
RealView® Debugger
Version 4.1

Essentials Guide
Copyright © 2002-2011 ARM. All rights reserved.
ARM DUI 0181N (ID052111)

RealView Debugger
Essentials Guide

Copyright © 2002-2011 ARM. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Change History

Date Issue Confidentiality Change

April 2002 A Non-Confidential Release v1.5

September 2002 B Non-Confidential Release v1.6

February 2003 C Non-Confidential Release v1.6.1

September 2003 D Non-Confidential Release v1.6.1 for RealView Developer Suite v2.0

January 2004 E Non-Confidential Release v1.7 for RealView Developer Suite v2.1

December 2004 F Non-Confidential Release v1.8 for RealView Developer Suite v2.2

May 2005 G Non-Confidential Release v1.8 SP1 for RealView Developer Suite v2.2 SP1

March 2006 H Non-Confidential Release v3.0 for RealView Development Suite v3.0

March 2007 I Non-Confidential Release v3.1 for RealView Development Suite v3.1

September 2008 J Non-Confidential Release v4.0 for RealView Development Suite v4.0

27 March 2009 K Non-Confidential Release v4.0 SP1 for RealView Development Suite v4.0

28 May 2010 L Non-Confidential Release 4.1 for RealView Development Suite v4.1

30 September 2010 M Non-Confidential Release 4.1 SP1 for RealView Development Suite v4.1 SP1

31 May 2011 N Non-Confidential Release 4.1 SP2 for RealView Development Suite v4.1 SP2
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. ii
ID052111 Non-Confidential

Web Address

http://www.arm.com
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. iii
ID052111 Non-Confidential

Contents
RealView Debugger Essentials Guide

Preface
About this book .. vii
Feedback ... x

Chapter 1 About RealView Debugger
1.1 RealView Debugger concepts and terminology ... 1-2
1.2 About the debugging environment ... 1-4
1.3 Multiprocessor debugging .. 1-8
1.4 Environment variables used by RealView Debugger ... 1-9
1.5 The RealView Debugger documentation suite .. 1-10

Chapter 2 Getting Started with RealView Debugger
2.1 How to use the tutorial ... 2-2
2.2 Starting the tutorial ... 2-3
2.3 Starting RealView Debugger ... 2-4
2.4 Connecting to a debug target .. 2-6
2.5 Loading an image ready for debugging ... 2-10
2.6 Setting a simple breakpoint ... 2-13
2.7 Running the image ... 2-14
2.8 Unloading an image ... 2-15
2.9 Disconnecting from a target ... 2-16
2.10 Exiting RealView Debugger ... 2-17
2.11 Cleaning up after the tutorial .. 2-19
2.12 Localizing the RealView Debugger interface ... 2-20
2.13 Saving a debugging session .. 2-23

Chapter 3 Changes to RealView Debugger
3.1 Debug target support ... 3-2
3.2 GUI changes .. 3-3
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. iv
ID052111 Non-Confidential

Contents
3.3 Changes to CLI commands ... 3-4
3.4 Deprecated features .. 3-5

Appendix A About Previous Releases
A.1 Changes between RealView Debugger v4.1 and v4.0 SP1 A-2
A.2 Changes between RealView Debugger v4.0 SP1 and v4.0 A-6
A.3 Changes between RealView Debugger v4.0 and v3.1 .. A-10
A.4 Changes between RealView Debugger v3.1 and v3.0 .. A-12
A.5 Changes between RealView Debugger v3.0 and v1.8 .. A-23
A.6 Changes between RealView Debugger v1.8 and v1.7 .. A-29
A.7 Changes between RealView Debugger v1.7 and v1.6.1 A-35
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. v
ID052111 Non-Confidential

Preface

This preface introduces the RealView® Debugger Essentials Guide. It contains the following
sections:
• About this book on page vii
• Feedback on page x.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. vi
ID052111 Non-Confidential

Preface
About this book

RealView Debugger provides a powerful tool for debugging applications targeted at ARM®
architecture-based processors. This book contains:

• an introduction to the software components that make up RealView Debugger

• a step-by-step guide to getting started, making a connection to a target, and loading an
image to start a debugging session

• details about ending a debugging session

• a description of the RealView Debugger desktop.

Intended audience

This book is written for developers who are using RealView Debugger to debug applications
targeted at ARM architecture-based processors. It assumes that you are experienced in
developing applications for ARM platforms, but does not assume that you are familiar with
RealView Debugger.

Examples

The examples given in this book have all been tested and shown to work as described. Your
hardware and software might not be the same as that used for testing these examples, so it is
possible that certain addresses or values might vary slightly from those shown, and some of the
examples might not apply to you. In these cases you might have to modify the instructions to
suit your own circumstances.

The examples in this book use the programs stored in the \Examples directory in your RealView
Development Suite (RVDS) installation root, that are targeted at ARM architecture-based
processors.

In general, examples use RealView ARMulator® Instruction Set Simulator (RVISS) to simulate
an ARM architecture-based debug target. In some cases, examples are given for other debug
target systems.

Using this book

This book is organized into the following chapters:

Chapter 1 About RealView Debugger
Read this chapter for an introduction to RealView Debugger concepts and
terminology, features, and a summary of the RealView Debugger documentation
suite.

Chapter 2 Getting Started with RealView Debugger
 Read this chapter for a details of how to begin using RealView Debugger for the
first time. It describes how to start RealView Debugger, make a connection, load
an image ready to start debugging, and how to perform some basic debugging
tasks.

Chapter 3 Changes to RealView Debugger
Read this chapter for a summary of the changes to RealView Debugger in this
release.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. vii
ID052111 Non-Confidential

Preface
Appendix A About Previous Releases
Read this appendix for a details of RealView Debugger v4.1 and earlier releases.

Typographical conventions

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option name.

monospace italic Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Further reading

This section lists publications by ARM and by third parties.

See also:
• Infocenter, http://infocenter.arm.com for access to ARM documentation.
• ARM web site , http://www.arm.com for current errata, addenda, and Frequently Asked

Questions.
• ARM Glossary,

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html, for a list of
terms and acronyms specific to ARM.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• RealView Debugger User Guide (ARM DUI 0153)
• RealView Debugger Target Configuration Guide (ARM DUI 0182)
• RealView Debugger Trace User Guide (ARM DUI 0322)
• RealView Debugger RTOS Guide (ARM DUI 0323)
• RealView Debugger Command Line Reference Guide (ARM DUI 0175).

For details on using the compilation tools, see the books in the ARM Compiler toolchain
documentation.

For an introduction to all the components of RVDS, see the RealView Development Suite
Getting Started Guide (ARM DUI 0255).
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. viii
ID052111 Non-Confidential

Preface
For details on using RVISS, see the following book:
• RealView ARMulator ISS User Guide (ARM DUI 0207).

For details on using and configuring Real-Time System Models (RTSMs), see:

• RealView Development Suite Real-Time System Model User Guide (ARM DUI 0424).

For general information on software interfaces and standards supported by ARM tools, see the
PDF files in:

install_directory\Documentation\Specifications\...

See the datasheet or Technical Reference Manual for information relating to your hardware.

See the following documentation for information relating to the ARM debug interfaces suitable
for use with RealView Debugger:

• ARM DSTREAM Setting Up the Hardware (ARM DUI 0481)

• ARM DSTREAM System and Interface Design Reference (ARM DUI 0499)

• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities (ARM DUI
0498)

• ARM RVI and RVT Setting Up the Hardware (ARM DUI 0515)

• ARM RVI and RVT System and Interface Design Reference (ARM DUI 0517).

Other publications

For a comprehensive introduction to ARM architecture see:

Steve Furber, ARM system-on-chip architecture (2nd edition, 2000). Addison Wesley, ISBN
0-201-67519-6.

For the definitive guide to the C programming language, on which the RealView Debugger
macro and expression language is based, see:

Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language (2nd edition, 1989).
Prentice-Hall, ISBN 0-13-110362-8.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. ix
ID052111 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any problems with this product, submit a Software Problem Report:

1. Select Send a Problem Report... from the RealView Debugger Help menu.

2. Complete all sections of the Software Problem Report.

3. To get a rapid and useful response, give:
• a small standalone sample of code that reproduces the problem, if applicable
• a clear explanation of what you expected to happen, and what actually happened
• the commands you used, including any command-line options
• sample output illustrating the problem.

4. E-mail the report to your supplier.

Feedback on this book

If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0181N
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. x
ID052111 Non-Confidential

Chapter 1
About RealView Debugger

This chapter explains how ARM® RealView® Debugger provides a debugging environment for
embedded systems applications running on ARM architecture-based processors. It contains:
• RealView Debugger concepts and terminology on page 1-2
• About the debugging environment on page 1-4
• Multiprocessor debugging on page 1-8
• Environment variables used by RealView Debugger on page 1-9
• The RealView Debugger documentation suite on page 1-10.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-1
ID052111 Non-Confidential

About RealView Debugger
1.1 RealView Debugger concepts and terminology
RealView Debugger enables you to debug your embedded applications and to have complete
control over the flow of the execution so that you can quickly isolate and correct errors.

The following terminology is used throughout the RealView Debugger documentation suite
when describing debugging concepts:

Code window
The Code window is the starting point for all your debugging tasks and gives you
access to features in the product. It displays connection state information and
source code views, gives access to other windows, handles CLI commands, and
displays debugger messages.

Connection The link between the debugger and the target. RealView Debugger enables you
to connect to one or more targets, depending on your application debugging
requirements.

Debug Configuration
A Debug Configuration defines a debugging environment for your development
platform.

Debug Interface
The Debug Interface identifies the targets on your development platform, and
provides the mechanism that enables RealView Debugger to communicate with
those targets. The Debug Interface corresponds directly to a hardware run control
unit or a software interface to simulated targets.

Development Platform
The Development Platform contains the components, either hardware or
simulated, that you are using to develop your application. It can include:
• a base board, such as an Integrator/CP
• peripherals
• one or more ARM architecture-based processors
• CoreSight™ components.

OS-awareness
OS-awareness is a feature provided by RealView Debugger that enables you to:
• debug applications running on an embedded OS development platform,

such as a Real-Time Operating System (RTOS)
• present thread information and scope some debugging operations to

specific threads.
You must obtain and install the required OS-awareness plug-in.

Target A Target is the part of your development platform to which RealView Debugger
can connect, and on which debugging operations can be performed. A target can
be:
• A runnable target, such as an ARM architecture-based processor. When

connected to a runnable target, you can perform execution-related
debugging operations on that target, such as stepping and tracing.

• A non-runnable CoreSight component. CoreSight components provide a
system-wide solution to real-time debug and trace.

These can be hardware or software targets.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-2
ID052111 Non-Confidential

About RealView Debugger
See also
• the following in the RealView Debugger User Guide:

— Target connection on page 1-23.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-3
ID052111 Non-Confidential

About RealView Debugger
1.2 About the debugging environment
RealView Debugger uses a three-tier environment to debug applications:
• debugger software
• a debug interface layer, incorporating the Debug Interface
• the target.

RealView Debugger uses connection information in a Debug Configuration to describe:
• how the debugger connects to the target
• information required to use that connection
• the processor type of the target.

A single RealView Debugger instance can deal with multiple simultaneous connections.

See also:
• Graphical User Interface
• Command Line Interface
• Supported Debug Interfaces
• Persistence information on page 1-7.

1.2.1 Graphical User Interface

The Graphical User Interface (GUI) gives access to the main features of the debugger,
command processing, and one or more Code windows.

1.2.2 Command Line Interface

The Command Line Interface (CLI) gives access to many of the features of the debugger
through RealView Debugger commands. This enables you to create command scripts to
automate debugging. You can access the CLI from the GUI, or run RealView Debugger in
command-line mode. Some features are not available when running RealView Debugger in
command-line mode.

1.2.3 Supported Debug Interfaces

The interface between RealView Debugger and a target is provided by a Debug Interface. Each
Debug Interface processes requests from the client tools to the target. A Debug Interface might
be a JTAG interface, a simulator, or a ROM monitor.

RealView Debugger supports the following hardware and software Debug Interfaces:

• ARM DSTREAM™ and RealView ICE are hardware Debug Interfaces

• software Debug Interfaces are:
— Instruction Set System Model (ISSM)
— Model Library
— Model Process
— Real-Time System Model (RTSM)
— RealView Instruction Set Simulator (RVISS)
— SoC Designer
— VSTREAM.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-4
ID052111 Non-Confidential

About RealView Debugger
DSTREAM, RealView ICE, RealView Trace, and RealView Trace 2

DSTREAM or RealView ICE enable you to debug a hardware development platform containing
one or more ARM architecture-based processors. You can connect to a DSTREAM or RealView
ICE unit using either a USB port or your local network.

Note
 RealView Debugger does not support tracing from the external trace port of a SoC with
DSTREAM.

If you have a RealView ICE unit:

• the addition of a RealView Trace unit enables you to perform tracing and analysis of:
— processors containing an Embedded Trace Module™ (ETM™)
— development platforms containing an Embedded Trace Buffer™ (ETB™).

• the addition of a RealView Trace 2 unit enables you to:
— perform tracing and analysis of processors containing an Embedded Trace Module™

(ETM™)
— perform tracing and analysis of development platforms containing an Embedded

Trace Buffer™ (ETB™)
— perform real-time profiling in cooperation with the ARM Profiler, and perform

tracing and analysis at greater clock speeds.

Note
 You must purchase DSTREAM, RealView ICE, RealView Trace, and RealView Trace 2 units
separately.

Instruction Set System Model

ISSM simulates the following processors:
• Cortex™-A8
• Cortex-M0
• Cortex-M1
• Cortex-M3
• Cortex-R4.

ISSM runs on the same host computer as the debugger.

Model Library

Model Library enables you to connect to targets defined in your own CADI model libraries.

Model Process

Model Process enables you to connect to targets in your own CADI model that is currently
running on your workstation.

Real-Time System Model

An RTSM contains a hard-coded system containing one or more specific simulated processors.
When you attempt to connect to an RTSM target, RealView Debugger starts up the RTSM
session before connecting to that target.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-5
ID052111 Non-Confidential

About RealView Debugger
The following RTSMs are provided with RVDS Professional edition:
• Versatile Emulation Baseboard with ARM926EJ-S
• Versatile Emulation Baseboard with ARM1136JF-S
• Versatile Emulation Baseboard with ARM1176JZF-S
• Versatile Emulation Baseboard with Cortex-A5_MPx1
• Versatile Emulation Baseboard with Cortex-A5_MPx2
• Versatile Emulation Baseboard with Cortex-A8
• Versatile Emulation Baseboard with Cortex-A9_MPx1
• Versatile Emulation Baseboard with Cortex-A9_MPx2
• Versatile Emulation Baseboard with Cortex-R4
• MPS with Cortex-M3
• MPS with Cortex-M4.

Note
 Be aware that Emulation Baseboard (EB) RTSMs are not intended to be software
implementations of particular revisions of EB hardware.

Note
 If you want to create your own RTSMs, you must purchase the RealView System Generator
application.

RealView Instruction Set Simulator

RVISS simulates the instruction sets and architecture of ARM processors, together with a
memory system and peripherals. You can extend it to simulate other peripherals and custom
memory systems.

RVISS runs on the same host computer as the debugger, and includes facilities for
communicating with the debugger.

Note
 RVISS is not the same as the ARM Developer Suite™ (ADS) ARMulator® supplied with RVDS
v2.2 SP1 and earlier releases.

SoC Designer

Models created with Carbon SoC Designer Plus can be debugged using RealView Debugger.
You can debug a SoC Designer model by either:

• launching RealView Debugger from Carbon SoC Designer Simulator to debug the model
you are currently viewing

• creating a SoC Designer Debug Configuration in RealView Debugger.

Note
 You must purchase Carbon SoC Designer Plus separately.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-6
ID052111 Non-Confidential

About RealView Debugger
VSTREAM

You can debug RTL models in a hardware emulation environment in a similar way to JTAG
targets in a real SoC in silicon.

You must purchase and install:
• a supported EDA product
• the VSTREAM client and transactor software.

See also

• the following in the RealView Debugger User Guide:
— Chapter 3 Target Connection

• the following in the RealView Debugger Target Configuration Guide:
— Chapter 2 Customizing a Debug Interface configuration
— Chapter 3 Customizing a Debug Configuration
— Appendix B ISSM Configuration Reference

• RealView Development Suite Getting Started Guide

• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities

• RealView Development Suite Real-Time System Models User Guide

• RealView ARMulator ISS User Guide

• the following documents provided with your VSTREAM product:
— VSTREAM Client User Guide
— VSTREAM Transactor Integration and User Guide

• Carbon SoC Designer Plus, http://carbondesignsystems.com/SocDesignerPlus.aspx.

1.2.4 Persistence information

RealView Debugger maintains persistence information to enable you to halt a debugging
session and resume at a later date. This means that the debugger can remember your working
environment including:
• current target connections
• desktop settings, for example all windows and views that are currently displayed.

If you choose to, you can also enable auto saving of breakpoints. This feature saves any
breakpoints you have set for an image when that image is unloaded.

See also

• the following in the RealView Debugger User Guide:
— Enabling the auto save breakpoints feature on page 11-12.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-7
ID052111 Non-Confidential

About RealView Debugger
1.3 Multiprocessor debugging
The RealView Debugger enables you to debug multiprocessor applications. The processors can
be all hardware, all simulated, or a mixture of both.

RealView Debugger supports such multiprocessor debugging by maintaining connections to
multiple targets through one or more Code windows. When working with multiple processors,
you can use one Code window to cycle through the connected targets, or multiple Code
windows to view different targets.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-8
ID052111 Non-Confidential

About RealView Debugger
1.4 Environment variables used by RealView Debugger
Table 1-1 shows the environment variables use by RealView Debugger.

Table 1-1 Main RVDS environment variables

Environment variable Setting

ARMROOT Your installation directory root (install_directory). The default is C:\Program Files\ARM.

ARMCONF Used to locate the RVISS configuration files:
install_directory\RDI\armperip\...\...;
install_directory\RVARMulator\MPCore\ARMulator\...\...\...\win_32-pentium;
install_directory\RVARMulator\v6ARMulator\...\...\win_32-pentium;
install_directory\RVARMulator\ARMulator\...\...\win_32-pentium

ARMDLL Used to locate the RVISS DLL files:
install_directory\RVARMulator\MPCore\ARMulator\...\...\...\win_32-pentium;
install_directory\RVARMulator\v6ARMulator\...\...\win_32-pentium;
install_directory\RVARMulator\ARMulator\...\...\win_32-pentium;
install_directory\RDI\rdimsvr\...\...\win_32-pentium

ARMLMD_LICENSE_FILE The location of your ARM RealView license file. See the FLEXnet for ARM Tools License
Management Guide for information on this environment variable.

ARM_RTSM_PATH Location of the RTSMs provided with RVDS, that are used by RealView Debugger:
install_directory\SysGen\PVExamples\...\external\lib\Win32_VC2005\Release

ISSM_ARM_CORTEXDLL The location of the ISSMs:
install_directory\ISSModel\Cortex\...\win_32-pentium

RVD_CS_ETM_LOCK Set to the hexadecimal value that represents the password required to unlock the ETM
hardware. See ETM with Lock Access implemented causes APB lock up on page 4-2 in the
RealView Debugger Trace User Guide for more details.

RVD_FLASH_BASE The location of the Flash files for supported development boards. The default is:
install_directory\RVD\Flash\...\windows

RVD_SOCD_CONN_TIMEOUT_SECS The timeout value, in seconds, to be used when attempting to connect to a Soc Designer
target. The default timeout value is 60 seconds.

RVDEBUG_HLPPATH The RealView Debugger online help files:
install_directory\Documentation\RVD\...\release\windows\onlinehelp

RVDEBUG_HOME Enables you to override the default location for the RealView Debugger home directory.

RVDEBUG_INSTALL The RealView Debugger executables:
install_directory\RVD\Core\...\win_32-pentium

RVDEBUG_SDK The location of th e supported OS awareness files:
"%RVDEBUG_INSTALL%\sdk"

RVDEBUG_SHADOW_DIR_BASE Use this to override the directory used to provide a working copy of the RealView
Debugger shodow base directory. The default location is:
C:\Documents and Settings\userID\Local Settings\Application
Data\ARM\rvdebug\version\shadowbase

RVDEBUG_SHADOW_DIR_ETC Use this to override the working copy of the RealView Debugger etc directory. The default
location is:
"%RVDEBUG_SHADOW_DIR_BASE%\etc"
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-9
ID052111 Non-Confidential

About RealView Debugger
1.5 The RealView Debugger documentation suite
The other books that make up the RealView Debugger documentation suite are:
• RealView Debugger User Guide
• RealView Debugger Target Configuration Guide
• RealView Debugger Trace User Guide
• RealView Debugger RTOS Guide
• RealView Debugger Command Line Reference Guide.

The following description explains how you might use the books:

1. For a comprehensive description of the debugging features available in RealView
Debugger, see the RealView Debugger User Guide. This describes, in detail, how to debug
your images and how to configure RealView Debugger to customize your working
environment. It also describes the features available for debugging multiple targets.

2. RealView Debugger Target Configuration Guide describes how to customize existing
Debug Configurations that are set up in the base product, and how to create your own
custom Debug Configurations. It also describes how to create the files required to
program Flash.

3. If you have the appropriate trace hardware, you can perform RealView Debugger tracing,
which is described in the RealView Debugger Trace User Guide.

4. If you have the appropriate plug-ins, you can debug OS applications using the
OS-awareness features in RealView Debugger. These features are described in the
RealView Debugger RTOS Guide.

5. If you want to use the RealView Debugger Command Line Interface (CLI) to control your
debugging tasks, the RealView Debugger Command Line Reference Guide provides a
detailed description with examples of:
• CLI commands
• predefined macros
• keywords.

See also:

• the following in the RealView Debugger User Guide:
— Appendix E RealView Debugger on Red Hat Linux for information on using

RealView Debugger on Red Hat Linux platforms.

• the installation notes delivered with your product for details on installing RealView
Debugger.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 1-10
ID052111 Non-Confidential

Chapter 2
Getting Started with RealView Debugger

This chapter gives step-by-step instructions to start debugging an application with RealView®
Debugger. It is in the form of a tutorial, where each task assumes that you have performed the
preceding tasks. This chapter contains the following sections:
• How to use the tutorial on page 2-2
• Starting the tutorial on page 2-3
• Starting RealView Debugger on page 2-4
• Connecting to a debug target on page 2-6
• Loading an image ready for debugging on page 2-10
• Setting a simple breakpoint on page 2-13
• Running the image on page 2-14
• Unloading an image on page 2-15
• Disconnecting from a target on page 2-16
• Exiting RealView Debugger on page 2-17
• Cleaning up after the tutorial on page 2-19
• Localizing the RealView Debugger interface on page 2-20
• Saving a debugging session on page 2-23.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-1
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.1 How to use the tutorial
The tutorial describes the main tasks required to begin debugging an application. It assumes that
you already have an image to debug. The classic Dhrystone benchmark is provided as an
example with RealView Development Suite (RVDS), which has a prebuilt image. This image is
used in the tutorial.

The Dhrystone example is installed in the directory:

install_directory\RVDS\Examples\...\...\...\dhrystone

The main ...\dhrystone directory contains:

• the subdirectories ...\Debug and ...\Release containing prebuilt debug and release
images of dhrystone.axf

• C source files required to build the image

• build files, for building the image with ARM Compiler toolchain supplied with RVDS.

Before you start the tutorial, make a copy of the Dhrystone example, and use your copy during
the tutorial.

See also:

• Starting the tutorial on page 2-3.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-2
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.2 Starting the tutorial
Begin by making a copy of the source files provided so that the tutorial is self-contained and the
installed example files are untouched:

1. Create a new directory called \Tutorial, in your own directory:
C:\MyExamples\Tutorial

This is the tutorial project base directory.

2. Copy the following files from the examples directory, that is ...\dhrystone, into your new
tutorial directory:
• C source files dhry.h, dhry_1.c, and dhry_2.c
• the build files:

— dhry.bat

— dhry.mk.
• the Debug directory.

You can complete this tutorial using the files you have copied. You do not have to change any
of these files or amend any configuration files.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-3
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.3 Starting RealView Debugger
To start RealView Debugger:

• on Windows, select:
Start → All Programs → ARM → RealView Development Suite v4.1 → RealView
Debugger v4.1

• on Red Hat Linux, select:
Start Menu → Programs → ARM → RealView Development Suite v4.1 → RealView
Debugger v4.1

The first time you run RealView Debugger after installation, it creates a unique working
directory for you to store your personal files, debugger settings, and target configuration files.
RealView Debugger then creates files in, or copies files into, this directory ready for your first
debugging session. The location depends on your host platform:

• On Windows, the default location of the home directory is in:
"%APPDATA%\ARM\rvdebug\version"

If a user ID is not available, then RealView Debugger creates a general-purpose directory
called owner.

• On Red Hat Linux, the location is in ~/rvd.

The main RealView Debugger window is known as the Code window. An example of the
default layout of the Code window is shown in Figure 2-1 on page 2-5.

Note
 You might want to position and resize the main RealView Debugger window to your
requirements. Also, resize the views as required. RealView Debugger remembers the position
and size of the window and views between debugging sessions.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-4
ID052111 Non-Confidential

Getting Started with RealView Debugger
Figure 2-1 Default Code window
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-5
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.4 Connecting to a debug target
Before you can load an image to a debug target, you must connect to the target. You access
connections using the Connect to Target window.

Note
 Be aware that the default connection mode stops the target.

See also:
• How to open the Connections window
• Elements of the Connect to Target window
• Making a connection on page 2-8.

2.4.1 How to open the Connections window

Click Connect to Target... in the Home Page to open the Connect to Target window. Figure 2-2
shows an example:

Figure 2-2 Connect to Target window

See also

• Elements of the Connect to Target window

• the following in the RealView Debugger User Guide:
— Chapter 3 Target Connection.

2.4.2 Elements of the Connect to Target window

The Connect to Target window includes a tree control, which comprises:

Debug Interface
This group shows the type of debug target interface used to support the
connection. For DSTREAM or RealView ICE, this is the ARM® JTAG debug tool
for embedded systems.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-6
ID052111 Non-Confidential

Getting Started with RealView Debugger
Debug Configuration
A Debug Configuration identifies the targets that are available on the associated
development platform. A Debug Configuration enables you to set up a custom
debugging environment.

Target grouping
You can display the targets using the following groupings:
Target All the targets are shown as a single list in each Debug Interface. The

targets are listed in the order of the associated Configuration name.
Figure 2-3 shows an example:

Figure 2-3 Example Connect to Target window (Target group)

Configuration
The targets are listed under the name of the associated Debug
Configuration. Figure 2-4 shows an example:

Figure 2-4 Example Connect to Target window (Configuration group)
You can have multiple Debug Configurations for the same
development platform. If you have multiple debugging platforms, then
you must create a separate Debug Configuration for each platform. A
Debug Configuration enables you to set up a custom debugging
environment.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-7
ID052111 Non-Confidential

Getting Started with RealView Debugger
Note
 A Synchronization Control window is also available for debugging multiprocessor applications.

See also

• the following in the RealView Debugger User Guide:
— Chapter 3 Target Connection
— Chapter 7 Debugging Multiprocessor Applications.

2.4.3 Making a connection

This tutorial uses the RealView Instruction Set Simulator (RVISS) Debug Interface. However,
if you want to connect to a hardware target, first make sure your debug hardware and target
system are powered on, and configured as described in your debug hardware User Guide.

To connect to a debug target, do the following:

1. Select Target → Connect to Target... from the Code window main menu to open the
Connect to Target window. Figure 2-2 on page 2-6 shows an example.

2. Select Configuration from the Grouped By drop-down list.

Note
 It is recommended that you add and configure a Debug Configuration using the

Configuration grouping.

3. Expand the RealView Instruction Set Simulator (RVISS) Debug Interface. The RVISS,
RVISS_1, and RVISS_2 Debug Configurations are available.

4. Expand the RVISS Debug Configuration to show the target processor available for the
configuration. For the RVISS Debug Configuration, the target is called ARM7TDMI.

5. Double-click on the ARM7TDMI target processor to connect.

With the connection established, your Code window is updated:

• The Code window title bar is updated with the name of the current connection. In this
example, the connection name is ARM7TDMI@RVISS. The connection name is also used in
floating views to identify the connection to which the view contents relate.

• The color box is updated with a color for the connection. This color is also used in floating
views to identify the connection to which the view contents relate.

• The Home Page is updated as follows:
— The connection is added to a Recent Connections... list. For this example, the

connection entry is ARM7TDMI@RVISS (connected).

Note
 RealView Debugger adds an entry to this list each time you connect to a different

target, up to 10 a maximum of ten connections.

— A Load Image... entry is added, to enable you to load an image to the target.

• The Cmd tab of the Output view displays connection details.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-8
ID052111 Non-Confidential

Getting Started with RealView Debugger
• Views are updated with debug information, for example the Process Control view shows
process information for the connected target.

Figure 2-5 shows an example:

Figure 2-5 Home Page with a connection

The default configuration files installed as part of the base product enable you to connect to an
ARM7TDMI®, ARM926EJ-S™, and an ARM1176JZF-S™ simulated processor using RealView
ARMulator® ISS (RVISS).

See also

• the following in the RealView Debugger User Guide:
— Chapter 3 Target Connection
— Chapter 7 Debugging Multiprocessor Applications.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-9
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.5 Loading an image ready for debugging
When you have connected to a suitably configured debug target you are ready to load your
image for debugging.

See also:
• Loading an image directly
• Loading multi-image applications to a single debug target on page 2-11.

2.5.1 Loading an image directly

To load an image directly to your debug target:

1. Click Load Image... in the Home Page to open the Select Local File to Load dialog box.

Note
 Do not change any default settings in the Select Local File to Load dialog box.

2. Locate the dhrystone.axf image in your Tutorial directory (see Starting the tutorial on
page 2-3):
C:\MyExamples\Tutorial\Debug

3. Click Open.
The image is loaded to the debug target.

Note
 In the Code window Text Coloring and source code line numbering are enabled by default.

When you load an image, the debugger updated the Code window with the image details:

• Inserts the source filename, for the current context, in the File field of the Find toolbar.

• Inserts a blue hyperlink for the loaded image in a Recent Images... list on the Home Page.
You can click this hyperlink if you want to load the image in future.

Note
 RealView Debugger adds an entry to this list each time you load an image, up to 10 a

maximum of ten images.

• Updates the Code window views as appropriate, for example, it updates the process
information in the Process Control view.

• Displays the load command, used by RealView Debugger to load the image, in the Cmd
tab in the Output view.

Figure 2-6 on page 2-11 shows an example:
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-10
ID052111 Non-Confidential

Getting Started with RealView Debugger
Figure 2-6 Code window with image loaded

If an image is compiled to generate debug information, that is using the --debug switch, loading
the image enables RealView Debugger to gather debug information about the image and the
associated source files. In the dhrystone example, the source file dhry_1.c is opened into a
source tab when you load the image because it has the context.

See also

• the following in the RealView Debugger User Guide:
— Chapter 4 Loading Images and binaries.

2.5.2 Loading multi-image applications to a single debug target

If your application contains multiple images that run on a single target, you can load all the
images to the target. Each image must not overlap any of the other images.

To load a multi-image application:

1. Load the first image.

2. Load any subsequent images, and make sure that the Replace Existing File(s) check box
is not selected on the Select Local File to Load dialog box.

See also

• Loading an image directly on page 2-10
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-11
ID052111 Non-Confidential

Getting Started with RealView Debugger
• the following in the RealView Debugger User Guide:
— Chapter 4 Loading Images and binaries
— Chapter 7 Debugging Multiprocessor Applications
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-12
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.6 Setting a simple breakpoint
A breakpoint enables you to stop image execution at a point of interest, so that you can examine
various parts of your application at that point.

To set a simple breakpoint:

1. Select the Sources entry in the Process Control view.

2. Type the characters dh. The source file dhry.h is selected.

3. Double-click on the source file dhry_1.c. The source file is opened.

4. Click Locate PC in the Debug toolbar. The PC is located in the source file, shown in
Figure 2-7:

Figure 2-7 PC located in a source file

5. Scroll down until line 149 is visible.

6. Double-click in the gray margin at line 149. A simple breakpoint is set at line 149, as
indicated by a red circle shown in Figure 2-8:

Figure 2-8 Simple breakpoint set

Because the breakpoint location is in RAM, RealView Debugger sets a software
breakpoint.

7. Run the image.

See also:
• Running the image on page 2-14
• the following in the RealView Debugger User Guide:

— Chapter 11 Setting Breakpoints.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-13
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.7 Running the image
To run an image, either:

• select Debug → Run from the Code window main menu

• click the Run button on the Debug toolbar.

The Code window is updated as follows:

• the processor status changes to Running, and includes an animated progress indicator

• the process information in the Process Control view is updated to show that the image is
running

• the StdIO tab of the Output view is selected, and application messages and prompts are
displayed

• the CLI prompt in the Cmd tab of the Output view changes to Run>.

See also:
• Continuing the tutorial.

2.7.1 Continuing the tutorial

If you are running the Dhrystone example described in Setting a simple breakpoint on
page 2-13, then continue this tutorial as follows:

1. Run the dhrystone.axf image:
a. Click the Run button to start execution.
b. Enter the required number of runs, for example 20000.
When the breakpoint that you set in Setting a simple breakpoint on page 2-13 is reached:
• A red box is drawn around the source line to show that the PC is pointing to this

location.
• Messages are displayed in the Cmd tab in the Output view, to show what caused the

execution to stop, and the location. In this case:
Stopped at 0x00008480 due to SW Instruction Breakpoint
Stopped at 0x00008480: DHRY_1\main Line 149

2. You can now do the following:
• Examine any variables that are in scope. For example, double-click on the variable

Int_2_Loc, then drag and drop it onto the Watch view.
• Step through the image. For example, select Step Into from the Code window

Debug menu.
• Click the Run button to restart execution until the breakpoint is reached again.
• Double-click on the red breakpoint indicator to clear the breakpoint, then click the

Run button to restart execution.

See also
• Setting a simple breakpoint on page 2-13
• the following in the RealView Debugger User Guide:

— Chapter 8 Executing Images.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-14
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.8 Unloading an image
RealView Debugger automatically unloads an image from a debug target when you:
• disconnect from the debug target
• exit RealView Debugger.

However, you might want to unload an image explicitly as part of your debugging session, for
example if you correct coding errors and then rebuild outside RealView Debugger.

You do not have to unload an image from a debug target before loading a new image for
execution. Open the Select Local File to Load dialog box and make sure that the Replace
Existing File(s) check box is selected.

See also:
• How to explicitly unload an image.

2.8.1 How to explicitly unload an image

You can unload an image by using the Process Control view. To do this:

1. If the Process Control view is hidden, select View → Process Control from the default
Code window main menu.

Note
 If you still have the default views visible in the Code window, then you do not have to do

this step.

2. Do one of the following:
• Click the Unload an image file button on the Debug toolbar.
• Right-click on either the Image or Load entry to display the context menu, then select

Unload from the context menu.
• In the Process Control view deselect the check box associated with the Load entry.

Note
 Unloading an image does not affect target memory. It unloads the symbols and removes most of
the image details from RealView Debugger. However, the image name is retained.

To remove image details completely, right-click on either the Image or Load entry in the Process
Control view and select Delete Entry from the context menu.

See also
• Loading an image directly on page 2-10
• the following in the RealView Debugger User Guide:

— Chapter 4 Loading Images and binaries.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-15
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.9 Disconnecting from a target
You can disconnect from the current target in one of the following ways:

• Select Target → Disconnect from the Code window main menu.
This immediately disconnects the connection shown in the Code window title bar.

• Click the Disconnect button on the Connect toolbar.
This immediately disconnects the connection shown in the Code window title bar.

• Do the following:
1. Select Target → Connect to Target... from the Code window main menu to open

the Connect to Target window.
2. Right-click on the required connection to display the context menu
3. Select Disconnect from the context menu.
You can also click the Connect button on the Connect toolbar to open the Connect to
Target window.

RealView Debugger Code windows do not close when you disconnect from a target. However,
if you have an image loaded, disconnecting removes all the debug information from RealView
Debugger and this clears view contents.

Disconnecting changes the Processor status to Unknown, and the CLI prompt changes to None>.

Note
 You do not have to disconnect from a target before you close down RealView Debugger.

See also:
• Exiting RealView Debugger on page 2-17
• the following in the RealView Debugger User Guide:

— Chapter 3 Target Connection.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-16
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.10 Exiting RealView Debugger
This section describes the options available when you exit RealView Debugger.

If you chose to save the current state of your Code window and connection when you exit
RealView Debugger, then next time you start RealView Debugger:
• the Code window appears in the same state as your previous debugging session
• RealView Debugger automatically attempts to reconnect to a debug target, if it was

previously connected when you last exited RealView Debugger.

See also:
• Closing down RealView Debugger
• Reconnecting to a target
• Storing breakpoints for an image when exiting RealView Debugger.

2.10.1 Closing down RealView Debugger

To exit RealView Debugger:

1. Select File → Exit from the Code window main menu to open the Exit dialog box.

2. If you do not want to be prompted again on exit, select Do Not Show This Dialog Again.

3. Click Yes to close the Exit dialog box and close down RealView Debugger.
If any connections are still established, RealView Debugger stores the connection details,
disconnects from the connected targets, and exits. When you next start RealView
Debugger, these connections are re-established.

See also
• Reconnecting to a target
• Storing breakpoints for an image when exiting RealView Debugger.

2.10.2 Reconnecting to a target

RealView Debugger saves all open connections in the current workspace if you close down
without disconnecting first. This means that RealView Debugger tries to reconnect when you
next open the workspace. However, this might fail if the connection or Debug Interface status
has changed, for example if your RealView ICE interface unit has been disconnected.

If RealView Debugger reconnects successfully, the connection mode specified in the target
configuration file is used by default.

See also
• the following in the RealView Debugger User Guide:

— Chapter 3 Target Connection.

2.10.3 Storing breakpoints for an image when exiting RealView Debugger

If you exit, and you have enabled auto save breakpoints, RealView Debugger when an image is
loaded that has breakpoints set, then the breakpoints are stored for later use. The breakpoints are
automatically loaded when you next load the image.

Be aware of the following:

• Because there is an open connection associated with the image, the connection is also
saved in the current workspace.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-17
ID052111 Non-Confidential

Getting Started with RealView Debugger
• When you next start a RealView Debugger session, and the saved connection is
established, the image is not loaded automatically.

See also
• Reconnecting to a target on page 2-17
• the following in the RealView Debugger User Guide:

— Enabling the auto save breakpoints feature on page 11-12.
• the following in the RealView Debugger Command Line Reference Guide:

— QUIT on page 2-217
— RVDCONTEXT on page 2-233
— UNLOAD on page 2-316.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-18
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.11 Cleaning up after the tutorial
If you created the tutorial project directory described in Starting the tutorial on page 2-3 you
might want to remove it from your workstation. Do this in the usual way.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-19
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.12 Localizing the RealView Debugger interface
By default, the RealView Debugger interface is configured for the US English language.
However, you can configure the language for the RealView Debugger interface to Japanese.

If you do not want to change the internationalization settings, then you can skip this section.

See also:
• Font recommendations
• Procedure summary
• Configuring the internationalization settings
• Configuring the views on page 2-21.

2.12.1 Font recommendations

If you are changing the language to Japanese then it is recommended that you also change the
font to MSGothic or MSMincho.

See also
• Configuring the internationalization settings.

2.12.2 Procedure summary

To localize the RealView Debugger interface, you must:

1. Configure the internationalization settings.

2. Configure the views that display normal text to show the text in the correct text encoding.

Images built from C or C++ sources must be compiled with the Multibyte_chars project setting
enabled (that is, the --multibyte_chars compiler option). You can optionally set the
Multibyte_locale project setting (that is, the --locale compiler option). To build your image
either:
• create an Eclipse project
• create a makefile.

See also
• Configuring the internationalization settings
• Configuring the views on page 2-21
• the following in the RealView Debugger User Guide:

— Chapter 3 Target Connection.
• ARM® Compiler toolchain Introducing the ARM® Compiler toolchain
• ARM® Workbench IDE User Guide.

2.12.3 Configuring the internationalization settings

You can set the internationalization settings using:

• Global settings, if you have a shared RealView Debugger environment, and you want all
users to use the same configuration. To do this, select Tools → Options... from the Code
window main menu to open the Options window.

• Individual workspace settings, for individual users. To do this, select File →
Workspace → Workspace Options... from the Code window main menu to open the
Workspace Options window.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-20
ID052111 Non-Confidential

Getting Started with RealView Debugger
You can use the following procedure to edit the internationalization settings for both global and
workspace settings:

1. Expand the following groups in the left pane:
• ...\rvdebug.ini

• ALL

• Text

2. Select the Internationalization group in the left pane.

3. Change the settings to the required values:
a. Right-click on the Enabled setting, and select True from the context menu
b. Right-click on the Language setting, and select the required language from the

context menu, English or Japanese.
c. Right-click on the Default_encoding setting, and select the required encoding from

the context menu, either ASCII, UTF-8, or Locale.

4. Select the Font_information group in the left pane.

5. Change the settings to the required values:
a. Right-click on the Pane_font setting, and select Edit as font... from the context

menu to open the Font dialog box.
b. In the Font dialog box, change the font to that required for your language.
c. Set up the remaining font settings as required. For the Japanese language, select

either MSGothic or MSMincho.
d. Click OK to close the Font dialog box.

6. Select File → Save and Close from the menu to save your changes and close the settings
window.

7. Select File → Exit from the Code window main menu to exit RealView Debugger.

8. Start RealView Debugger again.
In the Code window, an Encoding field is displayed in the Find toolbar, shown in
Figure 2-9:

Figure 2-9 Find toolbar with Encoding field

See also
• Starting RealView Debugger on page 2-4.

2.12.4 Configuring the views

To display messages and variable contents correctly in the Code window, you must set the
encoding format to the format you specified in the settings window. You can change the format
only for the following elements in the Code window:
• Disassembly tab, source code tabs, and text searches
• Output view, all tabs
• individual variables in a Watch view tab
• individual variables in the Locals tab and Statics tab of the Locals view.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-21
ID052111 Non-Confidential

Getting Started with RealView Debugger
Changing the encoding format for the source code view and searches

To change the encoding format for the source code view, click the down arrow in the Encoding
field on the Find toolbar, and select the required encoding, for example, UTF-8.

This also enables you to search your sources for multibyte text that matches the selected format.

Changing the encoding format for the Output view

To change the encoding format for the Output view:

1. Right-click in the Output view to display the context menu.

2. Select Format... from the context menu to open the List Selection dialog box.

3. Select the required encoding from the dialog box, for example, UTF-8.

4. Click OK.

Changing the encoding format for individual Watch view entries

To change the encoding for an individual Watch view entry:

1. Right-click on the Watch entry to display the context menu.

2. Select Format... from the context menu to open the List Selection dialog box.

3. Select the required encoding from the dialog box, for example, UTF-8.

4. Click OK.

Changing the encoding format for individual Locals view entries

To change the encoding for an individual Locals view entry in either the Locals tab or the
Statics tab:

1. Select View → Locals from the Code window main menu to open the Locals view.

2. Select the required tab in the Locals view, for example Locals.

3. Right-click on an entry in the tab to display the context menu.

4. Select Format... from the context menu to open the List Selection dialog box.

5. Select the required encoding from the dialog box, for example, UTF-8.

6. Click OK.

See also
• Configuring the internationalization settings on page 2-20.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-22
ID052111 Non-Confidential

Getting Started with RealView Debugger
2.13 Saving a debugging session
RealView Debugger stores session details by default when you end your debugging session.
Saving the session enables you to start your next session using the same working environment,
and connecting automatically to specific targets.

See also:
• Workspace
• Startup file
• History file.

2.13.1 Workspace

The RealView Debugger workspace is used for visualization and control of default values, and
storing persistence information. It includes:
• user-defined options and settings
• connection details
• details about open windows and, in some cases, their contents.

The first time you run RealView Debugger, the default workspace settings file rvdebug.aws is
created in your home directory. Each time you start RealView Debugger after this, the debugger
loads this workspace automatically, but you can change the defaults or create a new workspace
of your own.

See also:
• Startup file
• History file.

2.13.2 Startup file

The startup file contains a record of your last debugging session including:
• images and files loaded into RealView Debugger
• the list of all recently loaded files, for example source files
• the recent workspaces list
• the workspace to be used on startup, if specified
• workspace save and restart settings
• user-defined menu settings, for example view format options.

By default, this file is called rvdebug.sav. The first time you exit RealView Debugger after
performing an operation in the default Code window, a startup file is created in your home
directory. From this point on, every time you close down RealView Debugger and exit, this
startup file is updated. You can specify a different startup file, or none at all, by changing your
workspace settings.

See also
• the following in the RealView Debugger User Guide:

— Chapter 17 Configuring Workspace Settings.

2.13.3 History file

The history file contains a record of:

• Commands submitted during a debugging session, for example, changing directory,
loading source files, loading an image for execution, or setting breakpoints.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-23
ID052111 Non-Confidential

Getting Started with RealView Debugger
• Data entries examined in the Code window during debugging.

• The Set Directory and Set File lists used in the various open dialog boxes, such as the
Select File to Open or Select File to Include Commands from dialog boxes.

• Up to 32 personal favorites such as variables, data values, and breakpoints.

RealView Debugger creates the history file when you carry out any of these operations for the
first time, and then exit RealView Debugger. By default, the file is called exphist.sav and is
stored in your home directory. The file is updated at the end of all subsequent debugging
sessions.

Note
 If you are using RealView Debugger on Red Hat Linux, the history file is only created if you
create and save a favorite, for example a breakpoint.

See also
• the following in the RealView Debugger User Guide:

— Appendix E RealView Debugger on Red Hat Linux.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 2-24
ID052111 Non-Confidential

Chapter 3
Changes to RealView Debugger

This chapter describes the changes between RealView® Debugger v4.1 SP2 and the RealView
Debugger v4.1 SP1 release. It contains the following sections:
• Debug target support on page 3-2
• GUI changes on page 3-3
• Changes to CLI commands on page 3-4
• Deprecated features on page 3-5.

If you are using RealView Debugger on Red Hat Linux, see Appendix E RealView Debugger on
Red Hat Linux in the RealView Debugger User Guide.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 3-1
ID052111 Non-Confidential

Changes to RealView Debugger
3.1 Debug target support
The following processors, models, and boards are supported:

Processor support
The following additional processors are supported:
• Cortex-A5 multiprocessor trace
• Cortex-M4
• Cortex-R5, including multiprocessor trace.

Model support
The following additional Real-Time System Models (RTSMs) are supported:
• Cortex-A5 MPx1
• Cortex-A5 MPx2
• Cortex-M4.
Connections to RTL models are supported through the VSTREAM Debug
Interface.

Board support
Board-Chip Definition (BCD) files and corresponding Flash methods, where
appropriate, are supported for the following boards:
• Versatile Express Cortex-A9 based processor
• OMAP 4430 Board basics.

See also:

• the following in the RealView Debugger User Guide:
— Chapter 3 Target Connection.

• the following in the RealView Debugger Target Configuration Guide:
— About connection configuration on page 1-2
— Summary of supplied BCD files on page 1-19
— Summary of files used to program Flash on supported development platforms on

page 6-2.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 3-2
ID052111 Non-Confidential

Changes to RealView Debugger
3.2 GUI changes
The following changes have been made to the RealView Debugger documentation:

• Multiprocessor models are inherently synchronized. For this reason, you cannot set up
synchronzed execution for more than one processor from a multiprocessor model that is
a Model Library, Model Process, ISSM, RTSM, or SoC Designer model. When you select
a simulated processor from any of these simulation Debug Interfaces, the Sync check
boxes on the Execution tab of the Synchronization Control window are disabled for the
other processors in these interfaces.

Note
 If you have connections to targets in these interfaces, use caution when setting up

synchronized execution with the SYNCHEXEC command.

• You can choose to save any breakpoints that are set when you unload an image.

• The Code window status bar includes a new Processor mode field that indicates the value
of the CPSR Mode field.

See also:

• the following in the RealView Debugger User Guide:
— Code window on page 1-4
— Synchronized start and stop operations, cross-triggering, and skid on page 7-6
— Enabling the auto save breakpoints feature on page 11-12.

• the following in the RealView Debugger Command Line Reference Guide:
— SYNCHEXEC on page 2-271.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 3-3
ID052111 Non-Confidential

Changes to RealView Debugger
3.3 Changes to CLI commands
The RVDCONTEXT is supported. It allows you to enable or disable the auto save breakpoints feature.

See also:

• the following in the RealView Debugger User Guide:
— Enabling the auto save breakpoints feature on page 11-12

• the following in the RealView Debugger Command Line Reference Guide:
— RVDCONTEXT on page 2-233.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 3-4
ID052111 Non-Confidential

Changes to RealView Debugger
3.4 Deprecated features
The following features are deprecated:
• support for RealView Instruction Set Simulator (RVISS)
• support for ISSM
• support for the ARM10 family of processors.

See also:

• Chapter 3 Changes to RealView Debugger.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. 3-5
ID052111 Non-Confidential

Appendix A
About Previous Releases

This appendix describes the major differences between the previous releases of RealView®
Debugger. The changes are described in:
• Changes between RealView Debugger v4.1 and v4.0 SP1 on page A-2
• Changes between RealView Debugger v4.0 SP1 and v4.0 on page A-6
• Changes between RealView Debugger v4.0 and v3.1 on page A-10
• Changes between RealView Debugger v3.1 and v3.0 on page A-12
• Changes between RealView Debugger v3.0 and v1.8 on page A-23
• Changes between RealView Debugger v1.8 and v1.7 on page A-29
• Changes between RealView Debugger v1.7 and v1.6.1 on page A-35.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-1
ID052111 Non-Confidential

About Previous Releases
A.1 Changes between RealView Debugger v4.1 and v4.0 SP1
This section describes the changes between RealView Debugger v4.1 and the RealView
Debugger v4.0 release. It contains the following sections:
• RealView Debugger command line options
• Debug target support
• Debug Interface support on page A-3
• GUI changes on page A-3
• Changes to CLI commands on page A-4
• Trace, analysis, and profiling on page A-4
• Documentation changes on page A-4
• Deprecated features on page A-5.

If you are using RealView Debugger on Red Hat Linux, see Appendix E RealView Debugger on
Red Hat Linux in the RealView Debugger User Guide.

A.1.1 RealView Debugger command line options

The following rvdebug command-line options are available:
• --help

• --version.

See also:

• the following in the RealView Debugger User Guide:
— Starting RealView Debugger from the command line on page 2-2.

A.1.2 Debug target support

The following processors, models, and boards are supported:

Processor support
The following processors are supported:
• Cortex-A5
• Marvell Sheeva 88SV581x-v7 PJ4.

CoreSight support
You can now connect to the CoreSight Instrumentation Trace Macrocell (ITM)
device. This enables you to configure the CoreSight ITM using the Registers
view.

Model support
The following Real-Time System Models (RTSMs) are supported:
• Cortex-A5
• Cortex-A9 Dual Core.

Board support
Board-Chip Definition (BCD) files and corresponding Flash methods, where
appropriate, are supported for the following boards:
• Atmel AT91SAM9261-EK
• Atmel AT91SAM9263-EK
• Atmel AT91SAM9G45-EKES
• Atmel AT91SAM9RL-EK
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-2
ID052111 Non-Confidential

About Previous Releases
• Icytecture iMX35 Starter board
• i.MX31
• i.MX31 LiteKit
• Freescale iMX25 PDK
• Freescale iMX27 LiteKit
• Texas Instruments Zoom OMAP34x-II Mobile Development Platform
• PBX-A9
• PHYTEC phyCORE-iMX35
• Samsung SMDK C100
• TMS320DM355
• VAB926EJ-S.bcd is replaced by:

— vpb926ej-s_256KB.bcd

— vpb926ej-s_64KB.bcd

• Zoran ZJP4100.

See also:

• the following in the RealView Debugger User Guide:
— Chapter 3 Target Connection.

• the following in the RealView Debugger Target Configuration Guide:
— Summary of supplied BCD files on page 1-19
— Summary of files used to program Flash on supported development platforms on

page 6-2.

A.1.3 Debug Interface support

RealView Debugger supports the following additional Debug Interface connections:
• DSTREAM
• Model Library
• Model Process.

Also, tooltips are available for the Debug Interfaces.

See also:

• the following in the RealView Debugger User Guide:
— Connect to Target window on page 1-6
— Chapter 3 Target Connection.

• the following in the RealView Debugger Target Configuration Guide:
— Chapter 2 Customizing a Debug Interface configuration
— Chapter 3 Customizing a Debug Configuration.

A.1.4 GUI changes

The following changes have been made to the RealView Debugger GUI:
• an Unload tool button has been added to the Image toolbar, as shown in Figure A-1:

Figure A-1 Image toolbar
• tooltips are available for Debug Interfaces in the Connect to Target window.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-3
ID052111 Non-Confidential

About Previous Releases
See also:

• Appendix A About Previous Releases.

A.1.5 Changes to CLI commands

This following CLI commands are supported:
• CWD to change the current working directory
• PWD to display the current working directory.

See also:

• the following in the RealView Debugger Command Line Reference Guide:
— Alphabetical command reference on page 2-12.

A.1.6 Trace, analysis, and profiling

The major changes to the trace, analysis, and profiling features are:

• Support for ETM v3.5 has been added, to enable tracing from a Cortex-A5 processor.

• Tracing is supported on both Windows and Red Hat Linux in RealView Debugger v4.0
SP3 and later.

• Trace autoconfiguration scripts are provided for the following platforms:
— AT91SAM9263
— i.MX25
— i.MX31
— i.MX51
— OMAP35xx
— STM32E.
The scripts are located at:
"%RVDEBUG_SHADOW_DIR_ETC%\platform"

To run a script at the RealView Debugger command-line, enter:
include '$RVDEBUG_SHADOW_DIR_ETC\platform\script_name.inc'

A.1.7 Documentation changes

The following changes have been made to the RealView Debugger documentation:

• The RealView Debugger User Guide includes details on how to connect to targets through
the new Debug Interface entries.

• The RealView Debugger Target Configuration Guide includes details on the new Debug
Interface support and updated board support, including Flash programming support.

See also:

• the following in the RealView Debugger Target Configuration Guide:
— Chapter 1 Introduction
— Chapter 6 Programming Flash with RealView Debugger.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-4
ID052111 Non-Confidential

About Previous Releases
A.1.8 Deprecated features

The following features are deprecated:
• support for RealView Instruction Set Simulator (RVISS)
• support for ISSM
• support for the ARM10 family of processors.

See also:

• Appendix A About Previous Releases.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-5
ID052111 Non-Confidential

About Previous Releases
A.2 Changes between RealView Debugger v4.0 SP1 and v4.0
This section describes the changes between RealView Debugger v4.0 SP1 and the previous
release, RealView Debugger v4.0. It includes:

• RealView Debugger command line options in RealView Debugger v4.0 SP1

• Processor support in RealView Debugger v4.0 SP1

• Simulator Support in RealView Debugger v4.0 SP1

• Miscellaneous changes to the GUI in RealView Debugger v4.0 SP1

• Changes to CLI commands and predefined macros in RealView Debugger v4.0 SP1 on
page A-7

• Documentation changes in RealView Debugger v4.0 SP1 on page A-9

• Deprecated features in RealView Debugger v4.0 SP1 on page A-9

• Obsolete features in RealView Debugger v4.0 SP1 on page A-9.

A.2.1 RealView Debugger command line options in RealView Debugger v4.0 SP1

The command-line option --cleanstart is available when starting RealView Debugger. It
enables you to start RealView Debugger with the default set of configuration files in your
RealView Debugger home directory.

See also:

• the following in the RealView Debugger User Guide:
— Starting RealView Debugger from the command line on page 2-2.

A.2.2 Processor support in RealView Debugger v4.0 SP1

The Cortex-M0 processor is supported.

See also:

• the following in the RealView Debugger User Guide:
— Chapter 3 Target Connection.

A.2.3 Simulator Support in RealView Debugger v4.0 SP1

The Cortex-M0 Instruction Set System Model (ISSM) is supported.

See also:

• the following in the RealView Debugger User Guide:
— Chapter 3 Target Connection.

A.2.4 Miscellaneous changes to the GUI in RealView Debugger v4.0 SP1

The following changes have been made to the RealView Debugger GUI:

• The source code tabs are positioned at the top of the source code view in the Code
window.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-6
ID052111 Non-Confidential

About Previous Releases
• A new Diagnostic Log view is provided, and displays the messages that are generated
during target connection. It is useful for debugging connections to targets that are under
development.

• The name of the Set/Edit Tracepoint dialog box has changed to Create Tracepoint.

• The tabs on the Synchronization Control dialog box have been re-ordered, and tooltips
have been added.

• The Memory view has been re-engineered. You can now view Memory Management Unit
(MMU) page table descriptors.

• The Memory view context menu has an option to display a caching color scheme. Cached
memory areas are colored according to:
— the level, L1 or L2
— the cache state, clean or dirty.

• The Classes view has been re-engineered. Library symbols are now hidden by default.

• The Connect to Target window has a menu option that enables you to show or hide the
trace components in a Debug Configuration.

• The RVD_CS_ETM_LOCK environment variable has been added to enable the unlocking of
ETM hardware on connection before powering up an ETM.

• You can perform copy and paste operations in the Output view.

• You can save and close multiple source files in a single operation.

• New settings for use when defining memory map blocks for Flash devices are provided
in Connection Properties:
— Flash_write_mode

— Flash_write_clock.
Corresponding settings are also available on the Create Map Entry and Edit Map Entry
dialog boxes.

See also:

• the following in the RealView Debugger User Guide:
— Code window on page 1-4
— Diagnostic Log view on page 1-14
— Showing the trace components in the Connect to Target window on page 3-36
— Viewing memory contents on page 13-39
— Setting up a temporary memory map on page 9-12
— Editing a memory map entry on page 9-20
— Viewing memory contents on page 13-39
— Chapter 3 Target Connection.

• the following in the RealView Debugger Trace User Guide:
— ETM with Lock Access implemented causes APB lock up on page 4-2.

A.2.5 Changes to CLI commands and predefined macros in RealView Debugger v4.0 SP1

This following changes have been made to CLI commands and macros:

• On Windows, a new user-specific default settings directory is created. The
RVDEBUG_SHADOW_DIR_ETC environment variable points to this directory.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-7
ID052111 Non-Confidential

About Previous Releases
This directory is created when you first start RealView Debugger after installation, and
the configuration files are copied to it from the installed settings directory.

• When you use the INCLUDE command to run a command script, RealView Debugger sets
the RVDEBUG_INCLUDE_BASE environment variable to the location of that script. You can use
this environment variable in your command script if required.
The environment variable definition exists only for the current debugging session, and
changes when you run additional command scripts. However, the environment variable
does not change when INCLUDE is used in command script.

• The default behavior of the BREAKINSTRUCTION command has changed when attempting to
set a software breakpoint in read-only memory. The operation now fails.
However, a failover qualifier is added to the BREAKINSTRUCTION command, to allows a
software breakpoint to be converted to a hardware breakpoint in read-only memory.

Note
 This failover operation is not available from the Create Breakpoint dialog box.

• The ,a qualifier is added to the following commands:
— CLEARBREAK

— DISABLEBREAK

— ENABLEBREAK

— RESETBREAKS.
This qualifier enables you to identify a breakpoint by address, or multiple breakpoints
within an address range.

• The following predefined macros have been added:
— atoi

— atol

— atoul

— isdigit

— islower

— isprint

— isspace

— isupper

— itoa

— strtolower

— strtoupper

— strtrim

— tolower

— toupper.

• You can format the value of substituted integer variables in a CLI command as either
decimal or hexadecimal values.

See also:

• the following in the RealView Debugger User Guide:
— Considerations when running command scripts on page 15-12
— Using variable substitution in commands within a macro on page 16-6

• the following in the RealView Debugger Command Line Reference Guide:
— Alphabetical command reference on page 2-12
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-8
ID052111 Non-Confidential

About Previous Releases
— Chapter 3 RealView Debugger Predefined Macros.

A.2.6 Documentation changes in RealView Debugger v4.0 SP1

The following changes have been made to the RealView Debugger documentation:

• The RealView Debugger User Guide includes details on using the new Diagnostic Log
view.

• The new predefined macros are documented in the RealView Debugger Command Line
Reference Guide.

See also:

• the following in the RealView Debugger User Guide:
— Diagnostic Log view on page 1-14
— Examining details in the Diagnostic Log view on page 3-64

• the following in the RealView Debugger Command Line Reference Guide:
— Chapter 3 RealView Debugger Predefined Macros.

A.2.7 Deprecated features in RealView Debugger v4.0 SP1

The following features are deprecated:
• support for RealView Instruction Set Simulator (RVISS)
• support for ISSM
• support for the ARM10 family of processors.

See also:

• Changes between RealView Debugger v4.0 SP1 and v4.0 on page A-6.

A.2.8 Obsolete features in RealView Debugger v4.0 SP1

Support for Digital Signal Processors (DSPs) is obsolete.

See also:

• Changes between RealView Debugger v4.0 SP1 and v4.0 on page A-6.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-9
ID052111 Non-Confidential

About Previous Releases
A.3 Changes between RealView Debugger v4.0 and v3.1
This section describes the changes between RealView Debugger v4.0 and the previous release,
RealView Debugger v3.1. It includes:
• Processor support in RealView Debugger v4.0
• Simulator support in RealView Debugger v4.0
• Miscellaneous changes to the GUI in RealView Debugger v4.0
• Documentation changes in RealView Debugger v4.0 on page A-11
• Deprecated features in RealView Debugger v4.0 on page A-11
• Obsolete features in RealView Debugger v4.0 on page A-11.

If you are using RealView Debugger on Red Hat Linux, see Appendix E RealView Debugger on
Red Hat Linux in the RealView Debugger User Guide.

A.3.1 Processor support in RealView Debugger v4.0

The following processors are supported:
• Cortex-A9 processor
• Faraday FA526, FA626, and FA626TE processors
• Marvell Feroceon 88FR101 and 88FR111 processors.

Note
 A license is provided with RealView Development Suite (RVDS) Professional edition to support
the Cortex-A9 processor.

A.3.2 Simulator support in RealView Debugger v4.0

The following changes have been made to simulated targets:

• The Real-Time System Models (RTSMs) provided with RVDS Professional edition are
based around the Versatile Emulation Baseboard.

Note
 The Cortex-A9 RTSM and a license for its use are provided with RVDS Professional

edition.

• Cortex-M1 Instruction Set System Model (ISSM) has been updated.

A.3.3 Miscellaneous changes to the GUI in RealView Debugger v4.0

The following changes have been made to the RealView Debugger GUI:

• A new Connection Properties dialog box is provided, that enables you to easily customize
a Debug Configuration. The dialog box contains the more commonly used settings.

• A new Comms Channel view is provided that enables you to preform writes and reads
over the Debug Communications Channel (DCC).

• A Real-Time System Model (RTSM) Debug Interface is provided for you to create and
customize Debug Configurations for RTSM targets.

• The Memory Map tab in the Process Control view shows the Secure World and Normal
World memory maps for a target that supports TrustZone® technology.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-10
ID052111 Non-Confidential

About Previous Releases
• The Memory_block settings in Connection Properties include a Tz_world setting that enables
you to specify the TrustZone world for the memory block.

See also:

• the following in the RealView Debugger User Guide:
— Chapter 1 RealView Debugger Features.

A.3.4 Documentation changes in RealView Debugger v4.0

The following changes have been made to the RealView Debugger documentation:

• The RealView Debugger User Guide includes details on using the new Comms Channel
view.

• All panes that show various debugging features are referred to as views. For example, the
Memory pane is called the Memory view.

A.3.5 Deprecated features in RealView Debugger v4.0

The following features are deprecated in RealView Debugger v4.0:
• support for RealView ARMulator® ISS (RVISS)
• support for ISSM
• support for the ARM10 family of processors.

A.3.6 Obsolete features in RealView Debugger v4.0

Support for the ARM Ltd. Direct Connect Debug Interface to Versatile boards is obsolete in
RealView Debugger v4.0.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-11
ID052111 Non-Confidential

About Previous Releases
A.4 Changes between RealView Debugger v3.1 and v3.0
This section describes the changes between RealView Debugger v3.1 and the previous release
RealView Debugger v3.0. It includes:
• Processor support in RealView Debugger v3.1
• Simulator support in RealView Debugger v3.1
• Command line options in RealView Debugger v3.1 on page A-13
• Target connection and configuration in RealView Debugger v3.1 on page A-14
• CoreSight support in RealView Debugger v3.1 on page A-15
• Multiprocessor debugging in RealView Debugger v3.1 on page A-16
• Cache debugging in RealView Debugger v3.1 on page A-17
• Trace, analysis, and profiling in RealView Debugger v3.1 on page A-17
• Changes to the views in RealView Debugger v3.1 on page A-18
• Miscellaneous changes to the GUI in RealView Debugger v3.1 on page A-18
• Changes to CLI commands and macros in RealView Debugger v3.1 on page A-20
• Documentation changes in RealView Debugger v3.1 on page A-21
• Deprecated features in RealView Debugger v3.1 on page A-21
• Obsolete features in RealView Debugger v3.1 on page A-22.

A.4.1 Processor support in RealView Debugger v3.1

Cortex-A8 processor support has been added.

See also
• Changes between RealView Debugger v3.1 and v3.0.

A.4.2 Simulator support in RealView Debugger v3.1

The following simulated targets are supported:

• An MPCore™ simulated target is supported in RVISS. However, this simulates only a
single processor.

• RVISS Debug Configurations are provided to simulate the following processors:
— ARM7TDMI®

— ARM926EJ-S™

— ARM1176JZF-S™.
You can connect to these without having to configure them.

• The following new Instruction Set System Model (ISSM) simulator are supported:
— Cortex-M1
— Cortex-R4.
In addition, the Cortex-A8 and Cortex-M3 models have been enhanced.
A single ISSM Debug Interface is provided, and is preconfigured to the Cortex-A8
processor. You can reconfigure this to any of the other Cortex processors. If you want to
simulate additional processors, you must create a new ISSM Debug Configuration for
each processor.

• SoC Designer models can be debugged. RealView Debugger starts SoC Designer
Simulator automatically when you attempt to connect to a target in a SoC Designer model.
Connections to other targets in the same model can then be established. You must
purchase the SoC Designer software separately.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-12
ID052111 Non-Confidential

About Previous Releases
• Real-Time System Models (RTSMs) can be debugged. If you want to create your own
RTSMs, you must purchase the RealView System Generator application.

See also
• RealView Debugger Target Configuration Guide.

A.4.3 Command line options in RealView Debugger v3.1

The command line options available when starting RealView Debugger have been modified and
extended, as follows:

• All options accept a double hyphen prefix (--). However, you can still use the single
hyphen prefix (-).

• The following options have been added to support project templates:
— --no_project

— --project

— --reinitialize_workdir

— --workdir.

• Many options have new names:
— --image is an alias of --exec
— --journal is an alias of --jou
— --no_logo is an alias of --nologo
— --no_workspace and --no_aws are aliases of --aws=-
— --script is an alias of --inc
— --target is an alias of --init
— --workspace is an alias of --aws.
The original names are still supported.

See also

• the following in the RealView Debugger User Guide:
— Starting RealView Debugger from the command line on page 2-2.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-13
ID052111 Non-Confidential

About Previous Releases
A.4.4 Target connection and configuration in RealView Debugger v3.1

This section describes the improvements to target connection and configuration.

The Connection Control window

The Connection Control window has been renamed to the Connect to Target window, to match
the menu option on the Target menu. In addition, the window has been re-engineered to
simplify the connection and configuration of debug targets:

• Targets are grouped under the Debug Interface used to access them, such as RealView
ICE. The following target groupings are available:
Target Provides a list of all targets that are accessible through each type of Debug

Interface.
Configuration

Lists the targets for each Debug Configuration that you create. A single Debug
Configuration corresponds to a single development platform. The Debug
Configurations are listed under each type of Debug Interface to which they
relate.

The chosen grouping persists between your debugging sessions.

• You can add, copy, rename, and delete Debug Configurations in a single operation,
without having to use the Connection Properties window. However, the Connection
Properties window is still available for customizing your Debug Configurations, such as
setting up OS awareness and assigning Board/Chip Definition (BCD) files.

• If your development platform contains CoreSight™ components, then those components
are included in the target list for the related Debug Configuration.

• The RVISS localhost connection entry has been removed. Connecting to RVISS targets
is performed in a similar way to other targets. RVISS target connections show the
simulated processor name, for example:
ARM7TDMI@RVISS

See also
• CoreSight support in RealView Debugger v3.1 on page A-15
• Connecting to a debug target on page 2-6
• the following in the RealView Debugger User Guide:

— Chapter 3 Target Connection.
• the RealView Debugger Trace User Guide.

Recent connections list

As you establish connections to your targets, the connection name for that target is added to a
recent connection list. This list shows the last 10 connections, which you can access from:

• A new Home Page tab in the Code window. With a single mouse click you can connect
to frequently used targets without having to use the Connect to Target window.
You must still use the Connect to Target window if you want to:
— add, copy, rename, customize, and delete Debug Configurations
— connect to, and disconnect from, multiple processors in a single operation
— connect using a Connect Mode.
— disconnect using a Disconnect Mode.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-14
ID052111 Non-Confidential

About Previous Releases
• A Recent Connections submenu on the Code Window Target menu.

Note
 The Home Page tab also lists the last 10 images that you have loaded onto a processor of the
same type as that for the current connection. This enables you to load an image with a single
mouse click. These images can also be accessed from the Recent Images submenu on the Code
Window Target menu.

A.4.5 CoreSight support in RealView Debugger v3.1

RealView Debugger provides support for development systems that contain CoreSight
components.

Supported CoreSight Components

The following CoreSight components are supported:

• CoreSight Debug components:
— A Debug Access Port (DAP) for connecting a Debug Interface unit to the target, and

comprises a JTAG Debug Port (JTAG-DP) and JTAG Access Port (JTAG-AP).
— An Embedded Cross Trigger (ECT) to specify cross triggering between multiple

targets, and comprises Cross Trigger Interface (CTI) and Cross Trigger Matrix
(CTM).

• CoreSight Trace components:
— Sources generate trace data, and include the Embedded Trace Macrocell™ (ETM),

Program Flow Trace Macrocell (PTM), and AHB Trace Macrocell (HTM).
— Sinks are the end points for trace data on the SoC, and include the Embedded Trace

Buffer™ (ETB™) and Trace Port Interface Unit (TPIU).
— Links provide connection, triggering, and flow of trace data, and include the Trace

funnel.
— Control and access components configure, access, and control the generation of

trace, and include DAP and ECT. They do not generate or process trace data.

Note
 In this release, you can collect trace only from one ETM trace source in a multiple trace

source system. Trace capture from an HTM or PTM is not supported.

Connecting to CoreSight components

CoreSight components, except for the CTM, are visible in the Connect to Target window for
connections through a RealView ICE unit. The Configuration grouping shows a basic
relationship between the CoreSight components and the runnable targets.

You can connect to a CoreSight component in the same way that you connect to a target
processor. However, all execution-related features are disabled and the Code window shows a
limited view as follows:
• registers in the Register view
• memory in the Memory view, if appropriate.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-15
ID052111 Non-Confidential

About Previous Releases
See also

• the following in the RealView Debugger User Guide:
— Configuring CoreSight embedded cross-triggering on page 7-27

• the following in the RealView Debugger Target Configuration Guide:
— About customizing a DSTREAM or RealView ICE Debug Interface configuration on

page 2-3

• the following in the RealView Debugger Trace User Guide:
— Appendix B Setting up the Trace Software.

A.4.6 Multiprocessor debugging in RealView Debugger v3.1

The following changes have been made to multiprocessor debugging:

• Support for cross trigger-related CoreSight components is available.

• RealView Debugger v3.0.SP1 provided a major enhancement to the Synchronization
Control window and related CLI commands. These enhancements are documented in the
RealView Debugger v3.1, and include the following changes:
— The Synchronization Control window has been re-engineered. The synchronization

and cross-triggering features are available on the following tabs:
Actions This is a new tab, which enables you to synchronize the following

actions:
• image load, reload, and unload
• reset the target processor
• reset the PC
• set the PC
• load a binary file.

Execution
This tab enables you to synchronize the Step, Run, and Stop operations.

Cross Triggering
This tab enables you to set up cross triggering for multiple targets.
Although this appears on the Synchronization Control window,
synchronization and cross triggering can be set independently.

— A new SYNCHACTION command is also available to specify the synchronization of
actions that are available on the Actions tab of the Synchronization Control
window.

— The OPTION,pendmode command OPTION,pendmode, which enables you to specify the
pend mode for CLI commands when debugging synchronized processors

See also

• CoreSight support in RealView Debugger v3.1 on page A-15

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications

• the following in the RealView Debugger Command Line Reference Guide:
— Chapter 2 RealView Debugger Commands.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-16
ID052111 Non-Confidential

About Previous Releases
A.4.7 Cache debugging in RealView Debugger v3.1

Cache debugging is supported as described in the following sections:

Supported processors

Cache debugging support is provided for the following processors:
• ARM1136
• ARM1156
• Cortex-A8.

Memory view coloring scheme

The Memory view context menu has an option to display a caching color scheme. Cached
memory areas are colored according to the level (L1 or L2) and state (clean or dirty) of the
cache.

See also

• the following in the RealView Debugger User Guide:
— Viewing memory contents on page 13-39.

Cache-related CLI commands and predefined macros

The following new cache-related CLI commands are available:
• CACHEFIND, which searches for an address within the cache
• CACHEINFO, which displays details about the cache
• CACHELINE, which prints information about a specific cache line.

The following new cache-related predefined macros are available:

• cache_find_set, which returns the set index associated with a specified address in the
cache

• cache_find_way, which returns the way index associated with a specified address in the
cache.

See also

• the following in the RealView Debugger Command Line Reference Guide:
— Chapter 2 RealView Debugger Commands
— Chapter 3 RealView Debugger Predefined Macros.

A.4.8 Trace, analysis, and profiling in RealView Debugger v3.1

The major change to the trace, analysis, and profiling features is the support for trace-related
CoreSight components.

Note
 The Analysis window supports trace capture from an ETM, ETB, CoreSight ETM, CoreSight
ETB, and RVISS models. It does not support trace capture from a CoreSight PTM.

See also
• CoreSight support in RealView Debugger v3.1 on page A-15
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-17
ID052111 Non-Confidential

About Previous Releases
• RealView Debugger Trace User Guide.

A.4.9 Changes to the views in RealView Debugger v3.1

The following changes have been made to the RealView Debugger views:

• The display format for undocked views has changed. The related connection and
associated color box are displayed at the bottom of each view.

• The view menu buttons have been removed.

• View operations are provided on the context menu.

• The Call Stack view contains only the Call Stack tab.

• The Locals, Statics, and This tabs are available in the new Locals view.

• The Memory view has been re-engineered:
— A view toolbar has been added, which contains fields to specify the start address,

the number of columns, the data size, and the format of memory cells.
— A new cache coloring scheme has been added.
— You can set values of memory locations by entering ASCII characters in the ASCII

view.
— When entering ASCII characters at a memory location, precede the characters by a

single quote. You can enter as many characters as the currently selected data size
implies.

See also

• the following in the RealView Debugger User Guide:
— Overview of RealView Debugger windows and views on page 1-2.

A.4.10 Miscellaneous changes to the GUI in RealView Debugger v3.1

The following changes have been made to the RealView Debugger GUI:

• The Src tab has been removed from Code window.

• The Dsm tab has been renamed to Disassembly.

• The Map tab in the Process Control view has been renamed to Memory Map.

• A new Show Next Statement button has been added to the Debug toolbar. This shows the
location of the PC in the Disassembly tab or a source file tab, and is identified by a yellow
arrow in the margin with a red box around the instruction or line of source.

• A Scripts toolbar is provided, which enables you to quickly add, run and delete command
scripts, shown in Figure A-2.

Figure A-2 Scripts toolbar

• A new button to reset the target processor has been added to the Connect toolbar.

• Some buttons have been removed from the Debug toolbar.

• Many changes have been made to the context menus, including:
— renaming of the menu options for setting breakpoints and tracepoints
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-18
ID052111 Non-Confidential

About Previous Releases
— removal of some less useful menu options.

• The following ARM on the Web menu options are available on the Help menu:
— Goto ARM Technical Support
— Goto ARM Development Tool FAQs
— Goto ARM Technical Support Downloads
— Goto ARM PDF Documentation
— Goto ARM Self Help Forums.

See also

• the following in the RealView Debugger User Guide:
— Chapter 1 RealView Debugger Features.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-19
ID052111 Non-Confidential

About Previous Releases
A.4.11 Changes to CLI commands and macros in RealView Debugger v3.1

This section describes the changes that have been made to CLI commands and macros.

Changes to CLI commands

The following new CLI commands are provided:

• cache-related commands

• COREINFO, which enables you to display information about the current target

• CORESTATE, which enables you to display the execution state of the current target

• REGINFO, which enables you to display details of the registers available for the current
target

• synchronization-related commands

• VA2PA, which enables you to convert a virtual address to a physical address.

See also

• Multiprocessor debugging in RealView Debugger v3.1 on page A-16

• Cache-related CLI commands and predefined macros on page A-17

• the following in the RealView Debugger Command Line Reference Guide:
— Chapter 2 RealView Debugger Commands.

Changes to macros

This sections describes the changes that have been made to macros.

New predefined macros

New cache-related predefined macros are provided.

Using integer variables

You can substitute the value of an integer variable in a CLI command before the command is
executed. The value is converted to hexadecimal. To do this, you must enclose the variable name
between the characters ${ and }, for example:

int num;
num = 1;
$FOPEN 150, "C:\\myfiles\\myfile${num}.txt"$; // substitution

The filename in this example is myfile0x1.txt.

See also

• Cache-related CLI commands and predefined macros on page A-17

• the following in the RealView Debugger User Guide:
— Using variable substitution in commands within a macro on page 16-6

• the following in the RealView Debugger Command Line Reference Guide:
— Chapter 3 RealView Debugger Predefined Macros.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-20
ID052111 Non-Confidential

About Previous Releases
A.4.12 Documentation changes in RealView Debugger v3.1

The following changes have been made to the RealView Debugger documentation:

• All documentation has been updated to reflect the changes to the RealView Debugger
GUI and CLI commands.

• The RealView Debugger Target Configuration Guide has been restructured. A new
chapter has been included, which provides a tutorial on memory mapping.

• The RealView Debugger Trace User Guide has been restructured. A tutorial has been
included, which is to be used in conjunction with the trace.c program. The program is
provided with Application Note 168 Tracing with RVD. To obtain the program, navigate
to the Application Notes page under Documentation on the ARM website
(http://www.arm.com).

• The chapter that describes target connection in the RealView Debugger Target
Configuration Guide has been incorporated into the RealView Debugger User Guide.

A.4.13 Deprecated features in RealView Debugger v3.1

The following features are deprecated in RealView Debugger v3.1:

• The /B, /H, and /W qualifiers to the following commands are deprecated:
— DUMP

— FILL

— MEMWINDOW

— SEARCH

— SETMEM

— TEST.
Use the /8, /16, and /32 qualifiers as appropriate.

• The rawb and rawh qualifiers to the following commands are deprecated:
— READFILE

— VERIFYFILE

— WRITEFILE.
Use the raw8 and raw16 qualifiers as appropriate.

• The following command qualifiers are deprecated:
— ANALYZER,edit_properties

— ETM_CONFIG,addronly

— ETM_CONFIG,fulltrace

— TRACEBUFFER,amount.

• The following Workspace settings and groups are deprecated:
— _ctrl settings group
— Vi setting.

• The following top-level Debug Configuration settings in Connection Properties are
deprecated:
— the Project setting
— the Remote settings group
— the Shared setting (this is not the same as the Shared setting in the Attributes group

of a Memory_block definition, which is still supported).
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-21
ID052111 Non-Confidential

About Previous Releases
See also

• the following in the RealView Debugger User Guide:
— Appendix A Workspace Settings Reference

• the following in the RealView Debugger Target Configuration Guide:
— Appendix A Connection Properties Reference

• the following in the RealView Debugger Command Line Reference Guide:
— Alphabetical command reference on page 2-12.

A.4.14 Obsolete features in RealView Debugger v3.1

The following features are obsolete in RealView Debugger v3.1:

• Remote RVISS connection using RealView Simulator Broker.

• Connections to Remote Debug Interface (RDI) targets, which includes:
— Multi-ICE®

— Agilent Debug Interface
— Remote_A.

• ETMv2 is no longer supported.

• The following CLI commands have been removed:
— NAMETRANSLATE

— PATHTRANSLATE.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-22
ID052111 Non-Confidential

About Previous Releases
A.5 Changes between RealView Debugger v3.0 and v1.8
This section describes the changes between RealView Debugger v3.0 and the previous release
RealView Debugger v1.8. It includes:
• TrustZone technology support in RealView Debugger v3.0
• Thumb-2EE Support in RealView Debugger v3.0
• OS support in RealView Debugger v3.0 on page A-24
• Trace, Analysis, and Profiling in RealView Debugger v3.0 on page A-24
• RealView Simulator Broker support in RealView Debugger v3.0 on page A-25
• Multi-ICE direct connect in RealView Debugger v3.0 on page A-25
• Simulator support in RealView Debugger v3.0 on page A-25
• Changes to the GUI in RealView Debugger v3.0 on page A-25
• Changes to the CLI commands and predefined macros in RealView Debugger v3.0 on

page A-26
• Updated documentation in RealView Debugger v3.0 on page A-27.

A.5.1 TrustZone technology support in RealView Debugger v3.0

RealView Debugger provides support for processors that support TrustZone® technology. The
impact on RealView Debugger is as follows:

• The Analysis window identifies Secure World (S:) and Normal World (N:) addresses
when trace information is collected from a processor that supports the TrustZone
technology.

• When specifying addresses in dialog boxes or CLI commands you can include an address
prefix to indicate either a Secure World (S:) or Normal World (N:) address, see:
— Trace CLI commands on page A-27
— Other CLI commands on page A-27.

• The RealView Debugger windows and panes that display addresses also show the Secure
World (S:) or Normal World (N:) address prefix:
— Analysis window
— Dsm tab
— Break/Tracepoints pane
— Call Stack pane
— Memory pane
— Stack pane
— Symbols pane.

A.5.2 Thumb-2EE Support in RealView Debugger v3.0

RealView Debugger provides support for Thumb®-2 Execution Environment (Thumb-2EE)
enabled targets, such as Cortex-A8. For these targets:

• The following files are provided with RealView Debugger:
— thumb2ee.bcd

— thumb2ee.inc.
See the RealView Debugger Target Configuration Guide for more details about these files.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-23
ID052111 Non-Confidential

About Previous Releases
• You can change the display of disassembly listings to Thumb-2EE format, using one of
the following methods:
— the Set Disassembly Format... option on the context menu in the disassembly view,

that is, the Dsm tab (see the RealView Debugger User Guide)
— the workspace (see the RealView Debugger User Guide)
— the SETTINGS CLI command (see the RealView Debugger Command Line Reference

Guide).

A.5.3 OS support in RealView Debugger v3.0

Operating system (OS) application debugging has been enhanced. For those OS plug-ins that
support the enhancements, such as Linux HSD, you can perform the following debugging
operations:
• capture events that are defined by your OS plug-in
• specify filters that enable you to selectively load debugging symbols.

To configure these operations, the following options are available on the connection context
menu in the Resource Viewer pane:
• Events Filter...
• Debug Symbols Filter....

Also, see Changes to the CLI commands and predefined macros in RealView Debugger v3.0 on
page A-26 for details of changes to the OS-related CLI commands.

See the RealView Debugger RTOS Guide for full details of debugging OS-aware targets in
RealView Debugger.

A.5.4 Trace, Analysis, and Profiling in RealView Debugger v3.0

The following changes have been made to the trace, analysis, and profiling features:

• Embedded Trace Macrocell (ETM) configuration enables you to specify:
— values for extended external inputs 1-4, for ETMv3.1 and later
— a synchronization frequency, for ETMv2 and later.

• You can set tracepoints using extended external inputs 1 to 4, for ETMv3.1 and later.

• The details view has been removed from the Analysis window, together with the
corresponding option on the View menu.

• The following changes have been made to the Analysis window Filter menu:
— the Invert Filtering (NOT) option is included
— the AND Filters (versus OR) option is two separate options, OR All Filters and

AND All Filters
— the Filter on Raw Address Match... option has been removed.
— the text Match has been removed from all option names.

• The following changes have been made to the Analysis window Find menu:
— the Find Raw Address Match... option has been removed
— the text Match has been removed from all option names.

• The Print Trace Lines... option has been removed from the Analysis window File menu.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-24
ID052111 Non-Confidential

About Previous Releases
• The Set Address/Data Break/Tracepoint dialog box has been replaced with the Set/Edit
Tracepoint dialog box.

Also, see Changes to the CLI commands and predefined macros in RealView Debugger v3.0 on
page A-26 for details of changes to the trace-related CLI commands.

See the RealView Debugger Trace User Guide for full details of tracing in RealView Debugger.

A.5.5 RealView Simulator Broker support in RealView Debugger v3.0

RealView Simulator Broker (RealView Broker) has been re-engineered. Although RealView
Debugger still runs RealView Broker automatically for local host connections, starting
RealView Broker for remote connections has changed. You must specify a username when
starting RealView Broker manually. See the RealView Debugger Target Configuration Guide
for more details.

A.5.6 Multi-ICE direct connect in RealView Debugger v3.0

Connections using Multi-ICE® direct connect are no longer supported. Therefore, you cannot
use Multi-ICE to connect to DSP targets. To debug a DSP target use RealView-ICE, which you
must purchase separately.

A.5.7 Simulator support in RealView Debugger v3.0

The following simulated targets are supported:

• An MPCore simulated target is supported in RVISS. However, this simulates only a single
processor.

• New Instruction Set System Model (ISSM) simulator models are supported for the
following processors:
— Cortex-A8
— Cortex-M3.
A single ISSM Target Access is provided, which you can configure to either of these
processors. If you want to simulate additional processors, you must create and configure
a new Target Access for each processor.

See the RealView Debugger Target Configuration Guide for more details about configuring
these simulated targets.

A.5.8 Changes to the GUI in RealView Debugger v3.0

The following changes have been made to the RealView Debugger GUI:

• The Connection Control window has been re-engineered to simplify the connection and
configuration of debug targets.

• The Synch tab on the older Connection Control window is a separate Synchronization
Control window. To open the Synchronization Control window, select Target →
Synchronization Control... from the Code window main menu.

• All references to software interrupt (SWI) have been changed to Supervisor Call (SVC).

• The project management feature has been removed. Therefore:
— the Code window Project menu has been removed
— the source control toolbar button has been removed
— you cannot load RealView Debugger project files.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-25
ID052111 Non-Confidential

About Previous Releases
However, the source code edit and search features are still available.

• There is a new Load Binary dialog box that simplifies the loading of binary files. To open
the Load Binary dialog box, select Target → Load Binary... from the Code window main
menu.
Binary files you load in this way are added to the Recent Binaries list. To display the
Recent Binaries list, select Target → Recent Binaries from the Code window main
menu.

• The Set Address/Data Break/Tracepoint dialog box has been replaced with the following
dialog boxes:
— Create Breakpoint
— Copy Breakpoint
— Edit Breakpoint
— Set/Edit Tracepoint.

• The Registers pane has been re-engineered:
— The individual fields of the CPSR and SPSR registers are no longer shown as

individual registers. To change these registers, a PSR Format dialog box is
provided.

— Extended formatting options are available for all registers.
— Registers that have enumerated values appear as list selection boxes.
— You can create your own user-specific register view by copying registers from the

other tabs in the Registers pane.

• The Data Navigator pane is called the Symbols pane. To open the Symbols pane, you
select View → Symbols from the Code window main menu.

• The Symbol Browser pane is called the Classes pane. To open the Classes pane, you select
View → Classes from the Code window main menu.

• The Flash Memory Control dialog box includes a field that enables you to specify the
clock frequency, if supported by your Flash device. See the RealView Debugger Target
Configuration Guide and the RealView Debugger User Guide for more details.

• The Resource Viewer window is now a pane, which you can float and dock like any other
pane.

See the RealView Debugger User Guide for more details about how to use these features.

A.5.9 Changes to the CLI commands and predefined macros in RealView Debugger v3.0

This section describes the changes that have been made to the CLI commands and predefined
macros.

See the RealView Debugger Command Line Reference Guide for full details.

Connection CLI commands

The following change has been made to the connection CLI commands:

• The DISCONNECT command has the debug and nodebug qualifiers for specifying the
disconnect mode.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-26
ID052111 Non-Confidential

About Previous Releases
OS-aware CLI commands

The following change has been made to the OS-aware CLI commands:

• If your OS-aware plug-in supports event debugging, then the OSCTRL command enables
you to specify events and filters for the selective loading of debugging symbols.

See the RealView Debugger RTOS Guide for more details on using the events and filters.

Trace CLI commands

The following changes have been made to the trace CLI commands:

• The TRACEDATAACCESS, TRACEDATAREAD, TRACEDATAWRITE, TRACEINSTREXEC, and
TRACEINSTRFETCH commands enable Secure World and Normal World data comparisons for
processors that implement the TrustZone technology.

• The TRACEEXTCOND command supports extended external inputs 1 to 4, for ETMv3.1 and
later.

• The TRACEBUFFER command includes an option to invert the sense of the specified filter
conditions.

• The ETM_CONFIG command enables you to specify:
— values for extended external inputs 1 to 4, for ETMv3.1 and later
— a synchronization frequency, for ETMv2 and later.

Other CLI commands

The changes made to other CLI commands are as follows:
• the BREAKACCESS, BREAKEXECUTION, BREAKINSTRUCTION, BREAKREAD, and BREAKWRITE commands

enable you to specify an address prefix to identify Secure World and Normal World
addresses on a target that supports TrustZone technology

• the DISASSEMBLE command enables you to show Thumb-2EE disassembly
• the LOAD command enables you to load images to either the Secure World or the Normal

World on a target that supports TrustZone technology
• the access size options of the READFILE, VERIFYFILE, and WRITEFILE commands have

changed
• the SETTINGS command no longer supports the project-related settings
• a new STATS command enables you to display bus and processor cycles for RVISS targets.

Predefined macros

The following change has been made to the predefined macros:

• There is a new fclose macro to complement the fopen macro.

A.5.10 Updated documentation in RealView Debugger v3.0

The following changes have been made to the RealView Debugger documentation:

• The documentation suite comprises the documents listed in RealView Development Suite
Documentation.

• The RealView Debugger User Guide is task-based.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-27
ID052111 Non-Confidential

About Previous Releases
• The chapter that describes target connection in the RealView Debugger Target
Configuration Guide has been incorporated into the RealView Debugger User Guide.

• The RealView Debugger Extensions User Guide has been removed. The contents of the
RealView Debugger Extensions User Guide are in the following documents:
— the chapter and appendixes that describe tracing are in the new document RealView

Debugger User Guide
— the chapter that describes OS support is in the new document RealView Debugger

RTOS Guide
— the chapter that describes multiprocessor debugging has been incorporated into the

RealView Debugger User Guide
— the chapter that describes DSP support has been incorporated into the RealView

Debugger User Guide.

• The RealView Debugger Project Management User Guide is no longer provided.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-28
ID052111 Non-Confidential

About Previous Releases
A.6 Changes between RealView Debugger v1.8 and v1.7
This section describes the changes between RealView Debugger v1.8 and the previous release
RealView Debugger v1.7. It includes:
• Updated documentation in RealView Debugger v1.8
• Trace, Analysis, and Profiling in RealView Debugger v1.8
• Support for gcc built images in RealView Debugger v1.8 on page A-30
• Changes to the GUI in RealView Debugger v1.8 on page A-30
• Changes to the CLI in RealView Debugger v1.8 on page A-33
• RealView ARMulator ISS support in RealView Debugger v1.8 on page A-33
• RealMonitor support in RealView Debugger v1.8 on page A-33.

A.6.1 Updated documentation in RealView Debugger v1.8

The changes to the documentation includes the following:

• There is a new chapter about programming Flash in the RealView Debugger Target
Configuration Guide. This chapter describes in detail how to create the files required to
program Flash with RealView Debugger, whether you are using the Flash devices and
boards currently supported by RealView Debugger, or your own custom Flash devices and
boards.

• The RealView Debugger Essentials Guide includes:
— all information that relates to moving from ARM® eXtended Debugger (AXD) or

ARM Symbolic Debugger (armsd) to RealView Debugger
— background information about RealView Debugger projects, and how to set up the

basic compilation tasks for a project
— details on how to get started using the RealView Debugger CLI
— an appendix showing the mapping of the main menu options to the toolbar buttons.

• The task-related information from the RealView Debugger Command Line Reference
Guide is in the chapter that describes getting started using the RealView Debugger CLI in
the RealView Debugger Essentials Guide.

• Enhancements to tracing with RealView Debugger have been documented (see Trace,
Analysis, and Profiling in RealView Debugger v1.8 for a summary).

• All documents reflect the enhancements to the RealView Debugger GUI (see Changes to
the GUI in RealView Debugger v1.8 on page A-30 for a summary).

• The RealView Debugger online help is in HTML format, and is opened in your default
web browser.

A.6.2 Trace, Analysis, and Profiling in RealView Debugger v1.8

RealView Debugger v1.8 includes enhancements to the Trace and profiling features:

• tracepoints are categorized as unconditional or conditional

• the Analysis window has changed (see Changes to the Analysis window on page A-30 for
a summary of the changes)

• the Configure ETM dialog has changed to support the new Embedded Trace Macrocell v3
(ETMv3), ETB11™ port widths (24-bit and 32-bit)

• there is a new trace command, TRACEEXTCOND.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-29
ID052111 Non-Confidential

About Previous Releases
Changes to the Analysis window

The changes to the Analysis window include:

• the following new features:
— display of interleaved inferred register values
— functionality to sum profiling data over a number of runs
— rationalization of the window tabs

• the following improvements:
— block fetching of trace data, to enhance performance
— changes to column layouts and the addition of new columns
— new options in the profiling window.

These changes have the following implications:
• sorting of trace data is supported only in the Profile tab
• appending trace data is no longer supported.

For full details on tracing with RealView Debugger, see the RealView Debugger Extensions
User Guide.

A.6.3 Support for gcc built images in RealView Debugger v1.8

RealView Debugger supports images built with gcc as follows:

• Images built with gcc v3.2 and v3.4 are fully supported.

• Images built with gcc v2.95.3 are supported, but with no stack backtrace. In addition,
these images require converting to ELF format using the coff2elf utility. You can obtain
this utility from the ARM Technical Support web page.

A.6.4 Changes to the GUI in RealView Debugger v1.8

This section describes the major changes to the RealView Debugger GUI.

Changes to the Code window main menu structure

The Code window main menus have been restructured, with new menus added, and menu
options moved to reflect their functionality:

File The following changes have been made to this menu:
• the image load options are available on the new Target menu
• connections are available on the new Target menu
• logs and journals are available on the Tools menu
• all workspace-related options are available from the Workspace submenu.

Note
 The Threads menu option has been removed, because this feature is available

using the Cycle Threads toolbar button.

Edit All editing-related functionality is available from this menu, including copying
and pasting, and searching. The changes include the following:
• the new Advanced submenu contains the options from the old Format and

Editing Controls submenus
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-30
ID052111 Non-Confidential

About Previous Releases
• the new Go To submenu contains the original Jump options.
• removal of some little-used options, such as VI mode.

View All pane views are accessible from the main View menu, instead of the New Pane
Views submenu. A new Data Navigator option is available to display the Data
Navigator pane. The Browse Symbols dialog box is replaced by a Symbol
Browser pane, which has enhanced functionality.

Target This is a new menu that includes all options relating to connections and image
loading.

Project This menu contains all the project-related options available in previous versions
of RealView Debugger, but the grouping has changed.

Build This is a new menu that includes all the build-related options from the Tools
menu.

Debug The following changes have been made to this menu:
• the options on the Execution Control menu are available on the main

Debug menu.
• the breakpoint options are combined into a single Breakpoints... submenu
• the Debug/Simple Breakpoints submenu options are redistributed

between the new Breakpoints submenu and the new Breakpoints →
Conditional submenu

• the options on the Complex Breakpoints submenus are available from the
Breakpoints → Hardware... submenu

• the Processor Events option is available from the option Processor
Exceptions...

• the Include Commands from File... option is available on the Tools menu.

Tools The following changes have been made to this menu:
• the build-related options are available on the new Build menu
• the workspace options are available from the File → Workspace menu
• a new Logs and Journal submenu is available for opening and closing log

and journal files
• the Include Commands from File... option has been moved to this menu

from the Debug menu
• the New Editor submenu has been removed.

Help The following changes have been made to this menu:
• all web-related options are on the ARM on the Web submenu
• the Full Online Documentation option has been removed
• access to the RealView Debugger online help is simplified, and is available

through the RealView Debugger Help option.

Toolbar changes

The Code window toolbar is split into separate function-specific toolbars. Each toolbar can be
hidden, moved, or floated independently. The toolbars are:
• File
• Edit
• Debug
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-31
ID052111 Non-Confidential

About Previous Releases
• Image
• Connect
• Build
• Find.

Internationalization is supported

Internationalization is supported, so that you can localize the RealView Debugger interface. You
can:
• set the language to English (the default), or Japanese
• set the default encoding to ASCII (the default), UTF-8, or Locale.

This displays the main menu and various context menu options in the chosen language. For
instructions on how to change the these settings, see the RealView Debugger User Guide.

Changes to pane views

The following changes have been made to panes in RealView Debugger:

• You have greater flexibility over the docking of panes.

• All panes, except for the File Editor pane, can be floated, hidden, and repositioned on the
RealView Debugger desktop.

• You can set the font used in the pane views. You can set the font name, style, size, and
script.

• There is a new Data Navigator pane that enables you to quickly locate a module, function,
or variable in an image.

• The Browse Symbols dialog box is replaced by a Symbol Browser pane, which has
enhanced functionality.

• The Expand/Collapse Pane button has been removed from the pane toolbar.

Changes to breakpoints

Breakpoints are no longer categorized as Simple and Complex. They are categorized as
Software and Hardware, and as unconditional or conditional. As a consequence, the names of
the various dialog boxes used to set breakpoints have changed. See the RealView Debugger User
Guide for more details.

The Set Address/Data Break/Tracepoint dialog box can only be used to set breakpoints.
Therefore, this dialog box is called Set Address/Data Breakpoint.

Named breakpoints are no longer supported. Although the Named_breaks group is still present in
the Project Properties, the Named... menu option has been removed. The Named_breaks group is
to be removed in a future release.

Changes to tracepoints

The following changes have been made to tracepoints:

• Tracepoints are no longer categorized as Simple and Complex. They are categorized as
unconditional or conditional.

• You can no longer use the Set Address/Data Break/Tracepoint dialog box to set
tracepoints. Therefore, this dialog box is called Set Address/Data Breakpoint.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-32
ID052111 Non-Confidential

About Previous Releases
See the chapter that describes tracing in RealView Debugger in the RealView Debugger
Extensions User Guide for more details.

Changes to editing facilities

The following changes have been made to the editing facilities in RealView Debugger:

• You have more control over source code coloring. You can:
— set both the foreground text color and the background color for various code

elements
— choose the default colors from a list of color schemes, such as Visual Studio
— set colors for the additional code element identifiers, preprocessor keywords, and

operators.

• You can set the font used in the pane views. You can set the font name, style, size, and
script.

• The standalone Editor window has been removed. Also, there is no longer support for
using personal standalone editors with RealView Debugger.

• You can no longer use Vi mode when editing.

A.6.5 Changes to the CLI in RealView Debugger v1.8

The following changes have been made to the CLI:

• Spaces are no longer allowed in connection names. Therefore, the RealView ICE
connection is called RealView-ICE.

• A new CLI command PRINTDSM is available to disassemble the contents of target memory
to the Cmd tab of the Output pane. The disassembly is in the same format as that shown
in the Dsm tab of the File Editor pane. Therefore, if you have a journal file open, you can
output the disassembly to a file.

• A new trace command, TRACEEXTCOND, is available to set a tracepoint that triggers when an
instruction in the specified address range is executed.

• The switches /MB and /R have been added to the PRINTVALUE command:
— /MB enables multibyte character values to be displayed correctly
— /R prevents the address being displayed when you specify a variable in a loaded

image.

• A /S switch has been added to the INCLUDE command to stop the CLI commands being
echoed to the display.

• The ETM_CONFIG command supports the ETB11 port widths.

A.6.6 RealView ARMulator ISS support in RealView Debugger v1.8

Map files are supported for RVISS connections through the RealView Broker interface.

A.6.7 RealMonitor support in RealView Debugger v1.8

You can use RealMonitor with RealView ICE connections. Also, how you configure a
Multi-ICE connection to use RealMonitor has changed.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-33
ID052111 Non-Confidential

About Previous Releases
For details on how to configure and use RealMonitor with RealView ICE and Multi-ICE, see
the RealView Debugger Target Configuration Guide.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-34
ID052111 Non-Confidential

About Previous Releases
A.7 Changes between RealView Debugger v1.7 and v1.6.1
This section describes the changes between RealView Debugger v1.7 and the previous release
RealView Debugger v1.6.1. It includes:
• Updated documentation in RealView Debugger v1.7
• Advanced debugging facilities in RealView Debugger v1.7
• RealView ARMulator ISS support in RealView Debugger v1.7
• Trace, Analysis, and Profiling in RealView Debugger v1.7
• Enhanced RTOS support in RealView Debugger v1.7 on page A-36
• New GUI elements in RealView Debugger v1.7 on page A-36.

A.7.1 Updated documentation in RealView Debugger v1.7

The documentation for developers using RealView Debugger on Windows has been updated to
include enhancements and new features in RealView Debugger v1.7. See:

• RealView Debugger Essentials Guide for updated information for developers moving to
RealView Debugger from AXD.

• The detailed description of project management in RealView Debugger has been moved
from RealView Debugger User Guide to a new book called RealView Debugger Project
Management User Guide.

• RealView Debugger User Guide for information for developers using RealView Debugger
on non-Windows platforms. See Appendix B RealView Debugger for Sun Solaris and Red
Hat Linux for details.

A.7.2 Advanced debugging facilities in RealView Debugger v1.7

RealView Debugger v1.7 enables you to connect to a RealView ICE target using RealView ICE.

A.7.3 RealView ARMulator ISS support in RealView Debugger v1.7

In RealView Developer Suite, RVISS replaces ARM Developer Suite™ (ADS) ARMulator.

RVISS enables your debugger to connect using the Remote Debug Interface (RDI) and
RealView Connection Broker interface. With RealView Connection Broker you connect to
multiple instance of RVISS, and you can also connect to a remote RVISS that is on a different
system to your debugger. For more details, see the RealView ARMulator ISS User Guide.

Note
 The RDI connection to RVISS in RealView Debugger is deprecated in this release.

A.7.4 Trace, Analysis, and Profiling in RealView Debugger v1.7

RealView Debugger v1.7 includes enhancements to the Trace and profiling features, including
changes to the:
• ETM configuration dialog
• way that trace information is displayed so that interleaved source can be viewed
• method for setting tracepoints
• Set Address/Data Break/Tracepoint dialog
• Analysis window (menu changes).
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-35
ID052111 Non-Confidential

About Previous Releases
Note
 RealView Debugger v1.7 enables you to access Trace and profiling features without having to
purchase a separate license. These features are part of the core product.

A.7.5 Enhanced RTOS support in RealView Debugger v1.7

RealView Debugger v1.7 includes enhancements to RTOS awareness and visualization.

Running System Debug

Running System Debug (RSD) means that you can debug a target when it is running. This means
that you do not have to stop your debug target before carrying out any analysis of your system.
Where supported by your RTOS, RSD enables you to debug threads individually or in groups.

Thread-based breakpoints

RealView Debugger v1.7 enables you to use the Set Address/Data Break/Tracepoint dialog box
and the Break/Tracepoints pane to set thread-based breakpoints when running in RSD mode.

RTOS visualization

This release sees new RTOS visualization features. This gives users an improved threads view
in the Process Control pane and provides new menus and tabs in the Resource Viewer pane.

RTOS CLI commands

RealView Debugger v1.7 includes new RTOS resource commands that enable you to control
RTOS awareness, manage breakpoints and resources, and perform operations on RTOS objects.

Note
 RealView Debugger v1.7 does not support RTOS resource CLI commands of the form:

D<resource-list>=expression

Use dos_<resource-list> commands instead.

See the chapter that describes RTOS support in the RealView Debugger Extensions User Guide
for full details of all the RTOS support provided by RealView Debugger v1.7.

A.7.6 New GUI elements in RealView Debugger v1.7

New toolbar buttons and menu changes mean that RealView Debugger v1.7 users have quick
access to commonly used features. The changes include:

• a new Thread menu, available from the main File menu, that replicates the drop-down
menu from the Cycle Threads button

• a new Actions toolbar button to hide or open the Connection Control window

• a new Actions toolbar button to disconnect from a target

• an addition to the Execution group, on the Actions toolbar, to execute a Go to Cursor
operation.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-36
ID052111 Non-Confidential

About Previous Releases
RealView Debugger v1.7 also includes:

• the ability to choose which register is used as a stack pointer, indicated by a new
Expression Pointer (EP).

• user-specified data display in the Stack pane

• type ahead for navigating sources and images in the Process Control pane

• persistence of source search paths and path mappings through project settings

• a new Help button on the Project Control dialog box

• improved error messages.
ARM DUI 0181N Copyright © 2002-2011 ARM. All rights reserved. A-37
ID052111 Non-Confidential

	RealView Debugger Essentials Guide
	Contents
	Preface
	About this book
	Intended audience
	Examples
	Using this book
	Further reading

	Feedback
	Feedback on this product
	Feedback on this book

	About RealView Debugger
	1.1 RealView Debugger concepts and terminology
	1.2 About the debugging environment
	1.2.1 Graphical User Interface
	1.2.2 Command Line Interface
	1.2.3 Supported Debug Interfaces
	1.2.4 Persistence information

	1.3 Multiprocessor debugging
	1.4 Environment variables used by RealView Debugger
	1.5 The RealView Debugger documentation suite

	Getting Started with RealView Debugger
	2.1 How to use the tutorial
	2.2 Starting the tutorial
	2.3 Starting RealView Debugger
	2.4 Connecting to a debug target
	2.4.1 How to open the Connections window
	2.4.2 Elements of the Connect to Target window
	2.4.3 Making a connection

	2.5 Loading an image ready for debugging
	2.5.1 Loading an image directly
	2.5.2 Loading multi-image applications to a single debug target

	2.6 Setting a simple breakpoint
	2.7 Running the image
	2.7.1 Continuing the tutorial

	2.8 Unloading an image
	2.8.1 How to explicitly unload an image

	2.9 Disconnecting from a target
	2.10 Exiting RealView Debugger
	2.10.1 Closing down RealView Debugger
	2.10.2 Reconnecting to a target
	2.10.3 Storing breakpoints for an image when exiting RealView Debugger

	2.11 Cleaning up after the tutorial
	2.12 Localizing the RealView Debugger interface
	2.12.1 Font recommendations
	2.12.2 Procedure summary
	2.12.3 Configuring the internationalization settings
	2.12.4 Configuring the views

	2.13 Saving a debugging session
	2.13.1 Workspace
	2.13.2 Startup file
	2.13.3 History file

	Changes to RealView Debugger
	3.1 Debug target support
	3.2 GUI changes
	3.3 Changes to CLI commands
	3.4 Deprecated features

	About Previous Releases
	A.1 Changes between RealView Debugger v4.1 and v4.0 SP1
	A.1.1 RealView Debugger command line options
	A.1.2 Debug target support
	A.1.3 Debug Interface support
	A.1.4 GUI changes
	A.1.5 Changes to CLI commands
	A.1.6 Trace, analysis, and profiling
	A.1.7 Documentation changes
	A.1.8 Deprecated features

	A.2 Changes between RealView Debugger v4.0 SP1 and v4.0
	A.2.1 RealView Debugger command line options in RealView Debugger v4.0 SP1
	A.2.2 Processor support in RealView Debugger v4.0 SP1
	A.2.3 Simulator Support in RealView Debugger v4.0 SP1
	A.2.4 Miscellaneous changes to the GUI in RealView Debugger v4.0 SP1
	A.2.5 Changes to CLI commands and predefined macros in RealView Debugger v4.0 SP1
	A.2.6 Documentation changes in RealView Debugger v4.0 SP1
	A.2.7 Deprecated features in RealView Debugger v4.0 SP1
	A.2.8 Obsolete features in RealView Debugger v4.0 SP1

	A.3 Changes between RealView Debugger v4.0 and v3.1
	A.3.1 Processor support in RealView Debugger v4.0
	A.3.2 Simulator support in RealView Debugger v4.0
	A.3.3 Miscellaneous changes to the GUI in RealView Debugger v4.0
	A.3.4 Documentation changes in RealView Debugger v4.0
	A.3.5 Deprecated features in RealView Debugger v4.0
	A.3.6 Obsolete features in RealView Debugger v4.0

	A.4 Changes between RealView Debugger v3.1 and v3.0
	A.4.1 Processor support in RealView Debugger v3.1
	A.4.2 Simulator support in RealView Debugger v3.1
	A.4.3 Command line options in RealView Debugger v3.1
	A.4.4 Target connection and configuration in RealView Debugger v3.1
	A.4.5 CoreSight support in RealView Debugger v3.1
	A.4.6 Multiprocessor debugging in RealView Debugger v3.1
	A.4.7 Cache debugging in RealView Debugger v3.1
	A.4.8 Trace, analysis, and profiling in RealView Debugger v3.1
	A.4.9 Changes to the views in RealView Debugger v3.1
	A.4.10 Miscellaneous changes to the GUI in RealView Debugger v3.1
	A.4.11 Changes to CLI commands and macros in RealView Debugger v3.1
	A.4.12 Documentation changes in RealView Debugger v3.1
	A.4.13 Deprecated features in RealView Debugger v3.1
	A.4.14 Obsolete features in RealView Debugger v3.1

	A.5 Changes between RealView Debugger v3.0 and v1.8
	A.5.1 TrustZone technology support in RealView Debugger v3.0
	A.5.2 Thumb-2EE Support in RealView Debugger v3.0
	A.5.3 OS support in RealView Debugger v3.0
	A.5.4 Trace, Analysis, and Profiling in RealView Debugger v3.0
	A.5.5 RealView Simulator Broker support in RealView Debugger v3.0
	A.5.6 Multi-ICE direct connect in RealView Debugger v3.0
	A.5.7 Simulator support in RealView Debugger v3.0
	A.5.8 Changes to the GUI in RealView Debugger v3.0
	A.5.9 Changes to the CLI commands and predefined macros in RealView Debugger v3.0
	A.5.10 Updated documentation in RealView Debugger v3.0

	A.6 Changes between RealView Debugger v1.8 and v1.7
	A.6.1 Updated documentation in RealView Debugger v1.8
	A.6.2 Trace, Analysis, and Profiling in RealView Debugger v1.8
	A.6.3 Support for gcc built images in RealView Debugger v1.8
	A.6.4 Changes to the GUI in RealView Debugger v1.8
	A.6.5 Changes to the CLI in RealView Debugger v1.8
	A.6.6 RealView ARMulator ISS support in RealView Debugger v1.8
	A.6.7 RealMonitor support in RealView Debugger v1.8

	A.7 Changes between RealView Debugger v1.7 and v1.6.1
	A.7.1 Updated documentation in RealView Debugger v1.7
	A.7.2 Advanced debugging facilities in RealView Debugger v1.7
	A.7.3 RealView ARMulator ISS support in RealView Debugger v1.7
	A.7.4 Trace, Analysis, and Profiling in RealView Debugger v1.7
	A.7.5 Enhanced RTOS support in RealView Debugger v1.7
	A.7.6 New GUI elements in RealView Debugger v1.7

