

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved.

 Non Confidential

ARM Processor
Cortex

TM
-R5 and Cortex-R5F

Product Revision r1

Software Developers Errata Notice

Non-Confidential - Released

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 2 of 19

 Non Confidential

Software Developers Errata Notice

Copyright © 2016 ARM. All rights reserved.

Non-Confidential Proprietary Notice

This document is protected by copyright and the practice or implementation of the information herein may be protected

by one or more patents or pending applications. No part of this document may be reproduced in any form by any means

without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to any

intellectual property rights is granted by this document.

This document is Non-Confidential but any disclosure by you is subject to you providing the recipient the conditions

set out in this notice and procuring the acceptance by the recipient of the conditions set out in this notice.

Your access to the information in this document is conditional upon your acceptance that you will not use, permit or

procure others to use the information for the purposes of determining whether implementations infringe your rights or

the rights of any third parties.

Unless otherwise stated in the terms of the Agreement, this document is provided “as is”. ARM makes no

representations or warranties, either express or implied, included but not limited to, warranties of merchantability,

fitness for a particular purpose, or non-infringement, that the content of this document is suitable for any particular

purpose or that any practice or implementation of the contents of the document will not infringe any third party patents,

copyrights, trade secrets, or other rights. Further, ARM makes no representation with respect to, and has undertaken no

analysis to identify or understand the scope and content of such third party patents, copyrights, trade secrets, or other

rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,

INCLUDING WITHOUT LIMITATION ANY DIRECT LOSS, LOST REVENUE, LOST PROFITS OR DATA,

SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED

AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY

FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Words and logos marked with ® or TM are registered trademarks or trademarks, respectively, of ARM Limited. Other

brands and names mentioned herein may be the trademarks of their respective owners. Unless otherwise stated in the

terms of the Agreement, you will not use or permit others to use any trademark of ARM Limited.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or

disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or

any portion thereof is not exported, directly or indirectly, in violation of such export laws.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as

appropriate”.

Copyright © 2012 ARM Limited

110 Fulbourn Road, Cambridge, England CB1 9NJ. All rights reserved.

Web Address

http://www.arm.com

Feedback on content

If you have any comments on content, then send an e-mail to errata@arm.com . Give:

 the document title

 the document number, ARM-EPM-012129

 the page numbers to which your comments apply

 a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

http://www.arm.com/
mailto:errata@arm.com

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 3 of 19

 Non Confidential

Release Information

Errata are listed in this section if they are new to the document, or marked as “updated” if there has been any change to the erratum

text in Chapter 2. Fixed errata are not shown as updated unless the erratum text has changed. The summary table in section 2.2

identifies errata that have been fixed in each product revision.

08 Jan 2016: Changes in Document v3

Page Status ID Cat Rare Summary of Erratum

14 New 853474 CatB Rare Self-modifying code in non-cacheable memory might not work with a slow

memory system

20 Jun 2012: Changes in Document v2

Page Status ID Cat Rare Summary of Erratum

12 New 780125 CatB Rare Processor might deadlock or lose data when configured with cache-ECC

24 Apr 2012: Changes in Document v1

Page Status ID Cat Rare Summary of Erratum

8 New 752270 CatB A store exclusive performed to the AXI peripheral port may return an incorrect
status

9 New 761669 CatB ACP coherency can fail when relying only on address dependency ordering or out-

of-memory communication ordering

11 New 772721 CatB Rare In Standby Mode, peripheral port may lose read transactions

15 New 753369 CatC Register corruption during a load-multiple instruction at an exception vector

16 New 756523 CatC Watchpointed access in a store-multiple is not masked

17 New 758471 CatC Watchpoint on a load or store multiple may be missed

18 New 758472 CatC Incorrect read data may be returned for a load to the D-cache

19 New 773269 CatC Correctable TCM ECC errors can additionally signal fatal TCM-centric events

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 4 of 19

 Non Confidential

Contents

CHAPTER 1. 5

INTRODUCTION 5

1.1. Scope of this document 5

1.2. Categorization of errata 5

CHAPTER 2. 6

ERRATA DESCRIPTIONS 6

2.1. Product Revision Status 6

2.2. Revisions Affected 6

2.3. Category A 7

2.4. Category A (Rare) 7

2.5. Category B 8

752270: A store exclusive performed to the AXI peripheral port might return an incorrect status 8

761669: ACP coherency can fail when relying only on address dependency ordering or out-of-memory

communication ordering ... 9

2.6. Category B (Rare) 11

772721: In Standby Mode, peripheral port may lose read transactions .. 11

780125: Processor might deadlock or lose data when configured with cache-ECC ... 12

853474: Self-modifying code in non-cacheable memory might not work with a slow memory system 14

2.7. Category C 15

753369: Register corruption during a load-multiple instruction at an exception vector 15

756523: Watchpointed access in a store multiple is not masked .. 16

758471: Watchpoint on a load or store multiple might be missed .. 17

758472: Incorrect read data might be returned for a load to the D-cache ... 18

773269: Correctable TCM ECC errors can additionally signal fatal TCM-centric events 19

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 5 of 19

 Non Confidential

Chapter 1.

Introduction

This chapter introduces the errata notice for the ARM Cortex-R5 and Cortex-R5F processors.

1.1. Scope of this document

This document describes errata categorized by level of severity. Each description includes:

 the current status of the defect

 where the implementation deviates from the specification and the conditions under which erroneous behavior

occurs

 the implications of the erratum with respect to typical applications

 the application and limitations of a ‘work-around’ where possible

This document describes errata that may impact anyone who is developing software that will run on implementations of

this ARM product.

1.2. Categorization of errata

Errata recorded in this document are split into the following levels of severity:

Table 1 Categorization of errata

Errata Type Definition

Category A
A critical error. No workaround is available or workarounds are impactful. The error

is likely to be common for many systems and applications.

Category A(rare)

A critical error. No workaround is available or workarounds are impactful. The error

is likely to be rare for most systems and applications. Rare is determined by analysis,

verification and usage.

Category B
A significant error or a critical error with an acceptable workaround. The error is

likely to be common for many systems and applications.

Category B(rare)

A significant error or a critical error with an acceptable workaround. The error is

likely to be rare for most systems and applications. Rare is determined by analysis,

verification and usage.

Category C A minor error.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 6 of 19

 Non Confidential

Chapter 2.

Errata Descriptions

2.1. Product Revision Status

The rnpn identifier indicates the revision status of the product described in this book, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

2.2. Revisions Affected

Table 2 below lists the product revisions affected by each erratum. A cell marked with X indicates that the erratum

affects the revision shown at the top of that column.

This document includes errata that affect revision r1 only.

Refer to the reference material supplied with your product to identify the revision of the IP.

Table 2 Revisions Affected

ID Cat Rare Summary of Erratum
r
1

p
0

r
1

p
1

r
1

p
2

r
1

p
3

761669 CatB ACP coherency can fail when relying only on address dependency ordering or out-

of-memory communication ordering

X X

752270 CatB A store exclusive performed to the AXI peripheral port might return an incorrect

status

X

853474 CatB Rare Self-modifying code in non-cacheable memory might not work with a slow

memory system

X X X X

780125 CatB Rare Processor might deadlock or lose data when configured with cache-ECC X X X X

772721 CatB Rare In Standby Mode, peripheral port may lose read transactions X X X

773269 CatC Correctable TCM ECC errors can additionally signal fatal TCM-centric events X X X

758472 CatC Incorrect read data might be returned for a load to the D-cache X X

758471 CatC Watchpoint on a load or store multiple might be missed X X

756523 CatC Watchpointed access in a store multiple is not masked X X X X

753369 CatC Register corruption during a load-multiple instruction at an exception vector X

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 7 of 19

 Non Confidential

2.3. Category A

There are no errata in this category

2.4. Category A (Rare)

There are no errata in this category

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 8 of 19

 Non Confidential

2.5. Category B

 752270: A store exclusive performed to the AXI peripheral port might return an incorrect

status

Category B

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0

Description

Cortex-R5 can perform exclusive accesses on its AXI peripheral interface and virtual AXI peripheral interface in

response to an exclusive access instruction. A store exclusive instruction should return a status field that depends on the

response of the exclusive access on the bus. Because of this erratum, the status field returned might be incorrect.

Configurations Affected

Systems with memory attached to the Cortex-R5 AXI peripheral port which is shared by other masters. This includes

systems with one memory accessed by both CPUs in a twin-CPU Cortex-R5 processor.

Conditions

1) The relevant AXI peripheral interface must be enabled and

2) A STREX or STREXB or STREXH instruction must be executed with the following properties:

 The destination address must be in a shared memory region as defined by the MPU and

 The destination address must be within the relevant AXI peripheral interface region of the memory map and

 The internal exclusive access monitor must be in the exclusive state when the store exclusive instruction is

executed.

Implications

Exclusive accesses to shared memory locations are typically used in semaphores to coordinate multiple masters

accessing the same memory location. Because of this erratum, the store exclusive part of the exclusive pair always

appears to have failed. This is likely to cause livelock, because software is typically written to wait indefinitely until the

store exclusive passes.

Note that exclusive accesses to non-shared memory locations are unaffected by this erratum. Therefore, single master

systems that only need synchronization between multiple threads or processes running on the same CPU can function

correctly.

Workaround

There are two workarounds for this erratum:

1) Use non-shared memory for all exclusive accesses on the AXI peripheral and virtual AXI peripheral interfaces.

This is possible if the memory in question does not need to be accessible by multiple masters in the system.

2) Use SWP and SWPB instead of the exclusive instructions to implement the required synchronization.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 9 of 19

 Non Confidential

 761669: ACP coherency can fail when relying only on address dependency ordering or out-

of-memory communication ordering

Category B

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0, r1p1

Description

Cortex-R5 implements an accelerator coherency port (ACP) which enables coherency between processor non-cached or

write-through cached regions and read/writes performed through said ACP port.

The coherency scheme is designed to allow a master attached to the ACP to determine that any write it performs is

visible to the processor once the ACP port returns the BRESP acknowledgment associated to said write.

This permits an ACP attached master to signal the processor, via an interrupt or a subsequent memory write, that it can

now safely and coherently access any data previously written by said master, or to guarantee the order of visibility of

memory writes to the processor.

An erratum exists within the Cortex-R5 store-buffer which can, under timing and transaction dependent conditions,

result in the processor being temporarily able to read out-of-date data previously written by the core but subsequently

over-written by a transaction through the ACP, producing a condition incompatible with the previously described

coherency scheme.

The processor architecture requires the use of a data memory barrier (DMB) to enforce load/store ordering in the

majority of cases and the execution of a DMB rectifies the stale-data issue within the store-buffer. As a result, the

erroneous effects of this erratum are therefore limited to two specific cases:

1) An interrupt issued to, and taken by, the processor in response to an ACP write BRESP acknowledgement is not

sufficient by itself to guarantee that all ACP writes before said BRESP will be visible to code executing in the

processor's interrupt handler.

2) A pair of ordered ACP writes, requiring the address request of one to have been performed after receiving the

BRESP acknowledgement of the other, may expose the defect if subsequently accessed via a pair of loads on the

processor whose order is guaranteed only by an address dependency. That is to say the data from the first load

matches the data from the second ACP write, the address of the second load is a function of the data from the first

load and the value read by the second load is from the same memory location as that written by the first ACP

write; under this scenario, the erratum makes it possible for the processor to potentially return out-of-date data for

the second load.

The effect of this erratum can be masked through draining the store-queue by the insertion of a single DMB (or DSB)

instruction either, in case 1, at any point between entering the interrupt handler and reading a memory location written

by the ACP, or, in case 2, between the first and second load.

Conditions

The erratum requires one of the following coherent interactions between the processor (P1) and an external ACP

connected master (E) to be used in observing memory ordering between P1 and E:

 1. Interrupt enforced ordering:

 P1:

 Write A

 E:

 Read A (see P1's)

 Write A

 DSB (see BRESP for write)

 IRQ P1

 P1:

 Take IRQ

 Read A (can see P1's) // Should always see E's

or:

 2. Address dependency ordering:

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 10 of 19

 Non Confidential

 P1:

 Write A

 E:

 Read A (see P1's)

 Write A

 DMB (see BRESP for write)

 Write B

 P1:

 Read B (see E's)

 <address dependency between Read B and Read A>

 Read A (can see P1's) // Should always see E's

Note that the conditions additionally require a rare timing interaction resulting from P1 both reading and writing within

the same 64-bit granule as A in close temporal proximity to E's "Write A", i.e. the sequences above executed in

isolation cannot trigger the failure.

Implications

Under the conditions listed above, it is not possible to rely on the visible ordering between ACP and processor accesses

being coherent when enforced only via an interrupt triggered in response to an ACP BRESP, or via address-dependency

ordered loads from locations written in order via the ACP.

Workaround

For interrupt related cases, the addition of a DMB between entering the interrupt handler and accessing any data written

by the ACP will re-establish order.

For address-dependency ordered processor loads from locations written via the ACP, the addition of a DMB between

the loads will re-establish order.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 11 of 19

 Non Confidential

2.6. Category B (Rare)

 772721: In Standby Mode, peripheral port may lose read transactions

Category B Rare

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0, r1p1, r1p2

Description

The Cortex-R5 processor implements 32-bit AXI and AHB peripheral ports which can be used as an alternative master

for all types of memory transactions apart from instruction fetches and certain doubleword accesses. The processor also

implements Standby Mode, entered by executing a Wait-For-Interrupt (WFI) or Wait-For-Event (WFE) instruction. In

Standby Mode the processor stops executing instructions and also stops the clock to most of the logic. Because of this

erratum, if an AXI peripheral port read transaction has been interrupted it can be continually presented on the bus or it

can ignore responses from the slave.

Configurations Affected

The processor has Normal memory attached to the AXI peripheral port (as distinct from Devices).

Conditions

1) DBGNOCLKSTOP is not asserted, and

2) The CPU initiates a read via the AXI peripheral interface or the AXI virtual peripheral interface at an address

which is marked as Normal-type memory, and

3) Before the read has completed, the CPU recognizes and takes an asynchronous exception (interrupt, asynchronous

abort or debug entry request), and

4) The CPU subsequently executes WFI or WFE to enter Standby Mode, and

5) Either:

1. The address for the transaction has not been accepted before the CPU gates its clock or,

2. The read data for the transaction is returned while the CPU has its clock gated or,

3. The CPU is reset and the read data is returned after the CPU has restarted.

Note: Because the CPU discards any read data, and because the AHB protocol requires the slave to retain HREADY

asserted when the bus is idle, this erratum does not affect the AHB peripheral interface.

Implications

If this erratum occurs, data read from Normal memory on the AXI peripheral port might be corrupted or the CPU might

deadlock.

This erratum cannot occur in systems where interrupt handlers and asynchronous abort handlers return to re-execute the

interrupted instruction (that is, they do not switch context), and the handler code does not itself execute WFI or WFE.

Workaround

It is possible to avoid this erratum by marking the whole of the AXI peripheral interface address space as Device-type

memory. If the CPU is configured with an MPU, you can achieve this by programming the MPU region registers

appropriately.

Alternatively, you can work around this erratum by executing a load to a peripheral port address upon entering any

interrupt or asynchronous abort handler routine, before any WFI/WFE or the exception return.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 12 of 19

 Non Confidential

 780125: Processor might deadlock or lose data when configured with cache-ECC

Category B Rare

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0, r1p1, r1p2, r1p3

Description

The Cortex-R5 processor contains a 4-entry store buffer which buffers, merges and forwards data before it is written to

the cache or the L2 memory system using the AXI-master interface. Because of this erratum it is possible for the store

buffer to enter a state in which no existing writes will proceed. The effect of this state is either:

 The pipeline backs-up preventing any instruction execution or

 If a specific sequence of accesses is performed, execution resumes but write data is lost.

Configurations Affected

This erratum only affects processors configured with ECC on the data-cache and with at least one accessible region of

memory that has Inner Write-Back Cacheable and Non-shareable attributes.

Configurations

Either of the following sequences of conditions is required for this erratum to occur:

1) The processor is implemented with data-cache ECC, and cache-ECC is enabled, and

2) The processor accesses a memory location that misses in the L1 data cache and causes a cache line to be read and

allocated and

3) The processor performs a write to a Write-Back Cacheable location that hits before and misses after the linefill in

step [2]. This write performs its cache lookup in the cycle before the line is reallocated by [2] and

4) The processor subsequently performs a read and a write to the same cache line as the write in step [3]. This read

and write can occur in either order. The write is to a different doubleword than the write in step [3].

or:

1) The processor is implemented with data-cache ECC, and cache-ECC is enabled, and

2) The processor reads a Write-Back Cacheable memory location that misses in the L1 data cache and causes a cache

line to be read and allocated but does not detect any ECC errors and

3) The processor performs a write to the same cache line as the read in step [2]. When the address is looked up in the

cache it appears to hit because of an ECC error in the tag-RAM and

4) The processor subsequently performs a further write to the same cache line as the read in step [2], but not the same

doubleword as the write in step [3].

5) A subsequent speculative cache read also detects an ECC error. This read can be to the same cache set and

therefore detect the same error, or a different set that requires a second ECC error for this condition to be met.

In addition, both sets of conditions require specific timing relationships between the two accesses and are therefore

affected by the timing of transactions on the AXI bus and the status of other ongoing writes in the store buffer.

Deadlock will not occur if either of the above sequences is followed by:

1) A read that misses in the cache and causes a linefill and

2) Two or more writes to the same cache line as the read in [1]. The two writes must be to different doublewords but

one can be to the same doubleword as the read in [1]. A single store instruction can generate two such writes if it

is not naturally aligned.

If this happens, some of the write data might be lost. Also, a following Non-cacheable or Device write might be

allocated into the cache.

Note: all numerical cross-references above refer to items within the same list as the reference.

Implications

If this erratum occurs the processor will either deadlock or lose data. When deadlocked, the processor can take an

interrupt but data loss or deadlock will eventually occur in the handler code.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 13 of 19

 Non Confidential

This erratum is categorized as rare partially based on empirical evidence from a large number of parts in the field. This

issue has only been seen on one project and in that case the time to failure is long and variable.

Workaround

You can avoid this erratum by setting ACTLR.DBWR (bit [14]) to 1. This setting disables an optimization to the

internal transfer of bursts of write data to Normal memory. This setting also disables generation of AXI bursts by the

processor for Write-Through and Non-cacheable Normal memory, but not Write-Back memory. Setting this bit to 1

might reduce the performance of writes to Normal memory by the processor. In benchmarking, the average

performance reduction is less than 1% but routines that perform large block writes such as memset or memcpy show

substantially more significant impacts. The impact of the workaround on memset and memcpy is strongly dependent on

the performance and characteristics of the L2 memory system and on the exact instruction sequence used.

If your application permits it you can also avoid this erratum by disabling cache-ECC. Set ACTLR.CEC (bits [5:3]) to

b100. This workaround does not reduce the performance of the processor, but disabling ECC has implications for

reliability.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 14 of 19

 Non Confidential

 853474: Self-modifying code in non-cacheable memory might not work with a slow memory

system

Category B Rare

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0, r1p1, r1p2, r1p3

Description

If a program executing on a processor writes to a non-cacheable memory location that it subsequently executes an

instruction from, it must issue DSB and ISB to ensure that the updated instruction is executed. Because of this erratum

this sequence might not be sufficient to prevent the processor executing the old instruction or a corrupted instruction.

Configurations Affected

This erratum affects all configurations. However, it can only occur if the memory system connected to the AXI-master

port is capable of returning some data for a read burst and then completing a write to the same location before the last

beat of the read burst is returned.

Conditions

In order for this erratum to occur, the following steps must occur, in the order 1-2-3-4 or 2-1-3-4, but not necessarily

consecutively, i.e. other instructions may be executed between the steps listed:

1) The processor initiates a speculative instruction fetch from a 32-byte aligned block which is in non-cacheable

memory (that is, the MPU has marked it as non-cacheable or the instruction cache is disabled) that is not in TCM.

2) The processor executes a store which writes to a location within the block (but not within the last n-bytes of the

block, where n-bytes is the width of the memory servicing the request). The write occurs in the memory after the

read to the same location has been returned.

3) The processor executes DSB-ISB as required by the architecture.

4) The processor executes an instruction which was written by the store, before the initial read transaction completes.

This implies that there is a noticeable delay between completion of the individual beats of the transaction in [1].

Note: The processor can only fetch instructions on the AXI-master port from one 32-byte aligned block at a time. If any

instruction is executed between [3] and [4] which is in a different 32-byte aligned block to [1] and is non-cacheable or

misses in the instruction cache, then this erratum will not occur. This implies that the modified instruction must be

executed soon after it has been modified.

Implications

When this erratum occurs the processor will execute a stale instruction or a corrupt instruction, which is likely to result

in incorrect operation of the program, potentially including program flow corruption.

Workaround

This erratum can be avoided by ensuring that at least one instruction, fetched from non-cacheable memory which is not

in the same 32-byte naturally aligned block as the modified instruction, is executed between the ISB which

synchronizes the code modification and the modified instruction. ARM recommends inserting a BLX to such a location

which contains a BX lr that will return immediately.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 15 of 19

 Non Confidential

2.7. Category C

 753369: Register corruption during a load-multiple instruction at an exception vector

Category C

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0

Description

In certain circumstances, a load multiple instruction can cause corruption of a general purpose register.

Conditions

All the following conditions are required for this erratum to occur:

1) A UDIV or SDIV instruction is executed with out-of-order completion of divides enabled

2) A multi-cycle instruction is partially executed before being interrupted by either an IRQ, FIQ or imprecise abort. In

this case, a multi-cycle instruction can be any of the following:

 LDM/STM that transfers three or more registers

 LDM/STM that transfers two registers to an unaligned address without write back

 LDM/STM that transfers two registers to an aligned address with write back

 TBB/TBH

3) A load multiple instruction executes as the first instruction of the exception handler

4) The load multiple instruction itself is interrupted either by an IRQ, FIQ, imprecise abort or external debug halt

request

This erratum is very timing sensitive and requires the UDIV or SDIV to complete when the load multiple is in the Issue

stage of the CPU pipeline. The register that is corrupted is not necessarily related to the load-multiple instruction and

depends on the state in the CPU store pipeline when the UDIV or SDIV completes.

Implications

For practical systems, it is unlikely that an interruptible LDM executes as the first instruction of an exception handler,

because the handler is usually required to save the registers of the interrupted context. Therefore, it is unlikely that this

erratum has any implications for practical systems.

If this erratum occurs it will corrupt the register bank state and could cause a fatal failure if the corrupted register is

subsequently read before being written.

Workaround

To workaround this erratum, set bit [7] of the Auxiliary Control Register to disable out-of-order completion for divide

instructions. Code performance might be reduced depending on how often divide operations are used.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 16 of 19

 Non Confidential

 756523: Watchpointed access in a store multiple is not masked

Category C

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0, r1p1, r1p2, r1p3

Description

Cortex-R5 implements synchronous watchpoints. A synchronous watchpoint generated during a store multiple

instruction must ensure that the watchpointed accesses does not perform writes on the bus to update memory. Because

of this erratum this requirement is not met and the processor incorrectly updates memory for a watchpointed access.

Conditions

All the following conditions are required for this erratum to occur:

1) A store multiple instruction executes with at least two registers to be stored

2) The store multiple instruction writes to memory defined as Strongly-Ordered or Device

3) A watchpoint hit is generated for any access in the store multiple except for the first access

4) The watchpoint hit is generated for an access with address bits[4:0] != 0x0

In these cases the store multiple continues to perform writes until either the end of the store multiple or the end of the

current cache line.

Implications

Because of this erratum, the memory contents of the watchpointed address are updated before the debug event can be

recognized. This means that a debugger:

1) Cannot always assume memory has not been updated when a watchpoint generates a debug event

2) Cannot prevent an access by setting a watchpoint on it.

The ARM architecture recommends not to set watchpoints on individual device or strongly ordered addresses that can

be accessed as part of a load or store multiple. Instead, it recommends the use of the address range masking

functionality provided to set watchpoints on an entire region, ensuring that the watchpoint event is seen on the first

access of a load or store multiple to this region.

This erratum will not occur if you follow this recommendation.

Workaround

There is no workaround for this erratum.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 17 of 19

 Non Confidential

 758471: Watchpoint on a load or store multiple might be missed

Category C

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0, r1p1

Description

Cortex-R5 supports synchronous watchpoints. This implies that for load and store multiples, a watchpoint on any

memory access generates a debug event on the instruction itself. Because of this erratum, certain watchpoint hits on

multiples do not generate a debug event.

Conditions

All the following conditions are required for this erratum to occur:

1) A load or store multiple instruction is executed with at least five registers in the register list and

2) The address range accessed corresponds to Strongly-ordered or Device memory and

3) A watchpoint match is generated for an access that does not correspond to either the first two or the last two

registers in the list.

Under these conditions the processor loses the watchpoint. Note that for a store multiple instruction, the conditions are

also affected by pipeline state, making them timing sensitive.

Implications

Because of this erratum a debugger might not be able to correctly watch accesses made to Device or Strongly-ordered

memory.

The ARM architecture recommends that watchpoints should not be set on individual Device or Strongly-ordered

addresses that can be accessed as part of a load or store multiple. Instead, it recommends the use of the address range

masking functionality provided to set watchpoints on an entire region, ensuring that the watchpoint event is seen on the

first access of a load or store multiple to this region.

This erratum will not occur if you follow this recommendation.

Workaround

There is no work around for this erratum.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 18 of 19

 Non Confidential

 758472: Incorrect read data might be returned for a load to the D-cache

Category C

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0, r1p1

Description

Cortex-R5 implements an optional data-cache that, if implemented, can be enabled and disabled under the control of

privileged software. Because of this erratum, under certain limited and timing-sensitive conditions, the act of enabling

the D-cache might result in a subsequent load instruction returning incorrect data.

Conditions

All of the following conditions are required for this erratum to occur:

1) The Cortex-R5 is implemented with a data-cache and

2) While the cache is disabled, one or more stores are performed to a region of memory that is defined as being

Normal and

3) The cache is subsequently enabled and

4) A Load Exclusive instruction is performed such that all bytes read by the load were written by a combination of

the previous stores and the address is to a Normal, Non-Shared and Cacheable region of memory.

The exact conditions for this erratum are very timing sensitive and require the store buffer slot containing the store data

to be attempting to drain onto the bus when the linefill for the load exclusive is initiated. For this to happen, the load

exclusive instruction must occur just after the cache is enabled because otherwise the store buffer slot is likely to have

drained.

When this erratum occurs, the load exclusive instruction returns the correct data but corrupts some internal processor

state which might result in a subsequent load performed to a non-TCM region of memory returning incorrect data.

Implications

Due to this erratum a load instruction may return incorrect data causing unrecoverable failure.

This erratum is considered to be very unlikely to occur in practice as the execution of stores to the same address as a

subsequent load exclusive is unlikely to occur around the D-cache being enabled.

Workaround

This erratum can be avoided by executing a DSB instruction either before or after the D-cache is enabled but before any

subsequent accesses to Cacheable regions of memory.

Note that the pair of instructions to enable the D-cache and execute a DSB are not atomic and an interrupt can be taken

between them. This means that the code executed in the interrupt handlers must also be considered when evaluating if

this erratum can occur. If required, interrupts must be masked when enabling the D-cache.

Cortex-R5 and Cortex-R5F Software Developers Errata Notice

ARM-EPM-012129 v3.0 Released Copyright © 2016 ARM. All rights reserved. Page 19 of 19

 Non Confidential

 773269: Correctable TCM ECC errors can additionally signal fatal TCM-centric events

Category C

Products Affected: Cortex-R5, Cortex-R5F.

Present in: r1p0, r1p1, r1p2

Description

Each CPU in the Cortex-R5 processor generates a number of events which are visible on the primary outputs

EVNTBUSm and can be counted by the performance monitor event counters. A number of these events indicate when

ECC errors have been detected by the CPU, different events distinguishing whether the errors occurred in ATCM,

B0TCM, B1TCM or cache, and whether they are correctable or fatal. TCM errors generate two sets of events, CPU-

centric events which indicate the actual errors the CPU dealt with, and TCM-centric events which have a fixed timing

relative to the TCM access but may be signaled on some speculative accesses.

Because of this erratum the CPU might, in rare circumstances, signal a TCM-centric fatal error event spuriously. This

erratum does not affect CPU-centric error events and TCM-centric correctable error events.

Conditions

The following conditions are all required for this erratum to occur:

1) The Cortex-R5 processor is configured with at least one TCM port with 64-bit ECC, and ECC checking and

correction is enabled.

2) Out-of-order completion of integer divide, single-precision floating point divide or square root or double-precision

floating point arithmetic instructions is enabled. This is the default setting.

3) The AXI-slave interface is being used to access a TCM which is configured with 64-bit ECC.

The remaining conditions relate to the micro-architectural state of the CPU and are therefore complex to determine at

the system or programmer's level. These conditions render the erratum very rare and include:

1) The erratum can only occur when a 1-bit ECC error is detected on an instruction fetch from the TCM.

2) The erratum can only occur when a read from the AXI-slave interface has been denied access to the TCM for

fifteen access cycles because the CPU i-side or d-side have made back-to-back accesses to the same TCM and

these take priority.

If these conditions occur, the CPU incorrectly signals a fatal ECC error event using EVNTBUSm[39:37] and by

incrementing the performance monitor if the corresponding event (0x64, 0x65 or 0x66) is selected. This event is in

addition to the correctable ECC error events generated from the detected error which are correctly signaled for the

instruction fetch and the associated correction.

Implications

Many systems use error events for logging or statistics generation. In these systems this erratum means that the

generated statistics are slightly inaccurate. This might lead, for example, to self-test routines being run more frequently

than would otherwise be expected.

Systems which use fatal error events to initiate more invasive behaviours, such as restarting or shutting down the CPU,

are expected to use the CPU-centric events which do not signal on speculative accesses. Such systems will not be

affected by this erratum.

Workaround

This erratum can be avoided by disabling all out-of-order instruction execution, which can be controlled using the CP15

Auxiliary Control Register. Set ACTLR.sMOV (bit [10]) and, if the CPU is configured with floating-point,

ACTLR2.DOODPFP and ACTLR2.DOOFMACS (bits [17:16]). If you use this workaround it might reduce the

performance of code which uses floating point or divide instructions.

