
RealView® Development Suite
Version 4.1

Getting Started Guide
Copyright © 2003-2011 ARM. All rights reserved.
ARM DUI 0255M

RealView Development Suite
Getting Started Guide

Copyright © 2003-2011 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned
herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Change History

Date Issue Confidentiality Change

September 2003 A Non-Confidential ARM® RealView® Developer Suite v2.0 Release

January 2004 B Non-Confidential RealView Developer Suite v2.1 Release

December 2004 C Non-Confidential RealView Developer Suite v2.2 Release

May 2005 D Non-Confidential RealView Developer Suite v2.2SP1 Release

March 2006 E Non-Confidential RealView Development Suite v3.0 Release

March 2007 F Non-Confidential RealView Development Suite v3.1 Release

February 2008 G Non-Confidential RealView Development Suite v3.1 Professional Release

September 2008 H Non-Confidential RealView Development Suite v4.0 Release

June 2009 I Non-Confidential RealView Development Suite v4.0 SP2 Release

6 November 2009 J Non-Confidential RealView Development Suite v4.0 SP3 Release

28 May 2010 K Non-Confidential RealView Development Suite v4.1 Release

30 September 2010 L Non-Confidential RealView Development Suite v4.1 SP1 Release

31 May 2011 M Non-Confidential RealView Development Suite v4.1 SP2 Release
ii Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such
information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

XVID Notice

THIS NOTICE IS FOR THE USE OF XVID. ARM IS ONLY DELIVERING XVID TO YOU FOR
CONVENIENCE ON CONDITION THAT YOU ACCEPT THAT IT IS NOT LICENSED TO YOU BY
ARM BUT THAT IT IS SUBJECT TO THE TERMS OF THE GNU GENERAL PUBLIC LICENSE
VERSION 2 AND MAY BE SUBJECT TO OTHER PROPRIETARY LICENCES. YOU EXPRESSLY
ASSUME ALL LIABILITIES AND RISKS WITH RESPECT TO YOUR USE AND DISTRIBUTION OF
XVID.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. iii
Non-Confidential

iv Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Contents
RealView Development Suite Getting Started
Guide

Preface
About this book .. viii
Feedback ... xiii

Chapter 1 Introduction
1.1 RealView Development Suite components ... 1-2
1.2 RealView Development Suite licensing ... 1-12
1.3 RealView Development Suite documentation ... 1-15
1.4 RealView Development Suite examples ... 1-18
1.5 ARM Profiler examples (RVDS Professional edition only) 1-21
1.6 Debug Interface support in RealView Debugger 1-22
1.7 Fixing problems with your RVDS environment .. 1-24

Chapter 2 Getting Started with RealView Development Suite
2.1 Building and debugging task overview .. 2-2
2.2 Using the example projects ... 2-6
2.3 Getting started with ARM Profiler (RVDS Professional edition only) 2-7

Chapter 3 Changes to RealView Development Suite
3.1 Processor support in RVDS v4.1 SP2 ... 3-2
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. v
Non-Confidential

Contents
3.2 Simulator support in RVDS v4.1 SP2 ... 3-3
3.3 ARM Compiler toolchain support in RVDS v4.1 SP2 3-4
3.4 RealView Debugger support in RVDS v4.1 SP2 .. 3-5
3.5 Documentation changes in RVDS v4.1 SP2 .. 3-6

Appendix A Using the armenv Tool
A.1 About the armenv tool .. A-2
A.2 Using the armenv tool ... A-3

Appendix B About Previous Releases
B.1 Changes between RVDS v4.1 SP1 and RVDS v4.1 B-3
B.2 Changes between RVDS v4.1 and RVDS v4.0 SP3 B-5
B.3 Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2 B-9
B.4 Changes between RVDS v4.0 SP2 and RVDS v4.0 SP1 B-12
B.5 Changes between RVDS v4.0 SP1 and RVDS v4.0 B-13
B.6 Changes between RVDS v4.0 and RVDS v3.1 Professional edition B-15
B.7 Changes between RVDS v3.1 Professional edition and RVDS v3.1 B-21
B.8 Changes between RVDS v3.1 and RVDS v3.0 SP1 B-22
B.9 Changes between RVDS v3.0 SP1 and RVDS v3.0 B-26
B.10 Changes between RVDS v3.0 and RealView Developer Suite v2.2 SP1 B-27
B.11 Changes between RealView Developer Suite v2.2 SP1 and RealView

Developer Suite v2.2 .. B-31
B.12 Changes between RealView Developer Suite v2.2 and RealView Developer

Suite v2.1 .. B-32
B.13 Changes between RealView Developer Suite v2.1 and RealView Developer

Suite v2.0 .. B-34
B.14 Changes between RealView Developer Suite v2.2 and ADS v1.2.1 B-36

Glossary
vi Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Preface

This preface introduces the ARM® RealView® Development Suite Getting Started
Guide, that shows you how to start using ARM RealView Development Suite (RVDS)
to manage software projects and to debug your application programs. It contains the
following sections:
• About this book on page viii
• Feedback on page xiii.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. vii
Non-Confidential

Preface
About this book
RVDS provides tools for building, debugging, and managing software development
projects targeting ARM architecture-based processors. This book contains:
• an introduction to the software components that make up RVDS
• a summary of the differences between RVDS v4.1 and previous versions of

RVDS
• a glossary of terms for users that are new to RVDS.

See also:
• Intended audience
• Using this book
• Typographical conventions on page ix
• Further reading on page ix.

Intended audience

This book has been written for developers who are using RVDS to manage development
projects for ARM architecture-based processors. It assumes that you are an experienced
software developer, but might not be familiar with the ARM development tools.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to RVDS components, licensing,
and documentation.

Chapter 2 Getting Started with RealView Development Suite
Read this chapter for an overview of the main tasks that you can do with
the RVDS tools. It also describes the example projects provided with
RVDS.

Chapter 3 Changes to RealView Development Suite
Read this chapter for a description of the changes between RVDS v4.1
SP1 and RVDS v4.1.

Appendix A Using the armenv Tool
Read this appendix for a description of how to use the armenv tool.

Appendix B About Previous Releases
Read this chapter for a description of previous RVDS versions.
viii Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Preface
Glossary An alphabetically arranged definition of terms used in the RVDS
documentation.

Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
ARM processor signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

... At the end of a path name ... denotes that the directories of
interest are below the last-specified directory name. The
unspecified path names are usually those that are different
between operating systems. For example:
install_dir\ARM\RVDS\Examples\...

In the middle of a path name ... denotes that additional
directories exist between the directory names specified. The
unspecified path names are usually version and build numbers and
platform-specific directory names. For example:
install_dir\ARM\RVD\Core\...\etc

Further reading

This section lists publications from both ARM and third parties.

See also:
• Infocenter, http://infocenter.arm.com for access to ARM documentation.
• ARM web site , http://www.arm.com for current errata, addenda, and Frequently

Asked Questions.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. ix
Non-Confidential

Preface
• ARM Glossary,
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html, for a
list of terms and acronyms specific to ARM.

ARM publications

See the following document for information on the FLEXnet license management
system that controls the use of ARM applications:
• FLEXnet for ARM® Tools License Management Guide (ARM DUI 0209).

Note
 Make sure that you use version 4.3 or later of this document for information on license
management in RVDS v4.1.

Note
 The FLEXnet license management system is owned by Flexera Software Inc.

This book is part of the RVDS documentation set. Other books in this suite include:

• ARM® Workbench IDE User Guide (ARM DUI 0330)

• ARM® Compiler toolchain Introducing the ARM® Compiler toolchain (ARM DUI
0529)

• ARM® Compiler toolchain Developing Software for ARM® Processors (ARM
DUI 0471)

• ARM® Compiler toolchain Using the Assembler (ARM DUI 0473)

• ARM® Compiler toolchain Assembler Reference (ARM DUI 0489)

• ARM® Compiler toolchain Using the Compiler (ARM DUI 0472)

• ARM® Compiler toolchain Building Linux Applications with ARM® Compiler
toolchain and GNU Libraries (ARM DUI 0483)

• ARM® Compiler toolchain Compiler Reference (ARM DUI 0491)

• ARM® Compiler toolchain Using ARM® C and C++ Libraries and Floating-Point
Support (ARM DUI 0475)

• ARM® Compiler toolchain ARM® C and C++ Libraries and Floating-Point
Support Reference (ARM DUI 0492)

• ARM® Compiler toolchain Using the Linker (ARM DUI 0474)
x Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Preface
• ARM® Compiler toolchain Linker Reference (ARM DUI 0493)

• ARM® Compiler toolchain Creating Static Software Libraries with armar (ARM
DUI 0476)

• ARM® Compiler toolchain Using the fromelf Image Converter (ARM DUI 0477)

• ARM® Compiler toolchain Errors and Warnings Reference (ARM DUI 0496)

• ARM® Compiler toolchain Migration and Compatibility (ARM DUI 0530)

• RealView® Debugger Essentials Guide (ARM DUI 0181)

• RealView® Debugger User Guide (ARM DUI 0153)

• RealView® Debugger Target Configuration Guide (ARM DUI 0182)

• RealView® Debugger Trace User Guide (ARM DUI 0322)

• RealView® Debugger RTOS Guide (ARM DUI 0323)

• RealView® Debugger Command Line Reference Guide (ARM DUI 0175)

• RealView® Development Suite Real-Time System Model User Guide (ARM DUI
0424)

• RealView® ARMulator® ISS User Guide (ARM DUI 0207).

For full information about the software interfaces and standards supported by ARM, see
install_dir\Documentation\Specifications\....

In addition, see the following documentation for specific information relating to ARM
products:

• ARM DSTREAM Setting Up the Hardware (ARM DUI 0481)

• ARM DSTREAM System and Interface Design Reference (ARM DUI 0499)

• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities
(ARM DUI 0498)

• ARM RVI and RVT Setting Up the Hardware (ARM DUI 0515)

• ARM RVI and RVT System and Interface Design Reference (ARM DUI 0517)

• ARM® Architecture Reference Manual, ARMv7-A™ and ARMv7-R™ edition (ARM
DDI 0406)

• ARM7-M™ Architecture Reference Manual (ARM DDI 0403)
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. xi
Non-Confidential

Preface
• ARM6-M™ Architecture Reference Manual (ARM DDI 0419)

• ARM® Reference Peripheral Specification (ARM DDI 0062)

• ARM datasheet or technical reference manual for your hardware device.

Other publications

For an introduction to ARM architecture, see Andrew N. Sloss, Dominic Symes and
Chris Wright, ARM System Developer's Guide: Designing and Optimizing System
Software (2004). Morgan Kaufmann, ISBN 1-558-60874-5.

For an essential handbook for system-on-chip designers using ARM processors and
engineers working with the ARM architecture, see Steve Furber, ARM system-on-chip
architecture (2nd edition, 2000). Addison Wesley, ISBN 0-201-67519-6.
xii Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Preface
Feedback
ARM welcomes feedback on both RVDS and its documentation.

See also:
• Feedback on RealView Development Suite
• Feedback on this book.

Feedback on RealView Development Suite

If you have any comments or suggestions about this product, contact your supplier and
give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms
and diagnostic procedures if appropriate.

You can also use the ARM Support Wizard to report any problems with RVDS to ARM
Support. See ARM Support Wizard on page 1-11 for more information.

Note
 If you have any problems with RealView Debugger, it is recommended that you create
a Software Problem Report. To do this, select Send a Problem Report... from the
RealView Debugger Help menu. See the RealView Debugger online help for more
information.

Feedback on this book

If you have any comments on this book, send email to errata@arm.com giving:
• the title
• the number, ARM DUI 0255M
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

See also

• ARM Information Center, http://infocenter.arm.com/help/index.jsp
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. xiii
Non-Confidential

Preface
• ARM Technical Support Knowledge Articles,
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html

• ARM Support and Maintenance,
http://www.arm.com/support/services/support-maintenance.php.
xiv Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Chapter 1
Introduction

This chapter describes the ARM® RealView® Development Suite (RVDS) v4.1
component applications, the additional licenses you can purchase to extend the features
of RVDS, and gives an overview of the documentation suite. It contains the following
sections:
• RealView Development Suite components on page 1-2
• RealView Development Suite licensing on page 1-12
• RealView Development Suite documentation on page 1-15
• RealView Development Suite examples on page 1-18
• ARM Profiler examples (RVDS Professional edition only) on page 1-21
• Debug Interface support in RealView Debugger on page 1-22
• Fixing problems with your RVDS environment on page 1-24.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-1
Non-Confidential

Introduction
1.1 RealView Development Suite components
RVDS provides a coordinated development environment for embedded systems
applications running on the ARM family of processors. It consists of a suite of tools,
together with supporting documentation and examples. The tools enable you to write,
build, and debug your applications, either on target hardware or software simulators.

There are two versions of RVDS:
• Standard edition includes:

— ARM Workbench IDE
— ARM Compiler toolchain
— RealView Debugger
— ARM DSTREAM™ and RealView ICE host software.

• Professional edition includes:
— all the components in the Standard edition
— ARM Profiler, and a license for its use
— a license for NEON vectorizing compiler support
— a license for Cortex-A9 processor support
— Real-Time System Models.

See also:
• RVDS installation, examples, and documentation directories
• Host platform support on page 1-3
• Processor support on page 1-4
• Simulator support on page 1-5
• ARM Workbench IDE on page 1-7
• ARM Compiler toolchain on page 1-7
• RealView Debugger on page 1-8
• ARM Profiler on page 1-9
• DSTREAM and RealView ICE host software on page 1-10
• ARM Support Wizard on page 1-11.

1.1.1 RVDS installation, examples, and documentation directories

Various directories are installed with RVDS that contain example code and
documentation. The RVDS documentation refers to these directories where required.
1-2 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
The main installation, examples, and documentation directories are identified in
Table 1-1. The install_dir shown is the default installation directory If you specify a
different installation directory, then the path names are relative to your chosen directory.

See also

• RealView Development Suite documentation on page 1-15 for more information
on accessing the documentation.

• the following for a summary of the examples provided:
— RealView Development Suite examples on page 1-18
— ARM Profiler examples (RVDS Professional edition only) on page 1-21.

1.1.2 Host platform support

RVDS supports the following OS platforms:

• Windows 7 Enterprise Edition

• Windows 7 Professional Edition

• Windows XP Professional SP3

• Windows Vista Business Edition SP2

Table 1-1 RealView Development Suite directories

Directory Windows default path Red Hat Linux default path

install_dir C:\Program Files\ARM ~/arm

Examples install_dir\RVDS\Examples\... install_dir/RVDS/Examples/...

ARM Profiler
examples (RVDS
Professional edition
only)

install_dir\Profiler\...\examples\... install_dir/Profiler/.../examples/...

Real-Time System
Model path

install_dir\RVDS\Models\...\lib\... install_dir\RVDS\Models\...\lib\...

Project templates install_dir\project_templates\... install_dir/project_templates/...

RealView Debugger
Flash examples

install_dir\RVD\Flash\... install_dir/RVD/Flash/...

Documentation install_dir\Documentation\... and
install_dir\Documentation_component_N.n\...

install_dir/Documentation/... and
install_dir/Documentation_component_N.n/...
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-3
Non-Confidential

Introduction
• Windows Vista Enterprise Edition SP2

• Windows Server 2003 (ARM Compiler toolchain only)

• Solaris 10 (ARM Compiler toolchain only)

• Red Hat Enterprise Linux WS version 4 for x86 using GNOME Window
Manager and Bash Shell

• Red Hat Enterprise Linux 5 Desktop + Workstation option, Standard for x86
using GNOME Window Manager and Bash Shell.

All tools support both 32-bit and 64-bit versions of these operating systems, where
available, with the following exceptions:

• RealView ICE does not support 64-bit versions of Red Hat Linux hosts, nor
installing 64-bit USB drivers on Windows Vista.

• ARM Profiler does not support profiling on hardware when running on Red Hat
Linux hosts. You can use the Real-Time System Models to profile on Red Hat
Linux hosts.

See also
• Simulator support on page 1-5
• ARM Profiler on page 1-9
• DSTREAM and RealView ICE host software on page 1-10.

1.1.3 Processor support

RVDS supports the following processors:

• ARM7™, ARM9™, and ARM11™ processor families

Note
 The ARM10™ processor family is deprecated.

• ARM11 MPCore™ multicore processor

• Cortex™ family of processors

Note
 A license is provided with RVDS Professional edition to support the Cortex-A9

processor.

• SecurCore® SC100™ and SC200™ processors in RealView Debugger
1-4 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
• SecurCore SC300™ processor in ARM Compiler toolchain

• Faraday FA526, FA626, and FA626TE processors are supported in RealView
Debugger

• Marvell Feroceon 88FR101 and 88FR111 processors (added to RealView
Debugger, in addition to ARM Compiler toolchain)

• Marvell Sheeva 88SV581x-v7 PJ4.

1.1.4 Simulator support

RVDS supports the following simulators:
• RealView ARMulator® Instruction Set Simulator (RVISS)
• Instruction Set System Model (ISSM)
• Real-Time System Model (RTSM)
• SoC Designer
• VSTREAM.

RealView ARMulator Instruction Set Simulator

RVISS simulates the instruction sets and architectures of ARM7, ARM9, ARM10, and
ARM11 processor families, together with a memory system and peripherals.

Note
 The ARM10 processor family is deprecated.

RVISS enables you to begin developing and debugging your embedded applications
without target hardware. This is useful where hardware is still being developed, or if
there is a limited number of development boards available.

Instruction Set System Model

ISSM simulates the instruction sets and architecture of the Cortex family of ARM
processors:
• Cortex-A8
• Cortex-M0
• Cortex-M1
• Cortex-M3
• Cortex-R4.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-5
Non-Confidential

Introduction
Real-Time System Models

The following RTSMs are provided with RVDS Professional edition:
• RTSM Emulation Baseboard (EB) with ARM926EJ-S™

• RTSM EB with ARM1136JF-S™

• RTSM EB with ARM1176JZF-S™

• RTSM EB with Cortex-A5_MPx1
• RTSM EB with Cortex-A5_MPx2
• RTSM EB with Cortex-A8
• RTSM EB with Cortex-A9_MPx1
• RTSM EB with Cortex-A9_MPx2
• RTSM EB with Cortex-M4
• RTSM EB with Cortex-R4
• RTSM Microcontroller Prototyping System (MPS) with Cortex-M3
• RTSM MPS with Cortex-M4.

These models can be used with ARM Profiler and RealView Debugger.

Note
 Be aware that EB RTSMs are not intended to be software implementations of particular
revisions of EB hardware.

Note
 To create your own RTSMs, you must purchase Fast Models from ARM.

SoC Designer

RealView Debugger provides a SoC Designer Debug Interface. This interface enables
you to configure connections to SoC Designer models when they are opened in Carbon
SoC Designer Simulator. When you attempt to connect to a target processor in a SoC
Designer model, RealView Debugger can automatically open Carbon SoC Designer
Simulator with the model containing that target processor.

No SoC Designer models are provided with RVDS.

Note
 You must purchase the Carbon SoC Designer software separately.
1-6 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
VSTREAM

RealView Debugger provides a VSTREAM Debug Interface that enables you to
configure connections to RTL models.

See also
• RealView® ARMulator® ISS User Guide
• RealView® Debugger Target Configuration Guide.
• RealView® Development Suite Real-Time System Model User Guide
• ARM® Workbench IDE User Guide
• ARM® Profiler User Guide
• Carbon SoC Designer Plus,

http://carbondesignsystems.com/Products/SoCDesigner.aspx.

1.1.5 ARM Workbench IDE

ARM Workbench is an Integrated Development Environment (IDE) that combines
software development with the compilation and profiling technology of the RealView
tools. You can use it as a project manager to create, build, and manage projects for ARM
targets. It uses a single folder called a workspace to store files and folders related to
specific projects.

See also

• ARM® Workbench IDE User Guide.

1.1.6 ARM Compiler toolchain

You can use the ARM Compiler toolchain to build programs from C, C++, or ARM
assembly language source. The ARM Compiler toolchain comprises the following:
• ARM and Thumb™ C and C++ compiler, armcc
• NEON™ vectorizing compiler, invoked using the command armcc --vectorize.
• ARM and Thumb assembler, armasm
• linker, armlink (32-bit and 64-bit versions are available)
• ARM librarian, armar
• ARM image conversion utility, fromelf
• supporting libraries.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-7
Non-Confidential

Introduction
Note
 A license is provided with RVDS Professional edition to enable you to use the NEON
vectorizing compiler.

See also

• RealView Development Suite licensing on page 1-12

• RealView Development Suite documentation on page 1-15 for more information
on accessing the documentation

• Documentation changes in RVDS v4.1 SP2 on page 3-6

• ARM® Compiler toolchain Introducing the ARM® Compiler toolchain for more
information on the tools and features available

• the ARM web site, http://www.arm.com for updates and patches to the ARM
Compiler toolchain as they become available.

1.1.7 RealView Debugger

RealView Debugger together with a supported debug target, enables you to debug your
application programs and have complete control over the flow of the program execution
so that you can quickly isolate and correct errors. See Debug Interface support in
RealView Debugger on page 1-22 for more information.

Note
 For information specific to using RealView Debugger on Red Hat Linux see the
appendix that describes RealView Debugger on Red Hat Linux. You can find this
appendix in the RealView® Debugger User Guide.

RealView Debugger includes support for:
• multiprocessor debugging
• trace, analysis and profiling
• Operating System (OS) awareness.

The default license for RealView Debugger enables you to debug applications that run
on single or multiple ARM architecture-based processors.
1-8 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
RealView Debugger downloads

Downloads are available from the ARM web site that enable you to use supported
plug-ins to debug your OS aware applications, and obtain software updates and utilities.

To access the RealView Debugger downloads, from RealView Debugger select:

Help → ARM on the Web → Goto RTOS Awareness Downloads
This displays the OS-Aware and Middleware Debug web page on the
ARM web site. From here you can locate and download the OS plug-in
of your choice.

Help → ARM on the Web → Goto Update and Utility Downloads
This displays the ARM Technical Support - Downloads web page on the
ARM web site. From here you can locate and download any ARM
software updates and utilities.

See also

• RealView Development Suite licensing on page 1-12 for more information on
licensing

• RealView Development Suite documentation on page 1-15 for more information
on accessing the documentation

• the RealView® Debugger Essentials Guide for more information on the features
available in RealView Debugger.

1.1.8 ARM Profiler

ARM Profiler is a plug-in to the ARM Workbench IDE. It enables you to see how your
code performs on a target system, either:
• by observing your code on target hardware using RealView ICE in combination

with RealView Trace 2
• by testing code against an RTSM.

Note
 Profiling with DSTREAM is not supported.

When execution of your application stops, ARM Profiler produces an analysis file
containing detailed information on the executed code, such as call sequences for various
functions, timing characteristics, cycle counts, and instruction counts.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-9
Non-Confidential

Introduction
If you have RVDS Professional edition, then ARM Profiler is installed with the Full
product selection. A license to use ARM Profiler is also included.

If you have RVDS Standard edition, then you can purchase ARM Profiler separately.
You must also obtain an ARM Profiler license.

See also
• DSTREAM and RealView ICE host software
• ARM® Workbench IDE User Guide
• ARM® Profiler User Guide
• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities.

1.1.9 DSTREAM and RealView ICE host software

A DSTREAM debug and trace unit or RealView ICE debug unit provides the interface
between your target hardware and the debug and analysis tools provided with RVDS:

• Using DSTREAM and RealView Debugger you can:
— debug your applications running on your target hardware
— analyze trace captured in an Embedded Trace Buffer™ (ETB™), if present.

Note
 RealView Debugger does not support tracing from the external trace port of a SoC

with DSTREAM.

• Using RealView ICE and RealView Debugger you can:
— debug your applications running on your target hardware
— analyze trace captured in an Embedded Trace Buffer™ (ETB™), if present.
With the addition of an RealView Trace or an RealView Trace 2 trace capture unit,
you can also capture and analyze trace directly from an Embedded Trace
Macrocell™ (ETM™).

• To perform hardware profiling with ARM Profiler you require an RealView ICE
debug unit connected to the host using TCP/IP or USB, together with an
RealView Trace 2 trace capture unit connected to the host using USB.

Note
 Profiling with DSTREAM is not supported.

The latest version of the DSTREAM and RealView ICE host software available at the
time of this RVDS release is installed with the Full product selection.
1-10 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
A GDB plug-in is also provided for the ARM Workbench IDE. It enables you to
configure DSTREAM or RealView ICE for use with GDB.

See also
• RealView Debugger on page 1-8
• ARM Profiler on page 1-9
• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities
• ARM DSTREAM Setting Up the Hardware
• ARM RVI and RVT Setting Up the Hardware
• ARM® Profiler User Guide
• ARM® Workbench IDE User Guide
• RealView® Debugger User Guide
• RealView® Debugger Target Configuration Guide.

1.1.10 ARM Support Wizard

The ARM Support Wizard is available from:
• Start → All Programs → ARM → Support Wizard menu on Windows
• Start Menu → Programs → ARM → Support Wizard menu on Red Hat

Linux.

The wizard gathers information about your installed ARM products, and enables you to
save the report to a file or e-mail the report to ARM Support. You must include a
description of the problem with the report before sending it to ARM Support.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-11
Non-Confidential

Introduction
1.2 RealView Development Suite licensing
All licensing for RVDS is controlled by the FLEXnet license management system.
RVDS supports both floating and node-locked licenses. The type of license you can use
depends on the type of license you purchased. You can obtain your license from the
ARM Web Licensing Portal, https://license.arm.com. For information on how to
request, install, and use your license, see the FLEXnet for ARM® Tools License
Management Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0209-/index.html.

See also:
• ARM Profiler license
• Profiler-guided optimization license
• NEON vectorizing compiler license on page 1-13
• Installing a node-locked license with the ARM License Wizard on page 1-13
• FLEXnet files and documentation provided with RVDS on page 1-14.

1.2.1 ARM Profiler license

The ARM Profiler license enables you to use the ARM Profiler to analyze the
performance of your code through runtime profiling.

Note
 A license to use the ARM Profiler is provided with RVDS Professional edition.

See also
• FLEXnet for ARM® Tools License Management Guide,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0209-/index.html

• ARM® Profiler User Guide.

1.2.2 Profiler-guided optimization license

The Profiler-guided optimization license enables the compiler to perform optimizations
baesd on a data file produced by the ARM Profiler.

Note
 A license to use the Profiler-guided optimizations is provided with RVDS Professional
edition.
1-12 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
See also
• FLEXnet for ARM® Tools License Management Guide,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0209-/index.html

• ARM® Compiler toolchain Introducing the ARM® Compiler toolchain
• ARM® Compiler toolchain Using the Compiler.

1.2.3 NEON vectorizing compiler license

The NEON vectorizing compiler license enables the compiler to generate NEON
instructions whenever appropriate to target ARM processors with a NEON unit, for
example Cortex-A8 or Cortex-A9.

Note
 A license to use the NEON vectorizing compiler is provided with RVDS Professional
edition.

See also
• FLEXnet for ARM® Tools License Management Guide,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0209-/index.html

• ARM® Compiler toolchain Introducing the ARM® Compiler toolchain
• ARM® Compiler toolchain Using the Compiler
• ARM® Compiler toolchain Compiler Reference.

1.2.4 Installing a node-locked license with the ARM License Wizard

To use the ARM License Wizard to install a node-locked license:

1. Start the ARM License Wizard from the Start menu:
Start → Programs → ARM → License Wizard v4.x

2. Follow the on-screen instructions. See the FLEXnet for ARM® Tools License
Management Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0209-/index.html for
more details.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-13
Non-Confidential

Introduction
1.2.5 FLEXnet files and documentation provided with RVDS

RVDS supports floating licensing and provides the software for all supported license
servers. The FLEXnet files can typically be found in the following places:

• On the RVDS DVD-ROM or in the downloaded package:
Windows Utilities\FLEXlm\version\release\win_32-pentium
Solaris Utilities/FLEXlm/version/release/solaris-sparc

Linux Utilities/FLEXlm/version/release/linux-pentium

Linux Utilities/FLEXlm/version/release/linux-pentium-rh72

• In the a folder of your installation:
Windows install_dir\Utilities\FLEXlm\version/release\win_32-pentium
Solaris install_dir/Utilities/FLEXlm/version/release/solaris-sparc

Linux install_dir/Utilities/FLEXlm/version/release/linux-pentium

Linux install_dir/Utilities/FLEXlm/version/release/linux-pentium-rh72

If you cannot locate the ARM license server utilities, either:

• download the files from the ARM support site at:
http://www.arm.com/support/downloads/flexnet.html

• contact ARM License Support by email at:
license.support@arm.com

Other FLEXnet documentation

The FLEXnet End User Guide is supplied as a PDF. A link to the document is provided
in the ARM product grouping of the Windows Start menu. If this link is not present, the
PDF is normally located at one of the following locations:

• install_dir\Utilities\FLEXlm\version\release\

 flexnet_licensing_end_user_guide.pdf

• install_dir\Utilities\FLEXlm\version\release\enduser.pdf

• install_dir\Documentation_FLEXlm_version\PDF\enduser.pdf

• install_dir\licensing\doc\FLEXlm_EndUserGuide.pdf.

On Unix or Linux platforms, reverse the direction of the slash character.
1-14 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
1.3 RealView Development Suite documentation
The following documentation is provided with RVDS:
• RealView® Development Suite Installation Guide
• RealView® Development Suite Getting Started Guide (this document)
• ARM® Workbench IDE User Guide
• ARM® Compiler toolchain Introducing the ARM® Compiler toolchain
• ARM® Compiler toolchain Developing Software for ARM® Processors
• ARM® Compiler toolchain Building Linux Applications with ARM® Compiler

toolchain and GNU Libraries
• ARM® Compiler toolchain Using the Assembler
• ARM® Compiler toolchain Assembler Reference
• ARM® Compiler toolchain Using the Compiler
• ARM® Compiler toolchain Compiler Reference
• ARM® Compiler toolchain Using C and C++ Libraries and Floating-Point

Support
• ARM® Compiler toolchain C and C++ Libraries and Floating-Point Support

Reference
• ARM® Compiler toolchain Using the Linker
• ARM® Compiler toolchain Linker Reference
• ARM® Compiler toolchain Creating Static Software Libraries with armar
• ARM® Compiler toolchain Using the fromelf Image Converter
• ARM® Compiler toolchain Errors and Warnings Reference
• ARM® Compiler toolchain Migration and Compatibility
• ARM® Profiler User Guide
• RealView® Debugger Essentials Guide
• RealView® Debugger User Guide
• RealView® Debugger Target Configuration Guide
• RealView® Debugger Trace User Guide
• RealView® Debugger RTOS Guide
• RealView® Debugger Command Line Reference Guide
• ARM DSTREAM Setting Up the Hardware
• ARM DSTREAM System and Interface Design Reference
• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities
• ARM RVI and RVT Setting Up the Hardware
• ARM RVI and RVT System and Interface Design Reference
• RealView® Development Suite Real-Time System Models User Guide
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-15
Non-Confidential

Introduction
• RealView® ARMulator® ISS User Guide.

A glossary of ARM terms used in the RVDS documentation is provided. See Glossary
on page Glossary-1 at the end of this book.

Note
 To view the PDF documentation, you must install and use Adobe Acrobat Reader.

See also:
• Getting more information online
• the Additional reading sections in each book for related publications.

1.3.1 Getting more information online

Depending on your installation, the full documentation suite is available in HTML and
PDF format:

• View the HTML documentation on the ARM Information Center at RealView
Development Suite,
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.rvds.

• View the HTML documentation from within the ARM Workbench IDE:
— on Windows, select:

Start → All Programs → ARM → ARM Workbench IDE v4.0
— on Red Hat Linux, select:

Start Menu → Programs → ARM → ARM Workbench IDE v4.0.
In the ARM Workbench IDE, select Help Contents from the Help menu.
This displays Help browser where you can:
— view the RVDS documentation in HTML format
— perform text searches on all documents or a subset of documents
— access the corresponding PDF file for each document.

Note
 You cannot search all PDF documentation when viewing PDF documents from

the ARM Workbench IDE Help browser.

• Depending on your platform, to view the PDF documentation:
— on Windows, select:

Start → All Programs → ARM → RealView Development Suite
v4.1 → RVDS v4.1 Documentation Suite
1-16 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
— on Red Hat Linux, select:
Start Menu → Programs → ARM → RealView Development Suite
v4.1 → RVDS v4.1 Documentation Suite.

This displays a PDF document containing links to the RVDS documentation in
PDF format. You can also perform text searches on the PDF documentation.

See also

• RVDS installation, examples, and documentation directories on page 1-2.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-17
Non-Confidential

Introduction
1.4 RealView Development Suite examples
The code for many of the examples in the RVDS documentation is located in the main
examples directory. See RVDS installation, examples, and documentation directories
on page 1-2 for more information.

In addition, the directory contains example code that is not described in the
documentation. Read the readme.txt in each example directory for more information.
The examples are installed in the following subdirectories:

asm Some examples of ARM assembly language programming. The
examples are used in ARM® Compiler toolchain Using the Assembler and
ARM® Compiler toolchain Assembler Reference.

cached_dhry Examples of routines to initialize cache and tightly coupled memory on
various ARM processors, built around the Dhrystone example. The
supported processors include:
• ARM9xx processors
• ARM11xx processors
• Cortex-A5
• Cortex-A8
• Cortex-A9
• Cortex-A9 MPCore
• Cortex-R4
• Cortex-R5.

Cortex-M0 Examples for the ARM Cortex-M0 processor, that include example
scatter files and build scripts.

Cortex-M1 Examples for the ARM Cortex-M1 processor, that include example
scatter files and build scripts.

Cortex-M3 Examples for the ARM Cortex-M3 processor, that include example
scatter files and build scripts.

Cortex-M4 Examples for the ARM Cortex-M4 processor, that include example
scatter files and build scripts.

cpp Some basic C++ examples.

databort Design documentation and example code for a standard Data Abort
handler.
1-18 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
dcc Example code that demonstrates how to use the Debug Communications
Channel. The code for this example is described in ARM® Compiler
toolchain Developing Software for ARM® Processors.

dhrystone The Dhrystone Benchmark. The example is used in the RealView
Debugger documentation.

dsp This example demonstrates the use of the European Telecommunications
Standard Institute (ETSI) basic operations provided in dspfns.h.

emb_sw_dev The example projects referenced in the chapter that describes embedded
software development in the ARM® Compiler toolchain Developing
Software for ARM® Processors.

fft_v5te Fast Fourier Transform (FFT) code optimized for ARM architecture
v5TE (ARMv5TE™).

iMx31_RTC An example for the Freescale Zoom i.Mx31 LiteKit, that demostrates the
Real Time Clock (RTC) of the Freescale i.Mx31 processor.

interwork Examples that show how to interwork between ARM code and Thumb
code. See the chapter that describes interworking ARM and Thumb in
ARM® Compiler toolchain Developing Software for ARM® Processors for
more information.

linux_apps Examples that demonstrate the interoperation between the ARM
Compiler toolchain and the GNU toolchain and GNU libraries, for
building applications and shared libraries to run on Linux. See ARM®
Compiler toolchain Building Linux Applications with ARM® Compiler
toolchain and GNU Libraries.

mandelbrot The Mandelbrot example brot.c, that is referenced from the RealView®
Development Suite Real-Time System Model User Guide.

mmugen The source and documentation for the MMUgen utility. This utility can
generate MMU pagetable data from a rules file that describes the virtual
to physical address translation required.

picpid An example of how to write position-independent code.

sorts Example code that compares an insertion sort, shell sort, and the quick
sort used in the ARM C libraries.

svc An example Supervisor Call (SVC) handler.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-19
Non-Confidential

Introduction
trace An example application trace.c that is used in the tracing tutorial
described in the RealView® Debugger Trace User Guide. The application:
• simulates a small system that reads a set of input data samples and

computes the sample average
• provides a framework for common instruction and data trace

scenarios.

unicode Example code that enables you to evaluate multibyte character support.

vfpsupport Example code for enabling and carrying out VFP operations. Also
included are various utility files for configuring the debug system when
using VFP, and a PDF of Application Note 133 Using VFP in RVDS.
1-20 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
1.5 ARM Profiler examples (RVDS Professional edition only)
ARM Profiler is provided as an option during the RVDS Professional edition
installation. If you installed ARM Profiler, the following examples are also installed:

ARM A common set of source files required to build the other Profiler projects.
The makefile for each of the other projects includes the common.make file
from this directory.

doom Example code that runs Doom.

Note
 You must download an external shareware file before you can

successfully compile and run this example. See the ARM® Profiler User
Guide for more information.

fireworks Example code that produces a simulation of exploding fireworks.

fft Example code that runs a FFT.

xvid Example code that displays a video encoded in MPEG4.

See RVDS installation, examples, and documentation directories on page 1-2 for the
location of the ARM Profiler examples directory.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-21
Non-Confidential

Introduction
1.6 Debug Interface support in RealView Debugger
The Debug Interfaces supported by RealView Debugger in RVDS are shown in
Table 1-2.

Be aware of the following:

• to create SoC Designer connections, you must purchase and install Carbon SoC
Designer Plus

• to trace using RealView Trace or RealView Trace 2, you must purchase the
corresponding product

• you can use RealMonitor with DSTREAM or RealView ICE in RealView
Debugger.

Table 1-2 RealView Debugger Debug Interfaces supported in RVDS v4.1

Debug Interface Description

DSTREAM Includes support for connections to target hardware through
DSTREAM, and forwarding trace from an ETB to the
RealView Debugger.

Instruction Set System Model (ISSM) (deprecated) Connections to simulated Cortex targets.

Model Library Connections to a Cycle Accurate Debug Interface (CADI)
model defined in a model library file.

Model Process Connections to a CADI model that is currently running.

Real-Time System Model (RTSM) Connections to a selection of simulated ARM Versatile EB
targets.

RealView ARMulator ISS (RVISS) (deprecated) Connections to simulated ARM7, ARM9, and ARM11 targets.

RealView ICE Includes support for:

• connections to target hardware through RealView ICE

• tracing with RealView ICE in conjunction with either
RealView Trace or RealView Trace 2.

SoC Designer Connections to simulated targets in single or multiprocessor
systems created with the Carbon SoC Designer Plus software.

VSTREAM Connections to RTL models.
1-22 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
See also:

• RealView® Debugger Target Configuration Guide for more information on using
RealMonitor with DSTREAM or RealView ICE.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-23
Non-Confidential

Introduction
1.7 Fixing problems with your RVDS environment
If you are having problems running the component applications in RVDS, then make
sure your RVDS environment is correctly configured:

• On Red Hat Linux, source the RVDS41env.posh script. This is the preferred method
of setting up the RVDS environment on Red Hat Linux.

• On Windows, you can use the armenv utility to modify the RVDS environment
after installation.

Note
 You cannot use the armenv utility on custom installations. If you performed a custom
installation on Windows, you must set the environment variables yourself. On Red Hat
Linux, use the RVDS41env.posh script.

See also:
• RVDS environment variables
• Appendix A Using the armenv Tool
• RealView® Development Suite Installation Guide for more information on

running the RVDS41env.posh script.

1.7.1 RVDS environment variables

Table 1-3 shows the main RVDS environment variables that must be set on Windows.
Replace ... with the path elements of your installation. Use the preferred methods
described in Fixing problems with your RVDS environment to set these, if possible.
Also, make sure that your PATH environment variable includes the locations of the
various RVDS component application executables.

Table 1-3 Main RVDS environment variables on Windows

Environment variable Setting

ARMROOT Your installation directory root (install_dir). The default is C:\Program Files\ARM.

ARMLMD_LICENSE_FILE The location of your ARM RealView license file. See the FLEXnet for ARM® Tools License
Management Guide for information on this environment variable.

ARM_PROFILER_RTSM_PATH The location of the RTSMs provided with RVDS, that are used by the ARM Profiler.
1-24 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Introduction
See also
• ARM® Workbench IDE User Guide
• FLEXnet for ARM® Tools License Management Guide
• RealView® ARMulator® ISS User Guide
• ARM® Compiler toolchain Introducing the ARM® Compiler toolchain
• ARM® Compiler toolchain Developing Software for ARM Processors
• ARM® Compiler toolchain Building Linux Applications with ARM® Compiler

toolchain and GNU Libraries
• ARM® Compiler toolchain Using the Assembler

ARM_RVI_HELP_N_n The online help files for the DSTREAM and RealView ICE utilities, where N.n is the version
of host software installed:
install_dir\Documentation\DebugHW\1.0\...

install_dir\Documentation\DSTREAM\1.0\...

install_dir\Documentation\RVI\N.n\...

ARM_RVI_ROOT The installation directory root for DSTREAM and RealView ICE:
install_dir\RVI

ARM_RVI_TOOLS The location of the executable files for the DSTREAM and RealView ICE utilities, where
N.n is the version of host software installed:
install_dir\RVI\Tools\N.n\...\win_32-pentium\rel

ARM Compiler
toolchain environment
variables

For a list of the environment variables used by ARM Compiler toolchain, see Introducing
the ARM® Compiler toolchain.

Note
 The environment variables ARMCC41INC, and ARMCC41LIB must be set in RVDS 4.1.
To use the 64-bit version of armlink, you must include the following path in the PATH
environment variable:
install_dir\RVCT\Programs\N.n\...\win-x86_64

RealView Debugger
environment variables

For a list of the environment variables used by RealView Debugger, see the RealView®
Debugger Essentials Guide.

RVDS_PROJECT Identifies the project template file. You can override this with the --project command-line
option of the ARM Compiler toolchain and RealView Debugger.

RVDS_PROJECT_WORKDIR Identifies the project working directory. You can override this with the --workdir
command-line option of the ARM Compiler toolchain and RealView Debugger.

Table 1-3 Main RVDS environment variables on Windows (continued)

Environment variable Setting
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 1-25
Non-Confidential

Introduction
• ARM® Compiler toolchain Assembler Reference
• ARM® Compiler toolchain Using the Compiler
• ARM® Compiler toolchain Compiler Reference
• ARM® Compiler toolchain Using C and C++ Libraries and Floating-Point

Support
• ARM® Compiler toolchain C and C++ Libraries and Floating-Point Support

Reference
• ARM® Compiler toolchain Using the Linker
• ARM® Compiler toolchain Linker Reference
• ARM® Compiler toolchain Creating Static Software Libraries with armar
• ARM® Compiler toolchain Using the fromelf Image Converter
• RealView® Debugger Essentials Guide
• RealView® Debugger Target Configuration Guide
• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities.
1-26 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Chapter 2
Getting Started with RealView Development
Suite

This chapter introduces you to the basic tasks for building and debugging with the
ARM® RealView® Development Suite (RVDS) tools. It contains the following sections:
• Building and debugging task overview on page 2-2
• Using the example projects on page 2-6
• Getting started with ARM Profiler (RVDS Professional edition only) on page 2-7.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 2-1
Non-Confidential

Getting Started with RealView Development Suite
2.1 Building and debugging task overview
Table 2-1 on page 2-3 is a high-level procedure showing the main tasks for building and
debugging applications with the RVDS tools, and where to find the information.

The tasks referred to in the referenced documentation are not necessarily described in
the order presented in Table 2-1 on page 2-3. If you are using the RealView tools for the
first time, it is suggested that you work through the tasks in the order described in the
referenced documents. The sequence presented in Table 2-1 on page 2-3 reflects the
order in which the tasks might usually be performed.
2-2 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Getting Started with RealView Development Suite
Table 2-1 Main building and debugging tasks

Step Description Reference

1 The steps to follow depend on whether or not the
image you want to debug already exists:
• To debug an existing image, such as

dhrystone.axf from the RVDS examples,
continue at step 9.

• To debug an image that has not yet been built,
and you want to use the RVDS tools to build
the image, continue at step 2.
Alternatively, use the build tools of your
choice to build your image, then continue at
step 9 to debug that image.

Using the example projects on page 2-6

2 Choose the RVDS application you want to use to
manage and build your projects:
• To use the ARM Workbench IDE, continue at

step 4.
• To build from your system command-line

using the ARM Compiler toolchain, continue
at step 3.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 2-3
Non-Confidential

Getting Started with RealView Development Suite
3 If you want to use the ARM Compiler toolchain
directly, then create makefiles or command files for
your platform that contain the required build
commands.
Continue at step 9 to load and debug your image in
RealView Debugger.

ARM® Compiler toolchain Introducing the ARM®
Compiler toolchain
ARM® Compiler toolchain Developing Software for
ARM® Processors
ARM® Compiler toolchain Building Linux Applications
with ARM® Compiler toolchain and GNU Libraries
ARM® Compiler toolchain Using the Compiler
ARM® Compiler toolchain Compiler Reference
ARM® Compiler toolchain Using ARM® C and C++
Libraries and Floating-Point Support
ARM® Compiler toolchain ARM® C and C++ Libraries
and Floating-Point Support Reference
ARM® Compiler toolchain Using the Assembler
ARM® Compiler toolchain Assembler Reference
ARM® Compiler toolchain Using the Linker
ARM® Compiler toolchain Linker Reference
ARM® Compiler toolchain Creating Static Software
Libraries with armar
ARM® Compiler toolchain Using the fromelf Image
Converter
ARM® Compiler toolchain Errors and Warnings
Reference

4 Start the ARM Workbench IDE. ARM® Workbench IDE User Guide

5 If an ARM Workbench IDE project already exists,
continue at step 7. Otherwise, create an ARM
Workbench IDE project for your application.

ARM® Workbench IDE User Guide

6 Set up the build configuration settings as required to
build the image for your application. Continue at
step 8.

ARM® Workbench IDE User Guide

7 Open the existing ARM Workbench IDE project. ARM® Workbench IDE User Guide

8 Build the image for the ARM Workbench IDE
project.

ARM® Workbench IDE User Guide

9 Start RealView Debugger. RealView® Debugger Essentials Guide

Table 2-1 Main building and debugging tasks (continued)

Step Description Reference
2-4 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Getting Started with RealView Development Suite
10 Configure your debug target and connections as
required.

RealView® Debugger User Guide
RealView® Debugger Target Configuration Guide
ARM DSTREAM and RVI Using the Debug Hardware
Configuration Utilities

11 Connect to your debug target. RealView® Debugger Essentials Guide
RealView® Debugger User Guide

12 Load the image ready for debugging. RealView® Debugger Essentials Guide
RealView® Debugger User Guide

13 Prepare any debugging facilities, such as
breakpoints and tracepoints.

RealView® Debugger Essentials Guide
RealView® Debugger User Guide
RealView® Debugger Trace User Guide
RealView® Debugger RTOS Guide

14 Run the image. RealView® Debugger Essentials Guide
RealView® Debugger User Guide

15 Perform the required debugging and monitoring
tasks, such as stepping, and displaying contents of
variables and memory. If using tracepoints, use the
trace analysis facilities of RealView Debugger to
analyze the trace output.

RealView® Debugger Essentials Guide
RealView® Debugger User Guide
RealView® Debugger Trace User Guide
RealView® Debugger RTOS Guide

16 What is the result of the debugging session?
• If there are problems, continue at step 17.
• If there are no problems, rebuild your image

for final release.
ARM® Workbench IDE User Guide
ARM® Compiler toolchain Introducing the ARM®
Compiler toolchain

17 Decide how to fix any problems in your source code:
• use the ARM Workbench IDE
• use another source editor of your choice.

ARM® Workbench IDE User Guide

18 When you have fixed the problem, then you must
rebuild, reload, and debug the image:
• if you are using the ARM Workbench IDE,

then return to step 8
• if you are using the ARM Compiler toolchain

directly, then return to step 3.

Table 2-1 Main building and debugging tasks (continued)

Step Description Reference
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 2-5
Non-Confidential

Getting Started with RealView Development Suite
2.2 Using the example projects
The tasks described in the RVDS documentation use some of the example projects
provided with RVDS.

Follow the instructions described in Building and debugging task overview on page 2-2
as a guide for building and debugging your applications until you are familiar with the
steps involved. However, many tasks described in the user documentation require that
you modify the files in the examples. Before you do this, make a backup copy of the
example project files and directories.

See also, RealView Development Suite examples on page 1-18 for more information
about the example projects provided with RVDS.
2-6 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Getting Started with RealView Development Suite
2.3 Getting started with ARM Profiler (RVDS Professional edition only)
ARM Profiler enables you to see how your code performs on a target system by:
• observing your code on target hardware using RealView ICE in conjunction with

RealView Trace 2
• testing code against an ARM Real-Time System Model (RTSM).

Note
 Profiling with DSTREAM is not supported.

When execution of your application stops, ARM Profiler produces an analysis file
containing detailed information on the executed code, such as call sequences for various
functions, timing characteristics, cycle counts, and instruction counts.

Table 2-2 is a high-level procedure showing the main tasks. The sequence presented in
the table reflects the order that the tasks might usually be performed.

Table 2-2 Main profiling tasks

Step Description Reference

1 Build the image you want to analyze. Building and debugging task overview on page 2-2

2 Start the ARM Workbench IDE. ARM® Workbench IDE User Guide

3 If an ARM Workbench project already exists, continue
at step 5.

4 Otherwise, create an ARM Workbench project for your
application and add your image file.

ARM® Workbench IDE User Guide

5 Select the image you want to analyze. ARM® Workbench IDE User Guide

6 Decide what collection method you want to use:
• If you want to use hardware or create your own

run configuration, continue at step 7.
• If you want to use a preconfigured RTSM,

continue at step 8.

7 Configure your target connections within ARM
Workbench.

ARM® Profiler User Guide
ARM DSTREAM and RVI Using the Debug Hardware
Configuration Utilities
ARM RVI and RVT Setting Up the Hardware
ARM® Workbench IDE User Guide
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 2-7
Non-Confidential

Getting Started with RealView Development Suite
8 Run the image. ARM® Profiler User Guide
ARM® Workbench IDE User Guide

9 Perform the required profiling tasks, such as analyzing
the summary report, code view, charts, and graphs.
If there is no need for optimization, rebuild your image
for final release.

ARM® Profiler User Guide
ARM® Workbench IDE User Guide
ARM® Compiler toolchain Introducing the ARM®
Compiler toolchain

10 Optimize your source code:
• use the ARM Workbench IDE
• use another source editor of your choice.

ARM® Workbench IDE User Guide

11 Return to step 1.

Table 2-2 Main profiling tasks (continued)

Step Description Reference
2-8 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Chapter 3
Changes to RealView Development Suite

This chapter describes the major changes between ARM® RealView® Development Suite
(RVDS) v4.1 SP2 and the previous release, RVDS v4.1 SP1. It contains the following
sections:
• Processor support in RVDS v4.1 SP2 on page 3-2
• Simulator support in RVDS v4.1 SP2 on page 3-3
• ARM Compiler toolchain support in RVDS v4.1 SP2 on page 3-4
• RealView Debugger support in RVDS v4.1 SP2 on page 3-5
• Documentation changes in RVDS v4.1 SP2 on page 3-6.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 3-1
Non-Confidential

Changes to RealView Development Suite
3.1 Processor support in RVDS v4.1 SP2
Changes to processor support include:
• Cortex-A5 multiprocessor trace
• Cortex-R5, including multiprocessor trace.
3-2 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Changes to RealView Development Suite
3.2 Simulator support in RVDS v4.1 SP2
Changes to simulator support include debugging on RTL models through the
VSTREAM Debug Interface of RealView Debugger.

For changes to RealView Debugger, see RealView® Debugger Essentials Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0181n/index.html.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 3-3
Non-Confidential

Changes to RealView Development Suite
3.3 ARM Compiler toolchain support in RVDS v4.1 SP2
For changes to the ARM Compiler toolchain, see the following:

• Introducing the ARM® Compiler toolchain,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529c/index.html

Note
 This document also describes how to change to using the 64-bit version of

armlink.

• Migration and Compatibility,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0530c/index.html.
3-4 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Changes to RealView Development Suite
3.4 RealView Debugger support in RVDS v4.1 SP2

For changes to RealView Debugger, see RealView® Debugger Essentials Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0181n/index.html.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 3-5
Non-Confidential

Changes to RealView Development Suite
3.5 Documentation changes in RVDS v4.1 SP2
The following documentation changes have been made for RVDS 4.1 SP2:

• The ARM Compiler toolchain v4.1 Patch 4 documentation supersedes the
RealView Compilation Tools v4.1 and earlier documentation. Details of the ARM
Compiler toolchain v4.1 Patch 4 enhancements and features are included.

• The RealView Debugger documentation has been updated to describe the new
features provided in v4.1 SP2.

• The following documentation is provided for DSTREAM and RealView ICE v4.2
support:
— ARM DSTREAM Setting Up the Hardware, that describes the DSTREAM

unit and how to connect it to your develpoment platform and workstation
— ARM DSTREAM System and Interface Design Reference, that describes the

attributes of the system and interface connectors to enable you to design
your hardware to communicate with a DSTREAM unit.

— ARM DSTREAM and RVI Using the Debug Hardware Configuration
Utilities, that describes how to use the RealView ICE Config IP, RVConfig,
and RealView ICE Update utilities to setup your DSTREAM or RealView
ICE hardware, and to configure connections to targets on your develpoment
platform.

— ARM RVI and RVT Setting Up the Hardware, that describes the RealView
ICE, RealView Trace, and RealView Trace 2 hardware, and how to connect
it to your develpoment platform and workstation.

— ARM RVI and RVT System and Interface Design Reference, that describes
the attributes of the system and interface connectors to enable you to design
your hardware to communicate with RealView ICE, RealView Trace, and
RealView Trace 2 hardware.

See also:
• RealView Development Suite documentation on page 1-15
• Introducing the ARM® Compiler toolchain,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529c/index.html

• RealView® Debugger Essentials Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0181n/index.html

• ARM DSTREAM Setting Up the Hardware,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0481c/index.html

• ARM DSTREAM System and Interface Design Reference,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0499c/index.html
3-6 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Changes to RealView Development Suite
• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0498c/index.html

• ARM RVI and RVT Setting Up the Hardware,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0515c/index.html

• ARM RVI and RVT System and Interface Design Reference,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0517c/index.html
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. 3-7
Non-Confidential

Changes to RealView Development Suite
3-8 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Appendix A
Using the armenv Tool

This appendix describes the armenv tool that you can use to manage your ARM®
RealView® product installations.

It contains the following sections:
• About the armenv tool on page A-2
• Using the armenv tool on page A-3.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. A-1
Non-Confidential

Using the armenv Tool
A.1 About the armenv tool
The armenv tool enables you to:

• set up the environment variables for ARM RealView products

• remove environment variables for ARM RealView products

• check for clashes between the ARM RealView products you have installed on a
particular host machine

• set up different versions of the same product.

Note
 You cannot use the armenv tool for Custom installations in this release of RealView
Development Suite (RVDS).

You can find the armenv tool at:

install_dir/bin/platform
A-2 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Using the armenv Tool
A.2 Using the armenv tool
This section describes the syntax of the armenv command, and shows some examples of
how it can be used.

See also:

• armenv command syntax.

A.2.1 armenv command syntax

The command syntax of the armenv tool is:

armenv [-r root] [-u] -p product [[--and] -p product]...
[--user|--system|--proc] [--bat|--sh|--csh|--posh|--exec program [args]]

Table A-1 shows the command-line arguments that are available on all platforms.

Table A-1 Generic armenv arguments

Argument Description

--help Displays help on the command-line arguments.

-r root The absolute path to the root of the product installation, install_dir. For
example, on Windows the default root is:
C:\Program Files\ARM

-p product The ARM RealView product. See Product syntax on page A-4 for more
information.

--and Compute settings for all products before this argument, then do the same for
those following it. The settings in the second group override those in the first.

--proc Change the environment for the current process only.
You cannot use this argument with --system or --user on Windows.

--exec Execute a program in the new environment.
You cannot use this argument with --bat on Windows, or with --sh, --csh, or
--posh on Red Hat Linux.

-u Attempts to undo the changes to the environment that were made when setting
up the product.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. A-3
Non-Confidential

Using the armenv Tool
Table A-2 shows the command-line arguments that are specific to Windows systems.

Table A-3 shows the command-line arguments that are specific to Red Hat Linux
systems. You can specify only one of these.

Product syntax

The syntax for specifying the product is:

armenv -p category [name] [version [revision]] [-v name value]...

where:

category is the product identifier, for example, RVDS.

name armenv uses the default name Contents. Do not use any other name for this
option.

version is the version number of the product, for example, 3.1. If you do not
specify a version, the most recent version of the installed product is used.

revision is a specific build number for the product. If you do not specify a build
number, the most recent build of the installed product is used.

Table A-2 armenv arguments specific to Windows

Argument Description

--system Update the Windows SYSTEM area of the registry.
This is the default.

--user Update the Windows USER area of the registry.

--bat Changes the environment for the current command
prompt window. This is the default.

Table A-3 armenv arguments specific to Red Hat Linux

Argument Description

--csh Generate a csh syntax shell script.

--sh Generate a sh syntax shell script.

--posh Generate a portable shell script. This is the default.
A-4 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Using the armenv Tool
-v name value
identifies a variant of the same product:
name The type of the variant, for example, platform. It is suggested

that you use only the platform variant.
value The specific variant, for example, linux-pentium.
For example, you might have the Red Hat Linux variant of RVDS v3.1
installed.

Example A-1 How to use armenv

• To set up the Red Hat Linux environment variables for the csh shell, and for the
most recent build of RVDS v4.1, enter:
armenv -r ~/ -p RVDS 4.1 -v platform linux-pentium --csh

• To check for clashes between RVDS v4.1 and RVDS v3.1, enter:
armenv -p RVDS 4.1 -p RVDS 3.1

• To override the RVDS v3.1 settings with the RVDS v4.1 settings, enter:
armenv -p RVDS 3.1 --and -p RVDS 4.1
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. A-5
Non-Confidential

Using the armenv Tool
A-6 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Appendix B
About Previous Releases

This chapter summarizes the major differences between previous releases of the ARM®
RealView® Development Suite (RVDS). It contains the following sections:

• Changes between RVDS v4.1 and RVDS v4.0 SP3 on page B-5

• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2 on page B-9

• Changes between RVDS v4.0 SP2 and RVDS v4.0 SP1 on page B-12

• Changes between RVDS v4.0 SP1 and RVDS v4.0 on page B-13

• Changes between RVDS v4.0 and RVDS v3.1 Professional edition on page B-15

• Changes between RVDS v3.1 Professional edition and RVDS v3.1 on page B-21

• Changes between RVDS v3.1 and RVDS v3.0 SP1 on page B-22

• Changes between RVDS v3.0 SP1 and RVDS v3.0 on page B-26

• Changes between RVDS v3.0 and RealView Developer Suite v2.2 SP1 on
page B-27

• Changes between RealView Developer Suite v2.2 SP1 and RealView Developer
Suite v2.2 on page B-31
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-1
Non-Confidential

About Previous Releases
• Changes between RealView Developer Suite v2.2 and RealView Developer Suite
v2.1 on page B-32

• Changes between RealView Developer Suite v2.1 and RealView Developer Suite
v2.0 on page B-34

• Changes between RealView Developer Suite v2.2 and ADS v1.2.1 on page B-36.

For changes between RVDS v4.1 and RVDS v4.0 SP3, see Chapter 3 Changes to
RealView Development Suite.
B-2 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.1 Changes between RVDS v4.1 SP1 and RVDS v4.1

This section describes the major changes between ARM® RealView® Development Suite
(RVDS) v4.1 SP1 and the previous release, RVDS v4.1. It contains the following
sections:
• Processor support in RVDS v4.1 SP1
• Simulator Support in RVDS v4.1 SP1
• ARM Compiler toolchain support in RVDS v4.1 SP1
• RealView Debugger support in RVDS v4.1 SP1 on page B-4.

B.1.1 Processor support in RVDS v4.1 SP1

Changes to processor support include the addition of:
• Cortex-M4 (debug-only).

Note
 The ARM Profiler does not support the Cortex-M4 processor.

B.1.2 Simulator Support in RVDS v4.1 SP1

Changes to simulator support include:

• The addition of the Cortex-M4 RTSM (debug-only).

Note
 The ARM Profiler does not support the Cortex-M4 RTSM.

B.1.3 ARM Compiler toolchain support in RVDS v4.1 SP1

For changes to the ARM Compiler toolchain, see the following:

• Introducing the ARM® Compiler toolchain,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529b/index.html

Note
 This document also describes how to change to using the 64-bit version of

armlink.

• Migration and Compatibility,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0530b/index.html.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-3
Non-Confidential

About Previous Releases
B.1.4 RealView Debugger support in RVDS v4.1 SP1

For changes to RealView Debugger, see RealView® Debugger Essentials Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0181m/index.html.
B-4 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.2 Changes between RVDS v4.1 and RVDS v4.0 SP3

This section describes the major changes between ARM® RealView® Development Suite
(RVDS) v4.1 and the previous release, RVDS v4.0 SP3. It contains the following
sections:
• Changes to FLEXnet licensing in RVDS 4.1
• Debug target support in RVDS v4.1
• ARM Compiler toolchain support in RVDS v4.1 on page B-6
• RealView Debugger support in RVDS v4.1 on page B-6
• Documentation in RVDS v4.1 on page B-7
• Deprecated features in RVDS v4.1 on page B-8.

B.2.1 Changes to FLEXnet licensing in RVDS 4.1

RVDS 4.1 now supports a date as part of the version number in a license. This date is
used to limit the period that a licensed feature is valid. The format is of a version number
with a date is, a.byyyymm, where:
• a.b is the version number
• yyyy is a year
• mm is a month in numerical format.

This is typically used for Service and Maintenance (S&M) agreements.

See also:
• FLEXnet for ARM® Tools License Management Guide,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0209-/index.html.

B.2.2 Debug target support in RVDS v4.1

The following processors, models, and boards are supported:

Processor support
The following additional processors are supported:
• Cortex-A5
• Marvell Sheeva 88SV581x-v7 PJ4.

Model support
The following addtional Real-Time System Models (RTSMs) are
supported:
• Cortex-A5
• Cortex-A9 Dual Core.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-5
Non-Confidential

About Previous Releases
Board support
Board-Chip Definition (BCD) files and corresponding Flash methods,
where appropriate, are supported for the following boards:
• Atmel AT91SAM9261-EK
• Atmel AT91SAM9263-EK
• Atmel AT91SAM9G45-EKES
• Atmel AT91SAM9RL-EK
• Icytecture iMX35 Starter board
• i.MX31
• i.MX31 LiteKit
• Freescale iMX25 PDK
• Freescale iMX27 LiteKit
• Texas Instruments Zoom OMAP34x-II Mobile Development

Platform
• PBX-A9
• PHYTEC phyCORE-iMX35
• Samsung SMDK C100
• TMS320DM355
• Zoran ZJP4100.

See also:
• Changes between RVDS v4.1 and RVDS v4.0 SP3 on page B-5.

B.2.3 ARM Compiler toolchain support in RVDS v4.1

For changes to the ARM Compiler toolchain, see Introducing the ARM® Compiler
toolchain, http://infocenter.arm.com/help/topic/com.arm.doc.dui0529a/index.html.

See also:
• Changes between RVDS v4.1 and RVDS v4.0 SP3 on page B-5.

B.2.4 RealView Debugger support in RVDS v4.1

For changes to RealView Debugger, see RealView® Debugger Essentials Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0181l/index.html.

See also:
• Changes between RVDS v4.1 and RVDS v4.0 SP3 on page B-5.
B-6 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.2.5 Documentation in RVDS v4.1

The following documentation changes have been made for RVDS 4.1:

• The ARM Compiler toolchain v4.1 documentation supersedes the RealView
Compilation Tools v4.0 and earlier documentation. Details of the ARM Compiler
toolchain v4.1 enhancements and features are included.

• The RealView Debugger documentation has been updated to describe the new
features provided in v4.1.

• FLEXnet for ARM® Tools License Management Guide has been updated to v4.3
of the document.

• The following documentation is provided for RealView ICE v4.0 support:
— ARM DSTREAM Setting Up the Hardware, that describes the DSTREAM

unit and how to connect it to your develpoment platform and workstation
— ARM DSTREAM System and Interface Design Reference, that describes the

attributes of the system and interface connectors to enable you to design
your hardware to communicate with a DSTREAM unit.

— ARM DSTREAM and RVI Using the Debug Hardware Configuration
Utilities, that describes how to use the RealView ICE Config IP, RVConfig,
and RealView ICE Update utilities to setup your DSTREAM or RealView
ICE hardware, and to configure connections to targets on your develpoment
platform.

— ARM RVI and RVT Setting Up the Hardware, that describes the RealView
ICE, RealView Trace, and RealView Trace 2 hardware, and how to connect
it to your develpoment platform and workstation.

— ARM RVI and RVT System and Interface Design Reference, that describes
the attributes of the system and interface connectors to enable you to design
your hardware to communicate with RealView ICE, RealView Trace, and
RealView Trace 2 hardware.

These documents supersede the RealView® ICE and RealView Trace User Guide
provided in previous releases.

See also:
• RealView Development Suite documentation on page 1-15
• FLEXnet for ARM® Tools License Management Guide,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0209-/index.html

• Introducing the ARM® Compiler toolchain,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529a/index.html
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-7
Non-Confidential

About Previous Releases
• RealView® Debugger Essentials Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0181l/index.html

• ARM DSTREAM Setting Up the Hardware,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0481a/index.html

• ARM DSTREAM System and Interface Design Reference,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0499a/index.html

• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0498a/index.html

• ARM RVI and RVT Setting Up the Hardware,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0515a/index.html

• ARM RVI and RVT System and Interface Design Reference,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0517a/index.html

B.2.6 Deprecated features in RVDS v4.1

The following features are deprecated, and are to be removed in a future release of
RVDS:
• RealView Instruction Set Simulator (RVISS) support
• Instruction Set System Model (ISSM) support
• ARM/Thumb synonyms in ARM Compiler toolchain
• The RVCTnnBIN, RVCTnnINC, and RVCTnnLIB environment variables are deprecated,

and replaced by ARMCCnnBIN, ARMCCnnINC, and ARMCCnnLIB.

See also:
• Changes between RVDS v4.1 and RVDS v4.0 SP3 on page B-5.
B-8 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.3 Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2

This section describes the major changes between ARM® RealView® Development Suite
(RVDS) v4.0 SP3 and the previous release, RVDS v4.0 SP2. It contains the following
sections:
• Processor support in RVDS v4.0 SP3
• Simulator support in RVDS v4.0 SP3
• RealView Compilation Tools support in RVDS v4.0 SP3
• RealView Debugger support in RVDS v4.0 SP3
• ARM Profiler support in RVDS v4.0 SP3 on page B-10
• Documentation in RVDS v4.0 SP3 on page B-10
• Deprecated features in RVDS v4.0 SP3 on page B-11
• Obsolete features in RVDS v4.0 SP3 on page B-11.

B.3.1 Processor support in RVDS v4.0 SP3

Changes to processor support include support for Cortex™-A5.

See also:
• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2.

B.3.2 Simulator support in RVDS v4.0 SP3

Changes to the simulator support include support for the Cortex-A9 Dual Core RTSM.

See also:
• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2.

B.3.3 RealView Compilation Tools support in RVDS v4.0 SP3

Changes to RealView Compilation Tools (RVCT) include support for the Cortex-A5
processor.

See also:
• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2
• RealView® Compilation Tools Essentials Guide.

B.3.4 RealView Debugger support in RVDS v4.0 SP3

Changes to RealView Debugger include:

• Support for the Cortex-A5 processor.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-9
Non-Confidential

About Previous Releases
• Support for tracing on Red Hat Linux.

• The ability to display diagnostic messages in the Diagnostic Log view.

• Additional platform support for:
— Freescale iMX51 PDK: Extended Target Visibility and project templates
— PHYTEC phyCORE-iMX35: Extended Target Visibility, Flash algorithms,

and project templates
— Icytecture iMX35: Extended Target Visibility, Flash algorithms, and project

templates
— Samsung SMDK C100: Extended Target Visibility, Flash algorithms, and

project templates.

• Generic CoreSight device support. This enables you to examine and modify
registers for a CoreSight device that you are developing, and that is not currently
known to RealView Debugger.

See also:
• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2 on page B-9
• RealView® Debugger Essentials Guide
• RealView® Debugger User Guide
• RealView® Debugger Trace User Guide.

B.3.5 ARM Profiler support in RVDS v4.0 SP3

The ARM Profiler plug-in and a license for its use are provided with RVDS Professional
edition.

Changes to ARM Profiler include:
• support for profiling an application running on the Linux OS
• auto-calibrate in Profiler
• Cortex-M3 processor hardware support
• Cortex-A9 dual core model support.

See also:
• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2 on page B-9
• ARM® Profiler User Guide.

B.3.6 Documentation in RVDS v4.0 SP3

The following documents have been updated in this release:
• RealView® Development Suite Installation Guide
B-10 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
• RealView® Development Suite Getting Started Guide
• RealView® Development Suite Real-Time System Model User Guide.

See also:
• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2 on page B-9.

B.3.7 Deprecated features in RVDS v4.0 SP3

The following features are deprecated, and are to be removed in a future release of
RVDS:
• RealView ARMulator® ISS (RVISS) support.
• Instruction Set System Model (ISSM) support.
• ARM/Thumb synonyms in RVCT.

See also:
• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2 on page B-9.

B.3.8 Obsolete features in RVDS v4.0 SP3

In RealView Debugger, ETM Pairing is obsolete. The settings for ETM_Pairing are no
longer available on the Configure ETM dialog box.

See also:
• Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2 on page B-9.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-11
Non-Confidential

About Previous Releases
B.4 Changes between RVDS v4.0 SP2 and RVDS v4.0 SP1
This section describes the major changes between RVDS v4.0 SP2 and RVDS v4.0 SP1.
It contains the following:
• RealView Compilation Tools support in RVDS v4.0 SP2
• RealView Debugger support in RVDS v4.0 SP2
• RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0 SP2
• Documentation in RVDS v4.0 SP2.

B.4.1 RealView Compilation Tools support in RVDS v4.0 SP2

Changes to RealView Compilation Tools (RVCT) are described in the RealView®
Compilation Tools Essentials Guide.

B.4.2 RealView Debugger support in RVDS v4.0 SP2

Changes to RealView Debugger are described in the RealView® Debugger Essentials
Guide.

B.4.3 RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0 SP2

The RealView ICE v3.4 host software is provided with all editions of RVDS v4.0 SP1.

RealView ICE includes support for the Cortex-M0 processor.

See also:

• RealView® ICE and RealView Trace User Guide.

B.4.4 Documentation in RVDS v4.0 SP2

Changes to the RVDS documentation suite include:

• Changes to RVCT documentation are described in the RealView® Compilation
Tools Essentials Guide.

• Changes to the RealView Debugger documentation are described in the
RealView® Debugger Essentials Guide.

• All documents reflect the feature changes in the component tools.

See also Glossary on page Glossary-1 for a list of ARM terms used in the RVDS
documentation.
B-12 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.5 Changes between RVDS v4.0 SP1 and RVDS v4.0
This section describes the major changes between RVDS v4.0 SP1 and RVDS v4.0. It
contains the following:
• Processor support in RVDS v4.0 SP1
• RealView Compilation Tools support in RVDS v4.0 SP1
• RealView Debugger support in RVDS v4.0 SP1
• RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0 SP1
• Documentation in RVDS v4.0 SP1.

B.5.1 Processor support in RVDS v4.0 SP1

Changes to the processor support include Cortex™-M0 processor in RealView ICE.

B.5.2 RealView Compilation Tools support in RVDS v4.0 SP1

Changes to RealView Compilation Tools (RVCT) are described in the RealView®
Compilation Tools Essentials Guide.

B.5.3 RealView Debugger support in RVDS v4.0 SP1

Changes to RealView Debugger are described in the RealView® Debugger Essentials
Guide.

B.5.4 RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0 SP1

The RealView ICE v3.4 host software is provided with all editions of RVDS v4.0 SP1.

RealView ICE includes support for the Cortex-M0 processor.

See also:

• RealView® ICE and RealView Trace User Guide.

B.5.5 Documentation in RVDS v4.0 SP1

Changes to the RVDS documentation suite include:

• Changes to RVCT documentation are described in the RealView® Compilation
Tools Essentials Guide.

• Changes to the RealView Debugger documentation are described in the
RealView® Debugger Essentials Guide.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-13
Non-Confidential

About Previous Releases
• All documents reflect the feature changes in the component tools.

See also Glossary on page Glossary-1 for a list of ARM terms used in the RVDS
documentation.
B-14 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.6 Changes between RVDS v4.0 and RVDS v3.1 Professional edition
This section describes the major changes between RVDS v4.0 and RVDS v3.1
Professional edition. It contains the following:
• Host platform support in RVDS v4.0
• Processor support in RVDS v4.0
• Simulator support in RVDS v4.0 on page B-16
• RealView Compilation Tools support in RVDS v4.0 on page B-16
• RealView Debugger support in RVDS v4.0 on page B-16
• RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0 on

page B-16
• ARM Profiler support in RVDS v4.0 on page B-17
• IDE support in RVDS v4.0 on page B-17
• Documentation in RVDS v4.0 on page B-18
• Miscellaneous changes in RVDS v4.0 on page B-18
• Deprecated features in RVDS v4.0 on page B-19
• Obsolete features in RVDS v4.0 on page B-19.

B.6.1 Host platform support in RVDS v4.0

Added support for:

• Windows Vista Business Service Pack 1

• Windows Vista Enterprise Service Pack 1

• Windows Server 2003 (Compiler only)

• Red Hat Enterprise Linux WS version 5 for x86 using GNOME Window
Manager and Bash Shell.

Continued support for:

• Windows XP Professional Service Pack 2

• Red Hat Enterprise Linux WS version 4 for x86 using GNOME Window
Manager and Bash Shell.

Removed support for Windows 2000.

B.6.2 Processor support in RVDS v4.0

The following additional processors are supported:
• Cortex-A9 processor
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-15
Non-Confidential

About Previous Releases
• Faraday FA526, FA626, and FA626TE processors.
• Marvell Feroceon 88FR101 and 88FR111 processors.

Note
 A license is provided with RVDS Professional edition to support the Cortex-A9
processor.

B.6.3 Simulator support in RVDS v4.0

Changes to the simulator support include the following Real-Time System Models
(RTSMs):
• Versatile Emulation Baseboard (EB) with ARM926EJ-S™

• Versatile EB with ARM1136JF-S™

• Versatile EB with ARM1176JZF-S™

• Versatile EB with Cortex-A8
• Versatile EB with Cortex-A9
• Versatile EB with Cortex-R4F.

These replace the Integrator/CP based models supported in RVDS v3.1.

Note
 A license is provided with RVDS Professional edition to support the Cortex-A9
simulated processor.

B.6.4 RealView Compilation Tools support in RVDS v4.0

In RVCT, -O3 no longer implies --fpmode=fast.

Other changes to RVCT are described in the RealView® Compilation Tools Essentials
Guide.

B.6.5 RealView Debugger support in RVDS v4.0

Changes to RealView Debugger are described in the RealView® Debugger Essentials
Guide.

B.6.6 RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0

The RealView ICE host software is provided with all editions of RVDS v4.0.
B-16 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
See also:

• RealView® ICE and RealView Trace User Guide.

B.6.7 ARM Profiler support in RVDS v4.0

The ARM Profiler plug-in and a license for its use are provided with RVDS Professional
edition.

Changes to ARM Profiler include:

• Support for profiling an application running on the Symbian OS.

• Data capture support for the following processors:
— ARM7TDMI®

— ARM946E-S™

— ARM966E-S™

— ARM11 MPCore™

— Cortex-A8
— Cortex-M3
— Cortex-R4(F).

• Data capture support for the following RTSMs:
— Cortex-A9
— Cortex-R4F.

• Cycle-accurate profiling for processors running at 10MHz.

• Support for filtering of data based on the Call Chain report.

• Live update, to view the capture of profiling data in real-time.

• Stack depth tracking, to provide a summary of the stack depth usage for a call
chain during execution.

See also:
• ARM® Profiler User Guide.

B.6.8 IDE support in RVDS v4.0

ARM Workbench IDE is available for all supported platforms, and is installed as part
of the RVDS installation. The following changes have been made to the ARM
Workbench IDE:

• the Eclipse IDE and associated plug-ins are updated to the latest versions
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-17
Non-Confidential

About Previous Releases
• the following editors are provided:
— a properties editor for use with ARM assembler and C/C++ source files
— a scatter file editor to create and edit scatter files
— an ELF content viewer.

• you can export IP-XACT design files to create memory map and peripheral
definitions in the RealView Debugger Board-Chip Definition (BCD) file format

• updates to the ARM Workbench IDE and plug-ins on are available on the ARM
website at http://www.arm.com/eclipse.

See also:
• ARM® Workbench IDE User Guide
• RealView® Debugger Target Configuration Guide.

B.6.9 Documentation in RVDS v4.0

Changes to the RVDS documentation suite include:

• The provision of a new standalone document browser. This enables you to view
the HTML-formatted documentation without having to run the ARM Workbench
IDE.

• The RealView® Development Suite Glossary is no longer a separate document. It
is included in this document, the RealView® Development Suite Getting Started
Guide.

• Changes to RVCT documentation are described in the RealView® Compilation
Tools Essentials Guide.

• Changes to the RealView Debugger documentation are described in the
RealView® Debugger Essentials Guide.

• All documents reflect the feature changes in the component tools.

See also Glossary on page Glossary-1 for a list of ARM terms used in the RVDS
documentation.

B.6.10 Miscellaneous changes in RVDS v4.0

The following additional changes have been made in this release:

• An ARM Support Wizard is available. See ARM Support Wizard on page 1-11 for
more information.
B-18 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
• New example projects are provided:
— Cortex-A9 version of the cached Dhrystone example code
— linux_apps

— mandelbrot.
See RealView Development Suite examples on page 1-18 for more information.

• Revised examples are:
— Cached Dhrystone example code is revised to run on the latest software

models and current hardware.
— The MMUgen utility supports the generation of MMU page table entries for

ARMv6 and ARMv7 cached processors.
— The DCC examples have been updated for use with the latest processors.
— Application Note 133 Using VFP with RVDS is revised for the latest

processors.

B.6.11 Deprecated features in RVDS v4.0

The following features are deprecated, and are to be removed in a future release of
RVDS:

• RealView ARMulator® ISS (RVISS) support

• Instruction Set System Model (ISSM) support

• SoC Designer support

• support for RealView ICE v1.2 and earlier

• ARM/Thumb synonyms in RVCT.

for other deprecated features of RVCT, see the RealView® Compilation Tools
Essentials Guide.

• for other deprecated features of RealView Debugger, see the RealView® Debugger
Essentials Guide for more information.

B.6.12 Obsolete features in RVDS v4.0

The following features are obsolete:

• Windows 2000 support.

• CodeWarrior IDE support.

• ARM Ltd. Direct Connection to Versatile boards.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-19
Non-Confidential

About Previous Releases
• The Uninstall Wizard option has been removed from:
— Start → All Programs → ARM menu on Windows
— Start Menu → Programs → ARM menu on Red Hat Linux.
The product-specific Modify or Uninstall RVDS N.n option is still available.

• Some features of RVCT. See the RealView® Compilation Tools Essentials Guide
for more information.

• Some features of RealView Debugger. See the RealView® Debugger Essentials
Guide for more information.
B-20 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.7 Changes between RVDS v3.1 Professional edition and RVDS v3.1
The following major changes between RVDS v3.1 Professional edition and RVDS v3.1
are:

• RealView Profiler support including examples, documentation, and the following
Real-Time System Models:
— ARM926 Emulation Board (EB)
— ARM1136 EB
— ARM1176 EB
— Cortex-A8 EB.

• RealView ICE v3.2 host software is provided.

• Licenses for the NEON™ Vectorizing Compiler and RealView Profiler are
provided.

• New Eclipse plug-ins are provided:
— ARM Flash Programmer
— ARM Assembler Editor
— CodeWarrior Importer.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-21
Non-Confidential

About Previous Releases
B.8 Changes between RVDS v3.1 and RVDS v3.0 SP1
This section describes the major changes between RVDS v3.1 and RVDS v3.0 SP1. It
contains the following:
• Processor support in RVDS 3.1
• Simulator support in RVDS 3.1
• Project template support in RVDS 3.1 on page B-23
• RealView Compilation Tools support in RVDS 3.1 on page B-23
• RealView Debugger support in RVDS 3.1 on page B-24
• IDE support in RVDS 3.1 on page B-24
• Documentation changes in RVDS 3.1 on page B-24
• Deprecated features in RVDS 3.1 on page B-24
• Obsolete features in RVDS 3.1 on page B-24.

B.8.1 Processor support in RVDS 3.1

Processor support includes:
• ARM Cortex-M1
• ARM Cortex-M3 revision 1
• ARM Cortex-R4
• StarCore SC1200 DSP (debug support only).

B.8.2 Simulator support in RVDS 3.1

RVDS provides the following simulator support:

• Instruction Set System Model (ISSM) simulates the following additional
processors:
— Cortex-M1
— Cortex-M3 revision 1, which supports cycle counting
— Cortex-R4.

• SoC Designer, to allow connections to SoC Designer targets. You must purchase
SoC Designer separately.

• Real-Time System Model (RTSM), to allow connections to RTSM targets.

Support for these is installed with RealView Debugger.
B-22 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.8.3 Project template support in RVDS 3.1

The Eclipse New Project Wizard enables you to create new projects for the RVDS
component tools depending on the requirements of your application. These projects can
be based on project templates supplied with RVDS.

Additional RealView Debugger and RealView Compilation Tools (RVCT) command
line options are provided to support the use of RVDS project templates:
• --no_project

• --project filename

• --reinitialize_workdir

• --workdir pathname.

Also, preconfigured project templates are provided in the directory:

install_dir\project_templates

These project templates are grouped in the following subdirectories:

ARM RealView Development Boards
These project templates include RealView Debugger configurations that
enable you to connect to targets through RealView ICE and associated
connection interfaces.

Bare ARM Cores
These project templates include RealView Debugger configurations that
enable you to connect to targets through ISSM and RealView ARMulator
ISS interfaces as appropriate.

You can also set the project template and working directory values using the following
environment variables:
• RVDS_PROJECT

• RVDS_PROJECT_WORKDIR.

See also
• RealView® Compilation Tools Compiler Reference Guide
• RealView® Debugger User Guide.

B.8.4 RealView Compilation Tools support in RVDS 3.1

Changes to RVCT are described in the RealView® Compilation Tools Essentials Guide.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-23
Non-Confidential

About Previous Releases
B.8.5 RealView Debugger support in RVDS 3.1

Changes to RealView Debugger are described in the RealView® Debugger Essentials
Guide.

B.8.6 IDE support in RVDS 3.1

Eclipse and the Eclipse Plug-in for RVDS are installed on all supported platforms as
part of the RVDS installation. For more information on using the Eclipse Plug-in for
RVDS, see the RealView® Development Suite Eclipse Plug-in User Guide.

B.8.7 Documentation changes in RVDS 3.1

The main changes to the RVDS documentation are as follows:

• All RVDS documentation is available in HTML format. The Eclipse viewer
enables you to search across all the documentation. Although you can view the
documentation in a separate web browser, you cannot search across all the
documentation.

• Changes to the RealView Debugger documentation are described in the
RealView® Debugger Essentials Guide.

• Changes to the RVCT documentation are described in the RealView® Compilation
Tools Essentials Guide.

B.8.8 Deprecated features in RVDS 3.1

The following features are deprecated in RVDS v3.1:

• Windows 2000 support.

• CodeWarrior IDE support.

• Some features of RVCT. See the RealView® Compilation Tools Essentials Guide
for more information.

• Some features of RealView Debugger. See the RealView® Debugger Essentials
Guide for more information.

B.8.9 Obsolete features in RVDS 3.1

The following features are obsolete in RVDS v3.1:

• Support for ARM eXtended Debugger (AXD) and ARM Symbolic Debugger
(armsd).
B-24 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
• The ARM Developer Suite™ v1.2.1 CD-ROM is no longer provided.

• Support for the Solaris platform.

• Support for the Red Hat Enterprise Linux v3 platform.

• Dynatext documentation is no longer provided.

• RVCT has obsolete features.

• RealView Debugger has obsolete features.

See also
• RealView® Compilation Tools Essentials Guide
• RealView® Debugger Essentials Guide.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-25
Non-Confidential

About Previous Releases
B.9 Changes between RVDS v3.0 SP1 and RVDS v3.0
RVDS v3.0 Service Pack 1 also provides a consolidation of enhancements made in the
RVCT and RealView Debugger since the original RVDS v3.0 release, including:

• preliminary support for Cortex-R4, including compiler support, debugger
support, and a new Instruction Set System Model (ISSM) model

• improvements to compilation times and DWARF3 debug data sizes over RVDS
v3.0

• SIMD NEON assembler extended to include Programmer's notation

• improved user interface for Debug of a multiprocessor MPCore™ target

• additional Cortex-M3 Examples

• support for Marvell Feroceon 88FRxxx processors.

The RealView Debugger Synchronization Control window has been re-engineered,
which also includes the synchronization of various actions. A corresponding
SYNCHACTION CLI command is provided.

For more information, see the RealView® Development Suite v3.0 SP1 Release Notes.
B-26 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.10 Changes between RVDS v3.0 and RealView Developer Suite v2.2 SP1
This section describes the changes between RVDS v3.0 and RealView Developer Suite
v2.2 SP1. It contains the following:
• New features in RVDS v3.0
• Debugger support in RVDS v3.0
• Compilation Tools support in RVDS v3.0 on page B-28
• Simulator support in RVDS v3.0 on page B-29
• CodeWarrior for RVDS changes in RVDS v3.0 on page B-29
• Documentation changes in RVDS v3.0 on page B-29
• Deprecated and removed features in RVDS v3.0 on page B-30.

B.10.1 New features in RVDS v3.0

The following new features are available in RVDS v3.0:

• Support for TrustZone® technology.

• Support for Thumb®-2 Execution Environment (Thumb-2EE).

• Support for the ARM Cortex processor family:
— Cortex-A8
— Cortex-M3.

• Simulator models for the Cortex-A8 and Cortex-M3 processors are available.
These models are accessible through the new ISSM Target Access in RealView
Debugger.

B.10.2 Debugger support in RVDS v3.0

The major changes to RealView Debugger v3.0 are as follows:

• RealView Debugger runs as a single process. The Target Vehicle Server (TVS) no
longer exists as a separate entity.

• The Connection Control window has been re-engineered. See the RealView®
Debugger User Guide for more information.

• The features on the Synch tab are available in a separate Synchronization Control
window. See the RealView® Debugger User Guide for more information.

• The Register pane has been re-engineered. You can create a user-specific view by
copying selected registers to a User tab. See the RealView® Debugger User Guide
for more information.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-27
Non-Confidential

About Previous Releases
• The RealView Debugger project manager and related functionality has been
removed, so you can no longer create projects and build images within RealView
Debugger. However, the source code editing and searching features are still
available.

Note
 To create and build your projects in RVDS v3.0, use CodeWarrior for RVDS (see

CodeWarrior for RVDS changes in RVDS v3.0 on page B-29).

• Simulator support has changed. See Simulator support in RVDS v3.0 on
page B-29 for more information.

• RealView Broker (RVBroker) has been re-engineered. Although RealView
Debugger still runs RVBroker automatically for local host, RealView
ARMulator® ISS connections, starting RealView Broker for remote simulator
connections has changed. You must specify a username when starting RealView
Broker on a remote workstation. See the RealView® Debugger Target
Configuration Guide for more information.

Note
 Support for Multi-ICE® direct connect has been removed in RVDS v3.0.

For more information about the changes to RealView Debugger, see the RealView®
Debugger Essentials Guide.

B.10.3 Compilation Tools support in RVDS v3.0

The major changes to RVCT v3.0 are as follows:

• RVCT v3.0 supports Thumb-2EE.

• The ARM assembler can be used to assemble Intel Wireless MMX Technology
instructions to develop code for the PXA270 processor.

• RVCT v3.0 provides full support for DWARF 3 (Draft Standard 9.6) debug tables,
as described in the ABI for the ARM Architecture (base standard) [BSABI].

• The ARM compiler and linker support Thread Local Storage (TLS) to enable
programs to use multiple threads.

• The ARM compiler supports improved loop optimization.

For more information about the changes to RVCT, see the RealView® Compilation Tools
Essentials Guide.
B-28 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.10.4 Simulator support in RVDS v3.0

RVDS provides the following simulator support:

• ISSM, which simulates Cortex-A8 and Cortex-M3 processors.

• An MPCore simulated target is available in RealView ARMulator ISS. However,
this does not model multiple processors, so connecting to this model connects
only to a single processor.

The RDI ARMulator simulated target is no longer available. Use either:

• the new_arm connection on the localhost Target Access to connect to simulated
ARM processors using RealView ARMulator ISS

• the ISSM Target Access to connect to one of the Cortex models.

These are both installed with RealView Debugger.

B.10.5 CodeWarrior for RVDS changes in RVDS v3.0

The major changes to CodeWarrior for RVDS are as follows:

• The External Build Wizard is supported. This is intended to replace the
deprecated makefile importer and the Batch File Runner functionality.

• Support for the .cc file extension has been added.

• CodeWarrior warns you when an unrecognized source file extension (such as
.cmd) is used.

• Panel settings have been added or removed in line with changes to the
compilation tools. See the RealView® Compilation Tools Essentials Guide for
more information.

For more information, see the RealView® Development Suite CodeWarrior IDE Guide.

B.10.6 Documentation changes in RVDS v3.0

Apart from documenting the new features of RVDS, the main changes to the RVDS
documentation are with the RealView Debugger documentation. The RealView
Debugger documentation has been reorganized as follows:

• The information in the RealView® Debugger Extensions User Guide is moved to
the following documents:
— the chapter that describes DSP support is included in the RealView®

Debugger User Guide
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-29
Non-Confidential

About Previous Releases
— the chapter that describes Debugging multiple targets is included in the
RealView® Debugger User Guide

— the chapter that describes Tracing in RealView Debugger is in the
RealView® Debugger Trace User Guide

— the chapter that describes OS support is in the RealView® Debugger RTOS
Guide.

• The chapter that describes connecting to targets in the RealView® Debugger
Target Configuration Guide is in the RealView® Debugger User Guide.

• The RealView® Debugger User Guide has been restructured to be more
task-based.

• The RealView® Debugger Project Management Guide is not provided, because
the RealView Debugger project manager has been removed.

For other detailed changes to the RVDS documentation suite, see:
• RealView® Debugger Essentials Guide
• RealView® Compilation Tools Essentials Guide.

B.10.7 Deprecated and removed features in RVDS v3.0

The following features are deprecated or removed in RVDS v3.0:

• Support for ARM eXtended Debugger (AXD) and ARM Symbolic Debugger
(armsd) is deprecated.

• The makefile importer and Batch File Runner functionality in CodeWarrior is
deprecated.

• Support for remote RealView Debugger connections through Multi-ICE direct
connect has been removed. This means that connections to DSP processors is
available only with RealView ICE, which you must purchase separately.

• The RealView Debugger project manager and related functionality has been
removed.

For more information of other deprecated features, see:
• RealView® Compilation Tools Essentials Guide
• RealView® Debugger Essentials Guide.
B-30 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.11 Changes between RealView Developer Suite v2.2 SP1 and RealView
Developer Suite v2.2

This section describes the changes between RealView Developer Suite v2.2 SP1 and
RealView Developer Suite v2.2. It contains the following:
• Documentation changes in RVDS v2.2 SP1
• Debugger support in RVDS v2.2 SP1
• Compilation Tools support in RVDS v2.2 SP1.

B.11.1 Documentation changes in RVDS v2.2 SP1

The changes to the documentation include:
• The RealView® Developer Suite CodeWarrior IDE Guide is included, which

describes how to use the ARM features of CodeWarrior.
• The chapter that described getting started with CodeWarrior has been removed

from the RealView® Developer Suite Getting Started Guide, and incorporated into
the RealView® Developer Suite CodeWarrior IDE Guide.

• Changes to the RealView Debugger documentation for the supported DSPs.

B.11.2 Debugger support in RVDS v2.2 SP1

The main difference between the debugging tools in RealView Developer Suite v2.2
SP1 and RealView Developer Suite v2.2 is with RealView Debugger, which has support
for CEVA-Oak, CEVA-TeakLite, CEVA-Teak, ZSP400, and ZSP500 DSPs.

B.11.3 Compilation Tools support in RVDS v2.2 SP1

There are minor changes to the compilation tools between RealView Developer Suite
v2.2 SP1 and RealView Developer Suite v2.2. See the RealView® Compilation Tools
Essentials Guide for more information.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-31
Non-Confidential

About Previous Releases
B.12 Changes between RealView Developer Suite v2.2 and RealView
Developer Suite v2.1

This section describes the changes between RealView Developer Suite v2.2 and
RealView Developer Suite v2.1. It contains the following:
• IDE support in RVDS v2.2
• Debugger tool support in RVDS v2.2
• Compilation Tools support in RVDS v2.2 on page B-33
• Agilent Probe support in RVDS v2.2 on page B-33.

B.12.1 IDE support in RVDS v2.2

The CodeWarrior IDE is provided to replace the RealView Debugger IDE. The
CodeWarrior IDE in RealView Developer Suite v2.2 is based on Metrowerks
CodeWarrior v5.6.

Note
 In RealView Developer Suite v2.2, CodeWarrior for RealView Developer Suite is
supported on Windows XP and Windows 2000 systems only, and is not supplied for Red
Hat Linux.

B.12.2 Debugger tool support in RVDS v2.2

The main differences between the debugging tools in RealView Developer Suite v2.2
and RealView Developer Suite v2.1 are with RealView Debugger, which has:
• an improved menu structure
• an improved pane handling mechanism
• improved data navigation with the new Data Navigator pane
• internationalization support
• improved source code coloring
• trace, analysis, and profiling enhancements
• enhanced RTOS support
• support for gcc built images
• additional CLI commands, PRINTDSM and TRACEEXTCOND.

Also, support for standalone editors and the Vi editing mode has been removed from
RealView Debugger.

For a detailed list of changes, see the RealView® Debugger Essentials Guide.
B-32 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
B.12.3 Compilation Tools support in RVDS v2.2

The main differences between the compilation tools in RealView Developer Suite v2.2
and RealView Developer Suite v2.1 are:

• RVCT v2.2 includes support for new ARMv6 cores, for example, the
ARM1176JZF-S, incorporating ARM TrustZone technology, the ARM968EJ-S™,
the ARM1156T2F-S™, and the ARM MPCore.

• Supported in RVCT v2.2, the new Thumb-2 instruction set introduces many new
32-bit instructions, and some new 16-bit instructions.
The Thumb-2 instruction set includes older 16-bit Thumb instructions as a subset.

• RVCT v2.2 is fully compliant with the Base Platform ABI for the ARM
Architecture [BPABI] (unpublished DRAFT).

• RVCT v2.2 provides initial support for DWARF3 (Draft Standard 9) debug tables,
as described in the ABI for the ARM Architecture (base standard) [BSABI].

• The command-line option -g switches on the generation of debug tables for the
current compilation. Optimization options are specified by -O0, -O1, -O2, or -O3.
By default, using the -g option does not affect the optimization setting.
This is a change in behavior for RVCT v2.2.

• RVCT v2.2 supports the command-line option --apcs /fpic to compile code that
is compatible with System V shared libraries.

• The ARM linker supports building, and linking against, shared libraries. New
command-line options are available to build SVr4 executable files and shared
objects, and to specify how code is generated.

• The ARM linker supports the GNU-extended symbol versioning model.

• The ARM implementation of floating-point computations has been changed to
provide improved support for C99 functions. Where this changes behavior
significantly, a compatibility mode has been introduced to aid developers to
migrate code to use the new features.

• RVCT v2.2 supports building of Linux applications and shared libraries.

For a detailed list of changes, see the RealView® Compilation Tools Essentials Guide.

B.12.4 Agilent Probe support in RVDS v2.2

Agilent Probe support is available as a custom installation option in RealView
Developer Suite v2.2.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-33
Non-Confidential

About Previous Releases
B.13 Changes between RealView Developer Suite v2.1 and RealView
Developer Suite v2.0

This section describes the changes between RealView Developer Suite v2.1 and
RealView Developer Suite v2.0. It contains the following:
• Debugger tool support in RVDS v2.1
• Compilation Tools support in RVDS v2.1.

B.13.1 Debugger tool support in RVDS v2.1

The main differences between the debugging tools in RealView Developer Suite v2.1
and RealView Developer Suite v2.0 are:

• ARM eXtended Debugger (AXD) is included

• ARM Symbolic Debugger (armsd) is included

• RealView Debugger has:
— trace and profiling enhancements
— enhanced RTOS support
— new toolbar buttons and menu changes that mean you have quick access to

commonly used features.

B.13.2 Compilation Tools support in RVDS v2.1

The main differences between the compilation tools in RealView Developer Suite v2.1
and RealView Developer Suite v2.0 are:

• Increased compliance with the Application Binary Interface for the ARM
Architecture (Base Standard) (ABI for the ARM Architecture (Base Standard)).
See the ABI for the ARM Architecture page at http://www.arm.com/.

• C++ exception handling is supported. Therefore, with the exception of export
templates, the remainder of ISO C++ is supported as defined by the ISO/IEC
14822 :1998 International Standard for C++.

• More optimization features are included, such as multifile compilation and linker
feedback.

• Compression of read/write data areas is provided, to further reduce the image
size.

• Some GNU C and C++ extensions are supported.

• Many new command-line options have been added to the build tools.
B-34 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
• The single-dash keyword and some command-line options are deprecated.

Note
 The tools check more strictly the requirement for eight-byte stack alignment. The
compiler generates code with PRESERVE8 and REQUIRE8. The linker checks that code that
requires eight-byte alignment only calls code that preserves eight-byte alignment.
Therefore, this has implications for your legacy assembler code, object files and
libraries. You must check that your existing assembly files, object files, or libraries
preserve eight-byte alignment and correct them if required. For more information, see
the RealView® Compilation Tools Assembler Guide and the RealView® Compilation
Tools Linker and Utilities Guide for more information.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-35
Non-Confidential

About Previous Releases
B.14 Changes between RealView Developer Suite v2.2 and ADS v1.2.1
This section describes the changes between RealView Developer Suite v2.2 and ARM
Developer Suite® (ADS) v1.2.1. It contains the following:
• CodeWarrior IDE changes between RVDS v2.2 and ASD v1.2.1
• Debugger changes between RVDS v2.2 and ASD v1.2.1 on page B-37
• Compilation Tools changes between RVDS v2.2 and ASD v1.2.1 on page B-38
• ARM simulator changes between RVDS v2.2 and ASD v1.2.1 on page B-39.

B.14.1 CodeWarrior IDE changes between RVDS v2.2 and ASD v1.2.1

The changes between CodeWarrior for RealView Developer Suite and CodeWarrior for
ADS are:

• CodeWarrior for ADS was based on CodeWarrior v4.2. CodeWarrior for
RealView Developer Suite is based on Metrowerks CodeWarrior v5.6.

• The CodeWarrior Perl plug-in, MWPerl, which provided support for processing
Perl scripts in CodeWarrior v4.2 has been removed in CodeWarrior v5.6. It is no
longer supported by Metrowerks.

• The ARM tool-specific configuration panels are tailored to RealView Developer
Suite v2.2.

• The separate ARM compilers are combined into a single compiler in RealView
Developer Suite v2.2, therefore there is only one compiler configuration panel in
RealView Developer Suite v2.2.

• You can run and debug your image with RealView Debugger, in addition to AXD
and armsd.

• You can concatenate libraries.

• You can import CodeWarrior for ADS projects into CodeWarrior for RealView
Developer Suite.

• The default ARM stationery in CodeWarrior for RealView Developer Suite does
not include a DebugRel build target. However, a DebugRel build target is created if
you import a CodeWarrior for ADS project, to preserve any settings you might
have configured for that build target.

• Unlike the ADS compiler, the RVCT compiler does not generate browser
information. This functionality is provided by the builtin language parser of
CodeWarrior.

• Code formatting.
B-36 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
• Code completion, including code completion for C++ template classes.

• Go to next/previous function.

• Word wrap when printing.

• Support for source-relative #includes.

• Find inside/outside of comments.

• Improved language parser speed and feedback.

• New editor bindings.

• Ability to show and hide the Code and Data columns in the project window.

• Support for workspaces.

Note
 All target connection and debugging features in the CodeWarrior IDE are not available
in CodeWarrior for RealView Developer Suite. You must run one of the ARM
debuggers to perform these functions.

B.14.2 Debugger changes between RVDS v2.2 and ASD v1.2.1

The main differences between the debugging tools in RealView Developer Suite v2.2
and ADS v1.2.1 are:

• RealView Debugger is the latest ARM debugger, which enables you to perform
advanced debugging functions such as:
— multiprocessor debugging
— OS-aware debugging
— extended target visibility
— trace, analysis, and profiling
— access to the RealView ICE JTAG control unit over Ethernet and USB.

• AXD is enhanced to be able to debug C and C++ programs built with the new
RVCT provided with RealView Developer Suite v2.2.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-37
Non-Confidential

About Previous Releases
B.14.3 Compilation Tools changes between RVDS v2.2 and ASD v1.2.1

The main differences between the build tools in RealView Developer Suite v2.2 and
ADS v1.2.1 are as follows:

• Compliance with the new ABI for the ARM Architecture (Base Standard). See the
ABI for the ARM Architecture page at http://www.arm.com/. This is different to
the old ADS ABI. Some compatibility is provided with the --apcs /adsabi
command line option.

• There is full ISO C++ support as defined by the ISO/IEC 14822 :1998
International Standard for C++, by way of the Edison Design Group (EDG)
front-end. This includes exceptions, namespaces, templates, and intelligent
implementation of Run-Time Type Information (RTTI), but excludes the export of
templates.

• Support for some GNU language extensions.

• ARM and Thumb compilation on a per-function basis.

• Re-engineered inline assembler, and a new embedded assembler that enables you
to include out-of-line assembly code.

• Linker feedback to remove unused functions.

• Full support for ARM architecture v6 instructions has been added.

• Read/write data compression enables the optimization of ROM size.

• Removal of unused C++ virtual functions.

• Multifile compilation, which performs optimizations across multiple compilation
units.

• You can specify a library search path, to indicate where to search for your user
libraries.

• You can separate RO code and data into different execution regions.

• There are new scatter-loading attributes.

• Unicode and multibyte characters are supported.

• Compiler intrinsics are available to access the return address of a function, the
current stack pointer value, and the current program counter value. An additional
intrinsic enables you to insert the BKPT instruction in your C or C++ code.

• You can identify a function that does not return, so that the compiler generates
more efficient code.
B-38 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

About Previous Releases
• The C++ name mangling scheme has changed.

• The ARM Profiler (armprof) is not provided with RVCT.

Note
 This is not the same as the ARM Profiler provided with RVDS v3.1 Professional

edition, and later versions.

• The ARM Applications Library is not provided with RVCT.

• Unlike the ADS compiler, the RVCT compiler does not generate browser
information.

• There are changes to the assembler, compiler, and linker command-line options.
Support for double dashes -- to indicate command-line keywords (for example,
--cpp) and single dashes - for command-line single-letter options, with or without
arguments (for example, -S).

Note
 The single-dash command-line options used in previous versions of ADS and

RVCT are still supported for backwards-compatibility.

• The fromelf option -ihf has been removed.

Note
 The tools check more strictly the requirement for eight-byte stack alignment. The
compiler generates code with PRESERVE8 and REQUIRE8. The linker checks that code that
requires eight-byte alignment only calls code that preserves eight-byte alignment.
Therefore, this has implications for your legacy assembler code, object files and
libraries. You must check that your existing assembly files, object files, or libraries
preserve eight-byte alignment and correct them if required. For more information, see
the RealView® Compilation Tools Assembler Guide and the RealView® Compilation
Tools Linker and Utilities Guide for more information.

B.14.4 ARM simulator changes between RVDS v2.2 and ASD v1.2.1

RealView ARMulator ISS is the latest version of the ARM simulator. It supports
connections through RealView Connection Broker and RDI. When connecting to the
simulator through RealView Connection Broker under RealView Debugger, you can
have multiple connections to the simulator. You can connect to the RDI interface of
RealView ARMulator ISS using RealView Debugger, AXD v1.3, and armsd.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. B-39
Non-Confidential

About Previous Releases
Note
 Although you can install ADS in addition to RealView Developer Suite v2.2, you must
exercise caution if you use both RealView ARMulator ISS and ADS ARMulator. See
the RealView® Developer Suite v2.2 Release Notes for more information.
B-40 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary

The following terminology is used in the documentation provided with ARM®
RealView® Development Suite (RVDS):

AAPCS See Procedure Call Standard for the ARM Architecture.

ABI for the ARM Architecture (base standard) (BSABI)
The ABI for the ARM Architecture is a collection of specifications, some open and
some specific to ARM architecture, that regulate the inter-operation of binary code in a
range of ARM architecture-based execution environments. The base standard specifies
those aspects of code generation that must be standardized to support inter-operation
and is aimed at authors and vendors of C and C++ compilers, linkers, and runtime
libraries.

Adaptive clocking A technique used by RealView ICE (RVI) where it sends out a clock signal and then
waits for the returned clock before generating the next clock pulse. The technique
enables the RVI debug unit to adapt to differing signal drive capabilities and differing
cable lengths.

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate address/control and data phases, unaligned data
transfers using byte strobes, burst-based transactions with only start address issued,
separate read and write data channels to enable low-cost DMA, ability to issue multiple
outstanding addresses, out-of-order transaction completion, and easy addition of
register stages to provide timing closure.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-1
Non-Confidential

Glossary
The AXI protocol also includes optional extensions to cover signaling for low-power
operation.

AXI is targeted at high performance, high clock frequency system designs and includes
a number of features that make it very suitable for high speed sub-micron interconnect.

Advanced Microcontroller Bus Architecture (AMBA®)
On-chip communications standard for high-performance 32-bit and 16-bit embedded
microcontrollers.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only
supports a subset of the functionality provided by the AMBA AXI protocol. The full
AMBA AHB protocol specification includes a number of features that are not
commonly required for master and slave IP developments and ARM recommends only
a subset of the protocol is usually used. This subset is defined as the AMBA AHB-Lite
protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

AHB See Advanced High-performance Bus.

AHB Access Port (AHB-AP)
CoreSight™ supports access to a system bus infrastructure using the AHB Access Port
(AHB-AP) in the Debug Access Port (DAP). The AHB-AP provides an AHB master
port for direct access to system memory. If an alternate bus protocol is implemented,
you can use an AHB bridge to map transactions. For example, you can use an AHB to
AXI bridge to enable access to an AXI bus matrix.

CoreSight also supports AHB bus tracing using an AHB Trace Macrocell (HTM).

See also Advanced eXtensible Interface, AHB Trace Macrocell, CoreSight, and Debug
Access Port.

AHB-AP See AHB Access Port.

AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all of the basic
functions required by the majority of AMBA AHB slave and master designs,
particularly when used with a multi-layer AMBA interconnect. In most cases, the extra
facilities provided by a full AMBA AHB interface are implemented more efficiently by
using an AMBA AXI protocol interface.

AHB Trace Macrocell (HTM)
The AHB Trace Macrocell is a trace source that makes bus information visible that
cannot be inferred from the processor trace using an ETM:

• An understanding of multi-layer bus utilization.
Glossary-2 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
• Software debug. For example, visibility of access to memory areas and data
accesses.

• Bus event detection for trace trigger or filters, and for bus profiling.

See also Advanced High-performance Bus.

AMBA See Advanced Microcontroller Bus Architecture.

AMBA Trace Bus (ATB)
The AMBA Trace Bus transfers trace data through CoreSight infrastructure in a SoC.
Trace sources are ATB masters, and sinks are ATB slaves. Link components provide
both master and slave interfaces.

See also CoreSight.

APB-AP See Debug Access Port.

armar The ARM librarian, that enables you to create libraries of files, such as object files.

See also ARM Compiler toolchain and RealView Compilation Tools (RVCT).

armasm The ARM assembler.

See also ARM Compiler toolchain and RealView Compilation Tools (RVCT).

armcc The ARM compiler for C and C++ code.

See also ARM Compiler toolchain and RealView Compilation Tools (RVCT).

armlink The ARM linker.

See also ARM Compiler toolchain and RealView Compilation Tools (RVCT).

ARM Advanced SIMD Extension
ARM Advanced SIMD Extension is an optional component of ARMv7 architecture. It
is a 64/128 bit hybrid SIMD technology targeted at advanced media and signal
processing applications and embedded processors. It is implemented as part of the
ARM core, but has its own execution pipelines and a register bank that is distinct from
the ARM core register bank.

ARM Advanced SIMD Extension supports integer, fixed-point, and single-precision
floating-point SIMD operations. These instructions are available in both ARM and
Thumb®-2.

ARM Advanced SIMD Extension is also known as ARM NEON Technology (NEON™).
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-3
Non-Confidential

Glossary
ARM Compiler toolchain
The ARM Compiler toolchain is a suite of tools, together with supporting
documentation and examples, that enables you to write and build applications for the
ARM family of processors. The ARM Compiler toolchain supersedes RealView
Compilation Tools

See also armar, armasm, armcc, armlink, fromelf, and RealView Compilation Tools
(RVCT).

ARM instruction A word that encodes an operation for an ARM processor operating in ARM state. ARM
instructions must be word-aligned.

See also Thumb instruction, Thumb-2 instruction, and Thumb-2EE instruction.

ARM Profiler A plug-in to the ARM Workbench IDE that enables non-intrusive analysis of embedded
software over long periods of time, on targets running at operational frequencies of up
to 400 MHz. Targets can be Real-Time System Models (RTSMs) and hardware targets.
ARM Profiler is provided with RVDS Professional edition.

This is not the same as the older ARM Profiler tool, armprof.

See also Real-Time System Model (RTSM), RealView ICE (RVI), and RealView Trace
(RVT) and RealView Trace 2 (RVT2).

ARM state A processor that is executing ARM instructions is operating in ARM state. The
processor switches to Thumb state (and to recognizing Thumb instructions) when
directed to do so by a state-changing instruction such as BX or BLX.

See also Jazelle® state, Thumb state, and ThumbEE state.

ARM TrustZone® technology
The hardware and software that enables security features to be integrated throughout a
SoC device.

ARM Workbench IDE
ARM Workbench IDE is based around the Eclipse IDE, and provides additional
features to support the ARM development tools provided in RVDS.

See also RealView Development Suite (RVDS).

ATB See AMBA Trace Bus.

AXI See Advanced eXtensible Interface.

BCD file See Board/Chip Definition (BCD) file.
Glossary-4 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
Big-endian In the context of the ARM architecture, big-endian is defined as the memory
organization in which the least significant byte of a word is at a higher address than the
most significant byte.

See also Little-endian.

Board file RealView Debugger uses this term to refer to the top-level configuration file, normally
called rvdebug.brd, that references one or more other configuration files. A board file
contains:

• the Debug Configuration (connection-level) settings

• references to the Debug Interface configuration file that identifies the targets on
the development platform

• references to any Board/Chip Definition (BCD) files assigned to a Debug
Configuration.

See also Board/Chip Definition (BCD) file, Debug Configuration, Debug Interface,
Development platform, and Target.

Board/Chip Definition (BCD) file
In the context of RealView Debugger, a BCD file enables you to define the memory
map and memory mapped registers for a target development board or processor. Various
BCD files are provided with RVDS for ARM development boards (for example CP.bcd
for the Integrator®/CP development board) and processor core modules (for example
CM940T.bcd for the ARM940T™ processor).

See also Board file and Debug Configuration.

Breakpoint unit In the context of RealView Debugger, a unit within a Chained breakpoint that combines
with other breakpoint units to create a complex hardware breakpoint.

See also Chained breakpoint and Hardware breakpoint.

BSABI See ABI for the ARM Architecture (base standard).

Canonical Frame Address (CFA)
In DWARF, this is an address on the stack specifying where the call frame of an
interrupted function is located.

Captive thread Captive threads are all threads that can be brought under the control of RVDS. Special
threads, called non-captive threads, are essential to the operation of Running System
Debug (RSD) and so are not under debugger control. Non-captive threads are grayed
out in the GUI.

See also Running System Debug.

CFA See Canonical Frame Address.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-5
Non-Confidential

Glossary
Chained breakpoint In the context of RealView Debugger, a complex breakpoint that comprises multiple
hardware breakpoint units.

See also Breakpoint unit, Conditional breakpoint, Data breakpoint, and Hardware
breakpoint.

Chained tracepoint In the context of RealView Debugger, a complex tracepoint that comprises multiple
tracepoint units.

See also Tracepoint and Tracepoint unit.

Conditional breakpoint
A breakpoint that has one or more condition qualifiers assigned. The breakpoint is
activated when all assigned conditions are met, and either stops or continues execution
depending on the action qualifiers that are assigned. The condition normally references
the values of program variables that are in scope at the breakpoint location.

See also Chained breakpoint, Data breakpoint, Hardware breakpoint, Instruction
breakpoint, Software breakpoint, and Unconditional breakpoint.

Core module In the context of an ARM Integrator development board, an add-on development board
that contains an ARM architecture-based processor and local memory. Core modules
can run standalone, or can be stacked onto Integrator development boards.

See also Integrator.

CoreSight CoreSight is an infrastructure that enables the debugging, monitoring, and optimization
of performance of a complete System on Chip (SoC) design.

See also CoreSight ECT, CoreSight ETB, CoreSight ETM, Trace Funnel, and Trace
Port Interface Unit.

CoreSight ECT CoreSight ECT is a control and access component that supports the interaction and
synchronization of multiple triggering events within a SoC:

See also CoreSight, Cross Trigger Interface, Cross Trigger Matrix, and Embedded
Cross Trigger.

CoreSight ETB CoreSight ETB is a trace sink that provides on-chip storage of trace data using a
configurable sized RAM.

See also CoreSight, CoreSight ETB, Embedded Trace Buffer, and Embedded Trace
Macrocell.

CoreSight ETM CoreSight ETM is a trace source that provides processor driven trace through an ATB
compliant trace port.

See also AMBA Trace Bus, CoreSight, CoreSight ETB, and Embedded Trace
Macrocell.
Glossary-6 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
CPSR See Current Program Status Register.

Cross Trigger Interface (CTI)
The Cross Trigger Interface provides the interface between a component or subsystem
and the Cross Trigger Matrix. The system requires a CTI for each subsystem that
supports cross triggering.

See also CoreSight, CoreSight ECT, Cross Trigger Matrix, and Embedded Cross
Trigger.

Cross Trigger Matrix (CTM)
The Cross Trigger Matrix combines the trigger requests generated from CTIs and
broadcasts them to all CTIs as channel triggers. This enables subsystems to interact,
cross trigger, with one another. CTMs can be connected together to increase the number
of CTIs

See also CoreSight, CoreSight ECT, Cross Trigger Interface, and Embedded Cross
Trigger.

CTI See Cross Trigger Interface.

CTM See Cross Trigger Matrix.

Current Program Status Register (CPSR)
A register containing the current state of control bits and flags.

See also Program Status Register and Saved Program Status Register.

DAP See Debug Access Port.

Data breakpoint A hardware breakpoint that activates when a given location is accessed in a specific
way. The breakpoint can also check for a specific data value being access at the given
location, if required.

See also Chained breakpoint, Conditional breakpoint, Hardware breakpoint, Instruction
breakpoint, Software breakpoint, and Unconditional breakpoint.

DCC See Debug Communications Channel.

Debug Agent (DA) The Debug Agent resides on the target to provide target-side support for Running
System Debug (RSD) in RealView Debugger. The Debug Agent can be a thread or built
into the RTOS. The Debug Agent and RealView Debugger communicate with each
other using the Debug Communications Channel (DCC). This enables data to be passed
between the debugger and the target using the ICE interface, without stopping the
program or entering debug state.

See also Running System Debug and Debug Communications Channel.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-7
Non-Confidential

Glossary
Debug Access Port (DAP)
The Debug Access Port is a control and access component that enables debug access to
the complete SoC through system master ports.

External read/write access to the internal interface is provided by the JTAG Debug Port
(JTAG-DP). The JTAG-DP is a standard JTAG interface for debug access and provides
standard JTAG access to an SoC through the DAP. It interfaces to the DAP internal bus.

Internal access to on-chip busses and other interfaces is provided by the Access Ports
(APs). The three APs are:

• the AHB Access Port (AHB-AP) that provides an AHB-Lite master for access to
a system AHB bus

• the APB Access Port (APB-AP) that provides an AMBA 3 APB master for access
to the Debug APB that configures all CoreSight components

• the JTAG Access Port (JTAG-AP) that provides JTAG access to on-chip
components and operates as a JTAG master port to drive JTAG chains throughout
the SoC.

See also CoreSight.

Debug Communications Channel (DCC)
A debug communications channel enables data to be passed between RealView
Debugger and the EmbeddedICE logic on the target using the JTAG interface, without
stopping the program flow or entering debug state.

Debug Configuration
In the context of RealView Debugger, a Debug Configuration defines a debugging
environment for the development platform that is accessed through a particular Debug
Interface. Multiple Debug Configurations can be created for a Debug Interface, each
providing a separate debugging environment to different development platforms, or
different debugging environments to the same development platform.

All Debug Configurations are stored in the main RealView Debugger board file. Each
configuration might reference one or more BCD files.

See also Board file, Board/Chip Definition (BCD) file, Debug Interface and Target.

Debug illusion The experience that a debugger creates in the mind of the software developer. The key
features of debug illusion include:

• mixed source code and disassembly

• a function call stack showing symbolic function prototypes with names and
argument types
Glossary-8 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
• display of variables using their source code name

• source level stepping and breakpoints.

This illusion is created by the debugger using data from the system being debugged and
symbolic debug information from the code generation tool chain.

Debug Interface In the context of RealView Debugger, the Debug Interface identifies the targets on your
development platform, and provides the mechanism that enables RealView Debugger
to communicate with those targets. The Debug Interface corresponds directly to a piece
of hardware or a software simulator.

See also Debug Configuration and Target.

Development platform
Contains the components, either hardware or simulated, that you are using to develop
your application. It can include:
• a development board, such as an Integrator/CP
• peripherals
• one or more ARM architecture-based processors
• CoreSight components
• one or more DSPs.

See also CoreSight and Target.

Doubleword In the context of the ARM architecture, a 64-bit unit of information. Contents are taken
as being an unsigned integer unless otherwise stated.

DSTREAM The ARM DSTREAM debug and trace unit enables powerful software debug and
optimization on any ARM processor-based hardware target.

Profiling and tracing from the external trace port of a SoC with DSTREAM is not
supported.

ECT See Embedded Cross Trigger.

Embedded assembler
Embedded assembler is assembler code that is included in a C or C++ file, and is
separate from other C or C++ functions.

Embedded Cross Trigger (ECT)
The Embedded Cross Trigger provides a standard interconnect mechanism to pass
debug or profiling events around the SoC. It comprises:
• Cross Trigger Interface (CTI)
• Cross Trigger Matrix (CTM).

See also CoreSight and CoreSight ECT.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-9
Non-Confidential

Glossary
Embedded Trace Buffer™ (ETB™)
The Embedded Trace Buffer provides logic inside the core that extends the information
capture functionality of the Embedded Trace Macrocell.

See also CoreSight ETB and Embedded Trace Macrocell.

Embedded Trace
Macrocell™ (ETM)

A block of logic, embedded in the hardware, that is connected to the address, data, and
status signals of the processor. It broadcasts branch addresses, and data and status
information in a compressed protocol through the trace port. It contains the resources
used to trigger and filter the trace output.

See also CoreSight ETM and Embedded Trace Buffer.

EmbeddedICE® logic
The EmbeddedICE logic is an on-chip logic block that provides TAP-based debug
support for ARM architecture-based processors. It is accessed through the TAP
controller on the ARM architecture-based processor using the JTAG interface.

See also IEEE1149.1.

Emulator In the context of target connection hardware, an emulator provides an interface to the
pins of a real core (emulating the pins to the external world) and enables you to control
or manipulate signals on those pins.

ETB See Embedded Trace Buffer.

ETM See Embedded Trace Macrocell.

ETV See Extended Target Visibility.

Execution vehicle Part of the debug target interface, execution vehicles process requests from the client
tools to the target.

See also Debug Interface.

Execution view The address of regions and sections after the image has been loaded into memory and
started execution.

Extended Target Visibility (ETV)
Extended Target Visibility enables RealView Debugger to access features of the
underlying target, such as chip-level information provided by the hardware
manufacturer or SoC designer.

Filtering In the context of RealView Debugger Trace, a facility that enables you to refine the
results of a trace capture that has already been performed in RealView Debugger. This
is useful if you want to refine your area of interest within the display.

FIQ Fast Interrupt.
Glossary-10 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
fromelf The ARM image conversion utility. This accepts ELF format input files and converts
them to a variety of output formats. fromelf can also generate text information about the
input image, such as code and data size.

See also ARM Compiler toolchain and RealView Compilation Tools (RVCT).

Halfword In the context of the ARM architecture, defined as a 16-bit unit of information. Contents
are taken as being an unsigned integer unless otherwise stated.

Halted System Debug (HSD)
Usually used for OS aware debugging, Halted System Debug (HSD) means that a target
can only be debugged when it is not running. Any target must be stopped before
carrying out any analysis of the system. With the target stopped, RealView Debugger
presents OS awareness information by reading and interpreting target memory.

See also Running System Debug (RSD).

Hardware breakpoint
A breakpoint that is implemented using non-intrusive additional hardware. Hardware
breakpoints are the only method of halting execution when the location is in Read Only
Memory (ROM) or Flash. Using a hardware breakpoint often results in the processor
halting completely. This is usually undesirable for a real-time system.

See also Chained breakpoint, Conditional breakpoint, Data breakpoint, Instruction
breakpoint, Software breakpoint, and Unconditional breakpoint.

Hint instruction A hint instruction provides information to the hardware that the hardware can take
advantage of. An implementation can choose whether to implement hint instructions or
not. If they are not implemented, they execute as NOP.

HSD See Halted System Debug.

HTM See AHB Trace Macrocell.

ICE Extension Unit A hardware extension to the EmbeddedICE logic that provides more breakpoint units.

IEEE 1149.1 The IEEE Standard that defines TAP. Commonly, but incorrectly, referred to as JTAG.

Immediate values Values that are encoded directly in the instruction and used as numeric data when the
instruction is executed. Many ARM and Thumb instructions enable small numeric
values to be encoded as immediate values within the instruction that operates on them.

Implementation defined
In the context of the ARM architecture, this means that the behavior is not
architecturally defined, but must be defined and documented by individual
implementations.

In-Circuit Emulator A device enabling access to and modification of the signals of a circuit while that circuit
is operating.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-11
Non-Confidential

Glossary
Input section Contains code or initialized data or describes a fragment of memory that must be set to
zero before the application starts.

Instruction breakpoint
A location in the image containing an instruction that, if executed, activates a
breakpoint. The breakpoint activation can be delayed by assigning condition qualifiers,
and subsequent execution of the image is determined by any actions assigned to the
breakpoint.

See also Conditional breakpoint, Data breakpoint, Hardware breakpoint, Software
breakpoint, and Unconditional breakpoint.

Instruction Register (IR)
When referring to a TAP controller, a register that controls the operation of the TAP.

Instruction Set System Model (ISSM)
In the context of RVDS, a set of models that simulate the ARM Cortex™ family of
processors. These models are provided with RVDS.

See also Real-Time System Model (RTSM), RealView ARMulator ISS, Simulator, and
SoC Designer Simulator.

Integrator A range of ARM hardware development platforms. Core modules are available that
contain the processor and local memory.

See also Core module.

Interworking A method of working that enables branches between ARM and Thumb code.

IRQ Interrupt Request.

ISSM See Instruction Set System Model (ISSM).

IT block A block of up to four instructions following the 16-bit Thumb-2 If-Then (IT) instruction.
Each instruction in the block is conditional. The conditions for the instructions are
either all the same, or some can be the inverse of others.

Jazelle The Jazelle architecture extends the existing ARM architecture to enable direct
execution of selected Java Virtual Machine (JVM) opcodes.

Jazelle state A processor that is executing Jazelle bytecode instructions is operating in Jazelle state.

See also ARM state, Thumb state, and ThumbEE state.

JTAG-AP See Debug Access Port.

JTAG-DP See Debug Access Port.
Glossary-12 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
JTAG interface unit In the context of ARM RealView tools, a protocol converter that converts low-level
commands from RVDS debuggers into JTAG signals to the processor, for example to
the EmbeddedICE logic and the ETM.

See also RealView Debugger.

Little-endian In the context of the ARM architecture, little-endian is defined as the memory
organization in which the most significant byte of a word is at a higher address than the
least significant byte.

See also Big-endian.

Load view The address of regions and sections when the image has been loaded into memory but
has not yet started execution.

Memory hint In the context of the ARM architecture, a memory hint instruction enables a
programmer to provide advance information to memory systems about future memory
accesses, without actually loading or storing any data.

MPCore An integrated Symmetric Multiprocessor System (SMP) delivered as a traditional
uniprocessor core. The chip contains up to four ARM1136J-S™ based CPUs with cache
coherency.

MPU Multi-Processor Unit.

NEON See ARM Advanced SIMD Extension.

Normal and Secure Worlds
Effectively two virtual processors on a single physical processor. The Normal World
processes operations that are not security-critical, and it delegates security-critical
operations to the Secure World. Client applications reside and execute in the Normal
World. Native services reside and execute in the Secure World. The secure parts of
TrustZone Software run in the Secure World.

See also Secure monitor.

Normal World See Normal and Secure Worlds.

Output section A contiguous sequence of input sections that have the same RO, RW, or ZI attributes.
The sections are grouped together in larger fragments called regions. The regions are
grouped together into the final executable image.

See also Region.

OS-awareness OS-awareness is a feature provided by RealView Debugger that enables you to:

• debug applications running on an embedded OS development platform, such as a
Real-Time Operating System (RTOS)
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-13
Non-Confidential

Glossary
• present thread information and scope some debugging operations to specific
threads.

PCH See PreCompiled Header.

PreCompiled Header (PCH)
A header file that is precompiled. This avoids the compiler having to compile the file
each time it is included by source files.

Procedure Call Standard for the ARM Architecture (AAPCS)
Procedure Call Standard for the ARM Architecture defines how registers and the stack
will be used for subroutine calls.

Profiling In the context of RealView Debugger Trace, the accumulation of statistics during
execution of a program being debugged, to measure performance or to determine
critical areas of code.

Program Counter (PC)
In the context of the ARM architecture, integer register R15.

Program Status Register (PSR)
Contains some information about the current program and some information about the
current processor. Also referred to as Current PSR (CPSR), to emphasize the distinction
between it and the Saved PSR (SPSR). The SPSR holds the value the PSR had when the
current function was called, and which will be restored when control is returned.

An Enhanced Program Status Register (EPSR) contains an additional bit (the Q bit,
signifying saturation) used by some ARM architecture-based processors, including the
ARM9E.

See also Current Program Status Register and Saved Program Status Register.

Project template A collection of RealView Debugger and RVCT configuration files for specific target
development platforms. These templates enable you to create a target-specific
development project in the ARM Workbench IDE.

See also RealView Compilation Tools (RVCT), RealView Debugger, and ARM
Workbench IDE.

PSR See Program Status Register

PU Protection Unit.

Read-Only Position Independent (ROPI)
In the context of the ARM architecture, code or read-only data that can be placed at any
address.
Glossary-14 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
Read Write Position Independent (RWPI)
In the context of the ARM architecture, read/write data addresses that can be changed
at runtime.

RealMonitor A small program that, when integrated into your target application or Real-Time
Operating System (RTOS), enables you to observe and debug your target while parts of
your application continue to run.

Real-Time System Model (RTSM)
An RTSM contains a hard-coded system containing one or more specific simulated
processors and an emulation baseboard. Some RTSMs are provided with RVDS
Professional edition.

See also Instruction Set System Model (ISSM), RealView ARMulator ISS (RVISS),
ARM Profiler, Simulator, and SoC Designer Simulator.

RealView ARMulator® ISS (RVISS)
One of the ARM simulators supplied with RVDS.

RVISS is a collection of programs that simulate the instruction sets and architecture of
various ARM processors. This provides instruction-accurate simulation and enables
ARM and Thumb executable programs to be run on non-native hardware.

RVISS provides modules that model:
• the ARM processor core
• the memory used by the processor.

There are alternative predefined models for each of these parts. However, you can
create your own models if a supplied model does not meet your requirements.

See also Instruction Set System Model (ISSM), Real-Time System Model (RTSM),
Simulator, and SoC Designer Simulator.

RealView Compilation Tools (RVCT)
RVCT is a suite of tools, together with supporting documentation and examples, that
enables you to write and build applications for the ARM family of processors.

See also armar, armasm, armcc, armlink, fromelf, and ARM Compiler toolchain.

RealView Debugger The latest debugger software from ARM that enables you to make use of a debug agent
in order to examine and control the execution of software running on a debug target.
RealView Debugger is supplied in both Windows and Red Hat Linux versions.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-15
Non-Confidential

Glossary
RealView Debugger Trace
Part of the RVDS product that extends the debugging capability with the addition of
real-time program and data tracing. It is available from the RealView Debugger Code
window.

See also RealView ICE (RVI) and RealView Trace (RVT) and RealView Trace 2
(RVT2).

RealView Development Suite (RVDS)
The suite of software development applications, together with supporting
documentation and examples, that enable you to write and debug applications for the
ARM family of processors. RVDS v3.1 and later can be obtained in both Professional
and Standard editions. RVDS supersedes ARM Developer Suite™.

See also Real-Time System Model (RTSM).

RealView ICE (RVI) A JTAG-based debug solution to debug software running on ARM architecture-based
processors. RVI host software is provided with RVDS. The RVI debug unit must be
purchased as a separate product.

See also RealView Debugger Trace, and RealView Trace (RVT) and RealView Trace 2
(RVT2).

RealView Trace (RVT) and RealView Trace 2 (RVT2)
Works in conjunction with RVI to provide real-time trace functionality for software
running in leading edge System-on-Chip devices with deeply embedded processor
cores. RVT2 also enables data streaming directly to ARM Profiler to perform real-time
hardware platform profiling. The RVT and RVT2 hardware units must be purchased as
separate products.

See also RealView Debugger Trace, ARM Profiler, and RealView ICE (RVI).

Region In an image, a region is a contiguous sequence of one to three output sections (RO, RW,
and ZI). A region typically maps onto a physical memory device, such as ROM, RAM,
or peripheral.

See also Root region.

ROPI See Read-Only Position Independent.

Root region In an image, regions having the same load and execution address. A non-root region is
a region that must be copied from its load address to its execution address.

RSD See Running System Debug.

RTSM See Real-Time System Model (RTSM).
Glossary-16 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
Running System Debug (RSD)
Used for OS-aware debugging, Running System Debug (RSD) means that a target can
be debugged when it is running. This means that the debug target does not have to be
stopped before carrying out any analysis of the system. RSD gives access to the
application using a Debug Agent (DA) that resides on the target. The Debug Agent is
scheduled along with other tasks in the system.

See also Debug Agent and Halted System Debug (HSD).

RVCT See RealView Compilation Tools (RVCT).

RVDS See RealView Development Suite (RVDS).

RVI See RealView ICE (RVI).

RVT See RealView Trace (RVT) and RealView Trace 2 (RVT2).

RVT2 See RealView Trace (RVT) and RealView Trace 2 (RVT2).

RWPI See Read Write Position Independent.

Saved Program Status Register (SPSR)
A register that holds a copy of what was in the Current Program Status Register before
the most recent exception. Each exception mode has its own SPSR.

Scatter-loading Assigning the address and grouping of code and data sections individually rather than
using single large blocks.

Section In the context of applications targeted at ARM architecture-based processors, a block
of software code or data for an Image.

See also Input section and Output section.

Secure monitor Reliably switches the ARM processor between Normal World and Secure World
execution environments. The Secure monitor is transparent to TrustZone Software
developers.

Secure World See Normal and Secure Worlds.

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

Serial Wire Debug (SWD)
Serial Wire Debug is a two-pin, bi-directional, data signal plus clock that replaces the
5-pin or 6-pin JTAG interface. The Serial Wire/JTAG debug port provides access to
system memory peripherals and debug configuration registers.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-17
Non-Confidential

Glossary
Simple tracepoint A type of tracepoint that enables you to set trigger points, trace start and end points, or
trace ranges for memory and data accesses.

See also Tracepoints.

Simulator In the context of the ARM tools, a simulator executes non-native instructions in
software (simulating a core).

See also Instruction Set System Model (ISSM), Real-Time System Model (RTSM),
RealView ARMulator ISS, and SoC Designer Simulator.

SoC Designer Simulator
SoC Designer Simulator is part of the Carbon SoC Designer Plus toolset that can be
used for fast modeling, simulation and debugging of complex System-on-Chip (SoC)
designs. System and processor models created with the Carbon SoC Designer Plus tools
can be debugged with Carbon SoC Designer Simulator in conjunction with RealView
Debugger.

See also Instruction Set System Model (ISSM), Real-Time System Model (RTSM),
RealView ARMulator ISS, and Simulator.

Software breakpoint A breakpoint that is implemented by replacing an instruction in memory with one that
causes the processor to take exceptional action. Because instruction memory must be
altered software breakpoints cannot be used where instructions are stored in read-only
memory. Using software breakpoints can enable interrupt processing to continue during
the breakpoint, making them more suitable for use in real-time systems.

See also Chained breakpoint, Conditional breakpoint, Data breakpoint, Hardware
breakpoint, Instruction breakpoint, Software breakpoint, and Unconditional breakpoint.

SPSR Saved Program Status Register.

See also Program Status Register.

Stack Pointer (SP) Integer register R13.

Supervisor Call (SVC)
An instruction that causes the processor to call a programmer-specified subroutine.
Used by the ARM standard C library to handle semihosting. This replaces software
interrupt (SWI).

SVC See Supervisor Call.

SWI See Supervisor Call.

TAP Controller Logic on a device which enables access to some or all of that device for test purposes.
The circuit functionality is defined in IEEE1149.1.

See also Test Access Port and IEEE1149.1.
Glossary-18 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
Target In the context of RealView Debugger, a Target is the part of your development platform
to which RealView Debugger can connect, and on which debugging operations can be
performed. A target can be:

• A runnable target, such as an ARM architecture-based processor. When
connected to a runnable target, you can perform execution-related debugging
operations on that target, such as stepping and tracing.

• A non-runnable CoreSight component. CoreSight components provide a system
wide solution to real-time debug and trace.

See also CoreSight, Debug Configuration, and Debug Interface.

Target Vehicle Target vehicles provide RVDS with a standard interface to disparate targets so that the
debugger can connect easily to new target types without having to make changes to the
debugger core software. The interface can be a hardware or software interface.

See also Instruction Set System Model (ISSM), Real-Time System Model (RTSM),
RealView ARMulator ISS, RealView ICE (RVI), and SoC Designer Simulator.

TCM Tightly Coupled Memory.

TDI Test Data Input.

TDO Test Data Output.

Thumb instruction One halfword or two halfwords that encode an operation for an ARM
architecture-based processor operating in Thumb state. Thumb instructions must be
halfword-aligned.

See also ARM instruction, Thumb-2 instruction, and Thumb-2EE instruction.

Thumb state A processor that is executing Thumb instructions is operating in Thumb state. The
processor switches to ARM state (and to recognizing ARM instructions) when directed
to do so by a state-changing instruction such as BX, BLX.

See also ARM state, Jazelle state, and ThumbEE state.

Thumb-2 instruction Thumb-2 is a major enhancement of the Thumb instruction set, and is defined by
ARMv6T2 and ARMv7M architectures. Thumb-2 provides almost exactly the same
functionality as the ARM instruction set. It has both 16-bit and 32-bit instructions, and
achieves performance similar to ARM code, but with code density similar to Thumb
code.

See also ARM instruction, Thumb instruction, and Thumb-2EE instruction.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-19
Non-Confidential

Glossary
Thumb-2EE instruction
Thumb-2 Execution Environment (Thumb-2EE) is defined by ARMv7 architecture. The
Thumb-2EE instruction set is based on Thumb-2, with some changes and additions to
make it a better target for dynamically generated code, that is, code compiled on the
device either shortly before or during execution.

See also ARM instruction, Thumb instruction, and Thumb-2 instruction.

ThumbEE state A processor that is executing Thumb-2EE instructions is operating in ThumbEE state.
In this state, the instruction set is almost identical to the Thumb instruction set.
However, some instructions have modified behavior, some instructions are not
available, and some new instructions become available.

See also ARM state, Jazelle state, and Thumb state.

TPA Trace Port Analyzer.

TPIU See Trace Port Interface Unit.

Trace Funnel The Trace Funnel combines up to eight trace sources (ETM or HTM) on a single funnel.
However, in this release, trace data can be captured only from a single ETM at a time.

See also AHB Trace Macrocell, CoreSight, CoreSight ETM, and Embedded Trace
Macrocell.

Trace Port Interface Unit (TPIU)
The Trace Port Interface Unit is a trace sink that drains trace data off-chip to a TPA, such
as RealView Trace.

See also CoreSight, CoreSight ETB, CoreSight ETM, and RealView Trace.

Tracepoint A tracepoint can be set on a line of source code, a line of assembly code, or a memory
address. In RealView Debugger, you can set a variety of tracepoints to determine
exactly what program information is traced.

See also Chained tracepoint and Tracepoint unit.

Tracepoint unit In the context of RealView Debugger, a unit within a Chained tracepoint that combines
with other tracepoint units to create a complex tracepoint.

See also Chained tracepoint and Tracepoint.

Trigger In the context of breakpoints, a trigger is the action of noticing that the breakpoint has
been reached by the target and that any associated conditions are met.

In the context of tracing, a trigger is an event that instructs the debugger to stop
collecting trace and display the trace information around the trigger position, without
halting the processor. The exact information that is displayed depends on the position
of the trigger within the buffer.
Glossary-20 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

Glossary
TrustZone Software
A secure software framework that enables best use of security extensions built into the
ARM architecture. Used in single-processor ARM cores that can operate as two virtual
CPUs.

Unconditional breakpoint
A breakpoint that does not have a conditional qualifier assigned. The breakpoint
activates immediately it is hit, but subsequent image execution is determined by any
actions assigned to the breakpoint.

See also Conditional breakpoint, Data breakpoint, Hardware breakpoint, Instruction
breakpoint, Software breakpoint, and Unconditional breakpoint.

Undefined In the context of the ARM architecture, an attempt to execute an undefined instruction
causes an Undefined Instruction exception.

Unpredictable In the context of the ARM architecture, the result of an unpredictable instruction cannot
be relied upon. Unpredictable instructions or results must not represent security holes.
Unpredictable instructions must not halt or hang the processor, or any parts of
the system.

Veneer In the context of the ARM architecture, a small block of code used with subroutine calls
when there is a requirement to change processor state or branch to an address that
cannot be reached in the current processor state.

VFP A standard for floating-point coprocessors where several data values can be processed
by a single instruction.

Watch In RealView Debugger, a watch is a variable or expression that you require the debugger
to display at every step or breakpoint so that you can see how its value changes. The
Watch pane is part of the RealView Debugger Code window. It displays the watchpoints
you have defined.

Watchpoint In RVDS, this is a hardware breakpoint.

Word In the context of the ARM architecture, a word holds a value held in four contiguous
bytes. A 32-bit unit of information. Contents are taken as being an unsigned integer
unless otherwise stated.
ARM DUI 0255M Copyright © 2003-2011 ARM. All rights reserved. Glossary-21
Non-Confidential

Glossary
Glossary-22 Copyright © 2003-2011 ARM. All rights reserved. ARM DUI 0255M
Non-Confidential

	RealView Development Suite Getting Started Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on RealView Development Suite
	Feedback on this book
	See also

	Introduction
	1.1 RealView Development Suite components
	1.1.1 RVDS installation, examples, and documentation directories
	1.1.2 Host platform support
	1.1.3 Processor support
	1.1.4 Simulator support
	1.1.5 ARM Workbench IDE
	1.1.6 ARM Compiler toolchain
	1.1.7 RealView Debugger
	1.1.8 ARM Profiler
	1.1.9 DSTREAM and RealView ICE host software
	1.1.10 ARM Support Wizard

	1.2 RealView Development Suite licensing
	1.2.1 ARM Profiler license
	1.2.2 Profiler-guided optimization license
	1.2.3 NEON vectorizing compiler license
	1.2.4 Installing a node-locked license with the ARM License Wizard
	1.2.5 FLEXnet files and documentation provided with RVDS

	1.3 RealView Development Suite documentation
	1.3.1 Getting more information online

	1.4 RealView Development Suite examples
	1.5 ARM Profiler examples (RVDS Professional edition only)
	1.6 Debug Interface support in RealView Debugger
	1.7 Fixing problems with your RVDS environment
	1.7.1 RVDS environment variables

	Getting Started with RealView Development Suite
	2.1 Building and debugging task overview
	2.2 Using the example projects
	2.3 Getting started with ARM Profiler (RVDS Professional edition only)

	Changes to RealView Development Suite
	3.1 Processor support in RVDS v4.1 SP2
	3.2 Simulator support in RVDS v4.1 SP2
	3.3 ARM Compiler toolchain support in RVDS v4.1 SP2
	3.4 RealView Debugger support in RVDS v4.1 SP2
	3.5 Documentation changes in RVDS v4.1 SP2

	Using the armenv Tool
	A.1 About the armenv tool
	A.2 Using the armenv tool
	A.2.1 armenv command syntax

	About Previous Releases
	B.1 Changes between RVDS v4.1 SP1 and RVDS v4.1
	B.1.1 Processor support in RVDS v4.1 SP1
	B.1.2 Simulator Support in RVDS v4.1 SP1
	B.1.3 ARM Compiler toolchain support in RVDS v4.1 SP1
	B.1.4 RealView Debugger support in RVDS v4.1 SP1

	B.2 Changes between RVDS v4.1 and RVDS v4.0 SP3
	B.2.1 Changes to FLEXnet licensing in RVDS 4.1
	B.2.2 Debug target support in RVDS v4.1
	B.2.3 ARM Compiler toolchain support in RVDS v4.1
	B.2.4 RealView Debugger support in RVDS v4.1
	B.2.5 Documentation in RVDS v4.1
	B.2.6 Deprecated features in RVDS v4.1

	B.3 Changes between RVDS v4.0 SP3 and RVDS v4.0 SP2
	B.3.1 Processor support in RVDS v4.0 SP3
	B.3.2 Simulator support in RVDS v4.0 SP3
	B.3.3 RealView Compilation Tools support in RVDS v4.0 SP3
	B.3.4 RealView Debugger support in RVDS v4.0 SP3
	B.3.5 ARM Profiler support in RVDS v4.0 SP3
	B.3.6 Documentation in RVDS v4.0 SP3
	B.3.7 Deprecated features in RVDS v4.0 SP3
	B.3.8 Obsolete features in RVDS v4.0 SP3

	B.4 Changes between RVDS v4.0 SP2 and RVDS v4.0 SP1
	B.4.1 RealView Compilation Tools support in RVDS v4.0 SP2
	B.4.2 RealView Debugger support in RVDS v4.0 SP2
	B.4.3 RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0 SP2
	B.4.4 Documentation in RVDS v4.0 SP2

	B.5 Changes between RVDS v4.0 SP1 and RVDS v4.0
	B.5.1 Processor support in RVDS v4.0 SP1
	B.5.2 RealView Compilation Tools support in RVDS v4.0 SP1
	B.5.3 RealView Debugger support in RVDS v4.0 SP1
	B.5.4 RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0 SP1
	B.5.5 Documentation in RVDS v4.0 SP1

	B.6 Changes between RVDS v4.0 and RVDS v3.1 Professional edition
	B.6.1 Host platform support in RVDS v4.0
	B.6.2 Processor support in RVDS v4.0
	B.6.3 Simulator support in RVDS v4.0
	B.6.4 RealView Compilation Tools support in RVDS v4.0
	B.6.5 RealView Debugger support in RVDS v4.0
	B.6.6 RealView ICE, RealView Trace, and RealView Trace 2 support in RVDS v4.0
	B.6.7 ARM Profiler support in RVDS v4.0
	B.6.8 IDE support in RVDS v4.0
	B.6.9 Documentation in RVDS v4.0
	B.6.10 Miscellaneous changes in RVDS v4.0
	B.6.11 Deprecated features in RVDS v4.0
	B.6.12 Obsolete features in RVDS v4.0

	B.7 Changes between RVDS v3.1 Professional edition and RVDS v3.1
	B.8 Changes between RVDS v3.1 and RVDS v3.0 SP1
	B.8.1 Processor support in RVDS 3.1
	B.8.2 Simulator support in RVDS 3.1
	B.8.3 Project template support in RVDS 3.1
	B.8.4 RealView Compilation Tools support in RVDS 3.1
	B.8.5 RealView Debugger support in RVDS 3.1
	B.8.6 IDE support in RVDS 3.1
	B.8.7 Documentation changes in RVDS 3.1
	B.8.8 Deprecated features in RVDS 3.1
	B.8.9 Obsolete features in RVDS 3.1

	B.9 Changes between RVDS v3.0 SP1 and RVDS v3.0
	B.10 Changes between RVDS v3.0 and RealView Developer Suite v2.2 SP1
	B.10.1 New features in RVDS v3.0
	B.10.2 Debugger support in RVDS v3.0
	B.10.3 Compilation Tools support in RVDS v3.0
	B.10.4 Simulator support in RVDS v3.0
	B.10.5 CodeWarrior for RVDS changes in RVDS v3.0
	B.10.6 Documentation changes in RVDS v3.0
	B.10.7 Deprecated and removed features in RVDS v3.0

	B.11 Changes between RealView Developer Suite v2.2 SP1 and RealView Developer Suite v2.2
	B.11.1 Documentation changes in RVDS v2.2 SP1
	B.11.2 Debugger support in RVDS v2.2 SP1
	B.11.3 Compilation Tools support in RVDS v2.2 SP1

	B.12 Changes between RealView Developer Suite v2.2 and RealView Developer Suite v2.1
	B.12.1 IDE support in RVDS v2.2
	B.12.2 Debugger tool support in RVDS v2.2
	B.12.3 Compilation Tools support in RVDS v2.2
	B.12.4 Agilent Probe support in RVDS v2.2

	B.13 Changes between RealView Developer Suite v2.1 and RealView Developer Suite v2.0
	B.13.1 Debugger tool support in RVDS v2.1
	B.13.2 Compilation Tools support in RVDS v2.1

	B.14 Changes between RealView Developer Suite v2.2 and ADS v1.2.1
	B.14.1 CodeWarrior IDE changes between RVDS v2.2 and ASD v1.2.1
	B.14.2 Debugger changes between RVDS v2.2 and ASD v1.2.1
	B.14.3 Compilation Tools changes between RVDS v2.2 and ASD v1.2.1
	B.14.4 ARM simulator changes between RVDS v2.2 and ASD v1.2.1

	Glossary

