bits(64) val);

1.1.4 aarch64/instrs

This section includes the following pseudocode functions:

. aarch64/instrs/branch/eret/AArch64.ExceptionReturn.

. aarch64/instrs/countop/CountOp on page 11-344.

. aarch64/instrs/extendreg/DecodeRegExtend on page 11-344.

. aarch64/instrs/extendreg/ExtendReg on page 11-344.

. aarch64/instrs/extendreg/ExtendType on page 11-345.

. aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp on page 11-345.
. aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp on page 11-345.

. aarch64/instrs/float/convert/fpconvop/FPConvOp on page 11-345.

. aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred on page 11-345.

. aarch64/instrs/integer/bitmasks/DecodeBitMasks on page 11-346.

. aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/Move WideOp on page 11-346.
. aarch64/instrs/integer/logical/movwpreferred/Move WidePreferred on page 11-346.

. aarch64/instrs/integer/shifireg/DecodeShift on page 11-347.

. aarch64/instrs/integer/shifireg/ShiftReg on page 11-347.

. aarch64/instrs/integer/shiftreg/Shift ype on page 11-347.

. aarch64/instrs/logicalop/LogicalOp on page 11-347.

. aarch64/instrs/memory/memop/MemAtomicOp on page 11-347.

. aarch64/instrs/memory/memop/MemOp on page 11-348.

. aarch64/instrs/memory/prefetch/Prefetch on page 11-348.

. aarch64/instrs/system/barriers/barrierop/MemBarrierOp on page 11-348.

. aarch64/instrs/system/hints/syshintop/SystemHintOp on page 11-348.

. aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField on page 11-348.

. aarch64/instrs/system/sysops/sysop/SysOp on page 11-349.

. aarch64/instrs/system/sysops/sysop/SystemOp on page 11-350.

. aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp on page 11-350.
. aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp on page 11-350.
. aarch64/instrs/vector/logical/immediateop/ImmediateOp on page 11-350.

. aarch64/instrs/vector/reduce/reduceop/Reduce on page 11-350.

. aarch64/instrs/vector/reduce/reduceop/ReduceOp on page 11-350.

aarch64/instrs/branch/eret/AArch64.ExceptionReturn

// AArch64.ExceptionReturn()
/!

AArch64.ExceptionReturn(bits(64) new_pc, bits(32) spsr)

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-343
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

SynchronizeContext();

sync_errors = HaveIESB() && SCTLR[].IESB == '1';

if sync_errors then
SynchronizeErrors();
iesb_req = TRUE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

// Attempts to change to an illegal state will invoke the I1legal Execution state mechanism

SetPSTATEFromPSR(spsr);
(learExclusivelLocal(ProcessorID());
SendEventLocal();

if PSTATE.IL == '1" && spsr<4> == '1' && spsr<20> == '@' then
// If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
new_pc<63:32> = bits(32) UNKNOWN;
new_pc<1:0> = bits(2) UNKNOWN;

elsif UsingAArch32() then // Return to AArch32
// ELR_ELx[1:0] or ELR_ELx[@] are treated as being @, depending on the target instruction set
state
if PSTATE.T == '1' then
new_pc<0> = '0'; // T32
else
new_pc<1:0> = '00'; // A32
else // Return to AArch64

// ELR_ELx[63:56] might include a tag
new_pc = AArch64.BranchAddr(new_pc);

if UsingAArch32() then
// 32 most significant bits are ignored.
BranchTo(new_pc<31:0>, BranchType_ERET);
else
BranchToAddr(new_pc, BranchType_ERET);

aarch64/instrs/countop/CountOp

enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};

aarch64/instrs/extendreg/DecodeRegExtend
// DecodeRegExtend()
// Decode a register extension option

ExtendType DecodeRegExtend(bits(3) op)
case op of
when '000' return ExtendType_UXTB;
when '001' return ExtendType_UXTH;
when '010' return ExtendType_UXTW;
when '011' return ExtendType_UXTX;
when '100' return ExtendType_SXTB;
when '101' return ExtendType_SXTH;
when '110' return ExtendType_SXTW;
when '111" return ExtendType_SXTX;

aarch64/instrs/extendreg/ExtendReg
// ExtendReg()
// Perform a register extension and shift
bits(N) ExtendReg(integer reg, ExtendType exttype, integer shift)
assert shift >= 0 && shift <= 4;
bits(N) val = X[reg];

boolean unsigned;
integer len;

11-344 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

case exttype of
when ExtendType_SXTB unsigned = FALSE; len = §;
when ExtendType_SXTH unsigned = FALSE; Tlen = 16;
when ExtendType_SXTW unsigned = FALSE; Ten = 32;
when ExtendType_SXTX unsigned = FALSE; Ten = 64;
when ExtendType_UXTB unsigned = TRUE; Ten = §;
when ExtendType_UXTH unsigned = TRUE; Ten = 16;
when ExtendType_UXTW unsigned = TRUE; Ten = 32;
when ExtendType_UXTX unsigned = TRUE; Ten = 64;

// Note the extended width of the intermediate value and

// that sign extension occurs from bit <len+shift-1>, not

// from bit <len-1>. This is equivalent to the instruction

// [SUIBFIZ Rtmp, Rreg, #shift, #len

// It may also be seen as a sign/zero extend followed by a shift:
// LSL(Extend(val<len-1:0>, N, unsigned), shift);

Ten = Min(Ten, N - shift);
return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

aarch64/instrs/extendreg/ExtendType

enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp

enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp

enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
FPUnaryOp_NEG, FPUnaryOp_SQRT};

aarch64/instrs/float/convert/fpconvop/FPConvOp

enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF
, FPConvOp_CVT_FtoI_JS

IS

aarch64/instrs/integer/bitfield/bfxpreferred/BF XPreferred

// BFXPreferred()

/] ==============

/!

// Return TRUE if UBFX or SBFX is the preferred disassembly of a
// UBFM or SBFM bitfield instruction. Must exclude more specific
// aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)
integer S = UInt(imms);
integer R = UInt(immr);

// must not match UBFIZ/SBFIX alias
if UInt(imms) < UInt(immr) then
return FALSE;

// must not match LSR/ASR/LSL alias (imms == 31 or 63)
if imms == sf:'11111' then
return FALSE;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
ID090320 Non-Confidential

11-345

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// must not match UXTx/SXTx alias
if immr == '000000' then
// must not match 32-bit UXT[BH] or SXT[BH]
if sf == '0' & imms IN {'000111', '001111'} then
return FALSE;
// must not match 64-bit SXT[BHW]
if sfiuns == '10' && imms IN {'000111', '001111', '@11111'} then
return FALSE;

// must be UBFX/SBFX alias
return TRUE;

aarch64/instrs/integer/bitmasks/DecodeBitMasks

// DecodeBitMasks()

// Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

(bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr, boolean immediate)

bits(M) tmask, wmask;
bits(6) levels;

// Compute Tog2 of element size

// 2Alen must be in range [2, M]

len = HighestSetBit(immN:NOT(imms));
if len < 1 then UNDEFINED;

assert M >= (1 << len);

// Determine S, R and S - R parameters
Tevels = ZeroExtend(Ones(len), 6);

// For Togical immediates an all-ones value of S is reserved
// since it would generate a useless all-ones result (many times)
if immediate && (imms AND levels) == levels then

UNDEFINED;

S = UInt(imms AND levels);
R = UInt(immr AND Tevels);
diff =S - R; // 6-bit subtract with borrow

esize = 1 << len;

d = UInt(diff<len-1:0>);

welem = ZeroExtend(Ones(S + 1), esize);
telem = ZeroExtend(Ones(d + 1), esize);
wmask = Replicate(ROR(welem, R));

tmask = RepTlicate(telem);

return (wmask, tmask);

aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp

enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};

aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred

// MoveWidePreferred()

// Return TRUE if a bitmask immediate encoding would generate an immediate
// value that could also be represented by a single MOVZ or MOVN instruction.
// Used as a condition for the preferred MOV<-ORR alias.

boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)

integer S = UInt(imms);
integer R = UInt(immr);
integer width = if sf == '1' then 64 else 32;

11-346

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// element size must equal total immediate size

if sf == "1" && immN:imms != "Ixxxxxx' then
return FALSE;
if sf == '0' && immN:imms != '@0xxxxx' then

return FALSE;

// for MOVZ must contain no more than 16 ones

if S < 16 then
// ones must not span halfword boundary when rotated
return (-R MOD 16) <= (15 - S);

// for MOVN must contain no more than 16 zeros

if S >= width - 15 then
// zeros must not span halfword boundary when rotated
return (R MOD 16) <= (S - (width - 15));

return FALSE;

aarch64/instrs/integer/shiftreg/DecodeShift
// DecodeShift()
// Decode shift encodings

ShiftType DecodeShift(bits(2) op)
case op of
when '00' return ShiftType_LSL;
when '01' return ShiftType_LSR;
when '10' return ShiftType_ASR;
when '11' return ShiftType_ROR;

aarch64/instrs/integer/shiftreg/ShiftReg
// ShiftReg()
// Perform shift of a register operand

bits(N) ShiftReg(integer reg, ShiftType shiftype, integer amount)
bits(N) result = X[reg]l;
case shiftype of
when ShiftType_LSL result = LSL(result, amount);
when ShiftType_LSR result = LSR(result, amount);
when ShiftType_ASR result = ASR(result, amount);
when ShiftType_ROR result = ROR(result, amount);
return result;

aarch64/instrs/integer/shiftreg/ShiftType

enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

aarché64/instrs/logicalop/LogicalOp

enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

aarch64/instrs/memory/memop/MemAtomicOp

enumeration MemAtomicOp {MemAtomicOp_ADD,
MemAtomicOp_BIC,
MemAtomicOp_EOR,
MemAtomicOp_ORR,
MemAtomicOp_SMAX,
MemAtomicOp_SMIN,

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-347
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

MemAtomicOp_UMAX,
MemAtomicOp_UMIN,
MemAtomicOp_SWP};

aarch64/instrs/memory/memop/MemOp

enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

aarch64/instrs/memory/prefetch/Prefetch

// Prefetch()
// mmmmmmmmm

// Decode and execute the prefetch hint on ADDRESS specified by PRFOP

Prefetch(bits(64) address, bits(5) prfop)

PrefetchHint hint;
integer target;
boolean stream;

case prfop<4:3> of
when '00' hint
when '01' hint =
when '10' hint =
when '11' return;

target = UInt(prfop<2:1>);
stream = (prfop<0> != '0");

return;

Prefetch_READ;
Prefetch_EXEC;
Prefetch_WRITE;

// unallocated hint

// target cache Tevel
// streaming (non-temporal)
Hint_Prefetch(address, hint, target, stream);

aarch64/instrs/system/barriers/barrierop/MemBarrierOp

enumeration MemBarrierOp

{ MemBarrierOp_DSB
, MemBarrierOp_DMB
, MemBarrierOp_ISB
, MemBarrierOp_SSBB
, MemBarrierOp_PSSBB
, MemBarrierOp_SB

};

// Data Synchronization Barrier

// Data Memory
// Instruction
// Speculative
// Speculative
// Speculation

aarch64/instrs/system/hints/syshintop/SystemHintOp

enumeration SystemHintOp
SystemHintOp_NOP,
SystemHintOp_YIELD,
SystemHintOp_WFE,
SystemHintOp_WFI,
SystemHintOp_SEV,
SystemHintOp_SEVL,
SystemHintOp_DGH,
SystemHintOp_ESB,
SystemHintOp_TSB,
SystemHintOp_CSDB

b

{

// PLD: prefetch for Tload
// PLI: preload instructions
// PST: prepare for store

Barrier

Synchronization Barrier
Synchronization Barrier to VA
Synchronization Barrier to PA

Barrier

aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField

enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,

PSTATEField_PAN, // Armv8.1
PSTATEField_UAO, // Armv8.2
PSTATEFie1d_DIT, // Armv8.4

PSTATEField_SSBS,
PSTATEField_SP

5

11-348

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode

11.1 Pseudocode for AArch64 operations

aarch64/instrs/system/sysops/sysop/SysOp

// SysOp()
/| =======

SystemOp SysOp(bits(3) opl, bits(4) CRn, bits(4) CRm, bits(3) op2)
case opl:CRn:CRm:op2 of

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

'000
'100
'110
'000
'100
'110
'000
'000
'100
'100
'100
'100
'011
'000
'000
'011
'000
'011
'011
'000
'011
'000
'000
'011
'100
'100
'000
'100
'110
'000
'100
'110
'000
'000
'100
'000
'100
'110
'100
'000
'100
'100
'000
'100
'110
'000
'100
'110
'000
'000
'100
'000
'100
'110
'100
'000

0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

return Sys_SYS;

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
0100
0110
0110
1010
1010
1011
1110
1110
1101
0001
0101
0101
0000
0000
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0100
0100
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111

000"
000'
000"
001’
001’
001’
010’
011'
100"
101’
110'
111’
001’
001’
010’
001’
010’
001’
001’
010’
001’
000"
000"
001’
001’
lo1'
000"
000"
000"
001’
001’
001’
010’
011"
100'
101’
lo1'
101’
110"
11’
001’
lo1'
000"
000"
000'
001’
001’
001’
010’
011’
100'
101’
lo1'
101’
110"
111"

return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return

Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_AT;
Sys_DC;
Sys_DC;
Sys_DC;
Sys_DC;
Sys_DC;
Sys_DC;
Sys_DC;
Sys_DC;
Sys_DC;
Sys_IC;
Sys_IC;
Sys_IC;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;
Sys_TLBI;

// S1EIR

// S1E2R

// S1E3R

// S1EIW

// S1E2W

// S1E3W

// S1E@R

// S1EQW

// S12EIR
// S12EIW
// S12E@R
// S12EQW
// ZVA

// IVAC

// ISW

// CVAC

// CSW

// CVAU

// CIVAC

// CISW

// CVADP

// IALLUIS
// TALLU

// IVAU

// IPAS2E1IS
// IPAS2LELIS
// VMALLELIS
// ALLE2IS
// ALLE3IS
// VAELIS
// VAE2IS
// VAE3IS
// ASIDE1IS
// VAAE1IS
// ALLE1IS
// VALE1IS
// VALE2IS
// VALE3IS
// VMALLS12E1IS
// VAALELIS
// IPAS2EL
// IPAS2LE1
// VMALLE1
// ALLE2

// ALLE3

// VAE1

// VAE2

// VAE3

// ASIDE1
// VAAE1

// ALLE1

// VALE1

// VALE2

// VALE3

// VMALLS12E1
// VAALEL

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

11-349

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/instrs/system/sysops/sysop/SystemOp

enumeration SystemOp {Sys_AT, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp

enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp

enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
CompareOp_LE, CompareOp_LT};

aarché64/instrs/vector/logicallimmediateop/ImmediateOp

enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
ImmediateOp_ORR, ImmediateOp_BIC};

aarch64/instrs/vector/reduce/reduceop/Reduce

// Reduce()
// =

bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
integer half;
bits(esize) hi;
bits(esize) lo;
bits(esize) result;

if N == esize then
return input<esize-1:0>;

half = N DIV 2;
hi = Reduce(op, input<N-1l:half>, esize);
lo = Reduce(op, input<half-1:0>, esize);

case op of

when ReduceOp_FMINNUM

result = FPMinNum(lo, hi, FPCR);
when ReduceOp_FMAXNUM

result = FPMaxNum(lo, hi, FPCR);
when ReduceOp_FMIN

result = FPMin(lo, hi, FPCR);
when ReduceOp_FMAX

result = FPMax(lo, hi, FPCR);
when ReduceOp_FADD

result = FPAdd(To, hi, FPCR);
when ReduceOp_ADD

result = To + hi;

return result;

aarch64/instrs/vector/reduce/reduceop/ReduceOp

enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
ReduceOp_FMIN, ReduceOp_FMAX,
ReduceOp_FADD, ReduceOp_ADD};

11.1.5 aarch64/translation

This section includes the following pseudocode functions:
. aarch64/translation/attrs/AArch64.CombineS1S2Desc on page 11-351.
. aarch64/translation/attrs/AArch64.InstructionDevice on page 11-352.

11-350 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

. aarch64/translation/attrs/AArch64.S1AttrDecode on page 11-352.

. aarch64/translation/attrs/AArch64. TranslateAddressS10ff on page 11-353.

. aarch64/translation/attrs/AArch64.ValidateAddressS10ff on page 11-354.

. aarch64/translation/checks/AArch64.AccesslsPrivileged on page 11-355.

. aarch64/translation/checks/AArch64.AccessUsesEL on page 11-355.

. aarch64/translation/checks/AArch64.CheckPermission on page 11-356.

. aarch64/translation/checks/AArch64.CheckS2Permission on page 11-357.

. aarch64/translation/debug/AArch64.CheckBreakpoint on page 11-357.

. aarch64/translation/debug/AArch64.CheckDebug on page 11-358.

. aarch64/translation/debug/AArch64.CheckWatchpoint on page 11-358.

. aarch64/translation/faults/AArch64.AccessFlagFault on page 11-359.

. aarch64/translation/faults/AArch64.AddressSizeFault on page 11-359.

. aarch64/translation/faults/AArch64.AlignmentFault on page 11-359.

. aarch64/translation/faults/AArch64.AsynchExternalAbort on page 11-359.

. aarch64/translation/faults/AArch64.DebugFault on page 11-360.

. aarch64/translation/faults/AArch64.NoFault on page 11-360.

. aarch64/translation/faults/AArch64. PermissionFault on page 11-360.

. aarch64/translation/faults/AArch64. TranslationFault on page 11-360.

. aarch64/translation/translation/AArch64.CheckAndUpdateDescriptor on page 11-361.
. aarch64/translation/translation/AArch64.FirstStageTranslate on page 11-361.
. aarch64/translation/translation/AArch64.SecondStageWalk on page 11-362.

. aarch64/translation/translation/AArch64. TranslateAddress on page 11-363.

. aarch64/translation/validation/AArch64.ComputeS2NSbit on page 11-363.

. aarch64/translation/validation/AArch64.FirstStageValidate on page 11-363.

. aarch64/translation/validation/AArch64.FullValidate on page 11-364.

. aarch64/translation/validation/AArch64.GetDefaultMemoryAttr on page 11-364.
. aarch64/translation/validation/AArch64.MPUValidate on page 11-365.

. aarch64/translation/validation/AArch64.SecondStageValidate on page 11-367.
. aarch64/translation/walk/AArch64.TranslationTableWalk on page 11-368.

aarch64/translation/attrs/AArch64.CombineS1S2Desc

// AArch64.CombineS1S2Desc()
//

// Combines the address descriptors from stage 1 and stage 2

AddressDescriptor AArch64.CombineS1S2Desc(AddressDescriptor sldesc, AddressDescriptor s2desc, AccType
s2acctype)

AddressDescriptor result;
result.paddress = s2desc.paddress;

apply_force_writeback = HaveStage2MemAttrControl() &% HCR_EL2.FWB == '1';
if IsFault(sldesc) || IsFault(s2desc) then
result = if IsFault(sldesc) then sldesc else s2desc;
else
result.fault = AArch64.NoFault();
fwb_enabled = apply_force_writeback && s2desc.memattrs.is_fwb;
if s2desc.memattrs.memtype == MemType_Device || (!fwb_enabled & sldesc.memattrs.memtype ==
MemType_Device) then
result.memattrs.memtype = MemType_Device;
if sldesc.memattrs.memtype == MemType_Normal then
result.memattrs.device = s2desc.memattrs.device;
elsif s2desc.memattrs.memtype == MemType_Normal then
result.memattrs.device = sldesc.memattrs.device;
else // Both Device
result.memattrs.device = CombineS1S2Device(sldesc.memattrs.device,

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-351
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

s2desc.memattrs.device);
else
result.memattrs.memtype = MemType_Normal;
result.memattrs.device = DeviceType UNKNOWN;
if fwb_enabled then
// Check and apply cacheability condition
if S2CacheDisabled(s2acctype) then
result.memattrs.inner.attrs = MemAttr_NC;
result.memattrs.inner.hints = MemHint_No;
else
result.memattrs.inner.attrs = MemAttr_WB; // force Write-back
if sldesc.memattrs.inner.attrs == MemAttr_NC
|| sldesc.memattrs.outer.attrs == MemAttr_NC then
result.memattrs.inner.hints = MemHint_RWA;
else
result.memattrs.inner.hints = sldesc.memattrs.inner.hints;
result.memattrs.outer = result.memattrs.inner;
else
result.memattrs.inner = CombineS1S2AttrHints(sldesc.memattrs.inner,
s2desc.memattrs.inner, s2acctype);
result.memattrs.outer = CombineS1S2AttrHints(sldesc.memattrs.outer,
s2desc.memattrs.outer, s2acctype);
result.memattrs.shareable = (sldesc.memattrs.shareable || s2desc.memattrs.shareable);
result.memattrs.outershareable = (sldesc.memattrs.outershareable ||
s2desc.memattrs.outershareable);

result.memattrs = MemAttrDefaults(result.memattrs);

return result;

aarché64/translation/attrs/AArch64.InstructionDevice

// AArch64.InstructionDevice()
//
// Instruction fetches from memory marked as Device but not execute-never might generate a
// Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.

AddressDescriptor AArch64.InstructionDevice(AddressDescriptor addrdesc, bits(64) vaddress,
bits(52) ipaddress, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fslwalk)

¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_NONE, Constraint_FAULT};

if ¢ == Constraint_FAULT then
addrdesc.fault = AArch64.PermissionFault(ipaddress, boolean UNKNOWN, Tevel, acctype, iswrite,
secondstage, s2fslwalk);
else
addrdesc.memattrs.memtype = MemType_Normal;
addrdesc.memattrs.inner.attrs = MemAttr_NC;
addrdesc.memattrs.inner.hints = MemHint_No;
addrdesc.memattrs.outer = addrdesc.memattrs.inner;
addrdesc.memattrs = MemAttrDefaults(addrdesc.memattrs);

return addrdesc;

aarché64/translation/attrs/AArch64.S1AttrDecode

// AArch64.S1AttrDecode()
/!
// Converts the Stage 1 attribute fields, using the MAIR, to orthogonal
// attributes and hints.

MemoryAttributes AArch64.S1AttrDecode(bits(2) SH, bits(3) attr, AccType acctype)

11-352 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

MemoryAttributes memattrs;

mair = MAIR[];
index = 8 » UInt(attr);
attrfield = mair<index+7:index>;

if ((attrfield<7:4> !'= '0000' && attrfield<3:0> == '0000') ||
(attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then
// Reserved, maps to an allocated value
(-, attrfield) = ConstrainUnpredictableBits();

if attrfield<7:4> == '0000' then // Device

memattrs.memtype = MemType_Device;

case attrfield<3:0> of
when '0000' memattrs.device = DeviceType_nGnRnE;
when '0100' memattrs.device = DeviceType_nGnRE;
when '1000' memattrs.device = DeviceType_nGRE;
when '1100' memattrs.device = DeviceType_GRE;
otherwise Unreachable(); // Reserved, handled above

elsif attrfield<3:0> != '0000' then // Normal
memattrs.memtype = MemType_Normal;
memattrs.outer = LongConvertAttrsHints(attrfield<7:4>, acctype);
memattrs.inner = LongConvertAttrsHints(attrfield<3:0>, acctype);

memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10"';
else
Unreachable(); // Reserved, handled above

if ((HCR_EL2.WM == "1" || HCR_EL2.DC == '1') &
(PSTATE.EL == EL1 || (PSTATE.EL == ELO && HCR_EL2.TGE == '0'))) then
return memattrs;

else
return MemAttrDefaults(memattrs);

aarché64/translation/attrs/AArch64.TranslateAddressS10ff

// AArch64.TranslateAddressS10ff()
//
// Called for stage 1 translations when translation is disabled to supply a default translation.
// Note that there are additional constraints on instruction prefetching that are not described in
// this pseudocode.

TLBRecord AArch64.TranslateAddressS10ff(bits(64) vaddress, AccType acctype, boolean iswrite)
assert !ELUsingAArch32(S1TranslationRegime());

TLBRecord result;

Top = AddrTop(vaddress, (acctype == AccType_IFETCH), PSTATE.EL);
if 1IsZero(vaddress<Top:PAMax()>) then
Tevel = 0;
ipaddress = bits(52) UNKNOWN;
secondstage = FALSE;
s2fslwalk = FALSE;
result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress,boolean UNKNOWN, Tevel, acctype,
iswrite, secondstage, s2fslwalk);
return result;

default_cacheable = (HasS2Translation() && HCR_EL2.DC == '1');

if default_cacheable then
// Use default cacheable settings
result.addrdesc.memattrs.memtype = MemType_Normal;
result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
result.addrdesc.memattrs.inner.hints = MemHint_RWA;
result.addrdesc.memattrs.shareable = FALSE;
result.addrdesc.memattrs.outershareable = FALSE;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-353
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

elsif acctype != AccType_IFETCH then
// Treat data as Device
result.addrdesc.memattrs.memtype = MemType_Device;
result.addrdesc.memattrs.device = DeviceType_nGnRnE;
result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;
else
// Instruction cacheability controlled by SCTLR_ELx.I
cacheable = SCTLR[].I == '1";
result.addrdesc.memattrs.memtype = MemType_Normal;
if cacheable then
result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
result.addrdesc.memattrs.inner.hints = MemHint_RA;
else
result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
result.addrdesc.memattrs.inner.hints = MemHint_No;
result.addrdesc.memattrs.shareable = TRUE;
result.addrdesc.memattrs.outershareable = TRUE;

result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;
result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

result.perms.ap = bits(3) UNKNOWN;
result.perms.xn = '0Q';
result.perms.pxn = '0";

result.nG = bit UNKNOWN;

result.contiguous = boolean UNKNOWN;

result.domain = bits(4) UNKNOWN;

result.level = integer UNKNOWN;

result.blocksize = integer UNKNOWN;
result.addrdesc.paddress.address = vaddress<51:0>;
result.addrdesc.paddress.NS = if IsSecure() then 'Q' else '1';
result.addrdesc.fault = AArch64.NoFault();

result.descupdate.AF = FALSE;
result.descupdate.AP = FALSE;
result.descupdate.descaddr = result.addrdesc;

return result;

aarch64/translation/attrs/AArch64.ValidateAddressS10ff

// AArch64.ValidateAddressS10ff()
/!
// Called for stage 1 translations when translation is disabled to supply a
// default translation.

MPURecord AArch64.ValidateAddressS10ff(bits(64) inputaddr, AccType acctype,
boolean iswrite)
MPURecord result;

if !IsZero(inputaddr<63:PAMax()>) then

Tevel = 0;

address = bits(52) UNKNOWN;

secondstage = FALSE;

s2fslwalk = FALSE;

result.addrdesc.fault = AArch64.AddressSizeFault(address,boolean UNKNOWN,
Tevel, acctype, iswrite,
secondstage, s2fslwalk);

return result;

default_cacheable = HasS2Translation() && (HCR_EL2.DC == '1');
if default_cacheable then

// Use default cacheability settings
result.addrdesc.memattrs.memtype = MemType_Normal;

11-354

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
result.addrdesc.memattrs.inner.hints = MemHint_RWA;
result.addrdesc.memattrs.shareable = FALSE;
result.addrdesc.memattrs.outershareable = FALSE;

elsif acctype !'= AccType_IFETCH then
// Treat data as Device
result.addrdesc.memattrs.memtype = MemType_Device;
result.addrdesc.memattrs.device = DeviceType_nGnRnE;
result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;
else
// Instruction cacheability controlled by SCTLR_ELx.I
cacheable = SCTLR[].I == '1";
result.addrdesc.memattrs.memtype = MemType_Normal;
if cacheable then
result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
result.addrdesc.memattrs.inner.hints = MemHint_RA;
else
result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
result.addrdesc.memattrs.inner.hints = MemHint_No;
result.addrdesc.memattrs.shareable = TRUE;
result.addrdesc.memattrs.outershareable = TRUE;

result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;
result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

result.perms.ap = bits(3) UNKNOWN;
result.perms.xn '0';
result.perms.pxn = '0';

result.addrdesc.paddress.address = inputaddr<51:0>;
result.addrdesc.paddress.NS = '0';
result.addrdesc.fault = AArch64.NoFault();

return result;

aarché64/translation/checks/AArch64.AccesslsPrivileged

// AArch64.AccessIsPrivileged()
/!

boolean AArch64.AccessIsPrivileged(AccType acctype)
el = AArch64.AccessUsesEL (acctype);

if el == ELO then
ispriv = FALSE;
elsif el == EL3 then
ispriv = TRUE;
elsif HaveUAOExt() && PSTATE.UAO == '1' then
ispriv = TRUE;
else
ispriv = (acctype != AccType_UNPRIV);

return ispriv;

aarch64/translation/checks/AArch64.AccessUsesEL

// AArch64.AccessUsesEL()
//

// Returns the Exception Level of the regime that will manage the translation for a given access type.

bits(2) AArch64.AccessUsesEL(AccType acctype)
if acctype == AccType_UNPRIV then
return ELO;
else
return PSTATE.EL;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-355
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/translation/checks/AArch64.CheckPermission

// AArch64.CheckPermission()
/!

// Function used for permission checking from AArch64 stage 1 translations

FaultRecord AArch64.CheckPermission(Permissions perms, bits(64) vaddress, integer Tevel,
bit NS, AccType acctype,
boolean enable_wxn_pan,
boolean iswrite)
assert !ELUsingAArch32(S1TranslationRegime());

wxn = SCTLR[].WXN == '1'";

if (PSTATE.EL == ELO ||
PSTATE.EL == EL1) then

priv_r = TRUE;

priv_w = perms.ap<2> == '0';
user_r = perms.ap<l> == '1';
user_w = perms.ap<2:1> == '01';

ispriv = AArch64.AccessIsPrivileged(acctype);

pan = if HavePANExt() then PSTATE.PAN else 'Q';
if lenable_wxn_pan then pan = '0';
is_ldst I(acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_AT, AccType_IFETCH});
is_atslxp = (acctype == AccType_AT && AArch64.ExecutingATS1xPInstr());
if pan == '1' && user_r && ispriv && (is_ldst || is_atslxp) then
priv_r = FALSE;
priv_w = FALSE;

user_xn = perms.xn == '1" || (user_w && wxn & enable_wxn_pan);
priv_xn = perms.pxn == '1" || (priv_w & wxn && enable_wxn_pan) || (user_w && enable_wxn_pan);

if ispriv then

(r, w, xn) = (priv_r, priv_w, priv_xn)
else

(r, w, xn) = (user_r, user_w, user_xn);

else
// Access from EL2 or EL3
r = TRUE;
W = perms.ap<2> == '0';
xn = perms.xn == '1' || (w & wxn && enable_wxn_pan);

// Restriction on Secure instruction fetch

if acctype == AccType_IFETCH then
fail = xn;
failedread = TRUE;
elsif acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW, AccType_ORDEREDATOMICRW } then
fail = Ir || lw;
failedread = !r;
elsif iswrite then
fail = lw;
failedread = FALSE;
elsif acctype == AccType_DC && PSTATE.EL != ELO then
// DC maintenance instructions operating by VA, cannot fault from stage 1 translation,
// other than DC IVAC, which requires write permission, and operations executed at ELO,
// which require read permission.
fail = FALSE;
else
fail = !r;
failedread = TRUE;

if fail then
secondstage = FALSE;
s2fslwalk = FALSE;
ipaddress = bits(52) UNKNOWN;

11-356 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

return AArch64.PermissionFault(ipaddress,boolean UNKNOWN, Tevel, acctype,
Ifailedread, secondstage, s2fslwalk);
else
return AArch64.NoFault();

aarché64/translation/checks/AArch64.CheckS2Permission

// AArch64.CheckS2Permission()
//

// Permission checking from AArch64 stage 2 validation

FaultRecord AArch64.CheckS2Permission(Permissions perms, bits(52) ipaddress,
integer level, AccType acctype,
booTlean iswrite, boolean NS, boolean s2fslwalk)
assert (IsSecureEL2Enabled() || (HaveEL(EL2) && !IsSecure() && !'ELUsingAArch32(EL2))) &&

HasS2Translation();
if PSTATE.EL IN {ELO, EL1} then
r = perms.ap<l> == '1';
w = perms.ap<2:1> == '01';
else
// Access from EL2
r = TRUE;
w = perms.ap<2> == '0';

if HaveExtendedExecuteNeverExt() then
case perms.xn:perms.xxn of
when '00' xn = FALSE;
when '01' xn = PSTATE.EL == EL1;
when '10' xn = TRUE;
when '11' xn = PSTATE.EL == ELO;

else

Xn = perms.xn == '1';
// Stage 1 walk is checked as a read, regardless of the original type
if acctype == AccType_IFETCH && !s2fslwalk then

fail = xn;

failedread = TRUE;

elsif iswrite && !s2fslwalk then
fail = lw;
failedread = FALSE;

elsif acctype == AccType_DC && PSTATE.EL != ELO && !s2fslwalk then
// DC maintenance instructions operating by VA, with the exception of DC IVAC, do
// not generate Permission faults from stage 2 validation, other than when
// performing a stage 1 translation table walk.
fail = FALSE;

else
fail = !r;
failedread = TRUE;

if fail then
secondstage = TRUE;
return AArch64.PermissionFault(ipaddress,NS, level, acctype,
Ifailedread, secondstage, s2fslwalk);
else
return AArch64.NoFault();

aarch64/translation/debug/AArch64.CheckBreakpoint

// AArch64.CheckBreakpoint()
/!
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
// translation regime, when either debug exceptions are enabled, or halting debug is enabled
// and halting is allowed.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-357
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

FaultRecord AArch64.CheckBreakpoint(bits(64) vaddress, integer size)
assert !ELUsingAArch32(S1TranslationRegime());
assert (UsingAArch32() && size IN {2,4}) || size == 4;

match = FALSE;

for i = 0 to UInt(ID_AA64DFRO_EL1.BRPs)
match_i = AArch64.BreakpointMatch(i, vaddress, size);
match = match || match_i;

if match & HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Breakpoint;
Halt(reason);
elsif match then
acctype = AccType_IFETCH;
iswrite = FALSE;
return AArch64.DebugFault(acctype, iswrite);
else
return AArch64.NoFault();

aarch64/translation/debug/AArch64.CheckDebug

// AArch64.CheckDebug()
/!

// Called on each access to check for a debug exception or entry to Debug state.

FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccType acctype, boolean iswrite, integer size)
FauTtRecord fault = AArch64.NoFault();

d_side = (acctype != AccType_IFETCH);
generate_exception = AArch64.GenerateDebugExceptions() & MDSCR_EL1.MDE == '1';
halt = HaltOnBreakpointOrWatchpoint();

if generate_exception || halt then
if d_side then
fault = AArch64.CheckWatchpoint(vaddress, acctype, iswrite, size);
else
fault = AArch64.CheckBreakpoint(vaddress, size);

return fault;

aarch64/translation/debug/AArch64.CheckWatchpoint

// AArch64.CheckWatchpoint()
/!
// Called before accessing the memory location of "size" bytes at "address",
// when either debug exceptions are enabled for the access, or halting debug
// is enabled and halting is allowed.

FaultRecord AArch64.CheckWatchpoint(bits(64) vaddress, AccType acctype,
boolean iswrite, integer size)
assert !ELUsingAArch32(S1TranslationRegime());

match = FALSE;
ispriv = AArch64.AccessIsPrivileged(acctype);

for i = 0 to UInt(ID_AA64DFRO_EL1.WRPs)
match = match || AArch64.WatchpointMatch(i, vaddress, size, ispriv, iswrite);

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Watchpoint;
EDWAR = vaddress;
Halt(reason);

elsif match then

11-358 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

return AArch64.DebugFault(acctype, iswrite);
else
return AArch64.NoFault();

aarché64/translation/faults/AArch64.AccessFlagFault

// AArch64.AccessFlagFault()
//

FaultRecord AArch64.AccessFlagFault(bits(52) ipaddress,boolean NS, integer Tevel,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fslwalk)

extflag = bit UNKNOWN;

errortype = bits(2) UNKNOWN;

return AArch64.CreateFaultRecord(Fault_AccessFlag, ipaddress, NS, level, acctype, iswrite,
extflag, errortype, secondstage, s2fslwalk);

aarché64/translation/faults/AArch64.AddressSizeFault

// AArch64.AddressSizeFault()
//

FauTtRecord AArch64.AddressSizeFault(bits(52) ipaddress,boolean NS, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fslwalk)

extflag = bit UNKNOWN;

errortype = bits(2) UNKNOWN;

return AArch64.CreateFaultRecord(Fault_AddressSize, ipaddress, NS, level, acctype, iswrite,
extflag, errortype, secondstage, s2fslwalk);

aarché64/translation/faults/AArch64.AlignmentFault

// AArch64.AlignmentFault()
//

FaultRecord AArch64.ATignmentFault(AccType acctype, boolean iswrite, boolean secondstage)

ipaddress = bits(52) UNKNOWN;
level = integer UNKNOWN;
extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
s2fslwalk = boolean UNKNOWN;

return AArch64.CreateFaultRecord(Fault_Alignment, ipaddress, boolean UNKNOWN, Tevel, acctype,
iswrite,
extflag, errortype, secondstage, s2fslwalk);

aarché64/translation/faults/AArch64.AsynchExternalAbort
// AArch64.AsynchExternalAbort()

//

// Wrapper function for asynchronous external aborts

FaultRecord AArch64.AsynchExternalAbort(boolean parity, bits(2) errortype, bit extflag)

faulttype = if parity then Fault_AsyncParity else Fault_AsyncExternal;
ipaddress = bits(52) UNKNOWN;

level = integer UNKNOWN;

acctype = AccType_NORMAL;

iswrite = boolean UNKNOWN;

secondstage = FALSE;

s2fslwalk = FALSE;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-359
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

return AArch64.CreateFaultRecord(faulttype, ipaddress, boolean UNKNOWN, Tevel, acctype, iswrite,
extflag,
errortype, secondstage, s2fslwalk);

aarché64/translation/faults/AArch64.DebugFault

// AArch64.DebugFault()
//

FaultRecord AArch64.DebugFault(AccType acctype, boolean iswrite)

ipaddress = bits(52) UNKNOWN;
errortype = bits(2) UNKNOWN;
Tevel = integer UNKNOWN;
extflag = bit UNKNOWN;
secondstage = FALSE;
s2fslwalk = FALSE;

return AArch64.CreateFaultRecord(Fault_Debug, ipaddress, boolean UNKNOWN, Tevel, acctype, iswrite,
extflag, errortype, secondstage, s2fslwalk);

aarch64/translation/faults/AArch64.NoFault

// AArch64.NoFault()
/] =====m==sm=======

FaultRecord AArch64.NoFault()

ipaddress = bits(52) UNKNOWN;
level = integer UNKNOWN;
acctype = AccType_NORMAL;
iswrite = boolean UNKNOWN;
extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
secondstage = FALSE;
s2fslwalk = FALSE;

return AArch64.CreateFaultRecord(Fault_None, ipaddress, boolean UNKNOWN, Tevel, acctype, iswrite,
extflag, errortype, secondstage, s2fslwalk);
aarch64/translation/faults/AArch64.PermissionFault

// AArch64.PermissionFault()
//

FauTtRecord AArch64.PermissionFault(bits(52) ipaddress,boolean NS, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fslwalk)

extflag = bit UNKNOWN;

errortype = bits(2) UNKNOWN;

return AArch64.CreateFaultRecord(Fault_Permission, ipaddress, NS, level, acctype, iswrite,
extflag, errortype, secondstage, s2fslwalk);

aarché64/translation/faults/AArch64.TranslationFault

// AArch64.TransTlationFault()
//

FaultRecord AArch64.TranslationFault(bits(52) ipaddress, boolean NS, integer Tevel,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fslwalk)

extflag = bit UNKNOWN;

11-360 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

errortype = bits(2) UNKNOWN;
return AArch64.CreateFaultRecord(Fault_Translation, ipaddress, NS, level, acctype, iswrite,
extflag, errortype, secondstage, s2fslwalk);

aarché64/translation/translation/AArch64.CheckAndUpdateDescriptor
// AArch64.CheckAndUpdateDescriptor()

//

// Check and update translation table descriptor if hardware update is configured

FaultRecord AArch64.CheckAndUpdateDescriptor(DescriptorUpdate result, FaultRecord fault,
boolean secondstage, bits(64) vaddress, AccType acctype,
boolean iswrite, boolean s2fslwalk, boolean hwupdatewalk)

boolean hw_update_AF = FALSE;
boolean hw_update_AP = FALSE;

// Check if access flag can be updated
// Address translation instructions are permitted to update AF but not required
if result.AF then
if fault.statuscode == Fault_None || ConstrainUnpredictable() == Constraint_TRUE then
hw_update_AF = TRUE;

if result.AP && fault.statuscode == Fault_None then
write_perm_req = (iswrite || acctype IN {AccType_ATOMICRW,AccType_ORDEREDRW,
AccType_ORDEREDATOMICRW }) && !s2fslwalk;
hw_update_AP = (write_perm_req && !(acctype IN {AccType_AT, AccType_DC, AccType_DC_UNPRIV})) ||
hwupdatewalk;

if hw_update_AF || hw_update_AP then
if secondstage || !HasS2Translation() then
descaddr2 = result.descaddr;
else
assert hwupdatewalk == FALSE;
descaddr2 = AArch64.SecondStageWalk(result.descaddr, vaddress, acctype, iswrite, 8,
hwupdatewalk);
if IsFault(descaddr2) then
return descaddr2.fault;

accdesc = CreateAccessDescriptor(AccType_ATOMICRW);
desc = _Mem[descaddr2, 8, accdesc];
el = AArch64.AccessUsesEL (acctype);
case el of
when EL2
reversedescriptors = SCTLR_EL2.EE == '1';
otherwise
reversedescriptors = SCTLR_EL1.EE == '1';
if reversedescriptors then
desc = BigEndianReverse(desc);

if hw_update_AF then
desc<10> = '1';
if hw_update_AP then
desc<7> = (if secondstage then '1l' else '0");

_Mem[descaddr2,8,accdesc] = if reversedescriptors then BigEndianReverse(desc) else desc;

return fault;

aarch64/translation/translation/AArch64.FirstStageTranslate

// AArch64.FirstStageTranslate()
//

// Perform a stage 1 translation walk. The function used by Address Translation operations is
// similar except it uses the translation regime specified for the instruction.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-361
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

AddressDescriptor AArch64.FirstStageTranslate(bits(64) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

if HasS2Translation() then

sl_enabled = HCR_EL2.TGE == 'Q"' && HCR_EL2.DC == 'Q' && SCTLR_EL1.M == '1';
else

sl_enabled = SCTLR[].M == '1';

TLBRecord S1;

Sl.addrdesc.fault = AArch64.NoFault();
ipaddress = bits(52) UNKNOWN;
secondstage = FALSE;

s2fslwalk = FALSE;

if sl_enabled then // First stage enabled
S1 = AArch64.TranslationTableWalk(ipaddress, TRUE, vaddress, acctype, iswrite, secondstage,
s2fslwalk, size);
permissioncheck = TRUE;
else
S1 = AArch64.TranslateAddressS10ff(vaddress, acctype, iswrite);
permissioncheck = FALSE;

// Check for unaligned data accesses to Device memory
if ((('wasaligned & acctype != AccType_IFETCH) || acctype == AccType_DCZVA)
&& !IsFault(Sl.addrdesc) & S1.addrdesc.memattrs.memtype == MemType_Device) then
Sl.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);
if !IsFault(S1l.addrdesc) && permissioncheck then
S1.addrdesc.fault = AArch64.CheckPermission(S1.perms, vaddress, S1.level,
S1.addrdesc.paddress.NS,
acctype,
TRUE,
iswrite);

// Check for instruction fetches from Device memory not marked as execute-never. If there has
// not been a Permission Fault then the memory is not marked execute-never.
if (!IsFault(Sl.addrdesc) && S1l.addrdesc.memattrs.memtype == MemType_Device &&
acctype == AccType_IFETCH) then
Sl.addrdesc = AArch64.InstructionDevice(Sl.addrdesc, vaddress, ipaddress, Sl.level,
acctype, iswrite,
secondstage, s2fslwalk);
// Check and update translation table descriptor if required
hwupdatewalk = FALSE;
s2fslwalk = FALSE;
S1.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S1.descupdate, Sl.addrdesc.fault,
secondstage, vaddress, acctype,
iswrite, s2fslwalk, hwupdatewalk);

return Sl.addrdesc;

aarché64/translation/translation/AArch64.SecondStageWalk

// AArch64.SecondStageWalk()
/!

// Perform a stage 2 translation on a stage 1 translation page table walk access.

AddressDescriptor AArch64.SecondStageWalk(AddressDescriptor S1, bits(64) vaddress, AccType acctype,
boolean iswrite, integer size, boolean hwupdatewalk)

assert HasS2Translation();
s2fslwalk = TRUE;

wasaligned = TRUE;
return AArch64.SecondStageValidate(S1, vaddress, acctype, iswrite, wasaligned, size, s2fslwalk);

11-362 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

aarch64/translation/translation/AArch64.TranslateAddress

// AArch64.TranslateAddress()
/!

// Main entry point for translating an address

AddressDescriptor AArch64.TranslateAddress(bits(64) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

result = AArch64.FullValidate(vaddress, acctype, iswrite, wasaligned, size);

if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
result.fault = AArch64.CheckDebug(vaddress, acctype, iswrite, size);

// Update virtual address for abort functions
result.vaddress = ZeroExtend(vaddress);

return result;

aarch64/translation/validation/AArch64.ComputeS2NSbit

// AArch64.ComputeS2NShit()

/!
// Compute stage 2 NS bit for EL1&0 translation regime.

bit AArch64.ComputeS2NShit(bit sl_ns, bit s2_ns)
nsaccess = s2_ns OR sl_ns;

if nsaccess == '0' then
nsaccess = VSTCR_EL2.SA;
else
if VSTCR_EL2.SA == '1' then nsaccess = '1';

else nsaccess = VTCR_EL2.NSA;
return nsaccess;

aarché64/translation/validation/AArch64.FirstStageValidate
// AArch64.FirstStagevValidate()

//

// Performs stage 1 validation for the memory access using MPU.

AddressDescriptor AArch64.FirstStageValidate(bits(64) vaddress, AccType acctype,
boolean iswrite, boolean wasaligned, integer size)
// Check whether stage 1 is enabled
if HasS2Translation() then
sl_enabled = HCR_EL2.TGE == '0' && HCR_EL2.DC == 'Q' && SCTLR[].M == '1';
br_enabled = HCR_EL2.TGE == '0' && HCR_EL2.DC == 'Q' && SCTLR[].BR == '1';
else
sl_enabled = SCTLR[].M == '1';
br_enabled = SCTLR[].BR == '1";

secondstage = FALSE;
sl_nonsecure = FALSE;
s2fslwalk = FALSE;
Tevel =0;

el = AArch64.AccessUsesEL (acctype);
top = AddrTop(vaddress, (acctype == AccType_IFETCH), el);
inputaddr = ZeroExtend(vaddress<top:0>,64);

if sl_enabled then
S1 = AArch64.MPUValidate(inputaddr, acctype, sl_nonsecure, iswrite, secondstage,
size, br_enabled, s2fslwalk);
permissioncheck = TRUE;
enable_wxn_pan = TRUE;

elsif br_enabled then

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-363
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

S1 = AArch64.GetDefaultMemoryAttr(inputaddr, acctype, sl_nonsecure, iswrite,
secondstage,s2fslwalk);
permissioncheck = TRUE;
enable_wxn_pan = FALSE;
else
S1 = AArch64.ValidateAddressS10ff(inputaddr, acctype, iswrite);
permissioncheck = FALSE;

// Check for unaligned data accesses to Device memory

if ((!wasaligned & acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))
&& S1.addrdesc.memattrs.memtype == MemType_Device && !IsFault(S1l.addrdesc) then
Sl.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);

if !IsFault(S1l.addrdesc) && permissioncheck then
S1.addrdesc.fault = AArch64.CheckPermission(S1.perms, vaddress, Tlevel,
S1.addrdesc.paddress.NS, acctype,
enable_wxn_pan,
iswrite);

// Check for instruction fetches from Device memory not marked as execute-never.
// If there has not been a Permission Fault then the memory is not marked
// execute-never.
if (!IsFault(Sl.addrdesc) && S1.addrdesc.memattrs.memtype == MemType_Device &&
acctype == AccType_IFETCH) then
S1.addrdesc = AArch64.InstructionDevice(S1.addrdesc, vaddress,
S1.addrdesc.paddress.address, level, acctype, iswrite,
secondstage, s2fslwalk);
return Sl.addrdesc;

aarché64/translation/validation/AArch64.FullValidate

// AArch64.Fullvalidate()
//

// Perform both stage 1 and stage 2 address validation for the current memory access
// regime.

AddressDescriptor AArch64.FullValidate(bits(64) vaddress, AccType acctype,
booTlean iswrite, boolean wasaligned, integer size)
// First stage validation
if IsStagelVMSA() then
S1 = AArch64.FirstStageTranslate(vaddress, acctype, iswrite, wasaligned, size);
else
S1 = AArch64.FirstStageValidate(vaddress, acctype, iswrite, wasaligned, size);

// Second Stage Validation
if 1IsFault(S1) && HasS2Translation() then
s2fslwalk = FALSE;
result = AArch64.SecondStageValidate(S1, vaddress, acctype, iswrite, wasaligned,
size, s2fslwalk);
else
result = S1;

return result;

aarch64/translation/validation/AArch64.GetDefaultMemoryAttr

// AArch64.GetDefaultMemoryAttr()

/!
// Get default memory attributes.

MPURecord AArch64.GetDefaultMemoryAttr(bits(64) inputaddr, AccType acctype,
booTean sl_nonsecure, boolean iswrite,
boolean secondstage, boolean s2fslwalk)

MPURecord memrecord;

level = 0;

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

address = inputaddr<51:0>;
sl_ns = if sl_nonsecure then 'l' else '0';
NS = sl_ns == '1";

if boolean IMPLEMENTATION_DEFINED "Default Memory Map" then
// Check whether address is greater than implemented PA range
if !IsZero(inputaddr<63:PAMax()>) then
memrecord.addrdesc.fault = AArch64.TranslationFault(address<51:0>,
NS, Tevel,
acctype, iswrite,
secondstage, s2fslwalk);
memrecord.perms = Permissions UNKNOWN;
return memrecord;

(is_valid, ns, memattrs, ap, xn, fwb_encoding, xxn) = __BackgroundMemoryAttr(inputaddr, acctype,
secondstage);
if lis_valid || (secondstage && VSTCR_EL2.SC == '1' && sl_ns != ns) then
memrecord.addrdesc.fault = AArch64.TranslationFault(address, NS,
Tevel, acctype, iswrite,
secondstage, s2fslwalk);
memrecord.perms = Permissions UNKNOWN;
else

// Check whether FWB is enabled
if secondstage then
memattrs.is_fwb = fwb_encoding & HaveStage2MemAttrControl() && HCR_EL2.FWB == '1';
if memattrs.is_fwb then assert ((memattrs.inner.attrs == MemAttr_WB) &&
(memattrs.outer.attrs == MemAttr_WB));
// If FWB is enabled, then cacheability control is applied after applying FWB in
// CombineS1S2Desc(). Else cacheability is applied in here
if memattrs.memtype == MemType_Normal
& ((!secondstage & S1lCacheDisabled(acctype)) || (secondstage &&
S2CacheDisabled(acctype) && !memattrs.is_fwb)) then
memattrs.inner.attrs = MemAttr_NC;
memattrs.inner.hints = MemHint_No;
memattrs.outer = memattrs.inner;

memrecord.addrdesc.memattrs = memattrs;
memrecord.perms.ap = ap;
memrecord.perms.xn Xn;
memrecord. perms. pxn memrecord.perms.xn;
if !secondstage then
memrecord.addrdesc.paddress.NS = ns;
else
memrecord.addrdesc.paddress.NS = AArch64.ComputeS2NSbit(sl_ns, ns);
if HaveExtendedExecuteNeverExt() then memrecord.perms.xxn = xxn;
memrecord.addrdesc.paddress.address = address;
memrecord.addrdesc.fault = AArch64.NoFault();

else
Unreachable();

return memrecord H

aarché64/translation/validation/AArch64.MPUValidate

// AArch64.MPUValidate()

//
// Returns the result of MPU checks on the address.

MPURecord AArch64.MPUValidate(bits(64) inputaddr, AccType acctype,
boolean sl_nonsecure, boolean iswrite, boolean secondstage,
integer size, boolean br_enabled, boolean s2fslwalk)

MPURecord memrecord;
address = inputaddr<51:0>;

if !secondstage then assert !sl_nonsecure;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-365
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// Select the MPU for memory validation
if SlTranslationRegime() == EL1 && !secondstage then

mpu_el = EL1;
else

mpu_el = EL2;
Tevel = 0;

matched = FALSE;
num_regions = UInt(MPUIR[mpu_e1].REGION);
sl_ns = if sl_nonsecure then '1' else '0';

// Check whether address is greater than implemented PA range
if 1IsZero(inputaddr<63:PAMax()>) then
memrecord.addrdesc.fault = AArch64.TranslationFault(address<51:0>,
sl_nonsecure, level,
acctype, iswrite,
secondstage, s2fslwalk);
memrecord.perms = Permissions UNKNOWN;
return memrecord;

if num_regions != @ then
for r = 0 to num_regions-1
prbar = PRBARn[mpu_el, r];
priar = PRLARn[mpu_el, r];

if prlar.EN == '1' then
base = ZeroExtend(prbar.BASE : Zeros(6), 64);
Timit = ZeroExtend(prlar.LIMIT : Ones(6), 64);

// Check for a matching MPU region
if UInt(inputaddr) >= UInt(base) & UInt(inputaddr) <= UInt(limit) then
// Check for multiple region match
if matched then
memrecord.addrdesc.fault = AArch64.TranslationFault(address,
sl_nonsecure,
Tevel, acctype,

iswrite,
secondstage,
s2fslwalk);

memrecord.perms = Permissions UNKNOWN;

return memrecord;

else

matched = TRUE;

ns = prlar.NS;

if secondstage && VSTCR_EL2.SC == '1' && sl_ns != ns then

memrecord.addrdesc.fault = AArch64.TranslationFault(address,
s1l_nonsecure,
Tevel,
acctype,
iswrite,
secondstage,
s2fslwalk);

memrecord.perms = Permissions UNKNOWN;

return memrecord;

if Isecondstage then
memrecord.addrdesc.paddress.NS = ns;
else
memrecord.addrdesc.paddress.NS = AArch64.ComputeS2NSbit(sl_ns, ns);
memrecord.addrdesc.paddress.address = address;
memrecord.perms.ap<2:1> = prbar.AP;
memrecord.perms.ap<0> = '1';
memrecord.perms.xn = prbar.XN<1>;
if secondstage && HaveExtendedExecuteNeverExt() then
memrecord.perms.xxn = prbar.XN<0>;
memrecord.perms.pxn = memrecord.perms.xn;
attrIndx = prlar.AttrIndx;

11-366 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

sh = prbar.SH;
if !secondstage then
memrecord.addrdesc.memattrs = AArch64.S1AttrDecode(sh,
attrIndx,
acctype);

else
memrecord.addrdesc.memattrs = S2MPUAttrDecode(sh, attrIndx,

acctype);

if matched then
memrecord.addrdesc.fault = AArch64.NoFault();
elsif br_enabled & HighestELAccess(secondstage) & AArch64.AccessIsPrivileged(acctype) then
memrecord = AArch64.GetDefaultMemoryAttr(inputaddr, acctype, sl_nonsecure,
iswrite, secondstage, s2fslwalk);
if IsFault(memrecord.addrdesc) then return memrecord;
else
// No MPU match or background region enabled
memrecord.addrdesc.fault = AArch64.TranslationFault(address, sl_nonsecure, Tevel,
acctype, iswrite, secondstage,
s2fslwalk);
memrecord.perms = Permissions UNKNOWN;
return memrecord;

if secondstage && HaveCommonNotPrivateTransExt() &% IsStagelVMSA() then
memrecord.CnP = VSCTLR_EL2.CnP;
return memrecord;

aarch64/translation/validation/AArch64.SecondStageValidate

// AArch64.SecondStageValidate()
/!

// Perform a stage 2 validation for memory access.

AddressDescriptor AArch64.SecondStageValidate(AddressDescriptor S1, bits(64) vaddress,
AccType acctype, boolean iswrite,
boolean wasaligned, integer size,
boolean s2fslwalk)

assert HasS2Translation();

s2_enabled = HCR_EL2.VM == '1" || HCR_EL2.DC == '1';
br_enabled = SCTLR_EL2.BR == '1';

mpu_enabled = SCTLR_EL2.M == '1';

secondstage = TRUE;

Tevel = 0;

if s2_enabled then // Second stage enabled
sl_nonsecure = Sl.paddress.NS == '1';
inputaddr = ZeroExtend(S1l.paddress.address, 64);

if mpu_enabled then
S2 = AArch64.MPUValidate(inputaddr, acctype, sl_nonsecure, iswrite,
secondstage, size, br_enabled, s2fslwalk);
permissioncheck = TRUE;
elsif br_enabled then
S2 = AArch64.GetDefaultMemoryAttr(inputaddr, acctype, sl_nonsecure, iswrite,
secondstage, s2fslwalk);
permissioncheck = TRUE;
else
// If HCR_EL2.WM = 1 and SCTLR_EL2.{M, BR} = {0,0}, then the behavior is CONSTRAINED
UNPREDICTABLE.
¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_MPU_FAULT, Constraint_MPU_ATTR_UNKNOWN};

if ¢ == Constraint_MPU_FAULT then
S2.addrdesc.fault = AArch64.TranslationFault(inputaddr<51:0>,
sl_nonsecure, level,
acctype, iswrite,

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-367
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode

11.1 Pseudocode for AArch64 operations

acctype,

else

secondstage, s2fslwalk);
S2.perms = Permissions UNKNOWN;

else
S2.addrdesc.memattrs = MemoryAttributes UNKNOWN;
S2.perms = Permissions UNKNOWN;

// Note: If the output address from the stage 1 translation is larger than the implemented

// PA size, then a stage 1 Address size fault is generated for the level of the
// stage 1 translation that generated the output address. This can happen if EL1&0

// stage 1 translation is running VMSA. In this case Address size fault is generated

// in TranslationTableWalk().

// Check for unaligned data accesses to Device memory
if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))

&& S2.addrdesc.memattrs.memtype == MemType_Device && !IsFault(S2.addrdesc) then

S2.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);

// Check for permissions on Stage2 validation
if !IsFault(S2.addrdesc) && permissioncheck then
S2.addrdesc.fault = AArch64.CheckS2Permission(S2.perms, Sl.paddress.address,
Tevel, acctype, iswrite,
sl_nonsecure, s2fslwalk);

// Check for instruction fetches from Device memory not marked as execute-never.
// As there has not been a Permission Fault then the memory is not marked
// execute-never.
if (!s2fslwalk && !IsFault(S2.addrdesc)
&& S2.addrdesc.memattrs.memtype == MemType_Device
&& acctype == AccType_IFETCH) then

S2.addrdesc = AArch64.InstructionDevice(S2.addrdesc, vaddress,
Sl.paddress.address, level, acctype,
iswrite, secondstage, s2fslwalk);

// Check for protected table walk
if (s2fslwalk && !IsFault(S2.addrdesc) && HCR_EL2.PTW == '1' &&
S2.addrdesc.memattrs.memtype == MemType_Device) then

S2.addrdesc.fault = AArch64.PermissionFault(S1.paddress.address, sl_nonsecure, level,

iswrite, secondstage, s2fslwalk);
result = AArch64.CombineS1S2Desc(S1, S2.addrdesc, acctype);

// If stage 2 translation is disabled and the output address from the stage 1
// translation is Targer than the implemented PA size, then a stage 1

// Address size fault is generated for the level of the stage 1 translation

// that generated the output address.

// This can happen if EL1&) stage 1 translation is running VMSA. In this case
// Address size fault is generated in TranslationTableWalk().

result = S1;

return result;

aarché64/translation/walk/AArch64.TranslationTableWalk

// AArch64.TranslationTableWalk()

//

// Returns a result of a translation table walk

//

// Implementations might cache information from memory in any number of non-coherent TLB
// caching structures, and so avoid memory accesses that have been expressed in this
// pseudocode. The use of such TLBs is not expressed in this pseudocode.

TLBRecord AArch64.TranslationTableWalk(bits(52) ipaddress, boolean sl_nonsecure, bits(64) vaddress,

AccType acctype, boolean iswrite, boolean secondstage,

booTean s2fslwalk, integer size)

11-368

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if !secondstage then
assert !ELUsingAArch32(S1TranslationRegime());
else
assert (IsSecureEL2Enabled() || (HaveEL(EL2) && !IsSecure() && !'ELUsingAArch32(EL2))) &&
HasS2TransTation();

TLBRecord result;
AddressDescriptor descaddr;
bits(64) baseregister;

bits(64) inputaddr; // Input Address is 'vaddress' for stage 1, 'ipaddress' for stage 2

bit nswalk; // Stage 2 translation table walks are to Secure or to Non-secure PA
space

result.descupdate.AF = FALSE;

result.descupdate.AP = FALSE;

descaddr.memattrs.memtype = MemType_Normal;

// Derived parameters for the page table walk:

// grainsize = Log2(Size of Table) - Size of Table is 4KB, 16KB or 64KB in AArch64
// stride = Log2(Address per Level) - Bits of address consumed at each Tevel

// firstblocklevel = First level where a block entry is allowed

// ps = Physical Address size as encoded in TCR_EL1.IPS or TCR_ELx/VTCR_EL2.PS

// inputsize = Log2(Size of Input Address) - Input Address size in bits

// Tevel = Level to start walk from

// This means that the number of levels after start Tevel = 3-Tevel

if Isecondstage then
// First stage translation
inputaddr = ZeroExtend(vaddress);
el = AArch64.AccessUsesEL (acctype);
isprivileged = AArch64.AccessIsPrivileged(acctype);
top = AddrTop(inputaddr, (acctype == AccType_IFETCH), el);
if el IN {ELO, EL1} then
if inputaddr<top> == 'Q' then
inputsize = 64 - UInt(TCR_EL1.T0SZ);
largegrain = TCR_EL1.TGO == '01';
midgrain = TCR_EL1.TC0 == '10";
inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;

if !Have52BitVAExt() && inputsize > inputsize_max then
¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_FORCE, Constraint_FAULT};
if ¢ == Constraint_FORCE then inputsize = inputsize_max;

inputsize_min = 64 - (if !HaveSmallPageTb1Ext() then 39 else if largegrain then 47 else
48);
if inputsize < inputsize_min then
¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_FORCE, Constraint_FAULT};
if ¢ == Constraint_FORCE then inputsize = inputsize_min;
basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&
IsZero(inputaddr<top:inputsize>);
disabled = TCR_EL1.EPDQ == '1' || (!isprivileged && HaveE@OPDExt() && TCR_EL1.EQPDQ ==
")
baseregister = TTBRO_EL1;
descaddr.memattrs = WalkAttrDecode(TCR_EL1.SHO, TCR_EL1.0RGN@, TCR_EL1.IRGNO,
secondstage);
hierattrsdisabled = AArch64.HaveHPDExt() & TCR_EL1.HPDO == '1';
else
inputsize = 64 - UInt(TCR_EL1.T1SZ);
largegrain = TCR_EL1.TG1 == '11'; // TG1l and TGO encodings differ
midgrain = TCR_EL1.TG1 == '01"';
inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;

if !Have52BitVAExt() && inputsize > inputsize_max then
¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_FORCE, Constraint_FAULT};

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-369
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if ¢ == Constraint_FORCE then inputsize = inputsize_max;

inputsize_min = 64 - (if !HaveSmallPageTb1Ext() then 39 else if largegrain then 47 else
48);
if inputsize < inputsize_min then
¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_FORCE, Constraint_FAULT};
if ¢ == Constraint_FORCE then inputsize = inputsize_min;
basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&
IsOnes(inputaddr<top:inputsize>);
disabled = TCR_EL1.EPD1 == '1' || (!isprivileged & HaveEOPDExt() && TCR_EL1.EQPD1 ==
")
baseregister = TTBR1_EL1;
descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH1, TCR_EL1.0RGN1, TCR_EL1.IRGNI1,
secondstage);
hierattrsdisabled = AArch64.HaveHPDExt() & TCR_EL1.HPD1 == '1';
ps = TCR_ELL.IPS;
reversedescriptors = SCTLR_EL1.EE == '1';
Tookupsecure = IsSecure();
singlepriv = FALSE;
update_AF = HaveAccessFlagUpdateExt() && TCR_EL1.HA == '1';
update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL1.HD == '1';

else
Unreachable();

if Targegrain then
grainsize = 16; // Log2(64KB page size)
firstblocklevel = (if Have52BitPAExt() then 1 else 2); // Largest block is 4TB (242

bytes) for 52 bit PA
// and 512MB (2A29 bytes)

otherwise
elsif midgrain then
grainsize = 14; // Log2(16KB page size)
firstblocklevel = 2; // Largest block is 32MB (2A25
bytes)
else // Small grain
grainsize = 12; // Log2(4KB page size)
firstblocklevel = 1; // Largest block is 1GB (2A30
bytes)
stride = grainsize - 3; // Log2(page size / 8 bytes)
// The starting Tevel is the number of strides needed to consume the input address
Tevel = 4 - (1 + ((inputsize - grainsize - 1) DIV stride));
else
Unreachable();
if l!basefound || disabled then
Tevel = 0; // AArch32 reports this as a level 1 fault
result.addrdesc.fault = AArch64.TranslationFault(ipaddress, sl_nonsecure, Tevel, acctype,
iswrite,
secondstage, s2fslwalk);
return result;
case ps of
when '000' outputsize = 32;
when '001' outputsize = 36;
when '010' outputsize = 40;
when '011' outputsize = 42;
when '100' outputsize = 44;
when '101' outputsize = 48;
when '110' outputsize = (if Have52BitPAExt() && Targegrain then 52 else 48);
otherwise outputsize = integer IMPLEMENTATION_DEFINED "Reserved Intermediate Physical Address
size value";

if outputsize > PAMax() then outputsize = PAMax();

if outputsize < 48 && !IsZero(baseregister<47:outputsize>) then
Tevel = 0;
result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress,sl_nonsecure, Tevel, acctype,
iswrite,

11-370 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

secondstage, s2fslwalk);
return result;

// Bottom bound of the Base address is:
// Log2(8 bytes per entry)+Log2(Number of entries in starting level table)
// Number of entries in starting level table =
// (Size of Input Address)/((Address per level)A(Num levels remaining):(Size of Table))
baselowerbound = 3 + inputsize - ((3-level)=stride + grainsize); // Log2(Num of entries=8)
if outputsize == 52 then
z = (if baselowerbound < 6 then 6 else baselowerbound);
baseaddress = baseregister<5:2>:baseregister<47:z>:Zeros(z);
else
baseaddress = ZeroExtend(baseregister<47:baselowerbound>:Zeros(baselowerbound));

ns_table = if lookupsecure then '0' else '1';
ap_table = '00';

xn_table = '0"';

pxn_table = '0';

addrselecttop = inputsize - 1;

repeat
addrselectbottom = (3-level)sstride + grainsize;

bits(52) index = ZeroExtend(inputaddr<addrselecttop:addrselectbottom>:'000");
descaddr.paddress.address = baseaddress OR index;
descaddr.paddress.NS = if secondstage then nswalk else ns_table;

// If there are two stages of translation, then the first stage table walk addresses
// are themselves subject to translation
if secondstage || !'HasS2Translation() then
descaddr2 = descaddr;
else
hwupdatewalk = FALSE;
descaddr2 = AArch64.SecondStageWalk(descaddr, vaddress, acctype, iswrite, 8, hwupdatewalk);
// Check for a fault on the stage 2 walk
if IsFault(descaddr2) then
result.addrdesc.fault = descaddr2.fault;
return result;

// Update virtual address for abort functions
descaddr2.vaddress = ZeroExtend(vaddress);

accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2fslwalk, level);
desc = _Mem[descaddr2, 8, accdesc];

if reversedescriptors then desc = BigEndianReverse(desc);

if desc<0> == '0' || (desc<1l:0> == '01"' && (Tevel == 3 |
(HaveBTockBBM() && IsBlockDescriptorNTBitValid() &&

desc<16> == '1'))) then

// Fault (00), Reserved (10), Block (01) at level 3, or Block(01l) with nT bit set.

result.addrdesc.fault = AArch64.TranslationFault(ipaddress, sl_nonsecure, level, acctype,
iswrite, secondstage, s2fslwalk);

return result;

// Valid Block, Page, or Table entry
if desc<l:0> == '01' || Tevel == 3 then // Block (01) or Page (11)
blocktranslate = TRUE;
else // Table (11)
if (outputsize < 52 && largegrain && (PAMax() == 52 ||
boolean IMPLEMENTATION_DEFINED "Address Size Fault on LPA descriptor bits [15:12]") &&
1IsZero(desc<15:12>)) || (outputsize < 48 && !IsZero(desc<47:outputsize>)) then
result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress,sl_nonsecure, Tevel,

acctype,

iswrite, secondstage, s2fslwalk);
return result;

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-371
Non-Confidential

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

if outputsize == 52 then

baseaddress = desc<15:12>:desc<47:grainsize>:Zeros(grainsize);
else

baseaddress = ZeroExtend(desc<47:grainsize>:Zeros(grainsize));
if !secondstage then

// Unpack the upper and lower table attributes

ns_table = ns_table OR desc<63>;

if !secondstage & 'hierattrsdisabled then
ap_table<l> = ap_table<l> OR desc<62>; // read-only
xn_table = xn_table OR desc<60>;

// pxn_table and ap_table[@] apply only in EL1&0 translation regimes
if Isinglepriv then

pxn_table = pxn_table OR desc<59>;

ap_table<@> = ap_table<@> OR desc<61l>; // privileged

Tevel = Tevel + 1;
addrselecttop = addrselectbottom - 1;
blocktranslate = FALSE;

until blocktranslate;

// Check block size is supported at this level
if level < firstblocklevel then
result.addrdesc.fault = AArch64.TranslationFault(ipaddress, sl_nonsecure, level, acctype,
iswrite, secondstage, s2fslwalk);
return result;

// Check for misprogramming of the contiguous bit
if largegrain then
num_ch_entries = 5;
elsif midgrain then
num_ch_entries = if level == 3 then 7 else 5;
else
num_ch_entries

43
contiguoushitcheck = inputsize < (addrselectbottom + num_ch_entries);

if contiguoushitcheck && desc<52> == '1" then
if boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit" then
result.addrdesc.fault = AArch64.TranslationFault(ipaddress, sl_nonsecure, Tlevel, acctype,
iswrite, secondstage, s2fslwalk);
return result;

// Unpack the descriptor into address and upper and Tower block attributes
if largegrain then

outputaddress = desc<15:12>:desc<47:addrselectbottom>:inputaddr<addrselectbottom-1:0>;
else

outputaddress = ZeroExtend(desc<47:addrselectbottom>:inputaddr<addrselectbottom-1:0>);

// When 52-bit PA is supported, for 64 Kbyte translation granule,

// block size might be larger than the supported output address size

if ((outputsize < 52 & !IsZero(outputaddress<51:48>) & largegrain && (PAMax() == 52 ||
boolean IMPLEMENTATION_DEFINED "Address Size Fault on LPA descriptor bits [15:12]")) ||
(outputsize < 48 && !IsZero(outputaddress<47:outputsize>))) then
result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress,sl_nonsecure, Tevel, acctype,

iswrite, secondstage, s2fslwalk);

return result;

// Check Access Flag
if desc<10> == 'Q' then
if lupdate_AF then
result.addrdesc.fault = AArch64.AccessFlagFault(ipaddress,sl_nonsecure, Tevel, acctype,
iswrite, secondstage, s2fslwalk);
return result;
else
result.descupdate.AF = TRUE;

if update_AP && desc<51> == '1l' then

11-372 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.1 Pseudocode for AArch64 operations

// If hw update of access permission field is configured consider AP[2] as '@' / S2AP[2] as 'l'
if !secondstage && desc<7> == '1' then

desc<7> = '0';

result.descupdate.AP = TRUE;
elsif secondstage && desc<7> == '0' then

desc<7> = '1";

result.descupdate.AP = TRUE;

// Required descriptor if AF or AP[2]/S2AP[2] needs update
result.descupdate.descaddr = descaddr;

xn = desc<54>; // Bit[54] of the block/page descriptor
holds UXN

pxn = desc<53>; // Bit[53] of the block/page descriptor
holds PXN

ap = desc<7:6>:'1"; // Bits[7:6] of the block/page descriptor

hold AP[2:1]
contiguousbit = desc<52>;
nG = desc<1l>;
sh = desc<9:8>;
memattr = desc<5:2>; // AttrIndx and NS bit in stage 1

result.domain = bits(4) UNKNOWN; // Domains not used
result.level = Tevel;
result.blocksize = 2A((3-Tevel)=stride + grainsize);

// Stage 1 translation regimes also inherit attributes from the tables
if Isecondstage then
result.perms.xn = xn OR xn_table;
result.perms.ap<2> = ap<2> OR ap_table<l>; // Force read-only
// PXN, nG and AP[1] apply only in EL1&0 stage 1 translation regimes
if !singlepriv then
result.perms.ap<l> = ap<l> AND NOT(ap_table<@>); // Force privileged only
result.perms.pxn = pxn OR pxn_table;
// Pages from Non-secure tables are marked non-global in Secure EL1&0
if IsSecure() then
result.nG = nG OR ns_table;
else
result.nG = nG;

else
result.perms.ap<l> = '1';
result.perms.pxn = '0';
result.nG ='0";
result.perms.ap<@> = '1'";

result.addrdesc.memattrs = AArch64.S1AttrDecode(sh, memattr<2:0>, acctype);
result.addrdesc.paddress.NS = memattr<3> OR ns_table;

else
Unreachable();

result.addrdesc.paddress.address = outputaddress;
result.addrdesc.fault = AArch64.NoFault();

result.contiguous = contiguousbit == '1';

if HaveCommonNotPrivateTransExt() then result.CnP = baseregister<0>;

return result;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-373
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

1.2 Shared pseudocode
This section lists the pseudocodes that are common to execution in AArch64 state and in the Armv8-R AArch64
state. Armv8-R AArch64 supports AArch64 state and this document correlates with that on the Armv8-A profile.
This document follows the structure of the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.
The functions listed in this section are identified only by a FunctionName. This section is organized by functional
groups, with the functional groups being indicated by hierarchical path names, for example
shared/debug/DebugTarget.
The top-level sections of the shared pseudocode hierarchy are:
. shared/debug.
. shared/exceptions on page 11-392.
. shared/functions on page 11-394.
. shared/translation on page 11-469.
1.2.1 shared/debug
This section includes the following pseudocode functions:
. shared/debug/ClearStickyErrors/ClearStickyErrors on page 11-375.
. shared/debug/DebugTarget/DebugTlarget on page 11-375.
. shared/debug/DebugTarget/DebugTargetFrom on page 11-376.
. shared/debug/DoubleLockStatus/DoubleLockStatus on page 11-376.
. shared/debug/authentication/AllowExternalDebugAccess on page 11-376.
. shared/debug/authentication/AllowExternalPMUAccess on page 11-377.
. shared/debug/authentication/Debug_authentication on page 11-377.
. shared/debug/authentication/ExternallnvasiveDebugEnabled on page 11-377.
. shared/debug/authentication/ExternalNoninvasiveDebugAllowed on page 11-377.
. shared/debug/authentication/ExternalNoninvasiveDebugEnabled on page 11-377.
. shared/debug/authentication/ExternalSecurelnvasiveDebugEnabled on page 11-378.
. shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled on page 11-378.
. shared/debug/authentication/IsAccessSecure on page 11-378.
. shared/debug/authentication/IsCorePowered on page 11-378.
. shared/debug/breakpoint/CheckValidStateMatch on page 11-378.
. shared/debug/cti/CTI SetEventLevel on page 11-379.
. shared/debug/cti/CTI SignalEvent on page 11-379.
. shared/debug/cti/CrossTrigger on page 11-379.
. shared/debug/dccanditr/CheckForDCClnterrupts on page 11-379.
. shared/debug/dccanditr/DBGDTRRX ELQO on page 11-380.
. shared/debug/dccanditr/DBGDTRTX ELQ on page 11-380.
. shared/debug/dccanditr/DBGDTR_ELO on page 11-381.
. shared/debug/dccanditr/DTR on page 11-382.
. shared/debug/dccanditr/EDITR on page 11-382.
. shared/debug/halting/DCPSInstruction on page 11-382.
. shared/debug/halting/DRPSInstruction on page 11-383.
. shared/debug/halting/DebugHalt on page 11-384.
. shared/debug/halting/DisableITRAndResumelnstructionPrefetch on page 11-384.
. shared/debug/halting/ExecuteA64 on page 11-384.
. shared/debug/halting/ExecuteT32 on page 11-384.
. shared/debug/halting/ExitDebugState on page 11-384.
. shared/debug/halting/Halt on page 11-385.
11-374 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

. shared/debug/halting/HaltOnBreakpointOrWatchpoint on page 11-385.

. shared/debug/halting/Halted on page 11-386.

. shared/debug/halting/HaltingAllowed on page 11-386.

. shared/debug/halting/Restarting on page 11-386.

. shared/debug/halting/StopInstructionPrefetchAndEnablel TR on page 11-386.
. shared/debug/halting/UpdateEDSCRFields on page 11-386.

. shared/debug/haltingevents/CheckExceptionCatch on page 11-386.

. shared/debug/haltingevents/CheckHaltingStep on page 11-387.

. shared/debug/haltingevents/CheckOSUnlockCatch on page 11-387.

. shared/debug/haltingevents/CheckPendingOSUnlockCatch on page 11-387.
. shared/debug/haltingevents/CheckPendingResetCatch on page 11-387.

. shared/debug/haltingevents/CheckResetCatch on page 11-388.

. shared/debug/haltingevents/CheckSoftwareAccess ToDebugRegisters on page 11-388.
. shared/debug/haltingevents/ExternalDebugRequest on page 11-388.

. shared/debug/haltingevents/HaltingStep DidNotStep on page 11-388.

. shared/debug/haltingevents/HaltingStep SteppedEX on page 11-388.

. shared/debug/haltingevents/RunHaltingStep on page 11-388.

. shared/debug/interrupts/ExternalDebuglnterruptsDisabled on page 11-389.
. shared/debug/interrupts/InterruptID on page 11-389.

. shared/debug/interrupts/SetinterruptRequestLevel on page 11-389.

. shared/debug/samplebasedprofiling/CreatePCSample on page 11-389.

. shared/debug/samplebasedprofiling/PCSample on page 11-390.

. shared/debug/samplebasedprofiling/PMPCSR on page 11-390.

. shared/debug/softwarestep/CheckSoftwareStep on page 11-390.

. shared/debug/softwarestep/DebugExceptionReturnSS on page 11-391.

. shared/debug/softwarestep/SSAdvance on page 11-391.

. shared/debug/softwarestep/SoftwareStep DidNotStep on page 11-391.

. shared/debug/softwarestep/SoftwareStep _SteppedEX on page 11-392.

shared/debug/ClearStickyErrors/ClearStickyErrors

// ClearStickyErrors()

/!
ClearStickyErrors()
EDSCR.TXU = '0"; // Clear TX underrun flag
EDSCR.RX0 = '0'; // Clear RX overrun flag
if Halted() then // in Debug state
EDSCR.ITO = '0'; // Clear ITR overrun flag

// If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
// The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
// in the pseudocode.
if Halted() && EDSCR.ITE == '@' && ConstrainUnpredictableBool() then

return;
EDSCR.ERR = '0'; // Clear cumulative error flag

return;

shared/debug/DebugTarget/DebugTarget
// DebugTarget()

// Returns the debug exception target Exception Tevel

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-375
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

bits(2) DebugTarget()
secure = IsSecure();
return DebugTargetFrom(secure);

shared/debug/DebugTarget/DebugTargetFrom

// DebugTargetFrom()
/] =====m==sm=======

bits(2) DebugTargetFrom(boolean secure)
if !secure || HaveSecureEL2Ext() then
route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1");
else
route_to_el2 = FALSE;

if route_to_el2 then

target = EL2;

elsif HaveEL(EL3) & HighestELUsingAArch32() & secure then
target = EL3;

else
target = EL1;

return target;

shared/debug/DoubleLockStatus/DoubleLockStatus
// DoublelockStatus()

// Returns the state of the 0S Double Lock.
// FALSE if OSDLR_EL1.DLK == @ or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
// TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == @ and the PE is in Non-debug state.

booTlean DoublelLockStatus()
if !HaveDoubleLock() then
return FALSE;
elsif ELUsingAArch32(EL1) then
Unreachable();
else
return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

shared/debug/authentication/AllowExternalDebugAccess

// AllowExternalDebugAccess()
/!
// Returns TRUE if an external debug interface access to the External debug registers
// is allowed, FALSE otherwise.

boolean AllowExternalDebugAccess()
// The access may also be subject to 0S Lock, power-down, etc.
if HaveSecureExtDebugView() then
return AllowExternalDebugAccess(IsAccessSecure());
else
return AllowExternalDebugAccess(ExternalSecureInvasiveDebugEnabled());

// AllowExternalDebugAccess()
/!

// Returns TRUE if an external debug interface access to the External debug registers
// is allowed for the given Security state, FALSE otherwise.

boolean AllowExternalDebugAccess(boolean allow_secure)
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() || ExternalInvasiveDebugEnabled() then
if allow_secure then
return TRUE;
else

11-376 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

return !IsSecure();
else
return FALSE;

shared/debug/authentication/AllowExternalPMUAccess
// AllowExternalPMUAccess()

//

// Returns TRUE if an external debug interface access to the PMU registers is allowed, FALSE otherwise.

boolean AllowExternalPMUAccess()
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() then
return AlTowExternalPMUAccess(IsAccessSecure());
else
return AllowExternalPMUAccess(ExternalSecureNoninvasiveDebugEnabled());

// AlTowExternalPMUAccess()
//
// Returns TRUE if an external debug interface access to the PMU registers is allowed for the given
// Security state, FALSE otherwise.

boolean AllowExternalPMUAccess(boolean allow_secure)
// The access may also be subject to 0S Lock, power-down, etc.
if HaveSecureExtDebugView() || ExternalNoninvasiveDebugEnabled() then
if allow_secure then
return TRUE;
else
return !IsSecure();
else
return FALSE;

shared/debug/authentication/Debug_authentication

signal DBCGEN;
signal NIDEN;
signal SPIDEN;
signal SPNIDEN;

shared/debug/authentication/ExternallnvasiveDebugEnabled

// ExternalInvasiveDebugEnabled()
//
// The definition of this function is IMPLEMENTATION DEFINED.

// In the recommended interface, this function returns the state of the DBGEN signal.

boolean ExternalInvasiveDebugEnabled()
return DBGEN == HIGH;

shared/debug/authentication/ExternalNoninvasiveDebugAllowed
// ExternalNoninvasiveDebugAllowed()

//
// Returns TRUE if Trace and PC Sample-based Profiling are allowed

boolean ExternalNoninvasiveDebugAllowed()
return (ExternalNoninvasiveDebugEnabled() && ExternalSecureNoninvasiveDebugEnabled());

shared/debug/authentication/ExternalNoninvasiveDebugEnabled

// ExternalNoninvasiveDebugEnabled()

/!
// This function returns TRUE if the FEAT_Debugv8p4 is implemented, otherwise this
// function is IMPLEMENTATION DEFINED.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-377
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of the (DBGEN
// OR NIDEN) signal.

boolean ExternalNoninvasiveDebugEnabled()
return !HaveNoninvasiveDebugAuth() || ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

shared/debug/authentication/ExternalSecureinvasiveDebugEnabled

// ExternalSecureInvasiveDebugEnabled()
//
// The definition of this function is IMPLEMENTATION DEFINED.

// In the recommended interface, this function returns the state of the (DBGEN AND SPIDEN) signal.
// CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.

boolean ExternalSecureInvasiveDebugEnabled()
if !HaveEL(EL3) && !IsSecure() then return FALSE;
return ExternalInvasiveDebugEnabled() && SPIDEN == HICH;

shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

// ExternalSecureNoninvasiveDebugEnabled()
//
// This function returns the value of ExternalSecureInvasiveDebugEnabled() when FEAT_Debugv8p4
// is implemented. Otherwise, the definition of this function is IMPLEMENTATION DEFINED.

// In the recommended interface, this function returns the state of the (DBGEN OR NIDEN) AND
// (SPIDEN OR SPNIDEN) signal.

boolean ExternalSecureNoninvasiveDebugEnabled()
if !HaveEL(EL3) && !IsSecure() then return FALSE;
if HaveNoninvasiveDebugAuth() then
return ExternalNoninvasiveDebugEnabled() &% (SPIDEN == HIGH || SPNIDEN == HIGH);
else
return ExternalSecurelInvasiveDebugEnabled();

shared/debug/authentication/lsAccessSecure
// Returns TRUE when an access is Secure
boolean IsAccessSecure();

shared/debug/authentication/IsCorePowered

// Returns TRUE if the Core power domain is powered on, FALSE otherwise.
boolean IsCorePowered();

shared/debug/breakpoint/CheckValidStateMatch

// CheckValidStateMatch()
/!

// Checks for an invalid state match that will generate Constrained Unpredictable behaviour, otherwise
// returns Constraint_NONE.

(Constraint, bits(2), bit, bits(2)) CheckvalidStateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean
isbreakpnt)
boolean reserved = FALSE;

// Match 'Usr/Sys/Svc' only valid for AArch32 breakpoints
if (!isbreakpnt || !HaveAArch32EL(EL1)) && HMC:PxC == '000' && SSC != '11' then
reserved = TRUE;

// Both EL3 and EL2 are not implemented
if !HaveEL(EL3) && !'HaveEL(EL2) && (HMC != '@' || SSC != '00') then

reserved = TRUE;

// EL3 1is not implemented

11-378

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if !HaveEL(EL3) && SSC IN {'01','10'} && HMC:SSC:PxC != '10100' then
reserved = TRUE;

// EL3 using AArch64 only
if (!HaveEL(EL3) || HighestELUsingAArch32()) && HMC:SSC:PxC == '11000' then
reserved = TRUE;

// EL2 1is not implemented
if !HaveEL(EL2) && HMC:SSC:PxC == '11100' then
reserved = TRUE;

// Secure EL2 is not implemented
if !HaveSecureEL2Ext() && (HMC:SSC:PxC) 1IN {'01100','10100','x11x1'} then
reserved = TRUE;

// Values that are not allocated in any architecture version
if (HMC:SSC:PxC) IN {'01110','100x0','10110','11x10'} then
reserved = TRUE;

if reserved then
// If parameters are set to a reserved type, behaves as either disabled or a defined type
(c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits();
assert ¢ IN {Constraint_DISABLED, Constraint_UNKNOWN};
if ¢ == Constraint_DISABLED then
return (c, bits(2) UNKNOWN, bit UNKNOWN, bits(2) UNKNOWN);
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

return (Constraint_NONE, SSC, HMC, PxC);

shared/debug/cti/CTI_SetEventLevel

// Set a Cross Trigger multi-cycle input event trigger to the specified Tevel.
CTI_SetEventLevel(CrossTriggerIn id, signal level);

shared/debug/cti/CTI_SignalEvent

// Signal a discrete event on a Cross Trigger input event trigger.
CTI_SignalEvent(CrossTriggerIn id);

shared/debug/cti/CrossTrigger

enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
CrossTriggerOut_TraceExtIn@, CrossTriggerOut_TraceExtInl,
CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
CrossTriggerIn_TraceExtOut@, CrossTriggerIn_TraceExtOutl,
CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

shared/debug/dccanditr/CheckForDCCinterrupts

// CheckForDCCInterrupts()
//

CheckForDCCInterrupts()
commrx = (EDSCR.RXfull == '1");
commtx = (EDSCR.TXfull == '0");

// COMMRX and COMMTX support is optional and not recommended for new designs.
// SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
// SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

// The value to be driven onto the common COMMIRQ signal.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-379
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

commirg = ((commrx && MDCCINT_EL1.RX == '1") ||
(commtx && MDCCINT_EL1.TX == '1'));
SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirg then HIGH else LOW);

return;

shared/debug/dccanditr/DBGDTRRX_ELO

// DBGDTRRX_ELO[] (external write)

//
// Called on writes to debug register 0x08C.

DBGDTRRX_EL@[booTean memory_mapped] = bits(32) value

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response'";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

// The Software Tock is OPTIONAL.
if memory_mapped & EDLSR.SLK == '1' then return; // Software lock Tocked: ignore write

if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' &% EDSCR.ITE == '@') then
EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
return;

EDSCR.RXfull = '1";
DTRRX = value;

if Halted() && EDSCR.MA == '1' then

EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_ELQ"
ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"

X[1] = bits(64) UNKNOWN;
// If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
if EDSCR.ERR == '1' then
EDSCR.RXfull = bit UNKNOWN;
DBGDTRRX_EL® = bits(32) UNKNOWN;
else
// "MRS X1,DBGDTRRX_ELQ" calls DBGDTR_ELO[] (read) which clears RXfull.
assert EDSCR.RXfull == '0";

EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
return;

// DBGDTRRX_ELO[] (external read)
//

bits(32) DBGDTRRX_EL@[boolean memory_mapped]
return DTRRX;

shared/debug/dccanditr/DBGDTRTX_ELO

// DBGDTRTX_EL@[] (external read)

//
// Called on reads of debug register 0x080.

bits(32) DBGDTRTX_EL@[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response';
return bits(32) UNKNOWN;

underrun = EDSCR.TXfull == '@' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
value = if underrun then bits(32) UNKNOWN else DTRTX;

11-380 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

// The Software Tock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects
return value;

if underrun then
EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
return value; // Return UNKNOWN

EDSCR.TXfull = '0';
if Halted() && EDSCR.MA == '1' then

EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
if !UsingAArch32() then

ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0Q],#4"
else

ExecuteT32(0xF850<15:0> /xhwlx/, 0x1B04<15:0> /xhw2:/); // T32 "LDR R1,[RO],#4"

// If the Toad aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
if EDSCR.ERR == '1' then
EDSCR.TXfull = bit UNKNOWN;
DBGDTRTX_ELO = bits(32) UNKNOWN;
else
if 1UsingAArch32() then
ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_ELO,X1"
else
ExecuteT32(0XEEQ0<15:0> /«xhwlx/, Ox1E15<15:0> /xhw2:/); // T32 "MSR DBGDTRTXint,R1"
// "MSR DBGDTRTX_ELQ@,X1" calls DBGDTR_ELQ[] (write) which sets TXfull.
assert EDSCR.TXfull == '1';
X[1] = bits(64) UNKNOWN;
EDSCR.ITE = '1'; // See comments in EDITR[] (external write)

return value;

// DBGDTRTX_ELO[] (external write)
/!

DBGDTRTX_EL@[booTean memory_mapped] = bits(32) value
// The Software Tock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
DTRTX = value;
return;

shared/debug/dccanditr/DBGDTR_ELO

// DBGDTR_ELO[] (write)

//
// System register writes to DBGDTR_EL@O, DBGDTRTX_ELO (AArch64) and DBGDTRTXint (AArch32)

DBGDTR_ELO[] = bits(N) value
// For MSR DBGDTRTX_EL@,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
// For MSR DBGDTR_ELO,<Xt> N=64, value=X[t]<63:0>
assert N IN {32,64};
if EDSCR.TXfull == '1' then
value = bits(N) UNKNOWN;
// On a 64-bit write, implement a half-duplex channel
if N == 64 then DTRRX = value<63:32>;

DTRTX = value<31:0>; // 32-bit or 64-bit write
EDSCR.TXfull = '1';
return;

// DBGDTR_ELO[] (read)

/!
// System register reads of DBGDTR_ELO, DBGDTRRX_ELO (AArch64) and DBGDTRRXint (AArch32)

bits(N) DBGDTR_ELO[]

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-381

Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// For MRS <Rt>,DBGDTRTX_ELO@ N=32, X[t]=Zeros(32):result
// For MRS <Xt>,DBGDTR_ELO N=64, X[t]=result
assert N IN {32,64};
bits(N) result;
if EDSCR.RXfull == '@' then
result = bits(N) UNKNOWN;
else
// On a 64-bit read, implement a half-duplex channel

// NOTE: the word order is reversed on reads with regards to writes

if N == 64 then result<63:32> = DTRTX;
result<31:0> = DTRRX;

EDSCR.RXfull = '0';

return result;

shared/debug/dccanditr/DTR
bits(32) DTRRX;
bits(32) DTRTX;
shared/debug/dccanditr/EDITR
// EDITR[] (external write)

//
// Called on writes to debug register 0x084.

EDITR[boolean memory_mapped] = bits(32) value

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

// The Software Tock is OPTIONAL.

if memory_mapped & EDLSR.SLK == '1' then return; // Software lock Tocked: ignore write

if !'Halted() then return; // Non-debug state: ignore write

if EDSCR.ITE == '@' || EDSCR.MA == '1' then

EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write

return;

// ITE 1indicates whether the processor is ready to accept another instruction; the processor
// may support multiple outstanding instructions. Unlike the "InstrCompl1" flag in [v7A] there
// is no indication that the pipeline is empty (all instructions have completed). In this

// pseudocode, the assumption is that only one instruction can be executed at a time,

// meaning ITE acts Tike "InstrCompl".
EDSCR.ITE = 'Q';

if !UsingAArch32() then

ExecuteA64(value);
else

ExecuteT32(value<15:0>/«hwlx/, value<31:16> /xhw2x/);
EDSCR.ITE = '1';

return;

shared/debug/halting/DCPSInstruction

// DCPSInstruction()

// Operation of the DCPS instruction in Debug state
DCPSInstruction(bits(2) target_el)

SynchronizeContext();

11-382 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

case target_el of
when EL1
if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then handle_el = PSTATE.EL;
elsif EL2Enabled() && HCR_EL2.TGE == '1' then UNDEFINED;
else handle_el = EL1;

when EL2
if !HaveEL(EL2) then UNDEFINED;
elsif PSTATE.EL == EL3 && !UsingAArch32() then handle_el = EL3;
elsif !IsSecureEL2Enabled() && IsSecure() then UNDEFINED;
else handle_el = EL2;
when EL3
if EDSCR.SDD == '1' || !HaveEL(EL3) then UNDEFINED;
handle_el = EL3;
otherwise
Unreachable();

from_secure = IsSecure();

PSTATE.nRW = '@'; PSTATE.SP = '1'; PSTATE.EL = handle_el;

if (HavePANExt() && ((handle_el == EL1 &% SCTLR_EL1.SPAN == '0'))) then
PSTATE.PAN = '1"';

ELR[] = bits(64) UNKNOWN; SPSR[] = bits(32) UNKNOWN; ESR[] = bits(32) UNKNOWN;

DLR_ELO = bits(64) UNKNOWN; DSPSR_EL® = bits(32) UNKNOWN;

if HaveUAOExt() then PSTATE.UAO = '0';

UpdateEDSCRFields(); // Update EDSCR PE state flags
sync_errors = HaveIESB() && SCTLR[].IESB == '1';
// SCTLR[].IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool() then
sync_errors = FALSE;
if sync_errors then
SynchronizeErrors();
return;

shared/debug/halting/DRPSInstruction

// DRPSInstruction()
/A EEE———
// Operation of the A64 DRPS and T32 ERET instructions in Debug state

DRPSInstruction()
SynchronizeContext();

sync_errors = HaveIESB() && SCTLR[].IESB == '1';
// SCTLR[].IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool() then
sync_errors = FALSE;
if sync_errors then
SynchronizeErrors();

SetPSTATEFromPSR(SPSR[1);

// PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
// behave as if UNKNOWN.
if UsingAArch32() then
PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
// In AArch32, all instructions are T32 and unconditional.
PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RESO@
DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;
else
PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
DLR_EL® = bits(64) UNKNOWN; DSPSR_ELO = bits(32) UNKNOWN;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-383
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

UpdateEDSCRFields(); // Update EDSCR PE state flags

return;

shared/debug/halting/DebugHalt

constant bits(6) DebugHalt_Breakpoint = '000111';
constant bits(6) DebugHalt_EDBGRQ = '010011"';
constant bits(6) DebugHalt_Step_Normal = '011011"';
constant bits(6) DebugHalt_Step_Exclusive = '011111';
constant bits(6) DebugHalt_OSUnlockCatch = '100011';
constant bits(6) DebugHalt_ResetCatch = '100111';
constant bits(6) DebugHalt_Watchpoint = '101011';
constant bits(6) DebugHalt_HaltInstruction = '101111';
constant bits(6) DebugHalt_SoftwareAccess = '110011';
constant bits(6) DebugHalt_ExceptionCatch = '110111';
constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

shared/debug/halting/DisableITRAndResumelnstructionPrefetch

DisableITRAndResumeInstructionPrefetch();

shared/debug/halting/ExecuteA64

//

Execute an A64 instruction in Debug state.

ExecuteA64(bits(32) instr);

shared/debug/halting/ExecuteT32

//

Execute a T32 instruction in Debug state.

ExecuteT32(bits(16) hwl, bits(16) hw2);

shared/debug/halting/ExitDebugState

//
//

ExitDebugState()

ExitDebugState()

assert Halted();
SynchronizeContext();

// Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
// detect that the PE has restarted.

EDSCR.STATUS = '000001'; // Signal restarting

EDESR<2:0> = '000'; // Clear any pending Halting debug events

bits(64) new_pc;
bits(32) spsr;

new_pc = DLR_ELO;

spsr = DSPSR_ELO;

// If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
SetPSTATEFromPSR(spsr); // Can update privileged bits, even at ELO

if UsingAArch32() then
if ConstrainUnpredictableBool() then new_pc<0> = '0';
BranchTo(new_pc<31:0>, BranchType_DBGEXIT); // AArch32 branch

else
// If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
if spsr<4> == '1' && ConstrainUnpredictableBool() then
new_pc<63:32> = Zeros();
BranchTo(new_pc, BranchType_DBGEXIT); // A type of branch that is never predicted
(EDSCR.STATUS,EDPRSR.SDR) = ('000010','1"); // Atomically signal restarted
11-384 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

UpdateEDSCRFields(); // Stop signalling PE state
DisabTeITRAndResumeInstructionPrefetch();

return;

shared/debug/halting/Halt

// Halt()
/] mmmmm

Halt(bits(6) reason)
CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt

bits(64) preferred_restart_address = ThisInstrAddr();
spsr = GetPSRFromPSTATE();

if UsingAArch32() then
// If entering from AArch32 state, spsr<21> is the DIT bit which has to be moved for DSPSR
spsr<24> = spsr<21>;
spsr<21> = PSTATE.SS; // Always save the SS bit

if UsingAArch32() then
DLR = preferred_restart_address<31:0>;
DSPSR = spsr;

else
DLR_ELO = preferred_restart_address;
DSPSR_EL® = spsr;

EDSCR.ITE = '1';
EDSCR.ITO = '0';
if IsSecure() then
EDSCR.SDD = '0'; // If entered in Secure state, allow debug

elsif HaveEL(EL3) then

EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then 'Q' else '1';
else

assert EDSCR.SDD == '1'; // Otherwise EDSCR.SDD is RES1
EDSCR.MA = '0';

// In Debug state:
// + PSTATE.{SS,SSBS,D,A,I,F} are not observable and ignored so behave-as-if UNKNOWN.
// = PSTATE.{N,Z,C,V,Q,GE,E,M,nRW,EL,SP,DIT} are also not observable, but since these
// are not changed on exception entry, this function also Teaves them unchanged.
// « PSTATE.{IT,T} are ignored.
// + PSTATE.IL is ignored and behave-as-if 0.
// « PSTATE.{UAO,PAN} are observable and not changed on entry into Debug state.
if UsingAArch32() then

PSTATE.<IT,SS,SSBS,A,I,F,T> = bits(14) UNKNOWN;

else

PSTATE.<SS,SSBS,D,A,I,F> = bits(6) UNKNOWN;
PSTATE.IL = '0';
StopInstructionPrefetchAndEnableITR();
EDSCR.STATUS = reason; // Signal entered Debug state
UpdateEDSCRFields(); // Update EDSCR PE state flags.
return;

shared/debug/halting/HaltOnBreakpointOrWatchpoint

// HaltOnBreakpointOrWatchpoint()
/!
// Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
// state entry, FALSE if they should be considered for a debug exception.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-385
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

boolean HaltOnBreakpointOrWatchpoint()
return HaltingAllowed() &% EDSCR.HDE == '1' && OSLSR_EL1.0SLK == '0';
shared/debug/halting/Halted

// Halted()
// =

boolean Halted()
return ! (EDSCR.STATUS IN {'000001', '000010'}); // Halted
shared/debug/halting/HaltingAllowed
// HaltingAllowed()
// Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.
boolean HaltingAllowed()

if Halted() || DoubleLockStatus() then
return FALSE;

elsif IsSecure() then
return ExternalSecurelInvasiveDebugEnabled();

else
return ExternalInvasiveDebugEnabled();

shared/debug/halting/Restarting

// Restarting()
/] ===mmmm=====

boolean Restarting()
return EDSCR.STATUS == '000001'; // Restarting

shared/debug/halting/StoplnstructionPrefetchAndEnablelTR

StopInstructionPrefetchAndEnableITR();

shared/debug/halting/UpdateEDSCRFields

// UpdateEDSCRFields()
//
// Update EDSCR PE state fields

UpdateEDSCRFields()

if !Halted() then
EDSCR.EL = '00';
EDSCR.NS = bit UNKNOWN;
EDSCR.RW = '1111';

else
EDSCR.EL = PSTATE.EL;
EDSCR.NS = '0";
EDSCR.RW = '1111';
return;

shared/debug/haltingevents/CheckExceptionCatch

// CheckExceptionCatch()
/!

// Check whether an Exception Catch debug event is set on the current Exception level

CheckExceptionCatch(boolean exception_entry)

11-386 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// Called after an exception entry or exit, that is, such that IsSecure() and PSTATE.EL are correct
// for the exception target.
base = if IsSecure() then 0 else 4;
if HaltingAllowed() then
if HaveExtendedECDebugEvents() then
exception_exit = !exception_entry;
ctrl = EDECCR<UInt(PSTATE.EL) + base + 8>:EDECCR<UInt(PSTATE.EL) + base>;
case ctrl of
when '00' halt = FALSE;
when '01" halt = TRUE;
when '10' halt = (exception_exit == TRUE);
when '11" halt = (exception_entry == TRUE);

else
halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');
if halt then Halt(DebugHalt_ExceptionCatch);

shared/debug/haltingevents/CheckHaltingStep
// CheckHaltingStep()
// Check whether EDESR.SS has been set by Halting Step

CheckHaTtingStep()
if HaltingAllowed() && EDESR.SS == '1' then
// The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
if HaltingStep_DidNotStep() then
Halt(DebugHalt_Step_NoSyndrome);
elsif HaltingStep_SteppedEX() then
Halt(DebugHalt_Step_Exclusive);
else
Halt(DebugHalt_Step_Normal);

shared/debug/haltingevents/CheckOSUnlockCatch

// CheckOSUnTockCatch()

/!
// Called on unlocking the 0S Lock to pend an 0S Unlock Catch debug event

Check0OSUnlockCatch()

if (HaveDoPD() && CTIDEVCTL.OSUCE == '1")
then
if !Halted() then EDESR.OSUC = '1';

shared/debug/haltingevents/CheckPendingOSUnlockCatch

// CheckPendingOSUnlockCatch()
/!
// Check whether EDESR.OSUC has been set by an 0S Unlock Catch debug event

CheckPending0SUnTlockCatch()
if HaltingAllowed() && EDESR.OSUC == '1' then
Halt(DebugHalt_0SUnTockCatch);

shared/debug/haltingevents/CheckPendingResetCatch
// CheckPendingResetCatch()

//
// Check whether EDESR.RC has been set by a Reset Catch debug event

CheckPendingResetCatch()
if HaltingAllowed() && EDESR.RC == '1' then
Halt(DebugHalt_ResetCatch);

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-387
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/debug/haltingevents/CheckResetCatch

// CheckResetCatch()
/A ——
// Called after reset

CheckResetCatch()
if (HaveDoPD() && CTIDEVCTL.RCE == '1') then
EDESR.RC = '1';

// If halting is allowed then halt immediately
if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters
// CheckSoftwareAccessToDebugRegisters()

//

// Check for access to Breakpoint and Watchpoint registers.

CheckSoftwareAccessToDebugRegisters()
os_lock = OSLSR_EL1.0SLK;
if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '@' then
Halt(DebugHalt_SoftwareAccess);

shared/debug/haltingevents/ExternalDebugRequest

// ExternalDebugRequest()
/!

ExternalDebugRequest()
if HaltingAllowed() then
Halt(DebugHalt_EDBGRQ);
// Otherwise the CTI continues to assert the debug request until it is taken.

shared/debug/haltingevents/HaltingStep_DidNotStep

// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.
boolean HaltingStep_DidNotStep();

shared/debug/haltingevents/HaltingStep_SteppedEX

// Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
// executed in the active-not-pending state.
boolean HaltingStep_SteppedEX();

shared/debug/haltingevents/RunHaltingStep

// RunHaltingStep()
/] =mmmmmmmmmmmaees

RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
boolean reset)
// "exception_generated" is TRUE if the previous instruction generated a synchronous exception
// or was cancelled by an asynchronous exception.
/!
// if "exception_generated" is TRUE then "exception_target" is the target of the exception, and
// "syscall" is TRUE if the exception is a synchronous exception where the preferred return
// address is the instruction following that which generated the exception.
/!
// "reset" is TRUE if exiting reset state into the highest EL.

if reset then assert !Halted(); // Cannot come out of reset halted
active = EDECR.SS == '1' && !'Halted();

11-388 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if active && reset then // Coming out of reset with EDECR.SS set
EDESR.SS = '1';
elsif active & HaltingAllowed() then
if exception_generated & exception_target == EL3 then
advance = syscall || ExternalSecureInvasiveDebugEnabled();
else
advance = TRUE;
if advance then EDESR.SS = '1';

return;

shared/debug/interrupts/ExternalDebuginterruptsDisabled

// ExternalDebugInterruptsDisabled()
//
// Determine whether EDSCR disables interrupts routed to 'target'

boolean ExternalDebugInterruptsDisabled(bits(2) target)
case target of

when EL3

int_dis = EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled();
when EL2

int_dis = EDSCR.INTdis == '1x' && ExternalInvasiveDebugEnabled();
when EL1

if IsSecure() then
int_dis = EDSCR.INTdis == '1x' && ExternalSecureInvasiveDebugEnabled();
else
int_dis = EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled();
return int_dis;

shared/debugl/interrupts/InterruptiD

enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
InterruptID_COMMRX, InterruptID_COMMTX};

shared/debugl/interrupts/SetinterruptRequestLevel

// Set a level-sensitive interrupt to the specified level.
SetInterruptRequestLevel(InterruptID id, signal Tevel);

shared/debug/samplebasedprofiling/CreatePCSample

// CreatePCSample()
/] ===mm==mmmmm=e-

CreatePCSampTe()
// In a simple sequential execution of the program, CreatePCSample is executed each time the PE
// executes an instruction that can be sampled. An implementation is not constrained such that
// reads of EDPCSR1o return the current values of PC, etc.

pc_sample.valid = ExternalNoninvasiveDebugATTowed() && 'Halted();
pc_sample.pc = ThisInstrAddr();

pc_sample.el = PSTATE.EL;

pc_sample.rw = if UsingAArch32() then '0' else 'l';

pc_sample.ns = if IsSecure() then '0' else '1';
pc_sample.contextidr = CONTEXTIDR_EL1;

pc_sample.has_el2 = EL2Enabled();

if EL2Enabled() then
if !Havel6bitVMID() || VTCR_EL2.VS == '@' then
pc_sample.vmid = ZeroExtend(VSCTLR_EL2.VMID<7:0>, 16);
else
pc_sample.vmid = VSCTLR_EL2.VMID;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-389
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

pc_sampTle.contextidr_el2 = CONTEXTIDR_EL2;
pc_sample.eldh = FALSE;
return;

shared/debug/samplebasedprofiling/PCSample

type PCSample is (
boolean valid,
bits(64) pc,
bits(2) el,
bit rw,
bit ns,
boolean has_el12,
bits(32) contextidr,
bits(32) contextidr_el2,
boolean el0h,
bits(16) vmid

)

PCSample pc_sample;

shared/debug/samplebasedprofiling/PMPCSR

// PMPCSR[] (read)
/] =====m=m====a==

bits(32) PMPCSR[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return bits(32) UNKNOWN;

// The Software Tock is OPTIONAL.
update = !memory_mapped || PMLSR.SLK == 'Q'; // Software locked: no side-effects

if pc_sample.valid then
sample = pc_sample.pc<31:0>;
if update then
PMPCSR<55:32> = (if pc_sample.rw == '@' then Zeros(24) else pc_sample.pc<55:32>);
PMPCSR.EL = pc_sample.el;
PMPCSR.NS = pc_sample.ns;

PMCID1SR = pc_sample.contextidr;
PMCID2SR = if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UNKNOWN;

PMVIDSR.WMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,ELO} && !pc_sample.el0h
then pc_sample.vmid else bits(16) UNKNOWN);
else

sample = Ones(32);

if update then
PMPCSR<55:32> = bits(24) UNKNOWN;
PMPCSR.EL = bits(2) UNKNOWN;
PMPCSR.NS = bit UNKNOWN;

PMCID1SR = bits(32) UNKNOWN;
PMCID2SR = bits(32) UNKNOWN;

PMVIDSR.VMID = bits(16) UNKNOWN;

return sample;

shared/debug/softwarestep/CheckSoftwareStep

// CheckSoftwareStep()
/!

// Take a Software Step exception if in the active-pending state

11-390 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

CheckSoftwareStep()

// Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
// MArch32 state. However, because Software Step is only active when the debug target Exception
// Tevel is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
if 1ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() then
if MDSCR_EL1.SS == '1' && PSTATE.SS == '@' then
AArch64.SoftwareStepException();

shared/debug/softwarestep/DebugExceptionReturnSS
// DebugExceptionReturnSS()

//

// Returns value to write to PSTATE.SS on an exception return or Debug state exit.

bit DebugExceptionReturnSS(bits(32) spsr)
assert Halted() || Restarting() || PSTATE.EL != ELO;

SS_bit = '0";

if MDSCR_EL1.SS == '1' then
if Restarting() then
enabled_at_source = FALSE;
else
enabled_at_source = AArch64.GenerateDebugExceptions();

if I11egalExceptionReturn(spsr) then
dest = PSTATE.EL;
else
(valid, dest) = ELFromSPSR(spsr); assert valid;

secure = IsSecureBelowEL3() || dest == EL3;
mask = spsr<9>;
enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest, secure, mask);
ELd = DebugTargetFrom(secure);
if IELUsingAArch32(ELd) && !enabled_at_source && enabled_at_dest then
SS_bit = spsr<21>;
return SS_bit;

shared/debug/softwarestep/SSAdvance
// SSAdvance()

// Advance the Software Step state machine.
SSAdvance()

// A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
// current Software Step state machine. However, this check is made to illustrate that the
// processor only needs to consider advancing the state machine from the active-not-pending
// state.

target = DebugTarget();

step_enabled = !'ELUsingAArch32(target) & MDSCR_EL1.SS == '1';

active_not_pending = step_enabled && PSTATE.SS == '1';

if active_not_pending then PSTATE.SS = '0';

return;

shared/debug/softwarestep/SoftwareStep_DidNotStep

// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.

// Might return TRUE or FALSE if the previously executed instruction was an ISB or ERET executed
// in the active-not-pending state, or if another exception was taken before the Software Step

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-391
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

exception.

// Returns FALSE otherwise, indicating that the previously executed instruction was executed in the

// active-not-pending state, that is, the instruction was stepped.
boolean SoftwareStep_DidNotStep();

shared/debug/softwarestep/SoftwareStep_SteppedEX

// Returns a value that describes the previously executed instruction. The result is valid only if

// SoftwareStep_DidNotStep() returns FALSE.

// Might return TRUE or FALSE if the instruction was an AArch32 LDREX or LDAEX that failed its condition

code test.

// Otherwise returns TRUE if the instruction was a Load-Exclusive class instruction, and FALSE if the

// instruction was not a Load-Exclusive class instruction.
boolean SoftwareStep_SteppedEX();

11.2.2 shared/exceptions

This section includes the following pseudocode functions:

. shared/exceptions/exceptions/ConditionSyndrome.

. shared/exceptions/exceptions/Exception on page 11-393.

. shared/exceptions/exceptions/ExceptionRecord on page 11-393.

. shared/exceptions/exceptions/ExceptionSyndrome on page 11-393.

. shared/exceptions/traps/ReservedValue on page 11-394.
. shared/exceptions/traps/UnallocatedEncoding on page 11-394.

shared/exceptions/exceptions/ConditionSyndrome

// ConditionSyndrome()
/!
// Return CV and COND fields of instruction syndrome

bits(5) ConditionSyndrome()
bits(5) syndrome;

if UsingAArch32() then
cond = AArch32.CurrentCond();
if PSTATE.T == 'Q' then // A32
syndrome<4> = '1';
// A conditional A32 instruction that is known to pass its condition code check
// can be presented either with COND set to OxE, the value for unconditional, or
// the COND value held in the instruction.
if ConditionHolds(cond) && ConstrainUnpredictableBool() then
syndrome<3:0> = '1110';
else
syndrome<3:0> = cond;
else // T32
// When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
// % CV set to @ and COND is set to an UNKNOWN value
// « CV set to 1 and COND is set to the condition code for the condition that
// applied to the instruction.
if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then
syndrome<4> = '1';
syndrome<3:0> = cond;
else
syndrome<4> = '0';
syndrome<3:0> = bits(4) UNKNOWN;
else
syndrome<4> = '1';
syndrome<3:0> = '1110';

return syndrome;

11-392 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

shared/exceptions/exceptions/Exception

enumeration Exception {Exception_Uncategorized,
Exception_WFxTrap,
Exception_CP15RTTrap,
Exception_CP15RRTTrap,
Exception_CP14RTTrap,
Exception_CP14DTTrap,

Exception_AdvSIMDFPAccessTrap,

Exception_FPIDTrap,

// Trapped BXJ instruction not

Exception_PACTrap,
Exception_CP14RRTTrap,
Exception_I1legalState,
Exception_SupervisorCall,
Exception_HypervisorCall,
Exception_MonitorCall,
Exception_SystemRegisterTrap,
Exception_InstructionAbort,
Exception_PCAlignment,
Exception_DataAbort,
Exception_PACFail,
Exception_SPATignment,
Exception_FPTrappedException,
Exception_SError,
Exception_Breakpoint,
Exception_SoftwareStep,
Exception_Watchpoint,
Exception_SoftwareBreakpoint,
Exception_VectorCatch,
Exception_IRQ,
Exception_FIQ};

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// Uncategorized or unknown reason

// Trapped WFI or WFE instruction

// Trapped AArch32 MCR or MRC access to CP15
// Trapped AArch32 MCRR or MRRC access to CP15
// Trapped AArch32 MCR or MRC access to CP14
// Trapped AArch32 LDC or STC access to (P14
// HCPTR-trapped access to SIMD or FP

// Trapped access to SIMD or FP ID register
supported in Armv8

// Trapped invalid PAC use

// Trapped MRRC access to CP14 from AArch32
// I1legal Execution state

// Supervisor Call

// Hypervisor Call

// Monitor Call or Trapped SMC instruction
// Trapped MRS or MSR system register access
// Instruction Abort or Prefetch Abort

// PC alignment fault

// Data Abort

// PAC Authentication failure

// SP alignment fault

// IEEE trapped FP exception

// SError interrupt

// (Hardware) Breakpoint

// Software Step

// Watchpoint

// Software Breakpoint Instruction

// AArch32 Vector Catch

// IRQ interrupt

// FIQ interrupt

shared/exceptions/exceptions/ExceptionRecord

type ExceptionRecord is (Exception exceptype,

bits(25) syndrome,
bits(64) vaddress,
boolean ipavalid,
is valid
bits(1) NS,
is Non-secure or secure
bits(52) dpaddress)

// Exception class

// Syndrome record

// Virtual fault address

// Physical fault address for second stage faults

// Physical fault address for second stage faults

// Physical fault address for second stage faults

shared/exceptions/exceptions/ExceptionSyndrome

// ExceptionSyndrome()
//

// Return a blank exception syndrome record for an exception of the given type.

ExceptionRecord ExceptionSyndrome(Exception exceptype)

ExceptionRecord r;
r.exceptype = exceptype;

// Initialize all other fields
r.syndrome = Zeros();
r.vaddress = Zeros();
r.ipavalid = FALSE;

r.NS ="0";

r.ipaddress = Zeros();

return r;

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-393

Armv8-R AArch64 Pseudocode

11.2 Shared pseudocode

11.2.3

shared/exceptions/traps/ReservedValue

// ReservedvValue()

Reservedvalue()

AArch64.UndefinedFault();

shared/exceptions/traps/UnallocatedEncoding

// UnallocatedEncoding()

UnallocatedEncoding()

AArch64.UndefinedFault();

shared/functions

This section includes the following pseudocode functions:

shared/functions/aborts/EncodeLDFSC on page 11-400.
shared/functions/aborts/IPAValid on page 11-400.
shared/functions/aborts/IsAsyncAbort on page 11-400.
shared/functions/aborts/IsDebugException on page 11-401.
shared/functions/aborts/IsExternalAbort on page 11-401.
shared/functions/aborts/IsExternalSyncAbort on page 11-401.
shared/functions/aborts/IsFault on page 11-401.
shared/functions/aborts/IsSErrorInterrupt on page 11-402.
shared/functions/aborts/IsSecondStage on page 11-402.
shared/functions/aborts/LSInstructionSyndrome on page 11-402.
shared/functions/common/ASR on page 11-402.
shared/functions/common/ASR_C on page 11-402.
shared/functions/common/Abs on page 11-403.
shared/functions/common/Align on page 11-403.
shared/functions/common/BitCount on page 11-403.
shared/functions/common/CountLeadingSignBits on page 11-403.
shared/functions/common/CountLeadingZeroBits on page 11-403.
shared/functions/common/Elem on page 11-403.
shared/functions/common/Extend on page 11-404.
shared/functions/common/HighestSetBit on page 11-404.
shared/functions/common/Int on page 11-404.
shared/functions/common/IsOnes on page 11-404.
shared/functions/common/IsZero on page 11-405.
shared/functions/common/IsZeroBit on page 11-405.
shared/functions/common/LSL on page 11-405.
shared/functions/common/LSL_C on page 11-405.
shared/functions/common/LSR on page 11-405.
shared/functions/common/LSR_C on page 11-405.
shared/functions/common/LowestSetBit on page 11-406.
shared/functions/common/Max on page 11-406.
shared/functions/common/Min on page 11-406.
shared/functions/common/Ones on page 11-406.
shared/functions/common/ROR on page 11-406.
shared/functions/common/ROR_C on page 11-407.
shared/functions/common/Replicate on page 11-407.

11-394

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

shared/functions/common/RoundDown on page 11-407.
shared/functions/common/RoundTowardsZero on page 11-407.
shared/functions/common/RoundUp on page 11-407.
shared/functions/common/SInt on page 11-407.
shared/functions/common/SignExtend on page 11-407.
shared/functions/common/Ulnt on page 11-408.
shared/functions/common/ZeroExtend on page 11-408.
shared/functions/common/Zeros on page 11-408.
shared/functions/crc/BitReverse on page 11-408.
shared/functions/crc/HaveCRCEXxt on page 11-409.
shared/functions/crc/Poly32Mod?2 on page 11-409.
shared/functions/crypto/AESInvMixColumns on page 11-409.
shared/functions/crypto/AESInvShiftRows on page 11-409.
shared/functions/crypto/AESInvSubBytes on page 11-410.
shared/functions/crypto/AESMixColumns on page 11-410.
shared/functions/crypto/AESShiftRows on page 11-411.
shared/functions/crypto/AESSubBytes on page 11-411.
shared/functions/crypto/FFmul02 on page 11-411.
shared/functions/crypto/FFmul03 on page 11-412.
shared/functions/crypto/FFmul09 on page 11-412.
shared/functions/crypto/FFmul0B on page 11-413.
shared/functions/crypto/FFmul0D on page 11-413.
shared/functions/crypto/FFmulOE on page 11-413.
shared/functions/crypto/HaveAESExt on page 11-414.
shared/functions/crypto/HaveBit128PMULLEXxt on page 11-414.
shared/functions/crypto/HaveSHA 1 Ext on page 11-414.
shared/functions/crypto/HaveSHA256Ext on page 11-414.
shared/functions/crypto/HaveSHA3Ext on page 11-414.
shared/functions/crypto/HaveSHAS5 12Ext on page 11-415.
shared/functions/crypto/HaveSM3Ext on page 11-415.
shared/functions/crypto/HaveSM4Ext on page 11-415.
shared/functions/crypto/ROL on page 11-415.
shared/functions/crypto/SHA256hash on page 11-415.
shared/functions/crypto/SHAchoose on page 11-416.
shared/functions/crypto/SHAhashSIGMAOQ on page 11-416.
shared/functions/crypto/SHAhashSIGMA1 on page 11-416.
shared/functions/crypto/SHAmajority on page 11-416.
shared/functions/crypto/SHAparity on page 11-416.
shared/functions/crypto/Sbox on page 11-416.
shared/functions/exclusive/ClearExclusiveByAddress on page 11-417.
shared/functions/exclusive/ClearExclusiveLocal on page 11-417.
shared/functions/exclusive/ClearExclusiveMonitors on page 11-417.
shared/functions/exclusive/ExclusiveMonitorsStatus on page 11-417.
shared/functions/exclusive/IsExclusiveGlobal on page 11-417.
shared/functions/exclusive/IsExclusiveLocal on page 11-417.
shared/functions/exclusive/MarkExclusiveGlobal on page 11-417.
shared/functions/exclusive/MarkExclusiveLocal on page 11-417.
shared/functions/exclusive/ProcessorID on page 11-418.
shared/functions/extension/AArch64.HaveHPDEXxt on page 11-418.
shared/functions/extension/Have52BitPAExt on page 11-418.

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-395

Armv8-R AArch64 Pseudocode

11.2 Shared pseudocode

shared/functions/extension/Have52BitVAExt on page 11-418.
shared/functions/extension/HaveAtomicExt on page 11-418.
shared/functions/extension/HaveBlockBBM on page 11-418.
shared/functions/extension/HaveCommonNotPrivateTransExt on page 11-418.
shared/functions/extension/HaveDGHEXxt on page 11-418.
shared/functions/extension/HaveDITExt on page 11-419.
shared/functions/extension/HaveDOTPExt on page 11-419.
shared/functions/extension/HaveDoPD on page 11-419.
shared/functions/extension/HaveDoubleLock on page 11-419.
shared/functions/extension/Have EOPDEXxt on page 11-419.
shared/functions/extension/HaveEL1VMSAExt on page 11-419.
shared/functions/extension/HaveExtendedCacheSets on page 11-420.
shared/functions/extension/HaveExtended ECDebugEvents on page 11-420.
shared/functions/extension/HaveExtendedExecuteNeverExt on page 11-420.
shared/functions/extension/HaveFCADDEXxt on page 11-420.
shared/functions/extension/HaveFJCVTZSExt on page 11-420.
shared/functions/extension/HaveF'P16MulNoRoundingToFP32Ext on page 11-420.
shared/functions/extension/HaveFlagManipulateExt on page 11-420.
shared/functions/extension/HaveHPMDExt on page 11-421.
shared/functions/extension/Havel DSExt on page 11-421.
shared/functions/extension/HavelESB on page 11-421.
shared/functions/extension/HaveLSE2Ext on page 11-421.
shared/functions/extension/HaveNoninvasiveDebugAuth on page 11-421.
shared/functions/extension/HavePANExt on page 11-421.
shared/functions/extension/HavePageBasedHardwareAttributes on page 11-421.
shared/functions/extension/HavePrivATExt on page 11-422.
shared/functions/extension/HaveQRDMLAHEXxt on page 11-422.
shared/functions/extension/HaveRASExt on page 11-422.
shared/functions/extension/HaveSBExt on page 11-422.
shared/functions/extension/HaveSSBSExt on page 11-422.
shared/functions/extension/HaveSecureEL2Ext on page 11-422.
shared/functions/extension/HaveSecureExtDebugView on page 11-422.
shared/functions/extension/HaveSelfHostedTrace on page 11-423.
shared/functions/extension/HaveSmallPageTblExt on page 11-423.
shared/functions/extension/HaveStage2MemAttrControl on page 11-423.
shared/functions/extension/HaveTraceExt on page 11-423.
shared/functions/extension/HaveUAOExt on page 11-423.
shared/functions/extension/HaveV82Debug on page 11-423.
shared/functions/extension/InsertIESBBeforeException on page 11-423.
shared/functions/float/fixedtofp/FixedToF P on page 11-424.
shared/functions/float/fpabs/FPAbs on page 11-424.
shared/functions/float/fpadd/FPAdd on page 11-424.
shared/functions/float/fpcommon/IsDenormalizedValue on page 11-425.
shared/functions/float/fpcompare/FPCompare on page 11-425.
shared/functions/float/fpcompareeq/FPCompareEQ on page 11-425.
shared/functions/float/fpcomparege/FPCompareGE on page 11-426.
shared/functions/float/fpcomparegt/FPCompareGT on page 11-426.
shared/functions/float/fpconvert/FPConvert on page 11-426.
shared/functions/float/fpconvertnan/FPConvertNaN on page 11-427.
shared/functions/float/fpcrtype/FPCRType on page 11-428.

11-396

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

shared/functions/float/fpdecoderm/FPDecodeRM on page 11-428.

shared/functions/float/fpdecoderounding/FPDecodeRounding on page 11-428.

shared/functions/float/fpdefaultnan/FPDefaultNaN on page 11-428.
shared/functions/float/fpdiv/FPDiv on page 11-428.
shared/functions/float/fpexc/FPExc on page 11-429.
shared/functions/float/fpinfinity/F Plnfinity on page 11-429.
shared/functions/float/fpomax/FPMax on page 11-429.
shared/functions/float/fpomaxnormal/FPMaxNormal on page 11-430.
shared/functions/float/fpmaxnum/FPMaxNum on page 11-430.
shared/functions/float/fpmin/FPMin on page 11-430.
shared/functions/float/fpminnum/FPMinNum on page 11-431.
shared/functions/float/fpmul/FPMul on page 11-431.
shared/functions/float/fomuladd/FPMulAdd on page 11-431.
shared/functions/float/fpmuladdh/FPMulAddH on page 11-432.
shared/functions/float/fpmuladdh/FPProcessNaNs3H on page 11-433.
shared/functions/float/fomulx/FPMulX on page 11-434.
shared/functions/float/fpneg/FPNeg on page 11-434.
shared)/functions/float/fponepointfive/FPOnePointFive on page 11-434.

shared/functions/float/fpprocessexception/FPProcessException on page 11-435.

shared/functions/float/fpprocessnan/FPProcessNaN on page 11-435.
shared/functions/float/fpprocessnans/FPProcessNaNs on page 11-435.
shared/functions/float/fpprocessnans3/FPProcessNaNs3 on page 11-436.
shared/functions/float/fprecipestimate/FPRecipEstimate on page 11-436.
shared/functions/float/fprecipestimate/RecipEstimate on page 11-438.
shared/functions/float/fprecpx/FPRecpX on page 11-438.
shared/functions/float/fpround/FPRound on page 11-439.
shared/functions/float/fpround/FPRoundBase on page 11-439.
shared/functions/float/fpround/FPRoundCV on page 11-440.
shared/functions/float/fprounding/FPRounding on page 11-440.

shared/functions/float/fproundingmode/FPRoundingMode on page 11-441.

shared/functions/float/fproundint/FPRoundInt on page 11-441.
shared/functions/float/fproundintn/FPRoundIntN on page 11-442.
shared/functions/float/fprsqrtestimate/FPRSqrtEstimate on page 11-443.
shared/functions/float/fprsqrtestimate/RecipSqrtEstimate on page 11-444.
shared/functions/float/fpsqrt/FPSqrt on page 11-444.
shared/functions/float/fpsub/FPSub on page 11-444.
shared/functions/float/fpthree/FPThree on page 11-445.
shared/functions/float/fptofixed/FPToFixed on page 11-445.
shared/functions/float/fptofixedjs/FPToFixedJS on page 11-446.
shared/functions/float/fptwo/FPTwo on page 11-447.
shared/functions/float/fptype/FPType on page 11-447.
shared)/functions/float/fpunpack/FPUnpack on page 11-447.
shared/functions/float/fpunpack/FPUnpackBase on page 11-447.
shared/functions/float/fpunpack/FPUnpackCV on page 11-448.
shared/functions/float/fpzero/FPZero on page 11-449.
shared/functions/float/vfpexpandimm/VFPExpandIlmm on page 11-449.
shared/functions/integer/AddWithCarry on page 11-449.
shared/functions/memory/AArch64.BranchAddr on page 11-449.
shared/functions/memory/AccType on page 11-450.
shared/functions/memory/AccessDescriptor on page 11-450.

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-397

Armv8-R AArch64 Pseudocode

11.2 Shared pseudocode

shared/functions/memory/AddrTop on page 11-450.
shared/functions/memory/AddressDescriptor on page 11-450.
shared/functions/memory/Allocation on page 11-451.
shared/functions/memory/BigEndian on page [1-451.
shared/functions/memory/BigEndianReverse on page 11-451.
shared/functions/memory/Cacheability on page 11-451.
shared/functions/memory/CreateAccessDescriptor on page 11-451.
shared/functions/memory/CreateAccessDescriptorPTW on page 11-451.
shared/functions/memory/DataMemoryBarrier on page 11-452.
shared/functions/memory/DataSynchronizationBarrier on page 11-452.
shared/functions/memory/DescriptorUpdate on page 11-452.
shared/functions/memory/DeviceType on page 11-452.
shared/functions/memory/EffectiveTBI on page 11-452.
shared/functions/memory/Fault on page 11-452.
shared/functions/memory/FaultRecord on page 11-453.
shared/functions/memory/FullAddress on page 11-453.
shared/functions/memory/Hint_Prefetch on page 11-453.
shared/functions/memory/IsStagel VMSA on page 11-453.
shared/functions/memory/MBRegDomain on page 11-453.
shared/functions/memory/MBReqTypes on page 11-453.
shared/functions/memory/MPURecord on page 11-454.
shared/functions/memory/MemAttrHints on page 11-454.
shared/functions/memory/MemType on page 11-454.
shared/functions/memory/MemoryAttributes on page 11-454.
shared/functions/memory/Permissions on page 11-454.
shared/functions/memory/PrefetchHint on page 11-454.
shared/functions/memory/SpeculativeStoreBypassBarrierToPA on page 11-454.
shared/functions/memory/SpeculativeStoreBypassBarrierToVA on page 11-454.
shared/functions/memory/TLBRecord on page 11-454.
shared/functions/memory/ _Mem on page 11-455.
shared/functions/registers/BranchTo on page 11-455.
shared/functions/registers/BranchToAddr on page 11-455.
shared/functions/registers/BranchType on page 11-455.
shared/functions/registers/Hint _Branch on page 11-456.
shared/functions/registers/NextInstrAddr on page 11-456.
shared/functions/registers/ResetExternalDebugRegisters on page 11-456.
shared/functions/registers/ThisInstrAddr on page 11-456.
shared/functions/registers/ PC on page 11-456.
shared/functions/registers/ R on page 11-456.
shared/functions/registers/ V on page 11-456.
shared/functions/sysregisters/SPSR on page 11-456.
shared/functions/system/ArchVersion on page 11-457.
shared/functions/system/ClearEventRegister on page 11-457.
shared/functions/system/ClearPendingPhysicalSError on page 11-457.
shared/functions/system/ClearPendingVirtualSError on page 11-457.
shared/functions/system/ConditionHolds on page 11-457.

shared/functions/system/ConsumptionOfSpeculativeDataBarrier on page 11-458.

shared/functions/system/CurrentlnstrSet on page 11-458.
shared/functions/system/ELQ on page 11-458.
shared/functions/system/EL2Enabled on page 11-458.

11-398

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/system/ELFromSPSR on page 11-458.
shared/functions/system/ELUsingAArch32 on page 11-459.
shared/functions/system/ELUsingAArch32K on page 11-459.
shared/functions/system/EndOfInstruction on page 11-459.
shared/functions/system/EnterLowPowerState on page 11-459.
shared/functions/system/EventRegister on page 11-459.
shared/functions/system/GetPSRFromPSTATE on page 11-459.
shared/functions/system/HasArchVersion on page 11-459.
shared/functions/system/HaveAArch32EL on page 11-460.
shared/functions/system/HaveAnyAArch32 on page 11-460.
shared/functions/system/HaveAnyAArch64 on page 11-460.
shared/functions/system/HaveEL on page 11-460.
shared/functions/system/HaveELUsingSecurityState on page 11-460.
shared/functions/system/Havel'P16Ext on page 11-461.
shared/functions/system/HighestEL on page 11-461.
shared/functions/system/HighestELUsingAArch32 on page 11-461.
shared/functions/system/Hint_DGH on page 11-461.
shared/functions/system/Hint_Yield on page 11-461.
shared/functions/system/lllegal ExceptionReturn on page 11-461.
shared/functions/system/InstrSet on page 11-462.
shared/functions/system/InstructionSynchronizationBarrier on page 11-462.
shared/functions/system/InterruptPending on page 11-462.
shared/functions/system/IsEventRegisterSet on page 11-462.
shared/functions/system/IsHighestEL on page 11-463.
shared/functions/system/IsPhysicalSErrorPending on page 11-463.
shared/functions/system/IsSecure on page 11-463.
shared/functions/system/IsSecureBelowEL3 on page 11-463.
shared/functions/system/IsSecureEL2Enabled on page 11-463.
shared/functions/system/IsSynchronizablePhysicalSErrorPending on page 11-463.
shared/functions/system/IsVirtualSErrorPending on page 11-463.
shared/functions/system/PSTATE on page 11-463.
shared/functions/system/PrivilegeLevel on page 11-464.
shared/functions/system/ProcState on page 11-464.
shared/functions/system/SendEvent on page 11-464.
shared/functions/system/SendEventLocal on page 11-464.
shared/functions/system/SetPSTATEFromPSR on page 11-464.
shared/functions/system/SpeculationBarrier on page 11-465.
shared/functions/system/SynchronizeContext on page 11-465.
shared/functions/system/SynchronizeErrors on page 11-465.
shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts on page 11-465.
shared/functions/system/Take UnmaskedSErrorInterrupts on page 11-465.
shared/functions/system/ThisInstr on page 11-465.
shared/functions/system/ThisInstrLength on page 11-465.
shared/functions/system/Unreachable on page 11-465.
shared/functions/system/UsingAArch32 on page 11-465.
shared/functions/system/WaitForEvent on page 11-466.
shared/functions/system/WaitForInterrupt on page 11-466.
shared/functions/unpredictable/ConstrainUnpredictable on page 11-466.
shared/functions/unpredictable/ConstrainUnpredictableBits on page 11-466.
shared/functions/unpredictable/ConstrainUnpredictableBool on page 11-466.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-399
Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

. shared/functions/unpredictable/ConstrainUnpredictablelnteger on page 11-466.
. shared/functions/unpredictable/Constraint on page 11-467.

. shared/functions/vector/AdvSIMDExpandImm on page 11-467.

. shared/functions/vector/PolynomialMult on page 11-468.

. shared/functions/vector/SatQ on page 11-468.

. shared/functions/vector/SignedSatQ on page 11-468.

. shared/functions/vector/UnsignedRSqrtEstimate on page 11-468.

. shared/functions/vector/UnsignedRecipEstimate on page 11-468.

. shared/functions/vector/UnsignedSatQ on page 11-469.

shared/functions/aborts/EncodeLDFSC

// EncodelDFSC()

// Function that gives the Long-descriptor FSC code for types of Fault
bits(6) EncodelLDFSC(Fault statuscode, integer Tevel)

bits(6) result;
case statuscode of

when Fault_AddressSize result = '0000':Tevel<1:0>; assert level IN {0,1,2,3};
when Fault_AccessFlag result = '0010':Tevel<1:0>; assert level IN {1,2,3};
when Fault_Permission result = '0011':level<1:0>; assert level IN {0,1,2,3};
when Fault_Translation result = '0001':Tevel<1:0>; assert level IN {0,1,2,3};
when Fault_SyncExternal result = '010000';

when Fault_SyncExternalOnWalk result = '0101':Tevel<1:0>; assert level IN {0,1,2,3};
when Fault_SyncParity result = '011000';

when Fault_SyncParityOnWalk result = '0111':Tevel<1:0>; assert level IN {0,1,2,3};
when Fault_AsyncParity result = '011001';

when Fault_AsyncExternal result = '010001';

when Fault_Alignment result = '100001';

when Fault_Debug result = '100010';

when Fault_TLBConflict result = '110000';

when Fault_HWUpdateAccessFlag result = '110001';

when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED

when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
otherwise Unreachable();

return result;

shared/functions/aborts/IPAValid
// IPAValid()
// Return TRUE if the IPA is reported for the abort

boolean IPAValid(FaultRecord fault)
assert fault.statuscode != Fault_None;

if fault.s2fslwalk then
return fault.statuscode IN {Fault_AccessFlag, Fault_Permission, Fault_Translation,
Fault_AddressSize};
elsif fault.secondstage then
return fault.statuscode IN {Fault_AccessFlag, Fault_Translation, Fault_AddressSize};
else
return FALSE;

shared/functions/aborts/IsAsyncAbort
// IsAsyncAbort()

// Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
// otherwise.

11-400

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

boolean IsAsyncAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsAsyncAbort()
/] ====m==m=m====

boolean IsAsyncAbort(FaultRecord fault)
return IsAsyncAbort(fault.statuscode);
shared/functions/aborts/IsDebugException

// IsDebugException()
/A ——

boolean IsDebugException(FaultRecord fault)
assert fault.statuscode != Fault_None;
return fault.statuscode == Fault_Debug;
shared/functions/aborts/IsExternalAbort
// IsExternalAbort()

// Returns TRUE if the abort currently being processed is an external abort and FALSE otherwise.

boolean IsExternalAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {Fault_SyncExternal, Fault_SyncParity, Fault_SyncExternalOnWalk,
Fault_SyncParityOnWalk,
Fault_AsyncExternal, Fault_AsyncParity });

// IsExternalAbort()
/R

boolean IsExternalAbort(FaultRecord fault)
return IsExternalAbort(fault.statuscode);

shared/functions/aborts/IsExternalSyncAbort

// IsExternalSyncAbort()
/!
// Returns TRUE if the abort currently being processed is an external synchronous abort and FALSE
otherwise.

boolean IsExternalSyncAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {Fault_SyncExternal, Fault_SyncParity, Fault_SyncExternalOnWalk,
Fault_SyncParityOnWalk});

// IsExternalSyncAbort()
/!

boolean IsExternalSyncAbort(FaultRecord fault)
return IsExternalSyncAbort(fault.statuscode);

shared/functions/aborts/IsFault

// IsFault()

// Return TRUE if a fault is associated with an address descriptor

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-401
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

boolean IsFault(AddressDescriptor addrdesc)
return addrdesc.fault.statuscode != Fault_None;
shared/functions/aborts/IsSErrorinterrupt

// IsSErrorInterrupt()
//

// Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE

// otherwise.

boolean IsSErrorInterrupt(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsSErrorInterrupt()
//

boolean IsSErrorInterrupt(FaultRecord fault)
return IsSErrorInterrupt(fault.statuscode);

shared/functions/aborts/IsSecondStage

// IsSecondStage()
/] ===mm=mmmm=m=m-

boolean IsSecondStage(FaultRecord fault)
assert fault.statuscode != Fault_None;

return fault.secondstage;

shared/functions/aborts/LSInstructionSyndrome

bits(11) LSInstructionSyndrome();

shared/functions/common/ASR

// ASRQ)
/] =====

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = ASR_C(x, shift);
return result;

shared/functions/common/ASR_C

// ASR_C()
/] =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

11-402 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

shared/functions/common/Abs

// Abs()
/] =====

integer Abs(integer x)
return if x >= 0 then x else -x;

// Abs()
/] ==

real Abs(real x)
return if x >= 0.0 then x else -x;

shared/functions/common/Align

// Align()
/] =======

integer Align(integer x, integer y)
return y = (x DIV y);

// Mign()
J/—

bits(N) Align(bits(N) x, integer y)
return Align(UInt(x), y)<N-1:0>;

shared/functions/common/BitCount

// BitCount()
// mmmmmmmmm

integer BitCount(bits(N) x)
integer result = 0;
for i =0 to N-1
if x<i> == "'1" then
result = result + 1;
return result;

shared/functions/common/CountLeadingSignBits

// CountLeadingSignBits()
/!

integer CountlLeadingSignBits(bits(N) x)
return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);
shared/functions/common/CountLeadingZeroBits

// CountLeadingZeroBits()
/!

integer CountlLeadingZeroBits(bits(N) x)
return N - (HighestSetBit(x) + 1);
shared/functions/common/Elem

// Elem[] - non-assignment form

//

bits(size) Elem[bits(N) vector, integer e, integer size]
assert e >= 0 && (e+l)xsize <= N;
return vector<exsize+size-1 : exsize>;

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

1D090320 Non-Confidential

11-403

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// Elem[] - non-assignment form

//

bits(size) Elem[bits(N) vector, integer e]
return Elem[vector, e, size];

// Elem[] - assignment form

//

Elem[bits(N) &vector, integer e, integer size] = bits(size) value
assert e >= 0 && (e+l)xsize <= N;
vector<(e+l)=size-1:exsize> = value;
return;

// Elem[] - assignment form

//

Elem[bits(N) &vector, integer e] = bits(size) value
Elem[vector, e, size] = value;
return;

shared/functions/common/Extend

// Extend()
/] ===

bits(N) Extend(bits(M) x, integer N, boolean unsigned)
return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);

// Extend()
// =

bits(N) Extend(bits(M) x, boolean unsigned)
return Extend(x, N, unsigned);
shared/functions/common/HighestSetBit

// HighestSetBit()
/] =======m====a==

integer HighestSetBit(bits(N) x)
for i = N-1 downto @
if x<i> == '1' then return i;
return -1;

shared/functions/common/Int

// Tnt()
/] ===

integer Int(bits(N) x, boolean unsigned)
result = if unsigned then UInt(x) else SInt(x);
return result;

shared/functions/common/IsOnes

// IsOnes()
J/——

booTlean IsOnes(bits(N) x)
return x == Ones(N);

11-404 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

shared/functions/common/IsZero

// IsZero()
J/——

boolean IsZero(bits(N) x)
return x == Zeros(N);

shared/functions/common/IsZeroBit

// IsZeroBit()
/R

bit IsZeroBit(bits(N) x)
return if IsZero(x) then 'l' else '0';

shared/functions/common/LSL

// 15LO)
/] =====

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSL_C(x, shift);
return result;

shared/functions/common/LSL_C

// LSL_C()
/] =======

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);

shared/functions/common/LSR

// 1RO
/] =====

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSR_C(x, shift);
return result;

shared/functions/common/LSR_C

// LSR_C()
[/ —mmemm

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

1D090320 Non-Confidential

11-405

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

shared/functions/common/LowestSetBit

// LowestSetBit()
/] =====m========

integer LowestSetBit(bits(N) x)
for i =0 to N-1

if x<i> == '1' then return i;
return N;

shared/functions/common/Max

// Max()
/] ===

integer Max(integer a, integer b)
return if a >= b then a else b;

// Max()
/] =====

real Max(real a, real b)
return if a >= b then a else b;
shared/functions/common/Min

// Min()
/] =====

integer Min(integer a, integer b)
return if a <= b then a else b;

// Min()
/] ==

real Min(real a, real b)
return if a <= b then a else b;
shared/functions/common/Ones

// Ones()
/] ======

bits(N) Ones(integer N)
return Replicate('1',N);

// Ones()
/] ======

bits(N) Ones()
return Ones(N);
shared/functions/common/ROR

// RORO)
/] ===

bits(N) ROR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

11-406 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

result = x;
else

(result, -) = ROR_C(x, shift);
return result;

shared/functions/common/ROR_C

// ROR_C()
/] =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

shared/functions/common/Replicate

// RepTlicate()

/] ===========

bits(N) Replicate(bits(M) x)
assert N MOD M == 0;
return Replicate(x, N DIV M);

bits(M«N) Replicate(bits(M) x, integer N);

shared/functions/common/RoundDown

integer RoundDown(real x);

shared/functions/common/RoundTowardsZero

// RoundTowardsZero()
/] =====m=mmmmm=m====

integer RoundTowardsZero(real x)
return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);
shared/functions/common/RoundUp

integer RoundUp(real x);

shared/functions/common/Sint

// STnt()
/] mmmmm

integer SInt(bits(N) x)
result = 0;
for i =0 to N-1
if x<i> == '1' then result = result + 2A1;
if x<N-1> == '1' then result = result - 2AN;
return result;

shared/functions/common/SignExtend

// SignExtend()
/] ====m=mm====

bits(N) SignExtend(bits(M) x, integer N)
assert N >= M;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-407
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

return Replicate(x<M-1>, N-M) : x;

// SignExtend()
/A ——

bits(N) SignExtend(bits(M) x)
return SignExtend(x, N);

shared/functions/common/Uint

// Utat()
/] ======

integer UInt(bits(N) x)
result = 0;
for i =0 to N-1
if x<i> == '1"' then result = result + 2Ai;
return result;

shared/functions/common/ZeroExtend

// ZeroExtend()
/] ====m=======

bits(N) ZeroExtend(bits(M) x, integer N)
assert N >= M;
return Zeros(N-M) : x;

// ZeroExtend()
/] ============

bits(N) ZeroExtend(bits(M) x)
return ZeroExtend(x, N);

shared/functions/common/Zeros

// Zeros()
/] =======

bits(N) Zeros(integer N)
return Replicate('0',N);

// Zeros()
/] =======

bits(N) Zeros()
return Zeros(N);

shared/functions/crc/BitReverse

// BitReverse()
/] ===mm=m==m==

bits(N) BitReverse(bits(N) data)
bits(N) result;
for i =0 to N-1
result<N-i-1> = data<i>;
return result;

11-408 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/crc/HaveCRCEXxt

// HaveCRCExt()
/A —

boolean HaveCRCExt()
return HasArchVersion(ARMv8pl) || boolean IMPLEMENTATION_DEFINED "Have CRC extension";

shared/functions/crc/Poly32Mod2

// Poly32Mod2()
/A ——

// Poly32Mod2 on a bitstring does a polynomial Modulus over {@,1} operation

bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
assert N > 32;
for i = N-1 downto 32
if data<i> == '1' then
data<i-1:0> = data<i-1:0> EOR (poly:Zeros(i-32));
return data<31:0>;

shared/functions/crypto/AESInvMixColumns

// AESInvMixColumns()

// Transformation in the Inverse Cipher that is the inverse of AESMixColumns.

bits(128) AESInvMixColumns(bits (128) op)
bits(4x8) in0@ = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
bits(4+8) inl = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
bits(4+8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
bits(4x8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

bits(4x8) out0;
bits(4x8) outl;
bits(4x8) out2;
bits(4+8) out3;

for c =0 to 3

out@<c8+:8> = FFmulQE(in@<c+8+:8>) EOR FFmul@B(inl<c«8+:8>) EOR FFmul@D(in2<c=8+:8>) EOR
FFmu109(in3<c=8+:8>);

outl<c#8+:8> = FFmul109(in@<c«8+:8>) EOR FFmulQE(inl<c=8+:8>) EOR FFmul@B(in2<c#8+:8>) EOR
FFmu10D(in3<c#8+:8>);

out2<c#8+:8> = FFmulOD(in@<cx8+:8>) EOR FFmu1@9(inl<cx8+:8>) EOR FFmul@E(in2<c«8+:8>) EOR
FFmuTOB(in3<c=8+:8>);

out3<c#8+:8> = FFmul0B(in@<c«8+:8>) EOR FFmul@D(inl<c=8+:8>) EOR FFmu109(in2<c#8+:8>) EOR
FFmuT@E(in3<c#8+:8>);

return (
out3<3#8+:8> : out2<3+8+:8> : outl<3+8+:8> : out0<3%8+:8> :
out3<2x8+:8> : out2<2%8+:8> : outl<2x8+:8> : out0<2«8+:8> :
out3<1#8+:8> : out2<1#8+:8> : outl<1lx8+:8> : out@<1«8+:8> :
out3<0«8+:8> : out2<0«8+:8> : outl<0+8+:8> : out@<0+8+:8>
);

shared/functions/crypto/AESInvShiftRows

// AESInvShiftRows()
/] ==m=m==m=me=e==e=

// Transformation in the Inverse Cipher that is inverse of AESShiftRows.

bits(128) AESInvShiftRows(bits(128) op)
return (
op< 24+:8> : op< 48+:8> : op< 72+:8> : op< 96+:8> :
0p<120+:8> : op< 16+:8> : op< 40+:8> : op< 64+:8> :

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-409
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

);

op< 88+:8>
op< 56+:8>

1 op<l12+:8>
1 op< 80+:8>

:op< 8+:8>
1 op<104+:8>

shared/functions/crypto/AESInvSubBytes

// AESInvSubBytes()

//

Doop< 32+:8>
Dop< 0+:8>

// Transformation in the Inverse Cipher that is the inverse of AESSubBytes.

bits(128) AESInvSubBytes(bits(128) op)
// Inverse S-box values

bits(16%16%8) GF2_inv

);

= (

* FEDCBA9876543210
x7d0c2155631469e126d677ba7e042b17<127
x619953833chbebc8b@f52aae4d3bedad<127
xef9cc9939f7ae52d0d4ab519a97f5160<127
x5fec8027591012b131c7078833a8dd1f<127
xf45acd78fecddb9a2079d2c64b3e56fc<127
x1bbel8aa0e62b76189c5291d711af147<127
x6edf751ce837f9e28535ade72274ac96<127
x73e6b4f0cectf297eadc67414111913a<127
x6b8a130103bdafc1020f3fca8fle2cdd<127
x0645b3b80558e4f70ad3bc8c00abd890<127
x849d8da75746155edab9edfd5048706c<127
x92b6655dcc5cadd41698688664F61872<127
x25d18b6d49a25b76b224d92866a12e08<127
x4ec3fad20b954cee3d23c2a632947h54<127
xcbe9dec444438e3487ff2f9h8239e37c<127
xfhd7f3819ea340bf38a53630d56a0952<127

ISESESESE SIS B B RS B G IR RS B S RN oS RN

bits(128) out;

for

i=0to1l5
out<i*8+:8> = GF2_inv<UInt(op<i*8+:8>)#8+:8>;

return out;

shared/functions/crypto/AESMixColumns

// AESMixCoTlumns()

10>
0>
0>
10>
H/
0>
0>
10>
10>
H/
0>
0>
H/
H/
0>
10>

// Transformation in the Cipher that takes all of the columns of the

// State and mixes their data (independently of one another) to

// produce new columns.

bits(128) AESMixColumns(bits (
bits(4+8)
bits(4x8)
bits(4x8)
bits(4x8)

bits(4+8)
bits(4+8)
bits(4+8)
bits(4+8)

for

in3<c«8+

in3<cx8+

) op)

op< 64+:
Toop< 72+:
1 op< 80+:
: op< 88+:

128

: 8 :
8> :
8> :
8> :

ind =
inl
in2
in3

op< 96+:8>
0p<104+:8>
op<112+:8>
op<120+:8>

outo;
outl;
out2;
out3;

c=0to3
out0<c#8+:8>

18>

outl<c#8+:8> =

18>,

out2<c«#8+:8> in@<cx8+:8> EOR

FFmu103(in3<c=8+:8>);

out3<c#8+:8> FFmu103(in@<c=8+:8>) EOR

FFmu102 (in3<c«8+:8>);

return (

op< 32+:8>
op< 40+:8>
op< 48+:8>
op< 56+:8>

T oop<
T oop<
T oop<
T oop<

FFmu102(in@<c=8+:8>) EOR FFmul103(inl<c=8+:8>) EOR

inl<cs

inl<c#8+:8>

0+:8>;
8+:8>;
16+:8>;
24+:8>;

in2<c%8+:8> EOR

in@<c=8+:8> EOR FFmu102(inl<c#8+:8>) EOR FFmul103(in2<c=8+:8>) EOR

EOR FFmul102(in2<c=8+:8>) EOR

8+:8> EOR in2<c#8+:8> EOR

11-410

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

out3<3#8+:8> : out2<3+8+:8> : outl<3+8+:8> : out0<3%8+:8> :

out3<2+8+:8> : out2<2+8+:8> : outl<2#8+:8> : out0<2%8+:8> :

out3<1#8+:8> : out2<1#8+:8> : outl<1lx8+:8> : out@<1l«8+:8> :

out3<0«8+:8> : out2<0«8+:8> : outl<0:8+:8> : out0<0«8+:8>
);

shared/functions/crypto/AESShiftRows
// AESShiftRows ()

// Transformation in the Cipher that processes the State by cyclically
// shifting the last three rows of the State by different offsets.

bits(128) AESShiftRows(bits(128) op)
return (
op< 88+:8> : op< 48+:8> : op< 8+:8> : op< 96+:8> :
op< 56+:8> : op< 16+:8> : op<104+:8> : op< 64+:8> :
op< 24+:8> : op<l12+:8> : op< 72+:8> : op< 32+:8> :
0p<120+:8> : op< 80+:8> : op< 40+:8> : op< 0+:8>
)s

shared/functions/crypto/AESSubBytes
// AESSubBytes()

// Transformation in the Cipher that processes the State using a nonlinear
// byte substitution table (S-box) that operates on each of the State bytes
// independently.

bits(128) AESSubBytes(bits(128) op)
// S-box values
bits(16%16%x8) GF2 = (

FEDCBA9876543210 %/
x16bb54b0012d99416842e6bT0d89a18c<127:0> :
xdf2855cee9871e9h948ed969119818e1<127:0> :
x9e1dc186h95735610ef6034866b53€70<127:0> :
x8a8bbd4b1f74dde8cbb4ablc2e2578ba<127:0> :
x08ae7ab5eaf4566ca%4ed58d6d37c8e7<127:0> :
x79e4959162acd3c25c2406490a3a32e0<127:0> :
xdbOb5edel4b8ee4688902a22dc4f8160<127:0> :
X73195d643d7ea7c41744975fec130ccd<127:0> :
xd2f3ff1021dab6bcf5389d928f40a351<127:0> :
xa89f3c507102194585334d43fhaaefd0<127:0> :
xcf584c4a39becb6aSbblfc20ed00d153<127:0> :
x842fe329h3d63b52a05a6e1b1a2c8309<127:0> :
X75b227ebe28012079a059618c323¢704<127:0> :
x1531d871f1e5a534ccf73f362693fdb7<127:0> :
xc072a49cafa2d4adf04759fa7dc982ca<127:0> :
x76abd7fe2b670130c56f6bf27b777¢63<127:0>

EFEE TSI EE SIS Y
NN U NN A N N N N
\\\\\\\\’\\\\\\\\
[B II C RE RE CS I S I S I S S S E S E S B I)

);
bits(128) out;
for i =0 to 15
out<i=8+:8> = GF2<UInt(op<i*8+:8>)«8+:8>;
return out;

shared/functions/crypto/FFmul02

// FFmu102()
/] =

bits(8) FFmul02(bits(8) b)
bits(256%8) FFmul_02 = (
i FEDCBA9876543210 %/
«Fx/ OXESE7EL1E3EDEFE9EBF5F7F1F3FDFFFIFB<127:0> :
xEx/ @xC5C7C1C3CDCFCOCBD5D7D1D3DDDFDIDB<127:0>
«D+/ OXASA7A1A3ADAFA9ABBS5B7B1B3BDBFBIBB<127:0> :

/4
/4
/‘4
/4

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-411
Non-Confidential

Armv8-R AArch64 Pseudocode

11.2 Shared pseudocode

);

0x858781838D8F898B959791939D9F999B<127
0x656761636D6F696B757771737D7F797B<127
0x454741434D4F494B555751535D5F595B<127
0x252721232D2F292B353731333D3F393B<127
0x050701030D0F090B151711131D1F191B<127
OXFEFCFAF8F6F4F2FOEEECEAEBEGE4E2E0<127
0xDEDCDAD8D6D4D2DOCECCCAC8C6CAC2C0<127
0xBEBCBABBB6B4B2BOAEACAAABAGA4A2A0<127
0x9E9C9A98969492908E8C8A8886848280<127
0x7E7C7A78767472706E6C6A6866646260<127
0x5E5C5A58565452504E4C4A4846444240<127
0x3E3C3A38363432302E2C2A2826242220<127
0x1E1C1A18161412100EQCOA0806040200<127

return FFmu1_02<UInt(b)«8+:8>;

shared/functions/crypto/FFmul03

// FFmu103()

/] ===

bits(8) FFmu103(bits(8) b)
bits(256%8) FFmul_03 = (

);

FEDCBA9876543210
/ 0x1A191C1F16151013020104070EQDO80B<127
/ 0x2A292(C2F26252023323134373E3D383B<127
/ Ox7A797C7F76757073626164676E6D686B<127
</ Ox4A494C4F46454043525154575E5D585B<127
/ 0xDADIDCDFD6D5DAD3C2C1C4C7CECDCECB<127
/ OXEAEOECEFEGESEQE3F2F1F4F7FEFDF8FB<127
/ 0xBABIBCBFB6B5BOB3A2A1A4A7AEADASAB<127
/ 0x8A898C8F86858083929194979E9D989B<127
</ 0x818287848D8EBB88999AIFICI5969390<127
«/ 0
</ 0
/0
/0
</ 0
/0
/0

%

*
t3

xB1B2B7B4BDBEBBBSAIAAAFACASA6A3A0<127
xE1E2E7E4EDEEEBE8FIFAFFFCF5F6F3F0<127
xD1D2D7D4DDDEDBD8CICACFCCC5C6C3C0<127
x414247444DAE4AB48595A5F5C55565350<127
x717277747D7E7B78696A6F6(65666360<127
x212227242D2E2B28393A3F3(C35363330<127
x111217141D1E1B18090A0F0C05060300<127

*

/#
/xFx
/+Ex
/D=
/Cx
/B
/A
/9
/8%
[xT%
/6%
/5%
[xbx
/3%
/23
/x1
/%0x

return FFmu1_03<UInt(b)«8+:8>;

shared/functions/crypto/FFmul09

// FFmu109()

/] ===

bits(8) FFmul09(bits(8) b)
bits(256+8) FFmu1_09 = (

% FEDCBA9876543210

/ 0x464F545D626B70790E071C152A233831<127
/ 0xD6DFC4CDF2FBEQE99IEI78C85BAB3A8AL<127
/ 0x7D746F6659504B42353C272E1118030A<127
/ OXEDE4FFF6C9CODBD2ASACB7BE8188939A<127
/ 0x3039222B141D060F78716A635C554E47<127
/ 0xAOA9IB2BB848DI6IFESEIFAF3CCCSDED7<127
/ 0x0B0219102F263D34434A5158676E757C<127
/ 0x9B928980BFB6ADA4D3DACIC8F7FEESEC<127
</ 0
«/ 0
</ 0
/0
/0
</ 0
/0

+Cx

F
<E
%D
C
B

xAAA3B8B18E879C95E2EBFOFIC6CFD4DD<127
x3A3328211E170C05727B6069565F444D<127
x9198838AB5BCA7AEDIDACBC2FDF4EFE6<127
x0108131A252C373E49405B526D647F76<127
XDCD5CEC7F8F1EAE3949D868FBOBIA2AB<127
x4C455E5768617A73040D161F2029323B<127
xE7EEF5FCC3CAD1D8AFA6BDB48B829990<127

*
*

/
/
/
/
/
/
/
/x
/#
/#
/#
/x
/#
/#
/#
/#

<9
<8
7%
15
#5%
oA
<3
2
<1

¥

10>
0>
10>
H/
0>
0>
0>
10>
H/
0>
0>
10>
10>
H/
0>

H/
H/
0>
0>
10>
10>
0>
0>
0>
10>
H/
0>
10>

0>
0>
10>
H/
0>
0>
0>
10>
H/
0>
0>
0>
10>
H/
0>
10>

11-412

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

/%0x/ 0x777E656C535A41483F362D2418120900<127:0>

);

return FFmu1_09<UInt(b)«8+:8>;

shared/functions/crypto/FFmul0B

// FFmu10B()
// =

bits(8) FFmu1@B(bits(8) b)
bits(256%8) FFmul_0B = (

);

Fu
%Ex
D+

FEDCBA9876543210
0xA3A8B5BEBF849992FBFOEDE6D7DCC1CA<127
0x1318050E3F3429224B405D56676C717A<127
0xD8D3CEC5F4FFE2E9808BI69DACA7BABL<127
0x68637E75444F5259303B262D1C170A01<127
0x555E434879726F640D061B10212A373C<127
OXESEEF3F8C9C2DFD4BDB6ABAG919A878C<127
0x2E2538330209141F767D606B5A514C47<127
0x9E958883B2B9A4AFC6CDDADBEAELFCF7<127
0x545F424978736E650C071A11202B363D<127
OXE4EFF2F9C8C3DED5BCB7AAA1909B868D<127
0x2F2439320308151E777C616A5B504D46<127
0x9F948982B3B8ASAEC7CCD1DAEBEQFDF6<127
OxA2A9B4BFBE859893FAF1ECE7D6DDCACB<127
0x1219040F3E3528234A415C57666D707B<127
0xDID2CFC4F5FEE3E8818A979CADAGBBBO<127
0x69627F74454E5358313A272C1D160B00<127

\\\\\\\\\\\\'\\\\

return FFmul_0B<UInt(b)«8+:8>;

shared/functions/crypto/FFmul0D

// FFmu10D()
// =

bits(8) FFmul1@D(bits(8) b)
bits(256%8) FFmul1_0D = (

);

FEDCBA9876543210
0x979A8D80OA3AEBIB4FFF2ESE8CBCOD1DC<127
0x474A5D50737E69642F2235381B16010C<127
0x2C21363B1815020F44495E53707D6A67<127
0xFCF1E6EBC8C5D2DF94998E83AQADBAB7 <127
OxFAF7EQEDCEC3D4D9929F8885A6ABBCB1<127
0x2A27303D1E130409424F5855767B6C61<127
0x414C5B5675786F622924333E1D10070A<127
0x919C8B86A5A8BFB2FIF4E3EECDCAD7DA<127
0x4D40575A7974636E25283F32111C0B0O6<127
0x9D90878AA9A4B3BEF5F8EFE2C1CCDBD6<127
0xF6FBECE1C2CFD8D59E938489AAA7BOBD<127
0x262B3C31121F08054E4354597A77606D<127
0x202D3A3714190E034845525F7C71666B<127
0xFOFDEAE7C4C9IDED39895828FACA1B6BB<127
0x9B96818CAFA2B5B8F3FEE9E4C7CADDDO<127
0x4B46515C7F726568232E3934171A0D00<127

return FFmul1_0D<UInt(b)«8+:8>;

shared/functions/crypto/FFmul0E

// FFmu1QE()
// =

bits(8) FFmul@E(bits(8) b)
bits(256%8) FFmul_0E = (

e

FEDCBA9876543210

10>
H/
0>
0>
0>
10>
H/
0>
0>
10>
10>
H/
0>
0>
H/
10>

10>
H/
10>
0>
10>
10>
H/
0>
0>
10>
H/
H/
0>
0>
H/
10>

+/

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-413

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

0x8D83919FB5BBA9A7FDF3E1EFC5CBDID7<127:0> :
0x6D63717F555B49471D13010F252B3937<127:0> :
0x56584A446E60727C26283A341E10020C<127:0> :
0xB6BBAAA48E80929CCO6CBDADAFEFOE2EC<127:0> :
0x202E3C321816040A505E4C426866747A<127:0> :
0xCOCEDCD2F8F6E4EABOBEACA28886949A<127:0> :
OxFBF5E7E9C3CDDFD18B859799B3BDAFAL1<127:0> :
0x1B150709232D3F316B657779535D4F41<127:0> :
0xCCC2DODEFAFAESE6BCB2AOAE848A9896<127:0> :
0x2C22303E141A08065C52404E646A7876<127:0> :
0x17190B052F21333D67697B755F51434D<127:0> :
OxF7F9EBESCFC1D3DD87899B95BFB1A3AD<127:0> :
0x616F7D735957454B111F0D032927353B<127:0> :
0x818F9D93B9B7ASABF1FFEDE3CIC7D5DB<127:0> :
0xBAB4A6A8828CIE9OCACAD6DSF2FCEEE0<127:0>
0x5A544648626C7E702A243638121COE00<127:0>

);
return FFmul_0E<UInt(b)«8+:8>;

shared/functions/crypto/HaveAESExt

// HaveAESExt()

/] ============

// TRUE if AES cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveAESExt()
return boolean IMPLEMENTATION_DEFINED "Has AES Crypto instructions";

shared/functions/crypto/HaveBit128PMULLEXxt

// HaveBit128PMULLExt()
/!
// TRUE if 128 bit form of PMULL instructions support is implemented,
// FALSE otherwise.

boolean HaveBit128PMULLExt()
return boolean IMPLEMENTATION_DEFINED "Has 128-bit form of PMULL instructions";
shared/functions/crypto/HaveSHA1EXxt
// HaveSHA1Ext()

// TRUE if SHAL cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA1Ext()
return boolean IMPLEMENTATION_DEFINED "Has SHAl Crypto instructions";

shared/functions/crypto/HaveSHA256 Ext

// HaveSHA256Ext()
/] ==
// TRUE if SHA256 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA256Ext()
return boolean IMPLEMENTATION_DEFINED "Has SHA256 Crypto instructions";

shared/functions/crypto/HaveSHA3EXxt
// HaveSHA3Ext()

// TRUE if SHA3 cryptographic instructions support is implemented,

11-414 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// and when SHAL and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA3Ext()
if !HasArchVersion(ARMv8p2) || !(HaveSHALExt() && HaveSHA256Ext()) then
return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SHA3 Crypto instructions";

shared/functions/crypto/HaveSHA512Ext

// HaveSHAS12Ext()

/] ===mm==mmmme=e=

// TRUE if SHA512 cryptographic instructions support is implemented,

// and when SHAL and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA512Ext()
if !HasArchVersion(ARMv8p2) || !(HaveSHALExt() && HaveSHA256Ext()) then
return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SHA512 Crypto instructions";

shared/functions/crypto/HaveSM3Ext
// HaveSM3Ext()

// TRUE if SM3 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSM3Ext()
if !HasArchVersion(ARMv8p2) then
return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SM3 Crypto instructions";

shared/functions/crypto/HaveSM4Ext

// HaveSM4Ext()

Y/ ——

// TRUE if SM4 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSM4Ext()
if !HasArchVersion(ARMv8p2) then
return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SM4 Crypto instructions";

shared/functions/crypto/ROL

// ROLQ)
/] =====

bits(N) ROL(bits(N) x, integer shift)
assert shift >= 0 & shift <= N;
if (shift == 0) then
return x;
return ROR(x, N-shift);

shared/functions/crypto/SHA256hash

// SHA256hash()
/R

bits(128) SHA256hash(bits (128) X, bits(128) Y, bits(128) W, boolean partl)
bits(32) chs, maj, t;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-415
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

for e = 0 to 3
chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);
t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
X<127:96> = t + X<127:96>;
Y<127:96> = t + SHAhashSIGMAQ(X<31:0>) + maj;
<Y, X> = ROL(Y : X, 32);
return (if partl then X else Y);

shared/functions/crypto/SHAchoose

// SHAchoose()
// mmmmmmn

bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
return (((y EOR z) AND x) EOR z);

shared/functions/crypto/SHAhashSIGMAQ

// SHAhashSIGMAQ()
J/

bits(32) SHAhashSIGMA@(bits(32) x)
return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

shared/functions/crypto/SHAhashSIGMA1

// SHAhashSIGMAL()
/] ===mmmm=mmmn=s

bits(32) SHAhashSIGMALl(bits(32) x)
return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

shared/functions/crypto/SHAmajority

// SHAmajority()
[/ ——

bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
return ((x AND y) OR ((x OR y) AND z));

shared/functions/crypto/SHAparity

// SHAparity()
/] ==mmmm====s

bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
return (x EOR y EOR z);

shared/functions/crypto/Sbox

// Shox()
/] ======
// Used in SM4E crypto instruction

bits(8) Shox(bits(8) sboxin)

bits(8) sboxout;

bits(2048) sboxstring =
0xd690e9feccel3dbh716b614c228th2c052b679a762abe04c3aa441326498606999c42501491ef987a33540b43edcfac62e4b31ca
9c908e89580df94fa758f3fa64707a7fcf37317ba83593c19e6854fa8686b81b27164da8hf8eb0f4b70569d351e240e5e6358d1a2
25227¢3b01217887d40046579fd327524c3602e7a0c4c89%eeabf8ad240c738b5a3f7f2cef96115ale@ae5dad9b341a55ad933230f
58chle31df6e22e8266ca60c02923ab0d534e6fd5db3745defd8e2f03ff6a726d6c5h518d1bat92bbddbc7f11d95¢411f105ad80a
c13188a5cd7bbd2d74d012b8e5b4b08969974a0c96777e65b9f109c56ec68418T07dec3adc4d2079ee5f3ed7ch3948<2047:0>;

11-416 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shoxout = shoxstring<(255-UInt(sboxin))«8+7:(255-UInt(shoxin))«8>;
return sbhoxout;

shared/functions/exclusive/ClearExclusiveByAddress

// Clear the global Exclusives monitors for all PEs EXCEPT processorid if they

// record any part of the physical address region of size bytes starting at paddress.
// It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
// is also cleared if it records any part of the address region.
ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);
shared/functions/exclusive/ClearExclusivelLocal

// Clear the Tocal Exclusives monitor for the specified processorid.
ClearExclusivelocal(integer processorid);

shared/functions/exclusive/ClearExclusiveMonitors

// ClearExclusiveMonitors()

//

// Clear the Tocal Exclusives monitor for the executing PE.

ClearExclusiveMonitors()
ClearExclusivelocal(ProcessorID());

shared/functions/exclusive/ExclusiveMonitorsStatus

// Returns '@' to indicate success if the last memory write by this PE was to

// the same physical address region endorsed by ExclusiveMonitorsPass().

// Returns 'l' to indicate failure if address translation resulted in a different
// physical address.

bit ExclusiveMonitorsStatus();

shared/functions/exclusive/lsExclusiveGlobal

// Return TRUE if the global Exclusives monitor for processorid includes all of
// the physical address region of size bytes starting at paddress.

boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);
shared/functions/exclusive/lsExclusivelLocal

// Return TRUE if the local Exclusives monitor for processorid includes all of

// the physical address region of size bytes starting at paddress.

boolean IsExclusivelLocal(FullAddress paddress, integer processorid, integer size);
shared/functions/exclusive/MarkExclusiveGlobal

// Record the physical address region of size bytes starting at paddress in

// the global Exclusives monitor for processorid.

MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);
shared/functions/exclusive/MarkExclusiveLocal

// Record the physical address region of size bytes starting at paddress in

// the Tocal Exclusives monitor for processorid.
MarkExcTusiveLocal(FullAddress paddress, integer processorid, integer size);

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-417
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/exclusive/ProcessoriD

// Return the ID of the currently executing PE.
integer ProcessorID();

shared/functions/extension/AArch64.HaveHPDEXxt

// AArch64.HaveHPDExt()
//

boolean AArch64.HaveHPDExt()
return HasArchVersion(ARMv8pl);

shared/functions/extension/Have52BitPAExt
// Have52BitPAExt()
/] ================
// Returns TRUE if Large Physical Address extension
// support is implemented and FALSE otherwise.
boolean Have52BitPAExt()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit PA/IPA support";
shared/functions/extension/Have52BitVAExt
// Have52BitVAExt()
Y ——
// Returns TRUE if Large Virtual Address extension
// support is implemented and FALSE otherwise.
boolean Have52BitVAExt()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit VA support";
shared/functions/extension/HaveAtomicExt

// HaveAtomicExt()
/] =======m====a==

boolean HaveAtomicExt()
return HasArchVersion(ARMv8pl);
shared/functions/extension/HaveBlockBBM
// HaveBTockBBM()
Y ——
// Returns TRUE if support for changing block size without requring break-before-make is implemented.
boolean HaveBlockBBM()
return HasArchVersion(ARMv8p4);

shared/functions/extension/[HaveCommonNotPrivateTransExt

// HaveCommonNotPrivateTransExt()

//

boolean HaveCommonNotPrivateTransExt()
return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveDGHEXxt
// HaveDGHExt ()

/A
// Returns TRUE if Data Gathering Hint instruction support is implemented, and FALSE otherwise.

11-418 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

booTlean HaveDGHExt()
return boolean IMPLEMENTATION_DEFINED "Has AArch64 DGH extension";
shared/functions/extension/HaveDITExt

// HaveDITExt()
/] ============

boolean HaveDITExt()
return HasArchVersion(ARMv8p4);
shared/functions/extension/HaveDOTPEXxt
// HaveDOTPExt()
// Returns TRUE if Dot Product feature support is implemented, and FALSE otherwise.
boolean HaveDOTPExt()
return HasArchVersion(ARMv8p4) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has
Dot Product extension");
shared/functions/extension/HaveDoPD

// HaveDoPD()

// Returns TRUE if Debug Over Power Down extension
// support is implemented and FALSE otherwise.

boolean HaveDoPD()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has DoPD extension";
shared/functions/extension/HaveDoubleLock
// HaveDoublelLock()
// Returns TRUE if support for the 0S Double Lock is implemented.
boolean HaveDoubleLock()
return !HasArchVersion(ARMv8p4) || boolean IMPLEMENTATION_DEFINED "OS Double Lock is implemented";
shared/functions/extension/HaveEOPDEXxt
// HaveE@PDExt ()
Y/ ——
// Returns TRUE if support for constant fault times for unprivileged accesses
// to the memory map is implemented.
boolean HaveEQPDExt()
return HasArchVersion(ARMv8p5);
shared/functions/extension/HaveEL1VMSAEXxt
// HaveEL1VMSAExt()

// Returns TRUE if VMSA is supported at stagel EL1&0 translation regime, FALSE otherwise.

boolean HaveEL1VMSAExt()
return ID_AA64MMFRO_EL1.MSA == '1111' && ID_AAG64MMFRO_EL1.MSA_frac == '0010';

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-419
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/extension/HaveExtendedCacheSets

// HaveExtendedCacheSets()
/!

boolean HaveExtendedCacheSets()
return HasArchVersion(ARMv8p3);
shared/functions/extension/HaveExtendedECDebugEvents

// HaveExtendedECDebugEvents()
/!

boolean HaveExtendedECDebugEvents()
return HasArchVersion(ARMv8p2);
shared/functions/extension/HaveExtendedExecuteNeverExt

// HaveExtendedExecuteNeverExt()

/!

boolean HaveExtendedExecuteNeverExt()
return HasArchVersion(ARMv8p2);
shared/functions/extension/HaveFCADDEXxt

// HaveFCADDExt ()
/] ==m=mmmm====ms

boolean HaveFCADDExt()
return HasArchVersion(ARMv8p3);
shared/functions/extension/HaveFJCVTZSExt

// HaveFJCVTZSExt()
/] =====m===m=====

boolean HaveFJCVTZSExt()
return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext

// HaveFP16MuTNoRoundingToFP32Ext()
//
// Returns TRUE if has FP16 multiply with no intermediate rounding accumulate to FP32 instructions,
// and FALSE otherwise

boolean HaveFP16MulNoRoundingToFP32Ext()
if !HaveFP16Ext() then return FALSE;
if HasArchVersion(ARMv8p4) then return TRUE;
return (HasArchVersion(ARMv8p2) &&
boolean IMPLEMENTATION_DEFINED "Has accumulate FP16 product into FP32 extension");

shared/functions/extension/HaveFlagManipulateExt
// HaveFlagManipulateExt()

//

// Returns TRUE if flag manipulate instructions are implemented.

boolean HaveFlagManipulateExt()
return HasArchVersion(ARMv8p4);

11-420 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/extension/HaveHPMDEXxt

// HaveHPMDExt ()
/A ——

boolean HaveHPMDExt ()
return HasArchVersion(ARMv8pl);
shared/functions/extension/HavelDSExt
// HaveIDSExt()
Y/ ——
// Returns TRUE if ID register handling feature is implemented.
boolean HaveIDSExt()
return HasArchVersion(ARMv8p4);

shared/functions/extension/HavelESB

// HaveIESB()
// =

boolean HaveIESB()
return (HaveRASExt() &&
boolean IMPLEMENTATION_DEFINED "Has Implicit Error Synchronization Barrier");
shared/functions/extension/HaveLSE2Ext
// HavelSE2Ext()
// Returns TRUE if LSE2 is implemented, and FALSE otherwise.
boolean HavelSE2Ext()
return HasArchVersion(ARMv8p4);
shared/functions/extension/HaveNoninvasiveDebugAuth
// HaveNoninvasiveDebugAuth()

//

// Returns TRUE if the Non-invasive debug controls are implemented.

booTlean HaveNoninvasiveDebugAuth()
return !HasArchVersion(ARMv8p4);
shared/functions/extension/HavePANExt

// HavePANExt()
[/ —

boolean HavePANExt()
return HasArchVersion(ARMv8pl);
shared/functions/extension/HavePageBasedHardwareAttributes

// HavePageBasedHardwareAttributes()
/!

boolean HavePageBasedHardwareAttributes()
return HasArchVersion(ARMv8p2);

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-421
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/extension/HavePrivATExt

// HavePrivATExt()
/] ==m=mmmmmmmnes

boolean HavePrivATExt()
return HasArchVersion(ARMv8p2);
shared/functions/extension/HaveQRDMLAHEXxt

// HaveQRDMLAHExt()
/] ===mmmmmmm======

boolean HaveQRDMLAHExt()
return HasArchVersion(ARMv8pl);

boolean HaveAccessFlagUpdateExt()
return HasArchVersion(ARMv8pl);

boolean HaveDirtyBitModifierkxt()
return HasArchVersion(ARMv8pl);
shared/functions/extension/HaveRASExt

// HaveRASExt()
/] ============

boolean HaveRASExt()
return (HasArchVersion(ARMv8p2) ||
boolean IMPLEMENTATION_DEFINED "Has RAS extension");
shared/functions/extension/HaveSBExt
// HaveSBExt()
// Returns TRUE if support for SB is implemented, and FALSE otherwise.
boolean HaveSBExt()
return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SB extension";
shared/functions/extension/HaveSSBSExt
// HaveSSBSExt()
// Returns TRUE if support for SSBS is implemented, and FALSE otherwise.
boolean HaveSSBSExt()
return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SSBS extension";
shared/functions/extension/HaveSecureEL2Ext
// HaveSecureEL2Ext()
Y —
// Returns TRUE if Secure EL2 is implemented.
boolean HaveSecureEL2Ext()
return HasArchVersion(ARMv8p4);
shared/functions/extension/HaveSecureExtDebugView
// HaveSecureExtDebugView()

//

// Returns TRUE if support for Secure and Non-secure views of debug peripherals is implemented.

11-422 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

boolean HaveSecureExtDebugView()
return HasArchVersion(ARMv8p4);
shared/functions/extension/HaveSelfHostedTrace

// HaveSelfHostedTrace()
//

boolean HaveSelfHostedTrace()
return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSmallPageTbIExt
// HaveSmallPageTh1Ext()

/!
// Returns TRUE if Small Page Table Support is implemented.

boolean HaveSmallPageTh1Ext()
return HasArchVersion(ARMv8p4) && boolean IMPLEMENTATION_DEFINED "Has Small Page Table extension";

shared/functions/extension/HaveStage2MemAttrControl

// HaveStage2MemAttrControl()
/!
// Returns TRUE if support for Stage2 control of memory types and cacheability attributes is
implemented.

boolean HaveStage2MemAttrControl()
return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveTraceExt
// HaveTraceExt()
/] ==============
// Returns TRUE if Trace functionality as described by the Trace Architecture
// is implemented.
boolean HaveTraceExt()
return boolean IMPLEMENTATION_DEFINED "Has Trace Architecture functionality";
shared/functions/extension/HaveUAOEXxt

// HaveUAOExt()
/A

boolean HaveUAOExt()
return HasArchVersion(ARMv8p2);
shared/functions/extension/HaveV82Debug

// HaveV82Debug()
/[s=============

boolean HaveV82Debug()
return HasArchVersion(ARMv8p2);

shared/functions/extension/InsertlESBBeforeException

// If SCTLR_ELx.IESB is 1 when an exception is generated to ELx, any pending Unrecoverable
// SError interrupt must be taken before executing any instructions in the exception handler.
// However, this can be before the branch to the exception handler is made.

boolean InsertIESBBeforeException(bits(2) el);

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-423
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/float/fixedtofp/FixedToFP

// FixedToFP()
/] =

// Convert M-bit fixed point OP with FBITS fractional bits to

// N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

assert N IN {16,32,64};

assert M IN {16,32,64};

bits(N) result;

assert fbits >= 0;

assert rounding != FPRounding_0DD;

// Correct signed-ness
int_operand = Int(op, unsigned);

// Scale by fractional bits and generate a real value
real_operand = Real(int_operand) / 2.0Afbits;

if real_operand == 0.0 then
result = FPZero('0");
else
result = FPRound(real_operand, fpcr, rounding);

return result;

shared/functions/float/fpabs/FPAbs

// FPAbs()
/] ===m===

bits(N) FPAbs(bits(N) op)
assert N IN {16,32,64};

return '0' : op<N-2:0>;

shared/functions/float/fpadd/FPAdd

// FPAdd()
Jy—

bits(N) FPAdd(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};

rounding = FPRoundingMode(fpcr);
(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpcr);

if !done then

infl = (typel == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);

if infl && inf2 && signl == NOT(sign2) then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

elsif (infl && signl == '0") || (inf2 && sign2 == 'Q') then

result = FPInfinity('0');

elsif (infl & signl == '1') || (inf2 && sign2 == '1') then

result = FPInfinity('1l");

elsif zerol && zero2 && signl == sign2 then
result = FPZero(signl);

else
result_value = valuel + value2;

11-424

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if rounding == FPRounding_NEGINF then '1l' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr, rounding);

return result;

shared/functions/float/fpcommon/lsDenormalizedValue

// IsDenormalizedValue()
/!
// Checks either a single-precision or a double-precision floating-point
// value is denormalized.

boolean IsDenormalizedValue(bits(N) fpval)
assert N IN {32,64};

case N of
when 32
exp32 = fpval<30:23>;
frac32 = fpval<22:0>;
isDenormal = IsZero(exp32) && !IsZero(frac32);
when 64
exp64 = fpval<62:52>;
frac64 = fpval<51:0>;

isDenormal = IsZero(exp64) && !IsZero(frac64);

return isDenormal;

shared/functions/float/fpcompare/FPCompare

// FPCompare()
/] ===mm======

bits(4) FPCompare(bits(N) opl, bits(N) op2, boolean signal_nans, FPCRType fpcr)

assert N IN {16,32,64};

(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
opl_nan = typel IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if opl_nan || op2_nan then
result = '0011';
if typel == FPType_SNaN || type2 == FPType_SNaN || signal_nans then
FPProcessException(FPExc_InvalidOp, fpcr);
else
// A11 non-NaN cases can be evaluated on the values produced by FPUnpack()
if valuel == value2 then
result = '0110';
elsif valuel < value2 then
result = '1000';
else // valuel > value2
result = '0010';

return result;

shared/functions/float/fpcompareeq/FPCompareEQ

// FPCompareEQ()
/] =====m=======

boolean FPCompareEQ(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-425
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
opl_nan = typel IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if opl_nan || op2_nan then
result = FALSE;
if typel == FPType_SNaN || type2 == FPType_SNaN then
FPProcesskException(FPExc_InvalidOp, fpcr);
else
// A11 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel == value2);

return result;

shared/functions/float/fpcomparege/[FPCompareGE

// FPCompareGE()
/] ====mmmmmmem=

boolean FPCompareGE(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};

(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
opl_nan = typel IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if opl_nan || op2_nan then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpcr);
else
// A11 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel >= value2);

return result;

shared/functions/float/fpcomparegt/FPCompareGT

// FPCompareGT()
// mmmmemmmmnme

boolean FPCompareGT(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};

(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
opl_nan = typel IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if opl_nan || op2_nan then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpcr);
else
// A11 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel > value2);

return result;

shared/functions/float/fpconvert/FPConvert

// FPConvert()
/] mmmmmmmmun=

// Convert floating point OP with N-bit precision to M-bit precision,
// with rounding controlled by ROUNDING.

11-426 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

// This is used by the FP-to-FP conversion instructions and so for
// half-precision data ignores FZ16, but observes AHP.

bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)

assert M IN {16,32,64};
assert N IN {16,32,64};
bits(M) result;

// Unpack floating-point operand optionally with flush-to-zero.
(fptype,sign,value) = FPUnpackCV(op, fpcr);
alt_hp = (M == 16) && (fpcr.AHP == '1');

if fptype == FPType_SNaN || fptype == FPType_QNaN then
if alt_hp then
result = FPZero(sign);
elsif fpcr.DN == '1' then
result = FPDefaultNaN();
else
result = FPConvertNaN(op);
if fptype == FPType_SNaN || alt_hp then
FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Infinity then
if alt_hp then
result = sign:Ones(M-1);
FPProcessException(FPExc_InvalidOp, fpcr);
else
result = FPInfinity(sign);
elsif fptype == FPType_Zero then
result = FPZero(sign);
else
result = FPRoundCV(value, fpcr, rounding);

return result;

// FPConvert()
// =

bits(M) FPConvert(bits(N) op, FPCRType fpcr)
return FPConvert(op, fpcr, FPRoundingMode(fpcr));
shared/functions/float/fpconvertnan/FPConvertNaN
// FPConvertNaN()
// Converts a NaN of one floating-point type to another
bits(M) FPConvertNaN(bits(N) op)
assert N IN {16,32,64};
assert M IN {16,32,64};
bits(M) result;
bits(51) frac;
sign = op<N-1>;
// Unpack payload from input NaN
case N of
when 64 frac = op<50:0>;

when 32 frac = op<21:0>:Zeros(29);
when 16 frac = op<8:0>:Zeros(42);

// Repack payload into output NaN, while
// converting an SNaN to a QNaN.
case M of
when 64 result = sign:Ones(M-52):frac;
when 32 result = sign:Ones(M-23):frac<50:29>;

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

1D090320 Non-Confidential

11-427

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

when 16 result = sign:Ones(M-10):frac<50:42>;

return result;

shared/functions/float/fpcrtype/FPCRType

type FPCRType;

shared/functions/float/fpdecoderm/FPDecodeRM

// FPDecodeRM()
/] ===mm=m==m==

// Decode most common AArch32 floating-point rounding encoding.
FPRounding FPDecodeRM(bits(2) rm)

case rm of
when '00' result = FPRounding_TIEAWAY; // A
when '01' result = FPRounding_TIEEVEN; // N
when '10' result = FPRounding_POSINF; // P
when '11' result = FPRounding_NEGINF; // M

return result;

shared/functions/float/fpdecoderounding/FPDecodeRounding

// FPDecodeRounding()
/] ====m=mmmmmmmmec=s

// Decode floating-point rounding mode and common AArch64 encoding.

FPRounding FPDecodeRounding(bits(2) rmode)
case rmode of
when '00' return FPRounding_TIEEVEN; // N
when '01' return FPRounding_POSINF; // P
when '10' return FPRounding_NEGINF; // M
when '11"' return FPRounding_ZERO; /] Z

shared/functions/float/fpdefaulthnan/FPDefaultNaN

// FPDefaultNaN()
/] ====m==m=me===

bits(N) FPDefaultNaN()

assert N IN {16,32,64};

constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);

sign = '0';

bits(E) exp Ones(E);
bits(F) frac = '1':Zeros(F-1);

return sign : exp : frac;

shared/functions/float/fpdiv/IFPDiv

// FPDiv()
J/——

bits(N) FPDiv(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};

11-428 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpcr);

if !done then
infl = (typel == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero);
zero2 = (type2 == FPType_Zero);
invalidop = (infl && inf2) || (zerol && zero2);
if invalidop then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);
elsif infl || zero2 then
result = FPInfinity(signl EOR sign2);
if linfl then FPProcessException(FPExc_DivideByZero, fpcr);
elsif zerol || inf2 then
result = FPZero(signl EOR sign2);
else
result = FPRound(valuel/value2, fpcr);

return result;

shared/functions/float/fpexc/FPExc

enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

shared/functions/float/fpinfinity/FPInfinity

// FPInfinity()
[/

bits(N) FPInfinity(bit sign)

assert N IN {16,32,64};

constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);

bits(E) exp = Ones(E);

bits(F) frac = Zeros(F);

return sign : exp : frac;

shared/functions/float/fpmax/FPMax

// FPMax()
/] =======

bits(N) FPMax(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpcr);
if !done then
if valuel > value2 then
(fptype,sign,value) = (typel,signl,valuel);
else
(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPType_Infinity then
result = FPInfinity(sign);
elsif fptype == FPType_Zero then
sign = signl AND sign2; // Use most positive sign
result = FPZero(sign);
else
// The use of FPRound() covers the case where there is a trapped underflow exception

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// for a denormalized number even though the result is exact.
result = FPRound(value, fpcr);

return result;

shared/functions/float/fpmaxnormal/FPMaxNormal

// FPMaxNormal()
/] ==mmmmmmmm=e=

bits(N) FPMaxNormal(bit sign)

assert N IN {16,32,64};

constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);

exp = Ones(E-1):'0';

frac = Ones(F);

return sign : exp : frac;

shared/functions/float/fpmaxnum/FPMaxNum

// FPMaxNum()
/] ———

bits(N) FPMaxNum(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(typel,-,-) = FPUnpack(opl, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

// treat a single quiet-NaN as -Infinity

if typel == FPType_QNaN && type2 != FPType_QNaN then
opl = FPInfinity('1");

elsif typel != FPType_QNaN && type2 == FPType_QNaN then
op2 = FPInfinity('1");

result = FPMax(opl, op2, fpcr);

return result;

shared/functions/float/fpmin/FPMin

// FPMin()
J/—

bits(N) FPMin(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpcr);
if !done then
if valuel < value2 then
(fptype,sign,value) = (typel,signl,valuel);
else
(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPType_Infinity then
result = FPInfinity(sign);
elsif fptype == FPType_Zero then
sign = signl OR sign2; // Use most negative sign
result = FPZero(sign);
else
// The use of FPRound() covers the case where there is a trapped underflow exception
// for a denormalized number even though the result is exact.

11-430 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

result = FPRound(value, fpcr);

return result;

shared/functions/float/fpminnum/FPMinNum

// FPMinNum()
// =

bits(N) FPMinNum(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(typel,-,-) = FPUnpack(opl, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

// Treat a single quiet-NaN as +Infinity

if typel == FPType_QNaN && type2 != FPType_QNaN then

opl = FPInfinity('0");

elsif typel 1= FPType_QNaN && typez == FPType_QNaN then

op2 = FPInfinity('0");
result = FPMin(opl, op2, fpcr);

return result;

shared/functions/float/fpmul/FPMul

// FPMuT()
Jy—

bits(N) FPMul(bits(N) opl, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};

(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpcr);

if !done then
infl = (typel == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero);
zero2 = (type2 == FPType_Zero);
invalidop = (infl & zero2) || (zerol && inf2)
if invalidop then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);
elsif infl || inf2 then
result = FPInfinity(signl EOR sign2);
elsif zerol || zero2 then
result = FPZero(signl EOR sign2);
else
result = FPRound(valuelxvalue2, fpcr);

return result;

shared/functions/float/fpmuladd/FPMulAdd

// FPMu1Add()
/] mmmmmmmnn
//

// Calculates addend + oplxop2 with a single rounding. The 'fpcr' argument

// supplies the FPCR control bits.

bits(N) FPMulAdd(bits(N) addend, bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};

rounding = FPRoundingMode(fpcr);

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-431

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

(typeA,signA,valueA) = FPUnpack(addend, fpcr);
(typel,signl,valuel) = FPUnpack(opl, fpcr);

(type2,sign2,value2) = FPUnpack(op2, fpcr);

infl = (typel == FPType_Infinity); zerol = (typel == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

(done, result) = FPProcessNaNs3(typeA, typel, type2,
addend, opl, op2, fpcr);

if typeA == FPType_QNaN && ((infl && zero2) || (zerol && inf2)) then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an
// Invalid Operation.

signP = signl EOR sign2;

infP infl || inf2;

zeroP = zerol || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero
// by infinity and additions of opposite-signed infinities.
invalidop = (infl && zero2) || (zerol && inf2) || (infA && infP && signA != signP)

if invalidop then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);
// Other cases involving infinities produce an infinity of the same sign.
elsif (infA & signA == '0') || (infP && signP == '0') then
result = FPInfinity('0');
elsif (infA & signA == '1") || (infP && signP == '1') then
result = FPInfinity('1');

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA & zeroP & signA == signP then

result = FPZero(signA);

// Otherwise calculate numerical result and round qt.
else
result_value = valueA + (valuel * value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if rounding == FPRounding_NEGINF then 'l' else '0Q';
result = FPZero(result_sign);
else
result = FPRound(result_value, fpcr);

return result;

shared/functions/float/fpmuladdh/FPMulAddH
// FPMulAddH()
// Calculates addend + oplwop2.

bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) opl, bits(N DIV 2) op2, FPCRType fpcr)
assert N IN {32,64};
rounding = FPRoundingMode(fpcr);
(typeA,signA,valueA) = FPUnpack(addend, fpcr);
(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
infl = (typel == FPType_Infinity); zerol = (typel == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
(done, result) = FPProcessNaNs3H(typeA, typel, type2, addend, opl, op2, fpcr);

11-432 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if typeA == FPType_QNaN && ((infl && zero2) || (zerol & inf2)) then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

if !done then

infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an
// Invalid Operation.

signP = signl EOR sign2;

infP = infl || inf2;

zeroP = zerol || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
// additions of opposite-signed infinities.
invalidop = (infl && zero2) || (zerol && inf2) || (infA && infP && signA != signP)

if invalidop then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA & signA == '0") || (infP && signP == 'Q') then

result = FPInfinity('0');
elsif (infA & signA == '1"') || (infP && signP == '1') then

result = FPInfinity('1l");

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA & zeroP && signA == signP then

result = FPZero(signA);

// Otherwise calculate numerical result and round it.
else
result_value = valueA + (valuel x value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);
else
result = FPRound(result_value, fpcr);

return result;

shared/functions/float/fpmuladdh/FPProcessNaNs3H

// FPProcessNaNs3H()

(boolean, bits(N)) FPProcessNaNs3H(FPType typel, FPType type2, FPType type3,

bits(N) opl, bits(N DIV 2) op2, bits(N DIV 2) op3,
FPCRType fpcr)

assert N IN {32,64};

bits(N) result;
if typel == FPType_SNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpcr);

elsif type2 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));

elsif type3 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));

elsif typel == FPType_QNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpcr);

elsif type2 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));

elsif type3 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-433
Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

else
done = FALSE; result = Zeros(); // 'Don't care' result

return (done, result);

shared/functions/float/fpmulx/FPMulX

// FPMu1X()
/] mmmmmmmm

bits(N) FPMulX(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};

bits(N) result;

(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpcr);
if !done then

infl = (typel == FPType_Infinity);

inf2 = (type2 == FPType_Infinity);

zerol = (typel == FPType_Zero);

zero2 = (type2 == FPType_Zero);

if (infl && zero2) || (zerol && inf2) then
result = FPTwo(signl EOR sign2)
elsif infl || inf2 then
result = FPInfinity(signl EOR sign2);
elsif zerol || zero2 then
result = FPZero(signl EOR sign2);
else
result = FPRound(valuelxvalue2, fpcr);

return result;

shared/functions/float/fpneg/FPNeg

// FPNeg()
Jy—

bits(N) FPNeg(bits(N) op)
assert N IN {16,32,64};

return NOT(op<N-1>) : op<N-2:0>;

shared/functions/float/fponepointfive/FPOnePointFive

// FPOnePointFive()
/] ================

bits(N) FPOnePointFive(bit sign)

assert N IN {16,32,64};

constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);

exp = '0':Ones(E-1);

frac = '1l':Zeros(F-1);

result = sign : exp : frac;

return result;

11-434 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode

shared/functions/float/fpprocessexception/FPProcessException

// FPProcessException()
/!
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

FPProcessException(FPExc exception, FPCRType fpcr)

// Determine the cumulative exception bit number
case exception of

when FPExc_InvalidOp cumul = 0;
when FPExc_DivideByZero cumul = 1;
when FPExc_Overflow cumul = 2;
when FPExc_Underflow cumul = 3;
when FPExc_Inexact cumul = 4;
when FPExc_InputDenorm cumul = 7;

enable = cumul + 8;
if fpcr<enable> == '1' then
// Trapping of the exception enabled.

11.2 Shared pseudocode

// It is IMPLEMENTATION DEFINED whether the enable bit may be set at all, and
// if so then how exceptions may be accumulated before calling FPTrappedException()

IMPLEMENTATION_DEFINED "floating-point trap handling";
else

// Set the cumulative exception bit

FPSR<cumul> = '1';

return;

shared/functions/float/fpprocessnan/FPProcessNaN

// FPProcessNaN()
/] =mm=mmmmmme==s

bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr)

assert N IN {16,32,64};
assert fptype IN {FPType_QNaN, FPType_SNaN};

case N of
when 16 topfrac 9;
when 32 topfrac = 22;
when 64 topfrac = 51;

result = op;

if fptype == FPType_SNaN then
result<topfrac> = '1';
FPProcessException(FPExc_InvalidOp, fpcr);

if fpcr.DN == '1' then // DefaultNaN requested
result = FPDefaultNaN();

return result;

shared/functions/float/fpprocessnans/FPProcessNaNs

// FPProcessNaNs()

/] ===============

/!

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

/!

// The 'fpcr' argument supplies FPCR control bits. Status information is

// updated directly in the FPSR where appropriate.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

11-435

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

(boolean, bits(N)) FPProcessNaNs(FPType typel, FPType type2,
bits(N) opl, bits(N) op2,
FPCRType fpcr)
assert N IN {16,32,64};
if typel == FPType_SNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpcr);
elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
elsif typel == FPType_QNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpcr);
elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
else
done = FALSE; result = Zeros(); // 'Don't care' result

return (done, result);

shared/functions/float/fpprocessnans3/FPProcessNaNs3

// FPProcessNaNs3()

// The boolean part of the return value says whether a NaN has been found and

// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.

/!

// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs3(FPType typel, FPType type2, FPType type3,

bits(N) opl, bits(N) op2, bits(N) op3,
FPCRType fpcr)
assert N IN {16,32,64};

if typel == FPType_SNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpcr);
elsif type2 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
elsif type3 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
elsif typel == FPType_QNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpcr);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
elsif type3 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
else

done = FALSE; result = Zeros(); // 'Don't care' result

return (done, result);

shared/functions/float/fprecipestimate/FPRecipEstimate

// FPRecipEstimate()
/] =m=mmmmmmmmmenmes

bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)

assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(operand, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, operand, fpcr);
elsif fptype == FPType_Infinity then
result = FPZero(sign);
elsif fptype == FPType_Zero then

11-436

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

result = FPInfinity(sign);
FPProcessException(FPExc_DivideByZero, fpcr);
elsif (
(N == 16 & Abs(value) < 2.0A-16) ||
(N == 32 && Abs(value) < 2.0A-128) ||
(N == 64 && Abs(value) < 2.0A-1024)
) then
case FPRoundingMode(fpcr) of
when FPRounding_TIEEVEN
overflow_to_inf = TRUE;
when FPRounding_POSINF

overflow_to_inf = (sign == '0');
when FPRounding_NEGINF
overflow_to_inf = (sign == '1');

when FPRounding_ZERO

overflow_to_inf = FALSE;
result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
FPProcessException(FPExc_Overflow, fpcr);
FPProcessException(FPExc_Inexact, fpcr);

elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' & N == 16))
& (

(N == 16 && Abs(value) >= 2.0A14) ||

(N == 32 && Abs(value) >= 2.0A126) ||

(N == 64 & Abs(value) >= 2.0A1022)

) then

// Result flushed to zero of correct sign
result = FPZero(sign);

// Flush-to-zero never generates a trapped exception.
FPSR.UFC = '1';
else
// Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
// calculate result exponent. Scaled value has copied sign bit,
// exponent = 1022 = double-precision biased version of -1,
// fraction = original fraction
case N of
when 16
fraction = operand<9:0> : Zeros(42);
exp = UInt(operand<14:10>);
when 32
fraction = operand<22:0> : Zeros(29);
exp = UInt(operand<30:23>);
when 64
fraction = operand<51:0>;
exp = UInt(operand<62:52>);

if exp == 0 then
if fraction<51> == '@' then
exp = -1;
fraction = fraction<49:0>:'00';
else
fraction = fraction<50:0>:'0";

integer scaled = UInt('1l':fraction<51:44>);

case N of
when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

// scaled is in range 256..511 representing a fixed-point number in range [0.5..1.0)
estimate = RecipEstimate(scaled);

// estimate is in the range 256..511 representing a fixed point result in the range [1.0..2.0)
// Convert to scaled floating point result with copied sign bit,

// high-order bits from estimate, and exponent calculated above.

fraction = estimate<7:0> : Zeros(44);

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-437
Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if result_exp == 0 then
fraction = '1' : fraction<51:1>;
elsif result_exp == -1 then
fraction = '01' : fraction<51:2>;
result_exp = 0;

case N of

when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;

when 32 result = sign : result_exp<N-25:0> :
sign : result_exp<N-54:0> : fraction<51:0>;

when 64 result

return result;

fraction<51:29>;

shared/functions/float/fprecipestimate/RecipEstimate

// Compute estimate of reciprocal of 9-bit fixed-point number

//

// a is in range 256 .. 511 representing a number in the range 0.5 <= x < 1.0.

// result is in the range 256 .. 511 representing a number in the range in the range 1.0 to 511/256.

integer RecipEstimate(integer a)
assert 256 <= a && a < 512;
a = ax2+1; // round to nearest
integer b = (2 A 19) DIV a;
r = (b+1) DIV 2; // round to nearest
assert 256 <= r & r < 512;
return r;

shared/functions/float/fprecpx/FPRecpX

// FPRecpX()
/] mm=mm==

bits(N) FPRecpX(bits(N) op, FPCRType fpcr)

assert N IN {16,32,64};

case N of
when 16 esize
when 32 esize = 8§;

I}
(%]

when 64 esize = 11;
bits(N) result;
bits(esize) exp;
bits(esize) max_exp;

bits(N-(esize+l)) frac = Zeros();

case N of
when 16 exp = op<l0+esize-1:10>;
when 32 exp = op<23+esize-1:23>;
when 64 exp = op<52+esize-1:52>;

max_exp = Ones(esize) - 1;
(fptype,sign,value) = FPUnpack(op, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr);
else
if IsZero(exp) then // Zero and denormals
result = sign:max_exp:frac;
else // Infinities and normals
result = sign:NOT(exp):frac;

return result;

11-438

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/float/fpround/FPRound
// FPRound()

// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
fpcr.AHP = '0';
return FPRoundBase(op, fpcr, rounding);

// FPRound()
/] m==mm==

bits(N) FPRound(real op, FPCRType fpcr)
return FPRound(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/fpround/FPRoundBase
// FPRoundBase()

// Convert a real number OP into an N-bit floating-point value using the
// supplied rounding mode RMODE.

bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding)
assert N IN {16,32,64};
assert op != 0.0;
assert rounding != FPRounding_TIEAWAY;
bits(N) result;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then
minimum_exp = -14; E =5; F = 10;
elsif N == 32 then
minimum_exp = -126; E = 8; F = 23;
else // N == 64
minimum_exp = -1022; E = 11; F = 52;

// Split value into sign, unrounded mantissa and exponent.
if op < 0.0 then

sign = '1'; mantissa = -op;
else

sign = '0'; mantissa = op;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

if (((fpcr.FZ == '1" & N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&
exponent < minimum_exp) then
// Flush-to-zero never generates a trapped exception.
FPSR.UFC = '1';
return FPZero(sign);

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, lower values @ (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, @);

if biased_exp == @ then mantissa = mantissa / 2.0A(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the "units in Tast place" rounding error.
int_mant = RoundDown(mantissa = 2.0AF); // < 2.0AF if biased_exp == 0, >= 2.0AF if not
error = mantissa * 2.0AF - Real(int_mant);

// Underflow occurs if exponent is too small before rounding, and result is inexact or
// the Underflow exception is trapped.
if biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-439
Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

FPProcessException(FPExc_Underflow, fpcr);

// Round result according to rounding mode.
case rounding of
when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1"))
overflow_to_inf = TRUE;
when FPRounding_POSINF
round_up = (error != 0.0 & sign == '0');
overflow_to_inf = (sign == '0');
when FPRounding_NEGINF
round_up = (error != 0.0 & sign == '1');
overflow_to_inf = (sign == '1'");
when FPRounding_ZERO, FPRounding_0DD
round_up = FALSE;
overflow_to_inf = FALSE;

if round_up then
int_mant = int_mant + 1;
if int_mant == 2AF then // Rounded up from denormalized to normalized
biased_exp = 1;
if int_mant == 2A(F+1) then // Rounded up to next exponent
biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;

// Handle rounding to odd aka Von Neumann rounding
if error != 0.0 && rounding == FPRounding_ODD then
int_mant<0> = '1';

// Deal with overflow and generate result.
if N != 16 || fpcr.AHP == '@' then // Single, double or IEEE half precision
if biased_exp >= 2AE - 1 then
result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
FPProcessException(FPExc_Overflow, fpcr);
error = 1.0; // Ensure that an Inexact exception occurs
else
result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;
else // Alternative half precision
if biased_exp >= 2AE then
result = sign : Ones(N-1);
FPProcessException(FPExc_InvalidOp, fpcr);
error = 0.0; // Ensure that an Inexact exception does not occur
else
result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;

// Deal with Inexact exception.
if error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

shared/functions/float/fpround/FPRoundCV
// FPRoundCV()

// Used for FP <-> FP conversion instructions.
// For half-precision data ignores FZ16 and observes AHP.

bits(N) FPRoundCV(real op, FPCRType fpcr, FPRounding rounding)
fpcr.FZ16 = '0';
return FPRoundBase(op, fpcr, rounding);

shared/functions/float/fprounding/FPRounding
enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,

FPRounding_NEGINF, FPRounding_ZERO,
FPRounding_TIEAWAY, FPRounding_ODD};

11-440 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode

shared/functions/float/fproundingmode/FPRoundingMode

// FPRoundingMode()
7 ———

// Return the current floating-point rounding mode.
FPRounding FPRoundingMode(FPCRType fpcr)
return FPDecodeRounding(fpcr.RMode);
shared/functions/float/fproundint/FPRoundint

// FPRoundInt()
/A —

11.2 Shared pseudocode

// Round op to nearest integral floating point value using rounding mode in FPCR/FPSCR.

// If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to op.
bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)

assert rounding != FPRounding_0DD;
assert N IN {16,32,64};

// Unpack using FPCR to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr);
elsif fptype == FPType_Infinity then
result = FPInfinity(sign);
elsif fptype == FPType_Zero then
result = FPZero(sign);
else
// Extract integer component.
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
case rounding of
when FPRounding_TIEEVEN

round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1"));

when FPRounding_POSINF
round_up = (error != 0.0);
when FPRounding_NEGINF
round_up = FALSE;
when FPRounding_ZERO
round_up = (error != 0.0 & int_result < 0);
when FPRounding_TIEAWAY
round_up = (error > 0.5 || (error == 0.5 & int_result >= 0));

if round_up then int_result = int_result + 1;

// Convert integer value into an equivalent real value.
real_result = Real(int_result);

// Re-encode as a floating-point value, result is always exact.
if real_result == 0.0 then

result = FPZero(sign);
else

result = FPRound(real_result, fpcr, FPRounding_ZERO);

// Generate inexact exceptions.
if error != 0.0 & exact then

FPProcessException(FPExc_Inexact, fpcr);

return result;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
ID090320 Non-Confidential

11-441

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/float/fproundintn/FPRoundIntN

// FPRoundIntN()
/A ——

bits(N) FPRoundIntN(bits(N) op, FPCRType fpcr, FPRounding rounding, integer intsize)
assert rounding != FPRounding_0DD;
assert N IN {32,64};
assert intsize IN {32, 64};
integer exp;
constant integer E
constant integer F

(if N == 32 then 8 else 11);
N - (E +1);

// Unpack using FPCR to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr);

if fptype IN {FPType_SNaN, FPType_QNaN, FPType_Infinity} then
if N == 32 then
exp = 126 + intsize;
result = '1':exp<(E-1):0>:Zeros(F);
else
exp = 1022+intsize;
result = "1':exp<(E-1):0>:Zeros(F);
FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Zero then
result = FPZero(sign);
else
// Extract integer component.
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
case rounding of
when FPRounding_TIEEVEN
round_up = error > 0.5 || (error == 0.5 && int_result<0> == '1");
when FPRounding_POSINF
round_up = error != 0.0;
when FPRounding_NEGINF
round_up = FALSE;
when FPRounding_ZERO
round_up = error != 0.0 & int_result < 0;
when FPRounding_TIEAWAY
round_up = error > 0.5 || (error == 0.5 && int_result >= 0);

if round_up then int_result = int_result + 1;
overflow = int_result > 2A(intsize-1)-1 || int_result < -1«2A(intsize-1)

if overflow then

if N == 32 then

exp = 126 + intsize;

result = "1':exp<(E-1):0>:Zeros(F);
else

exp = 1022 + intsize;

result = "1':exp<(E-1):0>:Zeros(F);
FPProcessException(FPExc_InvalidOp, fpcr);
// This case shouldn't set Inexact.
error = 0.0;

else
// Convert integer value into an equivalent real value.
real_result = Real(int_result);

// Re-encode as a floating-point value, result is always exact.
if real_result == 0.0 then

result = FPZero(sign);
else

result = FPRound(real_result, fpcr, FPRounding_ZERO);

11-442 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

//
//

bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr)

// Generate inexact exceptions.
if error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

FPRSqrtEstimate()

assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(operand, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, operand, fpcr);

elsif fptype == FPType_Zero then
result = FPInfinity(sign);

FPProcessException(FPExc_DivideByZero, fpcr);

elsif sign == '1' then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Infinity then
result = FPZero('0");
else

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
// evenness or oddness of the exponent unchanged, and calculate result exponent.
// Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
// biased version of -1 or -2, fraction = original fraction extended with zeros.

case N of
when 16

fraction = operand<9:0> : Zeros(42);

exp = UInt(operand<14:10>);
when 32

fraction = operand<22:0> : Zeros(29);

exp = UInt(operand<30:23>);
when 64

fraction = operand<51:0>;

exp = UInt(operand<62:52>);

if exp == 0 then

while fraction<51> == '0' do
fraction = fraction<50:0> : '0';
exp = exp - 1;

fraction = fraction<50:0> : '0';

if exp<@> == '0' then

scaled = UInt('1l':fraction<51:44>);
else

scaled = UInt('01':fraction<51:45>);

case N of

when 16 result_exp = (44 - exp) DIV 2;
when 32 result_exp = (380 - exp) DIV 2;
when 64 result_exp = (3068 - exp) DIV 2;

estimate = RecipSqrtEstimate(scaled);

// estimate is in the range 256..511 representing a fixed point result in the range [1.0..2.0)
// Convert to scaled floating point result with copied sign bit and high-order

// fraction bits, and exponent calculated above.

case N of

when 16 result
when 32 result

'0' 1 result_exp<N-12:0> : estimate<7:0>:Zeros(2);
'0' 1 result_exp<N-25:0> : estimate<7:0>:Zeros(15);

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

11-443

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);

return result;

shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

// Compute estimate of reciprocal square root of 9-bit fixed-point number

//

// a is in range 128 .. 511 representing a number in the range 0.25 <= x < 1.0.

// result is in the range 256 .. 511 representing a number in the range in the range 1.0 to 511/256.

integer RecipSqrtEstimate(integer a)
assert 128 <= a && a < 512;
if a < 256 then // 0.25 .. 0.5
a = ax2+l; // a in units of 1/512 rounded to nearest
else // 0.5 .. 1.0
a=(a> 1) <<1; // discard bottom bit
a = (a+l)%2; // a in units of 1/256 rounded to nearest
integer b = 512;
while ax(b+1)«*(b+1l) < 2A28 do
b = b+l;
// b = Targest b such that b < 2A14 / sqrt(a) do
r = (b+1) DIV 2; // round to nearest
assert 256 <= r & r < 512;
return r;

shared/functions/float/fpsqrt/FPSqrt

// FPSqrt()
// =

bits(N) FPSqrt(bits(N) op, FPCRType fpcr)
assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(op, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr);

elsif fptype == FPType_Zero then
result = FPZero(sign);

elsif fptype == FPType_Infinity && sign == 'Q' then
result = FPInfinity(sign);

elsif sign == '1' then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

else
result = FPRound(Sqrt(value), fpcr);

return result;

shared/functions/float/fpsub/FPSub

// FPSub()
/] ===m===

bits(N) FPSub(bits(N) opl, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(typel,signl,valuel) = FPUnpack(opl, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpcr);
if !done then

infl = (typel == FPType_Infinity);

inf2 = (type2 == FPType_Infinity);

zerol = (typel == FPType_Zero);

zero2 = (type2 == FPType_Zero);

11-444

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

invalidop = infl & inf2 && signl == sign2;

if invalidop then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);
elsif (infl & signl == '0') || (inf2 && sign2 == '1') then
result = FPInfinity('0');
elsif (infl & signl == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1');
elsif zerol && zero2 & signl == NOT(sign2) then
result = FPZero(signl);
else
result_value = valuel - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);
else
result = FPRound(result_value, fpcr, rounding);

return result;

shared/functions/float/fpthree/FPThree

// FPThree()
/] mmm===

bits(N) FPThree(bit sign)

assert N IN {16,32,64};

constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);

exp = 'l':Zeros(E-1);

frac = '1l':Zeros(F-1);

result = sign : exp : frac;

return result;

shared/functions/float/fptofixed/FPToFixed

// FPToFixed()
/] mmmmmmmmun=

// Convert N-bit precision floating point OP to M-bit fixed point with
// FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

assert N IN {16,32,64};

assert M IN {16,32,64};

assert fbits >= 0;

assert rounding != FPRounding_ODD;

// Unpack using fpcr to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr);

// If NaN, set cumulative flag or take exception.
if fptype == FPType_SNaN || fptype == FPType_QNaN then
FPProcessException(FPExc_InvalidOp, fpcr);

// Scale by fractional bits and produce integer rounded towards minus-infinity.
value = value = 2.0Afbits;

int_result = RoundDown(value);

error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
case rounding of

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-445
Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 & int_result<0> == '1"));
when FPRounding_POSINF
round_up = (error != 0.0);
when FPRounding_NEGINF
round_up = FALSE;
when FPRounding_ZERO
round_up = (error != 0.0 & int_result < 0);
when FPRounding_TIEAWAY
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Generate saturated result and exceptions.
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then

FPProcessException(FPExc_InvalidOp, fpcr);

elsif error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

shared/functions/float/fptofixedjs/FPToFixedJS

// FPToFixed]S()

/] =====

// Converts a double precision floating point input value
// to a signed integer, with rounding to zero.

(bits(N), bit) FPToFixed]S(bits(M) op, FPCRType fpcr, boolean Is64)

assert M == 64 & N == 32;

// Unpack using fpcr to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr);

7=

lll;

// If NaN, set cumulative flag or take exception.
if fptype == FPType_SNaN || fptype == FPType_QNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
Z="0";

int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.

round_it_up = (error != 0.0 & int_result < 0);
if round_it_up then int_result = int_result + 1;

if int_result < @ then

result = int_result - 2A32xRoundUp(Real(int_result)/Real(2A32));

else

result = int_result - 2A32«RoundDown(Real(int_result)/Real(2A32));

// Generate exceptions.
if dint_result < -(2A31) || int_result > (2A31)-1 then

FPProcessException(FPExc_InvalidOp, fpcr);
Z="0";

elsif error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);
Z= l@l;

elsif sign == '1' && value == 0.0 then

Z="0";

elsif sign == '0' & value == 0.0 && !IsZero(op<51:0>) then

7 = 101;

11-446

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if fptype == FPType_Infinity then result = 0;

return (result<N-1:0>, Z);

shared/functions/float/fptwo/FPTwo

// FPTwo()
/] ===m===

bits(N) FPTwo(bit sign)

assert N IN {16,32,64};

constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);

exp = 'l':Zeros(E-1);

frac = Zeros(F);

result = sign : exp : frac;

return result;

shared/functions/float/fptype/FPType

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity,
FPType_QNaN, FPType_SNaN};

shared/functions/float/fpunpack/FPUnpack

// FPUnpack()

// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

(FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
fpcr.AHP = '0°';
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr);
return (fp_type, sign, value);

shared/functions/float/fpunpack/FPUnpackBase

// FPUnpackBase()

// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)

/!

// The 'fpcr' argument supplies FPCR control bits. Status information is

// updated directly in the FPSR where appropriate.

(FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr)
assert N IN {16,32,64};

if N == 16 then
sign = fpval<15>;
exple = fpval<14:10>;
fracle = fpval<9:0>;
if IsZero(expl6) then
// Produce zero if value is zero or flush-to-zero is selected
if IsZero(fracl6) || fpcr.FZ16 == '1' then
fptype = FPType_Zero; value = 0.0;
else

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-447
Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

fptype = FPType_Nonzero; value = 2.0A-14 « (Real(UInt(fracl6)) = 2.0A-10);

elsif IsOnes(expl6) && fpcr.AHP == '@' then // Infinity or NaN in IEEE format
if IsZero(fracl6) then
fptype = FPType_Infinity; value = 2.0A1000000;
else
fptype = if fracl6<9> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;
else
fptype = FPType_Nonzero;
value = 2.0A(UInt(expl6)-15) * (1.0 + Real(UInt(fracl6)) = 2.0A-10);

elsif N == 32 then

sign = fpval<3l>;
exp32 fpval<30:23>;
frac32 = fpval<22:0>;
if IsZero(exp32) then
// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac32) || fpcr.FZ == '1' then
fptype = FPType_Zero; value = 0.0;
if !IsZero(frac32) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpcr);

else

fptype = FPType_Nonzero; value = 2.0A-126 = (Real(UInt(frac32)) = 2.0A-23);

elsif IsOnes(exp32) then
if IsZero(frac32) then
fptype = FPType_Infinity; value = 2.0A1000000;
else
fptype = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;
else
fptype = FPType_Nonzero;
value = 2.0A(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) = 2.0A-23);

else // N == 64

sign = fpval<63>;
exp64 fpval<62:52>;
frac64 = fpval<51:0>;
if IsZero(exp64) then
// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac64) || fpcr.FZ == '1' then
fptype = FPType_Zero; value = 0.0;
if !IsZero(frac64) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpcr);

else

fptype = FPType_Nonzero; value = 2.0A-1022 = (Real(UInt(frac64)) = 2.0A-52);

elsif IsOnes(exp64) then
if IsZero(frac64) then
fptype = FPType_Infinity; value = 2.0A1000000;
else
fptype = if frac64<51> == '1l' then FPType_QNaN else FPType_SNaN;
value = 0.0;
else
fptype = FPType_Nonzero;
value = 2.0A(UInt(exp64)-1023) = (1.0 + Real(UInt(frac64)) = 2.0A-52);

if sign == '1l' then value = -value;

return (fptype, sign, value);

shared/functions/float/fpunpack/FPUnpackCV

// FPUnpackCV()
/] ============
//

// Used for FP <-> FP conversion instructions.

11-448 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// For half-precision data ignores FZ16 and observes AHP.

(FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCRType fpcr)
fpcr.FZ16 = '0';
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr);
return (fp_type, sign, value);

shared/functions/float/fpzero/FPZero

// FPZero()
7

bits(N) FPZero(bit sign)

assert N IN {16,32,64};

constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);

exp = Zeros(E);

frac = Zeros(F);

result = sign : exp : frac;

return result;

shared/functions/float/vfpexpandimm/VFPExpandimm

// VFPExpandImm()
/] =mmmmmmmmme==s

bits(N) VFPExpandImm(bits(8) imm8)

assert N IN {16,32,64};

constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;

sign = imm8<7>;

exp NOT(imm8<6>) :RepTlicate(imm8<6>,E-3):imm8<5:4>;

frac = imm8<3:0>:Zeros(F-4);

result = sign : exp : frac;

return result;

shared/functions/integer/AddWithCarry

// AddwithCarry()
Y ——
// Integer addition with carry input, returning result and NZCV flags

(bits(N), bits(4)) AddwithCarry(bits(N) x, bits(N) y, bit carry_in)
integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
bit n = result<N-1>;
bit z = if IsZero(result) then '1l' else '0';
bit ¢ = if UInt(result) == unsigned_sum then 'Q' else 'l';
bit v = if SInt(result) == signed_sum then '@' else 'l';
return (result, n:z:c:v);

shared/functions/memory/AArch64.BranchAddr
// AArch64.BranchAddr()

//

// Return the virtual address with tag bits removed for storing to the program counter.

bits(64) AArch64.BranchAddr(bits(64) vaddress)
assert !UsingAArch32();
msbit = AddrTop(vaddress, TRUE, PSTATE.EL);

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-449
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if msbhit == 63 then
return vaddress;

elsif PSTATE.EL IN {ELO, EL1} && vaddress<msbit> == '1' then
return SignExtend(vaddress<mshit:0>);

else
return ZeroExtend(vaddress<mshit:0>);

shared/functions/memory/AccType

enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal Toads and stores
AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
AccType_ATOMIC, AccType_ATOMICRW, // Atomic loads and stores
AccType_ORDERED, AccType_ORDEREDRW, // Load-Acquire and Store-Release

AccType_ORDEREDATOMIC, // Load-Acquire and Store-Release with atomic
access

AccType_ORDEREDATOMICRW,

AccType_UNPRIV, // Load and store unprivileged

AccType_IFETCH, // Instruction fetch

AccType_PTW, // Page table walk

// Other operations

AccType_DC, // Data cache maintenance

AccType_DC_UNPRIV, // Data cache maintenance instruction used at
ELO

AccType_IC, // Instruction cache maintenance

AccType_DCZVA, // DC ZVA dinstructions

AccType_AT}; // Address translation

shared/functions/memory/AccessDescriptor

type AccessDescriptor is (
AccType acctype,
boolean page_table_walk,
boolean secondstage,
boolean s2fslwalk,
integer level

shared/functions/memory/AddrTop

// AddrTop()

// Return the MSB number of a virtual address in the stage 1 translation regime for "el".
// If ELL is using AArch64 then addresses from ELO using AArch32 are zero-extended to 64 bits.

integer AddrTop(bits(64) address, boolean IsInstr, bits(2) el)
assert HaveEL(el);
regime = S1TranslationRegime(el);
if ELUsingAArch32(regime) then
// AArch32 translation regime.
return 31;
else
if EffectiveTBI(address, IsInstr, el) == '1' then
return 55;
else
return 63;

shared/functions/memory/AddressDescriptor

type AddressDescriptor is (

FaultRecord fault, // fault.statuscode indicates whether the address is valid
MemoryAttributes memattrs,
FulTAddress paddress,
bits(64) vaddress
)
11-450 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/memory/Allocation

constant bits(2) MemHint_No = '00'; // No Read-Allocate, No Write-Allocate
constant bits(2) MemHint_WA = '01'; // No Read-Allocate, Write-Allocate
constant bits(2) MemHint_RA = '10'; // Read-Allocate, No Write-Allocate
constant bits(2) MemHint_RWA = '11'; // Read-Allocate, Write-Allocate

shared/functions/memory/BigEndian

// BigEndian()
/] s==mmmmm===

boolean BigEndian()
boolean bigend;
if UsingAArch32() then
bigend = (PSTATE.E != '0');
elsif PSTATE.EL == ELO then
bigend = (SCTLR[].EQE != '0');
else
bigend = (SCTLR[].EE != '0');
return bigend;

shared/functions/memory/BigEndianReverse

// BigEndianReverse()
/] =====mmmmm=m=m====

bits(width) BigEndianReverse (bits(width) value)
assert width IN {8, 16, 32, 64, 128};
integer half = width DIV 2;
if width == 8 then return value;
return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

shared/functions/memory/Cacheability

constant bits(2) MemAttr_NC = '00'; // Non-cacheable
constant bits(2) MemAttr_WT = '10'; // Write-through
constant bits(2) MemAttr_WB = '11'; // Write-back

shared/functions/memory/CreateAccessDescriptor

// CreateAccessDescriptor()

//

AccessDescriptor CreateAccessDescriptor(AccType acctype)
AccessDescriptor accdesc;
accdesc.acctype = acctype;
accdesc.page_table_walk = FALSE;
return accdesc;

shared/functions/memory/CreateAccessDescriptorPTW

// CreateAccessDescriptorPTW()
//

AccessDescriptor CreateAccessDescriptorPTW(AccType acctype, boolean secondstage,
boolean s2fslwalk, integer Tlevel)
AccessDescriptor accdesc;
accdesc.acctype = acctype;
accdesc.page_table_walk = TRUE;
accdesc.s2fslwalk = s2fslwalk;
accdesc.secondstage = secondstage;
accdesc.Tevel = Tevel;
return accdesc;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-451
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/memory/DataMemoryBarrier

DataMemoryBarrier(MBRegDomain domain, MBReqTypes types, boolean vmid_sensitive);

shared/functions/memory/DataSynchronizationBarrier

DataSynchronizationBarrier(MBRegDomain domain, MBReqTypes types, boolean vmid_sensitive);

shared/functions/memory/DescriptorUpdate

type DescriptorUpdate is (
boolean AF, // AF needs to be set
boolean AP, // AP[2] / S2AP[2] will be modified
AddressDescriptor descaddr // Descriptor to be updated

shared/functions/memory/DeviceType

enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

shared/functions/memory/EffectiveTBI
// EffectiveTBI()
// Returns the effective TBI in the AArch64 stage 1 translation regime for "el".

bit EffectiveTBI(bits(64) address, boolean IsInstr, bits(2) el)
assert HaveEL(el);
regime = SlTranslationRegime(el);
assert(!ELUsingAArch32(regime));

case regime of
when EL1
thi = if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBIO;
if HavePACExt() then
tbid = if address<55> == '1' then TCR_EL1.TBID1 else TCR_EL1.TBIDO;
when EL2
thi = TCR_EL2.TBI;
if HavePACExt() then tbid = TCR_EL2.TBID;

return (if tbi == '1' && (!HavePACExt() || thid == '@' || !IsInstr) then '1' else '0');

shared/functions/memory/Fault

enumeration Fault {Fault_None,
Fault_AccessFlag,
Fault_Alignment,
Fault_Background,
Fault_Domain,
Fault_Permission,
Fault_Translation,
Fault_AddressSize,
Fault_SyncExternal,
Fault_SyncExternalOnWalk,
Fault_SyncParity,
Fault_SyncParityOnWalk,
Fault_AsyncParity,
Fault_AsyncExternal,
Fault_Debug,
Fault_TLBConflict,
Fault_HwWUpdateAccessFlag,
Fault_Lockdown,
Fault_Exclusive,
Fault_ICacheMaint};

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential

ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/memory/FaultRecord

type FaultRecord is (Fault statuscode, // Fault Status
AccType acctype, // Type of access that faulted
FulTAddress ipaddress, // Intermediate physical address
boolean s2fslwalk, // Is on a Stage 1 page table walk

boolean write, // TRUE for a write, FALSE for a read

integer level, // For translation, access flag and permission faults
bit extflag, // IMPLEMENTATION DEFINED syndrome for external aborts
boolean secondstage, // Is a Stage 2 abort

bits(4) domain, // Domain number, AArch32 only

bits(2) errortype, // [Armv8.2 RAS] AArch32 AET or AArch64 SET
bits(4) debugmoe) // Debug method of entry, from AArch32 only

shared/functions/memory/FullAddress

type FullAddress is (
bits(52) address,
bit NS // '@" = Secure, 'l' = Non-secure

shared/functions/memory/Hint_Prefetch

// Signals the memory system that memory accesses of type HINT to or from the specified address are
// likely 1in the near future. The memory system may take some action to speed up the memory

// accesses when they do occur, such as pre-loading the the specified address into one or more

// caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
// stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a

// synchronous abort due to Alignment or Translation faults and the 1ike. Its only effect on

// software-visible state should be on caches and TLBs associated with address, which must be

// accessible by reads, writes or execution, as defined in the translation regime of the current
// Exception Tevel. It is guaranteed not to access Device memory.

// A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
// instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any

// memory location that cannot be accessed by instruction fetches.

Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

shared/functions/memory/IsStage1VMSA
// IsStagelVMSA()
// Return TRUE if stagel EL1&0 translation regime is VMSA and returns FALSE if PMSA.
boolean IsStagelVMSA()
if HaveEL1VMSAExt() && SlTranslationRegime() == EL1 then
return VTCR_EL2.MSA == '1'";
else
return FALSE;
shared/functions/memory/MBRegDomain
enumeration MBRegDomain {MBRegDomain_Nonshareable, MBRegDomain_InnerShareable,
MBRegDomain_OuterShareable, MBRegDomain_FullSystem};
shared/functions/memory/MBReqTypes

enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_Al1};

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-453
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/memory/MPURecord

type MPURecord is (
bit CnP,
Permissions perms,
AddressDescriptor addrdesc

shared/functions/memory/MemAttrHints
type MemAttrHints is (
bits(2) attrs, // See MemAttr_sx, Cacheability attributes

bits(2) hints, // See MemHint_«, Allocation hints
boolean transient

shared/functions/memory/MemType

enumeration MemType {MemType_Normal, MemType_Device};

shared/functions/memory/MemoryAttributes

type MemoryAttributes is (
MemType memtype,

DeviceType device,
MemAttrHints inner,
MemAttrHints outer,

// For Device memory types
// Inner hints and attributes
// Outer hints and attributes

boolean is_fwb,
boolean shareable,
boolean outershareable

shared/functions/memory/Permissions

type Permissions is (

bits(3) ap, // Access permission bits

bit xn, // Execute-never bit

bit xxn, // [Armv8.2] Extended execute-never bit for stage 2
bit pxn // Privileged execute-never bit

shared/functions/memory/PrefetchHint

enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

shared/functions/memory/SpeculativeStoreBypassBarrierToPA

SpeculativeStoreBypassBarrierToPA();

shared/functions/memory/SpeculativeStoreBypassBarrierToVA

SpeculativeStoreBypassBarrierToVA();

shared/functions/memory/TLBRecord

type TLBRecord is (

// [Armv8.2] TLB entry can be shared between different PEs

Permissions perms,

bit nG, // '0" = Global, '1l' = not Global

bits(4) domain, // AArch32 only

booTlean contiguous, // Contiguous bit from page table

integer Tevel, // AArch32 Short-descriptor format: Indicates Section/Page

11-454

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

integer blocksize, // Describes size of memory translated in KBytes
DescriptorUpdate descupdate, // [Armv8.1] Context for h/w update of table descriptor
bit CnP, // [Armv8.2] TLB entry can be shared between different PEs

AddressDescriptor addrdesc

shared/functions/memory/_Mem

// These two _Mem[] accessors are the hardware operations which perform single-copy atomic,
// aligned, Tittle-endian memory accesses of size bytes from/to the underlying physical

// memory array of bytes.

/!

// The functions address the array using desc.paddress which supplies:

// « A 52-bit physical address

// « A single NS bit to select between Secure and Non-secure parts of the array.

/!

// The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
// etc and other parameters required to access the physical memory or for setting syndrome
// register in the event of an external abort.

bits(8xsize) _Mem[AddressDescriptor desc, integer size, AccessDescriptor accdesc];

_Mem[AddressDescriptor desc, integer size, AccessDescriptor accdesc] = bits(8«size) value;

shared/functions/registers/BranchTo

// BranchTo()
// mmmmmmmmm

// Set program counter to a new address, with a branch type
// In AArch64 state the address might include a tag in the top eight bits.

BranchTo(bits(N) target, BranchType branch_type)
Hint_Branch(branch_type);
if N == 32 then
assert UsingAArch32();
_PC = ZeroExtend(target);
else
assert N == 64 && !UsingAArch32();
_PC = AArch64.BranchAddr(target<63:0>);
return;

shared/functions/registers/BranchToAddr

// BranchToAddr()
/] ====m==m=me===

// Set program counter to a new address, with a branch type
// In AArch64 state the address does not include a tag in the top eight bits.

BranchToAddr(bits(N) target, BranchType branch_type)
Hint_Branch(branch_type);
if N == 32 then
assert UsingAArch32();
_PC = ZeroExtend(target);
else
assert N == 64 && !UsingAArch32();
_PC = target<63:0>;
return;

shared/functions/registers/BranchType

enumeration BranchType {

BranchType_DIRCALL, // Direct Branch with Tink
BranchType_INDCALL, // Indirect Branch with Tink
BranchType_ERET, // Exception return (indirect)
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-455

ID090320

Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

BranchType_DBGEXIT, // Exit from Debug state

BranchType_RET, // Indirect branch with function return hint
BranchType_DIR, // Direct branch

BranchType_INDIR, // Indirect branch

BranchType_EXCEPTION, // Exception entry

BranchType_RESET, // Reset

BranchType_UNKNOWN} ; // Other

shared/functions/registers/Hint_Branch

// Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing

// the next instruction.
Hint_Branch(BranchType hint);
shared/functions/registers/NextinstrAddr
// Return address of the sequentially next instruction.
bits(N) NextInstrAddr();
shared/functions/registers/ResetExternalDebugRegisters
// Reset the External Debug registers in the Core power domain.
ResetExternalDebugRegisters(boolean cold_reset);
shared/functions/registers/ThisInstrAddr
// ThisInstrAddr()
Y —
// Return address of the current instruction.
bits(N) ThisInstrAddr()
assert N == 64 || (N == 32 && UsingAArch32());
return _PC<N-1:0>;
shared/functions/registers/_PC

bits(64) _PC;

shared/functions/registers/_R

array bits(64) _R[0..30];

shared/functions/registers/_V

array bits(128) _V[0..31];

shared/functions/sysregisters/SPSR

// SPSR[] - non-assignment form
/!

bits(32) SPSR[]
bits(32) result;
case PSTATE.EL of

when EL1 result = SPSR_EL1;
when EL2 result = SPSR_EL2;
otherwise Unreachable();

return result;

// SPSR[] - assignment form
/!

11-456

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

SPSR[] = bits(32) value
case PSTATE.EL of

when EL1 SPSR_EL1 = value;

when EL2 SPSR_EL2 = value;

when EL3 SPSR_EL3 = value;

otherwise Unreachable();
return;

shared/functions/system/ArchVersion

enumeration ArchVersion {
ARMv8p0
ARMvV8p1
ARMv8p2
ARMv8p3
ARMv8p4
ARMvV8p5
ARMvIp0@

b

shared/functions/system/ClearEventRegister

// ClearEventRegister()

/!
// Clear the Event Register of this PE

(learEventRegister()
EventRegister = '0';
return;
shared/functions/system/ClearPendingPhysicalSError
// Clear a pending physical SError interrupt
ClearPendingPhysicalSError();
shared/functions/system/ClearPendingVirtualSError
// Clear a pending virtual SError interrupt
ClearPendingVirtualSError();
shared/functions/system/ConditionHolds
// ConditionHolds()
// Return TRUE iff COND currently holds
boolean ConditionHolds(bits(4) cond)

// Evaluate base condition.
case cond<3:1> of

when '000' result = (PSTATE.Z == '1'); // EQ or NE
when '001' result = (PSTATE.C == '1"); // CS or CC
when '010' result = (PSTATE.N == '1'); // MI or PL
when '011' result = (PSTATE.V == '1'); // VS or VC
when '100' result = (PSTATE.C == 'l' & PSTATE.Z == '0'); // HI or LS
when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
when '111' result = TRUE; // AL

// Condition flag values in the set '111x' indicate always true
// Otherwise, invert condition if necessary.
if cond<@> == '1' && cond != '1111" then

result = !result;

return result;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-457
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/system/ConsumptionOfSpeculativeDataBarrier

ConsumptionOfSpeculativeDataBarrier();

shared/functions/system/CurrentinstrSet

// CurrentInstrSet()
/] =====m===m==s====

InstrSet CurrentInstrSet()

if UsingAArch32() then
result = if PSTATE.T == 'Q' then InstrSet_A32 else InstrSet_T32;

// PSTATE.] is RES@. Implementation of T32EE or Jazelle state not permitted.

else
result = InstrSet_A64;
return result;

shared/functions/system/EL0O

constant bits(2) EL3 = '11';
constant bits(2) EL2 = '10';
constant bits(2) EL1 = '01';
constant bits(2) ELO = '00';

shared/functions/system/EL2Enabled
// EL2Enabled()

// Returns TRUE if EL2 is present and executing

// - with SCR_EL3.NS==1 when Non-secure EL2 is implemented, or

// - with SCR_EL3.NS==0 when Secure EL2 is implemented and enabled, or
// - when EL3 1is not implemented.

boolean EL2Enabled()
return TRUE;
shared/functions/system/ELFromSPSR

// ELFromSPSR()
/] ============

// Convert an SPSR value encoding to an Exception Tevel.

// Returns (valid,EL):

// ‘'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
// 'EL' is the Exception level decoded from 'spsr'

(boolean,bits(2)) ELFromSPSR(bits(32) spsr)

if spsr<4> == '0' then // AArch64 state
el = spsr<3:2>;
if HighestELUsingAArch32() then // No AArch64 support
valid = FALSE;
elsif !HaveEL(el) then // Exception Tevel not implemented
valid = FALSE;
elsif spsr<l> == '1' then // M[1] must be 0

valid = FALSE;
elsif el == ELO && spsr<@> == '1' then // for ELO, M[@] must be 0
valid = FALSE;
else
valid = TRUE;
else
valid = FALSE;

if Ivalid then el = bits(2) UNKNOWN;
return (valid,el);

11-458 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/system/ELUsingAArch32

// ELUsingAArch32()
R

boolean ELUsingAArch32(bits(2) el)
return FALSE;
shared/functions/system/ELUsingAArch32K

// ELUsingAArch32K()
J/——

(booTean,booTean) ELUsingAArch32K(bits(2) el)
return (TRUE, FALSE);

shared/functions/system/EndOflnstruction

// Terminate processing of the current instruction.
EndOfInstruction();

shared/functions/system/EnterLowPowerState

// PE enters a Tow-power state
EnterLowPowerState();

shared/functions/system/EventRegister

bits(1) EventRegister;

shared/functions/system/GetPSRFromPSTATE
// GetPSRFromPSTATE()
// Return a PSR value which represents the current PSTATE

bits(32) GetPSRFromPSTATE()
bits(32) spsr = Zeros();
spsr<31:28> = PSTATE.<N,Z,C,V>;
if HavePANExt() then spsr<22> = PSTATE.PAN;
spsr<20> = PSTATE.IL;
if HaveDITExt() then spsr<24> = PSTATE.DIT;
if HaveUAOExt() then spsr<23> = PSTATE.UAO;
spsr<21> = PSTATE.SS;
if HaveSSBSExt() then spsr<12> = PSTATE.SSBS;
spsr<9:6> = PSTATE.<D,A,I,F>;

spsr<4> = PSTATE.nRW;
spsr<3:2> = PSTATE.EL;
spsr<0> = PSTATE.SP;

return spsr;

shared/functions/system/HasArchVersion
// HasArchVersion()

// Return TRUE if the implemented architecture includes the extensions defined in the specified
// architecture version.

boolean HasArchVersion(ArchVersion version)
return version == ARMv8p@ || boolean IMPLEMENTATION_DEFINED;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-459
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/system/HaveAArch32EL

// HaveAArch32EL()
/A

boolean HaveAArch32EL(bits(2) el)

// Return TRUE if Exception level 'el' supports AArch32 in this implementation

if !HaveEL(el) then

return FALSE; // The Exception level is not implemented

elsif !HaveAnyAArch32() then
return FALSE; // No Exception Tevel can use AArch32
elsif HighestELUsingAArch32() then

return TRUE; // A1l Exception levels are using AArch32

elsif el == HighestEL() then

return FALSE; // The highest Exception level is using AArch64

elsif el == ELO then

return TRUE; // EL@ must support using AArch32 if any AArch32

return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAnyAArch32
// HaveAnyAArch32()
// Return TRUE if AArch32 state is supported at any Exception Tevel
boolean HaveAnyAArch32()
return FALSE;
shared/functions/system/HaveAnyAArch64
// HaveAnyAArch64()
// Return TRUE if AArch64 state is supported at any Exception Tevel
boolean HaveAnyAArch64()
return !HighestELUsingAArch32();
shared/functions/system/HaveEL
// HaveEL()
// Return TRUE if Exception Tevel 'el' is supported
boolean HaveEL(bits(2) el)
if el IN {EL2,EL1,ELO} then
return TRUE; // EL2, EL1 and EL® must exist
else
return FALSE;
shared/functions/system/HaveELUsingSecurityState
// HaveELUsingSecurityState()
//

// Returns TRUE if Exception Tevel 'el' with Security state 'secure' is supported,
// FALSE otherwise.

boolean HaveELUsingSecurityState(bits(2) el, boolean secure)

case el of
when EL3
assert secure;
return HaveEL(EL3);
when EL2
if secure then
return HaveEL(EL2) && HaveSecureEL2Ext();

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

else
return HaveEL(EL2);
otherwise
return (HaveEL(EL3) ||
(secure == boolean IMPLEMENTATION_DEFINED "Secure-only implementation"));

shared/functions/system/HaveFP16Ext
// HaveFP16Ext()
// Return TRUE if FP16 extension is supported
boolean HaveFP16Ext()
return boolean IMPLEMENTATION_DEFINED;
shared/functions/system/HighestEL
// HighestEL()
// Returns the highest implemented Exception level.
bits(2) HighestEL()
if HaveEL(EL3) then
return EL3;
elsif HaveEL(EL2) then
return EL2;
else
return EL1;
shared/functions/system/HighestELUsingAArch32
// HighestELUsingAArch32()

/!
// Return TRUE if configured to boot into AArch32 operation

boolean HighestELUsingAArch32()
if !HaveAnyAArch32() then return FALSE;
return boolean IMPLEMENTATION_DEFINED; // e.g. CFG32SIGNAL == HIGH
shared/functions/system/Hint_DGH
// Provides a hint to close any gathering occurring within the micro-architecture.
Hint_DGH();
shared/functions/system/Hint_Yield
// Provides a hint that the task performed by a thread is of Tow
// importance so that it could yield to improve overall performance.
Hint_Yield();
shared/functions/system/lllegalExceptionReturn

// I1legalExceptionReturn()
/!

boolean IllegalExceptionReturn(bits(32) spsr)

// Check for illegal return:

// = To an unimplemented Exception level.

// % To EL2 1in Secure state, when SecureEL2 is not enabled.
// % To ELO using AArch64 state, with SPSR.M[0]==1.

// % To AArch64 state with SPSR.M[1]==1.

// « To AArch32 state with an illegal value of SPSR.M.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-461
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

(valid, target) = ELFromSPSR(spsr);
if lvalid then return TRUE;

// Check for return to higher Exception level
if UInt(target) > UInt(PSTATE.EL) then return TRUE;

spsr_mode_is_aarch32 = (spsr<4> == '1'");

// Check for illegal return:

// % To EL1, EL2 or EL3 with register width specified in the SPSR different from the
// Execution state used in the Exception Tevel being returned to, as determined by
// the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.

// * To ELO using AArch64 state when EL1 is using AArch32 state as determined by the
// SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.

// % To AArch64 state from AArch32 state (should be caught by above)

(known, target_el_is_aarch32) = ELUsingAArch32K(target);

assert known || (target == ELO && !'ELUsingAArch32(EL1));

if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

// Check for illegal return from AArch32 to AArch64
if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

// Check for illegal return to EL1 when HCR.TGE is set and when either of
// = SecureEL2 is enabled.
// * SecureEL2 is not enabled and EL1 is in Non-secure state.
if HaveEL(EL2) && target == EL1 & HCR_EL2.TGE == '1' then

if (!IsSecureBelowEL3() || IsSecureEL2Enabled()) then return TRUE;
return FALSE;

shared/functions/system/InstrSet

enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

shared/functions/system/InstructionSynchronizationBarrier

InstructionSynchronizationBarrier(boolean vmid_sensitive);

shared/functions/system/InterruptPending
// InterruptPending()

// Return TRUE if there are any pending physical or virtual
// interrupts, and FALSE otherwise.

boolean InterruptPending()
pending_physical_interrupt = (IRQPending() || FIQPending() |
IsPhysicalSErrorPending());
pending_virtual_interrupt = ((HCR_EL2.<VSE,VI,VF> AND
HCR_EL2.<AMO, IMO,FMO>) != '000');
return pending_physical_interrupt || pending_virtual_interrupt;

shared/functions/system/IsEventRegisterSet
// IsEventRegisterSet()

/!
// Return TRUE if the Event Register of this PE is set, and FALSE otherwise

boolean IsEventRegisterSet()
return EventRegister == '1';

11-462

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/system/IlsHighestEL
// IsHighestEL()
// Returns TRUE if given exception Tevel is the highest exception level implemented
boolean IsHighestEL(bits(2) el)

return HighestEL() == el;
shared/functions/system/IlsPhysicalSErrorPending
// Return TRUE if a physical SError interrupt is pending
boolean IsPhysicalSErrorPending();
shared/functions/system/IsSecure
// IsSecure()
// Returns TRUE if current Exception level is in Secure state.
boolean IsSecure()

return TRUE;
shared/functions/system/lsSecureBelowEL3
// IsSecureBelowEL3()
;; ;::::E=;EEE=T;=:E=Exception Tevel below EL3 is in Secure state

// or would be following an exception return to that level.

//

// Differs from IsSecure in that it ignores the current EL or Mode
// 1in considering security state.

// That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
// exception return would pass to Secure or Non-secure state.

boolean IsSecureBelowEL3()
return TRUE;
shared/functions/system/IsSecureEL2Enabled
// IsSecureEL2Enabled()

//
// Returns TRUE if Secure EL2 is enabled, FALSE otherwise.

boolean IsSecureEL2Enabled()
return TRUE;

shared/functions/system/lsSynchronizablePhysicalSErrorPending

// Return TRUE if a synchronizable physical SError interrupt is pending
boolean IsSynchronizablePhysicalSErrorPending();

shared/functions/system/IsVirtualSErrorPending

// Return TRUE if a virtual SError interrupt is pending
boolean IsVirtualSErrorPending();

shared/functions/system/PSTATE

ProcState PSTATE;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-463
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/system/PrivilegeLevel

enumeration PrivilegelLevel {PL3, PL2, PL1, PLO};

shared/functions/system/ProcState

type ProcState is (

bits (1) N, // Negative condition flag

bits (1) Z, // Zero condition flag

bits (1) C, // Carry condition flag

bits (1) V, // oVerflow condition flag

bits (1) D, // Debug mask bit [AArch64 only]
bits (1) A, // SError interrupt mask bit

bits (1) I, // IRQ mask bit

bits (1) F, // FIQ mask bit

bits (1) PAN, // Privileged Access Never Bit [v8.1]

bits (1) UAO, // User Access Override [v8.2]

bits (1) DIT, // Data Independent Timing [v8.4]

bits (1) SS, // Software step bit

bits (1) IL, // I1legal Execution state bit

bits (2) EL, // Exception Level

bits (1) nRW, // not Register Width: 0=64, 1=32

bits (1) SP, // Stack pointer select: 0=SPQ, 1=SPx [AArch64 only]
bits (1) Q, // Cumulative saturation flag [AArch32 only]
bits (4) CE, // Greater than or Equal flags [AArch32 only]
bits (1) SSBS, // Speculative Store Bypass Safe

bits (8) IT, // If-then bits, RESQ in CPSR [AArch32 only]
bits (1) J, // J bit, RESO [AArch32 only,
bits (1) T, // T32 bit, RES@ in CPSR [AArch32 only]
bits (1) E, // Endianness bit [AArch32 only]
bits (5) M // Mode field [AArch32 only]

shared/functions/system/SendEvent

RES@ in SPSR and CPSR]

// Signal an event to all PEs in a multiprocessor system to set their Event Registers.
// When a PE executes the SEV instruction, it causes this function to be executed

SendEvent();

shared/functions/system/SendEventLocal
// SendEventLocal()

// Set the Tocal Event Register of this PE.

// When a PE executes the SEVL instruction, it causes this function to be executed

SendEventLocal()
EventRegister = '1';
return;

shared/functions/system/SetPSTATEFromPSR
// SetPSTATEFromPSR()
// Set PSTATE based on a PSR value

SetPSTATEFromPSR(bits(32) spsr)

PSTATE.SS = DebugExceptionReturnSS(spsr);

if I1legalExceptionReturn(spsr) then
PSTATE.IL = '1'";
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
if HaveUAOExt() then PSTATE.UAO = bit UNKNOWN;
if HaveDITExt() then PSTATE.DIT = bit UNKNOWN;

else
// State that is reinstated only on a legal exception return

11-464

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

PSTATE.IL = spsr<20>;
PSTATE.nRW = 'Q";
PSTATE.EL = spsr<3:2>;
PSTATE.SP = spsr<0>;
if HaveSSBSExt() then PSTATE.SSBS = spsr<12>;
// If PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the T bit is set to zero or
// copied from SPSR.
if PSTATE.IL == '1' && PSTATE.nRW == '1' then
if ConstrainUnpredictableBool() then spsr<5> = '0';
// State that is reinstated regardless of illegal exception return
PSTATE.<N,Z,C,V> = spsr<31:28>;
if HavePANExt() then PSTATE.PAN = spsr<22>;
PSTATE.<D,A,I,F> = spsr<9:6>;
return;
shared/functions/system/SpeculationBarrier

SpeculationBarrier();

shared/functions/system/SynchronizeContext

SynchronizeContext();

shared/functions/system/SynchronizeErrors

// Implements the error synchronization event.

SynchronizeErrors();
shared/functions/system/TakeUnmaskedPhysicalSErrorinterrupts
// Take any pending unmasked physical SError interrupt
TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);
shared/functions/system/TakeUnmaskedSErrorinterrupts

// Take any pending unmasked physical SError interrupt or unmasked virtual SError
// interrupt.

TakeUnmaskedSErrorInterrupts();
shared/functions/system/ThisInstr

bits(32) ThisInstr();

shared/functions/system/ThisInstrLength

integer ThisInstrLength();

shared/functions/system/Unreachable
Unreachable()
assert FALSE;
shared/functions/system/UsingAArch32
// UsingAArch32()
// Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

booTlean UsingAArch32()

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-465
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

boolean aarch32 = (PSTATE.nRW == '1");

if !HaveAnyAArch32() then assert !aarch32;

if HighestELUsingAArch32() then assert aarch32;
return aarch32;

shared/functions/system/WaitForEvent

// WaitForEvent()
Y ——
// PE suspends its operation and enters a low-power state
// if the Event Register is clear when the WFE is executed

WaitForEvent()
if EventRegister == '0' then
EnterLowPowerState();
return;

shared/functions/system/WaitForinterrupt

// WaitForInterrupt()
Y
// PE suspends its operation to enter a low-power state
// until a WFI wake-up event occurs or the PE is reset

WaitForInterrupt()
EnterLowPowerState();
return;

shared/functions/unpredictable/ConstrainUnpredictable

// Return the appropriate Constraint result to control the caller's behavior. The return value
// is IMPLEMENTATION DEFINED within a permitted 1ist for each UNPREDICTABLE case.

// (The permitted 1ist is determined by an assert or case statement at the call site.)
Constraint ConstrainUnpredictable();

shared/functions/unpredictable/ConstrainUnpredictableBits

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
// If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
// value is always an allocated value; that is, one for which the behavior is not itself

// CONSTRAINED.

(Constraint,bits(width)) ConstrainUnpredictableBits();

shared/functions/unpredictable/ConstrainUnpredictableBool

// ConstrainUnpredictableBool()
/!

// This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.
boolean ConstrainUnpredictableBool()

¢ = ConstrainUnpredictable();
assert ¢ IN {Constraint_TRUE, Constraint_FALSE};
return (c == Constraint_TRUE);

shared/functions/unpredictable/ConstrainUnpredictableinteger

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
// the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
// Tow to high, inclusive.

(Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high);

11-466 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/unpredictable/Constraint

enumeration Constraint {// General
Constraint_NONE, // Instruction executes with
// no change or side-effect to its described

behavior
Constraint_UNKNOWN, // Destination register has UNKNOWN value
Constraint_UNDEF, // Instruction is UNDEFINED
Constraint_UNDEFELQ, // Instruction is UNDEFINED at EL@ only
Constraint_NOP, // Instruction executes as NOP

Constraint_TRUE,

Constraint_FALSE,

Constraint_DISABLED,

Constraint_UNCOND, // Instruction executes unconditionally
Constraint_COND, // Instruction executes conditionally
Constraint_ADDITIONAL_DECODE, // Instruction executes with additional decode
// Load-store

Constraint_WBSUPPRESS, Constraint_FAULT,

Constraint_MPU_FAULT, // Raise MPU fault
Constraint_MPU_ATTR_UNKNOWN, // MPU Attribute is UNKNOWN

// IPA too Targe

Constraint_FORCE, Constraint_FORCENOSLCHECK};

shared/functions/vector/AdvSIMDExpandimm

// AdvSIMDExpandImm()
/R

bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
case cmode<3:1> of

when '000'
imm64 = Replicate(Zeros(24):imm8, 2);
when '001'
imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
when '010'
imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
when '011'
imm64 = Replicate(imm8:Zeros(24), 2);
when '100'
imm64 = Replicate(Zeros(8):imm8, 4);
when '101'
imm64 = Replicate(imm8:Zeros(8), 4);
when '110'
if cmode<@> == 'Q' then
imm64 = Replicate(Zeros(16):imm8:0nes(8), 2);
else
imm64 = Replicate(Zeros(8):imm8:0nes(16), 2);
when '111'

if cmode<@> == '0' && op == '0' then
imm64 = Replicate(imm8, 8);
if cmode<0> == '0' && op == '1' then
imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0@>, 8);
imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
if cmode<@> == '1' & op == '0Q' then
imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
imm64 = Replicate(imm32, 2);
if cmode<@> == '1' && op == '1' then
if UsingAArch32() then ReservedEncoding();
imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

return immé4;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-467
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

shared/functions/vector/PolynomialMult

// PolynomialMult()
/e —

bits(M+N) PolynomialMult(bits(M) opl, bits(N) op2)
result = Zeros(M+N);
extended_op2 = ZeroExtend(op2, M+N);
for i=0 to M-1
if opl<i> == '1' then
result = result EOR LSL(extended_op2, i);
return result;

shared/functions/vector/SatQ

// satQQ)
/] ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

shared/functions/vector/SignedSatQ

// SignedSatQ()
/] ============

(bits(N), boolean) SignedSatQ(integer i, integer N)

if i > 2A(N-1) - 1 then

result = 2A(N-1) - 1; saturated = TRUE;
elsif i < -(2A(N-1)) then

result = -(2A(N-1)); saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

shared/functions/vector/UnsignedRSqrtEstimate

// UnsignedRSqrtEstimate()
/!

bits(N) UnsignedRSqrtEstimate(bits(N) operand)
assert N IN {16,32};
if operand<N-1:N-2> == '00' then // Operands <= Ox3FFFFFFF produce OxFFFFFFFF
result = Ones(N);
else
// input is in the range 0x40000000 .. Oxffffffff representing [0.25 .. 1.0)

// estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
case N of
when 16 estimate = RecipSqrtEstimate(UInt(operand<15:7>));
when 32 estimate = RecipSqrtEstimate(UInt(operand<31:23>));

// result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
result = estimate<8:0> : Zeros(N-9);

return result;

shared/functions/vector/UnsignedRecipEstimate

// UnsignedRecipEstimate()
/!

bits(N) UnsignedRecipEstimate(bits(N) operand)
assert N IN {16,32};

11-468 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

if operand<N-1> == 'Q' then // Operands <= Ox7FFFFFFF produce OxFFFFFFFF
result = Ones(N);

else
// input is in the range 0x80000000 .. Oxffffffff representing [0.5 .. 1.0)

// estimate is in the range 256 to 511 representing [1.0 .. 2.0)
case N of

when 16 estimate = RecipEstimate(UInt(operand<15:7>));

when 32 estimate = RecipEstimate(UInt(operand<31:23>));

// result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
result = estimate<8:0> : Zeros(N-9);

return result;

shared/functions/vector/UnsignedSatQ

// UnsignedSatQ()
/] =mm=mmmmmme===

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2AN - 1 then
result = 2AN - 1; saturated = TRUE;
elsif i < @ then
result = @; saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

1.2.4 shared/translation

This section includes the following pseudocode functions:

. shared/translation/attrs/CombineS1S2AttrHints.

. shared/translation/attrs/CombineS1S2Device on page 11-470.

. shared/translation/attrs/LongConvertAttrsHints on page 11-470.
. shared/translation/attrs/MemAttrDefaults on page 11-471.

. shared/translation/attrs/S1CacheDisabled on page 11-471.

. shared/translation/attrs/S2AttrDecode on page 11-471.

. shared/translation/attrs/S2CacheDisabled on page 11-472.

. shared/translation/attrs/S2ConvertAttrsHints on page 11-472.

. shared/translation/attrs/S2MPUAttrDecode on page 11-472.

. shared/translation/attrs/S2MPUConvertAttrsHints on page 11-473.

. shared/translation/attrs/ShortConvertAttrsHints on page 11-474.
. shared/translation/attrs/WalkAttrDecode on page 11-474.
. shared/translation/translation/HasS2 Translation on page 11-474.

. shared/translation/translation/Havel 6bitVMID on page 11-475.

. shared/translation/translation/PAMax on page 11-475.

. shared/translation/translation/S1TranslationRegime on page 11-475.
. shared/translation/translation/VAMax on page 11-475.

. shared/translation/validation/HighestELAccess on page 11-475.

shared/translation/attrs/CombineS1S2AttrHints

// CombineS1S2AttrHints()
//

// Combines cacheability attributes and allocation hints from stage 1 and stage 2

MemAttrHints CombineS1S2AttrHints(MemAttrHints sldesc, MemAttrHints s2desc, AccType s2acctype)

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-469
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

MemAttrHints result;

if s2desc.attrs == '01' || sldesc.attrs == '01' then

result.attrs = bits(2) UNKNOWN;

// Reserved

elsif s2desc.attrs == MemAttr_NC || sldesc.attrs == MemAttr_NC then

result.attrs = MemAttr_NC;

// Non-cacheable

elsif s2desc.attrs == MemAttr_WT || sldesc.attrs == MemAttr_WT then

result.attrs = MemAttr_WT;
else
result.attrs = MemAttr_WB;

if result.attrs == MemAttr_NC then
result.hints = MemHint_No;
else
result.hints = sldesc.hints;
result.transient = sldesc.transient;

return result;

// Write-through

// Write-back

shared/translation/attrs/CombineS1S2Device

// CombineS1S2Device()
//

// Combines device types from stage 1 and stage 2

DeviceType CombineS1S2Device(DeviceType sldevice, DeviceType s2device)

if s2device == DeviceType_nGnRnE || sldevice == DeviceType_nGnRnE then

result = DeviceType_nGnRnE;

elsif s2device == DeviceType_nGnRE || sldevice == DeviceType_nGnRE then

result = DeviceType_nGnRE;

elsif s2device == DeviceType_nGRE || sldevice == DeviceType_nGRE then

result = DeviceType_nGRE;
else
result = DeviceType_GRE;

return result;

shared/translation/attrs/LongConvertAttrsHints

// LongConvertAttrsHints()
/!

// Convert the Tong attribute fields for Normal memory as used in the MAIR fields

// to orthogonal attributes and hints

MemAttrHints LongConvertAttrsHints(bits(4) attrfield, AccType acctype)

assert !IsZero(attrfield);
MemAttrHints result;
if SlCacheDisabled(acctype) then
result.attrs = MemAttr_NC;
result.hints = MemHint_No;
else
if attrfield<3:2> == '00' then
result.attrs = MemAttr_WT;
result.hints = attrfield<l:0>;
result.transient = TRUE;
elsif attrfield<3:0> == '0100' then
result.attrs = MemAttr_NC;
result.hints = MemHint_No;
result.transient = FALSE;
elsif attrfield<3:2> == '01' then
result.attrs = MemAttr_WB;
result.hints = attrfield<1:0>;
result.transient = TRUE;
else
result.attrs = attrfield<3:2>;

// Force Non-cacheable

// Write-through transient

// Non-cacheable (no allocate)

// Write-back transient

// Write-through/Write-back non-transient

11-470

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0600A.c
ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

result.hints = attrfield<l:0>;
result.transient = FALSE;

return result;

shared/translation/attrs/MemAttrDefaults

// MemAttrDefaults()

]/ =================

// Supply default values for memory attributes, including overriding the shareability attributes
// for Device and Non-cacheable memory types.

MemoryAttributes MemAttrDefaults(MemoryAttributes memattrs)

if memattrs.memtype == MemType_Device then
memattrs.inner = MemAttrHints UNKNOWN;
memattrs.outer = MemAttrHints UNKNOWN;
memattrs.shareable = TRUE;
memattrs.outershareable = TRUE;
else
memattrs.device = DeviceType UNKNOWN;
if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
memattrs.shareable = TRUE;
memattrs.outershareable = TRUE;

return memattrs;

shared/translation/attrs/S1CacheDisabled

// S1lCacheDisabled()
/] =m=mm=mmmmmmeames

boolean S1CacheDisabled(AccType acctype)
enable = if acctype == AccType_IFETCH then SCTLR[].I else SCTLR[].C;
return enable == '0';

shared/translation/attrs/S2AttrDecode

// S2AttrDecode()
/] ====m=sm======
// Converts the Stage 2 attribute fields into orthogonal attributes and hints

MemoryAttributes S2AttrDecode(bits(2) SH, bits(4) attr, AccType acctype)
MemoryAttributes memattrs;
apply_force_writeback = HaveStage2MemAttrControl() &% HCR_EL2.FWB == '1';

// Device memory
if (apply_force_writeback && attr<2> == '0"') || attr<3:2> == '00' then
memattrs.memtype = MemType_Device;
case attr<1:0> of
when '00' memattrs.device = DeviceType_nGnRnE;
when '01' memattrs.device = DeviceType_nGnRE;
when '10' memattrs.device = DeviceType_nGRE;
when '11' memattrs.device = DeviceType_GRE;

// Normal memory
elsif apply_force_writeback then
if attr<2> == '1' then
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = attr<1:0>;
memattrs.outer.attrs = attr<1:0>;
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10"';
elsif attr<1:0> != '00' then

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-471
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

memattrs.memtype = MemType_Normal;
memattrs.outer = S2ConvertAttrsHints(attr<3:2>, acctype);
memattrs.inner = S2ConvertAttrsHints(attr<1:0>, acctype);
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10';

else
memattrs = MemoryAttributes UNKNOWN; // Reserved

return MemAttrDefaults(memattrs);

shared/translation/attrs/S2CacheDisabled

// S2CacheDisabled()
/] =mmmmmmmmmmmenmes

boolean S2CacheDisabled(AccType acctype)
disable = if acctype == AccType_IFETCH then HCR_EL2.ID else HCR_EL2.(CD;
return disable == '1'

shared/translation/attrs/S2ConvertAttrsHints

// S2ConvertAttrsHints()
//
// Converts the attribute fields for Normal memory as used in stage 2
// descriptors to orthogonal attributes and hints

MemAttrHints S2ConvertAttrsHints(bits(2) attr, AccType acctype)
assert attr != '00';

MemAttrHints result;

if S2CacheDisabled(acctype) then // Force Non-cacheable
result.attrs = MemAttr_NC;
result.hints = MemHint_No;
else
case attr of
when '01' // Non-cacheable (no allocate)
result.attrs = MemAttr_NC;
result.hints = MemHint_No;
when '10' // Write-through
result.attrs = MemAttr_WT;
result.hints = MemHint_RWA;
when '11' // Write-back
result.attrs = MemAttr_WB;
result.hints = MemHint_RWA;

result.transient = FALSE;

return result;

shared/translation/attrs/S2MPUAttrDecode

// S2MPUAttrDecode()
/] ==m=m=mm=memm====
// Derives stage 2 MPU attributes, using the MAIR, to orthogonal attributes and hints.

MemoryAttributes S2MPUAttrDecode(bits(2) SH, bits(3) attrIndx, AccType acctype)

MemoryAttributes memattrs;

apply_force_writeback = HaveStage2MemAttrControl() &% HCR_EL2.FWB == '1';
memattrs.is_fwb = FALSE;

index = 8 « UInt(attrIndx);

attrfield = MAIR_EL2<index+7:index>;

if ((attrfield<7:4> != '0000' && attrfield<3:0> == '0000') ||
(attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then

11-472 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

// Reserved, maps to an allocated value
(-, attrfield) = ConstrainUnpredictableBits();

if attrfield<7:4> == '0000' then

// Device memory

memattrs.memtype = MemType_Device;

case attrfield<3:0> of
when '0000' memattrs.device = DeviceType_nGnRnE;
when '0100' memattrs.device = DeviceType_nGnRE;
when '1000' memattrs.device = DeviceType_nGRE;
when '1100' memattrs.device = DeviceType_GRE;
otherwise Unreachable(); // Reserved, handled above

elsif apply_force_writeback then
if attrfield<7:4> != attrfield<3:0> then
memattrs.inner = MemAttrHints UNKNOWN;
memattrs.outer = MemAttrHints UNKNOWN;
memattrs.shareable = boolean UNKNOWN;
memattrs.outershareable = boolean UNKNOWN;
else
// Check whether FWB should be applied
memattrs.is_fwb = if attrfield<7:6> == '11" then TRUE else FALSE;
// If FWB is enabled, then cacheability control is applied after applying FWB in
// CombineS1S2Desc(). Else cacheability is applied in S2MPUConvertAttrsHints()
if !memattrs.is_fwb then
memattrs.memtype = MemType_Normal;
memattrs.inner = S2MPUConvertAttrsHints(attrfield<3:0>, acctype);
memattrs.outer = S2MPUConvertAttrsHints(attrfield<7:4>, acctype);
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10"';
else
memattrs.memtype = MemType_Normal;
memattrs.inner = S2MPUConvertAttrsHints(attrfield<3:0>, acctype);
memattrs.outer = S2MPUConvertAttrsHints(attrfield<7:4>, acctype);
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10';

return MemAttrDefaults(memattrs);

shared/translation/attrs/S2MPUConvertAttrsHints

// S2MPUConvertAttrsHints()
//
// Converts the attribute fields for Normal memory as used in stage 2 MPU to
// orthogonal attributes and hints

MemAttrHints S2MPUConvertAttrsHints(bits(4) attrfield, AccType acctype)
assert !IsZero(attrfield);

MemAttrHints result;

if S2CacheDisabled(acctype) then // Force Non-cacheable
result.attrs = MemAttr_NC;
result.hints = MemHint_No;

else
if attrfield<3:2> == '00' then // Write-through
result.attrs = MemAttr_WT;
result.hints = MemHint_RWA;

elsif attrfield<3:0> == '0100' then // Non-cacheable (no allocate)
result.attrs = MemAttr_NC;
result.hints = MemHint_No;

elsif attrfield<3:2> == '01' || attrfield<3:2> == '11' then // Write-back
result.attrs = MemAttr_WB;
result.hints = MemHint_RWA;

else // Write-through

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-473
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

result.attrs = MemAttr_WT;
result.hints = MemHint_RWA;

result.transient = FALSE;
return result;

shared/translation/attrs/ShortConvertAttrsHints

// ShortConvertAttrsHints()
//
// Converts the short attribute fields for Normal memory as used in the TTBR and
// TEX fields to orthogonal attributes and hints

MemAttrHints ShortConvertAttrsHints(bits(2) RCN, AccType acctype, boolean secondstage)
MemAttrHints result;

if (!secondstage & S1lCacheDisabled(acctype)) || (secondstage && S2CacheDisabled(acctype)) then
// Force Non-cacheable
result.attrs = MemAttr_NC;
result.hints = MemHint_No;
else
case RGN of
when '00' // Non-cacheable (no allocate)
result.attrs = MemAttr_NC;
result.hints = MemHint_No;
when '01' // Write-back, Read and Write allocate
result.attrs = MemAttr_WB;
result.hints = MemHint_RWA;
when '10' // Write-through, Read allocate
result.attrs = MemAttr_WT;
result.hints = MemHint_RA;
when '11' // Write-back, Read allocate
result.attrs = MemAttr_WB;
result.hints = MemHint_RA;

result.transient = FALSE;

return result;

shared/translation/attrs/WalkAttrDecode

// WalkAttrDecode()
/] =====m=m=m====

MemoryAttributes WalkAttrDecode(bits(2) SH, bits(2) ORGN, bits(2) IRGN, boolean secondstage)
MemoryAttributes memattrs;
AccType acctype = AccType_NORMAL;
memattrs.memtype = MemType_Normal;
memattrs.inner = ShortConvertAttrsHints(IRGN, acctype, secondstage);
memattrs.outer = ShortConvertAttrsHints(ORCN, acctype, secondstage);
memattrs.shareable = SH<1> == '1';

memattrs.outershareable = SH == '10';

return MemAttrDefaults(memattrs);

shared/translation/translation/HasS2Translation
// HasS2Translation()

// Returns TRUE if stage 2 translation is present for the current translation regime

11-474 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

boolean HasS2Translation()
return (EL2Enabled() && PSTATE.EL IN {ELO,EL1});

shared/translation/translation/Have16bitVMID

// Returns TRUE if EL2 and support for a 16-bit VMID are implemented.
boolean Havel6bitVMID();
shared/translation/translation/PAMax

// PAMax()

// Returns the IMPLEMENTATION DEFINED upper 1imit on the physical address
// size for this processor, as log2().

integer PAMax()
return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";
shared/translation/translation/S1TranslationRegime
// SlTranslationRegime()

//

// Stage 1 translation regime for the given Exception Tevel

bits(2) SlTranslationRegime(bits(2) el)
if el != ELO then
return el;
else
return EL1;

// SlTranslationRegime()
/!
// Returns the Exception level controlling the current Stage 1 translation regime. For the most
// part this is unused in code because the system register accessors (SCTLR[], etc.) implicitly
// return the correct value.

bits(2) SlTranslationRegime()
return S1TranslationRegime(PSTATE.EL);
shared/translation/translation/VAMax
// VAMax()

// Returns the IMPLEMENTATION DEFINED upper limit on the virtual address
// size for this processor, as log2().

integer VAMax()
return integer IMPLEMENTATION_DEFINED "Maximum Virtual Address Size";
shared/translation/validation/HighestELAccess
// HighestELAccess()

// Returns TRUE if the access is from the highest EL in the translation regime, otherwise
// FALSE.

boolean HighestELAccess(boolean secondstage)
if secondstage then return FALSE;
elsif SiTranslationRegime() == PSTATE.EL then return TRUE;
else return FALSE;

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. 11-475
ID090320 Non-Confidential

Armv8-R AArch64 Pseudocode
11.2 Shared pseudocode

11.2.5 See also

In the Arm Architecture Reference Manual

. Pseudocode for AArch64 operation.

. Pseudocode description of debug exceptions.

. Pseudocode description of general memory System instructions.
. Appendix K13 Arm Pseudocode Definition.

11-476 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

Glossary

A64 instruction A word that specifies an operation to be performed by a PE that is executing in an Exception level that is using
AArch64. A64 instructions must be word-aligned.

Advanced SIMD A feature of the Arm architecture that provides SIMD operations on a register file of SIMD and floating-point
registers. Where an implementation supports both Advanced SIMD and floating-point instructions, these
instructions operate on the same register file.

Architecturally mapped
Where this manual describes a register as being architecturally mapped to another register, this indicates that, in an
implementation that supports both of the registers, the two registers access the same state.

Architecturally UNKNOWN
An architecturally UNKNOWN value is a value that is not defined by the architecture but must meet the requirements
of the definition of UNKNOWN. Implementations can define the value of the field, but are not required to do so.

See also IMPLEMENTATION DEFINED.

CONSTRAINED UNPREDICTABLE
Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that
are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Execution at Non-secure EL1 or ELO of an instruction that is CONSTRAINED UNPREDICTABLE can be implemented
as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE
and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.
See also UNPREDICTABLE.

Armv8-R AArch64
Architecture described in this supplement.

EL1 MPU Memory Protection Unit that can be configured from EL1 or EL2. EL1 MPU is used by software running at EL1.
EL2 MPU Memory Protection Unit that can be configured only from EL2. EL2 MPU is used by software running at EL2.
ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. Glossary-477

1D090320 Non-Confidential

Glossary

Flat address mapping
Is where the physical address for every access is equal to its virtual address.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALL CAPITALS.

Intermediate physical address (IPA)
An implementation of virtualization, the address to which a Guest OS maps a VA. A hypervisor might then map the
IPA to a PA. Typically, the Guest OS is unaware of the translation from IPA to PA.

See also Physical address (PA), Virtual address (VA).

Load/Store architecture
An architecture where data-processing operations only operate on register contents, not directly on memory
contents.

Memory Protection Unit (MPU)
A hardware unit whose registers provide simple control of a limited number of protection regions in memory.

MPU See Memory Protection Unit (MPU).
PA See Physical address (PA).
PE See Processing element (PE).

Physical address (PA)
An address that identifies a location in the physical memory map.

See also Intermediate physical address (IPA), Virtual address (VA).

PMSA
Protected Memory System Architecture - implementing an MPU

Processing element (PE)
The abstract machine defined in the Arm architecture, as documented in an Arm Architecture Reference Manual. A
PE implementation compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm Architecture Reference Manual.

Protection region
A memory region whose position, size, and other properties are defined by Memory Protection Unit registers.

Protection Unit See Memory Protection Unit (MPU).

RESO0 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

. Is RESO in some defined architectural context.

. Has different defined behavior in a different architectural context.
Note

. RESO is not used in descriptions of instruction encodings.

. Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RESO in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

Glossary-478 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

RES1

Glossary

This means the definition of RESO for fields in read/write registers is:

If a bit is RESO in all contexts
For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:
1. The bit is hardwired to 0. In this case:

. Reads of the bit always return 0.
. Writes to the bit are ignored.
2. The bit can be written. In this case:
. An indirect write to the register sets the bit to 0.
. A read of the bit returns the last value successfully written, by either a direct or an

indirect write, to the bit.
If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

. A direct write to the bit must update a storage location associated with the bit.

. The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RESO bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

If a bit is RESO only in some contexts
For a bit in a read/write register, when the bit is described as RESO:
. An indirect write to the register sets the bit to 0.
. A read of the bit must return the value last successfully written to the bit, by either a direct or
an indirect write, regardless of the use of the register when the bit was written.
If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

. A direct write to the bit must update a storage location associated with the bit.

. While the use of the register is such that the bit is described as RESO, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RESI, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

. Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.
. The value of the bit can be written, and a read returns the last value written to the bit.

The RESO description can apply to bits or fields that are read-only, or are write-only:
. For a read-only bit, RESO indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.
. For a write-only bit, RESO indicates that software must treat the bit as SBZ.

A bit that is RESO in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

. Must not rely on the bit reading as 0.
. Must use an SBZP policy to write to the bit.

This RESO description can apply to a single bit, or to a field for which each bit of the field must be treated as RESO.
In body text, the term RESO is shown in SMALL CAPITALS.
See also Read-As-Zero (RAZ), RES1, Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. Glossary-479
Non-Confidential

Glossary

Within the architecture, there are some cases where a register bit or field:

. Is RES1 in some defined architectural context.

. Has different defined behavior in a different architectural context.
Note

. RES1 is not used in descriptions of instruction encodings.

. Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES1 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1.

2.

The bit is hardwired to 1. In this case:

. Reads of the bit always return 1.

. Writes to the bit are ignored.

The bit can be written. In this case:

. An indirect write to the register sets the bit to 1.

. A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.
If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

. A direct write to the bit must update a storage location associated with the bit.

. The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

An indirect write to the register sets the bit to 1.

A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

—— Note

As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

A direct write to the bit must update a storage location associated with the bit.

While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.
The value of the bit can be written, and a read returns the last value written to the bit.

Glossary-480

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

Glossary

The RESI description can apply to bits or fields that are read-only, or are write-only:
. For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.
. For a write-only bit, RES] indicates that software must treat the bit as SBO.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

. Must not rely on the bit reading as 1.
. Must use an SBOP policy to write to the bit.

This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.
In body text, the term RES1 is shown in SMALL CAPITALS.
See also Read-As-One (RAO), RESO, Should-Be-One-or-Preserved (SBOP), UNKNOWN.

RAZ See Read-As-Zero (RAZ).

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.

Software:
. Can rely on the field reading as all Os
. Must use a SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s.

Software:
. Can rely on the field reading as all 1s.
. Must use a SBOP policy to write to the field.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.
SBO See Should-Be-One (SBO).
SBOP See Should-Be-One-or-Preserved (SBOP).

Should-Be-Zero-or-Preserved (SBZP)
From the introduction of the Armv8 architecture, the description Should-Be-Zero-or-Preserved (SBZP) is
superseded by RESO.

Note

The Armv7 Large Physical Address Extension modified the definition of SBZP for register bits that are SBZP in
some but not all contexts. The behavior of these bits is covered by the RESO definition, but not by the generic
definition of SBZP given here.

Hardware must ignore writes to the field.

When writing this field, software must either write all Os to this field or, if the register is being restored from a
previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0Os.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-One (SBO)
Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 1s. If software writes a value that is not all 1s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

ARM DDI 0600A.c Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. Glossary-481
ID090320 Non-Confidential

Glossary

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.
See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-One-or-Preserved (SBOP)

RISC
SBZP
SBZ

From the introduction of the Armv§ architecture, the description Should-Be-One-or-Preserved (SBOP) is
superseded by RES].

Note

The Armv7 Large Physical Address Extension modified the definition of SBOP for register bits that are SBOP in
some but not all contexts. The behavior of these bits is covered by the RES! definition, but not by the generic
definition of SBOP given here.

Hardware must ignore writes to the field.

When writing this field, software must either write all 1s to this field or, if the register is being restored from a
previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.
Reduced Instruction Set Computer.
See Should-Be-Zero-or-Preserved (SBZP).

See Should-Be-Zero (SBZ).

Should-Be-Zero (SBZ)

Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all Os. If software writes a value that is not all Os, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all Os.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Simple sequential execution

Translation

Translation table

The behavior of an implementation that fetches, decodes and completely executes each instruction before
proceeding to the next instruction. Such an implementation performs no speculative accesses to memory, including
to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the
theoretical execution model that the architecture is based on, and Arm does not expect this model to correspond to
a realistic implementation of the architecture.

Defines the process of generating a valid output memory address from an input address. It also defines the behavior
when it is not possible to generate a valid output address. Translation can be implemented using an MMU or an
MPU.

A table held in memory that defines the properties of memory areas of various sizes from 1KB to 1MB.

Translation table walk

The process of doing a full translation table lookup. It is performed automatically by hardware.

UNDEFINED Indicates cases where an attempt to execute a particular encoding bit pattern generates an exception, that is taken to
the current Exception level, or to the default Exception level for taking exceptions if the UNDEFINED encoding was
executed at ELO. This applies to:

. Any encoding that is not allocated to any instruction.
. Any encoding that is defined as never accessible at the current Exception level.
. Some cases where an enable, disable, or trap control means an encoding is not accessible at the current
Exception level.
Glossary-482 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c

Non-Confidential 1D090320

UNKNOWN

UNPREDICTABLE

Validation

Glossary

If the generated exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined
Instruction exception.

Note

On reset, the default Exception level for taking exceptions from ELO is EL1. However, an implementation might
include controls that can change this, effectively making EL1 inactive.

In body text, the term UNDEFINED is shown in SMALL CAPITALS.

An UNKNOWN value does not contain valid data, and can vary from implementation to implementation. An
UNKNOWN value must not return information that cannot be accessed at the current or a lower level of privilege using
instructions that are not UNPREDICTABLE, are not CONSTRAINED UNPREDICTABLE, and do not return UNKNOWN
values.

An UNKNOWN value can vary from moment to moment, and instruction to instruction, unless it has previously been
assigned, other than at reset, to one of the following registers:

. Any of the general-purpose registers.

. Any of the Advanced SIMD and floating-point registers.
. Any of the Scalable Vector Extension registers.

. Any of the PSTATE N, Z, C, or V flags.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.
In body text, the term UNKNOWN is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNPREDICTABLE.

Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.
An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

Execution at Non-secure EL1 or ELO of an instruction that is UNPREDICTABLE can be implemented as generating a
trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE and is not
CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

In an address translation context, validation refers to translation that is implemented by the MPU in which the input
address and output address are always the same.

Virtual address (VA)

An address generated by an Arm PE. This means it is an address that might be held in the program counter of the
PE. For a PMSA implementation, the virtual address is identical to the physical address.

See also Intermediate physical address (IPA), Physical address (PA).

ARM DDI 0600A.c
ID090320

Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. Glossary-483
Non-Confidential

Glossary

Glossary-484 Copyright © 2019-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.c
Non-Confidential ID090320

	Arm Architecture Reference Manual Supplement Armv8, for Armv8-R AArch64 architecture profile
	Contents
	Preface
	About this supplement
	Using this book
	Part A, Introduction and Architecture Overview
	Part B, Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
	Part C, Protected Memory System Architecture
	Part D, Virtual Memory System Architecture
	Part E, A64 Instruction Set for Armv8-R AArch64
	Part F, The A64 System Instructions
	Part G, Armv8-R AArch64 System Registers
	Part H, Armv8-R AArch64 External Debug Registers
	Part I, Architectural Pseudocode
	Glossary

	Conventions
	Typographic conventions
	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this book

	Part A: Introduction and Architecture Overview
	A1: Architecture Overview
	A1.1 About the Armv8 architecture
	A1.1.1 See also

	A1.2 Architecture profiles
	A1.3 The Armv8-R AArch64 architecture profile
	A1.3.1 See also

	A1.4 Architecture extensions
	A1.4.1 See also

	A1.5 Supported extensions in Armv8-R AArch64
	A1.5.1 Advanced SIMD and Floating-point extensions
	A1.5.2 See also

	Part B: Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
	B1: Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
	B1.1 Differences from the Armv8-A AArch64 application level architecture
	B1.1.1 Differences from the Armv8-A AArch64 application level programmers’ model
	B1.1.2 Differences from the Armv8-A AArch64 application level memory model
	B1.1.3 See also

	B1.2 Differences from the Armv8-A AArch64 system level architecture
	B1.2.1 Differences from the Armv8-A AArch64 system level programmers’ model
	B1.2.2 Differences from the Armv8-A AArch64 system level memory model
	B1.2.3 Protected Memory System Architecture, PMSAv8-64
	B1.2.4 See also

	Part C: Armv8-R AArch64 Protected Memory System Architecture
	C1: Protected Memory System Architecture
	C1.1 About the Protected Memory System Architecture
	C1.1.1 Protection regions
	C1.1.2 Address range

	C1.2 Memory Protection Unit
	C1.2.1 MPU Default Cacheability

	C1.3 Address translation regimes
	C1.4 Default memory map
	C1.5 Armv8-A memory view
	C1.6 MPU memory translations and faults
	C1.6.1 EL1 MPU memory translations
	C1.6.2 EL1 MPU faults
	C1.6.3 MPU fault check for the stage 1 Secure EL1&0 translation
	C1.6.4 EL2 MPU memory translations
	C1.6.5 EL2 MPU faults
	C1.6.6 MPU fault check for the stage 1 Secure EL2 translation
	C1.6.7 MPU fault check for the stage 2 Secure EL1&0 translation

	C1.7 Protection region attributes and access permissions
	C1.7.1 Protection region attributes
	C1.7.2 Access control
	C1.7.3 Memory attributes and access permission mappings
	C1.7.4 Combining memory attributes and access permissions
	C1.7.5 Enabling and disabling the caching of memory accesses
	C1.7.6 Enabling and disabling stages in translation regimes

	C1.8 MPU fault encodings
	C1.8.1 See also

	C1.9 PMSAv8-64 implications for caches
	C1.9.1 Cache line length

	C1.10 Address tagging and pointer authentication support
	C1.10.1 See also

	C1.11 Security model
	C1.11.1 Secure EL2
	C1.11.2 Secure EL2 translation
	C1.11.3 See also

	C1.12 Virtualization
	C1.12.1 Support for Guest operating systems

	Part D: Armv8-R AArch64 Virtual Memory System Architecture
	D1: Virtual Memory System Architecture
	D1.1 About the Virtual Memory System Architecture
	D1.2 Architecture extensions in VMSAv8-64
	D1.3 Support for VMSAv8-64 in Armv8-R AArch64
	D1.4 System registers access control
	D1.5 Virtualization
	D1.6 System operations
	D1.6.1 Address translation instructions
	D1.6.2 TLB maintenance instructions
	D1.6.3 See also

	Part E: A64 Instruction Set for Armv8-R AArch64
	E1: A64 Instruction Set for Armv8-R AArch64
	E1.1 Instruction encodings
	E1.2 A64 instructions in Armv8-R AArch64
	E1.2.1 Data Full Barrier
	E1.2.2 Data Memory Barrier
	E1.2.3 Data Synchronization Barrier

	Part F: The A64 System Instructions
	F1: The A64 System Instructions
	F1.1 System instructions
	F1.1.1 Address translation instructions

	Part G: Armv8-R AArch64 System Registers
	G1: System Registers in a PMSA Implementation
	G1.1 System register groups
	G1.1.1 See also

	G1.2 Accessing MPU memory region registers
	G1.3 General system control registers
	G1.3.1 CPACR_EL1, Architectural Feature Access Control Register
	G1.3.2 CPTR_EL2, Architectural Feature Trap Register (EL2)
	G1.3.3 HCR_EL2, Hypervisor Configuration Register
	G1.3.4 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	G1.3.5 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	G1.3.6 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	G1.3.7 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0
	G1.3.8 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	G1.3.9 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
	G1.3.10 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	G1.3.11 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	G1.3.12 MAIR_EL1, Memory Attribute Indirection Register (EL1)
	G1.3.13 MAIR_EL2, Memory Attribute Indirection Register (EL2)
	G1.3.14 MPUIR_EL1, MPU Type Register (EL1)
	G1.3.15 MPUIR_EL2, MPU Type Register (EL2)
	G1.3.16 PRBAR_EL1, Protection Region Base Address Register (EL1)
	G1.3.17 PRBAR_EL2, Protection Region Base Address Register (EL2)
	G1.3.18 PRBAR<n>_EL1, Protection Region Base Address Register n (EL1), n = 1 - 15
	G1.3.19 PRBAR<n>_EL2, Protection Region Base Address Register n (EL2), n = 1 - 15
	G1.3.20 PRENR_EL1, Protection Region Enable Register (EL1)
	G1.3.21 PRENR_EL2, Protection Region Enable Register (EL2)
	G1.3.22 PRLAR_EL1, Protection Region Limit Address Register (EL1)
	G1.3.23 PRLAR_EL2, Protection Region Limit Address Register (EL2)
	G1.3.24 PRLAR<n>_EL1, Protection Region Limit Address Register n (EL1), n = 1 - 15
	G1.3.25 PRLAR<n>_EL2, Protection Region Limit Address Register n (EL2), n = 1 - 15
	G1.3.26 PRSELR_EL1, Protection Region Selection Register (EL1)
	G1.3.27 PRSELR_EL2, Protection Region Selection Register (EL2)
	G1.3.28 SCTLR_EL1, System Control Register (EL1)
	G1.3.29 SCTLR_EL2, System Control Register (EL2)
	G1.3.30 TCR_EL1, Translation Control Register (EL1)
	G1.3.31 TCR_EL2, Translation Control Register (EL2)
	G1.3.32 TTBR0_EL1, Translation Table Base Register 0 (EL1)
	G1.3.33 VSCTLR_EL2, Virtualization System Control Register (EL2)
	G1.3.34 VSTCR_EL2, Virtualization Secure Translation Control Register
	G1.3.35 VTCR_EL2, Virtualization Translation Control Register

	G1.4 Debug registers
	G1.4.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	G1.4.2 MDCR_EL2, Monitor Debug Configuration Register (EL2)
	G1.4.3 MDSCR_EL1, Monitor Debug System Control Register

	G1.5 Performance Monitors registers
	G1.5.1 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register
	G1.5.2 PMCR_EL0, Performance Monitors Control Register
	G1.5.3 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

	G2: System Registers in a VMSA Implementation
	G2.1 General system control registers
	G2.1.1 TTBR1_EL1, Translation Table Base Register 1 (EL1)

	Part H: Armv8-R AArch64 External Debug Registers
	H1: External Debug Registers Descriptions
	H1.1 About the external debug registers
	H1.2 External debug registers
	H1.2.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	H1.2.2 EDAA32PFR, External Debug Auxiliary Processor Feature Register
	H1.2.3 EDPFR, External Debug Processor Feature Register
	H1.2.4 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register
	H1.2.5 PMCR_EL0, Performance Monitors Control Register
	H1.2.6 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

	Part I: Architectural Pseudocode
	I1: Armv8-R AArch64 Pseudocode
	I1.1 Pseudocode for AArch64 operations
	I1.1.1 aarch64/debug
	I1.1.2 aarch64/exceptions
	I1.1.3 aarch64/functions
	I1.1.4 aarch64/instrs
	I1.1.5 aarch64/translation

	I1.2 Shared pseudocode
	I1.2.1 shared/debug
	I1.2.2 shared/exceptions
	I1.2.3 shared/functions
	I1.2.4 shared/translation
	I1.2.5 See also

	Glossary

