
Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 1 of 39

Non-confidential

Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624)

Software Developer Errata Notice

This document contains all known errata since the r0p0 release of the product.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 2 of 39

Non-confidential

Non-Confidential Proprietary notice
This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of Arm.
No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade
secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in
reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other company.
Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed
written agreement covering this document with Arm, then the click through or signed written agreement prevails over
and supersedes the conflicting provisions of these terms. This document may be translated into other languages
for convenience, and you agree that if there is any conflict between the English version of this document and any
translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/
company/policies/trademarks.

Copyright © 2016-2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status
This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this
document to.

Web address
http://www.arm.com/.

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
http://www.arm.com/

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 3 of 39

Non-confidential

Feedback on this product
If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if

appropriate.

Feedback on this document
If you have comments on content then send an e-mail to errata@arm.com giving:

• The document title.
• The document number: SDEN-756493.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

mailto:errata@arm.com

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 4 of 39

Non-confidential

Contents
INTRODUCTION 5

ERRATA SUMMARY TABLE 9

764623 Pended derived NOCP fault on taking a Non-secure interrupt from Secure state fails to stack
callee registers

11

784769 CLRONRET functionality will not work as expected 13

789130 Processor might behave incorrectly when the FPU is powered down into retention 14

839443 Cortex-M33 DWT trace is corrupted when trace buffers are full and can potentially deadlock
the PE

15

770545 Integrity signature fault might be ignored during exception unstacking when the core should
lockup

16

778249 AIRCR.BFHFNMINS update does not change security state for faults when DHCSR.C_HALT
is set or when NMI pended when current execution priority is -2 or -3

18

787405 NOCP Usage fault is not generated for coprocessor instructions when disabled by
CPPWR.SUn

19

788875 Debug accesses to FPU registers are incorrect if CPACR.CP10 is disabled 20

795154 MTB trace might be incorrect when the processor enters lockup state 21

796137 Conditional trace can be incorrect if FPU is not present 22

797273 ETM Exception Return addresses are incorrect for some lockup exceptions 23

801633 Processor cannot exit SLEEP when debug wakeup is not active long enough to be detected 24

803047 AIRCR.BFHFNMINS update does not change fault security state when CPUWAIT is set out
of reset

25

811381 Halting debug steps two consecutive exception entry sequences 26

812148 MTB trace might be incorrect when the processor receives NMI while it executes faulting
instruction leading to lockup

27

832634 Cortex-M33 reads an incorrect DAP AP IDR value 28

836306 DebugMonitor stepping does not step the next instruction and keeps executing the
DebugMonitor handler

29

840453 Halting debug steps two consecutive exception entry sequences 30

849231 DEMCR.MON_PEND is set because of EDBGRQ even though the current execution priority
is higher than DebugMonitor priority

31

851802 Fault on an exception exit is escalated to HardFault when IPSR is corrupted 32

855792 Cortex-M33 DAP does not reset the JTAG TAP on an extended JTAG activation code 33

857433 Pending serious faults are not always indicated 34

861432 DebugMonitor exception exit when IPSR is corrupted fails to step instruction 35

875823 Some T32 unallocated hint encodings UNDEF rather than NOP 36

937163 Floating-Point state can be incorrectly cleared on some exception return faults 37

1015127 Processor might not wakeup to a SEVONPEND event when in WIC-based WFE sleep 38

1080541 Access permission faults are prioritized over unaligned Device memory faults 39

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 5 of 39

Non-confidential

Introduction

Scope
This document describes errata categorized by level of severity. Each description includes:

• The current status of the erratum.
• Where the implementation deviates from the specification and the conditions required for erroneous behavior to

occur.
• The implications of the erratum with respect to typical applications.
• The application and limitations of a workaround where possible.

Categorization of errata
Errata are split into three levels of severity and further qualified as common or rare:

Category A A critical error. No workaround is available or workarounds are impactful. The error is likely to be
common for many systems and applications.

Category A (Rare) A critical error. No workaround is available or workarounds are impactful. The error is likely to be
rare for most systems and applications. Rare is determined by analysis, verification and usage.

Category B A significant error or a critical error with an acceptable workaround. The error is likely to be
common for many systems and applications.

Category B (Rare) A significant error or a critical error with an acceptable workaround. The error is likely to be rare for
most systems and applications. Rare is determined by analysis, verification and usage.

Category C A minor error.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 6 of 39

Non-confidential

Change control
Errata are listed in this section if they are new to the document, or marked as “updated” if there has been any change to
the erratum text. Fixed errata are not shown as updated unless the erratum text has changed. The errata summary table
on page 9 identifies errata that have been fixed in each product revision.

25-Apr-2018: Changes in document version 9.0

ID Status Area Cat Summary of erratum

1080541 New Programmer CatC Access permission faults are prioritized over
unaligned Device memory faults

17-Jan-2018: Changes in document version 8.0

ID Status Area Cat Summary of erratum

No new or updated errata in this document version.

08-Dec-2017: Changes in document version 7.0

ID Status Area Cat Summary of erratum

No new or updated errata in this document version.

27-Nov-2017: Changes in document version 6.0

ID Status Area Cat Summary of erratum

937163 New Programmer CatC Floating-Point state can be incorrectly cleared on
some exception return faults

1015127 New Programmer CatC Processor might not wakeup to a SEVONPEND
event when in WIC-based WFE sleep

23-Oct-2017: Changes in document version 5.0

ID Status Area Cat Summary of erratum

No new or updated errata in this document version.

16-May-2017: Changes in document version 4.0

ID Status Area Cat Summary of erratum

839443 New Programmer CatB Cortex-M33 DWT trace is corrupted when trace
buffers are full and can potentially deadlock the PE

832634 New Programmer CatC Cortex-M33 reads an incorrect DAP AP IDR value

836306 New Programmer CatC DebugMonitor stepping does not step the next
instruction and keeps executing the DebugMonitor
handler

840453 New Programmer CatC Halting debug steps two consecutive exception
entry sequences

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 7 of 39

Non-confidential

849231 New Programmer CatC DEMCR.MON_PEND is set because of EDBGRQ
even though the current execution priority is higher
than DebugMonitor priority

851802 New Programmer CatC Fault on an exception exit is escalated to
HardFault when IPSR is corrupted

855792 New Programmer CatC Cortex-M33 DAP does not reset the JTAG TAP on
an extended JTAG activation code

857433 New Programmer CatC Pending serious faults are not always indicated

861432 New Programmer CatC DebugMonitor exception exit when IPSR is
corrupted fails to step instruction

875823 New Programmer CatC Some T32 unallocated hint encodings UNDEF
rather than NOP

02-Feb-2017: Changes in document version 3.0

ID Status Area Cat Summary of erratum

795154 New Programmer CatC MTB trace might be incorrect when the processor
enters lockup state

796137 New Programmer CatC Conditional trace can be incorrect if FPU is not
present

797273 New Programmer CatC ETM Exception Return addresses are incorrect for
some lockup exceptions

801633 New Programmer CatC Processor cannot exit SLEEP when debug wakeup
is not active long enough to be detected

803047 New Programmer CatC AIRCR.BFHFNMINS update does not change fault
security state when CPUWAIT is set out of reset

811381 New Programmer CatC Halting debug steps two consecutive exception
entry sequences

812148 New Programmer CatC MTB trace might be incorrect when the processor
receives NMI while it executes faulting instruction
leading to lockup

08-Dec-2016: Changes in document version 2.0

ID Status Area Cat Summary of erratum

764623 New Programmer CatB Pended derived NOCP fault on taking a Non-
secure interrupt from Secure state fails to stack
callee registers

784769 New Programmer CatB CLRONRET functionality will not work as expected

789130 New Programmer CatB Processor might behave incorrectly when the FPU
is powered down into retention

770545 New Programmer CatC Integrity signature fault might be ignored during
exception unstacking when the core should lockup

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 8 of 39

Non-confidential

778249 New Programmer CatC AIRCR.BFHFNMINS update does not change
security state for faults when DHCSR.C_HALT is
set or when NMI pended when current execution
priority is -2 or -3

787405 New Programmer CatC NOCP Usage fault is not generated for
coprocessor instructions when disabled by
CPPWR.SUn

788875 New Programmer CatC Debug accesses to FPU registers are incorrect if
CPACR.CP10 is disabled

28-Sep-2016: Changes in document version 1.0

ID Status Area Cat Summary of erratum

No errata in this document version.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 9 of 39

Non-confidential

Errata summary table
The errata associated with this product affect product versions as below.

ID Cat Summary Found in versions Fixed in version
764623 CatB Pended derived NOCP fault on

taking a Non-secure interrupt from
Secure state fails to stack callee
registers

r0p0 r0p1

784769 CatB CLRONRET functionality will not
work as expected

r0p0 r0p1

789130 CatB Processor might behave incorrectly
when the FPU is powered down
into retention

r0p0 r0p1

839443 CatB Cortex-M33 DWT trace is
corrupted when trace buffers are
full and can potentially deadlock
the PE

r0p1 r0p2

770545 CatC Integrity signature fault might
be ignored during exception
unstacking when the core should
lockup

r0p0 r0p1

778249 CatC AIRCR.BFHFNMINS update does
not change security state for faults
when DHCSR.C_HALT is set or
when NMI pended when current
execution priority is -2 or -3

r0p0 r0p1

787405 CatC NOCP Usage fault is not generated
for coprocessor instructions when
disabled by CPPWR.SUn

r0p0 r0p1

788875 CatC Debug accesses to FPU registers
are incorrect if CPACR.CP10 is
disabled

r0p0 r0p1

795154 CatC MTB trace might be incorrect when
the processor enters lockup state

r0p0 r0p1

796137 CatC Conditional trace can be incorrect if
FPU is not present

r0p0 r0p1

797273 CatC ETM Exception Return addresses
are incorrect for some lockup
exceptions

r0p0, r0p1 r0p2

801633 CatC Processor cannot exit SLEEP
when debug wakeup is not active
long enough to be detected

r0p0 r0p1

803047 CatC AIRCR.BFHFNMINS update does
not change fault security state
when CPUWAIT is set out of reset

r0p0 r0p1

811381 CatC Halting debug steps two
consecutive exception entry
sequences

r0p0 r0p1

812148 CatC MTB trace might be incorrect when
the processor receives NMI while
it executes faulting instruction
leading to lockup

r0p0 r0p1

832634 CatC Cortex-M33 reads an incorrect
DAP AP IDR value

r0p0, r0p1 r0p2

836306 CatC DebugMonitor stepping does
not step the next instruction and

r0p0, r0p1 r0p2

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 10 of 39

Non-confidential

ID Cat Summary Found in versions Fixed in version
keeps executing the DebugMonitor
handler

840453 CatC Halting debug steps two
consecutive exception entry
sequences

r0p0, r0p1 r0p2

849231 CatC DEMCR.MON_PEND is set
because of EDBGRQ even though
the current execution priority is
higher than DebugMonitor priority

r0p0, r0p1 r0p2

851802 CatC Fault on an exception exit is
escalated to HardFault when IPSR
is corrupted

r0p0, r0p1 r0p2

855792 CatC Cortex-M33 DAP does not reset
the JTAG TAP on an extended
JTAG activation code

r0p0, r0p1 r0p2

857433 CatC Pending serious faults are not
always indicated

r0p0, r0p1 r0p2

861432 CatC DebugMonitor exception exit when
IPSR is corrupted fails to step
instruction

r0p0, r0p1 r0p2

875823 CatC Some T32 unallocated hint
encodings UNDEF rather than
NOP

r0p0, r0p1 r0p2

937163 CatC Floating-Point state can be
incorrectly cleared on some
exception return faults

r0p0, r0p1, r0p2, r0p3 r0p4

1015127 CatC Processor might not wakeup to a
SEVONPEND event when in WIC-
based WFE sleep

r0p0, r0p1, r0p2, r0p3 r0p4

1080541 CatC Access permission faults are
prioritized over unaligned Device
memory faults

r0p0, r0p1, r0p2, r0p3, r0p4 Open

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 11 of 39

Non-confidential

Errata descriptions

Category A

There are no errata in this category.

Category A (rare)

There are no errata in this category.

Category B

764623
Pended derived NOCP fault on taking a Non-secure interrupt from Secure state fails to stack callee registers

Status

Affects: Cortex-M33
Fault Type: Programmer Category B
Fault Status: Present in r0p0. Fixed in r0p1.

Description

Under certain conditions, the floating-point context is stacked when the processor takes an exception. Before stacking
the registers, an FPU access check occurs based on the CPACR, NSACR, and CPPWR state. If the core in its current
state does not have access to the FPU, then this results in a NOCP Usage Fault. When the processor takes a Non-
secure exception from Secure state, the full set of integer and floating-point registers is usually stacked and then set to
zero. This avoids any Secure to Non-secure software information leak. Because of this erratum, under certain conditions
and if a NOCP Usage Fault occurs, the processor will erroneously clear the floating-point state and fail to stack the
integer callee registers when the processor takes an exception.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor configured with the Armv8-M Security Extension and
hardware floating-point support.

Conditions

• The processor is in Secure state with CONTROL.FPCA = 1 and FPCCR.LSPEN = 0 (lazy state preservation
is disabled).

• The FPU cannot be accessed according to the architecture because either:
• CPACR.CP10 is 0b00 or 0b01 and the processor is in non-privileged mode, or

• CPPWR.SU10 is 1.

• The processor takes an exception to Non-secure state with an exception privilege level higher than a Secure
Usage Fault.

Implications

Because all the floating-point register state has been set to zero and only some of the integer registers have been
written to the Stack on the exception entry, on return to Secure state software will not be able to continue processing
the floating-point context after the FPU has been re-enabled. The NOCP UsageFault will occur but the context will have
been lost. Integer register state (R4-R11) will also have been lost.

Workaround

You can avoid this erratum by either:

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 12 of 39

Non-confidential

• Not disabling lazy floating-point preservation in Secure state (CONTROL.LSPEN is enabled by default at
reset).

• Ensuring that the priority of a Secure UsageFault is always higher than the priority of a Non-secure
exception. You can do this by using the AIRCR.PRIS functionality.

Additional information

The scenario considered for this erratum is an OS wanting to perform software based lazy-context switching of the FPU.
This means it is possible for the FP state to belong to an out-of-context thread while the integer state belongs to the
current thread. In this scenario the NOCP fault (for the out-of-context thread) should not affect the stacking of the integer
registers for the current thread. There is no known operating system which does this.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 13 of 39

Non-confidential

784769
CLRONRET functionality will not work as expected

Status

Affects: Cortex-M33
Fault Type: Programmer Category B
Fault Status: Present in r0p0. Fixed in r0p1.

Description

The Armv8-M architecture includes functionality to clear the floating-point registers to zero on return from exception
when FPCCR.CLRONRET is set. Because of this erratum, the clearing of the registers will not take place under certain
conditions.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor.

Conditions

When the architectural conditions are met (FPCCR.CLRONRET=1, CONTROL.FPCA=1, and FPCCR_S.LSPACT=0),
there are three scenarios where the registers will not be cleared as expected:

1. The processor is configured without the Security Extension (SECEXT=0).
2. The processor is returning to a security state where the CPACR is disabled.
3. The FPU is powered down into retention.

Implications

Secure or privileged floating-point caller state (S0-S15) created within a handler can be exposed to Non-secure or
unprivileged code.

Workaround

Software must clear the FPU register state manually before returning from an exception.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 14 of 39

Non-confidential

789130
Processor might behave incorrectly when the FPU is powered down into retention

Status

Affects: Cortex-M33
Fault Type: Programmer Category B
Fault Status: Present in r0p0. Fixed in r0p1.

Description

When the FPU is powered down into retention it is possible for the processor to behave incorrectly. This can be seen in
two ways:

1. On exception entry or during lazy stacking it is not possible to clear the FPU register state. FPUQACTIVE
will have been asserted previously but there is a race condition between the FPU powering up and the core
attempting to clear the state.

2. When returning from a secure exception to non-secure state, the core can stall indefinitely while the FPU is
powered down. This requires multiple faults to occur from secure state.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor that are:

• Configured with the Security Extension.

• Implemented with the ability to power down the FPU into retention (separately from the processor core).

Conditions

There are two conditions under which this erratum can occur:

1. The core has an outstanding secure floating point context, and software disables CPACR_S (FPCA remains
set). The system powers down the FPU into retention. One of the following then happens:

1. The FPU is re-enabled through CPACR_S, and then a non-secure exception is taken. During
stacking an earlier fault prevents stacking of the FPU registers (LSPEN=0). The FPU register
clearing should still take place but this can happen before the FPU is powered up, in which case
it will have no effect.

2. A non-secure exception is entered and sets up lazy stacking (LSPEN=1, LSPACT_S=1). The
FPU is enabled using CPACR_NS and the NSACR allows access. CPACR_S is still disabled
and therefore a NOCP fault occurs when attempting to lazy stack. If the fault cannot preempt the
current handler, and if the core will not lockup, LSPACT_S is cleared but the state can be left
unchanged if the attempt to clear occurs before the FPU is powered up.

2. The core is in secure state with LSPACT_S=1, CPACR_S disabled and FPU powered down into retention.
An exception return is triggered to non-secure state (EXCRET[6]=0) and an integrity check fault occurs
before the security state switch that prevents it. If EXCRET[4]=0 (non-secure has floating point context) then
an LSERR fault will also be raised as LSPACT_S=1. The core will stall while waiting for the FPU to power up
but will not request power (if CPACR_NS is enabled)

Implications

The implications for each of the two conditions are as follows:

1. It is possible for secure state to be exposed to non-secure, if the FPU is not powered up when the register is
cleared.

2. The core can stall indefinitely until the FPU is powered up.

Workaround

The erratum can be avoided by not powering down the FPU into retention while the core remains powered up.
Note: This workaround can be limited to when the FPU registers contain secure information.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 15 of 39

Non-confidential

839443
Cortex-M33 DWT trace is corrupted when trace buffers are full and can potentially deadlock the PE

Status

Affects: Cortex-M33
Fault Type: Programmer Category B
Fault Status: Present in r0p1. Fixed in r0p2.

Description

The Cortex-M33 DWT contains buffers for trace generated by the DWT. As defined in the Armv8-M Architecture
Reference Manual, some of the buffers contain priority ordering logic for when their packets are forwarded to the ITM. If
there is sufficient backpressure from the ITM and the system, then a subset of the DWT buffers might become full and
the packet ordering logic does not function as expected. This will lead to packets being read out of order, one packet
never being read, and an out-of-protocol packet being continuously output by the DWT. Also, if ITM_TCR.STALLENA is
written from 0 to 1 during the trace generation that causes the packet ordering logic to become non-functional, then the
ITM might stall the PE indefinitely.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor with DWT and ITM trace support.

Conditions

The following conditions might cause the DWT packet ordering logic to not function as expected:

• DWT trace enabled.

• Sufficient backpressure from the ITM and the system for the DWT to have to buffer packets.

• Generation of the following packets:
• Two Data Trace PC Value.

• Two Data Trace Data Address.

• Three Data Trace Data Value.

• Four Data Trace Match.
Note that these packets must be caused by instructions issued into lane 0 of the Cortex-M33
dual-issue pipe or stacking operations because there is separate buffering for packets generated
by instructions issued into lane 1 of the Cortex-M33 dual-issue pipe.

The following additional condition might cause the PE to deadlock:

• ITM_TCR.STALLENA is written from 0 to 1 in the middle of generating the above packets.

Implications

Debug tools might not be able to decompress DWT/ITM trace and the PE might deadlock. Both implications require a
power-on reset to be recovered from.

Workaround

You can work around this erratum by both:

• Limiting the amount of trace generated by the DWT so that its buffers do not become full. To do this, Arm
recommends limiting the programming of the DWT comparators to not generate one of the following packet
types:

• Data Trace PC Value.

• Data Trace Data Address.

• Data Trace Data Value.

• Data Trace Match.

• Writing to ITM_TCR.STALLENA only when DWT trace generation is disabled with ITM_TCR.TXENA == 0.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 16 of 39

Non-confidential

Category B (rare)

There are no errata in this category.

Category C

770545
Integrity signature fault might be ignored during exception unstacking when the core should lockup

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

During exception unstacking, the integrity signature is checked if the integer callee state is being popped. This occurs
when the processor returns to Secure state and the integer callee state is on the stack. This check ensures that the
exception is returning to a legitimate point in the Secure stack.

Under certain conditions, the fault might be ignored and the processor might return to Secure state without handling
the fault. This exposes a potential security risk. To trigger this erratum, the processor must be configured for sleep-on-
exit and must be about to enter sleep state (that is, there are no other active or pending exceptions).The fault must also
trigger lockup because faultmask_s is set.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor configured with the Armv8-M Security Extension.

Conditions

• The processor is returning to Secure state with faultmask_s set.

• The integrity signature is checked (EXC_RETURN.ES==0 or EXC_RETURN.DCRS==0).
• faultmask_s must not be cleared on exit (EXC_RETURN.ES==0 or the raw execution priority is

negative).
• The processor attempts to sleep-on-exit.

• It means that the current handler is the only active handler and there are no other handlers
pending. Sleep-on-exit is enabled.

• An INVIS fault is raised and triggers lockup (because of faultmask_s).

• No other integrity checks must fail.

Implications

It is possible for Secure or Non-secure exceptions to return to arbitrary points in the Secure stack.

• Secure handlers must have modified the stack, SP, or EXC_RETURN value to trigger this erratum because
of the type of fault.

• Non-secure handlers can fake EXC_RETURN.S to return to arbitrary locations if a Secure function call within
the handler has set faultmask_s.

Note: This behavior is only visible if no other integrity check faults occur. Because the fault is ignored, unstacking
continues and the xPSR is unstacked. This IPSR value must be 0x0 to match the mode.

Workaround

You can avoid this erratum by either:

• Disabling SCR_S.SLEEPONEXIT when faultmask_s is set.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 17 of 39

Non-confidential

• Ensuring a Non-secure handler has no way of setting faultmask_s by calling secure code.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 18 of 39

Non-confidential

778249
AIRCR.BFHFNMINS update does not change security state for faults when DHCSR.C_HALT is set or when NMI
pended when current execution priority is -2 or -3

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

The software must ensure that, when changing AIRCR.BFHFNMINS, the BusFault, HardFault and the NMI are not
pending or active. Therefore AIRCR.BFHFNMINS should be set at boot time before any exceptions can happen.
Unpredictable behavior can occur if you do not follow this guidance.

An internal buffered version of AIRCR.BFHFNMINS is implemented that is allowed to update only when there are
no context switches to reduce the occurrence of unpredictable behavior. Therefore, during exception stacking/
unstacking, when the processor is performing a context switch or when an NMI is about to be invoked, the architectural
AIRCR.BFHFNMINS is not propagated to the buffered version of AIRCR.BFHFNMINS.

However, the internal buffered version is blocked from being updated to the architectural value when DHCSR.C_HALT is
set or when the NMI is pended. Therefore, in the case of DHCSR.C_HALT, a Non-secure exception/thread could block
the update from ever taking place regardless of the debug enables or the authentication state. Also, a pended NMI would
have a similar effect when the processor is in priority -2 or -3 because it would also block it from being updated.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor configured with the Armv8-M Security extensions.

Conditions

• The processor is in the secure state and DHCSR.C_HALT is set OR NMI is pended when the processor is in
priority -2 or -3 (and its not in debug state).

• The internal version of AIRCR.BFHFNMINS is blocked from updating.

Implications

It is possible for Non-secure exceptions to block updates of the architectural AIRCR.BFHFNMINS to the internal buffered
version, which is used by the processor when resolving exceptions.

Workaround

This erratum is not expected to require a workaround. This erratum can be avoided by:

• Clearing DHCSR.C_HALT and ICSR.PENDNMICLR when AIRCR.BFHFNMINS is updated.

• Restoring values of DHCSR.C_HALT and ICSR.PENDNMICLR after updating AIRCR.BFHFNMINS.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 19 of 39

Non-confidential

787405
NOCP Usage fault is not generated for coprocessor instructions when disabled by CPPWR.SUn

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

The CPPWR value viewed by the processor is always 0 when in the Non-secure configuration. This means that it
is possible for a coprocessor instruction to complete without generating a NOCP fault, even though the relevant
architectural CPPWR.SUn=1. This affects all implemented coprocessors. In Cortex-M33 this is limited to CP0-
CP7,CP10-CP11.

Note: PPB accesses return the correct values for CPPWR.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor that are configured without the Armv8-M Security
extensions.

Conditions

• The processor executes a coprocessor instruction when CPPWR.SUn is set to '1' and the coprocessor is
enabled by CPACR.CPn.

• The processor executes the instruction without generating a NOCP usage fault.

Implications

It is possible to execute coprocessor instructions when you have marked the floating-point state as UNKNOWN to allow
the coprocessor to be powered down.

Workaround

Ensure that CPPWR.SUn for a coprocessor is set only when disabled by CPACR.CPn. This ensures the NOCP fault is
correctly generated if access is disabled.

Note: This erratum is unlikely to occur because the expectation is that the coprocessor state will be marked as
UNKNOWN only while access is disabled in CPACR.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 20 of 39

Non-confidential

788875
Debug accesses to FPU registers are incorrect if CPACR.CP10 is disabled

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

The FPU clock enable is based on the current CPACR value. If CPACR.CP10 is disabled then debug accesses to FPU
registers will not be performed, writes will be ignored, and read data will be incorrect.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor that are configured with hardware floating-point
support.

Conditions

• The processor enters halt state.

• CPACR.CP10/11 is disabled for the current security state.

• A debug access is issued to the FPU.

Implications

• Reads of FPU registers return an incorrect value.

• Writes to FPU registers are ignored.

Workaround

You can avoid this erratum by making sure CPACR.CP10 is enabled for the current security state when the processor is
halted.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 21 of 39

Non-confidential

795154
MTB trace might be incorrect when the processor enters lockup state

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

Under certain conditions, the MTB might trace an incorrect destination address when the processor enters lockup state.
The source and destination addresses in the generated packet will be identical whereas the destination address should
be the lockup address.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor configured with the hardware floating-point support.

Conditions

• Out of order completion of floating-point instructions with respect to non-floating-point instructions must be
enabled (ACTLR.DISOOFP = 0).

• A VSQRT/VDIV instruction executes while the processor is executing at a negative priority level and an
event occurs which causes the processor to enter lockup state. The event could be the execution of an SVC
instruction or a synchronous fault. The erratum occurs if the next instruction in the pipeline is:

• A VSTR to the same destination register as the VSQRT/VDIV.

• A VLSTM and the destination register of the VSQRT/VDIV is S0.

Implications

The erratum causes the trace produced by the MTB to be incorrect for the last packet before the processor enters lockup
state. As a consequence, the source and destination addresses in the packet are the same whereas the destination
address should be the lockup address.

Workaround

The MTB trace can be corrected if MTB is constantly authenticated to trace.

The erratum produces the following packet 1, followed by packet 2:

packet 1, first word: [address value A, atomic bit]
packet 1, second word: [address value A, start bit]

packet 2, first word: [address value of lockup, atomic bit]
packet 2, second word: [any address after leaving lockup, start bit]

The lockup address is [31:1] 0x77FFFFFF.

In this case, the destination address in the packet 1 should be replaced with the source address of packet 2, and the final
trace should look like:

packet 1, first word: [address value A, atomic bit]
packet 1, second word: [address value of lockup, start bit]

packet 2, first word: [address value of lockup, atomic bit]
packet 2, second word: [any address after leaving lockup, start bit]

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 22 of 39

Non-confidential

796137
Conditional trace can be incorrect if FPU is not present

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

When the processor is configured without an FPU and conditional ETM trace is enabled, any conditional VLSTM
instructions will be traced as if they were loads rather than stores.

Configurations affected

This erratum affects configurations of the Cortex-M33 processor with the ETM present and the FPU not present.

Conditions

• ETM trace is enabled with the VIEWINST consitions true.

• Conditional tracing is enabled with TRCCONFIGR.COND set to 0b001 or 0b010.

• A conditional VLSTM instruction is traced.

Implications

The VLSTM conditional information will be filtered as if the instruction was a load, rather than a store, so the number of
conditional result elements will not align with the instructions expected by a decoder. All subsequent conditional results
will be offset until the next exception or periodic synchronization.

Other than the conditional results, the trace stream is not corrupted.

Workaround

Trace tools can work around this erratum if they have knowledge of the FPU presence. When the FPU is not present,
tools should set TRCCONFIGR.CONF to enable both load and store conditional tracing (0b011 or 0b111).

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 23 of 39

Non-confidential

797273
ETM Exception Return addresses are incorrect for some lockup exceptions

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

When the processor is configured with the ETM present and trace is enabled at the time that a lockup condition occurs,
the ETM will sometimes report the incorrect 'preferred return address' for the exception. The address will always be
either the lockup address or the instruction which will execute next. The scenarios where the address is wrong are either
some conditions where an exception stacking operation cannot complete, or some conditions of a lockup occuring at the
handler of an exception (when the lockup is traced as a derived lockup, rather than occurring at the handler).

Configurations affected

This erratum affects configurations of the Cortex-M33 processor with the ETM present.

Conditions

A lockup occurs during exception handling or immediately after.

Implications

The trace is consistent and decompressible, but the user will not be able to determine from the exception teturn address
exactly how the lockup condition was generated.

Workaround

There is no workaround for this erratum.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 24 of 39

Non-confidential

801633
Processor cannot exit sleep state when debug wakeup is not active long enough to be detected

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

If a WFI instruction coincides with a DWT event, for example a PC match on the WFI instruction, the processor wakes
up if the debug monitor takes priority. Because of this erratum, the NVIC generates a debug wakeup for a DWT hit on a
watchpoint and the processor does not wake up. The processor cannot wake up when the debug request is a pulse.

Configurations affected

This erratum affects configurations of the Cortex-M33 processor with DWT present (DBGLVL != 0).

Conditions

• DWT asserts a watchpoint hit for a single cycle when the processor is entering sleep state.

• The wakeup is asserted for a single cycle and the processor remains in sleep state because the wakeup has
not been asserted long enough.

Implications

The processor might not wake up from sleep state because of the DWT hit, which would only occur when DWT matches
on the WFI instruction or load (or store) before the WFI.

Workaround

For load or store instructions preceding a WFI, a DSB should be placed before the WFI to prevent this erratum from
occurring if the watchpoint was hit on the data or address match.
When DWT is set to hit on the PC of the WFI itself, there is no workaround.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 25 of 39

Non-confidential

803047
AIRCR.BFHFNMINS update does not change fault security state when CPUWAIT is set out of reset

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

The debugger is able to change the state of AIRCR.BFHFNMINS before the processor has come out of reset when
the input signal CPUWAIT is asserted. Due to this erratum, AIRCR.BFHFNMINS is not allowed to propagate to the
processor and as a consequence, an NMI immediately out of reset will take the wrong security target.

Configurations affected

This erratum affects configurations of the Cortex-M33 processor with the Armv8-M Security Extension implemented and
debug access present (DBGLVL !=0).

Conditions

• The processor is stalled in reset state (CPUWAIT=1) and the debugger is updating AIRCR.BFHFNMINS.

Implications

It is possible for the NMI to take the wrong security target immediately out of reset because there were no updates of
the architectural AIRCR.BFHFNMINS to the internal buffered version, which is used by the processor when resolving
exceptions.

Workaround

There is no workaround for this erratum.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 26 of 39

Non-confidential

811381
Halting debug steps two consecutive exception entry sequences

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

The Armv8-M architecture specifies that only a single PushStack() update can occur in a Halting debug step sequence.
Because of this erratum, two PushStack() updates can be performed before the core completes the Halting debug step
and halts.

Configurations affected

This erratum affects configurations of the Cortex-M33 processor with reduced or full set of debug resources (DBGLVL !
=0).

Conditions

1. Halting debug stepping is active (DHCSR.C_DEBUGEN == 0b1 and DHCSR.C_STEP == 0b1) and the core
starts stepping a Non-secure HardFault exception entry sequence.

2. A stacking fault forces the core to lock up at exception priority -1 after entering the Non-secure HardFault
handler.

3. When the core is about to halt to complete the step, there is a one cycle window where an external NMI can
preempt and result in a second exception entry sequence being performed before the core halt after entering
NMI handler.

OR

1. AIRCR.BFHFNMINS == 0b1 and an external debugger writes to SHCSR and sets Secure HardFault to be
pended.

2. Halting debug stepping is active (DHCSR.C_DEBUGEN == 0b1 and DHCSR.C_STEP == 0b1) and the core
starts stepping a NMI exception entry sequence.

3. A stacking fault leads to the core locking up at exception priority -2 after entering the NMI handler.
4. The Secure HardFault preempts and results in a second exception entry sequence being performed before

the core halts after entering the Secure HardFault handler.

Implications

The processor steps two consecutive PushStack() updates in a step sequence.

Workaround

There is no workaround for the first scenario. For the second scenario, the debugger should not write to SHCSR when
performing Halting debug stepping.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 27 of 39

Non-confidential

812148
MTB trace might be incorrect when the processor receives NMI while it executes faulting instruction leading to
lockup

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0. Fixed in r0p1.

Description

Under certain conditions, the MTB might trace the incorrect source address when the processor enters lockup state
because of a faulting instruction and receives a coincident NMI.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor

Conditions

• The processor is executing a faulting instruction at a negative priority.

• The processor receives an NMI.

• The processor enters lockup.

Implications

The erratum causes the trace produced by the MTB to be incorrect for the last packet before the processor enters lockup
state. As a consequence, the source word of the packet does not contain the source address of the faulting instruction
causing the processor to enter lockup.

Workaround

There is no workaround for this erratum.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 28 of 39

Non-confidential

832634
Cortex-M33 reads an incorrect DAP AP IDR value

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

The Cortex-M33 DAP contains an AP IDR register which can be used to identify the AP. In the r0p1 release, the AP IDR
register reads the following value for bits[7:0]:

• Variant, bits[7:4] == 0x5 - Cortex-M33

• Type, bits[3:0] == 0x1 - AHB Bus

However, the Arm Debug Architecture defines a new type for AHB5 so that the AP IDR register should read the following
value for bits[7:0]:

• Variant, bits[7:4] == 0x1 - Cortex-M33

• Type, bits[3:0] == 0x5 - AHB5 Bus

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor with a DAP present.

Conditions

Debug tools read the Cortex-M33 DAP AP IDR value.

Implications

Debug tools will not be able to detect that they are connected to an AHB5 AP.

Workaround

Given that the r0p0 and r0p1 value is uniquely identifiable and the value is documented in the Integration and
Implementation Manual, debug tools will still be able to identify this as a Cortex-M33 DAP and could infer that it therefore
supports AHB5.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 29 of 39

Non-confidential

836306
DebugMonitor stepping does not step the next instruction and keeps executing the DebugMonitor handler

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

When performing DebugMonitor stepping and executing an out-of-order FPU instruction belonging to a subset of
FPU instructions inside the DebugMonitor handler, then, when returning from the DebugMonitor handler and if the
DebugMonitor exception priority is higher than the current execution priority, the DebugMonitor exception might be taken
through the tail-chain mechanism without stepping any instruction. Without any debugger intervention to disable debug
monitor stepping, it would appear like the DebugMonitor handler keeps executing back-to-back without stepping any
intruction.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor.

Conditions

• Debug monitor stepping is active:
• DHCSR.C_DEBUGEN == 1'b0.

• DEMCR.MON_EN == 1'b1.

• Execution priority is below the DebugMonitor exception priority.

• Out-of-order execution of floating-point instruction is active:
• ACTLR.DISOOFP == 1'b0.

• The DebugMonitor handler executes one of the following VFP instructions:
• VDIV.

• VSQRT.

• VMLA, VMLS, VNMLA, VNMLS.

• VFMA, VFMS, VFNMA, VFNMS.

• This VFP instruction retires after the exception return instruction.

Implications

If no workaround is applied and if the DebugMonitor exception priority is always higher than the current execution
priority, then the DebugMonitor exception will keep tail-chaining and execute its handler as long as DebugMonitor
stepping is active.

Workaround

If the DebugMonitor handler contains one of the VFP instructions listed in the Conditions section, then always execute a
VMOV after this instruction to work around this erratum.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 30 of 39

Non-confidential

840453
Halting debug steps two consecutive exception entry sequences

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

The Armv8-M architecture specifies that only a single PushStack() update can occur in a Halting debug step sequence.
Because of this erratum, two PushStack() updates can be performed before the core completes the Halting debug step
and halts.

Configurations affected

This erratum affects configurations of the Cortex-M33 processor with reduced or full set of debug resources, DBGLVL!
=0, and FPU present, FPU==1.

Conditions

1. Halting debug stepping is active, DHCSR.C_DEBUGEN == 0b1 and DHCSR.C_STEP == 0b1.
2. The core starts stepping an exception entry sequence whose stack frame contains the floating-point

registers context. Lazy stacking is not active.
3. Following the entry in the exception handler, there is a one-cycle window where an asynchronous interrupt

can preempt. This results in a second exception entry sequence being performed before the core halts.

Implications

The processor steps two consecutive PushStack() updates in a step sequence.

Workaround

This erratum can be avoided by activating lazy stacking before the first exception is taken, with FPCCR.LSPEN == '1'.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 31 of 39

Non-confidential

849231
DEMCR.MON_PEND is set because of EDBGRQ even though the current execution priority is higher than
DebugMonitor priority

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

During stacking, an EDBGRQ is asserted and the DEMCR.MON_PEND is set even though the current execution priority
is higher than the priority of the DebugMonitor.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor where at least one IRQ has IRQLATENCY=0.

Conditions

• Halting debug is disabled, DHCSR.C_DEBUGEN=0.

• DebugMonitor is enabled, DEMCR.MON_EN=1.

• An external debug request is asserted, EDBGRQ=1.

• A registered IRQ has been preempted and the IPSR has been updated before the exception entry has
happened.

• The current execution priority is higher than the DebugMonitor priority.

Implications

The DebugMonitor is pended earlier although it will not be taken until it has sufficient priority, that is, when the
DebugMonitor priority is higher than the current execution priority.

Workaround

There is no workaround.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 32 of 39

Non-confidential

851802
Fault on an exception exit is escalated to HardFault when IPSR is corrupted

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

During an exception exit of a HardFault/NMI handler where the IPSR has been corrupted, a SecureFault is asserted.
The active bit of the HardFault/NMI exception is cleared correctly on the exit, however, the SecureFault is escalated to
HardFault even though its priority is higher than the current execution priority.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor with IRQLATENCY!=0.

Conditions

• IPSR has to be corrupted so it is not pointing to the currently active exception although it is still pointing to an
active exception (that is, a registered IRQ).

• The active exception is an NMI or a HardFault.

• An exception exit happens with the NMI or HardFault active bit cleared correctly and then generates a fault
while unstacking (that is, an invalid exception return through SFSR.INVER).

• The fault is escalated when it had the highest priority.

Implications

A fault on an exception exit is escalated to HardFault when IPSR was corrupted because of a previous exception exit. It
can only happen when the IPSR points to a registered IRQ where its active is set.

Workaround

There is no workaround.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 33 of 39

Non-confidential

855792
Cortex-M33 DAP does not reset the JTAG TAP on an extended JTAG activation code

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

The Cortex-M33 DAP does not reset the JTAG TAP on an extended JTAG activation code sequence (state transition
from G2 to dormant in the Arm Debug Interface Architecture Specification).

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor with a DAP present.

Conditions

An extended JTAG activation code on SWDIOTMS is applied and causes a state transition from G2 to dormant as
defined in the Arm Debug Interface Architecture Specification.

Implications

The JTAG TAP cannot be reset into the Test-Logic-Reset state when the SWJ-DP is in dormant state. This means that
when sharing a wire with another 1149.7 device, all devices cannot be placed into their reset state simultaneously.

Workaround

Push the JTAG TAP into Test-Logic-Reset either:

• Using the nTRST pin if available.

• Switching to the JTAG protocol and sending at least five SWCLKTCK cycles with SWDIOTMS HIGH.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 34 of 39

Non-confidential

857433
Pending serious faults are not always indicated

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

When an exception is traced, if a serious fault is also pending, then this should be indicated in the exception type.
Because of this erratum, if the exception handler is in a Secure region and Secure trace is not permitted, then the
exception will be traced but the exception type will indicate that no serious fault is pending.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor with the Security Extension present and the ETM
present.

Conditions

• Trace is active in a Non-secure region of code.

• Secure non-invasive debug is disabled.

• An exception is taken at a higher priority than a pending BusFault, HardFault, MemManage fault, or
SecureFault.

• The exception handler is in Secure state.

Implications

The information about the pending serious fault will not be traced at the expected time. Depending on the authentication
and filtering of trace, the serious fault itself will be traced correctly if it is handled later. The pending serious fault can also
be traced along with a further exception, provided that the handler is not in a trace prohibited region.

Workaround

There is no workaround.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 35 of 39

Non-confidential

861432
DebugMonitor exception exit when IPSR is corrupted fails to step instruction

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

During an exception exit of a DebugMonitor handler when stepping is enabled, the stack frame is corrupted so that
the IPSR value read back is 12 (the exception number for DebugMonitor). The core will behave as if it is still in the
DebugMonitor handler and disable stepping.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor.

Conditions

• Halting debug is not enabled, DHCSR.C_DEBUGEN=0.

• DebugMonitor stepping is enabled, DEMCR.MON_EN=1 and DEMCR.MON_STEP=1.

• An exception exit happens from the DebugMonitor handler.

• The IPSR value restored from the stack has to be corrupted so it is still pointing to the DebugMonitor even
though it is no longer active.

• Instructions will not be stepped while the IPSR remains set to the DebugMonitor.

Implications

When the DebugMonitor is set to stepping and Halting debug is not enabled, the instructions will not be stepped when
the IPSR is corrupted. The IPSR would be corrupted from exiting the DebugMonitor while remaining set to 0xC. The
consequence is that monitor stepping is disabled.

Workaround

There is no workaround.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 36 of 39

Non-confidential

875823
Some T32 unallocated hint encodings UNDEF rather than NOP

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0 and r0p1. Fixed in r0p2.

Description

The Armv8-M architecture defines a hint instruction class within the T32 opcode space, which includes the implemented
instructions NOP, YIELD, WFE, WFI, and SEV. Any unimplemented encoding in this space is treated as a reserved hint,
which should behave like a NOP.

However, for the encodings with hint[3:0] = 0000 and option[3:0] = 0101-0111, which correspond to reserved hints, the
PE will generate an UNDEFINSTR UsageFault rather than the architecturally specified NOP.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor.

Conditions

The processor executes the following instruction encodings. The value of the bits enclosed in parentheses "()" are
ignored for the purposes of generating the UNDEFINSTR UsageFault.

1111 0011 1010 (1)(1)(1)(1) 1000 (0)000 0000 0101
1111 0011 1010 (1)(1)(1)(1) 1000 (0)000 0000 0110
1111 0011 1010 (1)(1)(1)(1) 1000 (0)000 0000 0111

Implications

Because these encodings are unallocated encodings that a compiler will not generate, they will not be encountered in
code generated by a toolchain. Manual insertion of these encodings in assembly will result in the erroneous behavior
described above when the encodings are executed.

Workaround

There is no workaround.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 37 of 39

Non-confidential

937163
Floating-point state can be incorrectly cleared on some exception return faults

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0, r0p1, r0p2 and r0p3. Fixed in r0p4.

Description

The Armv8-M architecture defines integrity checks which are performed before the exception return unstacking occurs.
These check the validity of the EXC_RETURN value and raise a fault if they fail. Because of this erratum it is possible for
the floating-point state to be incorrectly cleared when one of these faults occurs.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor with the Floating Point Unit and the Security
Extension included.

Conditions

The floating-point state will be incorrectly cleared when all the following conditions are met:

1. One of the following exception return integrity checks fails:
• SFSR.INVER.

• UFSR.INVPC (exiting a handler that is not active).

• UFSR.INVPC (EXC_RETURN[1]!=0).

• SFSR.LSERR (when attempting to clear because of FPCCR.CLRONRET).
2. The floating-point state would have been unstacked if there had been no fault (that is, EXC_RETURN[4]==0,

FPCCR.LSPACT==0 and access is permitted to the FPU).

Implications

The floating-point state can be incorrectly cleared if software causes one of the faults mentioned above. The scenario
that could be problematic is when a Secure exception calls a Non-secure function, which in turn attempts to return from
the exception. This erratum allows the Non-secure function to clear the Secure floating-point context. Note that doing so
will always cause a Secure fault to be raised and no Secure state is ever leaked to Non-secure.

Workaround

This erratum is not expected to require a workaround.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 38 of 39

Non-confidential

1015127
Processor might not wake up to a SEVONPEND event when in WIC-based WFE sleep

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0, r0p1, r0p2 and r0p3. Fixed in r0p4.

Description

The Armv8-M architecture includes a feature which allows an event to be sent when an interrupt state changes from
inactive to pending (SEVONPEND). The Cortex-M33 processor also includes a Wakeup Interrupt Controller (WIC) to
enable the processor to enter a low-power state. Because of this erratum, when in WIC-based WFE sleep, it is possible
that the processor will fail to wake up as expected because a pended interrupt does not generate the expected event.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor with the Security Extension and a WIC included.

Conditions

• WIC-based sleep enabled (SCR.SLEEPDEEP==1, WICENACK==1).

• Only one of the banked SCR.SEVONPEND bits is set.

• The processor enters WFE sleep in the security state where the associated banked SCR.SEVONPEND field
is not set.

Implications

The WIC will not wake up to an event generated by a pending interrupt targeting the alternate security state where the
associated SCR.SEVONPEND bit is 1. However, it is expected that a system will not be affected by this behavior since
software cannot depend on a wake-up event controlled by the alternate security state.

Workaround

This erratum is not expected to require a workaround.

Date of issue: 25-Apr-2018 Cortex-M33 (AT623) and Cortex-M33 with FPU (AT624) Software Developer Errata Notice Version: 9.0

SDEN-756493 Copyright © 2016-2018, Arm Limited or its affiliates. All rights reserved. Page 39 of 39

Non-confidential

1080541
Access permission faults are prioritized over unaligned Device memory faults

Status

Affects: Cortex-M33
Fault Type: Programmer Category C
Fault Status: Present in r0p0, r0p1, r0p2, r0p3, and r0p4. Open.

Description

A load or store which causes an unaligned access to Device memory will result in an UNALIGNED UsageFault
exception. However, if the region is not accessible because of the MPU access permissions (as specified in
MPU_RBAR.AP), then the resulting MemManage fault will be prioritized over the UsageFault.

Configurations affected

This erratum affects all configurations of the Cortex-M33 processor with the MPU enabled.

Conditions

The MPU is enabled and:

• A load/store access occurs to an address which is not aligned to the data type specified in the instruction.

• The memory access hits one region only.

• The region attributes (specified in the MAIR register) mark the location as Device memory.

• The region access permissions prevent the access (that is, unprivileged or write not allowed).

Implications

The MemManage fault caused by the access permission violation will be prioritized over the UNALIGNED UsageFault
exception because of the memory attributes.

Workaround

There is no workaround.
However, it is expected that no existing software is relying on this behavior since it was permitted in Armv7-M.

