
RealView® Debugger
Version 4.1

Command Line Reference Guide
Copyright © 2002-2011 ARM. All rights reserved.
ARM DUI 0175N (ID052111)

RealView Debugger
Command Line Reference Guide

Copyright © 2002-2011 ARM. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Change History

Date Issue Confidentiality Change

April 2002 A Non-Confidential Release v1.5

September 2002 B Non-Confidential Release v1.6

February 2003 C Non-Confidential Release v1.6.1

September 2003 D Non-Confidential Release v1.6.1 for RealView Developer Suite v2.0

January 2004 E Non-Confidential Release v1.7 for RealView Developer Suite v2.1

December 2004 F Non-Confidential Release v1.8 for RealView Developer Suite v2.2

May 2005 G Non-Confidential Release v1.8 SP1 for RealView Developer Suite v2.2 SP1

March 2006 H Non-Confidential Release v3.0 for RealView Development Suite v3.0

March 2007 I Non-Confidential Release v3.1 for RealView Development Suite v3.1

September 2008 J Non-Confidential Release v4.0 for RealView Development Suite v4.0

27 March 2009 K Non-Confidential Release v4.0 SP1 for RealView Development Suite v4.0

28 May 2010 L Non-Confidential Release 4.1 for RealView Development Suite v4.1

30 September 2010 M Non-Confidential Release 4.1 SP1 for RealView Development Suite v4.1 SP1

31 May 2011 N Non-Confidential Release 4.1 SP2 for RealView Development Suite v4.1 SP2
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. ii
ID052111 Non-Confidential

Web Address

http://www.arm.com
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. iii
ID052111 Non-Confidential

ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. iv
ID052111 Non-Confidential

Contents
RealView Debugger Command Line Reference
Guide

Preface
About this book ... vi
Feedback .. ix

Chapter 1 Working with the CLI
1.1 General command language syntax .. 1-2
1.2 Window and file numbers .. 1-5
1.3 Using expressions and statements .. 1-6
1.4 Command scripts ... 1-7
1.5 Macro language ... 1-10
1.6 Constructing expressions .. 1-14
1.7 Using variables in the debugger .. 1-28
1.8 Source patching with macros ... 1-35

Chapter 2 RealView Debugger Commands
2.1 Command syntax definition ... 2-2
2.2 Debugger commands listed by function ... 2-3
2.3 Alphabetical command reference .. 2-12

Chapter 3 RealView Debugger Predefined Macros
3.1 Predefined macros listed by function ... 3-2
3.2 Alphabetical predefined macro reference .. 3-6

Chapter 4 RealView Debugger Keywords
4.1 Keywords listed by function ... 4-2
4.2 Alphabetical keyword reference ... 4-4

Preface

This preface introduces the RealView® Debugger Command Line Reference Guide. It contains the
following sections:
• About this book on page vi
• Feedback on page ix.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. v
ID052111 Non-Confidential

Preface
About this book
This book describes the RealView Debugger Command-Line Interface (CLI) commands,
macros, and keywords.You can control RealView Debugger by using either its Graphical User
Interface (GUI) or its CLI.

Intended audience

This book is written for developers who are using RealView Debugger to debug software
written to run on ARM architecture-targeted development projects. It assumes that you are a
software developer who is familiar with command-line tools. It does not assume that you are
familiar with RealView Debugger.

Using this book

This book is organized into the following parts and chapters:

Chapter 1 Working with the CLI
Read this chapter for an introduction to the RealView Debugger CLI.

Chapter 2 RealView Debugger Commands
Read this chapter for a detailed description of the RealView Debugger CLI
commands.

Chapter 3 RealView Debugger Predefined Macros
Read this chapter for a detailed description of the RealView Debugger predefined
macros.

Chapter 4 RealView Debugger Keywords
Read this chapter for a detailed description of the RealView Debugger keywords.

Typographical conventions

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option name.

monospace italic Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Further reading

This section lists publications by ARM and by third parties.

See also:
• Infocenter, http://infocenter.arm.com for access to ARM documentation.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. vi
ID052111 Non-Confidential

Preface
• ARM web site , http://www.arm.com for current errata, addenda, and Frequently Asked
Questions.

• ARM Glossary,
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html, for a list of
terms and acronyms specific to ARM.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• RealView Debugger Essentials Guide (ARM DUI 0181)
• RealView Debugger User Guide (ARM DUI 0153)
• RealView Debugger Target Configuration Guide (ARM DUI 0182).
• RealView Debugger Trace User Guide (ARM DUI 0322)
• RealView Debugger RTOS Guide (ARM DUI 0323).

For details on using the compilation tools, see the books in the ARM Compiler toolchain
documentation.

For details on using RealView ARMulator® ISS, see the following documentation:
• RealView ARMulator ISS User Guide (ARM DUI 0207).

For general information on software interfaces and standards supported by ARM tools, see
install_directory\Documentation\Specifications\....

See the following documentation for information relating to the ARM debug interfaces suitable
for use with RealView Debugger:

• ARM DSTREAM Setting Up the Hardware (ARM DUI 0481)

• ARM DSTREAM System and Interface Design Reference (ARM DUI 0499)

• ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities (ARM DUI
0498)

• ARM RVI and RVT Setting Up the Hardware (ARM DUI 0515)

• ARM RVI and RVT System and Interface Design Reference (ARM DUI 0517).

See the datasheet or Technical Reference Manual for your hardware.

For details on ARM architectures, see:

• ARMv6-M Architecture Reference Manual (ARM DDI 0419)

• ARMv7-M Architecture Reference Manual (ARM DDI 0403)

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).

Other publications

For a comprehensive introduction to ARM architecture see:

Steve Furber, ARM System-on-Chip Architecture, Second Edition, 2000, Addison Wesley, ISBN
0-201-67519-6.

For a detailed introduction to regular expressions, as used in the RealView Debugger search and
pattern matching tools, see:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. vii
ID052111 Non-Confidential

Preface
Jeffrey E. F. Friedl, Mastering Regular Expressions, Powerful Techniques for Perl and Other
Tools, 1997, O'Reilly & Associates, Inc. ISBN 1-56592-257-3.

For the definitive guide to the C programming language, on which the RealView Debugger
macro and expression language is based, see:

Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, second edition, 1989,
Prentice-Hall, ISBN 0-13-110362-8.

For more information about IEEE Std. 1149.1 (JTAG), see:

IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 1149.1), available
from the IEEE (www.ieee.org).
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. viii
ID052111 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any problems with this product, submit a Software Problem Report:

1. Select Help → Send a Problem Report... from the Code window main menu.

2. Complete all sections of the Software Problem Report.

3. To get a rapid and useful response, give:
• a small standalone sample of code that reproduces the problem, if applicable
• a clear explanation of what you expected to happen, and what actually happened
• the commands you used, including any command-line options
• sample output illustrating the problem.

4. E-mail the report to your supplier.

Feedback on this book

If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0175N
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. ix
ID052111 Non-Confidential

Chapter 1
Working with the CLI

This chapter introduces the RealView® Debugger Command-Line Interface (CLI). It contains the
following sections:
• General command language syntax on page 1-2
• Window and file numbers on page 1-5
• Using expressions and statements on page 1-6
• Command scripts on page 1-7
• Macro language on page 1-10
• Constructing expressions on page 1-14
• Using variables in the debugger on page 1-28
• Source patching with macros on page 1-35.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-1
ID052111 Non-Confidential

Working with the CLI
1.1 General command language syntax
The following sections describe the general syntax conventions that are supported by the
RealView Debugger CLI:
• General syntax rules
• Command qualifiers and flags
• Command parameters on page 1-3
• Abbreviations on page 1-4.

1.1.1 General syntax rules

The commands you submit to the debugger must conform to the following rules:

• Each command line can contain only one debugger command.

• If you refer to a symbol, then you must use the same case that the symbol has in the
symbol table. Therefore, variables you create with the ADD command and user-defined
macros you create are case sensitive.

• A command line can be up to 4095 characters in length.

1.1.2 Command qualifiers and flags

Many commands accept flags, qualifiers, and parameters, using the following syntax:

COMMAND [,qualifier | /flag] [parameter]...

If a command qualifier is present, it must appear after the command name and before any
command parameters.

Qualifiers

You introduce each command qualifier with a punctuation character, as follows:

,qualifier A comma introduces a qualifier that provides the debugger with additional
information on how to execute a command. For example, the command:
DHELP,FULL =command_name

displays the full version instead of the summary version of its help text.

Flags

You introduce each command flag with a forward slash character, as follows:

/flag A flag is either one or two letters that acts as a switch.
For example, some commands accept a size flag. Valid size flags are:
8 bits Sets the size of some value or values to a byte.
16 bits Sets the size of some value or values to a halfword.
32 bits Sets the size of some value or values to a word.
For an example of a command that accepts these qualifiers, see FILL on
page 2-149.
Where a command supports flags, the flags are described as part of the command
syntax.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-2
ID052111 Non-Confidential

Working with the CLI
See also

• Chapter 2 RealView Debugger Commands.

1.1.3 Command parameters

As described in Command qualifiers and flags on page 1-2, commands accept flags, qualifiers,
and parameters.

Command parameters are typically expressions that represent values or addresses to be used by
a command. Parameters must be separated from each other with some form of punctuation.
However, punctuation for the first parameter might be optional:

=text An equals sign introduces a text string when you have multiple parameters. It is
not required for the first parameter. Depending on the command, this might
specify:
• a resource
• a thread or process name
• a number or string expression
• an address or offset
• a description
• an instance
• a location
• a configuration.

;windowid | ;fileid
A semicolon introduces a specification of where any output produced by the
command is to be sent. If you supply a ;windowid or ;fileid parameter, it must be
the final parameter of the command.

;macro-call A semicolon also introduces a specification of a macro to be called by the
command. If you supply a ;macro-call parameter, it must be the final parameter
of the command. You cannot use a ;windowid or ;fileid parameter with a
;macro-call parameter. If you want to send the output from the macro to a window
or file, use the VMACRO command.

Rules for specifying command parameters

The parameters you supply to a RealView Debugger command must conform to the following
rules:

• One or more spaces must separate command parameters from a command when there is
no punctuation (for example, a /, ,, or =).

• If a parameter, for example a filename, includes spaces or other special characters, you
must enclose it in double quotation marks ("..."), or single quotation marks ('...').

• In high-level mode, code addresses must be referenced by line numbers, labels, and
function names, or casted values.

See also
• Window and file numbers on page 1-5
• VMACRO on page 2-324.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-3
ID052111 Non-Confidential

Working with the CLI
1.1.4 Abbreviations

You can enter many debugger commands in an abbreviated form. The debugger requires enough
letters to uniquely identify the command you enter.

Many commands also have aliases. An alias is a different name that you can use instead of the
listed name (see ALIAS on page 2-21). If you can use a short form of an alias, the underlined
characters show the shortest acceptable form, for example:

BREAKI Is an acceptable short form of BREAKINSTRUCTION.

BINSTRUCTION Is an alias of BREAKINSTRUCTION.

BI Is an acceptable short form of the alias for BREAKINSTRUCTION.

DCOM Is an acceptable short form of DCOMMANDS.

DHELP Is an alias of DCOMMANDS.

See also
• Chapter 2 RealView Debugger Commands.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-4
ID052111 Non-Confidential

Working with the CLI
1.2 Window and file numbers
Many commands and macros enable you to specify a window number (windowid) or file number
(fileid). The number identifies a window or file to which any output is sent. You must use a
number in the range 50 to 1024.

Note
 When a user-defined number is in use for a window or a file, that number cannot be reused until
you close the associated window or file. Either:
• use the VCLOSE command to close both windows and files at the command line
• use the fclose predefined macro to close a file from within a macro.

To see what windows and files you have opened, use the WINDOW command.

See also:
• FOPEN on page 2-154
• VOPEN on page 2-326
• VCLOSE on page 2-321
• WINDOW on page 2-332
• fclose on page 3-17
• fopen on page 3-20
• Chapter 2 RealView Debugger Commands.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-5
ID052111 Non-Confidential

Working with the CLI
1.3 Using expressions and statements
The basic components of the RealView Debugger command-line language can be classified as
either expressions or statements, or a combination of both, where statements are typically
contained in INCLUDE files (see Chapter 15 Debugging with Command Scripts in the RealView
Debugger User Guide).

See also:
• Expressions
• Keywords
• Predefined macros.

1.3.1 Expressions

There are many types of expressions accepted by the RealView Debugger CLI, enabling you to
extend the operation of a command from the CLI. Expressions can be, for example, binary
mathematical expressions, references to module names, or calls to functions.

See also
• Types of debugger expressions on page 1-14.

1.3.2 Keywords

The RealView Debugger keywords are statements that can be used in a macro definition. These
keywords are the same as the C language keywords, and they cannot be redefined or used in any
other context.

See also
• Chapter 4 RealView Debugger Keywords.

1.3.3 Predefined macros

RealView Debugger also provides predefined macros. Predefined macros can be used:
• in macros that you define
• directly at the command line
• with the CEXPRESSION command, if the macro returns a value.

See also
• Chapter 3 RealView Debugger Predefined Macros
• the following in the RealView Debugger User Guide:

— Chapter 16 Using Macros for Debugging.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-6
ID052111 Non-Confidential

Working with the CLI
1.4 Command scripts
You can automate a debugging session by running command scripts. A command script is a text
file, which can contain:
• CLI commands (see Chapter 2 RealView Debugger Commands)
• predefined macros (see Chapter 3 RealView Debugger Predefined Macros).
• user-defined macros (see Macro language on page 1-10).

You can also include comments in your command scripts (see Command script comments).

See also:
• Considerations when using command scripts
• Command script comments
• Example command script on page 1-8.

1.4.1 Considerations when using command scripts

Each command must be on a separate line, and must not be split across multiple lines.

You do not have to be connected to a target to run a command script. However, some commands
require that you have:
• established a connection to a target (such as the LOAD command)
• an image loaded (such as the BREAKINSTRUCTION command).

You can connect to a target and load an image either:
• manually before running your command script
• within the command script.

See also

• Chapter 3 RealView Debugger Predefined Macros

• the following in the RealView Debugger User Guide:
— Chapter 15 Debugging with Command Scripts.

1.4.2 Command script comments

You can use comments in your command scripts. Any characters identified as belonging to a
comment are ignored by RealView Debugger. The following rules apply to comments in
command scripts:

• C style comments begin with a slash followed by an asterisk (/*) and end with an asterisk
followed by a slash (*/). Also the comment text and the delimiters must be on a single
line:
— valid comment

/* comment */

These comments appear in log and journal files.
— invalid comment

/*
 another comment
*/

• C++ style comments begin with two slashes (//) and end when the end of the line is
reached, for example:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-7
ID052111 Non-Confidential

Working with the CLI
// This is a line comment
// Copyright (c) ARM Limited

• Comments that begin with //, but are not placed after a command, do not appear in any
log and journal files.

• Comments can begin with a semicolon (;), for example:
; A comment

• Comments can begin with //# and end when the end of the line is reached.

• Comments that begin with //#, but are not placed after a command, appear only in a
journal file. Also, the //# prefix is replaced with ; in the that file.

• Only // or //# comments can be placed at the end of a command, for example:
ADD int value // integer value

• Comments cannot be nested.

See also
• Macro comments on page 1-12.

1.4.3 Example command script

Example 1-1 shows a command script that:

• connects to a target

• loads an image

• defines a user-defined macro to display the value of a variable in the image

• sets a breakpoint that runs the user-defined macro to display the value of a variable when
the breakpoint is activated.

Example 1-1 Sample command script

ERROR=ABORT // Abort if error occurs when processing the script
WAIT=ON // Wait for each command to finish

// Log the output from the image
STDIOLOG ON='c:\myprojects\project1\stdoutput.txt'

/* Connect to the ARM_Cortex-A8 model with ISSM */
CONNECT @ARM_Cortex-A8@ISSM

/* Load the project1.axf image from myprojects directory */
LOAD/r 'c:\myprojects\project1\Debug\project1.axf'

/* Define macro to print a value (must be defined after image load) */
define /R int printval(thisVal)
int thisVal;
{
 /* Print the value of the myvar variable when the
 breakpoint is activated */
 $PRINTVALUE thisVal$;
 return 1; // continue execution after breakpoint is activated
}
.

ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-8
ID052111 Non-Confidential

Working with the CLI
// Scope to main() so that we can set a
// breakpoint using a line number
SCOPE main

/* Set a breakpoint at line 149 in project1.c */
BREAKINSTRUCTION \PROJECT1\#149:1 ; printval(myvar)

GO // Run the image

STDIOLOG OFF // Close the log file

UNLOAD 1 // Unload the image
DELFILE 1 // Remove the symbol definitions
DISCONNECT @ARM_Cortex-A8@ISSM // Disconnect from the target
WAIT=OFF

See also
• Macro language on page 1-10.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-9
ID052111 Non-Confidential

Working with the CLI
1.5 Macro language
Macros are constructed in a Kernighan and Ritchie C-like scripting language that is interpreted
on the host. You can create your own or use one of the available predefined run-time macros.

See also:
• Macro definition
• Macro body on page 1-11
• Macro terminator on page 1-12
• Macro comments on page 1-12
• Macro local symbols on page 1-13.

1.5.1 Macro definition

A macro definition must contain:
• the DEFINE command
• the macro name, which is case sensitive
• the macro body
• a terminating full stop or period (.) as the first and only character on the line following

the macro.

The syntax of a macro definition is as follows:

DEFINE [/R] [return_type] macro_name([parameter_list])
[param_definitions]
{
 macro_body
}
.

where:

/R The new macro can replace an existing user-defined macro with the same
name. If any symbol other than a user-defined macro has the same name
as the new macro, then the following error is displayed:
Error: E004D: Symbol with this name already exists.

return_type The return type for the macro and is an optional component of the macro
definition. The type can be any legal C or C++ data type, except const. The
default type is int.

Note
 One use of a macro return value is to control what action RealView

Debugger takes when a breakpoint is activated.

parameter_list A parameter list for the macro and is an optional component of the macro
definition. You specify a parameter list in the same way that you specify
arguments for a C function. If parameter_list is defined then the type must
also be specified or else type int is assumed. The following example
illustrates the use of a parameter_list:
define int scpy(target, source)
char *target;
char *source;

The declaration defines arguments for the macro scpy(). The type of both
the target and the source are declared to be pointers to a char.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-10
ID052111 Non-Confidential

Working with the CLI
See also
• Macro terminator on page 1-12
• BREAKINSTRUCTION on page 2-55
• DEFINE on page 2-105
• the following in the RealView Debugger User Guide:

— Chapter 16 Using Macros for Debugging.

1.5.2 Macro body

The macro body consists of the source lines of the macro and optional formal arguments. You
can have multiple statements on a single line, but a single statement must not be split across
multiple lines.

The syntax of a macro body is as follows:

[local_definitions]
macro_statement;[macro_statement;]...

where:

local_definitions defines variables used locally in the macro body.

Formal arguments can be used throughout the macro body. These arguments are later replaced
by the values of the actual arguments in the macro call.

Using CLI commands in a macro

You can use debugger commands in the macro body. If used, you must enclose the command
with dollar signs ($) and end in a semi-colon (;), and the command must not be split across
multiple lines, for example:

last_time = @cycle;
value = base[offset];
base[offset] = 0;
$printf "base offset value=%d\n",value$;

You can substitute the value of an integer variable in a CLI command before the command is
executed. A format specifier can also be included:

d decimal format

h or x hexadecimal format (this is the default).

The syntax for variable substitution is ${variable[:format]}.

For example:

define /R int tstMacro()
{
 int num;
 num = 1;
 $FOPEN 150, "C:\\myfiles\\myfile${num:d}.txt"$; // substitution
 $FPRINTF 150, "Test value: %d", num$;
 $VCLOSE 150$;
}
.

The filename in this example is myfile1.txt. The text written to the file is "Test value: 1".

You can also use macro arguments and local variables in RealView Debugger commands.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-11
ID052111 Non-Confidential

Working with the CLI
Commands prohibited inside a macro

RealView Debugger prohibits the use of the following commands inside a macro:
• BOARD

• CONNECT

• DEFINE (unless it is the macro definition itself)
• DELFILE

• DISCONNECT

• GOSTEP

• HELP

• HOST

• INCLUDE

• LOAD

• QUIT

• UNLOAD.

Also you cannot use execution-type commands (for example, STEP) in a macro if you attach the
macro to another entity, such as a breakpoint.

See also
• Chapter 3 RealView Debugger Predefined Macros
• the following in the RealView Debugger User Guide:

— Chapter 16 Using Macros for Debugging.

1.5.3 Macro terminator

A macro terminator is used as the last character of the macro definition. This is a full-stop or
period (.) and must be the first and only character on the line.

If you include multiple macro definitions in a single script file, the macro terminator must
appear after each macro definition.

1.5.4 Macro comments

You can use comments in your macros to document your code. Any characters identified as
belonging to a comment are ignored by RealView Debugger. The following rules apply to
comments in macros:

• C style comments begin with a slash followed by an asterisk (/*) and end with an asterisk
followed by a slash (*/), for example:
/* comment */
/*
 This is another
 comment
*/

• C++ style comments begin with two slashes (//) and end when the end of the line is
reached, for example:
// This is a line comment
// Copyright (c) ARM Limited

• Only // comments can be placed at the end of a macro statement, for example:
macro_statement; // comment

• Only // comments can be nested within a /* */ comment, for example:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-12
ID052111 Non-Confidential

Working with the CLI
/*
 This is a comment
 // This is another comment
*/

See also
• Command script comments on page 1-7
• the following in the RealView Debugger User Guide:

— Chapter 16 Using Macros for Debugging.

1.5.5 Macro local symbols

You can create symbols in a macro that are local to the macro. You must declare a type for macro
local symbols. The type can be any legal C or C++ data type, except const. For example:

define /R int sqrValue(value)
int value;
{
 int squared;
 squared = value * value;
 return squared;
}
.

All symbols declared within a macro exist only during the execution of the macro, that is the
static keyword is not recognized.

To create the equivalent of a global static variable, use the ADD command to create the symbol
before defining the macro that references the symbol. For example:

add int cnt
define /R counter()
{
 cnt = cnt + 1;
}
.

See also
• ADD on page 2-16.
• the following in the RealView Debugger User Guide:

— Chapter 16 Using Macros for Debugging.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-13
ID052111 Non-Confidential

Working with the CLI
1.6 Constructing expressions
This section introduces the basic elements of the CLI, and how to construct expressions based
on these elements.

The debugger groups expressions into two classes:
• C source language expressions, used in assembled or compiled source mode
• assembly language expressions, used in assembly source or disassembly mode.

Most valid C expressions are also valid in the debugger (see Using expressions and statements
on page 1-6). However, if you are an assembly language user, you do not have to know how to
program in C to use the debugger. Simple C expressions are the same as standard algebraic
expressions.

See also:
• Types of debugger expressions
• Permitted symbol names on page 1-15
• Program symbols on page 1-15
• Debugger variable symbols on page 1-16
• Macro symbols on page 1-17
• Reserved symbols on page 1-17
• Operations on symbols and registers on page 1-25
• Addresses on page 1-26
• Expression strings on page 1-27.

1.6.1 Types of debugger expressions

Table 1-1 shows the types of expressions that are accepted by CLI commands. For each type,
there is a cross-reference to a command where the expression type is used as an example.
However, usage is not limited to these commands.

Table 1-1 Types of CLI expressions

Type Usage cross-reference

Arithmetical operation (value or address) FILL on page 2-149

Array element reference (value or address) ARGUMENTS on page 2-27

Conditional expression BREAKINSTRUCTION on page 2-55

Floating-point expression FPRINTF on page 2-156

Function name reference (code address) LIST on page 2-175

Line reference (code address) SCOPE on page 2-234

Macro call ALIAS on page 2-21

Memory address BREAKINSTRUCTION on page 2-55

Memory address PRINTVALUE on page 2-211

Memory location BREAKREAD on page 2-61

Memory range expression BREAKREAD on page 2-61

Qualified line (specifying source module) SCOPE on page 2-234

Stack level reference SCOPE on page 2-234
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-14
ID052111 Non-Confidential

Working with the CLI
See also
• General command language syntax on page 1-2
• Using expressions and statements on page 1-6
• Chapter 2 RealView Debugger Commands.

1.6.2 Permitted symbol names

A symbol (also called an identifier) is a name that identifies something, for example program
and debugger variables, macros, keywords, and registers.

Symbols can be up to 1024 characters in length. The first character in a symbol must be
alphabetic, an underscore _, or the at sign @. The valid characters in a symbol include upper- and
lower-case alphabetic characters, numeric characters, the dollar sign $, at sign @, and underscore
_. Other symbolic characters cannot be used in symbols. The debugger distinguishes between
uppercase and lowercase characters in a symbol. A symbol is therefore matched by the
following regular expression:

[a-zA-Z_@][a-zA-Z_@$0-9]{0,1023}

Regular expressions are described in Mastering Regular Expressions (see Other publications on
page vii).

If your compiler or assembler creates symbols that contain characters that are invalid in
RealView Debugger symbols, prefix the symbol name with an @ and enclose the rest of the name
in double quotation marks " to reference it, for example @"!parser". You cannot access a symbol
including a double quotation mark character in its name.

1.6.3 Program symbols

Program symbols are identifiers associated with a source program. They include variables,
function names, and, depending on the compiler, macro names. Symbols defined in the source
of the application can normally be passed to the debugger. When a program is loaded for
debugging, program symbols are normally loaded into a symbol table associated with the target
connection.

Some compilers insert a leading underscore _ to all program source symbols so that program
symbol names are distinguished from other names. The debugger strips the first leading
underscore from such program symbols when an application file is read so references to
program symbols are as originally written.

Some compilers pass C and C++ preprocessor macros to the debugger. These are also usable in
expressions. The debugger shows the expansion in the output.

Listing Symbols

You can list all symbols currently defined in RealView Debugger. To do this, enter:

String expression FILL on page 2-149

Symbol reference (value or address) ADD on page 2-16

Target connection reference CONNECT on page 2-93

Target program function BREAKINSTRUCTION on page 2-55

Table 1-1 Types of CLI expressions (continued)

Type Usage cross-reference
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-15
ID052111 Non-Confidential

Working with the CLI
printsymbols /w *

Referencing symbols

References to symbols or source-level line numbers can be unqualified or qualified. An
unqualified reference includes only the symbol or line number itself. A qualified reference
includes the symbol or line number preceded by a root (defined in the following section),
module and/or function name. Root, module, and function names are separated from the symbol
or line number by a backslash \. Module names must be in uppercase. Table 1-2 summarizes
examples of qualified symbols.

See also
• PRINTSYMBOLS on page 2-208.

1.6.4 Debugger variable symbols

Debugger variables are created during a debugging session with the ADD CLI command, and all
have global scope. When a debugger symbol is created you can assign it a data type (for example
char, int, or long) and an initial value, but cannot assign initial values to struct, union, or class
type symbols.

Debugger variables can be stored in either:
• Debugger memory. The debugger allocates memory for the variable for you.
• Target memory. You must specify a target memory address for the variable.

Table 1-2 Qualified symbol references

Form Example Comment

@root\\ @tst\\TS1ROOT References module TS1ROOT in root @tst.
(Usually from file loaded as tst.x or tst.out.)

\global ::global \x ::x References global variable x in current root.

function\local main\x References local variable x in function main.

MODULE\function SIEVE\main References function main in module sieve.

MODULE\static SIEVE\y References static variable y in module sieve.

MODULE\line_number ENTRY\#18 References line number 18 in module entry.

MODULE\function\local ENTRY\main\x References local variable x in function main in
module entry.

LINE\local #20\x References local variable x in an unnamed
block at line 20.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-16
ID052111 Non-Confidential

Working with the CLI
1.6.5 Macro symbols

A RealView Debugger macro is similar to a C function. It has a name, a return type, and optional
arguments. You can also define macro-local variables, and the macro itself is a sequence of
statements. Symbols are used in macros in two ways:

Macro name This identifies the macro. Macro names are case sensitive. You must avoid
using the following when creating your own macros:
• names of the predefined macros
• keywords
• debugger commands
• aliases you have defined using the ALIAS command (see ALIAS on

page 2-21).

Local variables Local variables can be defined within a macro as working storage while
the macro executes. A macro local variable can only be accessed by the
macro in which it is defined. It is created when the macro is executed and
has an undefined initial value.

Macros can call other macros, but not recursively. If your macro calls another user-defined
macro, then the called macro must be defined in the command script before the macro that calls
it.

See also
• Chapter 2 RealView Debugger Commands
• Chapter 3 RealView Debugger Predefined Macros
• Chapter 4 RealView Debugger Keywords
• the following in the RealView Debugger User Guide:

— Chapter 16 Using Macros for Debugging.

1.6.6 Reserved symbols

Reserved symbols are reserved words that represent registers, status bits, and debugger control
variables. These symbols are always recognized by the debugger and can be used at any time
during a debugging session. Because reserved symbols have special meanings within the
debugger command language, they cannot be defined and used for other purposes. To avoid
conflict with other symbols, the names of all reserved symbols are preceded by an at sign @. See
Table 1-3 on page 1-18 for a list of reserved symbols and their descriptions.

Displaying a list of currently defined symbols

You can display a list of the symbols that are currently defined in RealView Debugger. To do
this, use the PRINTSYMBOLS command:

printsymbols *

This command lists:

• RealView Debugger reserved symbols. These include symbols defined for the target
associated with the current connection.

• RealView Debugger predefined macros.

• If you have an image loaded for the current connection, then the symbols defined for that
image are listed.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-17
ID052111 Non-Confidential

Working with the CLI
• If you have defined any macros, then any arguments and local symbols defined for those
macros are listed.

Referencing reserved symbols

The RealView Debugger defines several symbols, known as reserved symbols, that retain
specific information for you to access. Table 1-3 shows these reserved symbols with a short
description. Reserved symbol names always begin with an at sign @ and can be all uppercase or
all lowercase.

Table 1-3 Reserved symbols

Symbol Description

@register References the named register.
For example, @R0. Use this symbol to reference register r0.

@entry Used to form a function pseudo-label, function\@entry, that identifies the first
location in the function after the code that sets up the function parameters. In
general, function\@entry refers to either:
• the first executable line of code in that function
• the first auto local that is initialized in that function.
In either case, function\@entry is beyond the function prologue, to ensure that
the function parameters can be accessed. This enables you to set a breakpoint
on a function without having to locate to the function in the source or
disassembly view, or without having to know an address.
If no lines exist that set up any parameters for the function (for example, an
embedded assembler function), then the following error message is displayed:
Error: E0039: Line number not found.

As an example, if you have a function func_1(value) you might want to set a
breakpoint that triggers only when the argument value has a specific value on
entry to the function:
bi,when:{value==2} func_1\@entry

@hlpc Indicates your current high-level source code line. @hlpc is valid only if the
Program Counter (PC) is in a module that has high-level line information (that
is, a C, C++, or assembler source module compiled with debug turned on).
@hlpc contains the line number at the current PC only if located in source code.
Otherwise, it is zero.

@last_host_output The last line of output that was generated by the HOST command.

@line_range Contains the line range of the source code associated with the PC.

@module Indicates the name of the current module as determined by the location of the
PC.

@procedure Indicates the name of the current function as determined by the location of the
PC.

@file Indicates the name of the current file as determined by the location of the PC.

@root Indicates the current root name.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-18
ID052111 Non-Confidential

Working with the CLI
Printing reserved symbols

To print the reserved symbols, use the FPRINTF or PRINTF command with the appropriate format
specifier. Alternatively, use the PRINTVALUE command to print the contents of a numerical
reserved symbol, for example @hlpc. You can also use the PRINTSYMBOLS/F command with no
arguments, and the command displays all roots.

Table 1-4 shows the format specifiers to use when printing reserved symbols.

Example

The following example shows how to use these symbols:

1. Create an INCLUDE file, for example symbols.inc, containing the following command and
macro definition:
add int windowOpened=0
define /R int rsvdSymbols(outputID)
int outputID;
{
 if ((outputID > 49) && (outputID <=1024)) {
 if (windowOpened != outputID)
 $vopen outputID$;
 $fprintf outputID, "****************************\n"$;
 $fprintf outputID, "root: %s\n", @root$;
 $fprintf outputID, "hlpc: %d\n", @hlpc$;
 $fprintf outputID, "code line: %h\n", @hlpc$;
 $fprintf outputID, "instruction: %m", @pc$;
 $fprintf outputID, "file: %s\n", @file$;
 $fprintf outputID, "line_range: %s\n", @line_range$;
 $fprintf outputID, "module: %s\n", @module$;
 $fprintf outputID, "procedure: %s\n", @procedure$;
 windowOpened=outputID;
 }
 else {
 error(3,"Invalid window ID %d.\nValid range 50 to 1024.",outputID);
 windowOpened=0;

Table 1-4 Format specifiers for printing reserved symbols

Information to print Symbol to use Format
specifier

Register contents @register This must match
the type of the
register.

Current instruction @pc %m

Current line number @hlpc %d

Current source line as text @hlpc %h

Last line output by the HOST command @last_host_output %s

Line range of the source code identified by the PC @line_range %s

Current module name @module %s

Current procedure name @procedure %s

Current file name determined by the PC @file %s

Current root name @root %s
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-19
ID052111 Non-Confidential

Working with the CLI
 }
 // return 0 to stop at the breakpoint
 return (0);
}
.

2. Connect to RealView ARMulator® ISS (RVISS), for example:
connect "@ARM7TDMI@RVISS"

3. Load the Dhrystone image from the main examples directory:
load/r 'main_examples_directory\dhrystone\Debug\dhrystone.axf'

4. Include the file you created in step 1 to define the macro. If this is in the directory
c:\myscripts, then enter:
include 'c:\myscripts\symbols.inc'

5. Run the macro, with an outputID of 50:
macro rsvdSymbols(50)

The following details are displayed:
root: @dhrystone
hlpc: 0
code line: <invalid line>
instruction: $00008000 EAFFFFFF B $L0x8004 $ ~<S0x8004>
file: ../../angel/startup.s
line_range:
module: STARTUP_S
procedure: __main

Here the high-level source code line is zero, and no code line can be displayed. This is
because the PC is at a location in a library module that was compiled without debug turned
on, and the source file is not available.

6. Set a breakpoint at the first executable line of code in function main, that also runs the
rsvdSymbols() macro when the breakpoint is reached:
breakinstruction,macro:{rsvdSymbols(50)} main\@entry

7. Run the Dhrystone application (see GO on page 2-159):
go

When the breakpoint is reached, the rsvdSymbols() macro runs, and the following details
are displayed:
root: @dhrystone
hlpc: 91
code line: Next_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));
instruction: 000084D0 E3A00030 MOV r0,#0x30
file: c:\program files\arm\rvds\examples\...\...\...\...\main\dhrystone\
dhry_1.c
line_range: 91..91
module: DHRY_1
procedure: main

8. Reload the Dhrystone application and clear the previous breakpoint:
reload
clearbreak

9. Set the breakpoint again, but specify the module and line:
breakinstruction,macro:{rsvdSymbols(50)} \DHRY_1\#149:1

10. Run the Dhrystone application:
go
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-20
ID052111 Non-Confidential

Working with the CLI
The listing shown in step 7 is displayed, but the line_range has changed to 79..91.

Symbols for referencing the common processor core registers

Table 1-5 shows the symbols to use if you want to reference the processor core registers. These
are the registers shown in the Core tab of the Registers view, and they are common to all ARM
architectures. You can also perform operations on these registers.

Table 1-5 Common processor core register symbols

Register symbol Description

@Rn Use this symbol to reference registers r1 to r12.

@R13 or @SP References the SP register.

@R14 or @LR References the LR register.

@R15 or @PC References the PC register.

@CPSR References the CPSR register.

@CPSR_C References the Carry flag of the CPSR NZCV flags.

@CPSR_F References the FIQ register of the CPSR.

@CPSR_FLG A bitmap referencing the NZCV flags of the CPSR.

@CPSR_I References the IRQ register of the CPSR.

@CPSR_MODE References the MODE register of the CPSR.

@CPSR_N References the Negative flag of the CPSR NZCV flags.

@CPSR_T References the T flag of the CPSR STATE register.

@CPSR_V References the Overflow flag of the CPSR NZCV flags.

@CPSR_Z References the Zero flag of the CPSR NZCV flags.

@R8_bank

@R9_bank

@R10_bank

@R11_bank

@R12_bank

References registers R8, R9, R10, R11, and R12 in register bank bank.
These are used only in register banks USR and FIQ.
For example, @R9_USR.

@R13_bank References the SP register in register bank bank.
For example, @R13_IRQ.

@R14_bank References the LR register in register bank bank.
For example, @R14_SVC.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-21
ID052111 Non-Confidential

Working with the CLI
Symbols for referencing the extended CPSR and SPSR registers

Table 1-6 shows the CPSR and SPSR register symbols that are available on processors cores that
support the extended ARM architectures. These symbols are in addition to those listed in
Table 1-5 on page 1-21.

@SPSR_bank

@SPSR_bank_regs

References the SPSR registers in a register bank. regs is one of the
following (see the equivalent CPSR symbols for details):

C

FLG

F

I

MODE

N

T

V

Z

Carry flag of the NZCV flags
NZCV flags
FIQ register
IRQ register
MODE register
Negative flag of the NZCV flags
T State flag of the STATE register
Overflow flag of the NZCV flags
Zero flag of the NZCV flags

Note
 There is no SPSR register in the USR bank.

For example, @SPSR_IRQ_T references the processor STATE register in the
IRQ register bank.

Table 1-5 Common processor core register symbols (continued)

Register symbol Description

Table 1-6 Extended CPSR and SPSR processor core register symbols

Register symbol Description
Earliest
architecture
supported

@CPSR_A References the Imprecise Data Abort (IDA) Control flag of the CPSR. ARMv6 or later

@CPSR_E References the Endianness Control flag of the CPSR. ARMv6 or later

@CPSR_FLGE A bitmap referencing the NZCVQ flags of the CPSR. ARMv5TE and
ARMv6 or later

@CPSR_GE A bitmap referencing the Greater than or Equal flags GE[3:0] of the
CPSR.

ARMv6 or later

@CPSR_IT References the If Then register of the CPSR. ARMv6T2 or later

@CPSR_J References the J State flag of the CPSR STATE register. Jazelle®-capable

@CPSR_JT References the J and T State flags of the CPSR STATE register. Set to
the following values:
0 To clear both flags (ARM state)
0x00000020 To set the T flag (Thumb state)
0x01000000 To set the J flag (Jazelle bytecode state)
0x01000020 To set both the T and J flags (Thumb-2EE state)

Thumb®-capable or
Jazelle-capable

@CPSR_Q References the Unsaturated flag of the CPSR NZCVQ flags. ARMv5TE and
ARMv6 or later
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-22
ID052111 Non-Confidential

Working with the CLI
Symbols for referencing internal variables and board-specific registers

You can also reference internal debugger variables and board-specific registers:

• Internal debugger variables are displayed in extra tabs of the Registers view, and depend
on your target connection. For example, the Debug tab is available when connecting to a
target through an ARM DSTREAM™ or RealView ICE debug unit.

• Board-specific registers are displayed in other tabs of the Registers view.

Note
 You can also perform operations on the internal debugger variables and board-specific registers.

To find the symbol names for the internal debugger variables, you must use the RealView
Debugger GUI. To find the symbol names for board-specific registers, you can use either the
RealView Debugger GUI, or look in the related Board/Chip Definition file (.bcd) in your default
settings directory identified by the RVDEBUG_SHADOW_DIR_ETC environment variable.

To find the name of a board-specific (memory mapped) register or internal debugger variable
using the RealView Debugger GUI:

1. Select the required tab, for example, Debug.

2. Right-click on the register or variable that you want to reference, for example,
semihost_enabled.

3. Select Properties from the context menu.
This displays an Information dialog. The Register: field shows the symbol name. For
semihost_enabled, the symbol name is @SEMIHOST_ENABLED.

@SPSR_bank

@SPSR_bank_regs

References the SPSR registers in a register bank. regs is one of the
following (see the equivalent CPSR symbols for details):

A

FLGE

E

GE

IT

J

JT

Q

IDA Control flag
NZCVQ flags
Endianness Control flag
Greater than or Equal flags
IF Then register
J State flag of the STATE register
J and T State flags of the STATE register
Unsaturated flag of the NZCVQ flags

Note
 There is no SPSR register in the USR bank.

For example, @SPSR_IRQ_T references the processor STATE register in the
IRQ register bank.

Table 1-6 Extended CPSR and SPSR processor core register symbols (continued)

Register symbol Description
Earliest
architecture
supported
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-23
ID052111 Non-Confidential

Working with the CLI
To find the name of a board-specific (memory mapped) register from the related board/chip
definition file:

1. Find the file in your default settings directory that has the same name as the board/chip
definition. For example, the names for the Integrator/AP board are defined in the file
AP.bcd.

2. Open the file with a text editor.

Note
 Do not make changes to this file directly. Use the Connection Properties dialog box in the

GUI to make any changes.

3. Search for lines containing Register.regname, where regname is the name of the register,
for example Register.G_SC_PCI.

See also
• Window and file numbers on page 1-5
• Macro language on page 1-10
• Reserved symbols on page 1-17
• Symbols for referencing the common processor core registers on page 1-21
• Symbols for referencing internal variables and board-specific registers on page 1-23
• Operations on symbols and registers on page 1-25
• BREAKINSTRUCTION on page 2-55
• CLEARBREAK on page 2-89
• CONNECT on page 2-93
• FPRINTF on page 2-156
• HOST on page 2-166
• INCLUDE on page 2-168
• LOAD on page 2-176
• PRINTF on page 2-205
• PRINTSYMBOLS on page 2-208
• PRINTVALUE on page 2-211
• REGINFO on page 2-223
• RELOAD on page 2-225
• the following in the RealView Debugger Target Configuration Guide:

— Chapter 3 Customizing a Debug Configuration.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-24
ID052111 Non-Confidential

Working with the CLI
1.6.7 Operations on symbols and registers

You can perform operations on symbols, on the registers listed in Table 1-5 on page 1-21, the
internal debugger variables, and board-specific registers. Table 1-7 lists the operations you can
perform on registers.

Table 1-7 Register operations

Operation Description Examples

@var = value Assign a value to the symbol. @PC = 0x8000

@var++, @var-- Increment or decrement the value in the symbol. @R6++

@var = @var + value

@var = @var - value

Add a value to, or subtract a value from, the symbol. @R12 = @R11+2

@var = @var * value

@var = @var / value

Multiply or divide the value in the symbol by a
specified value. Dividing by zero gives an error
message.

@R7 = @R7*2

@var &= [~]mask AND the mask value with the contents of the symbol.
~ indicates the inverse of the mask value.

@FLG &= 3

@FLG &= ~3

@var |= [~]mask OR the mask value with the contents of the symbol. ~
indicates the inverse of the mask value.

@FLG |= 3

@var ^= [~]mask Exclusive OR the mask value with the contents of the
symbol. ~ indicates the inverse of the mask value.

@FLG ^= 3
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-25
ID052111 Non-Confidential

Working with the CLI
1.6.8 Addresses

An address can be represented by most C expressions that evaluate to a single value. In
source-level mode, expressions that evaluate to a code address cannot contain numeric constants
or operators, unless you use a cast.

Data address and assembly-level code address expressions can also be represented by most legal
C expressions. For details on legal C expressions, see the C language Reference Manual. There
are no restrictions involving constants or operators. Table 1-8 summarizes the special
addressing types supported by the RealView Debugger.

Table 1-8 Address expressions

Addressing type Indicator Examples

Indirect addresses [] PRINTVALUE (H W) [23]

Source line numbers
(omitting \MODULE\ defaults to
the source file currently
selected in the Code window)

\MODULE\# BREAKINSTRUCTION \DHRY_1\#149

BREAKINSTRUCTION #149

Address ranges .. DUMP 0x2200..0x2214

DUMP 0x2200..+14

Multistatement reference : BREAKINSTRUCTION #21:32 (refers to the
statement on line 21 that contains column 32)

. BREAKINSTRUCTION #21.2 (refers to the second
statement on line 21)

Address of non-label symbol.
The symbol cannot be that of
a register or a constant.

& BREAKREAD &var
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-26
ID052111 Non-Confidential

Working with the CLI
1.6.9 Expression strings

An expression string is a list of values separated by commas. The expression string can contain
expressions and ASCII character strings enclosed in quotation marks. For several commands,
each value in an expression string can be changed to the size specified by the size qualifiers. If
the size is changed, padding is added to elements that do not fit.

Table 1-9 shows examples of expression strings.

You can cast values to arrays, so that for example you can access the second byte of a 32 bit
word by casting the word to a byte array.

Note
 If you enter a command line that starts with an open-bracket (, or an asterisk *, the debugger
interprets this as if you had entered a CEXPRESSION command with that text as its argument. For
example:

(char)0x8000 = 0

is equivalent to:

CE *(char*)0x8000 = 0

As with the normal CEXPRESSION command, you can use this to view or modify program variables
and memory. CE is the abbreviation for CEXPRESSION.

See also

• CEXPRESSION on page 2-87.

Table 1-9 Examples of expression strings

String Results

1,2,"abc" Values 1 and 2, and ASCII values of abc.

3+4, count, foo() Value 7, value of count, results of calling foo.

'1xyz123' ASCII values of 1, x, y, z, 1, 2, and 3.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-27
ID052111 Non-Confidential

Working with the CLI
1.7 Using variables in the debugger
It is important to understand how to access variables that are stored in memory. This section
describes symbol storage classes and data types. It describes how to qualify a symbolic
reference with a module or function name, how to specify fully referenced variables, and how
to make stack references.

See also:
• Scope
• Data types on page 1-29
• Root names on page 1-30
• Module names on page 1-31
• Variable references on page 1-32
• Stack references on page 1-33.

1.7.1 Scope

All variables and functions in a C or C++ source program have a storage class that defines how
the variable or function is created and accessed. C preprocessor symbols might not be available
to the debugger.

Global (extern)
In the debugger, global variables can be referred to from any module. However,
if a symbol of the same name exists in the local scope, this variable must be
qualified by a root name, by \ (current root), or with ::.

Static In the debugger, static functions can be referred to from the same module without
qualification. Static functions in other modules must be qualified with the module
name if the name is ambiguous or the module has not been used yet (not loaded).

Local A local variable is accessible when it is local to the current function, local to the
current unnamed block, or when its function is on the stack. It can be qualified by
function, line, or stack level.

Register Register variables might not be available from all lines in the function, because
hardware registers can be shared by more than one local register variable. A
register variable is accessible when it is local to the current function or when its
function is on the stack. It can be qualified by function or stack level.

Scoping rules

References to symbols follow the standard scoping rules of C and C++. If a symbol is
referenced, the debugger searches its symbol table using the following priority:

1. Any symbol local to the current macro.

2. Any symbol local to the current line.

3. Any symbol local to the current function.

4. Any symbol local to the class of the current function.

5. Any symbol static to the current module.

6. Any global symbol not necessarily in the current module.

7. A static symbol in another module.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-28
ID052111 Non-Confidential

Working with the CLI
8. A global symbol in another root (that is, a different loaded file).

1.7.2 Data types

All symbols and expressions have an associated data type:
• Source language modules can contain any valid C or C++ language data type.
• Assembly language modules can contain variables. Table 1-10 shows the types of

variables supported. Some assemblers might have other types such as fixed-point. In
addition, each symbol has an attribute that indicates whether a variable was defined in a
code or data area. Also, the assembler can create arrays of these types in addition to
structures (check with the assembler manufacturer for details).

You can access a specific number of bytes in memory using the following predefined macros:
• byte() to return an unsigned char
• word() to return an unsigned short int
• dword() to return an unsigned long.

Type conversion

The RealView Debugger performs data-type conversions under the following circumstances:

• when two or more operands of different types appear in an expression, data type
conversion is performed according to the rules of C or C++

• when arguments are passed to a macro, the types of the passed arguments are converted
to the types given in the macro function definition

• when the data type of an operand is forced by user-specified type casting, it is converted

• when a specific type is required by a command, the value is converted according to the
rules of C/C++.

Type casting

Type casting forces the conversion of an expression to the specified data type. The contents of
any variables that are referenced are not altered. Debugger expressions can be cast into different
types using the following syntax:

(type_name) expression

Table 1-10 Equivalent RealView Debugger data types for ARM assembler

ARM assembler data type Equivalent data type in
RealView Debugger

Size
(bytes)

byte unsigned char 1

word unsigned short int 2

long unsigned long 4

8-byte long long long 8

single-precision floating point float 4

double-precision floating point double 8

label label 1
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-29
ID052111 Non-Confidential

Working with the CLI
Example 1-2 shows examples of casting different types.

Example 1-2 Casting symbols and expressions into different types

(char) prime /* prime is cast to type char */
(float) 12 /* value is 12.0. (integer 12 in floating point) */
(int) sin(0.2) /* value is 0, sin(0.2) is 0.198, truncates to 0 */
(int) ptr_char /* the variable expression ptr_char is */
 /* cast to type int */

The debugger can cast some expression types to an array type. Example 1-3 casts the constant
expression 7 to an array of three characters starting at location 0x0007.

Example 1-3 Casting to an array

(char[3]) 7 /* address is 0x0007 */

This type of casting to an array can be used with the PRINTVALUE command. Assembly language
structures can be displayed in a more meaningful form by using this technique. Table 1-11 lists
additional special casting types. Arrays of hexadecimal types and pointers to hexadecimal types
can also be used.

See also
• PRINTVALUE on page 2-211
• byte on page 3-11
• word on page 3-65
• dword on page 3-14.

1.7.3 Root names

Root names indicate the top level in a qualified path name. Each time the debugger is invoked,
it automatically creates a base root. This root is assigned the name \\ and contains all debugger
variables, macros, and most user-defined symbols. The only user-defined symbols that are not
in the base root are those created with the ADD command. The remainder are built-in.

Table 1-11 Special casting types

Cast Commands Meaning

(QUOTED STRING) or (Q S) PRINTVALUE Show as "string."

(INSTRUCTION ADDRESS) or (I A) All Convert into a legal source-level
address.

(UNKNOWN TYPE) or (U T) All Convert into a single byte.

(HEX BYTE) or (H B) All Show in hex bytes.

(HEX WORD) or (H W) All Show in 16 bit hex.

(HEX DOUBLE WORD) or (H D) All Show in 32 bit hex.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-30
ID052111 Non-Confidential

Working with the CLI
When an executable program is loaded, the debugger automatically creates a second root for
that program. The name of this root is the name of the program with an at sign @ prepended to
it. For example, when the debugger loads the proga program, it creates the root @PROGA. An
alternative root name can be specified with the LOAD command.

If two programs have the same name, the debugger appends an underscore followed by a
number (that is, @NAME_1, @NAME_2) to the second (and any subsequent) program.

To specify which root a module belongs to, use @ROOT\\MODULE where ROOT is the root name and
MODULE is the module name. The \\ specifies that the preceding symbol is a root name. Use \\ to
specify the base root, which contains built-in type, macro, and reserved word information. In
the PRINTSYMBOLS command, the root can be specified directly. The reserved symbol @ROOT points
to the current root name. Example 1-4 shows some examples of how to use root names.

Example 1-4 Using root names

ps \ /* Shows all symbols in current root */
ps/t \\ /* Shows types in base root */
ps/m @sieve\\ /* Shows all modules in root @sieve */
ps/f /* Shows all roots */

The debugger considers the context to help determine the current root. If the context is within a
module, the root of that module is the current context. The use of a backslash \ refers to the
current root, as specified by the context.

See also
• Reserved symbols on page 1-17
• ADD on page 2-16
• LOAD on page 2-176.

1.7.4 Module names

Module names qualify symbolic references. The module name is usually the source filename
without the extension. If the extension is not one of .*c, .*cp, .*c++, .*cpp, .cxx, or .ixx, then
the extension is preserved and the dot (.) is replaced with an underscore (_). This convention
avoids a conflict with the C period operator (.), that indicates a structure reference.

Therefore, module names are changed as follows:
• SIEVE.C becomes SIEVE
• SIEVE.H becomes SIEVE_H
• PORT.ASG becomes PORT_ASG

You might have to use module names when referencing symbols, for example:
• SIEVE\main

• SIEVE_H\#4

• PORT_ASG\x

All module names are converted to uppercase by the debugger. To avoid confusion, it is
recommended that function names are not all uppercase. If two or more modules have the same
name, the debugger appends an underscore followed by a number to the second, and any
subsequent, module (for example, PROGA_1, PROGA_2, and PROGA_3). To see the current module and
function that is in scope, use the CONTEXT command.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-31
ID052111 Non-Confidential

Working with the CLI
See also
• Printing reserved symbols on page 1-19
• CONTEXT on page 2-96.

1.7.5 Variable references

In C, using a variable in an expression can result in a value or an address:
• a fully referenced variable results in a value
• a partially referenced variable results in an address.

Some legal assembly language variables can conflict with C operators, such as dot (.) and
question mark (?). These characters are replaced with an underscore (_).

Table 1-12 shows examples of variable references that are supported, including an indication of
what type of reference is being made.

When you refer to a variable in a C/C++ expression that is not fully referenced, you are referring
to the address of that variable, not the value. For this reason, the variable is considered
unreferenced. The normal C operators are implemented to modify references. Table 1-13 shows
the C operators.

Table 1-12 Examples of references to variables

Variable reference Reference type

int A;

A = 5;
A is fully referenced.

long temp;

temp = 9;
temp is fully referenced.

int arr[10], *LABEL; arr is not fully referenced so its address is used.

LABEL = arr;

arr[3] = 8;
arr[3] is fully referenced.

int AB[10][10], *LABX; AB is not fully referenced so its address is used.

LABX = AB[5];

LABX = LABEL;
LABEL is fully referenced so its value is used (the address it
points to).

char *p,c;

p = &c;
p is fully referenced. c is not fully referenced.

c = *LABEL; LABEL is dereferenced so the value of its address is used.

Table 1-13 C operators for referencing and dereferencing variables

Operator Scalar Pointer Array Structure Union

* - Ref Ref - -

& Deref Deref - Deref Deref

-> - Refa

a. Must be a pointer to a structure or union. The right side must be a member of that structure or
union. Otherwise, it is illegal.

- - -

. - - - Ref Ref

[] - Ref Ref - -
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-32
ID052111 Non-Confidential

Working with the CLI
These operators let you reference, or get the value of, and dereference, or get the address of,
variables. The concept of referenced and dereferenced variables also applies to breakpoints. For
example:

BREAKACCESS arrayname

This command sets an access breakpoint at the start address of the array arrayname because
arrayname is not fully referenced.

The following form of the command sets a breakpoint at the value stored in arrayname[3] and
not the address of arrayname[3], because it is fully referenced:

BREAKACCESS arrayname[3]

By including the special operator &, the following command enables you to set a breakpoint at
the address of the array element arrayname[3]:

BREAKACCESS &arrayname[3]

1.7.6 Stack references

When a function is invoked in C/C++, space is allocated on the stack for most local variables.
Typically, space is also allocated for a return address for returning to the calling routine. If a
function calls another function, all information is saved on the stack to continue execution when
the called function returns. The function is now nested.

You can reference variables and functions nested on the stack implicitly or explicitly.

Implicit stack references

Within the debugger, you can implicitly reference variables on the stack as follows:

• To refer to variables on the stack in the current function, specify the name of the variable,
for example x.

• To refer to a local variable in a nested function, specify the function name followed by a
backslash and the name of the local variable (main\i for example). If the nested function
is recursive, the last occurrence of that function is used. An explicit reference enables any
occurrence to be selected.

Explicit stack references

A function is allocated storage for its variables on the stack when it is currently executing. To
refer to variables on the stack explicitly, you must specify the nesting level of the function
preceded by an at sign @. The Call Stack window in source-level mode displays nesting level
information. The current function is @0, its caller is @1.

You can reference functions on the stack as follows:

• To refer to the address where some function on the stack returns, specify the function
nesting level preceded by an at sign @. For example, GO @1 executes the program until the
debugger reaches the address that corresponds to the location where the current function
returns to its caller (the instruction after the call). The LIST and DISASSEMBLE commands
can be used to show the code at the return address (LI @2 for example).
In nonrecursive programs, the command GO @1 corresponds to setting a breakpoint when
the current function returns to its caller. In recursive programs, the address alone might
not be enough to specify the instance that you want. A command such as GO@1;
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-33
ID052111 Non-Confidential

Working with the CLI
until(depth == 4) can be used to specify the instance of the address that you want
(assuming depth is a local variable in your recursive function that determines the instance
you are executing).

• To explicitly refer to a local variable in a nested function, specify the function nesting
level followed by a backslash and the name of the variable. For example, PRINTVALUE
@3\str references the local variable str of the function at nesting level 3.

• To see all available information about a function, specify the EXPAND command followed
by the function nesting level. For example, EXPAND @7 displays all information about the
function at the specified level for that particular invocation. This information includes the
name of the function, the address that is returned to, and all local variables in the function
and their values.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-34
ID052111 Non-Confidential

Working with the CLI
1.8 Source patching with macros
When debugging your application program, sometimes errors can be temporarily patched with
source statements. It is often unnecessary to edit the source code, and recompile and link.
Instead, you can use a temporary patch by using macros with breakpoints.

See also:
• Patching example to insert lines of source code
• Patching example to jump over lines of source code
• Patching example to re-implement a loop on page 1-37
• Patching example to emulate a serial port on page 1-38
• Other ways to use macros on page 1-39.

1.8.1 Patching example to insert lines of source code

To insert a few lines of source code in your program:

1. Define a macro containing the statements that you want to insert.

2. Start a debugging session and set a breakpoint on the source line following the point where
you want to insert the new lines.

3. Attach your macro to this breakpoint.

4. Run the program until execution stops at the breakpoint.

5. The source statements in your macro are interpreted and executed. The macro completes.

6. Program execution continues normally.

Note
 Using a macro in this way might cause problems with compiler optimizations, for example the
ordering of instructions might have been altered by the compiler.

See also

• Chapter 2 RealView Debugger Commands

• the following in the RealView Debugger User Guide:
— Setting a breakpoint that depends on the result of a macro on page 12-21.

1.8.2 Patching example to jump over lines of source code

You can also use a similar approach to jump over or skip lines of source code:

1. Define a macro to set the PC to a point beyond the lines that are not executed.

2. Start a debugging session and set a breakpoint on the first line to be skipped.

3. Attach your macro to this breakpoint.

4. Run the program until execution stops at the breakpoint.

5. The source statements in your macro are interpreted and executed. The macro completes.

6. Program execution continues normally from the new position of the PC.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-35
ID052111 Non-Confidential

Working with the CLI
You can also use the JUMP command for looping and skipping over commands. The JUMP
command takes a label and an expression. If the expression evaluates to True then control jumps
to the specified label. If the label is positioned earlier in the file, this loops. If the label is
positioned later in the file, all intermediate commands are skipped.

The expression can test:
• symbols, using the isalive keyword
• results
• local symbols, created with ADD
• file tests, using macros.

Example 1-5 shows a script command fragment containing the JUMP command.

Example 1-5 Using the JUMP command

add int cnt = 20
initialize
:repeat /* loop 20 times */
some_commands
jump repeat,cnt /* repeat until cnt==0 */
;
; define some local vars if not defined.
;
jump nodefine,isalive(cnt)==1
some_commands
:nodefine

See also
• ADD on page 2-16
• JUMP on page 2-174
• isalive on page 4-12.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-36
ID052111 Non-Confidential

Working with the CLI
1.8.3 Patching example to re-implement a loop

The source code being debugged contains the following lines:

24
25 count = 5;
26 for (i=0; i < MAXNUM; i++)
27 {
28 array[i]=1;
29 count=count+2;
30 k=count*i;
31 }
32

To jump over or skip lines 29 and 30, and to insert a new line temporarily, which increments
count by 1:

1. Define a macro that contains statements to increment count and move the PC over the two
lines:
DEFINE patch_29()
{
 count++; /* increment count by 1 */
 $SETREG @PC = #31$; /* reset program counter so skipping 29 & 30 */
 return(1); /* return 1 to continue normal execution */
}
.

2. Start a debugging session and set an instruction breakpoint on line 29.

3. Attach your macro to this breakpoint.

4. Run the program until execution stops at the breakpoint.

5. The source statements in your macro are interpreted and executed. The macro completes.

6. Program execution continues normally.

See also
• Execution control on page 2-4
• the following in the RealView Debugger User Guide:

— Chapter 11 Setting Breakpoints.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-37
ID052111 Non-Confidential

Working with the CLI
1.8.4 Patching example to emulate a serial port

To emulate a serial port in your source code:

1. Define a macro that emulates a serial port:
add unsigned long last_time; /* create local symbol */
define int ser_port(offset,base) /* macro definition */
 int offset; /* offset of device register */
 unsigned short *base; /* base of port */
{
 unsigned short value;
 if (offset == 0)
 { /* control register */
 if (last_time && ((@cycle - last_time) < 20))
 {
 error (0, "ser_port: access less than
 allowed time: %d", @cycle - last_time);
 return (0);
 }
 last_time = @cycle;
 value = base[offset]; /* cache written value */
 base[offset] = 0; /* reset */
 if (value == 0x20)
 { /* want to read */
 ...
 }
 ...
 }
 ...
 $SETREG @PC = #line_num$; /* reset PC to skip the patched lines */
}
.

2. Start a debugging session and set a breakpoint on the source code to stop execution
immediately before it accesses the serial port, for example at line 20 of module_name.c, and
attach your macro to this breakpoint:
BREAKINSTRUCTION \MODULE_NAME\#20 ;ser_port(0,&ser_port)

3. Continue debugging using the newly-inserted serial port emulation.

As with the previous example, this is only a temporary patch so the source code must be edited
and then recompiled. Be careful, however, when using such a patch in optimized code.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-38
ID052111 Non-Confidential

Working with the CLI
1.8.5 Other ways to use macros

This section describes other ways that you can use macros.

Using macros to interact with files and windows

During your debugging session, you can use macros to read from or write to a file, or to write
to a window. Table 1-14 shows the macros to do this.

Using macros with commands

Table 1-15 lists the commands you can use macros. For these commands, the macro is executed
automatically when an event occurs, such as the activation of a breakpoint. The return value
from the macro can also determine the subsequent execution (for example, see the macro_call
argument to the breakpoint commands).

Table 1-14 Macros for interacting with files and windows

Macro Acts on See

fclose() Files fclose on page 3-17

fopen() Files fopen on page 3-20

fgetc() Files fgetc on page 3-18

fputc() Files fputc on page 3-22

fread() Files fread on page 3-23

fwrite() Files and
windows

fwrite on page 3-25

Table 1-15 Commands that run macros automatically

Command See

BGLOBAL BGLOBAL on page 2-31

BREAKACCESS BREAKACCESS on page 2-38

BREAKEXECUTION BREAKEXECUTION on page 2-47

BREAKINSTRUCTION BREAKINSTRUCTION on page 2-55

BREAKREAD BREAKREAD on page 2-61

BREAKWRITE BREAKWRITE on page 2-70

GO GO on page 2-159

GOSTEP GOSTEP on page 2-161
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-39
ID052111 Non-Confidential

Working with the CLI
Table 1-16 lists the commands that you can use to manage macros.

Sending debug information to the Output view

You can send debugging information to the Output view in the GUI with the error() predefined
macro.

Interacting with a user

Table 1-17 lists the macros that are provided to enable a user to interact with your script and then
continue execution based on the decision, or data, entered.

You can also use these predefined macros with other macros and INCLUDE files. If using these
predefined macros with the MACRO command in INCLUDE files, use the JUMP command to
implement the user’s decision. Example 1-6 shows how you can use these predefined macros
with the MACRO command:

Example 1-6 Using the prompt macros with JUMP

add int val
add char buff[15]
strcpy(buff, "one\ntwo\nthree")

// Implement user’s choice
define /R void choice(option)
int option;
{
 if (choice > 0) {
 if (choice == 1)
 $printf "Item one selected.\n"$;

Table 1-16 Commands that enable you to manage macros

Command See

CEXPRESSION CEXPRESSION on page 2-87

DEFINE DEFINE on page 2-105

DELETE DELETE on page 2-109

MACRO MACRO on page 2-182

SHOW SHOW on page 2-248

VMACRO VMACRO on page 2-324

Table 1-17 Macros for interacting with a user

Command See

prompt_file prompt_file on page 3-37

prompt_list prompt_list on page 3-39

prompt_text prompt_text on page 3-40

prompt_yesno prompt_yesno on page 3-42

prompt_yesno_cancel prompt_yesno_cancel on page 3-43
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-40
ID052111 Non-Confidential

Working with the CLI
 else if (choice == 2)
 $printf "Item two selected.\n"$;
 else
 $printf "Item three selected.\n"$;
 }
}
.
// Choose an option
:repeat
 macro val = prompt_list("Choose one:", buff)
 choice(val)
 jump repeat, val>0 // Repeat until user clicks Cancel

See also
• Alphabetical command reference on page 2-12
• error on page 3-15.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 1-41
ID052111 Non-Confidential

Chapter 2
RealView Debugger Commands

This chapter describes available RealView® Debugger commands. It contains the following
sections:
• Command syntax definition on page 2-2
• Debugger commands listed by function on page 2-3
• Alphabetical command reference on page 2-12.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-1
ID052111 Non-Confidential

RealView Debugger Commands
2.1 Command syntax definition
Many commands have alternative names, or aliases, that you might find easier to remember.
Command names and aliases can be abbreviated. For example, ADDBOARD can be abbreviated to
ADDBO. The syntax definition for each command shows how it can be shortened by underlining
the abbreviation, that is ADDBOARD.

In the syntax definition of each command:

• square brackets [...] enclose optional parameters

• words enclosed in braces {} separated by a vertical bar | indicate alternatives from which
you choose one

• parameters that can be repeated are followed by an ellipsis (...).

Do not type square brackets, braces, or the vertical bar. Replace parameters in italics with the
value you want. When you supply more than one parameter, use a comma or a space or a
semicolon as a separator, as shown in the syntax definition for the command. If a parameter is
a name that includes spaces, enclose it in double quotation marks.

See also:

• Specifying address ranges

2.1.1 Specifying address ranges

Many commands enable you to specify a range of addresses. You specify an address range using
either of the following formats:

start_addr..end_addr
Start address and an absolute end address, for example:
memmap,define 0x10000..0x20000

start_addr..+length
Start address and length of the address region, for example:
memmap,define 0x10000..+0x10000

In both cases, the start and end values are inclusive.

You can also use symbol names such as macros, function names, and variables as the start
address:

printdsm mymacro()..+1000

printdsm main..+1000

fill Arr_2_Glob..+64=0xFF
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-2
ID052111 Non-Confidential

RealView Debugger Commands
2.2 Debugger commands listed by function
The following sections list the commands according to their general function:
• Board file access
• Execution control on page 2-4
• Examining source files on page 2-5
• Program image management on page 2-5
• Target registers and memory on page 2-6
• Cache enquiries on page 2-6
• Status enquiries on page 2-7
• Macros and aliases on page 2-7
• CLI on page 2-8
• Program symbol manipulation on page 2-8
• Creating and writing to files and windows on page 2-9
• Processor tracing on page 2-9
• OS-aware debugging on page 2-10
• Miscellaneous on page 2-10.

However, it does not include command aliases. See Alphabetical command reference on
page 2-12 for a full, alphabetical list of commands.

2.2.1 Board file access

Table 2-1 shows the commands that operate on boards, that is target processors, development
systems and their subcomponents.

Table 2-1 Board file access commands

Description See

Select a particular target connection BOARD on page 2-35

Connect the debugger to a target CONNECT on page 2-93

Remove a Debug Configuration DELBOARD on page 2-108

Disconnect the debugger from a target DISCONNECT on page 2-118

List board descriptions DTBOARD on page 2-125

Write board memory map as linker file DUMPMAP on page 2-133

Edit current board definition EDITBOARDFILE on page 2-136

Read, or reread, a board file READBOARDFILE on page 2-218
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-3
ID052111 Non-Confidential

RealView Debugger Commands
2.2.2 Execution control

Table 2-2 shows the commands that control target execution, including instruction and data
breakpoints.

Table 2-2 Execution control commands

Description See

Initialize or reset the processor EMURESET on page 2-138
RESTART on page 2-230

Start executing from current state GO on page 2-159
RUN on page 2-232

Set a data or instruction breakpoint BREAKACCESS on page 2-38
BREAKEXECUTION on page 2-47
BREAKINSTRUCTION on page 2-55
BREAKREAD on page 2-61
BREAKWRITE on page 2-70

Clear, enable or disable a breakpoint CLEARBREAK on page 2-89
DISABLEBREAK on page 2-114
ENABLEBREAK on page 2-140
RESETBREAKS on page 2-228

Stop execution at current point HALT on page 2-163
STOP on page 2-267

Set or change processor exceptions BGLOBAL on page 2-31

Step by instruction STEPINSTR on page 2-259
STEPOINSTR on page 2-263

Step by source line STEPLINE on page 2-261
STEPO on page 2-265

Step invoking a macro at each step GOSTEP on page 2-161

Synchronize execution SYNCHACTION on page 2-269
SYNCHEXEC on page 2-271
XTRIGGER on page 2-335

Do something when execution starts or stops ONSTATE on page 2-193
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-4
ID052111 Non-Confidential

RealView Debugger Commands
2.2.3 Examining source files

Table 2-3 shows the commands that let you examine the program source files.

2.2.4 Program image management

Table 2-4 shows the commands that manipulate image (executable) files.

Table 2-3 Examining source file commands

Description See

Display a specific source file LIST on page 2-175

Display execution context CONTEXT on page 2-96
DOWN on page 2-124
UP on page 2-318
WHERE on page 2-331

Display locals of an execution context EXPAND on page 2-146

Select source or assembly display MODE on page 2-190

Move the display location within program SCOPE on page 2-234

Display program source files DTFILE on page 2-128

Table 2-4 Program image management commands

Description See

Reload or restart current executable RELOAD on page 2-225
RESTART on page 2-230

Add or remove executable file from loaded
files list

ADDFILE on page 2-19
DELFILE on page 2-111

Load target with one or more executable
files

LOAD on page 2-176
RELOAD on page 2-225

Unload an executable file or process UNLOAD on page 2-316

Write to FLASH memory FLASH on page 2-152

Define program arguments (argc, argv) ARGUMENTS on page 2-27

Define run mode RUN on page 2-232

Disassemble target memory DISASSEMBLE on page 2-116

Print disassembled target memory PRINTDSM on page 2-203

Verify data or image file against memory VERIFYFILE on page 2-322

Display more information about load errors DLOADERR on page 2-120

Do something when execution starts or stops ONSTATE on page 2-193
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-5
ID052111 Non-Confidential

RealView Debugger Commands
2.2.5 Target registers and memory

Table 2-5 shows the commands that manipulate target registers and memory.

2.2.6 Cache enquiries

Table 2-6 shows the commands that display cache information.

Table 2-5 Target register and memory access commands

Description See

Enable and change target memory layout MEMMAP on page 2-184

Fill target memory with value or values FILL on page 2-149
SETMEM on page 2-239
CEXPRESSION on page 2-87

Copy or compare target memory areas COPY on page 2-98
COMPARE on page 2-91

Change target registers SETREG on page 2-242

Convert a virtual address to a physical
address

VA2PA on page 2-319

Display target and memory mapped register
information

REGINFO on page 2-223

Display memory in window MEMWINDOW on page 2-188
LIST on page 2-175

Disassemble target memory DISASSEMBLE on page 2-116

Search for value or values in memory SEARCH on page 2-236

Write to FLASH memory FLASH on page 2-152

Write memory map to linker file DUMPMAP on page 2-133

Write host file into target memory READFILE on page 2-219

Write target memory to screen DUMP on page 2-131

Write target memory to host file WRITEFILE on page 2-333

Compare host file with target memory TEST on page 2-273
VERIFYFILE on page 2-322

Table 2-6 Cache enquiry commands

Description See

Search for an address in the cache CACHEFIND on page 2-81

Display summary information about the
cache

CACHEINFO on page 2-82

Locate a specific cache line and display
information about it.

CACHELINE on page 2-84
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-6
ID052111 Non-Confidential

RealView Debugger Commands
2.2.7 Status enquiries

Table 2-7 shows the commands that display information about the current debugger session.

2.2.8 Macros and aliases

Table 2-8 shows the commands that define and display command aliases and macros.

See also

The following in the RealView Debugger User Guide:
• Macro language on page 1-10
• Chapter 16 Using Macros for Debugging.

Table 2-7 Status enquiry commands

Description See

Display information about the current target COREINFO on page 2-99

Display the execution state of the current
target

CORESTATE on page 2-100

Display current image file information DTFILE on page 2-128

Display more information about load errors DLOADERR on page 2-120

Display execution context CONTEXT on page 2-96
WHERE on page 2-331

Display currently set breakpoints and
tracepoints

DTBREAK on page 2-126

Display trace status DTRACE on page 2-130

Display board descriptions DTBOARD on page 2-125

Display the contents of a macro SHOW on page 2-248

Display and define user preferences OPTION on page 2-195
SETTINGS on page 2-245

Displays RealView ARMulator® ISS
(RVISS) bus and processor cycles.

STATS on page 2-254

Table 2-8 Macro and alias commands

Description See

Define a command macro DEFINE on page 2-105

Invoke a command macro MACRO on page 2-182

Step invoking a macro at each step GOSTEP on page 2-161

Define, list, delete command alias ALIAS on page 2-21

Attach macro to window with auto-update VMACRO on page 2-324

Display the contents of a macro SHOW on page 2-248
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-7
ID052111 Non-Confidential

RealView Debugger Commands
2.2.9 CLI

Table 2-9 shows the functions that manipulate the command line itself.

2.2.10 Program symbol manipulation

Table 2-10 shows the commands that display and change symbols in the debugger symbol table.

Table 2-9 CLI commands

Description See

Run script file INCLUDE on page 2-168

Define error action for script file ERROR on page 2-142

Cause an abnormal error for script file FAILINC on page 2-148

Interrupt current asynchronous command CANCEL on page 2-85
INTRPT on page 2-171

Jump (go to) another point in the script JUMP on page 2-174

Log CLI actions to file JOURNAL on page 2-172
LOG on page 2-180

Log STDIO messages to a file STDIOLOG on page 2-257

Table 2-10 Program symbol manipulation commands

Description See

Create symbols referencing target memory ADD on page 2-16

Create host-debugger symbols ADD on page 2-16

Delete symbols DELETE on page 2-109

Browse C++ class structure BROWSE on page 2-79

Load only the symbols for a program LOAD on page 2-176

Display symbols in the symbol table PRINTSYMBOLS on page 2-208

Display variable type details PRINTTYPE on page 2-210

Evaluate expressions involving symbols CEXPRESSION on page 2-87
PRINTVALUE on page 2-211

Display value of symbol every time
debugger stops target

MONITOR on page 2-191
NOMONITOR on page 2-192
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-8
ID052111 Non-Confidential

RealView Debugger Commands
2.2.11 Creating and writing to files and windows

Table 2-11 shows the commands that manipulate windows.

2.2.12 Processor tracing

Table 2-12 shows the processor instruction tracing functions.

Table 2-11 Creating files and text writing commands

Description See

Opening a file FOPEN on page 2-154

Creating a new window VOPEN on page 2-326

Clearing a window VCLEAR on page 2-320

Setting the cursor position within a window VSETC on page 2-328

Deleting a window VCLOSE on page 2-321

Attaching a macro to a window VMACRO on page 2-324

Display list of open files and windows WINDOW on page 2-332

Writing text to a file or window FPRINTF on page 2-156
PRINTF on page 2-205
Commands that support the ;windowid or
;fileid parameter.

Table 2-12 Processor tracing commands

Description See

Enable and disable tracing TRACE on page 2-277

Configure the trace capture logic ANALYZER on page 2-23
ETM_CONFIG on page 2-143

Display status information DTRACE on page 2-130

Set tracepoints in the program TRACE on page 2-277
TRACEDATAACCESS on page 2-288
TRACEDATAREAD on page 2-293
TRACEDATAWRITE on page 2-298
TRACEEXTCOND on page 2-303
TRACEINSTREXEC on page 2-307
TRACEINSTRFETCH on page 2-312

Displaying, saving, and loading captured
trace information

TRACEBUFFER on page 2-279
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-9
ID052111 Non-Confidential

RealView Debugger Commands
2.2.13 OS-aware debugging

Table 2-13 shows the commands that are specific to OS-aware connections.

Table 2-14 shows those commands that provide arguments or have specific behavior for
OS-aware connections.

Other commands can be used with OS-aware connections, such as those for stepping, accessing
memory and registers, and setting hardware breakpoints.

2.2.14 Miscellaneous

Table 2-15 shows the remaining functions.

Table 2-13 OS-aware specific debugging commands

Description See

Control OS-aware debugging OSCTRL on page 2-200

OS-aware action commands AOS_resource_list on page 2-26

OS-aware resource commands DOS_resource_list on page 2-122

Select thread in OS-aware thread group THREAD on page 2-276

Table 2-14 Debugging commands with OS-aware related features

Description See

Set an instruction breakpoint for a specific
thread

BREAKINSTRUCTION on page 2-55

Stop execution HALT on page 2-163
STOP on page 2-267

Reset processor and cleanup thread states
and other OS issues

RESET on page 2-227

Table 2-15 Miscellaneous commands

Description See

Open and close the Connect to Target
window

CCTRL on page 2-86

Change and display the current working
directory

CWD on page 2-101
PWD on page 2-216

Get help on command HELP on page 2-165
DHELP on page 2-113
DCOMMANDS on page 2-103

Run a command on the host operating
system

HOST on page 2-166

Define user preferences OPTION on page 2-195
SETTINGS on page 2-245

Force debugger to wait for a specified
number of seconds

PAUSE on page 2-202
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-10
ID052111 Non-Confidential

RealView Debugger Commands
Force debugger to wait, or not to wait, for
command to complete

WAIT on page 2-329

Quit debugger QUIT on page 2-217

Enable or disable the auto save breakpoints
feature

RVDCONTEXT on page 2-233

Table 2-15 Miscellaneous commands (continued)

Description See
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-11
ID052111 Non-Confidential

RealView Debugger Commands
2.3 Alphabetical command reference
The following sections list in alphabetical order all the commands that you can issue to
RealView Debugger using the CLI:
• ADD on page 2-16
• ADDFILE on page 2-19
• ALIAS on page 2-21
• ANALYZER on page 2-23
• AOS_resource_list on page 2-26
• ARGUMENTS on page 2-27
• BACCESS on page 2-30
• BEXECUTION on page 2-30
• BGLOBAL on page 2-31
• BINSTRUCTION on page 2-34
• BOARD on page 2-35
• BREAD on page 2-37
• BREAK on page 2-37
• BREAKACCESS on page 2-38
• BREAKEXECUTION on page 2-47
• BREAKINSTRUCTION on page 2-55
• BREAKREAD on page 2-61
• BREAKWRITE on page 2-70
• BROWSE on page 2-79
• BWRITE on page 2-80
• CACHEFIND on page 2-81
• CACHEINFO on page 2-82
• CACHELINE on page 2-84
• CANCEL on page 2-85
• CCTRL on page 2-86
• CEXPRESSION on page 2-87
• CLEARBREAK on page 2-89
• COMPARE on page 2-91
• CONNECT on page 2-93
• CONTEXT on page 2-96
• COPY on page 2-98
• COREINFO on page 2-99
• CORESTATE on page 2-100
• CWD on page 2-101
• DBOARD on page 2-102
• DBREAK on page 2-102
• DCOMMANDS on page 2-103
• DEFINE on page 2-105
• DELBOARD on page 2-108
• DELETE on page 2-109
• DELFILE on page 2-111
• DHELP on page 2-113
• DISABLEBREAK on page 2-114
• DISASSEMBLE on page 2-116
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-12
ID052111 Non-Confidential

RealView Debugger Commands
• DISCONNECT on page 2-118
• DLOADERR on page 2-120
• DMAP on page 2-121
• DOS_resource_list on page 2-122
• DOWN on page 2-124
• DTBOARD on page 2-125
• DTBREAK on page 2-126
• DTFILE on page 2-128
• DTRACE on page 2-130
• DUMP on page 2-131
• DUMPMAP on page 2-133
• DVFILE on page 2-135
• EDITBOARDFILE on page 2-136
• EMURESET on page 2-138
• EMURST on page 2-139
• ENABLEBREAK on page 2-140
• ERROR on page 2-142
• ETM_CONFIG on page 2-143
• EXPAND on page 2-146
• FAILINC on page 2-148
• FILL on page 2-149
• FLASH on page 2-152
• FOPEN on page 2-154
• FPRINTF on page 2-156
• GO on page 2-159
• GOSTEP on page 2-161
• HALT on page 2-163
• HELP on page 2-165
• HOST on page 2-166
• HWRESET on page 2-167
• INCLUDE on page 2-168
• INTRPT on page 2-171
• JOURNAL on page 2-172
• JUMP on page 2-174
• LIST on page 2-175
• LOAD on page 2-176
• LOG on page 2-180
• MACRO on page 2-182
• MEMMAP on page 2-184
• MEMWINDOW on page 2-188
• MMAP on page 2-189
• MODE on page 2-190
• MONITOR on page 2-191
• NOMONITOR on page 2-192
• ONSTATE on page 2-193
• OPTION on page 2-195
• OS action commands on page 2-198
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-13
ID052111 Non-Confidential

RealView Debugger Commands
• OS resource commands on page 2-199
• OSCTRL on page 2-200
• PAUSE on page 2-202
• PRINTDSM on page 2-203
• PRINTF on page 2-205
• PRINTSYMBOLS on page 2-208
• PRINTTYPE on page 2-210
• PRINTVALUE on page 2-211
• PROPERTIES on page 2-213
• PS on page 2-214
• PT on page 2-215
• PWD on page 2-216
• QUIT on page 2-217
• READBOARDFILE on page 2-218
• READFILE on page 2-219
• REEXEC on page 2-222
• REGINFO on page 2-223
• RELOAD on page 2-225
• RESET on page 2-227
• RESETBREAKS on page 2-228
• RESTART on page 2-230
• RSTBREAKS on page 2-231
• RUN on page 2-232
• RVDCONTEXT on page 2-233
• SCOPE on page 2-234
• SEARCH on page 2-236
• SETFLAGS on page 2-238
• SETMEM on page 2-239
• SETREG on page 2-242
• SETTINGS on page 2-245
• SHOW on page 2-248
• SINSTR on page 2-249
• SM on page 2-250
• SOINSTR on page 2-251
• SOVERLINE on page 2-252
• SR on page 2-253
• STATS on page 2-254
• STDIOLOG on page 2-257
• STEPINSTR on page 2-259
• STEPLINE on page 2-261
• STEPOINSTR on page 2-263
• STEPO on page 2-265
• STOP on page 2-267
• SYNCHACTION on page 2-269
• SYNCHEXEC on page 2-271
• TEST on page 2-273
• THREAD on page 2-276
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-14
ID052111 Non-Confidential

RealView Debugger Commands
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312
• UNLOAD on page 2-316
• UP on page 2-318
• VA2PA on page 2-319
• VCLEAR on page 2-320
• VCLOSE on page 2-321
• VERIFYFILE on page 2-322
• VMACRO on page 2-324
• VOPEN on page 2-326
• VSETC on page 2-328
• WAIT on page 2-329
• WARMSTART on page 2-330
• WHERE on page 2-331
• WINDOW on page 2-332
• WRITEFILE on page 2-333
• XTRIGGER on page 2-335.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-15
ID052111 Non-Confidential

RealView Debugger Commands
2.3.1 ADD

Creates a symbol and adds it to the debugger symbol table.

Syntax

ADD [type] symbol_name [&address] [=value [,value]...]

where:

type One of the following data types:
int The symbol represents a location holding a four byte signed integer

value. This is the default type of symbols.
char The symbol represents a location holding a one byte value.
short The symbol represents a location holding a two byte signed value.
long The symbol represents a location holding a four byte signed value.
long long The symbol represents a location holding an 8-byte signed value.
You can also:
• Prefix the data type with unsigned.
• Use the data types together with * and [] to indicate pointer and array

variables, using the C language syntax.
If the symbol is an array, then you must specify the array size after the
symbol name within the square brackets. You can define multidimensional
arrays by appending several bracketed array dimensions.

• Create symbols with type float or double, but you cannot initialize them
with a value in the ADD statement.

• Create references to existing instances of the following types:
struct The symbol is an instance of, or a pointer to, a C structure.
enum The symbol is an instance of, or a pointer to, a C enumeration.
union The symbol is an instance of, or a pointer to, a C union.
You cannot create new enumerations, structures, or unions. You cannot
initialize complete structures at once, although you can assign values to the
individual members with the CEXPRESSION command.

symbol_name Is the name of the symbol being added. The name must start with an alphabetic
character or an underscore, optionally followed by alphabetic or numeric
characters or underscores. The symbol name must not already exist (when
appropriate, use the DELETE command to remove a symbol).

address Is the address in target memory that is referred to by this debugger symbol. If you
do not specify an address, the new debugger symbol refers to a location in
debugger memory, and is not available to code running on the target.

value Is the initial value of the added symbol. You can use:
• integer values corresponding to the C types int, char, short, long or

long long

• pointers to integers in target memory
• strings in double quotation marks, matching the character array type,

char[n], but not char *
• a list of values separated by a comma.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-16
ID052111 Non-Confidential

RealView Debugger Commands
If the symbol type is a pointer, an assigned value must be the address of the value
on the target.
You can initialize array symbols using multiple value arguments. For example:
> add char names[3][2] ="aa", "bb"
> print names[1]
"bb...

The ... after bb indicates that there is no terminating NUL for the string, because
each element of the array is only 2 characters in size.
The value is loaded into the memory location referred to by the symbol. If value
is not specified, the symbol is set to zero in debugger memory but is not given a
value in target memory.
Floating-point values are not recognized.

Description

The ADD command adds a symbol to the debugger symbol table for the current connection. You
cannot add a symbol without a connection, but you do not have to load an executable image file.
If you then load an image, the symbol is destroyed. However, the symbol survives an executable
image being reloaded (for example by selecting Target → Reload Image to Target from the
Code window main menu) but is destroyed if the target is disconnected and then reconnected or
another, different, image is loaded.

You can remove a symbol defined using ADD by using the DELETE command, and you can modify
its value using the CEXPRESSION command.

Rules for the ADD command

The following rules apply to the use of the ADD command:

• ADD runs asynchronously unless in a macro.

• The specified symbol must not exist at the time it is added.

• To change the symbol type, delete the symbol and then add it again.

• When initializing symbols, the size of the symbol is used, not the size of the type of value
supplied. In particular, the size of a char array is not determined by the string used to
initialize it.

• If a char array is created, for example using ADD char namearray[n], it is filled with the
initial value.

• If there is a runtime error in the initial value, the symbol is still created. You can then
assign the correct value with the CEXPRESSION command, or you can delete the symbol and
add it again with a legal initial value.

Examples

The following examples show how to use ADD:

add mysymbol =-3 Adds a new symbol called mysymbol of type int, which is signed, to the
debugger symbol table.

add unsigned long ul=1234567890
Adds a new symbol called ul of type unsigned long to the debugger
symbol table.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-17
ID052111 Non-Confidential

RealView Debugger Commands
add char *xyz Adds a new symbol called xyz to the debugger symbol table. The new
symbol is of character pointer type and has an initial value of zero.

See also
• CEXPRESSION on page 2-87
• DELETE on page 2-109.
• PRINTSYMBOLS on page 2-208
• PRINTVALUE on page 2-211.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-18
ID052111 Non-Confidential

RealView Debugger Commands
2.3.2 ADDFILE

Adds the named file to the executable image file list but does not load it. You can optionally
empty the list before adding the new filename.

Syntax

ADDFILE [,auto] =filename [=string,...]

where:

auto Specifies that only one added file is permitted for each process or processor. Any
previously added file is removed when the specified file is added.

filename The name of the file to be added. You must use single or double quotation marks
around the filename.
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myimages, you can specify:
addfile ="$MYPATH\\myimage.axf"

string The target pathname, for example, an OS loader.

Description

The RealView Debugger executable file list contains the names of the files containing the target
code for your application. Normally this contains a single linker output file, for example
dhry.axf and, in this case, you use the LOAD and RELOAD commands as required.

However, when the application is more complex it is sometimes easier to create it as several
files, for example one file for the Operating System (OS) and one for each major process. In
these cases, you use the ADDFILE and RELOAD, or the ADDFILE and LOAD/A commands, to manipulate
the files that are loaded onto the target.

To load the files on the file list use RELOAD, described on page 2-225.

Restrictions on the use of ADDFILE

The ADDFILE command is not allowed in a macro.

Examples

The following example removes any existing files from the executable file list and loads
dhry.axf into it. The reload command then transfers the executable contents of dhry.axf to the
target and sets the processor PC to the image entry point:

addfile,auto ='c:\source\debug\dhry.axf'
reload

This is the same as:

load 'c:\source\debug\dhry.axf'

This example loads the file dhry.axf into the file list, removing any existing files. It then adds
the file kernel.axf to the file list. The reload command transfers the executable contents of both
files to the target and sets the PC to the entry address of the last executable loaded, in this case
that of kernel.axf.

addfile,auto ='c:\source\dhry\debug\dhry.axf'
addfile ='c:\source\OS\debug\kernel.axf'
reload
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-19
ID052111 Non-Confidential

RealView Debugger Commands
See also
• DELFILE on page 2-111
• DTFILE on page 2-128
• LOAD on page 2-176
• RELOAD on page 2-225
• UNLOAD on page 2-316.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-20
ID052111 Non-Confidential

RealView Debugger Commands
2.3.3 ALIAS

Enables you to manipulate command aliases. Aliases are new debugger commands constructed
from (optionally, parts of) existing debugger commands or macros.

Syntax

ALIAS [alias_name [=[definition]]]

where:

alias_name Names your new debugger command. This name is accepted as a legal debugger
command name.
An optional asterisk * embedded in the name indicates that the parts of the name
that follow are not required, so your command can be abbreviated.

definition Defines the replacement string that is substituted in place of alias_name whenever
alias_name is invoked.
The definition normally contains macro invocations or debugger internal
commands, or parts of such commands. However, any string of legal debugger
characters is accepted.
Using $* within a definition inserts the command-line parameters to the alias in
the expansion. By default, parameters are appended to the alias when command
expansion occurs.

Description

The ALIAS command can create, list, or delete new debugger commands. The building blocks are
existing debugger commands and macros and, optionally, specific parameters. You can use
ALIAS to define either:

• a new name (for example, one that is shorter or easier to remember) for an existing
command

• a command that defines fixed parameters for an existing command.

ALIAS can only substitute one command for another. If you require a multiple command alias,
use the MACRO command instead.

Enter ALIAS without parameters to display a list of the defined alias commands in the order in
which they were added.

You can name your alias using almost any sequence of letters or numbers. However, when a
command is entered the debugger searches for internal debugger commands before it searches
for aliases. Therefore, you must ensure that you do not use an alias name that is the same as an
internal debugger command. The name priorities are as follows:
1. Debugger internal command, or defined abbreviation of command
2. Defined alias names, and the defined abbreviations of alias names
3. Macro names.

You can place alias command arguments in a specific position in the expanded debugger
command by inserting the sequence $* where the parameters to the command alias must appear.

Rules for the ALIAS command

The following rules apply to the use of the ALIAS command:

• ALIAS runs asynchronously unless it is called within a macro.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-21
ID052111 Non-Confidential

RealView Debugger Commands
• alias_name must not exist at the time it is added. To change the definition of an alias, first
define the alias equal to the nothing (alias nm=) to delete it and then add it again.

• If a debugger command has the same name as an alias, the debugger command is the one
that is executed.

• Alias names are always matched before macros names.

• If two alias abbreviations or an alias and an abbreviation match, the first alias added
during the current session is always used.

• An alias definition must be defined in terms of predefined debugger commands or macro
names.

• An alias definition can reference debugger commands and macros.

Examples

The following examples show how to use ALIAS:

alias showf*ile =dtfile ;99
Defines a command called SHOWFILE that can be abbreviated to SHOWF, that is
equivalent to the DTFILE command with its output directed to window number 99.

alias dub =dump /b
Defines a command called DUB, with no abbreviation, that expands to the DUMP
command in byte mode (/b).
dub 0x20

Calls the alias dub to print out memory in bytes from address 0x20. This alias
invocation is exactly the same as typing:
dump /b 0x20

alias bpc =breakexecution,continue,message:{Break} $* ;DoCheck()
Defines a command called BPC, with no abbreviation, that expands to the
breakexecution command with specific parameters and trigger macro DoCheck().
It must be invoked with the address to break at as a parameter:
bpc \MAIN_C\#15

This is equivalent to typing the command:
breakexecution,continue,message:{Break} \MAIN_C\#15 ;DoCheck()

See also
• DEFINE on page 2-105
• DTFILE on page 2-128
• MACRO on page 2-182.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-22
ID052111 Non-Confidential

RealView Debugger Commands
2.3.4 ANALYZER

Controls the configuration of the trace logic analyzer.

Syntax

ANALYZER {[,disable]|[,enable]}

ANALYZER {[edit_properties]|[,map_log_phys]|[,triggers]|[,connect]|[,set_size]}

ANALYZER {[,clear]|[,clear_triggers]}

ANALYZER {[,before]|[,around]|[,after]|[,stop_on_trigger]|[,continue_on_trigger]}

ANALYZER {,full_stop|,full_ignore|,full_ring}

ANALYZER {,collect_all|,collect_flow}

ANALYZER {,dataonly|,addronly|,fulltrace}

ANALYZER {,disconnect}

ANALYZER {,auto_off|,auto_instronly|,auto_dataonly|,auto_both}

ANALYZER {,mode_continuous|,mode_trigger}

where:

disable Disable tracing.

enable Enable tracing.

edit_properties When connecting to a target other than an ARM® processor with
Embedded Trace Macrocell™ (ETM™), this is the equivalent of the
Configure Analyzer Properties... option on the Analysis window Edit
menu.

Note
 To configure an ETM use ETM_CONFIG.

map_log_phys The equivalent of the Physical to Logical Address Mapping... option on
the Analysis window Edit menu. Not available with an ARM
ETM-enabled processor.

triggers The equivalent of the Set/Edit Event Triggers option on the Analysis
window Edit menu. Not available with an ARM ETM-enabled processor.

connect The equivalent of the Connect Analyzer option on the Analysis window
Edit menu. Not available with an ARM ETM-enabled processor because
an ARM ETM is automatically connected.

set_size=(n) Enables you to set the trace buffer size.The equivalent of the Set Trace
Buffer Size... option on the Analysis window Edit menu. If the value is
specified in the command it is used, otherwise display the Set Trace Buffer
Size dialog and set the value from that.

clear Clear the captured trace buffer.

clear_triggers Clear any triggers set using an ANALYZER,triggers command. Not available
with an ARM ETM-enabled processor.

before Capture data before the trigger, that is, 100% before, 0% after.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-23
ID052111 Non-Confidential

RealView Debugger Commands
around Capture data around the trigger, that is, 50% before, 50% after.

after Capture data after the trigger, that is, 0% before, 100% after.

stop_on_trigger Stop the processor when a trigger point is reached. This option is only
applicable to the ARM ETM.

continue_on_trigger

Continue program execution across trigger points. This option is only
applicable to the ARM ETM.

full_stop Stop the processor and put it into debug state when the trace buffer is full.
Not available with an ARM ETM-enabled processor.

full_ignore Stop collecting trace information when the trace buffer is full, but let the
processor continue running. Not available with an ARM ETM-enabled
processor.

full_ring Continue collecting trace information when the trace buffer fills by
discarding the oldest trace information, treating the buffer as a ring. This
is the only option available for the ARM ETM.

collect_all Store all trace the information generated. Not available with an ARM
ETM-enabled processor.

collect_flow Store only flow-control trace information. Cannot be changed for an ARM
ETM-enabled processor because normal ETM operation is a variant of this
that includes some additional synchronization points.

dataonly Trace only data bus transfers.

addronly Trace only address bus transfers.

fulltrace Trace both data and address bus transfers.

disconnect Disconnects the Analysis window.

auto_off Disables automatic tracing.

auto_instronly When no tracepoints are set, captures trace information only for executed
instructions.

auto_dataonly When no tracepoints are set, captures trace information only for data
accesses. This is supported only by ETMv3.

auto_both When no tracepoints are set, captures trace information for both executed
instructions and data accesses.

Description

The ANALYZER command, and the ETM_CONFIG command, enables you to control the configuration
of your trace capture analyzer.

Note
 Because trace analyzer capabilities and implementations vary, some of the qualifiers provided
by the ANALYZER command are not available on some of the trace targets supported by RealView
Debugger. Operation of the ARM ETM is controlled in more depth with the ETM_CONFIG
command.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-24
ID052111 Non-Confidential

RealView Debugger Commands
The options are split into several groups:

• Options config, edit_properties, map_log_phys, triggers, and set_size display a GUI
dialog that enables you to configure the associated trace component.

Note
 These options are not available when running in command line mode.

• The clear option acts on the trace capture buffer.

• Options before, around, after, clear_triggers, stop_on_trigger, and continue_on_trigger
enable you to control the relative location of the trace trigger within the trace buffer and
the effect of the trigger. See the TRACE, TRACEINSTREXEC, TRACEDATAACCESS and similar
commands for control of tracepoint location in target memory.

• Options full_stop, full_ignore, and full_ring enable control over the behavior of the
trace buffer when it becomes full.

• Options collect_all and collect_flow enable control of the trace data collection strategy.
Collecting all bus transactions provides the benefit of following everything that is
happening without recourse to external information, but conversely requires a very high
bandwidth trace port. Collecting only bus transactions that change the flow of control
provides most of the important information if you also have access to an accurate memory
image.

Examples

The following examples show how to use ANALYZER:

ANALYZER,set_size=500

Set the trace buffer size to 500 records, if this action is supported by the
logic analyzer you are using.

ANALYZER,full_ring,around

Set the logic analyzer to capture trace information around the defined
trigger point, using the trace buffer in ring mode so that it cannot overflow.

See also
• DTBREAK on page 2-126
• DTRACE on page 2-130
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312
• the following in the RealView Debugger Trace User Guide:

— Chapter 6 Setting Unconditional Tracepoints
— Chapter 7 Setting Conditional Tracepoints

• the Embedded Trace Macrocell Specification.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-25
ID052111 Non-Confidential

RealView Debugger Commands
2.3.5 AOS_resource_list

Performs an action on an object chosen from the OS resource list.

Syntax

AOS_resource_list ,qualifier [=value]

where:

resource Specifies the resource list.

qualifier Specifies the action, that is action-name[:value].

value Identifies an object in the specified resource list.

Description

The AOS_resource_list command performs an action on an object chosen from the OS resource
list. The resource and qualifier depend on the OS you are using.

You can get a list of these commands using the DCOMMANDS command, for example:

dcommands all

You can also determine the commands from the Resource Viewer:

• resource is determined by the tab you select in the Resource List, with the exception of
the Conn tab

• qualifier is determined by right clicking on an object in the selected tab of the Resource
List.

You might want to log your use of the Resource Viewer to determine the CLI commands you
can use with your OS. See LOG on page 2-180 for details. You can then modify the log file, and
use it as a command script, see INCLUDE on page 2-168.

Examples

The following examples show how to use AOS_resource-list:

aos_thread_list,suspend = 0x39d8

Suspends the thread 0x39d8.

aos_timer_list,deactivate = timer_1

Deactivates the timer timer_1.

See also
• DOS_resource_list on page 2-122
• OSCTRL on page 2-200
• THREAD on page 2-276
• the following in the RealView Debugger RTOS Guide:

— Chapter 6 Viewing OS Resources.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-26
ID052111 Non-Confidential

RealView Debugger Commands
2.3.6 ARGUMENTS

Enables you to specify the command-line arguments for the application. These are used for each
subsequent run on this connection.

Note
 You can also specify arguments as part of the LOAD command.

Syntax

ARGUMENTS [{,delete|,prompt}]

ARGUMENTS [,default] string

where:

delete Delete the currently set ARGUMENTS list, so the argv list for the next run of a program
is only the program filename.

default Make the defined arguments the default, so they apply to new connections created
in this session.

prompt Display a dialog to prompt you for the arguments when the ARGUMENTS command
is executed.

string Defines the command line that the application sees when it inspects the argv[]
array, or equivalent.

Description

The ARGUMENTS command enables you to specify arguments that the target application might
require when it starts execution. The specified string is made available to the application
running on the target through the semihosting mechanism. Any previous argument definition is
overwritten.

If a literal double-quotation mark character is required in the arguments, you must escape it
using the backslash character and embed it in single quotation marks, for example:

ARGUMENTS '-f \"my file.c\"'

If you enter this command without any parameters, the current argument definition is displayed.

About using the ARGUMENTS command

You must issue the ARGUMENTS command after loading and reloading an image:

• This sequence works:
LOAD
ARGUMENTS "hello"

• This sequence does not work:
ARGUMENTS "hello"
LOAD

• This sequence works initially, but the argument setttings are lost after the reload:
LOAD
ARGUMENTS "hello"
GO
RELOAD
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-27
ID052111 Non-Confidential

RealView Debugger Commands
After reloading the image, enter this command again to specify the arguments before
running the image.

Examples

The following examples show how to use ARGUMENTS:

ARGUMENTS '-f file.c -o file.o'

Sets the command line so that, if the line is parsed in the normal way by
_main(), the argv[] array contains:
argv[0] target program filename, for example: com.axf
argv[1] -f

argv[2] file.c

argv[3] -o

argv[4] file.o

argv[5] NUL

ARGUMENTS '-f \"my file.c\" -o \"my file.o\"'

Sets the command line so that, if the line is parsed in the normal way by
_main(), the argv[] array contains:
argv[0] target program filename, for example: "com.axf"
argv[1] -f

argv[2] "my file.c"

argv[3] -o

argv[4] "my file.o"

argv[5] NUL

load /pd/r 'com.axf;;-f file.c -o file.o'
go
arguments '-f \"my file.c\" -o \"my file.o\"'
restart
go

Changes the arguments without unloading the image. Table 2-16 shows
the argument assignments in the original LOAD command, and the new
assignments specified by the ARGUMENTS command.

Table 2-16 Changed argument assignments

Argument Original value New value

argv[0] com.axf com.axf

argv[1] -f -f

argv[2] file.c "my file.c"

argv[3] -o -o

argv[4] file.o "my file.o"

argv[5] NUL NUL
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-28
ID052111 Non-Confidential

RealView Debugger Commands
See also
• GO on page 2-159
• LOAD on page 2-176
• RESTART on page 2-230.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-29
ID052111 Non-Confidential

RealView Debugger Commands
2.3.7 BACCESS

BACCESS is an alias of BREAKACCESS.

See BREAKACCESS on page 2-38.

2.3.8 BEXECUTION

BEXECUTION is an alias of BREAKEXECUTION.

See BREAKEXECUTION on page 2-47.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-30
ID052111 Non-Confidential

RealView Debugger Commands
2.3.9 BGLOBAL

Enables or disables global breakpoints, also called processor exceptions.

Note
 This command overrides the settings in the Connection Properties of the current connection.
However, if you disconnect and reconnect then the settings in the Connection Properties are
applied to the connection.

Syntax

BGLOBAL {,enable|,disable} [name [;macro-call]]

BGLOBAL ,gui [;macro-call]

BGLOBAL

where:

qualifier If no qualifier is specified, then a list of all the global breakpoints is displayed
together with the current state of each breakpoint.
If specified, must be one of the following:
enable Enable the specified global breakpoint. If name is omitted, then a list of

the currently enabled global breakpoints is displayed.
disable Disable the specified global breakpoint. If name is omitted, then a list

of the currently disabled global breakpoints is displayed.
gui Display a dialog box that enables you to select a global breakpoint to

enable or disable.

Note
 This qualifier has no effect when running in command line mode.

name Identifies the global breakpoint to be enabled or disabled. See Compatibility on
page 2-32 for a list of supported names.

macro-call Specifies a macro and any parameters it requires. This macro is run when a global
breakpoint is triggered.
If the macro returns a nonzero value, execution continues. If the macro returns
zero, or if you do not specify a macro, target execution stops and the debugger
waits in command mode.

Description

The BGLOBAL command enables or disables global breaks. A global breakpoint is a processor
event that can cause execution to halt in any application using this connection. For example,
taking an undefined instruction trap might be a global breakpoint. The list of possible global
breakpoint events is defined by a combination of the target processor and the Debug Interface.
For more information on the meaning of the processor exceptions see the processor architecture
manual.

Some simulators, including RVISS, can extend the list of possible breakpoint events beyond that
defined for the processor. These extensions are normally defined by peripheral or memory
models included in the simulator. For example, a memory model might define a DMA transfer
event.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-31
ID052111 Non-Confidential

RealView Debugger Commands
Each extra event is named by the model that implements it, and these names are displayed with
the standard names in the GUI. You can set and modify global breakpoints for these events using
the bglobal command by specifying the event name as name in the command. If the name
includes spaces, you must enclose it in double quotation marks.

Note
 Some processor exceptions interact with other debugger functions. For non ARMv7-M
processors with the semihosting vector set to the default (0x8), you cannot enable semihosting
if the SuperVisor Call (SVC) vector catch is enabled.

Compatibility

The supported events are determined in part by the currently connected processor type:

Connections to ARM hardware processors
The possible events are the exception types supported by connections to ARM
processors through a hardware Debug Interface, such as DSTREAM or RealView
ICE. The following options are supported for name:
reset The RESET exception.
undef The undefined instruction exception.
SWI The SVC exception.
prefetch abort The prefetch abort (instruction memory read abort)

exception. You must use double quotation marks to specify
this name, for example:
bglobal,enable "prefetch abort"

data abort The data abort (data memory read or write abort) exception.
You must use double quotation marks to specify this name,
for example:
bglobal,enable "data abort"

IRQ The interrupt request exception.
FIQ The fast interrupt request exception.

RealView ARMulator ISS connections to ARM simulated processors
The possible events are the exception types supported by simulated processors on
RealView ARMulator ISS connections. The following options are supported for
name:
Reset The RESET exception.
Undefined The undefined instruction exception.
SWI The SVC exception.
P_Abort The prefetch abort (instruction memory read abort)

exception.
D_Abort The data abort (data memory read or write abort) exception.
Address The address exception. Used only by the obsolete 26-bit

ARM processor architectures.
IRQ The interrupt request exception.
FIQ The fast interrupt request exception.
ErrorP The error exception.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-32
ID052111 Non-Confidential

RealView Debugger Commands
Examples

The following examples show how to use BGLOBAL:

• To disable debugger interception of the ARM architecture SVC exception, so that an
application can process SVC exceptions itself, enter:
bglobal,disable SWI

• To enable debugger interception of the ARM architecture UNDEF exception, so that if the
application starts executing data literals (the usual reason for unintentionally executing an
undefined instruction) you can find out why, enter:
bglobal,enable undefined

• To list all global breakpoints with the current status, enter:
bglobal

See also
• BREAKACCESS on page 2-38
• BREAKEXECUTION on page 2-47
• BREAKINSTRUCTION on page 2-55
• BREAKREAD on page 2-61
• BREAKWRITE on page 2-70
• GO on page 2-159.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-33
ID052111 Non-Confidential

RealView Debugger Commands
2.3.10 BINSTRUCTION

BINSTRUCTION is an alias of BREAKINSTRUCTION.

See BREAKINSTRUCTION on page 2-55.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-34
ID052111 Non-Confidential

RealView Debugger Commands
2.3.11 BOARD

Changes the current board, also known as the current connection. By default, all actions apply
to the current connection.

Syntax

BOARD [{,next|,default|[=]resource}]

where:

next Connects the debugger to the next connection listed in the connection list.

default Connects the debugger to the connection that is listed first in the connection list.

resource Identifies the connection that is to become the current connection. The = in this
parameter is optional.
The connection information is specified in the same format as it is displayed in
the Code window title bar. You can specify this using one of the following
formats:
@target@DebugConfiguration

"@target@DebugConfiguration"

"target@DebugConfiguration"

where:
• target is the connection name for the target, for example ARM966E-S_0
• DebugConfiguration is the Debug Configuration (for example RVISS), which

you can determine from the board file or from the Connect to Target
window.

Description

With no parameters, the BOARD command displays the name of the current board. The displayed
information has the following format:

Current Board is target:manufacturer target - DebugConfiguration_description

where target is the name of the target processor, and DebugConfiguration_description is either:

• CONNECTION via localhost (P1), if no description is specified for the Debug Configuration
and any assigned BCD file

• the description of the Debug Configuration, if specified for the Debug Configuration or
in an assigned BCD file.

With one of the qualifiers or the resource argument, the command sets the current connection to:
• to the current board
• to the next board in the board list
• the default board.

The newly selected board becomes the current target connection. RealView Debugger uses the
term board because a target connection is defined by more than a processor. The memory map
and the available peripherals are normally defined by the target as a whole, and so it is more
appropriate to refer to boards than to processors.

You can display the boards that you can cycle through using board,next by clicking the
connection drop-down list from the toolbar.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-35
ID052111 Non-Confidential

RealView Debugger Commands
You can remove an unconnected board from the list using DELBOARD. To add or remove a board
from the board list permanently, you must edit the board file using EDITBOARDFILE.

Note
 If a Code window is attached to a connection, then connection information is displayed only if
you use the BOARD command without a qualifier or the resource argument.

Restrictions on the use of BOARD

The BOARD command is not allowed in a macro.

Examples

The following examples show how to use BOARD:

• To change the current board to the next defined board from the board list:
> board,next
New Current Board is ARM1176JZ-S:ARM-A-SW ARM1176JZ-S - ARM1176JZF-S (simulated on
RVISS) (P1)

• To change the current board to the named board in the board list:
> board "ARM966E-S_0@RVI"
New Current Board is ARM966E-S_0:ARM-ARM-NW ARM966E-S - ARM966E-S on Integrator/AP
(RVI-USB) (P1)

• To display the name of the current connection use the BOARD command without arguments,
for example:
> board
Current Board is ARM966E-S_1:ARM-ARM-NW ARM966E-S - ARM966E-S on Integrator/AP
(RVI-USB) (P1)

See also
• CONNECT on page 2-93
• DELBOARD on page 2-108
• DISCONNECT on page 2-118
• EDITBOARDFILE on page 2-136
• THREAD on page 2-276.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-36
ID052111 Non-Confidential

RealView Debugger Commands
2.3.12 BREAD

BREAD is an alias of BREAKREAD.

See BREAKREAD on page 2-61.

2.3.13 BREAK

BREAK is an alias of BREAKINSTRUCTION.

See BREAKINSTRUCTION on page 2-55.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-37
ID052111 Non-Confidential

RealView Debugger Commands
2.3.14 BREAKACCESS

Sets a hardware breakpoint that activates when specified memory locations are accessed, either
by a memory read or a memory write.

Syntax

BREAKACCESS [,qualifier...] {address|address-range} [;macro-call]

where:

qualifier Is a list of zero or more qualifiers. The possible qualifiers are described in List of
qualifiers for the BREAKACCESS command on page 2-41.

address | address-range

Specifies a single address or an address range in target memory. The address can
also be a memory mapped register (see Memory mapped registers on page 2-39).
For details on how to specify an address range, see Specifying address ranges on
page 2-2.

macro-call Specifies a macro and any parameters it requires. This macro runs when the
access breakpoint is hit. The macro is treated as being specified last in the
qualifier list.
If the macro returns a nonzero value, or you specified continue in the qualifiers,
execution continues. If the macro returns zero, or if you do not specify a macro,
target execution stops and the debugger waits in command mode.
The macro argument symbols are interpreted when the breakpoint is specified and
so they must be in scope at that point, or you must explicitly qualify them.

Description

BREAKACCESS is used to set or modify memory access breakpoints. Access breakpoints activate
when one or more specified memory addresses are read from or written to. If the command has
no arguments, it behaves like DTBREAK, listing the current breakpoints (see List of qualifiers for
the BREAKACCESS command on page 2-41).

Hardware address breakpoints can use other hardware tests in association with the address test,
such as trigger inputs and outputs, hardware pass counters, and and-then, or chained, tests (see
Qualifiers that define hardware tests on page 2-40).

All breakpoints can have conditions, for example expressions, macros, C++ object tests, and
pass counters. All address breakpoints can include actions including: counters, timing (with
hardware assist), update of specified windows, enabling or disabling other breakpoints, and the
starting and stopping of other processors or threads.

When a hardware data access breakpoint is hit on the target, the following sequence of events
occurs:

1. The debugger or the hardware associates the event with a specific debugger breakpoint
ID.

2. If the breakpoint has a software pass count associated with it, the count is updated.

3. The conditions for this breakpoint, if any, are tested in the order specified on the command
line (see Qualifiers that define conditional breakpoints on page 2-40). If any condition is
False, target execution resumes with the instruction at the breakpointed location. Macros
specified with the macro: qualifier or the ;macro-call argument are run in this phase.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-38
ID052111 Non-Confidential

RealView Debugger Commands
4. If the breakpoint has actions associated with it (for example, using message displays a
user-specified message) these actions are run, in the order specified on the command line
(see Qualifiers that define conditional breakpoints on page 2-40).

5. If the qualifiers include continue, target execution resumes with the instruction at the
breakpointed location. If not, the debugger updates the state of the GUI and waits for a
command, leaving the application halted.

If you are debugging multiprocessor applications, and you have set up synchronization and
cross-triggering, then you can specify how each processor is affected when a breakpoint
activates.

Memory mapped registers

You can set a breakpoint that activates when a memory-mapped registers is accessed in any way.
To specify a memory mapped register, enter the following expression for the address:

register:expression

The register is identified by expression. For example:

BREAKACCESS register:PR1

or

BREAKACCESS register:@PR1

Note
 You can only specify memory mapped registers that are defined in Board/Chip Definition (.bcd)
files that you have assigned to a Debug Configuration. You cannot set breakpoints on core
registers.

Combining hardware and software pass counts

You can combine hardware and software pass counts to achieve higher count values. If you
define both hardware and software pass counts:

1. When the hardware pass count reaches zero, the software pass count is decremented.
What happens next depends on your hardware:
• For RVISS, the hardware count remains at zero, so that

total count = hw_passcount + passcount
• Other processors might exhibit the RVISS behavior, or might reset the hardware

pass count to the initial value, so that:
total count = (hw_passcount +1) * passcount + hw_passcount

2. When the software pass count reaches zero, the breakpoint activates and the activation
count is incremented. The following example shows the counts for the breakpoint
bexec,hw_pass:3,pass:50 \DHRY_1\#70:0 on an RVISS target:
• Initial state:

> dtbreak
S ID Type Address Count Miscellaneous
- -- ---- ------- ----- -------------
 1 Exec 0x00008480 0 Pass=50

• State after activation:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-39
ID052111 Non-Confidential

RealView Debugger Commands
> dtbreak
S ID Type Address Count Miscellaneous
- -- ---- ------- ----- -------------
 1 Exec 0x00008480 1 Pass=0

If the breakpoint is in a loop, then activation occurs on hit 53.

The breakpoint list index number

RealView Debugger assigns a breakpoint list index number to each breakpoint. This number is
assigned consecutively. However, if you delete a breakpoint, then the numbering might no
longer be consecutive.

To determine the breakpoint list index of an existing breakpoint:

1. Start RealView Debugger in GUI mode.

2. Select View → Break/Tracepoints from the Code window main menu to open the
Break/Tracepoint view.

3. Select the checkbox for the chosen breakpoint to disable it.

4. Click the Cmd tab in the Output view.
The breakpoint list index (number) for the breakpoint is shown in the command:
disable,h number

5. Select the checkbox for the chosen breakpoint to enable it.

Qualifiers that define conditional breakpoints

To set up a conditional breakpoint, use one or more of the following condition qualifiers:
• macro (or ;macro-call)
• obj

• passcount

• when

• when_not.

Qualifiers that define breakpoint actions

To specify actions to be performed when a breakpoint activates, use the following action
qualifiers:
• continue

• message

• update.

Qualifiers that define hardware tests

To specify hardware tests for data access breakpoints, use the following qualifiers:
• data_only

• hw_ahigh

• hw_amask

• hw_and

• hw_dhigh

• hw_dmask

• hw_dvalue

• hw_in

• hw_not
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-40
ID052111 Non-Confidential

RealView Debugger Commands
• hw_passcount.

List of qualifiers for the BREAKACCESS command

The list of qualifiers depends on the processor and Debug Interface, and so the GUI does not
present things that do not make sense. The command handler generates an error if a specific
combination is invalid for a specific processor or Debug Interface, but this is determined when
you issue the command.

The possible qualifiers are:

append:(n) Instead of creating a new breakpoint, append the qualifiers specified with
this command to an existing breakpoint with breakpoint list index number
n (see The breakpoint list index number on page 2-40).

Note
 You cannot use append to change the breakpoint address or to create

chained breakpoints.

continue Execution continues when the breakpoint activates and no breakpoint
details are displayed. Any specified action qualifiers are still performed,
depending on the results of any condition qualifiers.

data_only The breakpoint activates if a data value, specified using hw_dvalue, is
detected by the debug hardware on the processor data bus.

hw_ahigh:(n) Specifies the high address for an address-range breakpoint. The low
address is specified by the standard breakpoint address.
This facility is not supported by ARM EmbeddedICE® macrocells. For
example, this command sets a breakpoint that activates for any address
between 0x1000-0x1200:
BREAKACCESS,hw_ahigh:0x1200 0x1000

This is equivalent to the command:
BREAKACCESS 0x1000..0x1200

hw_amask:(n) Specifies the address mask value for an address-range breakpoint. The
address range is determined by masking lower order bits out of the
specified address.
This facility is supported by ARM EmbeddedICE macrocells.
For example, to set a breakpoint that activates when any address in the
range 0x1FA00-0x1FA0F is accessed, enter the command:
BREAKACCESS,hw_amask:0xFFFF0 0x1FA00

This is equivalent to the command:
BREAKACCESS 0x1FA00..0x1FA0F

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with another breakpoint, to
create a chain of breakpoints. The parentheses are optional. Each
breakpoint in the chain is called a breakpoint unit.You specify the
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-41
ID052111 Non-Confidential

RealView Debugger Commands
breakpoint units in the reverse order that RealView Debugger processes
them. The position of the breakpoint unit in the chain is identified by id,
which is one of the following:
next Indicates that this breakpoint unit is to be linked to another

breakpoint unit specified for this connection. You must set a
breakpoint unit with the ID next before you set any other
breakpoint units for the chain. When used with then-, this
breakpoint unit is the last one processed in the chain.

prev Indicates that this breakpoint unit is to be linked to an existing
breakpoint unit specified for this connection. Make sure the
existing breakpoint has been set with a next, prev, or
index_number ID, and is a hardware breakpoint.

Note
 When using the prev ID, you must finish defining the complete

breakpoint chain before you create any non-chained
breakpoints.

index_number
The breakpoint list index number of an existing breakpoint unit
(see The breakpoint list index number on page 2-40). Make sure
the existing breakpoint has been set with a next, prev, or
index_number ID, and is a hardware breakpoint.

How RealView Debugger processes the breakpoint units depends on the
conjunction you have used:
• In the and form, the conditions associated with both breakpoint units

are chained together, so that the action associated with the second
breakpoint unit is performed only when both conditions
simultaneously match.
For example:
BREAKACCESS,hw_and:next,hw_dvalue:1
 @copyfns\\COPYFNS\mycpy\append
BREAKEXECUTION,hw_and:prev @copyfns\\COPYFNS\mycpy\

• In the and-then form, RealView Debugger examines the breakpoint
units starting with the last one you specified. When the condition for
the last breakpoint unit (breakpoint unit N) is met, the associated
actions are performed and the previous breakpoint is enabled
(breakpoint unit N-1). RealView Debugger continues processing all
remaining breakpoints in the chain, until the condition in the first
one you specified is met (breakpoint unit 1). At this point, unless the
continue qualifier is specified in that breakpoint, execution stops.

Note
 You must include the quotes when using the and-then form.

For example, you might have three breakpoint units in a chain,
which you specify in the following order:
BREAKACCESS,hw_and:"then-next",continue 0x1001B (BPU1)
BREAKACCESS,hw_and:"then-prev" 0x10018 (BPU2)
BREAKACCESS,hw_and:"then-prev" 0x10014 (BPU3)
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-42
ID052111 Non-Confidential

RealView Debugger Commands
In this case, RealView Debugger first checks for a data access at
address 0x10014 (BPU3), then at address 0x10018 (BPU2), and
finally at address 0x1001B (BPU1). When all conditions are met,
processing continues as instructed by BPU1.

If you clear BPU1, then all breakpoints in the chain are cleared.
If you clear any other breakpoint unit, then that breakpoint unit and the
following ones are cleared. The previous breakpoint units remain set. For
example, clearing BPU2, clears both BPU2 and BPU3, but not BPU1.

hw_dhigh:(n) Specifies the high data value for a data-range breakpoint. The low data
value is specified by the hw_dvalue qualifier.
This facility is not supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for any data value
between 0x00-0x18:
BREAKACCESS,hw_dvalue:0x0,hw_dhigh:0x18 0x1000

hw_dmask:(n) Specifies the data value mask for a data-range breakpoint. The data value
to which the mask is applied is specified by the hw_dvalue qualifier. The
data value range is determined by masking lower order bits out of the
specified data value.
This facility is supported by ARM EmbeddedICE macrocells.
For example, to set a breakpoint that activates when a data value in the
range 0x400-0x4FF is accessed at address 0x1FA00, enter the command:
BREAKACCESS,hw_dvalue:0x400,hw_dmask:0xF00 0x1FA00

hw_dvalue:(n) Specifies a data value to be compared to values transmitted on the
processor data bus.
This facility is supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for the data value
0x400:
BREAKACCESS,hw_dvalue:0x400

hw_in:{s} Input trigger tests. The string that follows matches hardware-supported
input tests as a list of names or a value. The available tests depends on the
Debug Interface and the target processor.
Table 2-17 shows the possible strings for an ARM940T™ processor.

Table 2-17 Example hw_in test strings for an ARM940T

Input test string Meaning

No "Ext=level" string Ignore external
trigger level

Ext=0x00000001 Low

Ext=0x00000002 High

No "Mode=mode" string Any mode

Mode=0x00000004 Privileged

Mode=0x00000008 User

No "AccessSize=size"
string

Default access
size
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-43
ID052111 Non-Confidential

RealView Debugger Commands
For example, you might have a connection to an ARM940T processor
through DSTREAM or RealView ICE. For this processor, to test for a low
external trigger level and 32-bit data accesses in User mode at address
0x10014, enter:
BREAKACCESS,hw_in:"Ext=0x00000002",hw_in:"Mode=0x00000008",hw_in:"A

ccessSize=0x00000300" 0x10014

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the breakpoint address value.
data Invert the breakpoint value.
then Invert an associated hw_and:{then} condition.
For example, to break when a data value does not match a mask, you can
write:
BREAKACCESS,hw_not:data,hw_dmask:0x00FF ...

The break commands require an address value, and the addr variant of
hw_not uses this address.
BREAKACCESS,hw_not:addr 0x10040

This means to break at any address other than 0x10040. This example is
probably not useful.
The hw_not:then variant of the command is used in conjunction with
hw_and to form or and nand-then conditions.
This facility is not supported by ARM EmbeddedICE macrocells.

hw_out:{s} Not supported in this release.

hw_passcount:(n) Specifies the number of times that the break condition is ignored before
the breakpoint activates. The default value is 0. This qualifier differs from
passcount only in that it is implemented in hardware. n is limited to a 32-bit
value by the debugger, but might be much more limited by the target
hardware, for example to 8 or 16 bits.
You can combine the hardware and software pass counts to achieve higher
count values. However, the behavior depends on your processor (see
Combining hardware and software pass counts on page 2-39).

macro:{MacroCall(arg1,arg2)}
When the breakpoint is hit, the specified macro is executed. Any program
variables or functions must be in scope at the time the breakpoint request
is entered, or the names must be fully qualified. You must include the
braces { and }.

AccessSize=0x00000100 8-bit

AccessSize=0x00000200 16-bit

AccessSize=0x00000300 32-bit

AccessSize=0x00000400 8/16-bit

AccessSize=0x00000500 8/32-bit

Table 2-17 Example hw_in test strings for an ARM940T (continued)

Input test string Meaning
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-44
ID052111 Non-Confidential

RealView Debugger Commands
message:{"$windowid | fileid$message"}
Activation of the breakpoint results in message being output. Prefixing
message with $windowid | fileid$ enables you to write the message text to
a user-defined window or file. For example:
BREAKACCESS,message:{"100this is a message"}

modify:(n) Instead of creating a new breakpoint, modify the breakpoint with
breakpoint list index number n (see The breakpoint list index number on
page 2-40). The address expression and the qualifiers of the existing
breakpoint are replaced by those specified in this command.

obj:(n) This condition is True if the argument n matches the C++ object pointer,
normally called this.

passcount:(n) Specifies the number of times that the break condition is ignored before
the breakpoint activates. The default value is 0. If you specify this in the
middle of a sequence of break conditions, those specified before the pass
count are processed whether or not the count reaches zero. The conditions
specified afterwards are run only when the count reaches zero.
There is a hardware pass count qualifier available, hw_passcount, for debug
hardware that supports it. You can combine the hardware and software
pass counts to achieve higher count values. However, the behavior
depends on your processor (see Combining hardware and software pass
counts on page 2-39).

Note
 If a breakpoint uses a passcount, the counting is performed on the host, and

so program execution stops briefly every time the breakpoint is hit, even
when the count has not been reached.

update:{"name"} Update the named windows, or all windows, by reading the memory and
processor state when the breakpoint activates. You can use the name all
to refresh all windows, or a name specified in the title bar of the window.
This qualifier enables you to get an overview of the process state at a
particular point, without having to manually restart the process at each
break. The update still takes a significant period of time, and so this
method is unsuitable as a non-intrusive debugging tool.

when:{condition} The breakpoint activates whenever condition, a debugger expression,
evaluates to True.

Note
 Using a macro as an argument to when, reverses the sense of the return

value from the macro.

when_not:{condition}
The breakpoint activates whenever condition, a debugger expression,
evaluates to False.

Alias

BACCESS is an alias of BREAKACCESS.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-45
ID052111 Non-Confidential

RealView Debugger Commands
See also

• Window and file numbers on page 1-5

• Addresses on page 1-26

• BREAKEXECUTION on page 2-47

• BREAKINSTRUCTION on page 2-55

• BREAKREAD on page 2-61

• BREAKWRITE on page 2-70

• CLEARBREAK on page 2-89

• DTBREAK on page 2-126

• ENABLEBREAK on page 2-140

• VMACRO on page 2-324

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications
— Chapter 11 Setting Breakpoints

• the following in the RealView Debugger Target Configuration Guide:
— Chapter 4 Configuring Custom Memory Maps, Registers and Peripherals.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-46
ID052111 Non-Confidential

RealView Debugger Commands
2.3.15 BREAKEXECUTION

Sets an execution breakpoint that enables ROM-based breakpoints by using the hardware
breakpoint facilities of the target.

Syntax

BREAKEXECUTION [,qualifier...] expression [;macro-call]

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers for the BREAKEXECUTION command on page 2-49.

expression Specifies the address at which the breakpoint is placed. By default, this is the
address where program execution stops.

macro-call Specifies a macro and any parameters it requires. The macro runs when the
breakpoint is hit and before the instruction at the breakpoint is executed. The
macro is treated as being specified last in the qualifier list.
If the macro returns a nonzero value, or you specified continue in the qualifiers,
execution continues. If the macro returns zero, or if you do not specify a macro,
target execution stops and the debugger waits in command mode.
The macro argument symbols are interpreted when the breakpoint is specified and
so they must be in scope at that point, or you must explicitly qualify them.

Description

This command is used to set or modify an execution address breakpoint. An execution
breakpoint identifies the location of an instruction that, if executed, causes the breakpoint to be
hit. When the breakpoint is hit, RealView Debugger determines when the breakpoint is
activated. Activation depends on whether or not any condition qualifiers are assigned to the
breakpoint (see Qualifiers that define conditional breakpoints on page 2-49):

• If no condition qualifiers are assigned, then the breakpoint activates immediately.

• If condition qualifiers are assigned, then activation is be delayed until all the conditions
are met.

When the breakpoint activates, any action qualifiers that are assigned to the breakpoint are
performed (see Qualifiers that define breakpoint actions on page 2-49). If no action qualifiers
are assigned, the default action is to stop execution.

When a hardware breakpoint instruction is hit on the target, the following sequence of events
occurs:

1. The debugger or the hardware associates the event with a specific debugger breakpoint
ID.

2. If the breakpoint has a software pass count associated with it, the count is updated.

3. The conditions for this breakpoint, if any, are tested in the order specified on the command
line (see Qualifiers that define conditional breakpoints on page 2-49). If any condition is
False, target execution resumes with the instruction at the breakpointed location. Macros
specified with the macro: qualifier or the ;macro-call argument are run in this phase.

4. If the breakpoint has actions associated with it (for example, using timed to note the time
the breakpoint occurred) these actions are run, in the order specified on the command line
(see Qualifiers that define breakpoint actions on page 2-49).
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-47
ID052111 Non-Confidential

RealView Debugger Commands
5. If the qualifiers include continue, target execution resumes with the instruction at the
breakpointed location. If not, the debugger updates the state of the GUI and waits for a
command, leaving the application halted.

If the command has no arguments, it behaves like DTBREAK, listing the current breakpoints.

Execution breakpoints can also use various hardware tests (see Qualifiers that define hardware
tests on page 2-49), such as trigger inputs, hardware pass counters, and and-then, or chained,
tests.

If you are debugging multiprocessor applications, and you have set up synchronization and
cross-triggering, then you can specify how each processor is affected when a breakpoint
activates.

Combining hardware and software pass counts

You can combine hardware and software pass counts to achieve higher count values. If you
define both hardware and software pass counts:

1. When the hardware pass count reaches zero, the software pass count is decremented.
What happens next depends on your hardware:
• For RVISS, the hardware count remains at zero, so that

total count = hw_passcount + passcount
• Other processors might exhibit the RVISS behavior, or might reset the hardware

pass count to the initial value, so that:
total count = (hw_passcount +1) * passcount + hw_passcount

2. When the software pass count reaches zero, the breakpoint activates and the activation
count is incremented. The following example shows the counts for the breakpoint
bexec,hw_pass:3,pass:50 \DHRY_1\#70:0 on an RVISS target:
• Initial state:

> dtbreak
S ID Type Address Count Miscellaneous
- -- ---- ------- ----- -------------
 1 Exec 0x00008480 0 Pass=50

• State after activation:
> dtbreak
S ID Type Address Count Miscellaneous
- -- ---- ------- ----- -------------
 1 Exec 0x00008480 1 Pass=0

If the breakpoint is in a loop, then activation occurs on hit 53.

The breakpoint list index number

RealView Debugger assigns a breakpoint list index number to each breakpoint. This number is
assigned consecutively. However, if you delete a breakpoint, then the numbering might no
longer be consecutive.

To determine the breakpoint list index of an existing breakpoint:

1. Start RealView Debugger in GUI mode.

2. Select View → Break/Tracepoints from the Code window main menu to open the
Break/Tracepoint view.

3. Select the checkbox for the chosen breakpoint to disable it.

4. Click the Cmd tab in the Output view.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-48
ID052111 Non-Confidential

RealView Debugger Commands
The breakpoint list index (number) for the breakpoint is shown in the command:
disable,h number

5. Select the checkbox for the chosen breakpoint to enable it.

Qualifiers that define conditional breakpoints

To set up a conditional breakpoint, use one or more of the following condition qualifiers:
• macro (or ;macro-call)
• obj

• passcount

• when

• when_not.

Qualifiers that define breakpoint actions

To specify actions to be performed when a breakpoint activates, use the following action
qualifiers:
• continue

• message

• update.

Qualifiers that define hardware tests

To specify hardware tests for execution breakpoints, use the following qualifiers:
• hw_ahigh

• hw_amask

• hw_and

• hw_in

• hw_not

• hw_passcount.

List of qualifiers for the BREAKEXECUTION command

The list of qualifiers is dependent on the processor and Debug Interface, and so the GUI does
not present things that do not make sense. The command handler generates an error if a specific
combination is invalid for a specific processor or Debug Interface, but this is determined when
you issue the command.

The possible qualifiers are:

append:(n) Instead of creating a new breakpoint, append the qualifiers specified with
this command to an existing breakpoint with breakpoint list index number
n (see The breakpoint list index number on page 2-48).

Note
 You cannot use append to change the breakpoint address or to create

chained breakpoints.

continue Execution continues when the breakpoint activates and no breakpoint
details are displayed. Any specified action qualifiers are still performed,
depending on the results of any condition qualifiers.

hw_ahigh:(n) Specifies the high address for an address-range breakpoint. The low
address is specified by the standard breakpoint address.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-49
ID052111 Non-Confidential

RealView Debugger Commands
This facility is not supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for any address
between 0x1000-0x1200:
BREAKEXECUTION,hw_ahigh:0x1200 0x1000

This is equivalent to the command:
BREAKEXECUTION 0x1000..0x1200

hw_amask:(n) Specifies the address mask value for an address-range breakpoint. The
address range is determined by masking lower order bits out of the
specified address.
This facility is supported by ARM EmbeddedICE macrocells.
For example, to set a breakpoint that activates when any address in the
range 0x1FA00-0x1FA0F is accessed, enter the command:
BREAKEXECUTION,hw_amask:0xFFFF0 0x1FA00

This is equivalent to the command:
BREAKEXECUTION 0x1FA00..0x1FA0F

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with another breakpoint, to
create a chain of breakpoints. The parentheses are optional. Each
breakpoint in the chain is called a breakpoint unit.You specify the
breakpoint units in the reverse order that RealView Debugger processes
them. The position of the breakpoint unit in the chain is identified by id,
which is one of the following:
next Indicates that this breakpoint unit is to be linked to another

breakpoint unit specified for this connection. You must set a
breakpoint unit with the ID next before you set any other
breakpoint units for the chain. When used with then-, this
breakpoint unit is the last one processed in the chain.

prev Indicates that this breakpoint unit is to be linked to an existing
breakpoint unit specified for this connection. Make sure the
existing breakpoint has been set with a next, prev, or
index_number ID, and is a hardware breakpoint.

Note
 When using the prev ID, you must finish defining the complete

breakpoint chain before you create any non-chained
breakpoints.

index_number
The breakpoint list index number of an existing breakpoint unit
(see The breakpoint list index number on page 2-48). Make sure
the existing breakpoint has been set with a next, prev, or
index_number ID, and is a hardware breakpoint.

How RealView Debugger processes the breakpoint units depends on the
conjunction you have used:
• In the and form, the conditions associated with both breakpoint units

are chained together, so that the action associated with the second
breakpoint unit is performed only when both conditions
simultaneously match.
For example:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-50
ID052111 Non-Confidential

RealView Debugger Commands
BREAKACCESS,hw_and:next,hw_dvalue:1
 @copyfns\\COPYFNS\mycpy\append
BREAKEXECUTION,hw_and:prev @copyfns\\COPYFNS\mycpy\

• In the and-then form, RealView Debugger examines the breakpoint
units starting with the last one you specified. When the condition for
the last breakpoint unit (breakpoint unit N) is met, the associated
actions are performed and the previous breakpoint is enabled
(breakpoint unit N-1). RealView Debugger continues processing all
remaining breakpoints in the chain, until the condition in the first
one you specified is met (breakpoint unit 1). At this point, unless the
continue qualifier is specified in that breakpoint, execution stops.

Note
 You must include the quotes when using the and-then form.

For example, you might have three breakpoint units in a chain,
which you specify in the following order:
BREAKEXECUTION,hw_and:"then-next",continue

 DHRY_2\Proc_7 (BPU1)
BREAKEXECUTION,hw_and:"then-prev" DHRY_1\Proc_4 (BPU2)
BREAKEXECUTION,hw_and:"then-prev" DHRY_1\Proc_5 (BPU3)
In this case, RealView Debugger first checks for the execution of the
procedure Proc_5 in the source dhry_1.c (BPU3), then the procedure
Proc_4 in the source dhry_1.c (BPU2), and finally the procedure
Proc_7 in the source dhry_2.c (BPU1). When all conditions are met,
processing continues as instructed by the first breakpoint in the
chain.

If you clear BPU1, then all breakpoints in the chain are cleared.
If you clear any other breakpoint unit, then that breakpoint unit and the
following ones are cleared. The previous breakpoint units remain set. For
example, clearing BPU2, clears both BPU2 and BPU3, but not BPU1.

hw_in:{s} Input trigger tests. The string that follows matches hardware-supported
input tests as a list of names or a value. The available tests depends on the
Debug Interface and the target processor.
Table 2-18 shows the possible strings for an ARM940T processor.

Table 2-18 Example hw_in test strings for an ARM940T

Input test string Meaning

No "Ext=level" string Ignore external
trigger level

Ext=0x00000001 Low

Ext=0x00000002 High

No "Mode=mode" string Any mode

Mode=0x00000004 Privileged

Mode=0x00000008 User

No "AccessSize=size"
string

Default access
size

AccessSize=0x00000100 8-bit
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-51
ID052111 Non-Confidential

RealView Debugger Commands
For example, you might have a connection to an ARM940T processor
through DSTREAM or RealView ICE. For this processor, to test for a
Privileged mode access from at line 149 in dhry_1.c, enter:
BREAKEXECUTION,hw_in:"Mode=0x00000004" \DHRY_1\#149:1

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the breakpoint address value.
data Invert the breakpoint value.
then Invert an associated hw_and:{then} condition.
For example, to break when a data value does not match a mask, you can
write:
BREAKEXECUTION,hw_not:data,hw_dmask:0x00FF ...

The break commands require an address value, and the addr variant of
hw_not uses this address.
BREAKEXECUTION,hw_not:addr 0x10040

This means to break at any address other than 0x10040. This example is
probably not useful.
The hw_not:then variant of the command is used in conjunction with
hw_and to form nand and nand-then conditions.
This facility is not supported by ARM EmbeddedICE macrocells.

hw_out:{s} Not supported in this release.

hw_passcount:(n) Specifies the number of times that the break condition is ignored before it
activates. The default value is 0. This qualifier differs from passcount only
in that it is implemented in hardware. n is limited to a 32-bit value by the
debugger, but might be much more limited by the target hardware, for
example to 8 or 16 bits.
You can combine the hardware and software pass counts to achieve higher
count values. However, the behavior depends on your processor (see
Combining hardware and software pass counts on page 2-48).

macro:{MacroCall(arg1,arg2)}
When the breakpoint is hit, the specified macro is executed. Any program
variables or functions must be in scope at the time the breakpoint request
is entered, or the names must be fully qualified. You must include the
braces { and }.

message:{"$windowid | fileid$message"}
Activation of the breakpoint results in message being output. Prefixing
message with $windowid | fileid$ enables you to write the message text to
a user-defined window or file. For example:

AccessSize=0x00000200 16-bit

AccessSize=0x00000300 32-bit

AccessSize=0x00000400 8/16-bit

AccessSize=0x00000500 8/32-bit

Table 2-18 Example hw_in test strings for an ARM940T (continued)

Input test string Meaning
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-52
ID052111 Non-Confidential

RealView Debugger Commands
BREAKEXECUTION,message:{"100this is a message"}

modify:(n) Instead of creating a new breakpoint, modify the breakpoint with
breakpoint list index number n (see The breakpoint list index number on
page 2-48). The address expression and the qualifiers of the existing
breakpoint are replaced by those specified in this command.

obj:(n) This condition is True if the argument n matches the C++ object pointer,
normally called this.

passcount:(n) Specifies the number of times that the break condition is ignored before it
activates. The default value is 0. If you specify this in the middle of a
sequence of break conditions, those specified before the pass count are
processed whether or not the count reaches zero. The conditions specified
afterwards are run only when the count reaches zero.
There is a hardware pass count qualifier available, hw_passcount, for debug
hardware that supports it. You can combine the hardware and software
pass counts to achieve higher count values. However, the behavior
depends on your processor (see Combining hardware and software pass
counts on page 2-48).

Note
 If a breakpoint uses a passcount, the counting is performed on the host, and

so program execution stops briefly every time the breakpoint is hit, even
when the count has not been reached.

update:{"name"} Update the named windows, or all windows, by reading the memory and
processor state when the breakpoint activates. You can use the name all
to refresh all windows, or a name specified in the title bar of the window.
This qualifier enables you to get an overview of the process state at a
particular point, without having to manually restart the process at each
break. The update still takes a significant period of time, and so this
method is unsuitable as a non-intrusive debugging tool.

when:{condition} The breakpoint activates whenever condition, a debugger expression,
evaluates to True.

Note
 Using a macro as an argument to when, reverses the sense of the return

value from the macro.

when_not:{condition}
The breakpoint activates whenever condition, a debugger expression,
evaluates to False.

Examples

The following examples show how to use BREAKEXECUTION:

BREAKEXECUTION 0x8000
Set a hardware breakpoint at address 0x8000.

BREAKEXECUTION \MATH_1\#449:22
Set a hardware breakpoint at line 449, column 22 in the file math.c.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-53
ID052111 Non-Confidential

RealView Debugger Commands
BREAKEXECUTION,append:(1),continue,update:{all}
Given an already set breakpoint at position 1 in the breakpoint list, add a
request to update all windows in the code window for this connection and
continue execution each time the breakpoint activates.

BREAKEXECUTION,hw_pass:(5) \MAIN_1\#49
Set a hardware breakpoint using a hardware counter to stop at the fifth
time that execution reaches line 49 of main.c.

BREAKEXECUTION \MAIN_1\MAIN_C\#33 ;CheckStruct()
Set a hardware breakpoint that calls a debugger macro CheckStruct each
time it reaches line 33 of main.c. If CheckStruct returns a nonzero value,
the debugger continues application execution.

BREAKEXECUTION,when:{check_struct()} \MAIN_1\#33
Set a hardware breakpoint that calls a target program function
check_struct() each time it reaches line 33 of main.c. If this function
returns zero, the debugger continues application execution.

Alias

BEXECUTION is an alias of BREAKEXECUTION.

See also

• Window and file numbers on page 1-5

• Addresses on page 1-26

• BREAKACCESS on page 2-38

• BREAKINSTRUCTION on page 2-55

• BREAKREAD on page 2-61

• BREAKWRITE on page 2-70

• DTBREAK on page 2-126

• ENABLEBREAK on page 2-140

• VMACRO on page 2-324

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications
— Chapter 11 Setting Breakpoints
— Chapter 12 Controlling the Behavior of Breakpoints.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-54
ID052111 Non-Confidential

RealView Debugger Commands
2.3.16 BREAKINSTRUCTION

Sets a software instruction breakpoint at the specified memory location. Software breakpoints
are implemented by writing a special instruction at the break address, and so cannot be set in
ROM.

Syntax

BREAKINSTRUCTION [,qualifier...] expression [=threads,...] [;macro-call]

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers for the BREAKINSTRUCTION command on page 2-56.

expression Specifies the address at which the breakpoint is placed. By default, this is the
address where program execution stops.

threads The list of threads that make up the break trigger group.
Only available for OS-aware RSD connections.

macro-call Specifies a macro and any parameters it requires. The macro runs when the
breakpoint activates and before the instruction at the breakpoint is executed. The
macro is treated as being specified last in the qualifier list.
If the macro returns a nonzero value, or you specified continue in the qualifiers,
execution continues. If the macro returns zero, or if you do not specify a macro,
target execution stops and the debugger waits in command mode.
The macro argument symbols are interpreted when the breakpoint is specified and
so they must be in scope at that point, or you must explicitly qualify them.

Description

BREAKINSTRUCTION is used to set or modify software address breakpoints. Software address
breakpoints include breakpoints set by patching special instructions into the program and
hardware that tests the address and data values. If the command has no arguments, it behaves
like DTBREAK on page 2-126, listing the current breakpoints.

If you try to set a software breakpoint at a location in ROM or Flash, the attempt fails by default.
However, if you use the failover qualifier, RealView Debugger attempts to set a hardware
breakpoint instead. The attempt fails if insufficient hardware facilities are available.

You can use qualifiers evaluated in the debugger, such as expressions, macros, C++ object tests,
and software pass counters. You can also define actions to occur when the breakpoint is
triggered (hit), including updating counters or windows, and the enabling or disabling of other
breakpoints (see List of qualifiers for the BREAKINSTRUCTION command on page 2-56).

When a software breakpoint instruction is hit on the target, the following sequence of events
occurs:

1. The debugger associates the address with a specific breakpoint ID. A memory address can
only be associated with one user breakpoint at a time.

2. If the breakpoint has a pass count associated with it, the count is updated.

3. The conditions for this breakpoint, if any, are tested in the order specified on the command
line (see Qualifiers that define conditional breakpoints on page 2-56). If any condition is
False, target execution resumes with the instruction at the breakpointed location. Macros
specified with the macro: qualifier or the ;macro-call argument are run in this phase.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-55
ID052111 Non-Confidential

RealView Debugger Commands
4. If the breakpoint has actions associated with it (for example, using timed to note the time
the breakpoint occurred) these actions are run, in the order specified on the command line
(see Qualifiers that define breakpoint actions).

5. If the qualifiers include continue, target execution resumes with the instruction at the
breakpointed location. If not, the debugger updates the state of the GUI and waits for a
command, leaving the application halted.

If you are debugging multiprocessor applications, and you have set up synchronization and
cross-triggering, then you can specify how each processor is affected when a breakpoint
activates.

The breakpoint list index number

RealView Debugger assigns a breakpoint list index number to each breakpoint. This number is
assigned consecutively. However, if you delete a breakpoint, then the numbering might no
longer be consecutive.

To determine the breakpoint list index of an existing breakpoint:

1. Start RealView Debugger in GUI mode.

2. Select View → Break/Tracepoints from the Code window main menu to open the
Break/Tracepoint view.

3. Select the checkbox for the chosen breakpoint to disable it.

4. Click the Cmd tab in the Output view.
The breakpoint list index (number) for the breakpoint is shown in the command:
disable,h number

5. Select the checkbox for the chosen breakpoint to enable it.

Qualifiers that define conditional breakpoints

To set up a conditional breakpoint, use one or more of the following condition qualifiers:
• macro (or ;macro-call)
• obj

• passcount

• when

• when_not.

Qualifiers that define breakpoint actions

To specify actions to be performed when a breakpoint activates, use the following action
qualifiers:
• continue

• message

• update.

List of qualifiers for the BREAKINSTRUCTION command

The list of qualifiers is dependent on the processor and Debug Interface, and so the GUI does
not present things that do not make sense. The command handler generates an error if a specific
combination is invalid for a specific processor or Debug Interface, but this is determined when
you issue the command.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-56
ID052111 Non-Confidential

RealView Debugger Commands
The possible qualifiers are:

append:(n) Instead of creating a new breakpoint, append the qualifiers specified with
this command to an existing breakpoint with breakpoint list index number
n (see The breakpoint list index number on page 2-56). You cannot change
the breakpoint address.

continue Execution continues when the breakpoint activates and no breakpoint
details are displayed. Any specified action qualifiers are still performed,
depending on the results of any condition qualifiers.

failover When you attempt to set a software breakpoint in read-only memory, the
default behavior causes the operation to fail. The error message displayed
depends on whether or not memory mapping is enabled:
• Memory mapping enabled:

Error V004E (Vehicle): Memory map forbids software breakpoint
at this address

• Memory mapping disabled:
Error V2801C (Vehicle): 0x050b0001: Unable to write sw
breakpoint to memory.

However, in some circumstances it might be useful to convert the software
breakpoint to a hardware breakpoint. To do this, use the failover qualifier.

macro:{MacroCall(arg1,arg2)}
When the breakpoint is hit, the specified macro is executed. Any program
variables or functions must be in scope at the time the breakpoint request
is entered, or the names must be fully qualified. A macro call specified
here is treated in the same way as a macro specified after a ;. You must
include the braces { and }.

message:{"$windowid | fileid$message"}
Activation of the breakpoint results in message being output. Prefixing
message with $windowid | fileid$ enables you to write the message text to
a user-defined window or file. For example:
BREAKINSTRUCTION,message:{"100this is a message"}

modify:(n) Instead of creating a new breakpoint, modify the breakpoint with
breakpoint list index number n (see The breakpoint list index number on
page 2-56). The address expression and the qualifiers of the existing
breakpoint are replaced by those specified in this command.

obj:(n) This condition is True if the argument n matches the C++ object pointer,
normally called this.

passcount:(n) Specifies the number of times that the break condition is ignored before
the breakpoint activates. The default value is 0. If you specify this in the
middle of a sequence of break conditions, those specified before the
passcount are processed whether or not the count reaches zero. The
conditions specified afterwards are run only when the count reaches zero.

rtos:type Sets a breakpoint for OS-aware connections, where type is one of:
hsd Sets a Halted System Debug (HSD) breakpoint for debugging

your OS-aware image.
process Not supported in this release.
system Sets a system breakpoint for debugging images running in

Running System Debug (RSD) mode.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-57
ID052111 Non-Confidential

RealView Debugger Commands
thread Sets a thread breakpoint for debugging images running in RSD
mode.

size:n Set the size of the breakpoint to either 16 or 32 bits. For example:
BREAKINSTRUCTION,size:32 0x10040

Use this qualifier if no debug information is available for your image. By
default, RealView Debugger sets a 32-bit breakpoint.

update:{"name"} Update the named windows, or all windows, by reading the memory and
processor state when the breakpoint activates. You can use the name all
to refresh all windows, or a name specified in the title bar of the window.
This qualifier enables you to get an overview of the process state at a
particular point, without having to manually restart the process at each
break. The update still takes a significant period of time, and so this
method is unsuitable as a non-intrusive debugging tool.

when:{condition} The breakpoint activatesactivates whenever condition, a debugger
expression, evaluates to True.

Note
 Using a macro as an argument to when, reverses the sense of the return

value from the macro.

when_not:{condition}
The breakpoint activates whenever condition, a debugger expression,
evaluates to False.

Rules for the BREAKINSTRUCTION command

The following rules apply to the use of the BREAKINSTRUCTION command:

• Breakpoints are specific to the board, process, or task active in the window at the time they
are set.

• If synchronous breakpoints are set on two or more threads on the same board, the
debugger stops the threads as close to the same time as the architecture of the board
permits.

Examples

The following examples show how to use BREAKINSTRUCTION:

BREAKINSTRUCTION 0x8000
Set a breakpoint at address 0x8000.

BREAKINSTRUCTION \MATH_1\MATH_C\#449:22
Set a breakpoint at line 449, column 22 in the file math.c.

BREAKINSTRUCTION,append:(1),continue,update:{all}
Given an already set breakpoint at position 1 in the breakpoint list, add a
request to update all windows in the code window for this connection and
continue execution each time the breakpoint activates.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-58
ID052111 Non-Confidential

RealView Debugger Commands
BREAKINSTRUCTION,pass:(5) \MAIN_1\MAIN_C\#49
Set a breakpoint using a hardware counter to stop at the fifth time that
execution reaches line 49 of main.c.

BREAKINSTRUCTION \MAIN_1\MAIN_C\#33 ;CheckStruct()
Set a breakpoint that calls a debugger macro CheckStruct each time it
reaches line 33 of main.c. If CheckStruct returns a nonzero value, the
debugger continues application execution.

BREAKINSTRUCTION,when:{count<4 || err==5} \MAIN_1\SUBFN_C\#33
Set a breakpoint that activates when the expression count<4 || err==5 is
True when execution reaches line 33 of subfn.c.

BREAKINSTRUCTION,when:{check_struct()} \MAIN_1\MAIN_C\#33
Set a breakpoint that calls a target program function check_struct() each
time it reaches line 33 of main.c. If this function returns zero, the debugger
continues application execution.

BREAKINSTRUCTION, rtos:hsd \DEMO\#201
Set a HSD breakpoint at line 201 in demo.c.

BREAKINSTRUCTION,rtos:system \DEMO\#154
Set a system breakpoint at line 154 in demo.c.

BREAKINSTRUCTION,rtos:thread \DEMO\#154 = 0x39d8, 0x3a68
Set a thread breakpoint using a break trigger group consisting of two
threads, defined by the addresses of the thread control blocks.

BREAKINSTRUCTION,rtos:thread \DEMO\#180 = thread_2, thread_6, thread_8
Set a thread breakpoint using a break trigger group consisting of three
threads, defined by the thread names.

BREAKINSTRUCTION,modify:2,rtos:system
Modify breakpoint number 2, a thread breakpoint, to be a system
breakpoint.

BREAKINSTRUCTION,modify:3,rtos:thread = 0x1395c, 0x13bac
Modify breakpoint number 3, a thread breakpoint, to specify a different
break trigger group, shown in Figure 2-1.

Figure 2-1 Changing the break trigger group

Alias

BINSTRUCTION and BREAK are aliases of BREAKINSTRUCTION.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-59
ID052111 Non-Confidential

RealView Debugger Commands
See also

• Window and file numbers on page 1-5

• Addresses on page 1-26

• AOS_resource_list on page 2-26

• BREAKACCESS on page 2-38

• BREAKEXECUTION on page 2-47

• BREAKREAD on page 2-61

• BREAKWRITE on page 2-70

• CLEARBREAK on page 2-89

• DOS_resource_list on page 2-122

• ENABLEBREAK on page 2-140

• OSCTRL on page 2-200

• STOP on page 2-267

• VMACRO on page 2-324

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications
— Chapter 11 Setting Breakpoints
— Chapter 12 Controlling the Behavior of Breakpoints

• the following in the RealView Debugger RTOS Guide:
— Chapter 7 Debugging Your OS Application.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-60
ID052111 Non-Confidential

RealView Debugger Commands
2.3.17 BREAKREAD

Sets a hardware breakpoint that activates when a read operation is performed on any of the
specified memory locations.

Syntax

BREAKREAD [,qualifier...] {address|address-range} [;macro-call]

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers for the BREAKREAD command on page 2-64.

address | address-range

Specifies a single address or an address range in target memory. The address can
also be a memory mapped register (see Memory mapped registers on page 2-62).

macro-call Specifies a macro and any parameters it requires. The macro runs when the
breakpoint is hit and before the instruction at the breakpoint is executed. The
macro is treated as being specified last in the qualifier list.
If the macro returns a nonzero value, or you specified continue in the qualifiers,
execution continues. If the macro returns zero, or if you do not specify a macro,
target execution stops and the debugger waits in command mode.
The macro argument symbols are interpreted when the breakpoint is specified and
so they must be in scope at that point, or you must explicitly qualify them.

Description

BREAKREAD is used to set or modify data read breakpoints. Data read breakpoints activate when
data that matches a condition is read from memory at a particular address or address range. If
the command has no arguments, it behaves like DTBREAK, listing the current breakpoints.

Hardware address breakpoints can use other hardware tests in association with the address test,
such as trigger inputs and outputs, hardware pass counters, and and-then, or chained, tests (see
Qualifiers that define hardware tests on page 2-63).

You can use qualifiers evaluated in the debugger, such as expressions, macros, C++ object tests,
and software pass counters. You can also define actions to occur when the breakpoint is
triggered (hit), including updating counters or windows, and the enabling or disabling of other
breakpoints (see List of qualifiers for the BREAKREAD command on page 2-64).

If you do not specify an address, the read breakpoint is set at the address defined by the current
value of the PC. The breakpoint is triggered if the target program reads data from any specified
target memory area.

When a hardware data read breakpoint is hit on the target, the following sequence of events
occurs:

1. The debugger or the hardware associates the event with a specific debugger breakpoint
ID.

2. If the breakpoint has a software pass count associated with it, the count is updated.

3. The conditions for this breakpoint, if any, are tested in the order specified on the command
line (see Qualifiers that define conditional breakpoints on page 2-63). If any condition is
False, target execution resumes with the instruction at the breakpointed location. Macros
specified with the macro: qualifier or the ;macro-call argument are run in this phase.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-61
ID052111 Non-Confidential

RealView Debugger Commands
4. If the breakpoint has actions associated with it (for example, using timed to note the time
the breakpoint occurred) these actions are run, in the order specified on the command line
(see Qualifiers that define breakpoint actions on page 2-63).

5. If the qualifiers include continue, target execution resumes with the instruction at the
breakpointed location. If not, the debugger updates the state of the GUI and waits for a
command, leaving the application halted.

If you are debugging multiprocessor applications, and you have set up synchronization and
cross-triggering, then you can specify how each processor is affected when a breakpoint
activates.

Memory mapped registers

You can set a breakpoint that activates on a read from a memory-mapped register. To specify a
memory mapped register, enter the following expression for the address:

register:expression

The register is identified by expression. For example:

BREAKREAD register:PR1

or

BREAKREAD register:@PR1

Note
 You can only specify memory mapped registers that are defined in Board/Chip Definition (.bcd)
files that you have assigned to a Debug Configuration. You cannot set breakpoints on core
registers.

Combining hardware and software pass counts

You can combine hardware and software pass counts to achieve higher count values. If you
define both hardware and software pass counts:

1. When the hardware pass count reaches zero, the software pass count is decremented.
What happens next depends on your hardware:
• For RVISS, the hardware count remains at zero, so that

total count = hw_passcount + passcount
• Other processors might exhibit the RVISS behavior, or might reset the hardware

pass count to the initial value, so that:
total count = (hw_passcount +1) * passcount + hw_passcount

2. When the software pass count reaches zero, the breakpoint activates and the activation
count is incremented. The following example shows the counts for the breakpoint
bexec,hw_pass:3,pass:50 \DHRY_1\#70:0 on an RVISS target:
• Initial state:

> dtbreak
S ID Type Address Count Miscellaneous
- -- ---- ------- ----- -------------
 1 Exec 0x00008480 0 Pass=50

• State after activation:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-62
ID052111 Non-Confidential

RealView Debugger Commands
> dtbreak
S ID Type Address Count Miscellaneous
- -- ---- ------- ----- -------------
 1 Exec 0x00008480 1 Pass=0

If the breakpoint is in a loop, then activation occurs on hit 53.

The breakpoint list index number

RealView Debugger assigns a breakpoint list index number to each breakpoint. This number is
assigned consecutively. However, if you delete a breakpoint, then the numbering might no
longer be consecutive.

To determine the breakpoint list index of an existing breakpoint:

1. Start RealView Debugger in GUI mode.

2. Select View → Break/Tracepoints from the Code window main menu to open the
Break/Tracepoint view.

3. Select the checkbox for the chosen breakpoint to disable it.

4. Click the Cmd tab in the Output view.
The breakpoint list index (number) for the breakpoint is shown in the command:
disable,h number

5. Select the checkbox for the chosen breakpoint to enable it.

Qualifiers that define conditional breakpoints

To set up a conditional breakpoint, use one or more of the following condition qualifiers:
• macro (or ;macro-call)
• obj

• passcount

• when

• when_not.

Qualifiers that define breakpoint actions

To specify actions to be performed when a breakpoint activates, use the following action
qualifiers:
• continue

• message

• update.

Qualifiers that define hardware tests

To specify hardware tests for data read breakpoints, use the following qualifiers:
• data_only

• hw_ahigh

• hw_amask

• hw_and

• hw_dhigh

• hw_dmask

• hw_dvalue

• hw_in

• hw_not
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-63
ID052111 Non-Confidential

RealView Debugger Commands
• hw_passcount.

List of qualifiers for the BREAKREAD command

The list of qualifiers is dependent on the processor and Debug Interface, and so the GUI does
not present things that do not make sense. The command handler generates an error if a specific
combination is invalid for a specific processor or Debug Interface, but this is determined when
you issue the command.

The possible qualifiers are:

append:(n) Instead of creating a new breakpoint, append the qualifiers specified with
this command to an existing breakpoint with breakpoint list index number
n (see The breakpoint list index number on page 2-63).

Note
 You cannot use append to change the breakpoint address or to create

chained breakpoints.

continue Execution continues when the breakpoint activates and no breakpoint
details are displayed. Any specified action qualifiers are still performed,
depending on the results of any condition qualifiers.

data_only The breakpoint is triggered if a data value, specified using hw_dvalue, is
detected by the debug hardware on the processor data bus.

hw_ahigh:(n) Specifies the high address for an address-range breakpoint. The low
address is specified by the standard breakpoint address.
This facility is not supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for any address
between 0x1000-0x1200:
BREAKREAD,hw_ahigh:0x1200 0x1000

This is equivalent to the command:
BREAKREAD 0x1000..0x1200

hw_amask:(n) Specifies the address mask value for an address-range breakpoint. The
address range is determined by masking lower order bits out of the
specified address.
This facility is supported by ARM EmbeddedICE macrocells.
For example, to set a breakpoint that activates when any address in the
range 0x1FA00-0x1FA0F is accessed, enter the command:
BREAKREAD,hw_amask:0xFFFF0 0x1FA00

This is equivalent to the command:
BREAKREAD 0x1FA00..0x1FA0F

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with another breakpoint, to
create a chain of breakpoints. The parentheses are optional. Each
breakpoint in the chain is called a breakpoint unit.You specify the
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-64
ID052111 Non-Confidential

RealView Debugger Commands
breakpoint units in the reverse order that RealView Debugger processes
them. The position of the breakpoint unit in the chain is identified by id,
which is one of the following:
next Indicates that this breakpoint unit is to be linked to another

breakpoint unit specified for this connection. You must set a
breakpoint unit with the ID next before you set any other
breakpoint units for the chain. When used with then-, this
breakpoint unit is the last one processed in the chain.

prev Indicates that this breakpoint unit is to be linked to an existing
breakpoint unit specified for this connection. Make sure the
existing breakpoint has been set with a next, prev, or
index_number ID, and is a hardware breakpoint.

Note
 When using the prev ID, you must finish defining the complete

breakpoint chain before you create any non-chained
breakpoints.

index_number
The breakpoint list index number of an existing breakpoint unit
(see The breakpoint list index number on page 2-63). Make sure
the existing breakpoint has been set with a next, prev, or
index_number ID, and is a hardware breakpoint.

How RealView Debugger processes the breakpoint units depends on the
conjunction you have used:
• In the and form, the conditions associated with both breakpoint units

are chained together, so that the action associated with the second
breakpoint unit is performed only when both conditions
simultaneously match.
For example:
BREAKREAD,hw_and:next,hw_dvalue:1
 @copyfns\\COPYFNS\mycpy\append
BREAKEXECUTION,hw_and:prev @copyfns\\COPYFNS\mycpy\

• In the and-then form, RealView Debugger examines the breakpoint
units starting with the last one you specified. When the condition for
the last breakpoint unit (breakpoint unit N) is met, the associated
actions are performed and the previous breakpoint is enabled
(breakpoint unit N-1). RealView Debugger continues processing all
remaining breakpoints in the chain, until the condition in the first
one you specified is met (breakpoint unit 1). At this point, unless the
continue qualifier is specified in that breakpoint, execution stops.

Note
 You must include the quotes when using the and-then form.

For example, you might have three breakpoint units in a chain,
which you specify in the following order:
BREAKREAD,hw_and:"then-next",continue 0x10014 (BPU1)
BREAKREAD,hw_and:"then-prev" 0x10018 (BPU2)
BREAKREAD,hw_and:"then-prev" 0x1001B (BPU3)
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-65
ID052111 Non-Confidential

RealView Debugger Commands
In this case, RealView Debugger first checks for a data read at
address 0x1001B (BPU3), then at address 0x10018 (BPU2), and
finally at adress 0x10014 (BPU1). When all conditions are met,
processing continues as instructed by the first breakpoint in the
chain.

If you clear BPU1, then all breakpoints in the chain are cleared.
If you clear any other breakpoint unit, then that breakpoint unit and the
following ones are cleared. The previous breakpoint units remain set. For
example, clearing BPU2, clears both BPU2 and BPU3, but not BPU1.

hw_dhigh:(n) Specifies the high data value for a data-range breakpoint. The low data
value is specified by the hw_dvalue qualifier.
This facility is not supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for any data value
between 0x00-0x18:
BREAKREAD,hw_dvalue:0x0,hw_dhigh:0x18 0x1000

hw_dmask:(n) Specifies the data value mask for a data-range breakpoint. The data value
to which the mask is applied is specified by the hw_dvalue qualifier. The
data value range is determined by masking lower order bits out of the
specified data value.
This facility is supported by ARM EmbeddedICE macrocells.
For example, to set a breakpoint that activates when a data value in the
range 0x400-0x4FF is accessed at address 0x1FA00, enter the command:
BREAKREAD,hw_dvalue:0x400,hw_dmask:0xF00 0x1FA00

hw_dvalue:(n) Specifies a data value to be compared to values transmitted on the
processor data bus.
This facility is supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for the data value
0x400:
BREAKREAD,hw_dvalue:0x400 0x1FA00

hw_in:{s} Input trigger tests. The string that follows matches hardware-supported
input tests as a list of names or a value. The available tests depends on the
Debug Interface and the target processor.
Table 2-19 shows the possible strings for an ARM940T processor.

Table 2-19 Example hw_in test strings for an ARM940T

Input test string Meaning

No "Ext=level" string Ignore external
trigger level

Ext=0x00000001 Low

Ext=0x00000002 High

No "Mode=mode" string Any mode

Mode=0x00000004 Privileged

Mode=0x00000008 User

No "AccessSize=size"
string

Default access
size
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-66
ID052111 Non-Confidential

RealView Debugger Commands
For example, you might have a connection to an ARM940T processor
through DSTREAM or RealView ICE. For this processor, to test for a low
external trigger level and a 32-bit data read in User mode from address
0x10014, enter:
BREAKREAD,hw_in:"Ext=0x00000002",hw_in:"Mode=0x00000008",hw_in:"Acc

essSize=0x00000300" 0x10014

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the breakpoint address value.
data Invert the breakpoint value.
then Invert an associated hw_and:{then} condition.
For example, to break when a data value does not match a mask, you can
write:
BREAKREAD,hw_not:data,hw_dmask:0x00FF ...

The break commands require an address value, and the addr variant of
hw_not uses this address.
BREAKREAD,hw_not:addr 0x10040

This means to break at any address other than 0x10040. This example is
probably not useful.
The hw_not:then variant of the command is used in conjunction with
hw_and to form nand and nand-then conditions.
This facility is not supported by ARM EmbeddedICE macrocells.

hw_out:{s} Not supported in this release.

hw_passcount:(n) Specifies the number of times that the break condition is ignored before
the breakpoint activates. The default value is 0. This qualifier differs from
passcount only in that it is implemented in hardware. Although n is limited
to a 32-bit value by the debugger, it might be much more limited by the
target hardware, for example to 8 or 16 bits.
You can combine the hardware and software pass counts to achieve higher
count values. However, the behavior depends on your processor (see
Combining hardware and software pass counts on page 2-62).

macro:{MacroCall(arg1,arg2)}
When the breakpoint is hit, the specified macro is executed. Any program
variables or functions must be in scope at the time the breakpoint request
is entered, or the names must be fully qualified. You must include the
braces { and }.

AccessSize=0x00000100 8-bit

AccessSize=0x00000200 16-bit

AccessSize=0x00000300 32-bit

AccessSize=0x00000400 8/16-bit

AccessSize=0x00000500 8/32-bit

Table 2-19 Example hw_in test strings for an ARM940T (continued)

Input test string Meaning
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-67
ID052111 Non-Confidential

RealView Debugger Commands
message:{"$windowid | fileid$message"}
Activation of the breakpoint results in message being output. Prefixing
message with $windowid | fileid$ enables you to write the message text to
a user-defined window or file. For example:
breakread,message:{"100this is a message"}

modify:(n) Instead of creating a new breakpoint, modify the breakpoint with
breakpoint list index number n (see The breakpoint list index number on
page 2-63). The address expression and the qualifiers of the existing
breakpoint are replaced by those specified in this command.

obj:(n) This condition is True if the argument n matches the C++ object pointer,
normally called this.

passcount:(n) Specifies the number of times that the break condition is ignored before
the breakpoint activates. The default value is 0. If you specify this in the
middle of a sequence of break conditions, those specified before the pass
count are processed whether or not the count reaches zero. The conditions
specified afterwards are run only when the count reaches zero.
There is a hardware pass count qualifier available, hw_passcount, for debug
hardware that supports it. You can combine the hardware and software
pass counts to achieve higher count values. However, the behavior
depends on your processor (see Combining hardware and software pass
counts on page 2-62).

Note
 If a hardware breakpoint uses a passcount, the counting is performed on

the host, and so program execution stops briefly every time the breakpoint
is hit, even when the count has not been reached.

update:{"name"} Update the named windows, or all windows, by reading the memory and
processor state when the breakpoint activates. You can use the name all
to refresh all windows, or a name specified in the title bar of the window.
This qualifier enables you to get an overview of the process state at a
particular point, without having to manually restart the process at each
break. The update still takes a significant period of time, and so this
method is unsuitable as a non-intrusive debugging tool.

when:{condition} The breakpoint activates whenever condition, a debugger expression,
evaluates to True.

Note
 Using a macro as an argument to when, reverses the sense of the return

value from the macro.

when_not:{condition}
The breakpoint activates whenever condition, a debugger expression,
evaluates to False.

Examples

The following examples show how to use BREAKREAD:

BREAKREAD 0x8000 Stop program execution if a read occurs at location 0x8000.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-68
ID052111 Non-Confidential

RealView Debugger Commands
BREAKREAD 0x100..0x200
Stop program execution if a read occurs in the 257 bytes from
0x100-0x200 (inclusive).

Alias

BREAD is an alias of BREAKREAD.

See also

• Window and file numbers on page 1-5

• Addresses on page 1-26

• Specifying address ranges on page 2-2

• BREAKACCESS on page 2-38

• BREAKEXECUTION on page 2-47

• BREAKINSTRUCTION on page 2-55

• BREAKWRITE on page 2-70

• CLEARBREAK on page 2-89

• DTBREAK on page 2-126

• ENABLEBREAK on page 2-140

• VMACRO on page 2-324

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications
— Chapter 11 Setting Breakpoints
— Chapter 12 Controlling the Behavior of Breakpoints

• the following in the RealView Debugger Target Configuration Guide:
— Chapter 4 Configuring Custom Memory Maps, Registers and Peripherals.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-69
ID052111 Non-Confidential

RealView Debugger Commands
2.3.18 BREAKWRITE

Sets a hardware breakpoint that activates when a write operation is performed on any of the
specified memory locations.

Syntax

BREAKWRITE [,qualifier...] {address|address-range} [;macro-call]

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers for the BREAKWRITE command on page 2-73.

address | address-range

Specifies a single address or an address range in target memory. The address can
also be a memory mapped register (see Memory mapped registers on page 2-71).

macro-call Specifies a macro and any parameters it requires. The macro runs when the
breakpoint is hit and before the instruction at the breakpoint is executed. The
macro is treated as being specified last in the qualifier list.
If the macro returns a nonzero value, or you specified continue in the qualifiers,
execution continues. If the macro returns zero, or if you do not specify a macro,
target execution stops and the debugger waits in command mode.
The macro argument symbols are interpreted when the breakpoint is specified and
so they must be in scope at that point, or you must explicitly qualify them.

Description

BREAKWRITE is used to set or modify data write breakpoints. Data write breakpoints activate when
data that matches a condition is written to memory at a particular address or address range. If
the command has no arguments, it behaves like DTBREAK, listing the current breakpoints.

Hardware address breakpoints can use other hardware tests in association with the address test,
such as trigger inputs and outputs, hardware pass counters, and and-then, or chained, tests (see
Qualifiers that define hardware tests on page 2-72).

You can use qualifiers evaluated in the debugger, such as expressions, macros, C++ object tests,
and software pass counters. You can also define actions to occur when the breakpoint activates,
including updating counters or windows, and the enabling or disabling of other breakpoints (see
List of qualifiers for the BREAKWRITE command on page 2-73).

If you do not specify an address, the write breakpoint is set at the address defined by the current
value of the PC. The breakpoint is hit if the target program writes data to any part of the specified
target memory area.

When a hardware data write breakpoint is hit on the target, the following sequence of events
occurs:

1. The debugger or the hardware associates the event with a specific debugger breakpoint
ID.

2. If the breakpoint has a software pass count associated with it, the count is updated.

3. The conditions for this breakpoint, if any, are tested in the order specified on the command
line (see Qualifiers that define conditional breakpoints on page 2-72). If any condition is
False, target execution resumes with the instruction at the breakpointed location. Macros
specified with the macro: qualifier or the ;macro-call argument are run in this phase.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-70
ID052111 Non-Confidential

RealView Debugger Commands
4. If the breakpoint has actions associated with it (for example, using timed to note the time
the breakpoint occurred) these actions are run, in the order specified on the command line
(see Qualifiers that define breakpoint actions on page 2-72).

5. If the qualifiers include continue, target execution resumes with the instruction at the
breakpointed location. If not, the debugger updates the state of the GUI and waits for a
command, leaving the application halted.

If you are debugging multiprocessor applications, and you have set up synchronization and
cross-triggering, then you can specify how each processor is affected when a breakpoint
activates.

Memory mapped registers

You can set a breakpoint that activates on a write to a memory-mapped register. To specify a
memory mapped register, enter the following expression for the address:

register:expression

The register is identified by expression. For example:

BREAKWRITE register:PR1

or

BREAKWRITE register:@PR1

Note
 You can only specify memory mapped registers that are defined in Board/Chip Definition (.bcd)
files that you have assigned to a Debug Configuration. You cannot set breakpoints on core
registers.

Combining hardware and software pass counts

You can combine hardware and software pass counts to achieve higher count values. If you
define both hardware and software pass counts:

1. When the hardware pass count reaches zero, the software pass count is decremented.
What happens next depends on your hardware:
• For RVISS, the hardware count remains at zero, so that

total count = hw_passcount + passcount
• Other processors might exhibit the RVISS behavior, or might reset the hardware

pass count to the initial value, so that:
total count = (hw_passcount +1) * passcount + hw_passcount

2. When the software pass count reaches zero, the breakpoint activates and the activation
count is incremented. The following example shows the counts for the breakpoint
bexec,hw_pass:3,pass:50 \DHRY_1\#70:0 on an RVISS target:
• Initial state:

> dtbreak
S ID Type Address Count Miscellaneous
- -- ---- ------- ----- -------------
 1 Exec 0x00008480 0 Pass=50

• State after activation:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-71
ID052111 Non-Confidential

RealView Debugger Commands
> dtbreak
S ID Type Address Count Miscellaneous
- -- ---- ------- ----- -------------
 1 Exec 0x00008480 1 Pass=0

If the breakpoint is in a loop, then activation occurs on hit 53.

The breakpoint list index number

RealView Debugger assigns a breakpoint list index number to each breakpoint. This number is
assigned consecutively. However, if you delete a breakpoint, then the numbering might no
longer be consecutive.

To determine the breakpoint list index of an existing breakpoint:

1. Start RealView Debugger in GUI mode.

2. Select View → Break/Tracepoints from the Code window main menu to open the
Break/Tracepoint view.

3. Select the checkbox for the chosen breakpoint to disable it.

4. Click the Cmd tab in the Output view.
The breakpoint list index (number) for the breakpoint is shown in the command:
disable,h number

5. Select the checkbox for the chosen breakpoint to enable it.

Qualifiers that define conditional breakpoints

To set up a conditional breakpoint, use one or more of the following condition qualifiers:
• macro (or ;macro-call)
• obj

• passcount

• when

• when_not.

Qualifiers that define breakpoint actions

To specify actions to be performed when a breakpoint activates, use the following action
qualifiers:
• continue

• message

• update.

Qualifiers that define hardware tests

To specify hardware tests for data write breakpoints, use the following qualifiers:
• data_only

• hw_ahigh

• hw_amask

• hw_and

• hw_dhigh

• hw_dmask

• hw_dvalue

• hw_in

• hw_not
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-72
ID052111 Non-Confidential

RealView Debugger Commands
• hw_passcount.

List of qualifiers for the BREAKWRITE command

The list of qualifiers depends on the processor and Debug Interface, and so the GUI does not
present things that do not make sense. The command handler generates an error if a specific
combination is invalid for a specific processor or Debug Interface, but this is determined when
you issue the command.

The possible qualifiers are:

append:(n) Instead of creating a new breakpoint, append the qualifiers specified with
this command to an existing breakpoint with breakpoint list index number
n (see The breakpoint list index number on page 2-72).

Note
 You cannot use append to change the breakpoint address or to create

chained breakpoints.

continue Execution continues when the breakpoint activates and no breakpoint
details are displayed. Any specified action qualifiers are still performed,
depending on the results of any condition qualifiers.

data_only The breakpoint activates if a data value, specified using hw_dvalue, is
detected by the debug hardware on the processor data bus.

hw_ahigh:(n) Specifies the high address for an address-range breakpoint. The low
address is specified by the standard breakpoint address.
This facility is not supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for any address
between 0x1000-0x1200:
BREAKWRITE,hw_ahigh:0x1200 0x1000

This is equivalent to the command:
BREAKWRITE 0x1000..0x1200

hw_amask:(n) Specifies the address mask value for an address-range breakpoint. The
address range is determined by masking lower order bits out of the
specified address.
This facility is supported by ARM EmbeddedICE macrocells.
For example, to set a breakpoint that activates when any address in the
range 0x1FA00-0x1FA0F is accessed, enter the command:
BREAKWRITE,hw_amask:0xFFFF0 0x1FA00

This is equivalent to the command:
BREAKWRITE 0x1FA00..0x1FA0F

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with another breakpoint, to
create a chain of breakpoints. The parentheses are optional. Each
breakpoint in the chain is called a breakpoint unit.You specify the
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-73
ID052111 Non-Confidential

RealView Debugger Commands
breakpoint units in the reverse order that RealView Debugger processes
them. The position of the breakpoint unit in the chain is identified by id,
which is one of the following:
next Indicates that this breakpoint unit is to be linked to another

breakpoint unit specified for this connection. You must set a
breakpoint unit with the ID next before you set any other
breakpoint units for the chain. When used with then-, this
breakpoint unit is the last one processed in the chain.

prev Indicates that this breakpoint unit is to be linked to an existing
breakpoint unit specified for this connection. Make sure the
existing breakpoint has been set with a next, prev, or
index_number ID, and is a hardware breakpoint.

Note
 When using the prev ID, you must finish defining the complete

breakpoint chain before you create any non-chained
breakpoints.

index_number
The breakpoint list index number of an existing breakpoint unit
(see The breakpoint list index number on page 2-72). Make sure
the existing breakpoint has been set with a next, prev, or
index_number ID, and is a hardware breakpoint.

How RealView Debugger processes the breakpoint units depends on the
conjunction you have used:
• In the and form, the conditions associated with both breakpoint units

are chained together, so that the action associated with the second
breakpoint unit is performed only when both conditions
simultaneously match.
For example:
BREAKWRITE,hw_and:next,hw_dvalue:1
 @copyfns\\COPYFNS\mycpy\append
BREAKEXECUTION,hw_and:prev @copyfns\\COPYFNS\mycpy\

• In the and-then form, RealView Debugger examines the breakpoint
units starting with the last one you specified. When the condition for
the last breakpoint unit (breakpoint unit N) is met, the associated
actions are performed and the previous breakpoint is enabled
(breakpoint unit N-1). RealView Debugger continues processing all
remaining breakpoints in the chain, until the condition in the first
one you specified is met (breakpoint unit 1). At this point, unless the
continue qualifier is specified in that breakpoint, execution stops.

Note
 You must include the quotes when using the and-then form.

For example, you might have three breakpoint units in a chain,
which you specify in the following order:
BREAKWRITE,hw_and:"then-next",continue 0x10014 (BPU1)
BREAKWRITE,hw_and:"then-prev" 0x10018 (BPU2)
BREAKWRITE,hw_and:"then-prev" 0x1001B (BPU3)
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-74
ID052111 Non-Confidential

RealView Debugger Commands
In this case, RealView Debugger first checks for a data write at
address 0x1001B (BPU3), then at address 0x10018 (BPU2), and
finally at adress 0x10014 (BPU1). When all conditions are met,
processing continues as instructed by the first breakpoint in the
chain.

If you clear BPU1, then all breakpoints in the chain are cleared.
If you clear any other breakpoint unit, then that breakpoint unit and the
following ones are cleared. The previous breakpoint units remain set. For
example, clearing BPU2, clears both BPU2 and BPU3, but not BPU1.

hw_dhigh:(n) Specifies the high data value for a data-range breakpoint. The low data
value is specified by the hw_dvalue qualifier.
This facility is not supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for any data value
between 0x00-0x18:
BREAKWRITE,hw_dvalue:0x0,hw_dhigh:0x18 0x1000

hw_dmask:(n) Specifies the data value mask for a data-range breakpoint. The data value
to which the mask is applied is specified by the hw_dvalue qualifier. The
data value range is determined by masking lower order bits out of the
specified data value.
This facility is supported by ARM EmbeddedICE macrocells.
For example, to set a breakpoint that activates when a data value in the
range 0x400-0x4FF is accessed at address 0x1FA00, enter the command:
BREAKWRITE,hw_dvalue:0x400,hw_dmask:0xF00 0x1FA00

hw_dvalue:(n) Specifies a data value to be compared to values transmitted on the
processor data bus.
This facility is supported by ARM EmbeddedICE macrocells. For
example, this command sets a breakpoint that activates for the data value
0x400:
BREAKWRITE,hw_dvalue:0x400 0x1FA00

hw_in:{s} Input trigger tests. The string that follows matches hardware-supported
input tests as a list of names or a value. The available tests depends on the
Debug Interface and the target processor.
Table 2-20 shows the possible strings for an ARM940T processor.

Table 2-20 Example hw_in test strings for an ARM940T

Input test string Meaning

No "Ext=level" string Ignore external
trigger level

Ext=0x00000001 Low

Ext=0x00000002 High

No "Mode=mode" string Any mode

Mode=0x00000004 Privileged

Mode=0x00000008 User

No "AccessSize=size"
string

Default access
size
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-75
ID052111 Non-Confidential

RealView Debugger Commands
For example, you might have a connection to an ARM940T processor
through DSTREAM or RealView ICE. For this processor, to test for a low
external trigger level and a 32-bit data write in User mode to address
0x10014, enter:
BREAKWRITE,hw_in:"Ext=0x00000002",hw_in:"Mode=0x00000008",hw_in:"Ac

cessSize=0x00000300" 0x10014

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the breakpoint address value.
data Invert the breakpoint value.
then Invert an associated hw_and:{then} condition.
For example, to break when a data value does not match a mask, you can
write:
BREAKWRITE,hw_not:data,hw_dmask:0x00FF ...

The break commands require an address value, and the addr variant of
hw_not uses this address.
BREAKWRITE,hw_not:addr 0x10040

This means to break at any address other than 0x10040. This example is
probably not useful.
The hw_not:then variant of the command is used in conjunction with
hw_and to form nand and nand-then conditions.
This facility is not supported by ARM EmbeddedICE macrocells.

hw_out:{s} Not supported in this release.

hw_passcount:(n) Specifies the number of times that the break condition is ignored before
the breakpoint activates. The default value is 0. This qualifier differs from
passcount only in that it is implemented in hardware. n is limited to a 32-bit
value by the debugger, but might be much more limited by the target
hardware, for example to 8 or 16 bits.
You can combine the hardware and software pass counts to achieve higher
count values. However, the behavior depends on your processor (see
Combining hardware and software pass counts on page 2-71).

macro:{MacroCall(arg1,arg2)}
When the breakpoint is hit, the specified macro is executed. Any program
variables or functions must be in scope at the time the breakpoint request
is entered, or the names must be fully qualified. You must include the
braces { and }.

AccessSize=0x00000100 8-bit

AccessSize=0x00000200 16-bit

AccessSize=0x00000300 32-bit

AccessSize=0x00000400 8/16-bit

AccessSize=0x00000500 8/32-bit

Table 2-20 Example hw_in test strings for an ARM940T (continued)

Input test string Meaning
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-76
ID052111 Non-Confidential

RealView Debugger Commands
message:{"$windowid | fileid$message"}
Activation of the breakpoint results in message being output. Prefixing
message with $windowid | fileid$ enables you to write the message text to
a user-defined window or file. For example:
BREAKWRITE,message:{"100this is a message"}

modify:(n) Instead of creating a new breakpoint, modify the breakpoint with
breakpoint list index number n (see The breakpoint list index number on
page 2-72). The address expression and the qualifiers of the existing
breakpoint are replaced by those specified in this command.

obj:(n) This condition is True if the argument n matches the C++ object pointer,
normally called this.

passcount:(n) Specifies the number of times that the break condition is ignored before
the breakpoint activates. The default value is 0. If you specify this in the
middle of a sequence of break conditions, those specified before the pass
count are processed whether or not the count reaches zero. The conditions
specified afterwards are run only when the count reaches zero.
There is a hardware pass count qualifier available, hw_passcount, for debug
hardware that supports it. You can combine the hardware and software
pass counts to achieve higher count values. However, the behavior
depends on your processor (see Combining hardware and software pass
counts on page 2-71).

Note
 If a hardware breakpoint uses a passcount, the counting is performed on

the host, and so program execution stops briefly every time the breakpoint
is hit, even when the count has not been reached.

update:{"name"} Update the named windows, or all windows, by reading the memory and
processor state when the breakpoint activates. You can use the name all
to refresh all windows, or a name specified in the title bar of the window.
This qualifier enables you to get an overview of the process state at a
particular point, without having to manually restart the process at each
break. The update still takes a significant period of time, and so this
method is unsuitable as a non-intrusive debugging tool.

when:{condition} The breakpoint activates whenever condition, a debugger expression,
evaluates to True.

Note
 Using a macro as an argument to when, reverses the sense of the return

value from the macro.

when_not:{condition}
The breakpoint activates whenever condition, a debugger expression,
evaluates to False.

Examples

The following examples show how to use BREAKWRITE:

BREAKWRITE 0x8000 Stop program execution if the program writes to location 0x8000.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-77
ID052111 Non-Confidential

RealView Debugger Commands
BREAKWRITE 0x1100..0x1200
Stop program execution if the program writes to the 257 bytes from
0x1100-0x1200 (inclusive).

BREAKWRITE 0x1100..0x1200 ; CheckMem(0x100)
Stop program execution if the program writes to the 257 bytes from
0x1100-0x1200 (inclusive) and calls the macro CheckMem with the base
address 0x100.

Alias

BWRITE is an alias of BREAKWRITE.

See also

• Window and file numbers on page 1-5

• Addresses on page 1-26

• Specifying address ranges on page 2-2

• BREAKACCESS on page 2-38

• BREAKEXECUTION on page 2-47

• BREAKINSTRUCTION on page 2-55

• BREAKREAD on page 2-61

• CLEARBREAK on page 2-89

• DTBREAK on page 2-126

• ENABLEBREAK on page 2-140

• VMACRO on page 2-324

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications
— Chapter 11 Setting Breakpoints
— Chapter 12 Controlling the Behavior of Breakpoints

• the following in the RealView Debugger Target Configuration Guide:
— Chapter 4 Configuring Custom Memory Maps, Registers and Peripherals.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-78
ID052111 Non-Confidential

RealView Debugger Commands
2.3.19 BROWSE

Invokes the C++ class browser interface

Syntax

BROWSE symbol

where:

symbol Specifies a C++ class or structure to be browsed.

Description

Displays the parent class or classes and any child classes for the class you specify. You can
specify the class as either a variable name or the class name.

Examples

The following example shows how to use BROWSE:

browse Shakespeare
 Shakespeare
 parents | children
 ____________________|____________________
 / \
 | baseclass
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-79
ID052111 Non-Confidential

RealView Debugger Commands
2.3.20 BWRITE

BWRITE is an alias of BREAKWRITE.

See BREAKWRITE on page 2-70.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-80
ID052111 Non-Confidential

RealView Debugger Commands
2.3.21 CACHEFIND

Searches for an address within the cache.

Syntax

CACHEFIND [,level:n] [,instruction | ,data] address

where:

,level:n The cache level to search. If omitted, the level 1 cache is searched. This qualifier
can be shortened to l.

,instruction Search for the address in the instruction cache.

,data Search for the address in the data cache.

address The address to be searched. For a processor that supports the TrustZone®
technology, you can specify the S: or N: address prefix, for example S:0x2040.

Description

Search the instruction or data cache for the specified address. If both i and d are omitted, the
command searches both instruction and data caches. An address must be provided.

The address does not have to be cache line-aligned. If found, details of the cache line are
displayed, including the set and way and the range of addresses cached.

This command is supported on the following processors:
• ARM1136
• ARM1156
• Cortex™-A8.

Examples

To check whether the address 0x1FFE0 is in the level 1 instruction and data caches on an
ARM1136JF-S, enter:

> cachefind 0x1FFE0
Data cache line in set 127; way 0 contains address range 0x0001FFE0..0x0001FFFF

See also
• CACHEINFO on page 2-82
• CACHELINE on page 2-84
• VA2PA on page 2-319
• cache_find_set on page 3-12
• cache_find_way on page 3-13.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-81
ID052111 Non-Confidential

RealView Debugger Commands
2.3.22 CACHEINFO

Displays details about the cache.

Syntax

CACHEINFO [,level:n] [,instruction | ,data] [,contents]

where:

,level:n The cache level. If omitted, information about the level 1 cache is displayed. This
qualifier can be shortened to l.

,instruction Display a summary of the instruction cache.

,data Display a summary of the data cache.

,contents Display a table of all the cache entries.

Description

Displays details about the specified cache. If you do not specify i or d, then information on all
available caches for the specified level is displayed.

This command is supported on the following processors:
• ARM1136
• ARM1156
• Cortex-A8.

Examples

To display a summary of the level 1 instruction and data caches on an ARM1136JF-S, enter:

> cacheinfo
Data cache, of size 16KB, arranged in 128 sets of 4 ways, with lines of 32 bytes.
Instruction cache, of size 16KB, arranged in 128 sets of 4 ways, with lines of 32
bytes.

To dump the entire contents of the level 1 data cache on an ARM1136JF-S, enter:

> cacheinfo,d,c
Data cache, of size 16KB, arranged in 128 sets of 4 ways, with lines of 32 bytes.
 | Way 0 Way 1 Way 2 Way 3
--
Set 0 | Phy<0x00010000> Phy<0x00021000> Phy<0x00026000> Phy<0x00023000>
Set 1 | Phy<0x00010020> Phy<0x00021020> Phy<0x00022020> Phy<0x00023020>
Set 2 | Phy<0x00025040> Phy<0x00022040> Phy<0x00023040> Phy<0x00026040>
Set 3 | Phy<0x00024060> Phy<0x00010060> Phy<0x00026060> Phy<0x00023060>
...
Set 124 | Phy<0x0001FF80> Phy<0x00020F80> Phy<0x00023F80> Phy<0x00025F80>
Set 125 | Phy<0x0001FFA0> Phy<0x00025FA0> Phy<0x00024FA0> Phy<0x00000FA0>
Set 126 | Phy<0x00025FC0> Phy<0x00024FC0> Phy<0x0001FFC0> Phy<0x00022FC0>
Set 127 | Phy<0x0001FFE0> Phy<0x00000FE0> Phy<0x00025FE0> Phy<0x00024FE0>

To display a summary of the level 2 cache, enter:

> cacheinfo,l:2
Unified cache, of size 16640KB, arranged in 33280 sets of 8 ways, with lines of 64
bytes.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-82
ID052111 Non-Confidential

RealView Debugger Commands
See also
• CACHEFIND on page 2-81
• CACHELINE on page 2-84
• VA2PA on page 2-319
• cache_find_set on page 3-12
• cache_find_way on page 3-13.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-83
ID052111 Non-Confidential

RealView Debugger Commands
2.3.23 CACHELINE

Prints information about a specific cache line.

Syntax

CACHELINE [,level:n] {,instruction | ,data} ,set:index [,way:index]

where:

,level:n The cache level. If omitted, information about the level 1 cache is displayed. This
qualifier can be shortened to l.

,instruction Display a summary of the instruction cache.

,data Display a summary of the data cache.

,set:index Display details about the specific set line. This qualifier can be shortened to s.

,way:index Display details about a specific way line in the specified set. This qualifier can be
shortened to w.

Note
 If the processor has a unified cache, you can omit the i and d qualifiers. If the processor has a
Harvard cache, you must specify i or d.

Description

Prints information about a specific cache line. If no way is specified, all cache lines in the same
set are printed.

This command is supported on the following processors:
• ARM1136
• ARM1156
• Cortex-A8.

Examples

To display all way lines for set line 10 in the level 1 instruction cache on an ARM1136JF-S,
enter:

> cacheline,i,set:10
Instruction cache line in set 10; way 0 contains physical address range
Phy<0x00004140>..Phy<0x0000415F>
Instruction cache line in set 10; way 1 contains physical address range
Phy<0x00000140>..Phy<0x0000015F>
Instruction cache line in set 10; way 2 contains physical address range
Phy<0x00003140>..Phy<0x0000315F>
Instruction cache line in set 10; way 3 contains physical address range
Phy<0x00001140>..Phy<0x0000115F>

See also
• CACHEFIND on page 2-81
• CACHEINFO on page 2-82
• VA2PA on page 2-319
• cache_find_set on page 3-12
• cache_find_way on page 3-13.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-84
ID052111 Non-Confidential

RealView Debugger Commands
2.3.24 CANCEL

Cancels, or interrupts, the execution of commands.

Syntax

CANCEL

Description

The CANCEL command enables you to interrupt, or cancel, an asynchronous command that is still
executing. It is equivalent to the Cancel toolbar icon. If the target is running, only commands
that can definitely be run with a running target are executed. Other commands are held in a
queue for execution when the target stops. This is called pending the command. Use the CANCEL
command to clear pending commands from the list, to stop them being executed.

The CANCEL command can be used to interrupt a script that has been started using Tools →
Include Commands from File..., or the Scripts toolbar.

You cannot use this command to halt target execution. Use HALT to do this.

Note
 Synchronous commands can only be run when target program execution has stopped.

Asynchronous commands can be run at all times.

See also
• HALT on page 2-163
• INTRPT on page 2-171
• WAIT on page 2-329.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-85
ID052111 Non-Confidential

RealView Debugger Commands
2.3.25 CCTRL

Opens and closes the Connect to Target window.

Note
 This command has no effect when running in command line mode.

Syntax

CCTRL

Description

The CCTRL command enables you to open and close the Connect to Target window. If the Connect
to Target window is open, then the command closes the window. If the Connect to Target
window is closed, then the command opens the window.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-86
ID052111 Non-Confidential

RealView Debugger Commands
2.3.26 CEXPRESSION

Calculates and displays the value of an expression. You can also modify variables using the
assignment operator.

Syntax

CEXPRESSION [/R] expression

where:

/R Suppresses printing of the result, that is the line beginning with the text
Result is:

expression A valid debugger expression:
• an expression or symbol name
• a source code line number.

Description

The CEXPRESSION command calculates the value of an expression or assigns a value to a variable.
You cannot manipulate values larger than 4 bytes, other than double values, in an expression.

Rules for the CEXPRESSION command

The following rules apply to the use of the CEXPRESSION command:

• CEXPRESSION runs synchronously if the expression uses target registers, including the stack
pointer, or if it uses target memory and background memory access is not available.
Use the WAIT command to force it to run synchronously.

• Results are displayed in either floating-point format, address format, or in decimal,
hexadecimal, or ASCII format depending on the type of variables used in the expression.

• The ASCII representation is displayed if the expression value is a printable ASCII
character.

• Floating-point numbers are shown as double by default (14 decimal digits of precision).
They can be cast to float to display 6 decimal digits of precision.

Examples

The following examples show how to use CEXPRESSION:

CEXPRESSION Run_Index
Displays the current value of the variable named Run_Index.

CE /R Run_Index=50 Assigns a value of 50 to the variable named Run_Index, and suppresses the
printing of the result.

CE @R0 =20h Writes 0x20 to target register R0.

CE #146.2 Displays details of the second statement at line 146 in the current source
file. For example, for the dhry_1.c source file of the dhrystone image this
command prints:

 Result is: code address 0x00008318 @dhrystone\\DHRY_1\main
 Line 146..146 column 7..21 at 0x00008318..0x0000831B
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-87
ID052111 Non-Confidential

RealView Debugger Commands
See also
• Constructing expressions on page 1-14
• Referencing reserved symbols on page 1-18
• ADD on page 2-16
• DEFINE on page 2-105
• DUMP on page 2-131
• MACRO on page 2-182
• PRINTSYMBOLS on page 2-208
• PRINTVALUE on page 2-211
• REGINFO on page 2-223
• SETMEM on page 2-239
• SETREG on page 2-242
• Chapter 1 Working with the CLI.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-88
ID052111 Non-Confidential

RealView Debugger Commands
2.3.27 CLEARBREAK

Deletes one or more breakpoints.

Syntax

CLEARBREAK,a {breakpoint_address|breakpoint_address_range}

CLEARBREAK [{breakpoint_number|breakpoint_number_range}]

where:

,a breakpoint_address

Specifies the address of the breakpoint to be cleared.

,a breakpoint_address_range

Specifies that all breakpoints within the address range are to be cleared. See
Specifying address ranges on page 2-2 for details on how to specify an address
range.

breakpoint_number

Specifies the number of the breakpoint to be cleared.

breakpoint_number_range

Specifies a range of breakpoint numbers as two integers separated by the range
operator (..).

Description

This command clears (deletes) the breakpoints you specify using either:

• The address of the breakpoint, or an address range containing multiple breakpoints.

• The position of the breakpoint in a list of breakpoints.
You can display a list of the currently defined breakpoints using the command DTBREAK,
and also by displaying the Break/Tracepoints view in the Code window.
When specifying a range of breakpoints, you can either specify the end of the range as an
absolute position, or you can specify the number of breakpoints to delete by typing a plus
sign followed by the number of breakpoints. For example: +3 indicates three breakpoints.

To delete all breakpoints, use CLEARBREAK with no parameters.

CLEARBREAK runs synchronously.

Note
 You can disable a breakpoint, so that the breakpoint is unset but remembered by the debugger,
using the DISABLEBREAK command. You can enable breakpoints that you have disabled, so setting
them on the target again, using the ENABLEBREAK command.

Examples

The following examples show how to use CLEARBREAK:

CL Clears every breakpoint.

CL,a 0x8008 Clears the breakpoint at the address 0x8008.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-89
ID052111 Non-Confidential

RealView Debugger Commands
CL,a 0x8008..0x8024
Clears all breakpoints in the address range 0x8008..0x8024.

CL,a 5..7 Clears the fifth, sixth, and seventh breakpoints in the current list.

CL 5..+3 Clears the fifth, sixth, and seventh breakpoints in the current list.

See also
• BREAKACCESS on page 2-38
• BREAKEXECUTION on page 2-47
• BREAKINSTRUCTION on page 2-55
• BREAKREAD on page 2-61
• BREAKWRITE on page 2-70
• DISABLEBREAK on page 2-114
• DTBREAK on page 2-126
• ENABLEBREAK on page 2-140
• RESETBREAKS on page 2-228.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-90
ID052111 Non-Confidential

RealView Debugger Commands
2.3.28 COMPARE

Compares two blocks of memory and displays the differences.

Syntax

COMPARE [/R] address-range, address

where:

/R Instructs the debugger to continue comparing and displaying mismatches until
either the end of the block is reached or you press CTRL+Break to abort the
operation.

address-range

Specifies the address range to be compared using two addresses separated by the
range operator (..). See Specifying address ranges on page 2-2 for details on how
to specify an address range.

address Specifies the starting address of the block of memory to use as a comparison.

Description

A specified block of memory is compared to a block of the same size starting at a specified
location.

Mismatched addresses and values are displayed. If you are using the GUI, then they are
displayed in the Output view. Entering the command again at this point without parameters
continues the process starting with the first byte after the mismatch.

If the contents of the two blocks of memory are the same, the debugger displays the message:

Memory blocks are the same.

COMPARE runs synchronously unless background access to target memory is supported. Use the
WAIT command to force it to run synchronously.

Examples

The following examples show how to use COMPARE:

com 0x8100..0x82FF,0x8700

Compares the contents of memory from 0x8100 to 0x82FF with the contents
of memory from 0x8700 to 088FF, stopping at the first mismatch.

com/r 0x8100..0x81FF,0x8700

Compares the contents of memory from 0x8100 to 0x81FF with the contents
of memory from 0x8700 to 087FF, displaying all the differences found.

com/r 0x8100..+512,0x8700

Compares the contents of memory from 0x8100 to 0x81FF with the contents
of memory from 0x8700 to 088FF, displaying all the differences found.

See also
• COPY on page 2-98
• FILL on page 2-149
• MEMWINDOW on page 2-188
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-91
ID052111 Non-Confidential

RealView Debugger Commands
• TEST on page 2-273
• VERIFYFILE on page 2-322.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-92
ID052111 Non-Confidential

RealView Debugger Commands
2.3.29 CONNECT

Connects the debugger to a specified target.

Syntax

CONNECT [{,reset|,noreset}] [{,halt|,nohalt}] [=] "@connection-id"

CONNECT [,gui] [=] "@connection-id"

where:

reset Reset the target before connecting to it.

noreset Do not reset the target on connecting to it.

halt Stop the target on connecting to it.

nohalt Do not stop the target on connecting to it.

"connection-id"

Specifies the required connection name (see Connecting to a target on
page 2-94).
The quotes are optional for connections to targets with names that contain
alphanumeric characters, underscores, or hyphens. For example:
@ARM926EJ-S_0@RealView-ICE

If you have a SoC Designer target, the target and model names are usually
separated by a period, and multiprocessor models include the processor number
in square brackets. Therefore, you must include the quotes. For example:
"@ARM926EJ-S_x2.arm926ej-s[0]@SoC"

gui Enables you to choose the connect mode from a dialog or prompt:
• If you use this option when running in GUI mode, it displays a dialog.
• If you use this option when running in command line mode, it displays a

prompt.
The connect specifies what state you want the debugger to leave the target in after
the connection. See Connect modes on page 2-94 for more details.

Description

The CONNECT command creates a new target connection. The details of the connection are
specified using the board file. To connect to a target you indicate which target in the board file
you want to connect to, using the identifier string.

Using the CONNECT command means that you do not use the Connect to Target window. However,
it is helpful to think of that window when considering the operation of the CONNECT command.
An example Connect to Target window is shown in Figure 2-2 on page 2-94.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-93
ID052111 Non-Confidential

RealView Debugger Commands
Figure 2-2 Connect to Target window (Configuration grouping)

Note
 If you set the connect mode in the board (.BRD) file of the target the target connects using that
mode. If you specify prompt for the connect mode, then the CONNECT command acts as though you
specified the ,gui qualifier. The reset, noreset, halt, and nohalt qualifiers override the connect
mode setting in the board file.

Restrictions on the use of CONNECT

The CONNECT command is not allowed in a macro.

Connect modes

When you connect to a target, the connect mode determines what happens to the target:

No Reset and Stop (,noreset,halt)
Connect to the target, but do not reset it. If the target is running, stop it. This is the
default.

No Reset and No Stop (,noreset,nohalt)
Connect to the target, but do not reset it. The running state of the target is
unchanged.

Reset and Stop (,reset,halt)
Connect to the target, and reset it. If the target is running after the reset, stop it.

Reset and No Stop (,reset,nohalt)
Connect to the target, and reset it. The running state of the target is unchanged.

Note
 The connect modes available depend on the Debug Interface you are using.

Connecting to a target

You can connect to a target where the Debug Configuration is not currently expanded using a
single command:

connect "@target@DebugConfiguration"
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-94
ID052111 Non-Confidential

RealView Debugger Commands
Depending on the Debug Interface, target might include a numerical suffix. If there is more
than one target configured for a Debug Configuration, then the number reflects the order on the
JTAG scan chain for hardware targets.

If you have created more than one Debug Configuration, and both provide access to targets with
the same name (for example, ARM940T_0), then the debugger connects to the target of the first
Debug Configuration that you accessed.

For example:

connect @ARM940T_0@RealView-ICE

This command connects to the ARM940T_0 target, expecting this to be available in the
RealView-ICE Debug Configuration.

If the Debug Configuration, in this case RealView-ICE, has not been configured with an
ARM940T_0, the connection fails with the message Error P1001E (Parser): Specified target not
in list of available targets. You must correctly configure the Debug Configuration before
you connect to the target.

If you specify a target that has not been configured, you are prompted to configure the target
before you can connect.

See also

• BOARD on page 2-35

• DISCONNECT on page 2-118

• EDITBOARDFILE on page 2-136

• RESTART on page 2-230

• RUN on page 2-232

• SYNCHEXEC on page 2-271

• XTRIGGER on page 2-335

• the following in the RealView Debugger User Guide:
— About creating a Debug Configuration on page 3-8
— Specifying connect and disconnect mode on page 3-19

• the following in the RealView Debugger Target Configuration Guide:
— Chapter 2 Customizing a Debug Interface configuration.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-95
ID052111 Non-Confidential

RealView Debugger Commands
2.3.30 CONTEXT

Displays the current context.

Syntax

CONTEXT [/F]

where:

/F Displays all contexts (roots).

Description

The CONTEXT command displays the current context. If you are using the GUI, then the context
is displayed in the Output view. The context includes the current root, module, procedure, and
line. The context must be in a module with high-level debug information for the line number to
be displayed.

If the context is at the PC, then the text At the PC: is displayed.

If you have changed scope to a location other than that pointed to by the PC, then the text Scoped
to: is displayed.

CONTEXT runs asynchronously unless it is run in a macro.

Examples

The following example shows how to use CONTEXT using the dhrystone application:

> context
At the PC: (0x00008000): ENTRY__main
Source view: DHRY_1\main Line 78

This demonstrates the case where the PC and the current source view do not correspond. In this
case, the editor is displaying the beginning of the function main() at line 78, while the pc is at
location 0x8000 in the __main(), the routine that calls main().

The following example sets a breakpoint in main() and runs to that breakpoint:

> bi \DHRY_1\#98:0
> go
Stopped at 0x000084D0 due to SW Instruction Breakpoint
Stopped at 0x000084D0: DHRY_1\main Line 98
> con
At the PC: (0x000084D0): DHRY_1\main Line 98

Because the PC and the source view are synchronized, the form of the message changes.

Finally, the /F form, of CONTEXT displays the Root: specification shown in the following example:

> CONTEXT/F
At the PC: (0x000084D0): DHRY_1_1\DHRY_1_C\main Line 98
Root: @dhrystone\\ [SCOPE]

See also
• DOWN on page 2-124
• PRINTSYMBOLS on page 2-208
• SCOPE on page 2-234
• SETREG on page 2-242
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-96
ID052111 Non-Confidential

RealView Debugger Commands
• UP on page 2-318
• Chapter 1 Working with the CLI.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-97
ID052111 Non-Confidential

RealView Debugger Commands
2.3.31 COPY

Copies a region of memory.

Syntax

COPY addressrange ,targetaddr

where:

addressrange Specifies the address range to be copied.

targetaddr Specifies the starting address where the copied memory is placed.

Description

The COPY command copies the contents of a specified block of memory to a block of the same
size starting at a specified location.

The command copies data from low address to high addresses, without taking account of
overlapping source and destination memory regions. You must not rely on this behavior in
future versions of the debugger.

COPY runs synchronously unless background access to target memory is supported. Use the WAIT
command to force it to run synchronously.

Examples

The following examples show how to use COPY:

copy 0x8100..0x81FF,0x8700
Copies the contents of memory at 0x8100 to 0x81FF to memory at 0x8700 to 087FF.

copy 0x8100..+128,0x8700
Copies the contents of memory at 0x8100 to 0x817F to memory at 0x8700 to 0877F.

See also
• COMPARE on page 2-91
• FILL on page 2-149
• LOAD on page 2-176
• READFILE on page 2-219
• TEST on page 2-273
• SETMEM on page 2-239.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-98
ID052111 Non-Confidential

RealView Debugger Commands
2.3.32 COREINFO

Displays information about the current target.

Note
 This command is supported for ARM architecture-based targets only.

Syntax

COREINFO [type]

where:

type Specifies the type of information required, which can be one of the following:
ip_vendor Displays the intellectual property (IP) vendor name.
architecture

Displays the architecture of the target, for example, ARMv5TE.
core_name Displays the processor name, for example, ARM966E-S.
arm_isa Displays the ARM ISA version, for example, ARM_ISAv5.
thumb_isa Displays the Thumb ISA version, for example, THUMB_ISAv2.
vfp Indicates the supported VFP version if available, for example, VFPv1.
If no type is specified, then the list of available types is displayed.

Description

The COREINFO command displays specific information about the current target.

See also
• CORESTATE on page 2-100.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-99
ID052111 Non-Confidential

RealView Debugger Commands
2.3.33 CORESTATE

Displays the execution state of the current target.

Syntax

CORESTATE

Description

The CORESTATE command displays the execution state of the current target, either:
• Stopped

• Running.

See also
• COREINFO on page 2-99.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-100
ID052111 Non-Confidential

RealView Debugger Commands
2.3.34 CWD

Change the current working directory.

Syntax

CWD directory

Description

Sets the current working directory to a specified directory. By default, the current working
directory depends on where you first start RealView Debugger, and is changed to the location
of a loaded image.

See also
• PWD on page 2-216
• the following in the RealView Debugger User Guide:

— The current working directory on page 2-10.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-101
ID052111 Non-Confidential

RealView Debugger Commands
2.3.35 DBOARD

DBOARD is an alias of DTBOARD.

See DTBOARD on page 2-125.

2.3.36 DBREAK

DBREAK is an alias of DTBREAK.

See DTBREAK on page 2-126.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-102
ID052111 Non-Confidential

RealView Debugger Commands
2.3.37 DCOMMANDS

Lists the commands available based on the Debug Interface, target processor, and type of
connection.

Syntax

DCOMMANDS [{,full | ,alias}] [,cmd_class...] [{;windowid | ;fileid}]

DCOMMANDS [{,full | ,alias}] =specific_cmd [{;windowid | ;fileid}]

where:

cmd_class Specifies a class of commands to have details displayed, and can be any of the
following:
status or display

to list status and display commands
setstatus or ss

to list setstatus commands
breakcomplex or bc

to list breakcomplex commands
If no command class is specified, all of the commands known to DCOMMANDS are
described.

alias Show a summary of names and aliases for the specified command class.

full Show more detailed information on the specified command class.

specific_cmd Specifies a particular command to display, or all to display all commands known
to DCOMMANDS.

;windowid | ;fileid

Identifies the window or file where the command is to send the output. See
Window and file numbers on page 1-5 for details.
If you do not supply a ;windowid or ;fileid parameter, output is displayed on the
screen. If you are using the GUI, then the output is displayed in the Output view.

Description

The DCOMMANDS command displays the list of commands supported by the current target. The
optional command class qualifier enables you to display one or more specific classes of
commands. The specific_cmd argument shows a specified command. The full qualifier
provides extended detail on the command.

Note
 Some commands are not listed in the DCOMMANDS command list, and DCOMMANDS reports that these
commands are unknown if you request help with the specific_cmd argument. This is a limitation
of the current implementation of the help system and does not indicate a fault in the operation
of the commands.

Examples

The following examples show the use of DCOMMANDS. The first command displays a summary of
all status commands that are available on the current target:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-103
ID052111 Non-Confidential

RealView Debugger Commands
> dcom,status =all
 dcommands [{,cmd_classes...}] [=specific_cmd] [;viewport]
or dhelp [{,cmd_classes...}] [=specific_cmd] [;viewport]
 dtboard [={resource,...}] [;viewport]
or dboard [={resource,...}] [;viewport]
 dtprocess [={task,...}] [;viewport]
or dvprocess [={task,...}] [;viewport]
 dtfile [={value,...}] [;viewport]
or dvfile [={value,...}] [;viewport]
or dmap [={value,...}] [;viewport]
 dtbreak [={threads,...}] [;viewport]
or dbreak [={threads,...}] [;viewport]

Note
 ;viewport in the command syntax can be either ;windowid or ;fileid.

This command displays a more complete summary of the XTRIGGER command:

> dcom,full xtrig
 xtrigger [{,qualifier...}] [={boards,...}]

Qualifiers:
 in_disable in_enabl eout_disable out_enable onhost

This command is used to set the cross-triggering state of the selected
boards. This can be used to control what happens when any board stops. It
will be implemented using hardware when possible but can be forced to use
software (on host) methods.

Alias

DHELP is an alias of DCOMMANDS.

See also
• HELP on page 2-165
• SHOW on page 2-248.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-104
ID052111 Non-Confidential

RealView Debugger Commands
2.3.38 DEFINE

Creates a macro for use by other RealView Debugger components.

Note
 Because a macro definition requires multiple lines, you cannot use the DEFINE command from
the RealView Debugger command prompt. Instead, you must either:
• Use the macro command GUI.
• Write your macro definition in a text file and load it into RealView Debugger using the

INCLUDE command.

Syntax

DEFINE [/R] [return_type] macro_name ([parameters])
[parameter_definitions]
{
 macro_body
}
.

where:

/R The new macro can replace an existing symbol with the same name.

return_type Specifies the return type of the macro. If a type is not specified, return_type
defaults to type int.

macro_name Specifies the name of the macro.

parameters Lists parameters (comma-separated list within parentheses). These parameters
can be used throughout the macro definition and are later replaced with the values
of the actual parameters in the macro call.

param_definitions

Defines the types of the variables in parameter_list. If types are not specified, the
default type int is assumed.

macro_body Represents the contents of the macro, and is split over many lines. The syntax for
macro_body is:
[local_definitions]
macro_statement;[macro_statement;] ...

local_definitions are the variables used within the macro_body.
A macro_statement is any legal C statement except switch and goto statements, or
a debugger command. If macro_statement is a debugger command, it must start
with a dollar sign ($) and end with a dollar sign and a semicolon ($;). All
statements are terminated by a semicolon.
The macro_body ends with a line containing only a period (full stop).

Description

The definition contains a macro name, the parameters passed to the macro, the source lines of
the macro, and a terminating period as the first and only character on the last line.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-105
ID052111 Non-Confidential

RealView Debugger Commands
After a macro has been loaded into RealView Debugger, the definition is stored in the symbol
table. If the symbol table is recreated, for example when an image is loaded with symbols, any
macros are automatically deleted. The number of macros that can be defined is limited only by
the available memory on your workstation.

Macros can be invoked by name on the command line where the name does not conflict with
other commands or aliases and the return value is not required. You can also invoke a macro on
the command line using the MACRO command, and in expressions, for example using the
CEXPRESSION command.

Macros can also be invoked as actions associated with:
• a window, for example VMACRO
• the GO and GOSTEP commands
• a breakpoint, for example BREAKEXECUTION
• deferred commands, for example BGLOBAL.

Note
 Macros invoked as associated actions cannot execute GO, or GOSTEP, or any of the stepping
commands, for example STEPINSTR.

If you require a breakpoint that, when the condition is met, does something and then continues
program execution, you must use the breakpoint continue qualifier, or return 1 from the macro
call, instead of the GO command. See the breakpoint command descriptions for more details.

Restrictions on the use of DEFINE

The DEFINE command is not allowed in a macro.

Examples

The following examples show how to use DEFINE:

define float square(f)
 float f;
{
 return (f*f);
}
.

define show_i()
{
 int i;
 i = 10;
 $printf "value of i = %d\n", i$;
 return (1);
}
.

define /R int userPrompt()
{
 char userPromptBuffer[100];
 int retval;
 retval = prompt_text("Please enter text", userPromptBuffer);
 if (retval == 0) {
 $printf "Clicked OK\n"$;
 $printf "%s\n", userPromptBuffer$;
 } else
 $printf "Clicked Cancel\n"$;
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-106
ID052111 Non-Confidential

RealView Debugger Commands
 return 1;
}
.

See also
• Macro language on page 1-10
• ALIAS on page 2-21
• BGLOBAL on page 2-31
• BREAKEXECUTION on page 2-47
• CEXPRESSION on page 2-87
• GO on page 2-159
• GOSTEP on page 2-161
• INCLUDE on page 2-168
• MACRO on page 2-182.
• SHOW on page 2-248
• VMACRO on page 2-324
• the following in the RealView Debugger User Guide:

— Chapter 16 Using Macros for Debugging.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-107
ID052111 Non-Confidential

RealView Debugger Commands
2.3.39 DELBOARD

Temporarily deletes a Debug Configuration entry from the displayed list.

Syntax

DELBOARD [=resource,...]

where:

resource The name of the Debug Configuration that is to have its entry deleted from the
list.

Description

Use this command to temporarily delete a Debug Configuration that does not have any targets
connected. Also, if you are using the Configuration grouping in the Connect to Target window,
then the Debug Configuration must not have been expanded to show the list of targets. If you
specify a Debug Configuration that has a target connected, or has been expanded, then the
following message is displayed:

Board n is connected - cannot delete.

If you do not specify a Debug Configuration, all Debug Configurations that do not have targets
connected are deleted.

Note
 The Debug Configurations are not deleted from the board file (.brd). The deleted Debug
Configuration becomes available again you issue a READBOARDFILE command or restart the
debugger. However, you must disconnect from all connected target first.

Example

To temporarily delete the RVISS_2 Debug Configuration, enter:

delboard ="RVISS_2"

This command deletes the Debug Configuration NAME RVISS_2. The target for this
configuration must not be connected when the command is issued.

See also

• BOARD on page 2-35

• CONNECT on page 2-93

• EDITBOARDFILE on page 2-136

• the following in the RealView Debugger Target Configuration Guide:
— Loading a different board file on page 3-15.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-108
ID052111 Non-Confidential

RealView Debugger Commands
2.3.40 DELETE

Deletes macros or one or more symbols from the symbol table.

Syntax

DELETE {symbol_name | \\ | \ | macroname} [,y]

where:

symbol_name Specifies the symbol to be removed from the symbol table.

symbol_name\ Deletes the specified symbol and all symbols it owns (its child symbols).

root\\ Deletes all symbols of the specified root.

\\ Deletes all user-defined symbols of the base root.

\ Deletes all symbols of the current root.

macroname Deletes the specified macro.

y Specifies that DELETE can delete child symbols if the specified symbol has them.
If this is not done, DELETE prompts for confirmation before deleting child symbols.

Description

The DELETE command deletes symbols from the symbol table associated with the current
connection. Symbols are entered into the symbol table when an executable file containing them
is loaded onto the connection using LOAD or RELOAD, and when you use the ADD command.

Deleting a symbol or group of symbols is useful if the program has changed, perhaps as a result
of runtime patching of the executable. To change the memory location of a symbol such as an
address label, you must first delete it and then add it again at the new location.

You can also use the DELETE command to delete debugger macros that you have created using
the MACRO command.

You cannot use DELETE to delete debugger command aliases. Instead, define the alias to be
nothing:

alias name=

Rules for the DELETE command

The following rules apply to the use of the DELETE command:

• The DELETE command runs asynchronously unless in a macro.

• If the DELETE command is used inside a macro, and you attempt to delete the macro
containing the command, an error message is displayed.

• All debugging information for that symbol is deleted, but program execution is
unchanged.

Note
 If you delete a symbol that is defined by your image, then you cannot perform various

debugging tasks on that symbol, such as setting a breakpoint on that symbol. You must do
a full load of the image to recover the debugging symbols.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-109
ID052111 Non-Confidential

RealView Debugger Commands
• Only program symbols, macros, and user-defined debugger symbols can be deleted from
the symbol table. Predefined symbols, such as register names, cannot be deleted.

• If more than one symbol exists with the same name, then RealView Debugger displays the
error:
Error: E0098: Cannot delete: more than one symbol with this name.

You must specify the full symbol reference to delete it.
For example, if you load a macro called sqr, and you have a function in your image called
sqr, then to delete the macro you must enter:
delete \\sqr

Note
 To see all the definitions that exist for a symbol name, use the PRINTSYMBOLS command, for

example:
printsymbols sqr

• If the specified symbol or macro has local symbols, confirmation is requested that you
want to delete all the local symbols. Entering the ,y parameter provides this confirmation
automatically.

See also
• ADD on page 2-16
• ALIAS on page 2-21
• PRINTSYMBOLS on page 2-208
• DEFINE on page 2-105.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-110
ID052111 Non-Confidential

RealView Debugger Commands
2.3.41 DELFILE

Removes filenames from the executable file list, provided the specified file is not loaded onto
the target.

Syntax

DELFILE [,auto] {filename | file_num}

where:

auto Causes the command to remove unloaded files from the file list that were added
as a result of the ADDFILE,auto command.

filename|file_num

Identifies a file to be removed from the executable file list.
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myfiles, you can specify:
delfile "$MYPATH\\myimage.axf"

Description

The ADDFILE and the DELFILE commands are used to manipulate the executable image file list.
This list is in most cases only one file, the executable you load onto the target using LOAD. There
are circumstances where you must load more than one file onto the target at once. In these cases
you use ADDFILE to set up the files to load, and RELOAD or LOAD/A to load them onto the target.

You use DELFILE to remove unloaded files that you have added to the executable file list. There
are several ways to specify the files to delete:
• by complete filename, for example C:\Source\dhry\Debug\dhry.axf
• by short filename, for example dhry.axf
• by file number, for example 2
• as the currently unloaded files that were added to the list by ADDFILE,auto
• as all currently unloaded files.

DELFILE with no arguments deletes all currently unloaded files, and DELFILE,auto deletes any
currently unloaded files added as a result of an ADDFILE,auto.

Use DTFILE to display the current file list, including the defined short filenames, file numbers
and whether the file is loaded or not.

Note
 • If you use the full filename you must enclose it in double quotation marks. You do not

have to quote the short filename in quotation marks, although you can.

Restrictions on the use of DELFILE

The DELFILE command has the following restrictions:

• The DELFILE command is not allowed in a macro.

• You cannot delete multiple named or numbered files in a single command. Use multiple
DELFILE commands, or delete all files and then use ADDFILE as required.

• An executable file must be unloaded from the target before its name can be removed from
the file list. Use the UNLOAD command to unload a file that is no longer being used by the
target.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-111
ID052111 Non-Confidential

RealView Debugger Commands
Examples

The following examples show how to use ADDFILE and DELFILE:

> addfile ="C:\Source\helloworld\Debug\helloworld.axf"
> dtfile
File 1 with modid <not loaded>: Symbols not Loaded. 0 Sections.
 'helloworld.axf' As 'C:\Source\helloworld\Debug\helloworld.axf'

A file is added to the executable list, using ADDFILE, and DTFILE shows that it is on the list and
has file number, or id, of 1 (the File 1 part of the output from DTFILE).

Because the file has not been loaded, the debugger has not read the symbol table to determine
the code, data and Base Stack Segment (BSS) section sizes that a DTFILE following a LOAD
displays.

To delete this file, you can use the file ID, reported in the first line of DTFILE output, as follows:

> delfile 1
> dtfile
No files for this process.

The DTFILE output tells you that the deletion was successful. In this particular case, the file id is
not required, because a DELFILE with no parameters deletes all unloadable files. For example:

> addfile ="C:\Source\helloworld\Debug\helloworld.axf"
> delfile
> dtfile
No files for this process.

You can name the file to delete, using either the full name of the file or the short name listed in
the DTFILE result:

> addfile ="C:\Source\helloworld\Debug\helloworld.axf"
> delfile helloworld.axf
> dtfile
No files for this process.

> addfile ="C:\Source\helloworld\Debug\helloworld.axf"
> delfile "C:\Source\helloworld\Debug\helloworld.axf"
> dtfile
No files for this process.

See also
• ADDFILE on page 2-19
• DTFILE on page 2-128
• LOAD on page 2-176
• RELOAD on page 2-225
• UNLOAD on page 2-316.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-112
ID052111 Non-Confidential

RealView Debugger Commands
2.3.42 DHELP

DHELP is an alias of DCOMMANDS.

See DCOMMANDS on page 2-103.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-113
ID052111 Non-Confidential

RealView Debugger Commands
2.3.43 DISABLEBREAK

Disables one or more specified breakpoints.

Syntax

DISABLEBREAK ,a {breakpoint_address|breakpoint_address_range}

DISABLEBREAK [,h] [break_num,...]

where:

,a breakpoint_address

Specifies the address of the breakpoint to be disabled.

,a breakpoint_address_range

Specifies that all breakpoints within the address range are to be disabled. See
Specifying address ranges on page 2-2 for details on how to specify an address
range.

break_num Specifies one or more breakpoints to disable, separated by commas.
You identify breakpoints by their position in the list displayed by the DTBREAK
command.

h Do not use this qualifier. It is for debugger internal use only.

Description

The DISABLEBREAK command disables one or more breakpoints. A disabled breakpoint is
removed from the target as if the breakpoint were deleted, but the debugger keeps a record of it.
You can then enable it again by using the breakpoint address or the breakpoint number when
required, rather than having to recreate it from scratch.

If you issue the command with no parameters then all breakpoints for this connection are
disabled. Disabling a breakpoint that is already disabled has no effect.

Examples

The following examples show how to use DISABLEBREAK:

disablebreak,a 0x8008
Disables the breakpoint at the address 0x8008.

disablebreak,a 0x8008..0x8024
Disables all breakpoints in the address range 0x8008..0x8024.

disablebreak 4,6,8
Disables the fourth, sixth, and eighth breakpoints in the current list of
breakpoints.

disablebreak Disables all the current breakpoints.

See also
• BREAKACCESS on page 2-38
• BREAKEXECUTION on page 2-47
• BREAKINSTRUCTION on page 2-55
• BREAKREAD on page 2-61
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-114
ID052111 Non-Confidential

RealView Debugger Commands
• BREAKWRITE on page 2-70
• CLEARBREAK on page 2-89
• DTBREAK on page 2-126
• ENABLEBREAK on page 2-140
• RESETBREAKS on page 2-228.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-115
ID052111 Non-Confidential

RealView Debugger Commands
2.3.44 DISASSEMBLE

Displays memory addresses and corresponding assembly code on the Disassembly tab of the
Code window.

Syntax

DISASSEMBLE [{/D|/S|/A|/B|/E}] [{address | @stack_level}]

where:

/D Attempt to auto-detect the disassembly mode.

For ARM architecture processors, select from ARM, Thumb®, Jazelle®
bytecodes, or Thumb-2 Execution Environment (Thumb-2EE) using information
from the image file where available.

/S Disassemble using the standard instruction disassembly mode.
For ARM architecture processors, select ARM state (32-bit) instructions.

/A Disassemble using the alternate instruction disassembly mode.
For ARM architecture processors, select Thumb state (16-bit) instructions.

/B Disassemble using Jazelle bytecode assembly instructions. This is available only
for ARM processors.

/E Disassemble using Thumb-2EE assembly instructions. This is available only for
ARM processors.

address Specifies the starting address for disassembly. This can be a literal address or a
debugger expression.

stack_level Enables you to specify the starting point without knowing its address. Stack level
0 is the current address in the current procedure, stack level 1 is the code address
from which the current procedure was called.

Description

The DISASSEMBLE command displays memory addresses in hexadecimal and assembly code on
the Disassembly tab of the Code window, starting at the specified memory location and using
the assembler mnemonics and register names associated with the processor type of this
connection.

Where multiple assembler mnemonics exist for the same processor type (for example, with the
ARM and the GNU assemblers for ARM processors) the debugger can only use one of them.
There is no way to select the alternate form.

Note
 Different target connections can be connected to different processor types and so have differing
register names and assembler mnemonics.

If the specified address falls in the middle of an instruction, the whole instruction is displayed.
Memory is displayed starting at the address held in the PC if you do not supply an address. The
current execution context and variable scope of the program remains unchanged even if you
select an alternate stack level.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-116
ID052111 Non-Confidential

RealView Debugger Commands
If you issue the OPTION command with the LINES=ON option, source code is intermixed with the
assembly language code. If you issue the OPTION command with the SYMBOLS=ON option, symbol
references are displayed with the assembly language symbols and labels.

The DISASSEMBLE command runs synchronously unless background access to target memory is
supported. Use the WAIT command to force it to run synchronously.

Examples

The following examples show how to use DISASSEMBLE:

DISASSEMBLE /S @1
Disassemble, using the standard instruction format (for ARM processors, the
ARM state format), the instructions that are executed when the current function
returns, displaying the result in the Disassembly tab of the Code window.

DISASSEMBLE 0x80200
Disassemble, using an instruction format selected using symbol table
information, the instructions starting at address 0x80200, displaying the result in
the Disassembly tab of the Code window.

See also
• DUMPMAP on page 2-133
• DUMP on page 2-131
• LOAD on page 2-176
• MEMWINDOW on page 2-188
• MODE on page 2-190
• PRINTDSM on page 2-203
• SETTINGS on page 2-245
• WHERE on page 2-331.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-117
ID052111 Non-Confidential

RealView Debugger Commands
2.3.45 DISCONNECT

Disconnects the debugger from a target.

Syntax

DISCONNECT [,all | ,gui] [{,debug|,nodebug}] [=][@target]

where:

all Disconnects all connections.

gui Enables you to choose the disconnect mode from a dialog or prompt:
• If you use this option when running in GUI mode, it displays a dialog.
• If you use this option when running in command line mode, it displays a

prompt.
The disconnect specifies what state you want the debugger to leave the target in
after the disconnection. See Disconnect modes for more details.

debug Disconnects using the As-is with Debug mode (see Disconnect modes).

nodebug Disconnects using the As-is without Debug mode (see Disconnect modes). This is
the default.

target Specifies the required target name as it appears in the GUI.

Description

The DISCONNECT command disconnects the debugger from a target, undoing the action of a
previous CONNECT. You can specify the target as outlined for the CONNECT command.

Note
 If you set the disconnect mode in the board (.BRD) file of the target, the target disconnects using
that mode. If you specify prompt for the disconnect mode, then the DISCONNECT command acts as
though you specified the ,gui qualifier.

The DISCONNECT command runs asynchronously.

You cannot use the DISCONNECT command inside a macro.

Disconnect modes

When you disconnect from a target, the disconnect mode determines what happens to the target:

As-is with Debug Leave the target in the current run state and the current debug state. That is:
• If the target is running, leave it running. If the target is stopped in

debug state, leave it stopped.
• Current debug state intact, for example, breakpoints remain set.

As-is without Debug
Leave the target in the current run state but without the current debug state.
That is:
• If the target is running, leave it running. If the target is stopped in

debug state, leave it stopped.
• Current debug state lost, for example, breakpoints are removed.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-118
ID052111 Non-Confidential

RealView Debugger Commands
Note
 The disconnect modes available depend on the Debug Interface you are using.

Implications for OS-aware connections

If you disconnect from an OS-aware connection, RealView Debugger sends a command to the
Debug Agent, which might resume all stopped threads depending on how the Debug Agent is
implemented.

Restrictions on the use of DISCONNECT

The DISCONNECT command is not allowed in a macro.

Examples

The following examples show how to use DISCONNECT:

disconnect,all Disconnect all currently connected connections.

disconnect Disconnect the current target:
In the GUI, this is the target shown in the title bar of the Code window
where you enter the command. Therefore, if you enter the command in a
Code window that is attached to a connection, then the connection to
which the Code window is attached is disconnected.

Note
 You can determine the current connection using the BOARD command.

disconnect,gui @ARM940T_0@RVI
Open the Disconnect Mode selection dialog box to disconnect the target
@ARM940T_0@RVI.

disconnect @ARM7TDMI@RVISS
Disconnect the named RVISS target. The Debug Configuration, @RVISS, is
optional where there is no ambiguity.

Note
 Target names must be entered as they appear in the Connect to Target window.

See also

• BOARD on page 2-35

• CONNECT on page 2-93

• RESTART on page 2-230

• the following in the RealView Debugger User Guide:
— Disconnecting from a target using different modes on page 3-55.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-119
ID052111 Non-Confidential

RealView Debugger Commands
2.3.46 DLOADERR

Displays possible reasons for the last load error.

Syntax

dloaderr [{,gui | ;windowid | ;fileid}]

where:

gui This qualifier causes the results to be displayed in a dialog.

Note
 This qualifier has no effect when running in command line mode.

;windowid | ;fileid

Identifies the window or file where the command is to send the output. See
Window and file numbers on page 1-5 for details.

Description

The DLOADERR command displays possible reasons for the most recent program executable load
error, and suggests actions you might take.

If you issue the command with no qualifier or parameter, then its output is displayed on the
screen. If you are using the GUI, then the output is displayed in the Output view. You can use
the FOPEN or VOPEN commands to open a user-defined file or window and redirect the message
output to that file or window.

See also
• FOPEN on page 2-154
• LOAD on page 2-176
• RELOAD on page 2-225
• VOPEN on page 2-326.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-120
ID052111 Non-Confidential

RealView Debugger Commands
2.3.47 DMAP

DMAP is an alias of DTFILE.

See DTFILE on page 2-128.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-121
ID052111 Non-Confidential

RealView Debugger Commands
2.3.48 DOS_resource_list

Displays an OS resource list or shows details of one element in that list.

Syntax

DOS_resource_list ,qualifier [=value] [{;windowid | ;fileid}]

where:

resource Specifies the resource list, for example thread.

qualifier Specifies what to display, that is all or detail. detail is the default if you specify
a value. If you do not specify a value, you must use all.

value Identifies an object in the specified resource list.

;windowid | ;fileid

Identifies the window or file where the command is to send the output. See
Window and file numbers on page 1-5 for details.

Description

The DOS_resource_list command displays an OS resource list or shows details of one element
in that list. If you are using the GUI, then these are displayed in the Output view. It displays the
information as shown in the Details area of the Resource Viewer. The resource and qualifier
depend on the OS you are using.

You can get a list of these commands using the DCOMMANDS command, for example:

dcommands all

You can also determine these from the Resource Viewer:

• resource is determined by the tab you select in the Resource List, with the exception of
the Connection tab

• qualifier is determined by right clicking on an object in the selected tab of the Resource
List.

You might want to log your use of the Resource Viewer to determine the CLI commands you
can use with your OS.

Examples

The following examples show how to use DOS_resource-list:

fopen 100,'c:\myfiles\threads.txt'
dos_thread_list,all ;100
vclose 100

Copies the details of all thread resources to the file c:\myfiles\threads.txt.

dos_thread_list,detail = thread_4

dos_thread_list,detail = 0x39d8

Displays details about the thread named thread_4 and the thread with ID 0x39d8.

dos_timer_list,detail = 0x39d8

Displays details about the specified timer.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-122
ID052111 Non-Confidential

RealView Debugger Commands
See also
• AOS_resource_list on page 2-26
• BREAKINSTRUCTION on page 2-55
• GO on page 2-159
• HALT on page 2-163
• INCLUDE on page 2-168
• LOG on page 2-180
• OSCTRL on page 2-200
• STOP on page 2-267
• THREAD on page 2-276
• the following the RealView Debugger RTOS Guide:

— Chapter 6 Viewing OS Resources.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-123
ID052111 Non-Confidential

RealView Debugger Commands
2.3.49 DOWN

Moves the variable scope and source location down the stack (that is, away from the program
entry point, towards the current PC).

Syntax

DOWN [levels]

where:

levels Specifies the number of stack levels to move down. This must be a positive
number.

Description

This command moves the current variable scope, and source or disassembly view location down
the stack by the specified number of levels. The debugger modifies the local variable scope to
display the variables in the new location, and potentially hiding those at the previous level.

If you are already at the lowest level (nearest to the program entry point), a message reminds
you that you cannot move down any more. You must have used an UP command or a SCOPE
command before a DOWN command becomes meaningful. You can move down one level by using
the command without parameters.

The DOWN command runs synchronously unless background access to target memory is
supported. Use the WAIT command to force it to run synchronously.

Example

The following example shows how to use DOWN. The UP command moves the context up the stack
to the enclosing function, so that a variable index is in scope. The value of the index variable is
examined. Another variable, count, is examined by looking at the preceding function. When
count is displayed, the DOWN 2 command is used to return down the stack two levels, to the scope
of the initial function.

> up
> ce index
index = 3
> up
> ce count
count = 55
> down 2

See also
• CEXPRESSION on page 2-87
• CONTEXT on page 2-96
• EXPAND on page 2-146
• SCOPE on page 2-234
• UP on page 2-318
• WHERE on page 2-331.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-124
ID052111 Non-Confidential

RealView Debugger Commands
2.3.50 DTBOARD

Displays information about the current or a specified connection.

Syntax

DTBOARD [="resource",...] [{;windowid | ;fileid }]

where:

resource Identifies the connection that is to have its details displayed. You must specify
each name in double quotation marks, for example:
dtboard ="ARM7TDMI","ARM940T_0"

windowid | fileid

Identifies the window or file where the command is to send the output.

Description

The DTBOARD command displays information about the current or a specified connection. If you
do not specify a connection, the command displays information about the current connection. If
you do not supply a ;windowid parameter, the output is displayed on the screen. If you are using
the GUI, then the output is displayed in the Output view.

Example

The following examples show how to use DTBOARD:

> dtboard
Connected Board 'ARM7TDMI' Port 0: Server supporting Single Tasking.
 Port string: localhost
 Entry of router/broker RVISS

> dtboard "ARM940T_0"
Connected Board 'ARM940T_0' Port 0: Server supporting Single Tasking.
 Port string: USB:109340084
 Entry of router/broker RVI

Alias

DBOARD is an alias of DTBOARD.

See also
• Window and file numbers on page 1-5
• BOARD on page 2-35
• CONNECT on page 2-93
• DTFILE on page 2-128
• VOPEN on page 2-326.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-125
ID052111 Non-Confidential

RealView Debugger Commands
2.3.51 DTBREAK

Displays information on all breakpoints and tracepoints set.

Syntax

DTBREAK [=thread,...] [{;windowid | ;fileid}]

where:

thread Not supported in this release.

windowid | fileid

Identifies the window or file where the command is to send the output.
If you do not supply a windowid or fileid parameter, the output is displayed on the
screen. If you are using the GUI, then the output is displayed in the Output view.

Description

The DTBREAK command displays information about the currently defined breakpoints and
tracepoints.

The output includes the following fields:

S Indicates the enabled and disabled state of the breakpoint or tracepoint:
• a blank entry indicates enabled
• D indicated disabled.

Type The type of breakpoint or tracepoint.

Address The address associated with the breakpoint or tracepoint.
For a data only breakpoint, this field displays the text Data-Value.

Count The number of times a breakpoint has been activated.
If a pass count is assigned, then this field does not begin incrementing until the
pass count has reached zero.

Miscellaneous
Shows the current value of any software pass count condition that is assigned to
the breakpoint.

Example

The following is an example of the output from DTBREAK:

> dtbreak
S Type Address Count Miscellaneous
- ---- ------- ----- -------------
 Instr 0x24000408 0 Pass=10
 Read 0x24000434 0
 Trace InstrExec 0x000085A8 0

Alias

DBREAK is an alias of DTBREAK.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-126
ID052111 Non-Confidential

RealView Debugger Commands
See also
• Window and file numbers on page 1-5
• BREAKACCESS on page 2-38
• BREAKEXECUTION on page 2-47
• BREAKINSTRUCTION on page 2-55
• BREAKREAD on page 2-61
• BREAKWRITE on page 2-70
• CLEARBREAK on page 2-89
• DISABLEBREAK on page 2-114
• DTRACE on page 2-130
• ENABLEBREAK on page 2-140
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-127
ID052111 Non-Confidential

RealView Debugger Commands
2.3.52 DTFILE

Displays information about one or more specified files or all files of the current process.

Syntax

DTFILE [=file_num,...] [{;windowid | ;fileid}]

where:

file_num One or more integer numbers that identify the file or files about which you want
to see information. If you do not supply this parameter, details of all the currently
loaded files are displayed.

windowid | fileid

Identifies the window or file where the command is to send the output.
If you do not supply a windowid or fileid parameter, output is displayed on the
screen. If you are using the GUI, then the output is displayed in the Output view.

Description

The DTFILE command displays information about the currently loaded executable file. The file
numbers are the same as those used in the ADDFILE and DELFILE commands. The information
displayed varies:

• if the file has been loaded onto the target, then the information contains details about the
code and data section sizes and the load addresses

• if the file has not been loaded, the debugger has not yet determined the code and data sizes
and so does not display them.

The first line of the output includes the following information:

File file_num
Used by the ADDFILE, DELFILE, RELOAD and UNLOAD commands to refer to the file.

modid num An internal number.

Symbols Loaded
This item tells you whether the executable file has program debug symbols and
whether they have been loaded. In most cases you require debug symbols to make
sense of the program instructions.

n sections This item tells you how many program sections there are in the file. Each loaded
program section is normally listed with any associated information.

The second line of output contains first the shortname and then the file path name of the file.
The short name is an abbreviation of the name, normally the filename with no directory
specification. The file path name includes the full directory path name for the file. You must
normally specify the file path name enclosed in double quotation marks when entering it in
commands.

If a file was built with separate load regions defined, these load regions are also shown in the
output.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-128
ID052111 Non-Confidential

RealView Debugger Commands
Example

The following example shows the output of DTFILE, displaying information about a loaded
executable called shapes.axf.

> dtfile =1
File 1 with modid 1: Symbols Loaded. 3 Sections.
 'shapes.axf' As 'c:\src\cpp\shapes_Data\Debug\shapes.axf'
 Code section of size 0x02154 at 0x00008000: ER_RO
 Data section of size 0x00018 at 0x0000A154: ER_RW
 BSS section of size 0x00190 at 0x0000A16C: ER_ZI

Alias

DMAP and DVFILE are aliases of DTFILE.

See also
• Window and file numbers on page 1-5
• ADDFILE on page 2-19
• DELFILE on page 2-111
• LOAD on page 2-176
• MEMMAP on page 2-184
• RELOAD on page 2-225
• UNLOAD on page 2-316.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-129
ID052111 Non-Confidential

RealView Debugger Commands
2.3.53 DTRACE

Displays information on trace.

Syntax

DTRACE [{;windowid | ;fileid}]

where:

windowid | fileid

Identifies the window or file where the command is to send the output.
If you do not supply a windowid or fileid parameter, output is displayed on the
screen. If you are using the GUI, then the output is displayed in the Output view.

Description

The DTRACE command displays information about the trace analyzer you are using and the
triggers that are defined.

Example

The following example illustrates the output of DTRACE:

> dtrace
ARM Analyzer: ARM Trace Support. Version 2.0.
2 Tracepoints defined.
 Trigger On at Code 0x846C.
 Trigger On at Code 0x8540.
Buffer collected Before Trigger.
(Before/Around/After Supported).

See also
• Window and file numbers on page 1-5
• ANALYZER on page 2-23
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-130
ID052111 Non-Confidential

RealView Debugger Commands
2.3.54 DUMP

Displays memory contents in hexadecimal or ASCII format.

Syntax

DUMP [{/B|/H|/W|/8|/16|/32}] [{address | address-range}]

Note
 /B|/H|/W are deprecated in this release.

where:

/B | /8 Sets the display format to 8 bits. Each line of output displays 16 bytes.

/H | /16 Sets the display format to 16 bits. Each line of output displays eight 16-bit values.

/W | /32 Sets the display format to 32 bits. Each line of output displays four 32-bit values.

Note
 If no display format is specified, the default is the native format for the debug

target. For example, the ARM7TDMI processor naturally addresses 8 bits.

address Specifies a memory address at which to begin the display of contents. If the start
address is at an offset from the address of a line, then any values at addresses
before the start address are not displayed. The remainder of that line and the
whole of the following line are displayed. For an example, see Examples.

address-range

Specifies a range of memory addresses whose contents are to be displayed. If the
start address is at an offset from the address of a line, then any values at addresses
before the start address are not displayed. If the end address is at an offset from
the address of a line, then any values at addresses after the end address are not
displayed. For an example, see Examples.

Description

The DUMP command displays memory contents in 8-bit, 16-bit or 32-bit hexadecimal values and
ASCII characters on the screen. If you are using the GUI, then they are displayed in the Output
view.

If you do not specify any parameters, the next five lines of data after the previously dumped
address range are displayed. In the character output format, nonprintable characters (such as a
carriage return) are represented by a period (.).

The DUMP command runs synchronously unless background access to target memory is
supported. Use the WAIT command to force it to run synchronously.

Examples

The following example illustrates the output of DUMP. The first example displays two rows of
memory from 0x8000.

> dump 0x8000
 0x00008000 00 00 00 EA 24 06 00 EA 28 C0 8F E2 00 0C 9C E8$...(.......
 0x00008010 0C A0 8A E0 01 70 4A E2 0C B0 8B E0 0B 00 5A E1pJ.......Z.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-131
ID052111 Non-Confidential

RealView Debugger Commands
Executing DUMP again displays a page of memory from 0x8020.

> dump
 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
 --
 0x00008020 86 06 00 0A 0F 00 BA E8 14 E0 4F E2 01 00 13 E3O.....
 0x00008030 03 F0 47 10 03 F0 A0 E1 54 6A 00 00 64 6A 00 00 ..G.....Tj..dj..
 0x00008040 00 30 A0 E3 00 40 A0 E3 00 50 A0 E3 00 60 A0 E3 .0...@...P...`..
 0x00008050 10 20 52 E2 78 00 A1 28 FC FF FF 8A 82 2E B0 E1 . R.x..(........
 0x00008060 30 00 A1 28 00 30 81 45 0E F0 A0 E1 04 30 9F E5 0..(.0.E.....0..

Requesting a DUMP of memory as 16-bit values, and specifying a range of addresses produces the
following result:

> dump /16 0x8338..0x8348
 0x00008330 4844 5952 5453 4E4F DHRYSTON
 0x00008340 2045 5250 474F 4152 2C4D E PROGRAM,

See also
• Specifying address ranges on page 2-2
• CEXPRESSION on page 2-87
• FILL on page 2-149
• MEMWINDOW on page 2-188
• WRITEFILE on page 2-333.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-132
ID052111 Non-Confidential

RealView Debugger Commands
2.3.55 DUMPMAP

Writes the current memory map out as a file, using the native linker format.

Syntax

DUMPMAP filename

where:

filename Specifies the filename or file pathname to which the map is written. It must be
enclosed in either single or double quotation marks if a pathname is specified, and
the pathname must already exist on your system.
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myfiles, you can specify:
dumpmap '$MYPATH\ld.map'

Description

The DUMPMAP command writes a linker map file in the format associated with the current
processor to the named file.

If the filename is a file path name, it must be enclosed in double quotation marks. If it is not an
absolute path name, it is written relative to the current directory of RealView Debugger, which
on Windows is normally your desktop.

If the file already exists, RealView Debugger only replaces the information between the
RVDEBUG: generated data block and the RVDEBUG: generated data above comments.

The command runs synchronously.

Example

The following command saves the memory map for an ARM1176JZF-S processor on an
Integrator/CP development board to the file c:\source\arm1176jzf-s_cp.map:

dumpmap "c:\source\arm1176jzf-s_cp.map"

Example 2-1 shows an example of a generated linker command file. This example shows the
Secure and Normal World memory maps. An image is loaded into the Normal world, and the
Integrator/CP memory map is set up in the Secure World.

Example 2-1 Command file format for an ARM1176JZF-S on an Integrator/CP board

/* Linker Command file for the ARM processor */
/* This file was generated by RVDEBUG. You can edit everything
 outside the MEMORY block defined by RVDEBUG. Updates by
 RVDEBUG will only affect that block.*/

/* RVDEBUG: generated data block. Updated Thu Mar 13 12:08:44 2008
 Do not modify this block. Do not put MEMORY lines above
 this line, put below end of this block.*/
MEMORY
{
 /* Register @G_CM_CTRL has (masked) value 0004 */
 /* Register @G_SC_DEC has (masked) value 0000 */
SECURE MEMORY
{
 M_REMAP_SSRAM:org=0x0000, len=0xFFFFF /* external 'SSRAM' */
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-133
ID052111 Non-Confidential

RealView Debugger Commands
 M_SDRAM: org=0x100000, len=0xFEFFFFF /* external 'SDRAM' */
 M_CPU_REG: org=0x10000000, len=0x003F /* external 'CPU Registers' */
 M_CPU_INT_CTRL:org=0x10000040, len=0x003F /* external 'CPU Int.Ctrl' */
 M_SPDMEM: org=0x10000100, len=0x01FF /* external 'SDRAM SPDMEM' */
 M_SSRAM: org=0x10800000, len=0xFFFFF /* external 'SSRAM' */
 M_CNT_TIMER: org=0x13000000, len=0xFFFFFF /* external 'Counter Timer' */
 M_INT_CTRL: org=0x14000000, len=0xFFFFFF /* external 'Int. Ctrl' */
 M_RTC: org=0x15000000, len=0xFFFFFF /* external 'RTC' */
 M_UART0: org=0x16000000, len=0xFFFFFF /* external 'Uart0' */
 M_UART1: org=0x17000000, len=0xFFFFFF /* external 'Uart1' */
 M_KBD: org=0x18000000, len=0xFFFFFF /* external 'Keyboard' */
 M_MOUSE: org=0x19000000, len=0xFFFFFF /* external 'Mouse' */
 M_DEBUG: org=0x1A000000, len=0xFFFFFF /* external 'Debug' */
 M_MMC: org=0x1C000000, len=0xFFFFFF /* external 'MMC' */
 M_AACI: org=0x1D000000, len=0xFFFFFF /* external 'AACI' */
 M_TCHSCRN: org=0x1E000000, len=0xFFFFFF /* external 'TouchScrn' */
 M_FLASH(R): org=0x24000000, len=0xFFFFFF /* external 'From ASIC/Board' */
 M_SDRAM_ALIAS:org=0x80000000, len=0xFFFFFFF /* external 'SDRAM' */
 M_CLCD: org=0xC0000000, len=0xFFFFFF /* external 'CLCD' */
 M_ETHERNET: org=0xC8000000, len=0xFFFFFF /* external 'Ethernet' */
 M_GPIO: org=0xC9000000, len=0xFFFFFF /* external 'GPIO' */
 M_CP_INTCON: org=0xCA000000, len=0xFFFFFF /* external 'IntCON' */
 M_SYS_REGS: org=0xCB000000, len=0xEFFFFFF /* external 'System Registers' */
}
NORMAL MEMORY
{
 A_RAM: org=0x8000, len=0x001B /* external 'Sect ER_RO' */
}
}
/* RVDEBUG: generated data above */

See also
• MEMMAP on page 2-184.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-134
ID052111 Non-Confidential

RealView Debugger Commands
2.3.56 DVFILE

DVFILE is an alias of DTFILE.

See DTFILE on page 2-128.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-135
ID052111 Non-Confidential

RealView Debugger Commands
2.3.57 EDITBOARDFILE

Enables you to configure a Debug Configuration.

Note
 This command is not available when running in command line mode.

Syntax

EDITBOARDFILE [,configure] [="boardfilename","routeID"...]

where:

configure Opens the Debug Interface configuration dialog for the specified Debug
Configuration.

boardfilename

Identifies the board file that you want to edit. This can be in single or double
quotation marks, for example, "myboard.brd".
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myfiles, you can specify:
editboardfile ="$MYPATH\\myboard.brd"

routeID Identifies the route ID for the Debug Configuration associated with the board file
that you want to edit. This can be in single or double quotation marks, for
example, '3'.

Description

The EDITBOARDFILE command enables you to configure a Debug Configuration. By default, the
command displays the Connection Properties dialog box to edit the specified Debug
Configuration. If you do not specify a board file, the settings of the current board file are
displayed for you to edit. If you specify the ,configure qualifier, then the Debug Interface
configuration dialog box is opened instead.

Note
 If you specify a routeID, you must also specify a blank boardfilename, for example:

editboardfile,configure "","3"

You can specify one or more boardfilename/routeID combinations.

If you make any changes to a board file, the updated file is reread when you close the
Connection Properties dialog box.

The command runs asynchronously.

Example

The following example shows how to use EDITBOARDFILE to open the Connection Properties
dialog box:

editboardfile

The following example shows how to use EDITBOARDFILE to open the Debug Interface
configuration dialog box:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-136
ID052111 Non-Confidential

RealView Debugger Commands
editboardfile,configure "","4"

If you specify a board that does not have a target-specific configuration, then a Prompt dialog
box is opened informing you that a configuration file could not be found. To create a
configuration file:

• Click Empty to create the configuration file from an empty file. The Select Name of new
file: dialog box is opened. Do the following:
1. Enter a name for the new file, together with the file extension for the related Debug

Interface as shown in Table 2-21.

2. Set Save as type to All Files (*).
3. Click Save to create the new file. The configuration utility for the related Debug

Interface is displayed. Configure the target in the usual way.

• Click Copy to create the configuration file by copying an existing file. The Select file to
copy from: dialog box is opened. Do the following:
1. Select the file to use for the copy. The file you use must be from the same Debug

Interface as shown in Table 2-21.
2. Click Open to open the Select Name of new file: dialog box.
3. Enter a name for the new file, together with the file extension for the related Debug

Interface as shown in Table 2-21.
4. Set Save as type to All Files (*).
5. Click Save to create the new file. The configuration utility for the related Debug

Interface is displayed. Configure the target in the usual way.

See also
• DELBOARD on page 2-108
• DTBOARD on page 2-125
• READBOARDFILE on page 2-218.

Table 2-21 Configuration file extensions for each Debug Interface

Debug Interface File extension

Instruction Set System Model(ISSM) .smc

Model Library .cml

Model Process .cmp

Real-Time System Model(RTSM) .smc

RealView ICE .rvc

RealView Instruction Set Simulator (RVISS) .auc

SoC Designer .smc
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-137
ID052111 Non-Confidential

RealView Debugger Commands
2.3.58 EMURESET

Tests and resets a hardware emulator for targets connected through the DSTREAM or RealView ICE
Debug Interface.

Syntax

EMURESET [,test] id

where:

test Runs an emulation test on the connection identified by id. This can involve JTAG
testing or self checks.

id Connection identity.

Description

The EMURESET command resets a hardware emulator or monitor for targets connected through
DSTREAM or RealView ICE. This is not the same as RESET which resets the target processor or
board. The emulation reset is used to set the communications up properly or to prepare the board
for debugging.

Example

The following example shows how to reset the hardware on the connection with an ID of 4.

emureset 4

Alias

EMURST and HWRESET are aliases of EMURESET.

See also
• RESET on page 2-227
• RESTART on page 2-230
• WARMSTART on page 2-330.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-138
ID052111 Non-Confidential

RealView Debugger Commands
2.3.59 EMURST

EMURST is an alias of EMURESET.

See EMURESET on page 2-138.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-139
ID052111 Non-Confidential

RealView Debugger Commands
2.3.60 ENABLEBREAK

Enables one or more specified breakpoints.

Syntax

ENABLEBREAK ,a {breakpoint_address|breakpoint_address_range}

ENABLEBREAK [,h] [break_num,...]

where:

,a breakpoint_address

Specifies the address of the disabled breakpoint to be enabled.

,a breakpoint_address_range

Specifies that all disabled breakpoints within the address range are to be enabled.
See Specifying address ranges on page 2-2 for details on how to specify an
address range.

break_num Specifies one or more breakpoints to enable, separated by commas.
You identify breakpoints by their position in the list displayed by the DTBREAK
command.

h Do not use this qualifier. It is for debugger internal use only.

Description

The ENABLEBREAK command enables one or more breakpoints that have been disabled. A disabled
breakpoint is removed from the target as if the breakpoint were deleted, but the debugger keeps
a record of it. You can enable it again, using this command, by referring to the breakpoint
number, avoiding then having to recreate it from scratch.

If you issue the command with no parameters then all breakpoints are enabled. Enabling a
breakpoint that is already enabled has no effect.

The command runs synchronously.

Example

The following examples show how to use ENABLEBREAK:

enablebreak,a 0x8008
Enables the breakpoint at the address 0x8008.

enablebreak,a 0x8008..0x8024
Enables all breakpoints in the address range 0x8008..0x8024.

enablebreak 4,6,8 Enables the fourth, sixth, and eighth breakpoints in the current list of
breakpoints.

enablebreak Enables all the current breakpoints.

See also
• BREAKEXECUTION on page 2-47
• BREAKINSTRUCTION on page 2-55
• BREAKREAD on page 2-61
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-140
ID052111 Non-Confidential

RealView Debugger Commands
• BREAKWRITE on page 2-70
• CLEARBREAK on page 2-89
• DISABLEBREAK on page 2-114
• DTBREAK on page 2-126
• RESETBREAKS on page 2-228.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-141
ID052111 Non-Confidential

RealView Debugger Commands
2.3.61 ERROR

Specifies what happens if an error occurs in processing an INCLUDE file.

Note
 This command has no effect when running in command line mode.

Syntax

ERROR = {quit | abort | continue}

where:

quit Instructs the debugger to quit the session and exit to the operating system.

abort Instructs the debugger to return to command mode and wait for keyboard input.

continue Instructs the debugger to abandon the command that produced the error, and to
execute the next command in the INCLUDE file.

Description

The ERROR command specifies the action the debugger takes if an error occurs while processing
an INCLUDE file. If you issue the ERROR command without parameters, program execution
terminates.

The ERROR command runs asynchronously unless in a macro.

Example

The following example shows how to use ERROR:

error = abort If an error occurs, abort reading the INCLUDE file and return to the command
prompt.

See also
• INCLUDE on page 2-168
• QUIT on page 2-217.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-142
ID052111 Non-Confidential

RealView Debugger Commands
2.3.62 ETM_CONFIG

Provides control over the ARM ETM.

Syntax

ETM_CONFIG [,qualifier...]

where:

qualifier Is a list of qualifiers. The possible qualifiers are described in List of qualifiers.

Description

The ETM_CONFIG command provides control over the ARM ETM. The arguments to a single
invocation of the command specify a configuration of the ETM, so the presence or absence of
qualifiers is relevant.

List of qualifiers

The list of qualifiers depends on the processor and Debug Interface. The command handler
generates an error if a specific combination is invalid for a specific processor or Debug
Interface, but this is determined when you issue the command. The possible qualifiers are:

addronly Trace only address bus transfers. (Deprecated)

coprocessor Enable coprocessor tracing. To disable, issue the command without this
qualifier.

cycle_accurate Enable cycle-accurate tracing, if the ETM supports it. To disable, issue the
command without this qualifier.

demultiplex Select the demultiplexed trace port transmission mode.

dataonly Trace only data bus transfers.

datasuppression Enables ETMv3 data suppression on FIFO full. This is supported only by
ETMv3.

disableport Disable the ETM trace port. To enable, issue the command without this
qualifier.

extinN:value External extended input selector register parts:
extin1:n External extended input 1.
extin2:n External extended input 2.
extin3:n External extended input 3.
extin4:n External extended input 4.
The value n of each part can be a value in the range 0 to 255, inclusive.
However, the number of inputs, the range of values supported, and the
default value of each input depends on the ETM you are using. For
example, the ARM1136JF-S™ has two extended external inputs with
values in the range zero to 20 and default values of zero.
Use the TRACEEXTCOND command to specify which input to test.
These inputs are supported only by ETMv3.1, and later.

FIFO_hw:n Set the FIFO high-water mark to n.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-143
ID052111 Non-Confidential

RealView Debugger Commands
filtercoprocessor Enables filtering of CPRTs when data trace is enabled. This is supported
only by ETMv3.

fulltrace Trace both data and address bus transfers. (Deprecated)

half_rate Enable half-rate clocking of the trace port by the ETM. For full-rate, issue
the command without this qualifier.

mmap_decode:n Set the ETM memory map value to n. This is an
implementation-dependent value that varies depending on the memory
map decode logic present in your system.

multiplex Select the multiplexed trace port transmission mode.

nomultiplex Select the normal (not multiplexed or demultiplexed) trace port
transmission mode.

packauto Selects the automatic packing mode for the TPA.

packnormal Selects the normal packing mode for the TPA.

packdouble Selects the double packing mode for the TPA.

packquad Selects the quad packing mode for the TPA.

portratio:n Enables ETMv3 port speed to ETM clock speed ratios to be set. This is
supported only by ETMv3. Appropriate values for n are:
0 Use a 1:1 ratio.
1 Use a 1:2 ratio.
2 Use a 1:3 ratio.
3 Use a 1:4 ratio.
4 Use a 2:1 ratio.
5 Use dynamic ratio modes for on-chip trace.
6 Use the implementation-defined mode, if implemented by the

ASIC designer.

port_width:n Set the ETM port width, where n is one of:
0 4-bit port.
1 8-bit port.
2 16-bit port.
3 24-bit port.
4 32-bit port.
The 24-bit and 32-bit settings are supported only for ETB11™ connections
using RealView ICE.

size:n Set the ETM trace buffer size to n records.

stall_full Enable processor stalling if the FIFO becomes full, if the ETM and
processor support it. To disable, issue the command without this qualifier.

suppressdata Suppress data tracing if the FIFO becomes full. To leave data tracing
enabled, issue the command without this qualifier.

syncfrequency:n For ETMv3, and later, a synchronization frequency register is used to
define the time between synchronization points in the trace data. That is,
the points where the trace tools start decompressing the trace output.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-144
ID052111 Non-Confidential

RealView Debugger Commands
The synchronization frequency n can be a value in the range 100 to 4095,
inclusive, with the default being 1024:
• for ETMv3.0, the value is in cycles
• for ETMv3.1 and later, the value is in bytes.

time_stamps Enable time stamping if the ETM and trace capture hardware support it.
To disable, issue the command without this qualifier.

twin Not supported.

twinmaster Not supported.

Examples

The following examples show how to use ETM_CONFIG:

ETM_CONFIG,port_width:0,coprocessor,fulltrace,size:10240

Set up the ETM for a 4-bit, full-rate, nonmultiplexed trace port, no stalling
or timestamps, 10K trace records, address and data tracing, and in non
cycle-accurate mode.

ETM_CONFIG,port_width:1,stall_full,multiplex,fulltrace,suppressdata,size:1024

Set up the ETM for an 8-bit, full-rate, multiplexed trace port, processor
stalling and data suppression on FIFO full, no timestamps, 1024 trace
records, address and data tracing, and in non cycle-accurate mode.

See also
• ANALYZER on page 2-23
• DTBREAK on page 2-126
• DTRACE on page 2-130
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAREAD on page 2-293
• TRACEDATAACCESS on page 2-288
• TRACEDATAWRITE on page 2-298
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312
• the following in the RealView Debugger Trace User Guide:

— Chapter 4 Configuring the ETM
• Embedded Trace Macrocell Specification.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-145
ID052111 Non-Confidential

RealView Debugger Commands
2.3.63 EXPAND

Displays the values of parameters to a procedure and any local variables that have been set up.

Syntax

EXPAND [@stack_level [{,windowid | ,fileid}]]

Where:

@stack_level Specifies a stack level if you want to see only a single level expanded. For
example, you can specify @3 to expand stack level 3 only.

,windowid | ,fileid

Identifies the window or file where the command is to send the output. See
Window and file numbers on page 1-5 for details. You can specify a window or
file ID only if you specify a stack level.

Description

The EXPAND command displays the values of parameters to a procedure and any local variables
that have been set up. You can expand any procedure in a directly called chain from the main
program to the current procedure. Other procedures are not accessible.

If no stack level is specified, all procedures nested on the stack are displayed. Stack levels are
numbered starting with the current procedure equaling 0, the caller of this procedure is 1, the
caller of that procedure is 2.

The EXPAND command runs synchronously.

Messages that can be output by the EXPAND command have the following meanings:

<Bad float> Invalid floating-point value, cannot be converted.

<bad size> Type size invalid.

<UNKNOWN: xx> Invalid enum value, where xx = value.

<INFINITY> Floating-point value is infinity.

<Invalid value (x)>

Error number (x) occurred.

<NAN> Not a number (for a floating-point value).

<not a source procedure. Address is ...>

Routine is not defined as a function in the object file.

<not alive> Local register variable no longer exists.

<Not in procedure> PC located before first executable line.

<unknown type> Type is not recognized by the debugger.

Example

The following example illustrates the EXPAND command executed during a run of the dhrystone
program. You can see three of the messages in use: an UNKNOWN enum value, a variable that is not
alive, and a procedure that has no source or debug information available.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-146
ID052111 Non-Confidential

RealView Debugger Commands
> go
> expand
 00. Proc_1: at line 309.
 Ptr_Val_Par07FFFF60 = (record *)0x01000260
 Next_Record00000005 = (record *)0x0100C274
 01. main: at line 170.
 Int_1_Loc 07FFFF60 = 16777824
 Int_2_Loc 07FFFF60 = 16777824
 Int_3_Loc 07FFFF5C = 134217624
 Ch_Index 'C'
 Enum_Loc 07FFFF58 = <UNKNOWN: 255>
 Str_1_Loc 07FFFF38 = "\xFF\xFF\xFF\xFFx\x1E"
 Str_2_Loc 07FFFF18 = ""
 Run_Index 07FFFF64 = 16827048
 Number_Of_Runs100000
 n <not alive>
 02. <not a source procedure. Address is 01001DF0>

The program was halted in Proc_1 at line 309. The output shows that Proc_1 was called from main
line 170, and main was called by unnamed code at address 0x01001DF0, which is part of the C
runtime library.

Because main is called from the C runtime library, no source and no debug information is
available for the procedure that called main, so EXPAND reports the pc address from which the call
to main is made.

See also
• CEXPRESSION on page 2-87
• JOURNAL on page 2-172
• PRINTVALUE on page 2-211
• WHERE on page 2-331.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-147
ID052111 Non-Confidential

RealView Debugger Commands
2.3.64 FAILINC

Causes an abnormal exit from processing an INCLUDE file.

Syntax

FAILINC "string"

where:

string A string to display that explains the reason for aborting the INCLUDE file.

Description

The FAILINC command enables you to abort processing an INCLUDE file. You might do this when
checks of the target or debugger environment have failed to find resources the INCLUDE file
requires.

Use the string parameter to explain the abort.

Example

The following example shows how to use the FAILINC command in a macro:

if (*((char*)(0xffe00)) != 0)
 $failinc "Peripheral not initialized. Aborting$";

The following example shows how to use the FAILINC command in an INCLUDE file:

jump nofail,(*((char*)(0xffe00)) == 0)
failinc "Peripheral not initialized. Aborting"
:nofail

These two examples test a memory address, expecting to read a 0 from some peripheral register.
If it does not read 0, it aborts INCLUDE file processing.

See also
• ERROR on page 2-142
• INCLUDE on page 2-168
• JUMP on page 2-174.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-148
ID052111 Non-Confidential

RealView Debugger Commands
2.3.65 FILL

Fills a memory block with values.

Syntax

FILL [{/8|/16|/32}] [/NW] addressrange ={expression | expressionlist}

where:

/8 Sets the access size to 8 bits.

/16 Sets the access size to 16 bits.

/32 Sets the access size to 32 bits.

Note
 If no access size is specified, the default is the native format for the debug target.

For example, the ARM7TDMI processor naturally addresses 8 bits.

/NW Suppresses the warning prompt when filling a large area of memory.

addressrange Specifies the range of addresses that identify the memory contents to be filled
with the pattern. The start and the end of the range is included in the range, which
is never to be exceeded. For example a byte fill from 0x400..0x500 writes to 0x400
and to 0x500.

expression An expression to be evaluated to a value and used to fill memory. The expression
can be:
• a decimal or hexadecimal number
• a debugger expression, for example a math calculation
• a string enclosed in single or double quotation marks.
If you use a quoted string:
• each character of the string is treated as a byte value in an expressionlist
• no C-style zero terminator byte is written to memory.
Also, see Rules for specifying strings in the FILL command on page 2-150 for
more details on using strings with the FILL command.

expressionlist

Specifies the pattern used to fill memory. An expressionlist is a sequence of
expressions separated by commas, for example "Test",0,0x20.

Note
 All expressions in an expression string are padded or truncated to the size

specified by the size qualifiers if they do not fit the specified size evenly. This also
applies to each character of a string.

Description

The FILL command fills a memory block with values obtained from evaluating an expression or
list of expressions. The size qualifier is used to determine the size of each element of
expressionlist.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-149
ID052111 Non-Confidential

RealView Debugger Commands
Considerations when using the FILL command

Be aware of the following when using the FILL command:

• All expressions in an expression string are padded or truncated to the size specified by the
Size value if they do not fit the specified size evenly.

• If the length of the expression list is less than the number of bytes in the specified address
range, RealView Debugger repeats the pattern to fill the remaining number of blocks
specified. For example,if you specify a pattern of 10 bytes and a fill area of 16 bytes,
RealView Debugger repeats the pattern to fill the remaining six bytes.

• If more values are given than can be contained in the specified address range, excess
values are ignored. The specified address range is never exceeded.

• If a pattern is not specified, RealView Debugger displays an error message.

• If you specify only a start address, one copy of the expression is written, taking up only
as many bytes as required for the expression.

• If you specify an address range with equal start and end addresses, the memory at that
address is modified, taking up only as many bytes as required for the expression. If an
expression is not specified, the debugger acts as if =0 had been specified as the expression.

• The FILL command runs synchronously unless background access to target memory is
supported. Use the WAIT command to force it to run synchronously.

Rules for specifying strings in the FILL command

Follow these rules when specifying a string:

• No C-style zero terminator byte is written to memory after a specified string. To write a
NUL-terminated string, add a zero value expression after the string, for example:
"Test Message",0

• You cannot use an empty string to write a NUL character.

• Use the /8 qualifier if you want to write the characters of a string to consecutive bytes of
memory.

Examples

The following examples show how to use FILL:

fill 0x1000..0x1005="hello",0
Writes hello with a zero termination in the locations 0x1000...0x1005.

fill 0x1000..0x1001="hello"
Writes h in the location 0x1000 and e in the location 0x1001.

fill 0x1000..0x1013
Writes as bytes the value 0 to locations 0x1000...0x1013.

fill /16 0x1000..0x1014
Writes the 16-bit value 0 to locations 0x1000...0x1014.

fill 0x1000..0x1013="hello"
Writes hellohellohellohello in the locations 0x1000...0x1013.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-150
ID052111 Non-Confidential

RealView Debugger Commands
fill /32 0x2032..0x2053=0xDEADC0DE
For a little-endian memory system, writes 0xDE to 0x2032, 0xC0 to 0x2033, 0xAD to
0x2034, 0xDE to 0x2035 and on to: 0xDE to 0x2052, and 0xC0 to 0x2053.

fill 0x3000..0x4756 =0xEA000000/2
Writes 0x00 to 0x3000..0x4756. The value of 0xEA000000/2 is calculated as
0x75000000. Because fill defaults to a byte expression width, this is then truncated
to 0x00 and written.

fill /32 0x3000..0x4758 =0xEA000000
Writes 0xEA000000 to 0x3000..0x4756, 0xEA to 0x4757, and 0x00 to 0x4758, so
truncating the last two bytes of the data.

See also
• Specifying address ranges on page 2-2
• CEXPRESSION on page 2-87
• MEMWINDOW on page 2-188
• READFILE on page 2-219
• SETMEM on page 2-239.
• TEST on page 2-273
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-151
ID052111 Non-Confidential

RealView Debugger Commands
2.3.66 FLASH

Enables you to write, verify, or erase Flash blocks.

Syntax

flash [,qualifier...] [={addressrange | address, ...}]

where:

qualifier If specified, must be one or more of the following:
cancel Discard the patched or downloaded changes.
clk:(frequency)

If required by your Flash device, specify the clock frequency as a
positive integer, representing the clock frequency in Hz. For example,
enter 14175000 to specify a frequency of 14.175 MHz.

erase Erase the specified blocks. This normally sets every byte in the block
to 0xFF or 0x00, depending on the type of Flash memory used. You can
identify the Flash block using a handle, an address or an address range.

write Write data to the specified blocks of Flash memory. If you do not
specify a block or address, then the write begins at the start of the first
block.

verify If you specify this qualifier the data written to the Flash blocks is
verified against the data source.

handle=blocknum,...

Identifies one or more Flash blocks to be operated on.
To list the Flash blocks, use the FLASH command with no arguments
(see Examples on page 2-153).
The block numbers are also shown in the Open Flash Blocks list of the
Flash Memory Control dialog box.

Note
 Do not use an address or address range with this qualifier.

useorig This qualifier specifies that the original contents of the memory is used
wherever it is not explicitly modified.

scratch This qualifier specifies that the original contents of the target memory
buffer is not saved first. This might save you some time if the buffer is
large.
By default the target memory buffer is saved first, and restored
afterwards.

addressrange Multiple Flash blocks can be specified using a range of addresses. The start and
the end of the range is included in the range. For example,
0x24000000..0x24FFFFFF specifies the blocks in the address range 0x24000000 to
0x24FFFFFF.
If you use the handle qualifier, then do not specify an address range.

address The Flash block can be specified by address.
If you use the handle qualifier, then do not specify an address.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-152
ID052111 Non-Confidential

RealView Debugger Commands
Note
 If you use the address or addressrange qualifiers, then those blocks that are touched by the
address or addressrange are written to completely. For example, if you specify an address range
that starts at block zero, and finishes part way into block three, then the whole of blocks one,
two and three are written to.

Description

This command is used to manage Flash memory. This command enables you to:
• write and verify Flash blocks, which require that the blocks be opened first
• erase Flash blocks, which does not require the blocks to be open.

The Flash block is specified by address. You cannot program more than one Flash device at a
time.

If this command is used with no arguments, it reports the currently open blocks.

Examples

The following examples show how to use the FLASH command:

• To display information for the currently loaded Flash image on an Integrator/AP board,
enter:
> flash
Flash opened on ARM920T_0@RealView-ICE for 'Intel DT28F320S3 2Mx16 x2 x4' at
'0x24000000'
 Block 0: +0x0000..+2644

• To erase the Flash in the range 0x24000000 to 0x24FFFFFF inclusive, enter:
flash,erase =0x24000000..0x24FFFFFF

See also
• Specifying address ranges on page 2-2
• MEMMAP on page 2-184
• the following in the RealView Debugger User Guide:

— Chapter 6 Writing Binaries to Flash.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-153
ID052111 Non-Confidential

RealView Debugger Commands
2.3.67 FOPEN

Opens a file and assigns to it a specified file number.

Syntax

FOPEN [/A] [/R] fileid ,filename

where:

/A Appends new data to an existing file. You cannot read or write the existing
information, and the existing information is retained.

/R Opens a file as read-only. You must use this qualifier if you want to read the file
with the fgetc() macro.

fileid Specifies the identity of the file to be opened. This must be a user-defined fileid.

filename Specifies the file being opened. Quotation marks are optional, but see Rules for
specifying filenames in the FOPEN command for details on how to specify
filenames that include a path.

Description

This command enables you to read or write a file on the host filesystem by associating it with a
RealView Debugger custom file number.

The file is opened for writes only by default, but you can specify append or read-only modes
instead. You write to the file using the FPRINTF command, the fputc or fwrite macros, or by
redirecting output from those commands that accept the fileid specifier. You read the file using
either the fgetc or fread macros. You close the file using the VCLOSE command.

Note
 Be aware of the following:

• The FOPEN command runs asynchronously unless it is used in a macro.

• If you open a new or existing file for writing, no data is written to the file until the output
buffer is flushed. This happens when you close the file with the VCLOSE command, but it
might happen at other times because the buffered I/O behavior is the same as in C.

• If you specify a filename with a path that does not exist, then an error message is
displayed. RealView Debugger does not create the non-existent path.

Rules for specifying filenames in the FOPEN command

Follow these rules when specifying a filename:

• If the filename consists of only alphanumeric characters, slashes, or a period, but the
filename does not start with a slash, then you do not have to use quotation marks. For
example, includes/file.

• Filenames with a leading slash must be in double quotation marks, for example "/file".

• Filenames containing a backslash must be in single quotation marks. For example '\file'
or 'c:\myfiles\file'.
Alternatively, you can escape each backslash and use double quotation marks. For
example, "c:\\myfiles\\file".
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-154
ID052111 Non-Confidential

RealView Debugger Commands
• You can use environment variables to specify paths to a file. For example, if
PATHROOT=C:\MYFILES and PATHTEST=TEST1:
'$PATHROOT\$PATHTEST\test1.c'

You can include:
— the filename as part of the second environment variable, and then specify

'$PATHROOT\$PATHTEST'.
— the path separator in the environment variable, and then specify

'$PATHROOT$PATHTEST'.

Examples

The following examples show how to use FOPEN:

fopen 50, 'c:\temp\file.txt'
fprintf 50, "Start of function\n"

Open a file and write some text to it.

fopen /r 50, 'c:\temp\file.txt'
ce fgetc(50)

Open a file and read the first character of the file.

See also
• Window and file numbers on page 1-5
• FPRINTF on page 2-156
• VCLOSE on page 2-321
• VMACRO on page 2-324
• VOPEN on page 2-326
• WINDOW on page 2-332
• fclose on page 3-17
• fgetc on page 3-18
• fopen on page 3-20
• fputc on page 3-22
• fread on page 3-23
• fwrite on page 3-25.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-155
ID052111 Non-Confidential

RealView Debugger Commands
2.3.68 FPRINTF

Displays formatted text to a specified file or window.

Syntax

FPRINTF {windowid | fileid} ,"format_string" [,argument...]

where:

windowid | fileid

Identifies the window or file where the command is to send the output.

format_string

Is a format specification conforming to C/C++ rules with extensions. It might be
a text message, or it can describe how one or more arguments are to be presented.
See Format string syntax for details.

argument The value or values to be written.

Description

The command is similar to the C run-time fprintf function. You select the windowid or fileid
to use from the range 50..1024. For output to a file, the file must be opened using the FOPEN
command. For output to a user window, the window must be opened using the VOPEN command.

Format string syntax

The text in format_string is defines what is displayed. If there are no % characters in the string,
the text is written out and any other arguments to FPRINTF are ignored. The % symbol is used to
indicate the start of an argument conversion specification.

The syntax of the specification is:

%[flag][fieldwidth][precision][lenmod]convspec

where:

flag An optional conversion modification flag -. If specified, the result is left-justified
within the field width. If not specified, the result is right-justified.

fieldwidth An optional minimum field width specified in decimal.

precision An optional precision specified in decimal, with a preceding . (period character)
to identify it.

lenmod An optional argument length specifier:
h a 16-bit value
l a 32-bit value
ll a 64-bit value

convspec The possible conversion specifier characters, <convspec>, are:
% A literal % character.
m The mnemonic for the processor instruction in memory pointed to by

the argument. The expansion includes a newline character. The
information that is printed includes:
• the memory address in hexadecimal
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-156
ID052111 Non-Confidential

RealView Debugger Commands
• the memory contents in hexadecimal
• the instruction mnemonic and arguments
• an ASCII representation of the memory contents, if printable.

H A line from the current source file, where the argument is the line
number.

h A line from the current source file, where the argument is the source
line address (as opposed to a target memory address).

d, i, or u An integer argument printed in decimal. d and i are equivalent, and
indicate a signed integer. u is used for unsigned integers.

x or X An integer argument printed in unsigned hexadecimal. x indicates that
the letters a to f are used for the extra digits, and X indicates that the
letters A to F are used.

c A single character argument.
s A string argument. The string itself can be stored on the host or on the

target.
p A pointer argument. The value of the pointer is printed in hexadecimal.
e, E, f, g, or G

A floating point argument, printed in scientific notation, fixed point
notation, or the shorter of the two. The capital letter forms use a capital
E in scientific notation rather than an e.

Output is formatted beginning at the left of the format string and is copied to the screen. If you
are using the GUI, then the string is copied to the Output view. Whenever a conversion
specification is encountered, the next argument is converted according to the specification, and
the result is copied to the screen.

Rules

The following rules apply to the use of the FPRINTF command:

• FPRINTF runs synchronously

• windowid must identify a user-defined window that you have previously opened with the
VOPEN command

• fileid must identify a file that you have previously opened in write mode, for example:
FOPEN 100, "c:\myfiles\file.txt"

• if there are too many arguments, some of those that do not correspond with a format
specifier are not printed

• if there are too few arguments (that is, there are more conversion specifiers in the format
string than there are arguments after the format string), the string <invalid value> is
output instead

• if the argument type does not correspond to its conversion field specification, arguments
are converted incorrectly.

Example

The following examples show how to use FPRINTF:

fprintf 50,"Syntax error\n"
Writes the string Syntax error to the window or file.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-157
ID052111 Non-Confidential

RealView Debugger Commands
fprintf 50, "Execution time: %d seconds\n", tend-tstart
Prints the result of the calculation to the window or file, in the format:
Execution time: 20 seconds

fprintf 50, "Value is %d\n"
Prints the following to the window or file:
Value=<invalid value>

See also

• Window and file numbers on page 1-5

• CEXPRESSION on page 2-87

• FOPEN on page 2-154

• PRINTF on page 2-205

• PRINTVALUE on page 2-211

• VOPEN on page 2-326

• VCLOSE on page 2-321

• fclose on page 3-17

• fopen on page 3-20

• fputc on page 3-22

• fread on page 3-23

• the following in the RealView Debugger User Guide:
— Using variable substitution in commands within a macro on page 16-6.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-158
ID052111 Non-Confidential

RealView Debugger Commands
2.3.69 GO

Executes the target program starting from the current PC or from a specified address.

Syntax

GO [=start_address[,]] [{temp_break [%%passcount][,] }... [;macro-call]]

where:

start_address

Specifies an address at which execution is to begin.

temp_break Acts as a temporary instruction breakpoint, which is automatically cleared when
program execution is suspended.

passcount Specifies the number of times the temp_break address is executed before the
command actually halts.

macro_name Invokes a macro if a temporary break occurs. The macro return value determines
whether execution continues or not. If there is an attached macro, execution
continues when the macro returns a non-zero value. If the macro returns zero,
execution halts.

Description

This command executes the target program starting from the current PC or from a specified
address. The command also causes program execution to resume after it has been suspended.
Execution continues until a permanent or temporary breakpoint, an error, or a halt instruction is
encountered. You can also use the HALT and STOP commands to halt execution.

RealView Debugger continues to accept commands after GO has been entered. Commands that
cannot be completed while the target is running (synchronous commands) are delayed until the
target is next stopped. For more information about the limitations the Debug Interface imposes
while the target is running, see your target documentation.

You can specify a temporary instruction breakpoint with the GO command, providing similar
functionality to the Go to Cursor GUI command. The temporary breakpoint is removed as soon
as the target stops, whether the breakpoint was hit or not. You can also associate a macro to be
run that can also determine whether the target remains stopped at the breakpoint.

The GO command runs synchronously.

If you are working with OS-aware images, and the current connection is running in RSD mode,
then the GO command starts the current thread.

Note
 When specifying a start address you must be careful to make sure that the processor stack has
been set up and remains balanced.

The GO command cannot be used in a macro if the macro is attached to another entity, such as a
breakpoint.

Examples

The following examples show how to use GO:

GO Start or resume executing the target program from the current PC.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-159
ID052111 Non-Confidential

RealView Debugger Commands
GO @1 Resume executing the target program from the current PC, stopping when the
current function returns to its caller.

GO write_io; until (x==2)
Resume executing the target program from the current PC, and stop when x has
the value 2.

go \DHRY_1\#149:3 ;countHits()
Set a temporary breakpoint at line 149 in dhry_1.c, start executing the dhrystone
image, and run the countHits() macro when the temporary breakpoint is hit. You
might use this in a script as follows:
add int hitCount

define /R int countHits()
{
 if (@PC == 0x8480)
 hitCount++;
 return 1;
}
.

go \DHRY_1\#149:3 ;countHits()
// Display the hit count before deleting the variable
printval hitCount
delete hitCount

See also

• Execution control on page 2-4

• HALT on page 2-163

• GOSTEP on page 2-161

• RUN on page 2-232

• STOP on page 2-267

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications

• the following in the RealView Debugger RTOS Guide:
— Chapter 4 Associating Threads with Views.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-160
ID052111 Non-Confidential

RealView Debugger Commands
2.3.70 GOSTEP

Single-steps through the program, invoking a named macro at every step.

Syntax

GOSTEP macro_name

where:

macro_name Specifies the name of the macro that is invoked after each instruction.
The macro return value determines whether execution continues or not.
Execution continues when the macro returns a non-zero value.

Description

The GOSTEP command single-steps through the program, invoking a named macro at every step.
Execution starts at the current PC, and continues until you click Stop to halt execution, the
macro returns zero, or a breakpoint is hit. Single-stepping is by source line for high-level source
code and by processor instruction for assembly language code.

The GOSTEP command runs synchronously.

Note
 • Using the command significantly slows target execution speed.

• Using the command might cause target program execution errors because of timing
issues.

Restrictions on the use of GOSTEP

The GOSTEP command is not allowed in a macro.

Example

The following examples show how to use GOSTEP:

GOSTEP checkvariable
Start or resume executing the target program from the current PC. At each step,
invoke a macro called checkvariable. A step is an instruction or a statement,
depending on the source display MODE.

GOSTEP until (y>100)
Resume executing the target program, stopping when the program variable y
exceeds 100. until is a predefined macro.

See also
• Execution control on page 2-4
• HALT on page 2-163
• GO on page 2-159
• MODE on page 2-190
• RUN on page 2-232
• STEPINSTR on page 2-259
• STEPLINE on page 2-261
• STEPOINSTR on page 2-263
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-161
ID052111 Non-Confidential

RealView Debugger Commands
• STEPO on page 2-265
• STOP on page 2-267
• until on page 3-63.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-162
ID052111 Non-Confidential

RealView Debugger Commands
2.3.71 HALT

Stops target program execution.

Syntax

HALT [[=]threadID]

where:

threadID Identifies the thread to be stopped when running in RSD mode.

Description

The behavior of the HALT command depends on the whether your program is running on a non
OS-aware connection, an OS-aware connection, or a RealMonitor-aware connection.

Using the HALT command on non OS-aware connections

The HALT command stops the processor.

Using the HALT command on OS-aware connections

The behavior of the HALT command depends on whether the processor is running in HSD or RSD
mode:

• If the processor is running in HSD mode, the command stops the processor.

• If RSD is enabled, the behavior depends on whether or not a thread identifier is specified:
— If no thread identifier is specified, the command stops either the currently running

thread or the thread attached to the Code window.
— The thread with the identifier specified in the command is stopped.

• If the processor is running in RSD mode, and you use the HALT command without
specifying a thread, the command stops either the currently running thread or the thread
attached to the Code window.

• If the processor is running in RSD mode, and you use the HALT command with a thread
identifier, the identified thread is stopped.
The stopping of threads is accomplished by the Debug Agent using the associated OS
service.

Using the HALT command on connections running RealMonitor

If RealMonitor support is enabled, then only the application thread stops. The RealMonitor
thread continues running.

Examples

The following examples show how to use HALT:

halt Stops the currently running thread or the thread attached to the Code window.

halt = thread_4
Stops the specified thread in RSD.

halt = 0x39d8
Stops the thread specified by the TCB address in RSD.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-163
ID052111 Non-Confidential

RealView Debugger Commands
See also

• Execution control on page 2-4

• AOS_resource_list on page 2-26

• DOS_resource_list on page 2-122

• GO on page 2-159

• GOSTEP on page 2-161

• OSCTRL on page 2-200

• RUN on page 2-232

• STOP on page 2-267

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications

• the following in the RealView Debugger Target Configuration Guide:
— Configuring RealMonitor for connections through DSTREAM or RealView ICE on

page 3-43

• the following in the RealView Debugger RTOS Guide:
— Chapter 7 Debugging Your OS Application.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-164
ID052111 Non-Confidential

RealView Debugger Commands
2.3.72 HELP

Displays RealView Debugger online help. To do this type:

HELP

The topic Welcome to RealView Debugger Help includes more information about using online
help in RealView Debugger.

Note
 This command has no effect when running in command line mode. Use the DHELP or DCOMMANDS
instead.

Restrictions on the use of HELP

The HELP command is not allowed in a macro.

See also
• DCOMMANDS on page 2-103
• DHELP on page 2-113.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-165
ID052111 Non-Confidential

RealView Debugger Commands
2.3.73 HOST

Enables you to run a command on your host operating system.

Syntax

HOST command

where:

command The command that you want to run on your host operating system. This can be a
DOS command on a Windows system or Red Hat Linux command.

Description

The HOST command enables you to run a command on your host operating system (Windows or
Red Hat Linux).

Restrictions on the use of HOST

The HOST command has the following restrictions:

• The HOST command is not allowed in a macro.

• The SET command to modify environment variables is not supported. However, you can
use the SET command to list the environment variables that are defined.

• You cannot use the HOST command to change the current working directory pointed to by
RealView Debugger. For example, HOST cd "c:\my sources" has no effect. Instead, use the
CWD command.

Examples

The following examples show how to use HOST on Windows system:

host dir "c:\my sources"
Lists the contents of directory c:\my sources. This must be in quotation marks
because there is a space in the path name.

host cd Displays the current directory pointed to by RealView Debugger.

See also

• CWD on page 2-101.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-166
ID052111 Non-Confidential

RealView Debugger Commands
2.3.74 HWRESET

HWRESET is an alias of EMURESET.

See EMURESET on page 2-138.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-167
ID052111 Non-Confidential

RealView Debugger Commands
2.3.75 INCLUDE

Executes RealView Debugger CLI commands stored in the specified script file.

Syntax

INCLUDE [/D] [/S] filename

where:

/D Steps through the CLI commands in the script file. Before each command is
executed, it is displayed in the Output view, together with the following prompt:
Press ENTER to execute the line...

If a DEFINE command is encountered, then the macro definition is executed
completely. That is, the macro code is not stepped.

Note
 Commands from included script files are stepped only if you add the /D qualifier

to each INCLUDE command used in your main script.

/S Stops the commands in the INCLUDE file being echoed to the display. However, the
commands are still added to the command history list.

Note
 If your main script file includes additional script files using the /D qualifier, then

the commands in the additional script files are still stepped.

filename Specifies the command file to be read. Quotation marks are optional, but see
Rules for specifying filenames in the INCLUDE command on page 2-169 for
details on how to specify filenames that include a path.

Note
 If you specify both the /D and /S qualifiers, then the behavior depends on the order that you
specify them.

Description

The INCLUDE command executes a group of commands stored in the specified file as though they
were entered from the keyboard. By default, commands in the file are executed until the end of
the file is reached or an error occurs. However, you can step through the commands if you want
to debug the INCLUDE file.

When you run a command script, RealView Debugger sets the RVDEBUG_INCLUDE_BASE
environment variable to the location of that command script. Therefore, you can use this
environment variable in your command script if required. The environment variable definition
exists only for the current debugging session, and changes for each command script that you run.

Note
 The environment variable does not change if the INCLUDE command is used in another command
script.

If an error occurs, the debugger behaves as specified by the ERROR command. If a filename
extension is not specified, the debugger automatically appends the extension .inc.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-168
ID052111 Non-Confidential

RealView Debugger Commands
Note
 If you want to include a batch file when a target is running, you must first enter the wait=off
command, then include the batch file:

> wait=off
> include myfile.inc

Your batch file can still include the wait=on command, if required.

The INCLUDE command is normally used to perform repetitive or complex initializations, such as:

• loading and running programs, setting up breakpoints and initial variable definitions

• creating debugger aliases and macros, perhaps for use in later debugging

Note
 The DEFINE command, used to create macros, can only be used in an INCLUDE file.

• running test suites.

You can configure the debugger to load a given INCLUDE file automatically when a target
connection is made using the Commands setting of the Advanced_Information block for your target.

You can also run script files using the -inc argument to RealView Debugger itself.

The INCLUDE command runs asynchronously.

Restrictions on the use of INCLUDE

The INCLUDE command is not allowed in a macro.

Rules for specifying filenames in the INCLUDE command

Follow these rules when specifying a filename:

• If the filename consists of only alphanumeric characters, slashes, or a period, but the
filename does not start with a slash, then you do not have to use quotation marks. For
example, includes/file.

• Filenames with a leading slash must be in double quotation marks, for example "/file".

• Filenames containing a backslash must be in single quotation marks. For example '\file'
or 'c:\myfiles\file'.
Alternatively, you can escape each backslash and use double quotation marks. For
example, "c:\\myfiles\\file".

• You can use environment variables to specify paths to a file. For example, if
PATHROOT=C:\MYFILES and PATHTEST=TEST1:
'$PATHROOT\$PATHTEST\test1.c'

You can include:
— the filename as part of the second environment variable, and then specify

'$PATHROOT\$PATHTEST'.
— the path separator in the environment variable, and then specify

'$PATHROOT$PATHTEST'.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-169
ID052111 Non-Confidential

RealView Debugger Commands
Example

The following example shows how to use INCLUDE:

INCLUDE "startup.inc"
Read the file startup.inc in the current directory and interpret the contents as
RealView Debugger commands. The file startup.inc might contain:
; startup.inc 12/12/00
; Author: J.Doe
;
alias sf*ile =dtfile ;99
alias dub =dump /b
vopen 99

See also

• ALIAS on page 2-21

• DEFINE on page 2-105

• ERROR on page 2-142

• FAILINC on page 2-148

• JUMP on page 2-174

• MACRO on page 2-182

• WAIT on page 2-329

• the following in the RealView Debugger User Guide:
— Considerations when running command scripts on page 15-12
— Chapter 15 Debugging with Command Scripts

• the following in the RealView Debugger Target Configuration Guide:
— Running CLI commands automatically on connection on page 3-41.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-170
ID052111 Non-Confidential

RealView Debugger Commands
2.3.76 INTRPT

Interrupts the execution of commands.

Syntax

INTRPT

Description

The INTRPT command enables you to interrupt an asynchronous command that the target is still
executing. Commands are held in a queue for execution when the target stops. This is called
pending the command.

Use the CANCEL command to clear pending commands from the list, to stop them being executed.

You cannot use this command to halt target execution. Use HALT to do this.

Note
 Synchronous commands can only be run when target program execution has stopped.

Asynchronous commands can be run at all times.

See also
• CANCEL on page 2-85
• HALT on page 2-163
• WAIT on page 2-329.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-171
ID052111 Non-Confidential

RealView Debugger Commands
2.3.77 JOURNAL

Controls the logging of commands and output.

Syntax

JOURNAL [/A] [{OFF | ON="filename"}]

where:

/A Appends information to an existing file.

OFF Closes the journal file and stops collecting information. This is the default setting.

ON Starts writing information to the journal file.

filename Specifies the journal filename. If you do not specify a filename extension, the
extension .jou is used. Quotation marks are optional, but see Rules for specifying
filenames in the JOURNAL command for details on how to specify filenames that
include a path.

Description

The JOURNAL command starts or stops saving, in a specified file:
• the commands that you enter
• any output that is generated by a command
• error messages
• text specifically sent to the journal file.

If you are using the GUI, then the log file contains the same information that is displayed in the
Cmd tab of the Output view.

Note
 If the specified file exists and you do not specify the /A parameter, the existing contents of the
file are overwritten and lost.

The JOURNAL command runs asynchronously unless it is in a macro.

Rules for specifying filenames in the JOURNAL command

Follow these rules when specifying a filename:

• If the filename consists of only alphanumeric characters, slashes, or a period, but the
filename does not start with a slash, then you do not have to use quotation marks. For
example, includes/file.

• Filenames with a leading slash must be in double quotation marks, for example "/file".

• Filenames containing a backslash must be in single quotation marks. For example '\file'
or 'c:\myfiles\file'.
Alternatively, you can escape each backslash and use double quotation marks. For
example, "c:\\myfiles\\file".

• You can use environment variables to specify paths to a file. For example, if
PATHROOT=C:\MYFILES and PATHTEST=TEST1:
'$PATHROOT\$PATHTEST\test1.c'
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-172
ID052111 Non-Confidential

RealView Debugger Commands
You can include:
— the filename as part of the second environment variable, and then specify

'$PATHROOT\$PATHTEST'.
— the path separator in the environment variable, and then specify

'$PATHROOT$PATHTEST'.

Example

The following examples show how to use JOURNAL:

JOURNAL ON='c:\temp\log.txt'
Start logging output to the file c:\temp\log.txt, overwriting any existing file of
that name.

JOURNAL /A ON="log"
Start logging output to the file log.jou in the current directory of the debugger,
appending the new log text to the file if it already exists.

JOURNAL OFF Stop logging output.

See also
• LOG on page 2-180
• STDIOLOG on page 2-257
• VOPEN on page 2-326.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-173
ID052111 Non-Confidential

RealView Debugger Commands
2.3.78 JUMP

Continues execution at a label in the current INCLUDE file.

Syntax

JUMP label [,condition]

where:

label Is the string that identifies the target line in the INCLUDE file to which you want
control to jump. The first character of the target label must be a colon :, and it
must be followed by a label string.

condition Is an optional expression that can be evaluated as True or False. The jump to the
specified label takes place only if the condition is True, otherwise control passes
to the next command in the INCLUDE file.

Description

The JUMP command can only be used in an INCLUDE file. If you specify a condition, then the jump
takes place only if the condition is True. Otherwise control passes to the next line in the INCLUDE
file.

You cannot use the JUMP command inside a macro, nor place a target label inside a macro.
However, you can provide similar functionality by using the if, for, while and do-while flow
control constructs in macros.

Example

The following fragment of an INCLUDE file shows the use of labels and jumps:

initialize
:retry
jump skip_setup,x==1 // variable x is 1 when setup is complete
some_commands
jump retry // keep trying to initialize
:skip_setup

See also
• DEFINE on page 2-105
• FAILINC on page 2-148
• Chapter 4 RealView Debugger Keywords.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-174
ID052111 Non-Confidential

RealView Debugger Commands
2.3.79 LIST

Displays source code in the Code window.

Syntax

LIST [{#line_number|function_name|@stack_level}]

where:

line_number Specifies the number of the first line to be displayed.

function_name

Specifies a function that is to have its source code displayed.

@stack_level Displays the line that is returned to after the specified nesting level. For example,
@1 represents the instruction after the call to the current procedure.

Description

The LIST command displays the source code in the Code window beginning at the specified line
number, stack level, or function name.

You can qualify line number or procedure names by preceding them with a module name. If you
do not specify a parameter for the LIST command, the line pointed to by the PC is displayed.

The LIST command runs asynchronously unless in a macro.

Example

The following examples show how to use LIST:

list List the text of the current source file from the current PC location, if that refers
to a source file with debugging information.

list #44 List the text of the current source file from line 44.

list @1 List the text of the source file containing the call to the current procedure, starting
from the statement after the call.

See also
• CONTEXT on page 2-96
• DISASSEMBLE on page 2-116
• DOWN on page 2-124
• EXPAND on page 2-146
• SCOPE on page 2-234
• UP on page 2-318
• WHERE on page 2-331.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-175
ID052111 Non-Confidential

RealView Debugger Commands
2.3.80 LOAD

Loads the specified executable file onto the target.

Syntax

LOAD [/A] [/C] [/NI] [{/NP|/SP}] [/NS] [/PD] [/PY] [/R] absolute_filename [,root]
[;section [,section]...] [;arg1 ...] [&base_address]

where:

/A Loads and appends another executable image without deleting any existing one.
In addition, the value of the PC remains unchanged. This is the default option if
/R is not used.
If the new image file overlaps the addresses of the existing object modules, the
load terminates and displays an error message. If you want to replace the current
image with a new one, use /R.

/C Converts all symbols to lowercase as they are read by the absolute file reader.

/NI Loads only the symbol table. Overlap of addresses is checked unless /R is also
used. Does not load the program image code or the data.

/NP Prevents the command changing the value of the PC.

/NS Prevents the command loading debug information into the symbol table. Only the
program image is loaded. No check for overlapping addresses is made. The /NS
option can be used to reload the current program image without affecting the
symbol table.

/PD Displays a dialog box for errors and warnings, rather than dumping them to the
log.

/PY For images that enable the Memory Management Unit (MMU) and perform a
remap, loads progam sections at physical addresses rather than virtual addresses.
However, all symbols still refer to virtual address.

Note
 To debug MMU initialization code, that code must have the same virtual and

physical address.

/R Replaces the existing program with the program being loaded. In addition, when
no other qualifiers are specified:
• the value of the PC is set to the image entry address
• any debug information is loaded into the symbol table.

/SP Sets the PC to the start address specified in the object module. This is the default
behavior when symbols are loaded, the image file specifies an entry address, and
the /R flag is specified.

absolute_filename

Specifies the name of the absolute object file to be loaded. Quotation marks are
optional, but see Rules for specifying filenames in the FOPEN command on
page 2-154 for details on how to specify filenames that include a path. Also, see
Rules for the LOAD command on page 2-178.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-176
ID052111 Non-Confidential

RealView Debugger Commands
root Specifies the root associated with the symbols in the program being loaded. The
default root is the filename without an extension. See Rules for the LOAD
command on page 2-178 for details on how to specify a root.

section Lists sections to load when an image is being loaded. The default is to load all
sections. This option is commonly used to reload the initialized data area when
starting a program.
The section names that are available for a specific image can be listed using the
ARM development tools command fromelf or the GNU development tools
command objdump. See Rules for the LOAD command on page 2-178 for details
on how to specify sections.

args Specifies an optional, space-separated, list of arguments to the image.

Note
 You cannot use arguments with the LOAD command on ISSM, Model Library, and

Model Process targets.

The case of arguments is preserved. See Rules for the LOAD command on
page 2-178 for details on how to specify arguments.

Note
 You can also specify arguments using the ARGUMENTS command. For example, you

can might want to modify the arguments without unloading the image.

base_address Specifies an address offset to be added to all sections when computing the load
addresses.
For this option to work correctly with position-independent code and data, your
program must have been compiled with Position-Independent Code (PIC) and
Position-Independent Data (PID).
If your applications delegates security-critical functionality to TrustZone
Software, be aware of the following:
• An image is loaded into the current world by default.
• To load an image into a specific world, then prefix the address with &N:

(Normal World) or &S: (Secure World). For example:
— the following command loads an image into the Normal World at the

image entry point:
load ‘C:\myproject\myimage.axf’ &N:0

— the following command loads a position-independent image into the
Normal World:
load ‘C:\myproject\myimage.axf’ &N:0x1000

Description

The LOAD command loads the specified executable file into the debug target. The file specified
must be a format supported by the RealView Debugger.

To reset the initialized values of program variables after entering a RESET or a RESTART command,
you must reload your program using the LOAD command. The RELOAD command checks the file
date to determine whether program symbols have changed and therefore whether they must be
reloaded.

If a load is performed that includes the symbol table, any breakpoints or macros referring to
symbols in the previous root are invalidated.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-177
ID052111 Non-Confidential

RealView Debugger Commands
The LOAD command runs synchronously.

Rules for the LOAD command

Follow these rules when using LOAD:

• absolute_filename, root, section, and args must all be placed in the same set of quotation
marks. For example, on Windows:
load /pd/r 'c:\source\demofile.axf ;ER_RO,ER_ZI ;12345' &0x8A00

• If you want to specify arguments, but not a section, you must specify an empty section.
All sections are loaded in this case. For example:
load /pd/r 'c:\source\myfile.axf;;arg1 arg2 arg3'

• Where an argument includes spaces, additional quotation marks must be used. Use single
quotation marks around arguments if the outer quotation marks are doubles. Use double
quotation marks around arguments if the outer quotation marks are singles. For example:
load /pd/r "myimage.axf ;;12345 'Argument Two'" &0x8A00
load /pd/r 'c:\source\myimage.axf ;;12345 "Argument Two"' &0x8A00

• base_address must be placed outside the quotation marks, and must be the last parameter
specified.

Restrictions on the use of LOAD

The LOAD command is not allowed in a macro.

You cannot use arguments with the LOAD command on ISSM, Model Library, and Model Process
targets.

Examples

The following examples show how to use LOAD:

load 'c:\source\myfile.axf'
Load the executable file myfile.axf to the target, without overwriting any existing
image that is loaded, and without changing the value of the PC.

load /ni/sp 'c:\source\rtos.axf'
Load the symbol table for an image rtos.axf that is also in target ROM, setting
the PC to the program start address so that a subsequent GO runs the program.

load /np 'c:\source\mp3.axf'
Load the executable library mp3.axf onto the target so that the preloaded
executable can use it. The PC is not modified. Symbol table entries in mp3.axf are
added to the existing symbol table.

Note
 Ensure that executables you load in this way occupy distinct memory regions. No

relocation is performed by RealView Debugger unless you specify a base offset.

load /pd/r 'c:\source\demofile.axf ;ER_RO,ER_ZI' &0x8A00
Load the executable file demofile.axf to the default target. Specify an offset
added to all sections to compute the load addresses. Load only the specified
sections ER_RO and ER_ZI.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-178
ID052111 Non-Confidential

RealView Debugger Commands
load /pd/r 'c:\source\myfile.axf;;arg1 arg2 arg3'
Load the executable file myfile.axf to the default target using an arguments list.
An empty section list is given so all sections are loaded.

See also
• ADDFILE on page 2-19
• ARGUMENTS on page 2-27
• DTFILE on page 2-128
• GO on page 2-159
• RELOAD on page 2-225
• RESET on page 2-227
• RESTART on page 2-230
• RUN on page 2-232
• UNLOAD on page 2-316.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-179
ID052111 Non-Confidential

RealView Debugger Commands
2.3.81 LOG

Records user input and places it in a specified file.

Syntax

LOG [/A] [{OFF | ON="filename"}]

where:

/A Specifies that new records are to be added to any that already exist in the specified
file.

OFF Closes the log file and stops collecting information. This is the default.

ON Starts writing information to the log file.

filename Specifies the name of the log file. Quotation marks are optional, but see Rules for
specifying filenames in the LOG command for details on how to specify filenames
that include a path.

Description

This command records user input and places it in a specified file. Commands that are issued but
not successfully completed are written to the log file as comments along with the associated
error codes. All successful commands are written to the log file, so the file can be used as an
INCLUDE file.

Note
 If you want to use the log file as an INCLUDE file, first remove the log command that appears at
the start of the file.

If the specified file exists and you do not specify the /A parameter, the existing contents of the
file are overwritten and lost.

Using LOG with no parameters shows the current log file, if any. User input is recorded in the log
file until the LOG OFF command is issued.

The LOG command runs asynchronously unless in a macro.

Rules for specifying filenames in the LOG command

Follow these rules when specifying a filename:

• If the filename consists of only alphanumeric characters, slashes, or a period, but the
filename does not start with a slash, then you do not have to use quotation marks. For
example, includes/file.

• Filenames with a leading slash must be in double quotation marks, for example "/file".

• Filenames containing a backslash must be in single quotation marks. For example '\file'
or 'c:\myfiles\file'.
Alternatively, you can escape each backslash and use double quotation marks. For
example, "c:\\myfiles\\file".

• You can use environment variables to specify paths to a file. For example, if
PATHROOT=C:\MYFILES and PATHTEST=TEST1:
'$PATHROOT\$PATHTEST\test1.c'
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-180
ID052111 Non-Confidential

RealView Debugger Commands
You can include:
— the filename as part of the second environment variable, and then specify

'$PATHROOT\$PATHTEST'.
— the path separator in the environment variable, and then specify

'$PATHROOT$PATHTEST'.

Example

The following examples show how to use LOG:

LOG ON='c:\temp\log.txt'
Start logging output to the file c:\temp\log.txt, overwriting any existing file of
that name.

LOG /A ON="log"
Start logging output to the file log.log in the current directory of the debugger,
appending the new log text to the file if it already exists.

LOG OFF Stop logging output.

See also
• JOURNAL on page 2-172
• STDIOLOG on page 2-257
• VOPEN on page 2-326.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-181
ID052111 Non-Confidential

RealView Debugger Commands
2.3.82 MACRO

Enables you to run a predefined or user-defined macro.

Syntax

MACRO macroname(parameters...)

where:

macroname Specifies that name of the macro.

parameters The actual values of parameters required by the macro.

Description

The MACRO command runs a macro. You can run macros in these ways:
• as part of the expression in a CE command
• as the argument to the MACRO command
• as a command on its own.

The CE command enables you to see the result of the macro, as set with the RETURN statement. If
the macro does not explicitly return information, or you do not have to know the return value,
you can use the macro name as a command. However, in this case the macro is only run if the
name does not match any other debugger command or any alias defined with ALIAS. You can
therefore use the MACRO command to ensure that the command that is run is the macro, and not a
debugger command or an alias.

Note
 It is recommended that, if you call macros in an INCLUDE file and they do not return a value, you
use MACRO to make the call. This ensures that the future operation of the INCLUDE file is not
changed if new commands are added to the debugger, for example using ALIAS.

Macros can also be invoked as actions associated with:
• a window, for example VMACRO
• a breakpoint, for example BREAKEXECUTION
• deferred commands, for example BGLOBAL.

Note
 Macros that are not directly invoked from the command line cannot use execution-type
commands, such as GO or STEPINSTR.

Example

The following example shows how to use MACRO:

macro fgetc(50)
Read a character from the file associated with the file number 50 and throw it
away, with the side effect of advancing the file pointer to the next character.

See also
• ALIAS on page 2-21
• CEXPRESSION on page 2-87
• DEFINE on page 2-105
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-182
ID052111 Non-Confidential

RealView Debugger Commands
• INCLUDE on page 2-168
• PRINTSYMBOLS on page 2-208.
• SHOW on page 2-248
• VMACRO on page 2-324.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-183
ID052111 Non-Confidential

RealView Debugger Commands
2.3.83 MEMMAP

Enables you to control memory mapping and to define temporary memory map entries.

Syntax

MEMMAP [,qualifier...] [={address|address-range}]

where:

qualifier One of the following:
access:text Set the memory access type to text, which must be one of

the predefined strings:
RAM Memory can be read and written with no specific

provision.
ROM Memory can only be read.
WOM Memory can only be written.
NOM There is no memory in this region.
Flash There is Flash memory in this region. It can

always be read, and it can be written as required
using the Flash memory procedure if this is
defined. Also, see the fauto, fclk, and fme
qualifiers.

Auto There is memory in this region but the type is
inferred by the image that is loaded. Memory in
regions not defined by the image are assumed to
be absent (equivalent to NOM).

Prompt There is memory in this region but you set the
type by responding to a prompt when loading an
image to it. The default is there is no memory.

asize:size The size of memory accesses, where size is one of:
1 1-byte accesses
2 2-byte accesses
4 4-byte accesses
8 8-byte accesses

autosection When loading an image, create memory mappings
automatically from the sections of the image. This is default
behavior.

define Creates a new memory region using the address range in
address. You can specify additional information about the
region with the type, access, and description qualifiers.

delete Deletes memory map entries:
• if you supply a memory map entry start address in

address, delete that entry
• if you supply no arguments, delete all memory maps.

description:text Set the name of this memory map region to text. This is
used to label the entry for your own reference.

disable Turns off memory mapping control. The debugger assumes
that all memory is RAM.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-184
ID052111 Non-Confidential

RealView Debugger Commands
enable Turns on memory mapping control. This is the default.
The debugger only accesses the target memory in regions
that are defined in the map, and uses the access method to
determine the operations that are permitted.

fauto Enables the Flash auto-write mode.
fclk:speed If fauto is used and the harware requires a clock frequency,

this qualifier specifies the clock in Hz.
fme:filename For Flash memory, the Flash programming method file

(*.fme) that is to be used. You must enter the full path and
file name, enclosed in double quotation marks.

type:text Set the memory type to text, which must be one of the
defined memory type strings for the processor architecture.
For ARM processors, the only available type is Any.

updateautomap Update the memory map based on the information provided
in the board file. This is automatically done when:
• the debugger starts up
• the target program stops
• the registers that control the map are changed by you.
This qualifier enables you to manually request a map
update.

address The start address of the memory region, specified as a single address. Use this
form with the delete qualifier.

address-range

The memory region, specified as an address range. Use this form with the define
qualifier. The start and the end of the range is included in the range.

Note
 For targets that support the TrustZone technology, prefix the start address with S: or N: to
identify the Secure World or Normal World. The prefix S: is the default.

Description

The MEMMAP command enables you to:

• Enable and disable memory mapping.

• Define new temporary memory regions based on type and access rights. The list of valid
access rights and types is defined by the Debug Interface and target processor.

• Delete memory map entries.

If you have assigned a BCD file to your Debug Configuration, then memoray mapping is
automatically enabled when you connect to a target associated with that Debug Configuration.
Any memory map settings in a BCD file assigned to the related Debug Configuration are not
changed. If you disable and enable memory mapping, any changes you make to the memory
map with MEMMAP are preserved. However, the changes are lost when you disconnect. When you
next connect to the target, the original memory map from the assigned BCD file is restored.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-185
ID052111 Non-Confidential

RealView Debugger Commands
Examples

The following examples show how to use MEMMAP:

memmap,define 0x10000..0x20000
Creates a memory map region from 0x10000 to 0x20000, inclusive. The length of
the region is 0x10001 bytes.

memmap,define N:0x10000..0x20000
Creates a memory map region from 0x10000 to 0x20000, inclusive, in the Normal
World for a target that supports the TrustZone technology. The length of the
region is 0x10001 bytes.

memmap,define 0x10000..+0x10000
Creates a memory map region from 0x10000 to 0x1FFFF, inclusive. The length of
the region is 0x10000 bytes.

mmap,def,access:Flash,type:Any,asize:4,descr:"Intel",fme:"C:\myflash\IntegratorAP\flash

_IntegratorAP.fme"=0x24000000..0x25FFFFFF
Define a Flash memory region called Intel, using 4-byte memory accesses, and
using the Flash programming method file located in
C:\myflash\IntegratorAP\flash_IntegratorAP.fme.

mmap,def,access:RAM,type:Any,description:"Data space"=0x0000..0x7FFF
Define a read/write memory region called Data space in the first 32KB of
memory.

mmap,def,access:ROM,type:Any,descr:"Bootrom"=0x10000..+0xFFFF
Define the 64KB region starting at 0x10000 as a read-only region called Bootrom.

mmap,delete =0x10000
Delete the memory map entry that starts at 0x10000, resetting the map for that area
to the Auto map.

mmap,delete Delete all memory map entries, resetting the map to the default Auto map over the
whole address space.

mmap,disable Disable memory mapping.

Alias

MMAP is an alias of MEMMAP.

See also

• Specifying address ranges on page 2-2

• DUMPMAP on page 2-133

• FLASH on page 2-152

• MEMWINDOW on page 2-188

• SETMEM on page 2-239

• the following in the RealView Debugger User Guide:
— Chapter 9 Mapping Target Memory
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-186
ID052111 Non-Confidential

RealView Debugger Commands
• the following in the RealView Debugger Target Configuration Guide:
— Chapter 4 Configuring Custom Memory Maps, Registers and Peripherals
— Memory mapping Advanced_Information settings reference on page A-20.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-187
ID052111 Non-Confidential

RealView Debugger Commands
2.3.84 MEMWINDOW

Sets the base address of the Memory view.

Note
 This command is not available when running in command line mode.

Syntax

MEMWINDOW [{/8|/16|/32}] address

where:

/8 Sets the display format to 8 bits.

/16 Sets the display format to 16 bits.

/32 Sets the display format to 32 bits.

Note
 If no display format is specified, the default is the native format for the debug

target. For example, the ARM7TDMI processor naturally addresses bytes of 8
bits.

address The base address for the Memory view.

Description

The MEMWINDOW command sets the base address of the Memory view. You can specify the size of
each printed value using the qualifiers. If you do not specify a size, the previous size is retained.

Example

The following example shows how to use MEMWINDOW:

memw /8 0x200
Display values in the Memory view as bytes from the address 0x200.

See also
• SETMEM on page 2-239.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-188
ID052111 Non-Confidential

RealView Debugger Commands
2.3.85 MMAP

MMAP is an alias of MEMMAP.

See MEMMAP on page 2-184.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-189
ID052111 Non-Confidential

RealView Debugger Commands
2.3.86 MODE

Switches the code window between disassembly and source view.

Note
 This command has no effect when running in command line mode.

Syntax

MODE [{HIGHLEVEL | ASSEMBLY}]

where:

HIGHLEVEL Set the code window to the source view.

ASSEMBLY Set the code window to the disassembly view.

Description

The MODE command enables you to toggle between disassembly and source modes of the Code
view, and along with this, the stepping mode of the GOSTEP command. Without an argument, the
current mode is toggled. With an argument, the current view mode is set to the indicated mode.

See also
• CONTEXT on page 2-96.
• DISASSEMBLE on page 2-116.
• GOSTEP on page 2-161
• LIST on page 2-175.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-190
ID052111 Non-Confidential

RealView Debugger Commands
2.3.87 MONITOR

Adds the named variable to the list of monitored, or watched, variables, displayed in the Watch
view.

Note
 This command is not available when running in command line mode.

Syntax

MONITOR variable_name

where:

variable_name The name of a variable or expression in the current context, or a path
name, using the \\module\proc\variable syntax, for a variable that you are
monitoring.

Description

The MONITOR command adds a variable to the list of watched variables displayed in the Watch
view of the debugger. This list displays the values of each variable every time the debugger
stops, for example at a breakpoint. If the variable is out of scope when the debugger stops, the
value is printed as Symbol not found without qualification.

You can add pointer and structure variables to this list. If you do, the values of members and
referenced variables can be displayed using the icon next to the pointer name in the Watch
view.

Note
 • MONITOR is equivalent to display, found in some other debuggers.

• You can print the value of a variable using the CEXPRESSION or PRINTVALUE command.

Examples

The following examples show how to use MONITOR:

monitor count
Monitor the value of the variable count, displaying the value as an integer.

moni this Monitor the members of the current C++ class, through the C++ class pointer
this.

moni \\MAIN_1\ALLOC\maxalloc
Monitor the global variable maxalloc from the file main.c.

See also
• CEXPRESSION on page 2-87
• CONTEXT on page 2-96
• DUMP on page 2-131.
• NOMONITOR on page 2-192
• PRINTVALUE on page 2-211.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-191
ID052111 Non-Confidential

RealView Debugger Commands
2.3.88 NOMONITOR

Deletes variables from the Watch view.

Note
 This command is not available when running in command line mode.

Syntax

NOMONITOR [{linenum | linenum..linenum}]

where:

linenum A line number or a line number range for the items to delete.

Description

This NOMONITOR command deletes variables added to the Watch view by MONITOR, using a line
number in the view to identify the item to delete.

Line numbers start at 1 for the first line and increment by one for each top-level variable. A
structure or array variable that has been expanded using the icon to the left of the variable name,

, counts as only one line. If you reference a line that is not present, the command is ignored.

You can delete several consecutive elements from the Watch view using a line number range,
separating the first and last line numbers with a double-dot (..). If the end of a line range is not
present, only the lines that are present are deleted.

If you do not specify a line number or line number range, all lines are deleted from the Watch
view.

Examples

The following examples show how to use NOMONITOR:

nomonitor 2 Delete the variable on line 2 of the Watch view.

nomonitor 2..4
Delete the variables on lines 2, 3, and 4 of the Watch view.

See also
• MONITOR on page 2-191.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-192
ID052111 Non-Confidential

RealView Debugger Commands
2.3.89 ONSTATE

Executes the associated command when a particular event occurs.

Syntax

ONSTATE [,event] [,timer] [,replace] [command]

where:

event Specifies the event to trigger on from the following list:
start Execute the command immediately before program execution starts.
stop Execute the command immediately after program execution stops.
starttimed

Execute the command immediately before program execution starts
and at the specified interval thereafter until the program stops running.
The target must support execution of commands on a running target.

tstart An alias of starttimed.
stoptimed

Execute the command immediately after program execution stops and
at the specified interval thereafter, until the debugger starts the
program again or the target is disconnected. Specify the time interval
using the ,timer qualifier, with the interval in milliseconds.

tstop An alias of stoptimed.
reset If target reset is detected by the debugger, execute the command.

timer A qualifier used to specify the time interval used with timed events. The
minimum interval is 10ms.

replace A qualifier used to specify that this ONSTATE command replaces all previous
ONSTATE commands for the same event.
If this qualifier is not specified, new commands for an event are added to the end
of a list of commands to execute when the event happens.

command The debugger command to execute. It can be more than one word.

Description

The ONSTATE command executes a given debugger command when a specified event occurs. If
no arguments are provided, ONSTATE lists out the currently registered commands for each type of
event.

Examples

The following examples show how to use ONSTATE:

onstate,tstop,timer:5000 ce 0x8000
While the debugger has the target stopped at a five-second interval, execute the
command ce 0x8000.

onstate,stop,replace
Delete the event commands associated with the stop event.

onstate List the current event commands in the following format:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-193
ID052111 Non-Confidential

RealView Debugger Commands
On Start:
 <no commands registered>On Stop:
 <no commands registered>On Start Timed (every 0 msecs):
 <no commands registered>On Stop Timed (every 5000 msecs):
 ce 0x8000On Reset:
 <no commands registered>

See also
• BGLOBAL on page 2-31.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-194
ID052111 Non-Confidential

RealView Debugger Commands
2.3.90 OPTION

Enables you to change the settings of debugger options for this session, or to display their
current settings.

Syntax

OPTION [option = value]

where:

option Specifies a setting from the list:
DEMANDLOAD

A flag that controls when the debugger symbol table is loaded. The
value must be one of:
ON The debug sections of the executable file are loaded into the

debugger symbol table as required, speeding up the target
load time. This is the default setting.

OFF The whole symbol table is loaded from the file when the
LOAD or RELOAD commands are issued.

ENDIANITY
A flag that indicates the endianness of the target. The value must be
one of:
LITTLE The least significant byte of data is in the lowest address in

memory, or appears first in a word in a data stream.
BIG The most significant byte of data is in the lowest address in

memory, or appears last in a word in a data stream.
Use this option to temporarily override the Endianess setting in the
Debug Configuration for the target.
The initial value is set on connection, and depends on the type of
target:
• For hardware targets, the value is determined by the equivalent

board file setting (Endianess) of the related Debug
Configuration.

• For RVISS targets, the value is determined by the Debug Endian
setting you selected for the configured target.

FRAMESTOP
A flag that controls the behavior of the call stack algorithm. The value
must be one of:
ON The call stack stops when a stack frame is encountered that

does not have associated debug information. This is the
default.

OFF The call stack stops when the end of stack is reached or
when the stack frame no longer makes sense.

PENDMODE A flag that controls the pending command behavior:
single Enables you to step, run or execute any pendable command

on a processor that is synchronized with a running
processor, but is not itself running.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-195
ID052111 Non-Confidential

RealView Debugger Commands
synchronized
Enables you to pend any pendable command on a processor
that is synchronized with a running processor, but is not
itself running.

RADIX The number base used for numeric input and output. The value must
be one of:
DECIMAL The default input number base is decimal, base 10, using the

digits 0..9. You can also suffix a decimal number with t.
This is the default setting.

HEXADECIMAL
The default input number base is hexadecimal, base 16,
using the digits 0..9 and a..f, or 0..9 and A..F. You can also
prefix a hexadecimal number with 0x or suffix it with h.

Note
 It is suggested that you use either the 0x prefix or h suffix

for every hexadecimal number. This ensures that the value
is valid if you change the radix to decimal. For example,
0x80FF is always valid, but 80FF is invalid for a decimal
radix.
Also, if you use the h suffix, it is suggested that you prefix
the hexadecimal number with a zero digit to avoid
confusion with symbol names, for example, 0FADEh.

OUTDEC The output number base is decimal, base 10, using the digits
0..9. This is the default setting.

OUTHEX The output number base is hexadecimal, base 16, is prefixed
with 0x and uses the digits 0..9 and A..F.

The number base for a particular session can also be set in the
workspace options.

STEPPING A flag that controls the high-level stepping behavior.
In the Disassembly tab, lines of interleaved source in the disassembly
view are prefixed by either >>> or ---. This flag determines whether
lines prefixed with --- are stepped to or stepped over.
The value must be one of:
ALL Step to the first instruction of the next line of source

prefixed with >>> or ---.
STATEMENT Step to the first instruction of the next line of source

prefixed by >>>. That is, step over any lines of source
prefixed with ---. This is the default.

value Defines the value that you want to assign to the specified option.

Description

The OPTION command enables you to change the settings of debugger options for this session, or
to display their current settings. If you supply no parameters, the command displays the current
settings of various options.

Examples

option Displays the current option settings, for example:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-196
ID052111 Non-Confidential

RealView Debugger Commands
DEMANDLOAD = ON
ENDIANITY = LITTLE
FRAMESTOP = OFF
RADIX = DECIMAL, OUTHEX
STEPPING = STATEMENT
PENDMODE = SINGLE

option radix=hex The numerical input base is hexadecimal. The following are valid numbers
when the default number base is hexadecimal:
• 0xAB (AB hex, 171 decimal)
• 0AB (AB hex, 171 decimal)
• 45 (45 hex, 69 decimal)
• 45t (45 decimal)
• 45H (45 hex, 69 decimal).
and the following are not valid:
• AB (does not start with a digit)
• 0t45 (t must be at the end).

The following example opens a user-defined window with the name User80 followed by a
window named User50:

> option radix=hex
> vopen 50
> option radix=dec
> vopen 50

See also

• CEXPRESSION on page 2-87

• LOAD on page 2-176

• PRINTVALUE on page 2-211

• SETTINGS on page 2-245

• STEPLINE on page 2-261

• STEPO on page 2-265

• the following in the RealView Debugger Target Configuration Guide:
— Customizing an RVISS Debug Interface configuration on page 2-13
— Debug Configuration Advanced_Information settings reference on page A-10.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-197
ID052111 Non-Confidential

RealView Debugger Commands
2.3.91 OS action commands

OS action commands.

See AOS_resource_list on page 2-26.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-198
ID052111 Non-Confidential

RealView Debugger Commands
2.3.92 OS resource commands

OS resource commands.

See DOS_resource_list on page 2-122.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-199
ID052111 Non-Confidential

RealView Debugger Commands
2.3.93 OSCTRL

Controls debugging on OS-aware connections.

Syntax

OSCTRL ,qualifier

where:

qualifier Specifies the action, and can be one of:
addfilter="event;process;module"

Not supported in this release.
clearfilter

Not supported in this release.
enableeventcapture

Not supported in this release.
disableeventcapture

Not supported in this release.
enable_rsd

Enable RSD.
disable_rsd

Disable RSD.
properties_rsd

Report the current RSD properties on the screen.
setevents=events

Not supported in this release.

Description

The OSCTRL command enables you to control debugging on OS-aware connections. You can:

• Enable or disable RSD.

• Display the current RSD properties, such as:
— the status of the RSD module
— settings as specified in your board file (or .bcd file where available)
— RSD breakpoints.
If you are using the GUI, then the properties are displayed in the Output view.

Examples

The following examples shows how to use OSCTRL:

osctrl,enable_rsd
Enables RSD for the current target connection.

See also
• AOS_resource_list on page 2-26
• BREAKINSTRUCTION on page 2-55
• DOS_resource_list on page 2-122
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-200
ID052111 Non-Confidential

RealView Debugger Commands
• HALT on page 2-163
• STOP on page 2-267
• THREAD on page 2-276.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-201
ID052111 Non-Confidential

RealView Debugger Commands
2.3.94 PAUSE

Waits for a specified number of seconds.

Syntax

PAUSE [n]

where:

n Specifies a period of time, in seconds.

Description

The PAUSE command pauses command file reading. It stops execution of commands from the
INCLUDE file for a specified time, or until you indicate that execution can continue.

The parameter to the PAUSE command, if supplied, must be a positive integer. The maximum
number of seconds that you can pause is 255.

If you do not supply a parameter, or supply a value of zero, the command waits indefinitely.
Execution continues when you press Return, Enter, or Cancel.

If you supply a positive integer, a countdown of seconds from that number to zero is displayed.
Execution continues when zero is reached, or earlier if you press Return, Enter, or Cancel.

Note
 This command requires that RealView Debugger is connected to a debug target.

Examples

The following examples show how to use PAUSE:

pause 5 Wait for 5 seconds, or for you to press Return, Enter, or Cancel, and then continue.

pause Wait for you to press Return, Enter, or Cancel.

See also
• WAIT on page 2-329.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-202
ID052111 Non-Confidential

RealView Debugger Commands
2.3.95 PRINTDSM

Displays disassembled target memory at a specified address or between a range of addresses.

Syntax

PRINTDSM { address | addressrange }

where:

address The address containing the line of code to be disassembled. For example, 0x8000.

addressrange The start and end addresses containing the code to be disassembled. For example,
0x8000..0x8FFF specifies addresses in the address range 0x8000 to 0x8FFF.

Description

The PRINTDSM command prints disassembled target memory at the specified address, or in the
specified address range:
• if you are using the GUI, then output is sent to the Cmd tab of the Output view
• if you have a journal file open, the disassembly is also sent to that file.

The output is in the same format as the disassmbly in the Disassembly tab of the Code window.
Use the DISASSEMBLE command to change the format.

Note
 This command requires that RealView Debugger is connected to a debug target.

Examples

The following examples use the dhrystone image to show how to use PRINTDSM:

printdsm 0x8000..0x800F
Prints a disassembled version of the code from 0x8000 to 0x800F, for example:
 __main:
 RW:00008000 EA000000 B __scatterload_rt2 <0x8008>
 RW:00008004 EA00069C B __rt_entry <0x9a7c>
 __scatterload_rt2:
 RW:00008008 E28F0028 ADR r0,{pc}+0x30 ; 0x8038
 RW:0000800C E8900C00 LDM r0,{r10,r11}

printdsm main..+16
Prints a disassembled version of the 16 bytes of code starting from the address of
function main, for example:
 main:
 RW:00008200 E92D47F0 PUSH {r4-r10,r14}
 RW:00008204 E24DD070 SUB r13,r13,#0x70
 RW:00008208 E3A00030 MOV r0,#0x30
 RW:0000820C EB00040E BL malloc <0x924c>

See also
• Specifying address ranges on page 2-2
• DISASSEMBLE on page 2-116
• DUMPMAP on page 2-133
• DUMP on page 2-131
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-203
ID052111 Non-Confidential

RealView Debugger Commands
• SETTINGS on page 2-245.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-204
ID052111 Non-Confidential

RealView Debugger Commands
2.3.96 PRINTF

Displays formatted text on the screen.

Syntax

PRINTF "format_string" [,argument]...

where:

format_string

Is a format specification conforming to C/C++ rules with extensions. It might be
a text message, or it can describe how one or more arguments are to be presented.
See Format string syntax for details.

Note
 Only the first 256 characters of the string are displayed, even after formatting is

applied.

argument Is a list of values that you want displayed in the way described by the specified
format.

Description

The PRINTF command uses a special format string to write text and numbers to the screen. If you
are using the GUI, then they are displayed in the Output view. It works in a similar way to the
ANSI C standard library function printf(), with a number of extensions to better support the
debugger environment.

Format string syntax

The message in format_string is a string. If there are no % characters in the string, the message
is written out and any arguments are ignored. The % symbol is used to indicate the start of an
argument conversion specification.

The syntax of the specification is:

%[flag][fieldwidth][precision][lenmod]convspec

where:

flag An optional conversion modification flag -. If specified, the result is left-justified
within the field width. If not specified, the result is right-justified.

fieldwidth An optional minimum field width specified in decimal.

precision An optional precision specified in decimal, with a preceding . (period character)
to identify it.

lenmod An optional argument length specifier:
h a 16-bit value
l a 32-bit value
ll a 64-bit value

convspec The possible conversion specifier characters are:
% A literal % character.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-205
ID052111 Non-Confidential

RealView Debugger Commands
m The mnemonic for the processor instruction in memory pointed to by
the argument. The expansion includes a newline character. The
information that is printed includes:
• the memory address in hexadecimal
• the memory contents in hexadecimal
• the instruction mnemonic and arguments
• an ASCII representation of the memory contents, if printable.

H A line from the current source file, where the argument is the line
number.

h A line from the current source file, where the argument is a target
memory address.

d, i, or u An integer argument printed in decimal. d and i are equivalent, and
indicate a signed integer. u is used for unsigned integers.

x or X An integer argument printed in unsigned hexadecimal. x indicates that
the letters a to f are used for the extra digits, and X indicates that the
letters A to F are used.

c A single character argument.
s A string argument. The string itself can be stored on the host or on the

target.
p A pointer argument. The value of the pointer is printed in hexadecimal.
e, E, f, g, or G

A floating point argument, printed in scientific notation, fixed point
notation, or the shorter of the two. The capital letter forms use a capital
E in scientific notation rather than an e.

Rules

The following rules apply to the use of the PRINTF command:

• if there are too many arguments, some of them are not printed

• if there are too few arguments (that is, there are more conversion specifiers in the format
string than there are arguments after the format string), the string <invalid value> is
output instead

• if the argument type does not correspond to its conversion field specification, arguments
are converted incorrectly.

Examples

The following examples show how to use PRINTF:

printf "Found %d errors\n", ecount
Print out a message, substituting the value of ecount. So, if ecount had the value
5, the message is:
Found 5 errors

printf "Completion %\n", runs
Print out a message that includes a single percent symbol. The argument runs is
ignored, so the message is:
Completion %
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-206
ID052111 Non-Confidential

RealView Debugger Commands
printf "%h\n", #82
Print out a source file line 82. For example:
REG char Ch_Index;

printf "Var is %hd.\n", short_var
Print out the variable short short_var. For example:
Var is 22.

printf "Instruction1 %m\nInstruction2 %m", 0x100, 0x104
Print out the disassembly of the contents of location 0x100, two newlines and the
contents of location 0x104. For example, it might print:
Instruction1 000000100 20011410 ANDCS r1,r1,r0,LSL r4

Instruction2 000000104 20011412 ANDCS r1,r1,r2,LSL r4

printf "Average execution time %f secs\n", totaltime / (double)20
Print out a message, substituting the value of the expression. So, if totaltime had
the value 523.3, the message is:
Average execution time 26.165 secs

See also

• CEXPRESSION on page 2-87

• FPRINTF on page 2-156

• PRINTTYPE on page 2-210

• PRINTVALUE on page 2-211

• the following in the RealView Debugger User Guide:
— Using variable substitution in commands within a macro on page 16-6.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-207
ID052111 Non-Confidential

RealView Debugger Commands
2.3.97 PRINTSYMBOLS

Displays information about the specified symbol including its name, data type, storage class,
and memory location.

Syntax

PRINTSYMBOLS [{/C|/D|/E|/F|/M|/R|/T|/W}] [name[*]] [{\|\\|*}]

where:

/C Displays functions and labels.

/D Displays data and macros.

/E Displays any symbol declaration conflicts.
Mismatch errors occur when global variables are declared with different types in
different modules or global functions are declared with different return types or
argument counts in different modules.

/F Displays symbols in all roots (all contexts). All matching names in all roots are
shown.

/M Displays modules and module names.

/R Displays reserved symbols, registers, internal variables, and any memory mapped
registers.

/T Displays types.

/W Displays symbols in wide format (names only).

name Specifies the symbolic unit:
• symbol name
• source code line number.
The wildcard character (*) can be used to match the first zero or more letters of a
name. The * must be the last character in the partial name.

* An asterisk as the only parameter displays all symbols in the current context.

\ Displays information about all modules.

\\ Displays information about debugger symbols.

Description

The PRINTSYMBOLS command displays information about the specified symbol including its
name, data type, storage class, and memory location. If you want to see all modules in your
current root, use only \ and \\. If you want to see all symbols in a particular function or module,
append \ to the module name.

PRINTSYMBOLS with no options specified acts the same as the CONTEXT command. Also,
PRINTSYMBOLS /F acts the same as CONTEXT /F.

Note
 The symbol name must be specified in the correct case, even when a wildcard is used.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-208
ID052111 Non-Confidential

RealView Debugger Commands
Examples

The following examples show how to use PRINTSYMBOLS:

printsymbols funct1\
Prints the names of all symbols within funct1, for example, all local variables.

ps #146.2 Prints details if the second statement on line 146 of the current source file. For
example, for the dhry_1.c source file of the dhrystone image this command prints:
Module DHRY_1 Line 146..146 at 0x00008318

printsymbols /m *
Prints the names of all modules in the image. For example, for the dhrystone
image this command prints:
@dhrystone\\DHRY_H : Codeless Include File.
@dhrystone\\TIME_H : Codeless Include File.
@dhrystone\\DHRY_1 : High level module.
 Code section = 0x00008278 to 0x00008FB3
 Code section = 0x0000D8BC to 0x0000D8BF
@dhrystone\\DHRY_2 : NON-LOADED module.
 Code section = 0x0000807C to 0x0000826F
@dhrystone\\STARTUP_S : Assembly level module.
 Code section = 0x00008000 to 0x00008007
@dhrystone\\SCATTER_S : Assembly level module.
 Code section = 0x00008008 to 0x0000807B
@dhrystone\\SYSAPP : Assembly level module.
 Code section = 0x00008FB4 to 0x00008FF3
 Code section = 0x0000AE20 to 0x0000AEE7
 Code section = 0x0000D07C to 0x0000D093
...

Alias

PS is an alias of PRINTSYMBOLS.

See also
• Constructing expressions on page 1-14
• CEXPRESSION on page 2-87
• CONTEXT on page 2-96
• FPRINTF on page 2-156
• PRINTF on page 2-205
• PRINTTYPE on page 2-210
• PRINTVALUE on page 2-211
• REGINFO on page 2-223.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-209
ID052111 Non-Confidential

RealView Debugger Commands
2.3.98 PRINTTYPE

Displays language type information for a symbol.

Syntax

PRINTTYPE {symbol_name | expression}

where:

symbol_name Specifies the name of a symbol.

expression Specifies a debugger expression.

Description

The PRINTTYPE command displays language type information for a symbol or debugger
expression. The information is displayed in a style similar to the source language.

Note
 The symbol name must be specified in the correct case, even if a wildcard is used for part of the
name.

Examples

The following examples show how to use PRINTTYPE:

printtype Enumeration
Shows details of the enum type Enumeration, defined by the dhrystone image:
 typedef enum Enumeration
 {
 , Ident_1:0 Ident_2:1, Ident_3:2, Ident_4:3, Ident_5:4
 } Enumeration;
 -- Defined within module DHRY_H

printtype ptr->databuf
Shows type details of a field referenced by the pointer databuf.

Alias

PT is an alias of PRINTTYPE.

See also
• ADD on page 2-16
• BROWSE on page 2-79
• DELETE on page 2-109
• FPRINTF on page 2-156
• PRINTF on page 2-205
• PRINTSYMBOLS on page 2-208
• PRINTVALUE on page 2-211
• REGINFO on page 2-223.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-210
ID052111 Non-Confidential

RealView Debugger Commands
2.3.99 PRINTVALUE

Displays the value of a variable or expression.

Syntax

PRINTVALUE [{/H|/MB|/R|/S|/T}] {expression | expression_range}

where:

/T Displays the value in decimal format.

/H Displays the value in hexadecimal format.

/MB Displays multibyte characters using the current encoding, for example UTF-8.
You must use the GUI to set up the character encoding.

/R Suppresses the display of the address when you specify a variable in an image.

/S Suppresses the display of characters in the string, but displays the character
pointer.

expression Specifies an expression to be displayed. If you are using the GUI, then the
expression is displayed in the Output view.

expression_range

Specifies an expression range to be displayed. If you are using the GUI, the
expressions range is displayed in the Output view.

Description

The PRINTVALUE command prints to the screen the value of a variable or expression using its
natural type for formatting. It can display all of aggregate types, such as structures, and
expressions can be type cast to display it in a different format. All values that make up a complex
type are printed. If you are using the GUI, then they are displayed in the Output view.

Each value within an expression_range is displayed according to the base type if one exists. All
expressions printed with this command are displayed according to their type. If the type of the
expression is unknown, it defaults to type byte.

The PRINTVALUE command runs synchronously unless access to target memory is required and
background access is not possible. Use the WAIT command to force it to run synchronously.

The following messages can be displayed by the PRINTVALUE command:

<ENUM: xx> Invalid enum value, xx = value.

<INFINITY> Floating-point value is infinity.

<NAN> Not a number. A floating-point error.

Examples

The following examples show how to use PRINTVALUE:

printvalue /mb pchUTF8
Prints the multibyte character variable pchUTF8, encoded in UTF-8, as multibyte
characters. Without the /mb switch the characters are displayed as escaped
characters.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-211
ID052111 Non-Confidential

RealView Debugger Commands
printvalue *Ptr_Glob
The command can be used to print the full contents of a record, for example this
instance from a run of dhrystone:

 printv *Ptr_Glob
 0x00011540 = {Ptr_Comp=(record *)0x00011508,Discr=Ident_1,variant={var_1=
 {Enum_Comp=Ident_3,Int_Comp=17,Str_Comp="DHRYSTONE PROG
 RAM, SOME STRING"},var_2={E_Comp_2=Ident_3,Str_2_Comp="C
 \x02\xC7\x11"},var_3={Ch_1_Comp='\x02',Ch_2_Comp='C'}}}

Note
 For the same expression, CEXPRESSION prints the address, not the full value:

> ce *Ptr_Glob
 Result is: data address 0x00011540

p Ptr_Glob Printing the value of the pointer tells you the address of the pointer, its type and
the value stored there:
0x0000EBBC = (record *)0x00011540

Note
 For the same expression, CEXPRESSION prints the value of the pointer, but not its

type and address:
> ce Ptr_Glob
 Result is: data address 0x00011540

See also
• CEXPRESSION on page 2-87
• FPRINTF on page 2-156
• MONITOR on page 2-191
• PRINTF on page 2-205
• PRINTSYMBOLS on page 2-208
• PRINTTYPE on page 2-210
• REGINFO on page 2-223
• the following in the RealView Debugger Essentials Guide:

— Localizing the RealView Debugger interface on page 2-20.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-212
ID052111 Non-Confidential

RealView Debugger Commands
2.3.100 PROPERTIES

PROPERTIES is an alias of SETTINGS.

See SETTINGS on page 2-245.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-213
ID052111 Non-Confidential

RealView Debugger Commands
2.3.101 PS

PS is an alias of PRINTSYMBOLS.

See PRINTSYMBOLS on page 2-208.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-214
ID052111 Non-Confidential

RealView Debugger Commands
2.3.102 PT

PT is an alias of PRINTTYPE.

See PRINTTYPE on page 2-210.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-215
ID052111 Non-Confidential

RealView Debugger Commands
2.3.103 PWD

Displays the current working directory.

See also
• CWD on page 2-101
• the following in the RealView Debugger User Guide:

— The current working directory on page 2-10.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-216
ID052111 Non-Confidential

RealView Debugger Commands
2.3.104 QUIT

Exits the debugger.

Syntax

QUIT [Y]

where:

Y Exits the debugger without displaying a confirmation dialog. Include this when
using the QUIT command in a batch file.

Description

The QUIT command exits the debugger. It displays a dialog box where you can confirm the
operation.

If you have any unsaved changes, you are prompted to save these before the debugger exits.

Be aware of the following:

• If any connections are established, then those connections are stored in the current
workspace file. RealView Debugger attempts to establish the connections when you next
start a debugging session.

• If an image is loaded that has breakpoints set, and the auto save breakpoints feature is
enabled, then the breakpoints are stored in a file. This file is saved in the same location as
the image.

Restrictions on the use of QUIT

The QUIT command is not allowed in a macro.

Examples

The following examples show how to use QUIT:

quit Exits the debugger. Displays a dialog box where you can choose to confirm or
abort the operation. If you choose to exit, the debugger warns of any unsaved
changes.

quit y Exits the debugger without additional confirmation. However, the debugger
warns of any unsaved changes.

See also

• UNLOAD on page 2-316

• the following in the RealView Debugger User Guide:
— Storing connections when exiting RealView Debugger on page 3-60
— Enabling the auto save breakpoints feature on page 11-12.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-217
ID052111 Non-Confidential

RealView Debugger Commands
2.3.105 READBOARDFILE

Reads the specified board file.

Syntax

READBOARDFILE [,auto] [=board-filename]

where:

auto Is an optional qualifier. If you specify auto the command does not read the
specified board file if it is the same as the last one read.

board-filename

Specifies the name of the board file to read. This can be enclosed in single or
double quotation marks.
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myfiles, you can specify:
readboardfile ="$MYPATH\\gizmo.brd"

Description

The READBOARDFILE command reads the specified board file. If you do not specify a board file,
the command rereads the current board file. If you do not specify a board file and no board file
has been read, the command reads the default rvdebug.brd.

The READBOARDFILE command runs synchronously.

Examples

The following example shows how to use READBOARDFILE:

readboardfile ='c:\sources\gizmo.brd'
Read the file gizmo.brd into memory, replacing the current file.

See also
• BOARD on page 2-35
• DELBOARD on page 2-108
• EDITBOARDFILE on page 2-136.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-218
ID052111 Non-Confidential

RealView Debugger Commands
2.3.106 READFILE

Reads a file into target memory.

Syntax

READFILE ,obj [,nowarn] filename [[=]address]

READFILE ,{raw|raw8|raw16|raw32} [,nowarn] filename [=]address

READFILE ,ascii[,opts] [,nowarn] filename [[=]address|address-range]

where:

obj The file is an executable file in the standard target format. For ARM targets, this
is ARM-ELF.

raw Read the file as raw data, using the most efficient access size for the target.

Note
 Use this option in situations where the length of data is not a multiple of the

specified access size.

raw8 Read the file as raw data, one byte for each byte of memory.

raw16 Read the file as raw data, 16 bits for each 16 bits of memory.

raw32 Read the file as raw data, 32 bits for each 32 bits of memory.

Note
 You must specify an address with all raw qualifiers.

ascii The file is a stream of ASCII digits separated by whitespace. The interpretation
of the digits is specified by other qualifiers (see the opts qualifier). The starting
address of the file must be specified in a one line header in one of the following
ways:
[start] The start address.
[start,end] The start address, a comma, and the end address.
[start,+len] The start address, a comma, and the length.
[start,end,size] The start address, a comma, the end address, a comma, and

the size of each value (8, 16, or 32 bits). This is the format
used by the WRITEFILE command.

If the size of the items in the file is not specified, the debugger determines the size
by examining the number of white-space separated significant digits in the first
data value. For example, if the first data value is 00A0, the size is set to 16-bits.

opts Optional qualifiers available for use with the ascii qualifier:
byte The file is a stream of 8-bit values that are written to target memory

without extra interpretation.
half_word | word

The file is a stream of 16-bit values.
long The file is a stream of 32-bit values.

nowarn Suppress the display of the large file warning messages, such as:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-219
ID052111 Non-Confidential

RealView Debugger Commands
Downloading n bytes can take a long time. (Hint: Choosing a larger access

size may reduce this time) Do it anyway?

filename The name of the file to be read. The file can be one that you have written with the
WRITEFILE command.
The filename must be enclosed in either single or double quotation marks if a
pathname is specified, and the pathname must already exist on your system. You
can include one or more environment variables in the filename. For example, if
MYPATH defines the location C:\Myfiles, you can specify:
readfile,raw '$MYPATH\myfile.dat' 0x8000

address The starting address in target memory for the load.

address-range

For an ascii file type, the address range to be loaded. The load terminates when
the end of the address range is reached.

Note
 For targets that support the TrustZone technology, you can prefix the address or

address range with S: or N: to indicate Secure World or Normal World addresses.

Description

The READFILE command reads a file, performs a format conversion on its contents if required,
and loads the resulting information into target memory.

The types of file and file formats supported depend on the target processor and any loaded
DLLs. The type of memory assumed depends on the target processor. For example, ARM
architecture-based processors have byte addressable memory.

Examples

The following examples show how to use READFILE:

readfile ,obj 'c:\temp\file.exe'
Reads the contents of the named executable file into memory at its specified start
address.

readfile ,ascii,long "c:\temp\file.txt" =0xA000
Reads the contents of the named text file to address 0xA000 in memory. Values are
written as words using the target endianness to translate values in the file into
bytes in target memory. The file contents can look, for example, like this:
[0x8000,0x8FFF,32]
E28F8090 E898000F E0800008 E0811008
E0822008 E0833008 E240B001 E242C001
E1500001 0A00000E E8B00070 E1540005
...

See also
• FILL on page 2-149
• FLASH on page 2-152
• LOAD on page 2-176
• SETMEM on page 2-239
• TEST on page 2-273
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-220
ID052111 Non-Confidential

RealView Debugger Commands
• VERIFYFILE on page 2-322
• WRITEFILE on page 2-333.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-221
ID052111 Non-Confidential

RealView Debugger Commands
2.3.107 REEXEC

REEXEC is an alias of RESTART.

See RESTART on page 2-230.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-222
ID052111 Non-Confidential

RealView Debugger Commands
2.3.108 REGINFO

Displays a description of the registers available for the current target.

Syntax

REGINFO [{,qualifier}] [=address-range] [{;windowid | ;fileid}]

where:

all Displays information for all register types (target, user, and access).

target Displays information for the registers on the connected target.

user Displays information for the memory mapped registers defined in one or more
BCD files attached to the target connection, if any.

access Displays information for the target access registers.

details Displays additional information for each register. The information displayed
depends on the specified register type (target, user, or access).

bitfields Displays information for any bit fields associated with the specified register type
(target, user, or access).

match:[@]register_name

Displays information for all registers with names that contain the given string.
The string can form any part of the name. For example, match:SPSR matches all
register names beginning with SPSR.

address-range

Displays information for any memory mapped registers within the specified
address range.

,windowid | ,fileid

Identifies the window or file where the command is to send the output.
If you do not supply a ,windowid or ,fileid parameter, or there is no window or
file associated with the ID, the output is displayed on the screen. If you are using
the GUI, then the output is displayed in the Output view.

Description

The REGINFO command enables you to view the list of available registers for the current
connection. You can list:

• All registers.

• Registers only for the connected target.

• User-defined memory mapped register and peripheral registers defined in any BCD files
associated with the current connection.

• Target access registers.

By default, a summary of the registers is displayed. However, you can choose to display:

• More detailed information for each register, such as:
— the size (in bytes)
— type of value (such as, signed char and unsigned long)
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-223
ID052111 Non-Confidential

RealView Debugger Commands
— type of register: core register, memory-mapped register, target access register.

• The bitfields for any registers that have them (such as the CPSR register).

Examples

The following examples show how to use REGINFO:

reginfo,match:@SPSR
Lists all the SPSR registers:
Register @SPSR_FIQ (display name "SPSR")
Register @SPSR_SVC (display name "SPSR")
Register @SPSR_ABT (display name "SPSR")
Register @SPSR_IRQ (display name "SPSR")
Register @SPSR_UND (display name "SPSR")

reginfo,match:SPSR_SVC,bitfields
Displays the following bit field information for the SPSR_SVC register:

Register @SPSR_SVC (display name "SPSR")
 bit-fields:
 name: @SPSR_SVC_FLG display name: "NZCV" mask: (>> 28) & 0xf
 name: @SPSR_SVC_FLGE display name: "NZCVQ" mask: (>> 27) & 0x1f
 name: @SPSR_SVC_N display name: "N" mask: (>> 31) & 0x1
 name: @SPSR_SVC_Z display name: "Z" mask: (>> 30) & 0x1
 name: @SPSR_SVC_C display name: "C" mask: (>> 29) & 0x1
 name: @SPSR_SVC_V display name: "V" mask: (>> 28) & 0x1
 name: @SPSR_SVC_Q display name: "Q" mask: (>> 27) & 0x1
 name: @SPSR_SVC_GE display name: "GE" mask: (>> 16) & 0xf
 name: @SPSR_SVC_IT display name: "IT" mask: (>> 10) & 0x1803f
 name: @SPSR_SVC_E display name: "E" mask: (>> 9) & 0x1
 name: @SPSR_SVC_A display name: "A" mask: (>> 8) & 0x1
 name: @SPSR_SVC_I display name: "IRQ" mask: (>> 7) & 0x1
 name: @SPSR_SVC_F display name: "FIQ" mask: (>> 6) & 0x1
 name: @SPSR_SVC_T display name: "STATE" mask: (>> 5) & 0x1
 name: @SPSR_SVC_J display name: "BYTECODE" mask: (>> 24) & 0x1
 name: @SPSR_SVC_JT display name: "STATE" mask: (>> 0) & 0x1000020
 name: @SPSR_SVC_MODE display name: "MODE" mask: (>> 0) & 0x1f

See Also
• Window and file numbers on page 1-5
• CEXPRESSION on page 2-87
• FPRINTF on page 2-156
• PRINTF on page 2-205
• PRINTSYMBOLS on page 2-208
• PRINTTYPE on page 2-210
• PRINTVALUE on page 2-211
• SETREG on page 2-242.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-224
ID052111 Non-Confidential

RealView Debugger Commands
2.3.109 RELOAD

Loads a linked program image containing program code and data.

Syntax

RELOAD [{,qualifier...}] [{filename | file_num}] [=task]

where:

qualifier If specified, qualifier must be one of the following:
all Loads all the files in the file list.
symbols_only Reloads the symbols only, not the executable image.
image_only Reloads the executable image only, not the symbols.
force Forces the load to proceed even if it might be aborted

because, for example, the file being loaded overlaps a file
already loaded.

filename | file_num

Specifies a file to be reloaded. If you do not specify a file, the whole process is
reloaded.
Use the DTFILE command to list details of the file or files that are associated with
the current connection. The details include:
• the file number, which is shown at the start of the output for each file listed

by the text File file_num
• the filename and path.

task Specifies the task that is to start. This parameter is required only when the target
is running multiple tasks.

Description

The RELOAD command loads or reloads an absolute file image containing program code and data.
You can load a specified file, or one or more files from the file list. The PC is reset to the start
location.

If any file being reloaded is already loaded, it is unloaded before being loaded again. If the
symbols for a given file are already loaded, they are not reloaded unless the file modification
date has changed.

You can reload symbols only, or the image only. For details see the descriptions of the command
qualifiers.

The effect of reloading the system file is defined by the Debug Interface.

Note
 If you reload an image that requires arguments, you must use the ARGUMENTS command to specify
them before running the image. Alternatively, use the LOAD command and specify the arguments
as part of that command.

See also
• ADDFILE on page 2-19
• ARGUMENTS on page 2-27
• DTFILE on page 2-128
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-225
ID052111 Non-Confidential

RealView Debugger Commands
• LOAD on page 2-176
• READFILE on page 2-219
• UNLOAD on page 2-316.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-226
ID052111 Non-Confidential

RealView Debugger Commands
2.3.110 RESET

Performs or simulates a target processor reset.

Syntax

RESET [,cleanup] [=resource]

where:

cleanup Use this command qualifier only with operating systems that support it. Its
purpose is to cleanup thread states and other OS issues.

resource Specifies the target processor that is to be reset, for example, @ARM7TDMI_0@RVI.
You must specify @RVI only if the target identifier is not unique. For example, you
might have another @ARM966E-S_0 target in a different Debug Configuration.

Description

This command is used to reset the target processor and peripherals on the board. If a hardware
reset is not possible, the command places the processor in a state that is as close as possible to
the hardware reset state. The behavior varies from one processor type to another and from one
Debug Interface type to another. Check with the manufacturer for details. Variables are not reset
to their original values, because memory is not re-initialized

The RESET command runs synchronously.

Alias

WARMSTART is an alias of RESET.

Examples

The following examples show how to use RESET:

reset @ARM966E-S_0@RVI
Resets the ARM966E-S™ target processor on the RVI Debug Configuration.

reset,cleanup @ARM966E-S_0
Resets the ARM966E-S processor, and cleans up the thread states and any other
OS issues on the processor.

See also
• RESTART on page 2-230.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-227
ID052111 Non-Confidential

RealView Debugger Commands
2.3.111 RESETBREAKS

Resets breakpoint pass counters and and-then conditions.

Syntax

resetbreaks ,a {breakpoint_address|breakpoint_address_range} [=thread,...]

resetbreaks [,h] [break_num,...] [=thread,...]

where:

,a breakpoint_address

Specifies the address of the breakpoint to be reset.

,a breakpoint_address_range

Specifies that all breakpoints within the address range are to be reset. See
Specifying address ranges on page 2-2 for details on how to specify an address
range.

break_num Specifies one or more breakpoints to have their pass counters reset to zero.
You identify breakpoints by their position in the list displayed by the DTBREAK
command.

thread Specifies one or more threads to which this command applies. Other threads
remain unaffected. If you do not supply this parameter, then breakpoints on all
threads are reset.
You do not have to supply this parameter if the processor has only a single
execution thread or the OS extension is not enabled.

h Do not use this qualifier. It is for debugger internal use only.

Description

The RESETBREAKS command resets breakpoint pass counters. The pass counters are the counts of
the number of times breakpoints have been triggered, as shown by the DTBREAK command. It also
resets the and and and-then condition state so that the first breakpoint is again required before
the second can trigger.

If you issue a RESETBREAKS command without specifying a breakpoint address or breakpoint
number, the pass counter, and and and-then conditions for all the current pass counters are reset
to zero.

You might typically issue a RESETBREAKS command after a RELOAD command, so that the counts
all begin again from zero when you restart execution.

Examples

The following examples show how to use RESETBREAKS:

resetbreaks,a 0x8008

Resests the pass counters for the breakpoint at the address 0x8008.

resetbreaks,a 0x8008..0x8024

Enables the pass counters for all breakpoints in the address range
0x8008..0x8024.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-228
ID052111 Non-Confidential

RealView Debugger Commands
resetbreaks 4,6,8 Resets the pass counters and conditions of the fourth, sixth, and eighth
breakpoints in the current list of breakpoints.

resetbreaks =2 Resets all the pass counters and conditions in thread 2.

Alias

RSTBREAKS is an alias of RESETBREAKS.

See also
• BREAKEXECUTION on page 2-47
• BREAKINSTRUCTION on page 2-55
• BREAKREAD on page 2-61
• BREAKWRITE on page 2-70
• CLEARBREAK on page 2-89
• DISABLEBREAK on page 2-114
• DTBREAK on page 2-126
• ENABLEBREAK on page 2-140
• RELOAD on page 2-225.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-229
ID052111 Non-Confidential

RealView Debugger Commands
2.3.112 RESTART

Resets the PC to the program starting address.

Syntax

RESTART [=task]

where:

task Specifies the task that is to start. This parameter is required when the target is
running multiple tasks and the OS extension is enabled.

Note
 This argument is not available in this release.

Description

The RESTART command resets the PC to the program starting address, so that the next GO, STEP or
GOSTEP command restarts execution at the beginning of the program. The RESTART command does
not reset the values of variables, the stack pointer is not reset and breakpoints are not cleared. If
required, RESTART can be configured to reload the image using the SETTINGS command. All
declared I/O ports are unaffected. You can use the ARGUMENTS command to change the arguments
passed to the process for a restart.

Note
 • If the program relies on the initial values of variables in initialized data areas, and those

variables are modified during program execution, then using RESTART to rerun the program
fails.

• The RESTART command might behave differently if you are using the OS extension to
RealView Debugger. See the instructions for the specific OS extension for more details.

The RESTART command runs synchronously.

Alias

REEXEC is an alias of RESTART.

See also
• ARGUMENTS on page 2-27
• GO on page 2-159
• RELOAD on page 2-225.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-230
ID052111 Non-Confidential

RealView Debugger Commands
2.3.113 RSTBREAKS

RSTBREAKS is an alias of RESETBREAKS.

See RESETBREAKS on page 2-228.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-231
ID052111 Non-Confidential

RealView Debugger Commands
2.3.114 RUN

Starts execution using a specific mode, or sets the default mode used by the GO command.

Syntax

RUN

RUN ,setdefault

RUN [,setdefault],{debug|normal}

RUN [,setdefault],{clock|benchmark}

RUN [,setdefault],{free|user}

where:

setdefault Set the default mode for the GO command to the mode specified by this command,
but do not start execution.
If no mode is specified, then the default mode (debug or normal) is set.

debug | normal

Run with breakpoints active. This is the default mode.

clock | benchmark

Run with breakpoint timing hardware enabled. This mode is only available on
some targets.

free | user Run at full speed, with breakpoints disabled. Depending on the target, hardware,
this might not be any faster than normal mode.

Description

If supported by the target, the RUN command starts execution using a specific mode, or sets the
default mode used by the GO command.

If you supply no parameters, RUN displays the current mode.

Examples

The following examples show how to use RUN:

run,setdefault,normal
Set the default run mode to normal, so that the next GO command for this
connection runs the target in the normal way.

run,free Run the target with breakpoints disabled.

See also
• GO on page 2-159
• HALT on page 2-163
• STOP on page 2-267.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-232
ID052111 Non-Confidential

RealView Debugger Commands
2.3.115 RVDCONTEXT

Enables or disables the auto save breakpoints feature. You can also use this command to save
and load breakpoints for one or more loaded images.

Syntax

RVDCONTEXT {,load | ,save} [=file_num, ...]

RVDCONTEXT {,autoon | ,autooff}

RVDCONTEXT

where:

autooff Disables auto saving of breakpoints.

autoon Enables auto saving of breakpoints.

file_num, ... A comma-separated list of file numbers for which breakpoints are to be
saved or loaded. If you do not specify a file number, then saved
breakpoints are set for each loaded image as apporpriate.

Note
 To find a file number, enter the DTFILE command.

load Either:
• loads a previously saved context file for the specified file
• loads a previously saved context file for each loaded file.

save Either:
• saves the context file for the specified file
• saves a context file for each loaded file.

Description

This command enables or disables the auto save breakpoints feature. When enabled, any
breakpoints that are set in an image are stored in a context file when the image file is unloaded.
This file is saved in the same location as the image file.

If you specify the command without options or qualifiers, then RealView Debugger displays the
current status of the auto save breakpoints feature.

If you have saved breakpoints for a loaded image, and subsequently modify breakpoints in a
debugging session, then you can restore the saved breakpoints without unloading the image. To
do this, enter:

RVDCONTEXT,load

See also

• DTFILE on page 2-128

• UNLOAD on page 2-316

• the following in the RealView Debugger User Guide:
— Enabling the auto save breakpoints feature on page 11-12.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-233
ID052111 Non-Confidential

RealView Debugger Commands
2.3.116 SCOPE

Specifies the current module and procedure scope.

Syntax

SCOPE /F

SCOPE root_name\\

SCOPE [root_name\\] module_name

SCOPE [[root_name\\] module_name\] {function_name | (expression) | @stack_level |
#line_number}

where:

/F Selects the first module of the next root.

root_name Specifies the name of a root (for example, @sieve).

module_name Specifies the name of a module (for example, SIEVE).

function_name Specifies the name of a function (for example, proc1).

expression Specifies an expression specifying the location of a calling function.

stack_level Specifies a stack level.

line_number Specifies a high-level line number.

Description

The SCOPE command specifies the current module and procedure scope. This determines the
current context. The current context determines how local variables are accessed and what
symbol qualification is required. The following context types are supported:
• the current PC
• a specific module, function, or source file line
• a stack frame position
• auto-set, used when the debugger is in source mode and the PC is not in a source view

context, for example when the program is at the entry point.

The SCOPE command can change the default root, module, procedure, line number, or stack level,
but it does not change the PC.

To return the scope to display source at the current PC location, use SCOPE with no parameters.
To display the current scope, use the CONTEXT command.

The current root and module is the default when line numbers and local symbols are referenced
without a module or procedure qualifier. For example, if line number 3 is entered on the
command line as #3, it is interpreted as default_module\#3. The new source file or disassembly
is shown in the Code window.

The SCOPE command runs asynchronously. Use the WAIT command to force it to run
synchronously.

Examples

The following examples show how to use SCOPE:

scope #155 Set the current context to line 155 in the current module (file).
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-234
ID052111 Non-Confidential

RealView Debugger Commands
Scoped to: (0x01000560): DHRY_1\main Line 155

sc \\DHRY_1 Set the current context to the start of the file dhry_1.c.
Scoped to: (0x010002BC): DHRY_1\main Line 78

sc @1 Set the scope to the stack frame of the calling function.

sc Return the current context to the execution point.
At the PC: (0x01000544): DHRY_1\main Line 152

See also
• CONTEXT on page 2-96
• PRINTVALUE on page 2-211
• WHERE on page 2-331.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-235
ID052111 Non-Confidential

RealView Debugger Commands
2.3.117 SEARCH

Searches memory for a specified value or pattern.

Syntax

SEARCH [{/B|/H|/W|/8|/16|/32}] [/R] [address-range [={expression | expression_string}]]

Note
 /B|/H|/W are deprecated in this release.

where:

/B|/8 Sets the display format to 8 bits.

/B|/16 Sets the display format to 16 bits.

/B|/32 Sets the display format to 32 bits.

Note
 If no display format is specified, the default is the native format for the debug

target. For example, the ARM7TDMI processor naturally addresses 8 bits.

/R Continues to search for the specified expression displaying each match until the
end of the block or until the STOP button is used.

address-range

Specifies the range of addresses to be searched.

expression Specifies the value to search for.

expression_string

Specifies the pattern to search for.

Description

The SEARCH command searches a memory area for the specified value or pattern string. When it
is found, the debugger stops searching and displays the address where the expression was found.

If they do not fit the specified size evenly, all expressions in an expression string are padded or
truncated to the size specified by the size qualifiers. If you do not specify an expression or
expression string, the debugger searches the memory area for zeros. If you issue a SEARCH
command without parameters, the debugger continues searching through the originally
specified address range starting from where the last match was found.

The SEARCH command runs synchronously.

Examples

The following examples show how to use SEARCH:

search 0x1000..0x2000 =122
Search for the first occurrence of the byte value 122 (ASCII z), in the 4KB block
of memory starting at 0x1000.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-236
ID052111 Non-Confidential

RealView Debugger Commands
search /r 0x1000..0x2000 =163
Display all occurrences of the byte value 163 (ASCII £) in the 4KB block of
memory starting at 0x1000.

search 0x1000..0x2000 ="-help"
Search for the first occurrence of the string -help in the 4KB block of memory
starting at 0x1000.

See also
• Specifying address ranges on page 2-2
• MEMWINDOW on page 2-188
• SETMEM on page 2-239.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-237
ID052111 Non-Confidential

RealView Debugger Commands
2.3.118 SETFLAGS

Reserved for internal use by the RealView Debugger.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-238
ID052111 Non-Confidential

RealView Debugger Commands
2.3.119 SETMEM

Changes the contents of memory to a specified value.

Syntax

SETMEM [{/8|/16|/32}] address [={expression | expressionlist}]

where:

/8 Sets the access size to 8 bits.

/16 Sets the access size to 16 bits.

/32 Sets the access size to 32 bits.

Note
 If no access size is specified, the default is the native format for the debug target.

For example, the ARM7TDMI processor naturally addresses 8 bits.

address The memory address where the contents are to be changed.

expression An expression to be evaluated to a value and placed into the specified memory
address. The expression can be:
• a decimal or hexadecimal number
• a debugger expression, for example a math calculation
• a string enclosed in single or double quotation marks.
If you use a quoted string:
• each character of the string is treated as a byte value in an expressionlist
• no C-style zero terminator byte is written to memory.
Also, see Rules for specifying strings in the SETMEM command on page 2-240
for more details on using strings with the SETMEM command.

expressionlist

A list of expressions to be placed into memory starting at the specified address.
An expressionlist is a sequence of expressions separated by commas, for example
"Text",0,0x20.

Note
 All expressions in an expression list are padded or truncated to the size specified

by the size qualifiers if they do not fit the specified size evenly. This also applies
to each character of a string.

Description

The SETMEM command changes the contents of the specified memory location to the value or
values defined by expression or expressionlist. SETMEM is used to set assembly-level memory.
For example, you can use it to work around a section of code that is producing incorrect results
by changing variables to the correct values.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-239
ID052111 Non-Confidential

RealView Debugger Commands
Considerations when using the SETMEM command

Be aware of the following when using the SETMEM command:

• The SETMEM command does not recognize variable typing, so you must ensure the
expression size qualifier is compatible with the variable type.

• All expressions in an expression string are padded or truncated to the size specified by the
Size value if they do not fit the specified size evenly.

• If a pattern is not specified, RealView Debugger displays the Interactive Memory Setting
dialog box when running in GUI mode.

• The SETMEM command runs synchronously unless background access to target memory is
supported. Use the WAIT command to force it to run synchronously.

Rules for specifying strings in the SETMEM command

Follow these rules when specifying a string:

• No C-style zero terminator byte is written to memory after a specified string. To write a
NUL-terminated string, add a zero value expression after the string, for example:
"Test Message",0

• You cannot use an empty string to write a NUL character.

• Use the /8 qualifier if you want to write the characters of a string to consecutive bytes of
memory.

Examples

The following examples show how to use SETMEM:

• To write a NUL-terminated string to consecutive bytes at address 0x9000, specify the
command:
setmem 0x9000="Test Message",0

• To write 0xBA55FADE to the 32-bit memory location starting at address 0x9004, specify
the command:
setmem/32 0x9004=0xBA55FADE

• The following command writes 0xFADE to the 16-bit location starting at address 0x9008:
setmem/16 0x9008=0xBA55FADE

• The following command writes each individual character of "Test Message" to the lowest
byte of consecutive 32-bit memory locations starting at address 0x900C:
setmem/32 0x900C="Test Message"

The remainder of each 32-bit memory location is set to zero.

• Assuming the following definitions:
 int count=2, buf[8];
 int *ptr = buf;

And the following memory map:
0x10200 : 0x00000002 count
0x10204 : 0x00000000 buf
0x10224 : 0x00010204 ptr

The following two statements both set the value of count to 5:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-240
ID052111 Non-Confidential

RealView Debugger Commands
setmem /32 &count=5
setmem /32 0x10200=5

Note
 The command setmem count=5 sets the memory location addressed by the value of count

to 5, leaving the contents of count unchanged.

Alias

SM is an alias of SETMEM.

See also
• CEXPRESSION on page 2-87
• FILL on page 2-149
• READFILE on page 2-219
• TEST on page 2-273.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-241
ID052111 Non-Confidential

RealView Debugger Commands
2.3.120 SETREG

Changes the contents of a register, status flag, or a special target variable such as the cycle count.

Syntax

SETREG [@register_name [=value]]

where:

register_name

Specifies a register. Register names begin with an at sign (@).

value Defines the value to be placed in the register.

Description

This command changes the contents of a register, status flag, or a special target variable such as
the cycle count.

Note
 If you use this command when running in command line mode, you must supply a
register_name. Otherwise, the command has no effect.

Register names

You can set the value of any register, or register bit-field, that is defined by an active .bcd file.
To link a relevant definition file to the current connection, use Connection Properties window
to set the BoardChip name for the connection.

You can view the currently defined registers using the PRINTSYMBOLS command, for example:

PRINTSYMBOLS /r *

This also displays any reserved symbols and internal variables that are currently defined.

By defining new registers in a .bcd file, you can extend the register list to, for example, include
peripheral control registers for your target.

Note
 Some processors and peripherals have some read-only registers. These cannot be written to with
SETREG.

Command line usage

You can set the value of registers defined in a board chip file or by the processor model, by
prefixing the register name with the @ symbol and assigning it a value. The value can include
program and debugger symbols and debugger expressions.

Note
 Change the values of target registers with care. Compilers and operating systems do not always
use registers in the expected manner.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-242
ID052111 Non-Confidential

RealView Debugger Commands
Fully Interactive register setting

In the GUI, if you supply no parameters, the SETREG command displays the Interactive Register
Setting dialog box where you can specify a register and a value. Figure 2-3 shows an example.
The Register drop-down list contains the names of recently used registers. To select other
register names, click either Next Reg or Prev Reg. The current value of the register is displayed
in the Value field, in both unsigned hexadecimal and in signed decimal.

Figure 2-3 Interactive Register Setting dialog

Enter a new value in the combo-box beneath Enter New Value and then click Set. The Log tab
displays the changes you have made.

Select Clear New to clear the Enter New Value field after setting a register with Set. If Clear
New is unchecked, the value you enter remains in the field and you can set multiple registers
with repeated clicks on Set.

Click Auto Inc Reg or Auto Dec Reg to select whether, after clicking Set, the next higher or
next lower numbered register is selected.

Partly Interactive register setting

If you supply only a register name, the SETREG command displays a prompt, shown in Figure 2-4,
enabling you to enter a new value for that register.

Figure 2-4 Register value prompt

Enter the value in the text field and click Set to change the register, or click Cancel to abort the
command.

Alias

SR is an alias of SETREG.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-243
ID052111 Non-Confidential

RealView Debugger Commands
Examples

The following examples show how to use SETREG:

setreg @r3=0x50
Write the value 0x50 to processor register R3.

setreg @spsr_svc
Display a prompt, shown in Figure 2-4 on page 2-243, containing the current
value of ARM processor register SPSR_SVC (saved program status register,
Supervisor mode). Use the text box to enter a new value.

setreg @v=1
Set the ALU overflow flag in the current program status register.

setreg Invoke the Interactive Register Setting dialog shown in Figure 2-3 on page 2-243.

See also
• Referencing reserved symbols on page 1-18
• ADD on page 2-16
• CEXPRESSION on page 2-87
• FPRINTF on page 2-156
• PRINTF on page 2-205
• PRINTSYMBOLS on page 2-208
• PRINTTYPE on page 2-210
• PRINTVALUE on page 2-211
• REGINFO on page 2-223.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-244
ID052111 Non-Confidential

RealView Debugger Commands
2.3.121 SETTINGS

Enables you to define target settings.

Syntax

SETTINGS [{default | option_list}]

where:

default Causes all settings to revert to their default values.

option_list A list of option names and values. Each option-value pair consists of a setting
name, an equals sign, and a value. The available option names and values are
described in List of options.
You can specify multiple options in the list by separating each option-value pair
with a colon.

Description

The SETTINGS command enables you to define settings (properties) for target support. Some of
these options have equivalent settings in the Workspace of the GUI. See the individual option
description in List of options for the equivalent GUI setting.

Note
 If you want to change other Workspace settings, you must use the GUI.

If the only parameter is the default qualifier, then all the settings revert to their default values.
If you supply no parameters, the command displays the current values of settings for which a
default value is defined.

Each setting is defined in the form of name=value, and multiple settings can be changed using a
colon (:) as a separator.

List of options

The standard option names are:

loadact={default|noimask|reset|pre_reset}
Action on load:
default Normal load image behavior. For ARM processors, the processor is

placed in ARM state and supervisor mode with interrupts disabled.
noimask Do not change the processor status register. For example, on ARM

processors, the default modification of CPSR is not performed.
reset Reset the processor after the load, to perform a start from reset.
pre_reset Reset the processor before the load.

restart={set_pc|reload|reload_data}
Defines the action of the RESTART command. The possible values are:
set_pc Set the PC to the entry point of the image.
reload Reload the image as for RELOAD. The options relating to RELOAD, that is

loadact and pcset, also apply.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-245
ID052111 Non-Confidential

RealView Debugger Commands
reload_data
Reload only the initialized data of the image. The option relating to
RELOAD, that is loadact, also applies.

restart_reset={True|False}
Reset on restart:
True Reset the processor on RESTART, in addition to any other actions.
False Do not reset the processor on RESTART.

fillstack=value
Define a value to fill stack memory with before the program starts. This is not
used for ARM processor image files.

fillheap=value
Define a value to fill memory defined as heap. This is not used for ARM
processor image files.

fillundefined=value
Define a value to fill unused words of memory, such as words between each
section of the image in memory. This is not used for ARM processor image files.

imagecache_enabled={True|False}
The image cache stores debug information from the image rather than from
physical memory. This enables RealView Debugger to access the debug
information if it cannot access the physical memory, for example, when the target
is running. This is especially important when tracing, so that you do not have to
stop the target for RealView Debugger to collect or decompress trace information.
However, you might want to disable image caching if, for example, you have
self-modifying code, which can lead to incorrect information being displayed.
Also, if the image cache is disabled, you cannot view the disassembly of your
image when the target is running.
Enables and disables the image cache:
True Enables the image cache.
False Disables the image cache.

Note
 Image caching is enabled by default.

disasm={default|standard|alternate|bytecode|extended}
Set the disassembly mode. This affects the Disassembly tab, and the output from
the PRINTDSM command.
The possible values are:
default Attempt to auto-detect the disassembly mode.

For ARM processors, select from ARM, Thumb, Jazelle bytecodes, or
Thumb-2EE, using information from the image file where available.

standard Select the standard instruction disassembly mode.
For ARM processors, select ARM state (32-bit) instructions.

alternate Select the alternate instruction disassembly mode.
For ARM processors, select Thumb state (16-bit) instructions.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-246
ID052111 Non-Confidential

RealView Debugger Commands
bytecode Select the Jazelle bytecode disassembly mode. This is available only
for ARM processors.

extended Select the Thumb-2EE disassembly mode. This is available only for
ARM processors.

Equivalent Workspace setting: DEBUGGER, Disassembler, Format.

dsmvalue={True|False}
Selects whether the instruction code is displayed in disassembly listings. The
possible values are:
True Disassembly listings include the instruction opcode, along with the

instruction memory address and mnemonics.
False Disassembly listings do not include the instruction opcode.
Equivalent Workspace setting: DEBUGGER, Disassembler, Instr_value.

Additional options might be implemented for a particular Debug Interface. See the
documentation of your Debug Interface for more information.

Alias

PROPERTIES is an alias of SETTINGS.

Examples

The following examples show how to use SETTINGS:

settings loadact=reset
After an image is loaded or reloaded, reset the processor (in hardware). This is
useful when the image has been constructed to run from target reset.

settings disasm=standard:dsmvalue=true
Specifies that disassembly is to be displayed using the standard format for the
target, and that the instruction code is to be hidden from the disassembly listings.

See also

• DISASSEMBLE on page 2-116

• LOAD on page 2-176

• OPTION on page 2-195

• PRINTDSM on page 2-203

• RELOAD on page 2-225

• RESET on page 2-227

• RESTART on page 2-230

• the following in the RealView Debugger User Guide:
— Chapter 17 Configuring Workspace Settings.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-247
ID052111 Non-Confidential

RealView Debugger Commands
2.3.122 SHOW

Displays the source code of a specified debugger macro.

Syntax

SHOW macro_name [{,windowid | ,fileid}]

where:

macro_name Specifies the name of the macro to be displayed.

,windowid | ,fileid

Identifies the window or file where the command is to send the output.
If you do not supply a ,windowid or ,fileid parameter, or there is no window or
file associated with the ID, the macro is displayed on the screen. If you are using
the GUI, then the macro is displayed in the Output view.

Description

The SHOW command displays the source code of a specified macro.

Example

To display the contents of a macro called mac in window number 50, enter:

> vopen 50
> show mac,50

See also
• Window and file numbers on page 1-5
• DEFINE on page 2-105
• INCLUDE on page 2-168
• MACRO on page 2-182
• the following in the RealView Debugger User Guide:

— Chapter 16 Using Macros for Debugging.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-248
ID052111 Non-Confidential

RealView Debugger Commands
2.3.123 SINSTR

SINSTR is an alias of STEPINSTR.

See STEPINSTR on page 2-259.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-249
ID052111 Non-Confidential

RealView Debugger Commands
2.3.124 SM

SM is an alias of SETMEM.

See SETMEM on page 2-239.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-250
ID052111 Non-Confidential

RealView Debugger Commands
2.3.125 SOINSTR

SOINSTR is an alias of STEPOINSTR.

See STEPOINSTR on page 2-263.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-251
ID052111 Non-Confidential

RealView Debugger Commands
2.3.126 SOVERLINE

SOVERLINE is an alias of STEPO.

See STEPO on page 2-265.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-252
ID052111 Non-Confidential

RealView Debugger Commands
2.3.127 SR

SR is an alias of SETREG.

See SETREG on page 2-242.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-253
ID052111 Non-Confidential

RealView Debugger Commands
2.3.128 STATS

Displays bus and processor cycles for RVISS targets. You can specify user-defined reference
points to show the counts from specific points in the execution.

Syntax

STATS [[=]ref_name]

STATS {,setref | ,clearref} [[=]ref_name]

STATS ,reset [=]ref_name

STATS ,clearall

where:

clearall Removes all user-defined reference points.

clearref Removes the specified user-defined reference point.
If no reference point is specified, the last reference point in the list is deleted, if
any.

reset Resets the specified user-defined reference point.

setref Creates a specified user-defined reference point.
If no reference point is specified, a reference point is created, which has the the
default name:
Ref_nn

where nn is a numerical identifier starting at 01. This is incremented with each
new reference point you create.

ref_name The name of a user-defined reference point, which can have a maximum of nine
characters. The name can include alphanumeric characters and the underscore (_),
colon (:), and space characters. You cannot specify the default reference point
name Ref_Cur (see Default reference point on page 2-255).
For example, i10_a:1.

Note
 If you include a space character, then delimit the name with double quotation

marks, for example "a1 loop".

Description

This command enables you to:
• display values of statistics counters
• create one or more reference point for those counters
• reset an existing reference point
• delete an existing reference point or all reference points.

Note
 The statistics counters are the values returned by the RVISS $statistics structure.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-254
ID052111 Non-Confidential

RealView Debugger Commands
Statistics counters

The statistics counters displayed depends on the type of processor:

• uncached von Neuman cores, such as the ARM7TDMI, display:
Instructions, Core_Cycles, S_Cycles, N_Cycles, I_Cycles, and C_Cycles

• Harvard cores, such as the ARM9TDMI® display:
Instructions, Core_Cycles, ID_Cycles, IBus_Cycles, Idle_Cycles, and Dbus_Cycles

• cores with AMBA® ASB interfaces, such as the ARM940T, display:
Instructions, Core_Cycles, S_Cycles, N_Cycles, A_Cycles, and C_Cycles

• cores with AMBA AHB interfaces, such as the ARM946E-S™, display:
Instructions, Core_Cyles, SEQ, NON-SEQ, IDLE, and BUSY.

For all types a total count is also displayed.

Default reference point

A default reference point exists, called Ref_Cur, which shows the total counts for the target. You
cannot delete or reset the values for this reference point. These default reference point counts
are also shown in the CycleCount tab of the Registers view.

You can access the individual statistics count values for the default reference point using
debugger symbols. To find the symbol name for a statistics counter, enter the command:

REGINFO,access,match:@stats

User-defined reference points

A user-defined reference point shows the counts only from the point at which it is created.

If you enter the command without a qualifier or reference name, then the statistics counters for
all reference points are displayed.

If you enter the command with a reference name only, then the statistics counters are displayed
only for that reference point.

Note
 When you disconnect from the target, the user-defined reference points are deleted and the
Ref_Cur counts are reset to zero.

Example

For example, you might want to view the counts from the point at which a breakpoint is hit. To
do this, you might set a breakpoint that is activated after 10 passes, then create a reference point
to show the counts from this point onwards. The following example uses the dhrystone image:

1. Connect to an RVISS target on the RealView Instruction Set Simulator Debug Interface.

2. Load the example dhrystone image ...\Debug\dhrystone.axf.

3. Enter the following command to set a breakpoint:
BREAKINSTRUCTION,passcount:10 \DHRY_1\#149:1

4. Start execution.

5. Enter 1000 when prompted for the number of runs.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-255
ID052111 Non-Confidential

RealView Debugger Commands
6. When the breakpoint is activated, create your reference point (iter:10):
STATS,setref iter:10

7. View the current values:
> STATS
Ref_Point Instructions Core_Cycles _S_Cycles _N_Cycles _A_Cycles C_Cycles Total
Ref_Cur 00007cb1 0000c703 0000e4b6 00000000 00031279 00000000 0003f72f
iter:10 00000000 00000000 00000000 00000000 00000000 00000000 00000000

8. Restart execution.

9. View the current values:
> STATS
Ref_Point Instructions Core_Cycles _S_Cycles _N_Cycles _A_Cycles C_Cycles Total
Ref_Cur 00007e97 0000ca13 0000e800 00000000 00031e87 00000000 00040687
iter:10 000001e6 00000310 0000034a 00000000 00000c0e 00000000 00000f58

10. You can create additional reference points as required.

See also
• CEXPRESSION on page 2-87
• FPRINTF on page 2-156
• PRINTF on page 2-205
• PRINTSYMBOLS on page 2-208
• PRINTTYPE on page 2-210
• PROPERTIES on page 2-213
• REGINFO on page 2-223
• RealView ARMulator ISS User Guide.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-256
ID052111 Non-Confidential

RealView Debugger Commands
2.3.129 STDIOLOG

Records the messages that are sent to STDIO.

Syntax

STDIOLOG [/A] [{OFF | ON="filename"}]

where:

/A Specifies that new records are to be added to any that already exist in the specified
file.

OFF Closes the log file and stops collecting information. This is the default.

ON Starts writing information to the log file.

filename Specifies the name of the log file. Quotation marks are optional, but see Rules for
specifying filenames in the STDIOLOG command for details on how to specify
filenames that include a path.

Description

This command records the messages that are sent to STDIO. It does not record any responses
you give to prompts.

Note
 If you use this command in the Cmd tab of the Output view, the messages are the same as those
displayed in the StdIO tab of the Output view.

If the specified file exists and you do not specify the /A parameter, the existing contents of the
file are overwritten and lost.

Using STDIOLOG with no parameters shows the current log file, if any. STDIO output is recorded
in the log file until the STDIOLOG OFF command is issued.

The STDIOLOG command runs asynchronously unless in a macro.

Rules for specifying filenames in the STDIOLOG command

Follow these rules when specifying a filename:

• If the filename consists of only alphanumeric characters, slashes, or a period, but the
filename does not start with a slash, then you do not have to use quotation marks. For
example, includes/file.

• Filenames with a leading slash must be in double quotation marks, for example "/file".

• Filenames containing a backslash must be in single quotation marks. For example '\file'
or 'c:\myfiles\file'.
Alternatively, you can escape each backslash and use double quotation marks. For
example, "c:\\myfiles\\file".

• You can use environment variables to specify paths to a file. For example, if
PATHROOT=C:\MYFILES and PATHTEST=TEST1:
'$PATHROOT\$PATHTEST\test1.c'
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-257
ID052111 Non-Confidential

RealView Debugger Commands
You can include:
— the filename as part of the second environment variable, and then specify

'$PATHROOT\$PATHTEST'.
— the path separator in the environment variable, and then specify

'$PATHROOT$PATHTEST'.

Example

The following examples show how to use STDIOLOG:

STDIOLOG ON='c:\temp\stdiolog.txt'
Start logging output to the file c:\temp\stdiolog.txt, overwriting any existing file
of that name.

STIOLOG /A ON="stdiolog"
Start logging output to the file stdiolog.log in the current directory of the
debugger, appending the new log text to the file if it already exists.

STDIOLOG OFF Stop logging output.

See also
• JOURNAL on page 2-172
• LOG on page 2-180
• VOPEN on page 2-326.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-258
ID052111 Non-Confidential

RealView Debugger Commands
2.3.130 STEPINSTR

Executes a specified number of processor instructions (low-level step).

Note
 If a breakpoint is set on an instruction that is encompassed by the STEPINSTR command, then the
breakpoint is actioned. The breakpoint behavior depends on any condition qualifiers that are
assigned. If you do not want the breakpoint to be actioned, then either disable or clear the
breakpoint before stepping.

Syntax

STEPINSTR [value]

STEPINSTR =starting_address [,value]

where:

starting_address

Specifies where execution is to begin. If you do not supply this parameter
execution continues from the current PC.

Note
 Specifying an address is equivalent to directly modifying the PC. Do not specify

a starting address unless you are sure of the consequences to the processor and
program state.

value Specifies the number of instructions to be executed.
If you do not supply this parameter a single instruction is executed. All
instructions, including instructions that fail a conditional execution test, count
towards the number of instructions executed.

Description

The STEPINSTR command executes a specified number of instructions. If the instructions include
procedure calls, these are stepped into.

Note
 For some procedure call standards there is code inserted between the call site and the destination
of the call by the linker, and this might not have debug information or source code available. If
this is the case for your code, a STEPINSTR call that stops in this code causes the source window
to be blanked.

It is normal to use this instruction in conjunction with the disassembly mode of the source
window, selected using the MODE command.

The STEPINSTR command cannot be used in a macro if the macro is attached to another entity,
such as a breakpoint.

Examples

The following examples show how to use STEPINSTR:

stepinstr Step the program by one instruction.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-259
ID052111 Non-Confidential

RealView Debugger Commands
si 5 Step the program five instructions.

si =0x8000,5
Starting at address 0x8000, step the program five instructions.

Alias

SINSTR is an alias of STEPINSTR.

See also
• Execution control on page 2-4
• DISASSEMBLE on page 2-116
• GO on page 2-159
• GOSTEP on page 2-161
• MODE on page 2-190
• STEPLINE on page 2-261
• STEPOINSTR on page 2-263
• STEPO on page 2-265.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-260
ID052111 Non-Confidential

RealView Debugger Commands
2.3.131 STEPLINE

Executes one or more program statements (high-level step), and steps into procedure and
function calls.

Note
 If you perform a high-level step in code for which there is no source available, RealView
Debugger attempts to step up the call stack until a location is reached that has source available.

Syntax

STEPLINE [value]

STEPLINE =starting_address [,value]

where:

starting_address

Specifies where execution is to begin. If you do not supply this parameter
execution continues from the current PC.

Note
 Specifying an address is equivalent to directly modifying the PC. Do not specify

a starting address unless you are sure of the consequences to the processor and
program state.

value Specifies the number of lines of source code to be executed.
If you do not supply this parameter a single statement or source line is executed.
All lines that contain executable code, including those in called functions, count
towards the number of lines executed.

Description

The STEPLINE command executes one or more source program units. If the debug information in
the executable:

• describes the boundaries of program statements, then STEPLINE steps by program
statement

• describes the source file line for each machine instruction, then STEPLINE steps by source
line

• describes only the external functions in the code, then STEPLINE steps by machine
instruction.

STEPLINE steps into procedure or function calls. When line or statement debug information is
available, the transition from the call site to the first executable statement of the called code
counts as one step. If source debug information is available for some but not all of the functions
in the program, STEPLINE steps to the next source line, whether this is within a called function,
for example, from program entry-point to main(), or outside of the current function, for example
from an assembler library routine PC to an enclosing source function.

If the step starts in the middle of a statement (for example, because you have used STEPINSTR) a
single step takes you to the start of the next statement.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-261
ID052111 Non-Confidential

RealView Debugger Commands
If you compile high level language code with debug information and with optimization enabled,
for example using armcc -g -O1, it is possible that:

• source code is not executed in the order it appears in the source file

• some source program statements are not executed because the optimizer has deduced they
are redundant

• some source program statements appear to be not executed because the optimizer has
indivisibly combined them with other statements

• statements are executed fewer times than you expect

• it might not be possible to breakpoint or step some statements, because the machine
instructions are shared with other source code.

These, and other effects, are the normal consequences of compiler optimization.

For assembler source files assembled with debug information, a single assembly statement
consists of;

• an explicitly written assembly instruction

• an assembler pseudo-operation resulting in machine instructions, even if several
instructions are generated, for example an ARM ADR instruction

• a call of an assembler macro that generates machine instructions.

It is normal to use this instruction in conjunction with the disassembly mode of the source
window, selected using the MODE command.

The STEPLINE command cannot be used in a macro if the macro is attached to another entity, such
as a breakpoint.

Examples

The following examples show how to use STEPLINE:

stepline Step the program by one statement.

stepline 5 Step the program five statements.

s =0x8000,5 Starting at address 0x8000, step the program five statements.

See also
• Execution control on page 2-4
• DISASSEMBLE on page 2-116
• GO on page 2-159
• GOSTEP on page 2-161
• MODE on page 2-190
• OPTION on page 2-195
• STEPINSTR on page 2-259
• STEPOINSTR on page 2-263
• STEPO on page 2-265.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-262
ID052111 Non-Confidential

RealView Debugger Commands
2.3.132 STEPOINSTR

Executes a specified number of instructions (low-level step), and completely executes program
calls.

Note
 If a breakpoint is set on an instruction that is encompassed by the STEPOINSTR command, then the
breakpoint is actioned. The breakpoint behavior depends on any condition qualifiers that are
assigned. If you do not want the breakpoint to be actioned, then either disable or clear the
breakpoint before stepping.

Syntax

STEPOINSTR [value]

STEPOINSTR =starting_address [,value]

where:

starting_address

Specifies where execution is to begin. If you do not supply this parameter
execution continues from the current PC.

Note
 Specifying an address is equivalent to directly modifying the PC. Do not specify

a starting address unless you are sure of the consequences to the processor and
program state.

value Specifies the number of instructions to be executed.
If you do not supply this parameter a single instruction is executed. All
instructions in the current function, including instructions that fail a conditional
execution test, count towards the number of instructions executed. Function calls
count as one instruction.

Description

The STEPOINSTR command executes a specified number of instructions. If the instructions
include procedure calls, these are stepped over, counting as only one instruction.

It is normal to use this instruction in conjunction with the disassembly mode of the source
window, selected using the MODE command.

The STEPOINSTR command cannot be used in a macro if the macro is attached to another entity,
such as a breakpoint.

Examples

The following examples show how to use STEPOINSTR:

stepoinstr Step the program by one instruction.

stepoinstr 5
Step the program five instructions.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-263
ID052111 Non-Confidential

RealView Debugger Commands
soi =0x8000,5
Starting at address 0x8000, step the program five instructions, counting a
subroutine call as one instruction.

Alias

SOINSTR is an alias of STEPOINSTR.

See also
• Execution control on page 2-4
• DISASSEMBLE on page 2-116
• GO on page 2-159
• GOSTEP on page 2-161
• MODE on page 2-190
• STEPINSTR on page 2-259
• STEPLINE on page 2-261
• STEPO on page 2-265.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-264
ID052111 Non-Confidential

RealView Debugger Commands
2.3.133 STEPO

Executes a specified number of lines (high-level step), and completely executes functions.

Note
 If you perform a high-level step in code for which there is no source available, RealView
Debugger attempts to step up the call stack until a location is reached that has source available.

Syntax

STEPO [={starting_address [,value] | value}]

where:

starting_address

Specifies where execution is to begin. If you do not supply this parameter
execution begins at the address currently defined by the PC.

Note
 Specifying an address is equivalent to directly modifying the PC. Do not specify

a starting address unless you are sure of the consequences to the processor and
program state.

value Specifies the number of lines of source code to be executed. If you do not supply
this parameter a single line is executed. All lines in the current program count
towards the number of lines executed. A call to a function causes the whole of the
function to be executed, and counts as one line.

Description

The STEPO command executes one or more source program units. If the debug information in the
executable:

• describes the boundaries of program statements, then STEPO steps by program statement

• describes the source file line for each machine instruction, then STEPO steps by source line

• describes only the function entry points in the code, then STEPO steps by machine
instruction.

If a statement calls one or more procedures or functions, they are all executed to completion as
part of the execution of the statement.

If the step starts in the middle of a statement (for example, because you have used STEPINSTR) a
single step takes you to the start of the next statement.

If you compile high level language code with debug information and with optimization enabled,
for example using armcc -g -O1, it is possible that:

• source code is not executed in the order it appears in the source file

• some source program statements are not executed because the optimizer has deduced they
are redundant

• some source program statements appear to be not executed because the optimizer has
indivisibly combined them with other statements

• statements are executed fewer times than you expect
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-265
ID052111 Non-Confidential

RealView Debugger Commands
• it might not be possible to breakpoint or step some statements, because the machine
instructions are shared with other source code.

These, and other effects, are the normal consequences of compiler optimization.

For assembler source files assembled with debug information, a single assembly statement
consists of;

• an explicitly written assembly instruction

• an assembler pseudo-operation resulting in machine instructions, even if several
instructions are generated, for example an ARM ADR instruction

• a call of an assembler macro that generates machine instructions.

It is normal to use this instruction in conjunction with the disassembly mode of the source
window, selected using the MODE command.

The STEPO command cannot be used in a macro if the macro is attached to another entity, such
as a breakpoint.

Alias

SO is an alias of STEPO.

Examples

The following examples show how to use STEPO:

stepo Step the program by one statement.

so 5 Step the program five statements.

so =0x8000,5 Starting at address 0x8000, step the program five statements.

See also
• Execution control on page 2-4
• DISASSEMBLE on page 2-116
• GO on page 2-159
• GOSTEP on page 2-161
• MODE on page 2-190
• OPTION on page 2-195
• STEPINSTR on page 2-259
• STEPLINE on page 2-261
• STEPOINSTR on page 2-263.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-266
ID052111 Non-Confidential

RealView Debugger Commands
2.3.134 STOP

Stops target program execution, or a specified thread when the processor is running in RSD
mode.

Syntax

STOP [[=]threadID]

where:

threadID Identifies the thread to be stopped when running in RSD mode.

Description

The behavior of the STOP command depends on the whether your program is running on a non
OS-aware connection, an OS-aware connection, or a RealMonitor-aware connection.

Using the STOP command on non OS-aware connections

The STOP command stops the processor.

Using the STOP command on OS-aware connections

The behavior of the STOP command depends on whether the processor is running in HSD or RSD
mode:

• If the processor is running in HSD mode, the command stops the whole processor.

• If the processor is running in RSD mode, and you use the STOP command without
specifying a thread, RealView Debugger attempts to stop the processor. The behavior
depends on the OS System_Stop setting in the Advanced_Information block for the
connection.
If the System_Stop setting is set to Prompt, you are prompted to continue with the request:
— Yes stops the processor, and the processor falls back to HSD mode.
— No cancels the stop request, and the processor continues to run.
If the System_Stop setting is set to Never, the STOP command is not actioned.

• If the processor is running in RSD mode, and you use the STOP command with a thread
identifier, the identified thread is stopped.
The stopping of threads is accomplished by the Debug Agent using the associated OS
service.

Using the STOP command on connections running RealMonitor

If RealMonitor support is enabled, then only the application thread stops. The RealMonitor
thread continues running.

Examples

The following examples show how to use STOP:

stop Stops the processor.

stop = thread_4
Stops the specified thread in RSD.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-267
ID052111 Non-Confidential

RealView Debugger Commands
stop = 0x39d8
Stops the thread specified by the TCB address in RSD.

See also

• Execution control on page 2-4

• AOS_resource_list on page 2-26

• DOS_resource_list on page 2-122

• GO on page 2-159

• HALT on page 2-163

• OSCTRL on page 2-200

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications

• the following in the RealView Debugger Target Configuration Guide:
— Configuring RealMonitor for connections through DSTREAM or RealView ICE on

page 3-43

• the following in the RealView Debugger RTOS Guide:
— Managing configuration settings on page 2-12
— Chapter 7 Debugging Your OS Application.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-268
ID052111 Non-Confidential

RealView Debugger Commands
2.3.135 SYNCHACTION

Controls what actions are to be performed on each synchronized processor.

Syntax

SYNCHACTION [,load] [,unload] [,reload] [,restart] [,reset] [,setpc] [,readfile]
[[=]connections]

SYNCHACTION ,remove {,all | [=]connections}

where:

load Loads a target application image file.

unload Unloads the current image file.

reload Reloads the current image file.

restart Resets the program counter.

reset Resets the target processor.

setpc Sets the program counter.

readfile Reads the contents of a binary file.

remove Remove the connections from the synchronized group.

connections A comma-separated list of connection identifier strings, of the form:
"connection-id" [,"connection-id",...]

where:
connection-id The connection name. If the targets have unique names,

then you have only to use the target name. Otherwise, you
must also specify the Debug Configuration name.

Description

Synchronization of processors takes place when an operation performed on one processor
affects the operation of other processors. For example, when you load an image on one
processor, the image is also loaded on the other synchronized processors. Synchronizing of
commands is provided whenever the command selected for synchronization is issued through
the CLI, a menu item, or another part of the GUI.

Example

The following example shows how to use the SYNCHACTION command. It assumes connection has
been made to an ARM7TDMI and an ARM926EJ-S:

synchaction,load,unload @ARM7TDMI@RVISS,@ARM926EJ-S@RVISS_1

Load the dhrystone image in your RealView Development Suite (RVDS) examples directory:

load/pd/r “install_directory\RVDS\Examples\...\main\dhrystone\Debug\dhrystone.axf”

The image is loaded to all targets.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-269
ID052111 Non-Confidential

RealView Debugger Commands
See Also

The following commands provide similar or related functionality:
• BEXECUTION on page 2-30
• CONNECT on page 2-93
• GO on page 2-159
• HALT on page 2-163
• STEPINSTR on page 2-259
• STOP on page 2-267
• SYNCHEXEC on page 2-271
• XTRIGGER on page 2-335
• the following in the RealView Debugger User Guide:

— Chapter 7 Debugging Multiprocessor Applications.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-270
ID052111 Non-Confidential

RealView Debugger Commands
2.3.136 SYNCHEXEC

Controls how connections and threads run, step, and stop together.

Note
 Multiprocessor models are inherently synchronized. For this reason, you must not set up
synchronzed execution for more than one processor from a multiprocessor model that is a Model
Library, Model Process, ISSM, RTSM, or SoC Designer model.

Syntax

SYNCHEXEC [,run] [,step] [,stop] [{,all | [=]connections}]

SYNCHEXEC,remove {,all | [=]connections}

where:

run, step, stop

Qualifiers that you can specify in any combination to define the operations to
synchronize. If you do not supply a qualifier, all operations are assumed.

remove Removes the connections from the synchronized group.

all Indicates all existing connections.

Note
 Do not use synchexec,all if you have connections to multiprocessor models on

any of the following Debug Interfaces, or to single-processor models in more than
one of these interfaces:
• Model Library
• Model Process
• ISSM
• RTSM
• SoC Designer.

connections A comma-separated list of connection identifier strings, of the form:
"connection-id" [,"connection-id",...]

where:
connection-id The connection name. If the targets have unique names,

then you have only to use the target name. Otherwise, you
must also specify the Debug Configuration name.

Description

The SYNCHEXEC command controls how RealView Debugger controls multiple target processors.
The initial state is that every target processor is controlled independently. Therefore, stopping
or starting a program on one processor only affects other processors if there is a link between
the processors.

If you require RealView Debugger to stop or start several target processors together, you use this
command to link them into a synchronized execution group. You can choose whether this group
applies to single stepping, to free-running, or to stopping (in the sense of a user-initiated halt),
independently.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-271
ID052111 Non-Confidential

RealView Debugger Commands
Examples

The following examples show how to use SYNCHEXEC:

synchexec,rem,all
Unsynchronize all processors.

synchexec,step,run,stop @Cortex-A9_0@DSTREAM,@Cortex-A9_1@DSTREAM
Synchronize the following target connections on step, stop and run:
• Cortex-A9_0, available on the DSTREAM Debug Configuration
• Cortex-A9_1, available on the DSTREAM Debug Configuration

synchexec,all
Synchronizes all available target connections on step, stop and run.

See also

• BEXECUTION on page 2-30

• CONNECT on page 2-93

• GO on page 2-159

• HALT on page 2-163

• STEPINSTR on page 2-259

• STOP on page 2-267

• SYNCHACTION on page 2-269

• XTRIGGER on page 2-335

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-272
ID052111 Non-Confidential

RealView Debugger Commands
2.3.137 TEST

Reads target memory to verify that specified values exist throughout the specified memory area.

Syntax

TEST [{/B|/H|/W|/8|/16|/32}] [/R] address-range [={expression | expressionlist}]

Note
 /B|/H|/W are deprecated in this release.

where:

/B|/8 Sets the access size to 8 bits.

/H|/16 Sets the access size to 16 bits.

/W|/32 Sets the access size to 32 bits.

Note
 If no access size is specified, the default is the native format for the debug target.

For example, the ARM7TDMI processor naturally addresses 8 bits.

/R Continues to test for the specified expression, displaying each match until the end
of the block or until the stop button Cancel is pressed.

address-range

The range of addresses to be tested. See Specifying address ranges on page 2-2
for details on how to specify an address range.

expression A value to check against the contents of memory.
An expression to be evaluated to a value and checked against the specified
memory region. The expression can be:
• a decimal or hexadecimal number
• a debugger expression, for example a math calculation
• a string enclosed in single or double quotation marks.
If you use a quoted string:
• each character of the string is treated as a byte value in an expressionlist
• no C-style zero terminator byte is written to memory.
Also, see Rules for specifying strings in the TEST command on page 2-274 for
more details on using strings with the TEST command.

expressionlist

A list of expressions to check against the contents of the specified memory region.
An expressionlist is a sequence of expressions separated by commas, for example
"Text",0,0x20.
The debugger tests the memory area to verify that it is filled with those values in
the pattern of the string.

Note
 All expressions in an expression list are padded or truncated to the size specified

by the size qualifiers if they do not fit the specified size evenly. This also applies
to each character of a string.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-273
ID052111 Non-Confidential

RealView Debugger Commands
Description

The TEST command examines target memory to verify that specified values exist throughout the
specified memory area. Unless you use the /R qualifier, Testing stops when a mismatch is found.
The debugger always displays any mismatched address and value.

Subsequent TEST commands issued without parameters cause the debugger to continue testing
through the address range originally specified, beginning with the last address that did not
match.

Considerations when using the TEST command

Be aware of the following when using the TEST command:

• The TEST command does not recognize variable typing, so you must ensure the access size
qualifier is compatible with the variable type.

• If the length of the expression list is greater than the specified address range, any values
in the expression list after the end of the address range are ignored. For example, test/8
0x9000..0x9003="Message" compares the four bytes in the address range with "Mess", and
ignores "age".

• If you specify only a start address, one copy of the expression is checked, examining only
as many bytes as required for the expression. For example, test/8 0x9000="Message"
compares bytes in the address range 0x9000 to 0x9006 with "Message".

• If you specify an address range with equal start and end addresses, then only that memory
location is checked against first byte of the expression. The rest of the expression list is
ignored. For example, test/8 0x9000..0x9000="Message" compares the byte at address
0x9000 with "M".
If an expression is not specified, the debugger acts as if =0 had been specified as the
expression.

• The TEST command runs synchronously.

Rules for specifying strings in the TEST command

Follow these rules when specifying a string:

• No C-style zero terminator byte is checked in memory after a specified string. To check
for a NUL-terminated string, add a zero value expression after the string, for example:
"Test Message",0

• You cannot use an empty string to test for a NUL character.

• Use the /8 qualifier, if you want to compare the characters of a string with consecutive
bytes of memory.

Examples

The following examples show how to use TEST:

test/8 0x8000..0x9000 =0
Find the address of the first non-zero byte in the 4KB page from 0x8000.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-274
ID052111 Non-Confidential

RealView Debugger Commands
test/r/16 0x10000..0x20000 =0xFFFF
Find and display the addresses of any 16-bit values in the address range that is not
0xFFFF. This might be useful to find out which regions of a Flash memory device
are programmed.

test/8 0x9008..0x9014="Test Message",0
Check if the memory region from 0x9008 to 0x9014 matches the NUL terminated
string "Test Message". This might be useful to check the memory reqion after you
have written a NUL-teminated string to that region using the SETMEM command.

See also
• FILL on page 2-149.
• READFILE on page 2-219
• SETMEM on page 2-239
• VERIFYFILE on page 2-322.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-275
ID052111 Non-Confidential

RealView Debugger Commands
2.3.138 THREAD

Sets the specified thread to be the current thread.

Syntax

THREAD [{,next|,default}]

THREAD [=thread]

where:

next Change the current thread to be the next one in the list of threads.

default Ensures that there is a valid current thread.

thread Define the thread that is to become the current thread. You can use the thread
name or the thread ID.

Description

The THREAD command sets the specified thread to be the current thread.

The current thread is normally set by whichever thread stops last. This command enables you
to specify a thread that is to be the current thread. By default, all actions apply to the current
board, process, and thread.

Examples

The following examples show how to use THREAD:

thread,next
Change the current thread to the next thread.

thread =thread_2
Change the current thread to the thread named thread_2.

thread =0x13dac
Change the current thread to the thread with an ID of 0x13dac.

See also
• BOARD on page 2-35
• OSCTRL on page 2-200
• RUN on page 2-232.
• the folloiwng in the RealView Debugger User Guide:

— Chapter 7 Debugging Multiprocessor Applications
• the following in the RealView Debugger RTOS Guide:

— Chapter 7 Debugging Your OS Application.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-276
ID052111 Non-Confidential

RealView Debugger Commands
2.3.139 TRACE

Provides a quick method of enabling or disabling tracing during program execution. The
tracepoints you set with this command are unconditional.

Syntax

TRACE location

TRACE [{{,endpoint}|{,prompt}|{,trigger}}] location

TRACE ,range startlocation..endlocation

TRACE ,data startlocation..endlocation

where:

location A program source location, specified symbolically or numerically.

startlocation The start of a program source range, which must be at a lower address than
that specified by endlocation.

endlocation The end of a program source range, which must be at a higher address than
that specified by startlocation.

Description

The TRACE command enables you to set trace trigger, start points, and end points in the program.
This enables you to switch tracing on or off at specific addresses during program execution (see
Trace control during program execution). The tracepoints you set are unconditional tracepoints.
To set more complex tracepoints, use the TRACEDATAACCESS, TRACEDATAREAD, TRACEDATAWRITE,
TRACEEXTCOND, TRACEINSTREXEC, or TRACEINSTRFETCH command as appropriate.

Trace control during program execution

The endpoint, range, data, prompt, and trigger qualifiers are used to control tracing during
program execution. With no qualifier, the TRACE command sets a trace start point.

To use these commands, you must specify a program source location, for example a memory
address within the program image, or a source module and line number.

The commands are as follows:

TRACE location

Set a trace start point in the program at address location.

trace ,endpoint location

Set a trace end point in the program at address location.

trace ,trigger location

Set a trace trigger in the program at address location.

trace ,prompt location

Set an unconditional tracepoint in the program at address location, where the type
of tracepoint is selected from a list of supported types presented in a dialog box.

Note
 The prompt qualifier is not available when running in command line mode.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-277
ID052111 Non-Confidential

RealView Debugger Commands
trace ,range startlocation..endlocation

Set a trace range in the program from address startlocation to endlocation, so
that instructions at addresses between these points are traced.

trace ,data startlocation..endlocation

Set a trace range in the program from address startlocation to endlocation, so
that data at addresses between these points are traced.

trace ,range ,data startlocation..endlocation

Set a trace range in the program from address startlocation to endlocation, so
that instructions executed and data accessed at addresses between these points are
traced.

Note
 ARM program code often includes literal pools, constants required by the

program that cannot be easily included in the instruction opcodes. Literal pool
accesses shows up on data tracing, and might quickly fill up the ETM FIFO buffer
quickly, depending on the program.

Examples

The following examples show how to use TRACE:

TRACE,prompt \DHRY_1\#78

Prompts you with a selection of tracepoints that you can set.

TRACE,range,data 0x80200..0x80400

Set tracepoints so that data and code accesses between 0x80200-0x80400 are
traced, but not accesses at other addresses.

See also
• ANALYZER on page 2-23
• DTBREAK on page 2-126
• DTRACE on page 2-130
• ETM_CONFIG on page 2-143
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312.
• the following in the RealView Debugger Trace User Guide:

— Chapter 5 Tracepoints in RealView Debugger
— Chapter 6 Setting Unconditional Tracepoints.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-278
ID052111 Non-Confidential

RealView Debugger Commands
2.3.140 TRACEBUFFER

Manipulates the contents and display of the program execution trace buffer.

Syntax

TRACEBUFFER ,subcommand [,qualifier] ="text"

TRACEBUFFER ,subcommand =value

TRACEBUFFER ,subcommand

where:

subcommand The possible commands are described in Subcommands.

qualifier The possible qualifiers are described in Subcommands.

text The name of a file or program symbol.

value A numeric value or range, for example 4 or 5..8.

Description

The TRACEBUFFER command manipulates the program execution and data trace buffer associated
with a trace analyzer, enabling you to save, load, find, and filter the data. The actions are
differentiated using the subcommand, and are described in the section Subcommands.

Subcommands

The possible subcommands listed in the syntax are described in the following sections:

Loadfile

TRACEBUFFER ,loadfile ="filename"

Load a file into the trace buffer for extra analysis. filename is the name of the file to load, and
must be quoted.

Note
 If you have captured trace to a file using the RVISS Tracer feature, you cannot load it into the
Analysis window.

You can include one or more environment variables in the filename. For example, if MYPATH
defines the location C:\Myfiles, you can specify:

TRACEBUFFER,loadfile '$MYPATH\mytrace.dat'

Note
 You must have saved the file using the savefile subcommand with the qualifier:
• defunnelled, full, or the GUI equivalent for ETM-enabled targets
• full, minimal, profile, or the GUI equivalent for RVISS targets.

Savefile (ETM-enabled targets)

TRACEBUFFER ,savefile [,ascii|,full|,defunnelled [,sourceid:n]| ,decompress|,profile]
[,append] [,filtered] ="filename"
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-279
ID052111 Non-Confidential

RealView Debugger Commands
The save trace buffer to file options for ETM-enabled targets are:

ascii Save the trace buffer contents in a similar format to the Trace tab of the Analysis
window. Additional formatting, such as inferred registers is not saved.. This file
type cannot be reloaded into the Analysis window.

decompress Stores the uncompressed trace in an XML file. This file type cannot be reloaded
into the Analysis window.

Note
 Be aware that very large XML files can be created when saving uncompressed

trace.

defunnelled [,sourceid:n]

Stores defunneled trace in compressed form to an XML file for the specified trace
source sourceid:n. By default the current trace source is saved. You can reload
this file type into the Analysis window.

full Save the whole trace buffer as a binary file in a RealView Debugger internal
format. You can reload this file type into the Analysis window.

append Append the new trace data to an existing file. Do not append data in one format
to files in a different format.

Note
 This option must be used only with the ascii option.

filtered Apply the selected display filters when saving trace data. If not specified, the
entire trace buffer is saved, regardless of selected display filters.

filename The name of the file to write the data to. If the full argument is specified, the
filename extension is ignored. If the full argument is not specified, then the
filename must use a known extension (.trc, .trm, .trp, .txt or .xml).
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myfiles, you can specify:
TRACEBUFFER,savefile '$MYPATH\mytrace.dat'

Savefile (RVISS targets)

TRACEBUFFER ,savefile [,ascii|,minimal|,full|,decompress|,profile] [,append]
[,filtered] ="filename"

The save trace buffer to file options for RVISS targets are:

ascii Save the trace buffer contents in a similar format to the Trace tab. Additional
formatting, such as inferred registers is not saved.. This file type cannot be
reloaded into the Analysis window.

full Save the whole trace buffer as a binary file in a RealView Debugger internal
format. You can reload this file type into the Analysis window.

minimal Save only timing, address, and access type data from the trace buffer as a binary
file in a RealView Debugger internal format. The files created are much smaller
than the full format, but some information is lost.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-280
ID052111 Non-Confidential

RealView Debugger Commands
profile Save only execution profile data from the trace buffer as a binary file in a
RealView Debugger internal format. The files created are smaller than the
minimal format, but only include enough information to display execution
profiles.

append Append the new trace data to an existing file. Do not append data in one format
to files in a different format.

filtered Apply the selected display filters when saving trace data. If not specified, the
entire trace buffer is saved, regardless of selected display filters.

filename The name of the file to write the data to. If the full argument is specified, the
filename extension is ignored. If the full argument is not specified, then the
filename must use a known extension (.trc, .trm, .trp, or .txt).
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myfiles, you can specify:
TRACEBUFFER,savefile '$MYPATH\mytrace.dat'

Closefile

TRACEBUFFER ,closefile

Unload the data from the last file loaded with loadfile and clear the Analysis window.

Amount

TRACEBUFFER ,amount =size

This subcommand is deprecated. Specify the number of captured trace records to read from the
trace buffer. There is a default value that normally corresponds to the entire trace buffer. Set this
if you do not require analysis of all of the captured trace buffer.

The value of size is one of:

0 The default buffer size. Normally this is the whole buffer, but see your analyzer
documentation for full details.

n The maximum number of records to read.

n..m The range of records to read, with 0 being the trigger record, if any, and the start
of the buffer point if not triggered. If you have a trigger record, you can use
negative values to reference records before the trigger.
For example, if a trigger is specified then 10..200 means read 190 records starting
10 records after the analyzer triggered.
If no trigger is specified, the same string, 10..200, means to read the 190 records
starting 10 records into the buffer.
To read the records around the trigger position in the buffer, you can specify
-20..20.

Scaletime

TRACEBUFFER ,scaletime =scale

Set the units for time values displayed in the Analysis window, where scale is:
0 The default units
1 Picoseconds (10-12 seconds)
2 Nanoseconds (10-9 seconds)
3 Microseconds (10-6 seconds)
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-281
ID052111 Non-Confidential

RealView Debugger Commands
4 Milliseconds (10-3 seconds)
5 Seconds
6 Cycles.

For ARM ETM, the default units are nanoseconds, and you cannot use scale 6, cycles.

Speed

TRACEBUFFER ,speed =mhz

Set the speed of the target processor clock for use in cycle-to-time conversions, where mhz is the
clock frequency in MHz. The default value is 20MHz. For example:

TRACEBUFFER,speed=40

sets the speed to 40MHz, so that a period of 400 cycles is considered to take 400/40E6 seconds,
or 10 microseconds.

Find_trigger

TRACEBUFFER ,find_trigger

Searches for the trigger position in the trace buffer. If found, the item is selected and the
Analysis window display is centered on it. There are no arguments.

Find_position

TRACEBUFFER ,find_position =position

Searches for the indicated position or set of positions in the trace buffer, where position is an
integer or range:
n The position to find.
n..m Find the first in a range of positions from n to m inclusive.
n..+o Find the first in a range of positions from n to n+o inclusive.

The values n and m can be negative if a trigger is defined. If any of the positions is found, the
first is selected and the Analysis window display is centered on it.

Find_time

TRACEBUFFER ,find_time =time

Searches for the indicated time or range of times in the trace buffer, where time is an integer, a
floating point number, or a range:
n The time to find.
n..m Find the first in a range of times from n to m inclusive.
n..+o Find the first in a range of times from n to n+o inclusive.

The values n and m can be negative if a trigger is defined. If any of the times are found, the first
is selected and the Analysis window display is centered on it.

Find_address

TRACEBUFFER ,find_address =address

Searches for the indicated address or set of positions in the trace buffer, where address is an
integer or range:
n The address to find.
n..m Find the first in a range of addresses from n to m inclusive.
n..+o Find the first in a range of addresses from n to n+o inclusive.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-282
ID052111 Non-Confidential

RealView Debugger Commands
If any of the addresses are found, the first is selected and the Analysis window display is
centered on it.

Find_data

TRACEBUFFER ,find_data =dbval

Searches for the indicated data bus value or set of values in the trace buffer, where dbval is an
integer or range:
n The data bus value to find.
n..m Find the first in a range of data bus values from n to m inclusive.
n..+o Find the first in a range of data bus values from n to n+o inclusive.

The values n and m can be negative. If any of the values are found, the first is selected and the
Analysis window display is centered on it.

Find_name

TRACEBUFFER ,find_name ="text"

Searches for the supplied text. The search is based on a textual search of the information in the
Symbolic column of the analysis window. If found, the record is selected and the Analysis
window display is centered on it.

Posfilter

TRACEBUFFER ,posfilter =position

Restricts the trace buffer information displayed in the Analysis window based on a positions or
set of positions, where position is an integer or range:
n The position to display.
n..m Display the range of positions from n to m inclusive. n can be negative.
n..+o Display the range of positions from n to n+o inclusive.

The values n and m can be negative if a trigger is defined. Positions are displayed in the Elem
column of the Analysis window.

Applying a filter to the trace buffer does not lose information unless you save the trace with the
filtered qualifier. See Savefile (ETM-enabled targets) on page 2-279 for more information.

Timefilter

TRACEBUFFER ,timefilter =time

Restricts the trace buffer information displayed in the Analysis window based on a time or range
of times in the current time scale units, where time is an integer, a floating point number, or a
range:
n The time to display.
n..m Display the range of times from n to m inclusive.
n..+o Display the range of times from n to n+o inclusive.

The values n and m can be negative if a trigger is defined. You can use cycle numbers instead of
time values. Applying a filter to the trace buffer does not lose information unless you save the
trace with the filtered qualifier. See Savefile (ETM-enabled targets) on page 2-279 for more
information.

Addressfilter

TRACEBUFFER ,addrfilter =address
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-283
ID052111 Non-Confidential

RealView Debugger Commands
TRACEBUFFER ,addressfilter =address

Restricts the trace buffer information displayed in the Analysis window based on an address or
range of addresses, where address is an integer or range:
n The address to display.
n..m Display the range of addresses from n to m inclusive.
n..+o Display the range of addresses from n to n+o inclusive.

You cannot specify addresses symbolically with addressfilter. Use namefilter instead.

Applying a filter to the trace buffer does not lose information unless you save the trace with the
filtered qualifier. See Savefile (ETM-enabled targets) on page 2-279 for more information.

Namefilter

TRACEBUFFER ,namefilter ="name"

Restricts the trace buffer information displayed in the Analysis window based on a symbolic
name, where name is a single string. The symbol names used by this filter are displayed in the
Symbolic column of the Analysis window.

Applying a filter to the trace buffer does not lose information unless you save the trace with the
filtered qualifier. See Savefile (ETM-enabled targets) on page 2-279 for more information.

Percentfilter

TRACEBUFFER ,percentfilter =percent

Restricts the trace buffer information displayed in the Analysis window based on an percentage
of the buffer, where percent is an integer or range:
n The percentage to display.
n..m Display the range of percentages from n to m inclusive.
n..+o Display the range of percentages from n to n+o inclusive.

Applying a filter to the trace buffer does not lose information unless you save the trace with the
filtered qualifier. See Savefile (ETM-enabled targets) on page 2-279 for more information.

Datavaluefilter

TRACEBUFFER ,dvalfilter =value

TRACEBUFFER ,datavaluefilter =value

Restricts the trace buffer information displayed in the Analysis window based on an data value
or range of values, where value is an integer or range:
n The value to display.
n..m Display the range of value from n to m inclusive.
n..+o Display the range of value from n to n+o inclusive.

Applying a filter to the trace buffer does not lose information unless you save the trace with the
filtered qualifier. See Savefile (ETM-enabled targets) on page 2-279 for more information.

Accesstypefilter

TRACEBUFFER ,typefilter =mask

TRACEBUFFER ,accesstypefilter =mask
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-284
ID052111 Non-Confidential

RealView Debugger Commands
Restricts the trace buffer information displayed in the Analysis window based on an access type,
where mask is a bitwise-OR of the following values:
0x001 Code access.
0x002 Data access.
0x004 Instruction prefetch.
0x008 DMA.
0x010 Interrupt.
0x020 Bus transaction.
0x040 Probe collection.
0x080 Pin or signal change.
0x100 Non-trace error.

Applying a filter to the trace buffer does not lose information unless you save the trace with the
filtered qualifier. See Savefile (ETM-enabled targets) on page 2-279 for more information.

Clearfilter

TRACEBUFFER ,clearfilter

Remove any and all of the filters applied to the trace buffer, so that the Analysis window
displays all the collected trace information.

Or_filter

TRACEBUFFER ,or_filter

Specifies that, if multiple filter conditions are applied to the trace buffer, the trace data is
displayed if any of the filters display it. That is, the display is the union of all the filters. This is
the initial state and you can change it using and_filter. Specifying or_filter overrides a
previously active and_filter setting, and the change is applied to the Analysis window
immediately.

And_filter

TRACEBUFFER ,and_filter

Specifies that, if multiple filter conditions are applied to the trace buffer, the trace data is
displayed only if all of the filters display it. That is, the display is the intersection of all the
filters. Specifying and_filter overrides a previously active or_filter setting and the change is
applied to the Analysis window immediately.

Invert_filter

TRACEBUFFER ,invert_filter

Invert the sense of the specified filter conditions.

For example, if you specify posfilter and Datavaluefilter, then:

• with and_filter specified, the filtering process returns trace information for the areas of
execution except where both the position and data value match criteria you have entered
are satisfied

• for or_filter specified, the filtering process returns trace information for the areas of
execution except where either the position or data value match criterion you have entered
is satisfied.

Normal_filter

TRACEBUFFER ,normal_filter
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-285
ID052111 Non-Confidential

RealView Debugger Commands
Revert back to non-inverted filtering (the default).

Pos_relative

TRACEBUFFER ,pos_relative

Specifies that the element (position) numbering used in the Elem column of the Analysis window
is relative to the trigger position, so that the trigger record is numbered 0, the record before (in
time) the trigger is -1, and the record after is 1.

Pos_absolute

TRACEBUFFER ,pos_absolute

Specifies that the element (position) numbering used in the Elem column of the Analysis window
is absolute, so that the record captured first is numbered 0, and records captured later are
numbered in increasing sequence.

You cannot use this mode with the ARM ETM because records are always relative to a trigger.

Refresh

TRACEBUFFER ,refresh

This option refreshes the trace display.

Gui

TRACEBUFFER ,gui

This option modifies the action of the other commands. It specifies that the TRACEBUFFER
command was initiated from the GUI, and that messages must be displayed using dialogs rather
than text in the command window.

Note
 This option has no effect when running in command line mode.

Examples

The following examples show how to use TRACEBUFFER:

TRACEBUFFER,timefilter 49.9..50.1

Set a filter that displays in the Analysis window only trace records
captured 0.1 time unit before and after 50 time units. You set time units
with scaletime.

TRACEBUFFER,savefile,defunneled,sourceid:1 ="tracerun.xml"

Save the complete trace buffer for the trace source with ID 1, because no
filtering is applied, to a file in the current directory called tracerun.xml.

TRACEBUFFER,find_name ="main"

Search through the Analysis window for the first occurrence of the text
main, and display it.

See also
• ANALYZER on page 2-23
• DTBREAK on page 2-126
• DTRACE on page 2-130
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-286
ID052111 Non-Confidential

RealView Debugger Commands
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312
• the following in the RealView Debugger Trace User Guide:

— Chapter 9 Analyzing Trace with the Analysis Window.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-287
ID052111 Non-Confidential

RealView Debugger Commands
2.3.141 TRACEDATAACCESS

Sets a trace point on data accesses, that is, either reads or writes.

Note
 This command is valid only for ETM-based hardware targets.

Syntax

TRACEDATAACCESS [,qualifier...] {address | address-range}

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers.

address Specifies the address at which the tracepoint is placed.

address-range

Specifies the address range for the tracepoint.

Description

This command sets a tracepoint at the address or address range you specify that triggers when
an instruction access at the indicated address accesses data from memory.

The tracepoint type is by default to trigger, that is, start collecting trace information into the trace
buffer. You can modify the action using the hw_out: qualifier to, for example, stop tracing.

List of qualifiers

The command qualifiers are as follows, but not all qualifiers are available for all of the
supported trace targets:

hw_ahigh:(n) Specifies the high address for an address-range tracepoint. The low
address is specified by the standard tracepoint address.
For example, to set a tracepoint that triggers when any data value is
accessed at an address in the range 0x1000-0x1200, enter the command:
TRACEDATAACCESS,hw_ahigh:0x1200 0x1000

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with an existing tracepoint
identified by id, which is one of:
• next for the next breakpoint specified for this connection
• prev for the last breakpoint specified for this connection
• the breakpoint list index of an existing breakpoint.
 The parentheses are optional.
Tracepoints set in this way are called chained tracepoints. How RealView
Debugger processes the tracepoints depends on the conjunction you have
used:
• In the and form, the conditions associated with both tracepoints are

chained together, so that trace capture starts only when both
conditions simultaneously match.
For example:
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-288
ID052111 Non-Confidential

RealView Debugger Commands
TRACEDATAACCESS,hw_and:next \MODIFY\#582
TRACEDATAACCESS,hw_and:prev \ACCESS\#379

• In the and-then form, RealView Debugger examines the chained
tracepoints starting with the last one you specified. When the
condition for the last tracepoint is met, the previous tracepoint is
enabled. However, trace capture starts only when this tracepoint
condition is met. RealView Debugger continues processing all
tracepoints in the chain, until the condition in first one you specified
is met. At this point, trace capture starts.

Note
 You must include the quotes when using the and-then form.

For example, you might have three tracepoints in a chain:
TRACEDATAACCESS,hw_and:"then-next" 0x10014
TRACEDATAACCESS,hw_and:"then-prev" 0x10018
TRACEDATAACCESS,hw_and:"then-prev" 0x1001B

In this case, RealView Debugger first checks for a data access at
address 0x1001B, then at address 0x10018, and finally at address
0x10014. When all conditions are met, trace capture starts.

If you clear a tracepoint that has the ID next, then all tracepoints in the
chain are cleared.
If you clear a tracepoint that has the ID prev, then that tracepoint and the
following ones are cleared. The previous breakpoints in the chain remain
set.

hw_dhigh:(n) Specifies the high data value for a data-range tracepoint. The low data
value is specified by the hw_dvalue qualifier.
For example, to set a tracepoint that triggers when a data value in the range
0x00-0x18 is accessed at address 0x1000, enter the command:
TRACEDATAACCESS,hw_dvalue:0x0,hw_dhigh:0x18 0x1000

hw_dmask:(n) Specifies the data value mask for a data-range tracepoint. The data value
to which the mask is applied is specified by the hw_dvalue qualifier. The
data value range is determined by masking lower order bits out of the
specified data value.
For example, to set a tracepoint that triggers when a data value in the range
0x400-0x4FF is accessed at address 0x1000, enter the command:
TRACEDATAACCESS,hw_dvalue:0x400,hw_dmask:0xF00 0x1000

hw_dvalue:(n) Specifies a data value to be compared to values transmitted on the
processor data bus.
For example, to set a tracepoint that triggers when the data value 0x400 is
accessed at address 0x1FA00, enter the command:
TRACEDATAACCESS,hw_dvalue:0x400 0x1FA00

hw_in:{s} Input trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive forms are available:
Ignore Security Level=Yes|No

Enables Secure World and Normal World data comparisons for
processors that implement the TrustZone technology:
Yes Match when the processor is in any mode. This is the

default.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-289
ID052111 Non-Confidential

RealView Debugger Commands
No Match only when the processor is in the mode
specified by the address suffix:
• S:address indicates Secure World.
• N:address indicates Normal World.

For example, to capture trace when a data value is accessed at
the Secure World address 0x8100, enter the command:
TRACEDATAACCESS,hw_in:{Ignore Security Level=No} S:0x8100.

"Size of Data Access=s"

This determines the following:
• for data accesses, the size of the data transfer
• for instruction accesses, the size of the instruction

accessed.
The size s is one of:
Any Depends on the implementation:

• halfword for Thumb code
• word for ARM code.
This is the default.

Halfword 16-bit accesses (Thumb code).
Word 32-bit accesses (ARM code).
For example, to set a tracepoint that triggers for any 32-bit data
read or a write that occurs at an address in the range
0x1E000-0x1FF00:
TRACEDATAACCESS,hw_in:"Size of Data Access=Word"
0x1E00..0x1FF00

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the tracepoint address value.
data Invert the tracepoint value.
then Invert an associated hw_and:{then} condition.
For example, to set a tracepoint that triggers when a data value does not
match a mask, enter the command:
TRACEDATAACCESS,hw_not:data,hw_dmask:0x00FF ...

The trace commands require an address value, and the addr variant of
hw_not uses this address. For example, to trace execution at addresses other
than the range 0x10040-0x10060, that is, exclude this region from the trace,
enter the command:
TRACEDATAACCESS,hw_not:addr 0x10040..0x10060

The hw_not:then variant of the command is used in conjunction with
hw_and to form or and nand-then conditions.

hw_out:{s} Output trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive form is defined:
"Tracepoint Type=s"

Specify the trace action that occurs when data is accessed by an
instruction at the specified address, where s is:
Trigger Output a trigger event to the TPA.
Start Tracing Start trace capture.
Stop Tracing Stop trace capture.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-290
ID052111 Non-Confidential

RealView Debugger Commands
Trace Instr Trace instructions only.
Trace Instr and Data

Trace instructions and data.

Note
 An address range can be specified only for Trace Instr and Trace Instr

and Data.

For example, to trace only instructions when a data read or write occurs
and an instruction is executed at an address in the range 0x1E000-0x1FF00,
enter the command:
TRACEDATAACCESS,hw_out:"Tracepoint Type=Trace Instr"
0x1E00..0x1FF00

hw_passcount:(n) Specifies the number of times that the specified condition has to occur to
trigger the tracepoint.
You can use this option to set up and use the ARM ETM counter hardware,
if the ETM has counters and there is one available for use. ETM counters
are 32 bits.

modify:(n) Instead of creating a new tracepoint, modify the tracepoint with tracepoint
ID number n by replacing the address expression and the qualifiers of the
existing tracepoint to those specified in this command.

Note
 You cannot use this qualifier with the hw_and qualifier to change a

non-chained tracepoint to a chained tracepoint. However, you can modify
a chained tracepoint with any other qualifier and also change the address
expression.

Examples

The following examples show how to use TRACEDATAACCESS:

TRACEDATAACCESS &@trace\\num_runs
Trigger trace output when the variable num_runs is accessed in the file
trace.c.

TRACEDATAACCESS,hw_out:"Tracepoint Type=Trace Instr" 0x8100..0x8110
Start tracing instructions when a data access occurs at an address in the
range 0x8100-0x8110.

TRACEDATAACCESS,hw_pass:5,hw_out:"Tracepoint Type=Start Tracing" 0x8100
Start tracing when a data access occurs at address 0x8100.

TRACEDATAACCESS,hw_out:"Tracepoint Type=Stop Tracing" 0x8100..0x8110
Stop tracing when a data access occurs at an address in the range
0x8100-0x8110.

Alias

TRCDACCES is an alias of TRACEDATAACCESS.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-291
ID052111 Non-Confidential

RealView Debugger Commands
See also
• Specifying address ranges on page 2-2
• ANALYZER on page 2-23
• DTBREAK on page 2-126
• DTRACE on page 2-130
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312
• the following in the RealView Debugger Trace User Guide:

— Chapter 6 Setting Unconditional Tracepoints
— Chapter 7 Setting Conditional Tracepoints.

• Embedded Trace Macrocell Specification.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-292
ID052111 Non-Confidential

RealView Debugger Commands
2.3.142 TRACEDATAREAD

Enables you to set a tracepoint on data reads.

Note
 This command is valid only for ETM-based hardware targets.

Syntax

TRACEDATAREAD [,qualifier...] {address | address-range}

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers.

address Specifies the address at which the tracepoint is placed.

address-range

Specifies the address range at which the tracepoint is placed.

Description

This command sets a tracepoint at the address or address range you specify that triggers when
an instruction access at the indicated address reads data from memory.

The tracepoint type is by default to trigger, that is, start collecting trace information into the trace
buffer. You can modify the action using the hw_out: qualifier to, for example, stop tracing.

List of qualifiers

The command qualifiers are as follows, but not all qualifiers are available for all of the
supported trace targets:

hw_ahigh:(n) Specifies the high address for an address-range tracepoint. The low
address is specified by the standard tracepoint address.
For example, to set a tracepoint that triggers when any data value is read
from an address in the range 0x1000-0x1200, enter the command:
TRACEDATAREAD,hw_ahigh:0x1200 0x1000

This is equivalent to the command:
TRACEDATAREAD 0x1000..0x1200

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with an existing tracepoint
identified by id, which is one of:
• next for the next breakpoint specified for this connection
• prev for the last breakpoint specified for this connection
• the breakpoint list index of an existing breakpoint.
The parentheses are optional.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-293
ID052111 Non-Confidential

RealView Debugger Commands
Tracepoints set in this way are called chained tracepoints. How RealView
Debugger processes the tracepoints depends on the conjunction you have
used:
• In the and form, the conditions associated with both tracepoints are

chained together, so that trace capture starts only when both
conditions simultaneously match.
For example:
TRACEDATAREAD,hw_and:next \MODIFY\#582
TRACEDATAREAD,hw_and:prev \ACCESS\#379

• In the and-then form, RealView Debugger examines the chained
tracepoints starting with the last one you specified. When the
condition for the last tracepoint is met, the previous tracepoint is
enabled. However, trace capture starts only when this tracepoint
condition is met. RealView Debugger continues processing all
tracepoints in the chain, until the condition in first one you specified
is met. At this point, trace capture starts.

Note
 You must include the quotes when using the and-then form.

For example, you might have three tracepoints in a chain:
TRACEDATAREAD,hw_and:"then-next" 0x10014
TRACEDATAREAD,hw_and:"then-prev" 0x10018
TRACEDATAREAD,hw_and:"then-prev" 0x1001B

In this case, RealView Debugger first checks for a data read at
address 0x1001B, then at address 0x10018, and finally at address
0x10014. When all conditions are met, trace capture starts.

If you clear a tracepoint that has the ID next, then all tracepoints in the
chain are cleared.
If you clear a tracepoint that has the ID prev, then that tracepoint and the
following ones are cleared. The previous breakpoints in the chain remain
set.

hw_dhigh:(n) Specifies the high data value for a data-range tracepoint. The low data
value is specified by the hw_dvalue qualifier.
For example, to set a tracepoint that triggers when a data value in the range
0x00-0x18 is read from address 0x1000, enter the command:
TRACEDATAREAD,hw_dvalue:0x0,hw_dhigh:0x18 0x1000

hw_dmask:(n) Specifies the data value mask for a data-range tracepoint. The data value
to which the mask is applied is specified by the hw_dvalue qualifier. The
data value range is determined by masking lower order bits out of the
specified data value.
For example, to set a tracepoint that triggers when a data value in the range
0x400-0x4FF is read from address 0x1000, enter the command:
TRACEDATAREAD,hw_dvalue:0x400,hw_dmask:0xF00 0x1000

hw_dvalue:(n) Specifies a data value to be compared to values transmitted on the
processor data bus.
For example, to set a tracepoint that triggers when the data value 0x400 is
read from the address 0x1FA00, enter the command:
TRACEDATAREAD,hw_dvalue:0x400 0x1FA00
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-294
ID052111 Non-Confidential

RealView Debugger Commands
hw_in:{s} Input trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive forms are defined:
Ignore Security Level=Yes|No

Enables Secure World and Normal World data comparisons for
processors that implement the TrustZone technology:
Yes Match when the processor is in any mode. This is the

default.
No Match only when the processor is in the mode

specified by the address suffix:
• S:address indicates Secure World.
• N:address indicates Normal World.

For example, to capture trace when a data value is read from the
Secure World address 0x8100, enter the command:
TRACEDATAREAD,hw_in:{Ignore Security Level=No} S:0x8100.

"Size of Data Access=s"

This determines the following:
• for data accesses, the size of the data transfer
• for instruction accesses, the size of the instruction

accessed.
The size s is one of:
Any Depends on the implementation:

• halfword for Thumb code
• word for ARM code.
This is the default.

Halfword 16-bit accesses (Thumb code).
Word 32-bit accesses (ARM code).
For example, to set a tracepoint that triggers for any 32-bit data
read that occurs at an address in the range 0x1E000-0x1FF00,
enter the command:
TRACEDATAREAD,hw_in:"Size of Data Access=Word"
0x1E00..0x1FF00

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the tracepoint address value.
data Invert the tracepoint value.
then Invert an associated hw_and:{then} condition.
For example, to capture trace when a data value does not match a mask,
enter the command:
TRACEDATAREAD,hw_not:data,hw_dmask:0x00FF ...

The trace commands require an address value, and the addr variant of
hw_not uses this address. For example, to trace execution at addresses other
than in the range 0x10040-0x10060, that is, exclude this region from the
trace, enter the command:
TRACEDATAREAD,hw_not:addr 0x10040..0x10060

The hw_not:then variant of the command is used in conjunction with
hw_and to form or and nand-then conditions.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-295
ID052111 Non-Confidential

RealView Debugger Commands
hw_out:{s} Output trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive form is defined:
"Tracepoint Type=s"

Specify the trace action that occurs when data is read by an
instruction at the specified address, where s is:
Trigger Output a trigger event to the TPA.
Start Tracing Start trace capture.
Stop Tracing Stop trace capture.
Trace Instr Trace instructions only.
Trace Instr and Data

Trace instructions and data.

Note
 An address range can be specified only for Trace Instr and Trace Instr

and Data.

For example, to trace only instructions when a data read occurs and an
instruction is executed at an address in the range 0x1E000-0x1FF00, enter the
command:
TRACEDATAREAD,hw_out:"Tracepoint Type=Trace Instr" 0x1E00..0x1FF00

hw_passcount:(n) Specifies the number of times that the specified condition has to occur to
trigger the tracepoint.
You can use this option to set up and use the ARM ETM counter hardware,
if the ETM has counters and there is one available for use. ETM counters
are 32 bits.

modify:(n) Instead of creating a new tracepoint, modify the tracepoint with tracepoint
ID number n by replacing the address expression and the qualifiers of the
existing tracepoint to those specified in this command.

Note
 You cannot use this qualifier with the hw_and qualifier to change a

non-chained tracepoint to a chained tracepoint. However, you can modify
a chained tracepoint with any other qualifier and also change the address
expression.

Examples

The following examples show how to use TRACEDATAREAD:

TRACEDATAREAD &@trace\\num_runs
Trigger trace output when the variable num_runs is read in the file trace.c.

TRACEDATAREAD,hw_out:"Tracepoint Type=Trace Instr" 0x8100..0x8110
Start tracing instructions when a data read occurs at an address in the range
0x8100-0x8110.

TRACEDATAREAD,hw_pass:5,hw_out:"Tracepoint Type=Start Tracing" 0x8100
Start tracing when a data read occurs at address 0x8100.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-296
ID052111 Non-Confidential

RealView Debugger Commands
TRACEDATAREAD,hw_out:"Tracepoint Type=Stop Tracing" 0x8100..0x8110
Stop tracing when a data read occurs from an address in the range
0x8100-0x8110.

Alias

TRCDREAD is an alias of TRACEDATAREAD.

See also
• Specifying address ranges on page 2-2
• ANALYZER on page 2-23
• DTBREAK on page 2-126
• DTRACE on page 2-130
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312
• the following in the RealView Debugger Trace User Guide:

— Chapter 6 Setting Unconditional Tracepoints
— Chapter 7 Setting Conditional Tracepoints.

• Embedded Trace Macrocell Specification.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-297
ID052111 Non-Confidential

RealView Debugger Commands
2.3.143 TRACEDATAWRITE

Enables you to set a tracepoint on data writes.

Note
 This command is valid only for ETM-based hardware targets.

Syntax

TRACEDATAWRITE [,qualifier...] {address | address-range}

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers.

address Specifies the address at which the tracepoint is placed.

address-range

Specifies the address range at which the tracepoint is placed.

Description

This command sets a tracepoint at the address or address range you specify that triggers when
an instruction access at the indicated address writes data to memory.

The tracepoint type is by default to trigger, that is, start collecting trace information into the trace
buffer. You can modify the action using the hw_out: qualifier to, for example, stop tracing.

List of qualifiers

The command qualifiers are as follows, but not all qualifiers are available for all of the
supported trace targets:

hw_ahigh:(n) Specifies the high address for an address-range tracepoint. The low
address is specified by the standard tracepoint address.
For example, to set a tracepoint that triggers when any data value is written
to an address in the range 0x1000-0x1200, enter the command:
TRACEDATAWRITE,hw_ahigh:0x1200 0x1000

This is equivalent to the command:
TRACEDATAWRITE 0x1000..0x1200

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with an existing tracepoint
identified by id, which is one of:
• next for the next breakpoint specified for this connection
• prev for the last breakpoint specified for this connection
• the breakpoint list index of an existing breakpoint.
The parentheses are optional.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-298
ID052111 Non-Confidential

RealView Debugger Commands
Tracepoints set in this way are called chained tracepoints. How RealView
Debugger processes the tracepoints depends on the conjunction you have
used:
• In the and form, the conditions associated with both tracepoints are

chained together, so that trace capture starts only when both
conditions simultaneously match.
For example:
TRACEDATAWRITE,hw_and:next \MODIFY\#582
TRACEDATAWRITE,hw_and:prev \ACCESS\#379

• In the and-then form, RealView Debugger examines the chained
tracepoints starting with the last one you specified. When the
condition for the last tracepoint is met, the previous tracepoint is
enabled. However, trace capture starts only when this tracepoint
condition is met. RealView Debugger continues processing all
tracepoints in the chain, until the condition in first one you specified
is met. At this point, trace capture starts.

Note
 You must include the quotes when using the and-then form.

For example, you might have three tracepoints in a chain:
TRACEDATAWRITE,hw_and:"then-next" 0x10014
TRACEDATAWRITE,hw_and:"then-prev" 0x10018
TRACEDATAWRITE,hw_and:"then-prev" 0x1001B

In this case, RealView Debugger first checks for a data write at
address 0x1001B, then at address 0x10018, and finally at address
0x10014. When all conditions are met, trace capture starts.

If you clear a tracepoint that has the ID next, then all tracepoints in the
chain are cleared.
If you clear a tracepoint that has the ID prev, then that tracepoint and the
following ones are cleared. The previous breakpoints in the chain remain
set.

hw_dhigh:(n) Specifies the high data value for a data-range tracepoint. The low data
value is specified by the hw_dvalue qualifier.
For example, to set a tracepoint that triggers when a data value in the range
0x00-0x18 is written to address 0x1000, enter the command:
TRACEDATAWRITE,hw_dvalue:0x0,hw_dhigh:0x18 0x1000

hw_dmask:(n) Specifies the data value mask for a data-range tracepoint. The data value
to which the mask is applied is specified by the hw_dvalue qualifier. The
data value range is determined by masking lower order bits out of the
specified data value.
For example, to set a tracepoint that triggers when a data value in the range
0x400-0x4FF is written to address 0x1000, enter the command:
TRACEDATAWRITE,hw_dvalue:0x400,hw_dmask:0xF00 0x1000

hw_dvalue:(n) Specifies a data value to be compared to values transmitted on the
processor data bus.
For example, to set a tracepoint that triggers when data value 0x400 is
written to the address 0x1FA00, enter the command:
TRACEDATAWRITE,hw_dvalue:0x400 0x1FA00
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-299
ID052111 Non-Confidential

RealView Debugger Commands
hw_in:{s} Input trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive forms are defined:
Ignore Security Level=Yes|No

Enables Secure World and Normal World data comparisons for
processors that implement the TrustZone technology:
Yes Match when the processor is in any mode. This is the

default.
No Match only when the processor is in the mode

specified by the address suffix:
• S:address indicates Secure World.
• N:address indicates Normal World.

For example, to capture trace when any data value is written to
the Secure World address 0x8000, enter the command:
TRACEDATAWRITE,hw_in:{Ignore Security Level=No} S:0x8100.

"Size of Data Access=s"

This determines the following:
• for data accesses, the size of the data transfer
• for instruction accesses, the size of the instruction

accessed.
The size s is one of:
Any Depends on the implementation:

• halfword for Thumb code
• word for ARM code.
This is the default.

Halfword 16-bit accesses (Thumb code).
Word 32-bit accesses (ARM code).
For example, to capture trace when any 32-bit data read or write
occurs at an address in the range 0x1E000-0x1FF00, enter the
command:
TRACEDATAWRITE,hw_in:"Size of Data Access=Word"
0x1E00..0x1FF00

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the tracepoint address value.
data Invert the tracepoint value.
then Invert an associated hw_and:{then} condition.
For example, to capture trace when a data value does not match a mask,
enter the command:
TRACEDATAWRITE,hw_not:data,hw_dmask:0x00FF ...

The trace commands require an address value, and the addr variant of
hw_not uses this address. For example, to trace execution at addresses other
than the range 0x10040 to 0x10060, that is, exclude this region from the
trace, enter the command:
TRACEDATAWRITE,hw_not:addr 0x10040..0x10060

The hw_not:then variant of the command is used in conjunction with
hw_and to form or and nand-then conditions.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-300
ID052111 Non-Confidential

RealView Debugger Commands
hw_out:{s} Output trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive form is defined:
"Tracepoint Type=s"

Specify the trace action that occurs when data is written by an
instruction at the specified address, where s is:
Trigger Output a trigger event to the TPA.
Start Tracing Start trace capture.
Stop Tracing Stop trace capture.
Trace Instr Trace instructions only.
Trace Instr and Data

Trace instructions and data.

Note
 An address range can be specified only for Trace Instr and Trace Instr

and Data.

For example, to trace only instructions when a data write occurs and an
instruction is executed at an address in the range 0x1E000-0x1FF00, enter the
command:
TRACEDATAWRITE,hw_out:"Tracepoint Type=Trace Instr" 0x1E00..0x1FF00

hw_passcount:(n) Specifies the number of times that the specified condition has to occur to
trigger the tracepoint.
You can use this option to set up and use the ARM ETM counter hardware,
if the ETM has counters and there is one available for use. ETM counters
are 32 bits.

modify:(n) Instead of creating a new tracepoint, modify the tracepoint with tracepoint
ID number n by replacing the address expression and the qualifiers of the
existing tracepoint to those specified in this command.

Note
 You cannot use this qualifier with the hw_and qualifier to change a

non-chained tracepoint to a chained tracepoint. However, you can modify
a chained tracepoint with any other qualifier and also change the address
expression.

Examples

The following example shows how to use TRACEDATAWRITE:

TRACEDATAWRITE &@trace\\num_runs
Trigger trace output when a write to the variable num_runs occurs in the file
trace.c.

TRACEDATAWRITE,hw_out:"Tracepoint Type=Trace Instr" 0x8100..0x8110
Start tracing instructions when a data write occurs to an address in the
range 0x8100-0x8110.

TRACEDATAWRITE,hw_pass:5,hw_out:"Tracepoint Type=Start Tracing" 0x8100
Start tracing when a data write occurs to address 0x8100.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-301
ID052111 Non-Confidential

RealView Debugger Commands
TRACEDATAWRITE,hw_out:"Tracepoint Type=Stop Tracing" 0x8100..0x8110
Stop tracing when a data write occurs to an address in the range
0x8100-0x8110.

Alias

TRCDWRITE is an alias of TRACEDATAWRITE.

See also
• Specifying address ranges on page 2-2
• ANALYZER on page 2-23
• DTBREAK on page 2-126
• DTRACE on page 2-130
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312
• the following in the RealView Debugger Trace User Guide:

— Chapter 6 Setting Unconditional Tracepoints
— Chapter 7 Setting Conditional Tracepoints.

• Embedded Trace Macrocell Specification.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-302
ID052111 Non-Confidential

RealView Debugger Commands
2.3.144 TRACEEXTCOND

Enables you to set a tracepoint that triggers when a specified external condition occurs.

Note
 This command is valid only for ETM-based hardware targets.

Syntax

TRACEEXTCOND [,qualifier...]

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers.

Note
 You must always specify the hw_in qualifier.

Description

This command sets a tracepoint that triggers when a specified external condition occurs. By
default, the tracepoint type is Trigger, that is start collecting trace information into the trace
buffer. You can modify the action using the hw_out: qualifier to, for example, stop tracing.

List of qualifiers

The command qualifiers are as follows, but not all qualifiers are available for all of the
supported trace targets:

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with an existing tracepoint
identified by id, which is one of:
• next for the next breakpoint specified for this connection
• prev for the last breakpoint specified for this connection
• the breakpoint list index of an existing breakpoint.
The parentheses are optional.
Tracepoints set in this way are called chained tracepoints. How RealView
Debugger processes the tracepoints depends on the conjunction you have
used:
• In the and form, the conditions associated with both tracepoints are

chained together, so that trace capture starts only when both
conditions simultaneously match.

• In the and-then form, RealView Debugger examines the chained
tracepoints starting with the last one you specified. When the
condition for the last tracepoint is met, the previous tracepoint is
enabled. However, trace capture starts only when this tracepoint
condition is met. RealView Debugger continues processing all
tracepoints in the chain, until the condition in first one you specified
is met. At this point, trace capture starts.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-303
ID052111 Non-Confidential

RealView Debugger Commands
Note
 You must include the quotes when using the and-then form.

If you clear a tracepoint that has the ID next, then all tracepoints in the
chain are cleared.
If you clear a tracepoint that has the ID prev, then that tracepoint and the
following ones are cleared. The previous breakpoints in the chain remain
set.

hw_in:{s} Input trigger to test for external condition events. You must always specify
this qualifier. The string s is specific to the trace connection being used.
For the ARM ETM, the following case-sensitive forms are defined:
"External Condition=s"

The tracepoint is activated on the events shown in Table 2-22.

Note
 For Extended external inputs 1 to 4, you must also use the

ETM_CONFIG command to specify the number of the external
input to test.

Up to four signals are available. The ASIC manufacturer
determines the availability and usage of these output signals.
See your ASIC documentation for details.

hw_not:{then} Use this qualifier to invert the sense of a hw_and:{then} condition specified
in the same command.
For example, to form or and nand-then conditions use the hw_not:then
qualifier in conjunction with hw_and, for example:
TRACEEXTCOND,hw_and:next,hw_not:then,hw_in:"External
Condition=ExternalIn1"

Table 2-22 External condition events

Event String setting

External inputs 1-4 ExternalIn1
ExternalIn2
ExternalIn3
ExternalIn4

Extended external inputs 1-4
(ETMv3.1 and later)
The number of inputs available
depends on the ETM.

Extended ExternalIn1
Extended ExternalIn2
Extended ExternalIn3
Extended ExternalIn4

EmbeddedICE watchpoints 1-2 Watchpoint1

Watchpoint2

Access to ASIC memory maps 1-16 ASIC Memmap 1
...
ASIC Memmap 16
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-304
ID052111 Non-Confidential

RealView Debugger Commands
hw_out:{s} Output trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive forms are defined:
"Tracepoint Type=s"

Specify the trace action when an external condition occurs at an
address in the specified range, where s is:
Trigger Output a trigger event to the TPA.
Start Tracing Start trace capture.
Stop Tracing Stop trace capture.
Trace Instr Trace instructions only.
Trace Instr and Data

Trace instructions and data.
ExternalOut1, ExternalOut2, ExternalOut3, or ExternalOut4

Trace the specified external output.

Note
 An address range can be specified only for Trace Instr and Trace Instr

and Data.

For example, to trace only instructions when an external condition occurs
and an instruction is executed at an address in the range 0x1E000-0x1FF00,
enter the command:
TRACEEXTCOND,hw_out:"Tracepoint Type=Trace Instr",hw_in:"External
Condition=ExternalIn1"

hw_passcount:(n) Specifies the number of times that the specified condition has to occur to
trigger the tracepoint. You can use this option to set up and use the ARM
ETM counter hardware, if the ETM has counters and there is one available
for use. ETM counters are 32 bits.

modify:(n) Instead of creating a new tracepoint, modify the tracepoint with tracepoint
ID number n by replacing the address expression and the qualifiers of the
existing tracepoint to those specified in this command.

Note
 You cannot use this qualifier with the hw_and qualifier to change a

non-chained tracepoint to a chained tracepoint. However, you can modify
a chained tracepoint with any other qualifier and also change the address
expression.

Examples

The following example shows how to use TRACEEXTCOND:

TRACEEXTCOND,hw_out:"Tracepoint Type=Trigger",hw_pass:5,hw_in:"External

Condition=ExternalIn1"
Set a trigger to output captured trace after the fifth external condition on
External input 1.

Alias

TRCEEXTC is an alias of TRACEEXTCOND.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-305
ID052111 Non-Confidential

RealView Debugger Commands
See also
• ANALYZER on page 2-23
• DTBREAK on page 2-126
• DTRACE on page 2-130
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEINSTREXEC on page 2-307
• TRACEINSTRFETCH on page 2-312
• the following in the RealView Debugger Trace User Guide:

— Chapter 6 Setting Unconditional Tracepoints
— Chapter 7 Setting Conditional Tracepoints.

• Embedded Trace Macrocell Specification.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-306
ID052111 Non-Confidential

RealView Debugger Commands
2.3.145 TRACEINSTREXEC

Enables you to set a tracepoint on instruction execution.

Syntax

TRACEINSTREXEC [,qualifier...] {address | address-range}

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers.

address Specifies the address at which the tracepoint is placed.

address-range

Specifies the address range at which the tracepoint is placed.

Description

This command sets a tracepoint at the address or address range you specify that triggers when
an instruction is executed in the indicated address range.

The tracepoint type is by default to trigger, that is, start collecting trace information into the trace
buffer. You can modify the action using the hw_out: qualifier to, for example, stop tracing.

List of qualifiers

The command qualifiers are as follows, but not all qualifiers are available for all of the
supported trace targets:

hw_ahigh:(n) Specifies the high address for an address-range tracepoint. The low
address is specified by the standard tracepoint address.
For example, to set a tracepoint that triggers when an instruction is
executed at an address in the range 0x1000-0x1200, enter the command:
TRACEINSTREXEC,hw_ahigh:0x1200 0x1000

This is equivalent to the command:
TRACEINSTREXEC 0x1000..0x1200

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with an existing tracepoint
identified by id, which is one of:
• next for the next breakpoint specified for this connection
• prev for the last breakpoint specified for this connection
• the breakpoint list index of an existing breakpoint.
The parentheses are optional.
Tracepoints set in this way are called chained tracepoints. How RealView
Debugger processes the tracepoints depends on the conjunction you have
used:
• In the and form, the conditions associated with both tracepoints are

chained together, so that trace capture starts only when both
conditions simultaneously match.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-307
ID052111 Non-Confidential

RealView Debugger Commands
• In the and-then form, RealView Debugger examines the chained
tracepoints starting with the last one you specified. When the
condition for the last tracepoint is met, the previous tracepoint is
enabled. However, trace capture starts only when this tracepoint
condition is met. RealView Debugger continues processing all
tracepoints in the chain, until the condition in first one you specified
is met. At this point, trace capture starts.

Note
 You must include the quotes when using the and-then form.

If you clear a tracepoint that has the ID next, then all tracepoints in the
chain are cleared.
If you clear a tracepoint that has the ID prev, then that tracepoint and the
following ones are cleared. The previous breakpoints in the chain remain
set.

hw_dhigh:(n) Specifies the high data value for a data-range tracepoint. The low data
value is specified by the hw_dvalue qualifier.
For example, to set a tracepoint that triggers when an instruction opcode
in the range 0xEA000040-0xEA00004F is executed at an address in the range
0x1FA00-0x1FAFF, enter the command:
TRACEINSTREXEC,hw_dvalue:0xEA000040,hw_dhigh:0xEA00004F
0x1FA00..0x1FAFF

hw_dmask:(n) Specifies the data value mask for a data-range tracepoint. The data value
to which the mask is applied is specified by the hw_dvalue qualifier. The
data value range is determined by masking lower order bits out of the
specified data value.
For example, to set a tracepoint that triggers when an instruction having a
basic opcode 0xEA000040 but with any value in bits [15:8] is executed at an
address in the range 0x1FA00-0x1FAFF, enter the command:
TRACEINSTREXEC,hw_dvalue:0xEA000040,hw_dmask:0xFFFF00FF
0x1FA00..0x1FAFF

hw_dvalue:(n) Specifies a data value to be compared to values transmitted on the
processor data bus.
For example, to capture trace when an instruction with an opcode of
0xEA000040 is executed at an address in the range 0x1FA00-0x1FAFF, enter the
command:
TRACEINSTREXEC,hw_dvalue:0xEA000040 0x1FA00..0x1FAFF

hw_in:{s} Input trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive forms are defined:
"Check Condition Code=s"

For instruction tracepoints, comparisons, check the instruction
condition code against the specified value, and return True if it
matches, where s is:
Pass Trace only instructions that are executed.
Fail Trace only instructions that are not executed.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-308
ID052111 Non-Confidential

RealView Debugger Commands
Ignore Security Level=Yes|No

Enables Secure World and Normal World data comparisons for
processors that implement the TrustZone technology:
Yes Match when the processor is in any mode. This is the

default.
No Match only when the processor is in the mode

specified by the address suffix:
• S:address indicates Secure World.
• N:address indicates Normal World.

For example, to capture trace when an instruction is executed at
the Secure World address 0x8000, enter the command:
TRACEINSTREXEC,hw_in:{Ignore Security Level=No} S:0x8000.

Size of Data Access=s

This determines the following:
• for data accesses, the size of the data transfer
• for instruction accesses, the size of the instruction

accessed.
The size s is one of:
Any Depends on the implementation:

• halfword for Thumb code
• word for ARM code.
This is the default.

Halfword 16-bit accesses (Thumb code).
Word 32-bit accesses (ARM code).

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the tracepoint address value.
data Invert the tracepoint value.
then Invert an associated hw_and:{then} condition.
For example, to capture trace when a data value does not match a mask,
enter the command:
TRACEINSTREXEC,hw_not:data,hw_dmask:0x00FF ...

The trace commands require an address value, and the addr variant of
hw_not uses this address. For example, to trace execution at addresses other
than the range 0x10040 to 0x10060, that is, exclude this region from the
trace, enter the command:
TRACEINSTREXEC,hw_not:addr 0x10040..0x10060

The hw_not:then variant of the command is used in conjunction with
hw_and to form or and nand-then conditions.

hw_out:{s} Output trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive forms are defined:
"Tracepoint Type=s"

Specify the trace action when an instruction is executed in the
specified range, where s depends on the target connection:
• For an ETM-based hardware target, s is:

Trigger Output a trigger event to the TPA.
Start Tracing Start trace capture.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-309
ID052111 Non-Confidential

RealView Debugger Commands
Stop Tracing Stop trace capture.
Trace Instr Trace instructions only.
Trace Instr and Data

Trace instructions and data.

Note
 An address range can be specified only for Trace Instr

and Trace Instr and Data.

• For an RVISS target, s is:
Trigger Output a trigger event.
Trace Start Point (Instruction Only)

Trace instructions only.
Trace Start Point (Instruction and Data)

Trace instructions and data.
Trace End Point Stop trace capture.

Note
 You cannot specify an address range with any of these

options.

For example, to trace only instructions when an instruction is executed at
an address in the range 0x1E000-0x1FF00, enter the command:
TRACEINSTREXEC,hw_out:"Tracepoint Type=Trace Instr" 0x1E00..0x1FF00

hw_passcount:(n) Specifies the number of times that the specified condition has to occur to
trigger the tracepoint. You can use this option to set up and use the ARM
ETM counter hardware, if the ETM has counters and there is one available
for use. ETM counters are 32 bits.

modify:(n) Instead of creating a new tracepoint, modify the tracepoint with tracepoint
ID number n by replacing the address expression and the qualifiers of the
existing tracepoint to those specified in this command.

Note
 You cannot use this qualifier with the hw_and qualifier to change a

non-chained tracepoint to a chained tracepoint. However, you can modify
a chained tracepoint with any other qualifier and also change the address
expression.

Examples

The following examples show how to use TRACEINSTREXEC:

TRACEINSTREXEC \MATH_1\#449.3
Set a hardware tracepoint at statement 3 of line 449 in the file math.c.

TRACEINSTREXEC,hw_pass:(5) \MAIN_1\#35
Set a hardware tracepoint using an ETM counter to enable tracing the fifth
time that execution reaches line 35 of main.c.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-310
ID052111 Non-Confidential

RealView Debugger Commands
Alias

TRCIEXEC is an alias of TRACEINSTREXEC.

See also
• Specifying address ranges on page 2-2
• ANALYZER on page 2-23
• DTBREAK on page 2-126
• DTRACE on page 2-130
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTRFETCH on page 2-312
• the following in the RealView Debugger Trace User Guide:

— Chapter 6 Setting Unconditional Tracepoints
— Chapter 7 Setting Conditional Tracepoints.

• Embedded Trace Macrocell Specification.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-311
ID052111 Non-Confidential

RealView Debugger Commands
2.3.146 TRACEINSTRFETCH

Enables you to set a tracepoint on instruction fetch from memory.

Note
 This command is valid only for ETM-based hardware targets.

Syntax

TRACEINSTRFETCH [,qualifier...] {address | address-range}

where:

qualifier Is an ordered list of zero or more qualifiers. The possible qualifiers are described
in List of qualifiers.

address Specifies the address at which the tracepoint is placed.

address-range

Specifies the address range at which the tracepoint is placed.

Description

This command sets a tracepoint at the address or address range you specify that triggers when
an instruction opcode is fetched from memory in the indicated address range.

Note
 Use this type of tracepoint with care, because not all instructions that are fetched are executed,
and because the fetch from memory occurs several cycles before execution and possibly not in
execution order.

The tracepoint type is by default to trigger, that is, start collecting trace information into the trace
buffer. You can modify the action using the hw_out: qualifier to, for example, stop tracing.

List of qualifiers

The command qualifiers are as follows, but not all qualifiers are available for all of the
supported trace targets:

hw_ahigh:(n) Specifies the high address for an address-range tracepoint. The low
address is specified by the standard tracepoint address.
For example, to set a tracepoint that triggers for any address in the range
0x1000-0x1200, enter the command:
TRACEINSTRFETCH,hw_ahigh:0x1200 0x1000

This is equivalent to the command:
TRACEINSTRFETCH 0x1000..0x1200

hw_and:{id | "then-id"}
Perform an and or an and-then conjunction with an existing tracepoint.
For example, hw_and:2, or hw_and:"then-2", where 2 is the tracepoint ID of
another tracepoint.
The parentheses are optional.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-312
ID052111 Non-Confidential

RealView Debugger Commands
In the and form, the conditions associated with both tracepoints are
chained together, so that the action associated with the second tracepoint
is performed only when both conditions match at the same time.
In the and-then form, when the condition for the first tracepoint is met, the
second tracepoint is enabled. When the second tracepoint condition is
matched, even if the first condition no longer matches, the actions
associated are performed.

Note
 You must include the quotes when using the and-then form.

Theid is one of:
• the tracepoint list index of an existing of tracepoint
• prev for the last tracepoint specified for this connection
• next for the target of this condition.

hw_dhigh:(n) Specifies the high data value for a data-range tracepoint. The low data
value is specified by the hw_dvalue qualifier.
For example, to set a tracepoint that triggers when an instruction opcode
in the range 0xEA000040-0xEA00004F is fetched from code in the range
0x1FA00-0x1FAFF, enter the command:
TRACEINSTRFETCH,hw_dvalue:0xEA000040,hw_dhigh:0xEA00004F
0x1FA00..0x1FAFF

hw_dmask:(n) Specifies the data value mask for a data-range tracepoint. The data value
to which the mask is applied is specified by the hw_dvalue qualifier. The
data value range is determined by masking lower order bits out of the
specified data value.
For example, to set a tracepoint that triggers when an instruction having a
basic opcode 0xEA000040 but with any value in bits [15:8] is fetched from
addresses in the range 0x1FA00-0x1FAFF, enter the command:
TRACEINSTRFETCH,hw_dvalue:0xEA000040,hw_dmask:0xFFFF00FF
0x1FA00..0x1FAFF

hw_dvalue:(n) Specifies a data value to be compared to values transmitted on the
processor data bus.
For example, to set a tracepoint that triggers when an instruction with an
opcode of 0xEA000040 is fetched from an address in the range
0x1FA00-0x1FAFF, enter the command:
TRACEINSTRFETCH,hw_dvalue:0xEA000040 0x1FA00..0x1FAFF

hw_in:{s} Input trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive forms are defined:
Ignore Security Level=Yes|No

Enables Secure World and Normal World data comparisons for
processors that implement the TrustZone technology:
Yes Match when the processor is in any mode. This is the

default.
No Match only when the processor is in the mode

specified by the address suffix:
• S:address indicates Secure World.
• N:address indicates Normal World.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-313
ID052111 Non-Confidential

RealView Debugger Commands
For example, to capture trace when an instruction is fetched
from the Secure World address 0x8000, enter the command:
TRACEINSTRFETCH,hw_in:{Ignore Security Level=No} S:0x8000.

Size of Data Access=s

This determines the following:
• for data accesses, the size of the data transfer
• for instruction accesses, the size of the instruction

accessed.
The size s is one of:
Any Depends on the implementation:

• halfword for Thumb code
• word for ARM code.
This is the default.

Halfword 16-bit accesses (Thumb code).
Word 32-bit accesses (ARM code).

hw_not:{s} Use this qualifier to invert the sense of an address, data, or hw_and term
specified in the same command. The argument s can be set to:
addr Invert the tracepoint address value.
data Invert the tracepoint value.
then Invert an associated hw_and:{then} condition.
For example, to capture trace when a data value does not match a mask,
enter the command:
TRACEINSTRFETCH,hw_not:data,hw_dmask:0x00FF ...

The trace commands require an address value, and the addr variant of
hw_not uses this address. For example, to trace execution at addresses other
than the range 0x10040 to 0x10060, that is, exclude this region from the
trace, enter the command:
TRACEINSTRFETCH,hw_not:addr 0x10040..0x10060

The hw_not:then variant of the command is used in conjunction with
hw_and to form or and nand-then conditions.

hw_out:{s} Output trigger tests. The string s is specific to the trace connection being
used. For the ARM ETM, the following case-sensitive forms are defined:
"Tracepoint Type=s"

Specify the trace action when an instruction is fetched from an
address in the specified range, where s is:
Trigger Output a trigger event to the TPA.
Start Tracing Start trace capture.
Stop Tracing Stop trace capture.
Trace Instr Trace instructions only.
Trace Instr and Data

Trace instructions and data.

Note
 An address range can be specified only for Trace Instr and Trace Instr

and Data.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-314
ID052111 Non-Confidential

RealView Debugger Commands
For example, to trace only instructions when an instruction is fetched from
an address in the range 0x1E000-0x1FF00, enter the command:
TRACEINSTRFETCH,hw_out:"Tracepoint Type=Trace Instr"
0x1E00..0x1FF00

hw_passcount:(n) Specifies the number of times that the specified condition has to occur to
trigger the tracepoint. You can use this option to set up and use the ARM
ETM counter hardware, if the ETM has counters and there is one available
for use. ETM counters are 32 bits.

modify:(n) Instead of creating a new tracepoint, modify the tracepoint with tracepoint
ID number n by replacing the address expression and the qualifiers of the
existing tracepoint to those specified in this command.

Note
 You cannot use this qualifier with the hw_and qualifier to change a

non-chained tracepoint to a chained tracepoint. However, you can modify
a chained tracepoint with any other qualifier and also change the address
expression.

Alias

TRCIFETCH is an alias of TRACEINSTRFETCH.

See also
• Specifying address ranges on page 2-2
• ANALYZER on page 2-23
• DTRACE on page 2-130
• ETM_CONFIG on page 2-143
• TRACE on page 2-277
• TRACEBUFFER on page 2-279
• TRACEDATAACCESS on page 2-288
• TRACEDATAREAD on page 2-293
• TRACEDATAWRITE on page 2-298
• TRACEEXTCOND on page 2-303
• TRACEINSTREXEC on page 2-307
• the following in the RealView Debugger Trace User Guide:

— Chapter 6 Setting Unconditional Tracepoints
— Chapter 7 Setting Conditional Tracepoints.

• Embedded Trace Macrocell Specification.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-315
ID052111 Non-Confidential

RealView Debugger Commands
2.3.147 UNLOAD

Unloads a specified file.

Syntax

UNLOAD [,qualifier] [{filename | file_num}] [=task]

where:

qualifier If specified, qualifier must be one of the following:
all Unloads all the files in the file list.
symbols_only

Unloads the symbols only, not the executable image.
image_only

Unloads the executable image only, not the symbols.

filename | file_num

Specifies a file to be unloaded.
Use the DTFILE command to list details of the file or files that are associated with
the current connection. The details include:
• the file number, which is shown at the start of the output by the text File

file_num

• the filename and path.

task Applicable only to OS-aware images, this specifies a task to be unloaded. Use this
form of the command if you are running multiple tasks and want to unload only
one of them.

Description

The UNLOAD command unloads a specified file. If you do not specify a file then all files are
unloaded. If you specify a file, using either a filename or a file number, then only that file is
unloaded. Any unloaded files remain in the file list and can be reloaded.

The effect of unloading the system file is defined by the Debug Interface. You can unload only
symbols or only the image.

Note
 If you have specified any arguments for the image, these are lost when you unload the image. If
you specified the arguments as part of the LOAD command, you must specify the arguments again
when you load the image. Alternatively, after loading the image again, use the ARGUMENTS
command to specify the arguments.

You do not have to unload an image to run it again. Use the RESTART command to reset the PC
to the entry point, the use the GO command to run the image.

If you unload an image that has breakpoints set, and the auto save breakpoints feature is enabled,
then the breakpoints are stored in a file. This file is saved in the same location as the image.

Restrictions on the use of UNLOAD

The UNLOAD command is not allowed in a macro.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-316
ID052111 Non-Confidential

RealView Debugger Commands
Examples

The following examples show how to use UNLOAD:

unload dhrystone.axf
Unload the symbols (and macros, if any) for the dhrystone program from
debugger.

See also
• ADDFILE on page 2-19
• DELFILE on page 2-111
• DTFILE on page 2-128
• LOAD on page 2-176
• RELOAD on page 2-225
• RESTART on page 2-230
• the following in the RealView Debugger User Guide:

— Enabling the auto save breakpoints feature on page 11-12.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-317
ID052111 Non-Confidential

RealView Debugger Commands
2.3.148 UP

Moves up stack levels.

Syntax

UP [levels]

where:

levels Specifies the number of levels to climb. If you do not supply a parameter, you
move up one level.

Description

The UP command moves up stack levels

Each time you move up one level you can see the source line to which you return when you
complete execution of your current function or subroutine. At each level you can examine the
values of variables and registers that are in scope.

If you are already at the top level a message reminds you that you cannot move up any more.
When you have moved up one or more levels, you can use the DOWN command to move down.
When you have moved up one or more levels, any STEPLINE or STEPINSTR command you issue is
effective at the lowest level, not at the level currently in view.

See also
• DOWN on page 2-124
• CONTEXT on page 2-96
• DTFILE on page 2-128.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-318
ID052111 Non-Confidential

RealView Debugger Commands
2.3.149 VA2PA

Converts a virtual address to a physical address.

Syntax

VA2PA [,force][,table] address

where:

force Force the conversion even if the attempt:
• has an effect on cache
• has an effect on memory
• temporarily disables the MMU.
This is required on processors that lack the CP15 conversion registers.

table Perform the conversion, even if the MMU is turned off (disabled).
This is unavailable on processors where the conversion is performed using CP15
registers.

address The virtual address that is to be converted.

Description

The VA2PA command converts a virtual address into a physical address, and displays the physical
address of a given virtual address. It is available on processors with an MMU subject to
limitations. The MMU must be enabled.

Note
 Using the VA2PA command on OS-aware connections does not give details for the current thread
shown in the Code window. Instead, the results are for the processor in general. Also, a warning
message is displayed.

Examples

The following example shows how to use VA2PA:

va2pa,f 0x10002000

This attempts to convert the virtual address 0x10002000 into a physical address.

See also
• CACHEFIND on page 2-81
• CACHEINFO on page 2-82
• CACHELINE on page 2-84.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-319
ID052111 Non-Confidential

RealView Debugger Commands
2.3.150 VCLEAR

Clears a user-defined window and sets the cursor to home.

Syntax

VCLEAR windowid

where:

windowid Specifies the window to be cleared. This must be a user-defined windowid.

Description

The VCLEAR command clears a user-defined window and sets the cursor to home.

Examples

The following example shows how to use VCLEAR:

vclear 50 Clear window number 50.

See also
• Window and file numbers on page 1-5
• PRINTF on page 2-205
• VCLOSE on page 2-321
• VOPEN on page 2-326
• VSETC on page 2-328.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-320
ID052111 Non-Confidential

RealView Debugger Commands
2.3.151 VCLOSE

Removes and closes a user-defined window or file.

Syntax

VCLOSE {windowid | fileid}

where:

windowid | fileid

Specifies the window or file to be closed. This must be a user-defined windowid or
fileid.

Description

The VCLOSE command removes and closes a user-defined window opened with VOPEN, or closes
a user-defined file opened with FOPEN.

Examples

The following example shows how to use VCLOSE:

vclose 50 Close window number 50.

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• PRINTF on page 2-205
• VCLEAR on page 2-320
• VOPEN on page 2-326
• VSETC on page 2-328.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-321
ID052111 Non-Confidential

RealView Debugger Commands
2.3.152 VERIFYFILE

Compares the contents of a specified file with the contents of target memory.

Syntax

VERIFYFILE ,obj filename [[=]address]

VERIFYFILE ,{raw|raw8|raw16|raw32|ascii[,opts]} filename [=]address

VERIFYFILE ,ascii[,opts] filename [[=]address]

where:

obj The file is an executable file in the standard target format. For ARM targets, this
is ARM-ELF.

raw Compare as raw data, using the most efficient access size for the target.

raw8 Compare as raw data, one byte for each byte of memory.

raw16 Compare as raw data, 16 bits for each 16 bits of memory.

raw32 Compare as raw data, 32 bits for each 32 bits of memory.

Note
 You must specify an address with all raw qualifiers.

ascii The file is a stream of ASCII digits separated by whitespace. The interpretation
of the digits is specified by other qualifiers (see the opts qualifier). The starting
address of the file must be specified in a one line header in one of the following
ways:
[start] The start address.
[start,end] The start address, a comma, and the end address.
[start,+len] The start address, a comma, and the length.
[start,end,size] The start address, a comma, the end address, a comma, and

the size of each value (8, 16, and 32 bits).
If the size of the items in the file is not specified, the debugger determines the size
by examining the number of white-space separated significant digits in the first
data value. For example, if the first data value is 00A0, the size is set to 16-bits.

opts Optional qualifiers available for use with the ascii qualifier:
byte The file is a stream of 8-bit values that are written to target memory

without extra interpretation.
half_word | word

The file is a stream of 16-bit values.
long The file is a stream of 32-bit values.

filename Specifies the name of the file to be read.
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myimages, you can specify:
verifyfile,raw "$MYPATH\\myimage.axf" 0x8000..0x8100

address Specifies the starting address in target memory for the comparison.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-322
ID052111 Non-Confidential

RealView Debugger Commands
Note
 For targets that support the TrustZone technology, you can prefix the address with

S: or N: to indicate Secure World or Normal World addresses.

Description

The VERIFYFILE command compares the contents of a specified file with the contents of target
memory.

Data might be stored in a file in a variety of formats. You can specify the format by specifying
the file type. The command then converts the data read from the file before performing the
comparison.

The types of file and file formats supported depend on the target processor and any loaded
DLLs. The type of memory assumed depends on the target processor. For example, ARM
processors have byte addressable memory.

Examples

The following example shows how to use VERIFYFILE:

verifyfile,raw8 'c:\images\rom.dat' =0x8000
Verify that the ROM image file in rom.dat matches target memory starting at
location 0x8000.

See also
• READFILE on page 2-219
• TEST on page 2-273
• WRITEFILE on page 2-333.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-323
ID052111 Non-Confidential

RealView Debugger Commands
2.3.153 VMACRO

Attaches a macro to a user-defined window or file. Any output that is normally sent to the Cmd
tab of the Output view is redirected to the specified window or file.

Syntax

VMACRO {windowid | fileid} [,macro_name(args)]

where:

windowid | fileid

Specifies the window of file to be associated with the macro. This must be a
user-defined windowid or fileid.

macro_name Specifies the name and call arguments of the macro that is to send its output to the
specified window or file. This happens whenever the macro runs, either directly
from the CLI or a command script, or by a breakpoint being hit to which the
macro is attached.

Description

The VMACRO command attaches a specified macro to a specified user-defined window or file. Any
output that is normally sent to the Cmd tab of the Output view is redirected to the specified
window or file whenever the macro is called.

Note
 If the attached macro contains any commands or predefined macros that use a different windowid
or fileid, then they are not affected by the VMACRO command.

If you do not supply a macro name, the window or file is disassociated from any macro. The
VMACRO command runs asynchronously.

Examples

The following examples show how to use VMACRO:

vmacro 50,showmyvars()

Use the macro showmyvars() to write formatted variables to window 50.

vmacro 50

Unbind all macros from user window 50.

fopen 100,'c:\myfiles\messages.txt'
vmacro 100,showmyvars()
showmyvars()
vmacro 100
vclose 100

Use the macro showmyvars() to write formatted variables to the file messages.txt,
unbind the macro from the file, and finally close the file.

See also
• Window and file numbers on page 1-5
• BREAKACCESS on page 2-38
• BREAKEXECUTION on page 2-47
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-324
ID052111 Non-Confidential

RealView Debugger Commands
• BREAKINSTRUCTION on page 2-55
• BREAKREAD on page 2-61
• BREAKWRITE on page 2-70
• DEFINE on page 2-105
• FOPEN on page 2-154
• FPRINTF on page 2-156
• MONITOR on page 2-191
• PRINTVALUE on page 2-211
• VOPEN on page 2-326
• VSETC on page 2-328
• fclose on page 3-17
• fopen on page 3-20
• fputc on page 3-22
• fwrite on page 3-25.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-325
ID052111 Non-Confidential

RealView Debugger Commands
2.3.154 VOPEN

Creates a user-defined window that you can use with commands that have a ;windowid
parameter.

Syntax

VOPEN windowid [,screen_num,loc_top,loc_left,loc_bottom,loc_right]

where:

windowid Specifies a number to identify the new window. This must be a user-defined
windowid.
If a window already exists with the specified number the command fails.
Use this value for the windowid parameter in commands that you want to display
their output in this window.

screen_num This parameter is maintained for backward compatibility but is no longer used. If
you want to specify the position and size of the new window, you must enter a
screen_num value for the command to parse correctly.

loc_top Specifies the number of characters the upper edge of the window is positioned
from the top of the screen.

loc_left Specifies the number of characters the left side of the window is positioned from
the left side of the screen.

loc_bottom Specifies the number of characters the bottom row of the window is positioned
from the top of the screen.

loc_right Specifies the number of characters the right side of the window is positioned from
the left side of the screen.

Description

The VOPEN command creates a user-defined window. When you have created a window you can
direct the output from various other commands to it. The commands that can have their output
redirected are those that have an optional windowid parameter.

If you supply only the windowid parameter, a window is opened with default position and size of
10 rows of 33 characters. The size of a character is determined by the currently selected font so
the size and placement of the window might appear to vary between machines and between
sessions.

After opening a window you can move and resize it as required.

If the error message Bad size specification for window is displayed, check that:
• loc_top is smaller than loc_bottom
• loc_left is smaller than loc_right
• loc_bottom and loc_right are smaller than the screen size.

Examples

The following examples show how to use VOPEN:

vopen 50 Open window number 50 at the default size of 10 rows of 33 characters.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-326
ID052111 Non-Confidential

RealView Debugger Commands
vopen 50,0,5,5,50,40
Open window number 50 at position (5,5) and 45 rows of 35 characters.

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• FPRINTF on page 2-156
• VCLOSE on page 2-321
• VMACRO on page 2-324
• WINDOW on page 2-332.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-327
ID052111 Non-Confidential

RealView Debugger Commands
2.3.155 VSETC

Positions the cursor in the specified user-defined window.

Syntax

VSETC windowid ,row ,column

where:

windowid Identifies the window that is to have its cursor positioned. This must be a
user-defined windowid.

row Specifies the row number in the window, counting from 0, the number of the top
row.

column Specifies the column number in the window, counting from 0, the number of the
leftmost column.

Description

The VSETC command positions the cursor in the specified user-defined window. This defines
where the next output to be directed to that window appears.

Example

The following example shows how to use VSETC:

vsetc 50,2,5
fprintf 50,"Status: %d", status

Write Status: to window 50, starting from the third column of the sixth row.

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• FPRINTF on page 2-156
• VCLOSE on page 2-321.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-328
ID052111 Non-Confidential

RealView Debugger Commands
2.3.156 WAIT

Tells the debugger whether to wait for a command to complete before permitting another
command to be issued.

Syntax

WAIT = [{ON | OFF}]

where:

ON specifies that all following commands are to run synchronously.

OFF specifies that following commands run according to their default behavior. This
is the default.

Description

The WAIT command makes commands run synchronously. If WAIT is not used, commands use
their default behavior.

All commands run from a macro run synchronously unless WAIT is set OFF.

Note
 This command requires that RealView Debugger is connected to a debug target.

Examples

The following examples show how to use WAIT:

• The following commands cause the debugger to fill memory synchronously, forcing you
to wait until the fill is complete before accepting another command:
wait on
fill/b 0x8000..0x9FFF =0
wait off

• In the following example, the CEXPRESSION command runs when the target next stops
running (for example, if the breakpoint is hit):
load /pd/r dhrystone.axf
breakexecution main
wait on
go
wait off
cexpression @r0

See also
• PAUSE on page 2-202.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-329
ID052111 Non-Confidential

RealView Debugger Commands
2.3.157 WARMSTART

WARMSTART is an alias of RESET.

See RESET on page 2-227.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-330
ID052111 Non-Confidential

RealView Debugger Commands
2.3.158 WHERE

Displays a call stack.

Syntax

WHERE [number_of_levels]

where:

number_of_levels

Specifies the number of levels you want to examine. If you do not supply this
parameter, all levels are displayed.

Description

The WHERE command displays a call stack. This shows you the function that you are in, and the
function that called that, and the function that called that, until the debugger cannot continue. A
call stack is not a history of every function call in the life of the process.

The call stack requires debug information for every procedure called. If debug information is
not available, the call stack stops. The call stack might also stop prematurely because the stack
frames read by the debugger do not conform to the expected structure, for example if memory
corruption has occurred, or if a scheduler has created new stack frames.

Examples

The following example shows how to use WHERE:

> where
#0: (0x24000148) DHRY_2_1\\Proc_7 Line 79. File='C:\Program
Files\ARM\RVDS\Examples\...\...\...\...\main\dhrystone\dhry_2.c'
#1: (0x24000674) DHRY_1_1\\main Line 164. File='C:\Program
Files\ARM\RVDS\Examples\...\...\...\...\main\dhrystone\dhry_1.c'

This shows a request for a full stack trace of the dhrystone program. The program was stopped
at line 79 of procedure Proc_7(). The call stack tells you that this call of Proc_7() was made by
code at line 164 of main().

The call stack does not tell you what called main(). Normally, there is bootstrap code in __main()
that calls main, but because this code is not normally compiled with debug symbols included,
this procedure is not shown in the call stack.

> where 1
#0: (0x240002B8) DHRY_1_1\\Proc_3 Line 355. File='C:\Program
Files\ARM\RVDS\Examples\...\...\...\...\main\dhrystone\dhry_1.c'

This shows a request for a single level stack trace of the dhrystone program. The program was
stopped at line 355 of procedure Proc_3(). Compare this to the output of CONTEXT at the same
location:

At the PC: (0x240002B8): DHRY_1_1\Proc_3 Line 355

See also
• CONTEXT on page 2-96
• SCOPE on page 2-234
• SETREG on page 2-242.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-331
ID052111 Non-Confidential

RealView Debugger Commands
2.3.159 WINDOW

Displays a list of open user-defined windows and files.

Syntax

WINDOW [{windowid | fileid | name}]

where

windowid | fileid

The user-defined windowid or fileid.

name The name of the window or file.

Description

The WINDOW command displays a list of the user-defined windows that you have opened with the
VOPEN command, and a list of the user-defined files that you have opened with the FOPEN
command.

Example

The following command shows a list of files and user-defined windows that are open:

> fopen 98,'c:\myfiles\myfile.txt'
> vopen 99
> window
Num Type Name
 98 Files myfile.txt
 99 User User99
Available Terminal Window types: File, User

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• VCLEAR on page 2-320
• VCLOSE on page 2-321
• VOPEN on page 2-326.
• VSETC on page 2-328.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-332
ID052111 Non-Confidential

RealView Debugger Commands
2.3.160 WRITEFILE

Writes the contents of memory to a file, performing a format conversion if necessary.

Syntax

WRITEFILE ,{obj|raw|raw8|raw16|raw32} [,nowarn] filename [=]address-range

WRITEFILE ,ascii[,opts] [,nowarn] filename [=]address-range

Note
 You must specify an address range with all type qualifiers.

where:

obj Write the file in the standard executable target format. For ARM targets, this is
ARM-ELF.

Note
 It is only valid to use obj if the area of target memory contains an executable

image. If no executable image is present, subsequent behavior is undefined.

raw Write the file as raw data, using the most efficient access size for the target.

raw8 Write the file as raw data, one byte for each byte of memory.

raw16 Write the file as raw data, 16 bits for each 16 bits of memory.

raw32 Write the file as raw data, 32 bits for each 32 bits of memory.

ascii Write the file as a stream of ASCII digits separated by whitespace. The exact
format is specified by other qualifiers (see the opts qualifier). The file has a one
line header that is compatible withthe READFILE and VERIFYFILE commands. This
header has the following format:
[start,end,size]

where:
• start and end specifies the address range that is written
• size indicates the size of each value (8, 16, or 32 bits).

opts Optional qualifiers available for use with the ascii qualifier:
byte The file is a stream of 8-bit hexadecimal values that are written to the

file without extra interpretation.
half_word | word

The file is a stream of 16-bit values.
long The file is a stream of 32-bit hexadecimal values.

nowarn Suppress the display of the large file warning messages, such as:
Downloading n bytes can take a long time. (Hint: Choosing a larger access

size may reduce this time) Do it anyway?

This also suppresses the warning if the file you are writing to already exists. In
this case, the existing file is overwritten.

filename The name of the file to be written.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-333
ID052111 Non-Confidential

RealView Debugger Commands
You can include one or more environment variables in the filename. For example,
if MYPATH defines the location C:\Myfiles, you can specify:
writefile,raw "$MYPATH\\myfile.dat" 0x8000..0x8100

address-range

The address range in target memory to write to the file. Specify an address range
as:
• start_addr..end_addr, for example 0x8000..0x8FFF
• start_addr..+length, for example 0x8000..+0x1000.

Note
 For targets that support the TrustZone technology, you can prefix the address

range with S: or N: to indicate Secure World or Normal World addresses.

Description

The WRITEFILE command writes the contents of memory to a file, performing a format
conversion if necessary.

The type of memory assumed depends on the target processor. For example, ARM processors
have byte addressable memory.

Examples

The following examples show how to use WRITEFILE:

writefile ,raw 'c:\temp\file.dat' =0x8000..0x8FFF
Write the contents of the 4KB memory page at 0x8000 to the file
c:\temp\file.dat, storing the data in raw, uninterpreted, form.

writefile ,ascii,long "c:\temp\file.txt" =0x8000..+0x1000
Write the contents of the 4KB memory page at 0x8000 to the file
c:\temp\file.dat, storing it as 32-bit values in target memory endianness. For
example, the file might look similar to this:
[0x8000,0x8FFF,32]
E28F8090 E898000F E0800008 E0811008
E0822008 E0833008 E240B001 E242C001
E1500001 0A00000E E8B00070 E1540005
...

Note
 By writing a file as long values and reading it back as long values on a different

target, you can convert the endianness of the data in the file.

See also
• FILL on page 2-149
• LOAD on page 2-176
• SETMEM on page 2-239
• READFILE on page 2-219
• TEST on page 2-273
• VERIFYFILE on page 2-322.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-334
ID052111 Non-Confidential

RealView Debugger Commands
2.3.161 XTRIGGER

Controls whether stopping execution of one processor stops execution of other processors.

Syntax

XTRIGGER [,in_disable] [,in_enable] [,out_disable] [,out_enable] [,onhost]
[[=]connections]

where:

in_disable Disable input triggering.

in_enable Enable input triggering.

out_disable Disable output triggering.

out_enable Enable output triggering.

onhost Implement in software. Use this if hardware support is possible, but you require
software implementation nevertheless.

connections A comma-separated list of connection identifiers, of the form:
connection-id [,connection-id,...]

where:
connection-id The name of the target connection. If the connections have

unique names, then you have only to use the connection
name. Otherwise, you must also specify the Debug
Configuration name.

Description

The XTRIGGER command controls the cross-triggering of processor stops. Use it to specify
whether stopping execution of one processor stops execution of other processors.

For tight synchronization, the target must support hardware cross triggering. If hardware cross
triggering is not available, the debugger simulates cross triggering in software, but this is slower,
and there might be a large delay between one processor stopping, and the debugger causing the
other processors to stop.

If you issue the command with no arguments, it displays the cross-triggering state of all
connections, for example:

> xtrigger
ARM940T_0: Input=Enabled OnHost. Output=Disabled OnHost
ARM_Cortex-A8_0: Input=Disabled OnHost. Output=Enabled OnHost

If you issue the command with qualifiers, you have to specify a list of one or more connections
to act on. Input triggering means that the processor is stopped by others. Output triggering
means that when the processor stops it stops others.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-335
ID052111 Non-Confidential

RealView Debugger Commands
Example

The following example shows how to use XTRIGGER:

xtrigger,in_enable @ARM_Cortex-A8_0@ISSM,@ARM_Cortex-A8_0@ISSM_1

xtrigger,out_enable @ARM940T_0
Stop both ARM Cortex-A8 targets when the ARM940T processor stops (no
Debug Configuration is specified, because no other connection exists with this
name).

See also

• CONNECT on page 2-93

• SYNCHACTION on page 2-269

• SYNCHEXEC on page 2-271

• the following in the RealView Debugger User Guide:
— Chapter 7 Debugging Multiprocessor Applications.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 2-336
ID052111 Non-Confidential

Chapter 3
RealView Debugger Predefined Macros

This chapter describes available RealView® Debugger predefined macros. It contains the following
sections:
• Predefined macros listed by function on page 3-2
• Alphabetical predefined macro reference on page 3-6.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-1
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.1 Predefined macros listed by function
The following sections list the predefined macros according to their general function:
• Access data values at an address
• Flow control statements
• File and window access
• String manipulation on page 3-3
• Memory manipulation on page 3-4
• Cache statistics on page 3-4
• User interaction macros on page 3-4
• Miscellaneous on page 3-5.

3.1.1 Access data values at an address

Table 3-1 contains a summary of the predefined macros that return a data value at a given
address.

3.1.2 Flow control statements

Table 3-2 contains a summary of the conditional statement macros.

3.1.3 File and window access

Table 3-3 contains a summary of the file and window access macros.

Table 3-1 Access data value macros

Description See

Returns a byte value from the specified
address

byte on page 3-11

Returns a long value from the specified
address

dword on page 3-14

Returns a word value at the specified
address.

word on page 3-65

Table 3-2 Flow control statements

Description See

Breaks when an expression evaluates to
True

until on page 3-63

Breaks when an expression evaluate to True. when on page 3-64

Table 3-3 File and window access macros

Description See

Closes a specified file fclose on page 3-17

Returns a byte from file or window fgetc on page 3-18

Opens a file for reading, writing, or both fopen on page 3-20
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-2
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.1.4 String manipulation

Table 3-4 contains a summary of the string manipulation macros.

Writes the contents of next byte to a file fputc on page 3-22

Reads a file into a buffer fread on page 3-23

Writes a buffer to a file fwrite on page 3-25

Table 3-3 File and window access macros (continued)

Description See

Table 3-4 String manipulation

Description See

Converts a string to an integer atoi on page 3-8

Converts a string to a long integer atol on page 3-9

Converts a string to an unsigned long integer atoul on page 3-10

Checks if a character is digit isdigit on page 3-27

Checks if a character is lower case islower on page 3-28

Checks if a character is a printable char isprint on page 3-29

Checks if a character is space isspace on page 3-30

Checks if a character is upper case isupper on page 3-31

Converts an int to a string itoa on page 3-32

Concatenates two strings strcat on page 3-45

Locates the first occurrence of a character in
a string

strchr on page 3-47

Compares two strings strcmp on page 3-49

Copies a string strcpy on page 3-51

Performs string comparison without case
distinction

stricmp on page 3-53

Returns string length strlen on page 3-55

Performs limited comparison of two strings strncmp on page 3-56

Converts a string to lowercase characters strtolower on page 3-58

Converts a string to uppercase characters strtoupper on page 3-59

Removes any starting and trailing white
spaces and tabs from a string

strtrim on page 3-60

Converts a character to lowercase tolower on page 3-61

Converts a character to uppercase toupper on page 3-62
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-3
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.1.5 Memory manipulation

Table 3-5 contains a summary of the memory manipulation macros.

3.1.6 Cache statistics

Table 3-6 contains a summary of the macros used to gather statistics on caches.

3.1.7 User interaction macros

RealView Debugger provides several predefined macros that enable you to get user input or
prompt the user to take action. User interaction macros can be used in expressions on the
command line and can be called from macros that you create yourself.

Note
 Be careful when using these macros as part of test scripts. For example, if you attach the
prompt_text macro to a breakpoint that is triggered frequently in your program, without testing
the return value, it is possible that the debugger displays the prompt message repeatedly in an
endless loop.

Table 3-7 contains a summary of the predefined user interaction macros.

Table 3-5 Memory Manipulation macros

Description See

Searches for a character in memory memchr on page 3-33

Clears memory values memclr on page 3-34

Copies characters from memory memcpy on page 3-35

Sets the value of characters in memory memset on page 3-36

Table 3-6 Cache statistics macros

Description See

Returns the set index associated with a
specified address in the cache.

cache_find_set on
page 3-12

Returns the way index associated with a
specified address in the cache.

cache_find_way on
page 3-13

Table 3-7 User interaction macros

Description See

Displays a file containing message text prompt_file on
page 3-37

Displays a dialog box containing message
text and a choice list

prompt_list on
page 3-39
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-4
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.1.8 Miscellaneous

Table 3-8 contains a summary of other predefined macros.

Displays a dialog box containing message
text and buttons (Ok and Cancel)

prompt_text on
page 3-40

Displays a dialog box containing question
text and buttons (Yes and No)

prompt_yesno on
page 3-42

Displays a dialog box containing question
text and buttons (Yes, No and Cancel)

prompt_yesno_cancel
on page 3-43

Table 3-7 User interaction macros (continued)

Description See

Table 3-8 Miscellaneous macros

Description See

Processes error message returned from
macro

error on page 3-15

Returns a local string from an address getsym on page 3-26

Returns the value of a specified register reg_str on page 3-44
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-5
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2 Alphabetical predefined macro reference
The following sections list in alphabetical order all the predefined macros that you can use at
the RealView Debugger CLI, or within user-defined macros and scripts:
• atoi on page 3-8
• atol on page 3-9
• atoul on page 3-10
• byte on page 3-11
• cache_find_set on page 3-12
• cache_find_way on page 3-13
• dword on page 3-14
• error on page 3-15
• fclose on page 3-17
• fgetc on page 3-18
• fopen on page 3-20
• fputc on page 3-22
• fread on page 3-23
• fwrite on page 3-25
• getsym on page 3-26
• isdigit on page 3-27
• islower on page 3-28
• isprint on page 3-29
• isspace on page 3-30
• isupper on page 3-31
• itoa on page 3-32
• memchr on page 3-33
• memclr on page 3-34
• memcpy on page 3-35
• memset on page 3-36
• prompt_file on page 3-37
• prompt_list on page 3-39
• prompt_text on page 3-40
• prompt_yesno on page 3-42
• prompt_yesno_cancel on page 3-43
• reg_str on page 3-44
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
• strtoupper on page 3-59
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62
• until on page 3-63
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-6
ID052111 Non-Confidential

RealView Debugger Predefined Macros
• when on page 3-64
• word on page 3-65.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-7
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.1 atoi

Converts a string to an integer.

Syntax:

int atoi (str)
char *str;

where:

str The string to be converted.

Description

This macro converts a string of numbers to the equivalent integer value.

Return value

The integer value of the converted string.

Example

add char strValue[10]
cexpression strcpy(strValue,"10000")
printf "%d", atoi(strValue)

See also
• atol on page 3-9
• atoul on page 3-10
• itoa on page 3-32.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-8
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.2 atol

Converts a string to a long integer.

Syntax:

long atol (str)
char *str;

where:

str The string to be converted.

Description

This macro converts a string of numbers to the equivalent long integer value.

Return value

The long integer value of the converted string.

Example

add char strValue[10]
cexpression strcpy(strValue,"-1")
printf "%d", atol(strValue)

See also
• atoi on page 3-8
• atoul on page 3-10
• itoa on page 3-32.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-9
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.3 atoul

Converts a string to an unsigned long.

Syntax:

unsigned long atoul (str)
char *str;

where:

str The string to be converted.

Description

This macro converts a string of numbers to the equivalent unsigned long integer value.

Return value

The unsigned long integer value of the converted string.

Example

add char strValue[10]
cexpression strcpy(strValue,"-1")
printf "%u", atoul(strValue)

See also
• atoi on page 3-8
• atol on page 3-9
• itoa on page 3-32.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-10
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.4 byte

Returns a byte value from the specified address.

Syntax:

unsigned char byte (addr)
void *addr;

where:

addr The address containing the value to be returned.

Description

This macro returns a value between 0 and 255, corresponding to the memory contents at the
location specified by addr. The byte macro uses the indirection operator to obtain the value.

Return Value

unsigned char

The byte value located at the specified address.

Rules

The argument default type is specified by using the OPTION command:

OPTION radix = [decimal | hex]

Example

To display the contents of the hexadecimal address 0x8338, enter the following on the command
line:

PRINTVALUE byte(0x8338)

See also
• OPTION on page 2-195
• dword on page 3-14
• word on page 3-65.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-11
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.5 cache_find_set

Returns the set index associated with a specified address in the cache.

Syntax:

int cache_find_set (isInstruction, cacheLevel, addr)
int isInstruction;
int cacheLevel;
ADDRESS addr;

where:

isInstruction

Identifies the type of cache to be searched:
1 Search the instruction cache.
0 Search the data cache.

cacheLevel The cache level to search.
On the ARM1136 and ARM1156, only level 1 cache is accessible.
On the Cortex-A8, both level 1 and 2 caches are accessible.

addr The address to find.

Description

Returns the set index associated with a specified address in the cache. This macro is supported
on the following processors:
• ARM1136 (only when the MMU is disabled)
• ARM1156
• Cortex-A8.

Return value

The return value is one of the following:
• The set index, starting at zero.
• -1 if the given address is not found.
• -2 if the operation is not possible.

Example

To search the level 1 data cache on the Cortex-A8 for the set index associated with address
S:0x00032F48, enter:

> ce cache_find_set(0, 1, S:0x00032F48)
 Result is: 61 0x0000003D '='

See also
• CACHEFIND on page 2-81
• CACHEINFO on page 2-82
• CACHELINE on page 2-84
• cache_find_way on page 3-13.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-12
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.6 cache_find_way

Returns the way index associated with a specified address in the cache.

Syntax:

int cache_find_way (isInstruction, cacheLevel, addr)
int isInstruction;
int cacheLevel;
ADDRESS addr;

where:

isInstruction

Identifies the type of cache to be searched:
1 Search the instruction cache.
0 Search the data cache.

cacheLevel The cache level to search.
On the ARM1136 and ARM1156, only level 1 cache is accessible.
On the Cortex-A8 the level 2 cache is also available.

addr The address to find.

Description

Returns the way index associated with a specified address in the cache. This macro is supported
on the following processors:
• ARM1136 (only when the MMU is disabled)
• ARM1156
• Cortex-A8.

Return value

The return value is one of the following:
• The way index, starting at zero.
• -1 if the given address is not found.
• -2 if the operation is not possible.

Example

To search the level 1 data cache on the Cortex-A8 for the way index associated with address
S:0x00032F48, enter:

> ce cache_find_way(0, 1, S:0x00032F48)
 Result is: 0 0x00000000

See also
• CACHEFIND on page 2-81
• CACHEINFO on page 2-82
• CACHELINE on page 2-84
• cache_find_set on page 3-12.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-13
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.7 dword

Returns an unsigned long value from a specified address.

Syntax:

unsigned long dword (addr)
void *addr;

where:

addr The address containing the value to be returned.

Description

This macro returns an unsigned long value, contained within four bytes of memory,
corresponding to the memory contents at the location specified by addr. The dword macro uses
the indirection operator to obtain the value.

Return Value

unsigned long

The four byte value located at the specified address.

Rules

The argument default type is specified by using the OPTION command:

OPTION radix = [decimal | hex]

Example

To display the contents of the hexadecimal address 0x8338, enter the following on the command
line:

PRINTVALUE dword(0x8338)

See also

The following macros provide similar or related functionality:
• OPTION on page 2-195
• byte on page 3-11
• word on page 3-65.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-14
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.8 error

Processes an error message returned from a macro.

Syntax:

int error (type, message, value)
int type;
char *message;
long value;

where:

type Specifies the error class indicated by one of the predefined error codes listed in
Table 3-9.

message Pointer to char. Points to the first character in a character string for the
corresponding error message.
The string can contain a single instance of the format specifier %d. In this case,
value is printed in the string. If no format specifier is included in the string, value
is ignored.

value Variable of type long.

Description

This macro processes an error messages returned from a macro. The error macro generates a call
to the error processing function (_error). It handles messages from both predefined and
user-specified macros.

The message and value parameters are formatted in standard PRINTF formats.

Return Value

int Indicates the error message that is displayed in the Cmd tab of the Code window.

Rules

Uses the same value formats as the PRINTF command.

Table 3-9 Error classes

Type Class Description

1 note message appears as a line with no prefix.
In the GUI, the message appears in the Output
view.

2 warning code message appears with the Warning: prefix.
In the GUI, the message appears in the Output
view and is also highlighted.

3 error code In the headless debugger message appears with the
Error: prefix.
In the GUI, message appears in an Error dialog
without the prefix.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-15
ID052111 Non-Confidential

RealView Debugger Predefined Macros
Example

Do the following:

1. Define the following macro in a command script file, and load the file:
DEFINE /R int odd(n)
 int n;
{
 if ((n & 0x1)==1) // check if number is odd, using
 // a bitwise AND, and checking for
 // nonzero result
 return (0); // zero is returned from this branch,
 // indicating: Yes, number is odd.
 else // no - number is even, not odd
 error (2, "number specified (%d) is not odd\n", n);
 // text msg displayed, %d in format
 // specifier used for int display,
 // as in printf()
 return (1); // 1 is returned when exiting this
 // branch
}
.

2. Enter the command:
odd(6)

The following error message appears:
Warning: number specified (6) is not odd

See also

• PRINTF on page 2-205.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-16
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.9 fclose

Closes a specified user-defined file.

Syntax

int fclose (fileid)
int fileid;

where:

fileid The ID of an open file. This must be a user-defined fileid.

Description

This macro closes a file that has been opened with the fopen macro.

Example

Example on page 3-18 shows you how to use fclose in a macro.

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• FPRINTF on page 2-156
• VCLOSE on page 2-321
• VMACRO on page 2-324
• WINDOW on page 2-332
• fgetc on page 3-18
• fopen on page 3-20
• fputc on page 3-22
• fread on page 3-23
• fwrite on page 3-25.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-17
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.10 fgetc

Reads a byte from a file.

Syntax

int fgetc (fileid)
int fileid;

where:

fileid The ID of the file containing the next byte to be read. This must be a user-defined
fileid.

Description

This macro returns the contents of the next byte from a file. The fgetc macro name is short for
[file getc()], where file indicates that the macro operates on a file, and getc is the standard
function for getting a character from a user defined file. This is distinct from the getchar
function, which can only retrieve a character from the standard input, and is typically the
keyboard.

fgetc returns the contents of the next memory location byte from the specified file. You define
the identity of the file with the fopen macro, or the FOPEN command. Any file used to read, or get,
the contents of the next byte, must be opened in read mode.

Return value

int Returns the contents of the next byte of memory from a user specified file.
Returns the value -1 if either an end-of-file mark (EOF) or an error is encountered.

Rules

The file read from must be opened in read mode, for example:

fopen(100,"c:\\myfiles\\data_in.txt","r")

Example

This example shows how to use fgetc, together with fopen, fputc, and fclose:

define /R void copyFile()
{
 int retval;
 int ch;
 // Create data file to read
 retval = fopen(100,"c:\\myfiles\\data_in.txt","w");
 if (retval < 0)
 error(2,"Cannot open file for writing!\n",101);
 else {
 retval = fwrite("1234567890\n1234567890\n1234567890", 1, 32, 100);
 fclose(100);
 fopen(100,"c:\\myfiles\\data_in.txt","r"); // open for read-only
 if (retval < 0)
 error(2,"Source file not opened!\n",101);
 else
 fopen(200,"c:\\myfiles\data_out.txt","w"); // open for writing
 if (retval < 0)
 error(2,"Destination file not opened!\n",101);
 else
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-18
ID052111 Non-Confidential

RealView Debugger Predefined Macros
 do {
 ch = fgetc(100); // fgetc()
 if (ch < 0)
 $printf "Finished copying the file!"$;
 else
 fputc(ch,200); // fputc()
 } while (ch > 0);
 }
 fclose(100);
 fclose(200);
 }
}
.

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• FPRINTF on page 2-156
• VCLOSE on page 2-321
• WINDOW on page 2-332
• fclose on page 3-17
• fopen on page 3-20
• fputc on page 3-22
• fread on page 3-23
• fwrite on page 3-25.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-19
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.11 fopen

Opens a file for reading, writing, or both.

Syntax

int fopen (fileid, file_name, mode)
int fileid;
char *file_name;
char *mode;

where:

fileid An ID number for the file that is opened. This must be a user-defined fileid.

file_name A string pointer identifying the name of the file you want to open. If you specify
a hardcoded filename you must enclose it in double quotation marks. See Rules
for specifying filenames for details on how to specify filenames that include a
path.

mode Standard C-style file mode.

Description

This macro opens a file for reading, writing, or both.

Return value

int One of the following:
-1 Failure
fileid Success, the ID number of the opened file is returned.

Rules for specifying filenames

Follow these rules when specifying a filename:

• Filenames must be in double quotation marks, for example "myfiles/file".

• Filenames containing a backslash must be in double quotation marks, with each backslash
escaped. For example, "c:\\myfiles\\file".

Example

Example on page 3-18 shows you how to use fopen in a macro.

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• FPRINTF on page 2-156
• VCLOSE on page 2-321
• VMACRO on page 2-324
• WINDOW on page 2-332
• fclose on page 3-17
• fgetc on page 3-18
• fputc on page 3-22
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-20
ID052111 Non-Confidential

RealView Debugger Predefined Macros
• fread on page 3-23
• fwrite on page 3-25.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-21
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.12 fputc

Writes a byte to a file.

Syntax

int fputc (byte,fileid)
int byte;
int fileid;

where:

byte The byte to be written.

fileid The ID number of the file where the next byte is to be written. This must be a
user-defined fileid.

Description

This macro writes the contents of the next byte to a file. You must define the identity of the file
with either the fopen macro or the FOPEN command.

Return value

int Not used.

Rules

The file written to must be opened in write mode, for example:

fopen(100,"c:\\myfiles\\data_out.txt","w").

Example

Example on page 3-18 shows you how to use fputc in a macro.

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• FPRINTF on page 2-156
• VCLOSE on page 2-321
• WINDOW on page 2-332
• fclose on page 3-17
• fgetc on page 3-18
• fopen on page 3-20
• fread on page 3-23
• fwrite on page 3-25.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-22
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.13 fread

Reads the contents of a file into a buffer.

Syntax

int fread (buffer, count, size, fileid)
void *buffer;
unsigned count;
unsigned size;
int fileid;

where:

buffer Specifies the start of the area into which the data is written.

count Specifies the number of elements.

size Specifies the size of each element in bytes.

fileid The ID number of the file containing the data to be read. This must be a
user-defined fileid.

Description

This macro reads the contents of a file into a buffer. You must define the identity of the file with
either the fopen macro or the FOPEN command.

Return value

int The size of the data that is read, and is the same as size * count. However, it
returns the value -1 if an end-of-file (EOF) or error occurs.

Rules

None

Example

This example shows how to use fread in a macro:

1. Create an INCLUDE file containing the following macro, for example,
c:\myincludes\myfile.inc:
define /R void readFile(nElements)
 int nElements;
{
 char buffer[37];
 int nbytes;
 int recLen;
 recLen = 6;
 if (nElements > recLen)
 error(2,"Enter a number from 1 to %d.\n",recLen);
 else {
 strcpy(buffer,"One \nTwo \nThree\nFour \nFive \nSix \n");
 fopen(100,"c:\\myfiles\\data.txt","w");
 nbytes = fwrite(buffer, nElements, recLen, 100);
 $printf "%d bytes written\n",nbytes$;
 fclose(100);
 fopen(100,"c:\\myfiles\\data.txt","r");
 memset(buffer,0,37);
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-23
ID052111 Non-Confidential

RealView Debugger Predefined Macros
 nbytes = fread(buffer, nElements, recLen, 100);
 if (nbytes == -1)
 error(3,"Failed to read from file.\n");
 else {
 $printf "%d bytes read\n",nbytes$;
 $printf "Strings:\n%s",buffer$;
 fclose(100);
 }
 }
}
.

2. At the command line, include the file you created in step 1:
include 'c:\myincludes\myfile.inc'

3. Run the macro, specifying a value from 1 to 6, for example:
readFile(4)

See also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• FPRINTF on page 2-156
• VCLOSE on page 2-321
• WINDOW on page 2-332
• error on page 3-15
• fclose on page 3-17
• fgetc on page 3-18
• fopen on page 3-20
• fputc on page 3-22
• fwrite on page 3-25.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-24
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.14 fwrite

Writes the contents of a buffer to a file or window.

Syntax

unsigned long fwrite (buffer, count, size, outputid)
void *buffer;
unsigned count;
unsigned size;
int outputid;

where:

buffer Specifies the start of the area from which the data is read.

count Specifies the number of elements.

size Specifies the size of each element in bytes.

outputid The ID number of a window or file where the data is to be written. This must be
a user-defined windowid or fileid.

Description

This macro writes the contents of a buffer to a file or window. You must define the identity of
the file with either the fopen macro or the FOPEN command.

Return value

unsigned long

The size of the data that is written, and is the same as size * count.

Rules

If you are writing to a file, it must be opened in write mode, for example:
fopen(100,"c:\\myfiles\\data_out.txt","w").

Example

The example on page 3-23 also shows you how to use fwrite in a macro.

See Also
• Window and file numbers on page 1-5
• FOPEN on page 2-154
• FPRINTF on page 2-156
• VCLOSE on page 2-321
• WINDOW on page 2-332
• fclose on page 3-17
• fgetc on page 3-18
• fopen on page 3-20
• fputc on page 3-22
• fread on page 3-23.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-25
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.15 getsym

Returns a debugger symbol at a specified address.

Syntax

char *getsym (addr)
void *addr;

where:

addr The address for which the associated symbol is to be returned.

Description

This macro returns a debugger symbol from a specified address. If no symbol exists at the
address, a null string is returned

Return value

char * A pointer to the debugger symbol.

Rules

None

Example

This example shows how to use getsym on the command line:

> add char x[20]
> strcpy(x,getsym(@pc))
> pr x
"__main"

> strcpy(x,getsym(0x8010))
> pr x
""
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-26
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.16 isdigit

Checks if a character is a digit.

Syntax:

int isdigit (c)
int c;

where:

c The character to be checked.

Description

This macro checks if a character is a digit.

Return value

int One of the following:
0 Character is not a digit.
>0 Character is a digit.

Example

define /R int chkDigit(myChar)
char myChar;
{
 if (isdigit(myChar) > 0)
 $printf "digit character"$;
 else
 $printf "non-digit character"$;
}
.
cexpression chkDigit('1')

See also
• islower on page 3-28
• isprint on page 3-29
• isspace on page 3-30
• isupper on page 3-31.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-27
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.17 islower

Checks if a character is lowercase.

Syntax:

int islower (c)
int c;

where:

c The character to be checked.

Description

This macro checks if a character is lowercase.

Return value

int One of the following:
0 Character is not lowercase.
>0 Character is lowercase.

Example

define /R int chkLower(myChar)
char myChar;
{
 if (islower(myChar) > 0)
 $printf "lowercase character"$;
 else
 $printf "non-lowercase character"$;
}
.
cexpression chkLower('a')

See also
• isdigit on page 3-27
• isprint on page 3-29
• isspace on page 3-30
• isupper on page 3-31.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-28
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.18 isprint

Checks if a character is printable.

Syntax:

int isprint (c)
int c;

where:

c The character to be checked.

Description

This macro checks if a character is printable.

Return value

int One of the following:
0 Character is not printable.
>0 Character is printable.

Example

define /R int chkPrint(myChar)
char myChar;
{
 if (isprint(myChar) > 0)
 $printf "printable character"$;
 else
 $printf "non-printable character"$;
}
.
cexpression chkPrint(0)

See also
• isdigit on page 3-27
• islower on page 3-28
• isspace on page 3-30
• isupper on page 3-31.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-29
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.19 isspace

Checks if a character is a space.

Syntax:

int isspace (c)
int c;

where:

c The character to be checked.

Description

This macro checks if a character is a space.

Return value

int One of the following:
0 Character is not a space.
>0 Character is a space.

Example

define /R int chkSpace(myChar)
char myChar;
{
 if (isspace(myChar) > 0)
 $printf "space character"$;
 else
 $printf "non-space character"$;
}
.
cexpression chkSpace(' ')

See also
• isdigit on page 3-27
• islower on page 3-28
• isprint on page 3-29
• isupper on page 3-31.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-30
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.20 isupper

Checks if a character is upperspace.

Syntax:

int isupper (c)
int c;

where:

c The character to be checked.

Description

This macro checks if a character is upperspace.

Return value

int One of the following:
0 Character is not upperspace.
>0 Character is upperspace.

Example

define /R int chkUpper(myChar)
char myChar;
{
 if (isupper(myChar) > 0)
 $printf "uppercase character"$;
 else
 $printf "non-uppercase character"$;
}
.
cexpression chkUpper('A')

See also
• isdigit on page 3-27
• islower on page 3-28
• isprint on page 3-29
• isspace on page 3-30.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-31
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.21 itoa

Converts an integer to a string.

Syntax:

char *itoa (iValue, str)
int iValue;
char *str;

where:

iValue The integer value to be converted.

str The converted string.

Description

This macro converts an integer value to the equivalent string.

Return value

char * A pointer to the first character of the converted string.

Example

add char strValue[10]
cexpression itoa(10000,strValue)
printf "%s", strValue

See also
• atoi on page 3-8
• atol on page 3-9
• atoul on page 3-10.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-32
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.22 memchr

Searches for a character in memory.

Syntax

char *memchr (str1, byte_value, count)
char *str1;
char byte_value;
int count;

where:

str1 A character pointer to the memory location of the first character byte in a string
of characters contained in a file.

byte_value A character variable used to copy the memory contents of the character occupying
a specific position in a character string.

count An integer variable that specifies the number of characters in str that are to be
searched for the character specified by byte_value.

Description

This macro searches for a character in memory. The memchr macro locates the first occurrence
of the character byte_value, that is contained in the first count bytes of memory area that begins
with the memory location pointed to by the start variable, str1.

Return value

char * A pointer to the instance of the character being searched for, called byte_value, if
one is found. If no instance of the character being searched for is found, then a
NULL pointer is returned.

Rules

For debugger variables only, a -1 value (0xFFFFFFFF) is returned when byte_value does not occur
in the memory searched on by memchr.

Example

This example shows how to use memchr:

define /R void memoryChr()
{
 char buff[37];
 char *posn;
 strcpy(buff,"1234567890abcdefghijklmnopqrstuvwxyz");
 posn = memchr(buff,'d',20);
 $printf "%s\n",posn$;
}
.

See Also
• memclr on page 3-34
• memcpy on page 3-35
• memset on page 3-36.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-33
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.23 memclr

Clears memory contents in a specified range.

Syntax

char *memclr (str1, count)
char *str1;
int count;

where:

str1 A character pointer to the memory location of the first character byte in a string
of characters that is replaced by the NUL character.

count A variable of integer type, used to specify the number of consecutive bytes of
memory in a character string that are to be replaced by the NUL character.

Description

This macro replaces the specified number of characters in str1 with the NUL character '\0' starting
at the beginning of str1. If count is less than the length of str1, the macro returns a pointer that
points to the address of the character following the area that is cleared.

Return value

char * A pointer to the first character byte after the string of characters overwritten with
the NUL character. This enables continuation of the writing process with perfect
alignment of bytes for file erasure.

Rules

None

Example

This example shows how to use memclr:

define /R void memoryClr()
{
 char buff[37];
 char *posn;
 strcpy(buff,"1234567890abcdefghijklmnopqrstuvwxyz");
 posn = memclr(buff,20);
 $printf "%s\n",posn$;
}
.

See Also
• memchr on page 3-33
• memcpy on page 3-35
• memset on page 3-36.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-34
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.24 memcpy

Copies a specified number of characters from a source memory area to a destination memory
area.

Syntax

char *memcpy (dest, src, count)
char *dest;
char *src;
int count;

where:

dest A character pointer that specifies the starting address for the destination memory
area, to begin writing characters to.

src A character pointer that specifies the starting address for the source memory area,
to begin copying characters from.

count An integer variable specifying the number of characters (bytes) to be copied, from
the source location, to the destination location of memory.

Description

Copies count characters from the source memory area, pointed to by src, and writes this
character string to a destination memory area, pointed to by dest.

Return value

char * A pointer to the destination location that is one byte beyond the last byte written
to. This enables continuation of the writing process with perfect alignment of
bytes for string concatenation of memory blocks.

Rules

None

Example

This example shows how to use memcpy:

define /R void memoryCpy()
{
 char buff1[37];
 char buff2[37];
 char *posn;
 strcpy(buff1,"1234567890abcdefghijklmnopqrstuvwxyz");
 posn = memcpy(buff2,buff1,20);
 $printf "%s\n",buff2$;
}
.

See Also
• memchr on page 3-33
• memclr on page 3-34
• memset on page 3-36.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-35
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.25 memset

Fills a specified area of memory with a character.

Syntax

char *memset (dest, byte_value, count)
char *dest;
char byte_value;
int count;

where:

dest A character pointer to the memory location where the memset macro is to write a
string of repeating characters.

byte_value A character variable used to specify the number of times that a character is written
consecutively, beginning at the *dest address.

count An integer variable used to specify the number of times a particular character is
to be written consecutively, beginning with the byte whose address is *dest.

Description

This macro writes a character in memory multiple times. The memset macro writes the character
byte_value into the contents of the first count bytes in memory, beginning with the byte pointed
to by dest. For example, write character 'X' consecutively, one hundred times, beginning at
address 0x8f51fff4.

Return value

char * A pointer to the destination location that is one byte beyond the last byte written
to. This enables continuation of the writing process with perfect alignment of
bytes for string concatenation of memory blocks.

Rules

None

Example

This example shows how to use memset:

define /R void memorySet()
{
 char buff[37];
 char *posn;
 posn = memset(buff,'@',20);
 $printf "%s\n",buff$;
}
.

See Also
• memchr on page 3-33
• memclr on page 3-34
• memcpy on page 3-35.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-36
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.26 prompt_file

Displays an Open File dialog.

Note
 This macro is not available in the headless debugger.

Syntax

int prompt_file(title, buff)
char *title;
char *buff;

where:

title The text that appears in the title bar of the Open File dialog.

buff The filename that appears in the File name text box of the dialog. Assign an empty
string to leave the File name text box blank.
Contains the chosen path and filename of the opened file when the Open button
is clicked.

Description

This macro displays an Open File dialog.

Assign an empty string to buff to leave the File name text box of the dialog blank.

Assign a filename, without a path, to buff before executing this macro, the filename appears in
the File name text box of the dialog.

When you click Open, buff contains the chosen path and filename.

Return value

int One of the following:
0 File opened.
1 Cancel.

Rules

None

Example

This example shows how to use prompt_file in a macro:

define /R void openFile()
{
 char filename[100];
 int retval;
 retval = prompt_file("Open File", filename);
 if (retval == 1)
 $printf "Open file cancelled!\n"$;
 else
 retval = fopen(100,filename,"r"); if (retval < 0)
 $printf "Could not open file: %s\n", filename$;
 else
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-37
ID052111 Non-Confidential

RealView Debugger Predefined Macros
 $printf "Opened file: %s\n", filename$;
}
.

See Also
• prompt_list on page 3-39
• prompt_text on page 3-40
• prompt_yesno on page 3-42
• prompt_yesno_cancel on page 3-43.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-38
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.27 prompt_list

Displays a dialog containing message text, a list of choices, and Ok, Cancel and Help buttons.

Note
 This macro is not available in the headless debugger.

Syntax

int prompt_list (message, buff)
char *message;
char *buff;

where:

message The message text that appears at the top of the dialog.

buff Initially, the list of choices that appear for selection in the dialog, separated by \n.

Description

This macro displays a dialog containing message text and a list of choices.

Return value

int One of the following:
0 Cancel
n Index number of the chosen list item. The first item in the list has an

index of 1.

Rules

None

Example

This example shows how to use prompt_list on the command line:

> add char buff[15]
> strcpy(buff, "one\ntwo\nthree")
> ce prompt_list("Choose one:", buff)
 Result is: 3 0x00000003

See Also
• prompt_file on page 3-37
• prompt_text on page 3-40
• prompt_yesno on page 3-42
• prompt_yesno_cancel on page 3-43.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-39
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.28 prompt_text

Displays a dialog containing message text, and Ok and Cancel buttons.

Note
 This macro is not available in the headless debugger.

Syntax

int prompt_text (message, buff)
char *message;
char *buff;

where:

message The message text that appears at the top of the dialog.

buff The buffer that is to contain the user response.

Description

This macro displays a dialog containing message text, and Ok and Cancel buttons. The user
response is entered into the buffer (local or target).

Return value

int One of the following:
0 OK
1 Cancel

Rules

None

Example

This example shows how to use prompt_text in a macro:

define /R int usrPrompt()
{
 char userPromptBuffer[100];
 int retval;
 retval = prompt_text("Please enter text", userPromptBuffer);
 if (retval == 0) {
 $printf "Pressed OK\n"$;
 $printf "%s\n", userPromptBuffer$;
 } else
 $printf "Pressed Cancel\n"$;
 return retval;
}
.

See Also
• prompt_file on page 3-37
• prompt_list on page 3-39
• prompt_yesno on page 3-42
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-40
ID052111 Non-Confidential

RealView Debugger Predefined Macros
• prompt_yesno_cancel on page 3-43.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-41
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.29 prompt_yesno

Displays a dialog containing question text, and Yes and No buttons.

Note
 This macro is not available in the headless debugger.

Syntax

int prompt_yesno (message)
char *message;

where:

message The text that you want to appear as a question on the dialog.

Description

This macro displays a dialog containing question text and two buttons (Yes and No) for the user
reply.

Return value

int One of the following:
0 Yes
2 No

Rules

None

Example

This example shows how to use prompt_yesno on the command line:

> ce prompt_yesno("Is everything OK?")
 Result is: 0 0x00000000

See Also
• prompt_file on page 3-37
• prompt_list on page 3-39
• prompt_text on page 3-40
• prompt_yesno_cancel on page 3-43.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-42
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.30 prompt_yesno_cancel

Displays a dialog containing question text, and Yes, No and Cancel buttons.

Note
 This macro is not available in the headless debugger.

Syntax

int prompt_yesno_cancel (message)
char *message;

where:

message The text that you want to appear as a question on the dialog.

Description

This macro displays a dialog containing question text and buttons (Yes, No and Cancel) for the
user reply.

Return value

int One of the following:
0 Yes
1 Cancel
2 No

Rules

None

Example

This example shows how to use prompt_yesno_cancel on the command line:

> ce prompt_yesno_cancel("Is everything OK?")
 Result is: 1 0x00000001

See Also
• prompt_file on page 3-37
• prompt_list on page 3-39
• prompt_text on page 3-40
• prompt_yesno on page 3-42.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-43
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.31 reg_str

Returns the value of a specified register.

Syntax

unsigned long reg_str (name)
char *name;

where:

name The register name.

Description

This macro takes a register name from a string and returns the value for the register.

Return value

unsigned long

The value for the register.

Rules

You must be connected to a target.

Example

This example shows how to use reg_str on the command line:

> ce reg_str("@CPSR")
 Result is: 211 0x000000D3

See also

• CEXPRESSION on page 2-87.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-44
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.32 strcat

Concatenates two strings.

Syntax

char *strcat (dest, src)
char *dest;
char *src;

where:

dest A character pointer, that specifies the starting address for the destination memory
area. Characters from the src string are appended to the end of this string, starting
where the NUL character previously terminated the string.

src A character pointer that specifies the starting address for the source memory area,
to begin copying characters from, when appending to the end of the *dest string.

Description

This macro appends the src string to the end of the dest string, and then returns a pointer to the
dest string. This macro behaves like the strcat function in the ANSI C string library.

Return value

char * A pointer to the first byte in the dest string.

Rules

This macro does not check to see whether the second string can fit in the first array, unless it is
a debugger array. Failure to allot enough space for the first array causes excess characters to
overflow into adjacent memory locations. Consider using the strlen macro first to confirm that
there is enough length in dest, for the original dest and src together.

Example

This example shows how to use strcat on the command line:

> add char buff[15]
> ce strcpy(buff,"12345")
 Result is: local address 0x10000
> ce strcat(buff,"67890")
 Result is: local address 0x10000
> printf "%s\n",buff
1234567890

See Also
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
• strtoupper on page 3-59
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-45
ID052111 Non-Confidential

RealView Debugger Predefined Macros
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-46
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.33 strchr

Locates the first occurrence of a character in a string.

Syntax

char *strchr (str1, byte_value)
char *str1;
char byte_value;

where:

str1 This is a character pointer to the memory location of the first character byte in a
string of characters.

byte_value This is a variable of character type, used to specify the character that the strchr
macro must search for. The terminating NUL character '\0' is part of the string, so
it can be searched for.

Description

This macro locates the first occurrence of a character in a string.

Return value

char * Points to the first memory location of the first occurrence of the character
byte_value byte. If no instance of the character being searched for is found, then
a NULL pointer is returned.

Rules

For debugger variables only, a -1 value (0xFFFFFFFF) is returned, when byte_value does not occur
in the string searched on by strchr.

Example

This example shows how to use strchr in a macro:

define /R void substr(character)
 char character;
{
 char *pos;
 pos = strchr("This is a string",character);
 $printf "position: %s\n",pos$;
}
.

See Also
• strcat on page 3-45
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
• strtoupper on page 3-59
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-47
ID052111 Non-Confidential

RealView Debugger Predefined Macros
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-48
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.34 strcmp

Compares two strings.

Syntax

unsigned long strcmp (str1, str2)
char *str1;
char *str2;

where:

str1 Variable of type pointer to char. Specifies the location in memory of the first byte
of a character string.

str2 Variable of type pointer to char. Specifies the location in memory of the first byte
of a character string.

Description

This macro compares two strings based on the internal machine representation of the characters.

For example, ASCII A has the value 41 in hexadecimal notation and ASCII B has the value 42
in hexadecimal notation. Therefore, A is less than B.

This macro behaves like the strcmp function in the ANSI C string library.

Return value

int One of the following:
<0 Indicates that the second argument string value comes after the first

argument string value in the machine collating sequences, str1 < str2.
0 Indicates that the two strings are identical in content.
>0 Indicates that the first argument string value comes after the second

argument string value in the machine collating sequences, str2 < str1.

Rules
• Strings are assumed to be NUL terminated or to fit within the array boundaries.
• Comparisons are always signed, regardless of how the string is declared.

Example

This example shows how to use strcmp on the command line:

> ce strcmp("string1","string2")
 Result is: 4294967295 0xFFFFFFFF

See Also
• strcat on page 3-45
• strchr on page 3-47
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-49
ID052111 Non-Confidential

RealView Debugger Predefined Macros
• strtoupper on page 3-59
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-50
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.35 strcpy

Copies a source string into a destination string.

Syntax

char *strcpy (dest, src)
char *dest;
char *src;

where:

dest A character pointer, that specifies the starting address for the destination character
string. Characters from the src string are copied to the dest string location.

src A character pointer that specifies the starting address for the source character
string. This string is copied to the dest character string address.

Description

This macro writes the src string directly to the dest string address beginning at the first byte
pointed to by dest. It writes until encountering a NUL character '\0', which designates the end of
the src string. It returns a pointer to the dest string.

This macro behaves like the strcpy function in the ANSI C string library.

Return value

char * A pointer to the first byte in the string dest.

Rules

If the destination string is a debugger array, the macro checks the size of the array before
copying. Otherwise this macro does not check to see whether the second string can fit in the first
array. Failure to allocate enough space for the first array causes excess characters to overflow
into adjacent memory locations. Consider using the strlen macro first to confirm that there is
enough length in dest, for the src string.

Example

This example shows how to use strcpy on the command line:

add char buff[50]
ce strcpy(buff,"source string")
printf "%s\n",buff

See Also
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
• strtoupper on page 3-59
• strtrim on page 3-60
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-51
ID052111 Non-Confidential

RealView Debugger Predefined Macros
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-52
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.36 stricmp

Compares two strings without case distinction.

Syntax

int stricmp (str1, str2)
char *str1;
char *str2;

where:

str1 Variable of type pointer to char. Specifies the location in memory of the first byte
of a character string.

str2 Variable of type pointer to char. Specifies the location in memory of the first byte
of a character string.

Description

This macro performs string comparison without case distinction. The stricmp macro compares
strings in ASCII sequence, ignoring case.

Return value

int

One of the following:
<0 Indicates that the second argument string value comes after the first

argument string value in the machine collating sequences, independent
of case distinction, str1 < str2.

0 Indicates that the two strings are identical in content, independent of
case distinction.

>0 Indicates that the first argument string value comes after the second
argument string value in the machine collating sequences, independent
of case distinction, str2 < str1.

Rules
• Strings are assumed to be NUL terminated or to fit within the array boundaries.
• Comparisons are always signed, regardless of how the string is declared.

Example

This example shows how to use stricmp on the command line:

> ce stricmp("abcDEF","ABCdef")
 Result is: 0 0x00000000

See Also
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• strlen on page 3-55
• strncmp on page 3-56
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-53
ID052111 Non-Confidential

RealView Debugger Predefined Macros
• strtolower on page 3-58
• strtoupper on page 3-59
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-54
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.37 strlen

Returns the length or the specified string.

Syntax

unsigned long strlen (str1)
char *str1;

where:

str1 Variable of type pointer to char. Specifies the location in memory of the first byte
of a character string.

Description

This macro returns the string length. The strlen macro counts the number of characters in a
string up to but not including the NUL terminating character.

This macro behaves like the strlen function in the ANSI C string library.

Return value

unsigned long

Return value is equal to the number of characters in the string pointed to by str1,
not including the terminating NUL character.

Rules

• Strings are assumed to be NUL terminated.

• If str1 is not properly terminated by a NUL character, the length returned is invalid.

Example

This example shows how to use strlen on the command line:

> ce strlen("1234567890")
 Result is: 10 0x0000000A

See Also
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strncmp on page 3-56
• strtolower on page 3-58
• strtoupper on page 3-59
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-55
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.38 strncmp

Performs a limited comparison of two strings.

Syntax

int strncmp (str1, str2, count)
char *str1;
char *str2;
int count;

where:

str1 Variable of type pointer to char. Specifies the location in memory of the first byte
of a character string.

str2 Variable of type pointer to char. Specifies the location in memory of the first byte
of a character string.

count Variable of integer type. Specifies the length of characters in each string to
compare, unless the NUL character is encountered in either string first.

Description

This macro performs limited comparison of two strings. The strncmp macro is used to compare
strings in ASCII sequence, except that the comparison stops after count characters, or when the
first NUL character is encountered, whichever comes first.

This macro behaves like the strncmp function in the ANSI C string library.

Return value

int One of the following:
<0 Indicates that the second argument string value comes after the first

argument string value in the machine collating sequences, str1 < str2.
0 Indicates that the two strings are identical in content.
>0 Indicates that the first argument string value comes after the second

argument string value in the machine collating sequences, str2 < str1.

Rules

• Strings do not have to be NUL terminated or fit within the array boundaries because the
comparison is limited to the number of stated characters.

• Less than count characters are compared if one of the strings is smaller than count
characters.

• The comparison is always signed, regardless of how the string is declared.

Example

This example shows how to use strncmp in a macro:

define /R void checkfile(filename)
 char *filename;
{
 int retval;
 retval = strncmp(filename, "dhrystone", 4);
 if (retval == 0)
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-56
ID052111 Non-Confidential

RealView Debugger Predefined Macros
 $printf "%s belongs to the Dhrystone project\n",filename$;
 else
 $printf "%s belongs to another project\n",filename$;
}
.

See Also
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strtolower on page 3-58
• strtoupper on page 3-59
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-57
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.39 strtolower

Converts a string to lowercase.

Syntax:

char *strtolower (str)
char *str;

where:

str The string to be converted.

Description

This macro converts a string to lowercase. The original string is changed.

Return value

char * A pointer to the first character of the converted string.

Example

add char myString[50]
cexpression strcpy(myString, "A String with UPPERCASE characters.")
cexpression strtolower(myString)
printf "%s", myString

See also
• strcat on page 3-45
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtoupper on page 3-59
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-58
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.40 strtoupper

Converts a string to uppercase.

Syntax:

char *strtoupper (str)
char *str;

where:

str The string to be converted.

Description

This macro converts a string to uppercase. The original string is changed.

Return value

char * A pointer to the first character of the converted string.

Example

add char myString[50]
cexpression strcpy(myString, "A String with lowercase characters.")
cexpression strtoupper(myString)
printf "%s", myString

See also
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
• strtrim on page 3-60
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-59
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.41 strtrim

Trims the leading and trailing white spaces and tabs from a string.

Syntax:

char *strtrim (str)
char *str;

where:

str The string to be converted.

Description

This macro trims the leading and trailing white spaces and tabs from a string. The original string
is changed.

Return value

char * A pointer to the first character of the trimmed string.

Example

add char myString[50]
cexpression strcpy(myString, " String with spaces before and after. ")
cexpression strtrim(myString)
printf "|%s|", myString

See also
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
• strtoupper on page 3-59
• tolower on page 3-61
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-60
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.42 tolower

Converts a character to lowercase.

Syntax:

int tolower (c)
int c;

where:

c The character to be converted.

Description

This macro converts a character to lowercase. The original character is unchanged.

Return value

int The converted character.

Example

add char myChar
cexpression myChar='A'
printf "%c", tolower(myChar)

See also
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
• strtoupper on page 3-59
• strtrim on page 3-60
• toupper on page 3-62.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-61
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.43 toupper

Converts a character to uppercase.

Syntax:

int toupper (c)
int c;

where:

c The character to be converted.

Description

This macro converts a character to uppercase. The original character is unchanged.

Return value

int The converted character.

Example

add char myChar
cexpression myChar='a'
printf "%c", toupper(myChar)

See also
• strcat on page 3-45
• strchr on page 3-47
• strcmp on page 3-49
• strcpy on page 3-51
• stricmp on page 3-53
• strlen on page 3-55
• strncmp on page 3-56
• strtolower on page 3-58
• strtoupper on page 3-59
• strtrim on page 3-60
• tolower on page 3-61.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-62
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.44 until

Breaks when a given expression evaluates to True.

Syntax

int until (expression)
int expression;

where:

expression An expression that is evaluated to test if the result is nonzero.

Description

This macro causes execution to break when expression is True. The until macro evaluates its
argument, expression, to determine if it is True (nonzero) or False (zero). This macro can only
be used with the GO command and the GOSTEP command to:
• halt execution when the expression passed is True
• continue execution when the expression passed is False.

Return value

int One of the following:
0 Indicates that expression is False (zero).
1 Indicates that expression is True (nonzero).

Rules

Any C expression resulting in a value can be used as the argument, expression.

Example

Set temporary breakpoints at line numbers 3 and 17 in the current module, and at the entry point
to the function printf. When any of these locations are encountered by the executing program,
the debugger stops then checks the until conditional statements. If the variable i is equal to 3 or
the variable x is less than y, a break occurs. Otherwise, program execution continues.

GO #3,#17,printf;until(i==3||x<y)

See also
• GO on page 2-159
• GOSTEP on page 2-161
• when on page 3-64.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-63
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.45 when

Breaks when an expression evaluates to True.

Syntax

int when (expression)
int expression;

where:

expression An expression that is evaluated to test if the result is nonzero.

Description

This macro causes execution to break when expression is True. The when macro evaluates its
argument, expression, to determine if it is True (nonzero) or False (zero). This macro is designed
to be used with any breakpoint commands. When used with these commands, program
execution halts when the stated expression is True and continues when the stated expression is
False.

Note
 RealView Debugger creates a conditional breakpoint, and assigns the when condition using the
,macro:{when(expression)} qualifier.

Return value

int One of the following:
0 Indicates that expression is True (nonzero).
1 Indicates that expression is False (zero).

Rules

Any C expression resulting in a value can be used as the argument, expression.

Example

Set a breakpoint at the entry point of the routine strcpy. Each time strcpy is encountered, the
breakpoint is hit, and the macro when is executed. The macro causes the breakpoint to be
activated (program execution stops) when its argument, in this case the byte pointed to by *str,
is zero.

BREAKINSTRUCTION strcpy\@entry;when(*str == 0)

See also

• until on page 3-63

• Chapter 2 RealView Debugger Commands for details of the breakpoint commands.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-64
ID052111 Non-Confidential

RealView Debugger Predefined Macros
3.2.46 word

Returns a word value at the specified address.

Syntax

unsigned short int word (addr)
void *addr;

where:

addr The address containing the value to be returned.

Description

This macro returns a word value at the specified address. The word macro returns an unsigned
short integer value (a two byte word of memory value) for the contents of memory pointed to
by the argument addr.

Return value

unsigned short int

The two byte value located at the specified address.

Rules

The argument default type is specified by using the OPTION command:

OPTION radix = [decimal | hex]

Example

To display the contents of the hexadecimal address 0x8338, enter the following on the command
line:

> PRINTVALUE word(0x8338)
0x00008338 = 16

See also

The following macros provide similar or related functionality:
• OPTION on page 2-195
• byte on page 3-11
• dword on page 3-14.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 3-65
ID052111 Non-Confidential

Chapter 4
RealView Debugger Keywords

This chapter describes the available RealView® Debugger keywords. It contains the following
sections:
• Keywords listed by function on page 4-2
• Alphabetical keyword reference on page 4-4.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-1
ID052111 Non-Confidential

RealView Debugger Keywords
4.1 Keywords listed by function
The following sections list the keywords according to their general function:
• Data type keywords
• Conditional statement keywords
• Flow control keywords on page 4-3
• Miscellaneous keywords on page 4-3.

4.1.1 Data type keywords

Table 4-1 contains a summary of the data type keywords.

4.1.2 Conditional statement keywords

Table 4-2 contains a summary of the conditional statement keywords.

Table 4-1 Data type keywords

Description Keyword

Character variable char

Double floating variable double

Floating variable float

Integer variable int

Long variable long

Long long variable long long

Short variable short

Unsigned variable, defaults to
unsigned int

unsigned

Table 4-2 Conditional statement keywords

Description Keyword See

Simplest form of a conditional statement. if if on page 4-10

Specify an alternative statement to execute
when an if statement evaluates to False.

if-else if-else on page 4-11
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-2
ID052111 Non-Confidential

RealView Debugger Keywords
4.1.3 Flow control keywords

Table 4-3 contains a summary of the conditional statement keywords.

4.1.4 Miscellaneous keywords

Table 4-4 contains a summary of other keywords.

You can also use these keywords on the command line by prefixing them with the CEXPRESSION
command. For example:

> cexpression sizeof(int)
 Result is: 4 0x0000000000000004

See also

• CEXPRESSION on page 2-87.

Table 4-3 Flow control keywords

Description Keyword See

Exits from the current loop. break break on page 4-5

Ignores the remaining statements in the
current loop and executes the next iteration
of the loop.

continue continue on page 4-6

Executes a given statement one or more
times until an expression evaluates to False.

do-while do-while on page 4-7

Executes a statement a given number of
times.

for for on page 4-8

Evaluates an expression and executes the
following statement or statements until the
expression evaluates to False.

while while on page 4-15

Table 4-4 Miscellaneous keywords

Description Keyword See

Verifies that a symbol is currently active. isalive isalive on page 4-12

Returns the size of a data type. sizeof sizeof on page 4-14
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-3
ID052111 Non-Confidential

RealView Debugger Keywords
4.2 Alphabetical keyword reference
The following sections list in alphabetical order the keywords that you can use in macros:
• break on page 4-5
• continue on page 4-6
• do-while on page 4-7
• for on page 4-8
• if on page 4-10
• if-else on page 4-11
• isalive on page 4-12
• return on page 4-13
• sizeof on page 4-14
• while on page 4-15.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-4
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.1 break

Exits the current loop immediately.

Syntax:

break;

Description

The break statement causes the innermost for, do-while, or while loop to be exited immediately.

Return Value

None

Rules

None

Example

See the example on page 4-8 to see how to use break in a for loop.

See also
• do-while on page 4-7
• for on page 4-8
• while on page 4-15.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-5
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.2 continue

Causes the next iteration of a loop to be executed, ignoring any remaining commands in the
loop.

Syntax:

continue;

Description

The continue statement causes the remainder of the for, do-while, or while loop to be ignored
and the next iteration of the loop to execute.

Return Value

None

Rules

None

Example

See the example on page 4-8 to see how to use continue in a for loop.

See also
• do-while on page 4-7
• for on page 4-8
• while on page 4-15.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-6
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.3 do-while

Executes one or more statements until an expression is False.

Syntax:

do {
 statement; /* execute this statement */
 [statement;]... /* additional statements */
} while (expression); /* while this expression is True */

where:

expression The expression to be evaluated at the end of each iteration of the loop.

Description

The do-while statement executes a given statement one or more times until an expression
evaluates to False.

If you have more than one statement in the do-while loop these must be enclosed in curly braces
({}).

Return Value

None

Rules

None

Example

This example shows how to use do-while in a macro:

define /R void doloop()
{
 int i;
 i = 1;
 do {
 $printf "Iteration: %d\n", i$;
 i++;
 } while (i < 11);
}
.

See also
• break on page 4-5
• continue on page 4-6
• for on page 4-8
• while on page 4-15.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-7
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.4 for

Executes one or more statements a given number of times.

Syntax:

for
 (expression_1; /* evaluate only once */
 expression_2; /* evaluate before each iteration */
 expression_3) /* evaluate after each iteration */
{
 statement; /* execute this statement */
 /* while expression_2 is True */
 [statement;]... /* additional statements */
}

Description

The for statement is useful for executing a statement a given number of times. It evaluates
expression_1 and then evaluates expression_2 to see if it is True, that is nonzero, or False, that
is zero. If expression_2 evaluates to True, all statements are executed once.

Next expression_3 is evaluated, and expression_2 is evaluated again to see if it is True or False.
If expression_2 is True, all statements are executed again and the cycle continues. If
expression_2 is False, all statements are bypassed and execution continues at the next statement
outside the for loop.

Where you have more than one statement in the for loop these must be enclosed by curly braces
({}).

The term expression_1 can be used to initialize a variable to be used in the loop. It is evaluated
once, before the first iteration of the loop. The term expression_2 determines whether to execute
or terminate the loop and is evaluated before each iteration. If the term expression_2 evaluates
to True, that is nonzero, the loop is executed. If expression_2 is False, that is zero, the loop is
terminated. The term expression_3 can be used to increment a loop counter, and is evaluated
after each iteration.

Return Value

None

Rules

None

Example

This example shows how to use the for statement in a macro:

define /R void forloop()
{
 int i;
 for (i=0; i<11; i++) {
 if (i > 10) {
 $printf " Done!\n"$;
 break;
 } else if (i==5) {
 $printf " Halfway there...\n"$;
 continue;
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-8
ID052111 Non-Confidential

RealView Debugger Keywords
 }
 $printf "Iteration: %d\n", i$;
 }
}
.

See also
• break on page 4-5
• continue on page 4-6
• do-while on page 4-7
• while on page 4-15.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-9
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.5 if

The simplest form of a macro conditional statement.

Syntax:

if (expression) /* If this expression is True */
{
 statement; /* execute this statement */
 [statement;]... /* additional statements */
}

Description

The if statement is the simplest form of a macro conditional statement. It is always followed by
an expression enclosed in parentheses. If the expression evaluates to zero, that is False, the
statement following the expression is bypassed. If the expression evaluates to a value other than
zero, that is True, the statement following the expression is executed. If you have more than one
statement in the if statement these must be enclosed in curly braces ({}).

Return Value

None

Rules

None

Example

This example shows how to use if in a macro:

if (n==0)
 strcpy(number,"zero");

See also
• if-else on page 4-11.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-10
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.6 if-else

Provides a way to specify an alternative statement to execute if the if statement evaluates to
False.

Syntax:

if (expression) /* If expression is True */
{
 statement_1; /* execute statement_1 */
 [statement;]... /* and these additional statements */
}else /* If expression is False */
{
 statement_2; /* execute statement_2 */
 [statement;]... /* and these additional statements */
}

Description

The if-else statement provides a way to specify an alternative statement to execute if the if
statement evaluates to False. If the expression evaluates to True, that is nonzero, statement_1
and any following statements are executed, but statement_2 and any following statements are
not executed. If the expression evaluates to False, that is zero, statement_2 and any following
statements are executed, but statement_1 and any following statements are not executed. If you
have more than one statement in the if section or in the else section these must be enclosed in
curly braces ({}).

Return Value

None

Rules

None

Example

This example shows how to use if-else in a macro:

if (n==0)
 strcpy(number,"zero");
else
 strcpy(number,"nonzero");

See also
• if on page 4-10.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-11
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.7 isalive

Tests the status of the specified symbol.

Syntax

int isalive (symbol_name)
 symbol_name;

where:

symbol_name The variable name used for the symbol that isalive tests the scope of.

Description

The isalive keyword tests whether the specified symbol is in scope. It checks the status of the
argument symbol_name, to see whether that variable is in scope, and whether it can be referenced.
The value returned by isalive specifies whether the variable does not exist, is not in scope, is
in scope inside the current active function, or is an external (global) variable, or a static variable
on the stack but out of scope.

Return value

int One of the following values
-1 Symbol does not exist.
0 Symbol not currently active. It cannot be referenced because it is out

of scope.
1 Symbol currently active. It is part of the local procedure, also called an

automatic variable.
2 Available on the stack. The symbol is not part of local procedure, and

is also called an external (active), global (active), or static automatic
variable (inactive, but containing stored memory contents).

Rules

The argument of isalive must be a variable that has no return value. The argument cannot be a
function.

Example

You can use the following syntax for the isalive keyword when checking the status of a variable
used in its argument.

CEXPRESSION isalive(xxx)
/* Returns -1 if the symbol xxx does not exist. */
ADD var1
CE isalive(var1)
/* Returns 1 since var1 is defined and active. */

Note
 The commands CEXPRESSION and CE are equivalent.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-12
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.8 return

Returns a value from a macro.

Syntax:

return [(]expression[)];

Description

The return statement is used to return a value from a macro. The expression is evaluated, and
the resulting value is returned to the caller. If a breakpoint macro returns a value of True, that is
nonzero, program execution continues. If it returns a value of False, that is zero, program
execution is halted. If a macro never returns a value, the macro_type must be declared as void
when it is defined.

Return Value

None

Rules

None

Example

This example shows how to use return in a macro:

define /R int value(x)
 int x;
{
 if (x > 0)
 return (x);
 else
 return(-1);
}
.

ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-13
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.9 sizeof

Returns the data type size in bytes.

Syntax

int sizeof(type_name)

where:

type_name The data type or variable for which the data size is to be determined.

Description

The sizeof keyword returns the data type size in bytes of a given variable or data type.

Return value

int The size of the data type in bytes.

Rules

None

Example

This example shows how to use sizeof in a macro:

define /R void saveData()
{
 char buffer[37];
 int retval;
 strcpy(buffer,"One \nTwo \nThree\nFour \nFive \nSix \n");
 fopen(100,"c:\\myfiles\\data.txt","w");
 retval = fwrite(buffer, 1, sizeof(buffer)-1, 100);
 $printf "%d bytes written\n",retval$;
 $vclose 100$;
}
.

ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-14
ID052111 Non-Confidential

RealView Debugger Keywords
4.2.10 while

Evaluates an expression and executes one or more statements until the expression evaluates to
False.

Syntax:

while (expression) /* while this expression is True */
{
 statement; /* execute this statement */
 [statement;]... /* and these additional statements */
}

where:

expression The expression to be evaluated at the start of each loop.

Description

The while statement evaluates an expression and executes the following statement or statements
until the expression evaluates to False.

The while statement must be followed by an expression in parentheses. As long as the
expression evaluates to True, all following statements are repeatedly executed. When the
expression evaluates to False, all statements are bypassed and execution continues at the next
statement outside the while loop. If you have more than one statement in the loop these must be
enclosed in curly braces ({}).

Return Value

None

Rules

None

Example

This example shows how to use while in a macro:

define /R void whileloop()
{
 int x;
 x = 1;
 while (1) {
 $printf "Iteration: %d\n", x$;
 if (x > 10) {
 $printf "Done!\n"$;
 break;
 } else if (x==5) {
 $printf "Halfway there...\n"$;
 }
 x++;
 }
}
.

See also
• break on page 4-5
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-15
ID052111 Non-Confidential

RealView Debugger Keywords
• continue on page 4-6
• do-while on page 4-7
• for on page 4-8.
ARM DUI 0175N Copyright © 2002-2011 ARM. All rights reserved. 4-16
ID052111 Non-Confidential

	RealView Debugger Command Line Reference Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on this product
	Feedback on this book

	Working with the CLI
	1.1 General command language syntax
	1.1.1 General syntax rules
	1.1.2 Command qualifiers and flags
	1.1.3 Command parameters
	1.1.4 Abbreviations

	1.2 Window and file numbers
	1.3 Using expressions and statements
	1.3.1 Expressions
	1.3.2 Keywords
	1.3.3 Predefined macros

	1.4 Command scripts
	1.4.1 Considerations when using command scripts
	1.4.2 Command script comments
	1.4.3 Example command script

	1.5 Macro language
	1.5.1 Macro definition
	1.5.2 Macro body
	1.5.3 Macro terminator
	1.5.4 Macro comments
	1.5.5 Macro local symbols

	1.6 Constructing expressions
	1.6.1 Types of debugger expressions
	1.6.2 Permitted symbol names
	1.6.3 Program symbols
	1.6.4 Debugger variable symbols
	1.6.5 Macro symbols
	1.6.6 Reserved symbols
	1.6.7 Operations on symbols and registers
	1.6.8 Addresses
	1.6.9 Expression strings

	1.7 Using variables in the debugger
	1.7.1 Scope
	1.7.2 Data types
	1.7.3 Root names
	1.7.4 Module names
	1.7.5 Variable references
	1.7.6 Stack references

	1.8 Source patching with macros
	1.8.1 Patching example to insert lines of source code
	1.8.2 Patching example to jump over lines of source code
	1.8.3 Patching example to re-implement a loop
	1.8.4 Patching example to emulate a serial port
	1.8.5 Other ways to use macros

	RealView Debugger Commands
	2.1 Command syntax definition
	2.1.1 Specifying address ranges

	2.2 Debugger commands listed by function
	2.2.1 Board file access
	2.2.2 Execution control
	2.2.3 Examining source files
	2.2.4 Program image management
	2.2.5 Target registers and memory
	2.2.6 Cache enquiries
	2.2.7 Status enquiries
	2.2.8 Macros and aliases
	2.2.9 CLI
	2.2.10 Program symbol manipulation
	2.2.11 Creating and writing to files and windows
	2.2.12 Processor tracing
	2.2.13 OS-aware debugging
	2.2.14 Miscellaneous

	2.3 Alphabetical command reference
	2.3.1 ADD
	2.3.2 ADDFILE
	2.3.3 ALIAS
	2.3.4 ANALYZER
	2.3.5 AOS_resource_list
	2.3.6 ARGUMENTS
	2.3.7 BACCESS
	2.3.8 BEXECUTION
	2.3.9 BGLOBAL
	2.3.10 BINSTRUCTION
	2.3.11 BOARD
	2.3.12 BREAD
	2.3.13 BREAK
	2.3.14 BREAKACCESS
	2.3.15 BREAKEXECUTION
	2.3.16 BREAKINSTRUCTION
	2.3.17 BREAKREAD
	2.3.18 BREAKWRITE
	2.3.19 BROWSE
	2.3.20 BWRITE
	2.3.21 CACHEFIND
	2.3.22 CACHEINFO
	2.3.23 CACHELINE
	2.3.24 CANCEL
	2.3.25 CCTRL
	2.3.26 CEXPRESSION
	2.3.27 CLEARBREAK
	2.3.28 COMPARE
	2.3.29 CONNECT
	2.3.30 CONTEXT
	2.3.31 COPY
	2.3.32 COREINFO
	2.3.33 CORESTATE
	2.3.34 CWD
	2.3.35 DBOARD
	2.3.36 DBREAK
	2.3.37 DCOMMANDS
	2.3.38 DEFINE
	2.3.39 DELBOARD
	2.3.40 DELETE
	2.3.41 DELFILE
	2.3.42 DHELP
	2.3.43 DISABLEBREAK
	2.3.44 DISASSEMBLE
	2.3.45 DISCONNECT
	2.3.46 DLOADERR
	2.3.47 DMAP
	2.3.48 DOS_resource_list
	2.3.49 DOWN
	2.3.50 DTBOARD
	2.3.51 DTBREAK
	2.3.52 DTFILE
	2.3.53 DTRACE
	2.3.54 DUMP
	2.3.55 DUMPMAP
	2.3.56 DVFILE
	2.3.57 EDITBOARDFILE
	2.3.58 EMURESET
	2.3.59 EMURST
	2.3.60 ENABLEBREAK
	2.3.61 ERROR
	2.3.62 ETM_CONFIG
	2.3.63 EXPAND
	2.3.64 FAILINC
	2.3.65 FILL
	2.3.66 FLASH
	2.3.67 FOPEN
	2.3.68 FPRINTF
	2.3.69 GO
	2.3.70 GOSTEP
	2.3.71 HALT
	2.3.72 HELP
	2.3.73 HOST
	2.3.74 HWRESET
	2.3.75 INCLUDE
	2.3.76 INTRPT
	2.3.77 JOURNAL
	2.3.78 JUMP
	2.3.79 LIST
	2.3.80 LOAD
	2.3.81 LOG
	2.3.82 MACRO
	2.3.83 MEMMAP
	2.3.84 MEMWINDOW
	2.3.85 MMAP
	2.3.86 MODE
	2.3.87 MONITOR
	2.3.88 NOMONITOR
	2.3.89 ONSTATE
	2.3.90 OPTION
	2.3.91 OS action commands
	2.3.92 OS resource commands
	2.3.93 OSCTRL
	2.3.94 PAUSE
	2.3.95 PRINTDSM
	2.3.96 PRINTF
	2.3.97 PRINTSYMBOLS
	2.3.98 PRINTTYPE
	2.3.99 PRINTVALUE
	2.3.100 PROPERTIES
	2.3.101 PS
	2.3.102 PT
	2.3.103 PWD
	2.3.104 QUIT
	2.3.105 READBOARDFILE
	2.3.106 READFILE
	2.3.107 REEXEC
	2.3.108 REGINFO
	2.3.109 RELOAD
	2.3.110 RESET
	2.3.111 RESETBREAKS
	2.3.112 RESTART
	2.3.113 RSTBREAKS
	2.3.114 RUN
	2.3.115 RVDCONTEXT
	2.3.116 SCOPE
	2.3.117 SEARCH
	2.3.118 SETFLAGS
	2.3.119 SETMEM
	2.3.120 SETREG
	2.3.121 SETTINGS
	2.3.122 SHOW
	2.3.123 SINSTR
	2.3.124 SM
	2.3.125 SOINSTR
	2.3.126 SOVERLINE
	2.3.127 SR
	2.3.128 STATS
	2.3.129 STDIOLOG
	2.3.130 STEPINSTR
	2.3.131 STEPLINE
	2.3.132 STEPOINSTR
	2.3.133 STEPO
	2.3.134 STOP
	2.3.135 SYNCHACTION
	2.3.136 SYNCHEXEC
	2.3.137 TEST
	2.3.138 THREAD
	2.3.139 TRACE
	2.3.140 TRACEBUFFER
	2.3.141 TRACEDATAACCESS
	2.3.142 TRACEDATAREAD
	2.3.143 TRACEDATAWRITE
	2.3.144 TRACEEXTCOND
	2.3.145 TRACEINSTREXEC
	2.3.146 TRACEINSTRFETCH
	2.3.147 UNLOAD
	2.3.148 UP
	2.3.149 VA2PA
	2.3.150 VCLEAR
	2.3.151 VCLOSE
	2.3.152 VERIFYFILE
	2.3.153 VMACRO
	2.3.154 VOPEN
	2.3.155 VSETC
	2.3.156 WAIT
	2.3.157 WARMSTART
	2.3.158 WHERE
	2.3.159 WINDOW
	2.3.160 WRITEFILE
	2.3.161 XTRIGGER

	RealView Debugger Predefined Macros
	3.1 Predefined macros listed by function
	3.1.1 Access data values at an address
	3.1.2 Flow control statements
	3.1.3 File and window access
	3.1.4 String manipulation
	3.1.5 Memory manipulation
	3.1.6 Cache statistics
	3.1.7 User interaction macros
	3.1.8 Miscellaneous

	3.2 Alphabetical predefined macro reference
	3.2.1 atoi
	3.2.2 atol
	3.2.3 atoul
	3.2.4 byte
	3.2.5 cache_find_set
	3.2.6 cache_find_way
	3.2.7 dword
	3.2.8 error
	3.2.9 fclose
	3.2.10 fgetc
	3.2.11 fopen
	3.2.12 fputc
	3.2.13 fread
	3.2.14 fwrite
	3.2.15 getsym
	3.2.16 isdigit
	3.2.17 islower
	3.2.18 isprint
	3.2.19 isspace
	3.2.20 isupper
	3.2.21 itoa
	3.2.22 memchr
	3.2.23 memclr
	3.2.24 memcpy
	3.2.25 memset
	3.2.26 prompt_file
	3.2.27 prompt_list
	3.2.28 prompt_text
	3.2.29 prompt_yesno
	3.2.30 prompt_yesno_cancel
	3.2.31 reg_str
	3.2.32 strcat
	3.2.33 strchr
	3.2.34 strcmp
	3.2.35 strcpy
	3.2.36 stricmp
	3.2.37 strlen
	3.2.38 strncmp
	3.2.39 strtolower
	3.2.40 strtoupper
	3.2.41 strtrim
	3.2.42 tolower
	3.2.43 toupper
	3.2.44 until
	3.2.45 when
	3.2.46 word

	RealView Debugger Keywords
	4.1 Keywords listed by function
	4.1.1 Data type keywords
	4.1.2 Conditional statement keywords
	4.1.3 Flow control keywords
	4.1.4 Miscellaneous keywords

	4.2 Alphabetical keyword reference
	4.2.1 break
	4.2.2 continue
	4.2.3 do-while
	4.2.4 for
	4.2.5 if
	4.2.6 if-else
	4.2.7 isalive
	4.2.8 return
	4.2.9 sizeof
	4.2.10 while

