
AMBA® AXI and ACE Protocol
Specification

AXI3, AXI4, AXI5, ACE and ACE5
Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0022F.b (ID122117)

AMBA AXI and ACE Protocol Specification
AXI3, AXI4, AXI5, ACE and ACE5

Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this specification:

Note that issue E.a, the first publication of issue E of this specification, was originally identified as issue E.

Issues B and C of this document included an AXI specification version, v1.0 and v2.0. These version numbers have been
discontinued to remove confusion with the AXI versions AXI3 and AXI4.

Proprietary Notice

This document is NON-CONFIDENTIAL and any use by you is subject to the terms of this notice and the Arm AMBA
Specification Licence set about below.

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications.

Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of,
third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with
any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © [2017] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term Arm is used to refer to the company it means “Arm or any of its subsidiaries as appropriate”.

Change history

Date Issue Confidentiality Change

16 June 2003 A Non-Confidential First release

19 March 2004 B Non-Confidential First release of AXI specification v1.0

03 March 2010 C Non-Confidential First release of AXI specification v2.0

03 June 2011 D-2c Non-Confidential Public beta draft of AMBA AXI and ACE Protocol Specification

28 October 2011 D Non-Confidential First release of AMBA AXI and ACE Protocol Specification

22 February 2013 E Non-Confidential Second release of AMBA AXI and ACE Protocol Specification

18 December 2017 F Non-Confidential EAC-0 release of version F.
New interfaces defined for AMBA protocol: AXI5, AXI5-Lite,
ACE5, ACE5-Lite, ACE5-LiteDVM, ACE5-LiteACP.

21 December 2017 F.b Non-Confidential EAC-1 release to address issues found with the EAC-0 release of
release F.
No change in content compared to the EAC-0 version.
ii Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

ARM AMBA SPECIFICATION LICENCE

THIS END USER LICENCE AGREEMENT (“LICENCE”) IS A LEGAL AGREEMENT BETWEEN YOU (EITHER
ASINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND ARM LIMITED (“ARM”) FOR THE USE OF THE
RELEVANT AMBA SPECIFICATION ACCOMPANYING THIS LICENCE. ARM IS ONLY WILLING TO LICENSE THE
RELEVANT AMBA SPECIFICATION TO YOU ON CONDITION THAT YOU ACCEPT ALL OF THE TERMS IN THIS
LICENCE. BY CLICKING “I AGREE” OR OTHERWISE USING OR COPYING THE RELEVANT AMBA SPECIFICATION
YOU INDICATE THAT YOU AGREE TO BE BOUND BY ALL THE TERMS OF THIS LICENCE. IF YOU DO NOT AGREE
TO THE TERMS OF THIS LICENCE, ARM IS UNWILLING TO LICENSE THE RELEVANT AMBA SPECIFICATION TO
YOU AND YOU MAY NOT USE OR COPY THE RELEVANT AMBA SPECIFICATION AND YOU SHOULD PROMPTLY
RETURN THE RELEVANT AMBA SPECIFICATION TO ARM.

“LICENSEE” means You and your Subsidiaries.

“Subsidiary” means, if You are a single entity, any company the majority of whose voting shares is now or hereafter owned or
controlled, directly or indirectly, by You. A company shall be a Subsidiary only for the period during which such control exists.

1. Subject to the provisions of Clauses 2, 3 and 4, Arm hereby grants to LICENSEE a perpetual, non-exclusive, non-transferable,
royalty free, worldwide licence to:

(i) use and copy the relevant AMBA Specification for the purpose of developing and having developed products that comply with
the relevant AMBA Specification;

(ii) manufacture and have manufactured products which either: (a) have been created by or for LICENSEE under the licence
granted in Clause 1(i); or (b) incorporate a product(s) which has been created by a third party(s) under a licence granted by Arm
in Clause 1(i) of such third party’s Arm AMBA Specification Licence; and

(iii) offer to sell, sell, supply or otherwise distribute products which have either been (a) created by or for LICENSEE under the
licence granted in Clause 1(i); or (b) manufactured by or for LICENSEE under the licence granted in Clause 1(ii).

2. LICENSEE hereby agrees that the licence granted in Clause 1 is subject to the following restrictions:

(i) where a product created under Clause 1(i) is an integrated circuit which includes a CPU then either: (a) such CPU shall only
be manufactured under licence from Arm; or (b) such CPU is neither substantially compliant with nor marketed as being compliant
with the Arm instruction sets licensed by Arm from time to time;

(ii) the licences granted in Clause 1(iii) shall not extend to any portion or function of a product that is not itself compliant with
part of the relevant AMBA Specification; and

(iii) no right is granted to LICENSEE to sublicense the rights granted to LICENSEE under this Agreement.

3. Except as specifically licensed in accordance with Clause 1, LICENSEE acquires no right, title or interest in any Arm
technology or any intellectual property embodied therein. In no event shall the licences granted in accordance with Clause 1 be
construed as granting LICENSEE, expressly or by implication, estoppel or otherwise, a licence to use any Arm technology except
the relevant AMBA Specification.

4. THE RELEVANT AMBA SPECIFICATION IS PROVIDED “AS IS” WITH NO REPRESENTATION OR WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY
QUALITY, MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT ANY
USE OR IMPLEMENTATION OF SUCH ARM TECHNOLOGY WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

5. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS AGREEMENT, TO THE FULLEST
EXTENT PETMITTED BY LAW, THE MAXIMUM LIABILITY OF ARM IN AGGREGATE FOR ALL CLAIMS MADE
AGAINST ARM, IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS
AGREEMENT (INCLUDING WITHOUT LIMITATION (I) LICENSEE’S USE OF THE ARM TECHNOLOGY; AND (II) THE
IMPLEMENTATION OF THE ARM TECHNOLOGY IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS
AGREEMENT) SHALL NOT EXCEED THE FEES PAID (IF ANY) BY LICENSEE TO ARM UNDER THIS AGREEMENT.
THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE
RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

6. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the Arm tradename,
or AMBA trademark in connection with the relevant AMBA Specification or any products based thereon. Nothing in Clause 1
shall be construed as authority for LICENSEE to make any representations on behalf of Arm in respect of the relevant AMBA
Specification.

7. This Licence shall remain in force until terminated by you or by Arm. Without prejudice to any of its other rights if LICENSEE
is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon giving
written notice to You. You may terminate this Licence at any time. Upon expiry or termination of this Licence by You or by Arm
LICENSEE shall stop using the relevant AMBA Specification and destroy all copies of the relevant AMBA Specification in your

possession together with all documentation and related materials. Upon expiry or termination of this Licence, the provisions of
clauses 6 and 7 shall survive.

8. The validity, construction and performance of this Agreement shall be governed by English Law.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. iii
ID122117 Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
iv Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Contents
AMBA AXI and ACE Protocol Specification AXI3,
AXI4, AXI5, ACE and ACE5

Preface
About this specification .. xii
Using this specification ... xiii
Conventions .. xvi
Additional reading ... xviii
Feedback .. xix

Part A AMBA AXI3 and AXI4 Protocol Specification
Chapter A1 Introduction

A1.1 About the AXI protocol ... A1-24
A1.2 AXI revisions .. A1-25
A1.3 AXI Architecture ... A1-26
A1.4 Terminology ... A1-29

Chapter A2 Signal Descriptions
A2.1 Global signals .. A2-32
A2.2 Write address channel signals ... A2-33
A2.3 Write data channel signals ... A2-34
A2.4 Write response channel signals ... A2-35
A2.5 Read address channel signals ... A2-36
A2.6 Read data channel signals ... A2-37

Chapter A3 Single Interface Requirements
A3.1 Clock and reset .. A3-40
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. v
ID122117 Non-Confidential

Contents
A3.2 Basic read and write transactions ... A3-41
A3.3 Relationships between the channels ... A3-44
A3.4 Transaction structure ... A3-48

Chapter A4 Transaction Attributes
A4.1 Transaction types and attributes ... A4-62
A4.2 AXI3 memory attribute signaling ... A4-63
A4.3 AXI4 changes to memory attribute signaling ... A4-64
A4.4 Memory types .. A4-69
A4.5 Mismatched memory attributes ... A4-73
A4.6 Transaction buffering ... A4-74
A4.7 Access permissions ... A4-75
A4.8 Legacy considerations ... A4-76
A4.9 Usage examples .. A4-77

Chapter A5 Multiple Transactions
A5.1 AXI transaction identifiers .. A5-80
A5.2 Transaction ID ... A5-81
A5.3 Transaction ordering ... A5-82
A5.4 Removal of write interleaving support ... A5-85

Chapter A6 AXI4 Ordering Model
A6.1 Definition of the ordering model .. A6-88
A6.2 Master ordering ... A6-89
A6.3 Interconnect ordering .. A6-90
A6.4 Slave ordering ... A6-91
A6.5 Response before final destination ... A6-92
A6.6 Ordered write observation ... A6-93

Chapter A7 Atomic Accesses
A7.1 Single-copy atomicity size ... A7-96
A7.2 Exclusive accesses ... A7-98
A7.3 Locked accesses ... A7-101
A7.4 Atomic access signaling .. A7-102

Chapter A8 AMBA 4 Additional Signaling
A8.1 QoS signaling .. A8-104
A8.2 Multiple region signaling .. A8-105
A8.3 User-defined signaling ... A8-106

Chapter A9 Default Signaling and Interoperability
A9.1 Interoperability principles ... A9-108
A9.2 Major interface categories ... A9-109
A9.3 Default signal values ... A9-110

Part B AMBA AXI4-Lite Interface Specification
Chapter B1 AMBA AXI4-Lite

B1.1 Definition of AXI4-Lite .. B1-120
B1.2 Interoperability ... B1-122
B1.3 Defined conversion mechanism .. B1-123
B1.4 Conversion, protection, and detection ... B1-125
vi Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Contents
Part C AMBA AXI5 and AXI5-Lite Protocol Specification
Chapter C1 AMBA AXI5

C1.1 About the AXI5 protocol ... C1-130
C1.2 Signal Descriptions .. C1-131

Chapter C2 AMBA AXI5-Lite
C2.1 Definition of AXI5-Lite .. C2-138
C2.2 AXI5-Lite compared with other interfaces .. C2-139
C2.3 Interoperability ... C2-140
C2.4 Conversion from AXI5 to AXI5-Lite .. C2-141
C2.5 Upgrading an AXI4-Lite master to AXI5-Lite .. C2-142
C2.6 Upgrading an AXI4-Lite slave to AXI5-Lite .. C2-143
C2.7 AXI5-Lite signal list .. C2-144

Part D AMBA ACE and ACE-Lite Protocol Specification
Chapter D1 About ACE

D1.1 Coherency overview .. D1-148
D1.2 Protocol overview ... D1-150
D1.3 Channel overview .. D1-153
D1.4 Transaction overview ... D1-158
D1.5 Transaction processing .. D1-162
D1.6 Concepts required for the ACE specification ... D1-163
D1.7 Protocol errors ... D1-166

Chapter D2 Signal Descriptions
D2.1 Changes to existing AXI channels ... D2-168
D2.2 Additional channels defined by ACE .. D2-170
D2.3 Additional response signals and signaling requirements defined by ACE D2-172

Chapter D3 Channel Signaling
D3.1 Read and write address channel signaling .. D3-174
D3.2 Read data channel signaling .. D3-184
D3.3 Read acknowledge signaling ... D3-187
D3.4 Write response channel signaling .. D3-188
D3.5 Write Acknowledge signaling ... D3-189
D3.6 Snoop address channel signaling .. D3-190
D3.7 Snoop response channel signaling .. D3-193
D3.8 Snoop data channel signaling .. D3-197
D3.9 Snoop channel dependencies .. D3-199

Chapter D4 Coherency Transactions on the Read Address and Write Address
Channels
D4.1 About an initiating master .. D4-202
D4.2 About snoop filtering .. D4-205
D4.3 State changes on different transactions ... D4-206
D4.4 State change descriptions .. D4-208
D4.5 Read transactions .. D4-209
D4.6 Clean transactions ... D4-215
D4.7 Make transactions .. D4-218
D4.8 Write transactions .. D4-220
D4.9 Evict transactions ... D4-225
D4.10 Handling overlapping write transactions .. D4-226
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. vii
ID122117 Non-Confidential

Contents
Chapter D5 Snoop Transactions
D5.1 Mapping coherency operations to snoop operations ... D5-230
D5.2 General requirements for snoop transactions ... D5-233
D5.3 Snoop transactions .. D5-239

Chapter D6 Interconnect Requirements
D6.1 About the interconnect requirements .. D6-246
D6.2 Sequencing transactions ... D6-247
D6.3 Issuing snoop transactions .. D6-250
D6.4 Transaction responses from the interconnect ... D6-253
D6.5 Interactions with main memory .. D6-255
D6.6 Other requirements ... D6-258
D6.7 Interoperability considerations ... D6-260

Chapter D7 Cache Maintenance
D7.1 ARCACHE and ARDOMAIN requirements ... D7-264
D7.2 Other cache maintenance considerations ... D7-265

Chapter D8 Barrier Transactions
D8.1 About barrier transactions ... D8-270
D8.2 Barrier transaction signaling .. D8-271
D8.3 Barrier responses and domain boundaries ... D8-273
D8.4 Barrier requirements .. D8-276

Chapter D9 Exclusive Accesses
D9.1 About Exclusive accesses ... D9-282
D9.2 Role of the master ... D9-283
D9.3 Role of the interconnect .. D9-285
D9.4 Multiple Exclusive Threads .. D9-288
D9.5 Exclusive Accesses from AXI components ... D9-289
D9.6 Transaction requirements .. D9-290

Chapter D10 Optional External Snoop Filtering
D10.1 About external snoop filtering .. D10-292
D10.2 Master requirements to support snoop filters .. D10-294
D10.3 External snoop filter requirements ... D10-295

Chapter D11 AMBA ACE-Lite
D11.1 About ACE-Lite .. D11-298
D11.2 ACE-Lite signal requirements .. D11-299

Chapter D12 Interface Control
D12.1 About the interface control signals .. D12-302

Chapter D13 Distributed Virtual Memory Transactions
D13.1 About DVM transactions .. D13-304
D13.2 Synchronization message ... D13-305
D13.3 DVM transaction process and rules .. D13-306
D13.4 DVM message support for ARMv7 and ARMv8 .. D13-309
D13.5 Physical and virtual address space size .. D13-311
D13.6 DVMv7 and DVMv8 address spaces ... D13-312
D13.7 DVM transactions format ... D13-315
D13.8 DVM transaction restrictions ... D13-317
D13.9 DVM Operations .. D13-318
D13.10 DVMv7 and DVMv8 conversion .. D13-326
viii Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Contents
Chapter D14 Master Design Recommendations
D14.1 Recommended design restrictions ... D14-328

Part E AMBA ACE5, ACE5-Lite, ACE5-LiteDVM, and
ACE5-LiteACP
Protocol Specification

Chapter E1 Changes in ACE5 and ACE5-Lite
E1.1 Shareability domain support .. E1-332
E1.2 Barrier transaction support ... E1-333

Chapter E2 Additional Features in AMBA 5
E2.1 Atomic transactions .. E2-336
E2.2 Cache Stashing .. E2-345
E2.3 Deallocating transactions ... E2-349
E2.4 Cache Maintenance for Persistence .. E2-351
E2.5 Data checking and Poison ... E2-352
E2.6 Trace signals .. E2-355
E2.7 User Loopback signaling .. E2-357
E2.8 QoS Accept signaling ... E2-358
E2.9 Wake-up Signaling ... E2-360
E2.10 Coherency Connection signaling ... E2-362
E2.11 Distributed Virtual Memory extensions for ARMv8.1 ... E2-367
E2.12 Untranslated transactions .. E2-370
E2.13 Non-secure access identifiers .. E2-374

Chapter E3 AMBA ACE5
E3.1 About the ACE5 protocol ... E3-378
E3.2 Signal descriptions ... E3-380

Chapter E4 AMBA ACE5-Lite
E4.1 About the ACE5-Lite protocol .. E4-388
E4.2 ACE5-Lite signal descriptions .. E4-390

Chapter E5 AMBA ACE5-LiteDVM
E5.1 About the ACE5-LiteDVM protocol .. E5-398
E5.2 ACE5-LiteDVM signal descriptions .. E5-400

Chapter E6 ACE5-LiteACP
E6.1 Definition of ACE5-LiteACP ... E6-408
E6.2 Optional Extensions ... E6-409
E6.3 Interoperability .. E6-410
E6.4 ACE-LiteACP signal list ... E6-411

Part F Appendices
Appendix A Transaction Naming

F1.1 Full and partial cache line write transaction naming .. F1-416

Appendix B Signal Lists
F2.1 Signal Matrix .. F2-418

Appendix C AMBA 5 interface properties
F3.1 Summary of interface properties .. F3-424
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ix
ID122117 Non-Confidential

Contents
Appendix D Summary of AxSNOOP Encodings
F4.1 ARSNOOP encodings ... F4-426
F4.2 AWSNOOP encodings .. F4-427

Appendix E Revisions

Glossary
x Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Preface

This preface introduces the AMBA AXI and ACE Protocol Specification. It contains the following sections:
• About this specification on page xii.
• Using this specification on page xiii.
• Conventions on page xvi.
• Additional reading on page xviii.
• Feedback on page xix.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. xi
ID122117 Non-Confidential

 Preface
 About this specification
About this specification
This specification describes the AMBA protocols for AXI and ACE. Several release levels and variants are
described:
• The AMBA 3 AXI protocol release is referred to as AXI3.
• The AMBA 4 AXI protocol releases are referred to as AXI4 and AXI4-Lite.
• The AMBA 5 AXI protocol releases are referred to as AXI5 and AXI5-Lite.
• The AMBA 4 ACE protocol releases are referred to as ACE and ACE-Lite.
• The AMBA 5 ACE protocol releases are referred to as ACE5, ACE5-Lite, and ACE5-LiteDVM.

Specifications for AXI3 apply to all subsequent versions, with some exceptions. AXI4 extends AXI3 and has some
protocol changes. AXI4 protocol differences are marked appropriately.

There are no protocol changes in the AXI5 extensions. The AMBA 5 protocol extensions are documented in Part C
AMBA AXI5 and AXI5-Lite Protocol Specification, Part E AMBA ACE5, ACE5-Lite, ACE5-LiteDVM, and
ACE5-LiteACPProtocol Specification, and the Appendixes.

Intended audience

This specification is written for hardware and software engineers who want to become familiar with AMBA and
design systems and modules that are compatible with the AXI protocol.
xii Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

 Preface
 Using this specification
Using this specification
The information in this specification is organized into parts, as described in this section.

Part A, AMBA AXI3 and AXI4 Protocol Specification

Part A describes the AXI3 and AXI4 releases of the AMBA AXI Protocol Specification. It contains the following
chapters:

Chapter A1 Introduction

An introduction to the AXI architecture and terminology that is used in this specification.

Chapter A2 Signal Descriptions

A description of the signals that are used by the AXI3 and AXI4 protocols.

Chapter A3 Single Interface Requirements

A description of the basic AXI protocol transaction requirements between a master and slave.

Chapter A4 Transaction Attributes

A description of the AXI protocol and signaling that supports system topology and system level
caches.

Chapter A5 Multiple Transactions

A description of the AXI protocol and signaling that supports out-of-order transaction completion
and the issuing of multiple outstanding addresses.

Chapter A6 AXI4 Ordering Model

A description of the AXI4 ordering model.

Chapter A7 Atomic Accesses

A description of the mechanisms that support atomic accesses.

Chapter A8 AMBA 4 Additional Signaling

A description of the additional signaling introduced in AXI4 to extend the application of the AXI
interface.

Chapter A9 Default Signaling and Interoperability

A description of the interoperability of interfaces that use reduced AXI signal sets.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. xiii
ID122117 Non-Confidential

 Preface
 Using this specification
Part B, AMBA AXI4-Lite Interface Specification

Part B describes AMBA AXI4-Lite. It contains the following chapter:

Chapter B1 AMBA AXI4-Lite

A description of AXI4-Lite that provides a simpler control register-style interface for systems that
do not require the full functionality of AXI4.

Part C, AMBA AXI5 Protocol Specification

Part C gives an overview of the AXI5 protocol. It contains the following chapters:

Chapter C1 AMBA AXI5

An overview of the new capabilities, the set of properties that specify the supported behavior, and
the AXI5 interface signaling requirements.

Chapter C2 AMBA AXI5-Lite

An overview of the new capabilities, the set of properties that specify the supported behavior, and
the AXI5-Lite interface signaling requirements.

Part D, AMBA ACE Protocol Specification

Part D describes the ACE protocol. It contains the following chapters:

Chapter D1 About ACE

An overview of system level coherency and the architecture of the AXI Coherency Extensions
(ACE) protocol.

Chapter D2 Signal Descriptions

A description of the additional ACE interface signals.

Chapter D3 Channel Signaling

A description of the basic channel signaling requirements on an ACE interface.

Chapter D4 Coherency Transactions on the Read Address and Write Address Channels

A description of the transactions issued on the read address and write address channels.

Chapter D5 Snoop Transactions

A description of the snoop transactions seen on the snoop address channel.

Chapter D6 Interconnect Requirements

A description of the ACE interconnect requirements.

Chapter D7 Cache Maintenance

A description of the ACE cache maintenance operations.

Chapter D8 Barrier Transactions

A description of the ACE memory and synchronization barrier transactions.

Chapter D9 Exclusive Accesses

A description of the ACE Exclusive Accesses to Shareable memory.

Chapter D10 Optional External Snoop Filtering

A description of using an external snoop filter in an ACE system.

Chapter D11 AMBA ACE-Lite

A description of the ACE-Lite interface.
xiv Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

 Preface
 Using this specification
Chapter D12 Interface Control

A description of the optional signals that can be used to configure the ACE interface.

Chapter D13 Distributed Virtual Memory Transactions

A description of Distributed Virtual Memory (DVM) transactions.

Chapter D14 Master Design Recommendations

A set of recommendations for the design of master components that improve the ability to bridge
the master to different protocol interfaces.

Part E AMBA ACE5 Protocol Specification

Part E describes the ACE5 protocol. It contains the following chapters:

Chapter E1 Changes in ACE5 and ACE5-Lite

A description of the changes in AMBA 5 to the ACE and ACE-Lite channel signaling requirements.

Chapter E2 Additional Features in AMBA 5

A description of the new features in AMBA 5.

Chapter E3 AMBA ACE5

An overview of the new capabilities, the set of properties that specify the supported behavior, and
the ACE5 interface signaling requirements.

Chapter E4 AMBA ACE5-Lite

A description of the new capabilities in the ACE5-Lite protocol specification.

Chapter E5 AMBA ACE5-LiteDVM

A description of the new ACE5-LiteDVM protocol specification introduced in AMBA 5.

Chapter E6 ACE5-LiteACP

A description of ACE5-LiteACP interface and associated protocol.

Part F Appendices

This specification contains the following appendices:

Appendix F1 Transaction Naming

This appendix defines the naming scheme for full cache line and partial cache line write
transactions.

Appendix F2 Signal Lists

This appendix defines the required and optional signals for each of the AMBA 5 interfaces.

Appendix F3 AMBA 5 interface properties

This appendix defines properties of the AMBA 5 interfaces.

Appendix F4 Summary of AxSNOOP Encodings

This appendix shows all possible AxSNOOP encodings and the property that is used to determine
if a particular value is supported for a given interface.

Appendix F5 Revisions

This appendix describes the technical changes between released issues of this specification.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. xv
ID122117 Non-Confidential

 Preface
 Conventions
Conventions
The following sections describe conventions that this specification can use:
• Typographic conventions.
• Timing diagrams.
• Signals on page xvii.
• Numbers on page xvii.

Typographic conventions

The typographical conventions are:

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings.

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in timing diagrams. Variations,
when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that
time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to
the bus change shown in Key to timing diagram conventions. If a timing diagram shows a single-bit signal in this
way then its value does not affect the accompanying description.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xvi Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

 Preface
 Conventions
Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Lower-case x At the second letter of a signal name denotes a collective term for both Read and Write. For
example, AxCACHE refers to both the ARCACHE and AWCACHE signals.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
Both are written in a monospace font.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. xvii
ID122117 Non-Confidential

 Preface
 Additional reading
Additional reading
This section lists relevant publications from ARM.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications
• AMBA APB Protocol Specification (ARM IHI 0024)
• AMBA 4 AXI4-Stream Protocol Specification (ARM IHI 0051)
• AMBA 5 CHI Architecture Specification (ARM IHI 0050)
• AMBA Low Power Interface Specification (ARM IHI 0068).
xviii Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this specification

If you have comments on the content of this specification, send e-mail to errata@arm.com. Give:
• The title, AMBA AXI and ACE Protocol Specification AXI3, AXI4, AXI5, ACE and ACE5
• The number, ARM IHI 0022F.b
• The page number(s) that your comments apply
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. xix
ID122117 Non-Confidential

 Preface
 Feedback
xx Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Part A
AMBA AXI3 and AXI4 Protocol Specification

Chapter A1
Introduction

This chapter introduces the architecture of the AXI protocol and the terminology that is used in this specification:
• About the AXI protocol on page A1-24.
• AXI revisions on page A1-25.
• AXI Architecture on page A1-26.
• Terminology on page A1-29.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A1-23
ID122117 Non-Confidential

A1 Introduction
A1.1 About the AXI protocol
A1.1 About the AXI protocol
The AMBA AXI protocol supports high-performance, high-frequency system designs for communication between
master and slave components.

The AXI protocol:
• Is suitable for high-bandwidth and low-latency designs.
• Provides high-frequency operation without using complex bridges.
• Meets the interface requirements of a wide range of components.
• Is suitable for memory controllers with high initial access latency.
• Provides flexibility in the implementation of interconnect architectures.
• Is backward-compatible with AHB and APB interfaces.

The key features of the AXI protocol are:
• Separate address/control and data phases.
• Support for unaligned data transfers, using byte strobes.
• Uses burst-based transactions with only the start address issued.
• Separate read and write data channels, that can provide low-cost Direct Memory Access (DMA).
• Support for issuing multiple outstanding addresses.
• Support for out-of-order transaction completion.
• Permits easy addition of register stages to provide timing closure.

The AXI protocol includes:

• AXI4-Lite, a subset of AXI4 for communication with simpler control register style interfaces within
components. See Chapter B1 AMBA AXI4-Lite.

• AXI5-Lite, a subset of AXI5 for using AXI5 features with simpler control register style interfaces within
components. See Chapter C2 AMBA AXI5-Lite.
A1-24 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A1 Introduction
A1.2 AXI revisions
A1.2 AXI revisions
Early issues of this document describe earlier versions of the AMBA AXI Protocol Specification. In particular, Issue
B of the document describes the version that is now called AXI3.

Issue C adds the definition of an extended version of the protocol that is called AXI4 and a new interface,
AXI4-Lite.

Issue D integrates the definitions of AXI3 and AXI4 that were presented separately in Issue C.

Issue E adds clarifications, recommendations, and specifies new capabilities. To maintain compatibility, a property
is used to declare a new capability.

Table A1-1 summarizes the properties that are introduced in Issue E and the default value that applies for a
component that does not have a declared value.

Issue F adds AXI5, which extends AXI4. AXI5 also uses properties to declare a new capability. See About the AXI5
protocol on page C1-130 for a list of the properties.

Note
 Some previous issues of this document included a version number in the title. That version number does not refer
to the version of the AXI protocol.

Table A1-1 Properties that specify system capability

Property Description Default

Ordered_Write_Observation Improved support for the Producer/Consumer ordering model. See Ordered write
observation on page A6-93

FALSE

Multi_Copy_Atomicity Support for multi-copy atomicity. See Multi-copy write atomicity on page A7-97 FALSE
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A1-25
ID122117 Non-Confidential

A1 Introduction
A1.3 AXI Architecture
A1.3 AXI Architecture
The AXI protocol is burst-based and defines five independent transaction channels:
• Read address, which has signal names beginning with AR.
• Read data, which has signal names beginning with R.
• Write address, which has signal names beginning with AW.
• Write data, which has signal names beginning with W.
• Write response, which has signal names beginning with B.

An address channel carries control information that describes the nature of the data to be transferred. The data is
transferred between master and slave using either:

• A write data channel to transfer data from the master to the slave. In a write transaction, the slave uses the
write response channel to signal the completion of the transfer to the master.

• A read data channel to transfer data from the slave to the master.

The AXI protocol:
• Permits address information to be issued ahead of the actual data transfer.
• Supports multiple outstanding transactions.
• Supports out-of-order completion of transactions.

Figure A1-1 shows how a write transaction uses the write address, write data, and write response channels.

Figure A1-1 Channel architecture of writes

Figure A1-2 shows how a read transaction uses the read address and read data channels.

Figure A1-2 Channel architecture of reads

Master

interface

Slave

interface

Address

and control

Write address channel

Write

data

Write data channel

Write

data

Write

data

Write

data

Write

response

Write response channel

Master

interface

Slave

interface

Address

and control

 Read address channel

Read

data

Read

data

Read

data

Read

data

Read data channel
A1-26 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A1 Introduction
A1.3 AXI Architecture
A1.3.1 Channel definition

Each of the five independent channels consists of a set of information signals and VALID and READY signals that
provide a two-way handshake mechanism. See Basic read and write transactions on page A3-41.

The information source uses the VALID signal to show when valid address, data, or control information is available
on the channel. The destination uses the READY signal to show when it can accept the information. Both the read
data channel and the write data channel also include a LAST signal to indicate the transfer of the final data item in
a transaction.

Read and write address channels

Read and write transactions each have their own address channel. The appropriate address channel carries all the
required address and control information for a transaction.

Read data channel

The read data channel carries both the read data and the read response information from the slave to the master, and
includes:
• The data bus, which can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.
• A read response signal indicating the completion status of the read transaction.

Write data channel

The write data channel carries the write data from the master to the slave and includes:
• The data bus, which can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.
• A byte lane strobe signal for every eight data bits, indicating the bytes of the data that are valid.

Write data channel information is always treated as buffered, so that the master can perform write transactions
without slave acknowledgement of previous write transactions.

Write response channel

A slave uses the write response channel to respond to write transactions. All write transactions require completion
signaling on the write response channel.

As Figure A1-1 on page A1-26 shows, completion is signaled only for a complete transaction, not for each data
transfer in a transaction.

A1.3.2 Interface and interconnect

A typical system consists of a number of master and slave devices that are connected together through some form
of interconnect, as Figure A1-3 shows.

Figure A1-3 Interface and interconnect

The AXI protocol provides a single interface definition, for the interfaces between:
• A master and the interconnect.
• A slave and the interconnect.
• A master and a slave.

This interface definition supports a variety of different interconnect implementations.

Interconnect

Slave 1 Slave 2 Slave 3 Slave 4

Master 1 Master 2 Master 3

Interface

Interface
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A1-27
ID122117 Non-Confidential

A1 Introduction
A1.3 AXI Architecture
Note
 An interconnect between devices is equivalent to another device with symmetrical master and slave ports that the
real master and slave devices can be connected.

Typical system topologies

Most systems use one of three interconnect topologies:
• Shared address and data buses.
• Shared address buses and multiple data buses.
• Multilayer, with multiple address and data buses.

In most systems, the address channel bandwidth requirement is significantly less than the data channel bandwidth
requirement. Such systems can achieve a good balance between system performance and interconnect complexity
by using a shared address bus with multiple data buses to enable parallel data transfers.

A1.3.3 Register slices

Each AXI channel transfers information in only one direction, and the architecture does not require any fixed
relationship between the channels. These qualities mean that a register slice can be inserted at almost any point in
any channel, at the cost of an additional cycle of latency.

Note
 This makes possible:
• Trade-off between cycles of latency and maximum frequency of operation.
• Direct, fast connection between a processor and high-performance memory, but to use simple register slices

to isolate a longer path to less performance critical peripherals.
A1-28 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A1 Introduction
A1.4 Terminology
A1.4 Terminology
This section summarizes terms that are used in this specification, and are defined in the Glossary, or elsewhere.
Where appropriate, terms that are listed in this section link to the corresponding glossary definition.

A1.4.1 AXI components and topology

The following terms describe AXI components:
• Component.
• Master component.
• Slave component, which includes Memory slave components and Peripheral slave components.
• Interconnect component.

For a particular AXI transaction, Upstream and Downstream refer to the relative positions of AXI components
within the AXI topology.

A1.4.2 AXI transactions, and memory types

When an AXI master initiates an AXI operation, targeting an AXI slave:
• The complete set of required operations on the AXI bus form the AXI Transaction.
• Any required payload data is transferred as an AXI Burst.
• A burst can comprise multiple data transfers, or AXI Beats.

A1.4.3 Caches and cache operation

This specification does not define standard cache terminology, that is defined in any reference work on caching.
However, the glossary entries for Cache and Cache line clarify how these terms are used in this document.

A1.4.4 Temporal description

The AXI specification uses the term In a timely manner.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A1-29
ID122117 Non-Confidential

A1 Introduction
A1.4 Terminology
A1-30 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter A2
Signal Descriptions

This chapter introduces the AXI interface signals. Most of the signals are required for AXI3 and AXI4
implementations of the protocol, and the tables summarizing the signals identify the exceptions. This chapter
contains the following sections:
• Global signals on page A2-32.
• Write address channel signals on page A2-33.
• Write data channel signals on page A2-34.
• Write response channel signals on page A2-35.
• Read address channel signals on page A2-36.
• Read data channel signals on page A2-37.

Later chapters define the signal parameters and usage.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A2-31
ID122117 Non-Confidential

A2 Signal Descriptions
A2.1 Global signals
A2.1 Global signals
Table A2-1 shows the global AXI signals. These signals are used by the AXI3 and AXI4 protocols.

All signals are sampled on the rising edge of the global clock.

Table A2-1 Global signals

Signal Source Description

ACLK Clock source Global clock signal. See Clock on page A3-40.

ARESETn Reset source Global reset signal, active LOW. See Reset on page A3-40.
A2-32 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A2 Signal Descriptions
A2.2 Write address channel signals
A2.2 Write address channel signals
Table A2-2 shows the AXI write address channel signals. Unless the description indicates otherwise, a signal is used
by AXI3 and AXI4.

Table A2-2 Write address channel signals

Signal Source Description

AWID Master The identification tag for the write address group of signals. See Transaction ID on
page A5-81.

AWADDR Master The write address gives the address of the first transfer in a write burst transaction.
See Address structure on page A3-48.

AWLEN Master The burst length gives the exact number of transfers in a burst. This information
determines the number of data transfers associated with the address.
This changes between AXI3 and AXI4. See Burst length on page A3-48.

AWSIZE Master Indicates the size of each transfer in the burst. See Burst size on page A3-49.

AWBURST Master The burst type and the size information, determine how the address for each
transfer within the burst is calculated. See Burst type on page A3-49.

AWLOCK Master Provides additional information about the atomic characteristics of the transfer.
This changes between AXI3 and AXI4. See Locked accesses on page A7-101.

AWCACHE Master Indicates how transactions are required to progress through a system. See Memory
types on page A4-69.

AWPROT Master Indicates the privilege and security level of the transaction, and whether the
transaction is a data access or an instruction access. See Access permissions on
page A4-75.

AWQOS Master QoS identifier sent for each write transaction.
Not implemented in AXI3. See QoS signaling on page A8-104.

AWREGION Master Permits a single physical interface on a slave to be used for multiple logical
interfaces.
Not implemented in AXI3. See Multiple region signaling on page A8-105.

AWUSER Master Optional User-defined signal in the write address channel.
Not implemented in AXI3. See User-defined signaling on page A8-106.

AWVALID Master Indicates that the channel is signaling valid write address and control information.
See Channel handshake signals on page A3-42.

AWREADY Slave Indicates that the slave is ready to accept an address and associated control signals.
See Channel handshake signals on page A3-42.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A2-33
ID122117 Non-Confidential

A2 Signal Descriptions
A2.3 Write data channel signals
A2.3 Write data channel signals
Table A2-3 shows the AXI write data channel signals. Unless the description indicates otherwise, a signal is used
by AXI3 and AXI4.

Table A2-3 Write data channel signals

Signal Source Description

WID Master The ID tag of the write data transfer.
Implemented in AXI3 only. See Transaction ID on page A5-81.

WDATA Master Write data.
See Write data channel on page A3-43.

WSTRB Master Indicates that the byte lanes that hold valid data. There is one write strobe bit for each 8
bits of the write data bus. See Write strobes on page A3-54.

WLAST Master Indicates the last transfer in a write burst. See Write data channel on page A3-43.

WUSER Master Optional User-defined signal in the write data channel.
Not implemented in AXI3. See User-defined signaling on page A8-106.

WVALID Master This signal indicates that valid write data and strobes are available. See Channel
handshake signals on page A3-42.

WREADY Slave This signal indicates that the slave can accept the write data. See Channel handshake
signals on page A3-42.
A2-34 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A2 Signal Descriptions
A2.4 Write response channel signals
A2.4 Write response channel signals
Table A2-4 shows the AXI write response channel signals. Unless the description indicates otherwise, a signal is
used by AXI3 and AXI4.

Table A2-4 Write response channel signals

Signal Source Description

BID Slave The ID tag of the write response. See Transaction ID on page A5-81.

BRESP Slave Indicates the status of the write transaction. See Read and write response structure on
page A3-59.

BUSER Slave Optional User-defined signal in the write response channel.
Not implemented in AXI3. See User-defined signaling on page A8-106.

BVALID Slave Indicates that the channel is signaling a valid write response. See Channel handshake
signals on page A3-42.

BREADY Master Indicates that the master can accept a write response. See Channel handshake signals on
page A3-42.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A2-35
ID122117 Non-Confidential

A2 Signal Descriptions
A2.5 Read address channel signals
A2.5 Read address channel signals
Table A2-5 shows the AXI read address channel signals. Unless the description indicates otherwise, a signal is used
by AXI3 and AXI4.

Table A2-5 Read address channel signals

Signal Source Description

ARID Master The identification tag for the read address group of signals. See Transaction ID on
page A5-81.

ARADDR Master The read address gives the address of the first transfer in a read burst transaction. See
Address structure on page A3-48.

ARLEN Master Indicates the exact number of transfers in a burst. This changes between AXI3 and
AXI4. See Burst length on page A3-48.

ARSIZE Master Indicates the size of each transfer in the burst. See Burst size on page A3-49.

ARBURST Master The burst type and the size information determine how the address for each transfer
within the burst is calculated. See Burst type on page A3-49.

ARLOCK Master Provides additional information about the atomic characteristics of the transfer. This
changes between AXI3 and AXI4. See Locked accesses on page A7-101.

ARCACHE Master Indicates how transactions are required to progress through a system. See Memory
types on page A4-69.

ARPROT Master Indicates the privilege and security level of the transaction, and whether the transaction
is a data access or an instruction access. See Access permissions on page A4-75.

ARQOS Master QoS identifier sent for each read transaction.
Not implemented in AXI3. See QoS signaling on page A8-104.

ARREGION Master Permits a single physical interface on a slave to be used for multiple logical interfaces.
Not implemented in AXI3. See Multiple region signaling on page A8-105.

ARUSER Master Optional User-defined signal in the read address channel.
Not implemented in AXI3. See User-defined signaling on page A8-106.

ARVALID Master Indicates that the channel is signaling valid read address and control information. See
Channel handshake signals on page A3-42.

ARREADY Slave Indicates that the slave is ready to accept an address and associated control signals. See
Channel handshake signals on page A3-42.
A2-36 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A2 Signal Descriptions
A2.6 Read data channel signals
A2.6 Read data channel signals
Table A2-6 shows the AXI read data channel signals. Unless the description indicates otherwise, a signal is used by
AXI3 and AXI4.

Table A2-6 Read data channel signals

Signal Source Description

RID Slave The identification tag for the read data group of signals that are generated by the slave. See
Transaction ID on page A5-81.

RDATA Slave Read data.
See Read data channel on page A3-43.

RRESP Slave Indicates the status of the read transfer. See Read and write response structure on
page A3-59.

RLAST Slave Indicates the last transfer in a read burst. See Read data channel on page A3-43.

RUSER Slave Optional User-defined signal in the read data channel.
Not implemented in AXI3. See User-defined signaling on page A8-106.

RVALID Slave The channel is signaling the required read data. See Channel handshake signals on
page A3-42.

RREADY Master Indicates that the master can accept the read data and response information. See Channel
handshake signals on page A3-42.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A2-37
ID122117 Non-Confidential

A2 Signal Descriptions
A2.6 Read data channel signals
A2-38 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter A3
Single Interface Requirements

This chapter describes the basic AXI protocol transaction requirements between a single master and slave. It
contains the following sections:
• Clock and reset on page A3-40.
• Basic read and write transactions on page A3-41.
• Relationships between the channels on page A3-44.
• Transaction structure on page A3-48.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-39
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.1 Clock and reset
A3.1 Clock and reset
This section describes the requirements for implementing the AXI global clock and reset signals ACLK and
ARESETn.

A3.1.1 Clock

Each AXI interface has a single clock signal, ACLK. All input signals are sampled on the rising edge of ACLK.
All output signal changes can only occur after the rising edge of ACLK.

On master and slave interfaces, there must be no combinatorial paths between input and output signals.

A3.1.2 Reset

The AXI protocol uses a single active LOW reset signal, ARESETn. The reset signal can be asserted
asynchronously, but deassertion can only be synchronous with a rising edge of ACLK.

During reset the following interface requirements apply:
• A master interface must drive ARVALID, AWVALID, and WVALID LOW.
• A slave interface must drive RVALID and BVALID LOW.
• All other signals can be driven to any value.

The earliest point after reset that a master is permitted to begin driving ARVALID, AWVALID, or WVALID HIGH
is at a rising ACLK edge after ARESETn is HIGH. Figure A3-1 shows the earliest point after reset that ARVALID,
AWVALID, or WVALID, can be driven HIGH.

Figure A3-1 Exit from reset

ACLK

ARESETn

VALID
A3-40 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.2 Basic read and write transactions
A3.2 Basic read and write transactions
This section defines the basic mechanisms for AXI protocol transactions. The basic mechanisms are:
• The Handshake process.
• The Channel signaling requirements on page A3-42.

A3.2.1 Handshake process

All five transaction channels use the same VALID/READY handshake process to transfer address, data, and control
information. This two-way flow control mechanism means both the master and slave can control the rate that the
information moves between master and slave. The source generates the VALID signal to indicate when the address,
data, or control information is available. The destination generates the READY signal to indicate that it can accept
the information. Transfer occurs only when both the VALID and READY signals are HIGH.

On master and slave interfaces, there must be no combinatorial paths between input and output signals.

Figure A3-2 to Figure A3-4 on page A3-42 show examples of the handshake process.

The source presents information after T1 and asserts the VALID signal as shown in Figure A3-2. The destination
asserts the READY signal after T2. The source must keep its information stable until the transfer occurs at T3, when
this assertion is recognized.

Figure A3-2 VALID before READY handshake

A source is not permitted to wait until READY is asserted before asserting VALID.

When VALID is asserted, it must remain asserted until the handshake occurs, at a rising clock edge when VALID
and READY are both asserted.

In Figure A3-3 the destination asserts READY after T1, before the address, data, or control information is valid.
This assertion indicates that it can accept the information. The source presents the information and asserts VALID
after T2, then the transfer occurs at T3, when this assertion is recognized. In this case, transfer occurs in a single
cycle.

Figure A3-3 READY before VALID handshake

A destination is permitted to wait for VALID to be asserted before asserting the corresponding READY.

If READY is asserted, it is permitted to deassert READY before VALID is asserted.

READY

VALID

INFORMATION

ACLK

T1 T2 T3

READY

VALID

INFORMATION

ACLK

T1 T2 T3
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-41
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.2 Basic read and write transactions
In Figure A3-4, both the source and destination happen to indicate that they can transfer the address, data, or control
information after T1. In this case, the transfer occurs at the rising clock edge when the assertion of both VALID and
READY can be recognized. These assertions means that the transfer occurs at T2.

Figure A3-4 VALID with READY handshake

The individual AXI protocol channel handshake mechanisms are described in Channel signaling requirements.

A3.2.2 Channel signaling requirements

The following sections define the handshake signals and the handshake rules for each channel:
• Channel handshake signals.
• Write address channel.
• Write data channel on page A3-43.
• Write response channel on page A3-43.
• Read address channel on page A3-43.
• Read data channel on page A3-43.

Channel handshake signals

Each channel has its own VALID/READY handshake signal pair. Table A3-1 shows the signals for each channel.

Write address channel

The master can assert the AWVALID signal only when it drives valid address and control information. When
asserted, AWVALID must remain asserted until the rising clock edge after the slave asserts AWREADY.

The default state of AWREADY can be either HIGH or LOW. This specification recommends a default state of
HIGH. When AWREADY is HIGH, the slave must be able to accept any valid address that is presented to it.

Note
 This specification does not recommend a default AWREADY state of LOW, because it forces the transfer to take
at least two cycles, one to assert AWVALID and another to assert AWREADY.

READY

VALID

INFORMATION

ACLK

T1 T2

Table A3-1 Transaction channel handshake pairs

Transaction channel Handshake pair

Write address channel AWVALID, AWREADY

Write data channel WVALID, WREADY

Write response channel BVALID, BREADY

Read address channel ARVALID, ARREADY

Read data channel RVALID, RREADY
A3-42 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.2 Basic read and write transactions
Write data channel

During a write burst, the master can assert the WVALID signal only when it drives valid write data. When asserted,
WVALID must remain asserted until the rising clock edge after the slave asserts WREADY.

The default state of WREADY can be HIGH, but only if the slave can always accept write data in a single cycle.

The master must assert the WLAST signal while it is driving the final write transfer in the burst.

Write response channel

The slave can assert the BVALID signal only when it drives a valid write response. When asserted, BVALID must
remain asserted until the rising clock edge after the master asserts BREADY.

The default state of BREADY can be HIGH, but only if the master can always accept a write response in a single
cycle.

Read address channel

The master can assert the ARVALID signal only when it drives valid address and control information. When
asserted, ARVALID must remain asserted until the rising clock edge after the slave asserts the ARREADY signal.

The default state of ARREADY can be either HIGH or LOW. This specification recommends a default state of
HIGH. If ARREADY is HIGH, then the slave must be able to accept any valid address that is presented to it.

Note
 This specification does not recommend a default ARREADY value of LOW, because it forces the transfer to take
at least two cycles, one to assert ARVALID and another to assert ARREADY.

Read data channel

The slave can assert the RVALID signal only when it drives valid read data. When asserted, RVALID must remain
asserted until the rising clock edge after the master asserts RREADY. Even if a slave has only one source of read
data, it must assert the RVALID signal only in response to a request for data.

The master interface uses the RREADY signal to indicate that it accepts the data. The default state of RREADY
can be HIGH, but only if the master is able to accept read data immediately when it starts a read transaction.

The slave must assert the RLAST signal when it is driving the final read transfer in the burst.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-43
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.3 Relationships between the channels
A3.3 Relationships between the channels
The AXI protocol requires the following relationships to be maintained:
• A write response must always follow the last write transfer in a write transaction.
• Read data must always follow the read address of the data.
• Channel handshakes must conform to the dependencies defined in Dependencies between channel handshake

signals.

The protocol does not define any other relationship between the channels.

The lack of relationship means, for example, that the write data can appear at an interface before the write address
for the transaction. This can occur if the write address channel contains more register stages than the write data
channel. Similarly, the write data might appear in the same cycle as the address.

Note
 When the interconnect is required to determine the destination address space or slave space, it must realign the
address and write data. This realignment is required to assure that the write data is signaled as being valid only to
the slave that it is destined for.

A3.3.1 Dependencies between channel handshake signals

To prevent a deadlock situation, the dependency rules that exist between the handshake signals must be observed.

As summarized in Channel signaling requirements on page A3-42, in any transaction:

• The VALID signal of the AXI interface sending information must not be dependent on the READY signal
of the AXI interface receiving that information.

• An AXI interface that is receiving information can wait until it detects a VALID signal before it asserts its
corresponding READY signal.

Note
 While it is acceptable to wait for VALID to be asserted before asserting READY, it is also acceptable to assert
READY before detecting the corresponding VALID. This can result in a more efficient design.

In addition, there are dependencies between the handshake signals on different channels, and AXI4 defines an
additional write response dependency. The following subsections define these dependencies:
• Read transaction dependencies on page A3-45.
• AXI3 write transaction dependencies on page A3-45.
• AXI4 and AXI5 write transaction dependencies on page A3-46.

In the dependency diagrams:
• Single-headed arrows point to signals that can be asserted before or after the signal at the start of the arrow.
• Double-headed arrows point to signals that must be asserted only after assertion of the signal at the start of

the arrow.
A3-44 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.3 Relationships between the channels
Read transaction dependencies

Figure A3-5 shows the read transaction handshake signal dependencies, and shows that, in a read transaction:

• The master must not wait for the slave to assert ARREADY before asserting ARVALID.

• The slave can wait for ARVALID to be asserted before it asserts ARREADY.

• The slave can assert ARREADY before ARVALID is asserted.

• The slave must wait for both ARVALID and ARREADY to be asserted before it asserts RVALID to indicate
that valid data is available.

• The slave must not wait for the master to assert RREADY before asserting RVALID.

• The master can wait for RVALID to be asserted before it asserts RREADY.

• The master can assert RREADY before RVALID is asserted.

Figure A3-5 Read transaction handshake dependencies

AXI3 write transaction dependencies

Figure A3-6 shows the write transaction handshake signal dependencies, and shows that in a write transaction:

• The master must not wait for the slave to assert AWREADY or WREADY before asserting AWVALID or
WVALID.

• The slave can wait for AWVALID or WVALID, or both before asserting AWREADY.

• The slave can assert AWREADY before AWVALID or WVALID, or both, are asserted.

• The slave can wait for AWVALID or WVALID, or both, before asserting WREADY.

• The slave can assert WREADY before AWVALID or WVALID, or both, are asserted.

• The slave must wait for both WVALID and WREADY to be asserted before asserting BVALID.

The slave must also wait for WLAST to be asserted before asserting BVALID. Waiting is required because
the write response, BRESP, must be signaled only after the last data transfer of a write transaction.

• The slave must not wait for the master to assert BREADY before asserting BVALID.

• The master can wait for BVALID before asserting BREADY.

• The master can assert BREADY before BVALID is asserted.

Figure A3-6 AXI3 write transaction handshake dependencies

ARVALID

ARREADY

RVALID

RREADY

WREADY

AWVALID

AWREADY

WVALID† BVALID

BREADY

† Dependencies on the assertion of WVALID also require the assertion of WLAST
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-45
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.3 Relationships between the channels
Caution
 The dependency rules must be observed to prevent a deadlock condition. For example, a master must not wait for
AWREADY to be asserted before driving WVALID. A deadlock condition can occur if the slave is waiting for
WVALID before asserting AWREADY.

AXI4 and AXI5 write transaction dependencies

AXI4 and AXI5 define an additional slave write response dependency. The slave must wait for AWVALID,
AWREADY, WVALID, and WREADY to be asserted before asserting BVALID. By issuing a write response, the
slave takes responsibility for hazard checking the write transaction against all subsequent transactions.

Note
 This additional dependency reflects the expected use in AXI3, because it is not expected that any components would
accept all write data and provide a write response before the address is accepted.

Figure A3-7 shows all the AXI4 and AXI5 required slave write response handshake dependencies. The
single-headed arrows point to signals that can be asserted before or after the previous signal is asserted.
Double-headed arrows point to signals that must be asserted only after assertion of the previous signal.

These dependencies are:

• The master must not wait for the slave to assert AWREADY or WREADY before asserting AWVALID or
WVALID.

• The slave can wait for AWVALID or WVALID, or both, before asserting AWREADY.

• The slave can assert AWREADY before AWVALID or WVALID, or both, are asserted.

• The slave can wait for AWVALID or WVALID, or both, before asserting WREADY.

• The slave can assert WREADY before AWVALID or WVALID, or both, are asserted.

• The slave must wait for AWVALID, AWREADY, WVALID, and WREADY to be asserted before asserting
BVALID.

The slave must also wait for WLAST to be asserted before asserting BVALID. This wait is because the write
response, BRESP, must be signaled only after the last data transfer of a write transaction.

• The slave must not wait for the master to assert BREADY before asserting BVALID.

• The master can wait for BVALID before asserting BREADY.

• The master can assert BREADY before BVALID is asserted.

Figure A3-7 AXI4 and AXI5 write transaction handshake dependencies

AWREADY

AWVALID WVALID† BVALID

BREADYWREADY

† Dependencies on the assertion of WVALID also require the assertion of WLAST
A3-46 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.3 Relationships between the channels
A3.3.2 Legacy considerations

The additional dependency described in AXI4 and AXI5 write transaction dependencies on page A3-46 means that
an AXI3 slave that accepts all write data and provides a write response before accepting the address is not compliant
with AXI4 or AXI5. Converting an AXI3 legacy slave to AXI4 or AXI5 requires the addition of a wrapper. That
wrapper ensures a returning write response is not provided until the appropriate address has been accepted by the
slave.

Note
 This specification strongly recommends that any new AXI3 slave implementation includes this additional
dependency.

Any AXI3 master complies with the AXI4 and AXI5 write response requirements.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-47
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.4 Transaction structure
A3.4 Transaction structure
This section describes the structure of transactions. The following sections define the address, data, and response
structures:
• Address structure.
• Pseudocode description of the transfers on page A3-52.
• Data read and write structure on page A3-54.
• Read and write response structure on page A3-59.

For the definitions of terms used in this section, see Glossary on page Glossary-433.

A3.4.1 Address structure

The AXI protocol is burst-based. The master begins each burst by driving control information and the address of
the first byte in the transaction to the slave. As the burst progresses, the slave must calculate the addresses of
subsequent transfers in the burst.

A burst must not cross a 4KB address boundary.

Note
 This prohibition prevents a burst from crossing a boundary between two slaves. It also limits the number of address
increments that a slave must support.

Burst length

The burst length is specified by:
• ARLEN[7:0], for read transfers.
• AWLEN[7:0], for write transfers.

In this specification, AxLEN indicates ARLEN or AWLEN.

AXI3 supports burst lengths of 1-16 transfers, for all burst types.

AXI4 extends burst length support for the INCR burst type to 1-256 transfers. Support for all other burst types in
AXI4 remains at 1-16 transfers.

The burst length for AXI3 is defined as:

• Burst_Length = AxLEN[3:0] + 1

To accommodate the extended burst length of the INCR burst type in AXI4, the burst length for AXI4 is defined as:

• Burst_Length = AxLEN[7:0] + 1

AXI has the following rules governing the use of bursts:
• For wrapping bursts, the burst length must be 2, 4, 8, or 16.
• A burst must not cross a 4KB address boundary.
• Early termination of bursts is not supported.

No component can terminate a burst early. However, to reduce the number of data transfers in a write burst, the
master can disable further writing by deasserting all the write strobes. In this case, the master must complete the
remaining transfers in the burst. In a read burst, the master can discard read data, but it must complete all transfers
in the burst.

Note
 Discarding read data that is not required can result in lost data when accessing a read-sensitive device such as a
FIFO. When accessing such a device, a master must use a burst length that exactly matches the size of the required
data transfer.
A3-48 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.4 Transaction structure
Exclusive access restrictions on page A7-99 defines additional rules affecting bursts during an exclusive access.

In AXI4, transactions with INCR burst type and length greater than 16 can be converted to multiple smaller bursts,
even if the transaction attributes indicate that the transaction is Non-modifiable. See AXI4 changes to memory
attribute signaling on page A4-64. In this case, the generated bursts must retain the same transaction characteristics
as the original transaction, the only exception is that:
• The burst length is reduced.
• The address of the generated bursts is adapted appropriately.

Note
 The ability to break longer bursts into multiple shorter bursts is required for AXI3 compatibility. This ability might
also be needed to reduce the impact of longer bursts on the QoS guarantees.

Burst size

The maximum number of bytes to transfer in each data transfer, or beat, in a burst, is specified by:
• ARSIZE[2:0], for read transfers.
• AWSIZE[2:0], for write transfers.

In this specification, AxSIZE indicates ARSIZE or AWSIZE.

Table A3-2 shows the AxSIZE encoding.

If the AXI bus is wider than the burst size, the AXI interface must determine from the transfer address which byte
lanes of the data bus to use for each transfer. See Data read and write structure on page A3-54.

The size of any transfer must not exceed the data bus width of either agent in the transaction.

Burst type

The AXI protocol defines three burst types:

FIXED In a fixed burst:

• The address is the same for every transfer in the burst.

• The byte lanes that are valid are constant for all beats in the burst. However, within those byte
lanes, the actual bytes that have WSTRB asserted can differ for each beat in the burst.

This burst type is used for repeated accesses to the same location such as when loading or emptying
a FIFO.

Table A3-2 Burst size encoding

AxSIZE[2:0] Bytes in transfer

0b000 1

0b001 2

0b010 4

0b011 8

0b100 16

0b101 32

0b110 64

0b111 128
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-49
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.4 Transaction structure
INCR Incrementing. In an incrementing burst, the address for each transfer in the burst is an increment of
the address for the previous transfer. The increment value depends on the size of the transfer. For
example, the address for each transfer in a burst with a size of 4 bytes is the previous address plus
four.

This burst type is used for accesses to normal sequential memory.

WRAP A wrapping burst is similar to an incrementing burst, except that the address wraps around to a lower
address if an upper address limit is reached.

The following restrictions apply to wrapping bursts:
• The start address must be aligned to the size of each transfer.
• The length of the burst must be 2, 4, 8, or 16 transfers.

The behavior of a wrapping burst is:

• The lowest address used by the burst is aligned to the total size of the data to be transferred,
that is, to ((size of each transfer in the burst) × (number of transfers in the burst)). This
address is defined as the wrap boundary.

• After each transfer, the address increments in the same way as for an INCR burst. However,
if this incremented address is ((wrap boundary) + (total size of data to be transferred))
then the address wraps round to the wrap boundary.

• The first transfer in the burst can use an address that is higher than the wrap boundary, subject
to the restrictions that apply to wrapping bursts. This means that the address wraps for any
WRAP burst when the first address is higher than the wrap boundary.

This burst type is used for cache line accesses.

The burst type is specified by:
• ARBURST[1:0], for read transfers.
• AWBURST[1:0], for write transfers.

In this specification, AxBURST indicates ARBURST or AWBURST.

Table A3-3 shows the AxBURST signal encoding.

Burst address

This section provides methods for determining the address and byte lanes of transfers within a burst. The equations
use the following variables:

Start_Address The start address issued by the master.

Number_Bytes The maximum number of bytes in each data transfer.

Data_Bus_Bytes The number of byte lanes in the data bus.

Aligned_Address The aligned version of the start address.

Burst_Length The total number of data transfers within a burst.

Address_N The address of transfer N in a burst. N is 1 for the first transfer in a burst.

Table A3-3 Burst type encoding

AxBURST[1:0] Burst type

0b00 FIXED

0b01 INCR

0b10 WRAP

0b11 Reserved
A3-50 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.4 Transaction structure
Wrap_Boundary The lowest address within a wrapping burst.

Lower_Byte_Lane The byte lane of the lowest addressed byte of a transfer.

Upper_Byte_Lane The byte lane of the highest addressed byte of a transfer.

INT(x) The rounded-down integer value of x.

These equations determine addresses of transfers within a burst:
• Start_Address = AxADDR
• Number_Bytes = 2 ^ AxSIZE
• Burst_Length = AxLEN + 1
• Aligned_Address = (INT(Start_Address / Number_Bytes)) × Number_Bytes

This equation determines the address of the first transfer in a burst:

• Address_1 = Start_Address

For an INCR burst, and for a WRAP burst for which the address has not wrapped, this equation determines the
address of any transfer after the first transfer in a burst:

• Address_N = Aligned_Address + (N – 1) × Number_Bytes

For a WRAP burst, the Wrap_Boundary variable defines the wrapping boundary:

• Wrap_Boundary = (INT(Start_Address / (Number_Bytes × Burst_Length)))× (Number_Bytes × Burst_Length)

For a WRAP burst, if Address_N = Wrap_Boundary + (Number_Bytes × Burst_Length), then:
• Use this equation for the current transfer:

Address_N = Wrap_Boundary
• Use this equation for any subsequent transfers:

Address_N = Start_Address + ((N – 1) × Number_Bytes) – (Number_Bytes × Burst_Length)

These equations determine the byte lanes to use for the first transfer in a burst:

• Lower_Byte_Lane = Start_Address – (INT(Start_Address / Data_Bus_Bytes)) × Data_Bus_Bytes

• Upper_Byte_Lane = Aligned_Address + (Number_Bytes – 1) –
(INT(Start_Address / Data_Bus_Bytes)) × Data_Bus_Bytes

These equations determine the byte lanes to use for all transfers after the first transfer in a burst:

• Lower_Byte_Lane = Address_N – (INT(Address_N / Data_Bus_Bytes)) × Data_Bus_Bytes

• Upper_Byte_Lane = Lower_Byte_Lane + Number_Bytes – 1

Data is transferred on:

• DATA((8 × Upper_Byte_Lane) + 7: (8 × Lower_Byte_Lane))
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-51
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.4 Transaction structure
A3.4.2 Pseudocode description of the transfers

// DataTransfer()

// ==============

DataTransfer(Start_Address, Number_Bytes, Burst_Length, Data_Bus_Bytes, Mode, IsWrite)

// Data_Bus_Bytes is the number of 8-bit byte lanes in the bus

// Mode is the AXI transfer mode

// IsWrite is TRUE for a write, and FALSE for a read

 assert Mode IN {FIXED, WRAP, INCR};

 addr = Start_Address; // Variable for current address

 Aligned_Address = (INT(addr/Number_Bytes) * Number_Bytes);

 aligned = (Aligned_Address == addr); // Check whether addr is aligned to nbytes

 dtsize = Number_Bytes * Burst_Length; // Maximum total data transaction size

 if mode == WRAP then

 Lower_Wrap_Boundary = (INT(addr/dtsize) * dtsize);

 // addr must be aligned for a wrapping burst

 Upper_Wrap_Boundary = Lower_Wrap_Boundary + dtsize;

 for n = 1 to Burst_Length

 Lower_Byte_Lane = addr - (INT(addr/Data_Bus_Bytes)) * Data_Bus_Bytes;

 if aligned then

 Upper_Byte_Lane = Lower_Byte_Lane + Number_Bytes - 1

 else

 Upper_Byte_Lane = Aligned_Address + Number_Bytes - 1

 - (INT(addr/Data_Bus_Bytes)) * Data_Bus_Bytes;

 // Peform data transfer

 if IsWrite then

 dwrite(addr, low_byte, high_byte)

 else

 dread(addr, low_byte, high_byte);

 // Increment address if necessary

 if mode != FIXED then

 if aligned then
A3-52 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.4 Transaction structure
 addr = addr + Number_Bytes;

 if mode == WRAP then

 // WRAP mode is always aligned

 if addr >= Upper_Wrap_Boundary then addr = Lower_Wrap_Boundary;

 else

 addr = Aligned_Address + Number_Bytes;

 aligned = TRUE; // All transfers after the first are aligned

 return;
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-53
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.4 Transaction structure
A3.4.3 Data read and write structure

This section describes the transfers of varying sizes on the AXI read and write data buses and how the interface
performs mixed-endian and unaligned transfers. It contains the following sections:
• Write strobes.
• Narrow transfers.
• Byte invariance on page A3-55.
• Unaligned transfers on page A3-56.

Write strobes

The WSTRB[n:0] signals when HIGH, specify the byte lanes of the data bus that contain valid information. There
is one write strobe for each 8 bits of the write data bus, therefore WSTRB[n] corresponds to
WDATA[(8n)+7: (8n)].

A master must ensure that the write strobes are HIGH only for byte lanes that contain valid data.

When WVALID is LOW, the write strobes can take any value, although this specification recommends that they are
either driven LOW or held at their previous value.

Narrow transfers

When a master generates a transfer that is narrower than its data bus, the address and control information determine
the byte lanes that the transfer uses:
• In incrementing or wrapping bursts, different byte lanes are used on each beat of the burst.
• In a fixed burst, the same byte lanes are used on each beat.

Figure A3-8 and Figure A3-9 on page A3-55 give two examples of byte lanes use. The shaded cells indicate bytes
that are not transferred.

In Figure A3-8:
• The burst has five transfers.
• The starting address is 0.
• Each transfer is 8 bits.
• The transfers are on a 32-bit bus.
• The burst type is INCR.

Figure A3-8 Narrow transfer example with 8-bit transfers

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[7:0]

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

0781516232431

WDATA[31:0]
A3-54 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.4 Transaction structure
In Figure A3-9:
• The burst has three transfers.
• The starting address is 4.
• Each transfer is 32 bits.
• The transfers are on a 64-bit bus.

Figure A3-9 Narrow transfer example with 32-bit transfers

Byte invariance

To access mixed-endian data structures in a single memory space, the AXI protocol uses a byte-invariant endianness
scheme.

Byte-invariant endianness means that, for any multi-byte element in a data structure:

• The element uses the same continuous bytes of memory, regardless of the endianness of the data.

• The endianness determines the order of those bytes in memory, meaning it determines whether the first byte
in memory is the most significant byte (MSB) or the least significant byte (LSB) of the element.

• Any byte transfer to an address passes the 8 bits of data on the same data bus wires, to the same address
location, regardless of the endianness of any larger data element that it is a constituent of.

Components that have only one transfer width must have their byte lanes connected to the appropriate byte lanes of
the data bus. Components that support multiple transfer widths might require a more complex interface to convert
an interface that is not naturally byte-invariant.

Most little-endian components can connect directly to a byte-invariant interface. Components that support only
big-endian transfers require a conversion function for byte-invariant operation.

The examples in Figure A3-10 and on page A3-56 show a 32-bit number 0x0A0B0C0D, stored in a register and in a
memory.

Figure A3-10 shows an example of the big-endian, byte invariant, data structure. In this structure:
• The most significant byte (MSB) of the data, which is 0x0A, is stored in the MSB position in the register.
• The MSB of the data is stored in the memory location with the lowest address.
• The other data bytes are positioned in decreasing order of significance.

Figure A3-10 Example big-endian byte invariant data structure

D[31:24] D[23:16] D[15:8] D[7:0]

1st transfer

2nd transfer

3rd transfer

0781516232431

D[63:56] D[55:48] D[47:40] D[39:32]

D[63:56] D[55:48] D[47:40] D[39:32]

3239404748555663

WDATA[63:0]

0x0A

0x0B

0x0C

0x0D

Memory

Addr+1

Addr

Addr+2

Addr+3

0x0A 0x0B 0x0C 0x0D

0781516232431

Register
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-55
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.4 Transaction structure
Figure A3-11 shows an example of the little-endian, byte invariant, data structure. In this structure:
• The least significant byte (LSB) of the data, which is 0x0D, is stored in the LSB position in the register.
• The LSB of the data is stored in the memory location with the lowest address.
• The other data bytes are positioned in increasing order of significance.

Figure A3-11 Example little-endian byte invariant data structure

The examples in Figure A3-10 on page A3-55 and Figure A3-11 show that byte invariance ensures that big-endian
and little endian structures can coexist in a single memory space without corruption. Figure A3-12 shows an
example of a data structure that requires byte invariant access. In this example, the header fields use little-endian
ordering, and the payload uses big-endian ordering.

Figure A3-12 Example mixed-endian data structure

In this structure, for example, Data items is a two-byte little endian element, meaning its lowest address is its LSB.
The use of byte invariance ensures that a big-endian access to the payload does not corrupt the little endian element.

Unaligned transfers

AXI supports unaligned transfers. For any burst that is made up of data transfers wider than 1 byte, the first bytes
accessed might be unaligned with the natural address boundary. For example, a 32-bit data packet that starts at a
byte address of 0x1002 is not aligned to the natural 32-bit address boundary.

A master can:
• Use the low-order address lines to signal an unaligned start address.
• Provide an aligned address and use the byte lane strobes to signal the unaligned start address.

Note
 The information on the low-order address lines must be consistent with the information on the byte lane strobes.

The slave is not required to take special action based on any alignment information from the master.

0x0D

0x0C

0x0B

0x0A

Memory

Addr+1

Addr

Addr+2

Addr+3

0x0A 0x0B 0x0C 0x0D

0781516232431

Register

PacketSourceD0
†

D1
†

Checksum

Data items

Payload

Payload

Payload

Payload

Header, little-endian

byte ordering

Payload, big-endian

byte ordering

† 16-bit continuous Destination field

31 24 23 16 15 8 7 0
A3-56 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.4 Transaction structure
Figure A3-13 shows examples of incrementing bursts, with aligned and unaligned 32-bit transfers, on a 32-bit bus.
Each row in the figure represents a transfer and the shaded cells indicate bytes that are not transferred.

Figure A3-13 Aligned and unaligned transfers on a 32-bit bus

0x00

0x00

0x06 0x05 0x04

Address: 0x00

Transfer size: 32-bits

Burst type: incrementing

Burst length: 4 transfers

0x03 0x02 0x01 0x00

0x07 0x06 0x05 0x04

0x0B 0x0A 0x09 0x08

0x0F 0x0E 0x0D 0x0C

0x03 0x02 0x01

0x07 0x06 0x05 0x04

0x0B 0x0A 0x09 0x08

0x0F 0x0E 0x0D 0x0C

Address: 0x01

Transfer size: 32-bits

Burst type: incrementing

Burst length: 4 transfers

0x03 0x02 0x01

0x07 0x06 0x05 0x04

0x0B 0x0A 0x09 0x08

0x0F 0x0E 0x0D 0x0C

Address: 0x01

Transfer size: 32-bits

Burst type: incrementing

Burst length: 5 transfers

0x13 0x12 0x11 0x10

0x07

0x0B 0x0A 0x09 0x08

0x0F 0x0E 0x0D 0x0C

0x13 0x12 0x11 0x10

0x17 0x16 0x15 0x14

Address: 0x07

Transfer size: 32-bits

Burst type: incrementing

Burst length: 5 transfers

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

0715 816232431

0715 816232431

0715 816232431

0715 816232431

WDATA[31:0]

WDATA[31:0]

WDATA[31:0]

WDATA[31:0]
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-57
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.4 Transaction structure
Figure A3-14 shows examples of incrementing bursts, with aligned and unaligned 32-bit transfers, on a 64-bit bus.
Each row in the figure represents a transfer and the shaded cells indicate bytes that are not transferred.

Figure A3-14 Aligned and unaligned transfers on a 64-bit bus

Figure A3-15 shows an example of a wrapping burst, with aligned 32-bit transfers, on a 64-bit bus. Each row in the
figure represents a transfer and the shaded cells indicate bytes that are not transferred.

Figure A3-15 Aligned wrapping transfers on a 64-bit bus

0x04

0x04

Address: 0x00

Transfer size: 32-bits

Burst type: incrementing

Burst length: 4 transfers

0x07 0x06 0x05 0x04

0x07 0x06 0x05 0x04

0x0F 0x0E 0x0D 0x0C

0x0F 0x0E 0x0D 0x0C

0x07 0x06 0x05

0x0F 0x0E 0x0D 0x0C

0x0F 0x0E 0x0D 0x0C

0x17 0x16 0x15 0x14

Address: 0x07

Transfer size: 32-bits

Burst type: incrementing

Burst length: 4 transfers

0x07 0x06 0x05

0x0F 0x0E 0x0D 0x0C

0x0F 0x0E 0x0D 0x0C

0x17 0x16 0x15 0x14

Address: 0x07

Transfer size: 32-bits

Burst type: incrementing

Burst length: 5 transfers

0x17 0x16 0x15 0x14

0x03 0x02 0x01 0x00

0x03 0x02 0x01 0x00

0x0B 0x0A 0x09 0x08

0x0B 0x0A 0x09 0x08

0x000x03 0x02 0x01

0x0B 0x0A 0x09 0x08

0x0B 0x0A 0x09 0x08

0x13 0x12 0x11 0x10

0x000x03 0x02 0x01

0x0B 0x0A 0x09 0x08

0x0B 0x0A 0x09 0x08

0x13 0x12 0x11 0x10

0x13 0x12 0x11 0x10

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

0715 816232431323947 4048555663

0715 816232431323947 4048555663

0715 816232431323947 4048555663

WDATA[63:0]

WDATA[63:0]

WDATA[63:0]

Address: 0x04

Transfer size: 32-bits

Burst type: wrapping

Burst length: 4 transfers

0x07 0x06 0x05 0x04

0x0F 0x0E 0x0D 0x0C

0x0F 0x0E 0x0D 0x0C

0x07 0x06 0x05 0x04

0x03 0x02 0x01 0x00

0x0B 0x0A 0x09 0x08

0x0B 0x0A 0x09 0x08

0x03 0x02 0x01 0x00

1st transfer

2nd transfer

3rd transfer

4th transfer

0715 816232431323947 4048555663

WDATA[63:0]
A3-58 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A3 Single Interface Requirements
A3.4 Transaction structure
A3.4.4 Read and write response structure

The AXI protocol provides response signaling for both read and write transactions:
• For read transactions, the response information from the slave is signaled on the read data channel.
• For write transactions the response information is signaled on the write response channel.

The responses are signaled by:
• RRESP[1:0], for read transfers.
• BRESP[1:0], for write transfers.

The responses are:

OKAY Normal access success. Indicates that a normal access has been successful. Can also indicate an
exclusive access has failed. See OKAY, normal access success.

EXOKAY Exclusive access okay. Indicates that either the read or write portion of an exclusive access has been
successful. See EXOKAY, exclusive access success on page A3-60.

SLVERR Slave error. Used when the access has reached the slave successfully, but the slave wishes to return
an error condition to the originating master. See SLVERR, slave error on page A3-60.

DECERR Decode error. Generated, typically by an interconnect component, to indicate that there is no slave
at the transaction address. See DECERR, decode error on page A3-60.

Table A3-4 shows the encoding of the RRESP and BRESP signals.

For a write transaction, a single response is signaled for the entire burst, and not for each data transfer within the
burst.

In a read transaction, the slave can signal different responses for different transfers in a burst. For example, in a burst
of 16 read transfers the slave might return an OKAY response for 15 of the transfers and a SLVERR response for
one of the transfers.

The protocol specifies that the required number of data transfers must be performed, even if an error is reported. For
example, if a read of eight transfers is requested from a slave but the slave has an error condition, the slave must
perform eight data transfers, each with an error response. The remainder of the burst is not cancelled if the slave
gives a single error response.

OKAY, normal access success

An OKAY response indicates any one of the following:
• The success of a normal access.
• The failure of an exclusive access.
• An exclusive access to a slave that does not support exclusive access.

OKAY is the response for most transactions.

Table A3-4 RRESP and BRESP encoding

RRESP[1:0]
BRESP[1:0] Response

0b00 OKAY

0b01 EXOKAY

0b10 SLVERR

0b11 DECERR
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A3-59
ID122117 Non-Confidential

A3 Single Interface Requirements
A3.4 Transaction structure
EXOKAY, exclusive access success

An EXOKAY response indicates the success of an exclusive access. See Exclusive accesses on page A7-98.

SLVERR, slave error

The SLVERR response indicates an unsuccessful transaction.

To simplify system monitoring and debugging, this specification recommends that error responses are used only for
error conditions and not for signaling normal, expected events. Examples of slave error conditions are:
• FIFO or buffer overrun or underrun condition.
• Unsupported transfer size attempted.
• Write access attempted to read-only location.
• Timeout condition in the slave.
• Access attempted to a disabled or powered-down function.

DECERR, decode error

The DECERR response indicates the interconnect cannot successfully decode a slave access.

If the interconnect cannot successfully decode a slave access, it must return the DECERR response. This
specification recommends that the interconnect routes the access to a default slave, and the default slave returns the
DECERR response.

The AXI protocol requires that all data transfers for a transaction are completed, even if an error condition occurs.
Any component giving a DECERR response must meet this requirement.
A3-60 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter A4
Transaction Attributes

This chapter describes the transaction attribute signaling that supports system topology and system level caches. It
contains the following sections:
• Transaction types and attributes on page A4-62.
• AXI3 memory attribute signaling on page A4-63.
• AXI4 changes to memory attribute signaling on page A4-64.
• Memory types on page A4-69.
• Mismatched memory attributes on page A4-73.
• Transaction buffering on page A4-74.
• Access permissions on page A4-75.
• Legacy considerations on page A4-76.
• Usage examples on page A4-77.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-61
ID122117 Non-Confidential

A4 Transaction Attributes
A4.1 Transaction types and attributes
A4.1 Transaction types and attributes
Slaves are classified as either:

Memory Slave

A memory slave is required to handle all transaction types correctly.

Peripheral Slave

A peripheral slave has an IMPLEMENTATION DEFINED method of access. Typically, this is defined in
the component data sheet, that describes the transaction types that the slave handles correctly.

Any access to the peripheral slave that is not part of the IMPLEMENTATION DEFINED method of access
must complete, in compliance with the protocol. However, once such an access has been made, there
is no requirement that the peripheral slave continues to operate correctly. It is only required to
continue to complete further transactions in a protocol compliant manner.

Note
 • Compliant completion of all transaction types is required to prevent system deadlock,

however, continued correct operation of the peripheral slave is not required.

• Because a peripheral slave is required to work correctly only for a defined method of access,
it can have a significantly reduced set of interface signals.

The AXI protocol defines a set of transaction attributes that support memory and peripheral slaves. The ARCACHE
and AWCACHE signals specify the transaction attributes. They control:
• How a transaction progresses through the system.
• How any system-level caches handle the transaction.

In this specification, the term AxCACHE refers collectively to the ARCACHE and AWCACHE signals.

The following sections describe the transaction attributes:
• AXI3 memory attribute signaling on page A4-63.
• AXI4 changes to memory attribute signaling on page A4-64.
A4-62 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A4 Transaction Attributes
A4.2 AXI3 memory attribute signaling
A4.2 AXI3 memory attribute signaling
In AXI3, the AxCACHE[3:0] signals specify the Bufferable, Cacheable, and Allocate attributes of the transaction.

Table A4-1 shows the AxCACHE encoding.

AxCACHE[0], Bufferable (B) bit

When this bit is asserted, the interconnect, or any component, can delay the transaction reaching its
final destination for any number of cycles.

Note
 Normally, the Bufferable attribute is only relevant to writes.

AxCACHE[1], Cacheable (C) bit

When this bit is deasserted, allocation of the transaction is forbidden.

When this bit is asserted:

• Allocation of the transaction is permitted. RA and WA give additional hint information.

• The characteristics of a transaction at the final destination does not have to match the
characteristics of the original transaction.
For writes this means that a number of different writes can be merged together.
For reads this means that the contents of a location can be prefetched, or the values from a
single fetch can be used for multiple read transactions.

AxCACHE[2], Read-allocate (RA) bit

When this bit is asserted, read allocation of the transaction is recommended but is not mandatory.

The RA bit must not be asserted if the C bit is deasserted.

AxCACHE[3], Write-allocate (WA) bit

When this bit is asserted, write allocation of the transaction is recommended but is not mandatory.

The WA bit must not be asserted if the C bit is deasserted.

Table A4-1 Transaction attribute encoding

AxCACHE Value Transaction attribute

[0] 0 Non-bufferable

1 Bufferable

[1] 0 Non-cacheable

1 Cacheable

[2] 0 No Read-allocate

1 Read-allocate

[3] 0 No Write-allocate

1 Write-allocate
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-63
ID122117 Non-Confidential

A4 Transaction Attributes
A4.3 AXI4 changes to memory attribute signaling
A4.3 AXI4 changes to memory attribute signaling
AXI4 makes the following changes to the AXI3 memory attribute signaling:
• The AxCACHE[1] bits are renamed as the Modifiable bits.
• Ordering requirements are defined for Non-modifiable transactions.
• The meanings of Read-allocate and Write-allocate are updated.

A4.3.1 AxCACHE[1], Modifiable

In AXI4, the AxCACHE[1] bit is the Modifiable bit. When HIGH, Modifiable indicates that the characteristics of
the transaction can be modified. When Modifiable is LOW, the transaction is Non-modifiable.

Note
 The AxCACHE[1] bit is renamed from the Cacheable bit to the Modifiable bit to better describe the required
functionality. The actual functionality is unchanged.

 The following sections describe the properties of Non-modifiable and Modifiable transactions.

Non-modifiable transactions

A Non-modifiable transaction is indicated by setting AxCACHE[1] LOW.

A Non-modifiable transaction must not be split into multiple transactions or merged with other transactions.

In a Non-modifiable transaction, the parameters shown in Table A4-2 must not be changed.

The AxCACHE attribute can only be modified to convert a transaction from being Bufferable to Non-bufferable.
No other change to AxCACHE is permitted.

The transaction ID and the QoS values can be modified.

A Non-modifiable transaction with burst length greater than 16 can be split into multiple transactions. Each
resulting transaction must meet the requirements given in this subsection, except that:
• The burst length is reduced.
• The address of the generated bursts is adapted appropriately.

A Non-modifiable transaction that is an Exclusive access, as indicated by AxLOCK asserted, is permitted to have
the transaction size, AxSIZE, and the transaction length, AxLEN, modified if the total number of bytes accessed
remains the same.

Table A4-2 Parameters fixed as Non-modifiable

Parameter Signals

Transfer address AxADDR, and therefore AxREGION

Burst size AxSIZE

Burst length AxLEN

Burst type AxBURST

Lock type AxLOCK

Protection type AxPROT
A4-64 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A4 Transaction Attributes
A4.3 AXI4 changes to memory attribute signaling
Note
 There are circumstances where it is not possible to meet the requirements of Non-modifiable transactions. For
example, when downsizing to a bus width narrower than that required by the transaction size, AxSIZE, the
transaction must be modified.

A component that performs such an operation can optionally include an IMPLEMENTATION DEFINED mechanism to
indicate that a modification has occurred. This can assist with software debug.

Modifiable transactions

A Modifiable transaction is indicated by asserting AxCACHE[1].

A Modifiable transaction can be modified in the following ways:

• A transaction can be broken into multiple transactions.

• Multiple transactions can be merged into a single transaction.

• A read transaction can fetch more data than required.

• A write transaction can access a larger address range than required, using the WSTRB signals to ensure that
only the appropriate locations are updated.

• In each generated transaction, the following signals can be modified:
— The transfer address, AxADDR.
— The burst size, AxSIZE.
— The burst length, AxLEN.
— The burst type, AxBURST.

The following must not be changed:
• The lock type, AxLOCK.
• The protection type, AxPROT.

The memory attribute, AxCACHE, can be modified, but any modification must ensure that the visibility of
transactions by other components is not reduced, either by preventing propagation of transactions to the required
point, or by changing the need to look up a transaction in a cache. Any modification to the memory attributes must
be consistent for all transactions to the same address range.

The transaction ID and QoS values can be modified.

No transaction modification is permitted that:

• Causes accesses to a different 4KByte address space than that of the original transaction.

• Causes a single access to a single-copy atomicity sized region to be performed as multiple accesses. See
Single-copy atomicity size on page A7-96.

A4.3.2 Ordering requirements for Non-modifiable transactions

AXI4 requires that ordering is preserved for any set of transactions that meet all of the following conditions:
• The transactions are Non-modifiable.
• The transactions use the same AXI ID.
• The transactions target the same slave device.

The ordering must be preserved, irrespective of the address of the transaction, if the transactions are destined for the
same slave.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-65
ID122117 Non-Confidential

A4 Transaction Attributes
A4.3 AXI4 changes to memory attribute signaling
Note
 Ordering between the independent read and write channels can only be guaranteed if a transaction in one direction
is issued only after any earlier transaction in the other direction has received a response. If a transaction in one
direction is issued before receiving the response to any earlier transaction in the other direction, then no ordering
exists between the transactions.

This ordering requirement makes no guarantee about the relative ordering of transactions destined for different
slaves.

Because the address map boundary between different physical slave devices is IMPLEMENTATION DEFINED, if the
boundary between slave devices is not known then the ordering of all Non-modifiable transactions with the same
AXI ID on the same path must be preserved.

This ordering requirement applies between all Non-modifiable transactions, including between Non-bufferable and
Bufferable transactions.

When an intermediate component in an AXI path issues transaction responses, that component is responsible for
ensuring the correct ordering.

For more information on the ordering model see Chapter A6 AXI4 Ordering Model.

A4.3.3 Updated meaning of Read-allocate and Write-allocate

In AXI4, the meaning of the Read-allocate and Write-allocate bits is updated so that one bit indicates that an
allocation occurred for the transaction and the other bit indicates that an allocation could have been made due to
another transaction.

For read transactions, the Write-allocate bit is redefined to indicate that:

• The location could have been previously allocated in the cache because of a write transaction (as the AXI3
definition).

• The location could have been previously allocated in the cache because of the actions of another master
(additional AXI4 definition).

For write transactions, the Read-allocate bit is redefined to indicate that:

• The location could have been previously allocated in the cache because of a read transaction (as the AXI3
definition).

• The location could have been previously allocated in the cache because of the actions of another master
(additional AXI4 definition).

These changes mean:
• A transaction must be looked up in a cache if the value of AxCACHE[3:2] is not 0b00.
• A transaction does not need to be looked up in a cache if the value of AxCACHE[3:2] is 0b00.

Note
 The change to the definition of AxCACHE means that these signals can differ for a read and write transaction to
the same location.
A4-66 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A4 Transaction Attributes
A4.3 AXI4 changes to memory attribute signaling
Table A4-3 shows the AXI4 bit allocations for the AWCACHE signals.

Table A4-3 AWCACHE bit allocations

Signal AXI4 definition Description

AWCACHE[3] Allocate When asserted, the transaction must be looked up in a cache because it could have been
previously allocated. The transaction must also be looked up in a cache if AWCACHE[2] is
asserted.
When deasserted, if AWCACHE[2] is also deasserted, then the transaction does not need to
be looked up in a cache and the transaction must propagate to the final destination.
When asserted, it is recommended that this transaction is allocated in the cache for
performance reasons.

AWCACHE[2] Other Allocate When asserted, the transaction must be looked up in a cache because it could have been
previously allocated in the cache by another transaction, either a read transaction or a
transaction from another master. The transaction must also be looked up in a cache if
AWCACHE[3] is asserted.
When deasserted, if AWCACHE[3] is also deasserted, then the transaction does not need to
be looked up in a cache and the transaction must propagate to the final destination.

AWCACHE[1] Modifiable When asserted, the characteristics of the transaction can be modified and writes can be
merged. When deasserted, the characteristics of the transaction must not be modified.

AWCACHE[0] Bufferable When deasserted, if both of AWCACHE[3:2] are deasserted, the write response must be
given from the final destination.
When asserted, if both of AWCACHE[3:2] are deasserted, the write response can be given
from an intermediate point, but the write transaction is required to be made visible at the final
destination in a timely manner.
When deasserted, if either of AWCACHE[3:2] is asserted, the write response can be given
from an intermediate point, but the write transaction is required to be made visible at the final
destination in a timely manner.
When asserted, if either of AWCACHE[3:2] is asserted, the write response can be given
from an intermediate point. The write transaction is not required to be made visible at the final
destination.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-67
ID122117 Non-Confidential

A4 Transaction Attributes
A4.3 AXI4 changes to memory attribute signaling
Table A4-4 shows the AXI4 bit allocations for the ARCACHE signals.

Table A4-4 ARCACHE bit allocations

Signal AXI4 definition Description

ARCACHE[3] Other Allocate When asserted, the transaction must be looked up in a cache because it could have been
allocated in the cache by another transaction, either a write transaction or a transaction from
another master. The transaction must also be looked up in a cache if ARCACHE[2] is asserted.
When deasserted, if ARCACHE[2] is also deasserted, then the transaction does not need to be
looked up in a cache.

ARCACHE[2] Allocate When asserted, the transaction must be looked up in a cache because it could have been
allocated. The transaction must also be looked up in a cache if ARCACHE[3] is asserted.
When deasserted, if ARCACHE[3] is also deasserted, then the transaction does not need to be
looked up in a cache.
When asserted, it is recommended that this transaction is allocated in the cache for performance
reasons.

ARCACHE[1] Modifiable When asserted, the characteristics of the transaction can be modified and a larger quantity of
read data can be fetched than is required. When deasserted the characteristics of the transaction
must not be modified.

ARCACHE[0] Bufferable This bit has no effect when ARCACHE[3:1] are deasserted.
When ARCACHE[3:2] are deasserted and ARCACHE[1] is asserted:
• If this bit is deasserted, the read data must be obtained from the final destination.
• If this bit is asserted, the read data can be obtained from the final destination or from a

write that is progressing to the final destination.
When either ARCACHE[3] is asserted, or ARCACHE[2] is asserted, this bit can be used to
distinguish between Write-through and Write-back memory types.
A4-68 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A4 Transaction Attributes
A4.4 Memory types
A4.4 Memory types
The AXI4 protocol introduces new names for the memory types identified by the AxCACHE encoding. Table A4-5
shows the AXI4 AxCACHE encoding and associated memory types. Some memory types have different encodings
in AXI3 and these are shown in brackets.

Note
 The same memory type can have different encodings on the read channel and write channel. This provides
backwards compatibility with AXI3 AxCACHE definitions.

In AXI4 it is legal to use more than one AxCACHE value for a particular memory type. Table A4-5 shows the
preferred AXI4 value with the legal AXI3 value in brackets.

All values not shown in Table A4-5 are reserved.

A4.4.1 Memory type requirements

This section specifies the required behavior for each of the memory types.

Device Non-bufferable

The required behavior for Device Non-bufferable memory is:
• The write response must be obtained from the final destination.
• Read data must be obtained from the final destination.
• Transactions are Non-modifiable, see Non-modifiable transactions on page A4-64
• Reads must not be prefetched. Writes must not be merged.
• All Non-modifiable read and write transactions (AxCACHE[1] = 0) from the same ID to the same slave must

remain ordered.

Table A4-5 Memory type encoding

ARCACHE[3:0] AWCACHE[3:0] Memory type

0000 0000 Device Non-bufferable

0001 0001 Device Bufferable

0010 0010 Normal Non-cacheable Non-bufferable

0011 0011 Normal Non-cacheable Bufferable

1010 0110 Write-through No-allocate

1110 (0110) 0110 Write-through Read-allocate

1010 1110 (1010) Write-through Write-allocate

1110 1110 Write-through Read and Write-allocate

1011 0111 Write-back No-allocate

1111 (0111) 0111 Write-back Read-allocate

1011 1111 (1011) Write-back Write-allocate

1111 1111 Write-back Read and Write-allocate
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-69
ID122117 Non-Confidential

A4 Transaction Attributes
A4.4 Memory types
Device Bufferable

The required behavior for the Device Bufferable memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions must be made visible at the final destination in a timely manner, as defined in Transaction
buffering on page A4-74.

• Read data must be obtained from the final destination.

• Transactions are Non-modifiable, see Non-modifiable transactions on page A4-64.

• Reads must not be prefetched. Writes must not be merged.

• All Non-modifiable read and write transactions (AxCACHE[1] = 0) from the same ID to the same slave must
remain ordered.

Note
 Both Device memory types are Non-modifiable. In this protocol specification the terms Device memory and
Non-modifiable memory are interchangeable.

For read transactions there is no difference in the required behavior for Device Non-bufferable and Device
Bufferable memory types.

Normal Non-cacheable Non-bufferable

The required behavior for the Normal Non-cacheable Non-bufferable memory type is:
• The write response must be obtained from the final destination.
• Read data must be obtained from the final destination.
• Transactions are Modifiable, see Modifiable transactions on page A4-65
• Writes can be merged.
• Read and write transactions from the same ID to addresses that overlap must remain ordered.

Normal Non-cacheable Bufferable

The required behavior for the Normal Non-cacheable Bufferable memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions must be made visible at the final destination in a timely manner, as defined in Transaction
buffering on page A4-74. There is no mechanism to determine when a write transaction is visible at its final
destination.

• Read data must be obtained from either:
— The final destination.
— A write transaction that is progressing to its final destination.

If read data is obtained from a write transaction:
— It must be obtained from the most recent version of the write.
— The data must not be cached to service a later read.

• Transactions are Modifiable, see Modifiable transactions on page A4-65.

• Writes can be merged.

• Read and write transactions from the same ID to addresses that overlap must remain ordered.
A4-70 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A4 Transaction Attributes
A4.4 Memory types
Note
 For a Normal Non-cacheable Bufferable read, data can be obtained from a write transaction that is still progressing
to its final destination. This is indistinguishable from the read and write transactions propagating to arrive at the
final destination at the same time. Read data returned in this manner does not indicate that the write transaction is
visible at the final destination.

Write-through No-allocate

The required behavior for the Write-through No-allocate memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions must be made visible at the final destination in a timely manner, as defined in Transaction
buffering on page A4-74. There is no mechanism to determine when a write transaction is visible at the final
destination.

• Read data can be obtained from an intermediate cached copy.

• Transactions are Modifiable, see Modifiable transactions on page A4-65.

• Reads can be prefetched.

• Writes can be merged.

• A cache lookup is required for read and write transactions.

• Read and write transactions from the same ID to addresses that overlap must remain ordered.

• The No-allocate attribute is an allocation hint, that is, it is a recommendation to the memory system that, for
performance reasons, these transactions are not allocated. However, the allocation of read and write
transactions is not prohibited.

Write-through Read-allocate

The required behavior for the Write-through Read-allocate memory type is the same as for Write-through
No-allocate memory. But in this case the allocation hint is that, for performance reasons:
• Allocation of read transactions is recommended.
• Allocation of write transactions is not recommended.

Write-through Write-allocate

The required behavior for the Write-through Write-allocate memory type is the same as for Write-through
No-allocate memory. But in this case the allocation hint is that, for performance reasons:
• Allocation of read transactions is not recommended.
• Allocation of write transactions is recommended.

Write-through Read and Write-allocate

The required behavior for the Write-through Read and Write-allocate memory type is the same as for Write-through
No-allocate memory. But in this case the allocation hint is that, for performance reasons:
• Allocation of read transactions is recommended.
• Allocation of write transactions is recommended.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-71
ID122117 Non-Confidential

A4 Transaction Attributes
A4.4 Memory types
Write-back No-allocate

The required behavior for the Write-back No-allocate memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions are not required to be made visible at the final destination.

• Read data can be obtained from an intermediate cached copy.

• Transactions are Modifiable, see Modifiable transactions on page A4-65.

• Reads can be prefetched.

• Writes can be merged.

• A cache lookup is required for read and write transactions.

• Read and write transactions from the same ID to addresses that overlap must remain ordered.

• The No-allocate attribute is an allocation hint, that is, it is a recommendation to the memory system that, for
performance reasons, these transactions are not allocated. However, the allocation of read and write
transactions is not prohibited.

Write-back Read-allocate

The required behavior for the Write-back Read-allocate memory type is the same as for Write-back No-allocate
memory. But in this case the allocation hint is that, for performance reasons:
• Allocation of read transactions is recommended.
• Allocation of write transactions is not recommended.

Write-back Write-allocate

The required behavior for the Write-back Write-allocate memory type is the same as for Write-back No-allocate
memory. But in this case the allocation hint is that, for performance reasons:
• Allocation of read transactions is not recommended.
• Allocation of write transactions is recommended.

Write-back Read and Write-allocate

The required behavior for the Write-back Read and Write-allocate memory type is the same as for Write-back
No-allocate memory. But in this case the allocation hint is that, for performance reasons:
• Allocation of read transactions is recommended.
• Allocation of write transactions is recommended.
A4-72 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A4 Transaction Attributes
A4.5 Mismatched memory attributes
A4.5 Mismatched memory attributes
Multiple agents that are accessing the same area of memory, can use mismatched memory attributes. However, for
functional correctness, the following rules must be obeyed:

• All masters accessing the same area of memory must have a consistent view of the cacheability of that area
of memory at any level of hierarchy. The rules to be applied are:

Address region not Cacheable
All masters must use transactions with both AxCACHE[3:2] deasserted.

Address region Cacheable
All masters must use transactions with either of AxCACHE[3:2] asserted.

• Different masters can use different allocation hints.

• If an addressed region is Normal Non-cacheable, any master can access it using a Device memory
transaction.

• If an addressed region has the Bufferable attribute, any master can access it using transactions that do not
permit bufferable behavior.

Note
 For example, a transaction that requires the response from the final destination does not permit bufferable

behavior.

A4.5.1 Changing memory attributes

The attributes for a particular memory region can be changed from one type to another incompatible type. For
example, the attribute can be changed from Write-through Cacheable to Normal Non-cacheable. This requires a
suitable process to perform the change. Typically:
1. All masters stop accessing the region.
2. A single master performs any required cache maintenance operations.
3. All masters restart accessing the memory region, using the new attributes.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-73
ID122117 Non-Confidential

A4 Transaction Attributes
A4.6 Transaction buffering
A4.6 Transaction buffering
Write accesses to the following memory types do not require a transaction response from the final destination, but
do require that write transactions are made visible at the final destination In a timely manner:
• Device Bufferable
• Normal Non-cacheable Bufferable
• Write-through

For write transactions, all three memory types require the same behavior. For read transactions, the required
behavior is as follows:
• For Device Bufferable memory, read data must be obtained from the final destination.
• For Normal Non-cacheable Bufferable memory, read data must be obtained either from the final destination

or from a write transaction that is progressing to its final destination.
• For Write-through memory, read data can be obtained from an intermediate cached copy.

In addition to ensuring that write transactions progress towards their final destination in a timely manner,
intermediate buffers must behave as follows:

• An intermediate buffer that can respond to a transaction must ensure that, over time, any read transaction to
Normal Non-cacheable Bufferable propagates towards its destination. This means that, when forwarding a
read transaction, the attempted forwarding must not continue indefinitely, and any data used for forwarding
must not persist indefinitely. The protocol does not define any mechanism for determining how long data
used for forwarding a read transaction can persist. However, in such a mechanism, the act of reading the data
must not reset the data timeout period.

Note
 Without this requirement, continued polling of the same location can prevent the timeout of a read held in the

buffer, preventing the read progressing towards its destination.

• An intermediate buffer that can hold and merge write transactions must ensure that transactions do not remain
in its buffer indefinitely. For example, merging write transactions must not reset the mechanism that
determines when a write is drained towards its final destination.

Note
 Without this requirement, continued writes to the same location can prevent the timeout of a write held in the

buffer, preventing the write progressing towards its destination.

For information about the required behavior of read accesses to these memory types, see:
• Device Bufferable on page A4-70.
• Normal Non-cacheable Bufferable on page A4-70.
• Write-through No-allocate on page A4-71.
A4-74 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A4 Transaction Attributes
A4.7 Access permissions
A4.7 Access permissions
AXI provides access permissions signals that can be used to protect against illegal transactions:
• ARPROT[2:0] defines the access permissions for read accesses.
• AWPROT[2:0] defines the access permissions for write accesses.

The term AxPROT refers collectively to the ARPROT and AWPROT signals.

Table A4-6 shows the AxPROT[2:0] encoding.

The protection attributes are:

Unprivileged or privileged

An AXI master might support more than one level of operating privilege, and extend this concept
of privilege to memory access. AxPROT[0] identifies an access as unprivileged or privileged.

Note
 Some processors support multiple levels of privilege, see the documentation for the selected

processor to determine the mapping to AXI privilege levels. The only distinction AXI can provide
is between privileged and unprivileged access.

Secure or Non-secure

An AXI master might support Secure and Non-secure operating states, and extend this concept of
security to memory access. AxPROT[1] identifies an access as Secure or Non-secure.

Note
 This bit is defined so that when it is asserted the transaction is identified as Non-secure. This is

consistent with other signaling in implementations of the ARM Security Extensions.

Instruction or data

This bit indicates that the transaction is an instruction access or a data access.

The AXI protocol defines this indication as a hint. It is not accurate in all cases, for example, where
a transaction contains a mix of instruction and data items. This specification recommends that a
master sets AxPROT[2] LOW, to indicate a data access unless the access is specifically known to
be an instruction access.

Table A4-6 Protection encoding

AxPROT Value Function

[0] 0 Unprivileged access

1 Privileged access

[1] 0 Secure access

1 Non-secure access

[2] 0 Data access

1 Instruction access
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-75
ID122117 Non-Confidential

A4 Transaction Attributes
A4.8 Legacy considerations
A4.8 Legacy considerations
AXI4 introduces additional requirements for the handling of some of the AxCACHE memory attributes.

In AXI4, all Device transactions using the same ID to the same slave must be ordered with respect to each other.

Note
 • This is not an explicit requirement of AXI3. Any AXI4 component that relies on this behavior cannot be

connected to an AXI3 interconnect that does not exhibit this behavior.

• ARM believes that most implemented AXI3 interconnects support the required AXI4 behavior.

This specification strongly recommends that any new AXI3 design implements the AXI4 requirement.

For AxCACHE bits names and memory type names it is required that AXI4 uses the new terms. AXI3 components
can use either the AXI3 or AXI4 names.
A4-76 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A4 Transaction Attributes
A4.9 Usage examples
A4.9 Usage examples
This section gives examples of memory type usage.

A4.9.1 Use of Device memory types

The specification supports the combined use of Device Non-buffered and Device Buffered memory types to force
write transactions to reach their final destination and ensure that the issuing master knows when the transaction is
visible to all other masters.

A write transaction that is marked as Device Buffered is required to reach its final destination in a timely manner.
However, the write response for the transaction can be signaled by an intermediate buffer. Therefore, the issuing
master cannot know when the write is visible to all other masters.

If a master issues a Device Buffered write transaction, or stream of write transactions, followed by a Device
Non-buffered write transaction, and all transactions use the same AXI ID, the AXI ordering requirements force all
of the Device Buffered write transactions to reach the final destination before a response is given to the Device
Non-buffered transaction. Therefore, the response to the Device Non-buffered transaction indicates that all the
transactions are visible to all masters.

Note
 A Device Non-buffered transaction can only guarantee the completion of Device Buffered transactions that are
issued with the same ID, and are to the same slave device.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A4-77
ID122117 Non-Confidential

A4 Transaction Attributes
A4.9 Usage examples
A4-78 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter A5
Multiple Transactions

This chapter describes the mechanism that enables out-of-order transaction completion and the issuing of multiple
outstanding addresses. It contains the following sections:
• AXI transaction identifiers on page A5-80.
• Transaction ID on page A5-81.
• Transaction ordering on page A5-82.
• Removal of write interleaving support on page A5-85.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A5-79
ID122117 Non-Confidential

A5 Multiple Transactions
A5.1 AXI transaction identifiers
A5.1 AXI transaction identifiers
The AXI protocol includes AXI ID transaction identifiers. A master can use these to identify separate transactions
that must be returned in order.

All transactions with a given AXI ID value must remain ordered, but there is no restriction on the ordering of
transactions with different ID values. A single physical port can support out-of-order transactions by acting as a
number of logical ports, each handling its transactions in order.

By using AXI IDs, a master can issue transactions without waiting for earlier transactions to complete. This can
improve system performance, because it enables parallel processing of transactions.

Note
 There is no requirement for slaves or masters to use AXI transaction IDs. Masters and slaves can process one
transaction at a time. Transactions are processed in the order they are issued.

Slaves are required to reflect on the appropriate BID or RID response an AXI ID received from a master.
A5-80 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A5 Multiple Transactions
A5.2 Transaction ID
A5.2 Transaction ID
Each transaction channel has its own transaction ID. Table A5-1 shows these designated signals.

Note
 The AXI4 protocol supports an extended ordering model based on the use of the AXI ID transaction identifier. See
Chapter A6 AXI4 Ordering Model.

Table A5-1 Channel transaction ID

Transaction channel Transaction ID

Write address channel AWID

Write data channel, AXI3 only WIDa

a. The WID signal is implemented only in AXI3.
For more information see Removal of write
interleaving support on page A5-85.

Write response channel BID

Read address channel ARID

Read data channel RID
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A5-81
ID122117 Non-Confidential

A5 Multiple Transactions
A5.3 Transaction ordering
A5.3 Transaction ordering
A master can use the AWID and ARID transaction IDs to indicate its ordering requirements. The rules for the
ordering of transactions are as follows:

• Transactions from different masters have no ordering restrictions. They can complete in any order.

• Transactions from the same master, but with different ID values, have no ordering restrictions. They can
complete in any order.

• The data transfers for a sequence of read transactions with the same ARID value must be returned in the order
that the master issued the addresses, see Read ordering.

• The data transfers for a sequence of write transactions with the same AWID value must complete in the order
that the master issued the addresses, see Normal write ordering and AXI3 write data interleaving on
page A5-83.

• There are no ordering restrictions between read and write transactions using a common value for AWID and
ARID, see Read and write interaction on page A5-84.

• Interconnect use of transaction identifiers on page A5-84 describes how the AXI fabric extends the
transaction ID values issued by AXI masters and slaves.

A5.3.1 Read ordering

At a master interface, read data from transactions with the same ARID value must arrive in the order that the master
issued the addresses. Data from read transactions with different ARID values can arrive in any order. Read data of
transactions with different ARID values can be interleaved.

A slave must return read data for a sequence of transactions with the same ARID value in the order that it received
the addresses. In a sequence of read transactions with different ARID values, the slave can return the read data in
any order, regardless of the order that the transactions arrived.

The slave must ensure that the RID value of any returned data matches the ARID value of the address to which it
is responding.

The interconnect must ensure that the read data from a sequence of transactions with the same ARID value targeting
different slaves is received by the master in the order that it issued the addresses.

The read data reordering depth is the number of addresses pending in the slave that can be reordered. A slave that
processes all transactions in order has a read data reordering depth of one. The read data reordering depth is a static
value that must be specified by the designer of the slave.

Note
 There is no mechanism by which a master can determine the read data reordering depth of a slave.

A5.3.2 Normal write ordering

Unless a master knows that a slave supports write data interleaving, it must issue the data of write transactions in
the same order that it issues the transaction addresses. See AXI3 write data interleaving on page A5-83.

Note
 • There is no mechanism by which a master can determine whether a slave supports write data interleaving. In

AXI4, there is no support for write data interleaving.

• Most slave designs do not support write data interleaving and therefore must receive write data in the order
that they receive the addresses.

If the interconnect combines write transactions from different masters to one slave, it must ensure that it forwards
the write data in address order.
A5-82 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A5 Multiple Transactions
A5.3 Transaction ordering
These restrictions apply even if the write transactions have different AWID values, and even if they come from
different masters.

A5.3.3 AXI3 write data interleaving

Caution
 AXI4 removes support for write data interleaving. In AXI4, all of the write data for a transaction must be provided
in consecutive transfers on the write data channel. See Removal of write interleaving support on page A5-85.

With write data interleaving, a slave interface can accept interleaved write data with different AWID values. The
write data interleaving depth is the number of addresses that a slave can accept interleaved data.

When accessing a slave that supports write data interleaving, write data from different transactions that use the same
AWID cannot be interleaved.

Note
 As indicated in Normal write ordering on page A5-82, there is no mechanism by which a master, or any other AXI
component, can determine whether a slave supports write data interleaving. Similarly, there is no mechanism by
which the write interleaving depth of a slave can be determined.

For a slave that supports write data interleaving, the order that it receives the first data item of each transaction must
be the same as the order that it receives the addresses for the transactions.

Note
 If two write transactions with different AWID values access the same or overlapping addresses then the AXI3
specification does not define the processing order of those accesses. A higher-level protocol must ensure the correct
order of transaction processing.

A master interface that generates write data using only one AWID value generates all write data in the order in
which it issues the write addresses. However, a master interface can interleave write data with different WID values
if the slave interface has a write data interleaving depth greater than one.

To avoid possible deadlock, a slave interface that supports write data interleaving must continuously accept
interleaved write data. It must never stall the acceptance of write data in an attempt to change the order of the write
data.

Usage models for write data interleaving

Write data interleaving can prevent stalling when the interconnect combines multiple streams of write data targeting
the same slave. For example, the interconnect might combine a write data stream from a slow source with another
write data stream from a fast source. By interleaving the two write data streams, the interconnect can improve
system performance.

For most masters that can control the generation of the write data, write data interleaving is not necessary. Such a
master can generate the write data in the order in which it generates the addresses. However, a master interface that
is transferring write data from different sources that have different speeds might interleave the sources to make
maximum use of the interconnect.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A5-83
ID122117 Non-Confidential

A5 Multiple Transactions
A5.3 Transaction ordering
A5.3.4 Read and write interaction

AXI has no ordering restrictions between read and write transactions. They can complete in any order, even if the
ARID value of a read transaction is the same as the AWID value of a write transaction.

If a master requires a given relationship between a read transaction and a write transaction then it must ensure that
the earlier transaction is complete before it issues the later transaction. A master can only consider the earlier
transaction is complete when:
• For a read transaction, it receives the last of the read data.
• For a write transaction, it receives the write response.

Sending all of the write data for the transaction must not be taken as indicating completion of that transaction.

Note
 Typically, when writing to a peripheral, a master must wait for earlier transactions to complete before switching
between read and write transactions that must be ordered.

For reads and writes to memory, a master might implement an address check against outstanding transactions to
determine whether a new transaction could be to the same, or overlapping, memory address. If the read and write
transactions do not overlap, then the master can start the new transaction without waiting for the earlier transactions
to complete.

A5.3.5 Interconnect use of transaction identifiers

When a master is connected to an interconnect, the interconnect appends additional bits to the ARID, AWID and
WID identifiers that are unique to that master port. This has two effects:

• Masters do not have to know what ID values are used by other masters, because the interconnect makes the
ID values used by each master unique, by appending the master number to the original identifier.

• The ID identifier at a slave interface is wider than the ID identifier at a master interface.

For read data, the interconnect uses the additional bits of the RID identifier to determine which master port the read
data is destined for. The interconnect removes these bits of the RID identifier before passing the RID value to the
correct master port.

For write response, the interconnect uses the additional bits of the BID identifier to determine which master port the
write response is destined for. The interconnect removes these bits of the BID identifier before passing the BID
value to the correct master port.

A5.3.6 Width of transaction ID fields

The width of transaction ID fields is IMPLEMENTATION DEFINED. However, this specification recommends the
following transaction ID field widths:
• For master components, implement a transaction ID field up to four bits.
• For master port numbers in the interconnect, implement up to four additional bits of transaction ID field.
• For slave components, implement eight bits of transaction ID field support.

For masters that support only a single ordered interface, it is acceptable to tie the transaction ID field outputs to a
constant value, for example, tie to zero.

For slaves that do not make use of the ordering information and process all transactions in order, the transaction ID
functionality can be added without changing the base functionality of the slave.
A5-84 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A5 Multiple Transactions
A5.4 Removal of write interleaving support
A5.4 Removal of write interleaving support
As stated in AXI3 write data interleaving on page A5-83, AXI4 removes support for write data interleaving. In
AXI4, all write data for a transaction must be provided in consecutive transfers on the write data channel.

This means the WID is not supported in AXI4.

A5.4.1 Removal of WID

The removal of write interleaving makes the information conveyed on the WID signals redundant. All write data
must be in the same order as the associated write addresses.

AXI4 removes the WID signals, to reduce the pin-count of the interface.

A5.4.2 Legacy considerations

Most AXI3 masters do not support write interleaving and do not require updating to meet the AXI4 requirement for
no write interleaving.

Any AXI3 master that does support write interleaving must already support a method for configuring the write
interleaving depth to be set to a value of 1, to support operation with slaves that do not support write interleaving.
Any such AXI3 master must have its write interleaving depth configured to a value of 1 to be compatible with AXI4.

Any AXI3 slave can accept non-interleaved write data and therefore there are no legacy considerations for AXI3
slaves.

Note
 Any AXI3 component that requires a WID signal can generate this from the AWID value.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A5-85
ID122117 Non-Confidential

A5 Multiple Transactions
A5.4 Removal of write interleaving support
A5-86 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter A6
AXI4 Ordering Model

This chapter describes the AXI4 ordering model, that uses the AXI ID transaction identifier to order transactions.
It contains the following sections:
• Definition of the ordering model on page A6-88.
• Master ordering on page A6-89.
• Interconnect ordering on page A6-90.
• Slave ordering on page A6-91.
• Response before final destination on page A6-92.
• Ordered write observation on page A6-93.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A6-87
ID122117 Non-Confidential

A6 AXI4 Ordering Model
A6.1 Definition of the ordering model
A6.1 Definition of the ordering model
The AXI4 protocol supports an ordering model based on the use of the AXI ID transaction identifier.

The principles are that for transactions with the same ID:

• Transactions to any single peripheral device, must arrive at the peripheral in the order in which they are
issued, regardless of the addresses of the transactions.

• Memory transactions that use the same, or overlapping, addresses must arrive at the memory in the order in
which they are issued.

Note
 In an AXI system with multiple masters, the AXI IDs used for the ordering model include the infrastructure IDs,
that identify each master uniquely. This means the ordering model applies independently to each master in the
system.

The AXI ordering model also requires that all transactions with the same ID in the same direction must provide their
responses in the order in which they are issued.

Read and write address channels are independent and in this specification, are defined to be in different directions.
If an ordering relationship is required between two transactions with the same ID that are in different directions,
then a master must wait to receive a response to the first transaction before issuing the second transaction.

If a master issues a transaction in one direction before it has received a response to an earlier transaction in the
opposite direction, then there are no ordering guarantees between the two transactions.

Note
 Where guaranteed ordering requires a response to an earlier transaction, a master must ensure it has received a
response from an appropriate point in the system. A response from an intermediate AXI component cannot
guarantee ordering with respect to components that are downstream of the intermediate buffer. For more
information see Use of Device memory types on page A4-77.
A6-88 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A6 AXI4 Ordering Model
A6.2 Master ordering
A6.2 Master ordering
A master that issues multiple read or write transactions in the same direction with the same ID has the following
guarantees about the ordering of these transactions:

• The order of response at the master to all transactions must be the same as the order of issue.

• For transactions to Device memory, the order of arrival at the slave must be the same as the order of issue.

• For Normal memory, the order of arrival at the slave of transactions to the same or overlapping addresses,
must be the same as the order of issue. This also applies to transactions to cacheable memory and all valid
transactions for which AxCACHE[3:1] is not 0b000.

The definition of two transactions to the same or overlapping addresses, is that both transactions access at
least one byte in the same single-copy atomic address range. See Single-copy atomicity size on page A7-96.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A6-89
ID122117 Non-Confidential

A6 AXI4 Ordering Model
A6.3 Interconnect ordering
A6.3 Interconnect ordering
To meet the requirements of the ordering model, the interconnect must ensure that:

• The order of transactions in the same direction with the same ID to Device memory is preserved.

• The order of transactions in the same direction with the same ID to the same or overlapping addresses is
preserved. See Master ordering on page A6-89 for the definition of overlapping addresses.

• The order of write responses with the same ID is preserved.

• The order of read responses with the same ID is preserved.

• Any manipulation of the AXI ID values associated with a transaction must ensure that the ordering
requirements of the original ID values are maintained.

• Any component that gives a response to a transaction before the transaction reaches its final destination must
ensure that the ordering requirements given in this section are maintained until the transaction reaches its
final destination. See Response before final destination on page A6-92.
A6-90 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A6 AXI4 Ordering Model
A6.4 Slave ordering
A6.4 Slave ordering
To meet the requirements of the ordering model, a slave must ensure that:

• Any write transaction for which it has issued a response must be observed by any subsequent write or read
transaction, regardless of the transaction IDs.

• Any write transaction to Device memory must be observed by any subsequent write to Device memory with
the same ID, even if a response has not yet been issued.

• Any write transaction to Normal memory must be observed by any subsequent write to the same or an
overlapping address with the same ID, even if a response has not yet been given. This also applies to
transactions to cacheable memory and applies to all valid write transactions for which AWCACHE[3:1] is
not 0b000.

• Responses to multiple write transactions with the same ID must be issued in the order in which the
transactions arrived.

• Responses to multiple write transactions with different IDs can be issued in any order.

• Any read transaction for which it has issued a response must be observed by any subsequent write or read
transaction, regardless of the transaction IDs.

• Any read transaction to Device memory must be observed by any subsequent read to Device memory with
the same ID, even if a response has not yet been issued.

• Responses to multiple read transactions with the same ID must be issued in the order in which the transactions
arrive.

• Responses to multiple read transactions with different IDs can be issued in any order.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A6-91
ID122117 Non-Confidential

A6 AXI4 Ordering Model
A6.5 Response before final destination
A6.5 Response before final destination
When a master requires a known ordering between read and writes transactions, or between transactions with
different IDs, it must wait for outstanding transactions to complete before issuing any dependent transactions.

Transaction completion means that:
• The transaction is observable to later transactions.
• For non-bufferable requests, the transaction has reached the final destination.
• For bufferable transactions, the transaction has reached an observable, intermediate point.

It is possible for an intermediate component to issue a response to some transactions, to improve system
performance. However, it must ensure that visibility and ordering guarantees are still met.

A6.5.1 Read response before final destination

For Normal read transactions, an intermediate component can respond with read data from a local memory if it is
up to date with respect to all earlier writes to the same or overlapping address. In this case, the request is not required
to propagate to the final destination.

An intermediate component must observe ID ordering rules, which means a read response can only be sent if all
earlier reads with the same ID have already had a response.

A6.5.2 Write response before final destination

For Bufferable write transactions, the response can be sent by an intermediate component. In this case, the
intermediate component can store a local copy of the data, but must forward the transaction downstream before
discarding that data.

An intermediate component must observe ID ordering rules, that means a write response can only be sent if all
earlier writes with the same ID have already had a response.

After sending an early write response, the component must be responsible for ordering and observability of that
transaction until the write has been propagated downstream and a write response is received. During the period
between sending the early write response and receiving a response from downstream, the component must ensure
that:

• If an early write response was given for a Normal Bufferable transaction, all subsequent transactions to the
same or overlapping address are ordered after the write which has had an early response.

• If an early write response was given for a Device Bufferable transaction, then all subsequent transactions are
ordered after the write which has had an early response.
A6-92 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A6 AXI4 Ordering Model
A6.6 Ordered write observation
A6.6 Ordered write observation
To improve compatibility with interface protocols that support a different ordering model an
Ordered_Write_Observation property is defined that can be TRUE or FALSE for a single interface.

TRUE An interface is defined as having the Ordered_Write_Observation property.

FALSE An interface that does not support the Ordered_Write_Observation property. If
Ordered_Write_Observation is not declared, it is considered FALSE.

An interface that supports the Ordered_Write_Observation property can support the Producer/Consumer ordering
model with improved performance.

An interface can be declared as providing Ordered_Write_Observation if two write transactions, with the same ID,
are observed by all other agents in the system in the same order that the transactions are issued.

If an interface does not have the Ordered_Write_Observation property then the order of observation of writes is only
guaranteed for a sequence of writes with the same ID to the same peripheral. To support the Producer/Consumer
ordering model without Ordered_Write_Observation an earlier write to a peripheral must complete and provide a
BRESP response before a later transaction is issued to a different peripheral.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A6-93
ID122117 Non-Confidential

A6 AXI4 Ordering Model
A6.6 Ordered write observation
A6-94 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter A7
Atomic Accesses

This chapter describes the AXI4 concept of single-copy atomicity size and how the AXI protocol implements
exclusive access and locked access mechanisms. It contains the following sections:
• Single-copy atomicity size on page A7-96.
• Exclusive accesses on page A7-98.
• Locked accesses on page A7-101.
• Atomic access signaling on page A7-102.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A7-95
ID122117 Non-Confidential

A7 Atomic Accesses
A7.1 Single-copy atomicity size
A7.1 Single-copy atomicity size
The AXI4 protocol introduces the concept of single-copy atomicity size. This term defines the minimum number of
bytes that a transaction updates atomically. The AXI4 protocol requires a transaction that is larger than the
single-copy atomicity size must update memory in blocks of at least the single-copy atomicity size.

Note
 Atomicity does not define the exact instant when the data is updated. What must be ensured is that no master can
ever observe a partially updated form of the atomic data. For example, in many systems data structures such as
linked lists are made up of 32-bit atomic elements. An atomic update of one of these elements requires that the entire
32-bit value is updated at the same time. It is not acceptable for any master to observe an update of only 16-bits at
one time, and then the update of the other 16-bits at a later time.

More complex systems require support for larger atomic elements, in particular 64-bit atomic elements, so that
masters can communicate using data structures that are based on these larger atomic elements.

The single-copy atomicity sizes that are supported in a system are important because all of the components involved
in a given communication must support the required size of atomic element. If two masters are communicating
through an interconnect and a single slave, then all of the components involved must ensure that transactions of the
required size are treated atomically.

The AXI4 protocol does not require a specific single-copy atomicity size and systems can be designed to support
different single-copy atomicity sizes.

Different groups of components can have different single-copy atomicity sizes for communication within the
groups. In AXI4 the term single-copy atomic group describes a group of components that can communicate at a
particular atomicity. For example, Figure A7-1 shows a system in which:
• The processor, Digital Signal Processor (DSP), DRAM controller, DMA controller, peripherals, SRAM

memory and associated interconnect, are in a 32-bit single-copy atomic group.
• The processor, DSP, DRAM controller, and associated interconnect, are also in a 64-bit single-copy atomic

group.

Figure A7-1 Example system with different single-copy atomic groups

Processor

Interconnect

DSP
DMA

Controller

DRAM

Controller SRAM

Bridge

Interconnect

UART Timer GPIO

64-bit single-copy atomic group

32-bit single-copy atomic group
A7-96 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A7 Atomic Accesses
A7.1 Single-copy atomicity size
A transaction never has an atomicity guarantee greater than the alignment of its start address. For example, a burst
in a 64-bit single-copy atomic group that is not aligned to an 8-byte boundary does not have any 64-bit single-copy
atomic guarantee.

Byte strobes associated with a transaction do not affect the single-copy atomicity size.

A7.1.1 Multi-copy write atomicity

To specify that a system provides multi-copy atomicity, a Multi_Copy_Atomicity property is defined.
TRUE Multi_Copy_Atomicity is supported.
FALSE Multi_Copy_Atomicity is not supported. If Multi_Copy_Atomicity is not declared, it is considered

FALSE.

A system is defined as being multi-copy atomic if:
• Writes to the same location are observed in the same order by all agents.
• A write to a location that is observable by an agent, is observable by all agents.

Multi-copy atomicity can be ensured by:

• Using a single Point of Serialization, for a given address, so that all accesses to the same location are ordered.
This must ensure that all coherent cached copies of a location are invalidated before the new value of the
location is made visible to any agents.

• Avoiding the use of forwarding buffers that are upstream of any agents. This prevents a buffered write of a
location becoming visible to some agents before it is visible to all agents.

Note
 A system must have the Multi_Copy_Atomicity property if ARM v8 Architecture processors are used. This is
required to support the Load with Acquire and Store with Release instructions. The Store with Release instruction
requires that the store is multi-copy atomic.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A7-97
ID122117 Non-Confidential

A7 Atomic Accesses
A7.2 Exclusive accesses
A7.2 Exclusive accesses
The exclusive access mechanism can provide semaphore-type operations without requiring the bus to remain
dedicated to a particular master for the duration of the operation. This means the semaphore-type operations do not
impact either the bus access latency or the maximum achievable bandwidth.

The AxLOCK signals select exclusive access, and the RRESP and BRESP signals indicate the success or failure
of the exclusive access read or write respectively.

The slave requires additional logic to support exclusive access. The AXI protocol provides a mechanism to indicate
when a master attempts an exclusive access to a slave that does not support it. The remainder of this section
describes the AXI Exclusive access mechanism.

A7.2.1 Exclusive access process

The basic mechanism of an exclusive access is:

1. A master performs an exclusive read from an address.

2. At some later time, the master attempts to complete the exclusive operation by performing an exclusive write
to the same address, and with an AWID that matches the ARID used for the exclusive read.

3. This exclusive write access is signaled as either:

• Successful, if no other master has written to that location since the exclusive read access. In this case
the exclusive write updates memory.

• Failed, if another master has written to that location since the exclusive read access. In this case the
memory location is not updated.

A master might not complete the write portion of an exclusive operation. The exclusive access monitoring
hardware monitors only one address for each transaction ID. If a master does not complete the write portion
of an exclusive operation, a subsequent exclusive read by that master using the same transaction ID changes
the address that is being monitored for exclusive accesses.

A7.2.2 Exclusive access from the perspective of the master

A master starts an exclusive operation by performing an exclusive read. If the transaction is successful, the slave
returns the EXOKAY response, indicating that the slave recorded the address to be monitored for exclusive
accesses.

If the master attempts an exclusive read from a slave that does not support exclusive accesses, the slave returns the
OKAY response instead of the EXOKAY response.

Note
 The master can treat the OKAY response as an error condition indicating that the exclusive access is not supported.
This specification recommends that the master does not perform the write portion of this exclusive operation.

At some time after the exclusive read, the master tries an exclusive write to the same location. If the contents of the
addressed location have not been updated since the exclusive read, the exclusive write operation succeeds. The slave
returns the EXOKAY response, and updates the memory location.

If the contents of the addressed location have been updated since the exclusive read, the exclusive write attempt
fails, and the slave returns the OKAY response instead of the EXOKAY response. The exclusive write attempt does
not update the memory location.

A master might not complete the write portion of an exclusive operation. If this happens, the slave continues to
monitor the address for exclusive accesses until another exclusive read starts a new exclusive access sequence.

A master must not start the write part of an exclusive access sequence until the read part is complete.
A7-98 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A7 Atomic Accesses
A7.2 Exclusive accesses
A7.2.3 Exclusive access from the perspective of the slave

A slave that does not support exclusive accesses can ignore the AxLOCK signals. It must provide an OKAY
response for both normal and exclusive accesses.

A slave that supports exclusive access must have monitor hardware. This specification recommends that such a
slave has a monitor unit for each exclusive-capable master ID that can access it. The ARM Architecture Reference
Manual, ARMv7-A and ARMv7-R edition defines an exclusive access monitor, and a single-ported slave can have
such an exclusive access monitor external to the slave. A multiported slave might require internal monitoring.

The exclusive access monitor records the address and ARID value of any exclusive read operation. Then it monitors
that location until either a write occurs to that location or until another exclusive read with the same ARID value
resets the monitor to a different address.

When the slave receives an exclusive write with a given AWID value, the monitor checks to see if that address is
being monitored for exclusive access with that AWID. If it is, then this indicates that no write has occurred to that
location since the exclusive read access, and the exclusive write proceeds, completing the exclusive access. The
slave returns the EXOKAY response to the master, and updates the addressed memory location.

If the address is no longer being monitored with the same AWID value at the time of an exclusive write, this
indicates one of the following:
• The location has been updated since the exclusive read access.
• The monitor has been reset to another location.

In both cases the exclusive write must not update the addressed location, and the slave must return the OKAY
response instead of the EXOKAY response.

A7.2.4 Exclusive access restrictions

The following restrictions apply to exclusive accesses:

• The burst size and burst length of an exclusive write with a given ID must be the same as the burst size and
burst length of the preceding exclusive read with the same ID.

• The address of an exclusive access must be aligned to the total number of bytes in the transaction, that is, the
product of the burst size and burst length.

• The addresses for the exclusive read and the exclusive write must be identical.

• The ARID value of the exclusive read must match the AWID value of the exclusive write.

• The control signals for the exclusive read and exclusive write transactions must be identical.

• The number of bytes to be transferred in an exclusive access burst must be a power of 2, that is, 1, 2, 4, 8, 16,
32, 64, or 128 bytes.

• The maximum number of bytes that can be transferred in an exclusive burst is 128.

• In AXI4, the burst length for an exclusive access must not exceed 16 transfers.

• The value of the AxCACHE signals must guarantee that the slave that is monitoring the exclusive access
sees the transaction. For example, an exclusive access must not have an AxCACHE value that indicates that
the transaction is Cacheable.

Failure to observe these restrictions causes UNPREDICTABLE behavior.

The minimum number of bytes to be monitored during an exclusive operation is defined by the burst length and
burst size of the transaction. The slave can monitor a larger number of bytes, up to 128, which is the maximum size
of an exclusive access. However, this can result in a successful exclusive access being indicated as failing because
a neighboring byte was updated.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A7-99
ID122117 Non-Confidential

A7 Atomic Accesses
A7.2 Exclusive accesses
A7.2.5 Slaves that do not support exclusive access

The response signals, RRESP and BRESP, include an OKAY response for successful normal accesses and an
EXOKAY response for successful exclusive accesses. This means that a slave that does not support exclusive
accesses can provide an OKAY response to indicate the failure of an exclusive access.

Note
 • An exclusive write to a slave that does not support exclusive access always updates the memory location.

• An exclusive write to a slave that supports exclusive access updates the memory location only if the exclusive
write is successful.
A7-100 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A7 Atomic Accesses
A7.3 Locked accesses
A7.3 Locked accesses
AXI4 does not support locked transactions. However, an AXI3 implementation must support locked transactions.

Note
 AXI4 removes support for locked transactions because:

• The majority of components do not require locked transactions.

• The implementation of locked transactions has a significant effect on:
— The complexity of the interconnect.
— The ability to make QoS guarantees.

In this specification, AxLOCK indicates ARLOCK or AWLOCK.

When a master uses the AxLOCK signals for a transaction to show that it is a locked transaction then the
interconnect must ensure that only that master can access the targeted slave region, until an unlocked transaction
from the same master completes. An arbiter within the interconnect must enforce this restriction.

Before a master starts a locked sequence of either read or write transactions it must ensure that it has no other
transactions waiting to complete.

Any transaction with AxLOCK indicating a locked transaction forces the interconnect to lock the following
transaction. Therefore, a locked sequence must always complete with a final transaction that does not have
AxLOCK indicating a locked transaction. This final transaction is included in the locked sequence and effectively
removes the lock.

When completing a locked sequence, before issuing the final unlocking transaction, a master must ensure that all
previous locked transactions are complete. It must then ensure that the final unlocking transaction has completed
before it starts any further transactions.

The master must ensure that all transactions in a locked sequence have the same AxID value.

Note
 Locked accesses require the interconnect to prevent any other transactions occurring while the locked sequence is
in progress, and can therefore have an impact on the interconnect performance. This specification recommends that
locked accesses are only used to support legacy devices.

This specification recommends the following restrictions, but they are not mandatory:
• Keep any locked transaction sequence within a single 4 KB address region.
• Limit any locked transaction sequence to two transactions.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A7-101
ID122117 Non-Confidential

A7 Atomic Accesses
A7.4 Atomic access signaling
A7.4 Atomic access signaling
In AXI3 the AxLOCK signals specify normal, exclusive, and locked accesses. Table A7-1 shows the AXI3
encoding of the AxLOCK signals.

AXI4 removes the support for locked transactions and uses only a 1-bit lock signal. Table A7-2 shows the AXI4
signal encoding of the AxLOCK signals.

A7.4.1 Legacy considerations

In an AXI4 environment, any AXI3 locked transaction is converted as follows:
• AWLOCK[1:0] = 0b10 is converted to a normal write transaction, AWLOCK = 0b0.
• ARLOCK[1:0] = 0b10 is converted to a normal read transaction, ARLOCK = 0b0.

This specification recommends that any component performing such a conversion, typically an interconnect,
includes an optional mechanism to detect and flag that such a translation has occurred.

Any component that cannot operate correctly if this translation is performed cannot be used in an AXI4
environment.

Note
 For many legacy cases that use locked transactions, such as the execution of a SWP instruction, a software change
might be required to prevent the use of any instruction that forces a locked transaction.

Table A7-1 AXI3 atomic access encoding

AxLOCK[1:0] Access type

0b00 Normal access

0b01 Exclusive access

0b10 Locked access

0b11 Reserved

Table A7-2 AXI4 atomic access encoding

AxLOCK Access type

0b0 Normal access

0b1 Exclusive access
A7-102 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter A8
AMBA 4 Additional Signaling

This chapter describes the additional signaling introduced in AMBA4 to extend the application of the AXI interface.
It contains the following sections:
• QoS signaling on page A8-104.
• Multiple region signaling on page A8-105.
• User-defined signaling on page A8-106.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A8-103
ID122117 Non-Confidential

A8 AMBA 4 Additional Signaling
A8.1 QoS signaling
A8.1 QoS signaling
This section describes the additional signaling in the AXI4 protocol to support Quality of Service (QoS).

A8.1.1 QoS interface signals

The AXI4 signal set is extended to support two 4-bit QoS identifiers:
AWQOS A 4-bit QoS identifier, sent on the write address channel for each write transaction.
ARQOS A 4-bit QoS identifier, sent on the read address channel for each read transaction.

In this specification, AxQOS indicates AWQOS or ARQOS.

The protocol does not specify the exact use of the QoS identifier. This specification recommends that AxQOS is
used as a priority indicator for the associated write or read transaction. A higher value indicates a higher priority
transaction.

A default value of 0b0000 indicates that the interface is not participating in any QoS scheme.

Note
 Additional interpretations of the QoS identifier can be used.

A8.1.2 Master considerations

A master can produce its own AxQOS values, and if it can produce multiple streams of traffic it can choose different
QoS values for the different streams.

Support for QoS requires a system-level understanding of the QoS scheme in use, and collaboration between all
participating components. For this reason, this specification recommends that a master component includes some
programmability that can be used to control the exact QoS values used for any given scenario.

If a master component does not support a programmable QoS scheme it can use QoS values that represent the
relative priorities of the transactions it generates. These values can then be mapped to alternative system level QoS
values if appropriate.

A master that can not produce its own AxQOS values must use the default value.

Note
 This specification expects that many interconnect component implementations will support programmable registers
that can be used to assign QoS values to connected masters. These values replace the QoS values, either
programmed or default, supplied by the masters.

A8.1.3 System considerations

QoS signaling, as defined in AXI4, can be used with any compatible system-level QoS methodology.

The default system-level implementation of QoS is that any component with a choice of more than one transaction
to process selects the transaction with the higher QoS value to process first. This selection only occurs when there
is no other AXI constraint that requires the transactions to be processed in a particular order.

Note
 This means that the AXI ordering rules take precedence over ordering for QoS purposes.

More sophisticated QoS schemes that are compatible with this default scheme can be implemented.
A8-104 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A8 AMBA 4 Additional Signaling
A8.2 Multiple region signaling
A8.2 Multiple region signaling
This section describes the optional additional signaling in the AXI4 protocol to support multiple region interfaces.

A8.2.1 Additional interface signals

Optionally, the AXI4 interface signal set can be extended to support two 4-bit region identifiers:
AWREGION A region identifier, sent on the write address channel for each write transaction.
ARREGION A region identifier, sent on the read address channel for each read transaction.

In this specification, AxREGION indicates AWREGION or ARREGION.

The 4-bit region identifier can be used to uniquely identify up to sixteen different regions. The region identifier can
provide a decode of higher order address bits. The region identifier must remain constant within any 4K-byte
address space.

The use of region identifiers means a single physical interface on a slave can provide multiple logical interfaces,
each with a different location in the system address map. The use of the region identifier means that the slave does
not have to support the address decode between the different logical interfaces.

This protocol expects an interconnect to produce AxREGION signals when performing the address decode function
for a single slave that has multiple logical interfaces. If a slave only has a single physical interface in the system
address map, the interconnect must use the default AxREGION values. See Chapter A9 Default Signaling and
Interoperability.

There are a number of usage models for the region identifier including, but not limited to, the following:

• A peripheral can have its main data path and control registers at different locations in the address map, and
be accessed through a single interface without the need for the slave to perform an address decode.

• A slave can exhibit different behaviors in different memory regions. For example, a slave might provide read
and write access in one region, but read only access in another region.

A slave must ensure the correct protocol signaling and the correct ordering of transactions are maintained. A slave
must ensure that it provides the responses to two transactions to different regions with the same AXI ID in the
correct order.

A slave must also ensure the correct protocol signaling for any values of AxREGION. If a slave implements less
than sixteen regions, then the slave must ensure the correct protocol signaling on any attempted access to an
unsupported region. How this is achieved is IMPLEMENTATION DEFINED. For example, the slave might ensure this
by:

• Providing an error response for any transaction that accesses an unsupported region.

• Aliasing supported regions across all unsupported regions, to ensure a protocol-compliant response is given
for all accesses.

The AxREGION signals only provide an address decode of the existing address space that can be used by slaves
to remove the need for an address decode function. The signals do not create new independent address spaces.
AxREGION must only be present on an interface that is downstream of an address decode function.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A8-105
ID122117 Non-Confidential

A8 AMBA 4 Additional Signaling
A8.3 User-defined signaling
A8.3 User-defined signaling
Optionally, the AXI4 interface signal set can include a set of user-defined signals, called the User signals, on each
AXI4 channel.

Generally, this specification recommends that User signals not be used. The AXI protocol does not define the
functions of these signals, which can lead to interoperability issues if two components use the same User signals in
an incompatible manner.

A8.3.1 Signal naming

The User signal names defined for each AXI4 channel are:
AWUSER Write address channel User signals.
ARUSER Read address channel User signals.
WUSER Write data channel User signals.
RUSER Read data channel User signals.
BUSER Write response channel User signals.

In this specification, AxUSER indicates AWUSER or ARUSER.

A8.3.2 Usage considerations

Where User signals are implemented, it is not required that User signals are supported on all channels. The design
decision whether to include User signals is made independently for each channel.

This specification recommends including User signals on an interconnect. However, there is no requirement to
include them on masters or slaves.

This specification recommends that interconnect components include support for User signals, so that they can be
passed between master and slave components. The width of the User-defined signals is IMPLEMENTATION DEFINED
and can be different for each of the channels.
A8-106 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter A9
Default Signaling and Interoperability

This chapter describes the default signaling and interoperability of the AXI interface.

The AXI protocol does not require a component to use the full set of signals available on an AXI interface. To assist
in the connection of components that do not use every signal, this chapter defines the major categories of interfaces
together with the restrictions that apply to each category. It contains the following sections:
• Interoperability principles on page A9-108.
• Major interface categories on page A9-109.
• Default signal values on page A9-110.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A9-107
ID122117 Non-Confidential

A9 Default Signaling and Interoperability
A9.1 Interoperability principles
A9.1 Interoperability principles
The following interoperability principles apply to both AXI3 and AXI4 components.

As a general principle, components must support all combinations of inputs, but do not have to generate all
combinations of outputs. For example, a slave must support all the different possible lengths of burst, but a master
only has to generate the types of burst that it uses. This policy ensures that all components work with all other
components.

The conditions under which a signal can be omitted from an AXI interface are:

Optional Outputs

If a component might require a value that does not match the default value, then the component must
have the output signal present.

If a component always requires the value that matches the default value, specified in Default signal
values on page A9-110, then it is not required that the component has the signal present.

Optional Inputs

An input signal can be omitted if the master or slave does not need to observe the input signal for
correct functional operation.

Note
 Interconnect components can also omit signals when appropriate. For example, when a signal is only ever driven to
its default value, there is no requirement to transport that signal across the interconnect. The signal can be created
at its destination. Similarly, if a signal is not used at any destination then there is no requirement to transport it across
the interconnect.
A9-108 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A9 Default Signaling and Interoperability
A9.2 Major interface categories
A9.2 Major interface categories
The following sections describe the major interface categories.

A9.2.1 Read/write interface

A read write interface includes the following AXI channels:
AR Read address channel.
R Read data channel.
AW Write address channel.
W Write data channel.
B Write response channel.

A9.2.2 Read-only interface

A read-only interface supports only read transactions and includes the following AXI channels:
AR Read address channel.
R Read data channel.

Note
 A read-only interface does not support exclusive accesses.

A9.2.3 Write-only interface

A write-only interface supports only write transactions and includes the following AXI channels:
AW Write address channel.
W Write data channel.
B Write response channel.

Note
 A write-only interface does not support exclusive accesses.

A9.2.4 Memory slaves and peripheral slaves

AXI slaves are classified as Memory slaves or Peripheral slaves.

A memory slave must handle all transaction types correctly.

Peripheral Slaves are expected to have a defined method of access that establishes the types of transaction that can
be used to access a device, and if there are any restrictions on how the device is accessed. Typically, the defined
method of access is described in the data sheet for the component. Any access that is not a defined method of access
might cause the peripheral slave to fail but is expected to complete in a protocol-compliant fail-safe manner, to
prevent system deadlock. Continued correct operation of the peripheral slave is not required.

Because a peripheral slave is required to work correctly only for its defined method of access, a peripheral slave can
have a significantly reduced set of interface signals.

Note
 All peripherals are expected to support a subset of transactions that permit the peripheral to be controlled using
accesses that can be specified in C code. For example, single 8-bit, single 16-bit or single 32-bit aligned transactions
might be supported.

No minimum subset is required, because the subset of supported transactions can differ between peripherals. For
example, one peripheral might only support 16-bit accesses and another peripheral might only support 32-bit
accesses.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A9-109
ID122117 Non-Confidential

A9 Default Signaling and Interoperability
A9.3 Default signal values
A9.3 Default signal values
This specification suggests that, in general, for maximum IP reuse, an AXI component interface includes all signals.
The presence of all signals reduces the risk of error at the system integration phase of the design flow and it can also
help support some design flows that do not effectively support default values for absent signals.

The following tables show the AXI required and optional signals, and the default signals values that apply when an
optional signal is not implemented:
• Table A9-1 on page A9-111 shows the master interface write channel signals.
• Table A9-2 on page A9-112 shows the memory slave interface write channel signals.
• Table A9-3 on page A9-113 shows the master interface read channel signals.
• Table A9-4 on page A9-114 shows the memory slave interface read channel.

The following sections give more information about the default signal requirements:
• Master addresses on page A9-114.
• Slave addresses on page A9-115.
• Memory slaves on page A9-115.
• Write transactions on page A9-115.
• Read transactions on page A9-115.
• Response signaling on page A9-115.
• Non-secure and Secure accesses on page A9-115.
A9-110 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A9 Default Signaling and Interoperability
A9.3 Default signal values
Table A9-1 Master interface write channel signals and default signal values

Signal Description Direction Required? Default

ACLK Global clock Input Required -

ARESETn Global reset Input Required -

AWID Write address ID Output Optional All zeros

AWADDR Write address Output Required -

AWREGION Write region Output Optional All zeros

AWLEN Burst length Output Optional All zeros, Length 1

AWSIZE Burst size Output Optional Data bus width

AWBURST Burst type Output Optional 0b01, INCR

AWLOCK Lock type Output Optional All zeros, Normal access

AWCACHE Cache type Output Optional 0b0000

AWPROT Protection type Output Required -

AWQOS QoS value Output Optional 0b0000

AWVALID Write address valid Output Required -

AWREADY Write address ready Input Required -

WDATA Write data Output Required -

WSTRB Write strobes Output Optional All ones

WLAST Write last Output Required -

WVALID Write valid Output Required -

WREADY Write ready Input Required -

BID Response ID Input Optional -

BRESP Write response Input Optional -

BVALID Write response valid Input Required -

BREADY Write response ready Output Required -
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A9-111
ID122117 Non-Confidential

A9 Default Signaling and Interoperability
A9.3 Default signal values
Table A9-2 Memory slave interface write channel signals and default signal values

Signal name Description Direction Required? Default

ACLK Global clock Input Required -

ARESETn Global reset Input Required -

AWID Write address ID Input Required -

AWADDR Write address Input Required -

AWREGION Write region Input Optional -

AWLEN Burst length Input Required -

AWSIZE Burst size Input Required -

AWBURST Burst type Input Required -

AWLOCK Lock type Input Optional -

AWCACHE Cache type Input Optional -

AWPROT Protection type Input Optional -

AWQOS QoS value Input Optional -

AWVALID Write address valid Input Required -

AWREADY Write address ready Output Required -

WDATA Write data Input Required -

WSTRB Write strobes Input Required -

WLAST Write last Input Optional -

WVALID Write valid Input Required -

WREADY Write ready Output Required -

BID Response ID Output Required -

BRESP Write response Output Optional 0b00, OKAY

BVALID Write response valid Output Required -

BREADY Write response ready Input Required -
A9-112 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A9 Default Signaling and Interoperability
A9.3 Default signal values
Table A9-3 Master interface read channel signals and default signals values

Signal name Description Direction Required? Default

ARID Read address ID Output Optional All zeros

ARADDR Read address Output Required -

ARREGION Read region Output Optional 0x0

ARLEN Burst length Output Optional All zeros, Length 1

ARSIZE Burst size Output Optional Data bus width

ARBURST Burst type Output Optional 0b01, INCR

ARLOCK Lock type Output Optional All zeros, Normal access

ARCACHE Cache type Output Optional 0b0000

ARPROT Protection type Output Required -

ARQOS QoS value Output Optional 0b0000

ARVALID Read address valid Output Required -

ARREADY Read address ready Input Required -

RID Read data ID Input Optional -

RDATA Read data Input Required -

RRESP Read response Input Optional -

RLAST Read last Input Optional -

RVALID Read valid Input Required -

RREADY Read ready Output Required -
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A9-113
ID122117 Non-Confidential

A9 Default Signaling and Interoperability
A9.3 Default signal values
A9.3.1 Master addresses

AxADDR There is no minimum requirement for the number of address bits supplied by a master.

If the system to which the master is connected has a different address bus width than that provided
by the master:

• If the system address is wider than is provided by the master then the default value of all zeros
must be used for the additional high-order address bits.

• If the system address is narrower than is provided by the master then the high-order address
bits from the master must be left unconnected.

Note
 Typically a master supplies 32-bits of addressing, optionally a master can support up to 64-bits of

addressing.

Table A9-4 Memory slave interface read channel signals and default signals values

Signal name Description Direction Required? Default

ARID Read address ID Input Required -

ARADDR Read address Input Required -

ARREGION Read region Input Optional -

ARLEN Burst length Input Required -

ARSIZE Burst size Input Required -

ARBURST Burst type Input Required -

ARLOCK Lock type Input Optional -

ARCACHE Cache type Input Optional -

ARPROT Protection type Input Optional -

ARQOS QoS value Input Optional -

ARVALID Read address valid Input Required -

ARREADY Read address ready Output Required -

RID Read data ID Output Required -

RDATA Read data Output Required -

RRESP Read response Output Optional 0b00, OKAY

RLAST Read last Output Required -

RVALID Read valid Output Required -

RREADY Read ready Input Required -
A9-114 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

A9 Default Signaling and Interoperability
A9.3 Default signal values
A9.3.2 Slave addresses

AxADDR There is no minimum requirement for the number of address bits used by a slave.

A slave is not required to have low-order address bits to support decoding within the width of the
system data bus and can assume that such low-order address bits have a default value of all zeros.
If the slave has more address bits than supplied by the interconnect, the higher order address bits use
a default value of all zeros.

Typically a memory slave has at least enough address bits to fully decode a 4KB address range.

A9.3.3 Memory slaves

AxLOCK A memory slave is not required to use the AxLOCK inputs. However, a memory slave that supports
exclusive accesses requires these signals.

AxCACHE A memory slave is not required to make use of the AxCACHE inputs. A memory slave does not
require these signals if either:
• It has no caching behavior.
• It caches all transactions in the same way.

A9.3.4 Write transactions

WSTRB[3:0] A master is not required to use the write strobe signals WSTRB[3:0] if it always performs full data
bus width write transactions. The default value for write strobes is all signals asserted.

WLAST A slave is not required to use the WLAST signal. Since the length of a write burst is defined, a slave
can calculate the last write data transfer from the burst length AWLEN[7:0] signals.

A9.3.5 Read transactions

RLAST A master is not required to use the RLAST signal. Since the length of a read burst is defined, a
master can calculate the last read data transfer from the burst length ARLEN[7:0] signals.

A9.3.6 Response signaling

RRESP, BRESP A master does not require the RRESP and BRESP inputs if it both:
• Does not perform exclusive accesses.
• Does not require notification of transaction errors.

A slave does not require the RRESP and BRESP outputs if it both:
• Does not support exclusive accesses.
• Does not generate error responses.

A9.3.7 Non-secure and Secure accesses

AxPROT A slave that is not required to differentiate between Non-secure and Secure accesses, and that does
not require any additional protection support, does not require the AxPROT input signals.

Caution
 Take great care with the AxPROT signals. The AxPROT[1] signals indicate the Secure or

Non-secure nature of the transactions, and incorrect assignment of these bits can lead to incorrect
system behavior.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. A9-115
ID122117 Non-Confidential

A9 Default Signaling and Interoperability
A9.3 Default signal values
A9-116 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Part B
AMBA AXI4-Lite Interface Specification

Chapter B1
AMBA AXI4-Lite

This chapter defines the AXI4-Lite interface and associated protocol. AXI4-Lite is suitable for simpler control
register-style interfaces that do not require the full functionality of AXI4.

This chapter contains the following sections:
• Definition of AXI4-Lite on page B1-120.
• Interoperability on page B1-122.
• Defined conversion mechanism on page B1-123.
• Conversion, protection, and detection on page B1-125.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. B1-119
ID122117 Non-Confidential

B1 AMBA AXI4-Lite
B1.1 Definition of AXI4-Lite
B1.1 Definition of AXI4-Lite
This section defines the functionality and signal requirements of AXI4-Lite components.

The key functionality of AXI4-Lite operation is:
• All transactions are of burst length 1.
• All data accesses use the full width of the data bus: AXI4-Lite supports a data bus width of 32-bit or 64-bit.
• All accesses are Non-modifiable, Non-bufferable.
• Exclusive accesses are not supported.

B1.1.1 Signal list

Table B1-1 shows the required signals on an AXI4-Lite interface.

AXI4 signals modified in AXI4-Lite

The AXI4-Lite interface does not fully support the following signals:

RRESP, BRESP

The EXOKAY response is not supported on the read data and write response channels.

AXI4 signals not supported in AXI4-Lite

The AXI4-Lite interface does not support the following signals:

AWLEN, ARLEN The burst length is defined to be 1, equivalent to an AxLEN value of zero.

AWSIZE, ARSIZE All accesses are defined to be the width of the data bus.

Note
 AXI4-Lite requires a fixed data bus width of either 32-bit or 64-bit.

AWBURST, ARBURST

The burst type has no meaning because the burst length is 1.

AWLOCK, ARLOCK

All accesses are defined as Normal accesses, equivalent to an AxLOCK value of zero.

AWCACHE, ARCACHE

All accesses are defined as Non-modifiable, Non-bufferable, equivalent to an AxCACHE
value of 0b0000.

WLAST, RLAST All bursts are defined to be of length 1, equivalent to a WLAST or RLAST value of 1.

Table B1-1 AXI4-Lite interface signals

Global Write address
channel

Write data
channel

Write response
channel

Read address
channel

Read data
channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

− AWADDR WDATA BRESP ARADDR RDATA

− AWPROT WSTRB − ARPROT RRESP
B1-120 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

B1 AMBA AXI4-Lite
B1.1 Definition of AXI4-Lite
B1.1.2 Bus width

AXI4-Lite has a fixed data bus width and all transactions are the same width as the data bus. The data bus width
must be, either 32-bits or 64-bits.
• The majority of components use a 32-bit interface.
• Only components requiring 64-bit atomic accesses use a 64-bit interface.

A 64-bit component can be designed for access by 32-bit masters, but the implementation must ensure that the
component sees all transactions as 64-bit transactions.

Note
 This interoperability can be achieved by including, in the register map of the component, locations that are suitable
for access by a 32-bit master. Typically, such locations would use only the lower 32 bits of the data bus.

B1.1.3 Write strobes

The AXI4-Lite protocol supports write strobes. This means multi-sized registers can be implemented and also
supports memory structures that require support for 8-bit and 16-bit accesses.

All master interfaces and interconnect components must provide correct write strobes.
• To make full use of the write strobes.
• To ignore the write strobes and treat all write accesses as being the full data bus width.
• To detect write strobe combinations that are not supported and provide an error response.

A slave that provides memory access must fully support write strobes. Other slaves in the memory map might
support a more limited write strobe option.

When converting from full AXI to AXI4-Lite, a write transaction can be generated on AXI4-Lite with all write
strobes deasserted. Automatic suppression of such transactions is permitted but not required. See Conversion,
protection, and detection on page B1-125.

B1.1.4 Optional signaling

AXI4-Lite supports multiple outstanding transactions, but a slave can restrict this by the appropriate use of the
handshake signals.

AXI4-Lite does not support AXI IDs. This means that all transactions must be in order, and all accesses use a single
fixed ID value.

Note
 Optionally, an AXI4-Lite slave can support AXI ID signals, so that it can be connected to a full AXI interface
without modification. See Interoperability on page B1-122.

AXI4-Lite does not support data interleaving, the burst length is defined as 1.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. B1-121
ID122117 Non-Confidential

B1 AMBA AXI4-Lite
B1.2 Interoperability
B1.2 Interoperability
This section describes the interoperability of AXI and AXI4-Lite masters and slaves. Table B1-2 shows the possible
combinations of interface, and indicates that the only case requiring special consideration is an AXI master
connecting to an AXI4-Lite slave.

B1.2.1 Bridge requirements of AXI4-Lite slaves

As Table B1-2 shows, the only interoperability case that requires special consideration is the connection of an
AXI4-Lite slave interface to a full AXI master interface.

This connection requires AXI ID reflection. The AXI4-Lite slave must return the AXI ID associated with the
address of a transaction with the read data or write response for that transaction. This is required because the master
requires the returning ID to correctly identify the transaction response.

If an implementation cannot ensure that the AXI master interface only generates transactions in the AXI4-Lite
subset, then some form of adaptation is required. See Conversion, protection, and detection on page B1-125.

B1.2.2 Direct connection requirements of AXI4-Lite slaves

An AXI4-Lite slave can be designed to include ID reflection logic. This means that the slave can be used directly
on a full AXI connection, without a bridge function, in a system that guarantees that the slave is accessed only by
transactions that comply with the AXI4-Lite subset.

Note
 This specification recommends that the ID reflection logic uses AWID, instead of WID, to ensure compatibility
with both AXI3 and AXI4.

Table B1-2 Full AXI and AXI4-Lite interoperability

Master Slave Interoperability

AXI AXI Fully operational.

AXI AXI4-Lite AXI ID reflection is required. Conversion might be required.

AXI4-Lite AXI Fully operational.

AXI4-Lite AXI4-Lite Fully operational.
B1-122 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

B1 AMBA AXI4-Lite
B1.3 Defined conversion mechanism
B1.3 Defined conversion mechanism
This section defines the requirements to convert any legal AXI transaction for use on an AXI4-Lite component.
Conversion, protection, and detection on page B1-125 discusses the advantages and disadvantages of the various
approaches that can be used.

B1.3.1 Conversion rules

Conversion requires that the AXI data width is equal to or greater than the AXI4-Lite data width. If not then the
AXI data width must first be converted to the AXI4-Lite data width.

Note
 AXI4-Lite does not support EXOKAY responses, so the conversion rules do not consider this response.

The rules for conversion from a full AXI interface are as follows:

• If a transaction has a burst length greater than 1, then the burst is broken into multiple transactions of burst
length 1. The number of transactions that are created depends on the burst length of the original transaction.

• When generating the address for subsequent beats of a burst, the conversion of bursts with a length greater
than 1 must take into consideration the burst type. An unaligned start address must be incremented and
aligned for subsequent beats of an INCR or WRAP burst. For a FIXED burst the same address is used for all
beats.

• Where a write burst with length greater than 1 is converted into multiple write transactions, the component
responsible for the conversion must combine the responses for all of the generated transactions, to produce a
single response for the original burst. Any error response is sticky. That is, an error response received for any
of the generated transactions is retained, and the single combined response indicates an error. If both a
SLVERR and a DECERR are received then the first response received is the one that is used for the combined
response.

• A transaction that is wider than the destination AXI4-Lite interface is broken into multiple transactions of the
same width as the AXI4-Lite interface. For transactions with an unaligned start address, the breaking up of
the burst occurs on boundaries that are aligned to the width of the AXI4-Lite interface.

• Where a wide transaction is converted to multiple narrower transactions, the component responsible for the
conversion must combine the responses to all of the narrower transactions, to produce a single response for
the original transaction. Any error response is sticky. If both a SLVERR and a DECERR are received then
the first response received is used for the combined response.

• Transactions that are narrower than the AXI4-Lite interface are passed directly and are not converted.

• Write strobes are passed directly, unmodified.

• Write transactions with no strobes are passed directly.

Note
 The AXI4-Lite protocol does not require these transactions to be suppressed.

• The AxLOCK signals are discarded for all transactions. For a sequence of locked transactions any lock
guarantee is lost. However, the locked nature of the transaction is lost only at any downstream arbitration.
For an exclusive sequence, the AXI signaling requirements mean that any exclusive write access must fail.

• The AxCACHE signals are discarded. All transactions are treated as Non-modifiable and Non-bufferable.

Note
 This is acceptable because AXI permits Modifiable accesses to be treated as Non-modifiable, and Bufferable

accesses to be treated as Non-bufferable.

• The AxPROT signals are passed directly, unmodified.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. B1-123
ID122117 Non-Confidential

B1 AMBA AXI4-Lite
B1.3 Defined conversion mechanism
• The WLAST signal is discarded.

• The RLAST signal is not required, and is considered asserted for every transfer on the read data channel.
B1-124 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

B1 AMBA AXI4-Lite
B1.4 Conversion, protection, and detection
B1.4 Conversion, protection, and detection
Connection of an AXI4-Lite slave to an AXI4 master requires some form of adaptation if it cannot be ensured that
the master only issues transactions that meet the AXI4-Lite requirements.

This section describes techniques that can be adopted in a system design to aid with the interoperability of
components and the debugging of system design problems. These techniques are:

Conversion This requires the conversion of all transactions to a format that is compatible with the AXI4-Lite
requirements.

Protection This requires the detection of any non-compliant transaction. The non-compliant transaction is
discarded, and an error response is returned to the master that generated the transaction.

Detection This requires observing any transaction that falls outside the AXI4-Lite requirements and:
• Notifying the controlling software of the unexpected access.
• Permitting the access to proceed at the hardware interface level.

B1.4.1 Conversion and protection levels

Different levels of conversion and protection can be implemented:

Full conversion

This converts all AXI transactions, as described in Defined conversion mechanism on page B1-123.

Simple conversion with protection

This propagates transactions that only require a simple conversion, but suppresses and error reports
transactions that require a more complex task.

Examples of transactions that are propagated are the discarding of one or more of AxLOCK and
AxCACHE.

Examples of transactions that are discarded and generate an error report are burst length or data
width conversions.

Full protection

Suppress and generate an error for every transaction that does not comply with the AXI4-Lite
requirements.

B1.4.2 Implementation considerations

A protection mechanism that discards transactions must provide a protocol-compliant error response to prevent
deadlock. For example, in the full AXI protocol, read burst transactions require an error for each beat of the burst
and a correctly asserted RLAST signal.

Using a combination of detection and conversion permits hardware implementations that:
• Do not prevent unexpected accesses from occurring.
• Provide a mechanism for notifying the controlling software of the unexpected access, so speeding up the

debug process.

In complex designs, the advantage of combining conversion and detection is that unforeseen future usage can be
supported. For example, at design time it might be considered that only the processor programs the control register
of a peripheral, but in practice, the peripheral might need to be programmed by other devices, for example a DSP
or a DMA controller, that cannot generate exactly the required AXI4-Lite access.

The advantages and disadvantages of the different approaches are:
• Protection requires a lower gate count.
• Conversion ensures the interface can operate with unforeseen accesses.
• Conversion increases the portability of software from one system to another.
• Conversion might provide more efficient use of the AXI infrastructure. For example, a burst of writes to a

FIFO can be issued as a single burst, rather than needing to be issued as a set of single transactions.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. B1-125
ID122117 Non-Confidential

B1 AMBA AXI4-Lite
B1.4 Conversion, protection, and detection
• Conversion might provide more efficient use of narrow links, where the address and data payload signals are
shared.

• Conversion might provide more flexibility in components that can be placed on AXI4-Lite interfaces. By
converting bursts and permitting sparse strobes, memory can be placed on AXI4-Lite, with no burst
conversion required in the memory device. This is, essentially, a sharing of the burst conversion logic.
B1-126 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Part C
AMBA AXI5 and AXI5-Lite Protocol Specification

Chapter C1
AMBA AXI5

This chapter specifies the new capabilities in the AXI5 protocol specification. It contains the following sections:
• About the AXI5 protocol on page C1-130.
• Signal Descriptions on page C1-131.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. C1-129
ID122117 Non-Confidential

C1 AMBA AXI5
C1.1 About the AXI5 protocol
C1.1 About the AXI5 protocol
Issue F of the AMBA AXI and ACE protocol specification introduces AXI5.

AXI5 extends the capabilities of the AXI4 protocol that is specified in Part A AMBA AXI3 and AXI4 Protocol
Specification.

The new capabilities are:
• Atomic transactions.
• Data Check.
• Poison.
• QoS Accept.
• Trace signals.
• User Loopback.
• Wakeup signals.
• Untranslated transactions.
• Non-Secure Access Identifiers.

To maintain compatibility, a property is used to declare each new capability:
TRUE The interface has that capability and associated signals are present.
FALSE The interface does not have that capability and associated signals are not present. If a property is not

declared, it is considered FALSE.

Table C1-1 summarizes the new properties and the default value that applies for a component that does not have a
declared value.

Table C1-1 Properties that specify system capability

Property Description

Atomic_Transactions Adds Atomic transactions that perform more than just a single access, and have some form
of operation that is associated with them. See Atomic transactions on page E2-336.

Check_Type Adds data checking signaling that is used to detect, and potentially correct, data bytes that
might have been corrupted. See Data checking and Poison on page E2-352.

Poison Adds Poison signaling that is used to indicate that a set of data bytes have been previously
corrupted. See Data checking and Poison on page E2-352.

QoS_Accept Adds two additional QoS interface signals that enable a slave to indicate the QoS value of
transactions that it will accept. See QoS Accept signaling on page E2-358.

Trace_Signals Adds a Trace signal, which is associated with each channel, to support the debugging,
tracing, and performance measurement of systems. See Trace signals on page E2-355.

Loopback_Signals Adds loopback signaling that permits an agent that is issuing transactions to store
information relating to the transaction in an indexed table. See User Loopback signaling on
page E2-357.

Wakeup_Signals Adds wakeup signaling that is used to indicate that there is activity that is associated with the
interface. See Wake-up Signaling on page E2-360.

Untranslated_Transactions Adds untranslated transaction support and permits different transactions on the same
interface to use different translation schemes. See Untranslated transactions on
page E2-370.

NSAccess_Identifiers Adds Non-secure access identifiers that support the storage and processing of protected data.
See Non-secure access identifiers on page E2-374.
C1-130 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

C1 AMBA AXI5
C1.2 Signal Descriptions
C1.2 Signal Descriptions
This section introduces the additional AXI5 interface signals that support the new capabilities. It contains the
following subsections:
• Additions to existing AXI channels.
• Additional signaling on page C1-135.

See Chapter A8 AMBA 4 Additional Signaling for details of the AXI4 interface signals.

C1.2.1 Additions to existing AXI channels

Depending on the interface properties, signals might be added on the following AXI channels:
• Write address channel signals.
• Write data channel signals on page C1-132.
• Write response channel signals on page C1-133.
• Read address channel signals.
• Read data channel signals on page C1-134.

Write address channel signals

Table C1-2 shows the additional write address channel signals.

Table C1-2 Write address channel signals

Signal Source Property Description

AWATOP Master Atomic_Transactions Indicates the type of atomic operation to be performed, and the
endianness for arithmetic operations.
Supported in AXI5 when the Atomic_Transactions property is
TRUE. See Atomic transactions on page E2-336.

AWTRACE Master Trace_Signals Supports the tracing of specific write transactions through the
system.
Supported in AXI5 when the Trace_Signals property is TRUE. See
Trace signals on page E2-355.

AWLOOP Master Loopback_Signals Loopback signaling associated with the write address group of
signals. Reflected back on BLOOP.
Supported in AXI5 when the Loopback_Signals property is TRUE.
See User Loopback signaling on page E2-357.

AWMMUSECSID Master Untranslated_Transactions Indicates that the MMU stream in an untranslated transaction is
Secure or Non-secure.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

AWMMUSID Master Untranslated_Transactions Uniquely identifies the main stream in the untranslated transaction
with the MMU.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

AWMMUSSIDV Master Untranslated_Transactions Indicates that the transaction has an optional substream identifier.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. C1-131
ID122117 Non-Confidential

C1 AMBA AXI5
C1.2 Signal Descriptions
Write data channel signals

Table C1-3 shows the additional write data channel signals.

AWMMUSSID Master Untranslated_Transactions Uniquely identifies a Substream in the untranslated transaction with
the MMU. This signal is only valid if AWMMUSSIDV is asserted.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

AWMMUATST Master Untranslated_Transactions Additional signal for an interface where it is possible for a transaction
to have already undergone PCIe ATS translation.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

AWNSAID Master NSAccess_Identifiers Enables write access to be controlled to particular memory locations.
Supported in AXI5 when the NSAccess_Identifiers property is
TRUE. See Non-secure access identifiers on page E2-374.

Table C1-2 Write address channel signals (continued)

Signal Source Property Description

Table C1-3 Write data channel signals

Signal Source Property Description

WDATACHK Master Check_Type Can be used to detect, and potentially correct, data bytes that might have been
corrupted.
Supported in AXI5 when the Check_Type property is TRUE. See Data checking and
Poison on page E2-352.

WPOISON Master Poison Indicates that a set of data bytes have been previously corrupted.
Supported in AXI5 when the Poison property is TRUE. See Data checking and Poison
on page E2-352.

WTRACE Master Trace_signals Supports the tracing of specific write transactions through the system.
Supported in AXI5 when the Trace_Signals property is TRUE. See Trace signals on
page E2-355.
C1-132 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

C1 AMBA AXI5
C1.2 Signal Descriptions
Write response channel signals

Table C1-4 shows the additional write response channel signals.

Read address channel signals

Table C1-5 shows the additional read address channel signals.

Table C1-4 Write response channel signals

Signal Source Property Description

BTRACE Interconnect Trace_signals Supports the tracing of specific write transactions through the system.
Supported in AXI5 when the Trace_Signals property is TRUE. See Trace signals
on page E2-355.

BLOOP Interconnect Loopback_Signals Returns the value that is provided on AWLOOP.
Supported in AXI5 when the Loopback_Signals property is TRUE. See User
Loopback signaling on page E2-357.

Table C1-5 Read address channel signals

Signal Source Property Description

ARTRACE Master Trace_Signals Supports the tracing of specific read transactions through the system.
Supported in AXI5 when the Trace_Signals property is TRUE. See
Trace signals on page E2-355.

ARLOOP Master Loopback_Signals Loopback signaling associated with the read address group of signals.
Reflected back on RLOOP.
Supported in AXI5 when the Loopback_Signals property is TRUE.
See User Loopback signaling on page E2-357.

ARMMUSECSID Master Untranslated_Transactions Indicates that the MMU stream in an untranslated transaction is
Secure or Non-secure.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

ARMMUSID Master Untranslated_Transactions Uniquely identifies the main stream in the untranslated transaction
with the MMU.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

ARMMUSSIDV Master Untranslated_Transactions Indicates that the transaction has an optional substream identifier.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. C1-133
ID122117 Non-Confidential

C1 AMBA AXI5
C1.2 Signal Descriptions
Read data channel signals

Table C1-6 shows the additional read data channel signals.

ARMMUSSID Master Untranslated_Transactions Uniquely identifies the Sub-stream in the untranslated transaction
with the MMU. This signal is only valid if the substream validity
signal ARMMUSSIDV is asserted.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

ARMMUATST Master Untranslated_Transactions Additional signal for an interface where it is possible for a transaction
to have already undergone PCIe ATS translation.
Supported in AXI5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

ARNSAID Master NSAccess_Identifiers Enables read access to be controlled to particular memory locations.
Supported in AXI5 when the NSAccess_Identifiers property is
TRUE. See Non-secure access identifiers on page E2-374.

Table C1-5 Read address channel signals (continued)

Signal Source Property Description

Table C1-6 Read data channel signals

Signal Source Property Description

RDATACHK Interconnect Check_Type Can be used to detect, and potentially correct, data bytes that might have been
corrupted.
Supported in AXI5 when the Check_Type property is TRUE. See Data
checking and Poison on page E2-352.

RPOISON Interconnect Poison Indicates that a set of data bytes have been previously corrupted.
Supported in AXI5 when the Poison property is TRUE. See Data checking and
Poison on page E2-352.

RTRACE Interconnect Trace_Signals Supports the tracing of specific read transactions through the system.
Supported in AXI5 when the Trace_Signals property is TRUE. See Trace
signals on page E2-355.

RLOOP Interconnect Loopback_Signals Returns the value that is provided on ARLOOP.
Supported in AXI5 when the Loopback_Signals property is TRUE. See User
Loopback signaling on page E2-357.
C1-134 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

C1 AMBA AXI5
C1.2 Signal Descriptions
C1.2.2 Additional signaling

The following ancillary signaling is optional on the AXI5 interface to support the new capabilities.

QoS accept

Table C1-7 shows the additional QoS accept signaling.

Low-power signals

Table C1-8 shows the additional wakeup low-power signaling.

Table C1-7 QoS accept signals

Signal Source Property Description

VAWQOSACCEPT Slave QoS_Accept Indicates the QoS value at which the slave will accept write transactions.
Supported in AXI5 when the QoS_Accept property is TRUE. See QoS Accept
signaling on page E2-358.
.

VARQOSACCEPT Slave QoS_Accept Indicates the QoS value at which the slave will accept read transactions.
Supported in AXI5 when the QoS_Accept property is TRUE. See QoS Accept
signaling on page E2-358.
.

Table C1-8 Wakeup low-power signals

Signal Source Property Description

AWAKEUP Master Wakeup_Signals Indicates that the master is initiating activity on this interface.
Supported in AXI5 when the Wakeup_Signals property is TRUE. See Wake-up
Signaling on page E2-360.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. C1-135
ID122117 Non-Confidential

C1 AMBA AXI5
C1.2 Signal Descriptions
C1-136 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter C2
AMBA AXI5-Lite

This chapter specifies the new capabilities in the AXI5-Lite protocol specification. It contains the following
sections:
• Definition of AXI5-Lite on page C2-138.
• AXI5-Lite compared with other interfaces on page C2-139.
• Interoperability on page C2-140.
• Conversion from AXI5 to AXI5-Lite on page C2-141.
• Upgrading an AXI4-Lite slave to AXI5-Lite on page C2-143.
• AXI5-Lite signal list on page C2-144.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. C2-137
ID122117 Non-Confidential

C2 AMBA AXI5-Lite
C2.1 Definition of AXI5-Lite
C2.1 Definition of AXI5-Lite
AXI5-Lite is a subset of AXI5, where all transactions are completed in a single beat. It is intended for
communication with register-based components and simple memories when bursts of data transfer are not
advantageous.

AXI5-Lite extends the definition of AXI4-Lite, adding more flexibility on bus width and ordering. These features
enable the interface to be used for peripherals that are closely coupled to high-performance processors when it is
important to minimize response latency. For example, an AXI5-Lite master can issue multiple requests to
peripherals with different response latencies, without the slower peripherals affecting the latency of faster ones.

Figure C2-1 shows an example where AXI5-Lite might be used

Figure C2-1 Example of memory system that uses AXI5-Lite

The key functionality of AXI5-Lite operation is:
• All transactions have burst length 1.
• Reordering of responses is permitted when requests have different IDs.
• All accesses are considered Device Non-bufferable.
• Exclusive accesses are not supported.

Private

Memory

System

64

646432

128

Processor

ACE5 AXI5-Lite

AXI5-Lite

Peripheral

AXI5-Lite

SRAM

AXI5-Lite

Peripheral

Simple InterconnectShared

Memory

System

Async
C2-138 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

C2 AMBA AXI5-Lite
C2.2 AXI5-Lite compared with other interfaces
C2.2 AXI5-Lite compared with other interfaces
If a component does not benefit from burst access, AXI5-Lite is a better choice of interface than AXI5. Compared
with AXI5, an AXI5-Lite interface is simpler to implement and verify.

Compared with AXI4-Lite, AXI5-Lite permits any data width and responses can be reordered. Flexibility in data
width enables an AXI5-Lite slave to be easily connected to the main memory system interconnect. If data width
conversion is required, performing it in the AXI5-Lite domain, is less complex than in AXI. Response reordering
is optional, but can improve performance when communicating with slaves with differing response latencies.

Table C2-1 shows the summary of differences.

Table C2-1 AXI5-Lite interface comparison

AXI5 AXI5-Lite AXI4-Lite

Number of interface wires (32-bit address and data) 224 175 160

Data width (bits) Up to 1024 Up to 1024 32 or 64

Transaction length Up to 256 1 1

Transaction size Up to bus width Up to bus width Full bus width

Address buses Read and write Read and write Read and write

Memory types Any Device
Non-bufferable

Device
Non-bufferable

Write strobes Mandatory Mandatory Optional

Response Ordering In-order or
out-of-order

In-order or
out-of-order

In-order

IDs Mandatory Mandatory Optional

Exclusive accesses Supported No No

Check_Type Optional Optional No

Poison Optional Optional No

Trace_Signals Optional Optional No

Wakeup_Signals Optional Optional No
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. C2-139
ID122117 Non-Confidential

C2 AMBA AXI5-Lite
C2.3 Interoperability
C2.3 Interoperability
This section describes the interoperability of AXI5-Lite with AXI5 and AXI4-Lite components.

Table C2-2 shows combinations of interface, and indicates that special consideration must be given when an AXI5
master is connected to an AXI5-Lite slave and an AXI5-Lite master is connected to an AXI4-Lite slave.

Table C2-2 Interoperability of AXI5-Lite with AXI5 and AXI4-Lite

Master Slave Interoperability

AXI5 AXI5-Lite Can connect directly if master uses
AXI5-Lite subset of transactions. Otherwise
needs conversion, protection, or detection.
See Conversion, protection, and detection
on page B1-125

AXI5-Lite AXI5 Fully operational.

AXI4-Lite AXI5-Lite Fully operational.

AXI5-Lite AXI4-Lite AXI ID reflection is required on slave. Can
connect directly if master uses bus-width
transactions. Otherwise needs conversion,
protection, or detection. See Conversion,
protection, and detection on page B1-125
C2-140 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

C2 AMBA AXI5-Lite
C2.4 Conversion from AXI5 to AXI5-Lite
C2.4 Conversion from AXI5 to AXI5-Lite
If an AXI5 master uses transactions which are not within the AXI5-Lite subset, a bridge can be used to convert the
AXI5 transactions into those suitable for an AXI5-Lite slave.

The rules for conversion are as follows:

• If a transaction has a burst length greater than 1, then the burst is broken into multiple transactions of burst
length 1. The number of transactions that are created depends on the burst length of the original transaction.

• When generating the address for subsequent beats of a burst, the conversion of bursts with a length greater
than 1 must consider the burst type. An unaligned start address must be incremented and aligned for
subsequent beats of an INCR or WRAP burst. For a FIXED burst, the same address is used for all beats.

• Where a write burst with length greater than 1 is converted into multiple write transactions, the component
responsible for the conversion must combine the responses for all the generated transactions to produce a
single response for the original burst. Any error response is sticky. That is, an error response that is received
for any of the generated transactions is retained, and the single combined response indicates an error. If both
a SLVERR and a DECERR are received, then the first response that is received is the one that is used for the
combined response.

• A transaction that is wider than the destination AXI5-Lite interface is broken into multiple transactions of the
same width as the AXI5-Lite interface. For transactions with an unaligned start address, the breaking up of
the burst occurs on boundaries that are aligned to the width of the AXI5-Lite interface.

• Where a wide transaction is converted to multiple narrower transactions, the component responsible for the
conversion must combine the responses to all the narrower transactions, to produce a single response for the
original transaction. Any error response is sticky. If both an SLVERR and a DECERR are received then the
first response received is used for the combined response.

• Transactions that are narrower than the AXI5-Lite interface are passed directly and are not converted.

• Transaction IDs are passed directly, unmodified.

• Write strobes are passed directly, unmodified.

• For an exclusive sequence, the AXI signaling requirements mean that any exclusive write access must fail.

• The AxCACHE signals are discarded. All transactions are treated as Non-modifiable and Non-bufferable.

• The AxPROT signals are passed directly, unmodified.

• The WLAST signal is discarded.

• The RLAST signal is not required, and is considered asserted for every transfer on the read data channel.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. C2-141
ID122117 Non-Confidential

C2 AMBA AXI5-Lite
C2.5 Upgrading an AXI4-Lite master to AXI5-Lite
C2.5 Upgrading an AXI4-Lite master to AXI5-Lite
An AXI4-Lite master can be upgraded to AXI5-Lite by doing the following:

• If not already present, add ID signals. If the master supports only in-order responses, then use a single-bit ID
and tie off ARID and AWID to 0b0.

• Add AWSIZE and ARSIZE outputs. An AXI4-Lite master only generates transactions which are full bus
width, so these signals can be tied off to 0b010 for a 32-bit bus or 0b011 for a 64-bit bus.
C2-142 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

C2 AMBA AXI5-Lite
C2.6 Upgrading an AXI4-Lite slave to AXI5-Lite
C2.6 Upgrading an AXI4-Lite slave to AXI5-Lite
An AXI4-Lite slave can be upgraded to AXI5-Lite by doing the following:

• If not already present, add ID signals. The slave must mirror ARID onto RID and AWID onto BID.
Responses can continue to be provided in-order, or out-of-order capability can be added.

• Add the AWSIZE input. It can be decided whether to use this, or use WSTRB to determine which bytes to
write.

• Modify the slave to fully support WSTRB, if it does not already. The slave must only write those bytes
indicated by the relevant WSTRB bits. A write with no strobes asserted must be supported.

• Add the ARSIZE input. The slave can choose to use this input to drive only the active bytes in the transfer,
or it can continue to drive the full bus width of read data.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. C2-143
ID122117 Non-Confidential

C2 AMBA AXI5-Lite
C2.7 AXI5-Lite signal list
C2.7 AXI5-Lite signal list

Table C2-3 lists the signals available on each channel with AXI-Lite.

Table C2-3 AXI5-Lite signals

Global
Write
address
channel

Write data
channel

Write
response
channel

Read
address
channel

Read data
channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

AWAKEUPa

a. These signals are optional. See Table F2-1 on page F2-418.

AWADDR WDATA - ARADDR RDATA

AWPROTab WSTRB BRESP ARPROTab

b. AxPROT is defined as 3 bits wide, but only AxPROT[1] (secure) is used by the interface.

RRESP

- AWID - BID ARID RID

- AWSIZE - - ARSIZE -

- AWUSERa WUSERa BUSERa ARUSERa RUSERa

- AWTRACEa WTRACEa BTRACEa ARTRACEa RTRACEa

- - WDATACHKa - - RDATACHKa

- - WPOISONa - - RPOISONa
C2-144 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Part D
AMBA ACE and ACE-Lite Protocol Specification

Chapter D1
About ACE

This chapter gives an overview of system level coherency and the ACE protocol that supports it. It contains the
following sections:
• Coherency overview on page D1-148.
• Protocol overview on page D1-150.
• Channel overview on page D1-153.
• Transaction overview on page D1-158.
• Transaction processing on page D1-162.
• Concepts required for the ACE specification on page D1-163.
• Protocol errors on page D1-166.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-147
ID122117 Non-Confidential

D1 About ACE
D1.1 Coherency overview
D1.1 Coherency overview
System level coherency enables the sharing of memory by system components without the software requirement to
perform software cache maintenance to maintain coherency between caches.

Regions of memory are coherent if writes to the same memory location by two components are observable in the
same order by all components.

The ACE protocol enables:
• Correctness to be maintained when sharing data across caches.
• Components with different characteristics to interact.
• The maximum reuse of cached data.
• A choice between high performance and low power.

The ACE protocol provides a framework for system level coherency. The system designer can determine:
• The ranges of memory that are coherent.
• The memory system components that implement the coherency extensions.
• The software models that are used to communicate between system components.

D1.1.1 ACE revisions

Issue D of the ACE Protocol Specification first described the AXI Coherency Extensions.

Issue E of the specification adds clarifications, recommendations, and new capabilities to the ACE Protocol
Specification described in Issue D. To maintain compatibility, a property is used to declare a new capability.
Table D1-1 summarizes the properties and the default values that apply for a component that does not have a
declared value.

Issue F of the ACE Protocol Specification describes extensions to the ACE protocol. The protocol now has four
variants:
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.
• ACE5-LiteACP.

References to the Low-Power Interface have been removed, this content has been superseded by the AMBA Low
Power Interface Specification (ARM IHI 0068). New appendixes have been added to summarize transaction names
and signal lists.

Table D1-1 Properties that declare system capability

Property Description Default

Continuous_Cache_Line_Read_Data Indicates that a master requires continuous read data return for a cache line access.
See Continuous read data return on page D6-248.

FALSE

WriteEvict_Transaction Indicates that a component supports the WriteEvict transaction. See WriteEvict on
page D4-223.

FALSE

DVM_v8 Support for Arm v8 DVM messages. See DVM message support for ARMv7 and
ARMv8 on page D13-309.

FALSE
D1-148 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.1 Coherency overview
D1.1.2 Usage cases

The ACE protocol enables system architects to select the most appropriate technique for sharing data between
system components. The protocol does not define specific usage cases, but typical usage cases are:
• The coherent connection of system components.
• The coherent connection of subsystems that have non-uniform memory resources.
• The coherent connection of components that have a highly optimized local coherency system.
• The filtering of coherency communications.
• The coherent connection of components that support different coherency protocols, such as MESI, ESI, MEI,

and MOESI.
• Wrapping of components that do not support coherency natively, enabling them to be used effectively within

a coherent system level design.
• Support for cached components that might include multiple levels of cache, and non-cached components.
• Support for components that store coherency information at different granularities, including cache line

granularity and large buffer granularity.
• Implementations that facilitate optimization of:

— The primary interconnect within a system.
— Multiple subsystems.

D1.1.3 ACE terminology

Terminology on page A1-29 introduces terminology that is used throughout the AXI and ACE specifications, and
indicates that:
• This specification does not define standard cache terminology, as defined in any reference work on caching.
• The Glossary defines terms that are used in the specifications.

ACE introduces additional terms, particularly relating to caching, and to memory operations performed by system
masters. The following subsections summarize those terms. Where appropriate, terms that are listed in this section
link to the corresponding glossary definition.

AXI components and topology

The following terms describe components in an AXI4 system. Some terms apply, more specifically, to caches on
those components:
• Caching master, Initiating master, and Snooped master.
• Downstream cache, Local cache, Peer cache, and Snooped cache.
• Main memory and Snoop filter.

Cache state terminology

Cache state model on page D1-151 defines the possible states of a cache entry.

Actions and permissions

The following terms relate to actions that can be performed by a Master component, and the permissions to perform
such actions:
• Load, Speculative read, and Store.
• Permission to store and Permission to update main memory.

Temporal descriptions

The AXI specification defines In a timely manner. The ACE specification requires the additional concept of At
approximately the same time.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-149
ID122117 Non-Confidential

D1 About ACE
D1.2 Protocol overview
D1.2 Protocol overview
This section introduces the ACE protocol.

D1.2.1 About the ACE protocol

The ACE protocol extends the AXI4 protocol and provides support for hardware-coherent caches. The ACE
protocol is realized using:

• A five state cache model to define the state of any cache line in the coherent system. The cache line state
determines what actions are required during access to that cache line.

• Additional signaling on the existing AXI4 channels that enable new transactions and information to be
conveyed to locations that require hardware coherency support.

• Additional channels that enable communication with a cached master when another master is accessing an
address location that might be shared.

The ACE protocol also provides:
• Barrier transactions that guarantee transaction ordering within a system, see Barriers on page D1-164.

Barrier transactions are not supported in ACE5 and ACE5-Lite variant interfaces.
• Distributed Virtual Memory (DVM) functionality to manage virtual memory, see Distributed Virtual Memory

on page D1-165.

D1.2.2 Coherency model

Figure D1-1 shows an example coherent system that includes three master components, each with a local cache. The
ACE protocol permits cached copies of the same memory location to reside in the local cache of one or more master
components.

Figure D1-1 Example coherent system

The ACE coherency protocol ensures that all masters observe the correct data value at any given address location
by enforcing that only one copy exists whenever a store occurs to the location. After each store to a location, other
masters can obtain a new copy of the data for their own local cache, allowing multiple copies to exist.

A cache line is defined as a cached copy of a number of sequentially byte addressed memory locations, with the first
address aligned to the total size of the cache line.

There is no requirement to keep main memory up to date at all times. Main memory is only required to be updated
before a copy of the memory location is no longer held in any cache.

Note
 Although not a requirement, it is acceptable to update main memory while cached copies still exist.

Main

memory

Coherent interconnect

Cache

Master 1

Cache

Master 2

Cache

Master 3
D1-150 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.2 Protocol overview
The ACE protocol enables master components to determine if a cache line is the only copy of a particular memory
location, or if there might be other copies of the same location, so that:

• If a cache line is the only copy, a master component can change the value of the cache line without notifying
any other master components in the system.

• If a cache line might also be present in another cache, a master component must notify the other caches, using
an appropriate transaction.

D1.2.3 Cache state model

To determine whether an action is required when a component accesses a cache line, the ACE protocol defines cache
states. Each cache state is based on a cache line characteristic.

The cache line characteristics are:

Valid, Invalid When valid, the cache line is present in the cache. When invalid, the cache line is not present
in the cache.

Unique, Shared When unique, the cache line exists only in one cache. When shared, the cache line might
exist in more than one cache, but this is not guaranteed.

Clean, Dirty When clean, the cache does not have responsibility for updating main memory. When dirty,
the cache line has been modified with respect to main memory, and this cache must ensure
that main memory is eventually updated.

Figure D1-2 shows the ACE five state cache model and Table D1-2 on page D1-152 provides more information
about each state.

Figure D1-2 ACE cache state model

UD

UniqueDirty

SD

SharedDirty

UC

UniqueClean

SC

SharedClean

I

Invalid

Unique Shared

Dirty

Clean

InvalidValid
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-151
ID122117 Non-Confidential

D1 About ACE
D1.2 Protocol overview
Cache state rules

The rules that apply to the cache states are:

• A line in a Unique state must only be in one cache.

• A line that is in more than one cache must be in a Shared state in every cache it is in.

• When a cache obtains a new copy of a line, other caches that also have a copy of the line. This copy might
have the line in a Unique state and must be notified to hold the line in a Shared state.

• When a cache discards a copy of a line, there is no requirement to inform other caches that also have a copy
of the line. This requirement means that a line in a Shared state might be held in only one cache.

• A line that has been updated, relative to main memory, must be in a Dirty state in one cache.

• A line that has been updated relative to main memory and is in more than one cache, must be in a Dirty state
in only one cache.

Table D1-2 ACE cache states

State Abbreviation Description

Invalid I The cache line does not exist in this cache.

UniqueClean UC The following rules apply to a cache line that is in the UniqueClean state:
• The cache line is held only in this cache and it has not been modified

with respect to main memory.
• A component can perform a store to the cache line without notifying

other caches.

UniqueDirty UD The following rules apply to a cache line that is in the UniqueDirty state:
• The cache line is held only in this cache.
• The cache line has been modified with respect to main memory and this

cache must ensure that the changes are subsequently notified to main
memory.

• A component can perform subsequent stores to the cache line without
notifying other caches.

SharedClean SC The following rules apply to a cache line that is in the SharedClean state:
• The cache line might be shared with another cache.
• It is not known if the cache line is modified with respect to main

memory, but this component is not responsible for updating main
memory.

• A component must notify other caches before performing a store to the
cache line.

SharedDirty SD The following rules apply to a cache line that is in the SharedDirty state:
• The cache line might be shared with another cache.
• The cache line has been modified with respect to main memory and this

cache must ensure that the changes are subsequently notified to main
memory.

• A component must notify other caches before performing a store to the
cache line.
D1-152 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.3 Channel overview
D1.3 Channel overview
This section introduces the signals that the ACE protocol provides, and where appropriate, describes their
relationship to the existing AXI4 channels. The ACE protocol defines:
• Signaling on existing AXI4 channels, see Changes to existing AXI4 channels.
• Signaling on ACE-specific channels, see Additional channels defined by ACE.
• Acknowledge signaling, see Acknowledge signaling on page D1-154.

Channel usage examples on page D1-155 gives examples of the use of the ACE signaling.

D1.3.1 Changes to existing AXI4 channels

Table D1-3 shows the ACE signals provided on existing AXI4 channels.

Note
 There are no additional signals on the write data or write response channels.

D1.3.2 Additional channels defined by ACE

Three new channels are supported, these are:
• Snoop address channel.
• Snoop data channel.
• Snoop response channel.

The snoop address (AC) channel is an input to a cached master that provides the address and associated control
information for snoop transactions.

The snoop response (CR) channel is an output channel from a cached master that provides a response to a snoop
transaction. Every snoop transaction has a single response that is associated with it. The snoop response indicates
that an associated data transfer on the CD channel is expected.

The snoop data (CD) channel is an optional output channel that passes snoop data out from a master. Typically, this
output occurs for a read or clean snoop transaction when the master being snooped has a copy of the data available
to return.

Table D1-3 ACE signals provided on existing AXI4 channels

AXI4 channel Signal Source Description

Read address ARDOMAIN[1:0] Master See Read address channel (AR) signals on page D2-168.

ARSNOOP[3:0] Master

ARBAR[1:0] Master

Write address AWDOMAIN[1:0] Master See Write address channel (AW) signals on
page D2-168.

AWSNOOP[2:0] Master

AWBAR[1:0] Master

AWUNIQUEa Master

Read data RRESP[3:2] Interconnect See Read data channel (R) signals on page D2-169.

a. The AWUNIQUE signal is only required by a component that supports the WriteEvict transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-153
ID122117 Non-Confidential

D1 About ACE
D1.3 Channel overview
Table D1-4 shows the signals provided on the ACE-specific channels.

D1.3.3 Acknowledge signaling

ACE supports two additional acknowledge signals. These signals indicate that a master has completed a read or
write transaction.

Table D1-5 shows the acknowledge signals.

Table D1-4 ACE signals provided on ACE-specific channels

ACE-specific
channel Signal Source Description

Snoop address ACVALID Interconnect See Snoop address channel (AC) signals on page D2-170.

ACREADY Master

ACADDR[ac-1:0]a Interconnect

ACSNOOP[3:0] Interconnect

ACPROT[2:0] Interconnect

Snoop response CRVALID Master See Snoop response channel (CR) signals on page D2-170.

CRREADY Interconnect

CRRESP[4:0] Master

Snoop data CDVALID Master See Snoop data channel (CD) signals on page D2-171.

CDREADY Interconnect

CDDATA[cd-1:0]b Master

CDLAST Master

a. ac is the width of the snoop address bus.
b. cd is the width of the snoop data bus.

Table D1-5 ACE read and write acknowledge signals

Signal Source Description

RACK Master See Read acknowledge signal on page D2-172

WACK Master See Write acknowledge signal on page D2-172
D1-154 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.3 Channel overview
D1.3.4 Channel usage examples

This section describes different examples of how the ACE channels are used when performing load and store
operations.

Performing load operations from Shareable locations

The following procedure is an example of a master component loading data from a Shareable address location,
where the master component does not already have a copy of this location in its local cache:

1. The master component issues a read transaction on the read address channel.

2. The interconnect determines whether any other cache holds a copy of the location by passing the Shareable
address to other caching master components that can hold a copy on the snoop address channel. In this
context, these are snooped master components.

3. One of the following now occurs:

— Responding on the snoop response channel.

— Providing the data to the interconnect, on the snoop data channel.
The interconnect then provides the data, with an associated response, to the initiating master
component on the read data channel.

• If no snooped master component holds the requested cache line:

— The interconnect initiates a transaction to main memory, effectively passing on the transaction
from the initiating master component.

— The read data is supplied back to the master on the read data channel, as for standard
transactions.

4. The master component indicates that the transaction has completed, using the RACK signal.

Note
 If neither the initiating master or the snooped cache takes responsibility for writing a dirty cache line back to main
memory at a later point in time, the interconnect might have to write data back to main memory at the same time
that it is passed to the initiating master component.

If this occurs, then the interconnect must generate the transaction address and write the dirty data that is returned
from a snooped master component.

See Transactions for performing load operations from Shareable locations on page D1-158 for more information.

Performing store operations to Shareable locations

When a master stores to a cache line, to a Shareable location, it removes all other copies of the cache line. This
ensures that the master component has a unique copy of the cache line when it performs the store. The new value
of the cache line at that location is propagated to other caches when respective caching master components
subsequently read the cache line.

This section describes:
• Store operations for a partial cache line on page D1-156.
• Store operations for an entire cache line on page D1-156.
• Store operations where the cache line is already cached on page D1-157.
• Overlapping store operations on page D1-157.

See Transactions for performing store operations to Shareable locations on page D1-159 and Transactions for
accessing Shareable locations when no cached copy is required on page D1-159 for more information.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-155
ID122117 Non-Confidential

D1 About ACE
D1.3 Channel overview
Store operations for a partial cache line

A master component storing only a partial cache line must obtain a current copy of the cache line before performing
the store. An example sequence is:

1. The initiating master component obtains a pre-store form of the cache line, and requests that other copies are
removed, by issuing a ReadUnique transaction on the read address channel.

2. The interconnect passes the transaction to other caches on the snoop address channel.

3. Where applicable, a snooped master component responds to the transaction using the snoop response channel
to indicate that it has the requested cache line. It also provides the cache line to the interconnect, using the
snoop data channel.

4. The interconnect passes the cache line, together with a response, to the initiating master, using the read data
channel.

Note
 If no copies of the cache line are found during the snoop, a read of main memory is performed. The

interconnect then passes the cache line and a response to the initiating master component, on the read data
channel.

5. The master component performs the store and uses the RACK signal to indicate that the transaction has
completed.

Note
 While the cache line remains unique, loads and stores can be performed with no need for transactions to be broadcast
to other caches.

Store operations for an entire cache line

A master component that is storing an entire cache line does not have to obtain data before storing the cache line.
An example sequence is:

1. The initiating master component requests a unique copy of the cache line by issuing a MakeUnique
transaction on the read address channel. This removes all other copies of the cache line.

2. The interconnect passes the transaction to other caches on the snoop address channel.

3. Snooped master components respond to the transaction using the snoop response channel to indicate that the
cache line has been successfully removed.

4. A response is provided to the initiating master component, using the read data channel.

Note
 Only the response fields are valid. No data transfer occurs.

5. The master component performs the store and uses the RACK signal to indicate that the transaction has
completed.
D1-156 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.3 Channel overview
Store operations where the cache line is already cached

For a master component that already has a shared copy of the cache line, an example store sequence is:

1. The initiating master component requests a unique copy of the cache line by issuing a CleanUnique
transaction on the read address channel. This removes all other copies of the cache line and writes any dirty
copy to main memory.

Note
 This transaction does not return the cache line to the initiating master component.

2. The interconnect passes the transaction to other caches on the snoop address channel. Snooped master
components respond to the transaction using the snoop response channel to indicate:
• That the cache line has been successfully removed.
• Whether a dirty cache line must be written to main memory by the interconnect.

3. If a dirty cache line is being written to main memory, the appropriate snooped master provides the dirty cache
line to the interconnect, using the snoop data channel. The interconnect then constructs the transaction to
write the dirty cache line back to main memory.

4. A response is provided to the initiating master component, using the read data channel.

Note
 Only the response fields are valid. No data transfer occurs.

5. The master component performs the store and uses the RACK signal to indicate that the transaction has
completed.

Overlapping store operations

If two master components attempt simultaneous Shareable store operations to the same cache line, the interconnect
determines the order in which the transactions occur. This section uses the convention:
• Master1 is the component that the interconnect selects to proceed first.
• Master2 is the component that the interconnect selects to proceed second.

Master 1 proceeds with the operation as described in Performing store operations to Shareable locations on
page D1-155.

Master 2 uses its snoop port to observe the Master1 store operation, and the following rules apply:

• If Master2 requires data, it receives the data when its own transaction completes, when it can proceed as
normal with its own store operations.

• If Master2 is performing a full cache line store, it removes any original copy of the data when it observes the
snoop transaction relating to the Master1 store. However, Master2 can then proceed with its own full cache
line store when its own transaction completes.

• If Master2 is performing a partial line store, and originally had a copy of the cache line and therefore does
not request a copy of the data then special consideration is required. In this case, when Master2 observes the
snoop transaction relating to the Master1 store operation, it must remove its original copy of the data. Master
2 can then take one of the following options when its transaction completes:

— For Master2 to retain the cache line in its cache, it must issue a new transaction to request a copy of
the data, enabling it to complete the store operation.

— Master 2 can perform a partial line write to main memory, ensuring the line is updated correctly, but
the master does not retain a copy of the cache line in its cache. To access the cache line at a later point
in time, it must fetch the data again.

See Sequencing transactions on page D6-247 for more information.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-157
ID122117 Non-Confidential

D1 About ACE
D1.4 Transaction overview
D1.4 Transaction overview
This section introduces the different transaction types. It provides information about when the transactions are used
and the required behavior of the various system components. The section describes:
• Non-snooping transactions.
• Coherent transactions.
• Memory update transactions on page D1-159.
• Cache maintenance transactions on page D1-160.
• Snoop transactions on page D1-160.
• Barrier transactions on page D1-161.
• Distributed virtual memory transactions on page D1-161.

D1.4.1 Non-snooping transactions

Non-snooping transactions are used to access memory locations that are not in the caches of other master
components. These transactions do not cause snoop transactions to be performed and are used for the following
transaction types:
• Non-shareable.
• Device.

Two forms of non-snooping transaction are provided, ReadNoSnoop and WriteNoSnoop.

Note
 Within the context of coherency, ReadNoSnoop and WriteNoSnoop transactions are also referred to as Read and
Write transactions. The extended form of the name can be used to differentiate between this transaction type and the
more generic set of all read or write transactions.

D1.4.2 Coherent transactions

In general, coherent transactions are used to access Shareable address locations, which might be held in the coherent
caches of other components.

Transactions for performing load operations from Shareable locations

When a master is required to perform a load operation from a location in a Shareable area of memory, the following
snoop transactions can be used, all of which permit the current holders of the cache line to retain their copy:

ReadClean The ReadClean transaction indicates that the master component requesting the read can only
accept a cache line that is clean, that is, it cannot accept responsibility for a dirty line that it
must subsequently write back to memory. Typically, the ReadClean transaction is used by
master components that do not have the ability to accept a dirty cache line, or have a
Write-Through cache.

ReadNotSharedDirty The ReadNotSharedDirty transaction indicates that the master requesting the read can
accept a line that is in any state except SharedDirty. This means that the line can be passed
as clean (either unique or shared) or the line can be passed as unique and dirty.

ReadShared The ReadShared transaction indicates that the master component requesting the read can
accept a cache line in any state.

For each of these transactions, it is acceptable for a cache that is being snooped to pass a cache line as dirty, even if
it cannot be accepted by the master component that is requesting the cache line. In this situation, the interconnect is
responsible for writing back the dirty line to main memory.

If a cache that receives one of these snoop transactions has a copy of the data, this specification recommends that it
provides the data to complete the snoop transaction. The interconnect must pass the data back to the initiating master
component.
D1-158 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.4 Transaction overview
If the cache that provides the data originally held the line in a Unique state then to retain the copy, it must move the
cache line to a Shared state after the operation.

Transactions for performing store operations to Shareable locations

When a master is required to perform a store to a location in a Shareable area of memory, the following transactions
can be used, all of which ensure that there are no other copies of the location when the store operation occurs:

ReadUnique A master component uses the ReadUnique transaction when performing a partial cache line
store, storing only some of the bytes of the cache line. The partial store occurs in cases
where the master does not already have a copy of the cache line. The ReadUnique
transaction obtains a copy of the data and ensures that no other copies exist.

CleanUnique A master component uses a CleanUnique transaction when performing a partial cache line
store, in cases where it already has a copy of the cache line. The CleanUnique transaction
removes all other copies of the cache line, but if it finds a cache that holds the line in a Dirty
state then the transaction ensures that the dirty cache line is written to main memory.

MakeUnique A master component uses the MakeUnique transaction when performing a full cache line
store. The MakeUnique transaction invalidates all other copies of the cache line.

Transactions for accessing Shareable locations when no cached copy is required

When a master is required to access a Shareable memory location but the issuing master is not going to keep a
cached copy of the address, either because it does not want to allocate that cache line or because it does not have a
cache, the following transactions can be used:

ReadOnce A master component uses the ReadOnce transaction to obtain a snapshot of data that it does not
require to copy to its cache. For the ReadOnce transaction, if the cache that provides the data holds
the cache line in a Unique state, there is no requirement to change the cache line to a Shared state
after the ReadOnce transaction.

WriteUnique

A WriteUnique transaction can be used to remove all copies of a cache line before issuing a write
transaction. The WriteUnique transaction can be used when writing a full or partial cache line, and
ensures that dirty data is written to memory before performing the write transaction.

WriteLineUnique

A WriteLineUnique transaction can be used to remove all copies of a cache line before issuing a
write transaction. The WriteLineUnique transaction must be used only when writing a full cache
line, where all bytes within the cache line are written by the transaction.

Note
 Unlike other transactions to Shareable memory, ReadOnce and WriteUnique transactions issued by a master
component are not required to be a full cache line size. However, WriteLineUnique transactions are required to be
a full cache line size.

D1.4.3 Memory update transactions

The following transactions are used to update main memory:

WriteBack A master component cache uses a WriteBack transaction to write back a dirty line to main memory
to free a cache line that is to be used for a different address. The master component does not retain
a copy of the cache line.

WriteClean A master component cache uses a WriteClean transaction to write a dirty line to main memory, while
permitting that master component to retain a copy of the cache line.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-159
ID122117 Non-Confidential

D1 About ACE
D1.4 Transaction overview
WriteEvict A WriteEvict transaction can be used to evict a clean cache line. The transaction is used to write the
line to a lower level of the cache hierarchy, such as an L3 or system level cache. The WriteEvict
transaction is not required to update main memory.

Evict A master component uses an Evict transaction to indicate the address of a cache line that is evicted
from its local cache when no main memory update is required. The transaction enables cache lines
in a particular component to be tracked, and can be used for applications such as constructing snoop
filters. No data transfer is associated with Evict transactions.

Note
 The WriteBack, WriteClean, WriteEvict, and Evict transactions do not result in snoop transactions to other caches.
Other caches are not required to know whether the cache line has been written to main memory. WriteBack,
WriteClean, WriteEvict, and Evict transactions are not serialized in the same way as other snoop transactions.

D1.4.4 Cache maintenance transactions

Master components use broadcast cache maintenance transactions to access and maintain the caches of other master
components in a system. In particular, cache maintenance transactions enable master components to view the effect
of load and store operations on system caches that cannot otherwise be accessed. This process is typically referred
to as Software Cache Maintenance. Broadcast cache maintenance operations can also propagate to downstream
caches, permitting all caches in a system to be maintained.

Note
 A master component that initiates a cache maintenance transaction is also responsible for performing the
appropriate operation on its own local cache.

The following transactions are used to maintain caches:

CleanShared A master component uses a CleanShared transaction to perform a clean operation on the caches of
other components in the system. If a snooped cache that holds a dirty cache line receives a
CleanShared transaction, it must provide that cache line so that the cache line can be written to main
memory. The snooped cache can retain its local copy of the cache line.

CleanInvalid A master component uses a CleanInvalid transaction to perform a clean and invalidate operation on
the caches of other components in the system. If a snooped cache that holds a clean cache line
receives a CleanInvalid transaction, it must remove its local copy of the cache line. If a snooped
cache that holds a dirty cache line receives a CleanInvalid transaction, it must provide that cache
line so that the cache line can be written to main memory and remove its local copy of the cache line.

MakeInvalid A master component uses a MakeInvalid transaction to perform an invalidate operation on the
caches of other components in the system. If a snooped cache receives a MakeInvalid transaction,
it must remove its local copy, but it is not required to provide any data, even if the cache line is dirty.

D1.4.5 Snoop transactions

Snoop transactions are transactions that use the snoop address, snoop response, and snoop data channels. Snoop
transactions are a subset of coherent transactions and cache maintenance transactions.
D1-160 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.4 Transaction overview
D1.4.6 Barrier transactions

Barrier transactions provide guarantees about the ordering and observation of transactions in a system. Barrier
transactions are not supported in ACE5 and ACE5-Lite variant interfaces.

ACE supports the following types of barrier:
• Memory barrier.
• Synchronization barrier.

A master component issues a memory barrier to guarantee that if another master in the appropriate domain can
observe any transaction after the barrier it must be able to observe every transaction prior to the barrier.

A master component issues a synchronization barrier to determine when all transactions issued before the barrier
are observable by every master in a particular domain. Some synchronization barriers also have a requirement that
all transactions that are issued before the barrier transaction must have reached the destination slave component
before the barrier completes.

See Chapter D8 Barrier Transactions for more information.

D1.4.7 Distributed virtual memory transactions

Distributed Virtual Memory (DVM) transactions are used for virtual memory system maintenance, and typically
pass messages between components within distributed virtual memory systems.

See Chapter D13 Distributed Virtual Memory Transactions for more information.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-161
ID122117 Non-Confidential

D1 About ACE
D1.5 Transaction processing
D1.5 Transaction processing
When a master component issues a transaction, the coherency signaling indicates that the transaction is to a memory
location that is Shareable by more than one component, and therefore requires coherency support. Typically,
transactions are processed as follows:

1. The initiating master component issues the transaction.

2. Depending on whether coherency support is required, the transaction is either:

• Passed directly to a slave component, subject to the address decode scheme being used.

• Passed to the coherency support logic within the interconnect.

3. A coherent transaction is checked against subsequent transactions from other master components, to ensure
correct processing order.

4. The interconnect determines the snoop transactions that are required.

5. Each cached master that receives a snoop transaction must provide a snoop response. Some masters might
provide snoop data to complete the snoop transaction.

6. The interconnect determines whether a main memory access is required.

7. The interconnect collates snoop responses and any required data.

8. The initiating master component completes the transaction.
D1-162 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.6 Concepts required for the ACE specification
D1.6 Concepts required for the ACE specification
The ACE specification defines the following concepts:
• Domains.
• Barriers on page D1-164.
• Distributed Virtual Memory on page D1-165.

D1.6.1 Domains

The ACE protocol uses a concept that is called shareability domains. A shareability domain is a set of master
components that enables a master component to determine which other master components to include when issuing
coherency or barrier transactions.

For coherent transactions, a master component uses the shareability domain to determine which other master
components might have a copy of the addressed location in their local cache. The interconnect component uses this
information to determine, for any given transaction, which other master components must be snooped to complete
the transaction.

For barrier transactions, a master component uses the shareability domain to determine which other master
components the barrier is establishing an ordering relationship with. The domain of a barrier transaction can be used
to determine how far a barrier transaction must propagate, and the blocking properties necessary to establish the
required ordering.

The ACE protocol defines the following levels of shareability domain:

Non-shareable The domain contains a single master component.

Inner Shareable The domain can include additional master components.

Outer Shareable The domain contains at least all master components in the Inner domain, but can include
additional master components.

System The domain includes all master components in the system.

Figure D1-3 shows an example set of shareability domains for a system that includes master components 0-9.

Figure D1-3 Shareability domains

Although multiple Non-shareable, Inner Shareable, and Outer Shareable domains can exist in a system, there must
be a single consistent definition of the master components that are contained in each domain. For example, in
Figure D1-3, because master 0 has Master1 in its Inner Shareable domain, then Master1 must have master 0 in its
Inner Shareable domain.

Master 8 Master 9

Master 4Master 0

Master 1

Inner Shareable

Outer Shareable

Master 2

Master 3

Inner Shareable

Master 7

Master 5

Master 6

Inner Shareable

Outer Shareable

System
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-163
ID122117 Non-Confidential

D1 About ACE
D1.6 Concepts required for the ACE specification
Domains are defined as non-overlapping. For each master component in an Outer Shareable domain, all the other
master components in the Inner Shareable domain that includes that master component must also be included in the
same Outer Shareable domain.

For transactions that must be visible to all other master components in the system, the System domain is used.
Because System domain transactions include master components that do not have hardware-coherent caches, these
transactions must not be cached at any level.

In Figure D1-4, from the perspective of Master1:
• The cache of Master1 is a local cache.
• The caches of masters 2-6 are peer caches.
• Caches of masters 1-3 are in the Inner Shareable domain.
• Caches of masters 1-6 are in the Outer Shareable domain.
• Cache 1 is a downstream cache.

Figure D1-4 Example system using shareability domains

D1.6.2 Barriers

Barrier transactions provide guarantees about the ordering and observation of transactions in a system. The
following types of barrier transaction are supported:

Memory barriers

A master component issues a memory barrier to guarantee that if another master component in the
appropriate domain can observe any transaction after the barrier it must be able to observe every
transaction prior to the barrier.

Synchronization barriers

A master component issues a synchronization barrier to determine when every master component
in the appropriate domain can observe all transactions that preceded the barrier transaction. For
System domain synchronization barriers, all transactions that are issued before the barrier
transaction must have reached the destination slave components before the barrier transaction
completes.

A barrier transaction has an address phase and a response, but no data transfer occurs. A master component must
issue a barrier transaction on both the read address channel and the write address channel.

Barriers can enforce ordering because a master component must not issue any read or write transaction that must be
ordered after the barrier until the master component has received a response for the barrier on both read data and
write response channels.

Outer Shareable

System

Master 8Master 7

Inner Shareable

Slave 1 Slave 2 Slave 3 Slave 4

Cache 1

Memory

controller

Memory

Memory

controller

Memory

Cache

Master 1

Cache

Master 2

Cache

Master 3

Cache

Master 4

Cache

Master 5

Cache

Master 6

Coherent Interconnect

Interconnect Interconnect

Interconnect
D1-164 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D1 About ACE
D1.6 Concepts required for the ACE specification
See Chapter D8 Barrier Transactions for more information.

D1.6.3 Distributed Virtual Memory

ACE supports Distributed Virtual Memory (DVM) and includes transactions that permit virtual memory system
management. Figure D1-5 shows the basic parts of a virtual memory system.

Figure D1-5 Virtual memory system

In Figure D1-5, the System Memory Management Units (SMMUs) translate addresses in the virtual address space
to addresses in the physical address space. Although all components in the system must use a single physical address
space, SMMU components enable different master components to operate in their own independent virtual address
or intermediate physical address space.

A typical process in the virtual memory system that is shown in Figure D1-5 might operate as follows:

1. A master component operating in a virtual address (VA) space issues a transaction that uses a VA.

2. The SMMU receives the VA, for translation to a physical address (PA):

• If the SMMU has recently performed the requested translation, then it might obtain a cached copy of
the translation from its TLB.

• Otherwise, the SMMU must perform a translation table walk, accessing translation table in memory
to obtain the required VA to PA translation.

3. The SMMU uses the PA to issue the transaction for the requesting component.

At step 2 of this process, the translation for the required VA might not exist. In this case, the translation table walk
generates a fault, that must be notified to the agent that maintains the translation tables. For the required access to
proceed, that agent must then provide the required VA to PA translation. Typically, it will update the translation
tables with the required information.

Maintaining the translation tables can require changes to translation table entries that are cached in TLBs. To
prevent the use of these entries, a DVM message can be used to issue a TLB invalidate operation.

When the translation tables have been updated, and the required TLB invalidations performed, a DVM Sync
transaction is used to ensure that all required transactions have completed.

See Chapter D13 Distributed Virtual Memory Transactions for more information.

Interconnect
Physical

address

Master 1 Master 2

Virtual

address

a System Memory Management Unit

SMMUa

TLB

SMMUa

TLB

Memory

Translation tables

Memory

Processor

TLB

MMU

Processor

TLB

MMU
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D1-165
ID122117 Non-Confidential

D1 About ACE
D1.7 Protocol errors
D1.7 Protocol errors
The protocol defines two categories of protocol errors, a software protocol error and a hardware protocol error.

D1.7.1 Software protocol error

A software protocol error occurs when multiple accesses to the same location are made with mismatched
shareability or cacheability attributes.

A software protocol error can cause a loss of coherency and result in the corruption of data values. The protocol
requires that the system does not deadlock for a software protocol error, and that transactions always progress
through a system.

A software protocol error for an access in one 4KB memory region must not cause data corruption in a different
4KB memory region.

For locations held in Normal memory, the use of appropriate barriers and software cache maintenance can be used
to return memory locations to a defined state.

When accessing a peripheral device, if Modifiable transactions are used as indicated by AxCACHE[1] = 1, then
the correct operation of the peripheral cannot be guaranteed. The only requirement is that the peripheral continues
to respond to transactions in a protocol-compliant manner. The sequence of events that might be needed to return a
peripheral device, that has been accessed incorrectly, to a known working state is IMPLEMENTATION DEFINED.

D1.7.2 Hardware protocol error

A hardware protocol error is defined as any protocol error that is not a software protocol error. No support is required
for hardware protocol errors.

If a hardware protocol error occurs, then recovery from the error is not guaranteed. The system might crash, lock
up, or suffer some other non-recoverable failure.
D1-166 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D2
Signal Descriptions

This chapter introduces the additional ACE interface signals. It contains the following sections:
• Changes to existing AXI channels on page D2-168.
• Additional channels defined by ACE on page D2-170.
• Additional response signals and signaling requirements defined by ACE on page D2-172.

Later chapters define the signal parameters and usage.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D2-167
ID122117 Non-Confidential

D2 Signal Descriptions
D2.1 Changes to existing AXI channels
D2.1 Changes to existing AXI channels
The following subsections introduce the additional signals that are defined on the AXI channels:
• Read address channel (AR) signals.
• Write address channel (AW) signals.
• Read data channel (R) signals on page D2-169.

Note
 There are no additional signals on the write data channel (W) or the Write response channel (B).

See Chapter A2 Signal Descriptions for the remaining signals on the AXI channels.

D2.1.1 Read address channel (AR) signals

Table D2-1 shows the additional signals on the read address channel. See Read and write address channel signaling
on page D3-174.

D2.1.2 Write address channel (AW) signals

Table D2-2 shows the additional signals on the write address channel. See Read and write address channel signaling
on page D3-174.

Table D2-1 Read address channel signals

Signal Source Description

ARSNOOP[3:0] Master Indicates the transaction type for Shareable read transactions.

ARDOMAIN[1:0] Master Indicates the shareability domain of a read transaction.

ARBAR[1:0] Master Indicates a read barrier transaction.

Table D2-2 Write address channel signals

Signal Source Description

AWSNOOP[2:0] Master Indicates the transaction type for Shareable write transactions.

AWDOMAIN[1:0] Master Indicates the shareability domain of a write transaction.

AWBAR[1:0] Master Indicates a write barrier transaction.

AWUNIQUEa

a. The AWUNIQUE signal is only required by a component that supports the WriteEvict transaction.

Master Indicates that a line is permitted to be held in a Unique state.
D2-168 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D2 Signal Descriptions
D2.1 Changes to existing AXI channels
D2.1.3 Read data channel (R) signals

Table D2-3 shows the additional signals on the read data channel. See Read data channel signaling on page D3-184.

Table D2-3 Read data channel signals

Signal Source Description

RRESP[3:2] Interconnect Read response. The additional read response bits provide the information that
is required to complete a Shareable read transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D2-169
ID122117 Non-Confidential

D2 Signal Descriptions
D2.2 Additional channels defined by ACE
D2.2 Additional channels defined by ACE
The following subsections introduce the ACE snoop channels:
• Snoop address channel (AC) signals.
• Snoop response channel (CR) signals.
• Snoop data channel (CD) signals on page D2-171.

D2.2.1 Snoop address channel (AC) signals

Table D2-4 shows the signals on the snoop address channel. See Snoop address channel signaling on page D3-190.

D2.2.2 Snoop response channel (CR) signals

Table D2-5 shows the signals on the snoop response channel. See Snoop response channel signaling on
page D3-193.

Table D2-4 Snoop address channel signals

Signal Source Description

ACVALID Interconnect Snoop address valid. This signal indicates that the snoop address and control information is
valid.

ACREADY Master Snoop address ready. This signal indicates that the snoop address and control information can
be accepted in the current cycle.

ACADDR[ac-1:0]a Interconnect Snoop address. This signal indicates the address of a snoop transaction. The snoop address
width must match the width of the read and write address buses.

ACSNOOP[3:0] Interconnect Snoop transaction type. This signal indicates the transaction type of the snoop transaction.

ACPROT[2:0] Interconnect Snoop protection type. This signal indicates the security level of the snoop transaction. The
ACE specification only assigns meaning to ACPROT[1].

a. ac is the width of the snoop address bus.

Table D2-5 Snoop response channel signals

Signal Source Description

CRVALID Master Snoop response valid. This signal indicates that the snoop response is valid.

CRREADY Interconnect Snoop response ready. This signal indicates that the snoop response can be accepted in the current
cycle.

CRRESP[4:0] Master Snoop response. This signal indicates the response to a snoop transaction and how it completes.
D2-170 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D2 Signal Descriptions
D2.2 Additional channels defined by ACE
D2.2.3 Snoop data channel (CD) signals

Table D2-6 shows the signals on the snoop data channel. See Snoop data channel signaling on page D3-197.

Table D2-6 Snoop data channel signals

Signal Source Description

CDVALID Master Snoop data valid. This signal indicates that the snoop data is valid.

CDREADY Interconnect Snoop data ready. This signal indicates that the snoop data can be accepted in the current cycle.

CDDATA[cd-1:0]a Master Snoop data. Transfers data from a snooped master.

CDLAST Master This signal indicates the last data transfer of a snoop transaction.

a. cd is the width of the snoop data bus.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D2-171
ID122117 Non-Confidential

D2 Signal Descriptions
D2.3 Additional response signals and signaling requirements defined by ACE
D2.3 Additional response signals and signaling requirements defined by ACE
The following subsections introduce the additional response signals, and an additional signaling requirement,
introduced by ACE:
• Read acknowledge signal.
• Write acknowledge signal.
• Reset requirements.

D2.3.1 Read acknowledge signal

Table D2-7 shows the additional read acknowledge signal. See Read acknowledge signaling on page D3-187.

D2.3.2 Write acknowledge signal

Table D2-8 shows the additional write acknowledge signal. See Write Acknowledge signaling on page D3-189.

D2.3.3 Reset requirements

The ACE protocol uses the AXI single active LOW reset signal ARESETn. See Reset on page A3-40 for the
ARESETn requirements.

During reset, the following interface requirements apply:
• A master interface must drive RACK, WACK, CRVALID, and CDVALID LOW.
• An interconnect must drive ACVALID LOW.

The earliest point after reset that the interconnect is permitted to begin driving ACVALID HIGH is at a rising
ACLK edge, after ARESETn is HIGH.

Table D2-7 Read acknowledge signal

Signal Source Description

RACK Master Read acknowledge. This signal indicates that a master has completed a read transaction.

Table D2-8 Write acknowledge signal

Signal Source Description

WACK Master Write acknowledge. This signal indicates that a master has completed a write transaction.
D2-172 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D3
Channel Signaling

This chapter describes the basic channel signaling requirements on an ACE interface. It contains the following
sections:
• Read and write address channel signaling on page D3-174.
• Read data channel signaling on page D3-184.
• Read acknowledge signaling on page D3-187.
• Write response channel signaling on page D3-188.
• Write Acknowledge signaling on page D3-189.
• Snoop address channel signaling on page D3-190.
• Snoop response channel signaling on page D3-193.
• Snoop data channel signaling on page D3-197.
• Snoop channel dependencies on page D3-199.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-173
ID122117 Non-Confidential

D3 Channel Signaling
D3.1 Read and write address channel signaling
D3.1 Read and write address channel signaling
The following sections define the additional signals on the read and write address channels.

D3.1.1 Shareability domain types

The ACE protocol uses a concept that is called shareability domains. A shareability domain is a set of masters that
enables a master to determine which other masters to include when issuing coherency or barrier transactions. See
Domains on page D1-163.

Each address channel has its own shareability domain signal. Table D3-1 shows the signal for each address channel.

The ACE protocol specifies four levels of shareability domain:

Non-shareable The domain contains a single master.

Inner Shareable The Inner domain can include additional masters.

Outer Shareable The Outer domain contains all masters in the Inner domain and can include additional
masters.

System The System domain includes all masters in the system.

Use of the Inner Shareable domain is deprecated in ACE5 and ACE5-Lite. See Shareability domain support on
page E1-332 for more details.

Note
 Although multiple Non-shareable, Inner Shareable and Outer Shareable domains can exist in a system, there must
be a single consistent definition of the masters that are contained in each domain. Figure D1-3 on page D1-163
shows an example set of shareability domains.

In this specification, AxDOMAIN indicates ARDOMAIN or AWDOMAIN.

Table D3-2 shows the AxDOMAIN[1:0] signal encoding.

Restrictions apply to the shareability domain for transactions with different memory types:
• A Device transaction, indicated by AxCACHE[1] equal to zero, must only use domain level System.
• A Cacheable transaction, indicated by AxCACHE[3:2] not equal to zero, must not use domain level System.

Table D3-1 Shareability domain signals

Transaction Channel Signal Source Description

Read address channel ARDOMAIN[1:0] Master Indicates the shareability domain of a read transaction.

Write address channel AWDOMAIN[1:0] Master Indicates the shareability domain of a write transaction.

Table D3-2 Shareability domain encoding

AxDOMAIN[1:0] Domain

0b00 Non-shareable

0b01 Inner Shareable

0b10 Outer Shareable

0b11 System
D3-174 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.1 Read and write address channel signaling
Table D3-3 shows all AxCACHE and AxDOMAIN combinations. See AXI4 changes to memory attribute
signaling on page A4-64 for details of the AxCACHE encodings.

Note
 • Table D3-3 does not include any access that is made to a local cache within the initiating master.

• The three combinations of AxCACHE and AxDOMAIN that are indicated as Permitted are legal within the
protocol, but not expected. These combinations can be used when a memory location can be cached at a
domain level that requires snooping, but the transaction is deliberately not cached downstream, for example,
in a system level cache.

• For transactions where AxCACHE indicates Non-cacheable and AxDOMAIN indicates Inner or Outer
Shareable it is not required that the data is fetched from the final destination.

• When Table D3-3 shows that the caches that are accessed are Outer Shareable peer caches, this includes all
caches that are Inner Shareable peer caches.

• A memory location that is indicated as being in the System domain cannot be held in any cache.

D3.1.2 Read and write barrier transactions

Each address channel has its own barrier transaction signal. Table D3-4 shows the signal for each address channel.

Table D3-3 AxCACHE and AxDOMAIN signal combinations

AxCACHE AxDOMAIN Legal Caches accesseda

Value Attribute Value Attribute

0b000x Device 0b00 Non-shareable No -

0b01 Inner Shareable No -

0b10 Outer Shareable No -

0b11 System Yes No caches

0b001x Non-cacheable 0b00 Non-shareable Permitted No caches

0b01 Inner Shareable Permitted Inner Shareable peer caches

0b10 Outer Shareable Permitted Outer Shareable peer caches

0b11 System Yes No caches

0b011x

0b101x

0b111x

WriteThrough
WriteBack

0b00 Non-shareable Yes Downstream caches

0b01 Inner Shareable Yes Inner Shareable peer caches and downstream caches

0b10 Outer Shareable Yes Outer Shareable peer caches and downstream caches

0b11 System No -

a. Shows which caches must be accessed to complete the transaction.

Table D3-4 Barrier transaction signals

Transaction channel Signal Source Description

Read address channel ARBAR[1:0] Master Indicates a read barrier transaction.

Write address channel AWBAR[1:0] Master Indicates a write barrier transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-175
ID122117 Non-Confidential

D3 Channel Signaling
D3.1 Read and write address channel signaling
See Barrier transaction signaling on page D8-271.

In this specification, AxBAR indicates ARBAR or AWBAR. Table D3-5 shows the AxBAR[1:0] signal encoding.

D3.1.3 Read and write Shareable transaction types

Each address channel has its own transaction type signal. Table D3-6 shows the signal for each address channel.

Transactions on the read and write address channel are categorized into the following groups:

Non-snooping These transactions must not snoop other masters.

Coherent These transactions are to memory locations that can be held in the cache of other masters
and require snooping.

Memory update These transactions update main memory and must not snoop other masters.

Cache maintenance These transactions are to memory locations that can be held in the cache of other masters
and require snooping. These transactions might also require to be passed to downstream
caches.

Barrier These transactions establish the ordering between other transactions. See Chapter D8
Barrier Transactions.

DVM These transactions pass operations between components that participate in a distributed
virtual memory scheme. See Chapter D13 Distributed Virtual Memory Transactions.

Table D3-7 on page D3-177 shows the permitted combinations of ARBAR[0], ARDOMAIN[1:0], and
ARSNOOP[3:0] for each group of read transactions.

Table D3-5 Barrier transaction signal encoding

AxBAR[1:0] Barrier type

0b00 Normal access, respecting barriers

0b01 Memory barrier

0b10 Normal access, ignoring barriers

0b11 Synchronization barrier

Table D3-6 Shareable transaction type signals

Transaction channel Signal Source Description

Read address channel ARSNOOP[3:0] Master Indicates the transaction type of a read
transaction.

Write address channel AWSNOOP[2:0] Master Indicates the transaction type of a write
transaction.
D3-176 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.1 Read and write address channel signaling
All unused ARSNOOP[3:0] encodings are Reserved.

Note
 A component without a cache only needs to indicate the shareability of a read transaction using ARDOMAIN and
can tie ARSNOOP to zero. As Table D3-7 shows, if the transaction is Non-shareable it is treated as a ReadNoSnoop
transaction and if the transaction is Shareable it is treated as a ReadOnce transaction.

Table D3-7 Permitted read address control signal combinations

Transaction group ARBAR[0] ARDOMAIN ARSNOOP Transaction type

Non-snooping 0b0 0b00

0b11

0b0000 ReadNoSnoop

Coherent 0b0 0b01

0b10

0b0000 ReadOnce

0b0001 ReadShared

0b0010 ReadClean

0b0011 ReadNotSharedDirty

0b0111 ReadUnique

0b1011 CleanUnique

0b1100 MakeUnique

Cache maintenance 0b0 0b00

0b01

0b10

0b1000 CleanShared

0b1001 CleanInvalid

0b1101 MakeInvalid

Barrier 0b1 0b00

0b01

0b10

0b11

0b0000 Barrier

DVM 0b0 0b01

0b10

0b1110 DVM Complete

0b1111 DVM Message
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-177
ID122117 Non-Confidential

D3 Channel Signaling
D3.1 Read and write address channel signaling
Table D3-8 shows the permitted combinations of AWBAR[0], AWDOMAIN[1:0], and AWSNOOP[2:0] for each
group of write transactions.

All unused AWSNOOP[2:0] encodings are Reserved.

Note
 A component without a cache only needs to indicate the shareability of a write transaction using AWDOMAIN and
can tie AWSNOOP to zero. As Table D3-8 shows, if the transaction is Non-shareable it is treated as a
WriteNoSnoop transaction and if the transaction is Shareable it is treated as a WriteUnique transaction.

Table D3-8 Permitted write address control signal combinations

Transaction group AWBAR[0] AWDOMAIN AWSNOOP Transaction type

Non-snooping 0b0 0b00

0b11

0b000 WriteNoSnoop

Coherent 0b0 0b01

0b10

0b000 WriteUnique

0b001 WriteLineUnique

Memory update 0b0 0b00

0b01

0b10

0b010 WriteClean

0b011 WriteBack

0b01

0b10

0b100 Evict

0b00

0b01

0b10

0b101 WriteEvicta

a. A component that supports the WriteEvict transaction must provide the AWUNIQUE signal.

Barrier 0b1 0b00

0b01

0b10

0b11

0b000 Barrier
D3-178 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.1 Read and write address channel signaling
D3.1.4 AWUNIQUE signal

The AWUNIQUE signal is a write address channel signal that can be used with various write transactions to
improve the operation of lower levels of the cache hierarchy, such as an L3 or system-level cache. Table D3-9 shows
the AWUNIQUE signaling requirements for different write transactions.

While a WriteBack or WriteEvict transaction is in progress that has the AWUNIQUE signal asserted, the master
must not give a snoop response that would allow another copy of the cache line to be created, or an agent to consider
that it has another Unique copy of the cache line.

It is a requirement that a master that supports the WriteEvict transaction, supports the AWUNIQUE signal.

A master that implements the AWUNIQUE signal can be connected to an interconnect that does not implement the
signal. There is no loss in functionality.

A master that does not support the AWUNIQUE signal can be connected to an interconnect that does support the
signal. In this case, the input to the interconnect must be tied low. This is protocol-compliant as all transactions are
permitted to drive AWUNIQUE LOW, with the exception of a WriteEvict transaction.

Table D3-9 AWUNIQUE signaling requirements for different write transactions

Transaction type AWUNIQUE requirement Notes

WriteNoSnoop Has no meaning. Can be asserted or
deasserted.

-

WriteUnique Can be asserted if the master is not
keeping a copy of the cache line.
Must be deasserted if the master issuing
the transaction is keeping a copy of the
cache line.

-

WriteLineUnique Can be asserted if the master is not
keeping a copy of the cache line.
Must be deasserted if the master issuing
the transaction is keeping a copy of the
cache line.

-

WriteClean Must be deasserted. The cache line cannot be held in a Unique
state as the master issuing the transaction is
keeping a copy.

WriteBack Can be asserted if the cache line was held
in a Unique state. Must be deasserted if the
cache line was in a Shared state.

It is permitted to deassert the signal
alongside a WriteBack transaction even if
the cache line was held in a Unique state.

WriteEvict Must be asserted. A WriteEvict transaction is only permitted
for a cache line in a UniqueClean state and
therefore the cache line must have been in
a Unique state.

Evict Has no meaning. Can be asserted or
deasserted.

-

Barrier Has no meaning. Can be asserted or
deasserted.

-

ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-179
ID122117 Non-Confidential

D3 Channel Signaling
D3.1 Read and write address channel signaling
D3.1.5 Cache line size restrictions

The cache line size that each ACE master can support is determined at design time.

Restrictions apply to the minimum and maximum cache line sizes that can be supported.

The minimum cache line size is the larger of:
• 16 bytes.
• The width of the data bus.

The maximum cache line size is the smaller of:
• 2048 bytes.
• The product of the maximum burst length of 16 and the width of the data bus in bytes.

Table D3-10 shows the minimum and maximum cache line sizes for each supported AXI4 data bus width.

D3.1.6 Transaction constraints

The following sections define the constraints for:
• Cache line size transactions.
• ReadOnce and WriteUnique transactions on page D3-182.
• WriteBack and WriteClean transactions on page D3-182.
• Barrier transactions on page D3-183.

Cache line size transactions

The following transactions must be of cache line size:
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.
• CleanUnique.
• MakeUnique.
• CleanShared.
• CleanInvalid.
• MakeInvalid.
• WriteLineUnique.
• WriteEvict.
• Evict.

Table D3-10 Minimum and maximum supported cache line sizes

Data bus width, bits Minimum cache line size, bytes Maximum cache line size, bytes

32 16 64

64 16 128

128 16 256

256 32 512

512 64 1024

1024 128 2048
D3-180 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.1 Read and write address channel signaling
Table D3-11 shows the constraints that apply to cache line size transactions.

WriteLineUnique and WriteEvict transactions are required to have every write data strobe asserted, that is, sparse
write data strobes are not permitted.

The following transactions must use AxLEN to indicate the correct cache line size, even though these transactions
do not transfer data:
• CleanUnique.
• MakeUnique.
• CleanShared.
• CleanInvalid.
• MakeInvalid.
• Evict.

Table D3-11 Cache line size transaction constraints

Attribute Condition Constraint

AxLEN - The burst length must be 1, 2, 4, 8 or 16 transfers. See Burst length on page A3-48.

AxSIZE - The number of bytes in a transfer must be equal to the data bus width. See Burst size
on page A3-49.

AxBURST INCR The address must be aligned to the cache line size, which is equal to
(AxLEN x AxSIZE), the total burst length in bytes. See Burst type on page A3-49.

WRAP The address must be aligned to AxSIZE, which is equal to the data bus width.

FIXED Not supported.

AxDOMAIN All transactions except:
CleanShared
CleanInvalid
MakeInvalid
or WriteEvict

The domain must be Inner Shareable or Outer Shareable.

CleanShared
CleanInvalid
MakeInvalid
and WriteEvict transactions

The domain must be Non-shareable, Inner Shareable or Outer Shareable.

AxBAR - Must be a normal access.

AxCACHE - Must be Modifiable.

AxLOCK - Must be:
0b0 If the transaction is ReadNotSharedDirty, ReadUnique,

MakeUnique, CleanShared, CleanInvalid, MakeInvalid,
WriteLineUnique, WriteEvict or Evict.

0b0 or 0b1 If the transaction is ReadClean, ReadShared, or CleanUnique.

AxPROT - No constraint, can take any value.

AxQOS - No constraint, can take any value.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-181
ID122117 Non-Confidential

D3 Channel Signaling
D3.1 Read and write address channel signaling
ReadOnce and WriteUnique transactions

The ReadOnce and WriteUnique transactions are not constrained to cache line size. This permits legacy components
to operate in a coherent environment by adding an appropriate domain to Modifiable transactions.

Table D3-12 shows the constraints that apply to ReadOnce and WriteUnique transactions.

WriteUnique transactions are not required to have every write data strobe asserted, that is, sparse write data strobes
are permitted.

Note
 The FIXED burst type is not supported for ReadOnce and WriteUnique transactions. Any conversion from AXI to
ACE-Lite must provide a translation for a FIXED burst.

WriteBack and WriteClean transactions

The WriteBack and WriteClean transactions are not constrained to cache line size. A partial update of a cache line
is permitted. However, WriteBack and WriteClean transactions are constrained to updates within a single cache line.

Table D3-13 shows the constraints that apply to WriteBack and WriteClean transactions.

Table D3-12 ReadOnce and WriteUnique transaction constraints

Attribute Constraint

AxDOMAIN Must be Inner Shareable or Outer Shareable.

AxBURST Must be INCR or WRAP.

AxCACHE Must be Modifiable.

AxLOCK Must be normal access.

AxPROT No constraint, can take any value.

AxQOS No constraint, can take any value.

Table D3-13 WriteBack and WriteClean transaction constraints

Attribute Condition Constraint

AWLEN - Normal restrictions apply. See Address structure on page A3-48.

AWSIZE - Normal restrictions apply. See Address structure on page A3-48.

AWBURST WRAP The address must be aligned to AxSIZE, which is equal to the data bus width.
The burst length must be 2, 4, 8 or 16.
AWSIZE x AWLEN must not exceed the cache line size in bytes.

INCR The burst length must be 16 or less.
The transaction must not cross a cache line boundary. The location of the last byte in the burst is
determined by (AWSIZE × AWLEN) added to the AWSIZE aligned start address. The location of
this last byte must fall within the same cache line as the first byte in the burst.

FIXED Not supported.

AWDOMAIN - Must not be domain type System.

AWBAR - Must be normal access.

AWCACHE - Must be Modifiable.
D3-182 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.1 Read and write address channel signaling
The WriteBack and WriteClean transactions are permitted to use sparse write data strobes.

Components that support a snoop filter must correctly indicate the shareability domain for all WriteBack,
WriteClean, and Evict transactions. This enables a snoop filter to track the allocation of Inner Shareable and Outer
Shareable transactions.

A snoop filter must not track the allocation of Non-shareable transactions because notification of the eviction of the
associated cache line is not required.

Components that do not support a snoop filter can use any of the following domains for WriteBack or WriteClean
transactions:
• Non-shareable.
• Inner Shareable.
• Outer Shareable.

Barrier transactions

For a barrier transaction, as indicated by AxBAR[0] equal to 1, constraints apply to the read address and write
address signals. Table D3-14 shows the constraints that apply:

Note
 A barrier transaction can have any shareability domain. The choice of domain is used to determine the precise
behavior of the barrier with respect to other masters in the system. See Chapter D8 Barrier Transactions.

AWLOCK - Must be normal access.

AWPROT - No constraint, can take any value.

AWQOS - No constraint, can take any value.

Table D3-13 WriteBack and WriteClean transaction constraints (continued)

Attribute Condition Constraint

Table D3-14 Barrier transaction constraints

Attribute Constraint

AxADDR Must be all zeros.

AxBURST Must be burst type INCR.

AxLEN Must be all zeros.

AxSIZE Must be equal to the data bus width.

AxCACHE Must be Normal, Non-cacheable.

AxPROT No constraint, can take any value.

AxLOCK Must be normal access.

AxSNOOP Must be all zeros.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-183
ID122117 Non-Confidential

D3 Channel Signaling
D3.2 Read data channel signaling
D3.2 Read data channel signaling
The following sections define the additional response and acknowledge signaling and constraints on the read data
channel. See Read and write response structure on page A3-59 for information on the baseline read response
signaling.

D3.2.1 Read response signaling

Table D3-15 shows the additional read response signals:

The IsShared and PassDirty responses have the following restrictions:

• The IsShared and PassDirty responses must be constant for all data transfers within a burst

• The IsShared response must be LOW for the transactions that require all other cached copies to be removed.
The transactions that require all other cached copies to be removed are:
— ReadUnique.
— CleanUnique.
— MakeUnique.
— CleanInvalid.
— MakeInvalid.

• The PassDirty response must be LOW for the transactions that do not permit the passing of dirty data. The
transactions that do not permit the passing of dirty data are:
— ReadOnce.
— ReadClean.
— CleanUnique.
— MakeUnique.
— CleanShared.
— CleanInvalid.
— MakeInvalid.

Table D3-15 Additional RRESP read response bits

Signal Source Name Meaning

RRESP[2] Interconnect PassDirty HIGH The cache line is dirty with respect to main memory and the initiating
master must ensure that the cache line is written back to main
memory, at some time. The initiating master must either perform the
write, or pass the responsibility to perform the write to another
master.

LOW It is not the responsibility of the initiating master to ensure that the
cache line is written back to main memory.

RRESP[3] Interconnect IsShared HIGH Another copy of the associated data might be held in another cache
and the cache line must be held in a Shared state.

LOW It is the only cached copy of the associated data and the cache line
can be held in a Unique state.
D3-184 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.2 Read data channel signaling
• The IsShared and PassDirty response must be LOW for the following transactions for which they have no
meaning:
— ReadNoSnoop.
— Barrier transactions.
— DVM transactions.

The value of RRESP[3:2] must be the same for all data transfers in a burst.

The following transactions have a single read data channel transfer:
• CleanUnique.
• MakeUnique.
• CleanShared.
• CleanInvalid.
• MakeInvalid.
• Barrier.
• DVM.

These transactions complete in a single read data channel transfer and must have RLAST asserted. RDATA can
have any value and must be ignored.

The EXOKAY response is only permitted for a ReadNoSnoop, ReadClean, ReadShared or CleanUnique
transaction. See Read and write response structure on page A3-59.

Table D3-16 shows the permitted IsShared and PassDirty responses for each transaction:

Table D3-16 IsShared and PassDirty permitted responses

Transaction IsShared PassDirty

ReadNoSnoop 0 0

ReadOnce 0 0

1 0

ReadClean 0 0

1 0

ReadNotSharedDirty 0 0

0 1

1 0

ReadShared 0 0

0 1

1 0

1 1

ReadUnique 0 0

0 1

CleanUnique 0 0

MakeUnique 0 0

CleanShared 0 0

1 0
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-185
ID122117 Non-Confidential

D3 Channel Signaling
D3.2 Read data channel signaling
Note
 Table D3-16 on page D3-185 only shows the permitted responses on RRESP[3:2]. For the permitted responses on
CRRESP, see Snoop response channel signaling on page D3-193.

CleanInvalid 0 0

MakeInvalid 0 0

Read Barrier 0 0

DVM Message 0 0

DVM Complete 0 0

Table D3-16 IsShared and PassDirty permitted responses (continued)

Transaction IsShared PassDirty
D3-186 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.3 Read acknowledge signaling
D3.3 Read acknowledge signaling
Table D3-17 shows the additional read acknowledge signal.

The RACK signal must be asserted for a single cycle and the interconnect must accept it in a single cycle.

The RACK signal must not be asserted before the cycle after the completion of the associated RVALID/RREADY
handshake of the last read data channel transfer, as indicated by RLAST. The assertion of RACK must not be
delayed to wait for the completion of another transaction. See Handshake process on page A3-41.

Read acknowledge must be sent for all transactions including coherent, barrier, and DVM transactions.

No ordering information is associated with read acknowledge, it is ordered the same as the last read data item and
the associated read responses.

The interconnect must use read acknowledge to ensure that a transaction to a master’s snoop port is not issued until
any preceding transaction from that master to the same address has completed. See Read and Write Acknowledge
on page D6-248.

Table D3-17 Read acknowledge signaling.

Signal Source Description

RACK Master Read acknowledge. This signal indicates that a master has completed a read transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-187
ID122117 Non-Confidential

D3 Channel Signaling
D3.4 Write response channel signaling
D3.4 Write response channel signaling
Write transactions do not have additional response signaling. See Read and write response structure on page A3-59
for information on the baseline write response signaling.

The order in which write responses for a single AXI ID are provided is the same as the order in which the
transactions are issued on the AW channel. Leading write data does not change the order in which the write
responses are provided.

Note
 The EXOKAY response is only permitted for a WriteNoSnoop transaction.
D3-188 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.5 Write Acknowledge signaling
D3.5 Write Acknowledge signaling
Table D3-18 shows the additional write acknowledge signal.

The WACK signal is asserted by a master for a single cycle and the interconnect must accept the WACK signal in
a single cycle.

The WACK signal must not be asserted before the cycle after the completion of the associated BVALID/BREADY
handshake. The assertion of WACK must not be delayed to wait for the completion of another transaction. See
Handshake process on page A3-41.

Write acknowledge, WACK is asserted for all write transactions, including barrier transactions.

No ordering information is associated with write acknowledge, it is ordered the same as the associated write
responses.

The interconnect must use write acknowledge to ensure that a transaction to a master’s snoop port is not issued until
any preceding transaction from that master to the same address has completed. See Read and Write Acknowledge
on page D6-248.

Table D3-18 Write acknowledge signaling

Signal Source Description

WACK Master Write acknowledge. This signal indicates that a master has completed a write transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-189
ID122117 Non-Confidential

D3 Channel Signaling
D3.6 Snoop address channel signaling
D3.6 Snoop address channel signaling
The following sections define the snoop address channel and signals.

D3.6.1 About the snoop address channel

The snoop address channel (AC channel) is necessary for a master that:
• Holds cached copies of shared data.
• Supports DVM transactions.

The snoop address channel is an input channel to a cached master. The snoop address channel passes the snoop
transactions of other components to a cached master so that the master can determine what actions it must take. The
master can respond to the snoop transactions in different ways and its response determines what action the
interconnect must take to complete the snoop process.

Supplementary information

Control information on the snoop address channel is a subset of the control information on the normal address
channel. It provides sufficient information for the coherency operations, but does not provide unnecessary
information. The snoop address channel does not provide information on the:
• Burst type.
• Burst length.
• Transaction size.
• Modifiable or Shareable nature of the transaction.
• Transaction ID.

Fundamentally, the snoop address channel provides the same transactions that are issued on the normal read and
write address channels. However, there are a number of exceptions.

The following transactions are not presented on the snoop address channel:

• Non-snooping type transactions. These transactions are:
— ReadNoSnoop.
— WriteNoSnoop.
— WriteBack.
— WriteClean.
— WriteEvict.
— Evict.

• WriteUnique. Other cached masters see a transaction, such as CleanInvalid. This ensures that all other copies
of the cache line are cleaned to main memory and removed before the write occurs.

• WriteLineUnique. Other cached masters see a transaction, such as MakeInvalid. This ensures that all other
copies of the cache line are removed before the write occurs.

• MakeUnique. Typically, this transaction is converted to a MakeInvalid transaction.

• CleanUnique. Typically, this transaction is converted to a CleanInvalid transaction.

Some snoop operations can be fulfilled without snooping every cached master in the system. Therefore, the snoop
address channel for a cached master might not provide every snoop transaction.

Snoop read transactions can be adapted by the interconnect so that when the required data is obtained, further snoops
to other masters are not requested.

Transactions that are not required to be a full cache line length are converted to be a full cache line length. These
transactions are:
• ReadOnce.
• WriteUnique.
D3-190 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.6 Snoop address channel signaling
D3.6.2 Snoop address channel signaling

Table D3-19 shows the signals on the snoop address channel.

The standard AXI VALID/READY handshake rules apply. See Handshake process on page A3-41.

When the ACVALID signal is asserted the snoop address and control signals on ACADDR, ACPROT, and
ACSNOOP must not change, until ACREADY is asserted by the master. When ACVALID is asserted, it must
remain asserted until ACREADY is asserted.

It is permitted to assert ACREADY before or in the same cycle as ACVALID. If ACREADY is asserted before
ACVALID, then ACREADY can be deasserted without ACVALID being asserted.

ACADDR must be aligned to the data transfer size, which is determined by the width of the snoop data bus in bytes.

ACPROT[1] indicates the Secure or Non-secure nature of the snoop transaction.

For coherency transactions, ACPROT[1] can be considered as defining two address spaces, a Secure address space
and a Non-secure address space, and can be treated as an additional address bit. Any aliasing between the Secure
and Non-secure address spaces must be handled correctly.

Hardware coherency does not manage coherency between Secure and Non-secure address spaces.

ACSNOOP indicates the snoop transaction type. Not all transaction types, observed on the read address channel or
write address channel can be observed on the snoop address channel. Table D3-20 shows the ACSNOOP encodings
for the transactions that can be observed on the snoop address channel. All unused encodings are Reserved.

Table D3-19 Snoop address channel signals

Signal Source Description

ACVALID Interconnect Snoop address valid. When HIGH, it indicates that the snoop address and control
information is valid.

ACREADY Master Snoop address ready. When HIGH, it indicates that the snoop address and control
information can be accepted in this cycle.

ACADDR[ac-1:0]a Interconnect Snoop address. This signal indicates the address of a snoop transaction. The snoop address
width must match the width of the read address and write address bus.

ACSNOOP[3:0] Interconnect Snoop transaction type. This signal indicates a subset of the transaction types that are
observed on the read and write address channels. See Table D3-20.

ACPROT[2:0] Interconnect Snoop protection type. This signal indicates the privilege and security level of the snoop
transaction.

a. ac is the width of the snoop address bus.

Table D3-20 ACSNOOP encodings

ACSNOOP[3:0] Transaction

0b0000 ReadOnce

0b0001 ReadShared

0b0010 ReadClean

0b0011 ReadNotSharedDirty

0b0111 ReadUnique

0b1000 CleanShared

0b1001 CleanInvalid
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-191
ID122117 Non-Confidential

D3 Channel Signaling
D3.6 Snoop address channel signaling
A snoop transaction of burst length greater than one must be of burst type WRAP. A snoop transaction of burst
length one must be of burst type INCR.

A snoop transaction must be a full cache line in length.

Note
 If the original transaction that caused the snoop process was not a full cache line in length, then the interconnect
must convert it to be a full cache line in length.

A snoop transaction must be the same width as the snoop data channel.

0b1101 MakeInvalid

0b1110 DVM Complete

0b1111 DVM Message

Table D3-20 ACSNOOP encodings (continued)

ACSNOOP[3:0] Transaction
D3-192 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.7 Snoop response channel signaling
D3.7 Snoop response channel signaling
Table D3-21 shows the signals on the snoop response channel.

The standard AXI VALID/READY handshake rules apply. See Handshake process on page A3-41.

When the CRVALID signal is asserted, the snoop response must not change until the interconnect sets CRREADY
HIGH. When CRVALID is asserted, it must remain asserted until CRREADY is asserted.

It is permitted to assert CRREADY before or in the same cycle as CRVALID. If CRREADY is asserted before
CRVALID, then CRREADY can be deasserted without CRVALID being asserted.

A snoop response is required on the snoop response channel for each snoop address that is presented to a cached
master on the snoop address channel.

All snoop transactions are ordered. A response on the snoop response channel must be in the same order as the
addresses on the snoop address channel.

Table D3-21 shows the allocation of each bit of CRRESP[4:0].

Table D3-21 Snoop response channel signals

Signal Source Meaning Description

CRVALID Master Snoop response
valid.

This signal indicates that the channel is signaling a valid snoop
response.

CRREADY Interconnect Snoop response
ready.

This signal indicates that the snoop response can be accepted in the
current cycle.

CRRESP[4:0] Master Snoop response. This signal indicates the response to a snoop transaction and how
the transaction completes.

Table D3-22 Snoop response bit allocations

Signal Name Meaning

CRRESP[0] DataTransfer HIGH Indicates that a full cache line of data will be provided on the snoop
data channel for this transaction.

LOW Indicates that no data will be provided on the snoop data channel for
this transaction.

CRRESP[1] Error HIGH When HIGH, the Error bit indicates that the snooped cache line is in
error. Typically, this is caused by a corrupt cache line that has been
detected through the use of an Error Correction Code (ECC) system.

LOW Indicates that no Error condition has been detected.

CRRESP[2] PassDirty HIGH When HIGH, it indicates that before the snoop process, the cache
line was held in a Dirty state and the responsibility for writing the
cache line back to main memory is being passed to the initiating
master or the interconnect.
For all transactions, except MakeInvalid, if the cache line was held
in a Dirty state before the snoop process and a copy is not being
retained by the cache, then the PassDirty bit must be set HIGH.

LOW Indicates the responsibility for writing the cache line back to main
memory is not being passed.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-193
ID122117 Non-Confidential

D3 Channel Signaling
D3.7 Snoop response channel signaling
The meaning of the snoop response bits and the limitations of use are as follows:

DataTransfer bit

The snoop transaction type and the state of the cache line in the snooped cache determine whether
the DataTransfer bit is set HIGH and a data transfer occurs.

For the following transactions, a data transfer occurs if the snoop process has resulted in a cache hit:
• ReadOnce.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

If the cache line is clean, it is not mandatory that data transfer occurs. However, this specification
recommends that data transfer still occurs.

For the following transactions, data transfer must occur if the snoop process has resulted in a cache
hit and the cache line is dirty:
• CleanInvalid.
• CleanShared.

A MakeInvalid transaction never requires a data transfer.

The DataTransfer bit can be set to 1 and data can be returned on the snoop data channel when it is
not required. For example, a CleanInvalid transaction can return data when it holds the cache line
in a Clean state, and a MakeInvalid transaction can return data. However, this specification does not
recommend this use of the snoop data channel.

Note
 The protocol permits the return of data on the snoop data channel when it is not required to enable

a simplified snoop port implementation to handle a MakeInvalid transaction in the same manner as
a ReadUnique or CleanInvalid, and a CleanInvalid transaction to be handled in the same manner as
a ReadUnique.

Error bit

When HIGH, it indicates that the snooped cache line is in error. Typically, this is caused by a corrupt
cache line that has been detected through the use of an Error Correction Code, (ECC) system.

CRRESP[3] IsShared HIGH Indicates that the snooped cache retains a copy of the cache line after
the snoop process has completed.

LOW Copy of cache line was not retained.

CRRESP[4] WasUnique HIGH Indicates that the cache line was held in a Unique state before the
snoop process.
The WasUnique bit must only be HIGH if it is known that no other
cache can have a copy of the cache line.

LOW No information is provided on whether or not the cache line was held
in a Unique state before the snoop process.

Table D3-22 Snoop response bit allocations (continued)

Signal Name Meaning
D3-194 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.7 Snoop response channel signaling
If an error is detected, the snooped cache can take appropriate action, such as discarding a clean
cache line. Alternatively, the snooped cache can flag the error by setting the Error bit HIGH and take
no further action.

PassDirty bit

For the following transactions, the responsibility for writing the dirty cache line back to main
memory can be passed to the master requesting the data:
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

In other cases, such as ReadClean, the dirty cache line must be written back to main memory by the
interconnect.

IsShared bit

The restrictions on the use of IsShared are:
• For the following transactions, the cache line in the snooped cache must be invalidated and

the IsShared response must be LOW:
— ReadUnique.
— CleanInvalid.
— MakeInvalid.

• For the following transactions, the snooped cache can determine if it retains a copy of the
cache line after the snoop process has completed, and the snooped cache must use the
IsShared bit to signal the outcome:
— ReadOnce.
— ReadClean.
— ReadNotSharedDirty.
— ReadShared.
— CleanShared.

Typically, a snooped cache retains a local copy of the cache line after the snoop process has
completed. However, there are cases when a snooped cache does not retain a local copy, such as
when passing the cache line as unique to another cache in response to a ReadNotSharedDirty snoop
transaction.

Note
 For a ReadOnce snoop transaction, the IsShared bit must be set to 1 if the snooped master is

retaining a copy of the cache line, even if it is keeping the line in a Unique state.

WasUnique bit

A WasUnique response permits the snoop process to be terminated because no other cache can hold
a copy of the cache line.

The protocol permits a cache to not generate a WasUnique response. In this case, the WasUnique bit
must be permanently LOW.

Note
 Permanently setting the WasUnique LOW can result in the cache line being provided to the original

requester as Shared, when it could have been provided as Unique. It can also result in additional
caches being needlessly snooped.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-195
ID122117 Non-Confidential

D3 Channel Signaling
D3.7 Snoop response channel signaling
Table D3-23 shows the CRRESP response meanings and transactions for which they are valid.Table D3-23 does
not show the Error bit CRRESP[1], of the response field, because the value of this bit does not affect the meaning
of the other snoop response bits. In this table:

• The meaning of the bits in the CRRESP response fields, when asserted, are:

WU, WasUnique The cache line was in Unique state before this snoop.

IS, IsShared The cache is keeping a copy of this cache line after this snoop.

PD, PassDirty The cache line was dirty before this snoop. This response transfers responsibility for
updating main memory, as well as the data.

DT, DataTransfer The response to the snoop transaction includes a transfer on the snoop data channel.

• The snoop transactions are abbreviated as follows:
RO ReadOnce.
RC ReadClean.
RN ReadNotSharedDirty.
RS ReadShared.
RU ReadUnique.
CI CleanInvalid.
MI MakeInvalid.
CS CleanShared.

• Whether a response is permitted, for each transaction, is indicated as follows:
E Expected response.
P Permitted response.
No Response not permitted.

The following responses are illegal:

• IsShared, CRRESP[3] = 1 for:
— ReadUnique
— CleanInvalid
— MakeInvalid

• PassDirty, CRRESP[2] = 1, and DataTransfer, CRRESP[0] = 0, for any transaction.

Table D3-23 Response meanings and transactions for which they are valid

CRRESP[3:2,0] [4] Snoop transaction

IS PD DT WU RO RC RN RS RU CI MI CS Response meaning

0 0 0 0 E E E E E E E E Line was invalid or has been invalidated.

0 0 0 1 P P P P P E E E Line was unique but has been invalidated.

0 0 1 x P P P P E P P P Passing clean data before invalidating.

x 1 0 x No No No No No No No No Cannot assert PassDirty with DataTransfer low.

0 1 1 x P E E P E E P P Passing dirty data before invalidating.

1 0 0 x P P P P No No No E Line is valid and clean but not being passed.

1 0 1 x E E E E No No No P Passing clean data and keeping copy.

1 1 1 x P E E E No No No E Passing dirty data and keeping copy.
D3-196 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.8 Snoop data channel signaling
D3.8 Snoop data channel signaling
Table D3-24 shows the signals on the snoop data channel.

The standard AXI VALID/READY handshake rules apply. See Handshake process on page A3-41.

If the CDVALID signal is asserted, the data value on CDDATA and the last transfer indication on CDLAST, must
not change until CDREADY is asserted to indicate that the information has been accepted by the interconnect.
When CDVALID is asserted, it must remain asserted until CDREADY is asserted.

The assertion of CDREADY is permitted before, or in the same cycle as, CDVALID. If CDREADY is asserted
before CDVALID, then CDREADY can be deasserted without CDVALID being asserted.

The width of the snoop data bus, CDDATA is not required to be the same width as the read data and write data buses.

Note
 Where the expected cache hit rate is low and transfer latency is not important, a snoop data bus narrower than the
read and write data buses can be implemented.

 The snoop data bus can be 32, 64, 128, 256, 512, or 1024 bits wide. However, the following restrictions apply:
• All cache line size transactions must be a full data bus width.
• The burst length must be 1, 2, 4, 8, or 16.

These restrictions determine the minimum and maximum data bus widths that can be supported for a given cache
line size. See Cache line size restrictions on page D3-180.

When CDVALID is asserted, all byte lanes of CDDATA must be valid, as the snoop data bus does not support byte
strobes.

Snoop data is not required for every snoop transaction, it is only provided for a snoop transaction that has a snoop
response with the DataTranfer bit asserted. See Snoop response channel signaling on page D3-193. When snoop
data is required, it must be provided in the same order as the associated snoop addresses were presented on the snoop
address channel.

All snoop transactions of burst length greater than one are defined to be of burst type WRAP. The order in which
data transfers within a snoop burst are provided is the same as for a standard wrapping burst. See Burst type on
page A3-49.

The CDLAST signal must be asserted during the final data transfer associated with a snoop transaction.

Table D3-24 Snoop data channel signals

Signal Source Description

CDVALID Master Snoop data valid. This signal indicates that the channel is signaling valid snoop data.

CDREADY Interconnect Snoop data ready. This signal indicates that the snoop data can be accepted in the current cycle.

CDDATA[cd-1:0]a Master Snoop data. Transfers data from a snooped master.

CDLAST Master This signal indicates the last data transfer of a snoop transaction.

a. cd is the width of the snoop data bus.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-197
ID122117 Non-Confidential

D3 Channel Signaling
D3.8 Snoop data channel signaling
The snoop data channel is optional. However, any cached master that does not support a snoop data channel must
still support all snoop transaction types on the snoop address channel.

The cached master must not be required to return dirty data to complete a snoop transaction, and must never use a
snoop response with DataTransfer asserted.

• Not hold dirty data.

• Must perform a WriteBack or WriteClean, before responding to any snoop process that must obtain a dirty
cache line.

Note
 This option is not compatible with the WriteUnique and WriteLineUnique transactions. See Write

transactions on page D4-220.
D3-198 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D3 Channel Signaling
D3.9 Snoop channel dependencies
D3.9 Snoop channel dependencies
There are dependencies between the signals on different snoop channels.

In Figure D3-1:
• Single-headed arrows point to signals that can be asserted before or after the signal at the start of the arrow.
• Double-headed arrows point to signals that must be asserted only after assertion of the signal at the start of

the arrow.

Figure D3-1 Snoop channel dependencies

Figure D3-1 shows the snoop address, snoop response, and snoop data channel dependencies and shows that:

• The interconnect must not wait for the master to assert ACREADY before asserting ACVALID.

• The master can wait for ACVALID to be asserted before asserting ACREADY.

• The master must wait for both ACVALID and ACREADY to be asserted before asserting CRVALID.

• The master must wait for both ACVALID and ACREADY to be asserted before asserting CDVALID.

• The master must not wait for the interconnect to assert CRREADY or CDREADY before asserting
CRVALID.

• If data transfer is required to complete the snoop operation, the master must not wait for the interconnect to
assert CRREADY or CDREADY before asserting CDVALID.

• The interconnect can wait for CRVALID to be asserted before asserting CRREADY or CDREADY.

• If data transfer is required, the interconnect can wait for CDVALID to be asserted before asserting
CRREADY or CDREADY.

ACREADY

ACVALID CRVALID CDVALID

CDREADYCRREADY
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D3-199
ID122117 Non-Confidential

D3 Channel Signaling
D3.9 Snoop channel dependencies
D3-200 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D4
Coherency Transactions on the Read Address and
Write Address Channels

This chapter describes the transactions that can be issued by an initiating master on the read address and write
address channels. The expected channel activity for each transaction group is described, and a brief overview is
given for each transaction. Each transaction has a description of the associated cache line state changes. It contains
the following sections:
• About an initiating master on page D4-202.
• About snoop filtering on page D4-205.
• State changes on different transactions on page D4-206.
• State change descriptions on page D4-208.
• Read transactions on page D4-209.
• Clean transactions on page D4-215.
• Make transactions on page D4-218.
• Write transactions on page D4-220.
• Evict transactions on page D4-225.
• Handling overlapping write transactions on page D4-226.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-201
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.1 About an initiating master
D4.1 About an initiating master
This section describes the behavior of an initiating master. Typically, an initiating master issues a transaction to
progress an internal action such as a load or store operation.

The internal action requires:
• For a load, the master must get the data from either:

— A valid copy of the appropriate cache line.
— A transaction that returns valid read data.

• For a store, the master needs permission to store the cache line from either:
— A copy of the appropriate cache line in a Unique state.
— A transaction type that gives the master permission to store the cache line.

D4.1.1 Transaction groups

The following sections describe the expected channel activity for the transaction groups:
• Read transactions.
• Clean transactions.
• Make transactions on page D4-203.
• Write transactions on page D4-203.
• Evict transactions on page D4-203.

Read transactions

The read transaction group is:
• ReadNoSnoop.
• ReadOnce.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

A Read transaction progresses as follows:
1. The address is issued on the read address (AR) channel.
2. The data and response is returned on the read data (R) channel. The number of data beats required is

determined by ARLEN.
3. Completion of a Read transaction is signaled by the master asserting RACK.

Clean transactions

The clean transaction group is:
• CleanUnique.
• CleanShared.
• CleanInvalid.
D4-202 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.1 About an initiating master
A Clean transaction progresses as follows:
1. The address is issued on the AR channel.
2. A single transfer on the R channel returns the response. No data is returned for a Clean transaction.
3. Completion of a Clean transaction is signaled by the master asserting RACK.

Make transactions

The make transaction group is:
• MakeUnique.
• MakeInvalid.

For the initiating master, a Make transaction progresses as follows:
1. The address is issued on the AR channel.
2. A single transfer on the R channel returns the response. No data is returned for a Make transaction.
3. Completion of a Make transaction is signaled by the master asserting RACK.

Write transactions

The write transaction group is:
• WriteNoSnoop.
• WriteUnique.
• WriteLineUnique.
• WriteBack.
• WriteClean.
• WriteEvict.

For the initiating master, a Write transaction progresses as follows:
1. The address is issued on the AW channel.
2. The data is transferred on the W channel.
3. The response is returned on the B channel.
4. Completion of a Write transaction is signaled by the master asserting WACK.

Evict transactions

The evict transaction group is, Evict.

For the initiating master, an Evict transaction progresses as follows:
1. The address is issued on the AW channel.
2. The response is returned on the B channel. No data is transferred for an Evict transaction.
3. Completion of an Evict transaction is signaled by the master asserting WACK.

Read barrier transactions

For the master initiating the transaction, a Read Barrier transaction progresses as follows:
1. The transaction is issued on the AR channel.
2. A single transfer on the R channel returns the response. No data is returned for a Read Barrier transaction.
3. Completion of a Read Barrier transaction is signaled by the master asserting RACK.

See Chapter D8 Barrier Transactions.

Write barrier transactions

For the master initiating the transaction, a Write Barrier transaction progresses as follows:
1. The transaction is issued on the AW channel.
2. The response is returned on the B channel. No data is transferred for a Write Barrier transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-203
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.1 About an initiating master
3. Completion of a Write Barrier transaction is signaled by the master asserting WACK.

See Chapter D8 Barrier Transactions.

DVM transactions

For the master initiating the transaction, a DVM transaction progresses as follows:
1. The transaction is issued on the AR channel.
2. A single transfer on the R channel returns the response. No data is returned for a DVM transaction.
3. Completion of a DVM transaction is signaled by the master asserting RACK.

See Chapter D13 Distributed Virtual Memory Transactions.
D4-204 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.2 About snoop filtering
D4.2 About snoop filtering
Snoop filtering tracks the cache lines that are allocated in a master’s cache. To support an external snoop filter, a
cached master must be able to broadcast cache lines that are allocated and cachelines that are evicted.

Support for an external snoop filter is optional within the ACE protocol. A master component must state in its data
sheet if it provides support. See Chapter D10 Optional External Snoop Filtering for the mechanism the ACE
protocol supports for the construction of an external snoop filter.

For a master component that does not support an external snoop filter, the cache line states that are permitted after
a transaction has completed are less strict.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-205
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.3 State changes on different transactions
D4.3 State changes on different transactions
The state changes that can be associated with a transaction are determined by:
• The transaction type.
• The read response for transactions that are issued on the AR channel.
• Whether the master supports an external snoop filter.
• Whether the master performs speculative reads.

The rules that apply to a master are:

• If a transaction read response has PassDirty asserted, then the cache line must move to a Dirty state. The
PassDirty response can be asserted for:
— ReadNotSharedDirty.
— ReadShared.
— ReadUnique.

• If a transaction read response has IsShared asserted, then the cache line must move to either a Shared state or
the Invalid state. The IsShared response can be asserted for:
— ReadOnce.
— ReadClean.
— ReadNotSharedDirty.
— ReadShared.
— CleanShared.

• A cache line that is in a Unique state is permitted to move to the equivalent Shared state, but this is not
expected behavior.

• If an external snoop filter is not supported, a cache line that is in a Clean state can move to the Invalid state.

D4.3.1 State changes associated with a load

No cache line state change is required for the internal action of a load.

D4.3.2 State changes associated with a coherent store

Before carrying out the internal operation of a store to a cache line in Shareable memory, the master must ensure
that it has permission to store. A master has permission to store if the cache line is in the UniqueClean or
UniqueDirty state.

If the master does not have permission to store then it must either:

• Issue a transaction on the AR channel that obtains permission to store, and then perform the store to the cache
line. After the store to a cache line, the master must be in the UniqueDirty state. The transactions that obtain
permission to store are:
— ReadUnique.
— CleanUnique.
— MakeUnique.

• Issue a transaction on the AW channel that obtains permission to store and also updates main memory. The
transactions that obtain permission to store data and also update main memory are:
— WriteUnique.
— WriteLineUnique.
D4-206 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.3 State changes on different transactions
D4.3.3 State changes associated with a main memory update

An update to main memory can be performed when the cache line is in a Dirty state.

When a master is given permission to update main memory, the earliest the associated write transaction can occur
is the cycle after the RVALID/RREADY handshake in which RLAST is asserted for the transaction that gave
permission to update main memory.

An update to main memory is performed using a WriteBack or WriteClean transaction.

After an update to main memory, the cache line must be in a Clean or Invalid state.

If an external snoop filter is supported, then the following restrictions apply:
• After a WriteBack transaction, the cache line must be in the Invalid state.
• After a WriteClean transaction, the cache line must be in a Clean state.

D4.3.4 State changes associated with cache maintenance operations

The cache maintenance transactions are:
• CleanShared.
• CleanInvalid.
• MakeInvalid.

Before issuing a cache maintenance transaction, the master must ensure that:
• For CleanShared, the cache line must be in a Clean or Invalid state.
• For CleanInvalid and MakeInvalid, the cache line must be in the Invalid state.

Note
 A cache maintenance transaction does not change the cache line state.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-207
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.4 State change descriptions
D4.4 State change descriptions
The cache line state changes associated with a transaction are defined in the following sections:
• Read transactions on page D4-209.
• Clean transactions on page D4-215.
• Make transactions on page D4-218.
• Write transactions on page D4-220.
• Evict transactions on page D4-225.

For each transaction, the starting state for the transaction and the three possible end state groups are given. The three
possible end state groups are:

• The expected end states, which are also the end states that this specification recommends.

• The full list of legal end states for a cached master that supports an external snoop filter. This set of end states
takes into account that:
— A cache line in UniqueClean state can always be held in SharedClean state.
— A cache line in UniqueDirty state can always be held in SharedDirty state.

• The full list of legal end states for a cached master that does not support an external snoop filter. This full list
of legal end states includes the legal end states for external snoop filter support, and takes into account that
a cache line in UniqueClean state, or SharedClean state, can be in the Invalid state.

Some transactions have two tables provided. The first table shows the expected starting states when the transaction
is issued. The second table shows the other permitted starting states for the transaction that is not normally issued.
For example, a ReadShared transaction with a Valid starting state. Typically, the transaction and starting state
combinations in the second table are associated with a speculative read where the master issues a transaction before
it has determined the state of the cache line in its local cache.

Any state that is not shown as a starting state in the tables is not a legal starting state.

The starting state is defined as the cache line state just before the transaction response is received by the initiating
master. If the initiating master receives a snoop transaction to the same cache line between issuing a transaction and
receiving the associated response, then the cache line state changes required by the snoop transaction must be
applied first. See Chapter D5 Snoop Transactions.

The following abbreviations are used for the cache line states:
UC UniqueClean
UD UniqueDirty
SC SharedClean
SD SharedDirty
I Invalid
D4-208 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.5 Read transactions
D4.5 Read transactions
This section defines the state changes associated with the Read transaction group that are issued on the AR channel.
The Read transactions are:
• ReadNoSnoop.
• ReadOnce on page D4-210.
• ReadClean on page D4-210.
• ReadNotSharedDirty on page D4-211.
• ReadShared on page D4-212.
• ReadUnique on page D4-213.

D4.5.1 ReadNoSnoop

ReadNoSnoop is a read transaction that is used in a region of memory that is not Shareable with other masters. The
transaction response requirements are:
• The IsShared response must be deasserted.
• The PassDirty response must be deasserted.

Table D4-1 shows the expected cache line state changes for the ReadNoSnoop transaction:

Note
 A ReadNoSnoop transaction does not indicate when the cache line is allocated after the transaction has completed.

Table D4-2 shows the other permitted cache line state changes for the ReadNoSnoop transaction:

Table D4-1 Expected ReadNoSnoop cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadNoSnoop I 00 I, UC I, UC, SC I, UC, SC

Table D4-2 Other permitted ReadNoSnoop cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadNoSnoop UC 00 I, UC I, UC, SC I, UC, SC

UD 00 UD UD, SD UD, SD

SC 00 I, UC I, UC, SC I, UC, SC

SD 00 UD UD, SD UD, SD
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-209
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.5 Read transactions
D4.5.2 ReadOnce

ReadOnce is a read transaction that is used in a region of memory that is Shareable with other masters. This
transaction is used when a snapshot of the data is required. The location is not cached locally for future use.

The transaction response requirements are:
• The IsShared response indicates that the cache line is shared or unique.
• The PassDirty response must be deasserted.

Table D4-3 shows the expected cache line state changes for the ReadOnce transaction:

Table D4-4 shows the other permitted cache line state changes for the ReadOnce transaction:

D4.5.3 ReadClean

ReadClean is a read transaction that is used in a region of memory that is Shareable with other masters. A ReadClean
transaction is guaranteed not to pass responsibility for updating main memory to the initiating master.

Typically, a ReadClean transaction is used by a master that wants to obtain a clean copy of a cache line, for example
a master with a write-through cache.

The transaction response requirements are:
• The IsShared response indicates that the cache line is shared or unique.
• The PassDirty response must be deasserted.

Table D4-3 Expected ReadOnce cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadOnce I 00 I I I

10 I I I

Table D4-4 Other permitted ReadOnce cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadOnce UC 00 UC UC, SC I, UC, SC

UD 00 UD UD, SD UD, SD

SC 00 UC UC, SC I, UC, SC

10 SC SC I, SC

SD 00 UD UD, SD UD, SD

10 SD SD SD
D4-210 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.5 Read transactions
Table D4-5 shows the expected cache line state changes for the ReadClean transaction:

Table D4-6 shows other permitted cache line state changes for the ReadClean transaction:

D4.5.4 ReadNotSharedDirty

ReadNotSharedDirty is a read transaction that is used in a region of memory that is Shareable with other masters.
A ReadNotSharedDirty transaction can complete with any combination of the IsShared and PassDirty responses
except for IsShared and PassDirty asserted.

Typically, the transaction is used by a cached master that is carrying out a load operation and can accept the cache
line in any state except the SharedDirty state.

The transaction response requirements are:
• The IsShared response indicates that the cache line is shared or unique.
• The PassDirty response indicates that the cache line is clean or dirty.
• If the IsShared response indicates that the cache line is shared, then the PassDirty response must indicate that

the cache line is clean.

Table D4-7 shows the expected cache line state changes for the ReadNotSharedDirty transaction:

Table D4-5 Expected ReadClean cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadClean I 00 UC UC, SC I, UC, SC

10 SC SC I, SC

Table D4-6 Other permitted ReadClean cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadClean UC 00 UC UC, SC I, UC, SC

UD 00 UD UD, SD UD, SD

SC 00 UC UC, SC I, UC, SC

10 SC SC I, SC

SD 00 UD UD, SD UD, SD

10 SD SD SD

Table D4-7 Expected ReadNotSharedDirty cache line state changes

Transaction Start
state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadNotSharedDirty I 00 UC UC, SC I, UC, SC

01 UD UD, SD UD, SD

10 SC SC I, SC
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-211
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.5 Read transactions
Table D4-8 shows other permitted cache line state changes for the ReadNotSharedDirty transaction:

Note
 If a cache line starts in the SharedClean state, and the transaction response has PassDirty asserted, the cache line
must move to a Dirty state.

D4.5.5 ReadShared

ReadShared is a read transaction that is used in a region of memory that is Shareable with other masters. A
ReadShared transaction can complete with any combination of the IsShared and PassDirty responses.

Typically, the ReadShared transaction is used by a cached master that is carrying out a load operation and can accept
the cache line in any state.

The transaction response requirements are:
• The IsShared response indicates that the cache line is shared or unique.
• The PassDirty response indicates that the cache line is clean or dirty.

Table D4-9 shows the expected cache line state changes for the ReadShared transaction:

Table D4-8 Other permitted ReadNotSharedDirty cache line state changes

Transaction Start
state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadNotSharedDirty UC 00 UC UC, SC I, UC, SC

UD 00 UD UD, SD UD, SD

SC 00 UC UC, SC I, UC, SC

01 UD UD, SD UD, SD

10 SC SC I, SC

SD 00 UD UD, SD UD, SD

10 SD SD SD

Table D4-9 Expected ReadShared cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadShared I 00 UC UC, SC I, UC, SC

01 UD UD, SD UD, SD

10 SC SC I, SC

11 SD SD SD
D4-212 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.5 Read transactions
Table D4-10 shows other permitted state changes for the ReadShared transaction:

Note
 If a cache line starts in the SharedClean state, and the transaction response has PassDirty asserted, the cache line
must move to a Dirty state.

D4.5.6 ReadUnique

A ReadUnique transaction is used in a region of memory that is Shareable with other masters. The transaction gets
a copy of the data and also ensures that the cache line can be held in a Unique state. This permits the master to carry
out a store operation to the cache line.

Typically, a ReadUnique transaction is used when the initiating master is carrying out a partial cache line store and
does not have a copy of the cache line.

The transaction response requirements are:
• The IsShared response must be deasserted to indicate that the cache line is unique.
• The PassDirty response must indicate when the cache line is clean or dirty.

Note
 The cache line state changes associated with the ReadUnique transaction that Table D4-11 and Table D4-12 on
page D4-214 show, do not include the cache line state changes associated with any subsequent store operation by
the master when the cache line is in a Unique state.

Table D4-11 shows the expected cache line state changes for the ReadUnique transaction:

Table D4-10 Other permitted ReadShared cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadShared UC 00 UC UC, SC I, UC, SC

UD 00 UD UD, SD UD, SD

SC 00 UC UC, SC I, UC, SC

01 UD UD, SD UD, SD

10 SC SC I, SC

11 SD SD SD

SD 00 UD UD, SD UD, SD

10 SD SD SD

Table D4-11 Expected ReadUnique cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadUnique I 00 UC UC, SC I, UC, SC

01 UD UD, SD UD, SD
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-213
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.5 Read transactions
Table D4-12 shows other permitted cache line state changes for the ReadUnique transaction:

Table D4-12 Other permitted ReadUnique cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

ReadUnique UC 00 UC UC, SC I, UC, SC

UD 00 UD UD, SD UD, SD

SC 00 UC UC, SC I, UC, SC

01 UD UD, SD UD, SD

SD 00 UD UD, SD UD, SD
D4-214 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.6 Clean transactions
D4.6 Clean transactions
This section defines the state changes associated with the Clean transaction group that are issued on the AR channel.
The Clean transactions are:
• CleanUnique.
• CleanShared on page D4-216.
• CleanInvalid on page D4-217.

D4.6.1 CleanUnique

A CleanUnique transaction is used in a region of memory that is Shareable with other masters. The CleanUnique
transaction ensures that:

• The cache line can be held in a Unique state. This permits the master to carry out a store operation to the
cache line, but the transaction does not obtain a copy of the data for the master.

• Data held in another cache in a Dirty state is written to main memory and all other copies of the cache line
are removed.

Typically, a CleanUnique transaction is used before a partial cache line store operation to Shareable memory when
the master already has a copy of the data.

The transaction response requirements are:
• The IsShared response must be deasserted to indicate that the cache line is unique.
• The PassDirty response must be deasserted.

Note
 The cache line state changes associated with the CleanUnique transaction that Table D4-13 and Table D4-14 on
page D4-216 show, do not include the cache line state changes associated with any subsequent store operation by
the master when the cache line is in a Unique state.

Table D4-13 shows the expected cache line state changes for the CleanUnique transaction:

Table D4-13 Expected CleanUnique cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

CleanUnique SC 00 UC UC, SC I, UC, SC

SD 00 UD UD, SD UD, SD
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-215
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.6 Clean transactions
Table D4-14 shows other permitted cache line state changes for the CleanUnique transaction:

On completing a CleanUnique transaction, the initiating master has permission to store to the cache line. If the cache
line was in the Invalid state before the store operation, then the store must be a full cache line size for the cache line
to be allocated in the cache. After the full cache line store, the cache line is in the UniqueDirty state. The store must
occur atomically with the completion of the CleanUnique transaction. Therefore, any snoop that occurs after the
CleanUnique transaction must be delayed until the store is complete.

CleanUnique transactions can be used for Exclusive accesses, see Chapter D9 Exclusive Accesses.

Snoop filter cache line allocation awareness

A snoop filter regards a cache line as allocated after the completion of a CleanUnique transaction. Therefore, the
snoop filter has the correct information on the allocation of a cache line in the following circumstances:

• The cache line was allocated before the CleanUnique transaction and remains allocated after the
CleanUnique transaction completes.

• If the cache line was not allocated before the CleanUnique transaction, or the cache line was invalidated
during the CleanUnique transaction, then when the CleanUnique transaction completes the master:

— Performs a full cache line store and the cache line is allocated.

— Performs a WriteBack transaction of either a full or partial cache line store, and indicates to the snoop
filter that the cache line is no longer allocated.

— Reissues another transaction, for example a ReadUnique transaction, before performing a full or
partial cache line store and the cache line becomes allocated.

— Does not perform a store operation. In this situation, the master must issue an Evict transaction to
indicate to the snoop filter that the cache line is no longer allocated.

D4.6.2 CleanShared

A CleanShared transaction is a broadcast cache clean operation. It can be used in Shareable and Non-shareable
memory regions.

A CleanShared transaction is used to ensure that all cached copies of a main memory location are clean.

Note
 If the master carrying out the cache maintenance operation holds the cache line in a Dirty state, then the master must
carry out a WriteBack or WriteClean transaction so that the cache line is in a Clean state before it issues a
CleanShared transaction. While a CleanShared is in progress, the master is permitted to write to the line, so it may
become Dirty before the CleanShared completes.

The transaction response requirements are:
• The IsShared response indicates that the cache line is shared or unique.
• The PassDirty response must be deasserted.

Table D4-14 Other permitted CleanUnique cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

CleanUnique I 00 I Ia I

UC 00 UC UC, SC I, UC, SC

UD 00 UD UD, SD UD, SD

a. See Snoop filter cache line allocation awareness.
D4-216 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.6 Clean transactions
Table D4-15 shows the expected cache line state changes for the CleanInvalid transaction:

D4.6.3 CleanInvalid

A CleanInvalid transaction is a broadcast cache clean and invalidate operation. It can be used in Shareable and
Non-shareable memory regions.

A CleanInvalid transaction is used to ensure that main memory is updated and there are no cached copies of a main
memory location.

Note
 If the master carrying out the cache maintenance operation holds the cache line in a Dirty state, then the master must
carry out a WriteBack or WriteClean transaction. Then the master must invalidate the cache line, so that the cache
line is in the Invalid state before it issues a CleanInvalid transaction.

The transaction response requirements are:
• The IsShared response must be deasserted.
• The PassDirty response must be deasserted.

Table D4-16 shows the expected cache line state changes for the CleanInvalid transaction:

Table D4-15 Expected CleanShared cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

CleanShared I 00 I I I

10 I I I

UC 00 UC UC, SC, UDa, SDa I, UC, SC, UDa,
SDa

SC 00 UC UC, SC I, UC, SC

10 SC SC I, SC

a. A line in the UC state might become Dirty as a result of a local write, rather than the response to a CleanShared transaction.

Table D4-16 Expected CleanInvalid cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

CleanInvalid I 00 I I I
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-217
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.7 Make transactions
D4.7 Make transactions
This section defines the state changes associated with the Make transaction group that are issued on the AR channel.
The Make transactions are:
• MakeUnique.
• MakeInvalid on page D4-219.

D4.7.1 MakeUnique

A MakeUnique transaction is used in a region of memory that is Shareable with other masters. The MakeUnique
transaction ensures that:

• The cache line can be held in a Unique state. This permits the master to carry out a store operation to the
cache line, but the transaction does not obtain a copy of the data for the master.

• All other copies of the cache line are removed.

Note
 A MakeUnique transaction must be used only by an initiating master that is carrying out a full cache line store
operation.

The transaction response requirements are:
• The IsShared response must be deasserted indicating that the cache line is unique.
• The PassDirty response must be deasserted.

The expected cache line state changes for a MakeUnique transaction are different from all other transactions
because a MakeUnique transaction must be coupled to a full cache line store operation.

Table D4-17 shows the expected cache line state changes for the MakeUnique transaction with a full cache line store
operation:

Table D4-18 shows the other permitted cache line state changes for the MakeUnique transaction with a full cache
line store operation:

Table D4-17 Expected MakeUnique cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

MakeUnique with
full cache line store

I 00 UD UD, SD UD, SD

SC 00 UD UD, SD UD, SD

SD 00 UD UD, SD UD, SD

Table D4-18 Other permitted MakeUnique cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

MakeUnique with
full cache line store

UC 00 UD UD, SD UD, SD

UD 00 UD UD, SD UD, SD
D4-218 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.7 Make transactions
D4.7.2 MakeInvalid

A MakeInvalid transaction is a broadcast cache invalidate operation. It can be used in Shareable and Non-shareable
memory regions.

A MakeInvalid transaction is used to ensure that there are no cached copies of a main memory location.

Note
 If the master carrying out the cache maintenance operation holds the cache line in a Valid state, then the master must
invalidate the cache line, so that the cache line is in the Invalid state before it issues a MakeInvalid transaction.

The transaction response requirements are:
• The IsShared response must be deasserted.
• The PassDirty response must be deasserted.

Table D4-19 shows the expected cache line state changes for the MakeInvalid transaction:

Table D4-19 Expected MakeInvalid cache line state changes

Transaction Start state RRESP[3:2] Expected end state Legal end state

IsShared/PassDirty With Snoop Filter No Snoop Filter

MakeInvalid I 00 I I I
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-219
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.8 Write transactions
D4.8 Write transactions
This section defines the state changes associated with the Write transaction group that are issued on the AW channel.
The Write transactions are:
• WriteNoSnoop.
• WriteUnique on page D4-221.
• WriteLineUnique on page D4-221.
• WriteBack on page D4-222.
• WriteClean on page D4-222.
• WriteEvict on page D4-223.
• Restrictions on WriteUnique and WriteLineUnique usage on page D4-224.
• Handling overlapping write transactions on page D4-226.

D4.8.1 WriteNoSnoop

A WriteNoSnoop transaction is used in a region of memory that is not Shareable with other masters. A
WriteNoSnoop transaction can result from:
• A program action, such as a store operation.
• An update of main memory for a cache line that is in a Non-shareable region of memory.

Table D4-20 shows the expected cache line state changes for the WriteNoSnoop transaction:

Note
 A cache line must only move from the Invalid state to a Valid state if a full cache line store has been performed.

Table D4-21 shows the other permitted cache line state changes for the WriteNoSnoop transaction:

Table D4-20 Expected WriteNoSnoop cache line state changes

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteNoSnoop I I I, UC, SC I, UC, SC

UC UC I, UC, SC I, UC, SC

UD UC I, UC, SC I, UC, SC

Table D4-21 Other permitted WriteNoSnoop cache line state changes

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteNoSnoop SC UC I, UC, SC I, UC, SC

SD UC I, UC, SC I, UC, SC
D4-220 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.8 Write transactions
D4.8.2 WriteUnique

A WriteUnique transaction is used in a region of memory that is Shareable with other masters. A single write occurs
that is required to propagate to main memory or a downstream cache.

There are restrictions on the use of WriteUnique transactions by cached masters that can hold dirty cache lines. See
Restrictions on WriteUnique and WriteLineUnique usage on page D4-224.

Table D4-22 shows the expected cache line state changes for the WriteUnique transaction:

In the case of master holding a line in a Clean state while performing a WriteUnique transaction, the cache line must
be updated to the new value when the WriteUnique transaction response is received.

D4.8.3 WriteLineUnique

A WriteLineUnique transaction is used in a region of memory that is Shareable with other masters. A single write
occurs, that is required to propagate to main memory or a downstream cache.

Note
 A WriteLineUnique transaction must be a full cache line store and all bytes within the cache line must be updated.

There are restrictions on the use of WriteLineUnique transactions by cached masters that can hold dirty cache lines.
See Restrictions on WriteUnique and WriteLineUnique usage on page D4-224.

Table D4-23 shows the expected cache line state changes for the WriteLineUnique transaction.

In the case of master holding a line in a Clean state while performing a WriteLineUnique transaction, the cache line
must be updated to the new value when the WriteLineUnique transaction response is received.

Table D4-22 Expected WriteUnique cache line state changes

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteUnique I I I I

UC SC SC I, SC

SC SC SC I, SC

Table D4-23 Expected WriteLineUnique cache line state changes

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteLineUnique I I I I

UC SC SC I, SC

SC SC SC I, SC
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-221
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.8 Write transactions
D4.8.4 WriteBack

A WriteBack transaction is a write that can be used in Shareable and Non-shareable regions of memory. A
WriteBack transaction is a write of a dirty cache line to update main memory or a downstream cache.

Note
 The difference between a WriteBack and a WriteClean transaction is whether the cache line remains allocated in the
cache for a Shareable region of memory. After a WriteBack transaction, the cache line is no longer allocated. After
a WriteClean transaction, the cache line remains allocated.

The permitted state changes that Table D4-24 and Table D4-25 show, do not take into account a preceding store
operation that makes a cache line dirty. If a store operation and WriteBack transaction occur as an atomic process,
then the legal cache line state changes can be determined by combining the legal state changes for a store operation.
See State changes associated with a coherent store on page D4-206, followed by the legal state changes for a
WriteBack transaction.

Table D4-24 shows the expected cache line state changes for the WriteBack transaction in a Shareable memory
region.

Table D4-25 shows the expected cache line state changes for the WriteBack transaction in a Non-shareable memory
region.

D4.8.5 WriteClean

A WriteClean transaction is a write operation that can be used in Shareable and Non-shareable regions of memory.
A WriteClean transaction is a write of a dirty cache line to update main memory or a downstream cache.

Note
 The difference between a WriteClean and a WriteBack transaction is the state of the cache line that remains allocated
in the cache for a Shareable region of memory. After a WriteClean transaction, the cache line remains allocated.
After a WriteBack transaction, the cache line is no longer allocated.

The permitted state changes that Table D4-26 on page D4-223 and Table D4-27 on page D4-223 show, do not take
into account any preceding store operation that makes a cache line dirty. If a store operation and WriteBack
transaction occur as an atomic process, then the legal cache line state changes can be determined by combining the
legal state changes for a store operation. See State changes associated with a coherent store on page D4-206,
followed by the legal state changes for a WriteClean transaction.

Table D4-24 Expected WriteBack cache line state changes in a Shareable memory region

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteBack UD I I I, UC, SC

SD I I I, SC

Table D4-25 Expected WriteBack cache line state changes in a Non-shareable memory region

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteBack UD I I, UC, SC I, UC, SC

SD I I, UC, SC I, UC, SC
D4-222 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.8 Write transactions
Table D4-26 shows the expected cache line state changes for the WriteClean transaction in a Shareable memory
region.

Table D4-27 shows the expected cache line state changes for the WriteClean transaction in a Non-shareable memory
region.

D4.8.6 WriteEvict

A WriteEvict transaction can be used when evicting a clean cache line. This transaction is used to write the line to
a lower level of the cache hierarchy, such as an L3 or system level cache. A WriteEvict transaction is not required
to update main memory.

A WriteEvict transaction must only be used in the following circumstances:
• When the cache line is held in a UniqueClean state.
• When the cache line has not been speculatively fetched from a different shareability domain.

Note
 It is important that a cache line that could have been speculatively fetched, so that it was located outside of

its shareability domain, could become out-of-date as the cache line is not required to be updated by
subsequent stores to the cache line. If a cache line could be a stale copy, then it must not be written back into
its shareability domain by the use of a WriteEvict transaction.

A WriteEvict transaction can be discarded.

A component can use the WriteEvict_Transaction property to declare if it supports WriteEvict transactions. Any
master must permit the WriteEvict transaction to be disabled to ensure that the master operates correctly with any
previous version of the ACE interface.

Table D4-28 shows the expected cache line state changes for the WriteEvict transaction.

Table D4-26 Expected WriteClean cache line state changes in a Shareable memory region

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteClean UD UC UC, SC I, UC, SC

SD SC SC I, SC

Table D4-27 Expected WriteClean cache line state changes in a Non-shareable memory region

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteClean UD UC I, UC, SC I, UC, SC

SD UC I, UC, SC I, UC, SC

Table D4-28 Expected WriteEvict cache line state changes

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

WriteEvict UC I I I
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-223
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.8 Write transactions
D4.8.7 Restrictions on WriteUnique and WriteLineUnique usage

Typically, WriteUnique and WriteLineUnique transactions are used by a non-cached component that is writing to a
Shareable region of memory. However, WriteUnique and WriteLineUnique transactions can be used by a cached
component that meets the requirements.

A cached component must be able to complete any incoming snoop transaction while a WriteUnique or
WriteLineUnique transaction is in progress. A cached component must:

• Complete any outstanding WriteBack, WriteClean, WriteEvict, or Evict transactions before issuing a
WriteUnique or WriteLineUnique transaction.

Note
 No additional WriteBack, WriteClean, WriteEvict, or Evict transactions can be issued until all outstanding

WriteUnique or WriteLineUnique transactions are completed.

• Complete any incoming snoop transactions without the use of WriteBack, WriteClean, WriteEvict, or Evict
transactions while a WriteUnique or WriteLineUnique transaction is in progress.

Note
 WriteNoSnoop transactions can also be blocked behind WriteUnique and WriteLineUnique transactions.

Therefore, the design of the master must ensure that an incoming snoop transaction can complete when a
WriteNoSnoop transaction is blocked by an outstanding WriteUnique or WriteLineUnique transaction.

This is necessary, because earlier transactions that also might require earlier snoop transactions to complete, can
prevent WriteUnique and WriteLineUnique transactions from progressing.

These requirements restrict the use of WriteUnique and WriteLineUnique transactions to components that can
either:

• Complete all snoop transactions without requiring any data to be supplied, for example write-through caches
that do not keep dirty cache lines for Shareable data.

• Complete snoop transactions by using the snoop data channel, CDDATA.
D4-224 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.9 Evict transactions
D4.9 Evict transactions
This section defines the state changes associated with the Evict transaction group that are issued on the AW channel.

D4.9.1 Evict

An Evict transaction indicates that a cache line has been evicted from a master’s local cache. There is no data
transfer associated with an Evict transaction. An Evict transaction must be used only in a Shareable memory region.

Note
 An Evict transaction is only used by a master that supports a snoop filter. When used, it is permitted, but not
expected, for a master to evict a cache line without issuing an Evict transaction.

Table D4-29 shows the expected cache line state changes for the Evict transaction.

Table D4-29 Expected Evict cache line state changes in a Shareable memory region

Transaction Start state Expected end state Legal end state

With Snoop Filter No Snoop Filter

Evict UC I I Not used

SC I I Not used
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-225
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.10 Handling overlapping write transactions
D4.10 Handling overlapping write transactions
This section describes the expected behavior when two masters attempt stores to the same cache line in a Shareable
region of memory at approximately the same time. When this happens, it is the responsibility of the interconnect to
sequence the order that the transactions occur.

The master that gets sequenced first proceeds with the transaction as normal. However, the master that is sequenced
second sees the transactions that are associated with the first master’s store on its snoop port while attempting to
carry out a store.

The following sections describe the expected behavior from the standpoint of the master that is sequenced second.
For brevity, the master that is sequenced first is referred to as Master1 and the master that is sequenced second is
referred to as Master2.

D4.10.1 Overlapping ReadUnique

If Master2 has issued a ReadUnique transaction because it required a copy of the data, the following occurs:

1. Master2 issues a ReadUnique transaction.

2. Master2 then sees one of the following transactions on its snoop port from Master1 attempting a write to the
same line:
• ReadUnique.
• CleanInvalid.
• MakeInvalid.

At this point, Master2 must invalidate any local copy that it has of the cache line. If Master2 does not have a
local copy of the cache line, then no action is required.

3. When the ReadUnique completes, it returns with the updated copy of the cache line that includes the store
that is performed by Master1.

4. Master2 can perform its store.

D4.10.2 Overlapping MakeUnique

If Master2 has issued a MakeUnique transaction because it was performing a full cache line write, the following
occurs:

1. Master2 issues a MakeUnique transaction.

2. Master2 sees one of the following transactions on its snoop port from Master1 attempting a write to the same
line:
• ReadUnique.
• CleanInvalid.
• MakeInvalid.

At this point, Master2 must invalidate any local copy that it has of the cache line. If Master2 does not have a
local copy of the cache line, then no action is required.

3. When the MakeUnique completes, Master2 can perform its full cache line store.
D4-226 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.10 Handling overlapping write transactions
D4.10.3 Overlapping CleanUnique

If Master2 has issued a CleanUnique transaction because it was performing a partial line store but it already had a
cached copy of the line, the following occurs:

1. Master2 issues a CleanUnique transaction.

2. Master2 sees one of the following transactions on its snoop port from Master1 attempting a write to the same
line:
• ReadUnique.
• CleanInvalid.
• MakeInvalid.

At this point, Master2 must respond to the snoop appropriately and then invalidate its local copy of the cache
line.

3. When the CleanUnique completes, Master2 cannot perform its local store because it has lost its local copy of
the cache line.

4. Master2 can issue a new ReadUnique transaction to obtain a copy of the line.

5. Master2 can perform its store.

A master can remove the need to issue a new ReadUnique the transaction, as described in the CleanUnique case, by
initially issuing a ReadUnique transaction instead of a CleanUnique transaction. However, this sometimes results
in a fetch from main memory occurring when it is not required.

Alternatively, a master can remove the need to issue a new ReadUnique transaction by performing a partial line
WriteBack to main memory, that only updates the required bytes, when its CleanUnique transaction completes and
the master has permission to store to the line. This does mean that the master does not retain a copy of the line.

It is acceptable for a master to use a CleanUnique transaction when carrying out a full cache line store. In this case,
the master does not have to retry the transaction with a ReadUnique. It can simply perform the full cache line store
when the CleanUnique is complete.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D4-227
ID122117 Non-Confidential

D4 Coherency Transactions on the Read Address and Write Address Channels
D4.10 Handling overlapping write transactions
D4-228 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D5
Snoop Transactions

This chapter describes the snoop transactions that are seen on the snoop address channel. Both the required and
protocol-recommended snoop transaction behaviors are described. It contains the following sections:
• Mapping coherency operations to snoop operations on page D5-230.
• General requirements for snoop transactions on page D5-233.
• Snoop transactions on page D5-239.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D5-229
ID122117 Non-Confidential

D5 Snoop Transactions
D5.1 Mapping coherency operations to snoop operations
D5.1 Mapping coherency operations to snoop operations
This section describes the snoop transactions that are seen on the snoop address channel by a cached master that is
being snooped by an initiating master.

When an initiating master issues a transaction, the interconnect is responsible for carrying out any snoop
transactions that are required to complete the original transaction.

Not all transactions that are issued by an initiating master are permitted on the snoop address channel. Table D5-1
shows the protocol-recommended mappings between transactions that are issued by the initiating master and the
snoop transactions that are seen on the snoop address channel by a cached master.

Note
 The interconnect can use other mappings that force the same cache line state changes in a snooped master. See
Alternative snoop transactions on page D5-231.

Table D5-1 Recommended transaction mappings

Transaction from initiating master Transaction to snooped master

ReadNoSnoop Not snooped

ReadOnce ReadOnce

ReadClean ReadClean

ReadNotSharedDirty ReadNotSharedDirty

ReadShared ReadShared

ReadUnique ReadUnique

CleanUnique CleanInvalid

MakeUnique MakeInvalid

CleanShared CleanShared

CleanInvalid CleanInvalid

MakeInvalid MakeInvalid

WriteNoSnoop Not snooped

WriteUnique CleanInvalid

WriteLineUnique MakeInvalid

WriteBack Not snooped

WriteClean Not snooped

WriteEvict Not snooped

Evict Not snooped
D5-230 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D5 Snoop Transactions
D5.1 Mapping coherency operations to snoop operations
D5.1.1 Permitted snoop transactions

Although the protocol does not require a fixed set of transaction mappings, the protocol does require that only the
following defined subset of transactions is seen on the snoop address channel of a cached master:
• ReadOnce.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.
• CleanInvalid.
• MakeInvalid.
• CleanShared.

D5.1.2 Transactions not permitted as snoop transactions

The following transactions must not be seen on the snoop address channel of a cached master:
• ReadNoSnoop.
• CleanUnique.
• MakeUnique.
• WriteNoSnoop.
• WriteUnique.
• WriteLineUnique.
• WriteBack.
• WriteClean.
• WriteEvict.
• Evict.

D5.1.3 Alternative snoop transactions

Table D5-2 shows each permitted snoop transaction on the snoop address channel, the required cache line state
change for the transaction, and the alternative snoop transaction that can be used. For completeness, the snoop
transaction option column includes the original snoop transaction.

Table D5-2 Snoop transaction options on the address snoop channel

Snoop transaction Required cache line state change Snoop transaction option

ReadOnce None ReadOnce
ReadClean, ReadNotSharedDirty, ReadShared
ReadUnique, CleanInvalid
CleanShared

ReadClean Shared or Invalid ReadClean, ReadNotSharedDirty, ReadShared
ReadUnique, CleanInvalid

ReadNotSharedDirty Shared or Invalid ReadClean, ReadNotSharedDirty, ReadShared
ReadUnique, CleanInvalid

ReadShared Shared or Invalid ReadClean, ReadNotSharedDirty, ReadShared
ReadUnique, CleanInvalid

ReadUnique Invalid ReadUnique, CleanInvalid
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D5-231
ID122117 Non-Confidential

D5 Snoop Transactions
D5.1 Mapping coherency operations to snoop operations
Mapping to different snoop transactions can simplify the design of a snooped master. For example, a snooped master
can handle all snoop transactions in the same way as a ReadUnique transaction. This is permitted because a
ReadUnique transaction, as Table D5-2 on page D5-231 shows, is an alternative snoop transaction for all other
snoop transactions.

MakeInvalid Invalid ReadUnique, CleanInvalid, MakeInvalid

CleanInvalid Invalid ReadUnique, CleanInvalid

CleanShared Clean or Invalid ReadUnique, CleanInvalid
CleanShared

Table D5-2 Snoop transaction options on the address snoop channel (continued)

Snoop transaction Required cache line state change Snoop transaction option
D5-232 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D5 Snoop Transactions
D5.2 General requirements for snoop transactions
D5.2 General requirements for snoop transactions
For each snoop transaction, the protocol specifies required and recommended behaviors.

Table D5-3 shows the required behavior for each snoop transaction:

Note
 If a cache line is in the Dirty state and the associated cache does not assert the PassDirty snoop response,
CRRESP[2], the cache line can remain in the Dirty state. If a cache line is in the Dirty state and the associated cache
does assert the PassDirty snoop response, then the cache line must move to a Clean or Invalid state.

The cache line end states in Table D5-3 are classified as follows:

Shared or Invalid The snooped cache must broadcast a transaction before it can perform a store to the cache line.
That is, the snooped cache must consider that another master can hold a copy of the cache line.

Invalid The snooped cache does not hold a copy of the line. This permits another agent to perform a store
to the cache line.

Clean or Invalid The snooped cache is not holding the cache line in a Dirty state. The snooped cache cannot
perform a memory update, using a WriteBack or WriteClean transaction, until a later store to the
cache line has occurred.

The following state changes must not occur due to a snoop transaction. A cache line must not move from:
• The Invalid state to any Valid state.
• A Clean state to a Dirty state.
• A Shared state to a Unique state.
• The UniqueDirty state to the UniqueClean state.

Note
 A cache line must not move from the UniqueDirty state to the UniqueClean state. Such a transition would indicate
that the interconnect has taken responsibility for writing back the cache line to main memory. Therefore, the cached
master must not issue a WriteBack or WriteClean transaction without requesting permission to store to the cache
line using an appropriate transaction.

The cache line end state that is permitted as a result of a snoop transaction is dependent on:
• The state of the cache line before the snoop.
• The snoop transaction that is issued.

Table D5-3 Required snoop transaction behavior

Snoop transaction Must transfer data if dirty End state must be
Shared or Invalid

End state must be
Invalid

End state must be
Clean or Invalid

ReadOnce Yes - - -

ReadClean Yes Yes - -

ReadNotSharedDirty Yes Yes - -

ReadShared Yes Yes - -

ReadUnique Yes - Yes -

CleanInvalid Yes - Yes -

MakeInvalid - - Yes -

CleanShared Yes - - Yes
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D5-233
ID122117 Non-Confidential

D5 Snoop Transactions
D5.2 General requirements for snoop transactions
Table D5-4 shows the permitted end states for valid combinations of the initial state and the issued snoop
transaction. Combinations of initial state and end state that are not permitted as a result of a snoop transaction are
excluded from Table D5-4.

A WriteBack, WriteClean, WriteEvict, or Evict transaction can occur while a snoop transaction is in progress.
Table D5-4 does not include the state transition that can occur as a result of these write or evict transactions
occurring. To understand such a scenario, the state transition for the WriteBack, WriteClean, WriteEvict, or Evict
transaction must be applied, followed by the snoop transaction state transition that Table D5-4 shows.

The following abbreviations are used for the cache line states:
UC UniqueClean
UD UniqueDirty
SC SharedClean
SD SharedDirty
I Invalid

Table D5-4 Permitted end states for combinations of initial state and snoop transaction

Cache line state Permitted for snoop transaction

Initial End ReadOnce
ReadClean
ReadNotSharedDirty
ReadShared

ReadUnique
CleanInvalid
MakeInvalid

Clean Shared

I I Yes Yes Yes Yes

UC I Yes Yes Yes Yes

UC Yes - - Yes

SC Yes Yes - Yes

UD I Yes Yes Yes Yes

UD Yes - - -

SC Yes Yes - Yes

SD Yes Yes - -

SC I Yes Yes Yes Yes

SC Yes Yes - Yes

SD I Yes Yes Yes Yes

SC Yes Yes - Yes

SD Yes Yes - -
D5-234 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D5 Snoop Transactions
D5.2 General requirements for snoop transactions
The requirements for the IsShared and PassDirty snoop response bits are as follows:

• If the end state of the cache line is any Valid state, the IsShared snoop response bit must be asserted.

• If the cache line moves from a Dirty state to a Clean state, the PassDirty snoop response bit must be asserted.

• If the line moves from a Dirty state to the Invalid state as a result of any snoop transaction, except
MakeInvalid, then the PassDirty snoop response bit must be asserted.

• If the cache line moves from a Dirty state to the Invalid state as a result of a MakeInvalid snoop transaction,
then the PassDirty snoop response bit can be asserted or deasserted.

The permitted state changes in Table D5-4 on page D5-234 are combined with these requirements in Table D5-5 to
show the permitted state changes and associated snoop response bits.

D5.2.1 Channel activity

The required channel activity is the same for all snoop transactions:
• The address is received on the AC channel.
• The response is returned on the CR channel.
• The data is provided, if required, on the CD channel.

The DataTransfer snoop response bit CRRESP[0], indicates that a data transfer is required.

The snoop response on CR and the snoop data on CD must only be provided after the ACVALID/ACREADY
handshake occurs.

Table D5-5 Associated snoop responses for combinations of initial state and snoop transaction

Cache line state Permitted for snoop transaction Snoop Response

Initial End ReadOnce
ReadClean
ReadNotSharedDirty
ReadShared

ReadUnique
CleanInvalid
MakeInvalid

CleanShared PassDirty IsShared

I I Yes Yes Yes Yes 0 0

UC I Yes Yes Yes Yes 0 0

UC Yes - - Yes 0 1

SC Yes Yes - Yes 0 1

UD I Yes Yes Yes Yes 1a 0

UD Yes - - - 0 1

SC Yes Yes - Yes 1 1

SD Yes Yes - - 0 1

SC I Yes Yes Yes Yes 0 0

SC Yes Yes - Yes 0 1

SD I Yes Yes Yes Yes 1a 0

SC Yes Yes - Yes 1 1

SD Yes Yes - - 0 1

a. For a MakeInvalid snoop transaction, these PassDirty responses are also permitted to be 0.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D5-235
ID122117 Non-Confidential

D5 Snoop Transactions
D5.2 General requirements for snoop transactions
D5.2.2 Snoop data transfers

A cached master can provide the data value of a cache line. The DataTransfer snoop response bit indicates that the
data value of the cache line is to be transferred.

If a cached master receives a snoop transaction other than MakeInvalid for a cache line that is in a Dirty state, then
the cached master must ensure that the data value is available so that the original transaction can complete. The
cached master can ensure that the data value is available by:
• Returning the data when it completes the snoop transaction.
• Carrying out a memory update, using a WriteBack or WriteClean transaction, before responding to the snoop

transaction.

Note
 When a cached master holds a cache line in a Dirty state, the cache line might be the only up-to-date copy of that
address location. Therefore, the data must be made available to any snoop transaction other than a MakeInvalid
snoop transaction.

Typically, data is transferred for the following read snoop transactions:
• ReadOnce.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

Table D5-6 shows protocol-recommended data transfer behavior for snoop transactions, assuming that better system
performance and lower power operation are achieved by providing data in response to these snoop transactions. This
behavior is not mandatory, and alternative schemes can be implemented.

D5.2.3 Memory update in progress

The protocol ensures that two components cannot update the same area of main memory at the same time.

If a snooped master receives a snoop transaction when it is updating main memory using either a WriteBack or
WriteClean transaction, then it is the responsibility of the snooped master to ensure that no other master can update
the same area of main memory at the same time. The snooped master achieves this by one of the following:

• Giving a snoop response with PassDirty deasserted and IsShared asserted, which does not pass permission to
store to the line and does not pass responsibility for updating memory.

• Delaying the snoop response until the snooped master has completed the update to main memory.

Table D5-6 Recommended data transfer behavior for snoop transactions

Snoop transaction Data transfer if cache line is Clean Data transfer if cache line is Dirty

ReadOnce Yes Yes

ReadClean Yes Yes

ReadNotSharedDirty Yes Yes

ReadShared Yes Yes

ReadUnique Yes Yes

CleanInvalid No Yes

MakeInvalid No No

CleanShared No Yes
D5-236 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D5 Snoop Transactions
D5.2 General requirements for snoop transactions
When a snooped master is passing the permission to store to a cache line by sending a suitable snoop response, all
write transactions to update main memory must have completed before the cycle in which the snoop response is
given on the CR channel.

Note
 If a snoop response is given while a memory update is in progress, the initial cache state must be considered prior
to the memory update completing. This limits certain combinations of snoop response that can be given. For
example, the response to a CleanShared snoop must have PassDirty asserted if the line is in a Dirty state. However,
if it has a memory update in progress from that line, the master is not permitted to assert PassDirty. Therefore, the
master must wait for the update to complete before responding to a CleanShared snoop.

D5.2.4 WasUnique snoop response

The WasUnique snoop response, CRRESP[4] indicates that the snooped cache line was held in a Unique state
before the snoop transaction.

The WasUnique snoop response must be asserted only if the cache line was held in a Unique state. No other cache
can have a copy of the cache line. A WasUnique response indicates that the interconnect does not have to carry out
further snoop transactions to other cached masters because no other cache can hold a copy of the data.

A cached master does not have to generate the WasUnique response. The protocol permits CRRESP[4] to be fixed
as deasserted. However, always deasserting WasUnique in this way can result in the cache line being provided to
the initiating master as Shared, when it could have been provided as Unique. This might result in additional caches
being snooped unnecessarily.

D5.2.5 Non-blocking requirements for a snooped master

The protocol defines rules for snooped masters and the interconnect to ensure transactions always progress through
a system. The rules stipulate which transactions must always progress and which transactions can wait for others to
complete.

The rules for the interconnect are defined in Chapter D6 Interconnect Requirements. See Non-blocking requirements
on page D6-258.

The rules that apply to a cached master are:

• A master must complete any snoop transaction, to any address, before any of the following transactions,
issued by the master, can be guaranteed to complete:

— Any transaction, to any address, issued on the AR channel.

— A WriteUnique or WriteLineUnique transaction, to any address, issued on the AW channel.

Note
 See also Restrictions on WriteUnique and WriteLineUnique usage on page D4-224.

• A master is permitted to wait for the following transactions to complete, to any address, before completing a
snoop transaction:
— WriteNoSnoop.
— WriteBack.
— WriteClean.
— WriteEvict.
— Evict.

• If the response to a snoop transaction could result in the interconnect generating a write to main memory, or
another master being given permission to write the cache line, then the master being snooped must complete
any WriteBack, WriteClean, or WriteEvict transaction that is in progress for the cache line before it provides
a response to the snoop transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D5-237
ID122117 Non-Confidential

D5 Snoop Transactions
D5.2 General requirements for snoop transactions
• A master must not wait for a WriteUnique or WriteLineUnique transaction to complete before completing a
snoop transaction. If a snoop transaction is received by a master and a WriteUnique or WriteLineUnique
transaction is in progress then the snoop transaction must be completed without the use of the AW and W
channels.

Note
 This requirement means that if a master has a WriteUnique or WriteLineUnique transaction in progress for

any cache line that is in a Dirty state, and it receives a snoop transaction other than a MakeInvalid transaction,
then it must return the data on the CD channel.

Figure D5-1 shows the non-blocking requirements.

Figure D5-1 Required transaction channel ordering

In summary, the requirements are:

• Any transaction on the AR channel can be stalled waiting for a transaction on the AC channel.

• Any snoop transaction on the AC channel can be stalled waiting for a write transaction on the AW channel,
except for a WriteUnique or WriteLineUnique transaction.

AW AR

AC
D5-238 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D5 Snoop Transactions
D5.3 Snoop transactions
D5.3 Snoop transactions
This section describes each of the snoop transactions and provides information on the recommended behavior where
options exist.

The following abbreviations are used for the cache line states:
UC UniqueClean
UD UniqueDirty
SC SharedClean
SD SharedDirty
I Invalid

D5.3.1 ReadOnce

Table D5-7 shows all the permitted cache line state changes and the associated PassDirty and IsShared snoop
responses for the ReadOnce snoop transaction.

A ReadOnce snoop transaction is received by a snooped master when the initiating master indicates that it is not
going to keep a cached copy of the cache line it is accessing. The ReadOnce snoop transaction enables the snooped
master to:
• Keep the cache line in a Unique state.
• Carry out a later store to the cache line without issuing a transaction to obtain permission to store.

If the snooped master has a copy of the cache line, then this specification recommends that data is transferred. If the
snooped master has the cache line in a Dirty state, then data must be transferred.

This specification recommends that the cache line is passed as Clean. Although it is permitted to pass the cache line
as Dirty, this requires the interconnect to write the cache line back to main memory and the cache line to move to
either the SharedClean or Invalid state.

Table D5-7 ReadOnce permitted cache line state changes

Cache line initial state Cache line end state Snoop Response

PassDirty, CRRESP[2] IsShared, CRRESP[3]

I I 0 0

UC I 0 0

UC 0 1

SC 0 1

UD I 1 0

UD 0 1

SC 1 1

SD 0 1

SC I 0 0

SC 0 1

SD I 1 0

SC 1 1

SD 0 1
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D5-239
ID122117 Non-Confidential

D5 Snoop Transactions
D5.3 Snoop transactions
Note
 The IsShared snoop response must be asserted if the snooped master is retaining a copy of the cache line, even if
the retained copy is in a Unique state.

D5.3.2 ReadClean, ReadShared, and ReadNotSharedDirty

The ReadClean, ReadShared, and ReadNotSharedDirty snoop transactions have the same requirements, but differ
in the behavior that this specification recommends.

Table D5-8 shows all the permitted cache line state changes and the associated PassDirty and IsShared snoop
responses for these snoop transactions.

If the cached line being snooped is part of an exclusive sequence, then the cache line must remain valid in the
snooped master.

If data is available, this specification recommends that the data is transferred.

ReadClean

For a ReadClean snoop transaction, if the responsibility for writing the cache line back to main memory is being
passed to the interconnect, as indicated by the PassDirty snoop response being asserted, the cache line is written
back to main memory immediately. This specification recommends that the cache line remains Dirty in the snooped
cache.

ReadShared

For a ReadShared snoop transaction, if the responsibility for writing the cache line back to main memory is being
passed to the initiating master, then it is accepted by the master. The decision to pass responsibility for writing the
cache line that is Dirty back to main memory depends on which master accesses the cache line next:

• If the snooped master is likely to be the next master to store to the cache line, then this specification
recommends that the cache line remains Dirty in the snooped cache but is passed as Clean to the initiating
master.

Table D5-8 ReadClean, ReadShared, and ReadNotSharedDirty permitted cache line state changes

Initial state End state Snoop Response

PassDirty, CRRESP[2] IsShared, CRRESP[3]

I I 0 0

UC I 0 0

SC 0 1

UD I 1 0

SC 1 1

SD 0 1

SC I 0 0

SC 0 1

SD I 1 0

SC 1 1

SD 0 1
D5-240 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D5 Snoop Transactions
D5.3 Snoop transactions
• If the initiating master is likely to be the next master to store to the cache line, then this specification
recommends that the cache line is passed to the initiating master as Dirty. In this case:

— If it is likely that the initiating master carries out a store before the snooped master next loads from the
cache line, then this specification recommends that the snooped master does not retain a cached copy.

— If it is likely that the snooped cache loads from the cache line before the initiating master performs a
store, then this specification recommends that the snooped master does retain a copy of the cache line.

• If it is not known whether the initiating master or the snooped master is the next to store to the cache line,
then this specification recommends that the cache line is held as Dirty in the cache that is least likely to evict
the cache line. Typically, this would be the initiating master, because this is the master that has most recently
accessed the cache line.

• If the snooped master does not support all five cache states, then fewer options are available.

If information on the access patterns for a cache line is not available, then this specification recommends that the
cache line is passed as Dirty to the initiating master and moves to the SharedClean state in the snooped cache.

ReadNotSharedDirty

If responsibility for updating main memory is passed to the initiating master, it is only accepted if the cache line
moves to the Invalid state in the snooped cache. The decision to pass responsibility for writing the cache line back
to main memory depends on which master accesses the cache line next:

• If the snooped master is likely to be the next master to store to the cache line, then this specification
recommends that the cache line remains Dirty in the snooped cache but is passed as Clean to the initiating
master.

• If the initiating master is likely to be the next master to store to the cache line, then this specification
recommends that the cache line is passed to the initiating master as Dirty and the cache line is removed from
the snooped cache.

If it is not known which master accesses the cache line next, then no recommendations are provided by this
specification.

D5.3.3 ReadUnique

Table D5-9 shows all the permitted cache line state changes and the associated PassDirty and IsShared snoop
responses for the ReadUnique snoop transaction.

For a ReadUnique transaction, if the snooped cache holds a copy of the cache line in a Dirty state, then the data must
be transferred.

This specification recommends that data is also transferred if the cache line is in a Clean state.

Table D5-9 ReadUnique permitted cache line state changes

Initial state End state Snoop response

PassDirty, CRRESP[2] IsShared, CRRESP[3]

I I 0 0

UC I 0 0

UD I 1 0

SC I 0 0

SD I 1 0
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D5-241
ID122117 Non-Confidential

D5 Snoop Transactions
D5.3 Snoop transactions
D5.3.4 CleanInvalid

Table D5-10 shows all the permitted cache line state changes and the associated PassDirty and IsShared snoop
responses for the CleanInvalid snoop transaction.

For a CleanInvalid transaction, if the snooped cache holds a copy of the cache line in a Dirty state, then the data
must be transferred.

This specification recommends that data is not transferred if the cache line is in a Clean state.

D5.3.5 MakeInvalid

Table D5-11 shows all the permitted cache line state changes and the associated PassDirty and IsShared snoop
responses for the MakeInvalid snoop transaction.

For a MakeInvalid transaction, this specification recommends that the data is not transferred.

Note
 If data is not transferred, as indicated by the DataTransfer snoop response, CRRESP[0] being deasserted, then the
PassDirty snoop response bit must also be deasserted.

Table D5-10 CleanInvalid permitted cache line state changes

Initial state End state Snoop response

PassDirty, CRRESP[2] IsShared, CRRESP[3]

I I 0 0

UC I 0 0

UD I 1 0

SC I 0 0

SD I 1 0

Table D5-11 MakeInvalid permitted cache line state changes

Initial state End state Snoop response

PassDirty, CRRESP[2] IsShared, CRRESP[3]

I I 0 0

UC I 0 0

UD I 0 0

1 0

SC I 0 0

SD I 0 0

1 0
D5-242 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D5 Snoop Transactions
D5.3 Snoop transactions
D5.3.6 CleanShared

Table D5-12 shows all the permitted cache line state changes and the associated PassDirty and IsShared snoop
responses for the CleanShared snoop transaction.

For a CleanShared transaction, if the snooped cache holds a copy of the cache line in a Dirty state, then the data
must be transferred.

This specification recommends that the data is not transferred if the cache line is in a Clean state.

Note
 The IsShared snoop response must be asserted if the snooped master is retaining a copy of the cache line, even if
the retained copy is in a Unique state.

Table D5-12 CleanShared permitted cache line state changes

Initial state End state Snoop response

PassDirty, CRRESP[2] IsShared, CRRESP[3]

I I 0 0

UC I 0 0

UC 0 1

SC 0 1

UD I 1 0

SC 1 1

SC I 0 0

SC 0 1

SD I 1 0

SC 1 1
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D5-243
ID122117 Non-Confidential

D5 Snoop Transactions
D5.3 Snoop transactions
D5-244 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D6
Interconnect Requirements

This chapter describes the interconnect requirements for ACE. It contains the following sections:
• About the interconnect requirements on page D6-246.
• Sequencing transactions on page D6-247.
• Issuing snoop transactions on page D6-250.
• Transaction responses from the interconnect on page D6-253.
• Interactions with main memory on page D6-255.
• Other requirements on page D6-258.
• Interoperability considerations on page D6-260.

This chapter does not describe the interconnect requirements for barriers or DVM operations. See Chapter D8
Barrier Transactions and Chapter D13 Distributed Virtual Memory Transactions for these requirements.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-245
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.1 About the interconnect requirements
D6.1 About the interconnect requirements
It is the responsibility of the interconnect to:
• Receive transactions from an initiating master.
• Determine the order of transactions when multiple transactions are received at the same time.
• Issue snoop transactions, as required, for each transaction from an initiating master.
• Receive snoop responses and data, when data is provided, from a snooped master.
• Generate the response for the initiating master.
• Carry out any required access to main memory.
D6-246 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D6 Interconnect Requirements
D6.2 Sequencing transactions
D6.2 Sequencing transactions
Many masters might issue transactions at the same time. The protocol permits each master to make multiple
outstanding requests, and to receive multiple outstanding snoop transactions.

It is the responsibility of the interconnect to ensure that there is a defined order in which transactions to the same
cache line can occur, and that the defined order is the same for all components. In the case of two masters issuing
transactions to the same cache line at approximately the same time, then the interconnect determines which of the
transactions is sequenced first. The arbitration method that is used by the interconnect is not defined by the protocol.

The interconnect indicates the order of transactions to the same cache line by sequencing transaction responses and
snoop transactions to the masters. The ordering rules are:

• If a master issues a Coherent or Cache Maintenance transaction to a cache line and it receives a snoop
transaction to the same cache line before it receives a response to the transaction it has issued, then the snoop
transaction is defined as ordered first.

• If a master issues a Coherent or Cache Maintenance transaction to a cache line and it receives a response to
the transaction before it receives a snoop transaction to the same cache line, then the transaction that is issued
by the master is defined as ordered first.

Note
 The relative ordering of transaction responses and snoop transactions only applies to transactions to the same cache
line.

The interconnect must ensure the following:

• If the interconnect provides a master with a response to a Coherent or Cache Maintenance transaction, it must
not send that master a snoop transaction to the same cache line before it has received the associated RACK
or WACK response from that master.

• If the interconnect sends a snoop transaction to a master, it must not provide that master with a response to a
Coherent or Cache Maintenance transaction to the same cache line before it has received the associated
CRRESP response from that master.

Figure D6-1 shows that from the point that a master starts to receive a transaction response, it is guaranteed not to
receive a snoop transaction to the same cache line until it has asserted the acknowledge signal, indicating that the
transaction has completed.

Figure D6-1 Transaction response before a snoop transaction

The diagram in Figure D6-2 on page D6-248 shows that if a master receives a snoop transaction to a cache line to
which it has issued a transaction, but has not yet received a transaction response, then it is guaranteed not to see a
transaction response until it has provided a snoop response.

ACLK

AR

R0 R1 R2 R3

RLAST

RACK

AC

CR

Master does not observe a snoop to the same line during a transaction response
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-247
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.2 Sequencing transactions
Figure D6-2 Snoop transaction before a transaction response

D6.2.1 Read and Write Acknowledge

The read and write acknowledge signals are required to ensure correct operation where there is a delay between an
interconnect and the master completing a transaction. For example, this can occur when a register or clock domain
boundary exists between the interconnect and the master.

The master provides the read acknowledge signal RACK and the write acknowledge signal WACK to guarantee
that the interconnect can determine when a transaction has completed at the master.

The master sends the RACK and WACK signals for all transactions, not only Shareable transactions. This permits
the signals to be generated using only the handshake signals on the read data channel or write response channel
respectively.

The master must only send a read acknowledge after the last read data transfer in which RLAST is asserted. See
Read acknowledge signaling on page D3-187.

The master must only send a write acknowledge after the write response handshake has occurred. See Write
Acknowledge signaling on page D3-189.

There is no mechanism to stall the RACK or WACK signal. The interconnect is required to accept the acknowledge
in the same cycle as the master asserted the read or write acknowledge.

D6.2.2 Continuous read data return

To specify that a system provides continuous read data return, a Continuous_Cache_Line_Read_Data property is
defined that can be TRUE or FALSE for an ACE interconnect.
TRUE An ACE interconnect is declared as having property Continuous_Cache_Line_Read_Data.
FALSE Interconnect does not support the Continuous_Cache_Line_Read_Data property. If not declared,

the property is considered to be FALSE.

A master is defined as requiring this property if it requires that when the first data beat of a cache line read is
returned, then all subsequent data transfers for that cache line are returned without requiring progress on any snoop
transaction.

ACLK

AR

R0 R1 R2 R3

RLAST

RACK

AC

CR

Master does not receive a transaction response while a

snoop operation to the same cache line is in progress
D6-248 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D6 Interconnect Requirements
D6.2 Sequencing transactions
Note
 A master that requires the Continuous_Cache_Line_Read_Data property is not required to make forward progress
on new snoop transactions between the return of the first and last read data beats for a cache line transaction it has
issued. However, if the master has already started responding to a snoop transaction, and has returned at least one
beat of snoop data, then it must return all the remaining beats of snoop data for a single snoop transaction that it is
responding to.

An interconnect is defined as supporting this property if it is guaranteed that once the first data beat of a cache line
read is returned, then all subsequent data transfers for that cache line are returned without requiring forward progress
on any snoop transaction.

This property is only required for transaction types that are precisely a cache line size:

• All ReadClean, ReadShared, ReadUnique, and ReadNotSharedDirty transactions.

• ReadOnce transactions that are precisely a cache line size.

• ReadNoSnoop transactions that are Non-shareable, WriteThrough or WriteBack Cacheable, and are precisely
a cache line size.

Note
 This specification recommends this behavior for all new designs.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-249
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.3 Issuing snoop transactions
D6.3 Issuing snoop transactions
It is the responsibility of the interconnect to generate the snoop transactions that are required to progress a
transaction from an initiating master.

The transaction from the initiating master determines which cached masters in the shareability domain must be
snooped:

• The following transactions do not cause a snoop of any cached masters:
— ReadNoSnoop.
— WriteNoSnoop.
— WriteBack.
— WriteClean.
— WriteEvict.
— Evict.

• The following transactions must cause a snoop of the cached masters that can hold a copy of the cache line:
— ReadOnce.
— ReadClean.
— ReadNotSharedDirty.
— ReadShared.

Snooping of the cached masters must continue until any one of the following occurs:
— A copy of the line is obtained.
— A snoop response is received with WasUnique, CRRESP[4], asserted.
— All caches have been snooped.

• The CleanShared transaction must cause a snoop of the cached masters that can hold a copy of the cache line
until any one of the following occurs:

— A dirty copy of the line is obtained, as indicated by snoop response PassDirty, CRRESP[2], being
asserted.

— A snoop response is received with WasUnique, CRRESP[4], asserted.

— All caches have been snooped.

• The following transactions must cause a snoop of the cached masters that can hold a copy of the cache line:
— ReadUnique.
— CleanUnique.
— MakeUnique.
— CleanInvalid.
— MakeInvalid.
— WriteUnique.
— WriteLineUnique.

Snooping of the cached masters must continue until either of the following occurs:
— A snoop response is received with WasUnique, CRRESP[4], asserted.
— All caches have been snooped.

Note
 The interconnect must not issue a snoop transaction to the initiating master.

Table D6-1 on page D6-251 shows for each transaction that is issued by the initiating master:
• The snooped cache line state change that must be ensured by the interconnect.
• The snoop transaction that this specification recommends the interconnect to use.
• The optional snoop transactions that the interconnect can use.
D6-250 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D6 Interconnect Requirements
D6.3 Issuing snoop transactions
In Table D6-1, the snoop transaction that this specification recommends is also included as an optional snoop
transaction.

The interconnect is not required to snoop all caches at the same time, caches can be snooped sequentially.

When the interconnect is snooping multiple cached masters, it is not required to snoop all the cached masters in an
identical manner.

Table D6-1 Interconnect snoop requirements

Transaction from
Initiating Master

State change for
the snooped cache

Recommended
Snoop transaction Optional Snoop transaction

ReadNoSnoop None - -

ReadOnce None ReadOnce ReadOnce
ReadClean, ReadNotSharedDirty, ReadShared
ReadUnique, CleanInvalid
CleanShared

ReadClean Shared or Invalid ReadClean ReadClean, ReadNotSharedDirty, ReadShared
ReadUnique, CleanInvalid

ReadNotSharedDirty Shared or Invalid ReadNotSharedDirty ReadClean, ReadNotSharedDirty, ReadShared
ReadUnique, CleanInvalid

ReadShared Shared or Invalid ReadShared ReadClean, ReadNotSharedDirty, ReadShared
ReadUnique, CleanInvalid

ReadUnique Invalid ReadUnique ReadUnique, CleanInvalida

CleanUnique Invalid CleanInvalid ReadUnique, CleanInvalida

MakeUnique Invalid MakeInvalid ReadUnique, CleanInvalid
MakeInvalid

CleanShared Clean or Invalid CleanShared ReadUnique, CleanInvalid
CleanShared

CleanInvalid Invalid CleanInvalid ReadUnique, CleanInvalida

MakeInvalid Invalid MakeInvalid ReadUnique, CleanInvalid
MakeInvalid

WriteNoSnoop None - -

WriteUnique Invalid CleanInvalid ReadUnique, CleanInvalida

WriteLineUnique Invalid MakeInvalid ReadUnique, CleanInvalid
MakeInvalid

WriteBack None - -

WriteClean None - -

WriteEvict None - -

Evict None - -

a. Other optional snoop transactions can be used if the cached masters in the same shareability domain are not all snooped at the
same time.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-251
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.3 Issuing snoop transactions
If the interconnect is carrying out the snoop transactions sequentially, issuing some snoop transactions after other
snoop transactions for the same cache line have completed, then after a snoop response is received with PassDirty
asserted, it is permitted to use the MakeInvalid snoop transaction for the remaining cached masters that are still to
be snooped. The transactions that can benefit from this use of the MakeInvalid snoop transaction are:
• WriteUnique.
• ReadUnique.
• CleanUnique.
• CleanInvalid.
D6-252 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D6 Interconnect Requirements
D6.4 Transaction responses from the interconnect
D6.4 Transaction responses from the interconnect
The interconnect must provide a response for all transactions from an initiating master.

Table D6-2 shows the permitted response from the interconnect for a transaction that is issued on the AR channel.

The interconnect must determine the IsShared response for the following transactions from the initiating master:
• ReadOnce.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• CleanShared.

Table D6-2 Permitted interconnect response for a transaction on the AR channel

Transaction from initiating master Permitted response from the interconnect

IsShared, RRESP[3] PassDirty, RRESP[2]

ReadNoSnoop 0 0

ReadOnce 0 0

1 0

ReadClean 0 0

1 0

ReadNotSharedDirty 0 0

0 1

1 0

ReadShared 0 0

0 1

1 0

1 1

ReadUnique 0 0

0 1

CleanUnique 0 0

MakeUnique 0 0

CleanShared 0 0

1 0

CleanInvalid 0 0

MakeInvalid 0 0
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-253
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.4 Transaction responses from the interconnect
After snooping all the required cached masters, the IsShared response to the initiating master for these transactions
is determined as follows:

• If WasUnique was asserted for any snoop response received by the interconnect then:

— If IsShared was asserted for that snoop response then, IsShared must be asserted in the transaction
response to the initiating master.

— If IsShared was deasserted for that snoop response then, this specification recommends that IsShared
is deasserted in the transaction response to the initiating master. However, it is permitted to assert
IsShared in the transaction response to the initiating master.

• If WasUnique was not asserted for any snoop response received by the interconnect then:

— If any snoop responses had IsShared asserted then, IsShared must be asserted in the transaction
response to the initiating master.

— If all snoop responses received by the interconnect had IsShared and DataTransfer deasserted then,
IsShared must be deasserted in the transaction response to the initiating master.

— If all snoop responses received by the interconnect had IsShared deasserted and any snoop response
had DataTransfer asserted then, this specification recommends that IsShared is deasserted in the
transaction response to the initiating master. However, it is permitted to assert IsShared in the
transaction response to the initiating master.

The interconnect must determine the PassDirty response to the initiating master for the following transactions:
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

After snooping all the required cached masters, the PassDirty response to the initiating master for these transactions
is determined as follows:

• If PassDirty was asserted for any snoop response that is received by the interconnect, and the interconnect
has not generated a write transaction to update main memory, then PassDirty must be asserted in the
transaction response to the initiating master.

Note
 Only transactions that are initiated on the AR channel have additional response bits returned with the transaction
response to the initiating master on the R channel.

Write transactions do not have additional response bits. The response from the transaction that passes through the
interconnect can be returned directly to the initiating master. The write transactions are:
• WriteNoSnoop.
• WriteUnique.
• WriteLineUnique.
• WriteBack.
• WriteClean.
• WriteEvict.

An Evict transaction does not propagate downstream and the interconnect is required to generate an OKAY,
BRESP[1:0] = 0b00 write response.
D6-254 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D6 Interconnect Requirements
D6.5 Interactions with main memory
D6.5 Interactions with main memory
This section describes the circumstances in which the interconnect:
• Must read or update main memory directly.
• Can pass permission to update main memory to a master.

It contains to following sections:
• Interconnect read from main memory or peripheral device.
• Main memory update that is generated by the interconnect on page D6-256.
• Permission to update main memory on page D6-257.

D6.5.1 Interconnect read from main memory or peripheral device

The interconnect must always read from main memory, or the appropriate peripheral device, for a ReadNoSnoop
transaction.

If the interconnect has not obtained the required data from a snoop transaction, the interconnect must read from main
memory to complete the following transactions:
• ReadOnce.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

An interconnect is permitted to read from main memory before all snoop transactions have completed. However,
the following rules apply:

• Data obtained from main memory must not be used if any cache in the shareability domain of the master is
holding a dirty copy of the cache line. Therefore, if the cache line is provided by a snoop transaction, then
data that is obtained from main memory must not be used.

Note
 The snoop response does not indicate if a cache is holding a dirty copy of the cache line. It only indicates that

the responsibility for updating main memory is being passed.

• Data read from main memory must not be used if it is possible that the data read is different to the data that
would be read after all associated snoop transactions have completed. For example, if a WriteBack or
WriteClean transaction to the cache line did not complete before the read from main memory was issued, then
the data that is obtained from main memory must not be used. A new read from main memory must be issued
to obtain the correct data.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-255
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.5 Interactions with main memory
D6.5.2 Main memory update that is generated by the interconnect

The following transactions are passed through the interconnect to the appropriate main memory or peripheral
device:
• WriteNoSnoop.
• WriteBack.
• WriteClean.

For the WriteUnique and WriteLineUnique transactions, the interconnect must carry out the required snoop
transactions as described in Issuing snoop transactions on page D6-250. If a snoop response is received with
PassDirty asserted, then the final value in memory must be the same as if the memory is updated with the original
dirty cache line first and then the write data that is part of the WriteUnique or WriteLineUnique transactions.

Examples of how this can be achieved are:

• The order in which data is written is:

1. The dirty cache line that is obtained from the snoop is written to main memory.

2. The write data that is part of the WriteUnique or WriteLineUnique transaction is written to main
memory.

• The write data that is part of the WriteUnique or WriteLineUnique transaction must be merged with the data
that is obtained from the dirty cache line. The valid bytes of the WriteUnique or WriteLineUnique transaction
must overwrite the associated bytes of the dirty cache line. A single write to main memory is then performed
of the merged data.

When a snoop response has the PassDirty response asserted, and the interconnect does not assert the PassDirty
transaction response for the initiating master, the interconnect must generate a write transaction to update main
memory. This occurs when:

• The transaction from the initiating master does not permit the assertion of the PassDirty response bit. This is
true for the following transactions:
— ReadOnce.
— ReadClean.
— CleanUnique.
— CleanShared.
— CleanInvalid.
— ReadNotSharedDirty, if the IsShared response is asserted.

• The interconnect has provided a read response to an initiating master before it has received all the snoop
responses and a later snoop response has PassDirty asserted.

The interconnect is permitted to carry out a write transaction to update main memory when it receives a snoop
response with the PassDirty response asserted. In this case, it must not assert the PassDirty transaction response for
the initiating master.

Note
 • If it does not receive a snoop response with the PassDirty response asserted, then the interconnect must not

carry out a write to update main memory.

• This specification recommends that the interconnect does not carry out a write transaction to update main
memory, unless required by the combination of the initiating master transaction type and the received snoop
response.
D6-256 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D6 Interconnect Requirements
D6.5 Interactions with main memory
D6.5.3 Permission to update main memory

The interconnect must ensure that all updates to main memory, both from cached masters and the interconnect itself,
are performed in the correct order. The interconnect must only give a cached master permission to update main
memory when it is guaranteed that any earlier updates to main memory are ordered.

Permission to update main memory is given to a master by either:

• Giving a transaction response to the master with the PassDirty response asserted.

• Giving a transaction response to the master with the IsShared response deasserted. This gives the master
permission to store to the cache line and therefore permission to carry out a write to update main memory.

When a master is given permission to update main memory, the first point at which the master can start the
associated write transaction is the cycle after the RVALID/RREADY handshake in which RLAST is asserted for
the transaction that gave permission to update main memory.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-257
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.6 Other requirements
D6.6 Other requirements
This section describes other requirements that apply to the interconnect. It contains the following sections:
• Non-blocking requirements.
• Permitted transaction modifications on page D6-259.
• Speculative reads on page D6-259.

D6.6.1 Non-blocking requirements

To ensure transactions always progress through a system, the protocol defines rules for snooped masters and the
interconnect. The rules stipulate which transactions must always progress and which transactions can wait for others
to complete.

The rules for snooped masters are defined in Chapter D5 Snoop Transactions. See Non-blocking requirements for
a snooped master on page D5-237.

To ensure transactions always progress through a system, the following rules apply for an interconnect:

• The following transactions must progress to any address without requiring any pending snoop transactions
to progress:
— WriteNoSnoop.
— WriteBack.
— WriteClean.
— WriteEvict.
— Evict.

Note
 None of these transactions require an associated snoop transaction.

• An interconnect is permitted to wait for a snoop transaction to complete before it progresses the following
transactions:

— Any transaction to any address issued on the AR channel.

— WriteUnique or WriteLineUnique transactions to any address issued on the AW channel.

Note
 See also Restrictions on WriteUnique and WriteLineUnique usage on page D4-224.

The diagram in Figure D6-3 shows the non-blocking requirements.

Figure D6-3 Required non-blocking transaction channel ordering

In summary, the requirements are:

• Any transaction on the AR channel can be stalled waiting for a transaction on the AC channel.

• Any snoop transaction on the AC channel can be stalled waiting for a write transaction on the AW channel,
except for a WriteUnique or WriteLineUnique transaction.

AW AR

AC
D6-258 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D6 Interconnect Requirements
D6.6 Other requirements
D6.6.2 Permitted transaction modifications

An interconnect is permitted to modify transactions as defined by the Modifiable attribute, AxCACHE[1], in
Modifiable transactions on page A4-65:

• A transaction can be broken into multiple transactions.

• Multiple transactions can be merged into a single transaction.

• A read transaction can fetch more data than required.

• A write transaction can access a larger address range than required, making use of Write strobes to ensure
that only the required memory locations are updated.

• In each generated transaction, the following signals can be modified:
— The transfer address, AxADDR.
— The burst size, AxSIZE.
— The burst length, AxLEN.
— The burst type, AxBURST.

Note
 A modification to a transaction by the interconnect is not seen by any master in the system.

D6.6.3 Speculative reads

A master in the ACE protocol is permitted to carry out a read of a cache line that it already holds in its cache. This
is referred to as a Speculative Read.

A master issuing a speculative read must ensure that:
• The transaction uses the correct shareability and cacheability attributes for the address location.
• It uses its cached version of the data and not the data that is returned by the speculative read.

Note
 It is required that a master uses its cached version because this could be in the Dirty state and therefore no

other valid copies of the cache line exist.

An interconnect must consider that a master might be carrying out a speculative read, as it is not explicit in the
transaction. The interconnect must ensure that it does not use data that is obtained by a speculative read to service
another transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-259
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.7 Interoperability considerations
D6.7 Interoperability considerations
A system wide coherency protocol has to work correctly with components that might have:
• Different structures for caching and storing data.
• Different cache line sizes.
• Different physical address space sizes.

D6.7.1 Cache Line size conversions

Maximum performance and efficiency is usually achieved when all components use the same cache line size. For
systems where this is not possible, it is the responsibility of the interconnect to convert between the different cache
line sizes.

Note
 The supported cache line sizes and maximum physical address space size are defined at design time.

Narrow to wide conversion

When the master initiating a transaction has a narrow cache line, the following conversion is required:

• A read transaction can be converted to a wider cache line size. The transactions that can be converted are:
— ReadOnce.
— ReadClean.
— ReadNotSharedDirty.
— ReadShared.
— ReadUnique.

The converted transaction fetches the data that is required to complete the original transaction together with
data that is not required. The excess data must be written back to main memory if it is dirty, but can be
discarded if it is clean.

• A clean transaction can be converted to a wider cache line size. The transactions that can be converted are:
— CleanUnique.
— CleanShared.
— CleanInvalid.

Dirty data obtained as a result of the clean transaction must be written back to main memory.

• The MakeUnique or MakeInvalid transactions require special consideration. A cache line that is wider than
that requested by a master with a narrow cache line cannot be invalidated. When converting a MakeUnique
or MakeInvalid transaction to a wider cache line size, it must be converted to a CleanInvalid transaction. This
ensures that all dirty data is written back to main memory before the wider line is invalidated.

Note
 Similar consideration is required for the WriteUnique or WriteLineUnique transaction.

Wide to narrow conversion

When the master initiating a transaction has a wide cache line, the transaction can be broken into multiple narrow
transactions.

Each of these narrow transactions can be responded to by different cached masters during the snoop process and
some of the narrow transactions might require access to main memory.
D6-260 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D6 Interconnect Requirements
D6.7 Interoperability considerations
It is the responsibility of the interconnect to:
• Assemble the transaction response sent to the originating master.
• Ensure that the multiple narrow transactions are sequenced correctly, that is, as a contiguous block with

respect to other snoop transactions.

If any part of the wide cache line is shared, then the whole cache line must be considered as shared. If any part of
the wide cache line is dirty, then the whole cache line must be considered as dirty.

The passing of dirty data from a snooped master is optional for the following transactions:
• ReadOnce.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.

It is the responsibility of the interconnect to ensure that no parts of the cache line can be dirty in more than one cache.

D6.7.2 Additional Cache Line conversion considerations

The following transactions, issued by a master, are not required to be a full cache line size:
• ReadNoSnoop.
• ReadOnce.
• WriteNoSnoop.
• WriteUnique.
• WriteBack.
• WriteClean.

All other transactions are required to be a full cache line size and must use the full width of the data bus.

As a snoop transaction is required to be a full cache line size, it is the responsibility of the interconnect to carry out
the required size translation. Size translation is required for:
• A ReadOnce transaction that is converted into a ReadOnce snoop.
• A WriteUnique transaction that is converted into a CleanInvalid snoop.

D6.7.3 Address space size

The protocol supports communication between components that have different physical address space sizes.

Components with different physical address space sizes must communicate as follows:

• The component with the smaller physical address space must be positioned within an aligned window in the
larger physical address space. Typically, the window is located at the bottom of the larger physical address
space. However, it is acceptable for the component with the smaller physical address space to be positioned
in an offset window within the larger physical address space.

• An outgoing transaction must have the required additional higher-order bits added to the transaction address.

• An incoming transaction must be examined so that:
— A transaction that is within the address window has the higher-order address bits removed and is

passed through.
— A transaction that does not have the required higher-order address bits is suppressed.

Note
 It is the responsibility of the interconnect to provide the required functionality.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D6-261
ID122117 Non-Confidential

D6 Interconnect Requirements
D6.7 Interoperability considerations
D6-262 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D7
Cache Maintenance

This chapter describes the cache maintenance operations that make loads and stores to specific caches visible to
non-coherent agents in the system. It contains the following sections:
• ARCACHE and ARDOMAIN requirements on page D7-264.
• Other cache maintenance considerations on page D7-265.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D7-263
ID122117 Non-Confidential

D7 Cache Maintenance
D7.1 ARCACHE and ARDOMAIN requirements
D7.1 ARCACHE and ARDOMAIN requirements
A cache clean operation is used to ensure that a store to a cache line is made visible to non-coherent agents by
updating main memory with the value that is held in a dirty cache line.

A cache invalidate operation is used to ensure that a load from a location does not use a cached copy and therefore
accesses main memory. This enables a store by a non-coherent agent, that cannot change a cached value, to be seen.

The following cache maintenance operations are supported:
• CleanShared. This transaction is used for a cache clean operation.
• CleanInvalid. This transaction is used for a cache clean and invalidate operation.
• MakeInvalid. This transaction is used for a cache invalidate operation.

Cache maintenance transactions differ from other snoop transactions because they can be required to propagate
downstream to all caches. The cacheability attributes, signaled by ARCACHE, determine if downstream caches
must observe a cache maintenance operation.

Cache maintenance transactions can be used in Non-shareable, Inner Shareable, and Outer Shareable domains. See
Shareability domain types on page D3-174. The domain signaling ARDOMAIN, that accompanies a cache
maintenance transaction, determines which hardware coherent peer caches must be snooped during the transaction.

Cache maintenance transactions are not permitted to use the System domain. However, all other ARCACHE and
ARDOMAIN combinations that Table D3-3 on page D3-175 shows as permitted or legal are valid.
D7-264 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D7 Cache Maintenance
D7.2 Other cache maintenance considerations
D7.2 Other cache maintenance considerations
This section describes the additional requirements that ensure correct local, domain, and downstream cache
maintenance.

D7.2.1 Broadcast cache maintenance requirements

The master issuing a broadcast cache maintenance operation has to co-ordinate the following:
• Appropriate action for local cache maintenance.
• Appropriate action for peer and downstream cache maintenance.

Issuing a broadcast cache maintenance transaction performs the required action on peer caches and causes the
interconnect to generate a downstream cache maintenance transaction to other levels of cache.

The downstream cache maintenance transaction must be correctly ordered with respect to other transactions to the
same cache line. The master carrying out the cache maintenance, must follow the sequence:

1. The master must complete any outstanding Shareable transactions, which permits the line to be allocated, to
a cache line before it issues a cache maintenance transaction to the same cache line.

a. For CleanShared and CleanInvalid operations:
If the master holds the cache line in a Dirty state, it must issue a WriteBack or WriteClean transaction,
that must complete, before issuing the cache maintenance transaction.

Note
 If the cache line is initially clean, but there are outstanding cacheable transactions to the line, then it

must be ensured that the line is not Dirty after the completion of all outstanding transactions to the
cache line.

b. For CleanInvalid and MakeInvalid transactions:
After all outstanding transactions and required WriteBack or WriteClean transactions are complete,
and before issuing the cache maintenance transaction, the master must invalidate the cache line.

2. After all required outstanding transactions and required WriteBack or WriteClean transactions are complete,
the master issues the appropriate cache maintenance transaction.

For CleanShared operations, the master is permitted to issue either an Evict or WriteEvict transaction at any point
during the sequence. It is also permitted to perform a local write to the line, if it is in a Unique state.

The master must not issue any further Shareable transactions, which permits the line to be allocated, to the same
cache line until the broadcast cache maintenance sequence is complete.

Note
 All masters that support an external snoop filter must ensure that the information that is provided enables the snoop
filter to correctly track the allocation of cache lines. Typically, this is ensured by the correct use of WriteBack and
WriteClean transactions and the appropriate snoop responses. See External snoop filter requirements on
page D10-295.

For a given memory location, cache maintenance operations are permitted to use different shareability and
cacheability attributes to those that the page table attributes assign for any non-cache maintenance transaction to
that location. This possible mismatch of attributes means that an interconnect cannot correctly determine the
cacheability attributes to use for any interconnect-generated transactions that result from the cache maintenance
operation, that is required if a snooped cache provides dirty data on the CD channel in response to a snoop
transaction for the cache maintenance operation.

This specification recommends that, when an interconnect component has to generate a write to main memory as a
result of receiving a dirty line during a cache maintenance operation, the interconnect component uses the
Write-through No-allocate memory attribute for the transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D7-265
ID122117 Non-Confidential

D7 Cache Maintenance
D7.2 Other cache maintenance considerations
Note
 The use of the Write-through No-allocate attribute ensures that, if the line is allocated in a downstream cache, then
that cache will be checked. This avoids stale data being held in that cache. If the line is not allocated in a downstream
cache, then using this memory attribute prevents the line from being allocated.

D7.2.2 Requirements for a snooped master

There are no additional requirements for a snooped master during a cache maintenance operation. All requirements
are as specified in Chapter D5 Snoop Transactions.

D7.2.3 Processor cache maintenance instructions

The protocol requires that the cache maintenance operations use the AxCACHE and AxDOMAIN signals to
identify the caches on which the cache maintenance operations must operate.

For a processor that has cache maintenance instructions that are required to operate on more or fewer caches than
are defined by the AxCACHE and AxDOMAIN values, the cacheability and shareability of the transaction must
be adapted to meet the requirements of the processor. For example, if a processor instruction performing a cache
maintenance operation on a location with Device memory attributes is required to operate on all caches within the
system, then the master must issue a cache maintenance transaction as Outer Shareable, since this is the most
pervasive of the cache maintenance operations and operates on all the required caches.

D7.2.4 Unpredictable behavior with software cache maintenance

Cache maintenance can be used to reliably communicate shared memory data structures between a coherent group
of masters and non-coherent agents. This process must follow a particular sequence to reliably make the data
structures visible as required.

When using cache maintenance to make the writes of a non-coherent agent visible to a coherent group of masters,
there are periods of time when writing and reading the data structures gives UNPREDICTABLE results and can cause
a loss of coherency.

The observation of a line that is being updated by a non-coherent agent is UNPREDICTABLE during the period
between the clean transaction that starts the sequence and the invalidate transaction that completes it. During this
period, it is permissible to see multiple transitions of a cache line that is being updated by a non-coherent agent.

Figure D7-1 shows the required sequence of communication between a coherent domain and a non-coherent agent.

Figure D7-1 Required sequence of communication between coherent and non-coherent domains

The five stage sequence that Figure D7-1 shows is:

1. The coherent domain has access. During this stage, the coherent domain has full read and write access to the
appropriate memory locations. This stage finishes when all required writes from the coherent domain are
complete within the coherent domain.

2. The coherent domain is cleaned. During this stage, a cache clean operation is required for all the address
locations that are undergoing software cache maintenance. The coherent domain clean forces all previous
writes to be visible to the non-coherent agent. This stage finishes when all required writes are complete and
therefore visible to the non-coherent agent.

Coherent domain

access

1

Coherent domain

clean

2

Non-coherent

agent access

3

Coherent domain

invalidate

4

Coherent domain

access

5

D7-266 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D7 Cache Maintenance
D7.2 Other cache maintenance considerations
3. The non-coherent agent has access. During this stage, the non-coherent agent has both read and write access
to the defined memory locations. This stage finishes when all required writes from the non-coherent agent
are complete.

4. The coherent domain is invalidated. During this stage, a cache invalidate operation is required for all the
address locations that are undergoing software cache maintenance. This coherent domain invalidate stage
removes all cached copies of the defined locations ensuring that any subsequent access from the coherent
domain observes the writes from the non-coherent agent. This stage finishes when all the required
invalidations are complete.

5. The coherent domain has full access to the defined memory locations.

Table D7-1 shows when accesses from the coherent domain or the non-coherent agent are permitted. The remaining
accesses can have unpredictable results, with possible loss of coherency.

D7.2.5 Mismatched shareability and cacheability

To prevent a loss of coherency, the protocol requires that all accesses, except cache maintenance operations, to a
particular memory location must use the same values of AxCACHE and AxDOMAIN. This ensures that multiple
agents accessing a particular memory location agree exactly on the caches in which the memory location might be
held.

If agents accessing the same or overlapping locations do not agree exactly on the caches in which the location might
be held, then this is defined as a software protocol error. See Protocol errors on page D1-166.

Table D7-1 Permitted accesses from the Coherent domain and non-coherent agent

Phase Description Coherent domain External agent

Read Write Read Write

1 Coherent domain access Permitted Permitted - -

2 Coherent domain clean - - - -

3 External agent access - - Permitted Permitted

4 Coherent domain invalidate - - - -

5 Coherent domain access Permitted Permitted - -
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D7-267
ID122117 Non-Confidential

D7 Cache Maintenance
D7.2 Other cache maintenance considerations
D7-268 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D8
Barrier Transactions

This chapter describes ACE barrier transactions. It contains the following sections:
• About barrier transactions on page D8-270.
• Barrier transaction signaling on page D8-271.
• Barrier responses and domain boundaries on page D8-273.
• Barrier requirements on page D8-276.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D8-269
ID122117 Non-Confidential

D8 Barrier Transactions
D8.1 About barrier transactions
D8.1 About barrier transactions
Barrier transactions provide guarantees about the ordering and observation of transactions in a system. Barrier
transactions are not supported in ACE5 and ACE5-Lite variant interfaces. See Barrier transaction support on
page E1-333 for further details.

ACE supports memory barriers and synchronization barriers:

• A memory barrier is issued by a master to guarantee that if another master in the appropriate domain can
observe any transaction issued after the barrier it must be able to observe every transaction issued before the
barrier.

• A synchronization barrier is issued by a master to guarantee that all transactions that are issued before the
barrier are observable by every master in the appropriate domain when the barrier completes. System domain
synchronization barriers have the additional requirement that all transactions that are issued before the barrier
transaction must have reached the endpoint slaves they are destined for before the barrier completes.

A memory barrier is used for memory-based communication. For example, when writing an array of data to
memory, a master component can issue a memory barrier before setting a memory flag to indicate that the array is
available. Any other master component that can observe the flag must observe all transactions that write to the array.

Note
 It is not necessary for all master components in the domain to observe the updated array at the same time. It is a
requirement for each master in the domain that can observe the flag, to be guaranteed to observe the updated array.

A synchronization barrier is used with various forms of sideband signaling communication. For example, when
writing an array of data to memory, a master component can use a synchronization barrier before generating an
interrupt to indicate that the array is available. When the synchronization barrier completes, the updated array is
guaranteed to be observable by all master components in the domain.

Barrier transactions can be read or write transactions, and are defined as follows:

Read barrier transactions

A master component issues a read barrier transaction on the read address channel and a response is
returned on the read data channel. No data transfer occurs.

Write barrier transactions

A master component issues a write barrier on the write address channel and a response is returned
on the write response channel. No data transfer occurs.

A master component must issue barrier transactions as a barrier pair, with a barrier transaction on both the read
address channel and the write address channel. For each address channel, any transaction that is issued on the
channel, before the barrier transaction, is defined to be before the barrier, even if it is issued after the corresponding
barrier on the other address channel. A transaction is defined to be after the barrier if it is issued after both the read
barrier response and write barrier response are received.
D8-270 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D8 Barrier Transactions
D8.2 Barrier transaction signaling
D8.2 Barrier transaction signaling
This section describes the read address channel and write address channel signaling associated with barrier
transactions.

To permit interworking between barrier transactions and QoS, the following types of non-barrier transactions exist:
• Transactions that are affected by barrier transactions.
• Transactions that are not affected by barrier transactions.

This specification recommends that, by default, all transactions are affected by barrier transactions. The only
transaction streams that can be signaled so that they are not affected by barrier transactions are transactions that do
not require ordering with respect to other streams, such as those related to real-time data flows.

D8.2.1 AxBAR signaling

AxBAR is used to differentiate between barrier transactions and normal transactions. For normal transactions,
AxBAR also indicates that the associated transaction must respect barriers or if the ordering requirements of any
barrier transactions can be ignored. For barrier transactions, AxBAR also indicates that the transaction is a memory
barrier or a synchronization barrier. See Read and write barrier transactions on page D3-175 for more information
about AxBAR encoding.

Table D3-14 on page D3-183 shows the constraints that apply to barrier transactions.

D8.2.2 AxDOMAIN signaling

The AxDOMAIN signal determines the level of propagation of a barrier transaction, defining the domains within
a system that the barrier transaction accesses. See Shareability domain types on page D3-174. Table D8-1 shows the
different levels of barrier applicability for each domain type.

Table D8-1 Domain barrier applicability

AxDOMAIN Domain Barrier Applicability

00 Non-shareable Acts as a barrier to other transactions in the current transaction stream. When two or more
transaction streams are combined, no ordering is required with respect to the newly combined
transaction stream.

01 Inner Shareable Ordering must be established with respect to other transactions from all masters in the same Inner
Shareable domain.

10 Outer Shareable Ordering must be established with respect to other transactions from all masters in the same Outer
Shareable domain.

11 System Ordering must be established with respect to all other transactions. For a Synchronization barrier,
a response must only be given when all transactions from the issuing master, which are ahead of
the barrier, have reached their endpoint.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D8-271
ID122117 Non-Confidential

D8 Barrier Transactions
D8.2 Barrier transaction signaling
D8.2.3 Response signaling

All barrier transactions must complete with a response, as follows:

• Responses for barrier transactions issued on the read address channel are signaled on the read data channel.

• Responses for barrier transactions issued on the write address channel are signaled on the write response
channel.

The response must have a matching AXI ID to the barrier transaction and OKAY is the only permitted response for
a barrier transaction. Table D8-2 shows the constraints for barrier transaction response signaling.

Note
 User-defined signals, such as AxUSER, RUSER, WUSER, and BUSER, cannot be reliably transported alongside
barrier transactions. It is therefore recommended that user-defined signals are all zeros for barrier transactions.

Table D8-2 Barrier response transaction constraints

Attribute Constraint

RID, BID Must match barrier transaction ID.

RRESP Must be all zeros.

RLAST Must be HIGH.

RDATA No constraint, can take any value. Must be ignored.

BRESP Must be all zeros.
D8-272 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D8 Barrier Transactions
D8.3 Barrier responses and domain boundaries
D8.3 Barrier responses and domain boundaries
The location of an interconnect in relation to the domain boundaries within a system influences the ability of the
interconnect to issue responses to barrier transactions. In general, a system can contain domain boundaries and
bi-section boundaries, where:
• A domain boundary is an interface downstream from all master components in the domain.
• A bi-section boundary is downstream of a subset of master components in the domain, but not all of them.

Figure D8-1 shows the domain boundaries in an example system.

Figure D8-1 Domain boundaries

Note
 The interface to slave 6 is an outer domain boundary. Slave 6 cannot be accessed by Master 0, Master 1, and Master
2, and therefore it cannot be considered relative to these master components. It is downstream of all master
components in the outer domain that can access it.

Figure D8-2 shows the bi-section boundary locations for the same system.

Figure D8-2 Bi-section boundaries

For an interconnect to issue a response to a barrier transaction, certain conditions apply. The main consideration
influencing the ability of an interconnect to issue responses to barrier transactions is the location of the interconnect
in relation to the domain boundaries within a system.

Outer Shareable domain

Inner Shareable domain

Slave 1 Slave 2 Slave 3

Slave 6

Master 0 Master 1 Master 2 Master 3 Master 4 Master 5

Slave 5Slave 4

Interconnect Interconnect

Interconnect

Interconnect

Outer domain boundary Outer domain boundary

Outer domain boundaryInner domain boundary

Outer Shareable domain

Inner Shareable domain

Slave 1 Slave 2 Slave 3

Slave 6

Interconnect

Interconnect

Master 0 Master 1 Master 2 Master 3 Master 4 Master 5

Interconnect

Slave 5Slave 4

Interconnect

Outer bi-section boundaryOuter bi-section boundary
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D8-273
ID122117 Non-Confidential

D8 Barrier Transactions
D8.3 Barrier responses and domain boundaries
A system can contain the following types of boundary:

Domain boundary

A domain boundary is an interface downstream from all master components in the domain.

For an interface to be a domain boundary, all of the following must apply:
• The set of addresses that pass across the interface is identical for all masters in the domain.
• All accesses from any master in the domain to those addresses pass across the interface.

Note
 If a master component can access an address using the interface, then it must not be possible for

another master in the same domain to access the same address without using the interface.

Bi-section boundary

A bi-section boundary is an interface downstream of a subset of master components in the domain,
but not all of them.

For an interface to be a bi-section boundary, all of the following must apply:

• The set of addresses that pass across the interface is identical for a subset of master
components in the domain.

• All accesses from any master component in that subset to those addresses pass across the
interface.

• No accesses from a master component that is in the domain but is not in the subset passes
across the interface.

• Considering in turn each master component not in the subset, then all addresses that are
accessed by both that master and the masters in the subset must be accessed by the masters
in the subset across the same interface.

Note
 • Informally, an interface is a bi-section boundary if all communication between a subset of

masters and the other masters not in the subset pass across the same interface.

• In the definition of a bi-section boundary, the subset of masters is permitted to be all masters
in the domain and this makes the bi-section boundary definition the same as the domain
boundary definition.

See Barrier responses and domain boundaries on page D8-273 for more information.

An interconnect can provide a response to a barrier transaction in certain circumstances. The following rules apply:

• For memory barrier transactions, an interconnect can respond provided it is at the appropriate bi-section
boundary or domain boundary, or beyond the domain boundary.

• For any synchronization barrier transaction that applies to a Non-shareable, Inner Shareable or Outer
Shareable domain, an interconnect can respond provided the interconnect is at or beyond the appropriate
domain boundary.

• For any synchronization barrier transaction that applies to a System domain, an interconnect can respond
provided all transactions before the barrier have reached the endpoint slaves they are destined for.
D8-274 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D8 Barrier Transactions
D8.3 Barrier responses and domain boundaries
When responding to a barrier transaction, an interconnect must ensure that all transactions that pass across the
interface before the barrier are observable to every transaction after the barrier. Some techniques that can be used
to achieve this are:

Blocking all transactions and sending barrier

The interconnect blocks all transactions received after the barrier transactions and issues a barrier
transaction downstream. The block is removed after a response has been received on both the read
data and write response channels for the downstream issued barrier transactions.

Blocking all transactions and waiting for completion

The interconnect blocks all transactions after the barrier transactions and waits for transactions
before the barrier to provide a response. The block is removed when all transactions before the
barrier have provided a response. To use this technique, it is required that all transactions must have
attributes that ensure the response originates from a location that is observable by all masters in the
required barrier domain.

Hazard-checking transactions

The interconnect blocks all transactions after the barrier transactions until transactions before the
barrier to the same or overlapping addresses have provided a response.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D8-275
ID122117 Non-Confidential

D8 Barrier Transactions
D8.4 Barrier requirements
D8.4 Barrier requirements
This section describes the formal requirements for barrier transactions.

D8.4.1 Master requirements

For a master component issuing a barrier transaction, the following rules apply:

• Both transactions in a barrier pair must have the same AxID, AxBAR, AxDOMAIN, and AxPROT values.

• If the ARID and AWID signals have different widths, the narrower version must be zero-extended to match
the wider version.

• Barrier pairs must be issued in the same sequence on the read address and write address channels.

• A master interface is not required to issue barrier transactions on the read address and write address channels
in the same cycle.

• A master interface is permitted to issue multiple outstanding barriers, meaning that additional barrier
transactions can be issued before responses to earlier barrier transactions are received. However:

— An ACE-Lite master interface can issue outstanding barrier transactions without restriction.

— An ACE master interface must not issue more than 256 outstanding barrier transactions.

Note
 Read and write response handshakes are separate events that can occur in any order. Therefore, a barrier is

defined as an outstanding barrier from the cycle when the first of the read or write barrier becomes valid until
the cycle when both the read and write response handshakes have occurred.

• Barrier transactions are required to use different ID values than those used for non-barrier transactions. It is
permissible for barrier transactions and non-barrier transactions to use the same AXI ID value, provided one
transaction has completed before the other is issued.

Note
 Using different ID values ensures that any component tracking barrier responses does not have to track all

responses to differentiate between a barrier response and a normal transaction response.

On each address channel, any transaction issued before the barrier on that channel is defined to be before the barrier,
even if it is issued after the corresponding barrier on the other address channel.

Figure D8-3 shows pre-barrier and post-barrier transactions, with respect to barriers being issued on the address
channels and responses being received.

Figure D8-3 Barrier transaction timing

Read address

channel

Write address

channel

Read data

channel

Write response

channel

† Pre-barrier transactions

R1
†

Barrier R2 R3 R4 R5 R6 R7 R8
‡

W1
†

W2
†

W3
†

Barrier W4 W5 W6 W7 W8
‡

Resp

Resp

‡ Post-barrier transactions
D8-276 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D8 Barrier Transactions
D8.4 Barrier requirements
In Figure D8-3 on page D8-276:
• Transactions R1, W1, W2, and W3 are before the barrier.
• Transactions R8 and W8 are after the barrier.
• Transactions R2, R3, R4, R5, R6, R7, W4, W5, W6, and W7 have no relationship to the barrier.

The following rules apply to master components issuing barrier transactions, and relate to non-barrier transactions:

• A master must not issue any transaction, either read or write, that must be after the barrier until the master
has received a response for the barrier on both the read data and write response channels.

• A master is permitted to issue transactions between issuing a barrier transaction on the address channel and
receiving the read and write barrier responses. Such transactions have no ordering guarantees with respect to
the barrier. On the address channel, these transactions are permitted to remain after the barrier transaction or
they are permitted to overtake the barrier transaction.

• A master interface that has issued a read barrier on the read address channel must issue the corresponding
write barrier on the write address channel, in a timely manner, if all other transactions on the write address
channel are progressed. The master interface must not require either handshaking or a response to the read
barrier or any read transaction after the read barrier before issuing the corresponding write barrier.

• A master interface that has issued a write barrier on the write address channel, must issue the corresponding
read barrier on the read address channel, in a timely manner, if all other transactions on the read address
channel are progressed. The master interface must not require either handshaking or a response to the write
barrier or any write transaction after the write barrier before issuing the corresponding read barrier.

• A barrier must not be issued on the read address channel if subsequent read transactions are required for
either:
— Issuing the corresponding barrier on the write address channel.
— Issuing any write transactions that must be before the barrier.

For example, a read barrier must not be issued if, after issuing the read barrier, it is necessary to perform
translation table walks to issue write transactions that must be before the corresponding write barrier.

• For an ACE-Lite interface, a barrier must not be issued on the write address channel if subsequent write
transactions are required for either:
— Issuing the corresponding barrier on the read address channel.
— Issuing any read transactions that must be before the barrier.

• For an ACE interface, a barrier must not be issued on the write address channel if subsequent write
transactions that must be ordered with respect to the barrier, must be issued for either:
— Issuing the corresponding barrier on the read address channel
— Issuing any read transactions that must be before the barrier.

• An ACE interface is permitted to issue a write barrier, followed by any of the following transactions that are
required for snoop transactions to that master to complete:
— WriteBack.
— WriteClean.
— WriteEvict.
— Evict.

The following rules apply to ACE master components and the interaction of barriers and local cache accesses:

• A master must not perform a store that must be ordered with respect to the barrier, to a Shareable location in
its local cache until after the barrier response is received on both read data and write response channels. This
rule applies even if there is no requirement for a transaction to be issued because the cache line is in a Unique
state.

• A master must not perform a load that must be ordered with respect to the barrier, from a Shareable location
in its local cache until after the barrier response is received on both read data and write response channels.
This applies even if there is no requirement for a transaction to be issued because the cache line is in a Valid
state.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D8-277
ID122117 Non-Confidential

D8 Barrier Transactions
D8.4 Barrier requirements
• A master must be capable of issuing write transactions to complete snoop transactions, even if the read
address channel is stalled.

• Issuing a barrier transaction must not prevent any of the following transactions, that are required for snoop
transactions, being issued and completed:
— WriteBack.
— WriteClean.
— WriteEvict.
— Evict.

D8.4.2 Slave requirements

The following rules apply to a slave component that is handling barrier transactions:

• On receipt of a barrier transaction, an ACE-Lite slave interface is permitted to either:

— Stall the read address channel until it receives the corresponding barrier transaction on the write
address channel.

— Stall the write address channel until it receives the corresponding barrier transaction on the read
address channel.

• An ACE slave interface must be able to accept 256 barrier transactions on the write address channel without
blocking the progress of subsequent transactions. It is required that the write address channel is available and
that write transactions can progress.

• On receipt of a read barrier, an ACE slave interface is permitted, but not required, to stall the read address
channel.

D8.4.3 Interconnect requirements

The following rules apply to interconnect processing barrier transactions:

• The interconnect topology must not permit transactions with overlapping destination addresses to have a
common start point and end point but have different paths through the interconnect.

• When merging two streams of transactions, an interconnect must ensure that barrier pairs are issued on the
read and write channels in the same sequence. Barriers pairs must not be interleaved.

• Any interconnect component that has multiple ACE slave ports must be capable of meeting the ACE slave
interface requirements in Slave requirements, for all ports simultaneously.

• An interconnect must not permit a barrier transaction to overtake any transaction that respects barriers.

• A barrier must apply to any transaction that the component issuing the barrier observed before issuing the
barrier.

• An interconnect that has not responded to a barrier can permit any non-barrier transaction to overtake that
barrier.

Note
 This specification recommends that ACE interconnect components stall a read barrier until:
• The corresponding write barrier is received.
• All transactions before the read barrier and write barrier have been snooped as required, and all write

transactions that must be before the barrier have been issued.
D8-278 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D8 Barrier Transactions
D8.4 Barrier requirements
D8.4.4 Barriers and Device transaction ordering

Barrier transactions ensure ordering between Device transactions to a single peripheral device, regardless of the
addresses within the peripheral being accessed. This means that any hazard-checking that an interconnect performs
when responding to a barrier must be extended to the entire address space of the peripheral, and must not consider
only overlapping transactions. If an interconnect is unable to determine the address range of a particular peripheral,
it must ensure ordering between all accesses that could be addressing that peripheral.

D8.4.5 Multi-copy atomicity requirements for Shareable locations

For Inner Shareable and Outer Shareable locations, multi-copy atomicity is required. This means that a snoop
response to a write is issued only when all observers in the required shareability domain have observed the write.
Also, on the cycle that a snoop response is received, the associated master must have already observed the write.
The point of observation is defined as the handshake on the snoop response channel. The snoop data channel is not
used in defining the point of observation. This means that there is no requirement for barriers on the snoop address
channel.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D8-279
ID122117 Non-Confidential

D8 Barrier Transactions
D8.4 Barrier requirements
D8-280 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D9
Exclusive Accesses

This chapter describes ACE Exclusive accesses. It contains the following sections:
• About Exclusive accesses on page D9-282.
• Role of the master on page D9-283.
• Role of the interconnect on page D9-285.
• Multiple Exclusive Threads on page D9-288.
• Exclusive Accesses from AXI components on page D9-289.
• Transaction requirements on page D9-290.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D9-281
ID122117 Non-Confidential

D9 Exclusive Accesses
D9.1 About Exclusive accesses
D9.1 About Exclusive accesses
The principles of Exclusive accesses are that a master performing an Exclusive sequence does the following:
• Performs an Exclusive Load from a location.
• Calculates a value to store to that location.
• Performs an Exclusive Store to the location:

— The Exclusive Store fails if another master has performed a store to the location since the Exclusive
Load. In this case, the store does not occur and the master does not change the value that is held at the
location.

— The Exclusive Store can pass if no other master has performed a store to the location since the
Exclusive Load. In this case, the store can occur and the master can change the value that is held at the
location.

Note
 An Exclusive Load by a processor is caused by the execution of an instruction such as LDREX. An Exclusive Store
by a processor is caused by the execution of an instruction such as STREX.

In the ACE protocol, correct execution of an Exclusive sequence places requirements on both the master performing
the Exclusive sequence and the interconnect.

For Non-shareable and System Shareable locations, the behavior is identical to the behavior specified in AXI.

For Inner Shareable and Outer Shareable locations, the following requirements apply:

• The master is responsible for ensuring that it only updates the location if no other master can have performed
a store to the location since the master performed the Exclusive Load. The term master exclusive monitor
describes the monitor that must exist within the master component to meet this requirement.

• The interconnect is responsible for ensuring that if two masters attempt an Exclusive Store transaction to the
same location and it is possible that the second master will have its copy of the location invalidated before
its Exclusive Store transaction completes, then the interconnect must fail the Exclusive Store transaction from
the second master. The term PoS exclusive monitor describes the monitor that must exist within the
interconnect, at the point of serialization, to meet this requirement.

The term Exclusive Store is used to describe the action of a master executing an appropriate program instruction.
When an Exclusive Store passes, this indicates an update to the data value at the address location. When an
Exclusive Store fails, this indicates that the store has not changed the data value at the address location, and the
Exclusive sequence must be restarted.

The term Exclusive Store transaction is used to describe the transaction that is issued on the ACE interface of a
master. Not every Exclusive Store requires an Exclusive Store transaction. An Exclusive Store transaction can pass
or fail and this result is made known to the master using the transaction response. When an Exclusive Store
transaction passes, this indicates that the transaction has been propagated to other masters, but it does not indicate
whether the Exclusive Store passes or fails. When an Exclusive Store transaction fails, this indicates that the
transaction has not been propagated to other masters and therefore the associated Exclusive Store cannot pass.

All masters that attempt an Exclusive access to the same location must be using the same shareability for the
location. If the location for the Exclusive access is Shareable, then all masters must be able to participate in the
coherency protocol.

When first obtaining a copy of the exclusive location, it is important that the line is not removed from another cache
that is also performing an Exclusive sequence to the same cache line. For this reason, ReadClean or ReadShared
must be used rather than ReadNotSharedDirty or ReadUnique.

A Load Exclusive, Store Exclusive sequence (LDREX, STREX) must use an Exclusive sequence. An atomic update, such
as a swap operation or a read-modify-write atomic operation, is not required to use an Exclusive sequence. For such
atomic updates, it is permitted to use a ReadUnique transaction that is not marked as Exclusive, if it can be
guaranteed to successfully complete the atomic update with no other external action.
D9-282 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D9 Exclusive Accesses
D9.2 Role of the master
D9.2 Role of the master
The master must implement a master exclusive monitor, that is used to monitor the location that is used by an
Exclusive sequence. This master exclusive monitor is used to determine if another master could have performed a
store to the location during the Exclusive sequence by monitoring the snoop transaction that it receives.

When the master performs an Exclusive Load, the master exclusive monitor is set. The master exclusive monitor is
reset when a snoop transaction is observed that indicates another master could perform a store to the location.

Note
 In some implementations, the cache line state is sufficient to provide the functionality of the master exclusive
monitor. However, it is important that a line that is invalidated and made valid again by a mechanism such as
prefetching, is not considered as having remained valid since the Exclusive Load.

D9.2.1 Exclusive Load

The master starts an Exclusive sequence with an Exclusive Load. The start of the Exclusive sequence must set the
master exclusive monitor.

If the master does not hold a copy of the cache line, then it must obtain a copy of the line using either a ReadClean
or a ReadShared transaction.

An Exclusive Load transaction is a ReadClean or ReadShared transaction with the ARLOCK signal asserted. This
indicates to the PoS exclusive monitor that the master is starting an Exclusive sequence.

It is recommended, but not required, that a master use an Exclusive Load transaction, with ARLOCK asserted, if
it is issuing a transaction at the start of Exclusive sequence. If a master does not use an Exclusive Load transaction,
it is permitted to use a ReadClean or ReadShared transaction with ARLOCK deasserted.

If the master holds a copy of the line in a Unique state, then issuing a transaction for the Exclusive Load is permitted
but not recommended.

Note
 This transaction is likely to cause an external memory access. It is also likely that informing the interconnect that
an Exclusive sequence has started is unnecessary, since there is no requirement to issue an Exclusive Store
transaction to complete the sequence if the cache line remains in the Unique state.

If the master holds a copy of the line in a Shared state, then issuing a transaction for the Exclusive Load is permitted,
but not required.

Note
 Issuing a transaction informs the interconnect that the master is performing an Exclusive sequence.

An Exclusive Load is expected to receive an EXOKAY response, which indicates that Exclusive accesses are
supported at the address of the transaction. If Exclusive accesses are not supported, then the transaction will receive
an OKAY response.

D9.2.2 Exclusive Load to Exclusive Store

After the execution of an Exclusive Load a master will typically calculate a new value to store to the location before
it attempts the Exclusive Store.

It is not required that a master always completes an Exclusive sequence. For example, the value that is obtained by
the Exclusive Load can indicate that a semaphore is held by another master and therefore the value cannot be
changed until the semaphore is released by the other master. Therefore, the Exclusive sequence can be restarted with
no attempt to complete the current Exclusive sequence.

During the time between the Exclusive Load and the Exclusive Store, the master exclusive monitor must monitor
the location to determine whether another master might have performed a store to the location.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D9-283
ID122117 Non-Confidential

D9 Exclusive Accesses
D9.2 Role of the master
D9.2.3 Exclusive Store

A master must not permit an Exclusive Store transaction to be in progress at the same time as any transaction that
registers that it is performing an Exclusive sequence. The master must wait for any such transaction to complete
before issuing an Exclusive Store transaction. The transactions that register that a master is performing an Exclusive
sequence are Exclusive Load transactions to any location, and Exclusive Store transactions to any location. These
transactions are:
• ReadClean with ARLOCK asserted.
• ReadShared with ARLOCK asserted.
• CleanUnique with ARLOCK asserted.

When a master executes an Exclusive Store, the following behavior is required:

• If the master exclusive monitor has been reset, the Exclusive Store must fail and the master must not issue an
Exclusive Store transaction. The master must restart the Exclusive sequence.

Note
 In this case, not issuing an Exclusive Store transaction avoids unnecessarily invalidating other copies of the

line by preventing the issue of a transaction that will eventually fail.

• If the line is held in a Unique state and the master exclusive monitor is set, then the Exclusive Store has passed
and the master can execute the Exclusive Store without issuing a transaction.

• If the line is held in a Shared state and the master exclusive monitor is set, then the master must issue a
transaction to perform the Exclusive Store. This check of the master exclusive monitor must only occur after
any other transactions that register a master is performing an Exclusive sequence have completed. A
CleanUnique transaction with ARLOCK asserted must be used. The master exclusive monitor must continue
to operate during this transaction. The transaction will respond with an OKAY or EXOKAY response.

If the transaction receives an EXOKAY response, then it indicates that the transaction has passed and been
propagated to invalidate all other copies of the line. After an Exclusive transaction completes with an EXOKAY
response, the master must again check the master exclusive monitor:

• If the master exclusive monitor is set, then the Exclusive Store has passed and the store is performed.

• If the master exclusive monitor has been reset, it indicates that a non-Exclusive Store has occurred to the
cache between the point that the Exclusive Store transaction was issued and the point that it completed. The
Exclusive Store must fail and the Exclusive sequence must be restarted.

• If the master has not been able to track the exclusive nature of the cache line, because the line has been
evicted, then the Exclusive Store must fail and the Exclusive sequence must be restarted.

If the transaction receives an OKAY response, then it indicates that another master has been permitted to progress
a transaction that is associated with an Exclusive Store. The transaction that is associated with the Exclusive Store
from this master has failed and has not propagated to other masters in the system. When an Exclusive transaction
completes with an OKAY response the following options exist:

• The master can fail the Exclusive Store and restart the Exclusive sequence without checking the state of the
line when the access completed.

• The master can check the master exclusive monitor:

— If the master exclusive monitor has been reset, then the master must fail the Exclusive Store and restart
the Exclusive sequence.

— If the master exclusive monitor is set, then the master can repeat the Exclusive Store transaction.
D9-284 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D9 Exclusive Accesses
D9.3 Role of the interconnect
D9.3 Role of the interconnect
The interconnect can pass or fail an Exclusive Store transaction. A pass indicates that the transaction has been
propagated to other cacheable masters. A fail indicates that the transaction has not been propagated to other masters
and therefore the Exclusive Store cannot pass.

The interconnect is required to have a monitor that is used to ensure that an Exclusive Store transaction from a
master is only successful if that master could not have received a snoop transaction relating to an Exclusive Store
to the same address from another master after it issued its own Exclusive Store transaction. This monitor is referred
to as the PoS exclusive monitor and it exists within the interconnect at the point of serialization.

D9.3.1 Minimum PoS Exclusive Monitor

The minimum requirement of PoS exclusive monitor is to record when any master performs a Shareable transaction
that is related to an Exclusive sequence. The Shareable transactions that are related to an Exclusive sequence are:
• ReadClean with ARLOCK asserted.
• ReadShared with ARLOCK asserted.
• CleanUnique with ARLOCK asserted.

If a master has performed a transaction that is related to an Exclusive sequence and it then performs an Exclusive
Store transaction before a successful Exclusive Store transaction from another master is scheduled, then the
Exclusive Store transaction must be successful.

The monitor must support the parallel monitoring of all Exclusive-capable masters in the system.

When the interconnect receives a transaction that is associated with an Exclusive Load or an Exclusive Store, the
monitor registers that the master is attempting an Exclusive sequence. If an Exclusive Store fails, indicated by an
OKAY response, the attempt must be recorded. If the Exclusive Store transaction is successful it is recommended,
but not required, that the monitor registers that the master is attempting an Exclusive sequence.

If an Exclusive Store transaction from one master passes, the registered attempts of all other masters are reset. The
other masters can only register a new Exclusive sequence when it is guaranteed that outstanding Exclusive Stores
can complete without the line being invalidated by later Exclusive Stores. This can be achieved by observing the
RACK from the Exclusive Store or through address hazarding in the interconnect.

When the interconnect receives an Exclusive Store transaction:

• If the PoS exclusive monitor has registered that the master is performing an Exclusive sequence, that is, it
has not been reset by another master’s Exclusive Store transaction, then the Exclusive Store transaction is
successful and is allowed to proceed. An EXOKAY response is returned to the issuing master.

• If the PoS exclusive monitor has not registered that the master is performing an Exclusive sequence, that is,
it has been reset by another master’s Exclusive Store transaction, then the Exclusive Store transaction is failed
and is not allowed to proceed. An OKAY response is returned to the issuing master.

Note
 A successful Exclusive Store transaction from a master does not have to reset that the master is performing an
Exclusive sequence. The master can continue to perform a sequence of Exclusive Store transactions that will all be
successful, until another master performs a successful Exclusive Store transaction.

From reset, the first master to perform an Exclusive Store transaction can be successful, but is not required to be.
At that point, all other masters must then register the start of their Exclusive sequence for their Exclusive Store
transaction to be successful.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D9-285
ID122117 Non-Confidential

D9 Exclusive Accesses
D9.3 Role of the interconnect
D9.3.2 Additional address comparison

The interconnect monitor can be enhanced to include some address comparison. A full address comparison is not
required and it is permitted to only record a subset of address bits. This approach reduces the chances of an
Exclusive Store transaction failing because of another master’s Exclusive Store transaction to a different address
location. The number of bits of address comparison that is used is an implementation choice.

Where additional address comparison monitor is used, the monitored address bits are recorded at the start of an
Exclusive sequence on either a Load Exclusive or Store Exclusive transaction. It is reset by a successful Store
Exclusive transaction from another master to a matching address.

A monitor with additional address comparison must include a minimum monitor of a single bit for every
Exclusive-capable master to ensure progress.

An Exclusive Store transaction is allowed to progress if one of the following occurs:

• The address monitor has registered an Exclusive sequence for a matching address from the same master and
has not been reset by an Exclusive Store transaction from a different master with a matching address.

• The minimum single bit monitor has registered an Exclusive sequence from the same master, and it has not
been reset by an Exclusive Store transaction from a different master to any address.

Note
 In the above description, the term matching address is used to describe where a monitor only records a subset of
address bits. A matching address is where the address bits that are recorded are identical, but the address bits that
are not recorded can be different.

An implementation does not require address monitor for each Exclusive-capable master. Because the address
monitor provides a performance enhancement, it is acceptable to have fewer address monitors and for the use of
these to be IMPLEMENTATION DEFINED. Examples of how the additional address monitors can be used include:
• Use on a first-come first-served basis.
• Allocation to particular masters.
• A more complex algorithm.

Additional PoS Exclusive Monitor functionality can be provided to prevent interference, or denial of service, caused
by one agent in the system issuing a large number of Exclusive access transactions. This specification recommends
that secure exclusive accesses are permitted to make progress independently of the progress of Non-secure
exclusive accesses.

D9.3.3 Multiple interconnect PoS monitors

When the interconnect contains multiple points of serialization, as the serialization for different address ranges is
done at different points within the interconnect, then a PoS exclusive monitor can be at each point of serialization.

D9.3.4 PoS Exclusive Monitor behavior

The following terms can be used to describe the behavior of a PoS exclusive monitor:

True pass Describes the case where an Exclusive Store transaction is permitted to progress and when the
transaction completes the Exclusive Store will also pass, permitting the master to make forward
progress.

True fail Describes the case where an Exclusive Store transaction is failed because another master has already
performed a successful Exclusive Store transaction to the same address location, so at least one
agent has made forward progress.

False pass Can occur for an Exclusive Store transaction, for which the Exclusive Store will eventually fail. This
can only occur when a non-exclusive store transaction from another agent to the same location has
occurred. This non-exclusive store transaction from another agent is considered as progress for that
other agent.
D9-286 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D9 Exclusive Accesses
D9.3 Role of the interconnect
False fail Can occur for an Exclusive Store transaction in the following circumstances:

• No transaction was issued for the Load Exclusive. This is resolved by re-issuing the
Exclusive Store.

• An Exclusive Store transaction from another agent to a different location has been successful
between the point that the Exclusive sequence is first registered and the point that the
Exclusive Store transaction is scheduled. This is resolved by re-issuing the Exclusive Store.

• An Exclusive Store transaction from another agent to the same location has been successful,
but that other agent is destined to eventually fail because a third party has performed a
non-exclusive store transaction. This non-exclusive store transaction from the third party is
considered as progress for that third party.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D9-287
ID122117 Non-Confidential

D9 Exclusive Accesses
D9.4 Multiple Exclusive Threads
D9.4 Multiple Exclusive Threads
The protocol can support more than one Exclusive-capable master for each interface. This permits multiple masters
to use the same interface for Exclusive accesses. In this scenario, the interconnect must be able to use the AXI ID
values to differentiate between the different masters using the same interface.
D9-288 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D9 Exclusive Accesses
D9.5 Exclusive Accesses from AXI components
D9.5 Exclusive Accesses from AXI components
An important consideration for the conversion of legacy AXI components for use in an ACE environment is the
handling of Exclusive accesses. In a coherent environment, a monitor, which is associated with each master, is used
for Shareable transactions to track whether another component has performed a store to an address that is being
monitored for exclusivity. For non-cacheable transactions, a monitor that is remote from the master issuing an
Exclusive access, is used to track all access to a location that is being monitored for exclusivity and this monitor can
return a pass or fail response as part of the write response.

Therefore conversion of legacy AXI components for use in an ACE environment requires a monitor that is
associated with the master interface that is being converted if the interface is capable of performing Exclusive
accesses to Shareable locations.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D9-289
ID122117 Non-Confidential

D9 Exclusive Accesses
D9.6 Transaction requirements
D9.6 Transaction requirements
This section summarizes the requirements of transactions that are associated with Exclusive accesses.

The existing AXI rules apply for all transactions with AxDOMAIN set to Non-shareable or System Shareable.

For transactions with ARDOMAIN set to Inner Shareable or Outer Shareable:

• An Exclusive Load transaction must assert ARLOCK.

• An Exclusive Load transaction must use either ReadClean or ReadShared transaction type.

Note
 It is not required that a transaction is issued for the execution of an LDREX instruction.

• Any slave that is capable of supporting Exclusive transactions must give an EXOKAY response to an
Exclusive Load transaction.

Note
 An OKAY response to an Exclusive Load transaction indicates that Exclusive transactions are not supported

to that address location and all Exclusive Store transactions to that location will also return an OKAY
response.

• An Exclusive Store transaction must assert ARLOCK.

• An Exclusive Store transaction must be a CleanUnique transaction.

• An Exclusive Store transaction response can be either EXOKAY or OKAY.

• Matching Exclusive Load transactions and Exclusive Store transactions are not required.

Note
 An Exclusive Load transaction can occur with no matching Exclusive Store transaction. An Exclusive Store

transaction can occur with no matching Exclusive Load transaction.

When multiple Exclusive-capable threads use a single interface:

• Transactions must use an AXI ID value that permits the Exclusive-capable thread to be identified.

• The bits of the AXI ID signal that are used to identify the Exclusive-capable thread must be the same for all
Exclusive transactions from the same Exclusive-capable thread.

A single Exclusive-capable thread must not have an Exclusive Store transaction in progress at the same time as any
transaction that registers that a master is performing an Exclusive sequence.
D9-290 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D10
Optional External Snoop Filtering

This chapter describes using an external snoop filter with an existing master component. It contains the following
sections:
• About external snoop filtering on page D10-292.
• Master requirements to support snoop filters on page D10-294.
• External snoop filter requirements on page D10-295.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D10-291
ID122117 Non-Confidential

D10 Optional External Snoop Filtering
D10.1 About external snoop filtering
D10.1 About external snoop filtering
The ACE protocol supports a mechanism for constructing an optional external snoop filter that operates with an
existing cached master component.

Note
 External snoop filtering is optional. If a master component supports external snoop filtering, it must declare this in
its data sheet.

To support the addition of a snoop filter, a cached master must ensure that it broadcasts sufficient information to
permit a snoop filter to track Shareable allocations and evictions for cache lines that the master maintains. This
ensures that a snoop filter can:
• Reduce the number of snoop transactions that are required to be passed to the master, which reduces cache

intrusion.
• In certain circumstances, provide a faster response to snoop transactions.

For correct operation, a snoop filter must observe any transactions being issued by a master that could result in that
master allocating a cache line in its local cache. The snoop filter must also observe activity that indicates an eviction
from the local cache of that master. This includes:
• Local cache line evictions.
• WriteBack of cache lines to memory.
• Snoop transactions that cause an eviction.

A snoop filter can consider that a cache line is no longer allocated following a WriteEvict transaction.

Whether a transaction causes a cache line to be allocated depends on the transaction. A snoop filter can determine
the expected allocation state of a particular cache line by observing the transactions that are issued by a master
component. Table D10-1 shows the expected allocation state for both cache maintenance transactions and normal
transactions. If the actual allocation for a cache line is different from what the filter expects, then an associated Evict
operation must be performed to ensure that the snoop filter can correctly track the allocated cache line.

Table D10-1 External snoop filter expected cache line allocation states

Transaction Expected cache line allocation

ReadOnce Allocation does not change

ReadClean Allocated

ReadNotSharedDirty Allocated

ReadShared Allocated

ReadUnique Allocated

CleanUnique Allocated

MakeUnique Allocated

CleanShared Allocation does not change

CleanInvalid Evicted

MakeInvalid Evicted

WriteUnique Allocation does not change

WriteLineUnique Allocation does not change

WriteClean Allocation does not change
D10-292 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D10 Optional External Snoop Filtering
D10.1 About external snoop filtering
An error response to a transaction does not change the allocation behavior of a snoop filter. Any master that changes
its allocation behavior when a transaction receives an error response must take appropriate action to ensure that the
snoop filter is kept up to date.

WriteBack Evicted

WriteEvict Evicted

Evict Evicted

Table D10-1 External snoop filter expected cache line allocation states (continued)

Transaction Expected cache line allocation
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D10-293
ID122117 Non-Confidential

D10 Optional External Snoop Filtering
D10.2 Master requirements to support snoop filters
D10.2 Master requirements to support snoop filters
The snoop filter monitors the snoop address and the snoop response channels to determine the effect of snoop
transactions on the allocation of particular cache lines, and the IsShared response is used to determine if a cache line
remains allocated in a cache after a snoop. A master component that is implementing snoop filter functionality must
therefore provide an accurate IsShared response. See Read response signaling on page D3-184.

A master component must ensure that the transactions issued never indicate to the external snoop filter that a cache
line is not allocated when the master still holds a copy of the cache line. A master component can ensure that the
snoop filter always has correct allocation information using the following techniques.

This specification recommends that a master component must not:

• Issue a transaction that indicates that the cache line is to become allocated, while a transaction that indicates
the same cache line is to be evicted is in progress.

• Issue a transaction that indicates that a cache line is to be evicted, while a transaction that indicates the same
cache line is to be allocated is in progress.

If a master component does overlap allocating and evicting transactions, then the following must apply:

• From the first cycle that there is an overlapping allocating transaction and evicting transaction for the same
cache line, the cached master must not have the line that is allocated.

• The line must remain de-allocated until a non-overlapping allocating transaction has completed.

• When the overlapping allocating and evicting transactions have all completed the allocation status of the line
must be resolved, by issuing either:
— An allocating transaction, to indicate that the line is allocated.
— An evicting transaction, to indicate that the line is de-allocated.
D10-294 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D10 Optional External Snoop Filtering
D10.3 External snoop filter requirements
D10.3 External snoop filter requirements
The snoop filter must ensure that it does not cause a capacity overflow by considering cache lines that are accessed
using ReadNoSnoop and WriteNoSnoop transactions to be allocated. Such cache lines are Non-shareable locations,
and master components are not required to issue Evict transactions to these locations.

Snoop filters must consider speculative reads. For example, a snoop filter cannot rely on an allocating transaction
to determine whether it must add a cache line to its list of allocated cache lines. It must check the current list of
allocated lines so that it does not hold two copies of the same line, potentially overflowing its resources.

The snoop filter must be able to track the allocation of all cache lines that could be allocated in the associated cache.
Typically, the storage within a snoop filter will match the structure of the cache for which it is filtering snoops, in
terms of:
• Associativity.
• Size of the cache tags.
• Total number of cache lines being tracked.

Transactions in progress, and other caching structures within a master, can cause a situation where the snoop filter
is required to track additional cache lines. A snoop filter can include additional storage to enable it to track these
additional cache lines.

To avoid snoop filter overflow, where the tracking requirements exceed the total capabilities of the snoop filter, the
snoop filter is permitted to issue snoop transactions. Transactions, such as CleanInvalid, are used to remove cache
lines from the associated cache. Use of this technique ensures that the snoop filter can continue to correctly track
all allocated cache lines.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D10-295
ID122117 Non-Confidential

D10 Optional External Snoop Filtering
D10.3 External snoop filter requirements
D10-296 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D11
AMBA ACE-Lite

This chapter describes the ACE-Lite interface. It contains the following sections:
• About ACE-Lite on page D11-298.
• ACE-Lite signal requirements on page D11-299.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D11-297
ID122117 Non-Confidential

D11 AMBA ACE-Lite
D11.1 About ACE-Lite
D11.1 About ACE-Lite
ACE-Lite is used by master components that do not have hardware coherent caches, but are required to:
• Indicate if issued transactions could be held in the hardware coherent caches of other masters.
• Issue barrier transactions.
• Issue broadcast cache maintenance operations.

ACE-Lite consists of an AXI4 interface with additional signals on the read address channel and write address
channel. See Read address channel (AR) signals on page D2-168 and Write address channel (AW) signals on
page D2-168 for more information.

ACE-Lite does not include:
• A snoop address channel.
• A snoop response channel.
• A snoop data channel.
• A read acknowledge signal.
• A write acknowledge signal.
• Any additional read response bits.
D11-298 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D11 AMBA ACE-Lite
D11.2 ACE-Lite signal requirements
D11.2 ACE-Lite signal requirements
An ACE-Lite interface can issue all Non-shareable transactions, but can only use a restricted set of Shareable
transaction types.

Table D11-1 shows the permitted combinations of ARSNOOP[3:0], ARBAR[0], and ARDOMAIN[1:0] for each
permitted category of Shareable read transaction.

Table D11-2 shows the permitted combinations of AWBAR[0], and AWDOMAIN[1:0] for each permitted
category of Shareable write transaction.

Table D11-1 ACE-Lite permitted read address control signal combinations

Transaction type ARSNOOP[3:0] ARBAR[0] ARDOMAIN[1:0] Transaction

Non-snooping 0b0000 0b0 0b00

0b11

ReadNoSnoop

Coherent 0b0000 0b0 0b01

0b10

ReadOnce

Cache maintenance 0b1000 0b0 0b00

0b01

0b10

CleanShared

Cache maintenance 0b1001 0b0 0b00

0b01

0b10

CleanInvalid

Cache maintenance 0b1101 0b0 0b00

0b01

0b10

MakeInvalid

Barrier 0b0000 0b1 0b00

0b01

0b10

0b11

Barrier

Table D11-2 ACE-Lite permitted write address control signal combinations

Transaction type AWSNOOP[2:0] AWBAR[0] AWDOMAIN[1:0] Transaction

Non-snooping 0b000 0b0 0b00

0b11

WriteNoSnoop

Coherent 0b000 0b0 0b01

0b10

WriteUnique

Coherent 0b001 0b0 0b01

0b10

WriteLineUnique

Barrier 0b000 0b1 0b00

0b01

0b10

0b11

Barrier
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D11-299
ID122117 Non-Confidential

D11 AMBA ACE-Lite
D11.2 ACE-Lite signal requirements
D11-300 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D12
Interface Control

This chapter describes the optional signals that can be used to configure the behavior of the ACE interface. It
contains the following section:

• About the interface control signals on page D12-302.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D12-301
ID122117 Non-Confidential

D12 Interface Control
D12.1 About the interface control signals
D12.1 About the interface control signals
This section lists the signals that are available to configure interface behavior in components that support flexible
interfaces.

Note
 The signals in this section are optional, and are not part of the AMBA ACE protocol. However, if used, it is an
architectural requirement that all interface control signals are stable, and remain static, on reset.

The AMBA ACE configuration signals are:

BROADCASTINNER

When asserted, indicates that the interface must broadcast Inner Shareable transactions. If this
signal is asserted, BROADCASTOUTER must also be asserted.

BROADCASTOUTER

When asserted, indicates that the interface must broadcast Outer Shareable transactions.

BROADCASTCACHEMAINT

When asserted, indicates that the interface must broadcast cache maintenance operations to
downstream caches.

This signal controls the broadcast of cache maintenance operations and is asserted whenever a
downstream cache exists below the coherent interconnect. Asserting this signal results in
CleanShared, CleanInvalid, and MakeInvalid transactions that must be observed by a downstream
cache being broadcast.

When this signal is deasserted, whether cache maintenance operations are broadcast depends on:

• Their shareability domain.

• BROADCASTINNER and BROADCASTOUTER settings.

Table D12-1 shows the valid combinations of the interface control signals and the corresponding transactions that
are broadcast.

Table D12-1 Interface control signals

Signal Transactions broadcast

BROADCASTINNER BROADCASTOUTER BROADCASTCACHEMAINT

0 0 0 None

0 1 0 Outer Shareable

1 1 0 Inner Shareable and Outer Shareable

0 0 1 Cache maintenance operations

0 1 1 • Outer Shareable
• Cache maintenance operations

1 1 1 • Inner Shareable and Outer Shareable
• Cache maintenance operations
D12-302 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D13
Distributed Virtual Memory Transactions

This chapter describes Distributed Virtual Memory (DVM) transactions that pass operations to support the
maintenance of a virtual memory system. It contains the following sections:
• About DVM transactions on page D13-304.
• Synchronization message on page D13-305.
• DVM transaction process and rules on page D13-306.
• DVM message support for ARMv7 and ARMv8 on page D13-309.
• Physical and virtual address space size on page D13-311.
• DVMv7 and DVMv8 address spaces on page D13-312.
• DVM transactions format on page D13-315.
• DVM transaction restrictions on page D13-317.
• DVM Operations on page D13-318.
• DVMv7 and DVMv8 conversion on page D13-326.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-303
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.1 About DVM transactions
D13.1 About DVM transactions
DVM transactions support the maintenance of a virtual memory system and are used to pass operations that cannot
be conveyed using the normal coherency transactions. Support for Distributed Virtual Memory transactions is a
design-time option for a component. Components must either fully participate in the distributed virtual memory
scheme or they must never participate. Components that are participating must be capable of receiving any
distributed virtual memory transaction and responding appropriately.

A DVM scheme has the following transaction types:

DVM Operation

These transactions convey particular operations, such as a Translation Lookaside Buffer (TLB)
invalidation request. A component can issue concurrent DVM Operations. See DVM Operations on
page D13-318 for more information.

DVM Sync

This is a synchronization transaction that a component issues to check that all previous DVM
Operations that it has issued have completed.

DVM Complete

This transaction is issued in response to a DVM Sync transaction. It is issued by a component that
has received several DVM Operations followed by a DVM Sync. The DVM Complete indicates that
all the required operations and any associated transactions have completed.

DVM Operations can require multiple transactions to convey the required information. In this case, the first
transaction provides sufficient information to determine whether another transaction is required.

Note
 DVM transactions only operate on read-only structures, such as Instruction cache, Branch Predictor, and TLB, and
therefore only invalidation operations are required. The concept of cleaning does not apply to a read-only structure.
This means that, it is functionally correct to invalidate more entries than the DVM Operation requires, although it
can affect performance.

Virtual memory systems typically use a TLB that retains a copy of recent virtual-physical address translations.
When an invalidation of a TLB entry is requested, the DVM Operation must be signaled as complete only when any
previous transactions that have been using the invalidated translation have completed.

A component must respond in a protocol-compliant manner to all DVM messages, even those that it does not
support. These responses permit components with differing subsets of supported messages to interoperate.
D13-304 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.2 Synchronization message
D13.2 Synchronization message
The synchronization (Sync) message is used to ensure that all preceding DVM Operations are complete. On receipt
of a Sync message, a component must ensure that:

• A TLB Invalidate operation is complete when a master can no longer use an invalidated translation and all
previous transactions that could have used an invalidated translation are complete.

• A Branch Predictor Invalidate operation is complete when cached copies of predicted instruction fetches have
been invalidated and can no longer be accessed by the associated master. The invalidated cached copies might
be from any virtual address or from a specified virtual address.

• An Instruction Cache Invalidate operation is complete when a master can no longer access a cached copy of
the address locations that have been invalidated.

A component must have only one outstanding DVM Sync transaction. A component must receive a DVM Complete
transaction before it issues another DVM Sync transaction.

Components must be able to accept DVM Sync messages and continue processing snoop transactions while waiting
for earlier transactions to complete. This processing might be needed before a DVM Complete message can be sent.
The maximum number of outstanding DVM Sync messages that a master must be able to accept is 256.

A DVM Sync must complete in a timely manner, even if the component continues to receive more DVM Operations
and more DVM Sync messages.

It is not acceptable for a component that has received a DVM Sync message to continue to issue DVM Operations
transactions that must complete before the DVM Sync can complete.

Note
 Support for multiple outstanding DVM Sync messages only requires the component to be aware of the number of
DVM Complete responses required. No additional information about the individual DVM Sync messages is
necessary.

A component is not permitted to wait for a DVM Complete relating to a DVM Sync it has issued, before it provides
DVM Complete for a DVM Sync it has received.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-305
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.3 DVM transaction process and rules
D13.3 DVM transaction process and rules
This section describes the sequencing and other rules for each DVM transaction.

D13.3.1 DVM Operation process

1. The originating master component issues the DVM Operation transaction on its read address channel.

2. The interconnect component distributes the transaction to participating components using the appropriate
snoop address channel.

Note
 The transaction is not sent to the same component that issued the transaction.

3. Each participating component acknowledges receipt of the message using the snoop response channel.

4. The interconnect component collects the acknowledgements and responds to the original DVM transaction
using the read data channel of the originating master component.

D13.3.2 DVM Sync and DVM Complete transactions

1. The originating master component issues the DVM Sync on its read address channel.

2. The interconnect component distributes the DVM Sync to participating components using the appropriate
snoop address channel.

Note
 The transaction is not sent to the same component that issued the transaction.

3. Each participating component acknowledges receipt of the DVM Sync using the snoop response channel.

4. The interconnect component collects the acknowledgements and responds to the original DVM Sync using
the read data channel of the originating master component.

5. Each participating component must issue a DVM Complete when it has completed all the necessary actions.
The DVM Complete is issued by each participating component, using its read address channel. A DVM
Complete on the read address channel must only be issued after the handshake of the associated DVM Sync
on the snoop address channel of the same master.

6. The interconnect component can respond immediately to the DVM Complete transaction using the read data
channel of the component that issued the DVM Complete.

7. The interconnect component observes all the DVM Complete transactions. When it has received a DVM
Complete from each participating component, it issues a DVM Complete, using the snoop address channel
of the master component that originally issued the DVM Sync.

8. The originating master component acknowledges the receipt of the DVM Complete using the snoop response
channel.

D13.3.3 Multi-part DVM Operation transactions

Multi-part DVM messages are always sent as successive transactions and no other transaction can be interposed
between them. A master component issuing a multi-part DVM message must be able to issue the latter parts of the
message without requiring any other external actions. An interconnect component issuing a multi-part DVM
message on the snoop address channel must be able to issue the latter parts of the message without requiring a
response to the earlier parts of the message.

Each transaction of a multi-part DVM Message has a response, both on the snoop response and read data channels.
D13-306 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.3 DVM transaction process and rules
Each transaction of a multi-part DVM Message must use the same AXI ID. See AXI transaction identifiers on
page A5-80.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-307
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.3 DVM transaction process and rules
D13.3.4 Transaction response

When a component receives a DVM transaction, it must respond as follows:

• If the component can perform the requested action, it must respond by setting CRRESP to 0b00000.

• If the component is unable to perform the requested action, it must respond by setting CRRESP to 0b00010.
Typically, this response indicates an unsupported message.

A component is not permitted to set CRRESP to 0b00010 in response to a DVM Sync or a DVM Complete.

The interconnect component gathers all response values and responds to the originator as follows:

• If CRRESP is 0b00000 for all responses, the interconnect component sets RRESP to 0b0000.

• If CRRESP is 0b00010 for any responses, the interconnect component sets RRESP to 0b0010.

Note
 If CRRESP is 0b00010 for any responses, this specification recommends that the interconnect component

provides a fault log to record which components are unable to perform requested actions.

No data transfer is associated with DVM transactions.

For multi-part DVM transactions, a response is provided for each transaction. For such transactions, it is required
that a component must provide the same response to each transaction.

D13.3.5 Message ID

In general, DVM transactions must not use AXI ID values that are used by non-DVM transactions on the AR
channel. This ensures that there are no ordering constraints between DVM transactions and non-DVM transactions.
However:

• DVM messages and non-DVM transactions can use the same AXI ID value, provided one transaction has
fully completed before the other is issued.

• DVM messages are permitted to use the same AXI ID value as a transaction issued on the AW channel.

• Different DVM transactions can use either the same AXI IDs, or different ones. Each transaction of a
multi-part DVM Operation must use the same AXI ID.

• If different AXI IDs are used for DVM Operations, then the order of arrival of the different messages at the
recipient of the message is not guaranteed. All DVM Operations must be correctly ordered with respect to a
DVM Sync from the same issuing master component, even if different AXI ID values are used.

D13.3.6 Instruction cache invalidation alternatives

In general, instruction caches can use either a physical address or a virtual address to tag the data they contain. A
system might contain a mixture of components meaning that both address types are used.

The DVM protocol includes instruction cache invalidation operations that use physical addresses and operations
that use virtual addresses. A component is only required to broadcast one format of instruction cache invalidation,
either virtual address based, or physical address based. However, a component is permitted to broadcast both types,
and must correctly receive both types of invalidation. All recipients of the message must perform the appropriate
action.

If the format of the message does not match the style of instruction cache implemented over-invalidation, that is,
invalidation of more entries in the instruction cache than is functionally required, will be necessary to ensure that
the required action is performed.
D13-308 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.4 DVM message support for ARMv7 and ARMv8
D13.4 DVM message support for ARMv7 and ARMv8
Distributed Virtual Messages were originally specified to support the ARMv7 architecture. This messaging can
optionally be extended to also support the ARMv8 architecture as follows:
DVMv7 DVM protocol supports ARMv7.
DVMv8 DVM protocol supports ARMv8 and ARMv7.

The DVM_v8 property specifies that a component supports DVMv8 messages and can be TRUE or FALSE. A
component that does not specify the DVM_v8 property has the default value of FALSE.

Table D13-1 shows the DVM_v8 property encoding.

A DVMv8 system must include the following additions to the DVMv7 message format to support ARMv8:
• Support for 16-bit ASID.
• Leaf Entry only invalidation on page D13-310.
• Stage 2 only invalidation on page D13-310.
• EL3 translation regime on page D13-310.

D13.4.1 Support for 16-bit ASID

DVMv8 supports both 8-bit and 16-bit ASID. No indication of the use of a 16-bit ASID is provided within the DVM
message. All 8-bit ASID messages are required to set the ASID[15:8] field to zero.

It is expected that most systems will use a single ASID size across the entire system, either 8-bit ASID or 16-bit
ASID.

In a system that contains a mix of 8-bit ASID and 16-bit ASID components, it is expected that all maintenance will
be done by an agent that uses 16-bit ASID. This ensures that the agent can perform maintenance on both the 8-bit
ASID and 16-bit ASID components.

The interoperability requirements are:

• For an 8-bit ASID agent sending message to 16-bit ASID agent, the message appears as 16-bit ASID with
upper 8-bits set to zero.

• For a 16-bit ASID agent sending message to 8-bit ASID agent:

— If upper 8-bits are zero, the message will be received correctly.
Over invalidation will occur, as the 8-bit ASID agent will ignore the upper 8-bits.

— If the upper 8-bits are nonzero, the message is not required to operate correctly. Over invalidation will
occur, as the 8-bit ASID agent will ignore the upper 8-bits.

Table D13-1 DVM_v8 property encoding

DVM_v8 property DVM Support Description

TRUE DVMv8 The DVMv8 protocol supports ARMv8 and ARMv7.

FALSE DVMv7 The DVMv7 protocol supports ARMv7. This is the default
if a component does not support the DVM_v8 property.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-309
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.4 DVM message support for ARMv7 and ARMv8
D13.4.2 Leaf Entry only invalidation

DVMv8 also supports the invalidation of only the last level of translation table walk. This is in addition to the
original mechanism, where all levels of translation table walk are required to be invalidated.

The state of ARADDR[4] in the first DVM transaction indicates if Leaf Entry only invalidation is permitted:

• When ARADDR[4] is HIGH, it is permitted to only invalidate the Leaf Entry that is the entry that is returned
from the last level of translation table walk.

• When ARADDR[4] is LOW, all associated translations must be invalidated.

D13.4.3 Stage 2 only invalidation

DVMv8 also supports the invalidation of Stage 2 only translation. The value of ARADDR[3:2] in the first DVM
transaction indicates if Stage 1 or Stage 2 invalidation is required. Table D13-2 shows the address bit encodings.

D13.4.4 EL3 translation regime

DVMv8 includes additional DVM messages for the EL3 translation regime.

It is required that the same translation regime is used when using:
• AArch32 at EL3.
• Secure EL1 when using AArch64 at EL3.

This translation scheme is signaled, in DVMv7 and DVMv8, using the GuestOS / Secure encoding.

For an ARMv8 processing element, the EL3 encoding is only used for EL3 when using AArch64 at EL3.

The EL3 invalidation messages use a previously reserved encoding of ARADDR[11:10] in the first DVM
transaction. Table D13-3 shows the address bit encodings.

Table D13-2 ARADDR[3:2] address bit encoding

ARADDR[3:2] Description

00 DVMv7 defined.

01 Stage 1 only invalidation required. Used to indicate a version of TLBIVMALLE1IS / TLBIALLIS
that does not require Stage 2 invalidation.

10 Stage 2 only invalidation required. Used for TLBIIPAS2IS and TLBIIPAS2LIS instructions. For
this message, the Intermediate Physical Address (IPA) is sent. This is done using the same
format as the Physical Address (PA).

11 Reserved.

Table D13-3 ARADDR[11:0] address bit encoding

ARADDR[11:10] Name Function

0b00 Guest OS or hypervisor Transaction applies to Hypervisor and all Guest OS

0b01 Transaction applies to EL3

0b10 Transaction applies to Guest OS

0b11 Transaction applies to Hypervisor
D13-310 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.5 Physical and virtual address space size
D13.5 Physical and virtual address space size
The DVM protocol can be extended to support different combinations of virtual and physical address space sizes.
For any component, any of the following can be true:
• Physical address space size matches virtual address space size.
• Physical address space size exceeds virtual address space size.
• Virtual address space size exceeds physical address space size.

D13.5.1 Physical address space size matches virtual address space size

In common usage, a component has a matching physical address space size and virtual address space size. Address
information is transferred using ARADDR with no adaptation or special considerations required.

D13.5.2 Physical address space size exceeds virtual address space size

If a component supports a larger physical address space than virtual address space, the number of bits in the
ARADDR signal matches that of the physical address space size and no special considerations are required for
physical address-based operations.

Virtual address operations might receive additional address information in a DVM transaction. However, it is a
DVM protocol requirement that any additional address information is ignored and operations are performed using
only the supported address bus bits. In certain circumstances, this approach can result in an over-invalidation, where
more entries are invalidated in the cache than is functionally required. However this is acceptable for read-only
structures and is functionally correct.

D13.5.3 Virtual address space exceeds physical address space

If a component supports a larger virtual address space than its physical address space, then a minimum ARADDR
payload size is required to support the virtual address space size. This then requires that the component takes
appropriate action regarding the additional physical address bits.

Interoperability considerations on page D6-260 describes the general rules for the interaction of two components
with different physical address space sizes. These rules must be applied to any component that has a wider address
bus than its naturally supported physical address space size.

DVMv7 and DVMv8 address spaces on page D13-312 specifies the supported physical and virtual address spaces.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-311
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.6 DVMv7 and DVMv8 address spaces
D13.6 DVMv7 and DVMv8 address spaces
The following physical and virtual address space sizes are supported:

Note
 DVMv7 implementations only support a 32-bit virtual address space. The use of DVMv7 for a virtual address space
greater than 32-bits is deprecated.

Table D13-5 and Table D13-6 on page D13-313 show the allocation of ARADDR address fields for multi-part
DVMv7 and DVMv8 messages for different physical address channel sizes.

Table D13-4 Supported physical and virtual address spaces

DVM version Physical address space Virtual address space

v7 and v8 32-bit 32-bit

40-bit 32-bit

v8 only 40-bit 41-bit

44-bit 49-bit

48-bit 57-bit

Table D13-5 Address fields associated with the first part of a multi-part DVM message

Address size DVM version First transaction ARADDR field mapping

Physical Virtual [47:44] [43:40] [39:32] [31:24] [23:16]

32-bit 32-bit v7 and v8 - - - VMID[7:0] ASID[7:0]

40-bit 32-bit v7 and v8 - - SBZa VMID[7:0] ASID[7:0]

41-bit v8 only - - ASID[15:8]b VMID[7:0] ASID[7:0]

44-bit 49-bit v8 only - VA[48:45] ASID[15:8] VMID[7:0] ASID[7:0]

48-bit 57-bit v8 only VA[56:53] VA[48:45] ASID[15:8] VMID[7:0] ASID[7:0]

a. For DVMv7 and DVMv8 messages that use an 8-bit ASID, this field must be set to zero.
b. For DVMv8 messages that use a 16-bit ASID, this field is allocated for transport of the upper 8 bits of the 16-bit ASID.
D13-312 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.6 DVMv7 and DVMv8 address spaces
Note
 The bit positions for some higher-order address bits are both shifted by a single bit and also split between the first
and second parts of a multi-part DVM transaction. This bit position allocation might appear irregular, but is used to
ease the translation between implementations with different physical address sizes.

The requirements for the ASID[7:0] and VMID[7:0] fields are as follows:

• If ARADDR[5] of the first transaction is deasserted, ARADDR[23:16] and ARADDR[39:32] of the first
transaction must be all zeros for all defined message types except Hint.

• If ARADDR[6] of the first transaction is deasserted, ARADDR[31:24] of the first transaction must be all
zeros for all defined message types except Hint.

Any DVM operation that is operating on the physical address uses the second transaction in a multi-part message
to provide the physical address, with a direct mapping of the physical address to the appropriate ARADDR bits.
Table D13-7 and Table D13-8 on page D13-314 show the mapping of the ARADDR bits for any DVM operation
that is operating on the physical address.

Table D13-6 Address fields associated with the second part of a multi-part DVM message

Address size DVM version Second transaction ARADDR field mapping

Physical Virtual [47:44] [43:40] [39:32] [31:12] [11:4] [3]

32-bit 32-bit v7 and v8 - - - VA[31:12] VA[11:4] SBZ

40-bit 32-bit v7 and v8 - - SBZa VA[31:12] VA[11:4] SBZ

41-bit v8 only - - VA[39:32] VA[31:12] VA[11:4] VA[40]

44-bit 49-bit v8 only - VA[44:41] VA[39:32] VA[31:12] VA[11:4] VA[40]

48-bit 57-bit v8 only VA[52:49] VA[44:41] VA[39:32] VA[31:12] VA[11:4] VA[40]

a. For a virtual address space size of 32-bit, this address field must be set to zero.

Table D13-7 First transaction ARDDR mapping for any DVM operation that is operating on a physical address

Physical address size DVM version First transaction ARADDR field mapping

[47:44] [43:40] [39:32] [31:24] [23:16]

32-bit v7 and v8 - - - VA[27:20] VA[19:12]

40-bit v7 and v8 - - SBZ VA[27:20] VA[19:12]

44-bit v8 only - SBZ SBZ VA[27:20] VA[19:12]

48-bit v8 only SBZ SBZ SBZ VA[27:20] VA[19:12]
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-313
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.6 DVMv7 and DVMv8 address spaces
Table D13-8 Second transaction ARADDR mapping for any DVM operation that is operating on a physical address

Physical address size DVM version Second transaction ARADDR field mapping

[47:44] [43:40] [39:32] [31:12] [11:4]

32-bit v7 and v8 - - - PA[31:12] PA[11:4]

40-bit v7 and v8 - - PA[39:32] PA[31:12] PA[11:4]

44-bit v8 only - PA[43:40] PA[39:32] PA[31:12] PA[11:4]

48-bit v8 only PA[47:44] PA[43:40] PA[39:32] PA[31:12] PA[11:4]
D13-314 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.7 DVM transactions format
D13.7 DVM transactions format
Table D13-9 shows the outline message format and the read address channel address bit encoding for DVM.

Table D13-9 DVM transactions format

ARADDR bits Name Function

[(n-1):32] - Additional PA,VA, or ASID bits
or
Reserved, must be zero, depending on configuration

Note
 n represents the width of the AR address bus

[31:24] - Virtual Machine Identifier (VMID) or Virtual Index, VA[27:20]

[23:16] - Address Space IDentifier (ASID) or Virtual Index, VA[19:12]

[15] Completion Indicates that a DVM Complete transaction is required:
0 a DVM Complete transaction is not required
1 a DVM Complete transaction is required

[14:12] Message type 0b000 TLB Invalidate
0b001 Branch Predictor Invalidate
0b010 Physical Instruction Cache Invalidate
0b011 Virtual Instruction Cache Invalidate
0b100 Synchronization
0b110 Hint

[11:10] Guest OS or hypervisor 0b00 Transaction applies to hypervisor and all Guest OS
0b01 Transaction applies to EL3a

0b10 Transaction applies to Guest OS
0b11 Transaction applies to hypervisor

[9:8] Security 0b00 Transaction applies to Secure and Non-secure
0b01 Reserved
0b10 Transaction applies to Secure only
0b11 Transaction applies to Non-secure only

[7] - Reserved, SBZ

[6] - Message includes information in ARADDR[31:24]

[5] - Message includes information in ARADDR[23:16]

[4] Leaf Entry Invalidation 0b0 Invalidate all associated translations
0b1 Invalidate Leaf Entry onlya
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-315
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.7 DVM transactions format
Table D13-10 shows the format if an additional transaction is used to convey address information.

[3:2] Staged Invalidation 0b00 Used for DVMv7 transactions
0b01 Stage 1 only invalidation requireda

0b10 Stage 2 only invalidation requireda

0b11 Reserved

[1] - Reserved, SBZ

[0] - 0b0 The transaction includes all address information
0b1 A further transaction includes additional address

information

a. DVMv8 only.

Table D13-10 DVM additional transaction format

ARADDR bits Description

[(n-1):4] Virtual address bits or Physical address bits

Note
 n represents the width of the address bus.

[3] Virtual address bit VA[40] when utilized, else SBZ

[2:0] SBZ

Table D13-9 DVM transactions format (continued)

ARADDR bits Name Function
D13-316 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.8 DVM transaction restrictions
D13.8 DVM transaction restrictions
Table D13-11 shows the constraints that apply to the DVM read address and snoop address channel signals.

Table D13-11 DVM transaction constraints

Attribute Constraint

ARADDR Must be zero for DVM Complete.

ARBURST Burst type must be INCR.

ARLEN The burst length must be 1, that is ARLEN[7:0] must be 0b00000000. See Address structure on page A3-48 for
more information.

ARSIZE The number of bytes in a transfer must be equal to the data bus width. See Burst size on page A3-49.

ARCACHE Must be Modifiable and Non-cacheable, that is ARCACHE[3:0] must be 0b0010. See Table A4-4 on page A4-68
for more information.

ARPROT Not used for DVM messages, can take any value.

ARLOCK Must be a normal access, that is ARLOCK must be 0.

ARSNOOP Must be either:
• DVM Operation or DVM Sync, that is, ARSNOOP[3:0] must be 0b1111
• DVM Complete, that is, ARSNOOP[3:0] must be 0b1110.

ARDOMAIN The domain must be Inner Shareable or Outer Shareable.

ARBAR Must be a normal access, that is AxBAR[0] must be 0.

ACADDR Must be zero for DVM Complete.

ACPROT Not used for DVM messages, can take any value.

ACSNOOP Must be either:
• DVM Operation or DVM Sync, that is, ACSNOOP[3:0] must be 0b1111.
• DVM Complete, that is, ACSNOOP[3:0] must be 0b1110.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-317
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.9 DVM Operations
D13.9 DVM Operations
This section describes the DVM Operations:
• TLB Invalidate.
• Branch Predictor Invalidate on page D13-321.
• Physical Instruction Cache Invalidate on page D13-322.
• Virtual Instruction Cache Invalidate on page D13-323.
• Synchronization on page D13-324.
• Hint on page D13-324.

D13.9.1 TLB Invalidate

This section lists the TLB Invalidate operations that the DVM message supports.

Table D13-12 shows the fixed values for the TLB Invalidate message fields.

Table D13-13 on page D13-319 shows the TLB Invalidate message, ARADDR[14:12] = 0b000 and the encoding
for the supported operations. See DVM transactions format on page D13-315 for further information on the message
encoding.

Table D13-12 TLB Invalidate message fixed values

ARADDR bit Value Status

[15] 0b0 Completion not required

[7] SBZ Reserved

[1] SBZ Reserved
D13-318 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.9 DVM Operations
Table D13-13 Supported TLB Invalidate operations

ARADDR bit Operation

[14:12]
Message type

[11:10]
Hypervisor

[9:8]
Security

[6]
VMID

[5]
ASID

[4]
LEAF

[3:2]
S1-S2

[0]
VA

0b000

TLBI
0b10

All Guest OS
0b10

Secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
Secure TLB Invalidate all

0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
Secure TLB Invalidate by VA

0b0

Ignore
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
Secure TLB Invalidate by VA
Leaf Entry onlyb

0b0

Ignore
0b1

Match
0b0

Ignore
0b00a 0b0

Ignore
Secure TLB Invalidate by
ASID

0b0

Ignore
0b1

Match
0b0

Ignore
0b00a 0b1

Match
Secure TLB Invalidate by
ASID and VA

0b0

Ignore
0b1

Match
0b1

Leaf
0b00a 0b1

Match
Secure TLB Invalidate by
ASID and VA Leaf Entry onlyb

0b10

All Guest OS
0b11

Non-secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
All OS TLB Invalidate all

0b1

Match
0b0

Ignore
0b0

Ignore
0b01

S1
0b0

Ignore
Guest OS TLB Invalidate all
Stage 1 invalidation onlyb

0b1

Match
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
Guest OS TLB Invalidate all
ARMv7 must carry out Stage 1
and 2 invalidationb

0b1

Match
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
Guest OS TLB Invalidate by
VA

0b1

Match
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
Guest OS TLB Invalidate by
VA Leaf Entry onlyb

0b1

Match
0b1

Match
0b0

Ignore
0b00a 0b0

Ignore
Guest OS TLB Invalidate by
ASID

0b1

Match
0b1

Match
0b0

Ignore
0b00a 0b1

Match
Guest OS TLB Invalidate by
ASID and VA

0b1

Match
0b1

Match
0b1

Leaf
0b00a 0b1

Match
Guest OS TLB Invalidate by
ASID and VA Leaf Entry onlyb

0b1

Match
0b0

Ignore
0b0

Ignore
0b10

S2
0b1

IPAc

Guest OS TLB Invalidate by
IPAb

0b1

Match
0b0

Ignore
0b1

Leaf
0b10

S2
0b1

IPAc

Guest OS TLB Invalidate by
IPA Leaf Entry onlyb
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-319
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.9 DVM Operations
0b000

TLBI
0b11

Hypervisor
0b11

Non-secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
Hypervisor TLB Invalidate all

0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
Hypervisor TLB Invalidate by
VA

0b0

Ignore
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
Hypervisor TLB Invalidate by
VA Leaf Entry onlyb

0b01

EL3
0b10

Secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
EL3 TLB Invalidate by VAb

0b0

Ignore
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
EL3 TLB Invalidate by VA
Leaf Entry onlyb

0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
EL3 TLB Invalidate Allb

a. The value 0b00 is used for all transactions that are defined in DVMv7.
b. Supported or changed by DVMv8.
c. IPA is the Intermediate Physical Address.

Table D13-13 Supported TLB Invalidate operations (continued)

ARADDR bit Operation

[14:12]
Message type

[11:10]
Hypervisor

[9:8]
Security

[6]
VMID

[5]
ASID

[4]
LEAF

[3:2]
S1-S2

[0]
VA
D13-320 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.9 DVM Operations
D13.9.2 Branch Predictor Invalidate

This section lists the Branch Predictor Invalidate operations that the DVM message supports.

Table D13-14 shows the fixed values for the Branch Predictor Invalidate message fields.

Note
 The use of Branch Predictor Invalidate with a 16-bit ASID is not supported.

Table D13-15 shows the Branch Predictor Invalidate message, ARADDR[14:12] = 0b001 and the encodings for the
supported operations. See DVM transactions format on page D13-315 for further information on the message
encoding.

Table D13-14 Branch Predictor Invalidate message fixed values

ARADDR bit Value Status

[15] 0b0 Completion not required

[11:10] 0b00 Applies to all Guest OS and Hypervisor

[9:8] 0b00 Applies to Secure and Non-secure

[7] SBZ Reserved

[6] 0b0 VMID is specified on ARADDR[31:24]

[5] 0b0 ASID is specified on ARADDR[23:16]

[4:1] SBZ Reserved

Table D13-15 Supported Branch Predictor Invalidate operations

ARADDR bit Operation

[14:12]
Message type

[0]
VA

0b001 0b0

Ignore
Branch Predictor Invalidate all

0b1

Match
Branch Predictor Invalidate by VA
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-321
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.9 DVM Operations
D13.9.3 Physical Instruction Cache Invalidate

This section lists the Physical Instruction Cache Invalidate operations that the DVM message supports.

Table D13-16 shows the fixed values for the Physical Instruction Cache Invalidate message fields.

Table D13-17 shows the Physical Instruction Cache Invalidate message, ARADDR[14:12] = 0b010 and the
encodings for the supported operations. See DVM transactions format on page D13-315 for further information on
the message encoding.

Table D13-16 Physical Instruction Cache Invalidate message fixed values

ARADDR bit Value Status

[15] 0b0 Completion not required

[11:10] 0b00 Applies to all Guest OS and Hypervisor

[7] SBZ Reserved

[4:1] SBZ Reserved

Table D13-17 Supported Physical Instruction Cache Invalidate operations

ARADDR bit Operation

[14:12]
Message type

[9:8]
Security

[6:5]a

Virtual Index
[0]
VA

0b010 0b10

Secure
0b00 0b0

Ignore
Secure Physical Instruction Cache Invalidate all

0b00 0b1

Match
Secure Physical Instruction Cache Invalidate by PA without Virtual
Index

0b11 0b1

Match
Secure Physical Instruction Cache Invalidate by PA with Virtual
Index

0b11

Non-secure
0b00 0b0

Ignore
Non-secure Physical Instruction Cache Invalidate all

0b00 0b1

Match
Non-secure Physical Instruction Cache Invalidate by PA without
Virtual Index

0b11 0b1

Match
Non-secure Physical Instruction Cache Invalidate by PA with Virtual
Index

a. If ARADDR[6] is 0b1, then Virtual Index VA[27:20] at ARADDR[31:24] is used as part of the physical address
If ARADDR[5] is 0b1 then Virtual Index VA[19:12] at ARADDR[23:16] is used as part of the physical address.
D13-322 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.9 DVM Operations
D13.9.4 Virtual Instruction Cache Invalidate

This section lists the Virtual Instruction Cache Invalidate operations that the DVM message supports.

Table D13-18 shows the fixed values for the Virtual Instruction Cache Invalidate message fields.

Table D13-19 shows the Virtual Instruction Cache Invalidate message, ARADDR[14:12] == 0b011 and the
encodings for the supported operations. See DVM transactions format on page D13-315 for further information on
the message encoding.

Table D13-18 Virtual Instruction Cache Invalidate message fixed values

ARADDR bit Value Status

[15] 0b0 Completion not required

[7] SBZ Reserved

[4:1] SBZ Reserved

Table D13-19 Supported Virtual Instruction Cache Invalidate operations

ARADDR bit Operation

[14:12]
Message type

[11:10]
Hypervisor

[9:8]
Security

[6]
VMID

[5]
ASID

[0]
VA

0b011

VICI
0b00

Hypervisor and
All Guest OS

0b00

Secure and
Non-secure

0b0

Ignore
0b0

Ignore
0b0

Ignore
Invalidate all. Applies to Secure and
Non-secure. Applies to Hypervisor and all
Guest OS.

0b11

Non-secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
Invalidate all. Applies to Non-secure. Applies
to Hypervisor and all Guest OS.

0b10

All Guest OS
0b10

Secure
0b0

Ignore
0b1

Match
0b1

Match
Secure Invalidate by ASID and VA.

0b11

Non-secure
0b1

Match
0b0
Ignore

0b0

Ignore
Guest OS, Invalidate all.

0b1

Match
0b1

Match
Guest OS, Invalidate by ASID and VA.

0b11

Hypervisor
0b11

Non-secure
0b0

Ignore
0b0

Ignore
0b1

Match
Hypervisor, Invalidate by VA.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-323
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.9 DVM Operations
D13.9.5 Synchronization

This section lists the Sync Operation that the DVM message supports.

Table D13-20 shows the fixed values for the Sync message fields.

Note
 The Sync message is the only supported message type that has the Completion Required field, ARADDR[15] set
to 1.

Table D13-21 shows the message type encoding for the Sync Operation and usage cases.

D13.9.6 Hint

A reserved message address space is provided for future Hint messages.

Table D13-22 shows the fixed values for the Hint message fields.

All Hint messages must respond with the snoop response value CRRESP set to 0 on the CR channel.

Table D13-20 Sync message fixed values

ARADDR bit Value Status

[15] 0b1 Completion Required

[11:10] 0b00 Applies to all Guest OS and Hypervisor

[9:8] 0b00 Applies to Secure and Non-secure

[7] SBZ Reserved

[6] 0b0 Ignore VMID

[5] 0b0 Ignore ASID

[4:1] SBZ Reserved

[0] 0b0 Virtual address is not specified in this message

Table D13-21 Supported Sync Operations

ARADDR bit Operation

[14:12]
Message type

0b100 Synchronization

Table D13-22 Hint message fixed values

ARADDR bit Value Status

[15] 0b0 Completion not required
D13-324 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

D13 Distributed Virtual Memory Transactions
D13.9 DVM Operations
Table D13-23 shows the message type encoding for future Hint operations.

Table D13-23 Support for future Hint operations

ARADDR bit Operation

[14:12]
Message type

0b110 Reserved
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D13-325
ID122117 Non-Confidential

D13 Distributed Virtual Memory Transactions
D13.10 DVMv7 and DVMv8 conversion
D13.10 DVMv7 and DVMv8 conversion
This section contains the following subsections:
• Conversion from DVMv7 to DVMv8 format.
• Conversion from DVMv8 to DVMv7 format.
• Address size conversion.

D13.10.1 Conversion from DVMv7 to DVMv8 format

All legal DVMv7 messages are also legal DVMv8 format messages that perform the required operation.

A component issuing DVMv7 messages is not capable of performing maintenance on a device using 16 bits of
ASID. See Support for 16-bit ASID on page D13-309.

D13.10.2 Conversion from DVMv8 to DVMv7 format

DVM messages that are added in DVMv8 are not required to affect a component that only supports DVMv7.

A component that supports DVMv8 must issue DVMv7 messages to correctly maintain any core that only supports
DVMv7.

Conversion of a DVMv8 to DVMv7 format is only required to ensure that the DVMv7 core only receives messages
that it has been validated to receive.

A simple bridge function can be used to convert any DVMv8 message to a legal DVMv7 message:

• ARADDR[4] is deasserted.

• ARADDR[3:2] is deasserted.

• If ARADDR[11:10] has the value 0b01, indicating that the transaction applies to exception level EL3, then
this must be converted to 0b10 to indicate that the transaction applies to Guest OS.

This is not the only possible implementation of the bridge function.

Any DVMv7 core that can be validated to accept and respond to DVMv8 messages in a protocol legal manner does
not require the bridge function. The DVMv8 only messages are not required to have a specific effect, the only
requirement is to not cause deadlock or some other software detectable side-effect.

D13.10.3 Address size conversion

Address size conversion for DVM messages is required for conversion between components that support different
physical address sizes.

This specification does not describe the conversion to or from a DVMv7 transaction where the address bits above
VA[39] are nonzero. All conversion information assumes these upper address bits are zero.

Conversion from a smaller physical address size to a larger physical address size requires that the additional
higher-order address bits are set to zero.

Conversion from a larger physical address size to a smaller physical address size requires that the additional
higher-order address bits are discarded.
D13-326 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter D14
Master Design Recommendations

This chapter presents a set of recommendations for the design of master components that improve the ability to
bridge the master to different protocol interfaces. It contains the following sections:
• Recommended design restrictions on page D14-328,
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. D14-327
ID122117 Non-Confidential

D14 Master Design Recommendations
D14.1 Recommended design restrictions
D14.1 Recommended design restrictions
This specification recommends that all new master components are designed to meet the following restrictions:

• A single cache line size of 64 bytes.

• A constrained number of WriteBack, WriteClean, WriteEvict, and WriteNoSnoop transactions in progress:

— The total number of data bytes within each transaction must be considered as well as the total number
of transactions.

— There is no fixed limit, it is only required that the limit is specified. This permits a buffer to be designed
which can accept the maximum number of transactions.

• A snoop transaction must make forward progress unless there is an outstanding WriteBack, WriteClean, or
WriteEvict transaction to the same line.

• Any address hazard that prevents forward progress of a snoop transaction while a WriteBack, WriteClean, or
WriteEvict transaction is in progress must be precise to cache line granularity:

— It is not permitted to prevent forward progress of a snoop transaction while a WriteBack, WriteClean,
or WriteEvict transaction is in progress to a different cache line and there is no WriteBack, WriteClean,
or WriteEvict transaction in progress to the same cache line.

• The use of the CD channel to respond to snoops must be supported if the cache holds dirty cache lines:

— This is required to permit the forward progress of a snoop transaction when the maximum number of
WriteBack, WriteClean, WriteEvict, and WriteNoSnoop transactions has been reached and these
transactions are not guaranteed to complete before the snoop must complete.

— Partial dirty cache lines cannot be supported because the CD channel does not support the use of byte
strobes.

• All WriteBack, WriteClean, WriteEvict, and Evict transactions in progress must use a unique AXI ID
transaction identifier. This allows the interconnect to respond to WriteBack, WriteClean, WriteEvict, and
Evict transactions in any order.

• The single-copy atomicity guarantee for a Device transaction is no greater than the number of bytes in a
single data transfer, as defined by AxSIZE.

This set of restrictions is sufficient to permit a master component to be bridged to a protocol that does not support
the free-flowing write channel that ACE provides.

This set of restrictions has no impact on the compatibility of the master with different revisions of the specification.
D14-328 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Part E
AMBA ACE5, ACE5-Lite, ACE5-LiteDVM, and ACE5-LiteACP

Protocol Specification

Chapter E1
Changes in ACE5 and ACE5-Lite

This chapter describes the changes in AMBA 5 to the ACE and ACE-Lite channel signaling requirements. It
contains the following sections:
• Shareability domain support on page E1-332.
• Barrier transaction support on page E1-333.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E1-331
ID122117 Non-Confidential

E1 Changes in ACE5 and ACE5-Lite
E1.1 Shareability domain support
E1.1 Shareability domain support
To simplify the specification and clarify the expected use of domains, the use of the Inner Shareable domain is
deprecated in:
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.
• ACE5-LiteACP.

This specification recommends that new designs use the Outer Shareable domain for all transactions that would
previously have been indicated as Inner Shareable.

Table E1-1 shows the updated definitions.

Table E1-1 ACE5 and ACE5-Lite Shareability domain encoding

AxDOMAIN Description Note

0b00 Non-shareable No change

0b01 Inner Shareable Deprecated, use 0b10

0b10 Outer Shareable No change

0b11 System Shareable No change
E1-332 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E1 Changes in ACE5 and ACE5-Lite
E1.2 Barrier transaction support
E1.2 Barrier transaction support
Barrier transactions are not supported in ACE5 and ACE5-Lite variant interfaces. ACE5 and ACE5-Lite masters
that require specific ordering or observability must delay the issue of dependent requests until earlier transactions
are complete.

The interface property Barrier_Transactions is used to indicate whether a component supports barrier transactions:

TRUE The interface has the AxBAR signals and barrier transactions are supported. If Barrier_Transactions
is not declared, it is considered TRUE.

FALSE The interface does not have AxBAR signals and barrier transactions are not supported.

The default for the Barrier_Transactions property is TRUE, because legacy ACE and ACE-Lite components that
support barrier transactions might not have the Barrier_Transactions property defined.

Table E1-2 shows interoperability and indicates that special consideration must be given when connecting an ACE
or ACE-Lite master to an ACE5 or ACE5-Lite slave.

Table E1-2 Barrier Compatibility

Master Slave Barrier Compatibility

ACE5 or
ACE5-Lite

ACE5 or
ACE5-Lite

Fully compatible.

ACE5 or
ACE5-Lite

ACE or
ACE-Lite

Fully compatible, tie off AxBAR slave inputs to 0b00.

ACE or
ACE-Lite

ACE5 or
ACE5-Lite

Compatible if Barrier_Transactions property is FALSE or can be
configured to be FALSE. AxBAR master outputs can be left
unconnected. Needs a bridging component if Barrier_Transactions
is TRUE for master.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E1-333
ID122117 Non-Confidential

E1 Changes in ACE5 and ACE5-Lite
E1.2 Barrier transaction support
E1-334 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter E2
Additional Features in AMBA 5

This chapter describes the new features in AMBA 5 for this issue:
• Atomic transactions on page E2-336.
• Cache Stashing on page E2-345.
• Deallocating transactions on page E2-349.
• Cache Maintenance for Persistence on page E2-351.
• Data checking and Poison on page E2-352.
• Trace signals on page E2-355.
• User Loopback signaling on page E2-357.
• QoS Accept signaling on page E2-358.
• Wake-up Signaling on page E2-360.
• Coherency Connection signaling on page E2-362.
• Distributed Virtual Memory extensions for ARMv8.1 on page E2-367.
• Untranslated transactions on page E2-370.
• Non-secure access identifiers on page E2-374.

All new features are optional, Table F3-1 on page F3-424 shows which features can be included on which interface
type. If a property is UNDEFINED or defined as FALSE, the feature is not supported by that interface and the
associated signals are not included.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-335
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
E2.1 Atomic transactions
Previous generations of AMBA have included Exclusive accesses. See Exclusive accesses on page A7-98. AMBA
5 introduces Atomic transactions, which perform more than just a single access, and have some form of operation
that is associated with the transaction. Atomic transactions are suited to situations where the data is located a
significant distance from the agent that must perform the operation. Previously, performing an operation that is
atomically required pulling the data towards the agent, performing the operation, and then pushing the result back.
Atomic transactions enable sending the operation to the data, permitting the operation to be performed closer to
where the data is located.

The key advantage of this approach is that it reduces the amount of time during which the data must be made
inaccessible to other agents in the system.

The Atomic_Transactions property is used to indicate whether a component supports Atomic transactions:
TRUE Atomic transactions are supported.
FALSE Atomic transactions are not supported. If not declared, Atomic_Transactions property is considered

FALSE.

The Atomic_Transactions extension is supported in:
• AXI5.
• ACE5-Lite.
• ACE5-LiteDVM.

If a slave or interconnect component declares that it supports Atomic transaction, then it must support all operation
types, sizes and endianness.

This specification does not support the use of Atomic transactions by ACE5 masters.

E2.1.1 Overview

In a atomic transaction, the master sends an address, control information and outbound data. The slave sends
inbound data (except for AtomicStore) and a response. This specification supports four forms of Atomic transaction:

AtomicStore • Sends a single data value with an address and the atomic operation to be performed.
• The target performs the operation using the sent data and value at the addressed

location as operands.
• The result is stored in the address location.
• A single response is given without data.
• Outbound data size is 1, 2, 4, or 8 bytes.

AtomicLoad • Sends a single data value with an address and the atomic operation to be performed.
• The original data value at the addressed location is returned.
• The target performs the operation using the sent data and value at the addressed

location as operands.
• The result is stored in the address location.
• Outbound data size is 1, 2, 4, or 8 bytes.
• Inbound data size is the same as the outbound data size.

AtomicSwap • Sends a single data value with an address.

• The target swaps the value at the addressed location with the data value that is
supplied in the transaction.

• The original data value at the addressed location is returned.

• Outbound data size is 1, 2, 4, or 8 bytes.

• Inbound data size is the same as the outbound data size.
E2-336 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
AtomicCompare • Sends two data values, the compare value and the swap value, to the addressed
location. The compare and swap values are of equal size.

• The data value at the addressed location is checked against the compare value:
— If the values match, the swap value is written to the addressed location.
— If the values do not match, the swap value is not written to the addressed

location.

• The original data value at the addressed location is returned.

• Outbound data size is 2, 4, 8, 16, or 32 bytes.

• Inbound data size is half of the outbound data size because the outbound data
contains both compare and swap values, whereas the inbound data has only the
original data value.

E2.1.2 Atomic transaction operations

This specification supports eight different operations which can be used with AtomicStore and AtomicLoad
transaction. Table E2-1 shows the operators.

E2.1.3 Supported data size

AtomicStore, AtomicLoad, and AtomicSwap support data sizes of 1, 2, 4, or 8 bytes and the address of the
transaction must be aligned to the data size.

AtomicCompare, which is a compare and swap operation, has outbound data containing two values, each of which
can be 1, 2, 4, 8, or 16 bytes. So the total outbound data is 2, 4, 8, 16, or 32 bytes and inbound data is 1, 2, 4, 8, or
16 bytes respectively. The address of an AtomicCompare must be aligned to a single outbound data value, that is,
half the total outbound data size.

The number of bytes in the transaction, as indicated by AWLEN and AWSIZE, specifies the number of bytes in the
outbound write data of the transaction. For AtomicCompare, this value indicates the number of bytes required to
send the combined compare data and swap data value.

For any Atomic transaction with AWLEN indicating a burst length greater than one, AWSIZE is required to be the
full data bus width.

Read data is always the original data value at the memory location before the atomic operation.

Table E2-1 Atomic transaction operators

Operator Description

ADD The value in memory is added to the sent data and the result stored in memory.

CLR Every set bit in the sent data clears the corresponding bit of the data in memory.

EOR Bitwise exclusive OR of the sent data and value in memory.

SET Every set bit in the sent data sets the corresponding bit of the data in memory.

SMAX The value stored in memory is the maximum of the existing value and sent data. This
operation assumes signed data.

SMIN The value stored in memory is the minimum of the existing value and sent data. This
operation assumes signed data.

UMAX The value stored in memory is the maximum of the existing value and sent data. This
operation assumes unsigned data.

UMIN The value stored in memory is the minimum of the existing value and sent data. This
operation assumes unsigned data.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-337
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
For AtomicCompare:

• The compare data value is at the addressed bytes. This includes the use of one address bit below what would
be expected for the number of bytes indicated by AWLEN and AWSIZE.

• The swap data value is located in the remaining bytes within the data container that is indicated by AWLEN
and AWSIZE.

• If the address of the transaction is aligned to the total size of the outgoing data, the Compare value is sent
first, followed by the Swap value. If the address of the transaction is not aligned to the total size of the
outgoing data, the Swap value is sent first and the Compare value is sent second.

Example E2-1 shows some permitted combinations of AWADDR, AWSIZE, and AWLEN for a 64-bit data bus and
the location of the Compare and Swap data values.

Example E2-1 Location of the Compare and Swap data values

The burst type, as indicated by AxBURST must be as follows:

• For all AtomicStore, AtomicLoad, and AtomicSwap transactions, the burst type must be INCR.

• For AtomicCompare transactions where the address of the transaction is aligned to the total size of the
outgoing data, which indicates that the Compare value is sent first followed by the Swap value, the burst type
must be INCR.

• For AtomicCompare transactions where the address of the transaction is not aligned to the total size of the
outgoing data, which indicates that the Swap value is sent first followed by the Compare value, the burst type
must be WRAP.

01234567

CS------

AWADDR AWSIZE AWLEN

0x00

0x01

0x04

0x06

0x00

0x04

0x00

0x08

0

0

0

0

0

0

1

1

1
st
 Beat

2
nd

 Beat

1
st
 Beat

2
nd

 Beat

1 (2B)

1 (2B)

2 (4B)

2 (4B)

3 (8B)

3 (8B)

3 (8B)

3 (8B)

SC------

----CCSS

----SSCC

C CCCSSSS

S SSSCCCC

C CCCCCCC

S SSSSSSS

S SSSSSSS

C CCCCCCC
E2-338 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
Note
 For Atomic transactions, use of the WRAP burst type with transactions that are only a single data beat, as indicated
by AWLEN = 0, is permitted for Atomic transactions.

The appropriate write strobe must be asserted for each byte lane containing valid data that is part of the Atomic
transaction. Write strobes must be deasserted for byte lanes that do not contain valid data for the Atomic transaction.
In the case of AtomicCompare, this applies to the strobes of the Compare and Swap values.

E2.1.4 ID use for Atomic transactions

A single AXI ID is used for an Atomic transaction. The same AXI ID is used for the request, write response, and
the read data.

Atomic transactions must not use AXI ID values that are used by Non-atomic transactions that are outstanding at
the same time. This rule applies to transactions on either the AR or AW channel. This rule ensures that there are no
ordering constraints between Atomic transactions and Non-atomic transactions.

If one transaction has fully completed before the other is issued, Atomic transactions and Non-atomic transactions
can use the same AXI ID value.

Multiple Atomic transactions that are outstanding at the same time must not use the same AXI ID value.

E2.1.5 Request attributes for Atomic transactions

For Atomic transactions, the following restrictions apply for request attributes:

• AWCACHE and AWDOMAIN are permitted to be any combination valid for the interface type. See
Table D3-3 on page D3-175.

• AWSNOOP must be set to all zeros.

• AWLOCK must be 0b0, Normal access.

E2.1.6 Atomic transaction signaling

An extra signal is added to the interface to support Atomic transactions.

The signal is AW Atomic Operation, AWATOP. Table E2-2 and Table E2-3 on page E2-340 show the AWATOP
encodings.

For AtomicStore and AtomicLoad transactions AWATOP[3] indicates the endianness that is required for the atomic
operation:
• When deasserted, this bit indicates that the operation is little-endian.
• When asserted, this bit indicates that the operation is big-endian.

The value of AWATOP[3] applies to arithmetic operations only and is ignored for bitwise logical operations.

Table E2-2 AWATOP encodings

AWATOP[5:0] Description

0b000000 Non-atomic operation

0b01exxx AtomicStore

0b10exxx AtomicLoad

0b110000 AtomicSwap

0b110001 AtomicCompare
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-339
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
For AtomicStore and AtomicLoad transactions, Table E2-3 shows the encodings for the operations on the
lower-order AWATOP[2:0] signals.

E2.1.7 Transaction structure

For AtomicLoad, AtomicSwap, and AtomicCompare transactions, the transaction structure is as follows:
• The request is issued on the AW channel.
• The associated transaction data is sent on the W channel.
• The number of write data transfers required on the W channel is determined by the AWLEN signal.
• The relative timing of the Atomic transaction request and the Atomic transaction write data is not specified.
• The slave returns the original data value using the R channel.
• The number of read data transfers is determined from both AWLEN and the AWATOP signals.

Note
 For the AtomicCompare operation, if AWLEN is greater than 1, then the number of read data transfers is half

that specified by AWLEN.

• A slave is permitted to wait for all write data before sending read data. A master must be able to send all write
data without receiving any read data.

• A slave is permitted to send all read data before accepting any write data. A master must be able to accept
receiving all read data without any write data being accepted.

• A single write response is returned on the B channel. The write response must be given only by the slave after
it has received all write data transfers and the result of the atomic transaction is observable.

Table E2-3 Lower-order AWATOP[2:0] encodings

AWATOP[2:0] Operation Description

0b000 ADD Add

0b001 CLR Bit clear

0b010 EOR Exclusive OR

0b011 SET Bit set

0b100 SMAX Signed maximum

0b101 SMIN Signed minimum

0b110 UMAX Unsigned maximum

0b111 UMIN Unsigned minimum
E2-340 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
Figure E2-1 shows the flow of information and data for AtomicLoad transactions.

Figure E2-1 AtomicLoad transaction

For AtomicStore transactions, the transaction structure is as follows:
• The request is issued on the AW channel.
• The associated transaction data is sent on the W channel.
• The number of write data transfers required on the W channel is determined by the AWLEN signal.
• The relative timing of the Atomic transaction request and the Atomic transaction write data is not specified.
• A single write response is returned on the B channel. The write response must be given only by the slave after

it has received all write data transfers and the result of the atomic transaction is observable.

Figure E2-2 shows the flow of information and data for AtomicStore transactions.

Figure E2-2 AtomicStore transaction

E2.1.8 Response signaling

An Atomic transaction requires a write response. The write response indicates that the transaction is visible to all
required observers.

Atomic transactions that include a read response are visible to all required observers from the point of receiving the
first item of read data.

Note
 Both the read response and write response indicate that a transaction is visible to all required observers. It is
permitted for a master to use either response.

There is no concept of an error that is associated with the operation, such as overflow. An operation is fully specified
for all input combinations.

For transactions, such as AtomicCompare, where there are multiple outcomes for the transaction, no indication is
provided on the outcome of the transaction. To determine if a Compare and Swap instruction has updated the
memory location, it is necessary to inspect the original data value that is returned as part of the transaction.

Master Slave

AtomicLoad

response

AW

W

B

R

sent data

original data

Master Slave

AtomicStore

response

AW

W

B

sent data
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-341
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
Note
 It is permitted to give an error response to an Atomic transaction when the transaction reaches a component that
does not support Atomic transactions. See Interconnect support on page E2-343.

E2.1.9 Atomic transaction dependencies

For AtomicLoad, AtomicSwap, and AtomicCompare transactions, Figure E2-3 on page E2-343 shows the
following Atomic transaction handshake signal dependencies:

• The master must not wait for the slave to assert AWREADY or WREADY before asserting AWVALID or
WVALID.

• The slave can wait for AWVALID or WVALID, or both, before asserting AWREADY.

• The slave can assert AWREADY before AWVALID or WVALID, or both, are asserted.

• The slave can wait for AWVALID or WVALID, or both, before asserting WREADY.

• The slave can assert WREADY before AWVALID or WVALID, or both, are asserted.

• The slave must wait for AWVALID, AWREADY, WVALID, and WREADY to be asserted before asserting
BVALID.

The slave must also wait for WLAST to be asserted before asserting BVALID, because the write response
BRESP, must be signaled only after the last data transfer of a write transaction.

• The slave must not wait for the master to assert BREADY before asserting BVALID.

• The master can wait for BVALID before asserting BREADY.

• The master can assert BREADY before BVALID is asserted.

• The slave must wait for both AWVALID and AWREADY to be asserted before it asserts RVALID to
indicate that valid data is available.

• The slave must not wait for the master to assert RREADY before asserting RVALID.

• The master can wait for RVALID to be asserted before it asserts RREADY.

• The master can assert RREADY before RVALID is asserted.

• The master must not wait for the slave to assert RVALID before asserting WVALID.

• The slave can wait for WVALID to be asserted, for all write data transfers, before it asserts RVALID.

• The master can assert WVALID before RVALID is asserted.

In the dependency diagram that Figure E2-3 on page E2-343 shows:

• A single-headed arrow points to a signal that can be asserted before or after the signal at the start of the arrow.

• A double-headed arrow points to a signal that must be asserted only after assertion of the signal at the start
of the arrow.
E2-342 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
Figure E2-3 Atomic transaction handshake dependencies

E2.1.10 Support for Atomic transactions

Atomic transactions are supported for AXI5, ACE5-Lite, and ACE5-LiteDVM interfaces. The
Atomic_Transactions property is used to indicate whether an interface supports atomic transactions:
TRUE Atomic transactions are supported and the AWATOP signal may be present.
FALSE Atomic transactions are not supported and the AWATOP signal is not present.

Master support

Atomic transactions are not supported for ACE masters. An ACE master is able to perform an atomic operation to
a Cacheable location by obtaining a unique copy of the cache line and performing the atomic operation locally
within its own cache. An ACE master cannot support Atomic transactions to Non-cacheable or Device locations.
No specific support for Atomic transactions is required on the Snoop channel and therefore an ACE master needs
no added functionality to be compatible with Atomic transactions that are performed by other components.

A master component that supports Atomic transactions is required to support a mechanism to suppress the
generation of Atomic transactions to ensure compatibility in systems where Atomic transactions are not supported.
An optional BROADCASTATOMIC pin is specified. When the pin is tied HIGH, the interface is permitted to
generate Atomic transactions. When tied LOW, the interface must not generate Atomic transactions.

Slave support

It is optional for a slave component to support Atomic transactions.

If a slave component only supports Atomic transactions for particular memory types, or for particular address
regions, then the slave must give an appropriate error response for the Atomic transactions that it does not support.

Interconnect support

It is optional for an interconnect to support Atomic transactions.

If an interconnect does not support Atomic transactions, all attached master components must be configured to not
generate Atomic transactions. The BROADCASTATOMIC pin can be used for this purpose.

Atomic transactions, can be supported at any point within an interconnect that supports them, including passing
Atomic transactions downstream to slave components.

Atomic transactions are not required to be supported for every address location. If Atomic transactions are not
supported for a given address location, then an appropriate error response can be given for the transaction. See
Response signaling on page E2-341.

AWREADY

AWVALID WVALID BVALID

BREADYWREADY

RVALID

RREADY
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-343
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.1 Atomic transactions
For Device transactions, the Atomic transaction must be passed to the endpoint slave. If the slave is configured to
indicate that it does not support Atomic transactions, then the interconnect must give an error response for the
transaction. An Atomic transaction must not be passed to a component that does not support Atomic transactions.

For Cacheable transactions, the interconnect can either:

• Perform the atomic operation within the interconnect. This method requires that the interconnect performs
the appropriate read, write, and snoop transactions to complete the operation.

• If the appropriate endpoint slave is configured to indicate that it does support atomic operations, then the
interconnect can pass the atomic operation to the slave.
E2-344 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.2 Cache Stashing
E2.2 Cache Stashing
Cache stashing enables one component to indicate that a particular cache line should be placed in the cache of
another component in the system. This technique can be used to ensure that data is located close to its point of use,
potentially improving the performance of the overall system.

The Cache_Stash_Transactions property is used to indicate whether an interface supports cache stashing:
TRUE Cache stashing is supported.
FALSE Cache stashing is not supported and associated signals are omitted. If Cache_Stash_Transactions is

not declared, it is considered FALSE.

The Cache_Stash_Transactions extension is supported in:
• ACE5-Lite.
• ACE5-LiteDVM.
• ACE5-LiteACP.

This specification does not support the use of cache stashing by, or into, ACE5 masters. ACE5-Lite masters can
cause data to be stashed in fully coherent masters with AMBA CHI interfaces. For more information on stashing
into a CHI master, see AMBA 5 CHI Architecture Specification (ARM IHI 0050B).

An identification mechanism is required with the transaction to use cache stashing. The identification indicates the
specific cache in the system that is the intended target for the stash operation. This specification does not define the
precise details of this identification mechanism. It is expected that any agent that is performing a stash operation
knows the identifier to use for a given stash transaction.

This specification does define two levels of identification, one to identify the physical interface that the cache stash
should be sent to, and one to identify a functional unit that is associated with that physical interface. For example,
a stash transaction can specify a processor cluster interface and specific cache within that cluster.

E2.2.1 Stash transaction types

This specification defines four stash transaction types:

WriteUniquePtlStash

A write to memory which also indicates that the data should be allocated into a particular
cache. For a WriteUniquePtlStash transaction, any number of bytes within the cache line are
written, including all bytes or zero bytes.

WriteUniqueFullStash

A write to memory which also indicates that the data should be allocated into a particular
cache. For a WriteUniqueFullStash transaction, it is required that all bytes within the cache
line are written.

StashOnceShared A data-less transaction which indicates that a cache line should be fetched into a particular
cache. For a StashOnceShared transaction, it is required that existing cached copies of the
cache line are not invalidated.

StashOnceUnique A data-less transaction which indicates that a cache line should be fetched into a particular
cache. For a StashOnceUnique transaction, this specification recommends that the cache
line is stashed in Unique state. This permits a store to the cache line to occur with no further
action.

Note
 A StashOnceUnique transaction can cause the invalidation of a cached copy of a cache line and care must be taken
to ensure that such transactions do not interfere with Exclusive access sequences.

For an interface that supports the Untranslated_Transactions feature, an extra stash transaction is supported. The
StashTranslation transaction is used to indicate to a System Memory Management Unit (SMMU) that a translation
should be obtained for the address that is supplied with the StashTranslation transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-345
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.2 Cache Stashing
E2.2.2 Stash transaction signaling

An additional set of signaling is provided on the ACE5-Lite interface to support the use of cache stashing. This
includes the extension of the AWSNOOP signal to 4 bits.

A stash transaction is sent using the AW channel, with or without an associated transfer on the W channel. The
permitted combinations of control signals for stash requests is shown in Table E2-4.

See Table D3-3 on page D3-175 for the legal combinations of AWCACHE and AWDOMAIN.

Table E2-5 shows the additional signals that are required on the AW channel to support stash transactions.

The following rules apply to the AW channel signaling associated with the Cache_Stash_Transactions property:

• AWSTASHNID and AWSTASHNIDEN must either be both present or both absent.

• AWSTASHLPID and AWSTASHLPIDEN must either be both present or both absent.

It is permitted, but not recommended, to send a stash transaction with a stash target that indicates a component that
does not support cache stashing. The indication of a stash target within a stash transaction does not affect which
components are permitted to access and cache a given cache line.

Table E2-4 Permitted Stash transaction write address control signal combinations

Stash transaction AWSNOOP AWBAR[0]
/AWLOCK AWDOMAIN AWCACHE[1] AWLEN/AWSIZE

WriteUniquePtlStash 0b1000 0b0 0b10 0b1 Cache line or
smaller

WriteUniqueFullStash 0b1001 0b0 0b10 0b1 Cache line sized

StashOnceShared 0b1100 0b0 0b00, 0b10 0b1 Cache line sized

StashOnceUnique 0b1101 0b0 0b00, 0b10 0b1 Cache line sized

StashTranslation 0b1110 0b0 0b00, 0b10, 0b11 Any Any

Table E2-5 Additional AW channel signaling

Signal Description

AWSTASHNID[10:0] Indicates that the Node Identifier of the physical interface that is the target interface
for the stash operation.
Must be driven to all zeros when AWSTASHNIDEN is deasserted.

AWSTASHNIDEN When this signal is asserted, it indicates that the AWSTASHNID signal is valid and
should be used.

AWSTASHLPID[4:0] Indicates that the Logical Processor Identifier of the subunit that is associated with the
physical interface that is the target for the stash operation.
Must be driven to all zeros when AWSTASHLPIDEN is deasserted.

AWSTASHLPIDEN When this signal is asserted, it indicates that the AWSTASHLPID signal is valid and
must be used.
E2-346 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.2 Cache Stashing
Table E2-6 shows the permitted combinations of the enable signals associated with the Node and Logical Processor
identifiers.

E2.2.3 Rules and recommendations

It is permitted to send a stash transaction without a stash target. In this situation, this specification recommends the
following behavior for each of the different types of stash transaction:

• For WriteUniquePtlStash and WriteUniqueFullStash transactions:

— If the interconnect is able to determine that the cache line is held in a single cache before the write
occurs, then stash the cache line back to that cache.

— If the cache line is not held in any cache before the write occurs, then stash the cache line in a shared
system cache.

• For StashOnceShared and StashOnceUnique transactions, if the interconnect is able to determine that the
cache line is not in any cache, then stash the cache line in a shared system cache.

Note
 • For StashOnceShared or StashOnceUnique transactions, care is required to avoid any action that could result

in the deallocation of the cache line from the cache where it is expected to be used.

• A common use of StashOnce without a stash target is for a component to prefetch a cache line to a
downstream cache for its own use at a later time.

E2.2.4 Transaction structure

A WriteUniqueStash has the same transaction structure as other WriteUnique transactions.

A StashOnce or StashTranslation transaction has no data transfers. The address and control information is provided
on the AW channel, and a single response is provided on the B channel. The response must be provided only after
the address has been accepted.

E2.2.5 ID use for stash transactions

WriteUniquePtlStash and WriteUniqueFullStash transactions impose no additional constraints on the use of AXI ID
values.

Table E2-6 Permitted combinations of the enable signals

AWSTASHNIDEN AWSTASHLPIDEN Permitted behavior

0 0 Required value for any transaction that is not a
WriteUniqueStash or StashOnce transaction.
StashTranslation must use this combination.
Permitted for a WriteUniqueStash or StashOnce transaction.

1 0 Permitted for a WriteUniqueStash or StashOnce transaction.
Only the physical interface that is the target for the stash
operation is provided.

0 1 Permitted for a WriteUniqueStash or StashOnce transaction.
This combination is only expected to be used on an
ACE5-LiteACP interface, where the Node ID is not required.
See Chapter E6 ACE5-LiteACP.

1 1 Permitted for a WriteUniqueStash or StashOnce transaction.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-347
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.2 Cache Stashing
StashOnceShared and StashOnceUnique can be referred to as StashOnce transactions. StashOnce transactions must
not use the same AXI ID values that are used by non-StashOnce transactions that are outstanding at the same time.
This rule ensures that there are no ordering constraints between StashOnce transactions and other transactions. Both
StashOnce transactions and non-StashOnce transactions are permitted to use the same AXI ID value, provided that
the same ID value is not used by both a StashOnce transaction and a non-StashOnce at the same time. There can be
multiple outstanding StashOnce transactions with the same ID. There can be multiple outstanding non-StashOnce
transactions with the same ID.

StashTranslation transactions must not use the same AXI ID values that are used by non-StashTranslation
transactions that are outstanding at the same time. This rule ensures that there are no ordering constraints between
StashTranslation transactions and other transactions. StashTranslation transactions and non-StashTranslation
transactions are permitted to use the same AXI ID value, provided that the same ID value is not used by both a
StashTranslation transaction and a non-StashTranslation at the same time.

Note
 The use of a unique ID value for a StashOnce transaction, and for a StashTranslation transaction, ensures that these
transactions can be given an immediate response if they are not supported.

E2.2.6 Support for stash transactions

The Cache_Stash_Transactions property is used to indicate whether a component supports stash transactions. When
not specified, or set to false, stash transactions are not supported. When set to true, stash transactions are supported.

Table E2-7 shows the conversion of transactions between components that issue stash transactions and components
that do not support them.

Note
 See Full and partial cache line write transaction naming on page F1-416 for a description of WriteUniqueFull and
WriteUniquePtl.

Table E2-7 Conversion between Stash and Non-stash transactions

Stash transaction Action

WriteUniquePtlStash Convert to WriteUnique, optionally named WriteUniquePtl.

WriteUniqueFullStash Convert to WriteLineUnique, optionally named WriteUniqueFull.

StashOnceShared Do not propagate and give an immediate response.

StashOnceUnique Do not propagate and give an immediate response.
E2-348 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.3 Deallocating transactions
E2.3 Deallocating transactions
The primary use of a deallocating transaction is to deallocate the associated cache lines when it is known that these
cache lines are no longer required. This mechanism helps to ensure better availability of the cache resources for
other address locations.

The DeAllocation_Transactions property is used to indicate whether a component supports deallocating
transactions:

TRUE Deallocating transactions are supported.

FALSE Deallocating transactions are not supported. If the DeAllocation_Transactions property is not
declared, it is considered FALSE.

The Deallocation_Transactions extension is supported in:
• ACE5-Lite.
• ACE5-LiteDVM.

This specification does not support the use of deallocating transactions by ACE5 masters.

Interoperability between a component that issues deallocating transactions and a component that does not support
them can be performed by converting the transaction to a ReadOnce transaction.

E2.3.1 Deallocating transaction types
This specification defines two deallocating transactions:

ReadOnceCleanInvalid (ROCI)

This transaction reads a snapshot of the current value of the cache line. This specification
recommends, but does not require, that any cached copy of the cache line is deallocated. If a Dirty
copy of the cache line exists, and the cache line is deallocated, then the Dirty copy must be written
back to main memory.

ReadOnceMakeInvalid (ROMI)

This transaction reads a snapshot of the current value of the cache line. This specification
recommends, but does not require, that any cached copy of the cache line is deallocated. It is
permitted, but not required, that a Dirty copy of the cache line is discarded. The Dirty copy of the
cache line does not need to be written back to main memory.

E2.3.2 Rules and recommendations
Deallocating transactions are only permitted to access one cache line at a time. Accessing less than a cache line is
permitted, but it is not permitted to cross a cache line boundary.

Note
 Use of a ReadOnceMakeInvalid transaction to access less than a cache line can result in the invalidation of the entire
cache line.

For a ReadOnceMakeInvalid transaction, it is required that the invalidation of the cache line is committed before
the return of the first item of read data for the transaction. The invalidation of the cache line is not required to have
completed at this point. However, it must be ensured that any later write transaction from any agent that starts after
this point, is guaranteed not to be invalidated by this transaction.

The following considerations apply to the use of these transactions:

• Caution is needed when deallocating transactions are issued to the same cache line that other agents are using
for Exclusive accesses. This is because the deallocation can cause an exclusive sequence to fail.

• Apart from the interaction with Exclusive accesses, the ReadOnceCleanInvalid transaction only provides a
hint for deallocation of a cache line and has no other impact on the correctness of a system.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-349
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.3 Deallocating transactions
• The use of the ReadOnceMakeInvalid transaction can cause the loss of a Dirty cache line. The use of this
transaction must be strictly limited to scenarios when it is known that it is safe to do so.

• These transactions do not guarantee the invalidation of cache lines and cannot be used to ensure the visibility
of downstream caches.

Note
 This specification permits the use of ReadOnceCleanInvalid and ReadOnceMakeInvalid transactions to access less
than a cache line. However, some implementations might not support the deallocation behavior for transactions that
are less than a cache line and instead convert the transaction to ReadOnce in such cases.

E2.3.3 Deallocating transaction signaling

A deallocating transaction is sent using the AR channel. A deallocating transaction is indicated using the extended
ARSNOOP encodings that are shown in Table E2-8.

These transactions are only supported for transactions to the Outer Shareable domain.

The permitted response and permitted cache line state changes for these transactions is identical to the permitted
response and permitted cache line state changes for ReadOnce transactions.

There is no snoop channel equivalent of these transactions. An interconnect is permitted to use any appropriate
snoop transaction to obtain the required data and deallocate the cache line.

Conversion between a component that issues deallocation transactions and one that does not support them can be
performed by simply converting the transaction to a ReadOnce transaction.

Table E2-8 ARSNOOP encodings

ARSNOOP Transaction

0b0100 ReadOnceCleanInvalid

0b0101 ReadOnceMakeInvalid
E2-350 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.4 Cache Maintenance for Persistence
E2.4 Cache Maintenance for Persistence
An additional cache maintenance operation that is used to provide a cache clean to the Point of Persistence is
introduced. This operation is used to ensure that a store operation, which might be held in a Dirty cache line, is
moved downstream to persistent memory.

The Persist_CMO property is used to indicate whether a component supports Cache Maintenance for Persistence:
TRUE Persist_CMO is supported.
FALSE Persist_CMO is not supported. If Persist_CMO is not declared, it is considered FALSE.

The Persist_CMO extension is supported in:
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.

Typically, in systems that include some form of non-volatile memory, this operation is used to ensure that the
memory location has been written to non-volatile memory. After the operation is complete, the memory location is
guaranteed to be persistent even if the power is removed.

For memory locations that do not support any form of persistent memory, the operation is required to perform the
same action as a standard cache clean operation.

The Persist CMO transaction is CleanSharedPersist and is indicated using ARSNOOP.

Table E2-9 shows the ARSNOOP encoding. In all other aspects, the transaction is identical to a CleanShared
transaction. See ARSNOOP encodings on page F4-426.

Table E2-9 ARSNOOP encoding of CleanSharedPersist

Persist CMO transaction ARSNOOP encoding

CleanSharedPersist 0b1010
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-351
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.5 Data checking and Poison
E2.5 Data checking and Poison
Data checking and Poison signals are optional additions to the data buses. They can be used to detect and potentially
correct, data bytes which have become corrupted.

E2.5.1 Data checking

Data checking signaling is used to detect, and potentially correct, data bytes that might have been corrupted. This
specification supports data checking using odd parity at a byte granularity.

The data checking scheme is defined by a property Check_Type. This specification defines the values of:
Odd_Parity_Byte_Data

Data checking signaling is supported and conveys Odd Byte Parity bits.
FALSE

Data checking signaling is not supported. If not declared, Check_Type is considered FALSE and the
signaling is not supported.

The data checking extension is supported in:
• AXI5.
• AXI5-Lite.
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.
• ACE5-LiteACP.

Interconnect components that only transport the data checking signaling can do so, independent of the format of the
data checking scheme that is in use. Components that generate, check, or modify the data checking signaling within
a system or subsystem must use a consistent approach.

Table E2-10 shows the data checking signaling, Table E2-12 on page E2-353 shows the value of dc for different
data bus widths when Odd Byte Parity is used.

If the Check_Type property is not FALSE, then the appropriate data checking signals must be present for all
channels that are present.

E2.5.2 Poison

Poison signaling is used to indicate that a set of data bytes have been previously corrupted. Passing the Poison
signaling alongside the data permits any future user of the data to be notified that the data might be corrupt. Poison
signaling is supported at the granularity of 1 bit for every 64 bits of data.

The Poison property is used to indicate whether a component supports Poison signaling:
TRUE Poison signaling is supported.
FALSE Poison signaling is not supported. If not declared, Poison signaling is not supported.

Table E2-10 Data checking signaling

Data checking signal Description

RDATACHK[(dc-1):0]a

a. The width of the data checking signal, dc, is configurable. See Rules for data checking and Poison on page E2-353.

Data checking signal that is associated with the Read Data channel (R).

WDATACHK[(dc-1):0]a Data checking signal that is associated with the Write Data channel (W).

CDDATACHK[(dc-1):0]ab

b. Implemented in ACE5 only.

Data checking signal that is associated with the Snoop Data channel (CD).
E2-352 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.5 Data checking and Poison
The Poison extension is supported in:
• AXI5.
• AXI5-Lite.
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.
• ACE5-LiteACP.

When the Poison signal is asserted, it indicates that the associated 64-bit data granule is corrupt.

Table E2-11 shows the Poison signaling, Table E2-12 shows the value of p for different data bus widths.

If the Poison property is TRUE, then the appropriate Poison signal must be present for all data channels that are
present on that interface.

E2.5.3 Rules for data checking and Poison
The validity of the Poison and data checking signaling is identical to the validity of the associated data.

If data checking signaling is supported, it is required that all invalid data lanes are driven to zero.

If data checking signaling is not supported, this specification recommends that all invalid data lanes are driven to
zero.

Poison and data checking signaling is independent of error response signaling:
• It is permitted to signal an error with no Poison or data checking violation.
• It is permitted to signal a Poison or data checking violation without signaling an error response.

Table E2-12 shows the number of Poison (p) and data checking (dc) bits for different data bus widths (d).

Table E2-11 Poison signaling

Poison signal Description

RPOISON[(p-1):0]a

a. The width of the Poison signal, p, is configurable. See Rules for data checking and Poison.

Poison signal that is associated with the Read Data channel (R).

WPOISON[(p-1):0]a Poison signal that is associated with the Write Data channel (W).

CDPOISON[(p-1):0]ab

b. Implemented in ACE5 only.

Poison signal that is associated with the Snoop Data channel (CD).

Table E2-12 Number of Poison bits and data checking bits for byte parity

Data bus
(d) width

Poison
(p) bits

Data Check
(dc) bits

8 1 1

16 1 2

32 1 4

64 1 8

128 2 16
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-353
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.5 Data checking and Poison
A 64-bit granule is defined to be an 8-byte address range that is aligned to an 8-byte boundary.

Where the transaction size, as indicated by AxSIZE, is less than 64-bits then it permitted but not expected for the
Poison bit to be different on each data beat. In this situation the master component must examine all data beats to
determine if the 64-bit granule is poisoned.

Poison bits can be set for data lanes that are invalid for a transfer. For example, a 64-bit transfer on a 128-bit bus
can have both Poison bits set.

256 4 32

512 8 64

1024 16 128

Table E2-12 Number of Poison bits and data checking bits for byte parity (continued)

Data bus
(d) width

Poison
(p) bits

Data Check
(dc) bits
E2-354 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.6 Trace signals
E2.6 Trace signals
An optional Trace signal can be associated with each channel to support the debugging, tracing, and performance
measurement of systems.

The Trace_Signals property is used to indicate whether a component supports Trace signals:
TRUE Trace_Signals are supported.
FALSE Trace_Signals are not supported. If Trace_Signals is not declared, it is considered FALSE.

The Trace_Signals extension is supported in
• AXI5.
• AXI5-Lite.
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.
• ACP5-LiteACP.

Table E2-13 shows the Trace signal that is associated with each channel.

If the Trace_Signals property is TRUE, then the appropriate Trace signal must be present for all channels that are
present.

The expected use of the Trace signal is as follows:

• A component, such as a master or an interconnect, can assert the Trace signal along with the address of a
transaction that should be tracked through the system.

• This specification expects that any component that provides a response to a transaction with the Trace signal
asserted in the request provides a response with the Trace signal asserted.

• For transactions that have the Trace signal asserted and which generate extra related transactions, such as
snoop transactions, this specification recommends asserting the Trace signal for the related transactions:

— Any related transaction using the same address, such as a snoop transaction, has the Trace signal
propagated to it.

— For other transactions, which might have an unrelated address, it is IMPLEMENTATION DEFINED
whether the Trace signal is propagated.

It is permitted for an interconnect or slave component to use Trace signals.

Table E2-13 Trace signal associated with each channel

Trace signal Channel Description

ARTRACE AR Associated with the Read Address channel

RTRACE R Associated with the Read Data channel

AWTRACE AW Associated with the Write Address channel

WTRACE W Associated with the Write Data channel.

BTRACE B Associated with the Write Response channel

ACTRACEa

a. ACE5 and ACE5-LiteDVM only.

AC Associated with the Snoop Address channel

CRTRACEa CR Associated with the Snoop Response channel

CDTRACEb

b. ACE5 only.

CD Associated with the Snoop Data channel
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-355
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.6 Trace signals
It is permitted for a component to assert the Trace signal of a transaction response for a transaction that did not have
the Trace signal asserted in the request. In this case, it is not required that the Trace signal is asserted for all responses
of the same transaction.

This specification recommends that all behavior relating to the propagation of the Trace signaling is adopted, but
this recommendation is not a requirement. Therefore, any component that uses the Trace signaling must not always
require the correct propagation of the Trace signaling.

This specification expects that the use of Trace signaling is coordinated across the entire system and only one use
of the Trace signaling occurs at a given time.

For Write transactions the following behavior is recommended:

• A slave that receives a write request with AWTRACE asserted should assert the BTRACE signal alongside
the write response.

• WTRACE should be propagated through interconnect components.

For Read transactions the following behavior is recommended:

• A slave that receives a read request with the ARTRACE signal asserted should assert the RTRACE signal
alongside every beat of the read response.

For Snoop transactions the following behavior is recommended:

• A master that receives a snoop request with the ACTRACE signal asserted should assert the CRTRACE
signal alongside the snoop response.The master should also assert CDTRACE alongside every data beat of
the snoop data that is associated with the snoop transaction.
E2-356 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.7 User Loopback signaling
E2.7 User Loopback signaling
User Loopback signaling permits an agent that is issuing transactions to store information that is related to the
transaction in an indexed table. The response to the transaction can then use a fast table index to obtain the required
information, rather than requiring a more complex lookup that uses the transaction AxID.

The Loopback_Signals property is used to indicate whether a component supports User Loopback signals:
TRUE Loopback signals are supported.
FALSE Loopback signals are not supported. If Loopback_Signals is not declared, it is considered FALSE.

The Loopback_Signals extension is supported in
• AXI5.
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.

Table E2-14 shows the User Loopback signals.

If the Loopback_Signals property is TRUE, then all loopback signals must be present. See Table E2-14.

The usage rules and requirements are:
• The value of RLOOP must be identical to the value that was presented on the ARLOOP signal.
• The value of BLOOP must be identical to the value that was presented on the AWLOOP signal.

This specification does not require that the loopback value is unique. Multiple outstanding transactions from the
same master are permitted to use the same value.

This specification does not require that the loopback value is preserved as a transaction progresses through a system.
An intermediate component is permitted to store the loopback value of a transaction it receives and use its own
loopback value for a transaction that it propagates downstream. When the component receives a response to the
downstream transaction, it can retrieve the loopback value that is required for the response to the original
transaction.

Loopback signaling is not supported on the snoop channels. All snoop transaction responses are required to be in
order, which simplifies the process of associating a response with a request.

Table E2-14 User Loopback signals

Signal Description

ARLOOP[(lb – 1):0]a

a. The width of the loopback path, lb, is configurable. This
specification recommends that components are designed to support
configurable loopback widths of up to at least 8 bits.

Loopback for the read address group of signals.
Reflected back on RLOOP.

AWLOOP[(lb – 1):0]a Loopback for the write address group of signals.
Reflected back on BLOOP.

RLOOP[(lb – 1):0]a Returns the value that is provided on ARLOOP.

BLOOP[(lb – 1):0]a Returns the value provided on AWLOOP.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-357
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.8 QoS Accept signaling
E2.8 QoS Accept signaling
AXI4 introduced two interface signals to indicate the QoS value of a transaction. AMBA 5 introduced two
additional interface signals that enable a slave to indicate the minimum QoS value of transactions that it accepts.
The QoS_Accept property is used to indicate whether an interface includes these signals:
TRUE The interface includes both VARQOSACCEPT and VAWQOSACCEPT signals.
FALSE The interface does not include VARQOSACCEPT or VAWQOSACCEPT. If QoS_Accept is not

declared, it is considered FALSE.

The QoS_Accept extension is applicable to the following interfaces:
• AXI5.
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.

QoS Accept signaling is intended for slave components that have different resources available for different QoS
levels, typically true with memory controllers. The slave can indicate that it only accepts transactions at a certain
QoS level or above when the resources available to lower QoS levels are in use.

QoS Accept signaling can be used as an input to a master interface that might have several different transactions to
select from. This permits the master interface to only issue transactions that are likely to be accepted, which avoids
unnecessary blocking of the interface. By preventing the issue of transactions that might be stalled for a significant
period, the interface remains available for the issue of higher priority transactions that might arrive at a later point
in time. The two signals are shown in Table E2-15:

Each signal is an output from a slave and an input to a master that indicates the QoS value for which the slave accepts
transactions. Any transactions at this QoS level or higher are accepted by the slave. Any transaction below this QoS
level might be stalled for a significant time.

Note
 This specification does not define a time period during which the slave is required to accept a transaction at, or
above, the QoS level indicated. However, it is expected that for a given slave there will be a deterministic maximum
number of clock cycles taken to accept a transaction, after taking into account implementation aspects such as clock
domain crossing ratios.

In this specification, the term VAxQOSACCEPT refers collectively to the VARQOSACCEPT and
VAWQOSACCEPT signals.

It is permitted for a master interface to issue a transaction that is below the QoS level indicated by the
VAxQOSACCEPT signal. However, such a transaction might be stalled for a significant time.

It is permitted for a slave interface to accept a transaction that is below the QoS level indicated by the
VAxQOSACCEPT signal, but it is expected that the transaction might be subject to a significant delay.

While it is acceptable for a slave to delay a transaction that has a lower priority than the QoS Acceptance level, this
specification recommends that such a transaction is not delayed indefinitely. There are several reasons for a
lower-priority transaction to be issued on the interface, for example:
• A delay between a change in the QoS Acceptance value and the ability of the component to adapt to that

change.
• A requirement to make progress on a transaction that is Head-of-Line Blocking a higher priority transaction.
• A requirement to make progress on a transaction for reasons of starvation prevention.

Table E2-15 QoS Accept signals

Signal Description

VARQOSACCEPT[3:0] QoS Acceptance level for read transactions.

VAWQOSACCEPT[3:0] QoS Acceptance level for write transactions.
E2-358 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.8 QoS Accept signaling
The VAxQOSACCEPT signal is synchronous to the interface, but it is unrelated to any other AXI channel.

The default value for the VAxQOSACCEPT signals is zero.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-359
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.9 Wake-up Signaling
E2.9 Wake-up Signaling
The wake-up signals are used to indicate that there is activity associated with the interface. These are:
• AWAKEUP.
• ACWAKEUP.

The Wakeup_Signals property is used to indicate whether a component supports wake-up signaling:
TRUE Wake-up signals are supported.
FALSE Wake-up signals are not supported. If Wakeup_Signals is not declared, it is considered FALSE.

The signals can be routed to a clock controller, or similar component, to enable power and clocks to the connected
components. The wake-up signals must be glitch-free and generated directly from a register. They are synchronous
to the interface that it relates to, but are appropriate for crossing clock domains to a controller.

Wake-up signals must be asserted to guarantee that a transaction can be accepted, but once the transaction is in
progress the assertion or deassertion of the wake-up signal is IMPLEMENTATION DEFINED. This specification
recommends, but does not require, that the wake-up signal be deasserted when no further transactions are required.

E2.9.1 AWAKEUP rules and recommendations

The AWAKEUP signal is applicable to interfaces:
• AXI5.
• AXI5-Lite.
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.
• ACE5-LiteACP.

AWAKEUP is an output signal from a master interface and is asserted at the start of a transaction to indicate that
there is a transaction to be processed:

• This specification recommends that AWAKEUP is asserted at least one cycle before the assertion of
ARVALID, AWVALID, or WVALID to prevent the acceptance of a new transaction being delayed.

• It is permitted for AWAKEUP to be asserted at any point before or after the assertion of ARVALID,
AWVALID, or WVALID.

• A slave is permitted to wait for AWAKEUP to be asserted before asserting ARREADY, AWREADY, or
WREADY.

• To ensure progress of the transaction, AWAKEUP must remain asserted until the associated ARVALID,
ARREADY handshake, or the AWVALID, AWREADY handshake.

• After the ARVALID, ARREADY handshake, or the AWVALID, AWREADY handshake, the interconnect
must remain active until the transaction has completed.

• It is required that the AWAKEUP signal is asserted to guarantee progress of a transition on the Coherency
Connection signaling. See Coherency Connection signaling on page E2-362:

— It is permitted for AWAKEUP to be asserted at any point before or after the assertion of SYSCOREQ.
However, it is required to be asserted to guarantee the corresponding assertion of SYSCOACK. When
AWAKEUP is asserted with SYSCOREQ asserted and SYSCOACK deasserted, it must remain
asserted until SYSCOACK is asserted.

— It is permitted for AWAKEUP to be asserted at any point before or after the deassertion of
SYSCOREQ. However, it is required to be asserted to guarantee the corresponding deassertion of
SYSCOACK. When AWAKEUP is asserted with SYSCOREQ deasserted and SYSCOACK
asserted, it must remain asserted until SYSCOACK is deasserted.

• It is permitted, but not recommended, to assert AWAKEUP then deassert it without a transaction taking
place.
E2-360 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.9 Wake-up Signaling
Note
 There is no requirement relating to the assertion of AWAKEUP relative to WVALID. However, for components
that can assert WVALID before AWVALID, the assertion of AWAKEUP at least one cycle before WVALID can
prevent the acceptance of a new transaction being delayed.

If a slave has an AWAKEUP input, but the attached master does not have an AWAKEUP output, then either:

• Tie AWAKEUP high, however this might prevent the slave interface from using low-power states.

• Derive AWAKEUP from AxVALID and SYSCOREQ/ACK. This method enables the slave to use
low-power states, but might introduce latency while the clock is enabled.

E2.9.2 ACWAKEUP rules and recommendations

The ACWAKEUP signal is only applicable to:
• ACE5.
• ACE5-LiteDVM.

ACWAKEUP is an output signal from an interconnect interface and is asserted at the start of a snoop transaction
to indicate that there is a transaction to be processed. This rule applies to either a normal coherency snoop
transaction or a DVM snoop transaction:

• This specification recommends that ACWAKEUP is asserted at least one cycle before the assertion of
ACVALID to prevent the acceptance of a new snoop transaction being delayed unnecessary.

• ACWAKEUP must remain asserted until the associated ACVALID / ACREADY handshake to ensure
progress of the snoop transaction.

• After the ACVALID / ACREADY handshake, the master must remain active until the snoop transaction has
completed.

• It is permitted for ACWAKEUP to be asserted at any point before or after the assertion of ACVALID.

• It is permitted, but not recommended, to assert ACWAKEUP and then deassert it without ACVALID being
asserted.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-361
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.10 Coherency Connection signaling
E2.10 Coherency Connection signaling
A four-phase Coherency Connection signaling scheme is added, which can safely cross clock domains. These
signals are used by a master to connect and disconnect from a coherency domain. When a master is connected to
the coherency domain, it might receive snoop requests or DVM messages on the AC channel. When disconnected,
no snoop requests or DVM messages are received.

The Coherency_Connection_Signals property is used to indicate whether a component supports the additional
signals:
TRUE Coherency Connection signaling is supported.
FALSE Coherency Connection signaling is not supported. If not declared, Coherency_Connection_Signals

property is considered FALSE.

Coherency Connection signaling is only applicable to
• ACE5.
• ACE5-LiteDVM.

A master must be connected to a coherency domain before it can cache locations that must be kept
hardware-coherent. A master can disconnect from a coherency domain when it no longer holds cache lines that must
be kept hardware-coherent. When disconnected from a coherency domain, the master does not receive snoop
transactions and therefore does not need to provide any snoop responses. Disconnecting from a coherency domain
is typically used before entering a low-power state in which snoop transactions cannot be processed.

The connection to, or disconnection from, a coherency domain includes both normal coherency transactions, and
DVM transactions that are sent on the snoop channel. Throughout the rest of this section, the connection to, or
disconnection from, a coherency domain applies to whichever of these transaction types are applicable to the
component.

The following two signals are used for coherency connect and disconnect signaling:
SYSCOREQ Master coherency request.
SYSCOACK Interconnect coherency acknowledge.

The usage rules are:
• SYSCOREQ and SYSCOACK must either be both present or both absent.
• No default signaling is associated with SYSCOREQ and SYSCOACK signaling.

When disconnected from coherency, a master must not issue allocating transactions to shareable memory. The
following transactions are permitted:

• IO Coherent transactions:
— ReadOnce.
— WriteUnique.

• Cache Maintenance Operation transactions:
— CleanShared.
— CleanSharedPersist.
— CleanInvalid.
— MakeInvalid.

• All Non-shareable transactions.

Note
 RACK and WACK signaling is still used when a component is disconnected from coherency.
E2-362 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.10 Coherency Connection signaling
E2.10.1 Coherency Connection Handshake

SYSCOREQ and SYSCOACK must be deasserted when ARESETn is asserted. When not in reset, the following
requests are permitted:

• A master requests to be connected to system coherency by asserting SYSCOREQ HIGH. The interconnect
indicates that coherency is enabled by asserting SYSCOACK HIGH.

• The master requests disconnection from system coherency by deasserting SYSCOREQ LOW. The
interconnect indicates that coherency is disabled by deasserting SYSCOACK LOW.

Requests to enter and exit coherency are always initiated by the master.

Figure E2-4 shows the system coherency interface handshake timing:

Figure E2-4 System coherency interface handshake timing

The interface signaling obeys the four-phase handshake rules:
• A master can only change SYSCOREQ when SYSCOACK is at the same level.
• An interconnect can only change SYSCOACK when SYSCOREQ is at the opposite level.

Master rules

A master:
• Must be able to respond to snoop transactions when it asserts SYSCOREQ HIGH.
• Must not issue a transaction that permits it to cache a coherent location until it observes SYSCOACK HIGH.
• Must not hold any cached copies of a coherent location when it deasserts SYSCOREQ LOW. A snoop that

is received by the master, after it has deasserted SYSCOREQ, must give a snoop response indicating that the
cache line is invalid.

• Must be able to respond to snoop transactions until it observes SYSCOACK LOW.

Interconnect rules

An interconnect:
• Must be able to service transactions to a coherent location when it asserts SYSCOACK HIGH.
• Must have completed all snoop transactions to this interface before it deasserts SYSCOACK LOW.

Note
 The transactions that would permit a coherent location to be cached are:
• ReadUnique.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• CleanUnique.
• MakeUnique.

SYSCOREQ

SYSCOACK

t0 t1

Coherency Disabled Coherency Connect Coherency Enabled

t2 t3

Coherency Disconnect

t4

Coherency Disabled
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-363
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.10 Coherency Connection signaling
E2.10.2 Coherency Connection signaling states

Figure E2-5 shows the state diagram for the Coherency Connection signaling.

Figure E2-5 Coherency Connection signaling state diagram

SYSCOREQ = 1

SYSCOACK = 0

SYSCOREQ = 0

SYSCOACK = 1

ARESETn = 0

SYSCOREQ = 0

SYSCOACK = 0
Coherency

Disabled

Coherency

Disconnect

SYSCOREQ = 0

SYSCOACK = 1

Coherency

Connect

SYSCOREQ = 1

SYSCOACK = 0 Coherency

Enabled

SYSCOREQ = 1

SYSCOACK = 1
E2-364 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.10 Coherency Connection signaling
Table E2-16 shows a summary of the states that are associated with the system coherency interface and the
requirements for the master and the interconnect.

E2.10.3 Coherency Connection signaling and DVM messages

A master that supports DVM can:
• Issue DVM messages on its AR channel.
• Receive DVM messages on its AC channel.
• Issue a DVM Complete message on its AR channel, in response to a DVM Sync received on its AC channel.

A master must not issue any DVM messages, except DVM Complete, on its AR channel after it has deasserted
SYSCOREQ.

An interconnect must not issue any new DVM messages on the AC channel after it has deasserted SYSCOACK. It
is permitted to deassert SYSCOACK when all DVM requests on the AC snoop channel have completed, including
the second part of a 2-part message.

Table E2-16 Coherency Connection signaling states

State SYSCOREQ SYSCOACK Description

Disabled 0 0 Master:
• Must not hold any cached copies of coherent locations.
• Must not issue transactions that allow a coherent location

to be cached.
• Not required to respond to snoop transactions.
Interconnect:
• Not required to service transactions that allow a coherent

location to be cached.
• Must not issue snoop transactions.

Connect 1 0 Master:
• Must not issue transactions that allow a coherent location

to be cached.
• Must respond to snoop transactions.
Interconnect:
• Not required to service transactions to a coherent location.

Enabled 1 1 Master:
• Can issue transactions that allow a coherent location to be

cached.
• Must respond to snoop transactions.
Interconnect:
• Must service transactions to a coherent location.
• Can issue snoop transactions.

Disconnect 0 1 Master:
• Must not hold any cached copies of coherent locations.
• Must not issue transactions that allow a coherent location

to be cached.
• Must respond to snoop transactions.
Interconnect:
• Not required to service transactions that allow a coherent

location to be cached.
• Can complete all required snoop transactions.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-365
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.10 Coherency Connection signaling
If an interconnect has sent a DVM Sync message that requires a DVM Complete message on the AR channel, then
the interconnect is permitted to deassert SYSCOACK when all DVM requests on the AC snoop channel have
completed. The master is still required to send the DVM Complete transaction on the AR channel, even when
coherency is fully disconnected.

E2.10.4 Incompatible support for Coherency Connection signaling

Coherency Connection signaling does not have a default set of values that can be used. If one side of an interface
supports Coherency Connection signaling and the other side does not, then a third-party component, such as a power
controller, must be connected to the Coherency Connection signaling. This component is required to coordinate the
Coherency Connection signaling and it must ensure that the requirements of the signaling are met.
E2-366 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.11 Distributed Virtual Memory extensions for ARMv8.1
E2.11 Distributed Virtual Memory extensions for ARMv8.1
Distributed Virtual Memory messages were originally specified in ACE to support the ARMv7 architecture and
were later extended to optionally support the ARMv8 architecture. AMBA 5 adds support for the ARMv8.1
architecture with the addition of:
• 16-bit VMID values.
• ASID values associated with the EL2 translation regime.

E2.11.1 Configuring DVM architecture support

The architectures that are supported by the DVM messages on an interface are defined using the following
properties:
• DVM_v8
• DVM_v8.1

Table E2-17 shows the use of the DVM_v8.1 and DVM_v8 properties. If a property is not declared, it is considered
FALSE. The DVM_v8 and DVM_v8.1 properties can be set TRUE on ACE5 and ACE5-LiteDVM interfaces.

E2.11.2 DVMv8.1 extensions

A DVMv8.1 system must include the following additions to the DVMv8 and DVMv7 message formats to support
ARMv8.1:
• Support for 16-bit VMID.
• Use of ASID with the EL2 translation regime on page E2-368.

Support for 16-bit VMID

The ARMv8.1 architecture supports both 8-bit and 16-bit VMIDs. It cannot be determined from a DVM message
whether the message uses an 8-bit or 16-bit VMID. All 8-bit VMID messages are required to set the VMID[15:8]
field to zero.

It is expected that most systems use a single VMID size across the entire system, either 8-bit VMID or 16-bit VMID.

In a system that contains a mix of 8-bit VMID and 16-bit VMID components, it is expected that all maintenance is
done by an agent that uses 16-bit VMID. This ensures that the agent can perform maintenance on both the 8-bit
VMID and 16-bit VMID components.

The interoperability requirements are:
• For an 8-bit VMID agent sending a message to a 16-bit VMID agent:

— A message appears as a 16-bit VMID with the upper 8 bits set to zero.
• For a 16-bit VMID agent sending a message to an 8-bit VMID agent:

— If the upper 8 bits are zero, the message was received correctly.
— If the upper 8 bits are nonzero over-invalidation will occur, as the 8-bit VMID agent ignores the upper

8 bits.

16-bit VMID signaling

The DVM message format for DVMv7 and DVMv8 includes an indication of VMID[7:0] for DVM messages that
include a VMID.

Table E2-17 DVM properties encoding

DVM_v8.1 DVM_v8 Architecture support

FALSE FALSE ARMv7

TRUE ARMv7, ARMv8

TRUE - ARMv7, ARMv8, ARMv8.1
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-367
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.11 Distributed Virtual Memory extensions for ARMv8.1
DVMv8.1 requires another two 4-bit signals, ARVMIDEXT[3:0] on the AR channel, and ACVMIDEXT[3:0] on
the AC channel, to provide the upper 8 bits of the VMID field. Table E2-18 shows how these additional VMID
Extension signals are used.

These signals are only required on an interface that supports DVM messaging.

These signals are only used for DVM transactions that include VMID information:

• If ARADDR[6] is deasserted during the first transaction of a multi-part DVM message, then, for both parts,
ARVMIDEXT[3:0] must be all zeros for all defined message types except Hint.

• If ACADDR[6] is deasserted during the first transaction of a multi-part DVM message, then, for both parts,
ACVMIDEXT[3:0] must be all zeros for all defined message types except Hint.

There are some DVM messages that require a 16-bit VMID, but do not include an address. Because these messages
do not include an address, they are just one part DVM messages. This means that there is no mechanism to transport
the additional 4 bits of VMID that would otherwise be sent in the extension field alongside the second message.
This applies to the following DVM messages:
• Guest OS TLB Invalidate all, Stage one invalidation only.
• Guest OS TLB Invalidate all.
• Guest OS TLB Invalidate by ASID.

For these messages VMID[15:12] is passed on ARADDR[43:40] and ACADDR[43:40] of the first part of the
DVM message.

Use of ASID with the EL2 translation regime

DVMv8.1 adds support for the use of ASID values that are associated with the EL2 translation regime.

Table E2-19 shows the additional TLB Invalidate operations that are supported in DVMv8.1. See TLB Invalidate
on page D13-318 for the remaining operations that this DVM message type supports.

Table E2-20 on page E2-369 shows the additional Virtual Instruction Cache Invalidate operation that is supported
in DVMv8.1. See Virtual Instruction Cache Invalidate on page D13-323 for the remaining operations that this DVM
message type supports.

Table E2-18 VMID Extension signals

DVM transaction
ARVMIDEXT[3:0]
ACVMIDEXT[3:0]

First DVM transaction VMID[11:8]

Second DVM transaction VMID[15:12]

Table E2-19 Additionally supported TLB Invalidate operations

ARADDR bit Operation

[14:12]
Message type

[11:10]
Hypervisor

[9:8]
Security

[6]
VMID

[5]
ASID

[4]
LEAF

[3:2]
S1-S2

[0]
VA

0b000

TLBI
0b11

Hypervisor
0b11

Non-secure
0b0

Ignore
0b1

Match
0b0

Ignore
0b00 0b0

Ignore
Hypervisor TLB Invalidate by
ASID

0b0

Ignore
0b1

Match
0b0

Ignore
0b00 0b1

Match
Hypervisor TLB Invalidate by
ASID and VA

0b0

Ignore
0b1

Match
0b1

Leaf
0b00 0b1

Match
Hypervisor TLB Invalidate by
ASID and VA Leaf Entry only
E2-368 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.11 Distributed Virtual Memory extensions for ARMv8.1
Table E2-20 Additionally supported Virtual Instruction Cache Invalidate operation

ARADDR bit Operation

[14:12]
Message type

[11:10]
Hypervisor

[9:8]
Security

[6]
VMID

[5]
ASID

[4]
LEAF

[3:2]
S1-S2

[0]
VA

0b011

VICI
0b11

Hypervisor
0b11

Non-secure
0b0

Ignore
0b1

Match
SBZ SBZ 0b1

Match
Hypervisor Invalidate by ASID
and VA
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-369
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.12 Untranslated transactions
E2.12 Untranslated transactions
AMBA 5 extends support of an SMMU by providing a means to identify untranslated transactions.

The Untranslated_Transactions property is used to indicate whether a component supports the required signals.
TRUE The required signals are supported.
FALSE The required signals are not supported. If Untranslated_Transactions is not declared, it is considered

FALSE.

The Untranslated Transactions extension is applicable to the following interfaces:
• AXI5.
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.

Support in ACE5 has additional restrictions. See Use of Untranslated Transactions with ACE5 on page E2-372.

Address translation is the process of translating an input address to an output address based on address mapping and
memory attribute information that is held in translation tables. This process permits agents in the system to use their
own virtual address space, but ensures that the addresses for all transactions are eventually translated to a single
physical address space for the entire system.

The use of a single physical address space is required for the correct operation of hardware coherency and therefore
the SMMU functionality is typically located before a coherent interconnect.

The additional signals that are specified in this section provide sufficient information for an SMMU to determine
the translation that is required for a particular transaction and permit different transactions on the same interface to
use different translation schemes.

All signals in the Untranslated Transactions extension are prefixed with ARMMU for read transactions and
AWMMU for write transactions.

In this specification, AxMMU indicates ARMMU or AWMMU.

E2.12.1 Untranslated Transaction signaling
Table E2-21 shows the signal naming, function, and default value.

Table E2-21 Write address channel signals that support untranslated transactions

Signal Name Function

AxMMUSECSID Secure Stream Identifier Single bit Secure or Non-secure stream identifier.
• When deasserted indicates a Non-secure stream.
• When asserted indicates a Secure stream.
• Default value = 0.

AxMMUSID[(si - 1):0]a Stream Identifier Used to identify the stream. Secure and Non-secure streams use
different name-spaces, qualified with MMUSECSID, so they can
use the same MMUSID values.
• Default value = 0.
E2-370 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.12 Untranslated transactions
The following restrictions apply to the interface:

• For transactions that do not specify a substream ID, as indicated by AxMMUSSIDV deasserted:

— AxMMUSSID must be driven to all zeros.

• For transactions that have already undergone a translation, as indicated by AxMMUATST asserted:
— AxMMUSECSID must be LOW. Secure translated transactions are not supported.
— AxMMUSSIDV must be LOW. Substream IDs for translated transactions are not supported.

• For transactions that are in a Non-secure stream, as indicated by AxMMUSECSID deasserted:

— AxPROT[1] must be HIGH. Indicates a Non-secure transaction.

E2.12.2 Optional signals and default values

During the building of a system, it is possible that the stream identifiers for a given component have some ID bits
provided by the component and some ID bits that are tied off for that component. This fixes the range of values in
the stream identifier name space that can be used by that component. Typically, the low-order bits are provided by
the component and the high-order bits are tied off.

Any additional identifier field bits for AxMMUSID or AxMMUSSID, that are not supplied by the component or
hard coded by the interconnect, must be tied LOW.

All signals are optional with defined default values, with the restrictions:
• ARMMUSSID and ARMMUSSIDV must either be both present or both absent.
• AWMMUSSID and AWMMUSSIDV must either be both present or both absent.

AxMMUSSIDV Substream Identifier Valid Indicates that the transaction has an optional substream identifier.
• When deasserted, this signal indicates that the transaction

does not have a substream identifier.
• When asserted, this signal indicates that the transaction has a

substream identifier.
• Default value = 0.

AxMMUSSID[(ssi - 1):0]b Substream Identifier This signal is only valid if AxMMUSSIDV is asserted. For a single
stream, the stream with substream 0 is a different stream from the
stream with no valid substream.
• Default value = 0.

AxMMUATST Address Translated Extra signal for an interface, used where it is possible for a
transaction to have already undergone PCIe ATS translation. This
translation might be a full or partial translation in cases where two
stages of translation are supported.
• When deasserted, this signal indicates that the transaction has

not been translated.
• When asserted, this signal indicates that the transaction has

been translated.
• Default value = 0.

a. The width of the stream identifier, si, is configurable. The width may be up to 32 bits.
b. The width of the substream identifier, ssi, is configurable. The width may be up to 20 bits.

Table E2-21 Write address channel signals that support untranslated transactions (continued)

Signal Name Function
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-371
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.12 Untranslated transactions
E2.12.3 PCIe considerations

When the Untranslated_Transactions signaling is used for interfacing to PCIe Root Complex, the following
considerations apply:

• All PCIe transactions must be Non-secure.

— AxMMUSECSID must either not be present, or must be tied LOW.

• For PCIe transactions:
— AxMMUSID corresponds to the PCIe Requester ID.
— AxMMUSSID corresponds to the PCIe PASID.
— AxMMUSSIDV is asserted if the transaction had a PASID prefix, otherwise it is deasserted.

E2.12.4 Translation stashing

The Untranslated Transactions extension also supports a StashTranslation transaction. For the StashTranslation
transaction to be supported, both the Untranslated_Transactions and the Cache_Stash_Transactions properties must
be TRUE.

This transaction is described in Cache Stashing on page E2-345.

The StashTranslation transaction has no data transfers. The address and control information is provided on the AW
channel and a single response is provided on the B channel. The response must only be provided after the address
has been accepted.

The following restrictions apply for the StashTranslation transaction:

• No stash target is supported. AWSTASHNID[10:0], AWSTASHNIDEN, AWSTASHLPID[4:0], and
AWSTASHLPIDEN are not supported. If present, these signals must be driven LOW for a StashTranslation
transaction.

• Any legal combination of AxCACHE and AxDOMAIN values is permitted.
See AxCACHE and AxDOMAIN signal combinations on page D3-175.

E2.12.5 Use of Untranslated Transactions with ACE5

It is possible to use address translation on untranslated transactions from an ACE5 master. There are restrictions,
however, depending on the type of transaction being translated.

In general, the translation process:

• Must not convert Shareable transactions into Non-shareable transactions, since this can break coherency.

• Must not convert Allocating Shareable transactions into Non-allocating Shareable transactions, since this can
mislead a downstream snoop filter.

• Must ensure that when converting write transactions from Non-shareable to Shareable transactions, a
WriteUnique or WriteLineUnique transaction is not outstanding at the same time as a WriteBack,
WriteClean, or WriteEvict transaction.

For transactions that are IO Coherent or Non-shareable, the following rules apply:

• The translation process is used for protection checking and can also be used for address translation.

• Protection checks can result in any combination of permissions. Both read and write transactions must be
checked.

• The master must not permit a snoop to hit a cache line that has been fetched using an IO Coherent or
Non-shareable transaction.

• Transactions within this group are:
— ReadNoSnoop.
— WriteNoSoop.
E2-372 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.12 Untranslated transactions
— ReadOnce.
— ReadOnceMakeInvalid.
— ReadOnceCleanInvalid.
— WriteUnique.
— WriteLineUnique.
— WriteBack to Non-shareable locations.
— WriteClean to Non-shareable locations.
— WriteEvict to Non-shareable locations.

For transactions that are Allocating Coherent, the following rules apply:

• The translation process can be used for protection checking, but must always result in either full read and
write access or no access. Read-only or write-only permissions are not supported.

• The translation process must result in the same address after translation as before translation.

• Shareable WriteBack, WriteClean, WriteEvict, and Evict transactions are permitted, but do not need to be
checked. They can only occur after the successful permission check of a transaction that permits the cache
line to be allocated in the cache.

• A transaction that results in an error response must not be allocated in the cache.

• Transactions within this group are:
— ReadShared.
— ReadClean.
— ReadNotSharedDirty.
— ReadUnique.
— CleanUnique.
— MakeUnique.
— WriteBack to Shareable locations.
— WriteClean to Shareable locations.
— WriteEvict to Shareable locations.
— Evict.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-373
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.13 Non-secure access identifiers
E2.13 Non-secure access identifiers
To support the storage and processing of protected data, AMBA 5 provides a set of signals that enable access to
particular Non-secure memory locations to be controlled. The signals supply a Non-secure Access Identifier
(NSAID) alongside the transaction request. The NSAID can be checked to permit or deny access to a memory
location.

The NSAccess_Identifiers property is used to indicate whether a component supports these additional signals:
TRUE NSAID signaling is present on the interface.
FALSE NSAID signaling is not present on the interface. If NSAccess_Identifiers is not declared, it is

considered FALSE.

The non-secure access identifiers extension is applicable to the following interfaces:
• AXI5.
• ACE5.
• ACE5-Lite.
• ACE5-LiteDVM.

E2.13.1 NSAID signaling

Table E2-22 shows the signals that are associated with each channel.

If the NSAccess_Identifiers property is TRUE, then AWNSAID and ARNSAID must both be present on the
interface. CRNSAID can only be included on ACE5 interfaces and is optional when NSAccess_identifiers is
TRUE.

AWNSAID and ARNSAID are provided alongside write and read transaction requests, respectively. CRNSAID is
supplied alongside a snoop response and is used to indicate the NSAID value that was originally used to fetch data
that is held in the cache of a coherent master. CRNSAID is only used for ACE5 masters that can provide data in
response to a snoop transaction.

A 4-bit NSAID value supports up to 16 unique identifiers. For each NSAID there is a set of access permission that
is defined which determine how locations in memory are permitted to be accessed.

The access permissions can be:
• No access.
• Read-only access.
• Write-only access.
• Read/write access.

The mechanism that is used to define the access permissions for each NSAID is IMPLEMENTATION DEFINED.
However, this mechanism is typically implemented using some form of Memory Protection Unit (MPU).

It is permitted for transactions with different NSAID values to have access to overlapping locations in memory. It
is permitted for transactions with different NSAID values to have any combination of access permissions for a given
location in memory.

A default NSAID value of zero is supported. Typically, masters use a default NSAID value of zero when accessing
data that is not protected, or when they do not have an assigned NSAID value.

Table E2-22 NSAID signals associated with each channel

Signal Source Description

AWNSAID[3:0] Master Write Address channel Non-secure Access Identifier.

ARNSAID[3:0] Master Read Address channel Non-secure Access Identifier.

CRNSAID[3:0]a

a. Implemented in ACE5 only.

Master Snoop Response channel Non-secure Access Identifier.
E2-374 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E2 Additional Features in AMBA 5
E2.13 Non-secure access identifiers
If a master is required to use a single NSAID value, then it is permitted for NSAID signals to be tied to a fixed value.

The NSAID signals are only used for Non-secure transactions.

For Secure transactions, as indicated by AxPROT[1] = 0, a value of zero must be used for NSAID.

E2.13.2 Caching and NSAID

Where caching and system coherency is performed upstream of permission checking, accesses with different
NSAID values that pass data between them must be subjected to permission checks. The rules that are associated
with NSAID use and coherency are as follows:

• When an agent caches a line of data that has been fetched using a particular NSAID value, it must ensure that
any subsequent write to main memory or any response to a snoop uses the same NSAID value. This rule
ensures that a master cannot move a cache line of data from one protected region to another.

• For a read request with a given NSAID value, if a snoop is used to obtain the data:

— If the NSAID value of the snoop response matches the read request then data can be provided directly.

— If the NSAID value of the snoop response does not match the read request, then the cache line must
first be written to memory using the NSAID value obtained via the snoop response, and then read from
memory using the NSAID value of the original request.

Note
 The write and subsequent read are only required to reach a point at which permission checking has

occurred.

• Snoop transactions that invalidate cached copies, such as MakeInvalid, must not be used if memory
protection is used. All such snoop transactions must be replaced with transactions that also clean the cache
line to main memory, such as CleanInvalid.

• Any interconnect-generated write to main memory that occurs as the result of a snoop must use the NSAID
value that is obtained from the snoop response.

• If a single master can issue transactions with multiple NSAID values, it must ensure that internal accesses to
cached copies use the NSAID value that was used to fetch the cache line initially:

— An access that has a cache line hit with the same address, but a different NSAID value, must clean and
invalidate the cache line before refetching the cache line with the appropriate NSAID value. This
process ensures that a protection check is performed.

— If it is guaranteed that the master never accesses the same cache line with a different NSAID value,
clean and invalidation operations are not necessary.
This guarantee can be by design or be assured by using appropriate cache maintenance operations.

• Appropriate cache maintenance must be performed when changing the access permissions for NSAID
values.

Note
 It is permitted for a master to write to a cache line when that agent does not have write permission to the location.
It is also permitted for the updated cache line to be passed to other masters using the same NSAID value. However,
it is not permitted for the update to propagate to main memory or to an access using a different NSAID value.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E2-375
ID122117 Non-Confidential

E2 Additional Features in AMBA 5
E2.13 Non-secure access identifiers
E2-376 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter E3
AMBA ACE5

This chapter specifies the new capabilities in the ACE5 protocol specification. It contains the following sections:
• About the ACE5 protocol on page E3-378.
• Signal descriptions on page E3-380.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E3-377
ID122117 Non-Confidential

E3 AMBA ACE5
E3.1 About the ACE5 protocol
E3.1 About the ACE5 protocol
Issue F of the AMBA AXI and ACE protocol specification introduces ACE5.

ACE5 extends the capabilities of the ACE protocol that is described in Part D AMBA ACE and ACE-Lite Protocol
Specification.

The new capabilities are:
• DVM v8.1.
• CMO for Persistence.
• Data Check.
• Poison.
• QoS Accept.
• Trace signals.
• User Loopback.
• Wakeup signals.
• Coherency connection signals.
• Untranslated transactions.
• Non-Secure Access Identifiers.

To maintain compatibility, a property is used to declare a new capability. If a property is not declared, it is considered
FALSE.

Table E3-1 summarizes the properties and the default value that applies for a component that does not have a
declared value.

Table E3-1 Properties that specify system capability

Property Description

DVM_v8.1 Specifies that a component supports DVMv8.1, DVMv8 and DVMv7 message protocols.
See Distributed Virtual Memory extensions for ARMv8.1 on page E2-367.

Persist_CMO Adds an additional cache maintenance operation that is used to provide a cache clean to the
Point of Persistence operation. See Cache Maintenance for Persistence on page E2-351.

Check_Type Adds data checking signaling that is used to detect, and potentially correct, data bytes that
might have been corrupted. See Data checking and Poison on page E2-352.

Poison Adds Poison signaling that is used to indicate that a set of data bytes have been previously
corrupted. See Data checking and Poison on page E2-352.

QoS_Accept Adds two additional QoS interface signals that enable a slave to indicate the QoS value of
transactions that it will accept. See QoS Accept signaling on page E2-358.

Trace_Signals Adds a Trace signal, which is associated with each channel, to support the debugging,
tracing, and performance measurement of systems. See Trace signals on page E2-355.

Loopback_Signals Adds loopback signaling that permits an agent that is issuing transactions to store
information relating to the transaction in an indexed table. See User Loopback signaling on
page E2-357.

Wakeup_Signals Adds two wakeup signals that are used to indicate that there is activity that is associated
with the interface. See Wake-up Signaling on page E2-360.
E3-378 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E3 AMBA ACE5
E3.1 About the ACE5 protocol
Coherency_Connection_Signals Adds signaling to connect or disconnect this interface from the coherency system. See
Coherency Connection signaling on page E2-362

Untranslated_Transactionsa Adds untranslated transaction support and permits different transactions on the same
interface to use different translation schemes. See Untranslated transactions on
page E2-370.

NSAccess_Identifiers Adds Non-secure access identifiers that support the storage and processing of protected
data. See Non-secure access identifiers on page E2-374.

a. Support in ACE5 has restrictions. See Use of Untranslated Transactions with ACE5 on page E2-372.

Table E3-1 Properties that specify system capability (continued)

Property Description
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E3-379
ID122117 Non-Confidential

E3 AMBA ACE5
E3.2 Signal descriptions
E3.2 Signal descriptions
This section introduces the additional ACE5 interface signals that support the new capabilities. It contains the
following subsections:
• Changes to existing ACE channels.
• Additional signaling on page E3-384.

See Chapter D2 Signal Descriptions for details of the ACE interface signals.

E3.2.1 Changes to existing ACE channels

Additional signals are required on the following ACE channels:
• Write address channel.
• Write data channel on page E3-381.
• Write response channel on page E3-381.
• Read address channel on page E3-382.
• Read data channel on page E3-383.
• Snoop address channel on page E3-383.
• Snoop response channel on page E3-383.
• Snoop data channel on page E3-384.

Write address channel

Table E3-2 shows the additional write address channel signals.

Table E3-2 Write address channel signals

Signal Source Property Description

AWTRACE Master Trace_Signals Supports the tracing of specific write transactions through the
system.
Supported in ACE5 when the Trace_Signals property is TRUE. See
Trace signals on page E2-355.

AWLOOP Master Loopback_Signals Loopback signaling associated with the write address group of
signals. Reflected back on BLOOP.
Supported in ACE5 when the Loopback_Signals property is TRUE.
See User Loopback signaling on page E2-357.

AWMMUSECSID Master Untranslated_Transactions Write address Secure Stream Identifier. Indicates, alongside an
untranslated transaction, that a Secure or Non-secure stream in the
transaction.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

AWMMUSID Master Untranslated_Transactions Write address Stream Identifier. Uniquely identifies, alongside an
untranslated transaction, the main stream in the transaction.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

AWMMUSSIDV Master Untranslated_Transactions Write address Substream Identifier Valid. Indicates that the
transaction has an optional substream identifier.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.
E3-380 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E3 AMBA ACE5
E3.2 Signal descriptions
Write data channel

Table E3-3 shows the additional write data channel signals.

Write response channel

Table E3-4 shows the additional write response channel signals.

AWMMUSSID Master Untranslated_Transactions Write address Substream Identifier. Uniquely identifies, alongside an
untranslated transaction, a Substream in the transaction. This signal
is only valid if AWMMUSSIDV is asserted.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

AWMMUATST Master Untranslated_Transactions Write address Address Translated. Additional signal for an interface
where it is possible for a transaction to have already undergone PCIe
ATS translation.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions on page E2-370.

AWNSAID Master NSAccess_Identifiers Write address Non-secure Access Identifier. Enables write access to
be controlled to particular memory locations.
Supported in ACE5 when the NSAccess_Identifiers property is
TRUE. See Non-secure access identifiers on page E2-374.

Table E3-2 Write address channel signals (continued)

Signal Source Property Description

Table E3-3 Write data channel signals

Signal Source Property Description

WDATACHK Master Check_Type Can be used to detect, and potentially correct, data bytes that might have been
corrupted.
Supported in ACE5 when the Check_Type property is TRUE. See Data checking and
Poison on page E2-352.

WPOISON Master Poison Indicates that a set of data bytes have been previously corrupted.
Supported in ACE5 when the Poison property is TRUE. See Data checking and
Poison on page E2-352.

WTRACE Master Trace_Signals Supports the debugging, tracing, and performance measurement of systems.
Supported in ACE5 when the Trace_Signals property is TRUE. See Trace signals on
page E2-355.

Table E3-4 Write response channel signals

Signal Source Property Description

BTRACE Interconnect Trace_signals Supports the debugging, tracing, and performance measurement of systems.
Supported in ACE5 when the Trace_Signals property is TRUE. See Trace signals
on page E2-355.

BLOOP Interconnect Loopback_Signals Returns the value that is provided on AWLOOP.
Supported in ACE5 when the Loopback_Signals property is TRUE. See User
Loopback signaling on page E2-357.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E3-381
ID122117 Non-Confidential

E3 AMBA ACE5
E3.2 Signal descriptions
Read address channel

Table E3-5 shows the additional read address channel signals.

Table E3-5 Read address channel signals

Signal Source Property Description

ARVMIDEXT Master DVM_v8.1 Read address VMID Extension. Adds support for 16-bit VMID
signaling and ASID values that are associated with the ARMv8.1 EL2
translation regime.
Supported in ACE5 when the DVM_v8.1 property is TRUE. See
Distributed Virtual Memory extensions for ARMv8.1 on page E2-367.

ARTRACE Master Trace_Signals Supports the tracing of specific read transactions through the system.
Supported in ACE5 when the Trace_Signals property is TRUE. See
Trace signals on page E2-355.

ARLOOP Master Loopback_Signals User Loopback signaling associated with the read address group of
signals. Reflected back on RLOOP.
Supported in ACE5 when the Loopback_Signals property is TRUE.
See User Loopback signaling on page E2-357.

ARMMUSECSID Master Untranslated_Transactions Indicates that the MMU stream in an untranslated transaction is
Secure or Non-secure.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions.

ARMMUSID Master Untranslated_Transactions Uniquely identifies the main stream in the untranslated transaction
with the MMU.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions.

ARMMUSSIDV Master Untranslated_Transactions Indicates that the transaction has an optional substream identifier.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions.

ARMMUSSID Master Untranslated_Transactions Read address optional Substream Identifier. Uniquely identifies,
alongside an untranslated transaction, a Substream in the transaction.
This signal is only valid if the substream validity signal
ARMMUSSIDV is asserted.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions.

ARMMUATST Master Untranslated_Transactions Read address Address Translated. Additional signal for an interface
where it is possible for a transaction to have already undergone PCIe
ATS translation.
Supported in ACE5 when the Untranslated_Transactions property is
TRUE. See Untranslated transactions.

ARNSAID Master NSAccess_Identifiers Non-secure access identifier. Enables read access to be controlled to
particular memory locations.
Supported in ACE5 when the NSAccess_Identifiers property is
TRUE. See Non-secure access identifiers on page E2-374.
E3-382 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E3 AMBA ACE5
E3.2 Signal descriptions
Read data channel

Table E3-6 shows the additional read data channel signals.

Snoop address channel

Table E3-7 shows the additional snoop address channel signals.

Snoop response channel

Table E3-8 shows the additional snoop response channel signals.

Table E3-6 Read data channel signals

Signal Source Property Description

RDATACHK Interconnect Check_Type Can be used to detect, and potentially correct, data bytes that might have been
corrupted.
Supported in ACE5 when the Check_Type property is TRUE. See Data
checking and Poison on page E2-352.

RPOISON Interconnect Poison Indicates that a set of data bytes have been previously corrupted.
Supported in ACE5 when the Poison property is TRUE. See Data checking
and Poison on page E2-352.

RTRACE Interconnect Trace_Signals Supports the debugging, tracing, and performance measurement of systems.
Supported in ACE5 when the Trace_Signals property is TRUE. See Trace
signals on page E2-355.

RLOOP Interconnect Loopback_Signals User Loopback signaling, returns the value that is provided on ARLOOP.
Supported in ACE5 when the Loopback_Signals property is TRUE. See User
Loopback signaling on page E2-357.

Table E3-7 Snoop address channel signals

Signal Source Property Description

ACVMIDEXT Interconnect DVM_v8.1 Snoop address VMID Extension. Adds support for 16-bit VMID signaling and
ASID values that are associated with the ARMv8.1 EL2 translation regime.
Supported in ACE5 when the DVM_v8.1 property is TRUE. See Distributed
Virtual Memory extensions for ARMv8.1 on page E2-367.

ACTRACE Interconnect Trace_Signals Supports the tracing of specific transactions through the system.
Supported in ACE5 when the Trace_Signals property is TRUE. See Trace signals
on page E2-355.

Table E3-8 Snoop response channel signals

Signal Source Property Description

CRTRACE Master Trace_Signals Supports the tracing of specific transactions through the system.
Supported in ACE5 when the Trace_Signals property is TRUE. See Trace signals
on page E2-355.

CRNSAID Master NSAccess_Identifiers Snoop response channel Non-secure Access Identifier. Supports the storage and
processing of protected data by controlling access to particular memory locations.
Supported in ACE5 when the NSAccess_Identifiers property is TRUE. See
Non-secure access identifiers on page E2-374.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E3-383
ID122117 Non-Confidential

E3 AMBA ACE5
E3.2 Signal descriptions
Snoop data channel

Table E3-9 shows the additional snoop data channel signals.

E3.2.2 Additional signaling

Table E3-10 shows the additional signaling required on the ACE5 interface to support the new capabilities.

Table E3-9 Snoop data channel signals

Signal Source Property Description

CDDATACHK Master Check_Type Can be used to detect, and potentially correct, data bytes that might have been
corrupted on snoop data channel.
Supported in ACE5 when the Check_Type property is TRUE. See Data checking and
Poison on page E2-352.

CDPOISON Master Poison Snoop Data Poison. Indicates that a set of data bytes have been previously corrupted.
Supported in ACE5 when the Poison property is TRUE. See Data checking and
Poison on page E2-352.

CDTRACE Master Trace_Signals Supports the tracing of specific transactions through the system.
Supported in ACE5 when the Trace_Signals property is TRUE. See Trace signals on
page E2-355.

Table E3-10 Additional signals

Signal Source Property Description

VAWQOSACCEPT Slave QoS_Accept Write QoS acceptance level. Indicates the
QoS value at which the slave will accept
Write transactions.
Supported in ACE5 when the QoS_Accept
property is TRUE. QoS Accept signaling on
page E2-358.

VARQOSACCEPT Slave QoS_Accept Read QoS acceptance level. Indicates the
QoS value at which the slave will accept
Read transactions.
Supported in ACE5 when the QoS_Accept
property is TRUE. See QoS Accept
signaling on page E2-358.

AWAKEUP Master Wakeup_Signals Indicates that the master is initiating activity
on this interface.
Supported in ACE5 when the
Wakeup_Signals property is TRUE. See
Wake-up Signaling on page E2-360.
E3-384 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E3 AMBA ACE5
E3.2 Signal descriptions
ACWAKEUP Interconnect Wakeup_Signals Snoop wakeup. Indicates that the
interconnect is initiating activity on this
interface.
Supported in ACE5 when the
Wakeup_Signals property is TRUE. See
Wake-up Signaling on page E2-360.

SYSCOREQ Master Coherency_Connection_Signals Coherency Connect Request. Request from
a master to be connected to, or disconnected
from, the coherency system.
Supported in ACE5 when the
Coherency_Connection_Signals property is
TRUE. See Coherency Connection
signaling on page E2-362.

SYSCOACK Interconnect Coherency_Connection_Signals Coherency Connect Acknowledge.
Acknowledge from the interconnect that the
master is connected to, or disconnected
from, the coherency system.
Supported in ACE5 when the
Coherency_Connection_Signals property is
TRUE. See Coherency Connection
signaling on page E2-362.

Table E3-10 Additional signals (continued)

Signal Source Property Description
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E3-385
ID122117 Non-Confidential

E3 AMBA ACE5
E3.2 Signal descriptions
E3-386 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter E4
AMBA ACE5-Lite

This chapter specifies the new capabilities in the ACE5-Lite protocol specification. It contains the following
sections:
• About the ACE5-Lite protocol on page E4-388.
• ACE5-Lite signal descriptions on page E4-390.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E4-387
ID122117 Non-Confidential

E4 AMBA ACE5-Lite
E4.1 About the ACE5-Lite protocol
E4.1 About the ACE5-Lite protocol
Issue F of the AMBA AXI and ACE protocol specification introduces ACE5-Lite.

ACE5-Lite extends the capabilities of the ACE-Lite protocol that is specified in Chapter D11 AMBA ACE-Lite.

The new capabilities are:
• Atomic Transactions.
• Cache Stash Transactions.
• Deallocating Transactions.
• CMO for Persistence.
• Data Check.
• Poison.
• QoS Accept.
• Trace signals.
• User Loopback.
• Wakeup signals.
• Untranslated Transactions.
• Non-secure Access Identifiers.

To maintain compatibility, a property is used to declare a new capability. If a property is not declared, it is considered
FALSE. Table E4-1 summarizes the properties.

Table E4-1 Properties that specify system capability

Property Description

Atomic_Transactions Adds Atomic transactions that perform more than just a single access, and have some form
of operation that is associated with the transaction. See Atomic transactions on
page E2-336.

Cache_Stash_Transactionsa Adds Cache Stashing transactions that enable one component to indicate that a particular
cache line should be placed in the cache of another component in the system. See Cache
Stashing on page E2-345.

DeAllocation_Transactions Adds Deallocation transactions that permit an IO coherent master to influence the
allocation of cache lines in the system. See Deallocating transactions on page E2-349.

Persist_CMO Adds an additional cache maintenance operation that is used to provide a cache clean to
the point of persistence operation. See Cache Maintenance for Persistence on
page E2-351.

Check_Type Adds data checking signaling, which is used to detect, and potentially correct, data bytes
that might have been corrupted. See Data checking and Poison on page E2-352.

Poison Adds Poison signaling, which is used to indicate that a set of data bytes have been
previously corrupted. See Data checking and Poison on page E2-352.

QoS_Accept Adds two additional QoS interface signals that enable a slave to indicate the QoS value of
transactions that it will accept. See QoS Accept signaling on page E2-358.

Trace_Signals Adds a Trace signal that is associated with each channel to support the debugging, tracing,
and performance measurement of systems. See Trace signals on page E2-355.

Loopback_Signals Adds loopback signaling, which permits an agent that is issuing transactions to store
information relating to the transaction in an indexed table. See User Loopback signaling
on page E2-357
E4-388 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E4 AMBA ACE5-Lite
E4.1 About the ACE5-Lite protocol
Wakeup_Signaling Adds wakeup signaling, which is used to indicate that there is activity that is associated
with the interface. See Wake-up Signaling on page E2-360.

Untranslated_Transactionsa Adds untranslated transaction support and permits different transactions on the same
interface to use different translation schemes. See Untranslated transactions on
page E2-370.

NSAccess_Identifiers Adds Non-secure access identifiers that support the storage and processing of protected
data. See Non-secure access identifiers on page E2-374.

a. For StashTranslation transaction support, both the Cache_Stash_Transactions and Untranslated_Transactions properties must
be TRUE. See Translation stashing on page E2-372.

Table E4-1 Properties that specify system capability (continued)

Property Description
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E4-389
ID122117 Non-Confidential

E4 AMBA ACE5-Lite
E4.2 ACE5-Lite signal descriptions
E4.2 ACE5-Lite signal descriptions
This section introduces the additional ACE5-Lite interface signals that support the new capabilities. It contains the
following subsections:
• Changes to existing ACE-Lite channels.
• Additional signaling on page E4-396.

See Chapter D11 AMBA ACE-Lite for details of the ACE-Lite interface signals.

E4.2.1 Changes to existing ACE-Lite channels

Additional signals are required on the following ACE-Lite channels:
• Write address channel.
• Write data channel on page E4-392.
• Write response channel on page E4-393.
• Read address channel on page E4-393.
• Read data channel on page E4-394.

Write address channel

Table E4-2 shows the additional write address channel signals.

Table E4-2 Write address channel signals

Signal Source Property Description

AWATOP Master Atomic_Transactions Indicates the type of atomic operation to be performed, and
the endianness for arithmetic operations.
Supported in ACE5-Lite when the Atomic_Transactions
property is TRUE. See Atomic transactions on page E2-336.

AWSNOOP[3] Master Cache_Stash_Transactions AWSNOOP is extended to include stash transaction types.
Supported in ACE5-Lite when the
Cache_Stash_Transactions property is TRUE. See Cache
Stashing on page E2-345.

AWSTASHNID Master Cache_Stash_Transactions Write address Stash Node ID. Indicates the node identifier of
the physical interface.
Supported in ACE5-Lite when the
Cache_Stash_Transactions property is TRUE. See Cache
Stashing on page E2-345.

AWSTASHNIDEN Master Cache_Stash_Transactions Write address Stash Node ID Enable. Indicates that the
AWSTASHNID signal is valid and should be used.
Supported in ACE5-Lite when the
Cache_Stash_Transactions property is TRUE. See Cache
Stashing on page E2-345.

AWSTASHLPID Master Cache_Stash_Transactions Write address Logical Processor ID. Indicates the logical
processor sub-unit that is associated with the physical
interface.
Supported in ACE5-Lite when the
Cache_Stash_Transactions property is TRUE. See Cache
Stashing on page E2-345.
E4-390 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E4 AMBA ACE5-Lite
E4.2 ACE5-Lite signal descriptions
AWSTASHLPIDEN Master Cache_Stash_Transactions Write address Logical Processor ID Enable. Indicates the
AWSTASHLPID signal is that enabled and should be used.
Supported in ACE5-Lite when the
Cache_Stash_Transactions property is TRUE. See Cache
Stashing on page E2-345.

AWTRACE Master Trace_Signals Supports the tracing of specific write transactions through the
system.
Supported in ACE5-Lite when the Trace_Signals property is
TRUE. See Trace signals on page E2-355.

AWLOOP Master Loopback_Signals Loopback signaling associated with the write address group
of signals. Reflected back on BLOOP.
Supported in ACE5-Lite when the Loopback_Signals
property is TRUE. See User Loopback signaling on
page E2-357.

AWMMUSECSID Master Untranslated_Transactions Write address Secure Stream Identifier. Indicates, alongside
an untranslated transaction, a Secure or Non-secure stream in
the transaction.
Supported in ACE5-Lite when the
Untranslated_Transactions property is TRUE. See
Untranslated transactions on page E2-370.

AWMMUSID Master Untranslated_Transactions Write address Stream Identifier. Uniquely identifies,
alongside an untranslated transaction, the main stream in the
transaction.
Supported in ACE5-Lite when the
Untranslated_Transactions property is TRUE. See
Untranslated transactions on page E2-370.

AWMMUSSIDV Master Untranslated_Transactions Write address Substream Identifier Valid. Indicates if the
transaction has an optional substream identifier.
Supported in ACE5-Lite when the
Untranslated_Transactions property is TRUE. See
Untranslated transactions on page E2-370.

Table E4-2 Write address channel signals (continued)

Signal Source Property Description
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E4-391
ID122117 Non-Confidential

E4 AMBA ACE5-Lite
E4.2 ACE5-Lite signal descriptions
Write data channel

Table E4-3 shows the additional write data channel signals.

AWMMUSSID Master Untranslated_Transactions Write address Substream Identifier. Uniquely identifies,
alongside an untranslated transaction, a Substream in the
transaction. This signal is only valid if AWMMUSSIDV is
asserted.
Supported in ACE5-Lite when the
Untranslated_Transactions property is TRUE. See
Untranslated transactions on page E2-370.

AWMMUUATST Master Untranslated_Transactions Write address Address Translated. Additional signal for an
interface where it is possible for a transaction to have already
undergone PCIe ATS translation.
Supported in ACE5-Lite when the
Untranslated_Transactions property is TRUE. See
Untranslated transactions on page E2-370.

AWNSAID Master NSAccess_Identifiers Write address Non-secure Access Identifier. Enables write
access to be controlled to particular memory locations.
Supported in ACE5-Lite when the NSAccess_Identifiers
property is TRUE. See Non-secure access identifiers on
page E2-374.

Table E4-2 Write address channel signals (continued)

Signal Source Property Description

Table E4-3 Write data channel signals

Signal Source Property Description

WDATACHK Master Check_Type Can be used to detect, and potentially correct, data bytes that might have been
corrupted.
Supported in ACE5-Lite when the Check_Type property is TRUE. See Data checking
and Poison on page E2-352.

WPOISON Master Poison Indicates that a set of data bytes have been previously corrupted.
Supported in ACE5-Lite when the Poison property is TRUE. See Data checking and
Poison on page E2-352.

WTRACE Master Trace_Signals Supports the debugging, tracing, and performance measurement of systems.
Supported in ACE5-Lite when the Trace_Signals property is TRUE. See Trace signals
on page E2-355.
E4-392 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E4 AMBA ACE5-Lite
E4.2 ACE5-Lite signal descriptions
Write response channel

Table E4-4 shows the additional write response channel signals.

Read address channel

Table E4-5 shows the additional read address channel signals.

Table E4-4 Write response channel signals

Signal Source Property Description

BTRACE Interconnect Trace_signals Supports the debugging, tracing, and performance measurement of systems.
Supported in ACE5-Lite when the Trace_Signals property is TRUE. See Trace
signals on page E2-355.

BLOOP Interconnect Loopback_Signals Returns the value that is provided on AWLOOP.
Supported in ACE5-Lite when the Loopback_Signals property is TRUE. See
User Loopback signaling on page E2-357.

Table E4-5 Read address channel signals

Signal Source Property Description

ARTRACE Master Trace_Signals Supports the tracing of specific read transactions through the system.
Supported in ACE5-Lite when the Trace_Signals property is TRUE.
See Trace signals on page E2-355.

ARLOOP Master Loopback_Signals Read address User Loopback. Loopback signaling associated with the
read address group of signals. Reflected back on RLOOP.
Supported in ACE5-Lite when the Loopback_Signals property is
TRUE. See User Loopback signaling on page E2-357.

ARMMUSECSID Master Untranslated_Transactions Indicates that the MMU stream in an untranslated transaction is
Secure or Non-secure.
Supported in ACE5-Lite when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARMMUSID Master Untranslated_Transactions Uniquely identifies the main stream in the untranslated transaction
with the MMU.
Supported in ACE5-Lite when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARMMUSSIDV Master Untranslated_Transactions Indicates that the transaction has an optional substream identifier.
Supported in ACE5-Lite when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E4-393
ID122117 Non-Confidential

E4 AMBA ACE5-Lite
E4.2 ACE5-Lite signal descriptions
Read data channel

Table E4-6 shows the additional read data channel signals.

ARMMUSSID Master Untranslated_Transactions Read address optional Substream Identifier. This signal is only valid
if the substream validity signal ARMMUSSIDV is asserted.
Supported in ACE5-Lite when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARMMUATST Master Untranslated_Transactions Read address Address Translated. Additional signal for an interface
where it is possible for a transaction to have already undergone PCIe
ATS translation.
Supported in ACE5-Lite when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARNSAID Master NSAccess_Identifiers Non-secure access identifier. Enables read access to be controlled to
particular memory locations.
Supported in ACE5-Lite when the NSAccess_Identifiers property is
TRUE. See Non-secure access identifiers on page E2-374.

Table E4-5 Read address channel signals (continued)

Signal Source Property Description

Table E4-6 Read data channel signals

Signal Source Property Description

RDATACHK Interconnect Check_Type Can be used to detect, and potentially correct, data bytes that might have been
corrupted.
Supported in ACE5-Lite when the Check_Type property is TRUE. See Data
checking and Poison on page E2-352.

RPOISON Interconnect Poison Indicates that a set of data bytes have been previously corrupted.
Supported in ACE5-Lite when the Poison property is TRUE. See Data
checking and Poison on page E2-352.

RTRACE Interconnect Trace_Signals Supports the debugging, tracing, and performance measurement of systems.
Supported in ACE5-Lite when the Trace_Signals property is TRUE. See Trace
signals on page E2-355.

RLOOP Interconnect Loopback_Signals Read data User Loopback signaling. Returns the value that is provided on
ARLOOP.
Supported in ACE5-Lite when the Loopback_Signals property is TRUE. See
User Loopback signaling on page E2-357.
E4-394 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E4 AMBA ACE5-Lite
E4.2 ACE5-Lite signal descriptions
E4.2.2 Additional signaling

The following ancillary signaling is required on the ACE5-Lite interface to support the new capabilities. Table E4-7
shows the additional QoS accept and Wakeup signaling.

Table E4-7 QoS accept and Wakeup signals

Signal Source Property Description

VAWQOSACCEPT Slave QoS_Accept Write QoS acceptance level. Indicates the QoS value at which the slave
will accept Write transactions.
Supported in ACE5-Lite when the QoS_Accept property is TRUE. See
QoS Accept signaling on page E2-358.

VARQOSACCEPT Slave QoS_Accept Read QoS acceptance level. Indicates the QoS value at which the slave
will accept Read transactions.
Supported in ACE5-Lite when the QoS_Accept property is TRUE. See
QoS Accept signaling on page E2-358.

AWAKEUP Master Wakeup_Signals Indicates that the master is starting a transaction that is being sent to the
interconnect.initiating activity on this interface.
Supported in ACE5-Lite when the Wakeup_Signals property is asserted.
See Wake-up Signaling on page E2-360.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E4-395
ID122117 Non-Confidential

E4 AMBA ACE5-Lite
E4.2 ACE5-Lite signal descriptions
E4-396 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter E5
AMBA ACE5-LiteDVM

This chapter describes the new ACE5-LiteDVM protocol specification that is introduced in AMBA 5. It contains
the following sections:
• About the ACE5-LiteDVM protocol on page E5-398.
• ACE5-LiteDVM signal descriptions on page E5-400.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E5-397
ID122117 Non-Confidential

E5 AMBA ACE5-LiteDVM
E5.1 About the ACE5-LiteDVM protocol
E5.1 About the ACE5-LiteDVM protocol
Issue F of the AMBA AXI and ACE protocol specification introduces the new AMBA protocol ACE5-LiteDVM.

ACE5-LiteDVM extends the capabilities of the ACE5-Lite protocol that is specified in Chapter E4 AMBA
ACE5-Lite.

ACE5-LiteDVM is identical to ACE5-Lite, with the addition of support for IO coherent components that include
SMMU functionality and therefore receive DVM transactions.

An ACE5-LiteDVM master must be able to receive DVM messages on the AC channel. For DVM Syncronization
messages, the master must also be able to send DVM Complete messages on the AR channel.

An interconnect with an ACE5-LiteDVM interface can issue DVM messages on the AC channel, and must be able
to receive DVM Complete messages on the AR channel.

The following transaction types are permissible on an ACE5-LiteDVM interface:
• AR channel:

— ReadNoSnoop.
— ReadOnce.
— CleanShared.
— CleanInvalid.
— MakeInvalid.
— DVM Complete.

• AW channel:
— WriteNoSnoop.
— WriteUnique / WriteUniquePtl.
— WriteLineUnique / WriteUniqueFull.

• AC channel:
— DVM Operation.
— DVM Sync.

ACE5Lite-DVM interfaces also support the following optional capabilities:
• Atomic Transactions.
• DVM v8.1.
• Cache Stash Transactions.
• Deallocating Transactions.
• CMO for Persistence.
• Data checking.
• Poison.
• QoS Accept.
• Trace signals.
• User Loopback.
• Wakeup signals.
• Coherency connection signals.
• Untranslated Transactions.
• Non-secure Access Identifiers.

To maintain compatibility, a property is used to declare a new capability. If a property is not declared, it is considered
FALSE. Table E5-1 on page E5-399 summarizes the properties.
E5-398 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E5 AMBA ACE5-LiteDVM
E5.1 About the ACE5-LiteDVM protocol
Table E5-1 Properties that specify system capability

Property Description

Atomic_Transactions Adds Atomic transactions that perform more than just a single access, and have some
form of operation that is associated with the transaction. See Atomic transactions on
page E2-336.

DVM_v8 Specifies that a component supports DVMv8 and DVMv7 message protocols. See
DVM message support for ARMv7 and ARMv8 on page D13-309.

DVM_v8.1 Specifies that a component supports DVMv8.1, DVMv8 and DVMv7 message
protocols. See Distributed Virtual Memory extensions for ARMv8.1 on page E2-367.

Cache_Stash_Transactionsa Adds Cache Stashing transactions that enable one component to indicate that a
particular cache line should be placed in the cache of another component in the system.
See Cache Stashing on page E2-345.

DeAllocation_Transactions Adds Deallocation transactions that permit an IO coherent master to influence the
allocation of cache lines in the system. See Deallocating transactions on page E2-349.

Persist_CMO Adds an additional cache maintenance operation that is used to provide a cache clean
to the point of persistence operation. See Cache Maintenance for Persistence on
page E2-351.

Check_Type Adds data checking signaling, which is used to detect, and potentially correct, data
bytes that might have been corrupted. See Data checking and Poison on page E2-352.

Poison Adds Poison signaling, which is used to indicate that a set of data bytes have been
previously corrupted. See Data checking and Poison on page E2-352.

QoS_Accept Adds two additional QoS interface signals that enable a slave to indicate the QoS value
of transactions that it will accept. See QoS Accept signaling on page E2-358.

Trace_Signals Adds a Trace signal, which is associated with each channel, to support the debugging,
tracing, and performance measurement of systems. See Trace signals on page E2-355.

Loopback_Signals Adds loopback signaling that permits an agent that is issuing transactions to store
information relating to the transaction in an indexed table. See User Loopback
signaling on page E2-357.

Wakeup_Signals Adds two wakeup signals, which are used to indicate that there is activity that is
associated with the interface. See Wake-up Signaling on page E2-360.

Coherency_Connection_Signals Adds signaling to connect or disconnect this interface from the coherency system. See
Coherency Connection signaling on page E2-362.

Untranslated_Transactionsa Adds untranslated transaction support and permits different transactions on the same
interface to use different translation schemes. See Untranslated transactions on
page E2-370.

NSAccess_Identifiers Adds Non-secure access identifiers that support the storage and processing of protected
data. See Non-secure access identifiers on page E2-374.

a. For StashTranslation transaction support, both the Cache_Stash_Transactions and Untranslated_Transactions properties must be
TRUE. See Translation stashing on page E2-372.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E5-399
ID122117 Non-Confidential

E5 AMBA ACE5-LiteDVM
E5.2 ACE5-LiteDVM signal descriptions
E5.2 ACE5-LiteDVM signal descriptions
This section introduces the additional ACE5-LiteDVM interface signals that support the new capabilities. It
contains the following subsections:
• Changes to existing ACE-Lite channels.
• Additional channels on page E5-404.
• Additional signaling on page E5-405.

See Chapter D11 AMBA ACE-Lite for details of the ACE-Lite interface signals.

E5.2.1 Changes to existing ACE-Lite channels

Additional signals are required on the following ACE-Lite channels:
• Write address channel.
• Write data channel on page E5-402.
• Write response channel on page E5-402.
• Read address channel on page E5-403.
• Read data channel on page E5-404.

Write address channel

Table E5-2 shows the additional write address channel signals.

Table E5-2 Write address channel signals

Signal Source Property Description

AWATOP Master Atomic_Transactions Indicates the type of atomic operation to be performed, and the
endianness for arithmetic operations.
Supported in ACE5-LiteDVM when the Atomic_Transactions
property is TRUE. See Atomic transactions on page E2-336.

AWSNOOP[3] Master Cache_Stash_Transactions AWSNOOP is extended to include stash transaction types.
Supported in ACE5-LiteDVM when the Cache_Stash_Transactions
property is TRUE. See Stash transaction signaling.

AWSTASHNID Master Cache_Stash_Transactions Write address Stash Node ID. Indicates the node identifier of the
physical interface.
Supported in ACE5-LiteDVM when the Cache_Stash_Transactions
property is TRUE. See Cache Stashing on page E2-345.

AWSTASHNIDEN Master Cache_Stash_Transactions Write address Stash Node ID Enable. Indicates that the
AWSTASHNID signal is valid and should be used.
Supported in ACE5-LiteDVM when the Cache_Stash_Transactions
property is TRUE. See Cache Stashing on page E2-345.

AWSTASHLPID Master Cache_Stash_Transactions Write address Logical Processor ID. Indicates the logical processor
subunit that is associated with the physical interface.
Supported in ACE5-LiteDVM when the Cache_Stash_Transactions
property is TRUE. See Cache Stashing on page E2-345.

AWSTSHLPIDEN Master Cache_Stash_Transactions Write address Logical Processor ID Enable. Indicates that the
AWSTASHLPID signal is enabled and should be used.
Supported in ACE5-LiteDVM when the Cache_Stash_Transactions
property is TRUE. See Cache Stashing on page E2-345.
E5-400 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E5 AMBA ACE5-LiteDVM
E5.2 ACE5-LiteDVM signal descriptions
AWTRACE Master Trace_Signals Supports the tracing of specific write transactions through the
system.
Supported in ACE5-LiteDVM when the Trace_Signals property is
TRUE. See Trace signals on page E2-355.

AWLOOP Master Loopback_Signals Loopback signaling associated with the write address group of
signals. Reflected back on BLOOP.
Supported in ACE5-LiteDVM when the Loopback_Signals property
is TRUE. See User Loopback signaling on page E2-357.

AWMMUSECSID Master Untranslated_Transactions Write address Secure Stream Identifier. Indicates, alongside an
untranslated transaction, a Secure or Non-secure stream in the
transaction.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

AWMMUSID Master Untranslated_Transactions Write address Stream Identifier. Uniquely identifies, alongside an
untranslated transaction, the main stream in the transaction.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

AWMMUSSIDV Master Untranslated_Transactions Write address Substream Identifier Valid. Indicates that the
transaction has an optional substream identifier.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

AWMMUSSID Master Untranslated_Transactions Write address Substream Identifier. Uniquely identifies, alongside
an untranslated transaction, a Substream in the transaction. This
signal is only valid if AWMMUSSIDV is asserted.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

AWMMUUATST Master Untranslated_Transactions Write address Address Translated. Additional signal for an interface
where it is possible for a transaction to have already undergone PCIe
ATS translation.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

AWNSAID Master NSAccess_Identifiers Write address Non-secure Access Identifier. Enables write access to
be controlled to particular memory locations.
Supported in ACE5-LiteDVM when the NSAccess_Identifiers
property is TRUE. See Non-secure access identifiers on
page E2-374.

Table E5-2 Write address channel signals (continued)

Signal Source Property Description
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E5-401
ID122117 Non-Confidential

E5 AMBA ACE5-LiteDVM
E5.2 ACE5-LiteDVM signal descriptions
Write data channel

Table E5-3 shows the additional write data channel signals.

Write response channel

Table E5-4 shows the additional write response channel signals.

Table E5-3 Write data channel signals

Signal Source Property Description

WDATACHK Master Check_Type Can be used to detect, and potentially correct, data bytes that might have been
corrupted.
Supported in ACE5-LiteDVM when the Check_Type property is TRUE. See Data
checking and Poison on page E2-352.

WPOISON Master Poison Indicates that a set of data bytes have been previously corrupted.
Supported in ACE5-LiteDVM when the Poison property is TRUE. See Data
checking and Poison on page E2-352.

WTRACE Master Trace_Signals Supports the debugging, tracing, and performance measurement of systems.
Supported in ACE5-LiteDVM when the Trace_Signals property is TRUE. See
Trace signals on page E2-355.

Table E5-4 Write response channel signals

Signal Source Property Description

BTRACE Interconnect Trace_signals Supports the debugging, tracing, and performance measurement of systems.
Supported in ACE5-LiteDVM when the Trace_Signals property is TRUE. See
Trace signals on page E2-355.

BLOOP Interconnect Loopback_Signals Returns the value that is provided on AWLOOP.
Supported in ACE5-LiteDVM when the Loopback_Signals property is TRUE. See
User Loopback signaling on page E2-357.
E5-402 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E5 AMBA ACE5-LiteDVM
E5.2 ACE5-LiteDVM signal descriptions
Read address channel

Table E5-5 shows the additional read address channel signals.

Table E5-5 Read address channel signals

Signal Source Property Description

ARVMIDEXT Master DVM_v8.1 Read address VMID Extension. Adds support for 16-bit VMID
signaling and ASID values that are associated with the ARMv8.1
EL2 translation regime. Supported in ACE5 when the DVM_v8.1
property is TRUE. See Distributed Virtual Memory extensions for
ARMv8.1 on page E2-367.

ARTRACE Master Trace_Signals Supports the tracing of specific read transactions through the system.
Supported in ACE5-LiteDVM when the Trace_Signals property is
TRUE. See Trace signals on page E2-355.

ARLOOP Master Loopback_Signals Read address User Loopback. Loopback signaling associated with the
read address group of signals. Reflected back on RLOOP.
Supported in ACE5-LiteDVM when the Loopback_Signals property
is TRUE. See User Loopback signaling on page E2-357.

ARMMUSECSID Master Untranslated_Transactions Indicates that the MMU stream in an untranslated transaction is
Secure or Non-secure.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARMMUSID Master Untranslated_Transactions Uniquely identifies the main stream in the untranslated transaction
with the MMU.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARMMUSSIDV Master Untranslated_Transactions Indicates that the transaction has an optional substream identifier.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARMMUSSID Master Untranslated_Transactions Read address optional Substream Identifier. This signal is only valid
if the substream validity signal ARMMUSSIDV is asserted.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARMMUATST Master Untranslated_Transactions Read address Address Translated. Additional signal for an interface
where it is possible for a transaction to have already undergone PCIe
ATS translation.
Supported in ACE5-LiteDVM when the Untranslated_Transactions
property is TRUE. See Untranslated transactions on page E2-370.

ARNSAID Master NSAccess_Identifiers Non-secure access identifier. Enables read access to be controlled to
particular memory locations.
Supported in ACE5-LiteDVM when the NSAccess_Identifiers
property is TRUE. See Non-secure access identifiers on page E2-374.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E5-403
ID122117 Non-Confidential

E5 AMBA ACE5-LiteDVM
E5.2 ACE5-LiteDVM signal descriptions
Read data channel

Table E5-6 shows the additional read data channel signals.

E5.2.2 Additional channels

Two additional snoop channels are required on the ACE5-LiteDVM interface to support DVM message transfers.
See Chapter D13 Distributed Virtual Memory Transactions.

Snoop address channel

Table E5-7 shows the signals on the snoop address channel.

Table E5-6 Read data channel signals

Signal Source Property Description

RDATACHK Interconnect Check_Type Can be used to detect, and potentially correct, data bytes that might
have been corrupted.
Supported in ACE5-LiteDVM when the Check_Type property is
TRUE. See Data checking and Poison on page E2-352.

RPOISON Interconnect Poison Indicates that a set of data bytes have been previously corrupted.
Supported in ACE5-LiteDVM when the Poison property is TRUE.
See Data checking and Poison on page E2-352.

RTRACE Interconnect Trace_Signals Supports the debugging, tracing, and performance measurement of
systems.
Supported in ACE5-LiteDVM when the Trace_Signals property is
TRUE. See Trace signals on page E2-355.

RLOOP Interconnect Loopback_Signals Read data User Loopback signaling. Returns the value that is
provided on ARLOOP.
Supported in ACE5-LiteDVM when the Loopback_Signals property
is TRUE. See User Loopback signaling on page E2-357.

Table E5-7 Snoop address channel signals

Signal Source Description

ACVALID Master Snoop address valid. This signal indicates that the snoop address and control information is
valid.

ACREADY Master Snoop address ready. This signal indicates that the snoop address and control information can
be accepted in the current cycle.

ACADDR[ac-1:0]a Interconnect Snoop address. This signal indicates the address of a snoop transaction. The snoop address
width must match the width of the read and write address buses.

ACSNOOP[3:0] Interconnect Snoop transaction type. This signal indicates the transaction type of the snoop transaction.
E5-404 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E5 AMBA ACE5-LiteDVM
E5.2 ACE5-LiteDVM signal descriptions
Snoop response channel

Table E5-8 shows the signals on the snoop response channel.

E5.2.3 Additional signaling

Table E5-9 shows ancillary signaling required on the ACE5-LiteDVM interface to support the new capabilities.

ACPROT[2:0] Interconnect Snoop protection type. This signal indicates the security level of the snoop transaction.

ACVMIDEXT Interconnect Snoop address VMID Extension. Adds support for 16-bit VMID signaling and ASID values that
are associated with the ARMv8.1 EL2 translation regime.
Supported in ACE5-LiteDVM when the DVM_v8.1 property is TRUE. See Distributed Virtual
Memory extensions for ARMv8.1 on page E2-367.

ACTRACE Interconnect Supports the tracing of specific transactions through the system.
Supported in ACE5-LiteDVM when the Trace_Signals property is TRUE. See Trace signals on
page E2-355.

a. ac is the width of the snoop address bus.

Table E5-7 Snoop address channel signals (continued)

Signal Source Description

Table E5-8 Snoop response channel signals

Signal Source Description

CRVALID Master Snoop response valid. This signal indicates that the snoop response is valid.

CRREADY Interconnect Snoop response ready. This signal indicates that the snoop response can be accepted in the current
cycle.

CRRESP[4:0] Master Snoop response. This signal indicates the response to a snoop transaction and how it completes.

CRTRACE Master Supports the tracing of specific transactions through the system.
Supported in ACE5-LiteDVM when the Trace_Signals property is TRUE. See Trace signals on
page E2-355.

Table E5-9 QoS accept signals

Signal Source Property Description

AWAKEUP Master Wakeup_Signals Indicates that the master is starting a transaction that is being
sent to the interconnect.initiating activity on this interface.
Supported in ACE5-LiteDVM when the Wakeup_Signals
property is TRUE. See Wake-up Signaling on page E2-360.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E5-405
ID122117 Non-Confidential

E5 AMBA ACE5-LiteDVM
E5.2 ACE5-LiteDVM signal descriptions
ACWAKEUP Interconnect Wakeup_Signals Snoop wakeup. Indicates that the interconnect is starting a
transaction that is being sent to the master.
Supported in ACE5-LiteDVM when the Wakeup_Signals
property is True. See Wake-up Signaling on page E2-360.

VAWQOSACCEPT Slave QoS_Accept Write QoS acceptance level. Indicates the QoS value at which
the slave will accept Write transactions.
Supported in ACE5-LiteDVM when the QoS_Accept property is
TRUE. See QoS Accept signaling on page E2-358.

VARQOSACCEPT Slave QoS_Accept Read QoS acceptance level. Indicates the QoS value at which the
slave will accept Read transactions.
Supported in ACE5-LiteDVM when the QoS_Accept property is
TRUE. See QoS Accept signaling on page E2-358.

Table E5-9 QoS accept signals (continued)

Signal Source Property Description
E5-406 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Chapter E6
ACE5-LiteACP

This chapter describes ACE5-LiteACP interface and associated protocol. It contains the following sections:
• Definition of ACE5-LiteACP on page E6-408.
• Optional Extensions on page E6-409.
• Interoperability on page E6-410.
• ACE-LiteACP signal list on page E6-411
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E6-407
ID122117 Non-Confidential

E6 ACE5-LiteACP
E6.1 Definition of ACE5-LiteACP
E6.1 Definition of ACE5-LiteACP
ACE5-LiteACP, which is a subset of ACE5-Lite, is intended for tightly coupling accelerator components to a
processor cluster. The interface is optimized for coherent cache line accesses and is less complex than an ACE5-Lite
interface. This simpler protocol enables high frequency, low latency implementations in this performance critical
application.

The ACE5-LiteACP interface supersedes the AMBA4 Accelerator Coherency Port (ACP) defined in ARM IHI
0022E.

Table E6-1 shows the differences between ACE5-Lite and ACE5-LiteACP interfaces. Any ACE5-Lite features
which are not mentioned in this specification are unchanged in ACE5-LiteACP. Table F2-1 on page F2-418 shows
the required and optional signals for an ACE-LiteACP interface.

Table E6-1 Differences between ACE5-Lite and ACE5-LiteACP

ACE5-Lite ACE5-LiteACP

Data width Up to 1024 bits 128 bits

Transaction length Up to 256 beats 1 or 4 beats

Transaction size Up to data bus width 128 bits

Write strobes Any Any

AxBURST Any INCR only

AxCACHE Any Write-back only:
• AxCACHE[1:0] is 0b11
• AxCACHE[3:2] must not be 0b00

AxDOMAIN Any 0b00 Non-shareable

0b10 Outer-shareable

ARSNOOP 0b0000 ReadNoSnoop / ReadOnce 0b0000 ReadNoSnoop / ReadOnce

0b1000 CleanShared

0b1001 CleanInvalid

0b1101 MakeInvalid

AWSNOOPa

a. AWSNOOP[3] is an optional signal.

0b0000 WriteNoSnoop / WriteUniquePtl 0b0000 WriteNoSnoop / WriteUniquePtl

0b0001 WriteUniqueFull 0b0001 WriteUniqueFull

0b1000 WriteUniquePtlStash 0b1000 WriteUniquePtlStash

0b1001 WriteUniqueFullStash 0b1001 WriteUniqueFullStash

0b1100 StashOnceShared 0b1100 StashOnceShared

0b1101 StashOnceUnique 0b1101 StashOnceUnique

0b1110 StashTranslation

AxQOS Supported Not supported

AxREGION Supported Not supported

Exclusive accesses Supported Not supported
E6-408 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E6 ACE5-LiteACP
E6.2 Optional Extensions
E6.2 Optional Extensions
ACE5-LiteACP has a restricted number of AMBA 5 optional extensions, Table 2 shows which properties are
permitted to be TRUE for ACE5-Lite and ACE5-LiteACP.

Table E6-2 Property options for ACE5-Lite and ACE5-LiteACP

Property ACE5-Lite ACE5-LiteACP

Cache_Stash_Transactions Y Y

Wakeup_Signals Y Y

Check_Type Y Y

Poison Y Y

Trace_Signals Y Y

QoS_Accept Y -

Loopback_Signals Y -

Untranslated_Transactions Y -

NSAccess_Identifiers Y -

Persist_CMO Y -

Atomic_Transactions Y -

DeAllocation_Transactions Y -
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E6-409
ID122117 Non-Confidential

E6 ACE5-LiteACP
E6.3 Interoperability
E6.3 Interoperability
This section describes the interoperability of ACE5-Lite, ACE5-LiteACP, and ACP masters and slaves.

Note
 The ACP interface was defined in ARM IHI 0022E and is superseded with ACE5-LiteACP in this specification.

When connecting an ACE5-LiteACP master directly to an ACE5-Lite slave interface, undriven inputs on the
ACE5-Lite slave interface must be tied according to Table E6-4.

Table E6-3 Interoperability of ACE5-Lite, ACE5-LiteACP, and ACP masters and slaves

Master Slave Interoperability

ACE5-Lite ACE5-LiteACP Can connect directly if master uses ACE5-LiteACP subset of
transactions and optional features.

ACE5-LiteACP ACE5-Lite Fully operational. Tie off unused inputs according to Table 2.

ACP ACE5-LiteACP Fully operational. Set optional properties on ACE5-LiteACP to
FALSE.

ACE5-LiteACP ACP Fully operational if master does not issue 64-byte write bursts with
sparse strobes. Set optional properties on ACE5-LiteACP to FALSE.

Table E6-4 Tie-offs for undriven signals in ACE5-LiteACP

Signal Tie-off Meaning

AxSIZE 0b100 128 bit

AxBURST 0b00 INCR

AxLOCK 0b0 Normal access

AxQOS 0b0000 -

AxREGION 0b0000 -
E6-410 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

E6 ACE5-LiteACP
E6.4 ACE-LiteACP signal list
E6.4 ACE-LiteACP signal list
Table E6-5 lists the signals available on each channel with ACE-LiteACP.

Table E6-5 ACE-LiteACP signals

Global Write address
channel

Write data
channel

Write
response
channel

Read
address
channel

Read data
channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

AWAKEUPa AWADDR WDATA BRESP ARADDR RDATA

- AWID WSTRB BID ARID RID

- AWLEN WLAST - ARLEN RLAST

- AWCACHE - - ARCACHE RRESP

- AWPROT - - ARPROT -

- AWDOMAIN - - AWDOMAIN -

- AWSNOOP - - ARSNOOP -

- AWTRACEa WTRACEa BTRACEa ARTRACEa RTRACEa

- - WDATACHKa - - RDATACHKa

- - WPOISONa - - RPOISONa

- AWSTAHNIDa - - - -

- AWSTASHIDENa - - - -

- AWSTASHLPIDa - - - -

- AWSTASHLPIDENa - - - -

a. These signals are optional. See Table F2-1 on page F2-418
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. E6-411
ID122117 Non-Confidential

E6 ACE5-LiteACP
E6.4 ACE-LiteACP signal list
E6-412 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Part F
Appendices

Appendix F1
Transaction Naming

This appendix defines the naming scheme that this specification recommends for full cache line and partial cache
line write transactions. It contains the following section:

• Full and partial cache line write transaction naming on page F1-416.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F1-415
ID122117 Non-Confidential

Appendix F1 Transaction Naming
F1.1 Full and partial cache line write transaction naming
F1.1 Full and partial cache line write transaction naming
A more consistent naming terminology for write transactions is introduced, to differentiate between full cache line
and partial cache line transactions:
• Any transaction that is a full cache line write with all byte strobes asserted is identified by the name suffix

Full.
• Any transaction that is a partial cache line write that is not guaranteed to have all byte strobes asserted is

identified by the name suffix Ptl.

It is permitted for a transaction that is indicated as being a partial cache line write to be a full cache line write.

The name without a suffix, or using a * suffix, is used in any description that covers both the full and partial line
variant of the transaction.

Table F1-1 shows the augmented naming.

Adoption of the new naming scheme is optional and context always permits the naming scheme in use to be
determined.

Note
 ACE does not provide an address phase indication that a WriteBack or WriteClean transaction is a full or partial line
write.

Table F1-1 Augmented naming for write transactions

Generic name Full cache line variant Partial cache line variant Notes

WriteUnique WriteUniqueFull WriteUniquePtl -

WriteBack WriteBackFull WriteBackPtl -

WriteClean WriteCleanFull WriteCleanPtl -

WriteEvict WriteEvictFull - There is no partial line variant for WriteEvict
F1-416 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Appendix F2
Signal Lists

Signals for each of the AMBA 5 interfaces are defined in a table with an indication of whether they are mandatory,
optional or configurable.

This Appendix contains:
• Signal Matrix on page F2-418.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F2-417
ID122117 Non-Confidential

Appendix F2 Signal Lists
F2.1 Signal Matrix
F2.1 Signal Matrix
AMBA 5 does not require a component to use the full set of signals available on an interface. To assist in the
connection of components that do not use every signal, Table F2-2 defines which signals are required, and which
signals are optional in AMBA 5.

Table F2-1 lists the codes that are used in Table F2-2.

Table F2-1 Key for Signal Matrix

Code Meaning

M Source is the Master

S Source is the Slave

I Source is Interconnect

V Value is configurable

Y Mandatory for inputs and outputs

N Must not be present

O Optional for inputs and outputs

OO Optional for output ports, mandatory for inputs

OI Optional for input ports, mandatory for outputs

C Conditional, must be present if property is TRUE

OC Optional conditional, optional but can only be present if property is TRUE

OM Optional for master interfaces, not present on slave interfaces

Table F2-2 Signal matrix

Signal

W
idth

Source

D
efault

Property

A
C

E5

A
C

E5-LiteD
VM

A
C

E5-Lite

A
C

E5-LiteA
C

P

A
XI5

A
XI5-Lite

ACLK 1 - - - Y Y Y Y Y Y

ARESETn 1 - - - Y Y Y Y Y Y

AWVALID 1 M - - Y Y Y Y Y Y

AWREADY 1 S - - Y Y Y Y Y Y

AWID V M All zeros - OO OO OO OO OO OO

AWADDR V M - - Y Y Y Y Y Y

AWREGION 4 M 0b0000 - O O O N O N

AWLEN 8 M 0x00 - OO OO OO OO OO N

AWSIZE 3 M Data bus
width

- OO OO OO N OO O
F2-418 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Appendix F2 Signal Lists
F2.1 Signal Matrix
AWBURST 2 M 0b01, INCR - OO OO OO N OO N

AWLOCK 1 M 0b0, normal
access

- O O O N O N

AWCACHE 4 M 0b0000 - O O O O O N

AWPROT 3 M - - OI OI OI OI OI OI

AWQOS 4 M 0b0000 - O O O N O N

AWUSER V M All zeros - O O O O O O

AWDOMAIN 2 M - - Y Y Y Y N N

AWSNOOP[2:0] 3 M 0b000 - OO OO OO OO N N

AWSNOOP[3] 1 M 0b0 Cache_Stash_Transactions N C C C N N

AWBAR 2 M 0b00 Barrier_Transactions N N N N N N

AWUNIQUE 1 M 0b0 WriteEvict_Transaction C N N N N N

AWSTASHNID 11 M 0x0000 Cache_Stash_Transactions N OC OC OC N N

AWSTASHNIDEN 1 M 0b0 Cache_Stash_Transactions N OC OC OC N N

AWSTASHLPID 5 M 0b00000 Cache_Stash_Transactions N OC OC OC N N

AWSTASHLPIDEN 1 M 0b0 Cache_Stash_Transactions N OC OC OC N N

AWTRACE 1 M 0b0 Trace_Signals C C C C C C

AWLOOP V M 0x00 Loopback_Signals C C C N C N

AWMMUSECSID 1 M 0b0 Untranslated_Transactions OC OC OC N OC N

AWMMUSID V M 0x00000000 Untranslated_Transactions OC OC OC N OC N

AWMMUSSIDV 1 M 0b0 Untranslated_Transactions OC OC OC N OC N

AWMMUSSID V M 0x00000 Untranslated_Transactions OC OC OC N OC N

AWMMUATST 1 M 0b0 Untranslated_Transactions OC OC OC N OC N

AWNSAID 4 M 0x0 NSAccess_Identifiers C C C N C N

AWATOP 6 M 0b000000 Atomic_Transactions N C C N C N

WVALID 1 M - - Y Y Y Y Y Y

WREADY 1 S - - Y Y Y Y Y Y

WDATA Va M - - Y Y Y Y Y Y

WSTRB V M All ones - OO OO OO OO OO OO

WLAST 1 M - - OI OI OI OI OI N

Table F2-2 Signal matrix (continued)

Signal

W
idth

Source

D
efault

Property

A
C

E5

A
C

E5-LiteD
VM

A
C

E5-Lite

A
C

E5-LiteA
C

P

A
XI5

A
XI5-Lite
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F2-419
ID122117 Non-Confidential

Appendix F2 Signal Lists
F2.1 Signal Matrix
WUSER V M All zeros - O O O O O O

WDATACHK V M - Check_Type C C C C C C

WPOISON V M - Poison C C C C C C

WTRACE 1 M 0b0 Trace_Signals C C C C C C

BVALID 1 S - - Y Y Y Y Y Y

BREADY 1 M - - Y Y Y Y Y Y

BID V S - - OI OI OI OI OI OI

BRESP 2 S 0b00, OKAY - O O O O O O

BUSER V S All zeros - O O O O O O

BTRACE 1 S 0b0 Trace_Signals C C C C C C

BLOOP V S 0x00 Loopback_Signals C C C N C N

ARVALID 1 M - - Y Y Y Y Y Y

ARREADY 1 S - - Y Y Y Y Y Y

ARID V M All zeros - OO OO OO OO OO OO

ARADDR V M - - Y Y Y Y Y Y

ARREGION 4 M 0b0000 - O O O N O N

ARLEN 8 M 0x00 - OO OO OO OO OO N

ARSIZE 3 M Data bus
width

- OO OO OO N OO O

ARBURST 2 M 0b01, INCR - OO OO OO N OO N

ARLOCK 1 M 0b0, normal
access

- O O O N O N

ARCACHE 4 M 0b0000 - O O O O O N

ARPROT 3 M - - OI OI OI OI OI OI

ARQOS 4 M 0b0000 - O O O N O N

ARUSER V M All zeros - O O O O O O

ARSNOOP 4 M 0x0 - OO OO OO O N N

ARBAR 2 M 0b00 Barrier_Transactions N N N N N N

ARDOMAIN 2 M - - Y Y Y Y N N

ARVMIDEXT 4 M 0b0000 DVM_v8.1 C C N N N N

Table F2-2 Signal matrix (continued)

Signal

W
idth

Source

D
efault

Property

A
C

E5

A
C

E5-LiteD
VM

A
C

E5-Lite

A
C

E5-LiteA
C

P

A
XI5

A
XI5-Lite
F2-420 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Appendix F2 Signal Lists
F2.1 Signal Matrix
ARTRACE 1 M - Trace_Signals C C C C C C

ARLOOP V M 0x00 Loopback_Signals C C C N C N

ARMMUSECSID 1 M 0b0 Untranslated_Transactions OC OC OC N OC N

ARMMUSID V M 0x00000000 Untranslated_Transactions OC OC OC N OC N

ARMMUSSIDV 1 M 0b0 Untranslated_Transactions OC OC OC N OC N

ARMMUSSID V M 0x00000 Untranslated_Transactions OC OC OC N OC N

ARMMUATST 1 M 0b0 Untranslated_Transactions OC OC OC N OC N

ARNSAID 4 M 0x0 NSAccess_Identifiers C C C N C N

RVALID 1 S - - Y Y Y Y Y Y

RREADY 1 M - - Y Y Y Y Y Y

RID V S - - OI OI OI OI OI OI

RDATA Va S - - Y Y Y Y Y Y

RRESP[1:0] 2 S 0b00, OKAY - Y O O O O O

RRESP[3:2] 2 S - - Y N N N N N

RLAST 1 S - - OI OI OI OI OI N

RUSER V S All zeros - O O O O O O

RDATACHK V S - Check_Type C C C C C C

RPOISON V S - Poison C C C C C C

RTRACE 1 S 0b0 Trace_Signals C C C C C C

RLOOP V S 0x00 Loopback_Signals C C C N C N

ACVALID 1 I - - Y Y N N N N

ACREADY 1 M - - Y Y N N N N

ACADDR V I - - Y Y N N N N

ACSNOOP
4 I

0b1111,
DVM
message

-
Y OO N N N N

ACPROT 3 I 0b000 - Y O N N N N

ACVMIDEXT 4 I - DVM_v8.1 C C N N N N

ACTRACE 1 I - Trace_Signals C C N N N N

CRVALID 1 M - - Y Y N N N N

Table F2-2 Signal matrix (continued)

Signal

W
idth

Source

D
efault

Property

A
C

E5

A
C

E5-LiteD
VM

A
C

E5-Lite

A
C

E5-LiteA
C

P

A
XI5

A
XI5-Lite
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F2-421
ID122117 Non-Confidential

Appendix F2 Signal Lists
F2.1 Signal Matrix
CRREADY 1 I - - Y Y N N N N

CRRESP 5 M 0b00000 - Y O N N N N

CRTRACE 1 M - Trace_Signals C C N N N N

CRNSAID 4 M - NSAccess_Identifiers OC N N N N N

CDVALID 1 M 0b0 - O N N N N N

CDREADY 1 I 0b1 - O N N N N N

CDDATA V M All zeros - O N N N N N

CDLAST 1 M 0b0 - O N N N N N

CDDATACHK V M - Check_Type OC N N N N N

CDPOISON V M - Poison OC N N N N N

CDTRACE 1 M - Trace_Signals OC N N N N N

RACK 1 M - - Y N N N N N

WACK 1 M - - Y N N N N N

VAWQOSACCEPT 4 S - QoS_Accept C C C N C N

VARQOSACCEPT 4 S - QoS_Accept C C C N C N

AWAKEUP 1 M - Wakeup_Signals C C C C C C

ACWAKEUP 1 I - Wakeup_Signals C C N N N N

SYSCOREQ 1 M - Coherency_Connection_Signals C C N N N N

SYSCOACK 1 I - Coherency_Connection_Signals C C N N N N

BROADCASTATOMIC 1 - - - N OM OM N OM N

BROADCASTINNER 1 - - - OM N N N N N

BROADCASTOUTER 1 - - - OM N N N N N

BROADCASTCACHEMAINT 1 - - - OM N N N N N

a. Fixed at 128-bit for ACE5-Lite-ACP.

Table F2-2 Signal matrix (continued)

Signal

W
idth

Source

D
efault

Property

A
C

E5

A
C

E5-LiteD
VM

A
C

E5-Lite

A
C

E5-LiteA
C

P

A
XI5

A
XI5-Lite
F2-422 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Appendix F3
AMBA 5 interface properties

This specification defines a number of interface properties for AMBA 5 interfaces. These are summarized here, with
an indication of which interfaces they apply to.

This Appendix contains:
• Summary of interface properties on page F3-424.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F3-423
ID122117 Non-Confidential

Appendix F3 AMBA 5 interface properties
F3.1 Summary of interface properties
F3.1 Summary of interface properties
Table F3-1 lists the properties that are associated with each interface. An entry without a 'Y' must have the property
omitted or set to FALSE.

Table F3-1 Properties of interfaces

Property

A
C

E5

A
C

E5-LiteD
VM

A
C

E5-Lite

A
C

E5-LiteA
C

P

A
XI5

A
XI5-Lite

Wakeup_Signals Y Y Y Y Y Y

Check_Type Y Y Y Y Y Y

Poison Y Y Y Y Y Y

Trace_Signals Y Y Y Y Y Y

QoS_Accept Y Y Y - Y -

Loopback_Signals Y Y Y - Y -

Untranslated_Transactions Y Y Y - Y -

NSAccess_Identifiers Y Y Y - Y -

Persist_CMO Y Y Y - - -

DVM_8.1 Y Y - - - -

Coherency_Connection_Signals Y Y - - - -

Cache_Stash_Transactions - Y Y Y - -

Atomic_Transactions - Y Y - Y -

DeAllocation_Transactions - Y Y - - -

WriteEvict_Transaction Y - - - - -

Barrier_Transactions - - - - - -
F3-424 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Appendix F4
Summary of AxSNOOP Encodings

This appendix shows all possible ARSNOOP and AWSNOOP encodings and the property that is used to determine
if a particular value is supported for a given interface. It contains the following sections:
• ARSNOOP encodings on page F4-426.
• AWSNOOP encodings on page F4-427.

Encodings for ACSNOOP can be found in Table D3-20 on page D3-191
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F4-425
ID122117 Non-Confidential

Appendix F4 Summary of AxSNOOP Encodings
F4.1 ARSNOOP encodings
F4.1 ARSNOOP encodings
With the addition of a number of new transactions, this section provides a summary of all possible ARSNOOP
encodings and also shows the property that is used to indicate whether or not a particular value is supported for a
given interface.

Table F4-1 shows the ARSNOOP encodings.

Table F4-1 Summary of ARSNOOP encodings

ARSNOOP Transaction type Property

0b0000 ReadNoSnoop
ReadOnce

-

Barrier Barrier_Transactions

0b0001 ReadShared -

0b0010 ReadClean -

0b0011 ReadNotSharedDirty -

0b0100 ReadOnceCleanInvalid DeAllocation_Transactions

0b0101 ReadOnceMakeInvalid DeAllocation_Transactions

0b0110 - -

0b0111 ReadUnique -

0b1000 CleanShared -

0b1001 CleanInvalid -

0b1010 CleanSharedPersist Persist_CMO

0b1011 CleanUnique -

0b1100 MakeUnique -

0b1101 MakeInvalid -

0b1110 DVM Complete -

0b1111 DVM Message -
F4-426 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Appendix F4 Summary of AxSNOOP Encodings
F4.2 AWSNOOP encodings
F4.2 AWSNOOP encodings
With the addition of a number of new transactions, this section provides a summary of all possible AWSNOOP
encodings and also shows the property that is used to indicate whether or not a particular value is supported for a
given interface.

Table F4-2 shows the AWSNOOP encodings.

Table F4-2 Summary of AWSNOOP encodings

AWSNOOP Transaction type Property

0b0000 WriteNoSnoop
WriteUniquePtl

-

Barrier Barrier_Transactions

Atomic Transactions Atomic_Transactions

0b0001 WriteUniqueFull -

0b0010 WriteClean -

0b0011 WriteBack -

0b0100 Evict -

0b0101 WriteEvict WriteEvict_Transaction

0b0110 - -

0b0111 - -

0b1000 WriteUniquePtlStash Cache_Stash_Transactions

0b1001 WriteUniqueFullStash Cache_Stash_Transactions

0b1010 - -

0b1011 - -

0b1100 StashOnceShared Cache_Stash_Transactions

0b1101 StashOnceUnique Cache_Stash_Transactions

0b1110 StashTranslation Untranslated_Transactions

0b1111 -
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F4-427
ID122117 Non-Confidential

Appendix F4 Summary of AxSNOOP Encodings
F4.2 AWSNOOP encodings
F4-428 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Appendix F5
Revisions

This appendix describes the technical changes between released issues of this specification.

Table F5-1 Issue B

Change Location

First release of Version 1.0 −

Table F5-2 Differences between issue B and issue C

Change Location

Additional section describing the chapter layout of Version 2.0 of the document AXI revisions on page A1-21

Additional details on the constraints for the VALID and READY handshake Handshake process on page 3-2

Additional equation for wrapping bursts Burst address on page 4-7

Additional chapter describing the AXI4 update to the AXI3 protocol Chapter 13 AXI4

Additional chapter describing the AXI4-Lite subset of the AXI4 protocol Chapter 14 AXI4-Lite

Table F5-3 Differences between issue C and issue D

Change Location

Full integration of the AXI3 and AXI4 content Part A AXI3 and AXI4 Protocol Specification

Additional Part added describing the ACE update
to the AXI protocol

Part C AXI Coherency Extensions (ACE) Protocol Specification
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F5-429
ID122117 Non-Confidential

Appendix F5 Revisions

Table F5-4 Differences between issue D and issue E

Change Location

Clarification of the byte lane strobes’ requirement for FIXED bursts Burst type in Address structure on
page A3-48

Correction to pseudo code routine: //Increment address if necessary Pseudocode description of the
transfers on page A3-52

Additional section describing the Ordered_Write_Observation property Ordered write observation on
page A6-93

Additional section describing the Multi_Copy_Atomocity property Multi-copy write atomicity on
page A7-97

Clarification of the peripheral slave transaction subset Memory slaves and peripheral slaves
on page A9-109

Additional section describing the AWUNIQUE signal AWUNIQUE signal on page D3-179

Clarification of WriteUnique Propagation to Main Memory WriteUnique on page D4-221 and
WriteLineUnique on page D4-221

Additional section describing the WriteEvict transaction WriteEvict on page D4-223

Clarification of WriteNoSnoop blocked by WriteUnique and
WriteLineUnique

Restrictions on WriteUnique and
WriteLineUnique usage on
page D4-224

Clarification of sequencing Coherent and Cache Maintenance transactions to
a cache line

Sequencing transactions on
page D6-247

Additional section describing the Continuous_Cache_Line_Read_Data
property

Continuous read data return on
page D6-248

Clarification of Exclusive Accesses and naturally evicted cache lines Exclusive Store on page D9-284

Clarification of the Shareable terminology in Exclusive Accesses About Exclusive accesses on
page D9-282 and Transaction
requirements on page D9-290

Additional section describing optional DVM message support for ARMv8 DVM message support for ARMv7
and ARMv8 on page D13-309

Additional section describing DVMv7 and DVMv8 address spaces DVMv7 and DVMv8 address spaces
on page D13-312

Additional format definitions for DVMv8 messages DVM transactions format on
page D13-315

Additional format definitions for the TLB Invalidate message to support
DVMv8

TLB Invalidate on page D13-318

Additional section describing DVMv7 and DVMv8 conversion DVMv7 and DVMv8 conversion on
page D13-326

Additional chapter providing a set of recommendations for the design of
master components

Chapter D14 Master Design
Recommendations

Additional appendix describing full cache line and partial cache line write
transaction naming

Appendix F1 Transaction Naming

Additional appendix describing the ACP interface requirements Appendix F4 Accelerator Coherency
Port Interface Restrictions
F5-430 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Appendix F5 Revisions

Table F5-5 Differences between issue E and issue F

Change Location

Removed Low Power Interface chapter, this content has been superseded by
a separate specification (ARM IHI 0068C)

Was Chapter A9

New interfaces defined: AXI5, AXI5-Lite Part C AMBA AXI5 and AXI5-Lite
Protocol Specification

Rule that a snoop response must give IsShared asserted while a Write is in
progress with AWUNIQUE asserted is clarified to only apply to WriteBack
and WriteEvict

AWUNIQUE signal on page D3-179

Clarification that a line might become dirty when a CleanShared is in
progress

CleanShared on page D4-216

Change which adds restrictions when using Evict transactions with
WriteUnique and WriteLineUnique

Restrictions on WriteUnique and
WriteLineUnique usage on
page D4-224

Added a missing row to the table of Alternative Snoop Transactions to cover
MakeInvalid

Table D5-2 on page D5-231

Change to allow an Evict and WriteEvict to be issued while a CleanShared is
in progress

Broadcast cache maintenance
requirements on page D7-265

Change to the mismatched shareability and cacheability rules to allow for
cache maintenance transactions

Mismatched shareability and
cacheability on page D7-267

Clarification that a component is not permitted to wait for a DVM Complete
relating to a DVM Sync it has issued, before it provides DVM Complete for
a DVM Sync it has received

DVM Sync and DVM Complete
transactions on page D13-306

Clarification that an ACE/ACE-Lite master is permitted to wait for both parts
of a 2-part DVM message before responding on CR channel

Multi-part DVM Operation
transactions on page D13-306

New interfaces and features defined: ACE5, ACE5-Lite, ACE5-LiteDVM,
ACE5-LiteACP

Part E AMBA ACE5, ACE5-Lite,
ACE5-LiteDVM, and
ACE5-LiteACPProtocol
Specification

Deprecation of Inner Shareable domain for AMBA5 interfaces Shareability domain support on
page E1-332

Deprecation of Barrier transaction support for AMBA5 interfaces Barrier transaction support on
page E1-333

Removed Accelerator Coherency Port Interface Restrictions appendix, this
content has been superseded by ACE5-LiteACP

Was Appendix B
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. F5-431
ID122117 Non-Confidential

Appendix F5 Revisions

F5-432 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

Glossary

Aligned A data item stored at an address that is divisible by the highest power of 2 that divides into its size in bytes. Aligned
halfwords, words and doublewords therefore have addresses that are divisible by 2, 4 and 8 respectively.

An aligned access is one where the address of the access is aligned to the size of each element of the access.

At approximately the same time
Two events occur at approximately the same time if a remote observer might not be able to determine the order in
which they occurred.

AXI beat See Beat.

AXI burst See Burst.

AXI transaction See Transaction.

Barrier An operation that forces a defined ordering of other actions.

Beat An individual data transfer within an AXI burst.

See also Burst, Transaction.

Big-endian memory
Means that the most significant byte (MSB) of the data is stored in the memory location with the lowest address.

See also Endianness, Little-endian memory,

Blocking Describes an operation that prevents following actions from continuing until the operation completes.

A non-blocking operation can permit following operations to continue before it completes.

Branch prediction
Is where a processor selects a future execution path to fetch along. For example, after a branch instruction, the
processor can choose to speculatively fetch either the instruction following the branch or the instruction at the
branch target.

See also Prefetching.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. Glossary-433
ID122117 Non-Confidential

 Glossary

Burst In an AXI transaction, the payload data is transferred in a single burst, that can comprise multiple beats, or
individual data transfers.

See also Beat, Transaction.

Byte An 8-bit data item.

Cache Any cache, buffer, or other storage structure in a caching master that can hold a copy of the data value for a particular
address location.

Cache hit A memory access that can be processed at high speed because the data it addresses is already in the cache.

Cache line The basic unit of storage in a cache. Its size in words is always a power of two. A cache line must be aligned to the
size of the cache line.

The size of the cache line is equivalent to the coherency granule.

See also Coherency granule.

Cache miss A memory access that cannot be processed at high speed because the data it addresses is not in the cache.

Caching master A master component that has a hardware-coherent cache. A caching master has a snoop address and snoop response
channel, and optionally, a snoop data channel.

A master component might have only non-coherent caches. These caches can be for private data or they can be
software-managed to ensure coherency. A master with a non-coherent cache is not a caching master. That is, the
term caching master refers to a master with a cache that the ACE protocol must keep coherent.

See also Initiating master, Master component, Snooped master.

Coherent Data accesses from a set of observers to a memory location are coherent accesses to that memory location by the
members of the set of observers are consistent with there being a single total order of all writes to that memory
location by all members of the set of observers.

Coherency granule
The minimum size of the block of memory affected by any coherency consideration. For example, an operation to
make two copies of an address coherent makes the two copies of a block of memory coherent, where that block of
memory is:
• at least the size of the coherency granule
• aligned to the size of the coherency granule.

In the ACE specification, the coherency granule is the cache line size.

See also Cache line.

Component A distinct functional unit that has at least one AMBA interface. Component can be used as a general term for master,
slave, peripheral, and interconnect components.

See also Interconnect component, Master component, Memory slave component, Peripheral slave component,
Slave component.

Device See Peripheral slave component.

Downstream An AXI transaction operates between a master component and one or more slave components, and can pass through
one or more intermediate components. At any intermediate component, for a given transaction, downstream means
between that component and a destination slave component, and includes the destination slave component.

Downstream and upstream are defined relative to the transaction as a whole, not relative to individual data flows
within the transaction.

See also Master component, Slave component, Upstream.
Glossary-434 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

 Glossary

Downstream cache
A downstream cache is defined from the perspective of an initiating master. A downstream cache for a master is one
that it accesses using the fundamental AXI transaction channels. An initiating master can allocate cache lines into
a downstream cache.

See also Downstream, Initiating master.

Deprecated Something that is present in the specification for backwards compatibility. Whenever possible you must avoid using
deprecated features. These features might not be present in future versions of the specification.

Endianness An aspect of the system memory mapping.

See also Big-endian memory and Little-endian memory.

Full coherency A fully coherent master can share data with other masters and allocate that data in its local caches; it can snoop and
be snooped. Masters with an ACE interface are fully coherent whereas masters with an ACE-Lite interface are I/O
coherent.

See also I/O coherency

Hit See Cache hit.

I/O coherency An I/O coherent master can share data with other masters but cannot allocate that data in its local caches; it can
snoop but no be snooped. Masters with an ACE interface are fully coherent whereas masters with an ACE-Lite
interface are I/O coherent.

See also Full coherency

IMPLEMENTATION DEFINED
Means that the behavior is not defined by this specification, but must be defined and documented by individual
implementations.

In a timely manner
The protocol cannot define an absolute time within which something must occur. However, in a sufficiently idle
system, it will make progress and complete without requiring any explicit action.

Initiating master
A master that issues a transaction that starts a sequence of events. When describing a sequence of transactions, the
term initiating master distinguishes the master that triggers the sequence of events from any snooped master that is
accessed as a result of the action of the initiating master.

Initiating master is a temporal definition, meaning it applies at particular points in time, and typically is used when
describing sequences of events. A master that is an initiating master for one sequence of events can be a snooped
master for another sequence of events.

See also Caching master, Downstream cache, Local cache, Peer cache, Snooped master.

Interconnect component
A component with more than one AMBA interface that connects one or more master components to one or more
slave components

An interconnect component can be used to group together either:
• a set of masters so that they appear as a single master interface
• a set of slaves so that they appear as a single slave interface.

See also Component, Master component, Slave component.

Line See Cache line.

Little-endian memory
Means that the least significant byte (LSB) of the data is stored in the memory location with the lowest address.

See also Big-endian memory, Endianness.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. Glossary-435
ID122117 Non-Confidential

 Glossary

Load The action of a master component reading the value held at a particular address location. For a processor, a load
occurs as the result of executing a particular instruction. Whether the load results in the master issuing a read
transaction depends on whether the accessed cache line is held in the local cache.

See also Caching master, Speculative read, Store.

Local cache A local cache is defined from the perspective of an initiating master. A local cache is one that is internal to the
master. Any access to the local cache is performed within the master.

See also Initiating master, Peer cache.

Main memory The memory that holds the data value of an address location when no cached copies of that location exist. For any
location, main memory can be out of date with respect to the cached copies of the location, but main memory is
updated with the most recent data value when no cached copies exist.

Main memory can be referred to as memory when the context makes the intended meaning clear.

Master component
A component that initiates transactions.

It is possible that a single component can act as both a master component and as a slave component. For example,
a Direct Memory Access (DMA) component can be a master component when it is initiating transactions to move
data, and a slave component when it is being programmed.

See also Component, Interconnect component, Slave component.

Memory barrier See Barrier.

Memory Management Unit (MMU)
Provides detailed control of the part of a memory system that provides address translation. Most of the control is
provided using translation tables that are held in memory, and define the attributes of different regions of the
physical memory map.

See also System Memory Management Unit (SMMU).

Memory slave component
A memory slave component, or memory slave, is a slave component with the following properties:

• a read of a byte from a memory slave returns the last value written to that byte location.

• a write to a byte location in a memory slave updates the value at that location to a new value that is obtained
by subsequent reads.

• reading a location multiple times has no side-effects on any other byte location.

• reading or writing one byte location has no side effects on any other byte location.

See also Component, Master component, Peripheral slave component.

Miss See Cache miss.

MMU See Memory Management Unit (MMU).

Observer A processor or other master component, such as a peripheral device, that can generate reads from or writes to
memory.

Peer cache A peer cache is defined from the perspective of an initiating master. A peer cache for that master is one that is
accessed using the snoop channels. An initiating master cannot allocate cache lines into a peer cache.

See also Initiating master, Local cache.

Peripheral slave component
A peripheral slave component is also described as a peripheral slave. This specification recommends that a
peripheral slave has an IMPLEMENTATION DEFINED method of access that is typically described in the data sheet for
the component. Any access that is not defined as permitted might cause the peripheral slave to fail, but must
complete in a protocol-correct manner to prevent system deadlock. The protocol does not require continued correct
operation of the peripheral.
Glossary-436 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

 Glossary

In the context of the descriptions in this specification, peripheral slave is synonymous with peripheral, peripheral
component, peripheral device, and device.

See also Memory slave component, Slave component.

Permission to store
A master component has permission to store if it can perform a store to the associated cache line without informing
any other caching master or the interconnect.

See also Caching master, Master component, Permission to update main memory, Store.

Permission to update main memory
A master component has permission to update main memory if the master can perform a write transaction to main
memory. The ACE protocol ensures that no other master performs a write transaction to the same cache location at
the same time.

See also Caching master, Master component, Main memory, Permission to store, Store.

PoS Point of Serialization. The point through which all transactions to a given address must pass and the order in which
the transactions are processed is determined.

Prefetching Prefetching refers to speculatively fetching instructions or data from the memory system. In particular, instruction
prefetching is the process of fetching instructions from memory before the instructions that precede them, in simple
sequential execution of the program, have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

In this manual, references to instruction or data fetching apply also to prefetching, unless the context explicitly
indicates otherwise.

Slave component
A component that receives transactions and responds to them.

It is possible that a single component can act as both a slave component and as a master component. For example,
a Direct Memory Access (DMA) component can be a slave component when it is being programmed and a master
component when it is initiating transactions to move data.

See also Master component, Memory slave component, Peripheral slave component.

Snooped cache A hardware-coherent cache on a snooped master. That is, it is a hardware-coherent cache that receives snoop
transactions.

The term snooped cache is used in preference to the term snooped master when the sequence of events being
described only involves the cache and does not involve any actions or events on the associated master.

See also Snooped master,

Snoop filter A precise snoop filter that is able to track precisely the cache lines that might be allocated within a master.

Snooped master
A caching master that receives snoop transactions.

Snooped master is a temporal definition, meaning it applies at particular points in time, and typically is used when
describing sequences of events. A master that is a snooped master for one sequence of events can be an initiating
master for another sequence of events.

See also Caching master, Initiating master, Snooped cache.

Speculative read
A transaction that a master issues when it might not need the transaction to be performed because it already has a
copy of the accessed cache line in its local cache. Typically, a master issues a speculative read in parallel with a local
cache lookup. This gives lower latency than looking in the local cache first, and then issuing a read transaction only
if the required cache line is not found in the local cache.

See also Caching master, Load.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. Glossary-437
ID122117 Non-Confidential

 Glossary

Store The action of a master component changing the value held at a particular address location. For a processor, a store
occurs as the result of executing a particular instruction. Whether the store results in the master issuing a read or
write transaction depends on whether the accessed cache line is held in the local cache, and if it is in the local cache,
the state it is in.

See also Caching master, Load, Permission to update main memory, Permission to store.

Synchronization barrier
See Barrier.
Glossary-438 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

 Glossary

System Memory Management Unit (SMMU)
A system-level MMU. That is, a system component that provides address translation from a one address space to
another. An SMMU provides one or more of:
• virtual address (VA) to physical address (PA) translation
• VA to intermediate physical address (IPA) translation
• IPA to PA translation.

TLB See Translation Lookaside Buffer (TLB).

Transaction An AXI master initiates an AXI transaction to communicate with an AXI slave. Typically, the transaction requires
information to be exchanged between the master and slave on multiple channels. The complete set of required
information exchanges form the AXI transaction.

See also Beat, Burst.

Translation Lookaside Buffer (TLB)
A memory structure containing the results of translation table walks. TLBs help to reduce the average cost of a
memory access.

See also System Memory Management Unit (SMMU), Translation table, Translation table walk.

Translation table
A table held in memory that defines the properties of memory areas of various sizes from 1KB.

See also Translation Lookaside Buffer (TLB), Translation table walk.

Translation table walk
The process of doing a full translation table lookup.

See also Translation Lookaside Buffer (TLB), Translation table.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of an element of the access.

Unaligned memory accesses
Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or
doubleword-aligned.

See also Aligned on page Glossary-433

UNPREDICTABLE
In the AMBA AXI and ACE Architecture means that the behavior cannot be relied upon.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

Upstream An AXI transaction operates between a master component and one or more slave components, and can pass through
one or more intermediate components. At any intermediate component, for a given transaction, upstream means
between that component and the originating master component, and includes the originating master component.

Downstream and upstream are defined relative to the transaction as a whole, not relative to individual data flows
within the transaction.

See also Downstream, Master component, Slave component.

Write-Back cache
A cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in the cache
can therefore be more up-to-date than data in main memory. Any such data is written back to main memory when
the cache line is cleaned or re-allocated. Another common term for a Write-Back cache is a copy-back cache.

Write-Through cache
A cache in which when a cache hit occurs on a store access, the data is written both to the cache and to main memory.
This is normally done via a write buffer, to avoid slowing down the processor.
ARM IHI 0022F.b Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. Glossary-439
ID122117 Non-Confidential

 Glossary

Glossary-440 Copyright © 2003, 2004, 2010, 2011, 2013, 2017 Arm Limited or its affiliates. All rights reserved. ARM IHI 0022F.b
Non-Confidential ID122117

	AMBA AXI and ACE Protocol Specification AXI3, AXI4, AXI5, ACE and ACE5
	Contents
	Preface
	About this specification
	Intended audience

	Using this specification
	Part A, AMBA AXI3 and AXI4 Protocol Specification
	Part B, AMBA AXI4-Lite Interface Specification
	Part C, AMBA AXI5 Protocol Specification
	Part D, AMBA ACE Protocol Specification
	Part E AMBA ACE5 Protocol Specification
	Part F Appendices

	Conventions
	Typographic conventions
	Timing diagrams
	Signals
	Numbers

	Additional reading
	ARM publications

	Feedback
	Feedback on this specification

	Part A: AMBA AXI3 and AXI4 Protocol Specification
	A1: Introduction
	A1.1 About the AXI protocol
	A1.2 AXI revisions
	A1.3 AXI Architecture
	A1.3.1 Channel definition
	A1.3.2 Interface and interconnect
	A1.3.3 Register slices

	A1.4 Terminology
	A1.4.1 AXI components and topology
	A1.4.2 AXI transactions, and memory types
	A1.4.3 Caches and cache operation
	A1.4.4 Temporal description

	A2: Signal Descriptions
	A2.1 Global signals
	A2.2 Write address channel signals
	A2.3 Write data channel signals
	A2.4 Write response channel signals
	A2.5 Read address channel signals
	A2.6 Read data channel signals

	A3: Single Interface Requirements
	A3.1 Clock and reset
	A3.1.1 Clock
	A3.1.2 Reset

	A3.2 Basic read and write transactions
	A3.2.1 Handshake process
	A3.2.2 Channel signaling requirements

	A3.3 Relationships between the channels
	A3.3.1 Dependencies between channel handshake signals
	A3.3.2 Legacy considerations

	A3.4 Transaction structure
	A3.4.1 Address structure
	A3.4.2 Pseudocode description of the transfers
	A3.4.3 Data read and write structure
	A3.4.4 Read and write response structure

	A4: Transaction Attributes
	A4.1 Transaction types and attributes
	A4.2 AXI3 memory attribute signaling
	A4.3 AXI4 changes to memory attribute signaling
	A4.3.1 AxCACHE[1], Modifiable
	A4.3.2 Ordering requirements for Non-modifiable transactions
	A4.3.3 Updated meaning of Read-allocate and Write-allocate

	A4.4 Memory types
	A4.4.1 Memory type requirements

	A4.5 Mismatched memory attributes
	A4.5.1 Changing memory attributes

	A4.6 Transaction buffering
	A4.7 Access permissions
	A4.8 Legacy considerations
	A4.9 Usage examples
	A4.9.1 Use of Device memory types

	A5: Multiple Transactions
	A5.1 AXI transaction identifiers
	A5.2 Transaction ID
	A5.3 Transaction ordering
	A5.3.1 Read ordering
	A5.3.2 Normal write ordering
	A5.3.3 AXI3 write data interleaving
	A5.3.4 Read and write interaction
	A5.3.5 Interconnect use of transaction identifiers
	A5.3.6 Width of transaction ID fields

	A5.4 Removal of write interleaving support
	A5.4.1 Removal of WID
	A5.4.2 Legacy considerations

	A6: AXI4 Ordering Model
	A6.1 Definition of the ordering model
	A6.2 Master ordering
	A6.3 Interconnect ordering
	A6.4 Slave ordering
	A6.5 Response before final destination
	A6.5.1 Read response before final destination
	A6.5.2 Write response before final destination

	A6.6 Ordered write observation

	A7: Atomic Accesses
	A7.1 Single-copy atomicity size
	A7.1.1 Multi-copy write atomicity

	A7.2 Exclusive accesses
	A7.2.1 Exclusive access process
	A7.2.2 Exclusive access from the perspective of the master
	A7.2.3 Exclusive access from the perspective of the slave
	A7.2.4 Exclusive access restrictions
	A7.2.5 Slaves that do not support exclusive access

	A7.3 Locked accesses
	A7.4 Atomic access signaling
	A7.4.1 Legacy considerations

	A8: AMBA 4 Additional Signaling
	A8.1 QoS signaling
	A8.1.1 QoS interface signals
	A8.1.2 Master considerations
	A8.1.3 System considerations

	A8.2 Multiple region signaling
	A8.2.1 Additional interface signals

	A8.3 User-defined signaling
	A8.3.1 Signal naming
	A8.3.2 Usage considerations

	A9: Default Signaling and Interoperability
	A9.1 Interoperability principles
	A9.2 Major interface categories
	A9.2.1 Read/write interface
	A9.2.2 Read-only interface
	A9.2.3 Write-only interface
	A9.2.4 Memory slaves and peripheral slaves

	A9.3 Default signal values
	A9.3.1 Master addresses
	A9.3.2 Slave addresses
	A9.3.3 Memory slaves
	A9.3.4 Write transactions
	A9.3.5 Read transactions
	A9.3.6 Response signaling
	A9.3.7 Non-secure and Secure accesses

	Part B: AMBA AXI4-Lite Interface Specification
	B1: AMBA AXI4-Lite
	B1.1 Definition of AXI4-Lite
	B1.1.1 Signal list
	B1.1.2 Bus width
	B1.1.3 Write strobes
	B1.1.4 Optional signaling

	B1.2 Interoperability
	B1.2.1 Bridge requirements of AXI4-Lite slaves
	B1.2.2 Direct connection requirements of AXI4-Lite slaves

	B1.3 Defined conversion mechanism
	B1.3.1 Conversion rules

	B1.4 Conversion, protection, and detection
	B1.4.1 Conversion and protection levels
	B1.4.2 Implementation considerations

	Part C: AMBA AXI5 and AXI5-Lite Protocol Specification
	C1: AMBA AXI5
	C1.1 About the AXI5 protocol
	C1.2 Signal Descriptions
	C1.2.1 Additions to existing AXI channels
	C1.2.2 Additional signaling

	C2: AMBA AXI5-Lite
	C2.1 Definition of AXI5-Lite
	C2.2 AXI5-Lite compared with other interfaces
	C2.3 Interoperability
	C2.4 Conversion from AXI5 to AXI5-Lite
	C2.5 Upgrading an AXI4-Lite master to AXI5-Lite
	C2.6 Upgrading an AXI4-Lite slave to AXI5-Lite
	C2.7 AXI5-Lite signal list

	Part D: AMBA ACE and ACE-Lite Protocol Specification
	D1: About ACE
	D1.1 Coherency overview
	D1.1.1 ACE revisions
	D1.1.2 Usage cases
	D1.1.3 ACE terminology

	D1.2 Protocol overview
	D1.2.1 About the ACE protocol
	D1.2.2 Coherency model
	D1.2.3 Cache state model

	D1.3 Channel overview
	D1.3.1 Changes to existing AXI4 channels
	D1.3.2 Additional channels defined by ACE
	D1.3.3 Acknowledge signaling
	D1.3.4 Channel usage examples

	D1.4 Transaction overview
	D1.4.1 Non-snooping transactions
	D1.4.2 Coherent transactions
	D1.4.3 Memory update transactions
	D1.4.4 Cache maintenance transactions
	D1.4.5 Snoop transactions
	D1.4.6 Barrier transactions
	D1.4.7 Distributed virtual memory transactions

	D1.5 Transaction processing
	D1.6 Concepts required for the ACE specification
	D1.6.1 Domains
	D1.6.2 Barriers
	D1.6.3 Distributed Virtual Memory

	D1.7 Protocol errors
	D1.7.1 Software protocol error
	D1.7.2 Hardware protocol error

	D2: Signal Descriptions
	D2.1 Changes to existing AXI channels
	D2.1.1 Read address channel (AR) signals
	D2.1.2 Write address channel (AW) signals
	D2.1.3 Read data channel (R) signals

	D2.2 Additional channels defined by ACE
	D2.2.1 Snoop address channel (AC) signals
	D2.2.2 Snoop response channel (CR) signals
	D2.2.3 Snoop data channel (CD) signals

	D2.3 Additional response signals and signaling requirements defined by ACE
	D2.3.1 Read acknowledge signal
	D2.3.2 Write acknowledge signal
	D2.3.3 Reset requirements

	D3: Channel Signaling
	D3.1 Read and write address channel signaling
	D3.1.1 Shareability domain types
	D3.1.2 Read and write barrier transactions
	D3.1.3 Read and write Shareable transaction types
	D3.1.4 AWUNIQUE signal
	D3.1.5 Cache line size restrictions
	D3.1.6 Transaction constraints

	D3.2 Read data channel signaling
	D3.2.1 Read response signaling

	D3.3 Read acknowledge signaling
	D3.4 Write response channel signaling
	D3.5 Write Acknowledge signaling
	D3.6 Snoop address channel signaling
	D3.6.1 About the snoop address channel
	D3.6.2 Snoop address channel signaling

	D3.7 Snoop response channel signaling
	D3.8 Snoop data channel signaling
	D3.9 Snoop channel dependencies

	D4: Coherency Transactions on the Read Address and Write Address Channels
	D4.1 About an initiating master
	D4.1.1 Transaction groups

	D4.2 About snoop filtering
	D4.3 State changes on different transactions
	D4.3.1 State changes associated with a load
	D4.3.2 State changes associated with a coherent store
	D4.3.3 State changes associated with a main memory update
	D4.3.4 State changes associated with cache maintenance operations

	D4.4 State change descriptions
	D4.5 Read transactions
	D4.5.1 ReadNoSnoop
	D4.5.2 ReadOnce
	D4.5.3 ReadClean
	D4.5.4 ReadNotSharedDirty
	D4.5.5 ReadShared
	D4.5.6 ReadUnique

	D4.6 Clean transactions
	D4.6.1 CleanUnique
	D4.6.2 CleanShared
	D4.6.3 CleanInvalid

	D4.7 Make transactions
	D4.7.1 MakeUnique
	D4.7.2 MakeInvalid

	D4.8 Write transactions
	D4.8.1 WriteNoSnoop
	D4.8.2 WriteUnique
	D4.8.3 WriteLineUnique
	D4.8.4 WriteBack
	D4.8.5 WriteClean
	D4.8.6 WriteEvict
	D4.8.7 Restrictions on WriteUnique and WriteLineUnique usage

	D4.9 Evict transactions
	D4.9.1 Evict

	D4.10 Handling overlapping write transactions
	D4.10.1 Overlapping ReadUnique
	D4.10.2 Overlapping MakeUnique
	D4.10.3 Overlapping CleanUnique

	D5: Snoop Transactions
	D5.1 Mapping coherency operations to snoop operations
	D5.1.1 Permitted snoop transactions
	D5.1.2 Transactions not permitted as snoop transactions
	D5.1.3 Alternative snoop transactions

	D5.2 General requirements for snoop transactions
	D5.2.1 Channel activity
	D5.2.2 Snoop data transfers
	D5.2.3 Memory update in progress
	D5.2.4 WasUnique snoop response
	D5.2.5 Non-blocking requirements for a snooped master

	D5.3 Snoop transactions
	D5.3.1 ReadOnce
	D5.3.2 ReadClean, ReadShared, and ReadNotSharedDirty
	D5.3.3 ReadUnique
	D5.3.4 CleanInvalid
	D5.3.5 MakeInvalid
	D5.3.6 CleanShared

	D6: Interconnect Requirements
	D6.1 About the interconnect requirements
	D6.2 Sequencing transactions
	D6.2.1 Read and Write Acknowledge
	D6.2.2 Continuous read data return

	D6.3 Issuing snoop transactions
	D6.4 Transaction responses from the interconnect
	D6.5 Interactions with main memory
	D6.5.1 Interconnect read from main memory or peripheral device
	D6.5.2 Main memory update that is generated by the interconnect
	D6.5.3 Permission to update main memory

	D6.6 Other requirements
	D6.6.1 Non-blocking requirements
	D6.6.2 Permitted transaction modifications
	D6.6.3 Speculative reads

	D6.7 Interoperability considerations
	D6.7.1 Cache Line size conversions
	D6.7.2 Additional Cache Line conversion considerations
	D6.7.3 Address space size

	D7: Cache Maintenance
	D7.1 ARCACHE and ARDOMAIN requirements
	D7.2 Other cache maintenance considerations
	D7.2.1 Broadcast cache maintenance requirements
	D7.2.2 Requirements for a snooped master
	D7.2.3 Processor cache maintenance instructions
	D7.2.4 Unpredictable behavior with software cache maintenance
	D7.2.5 Mismatched shareability and cacheability

	D8: Barrier Transactions
	D8.1 About barrier transactions
	D8.2 Barrier transaction signaling
	D8.2.1 AxBAR signaling
	D8.2.2 AxDOMAIN signaling
	D8.2.3 Response signaling

	D8.3 Barrier responses and domain boundaries
	D8.4 Barrier requirements
	D8.4.1 Master requirements
	D8.4.2 Slave requirements
	D8.4.3 Interconnect requirements
	D8.4.4 Barriers and Device transaction ordering
	D8.4.5 Multi-copy atomicity requirements for Shareable locations

	D9: Exclusive Accesses
	D9.1 About Exclusive accesses
	D9.2 Role of the master
	D9.2.1 Exclusive Load
	D9.2.2 Exclusive Load to Exclusive Store
	D9.2.3 Exclusive Store

	D9.3 Role of the interconnect
	D9.3.1 Minimum PoS Exclusive Monitor
	D9.3.2 Additional address comparison
	D9.3.3 Multiple interconnect PoS monitors
	D9.3.4 PoS Exclusive Monitor behavior

	D9.4 Multiple Exclusive Threads
	D9.5 Exclusive Accesses from AXI components
	D9.6 Transaction requirements

	D10: Optional External Snoop Filtering
	D10.1 About external snoop filtering
	D10.2 Master requirements to support snoop filters
	D10.3 External snoop filter requirements

	D11: AMBA ACE-Lite
	D11.1 About ACE-Lite
	D11.2 ACE-Lite signal requirements

	D12: Interface Control
	D12.1 About the interface control signals

	D13: Distributed Virtual Memory Transactions
	D13.1 About DVM transactions
	D13.2 Synchronization message
	D13.3 DVM transaction process and rules
	D13.3.1 DVM Operation process
	D13.3.2 DVM Sync and DVM Complete transactions
	D13.3.3 Multi-part DVM Operation transactions
	D13.3.4 Transaction response
	D13.3.5 Message ID
	D13.3.6 Instruction cache invalidation alternatives

	D13.4 DVM message support for ARMv7 and ARMv8
	D13.4.1 Support for 16-bit ASID
	D13.4.2 Leaf Entry only invalidation
	D13.4.3 Stage 2 only invalidation
	D13.4.4 EL3 translation regime

	D13.5 Physical and virtual address space size
	D13.5.1 Physical address space size matches virtual address space size
	D13.5.2 Physical address space size exceeds virtual address space size
	D13.5.3 Virtual address space exceeds physical address space

	D13.6 DVMv7 and DVMv8 address spaces
	D13.7 DVM transactions format
	D13.8 DVM transaction restrictions
	D13.9 DVM Operations
	D13.9.1 TLB Invalidate
	D13.9.2 Branch Predictor Invalidate
	D13.9.3 Physical Instruction Cache Invalidate
	D13.9.4 Virtual Instruction Cache Invalidate
	D13.9.5 Synchronization
	D13.9.6 Hint

	D13.10 DVMv7 and DVMv8 conversion
	D13.10.1 Conversion from DVMv7 to DVMv8 format
	D13.10.2 Conversion from DVMv8 to DVMv7 format
	D13.10.3 Address size conversion

	D14: Master Design Recommendations
	D14.1 Recommended design restrictions

	Part E: AMBA ACE5, ACE5-Lite, ACE5-LiteDVM, and ACE5-LiteACP Protocol Specification
	E1: Changes in ACE5 and ACE5-Lite
	E1.1 Shareability domain support
	E1.2 Barrier transaction support

	E2: Additional Features in AMBA 5
	E2.1 Atomic transactions
	E2.1.1 Overview
	E2.1.2 Atomic transaction operations
	E2.1.3 Supported data size
	E2.1.4 ID use for Atomic transactions
	E2.1.5 Request attributes for Atomic transactions
	E2.1.6 Atomic transaction signaling
	E2.1.7 Transaction structure
	E2.1.8 Response signaling
	E2.1.9 Atomic transaction dependencies
	E2.1.10 Support for Atomic transactions

	E2.2 Cache Stashing
	E2.2.1 Stash transaction types
	E2.2.2 Stash transaction signaling
	E2.2.3 Rules and recommendations
	E2.2.4 Transaction structure
	E2.2.5 ID use for stash transactions
	E2.2.6 Support for stash transactions

	E2.3 Deallocating transactions
	E2.3.1 Deallocating transaction types
	E2.3.2 Rules and recommendations
	E2.3.3 Deallocating transaction signaling

	E2.4 Cache Maintenance for Persistence
	E2.5 Data checking and Poison
	E2.5.1 Data checking
	E2.5.2 Poison
	E2.5.3 Rules for data checking and Poison

	E2.6 Trace signals
	E2.7 User Loopback signaling
	E2.8 QoS Accept signaling
	E2.9 Wake-up Signaling
	E2.9.1 AWAKEUP rules and recommendations
	E2.9.2 ACWAKEUP rules and recommendations

	E2.10 Coherency Connection signaling
	E2.10.1 Coherency Connection Handshake
	E2.10.2 Coherency Connection signaling states
	E2.10.3 Coherency Connection signaling and DVM messages
	E2.10.4 Incompatible support for Coherency Connection signaling

	E2.11 Distributed Virtual Memory extensions for ARMv8.1
	E2.11.1 Configuring DVM architecture support
	E2.11.2 DVMv8.1 extensions

	E2.12 Untranslated transactions
	E2.12.1 Untranslated Transaction signaling
	E2.12.2 Optional signals and default values
	E2.12.3 PCIe considerations
	E2.12.4 Translation stashing
	E2.12.5 Use of Untranslated Transactions with ACE5

	E2.13 Non-secure access identifiers
	E2.13.1 NSAID signaling
	E2.13.2 Caching and NSAID

	E3: AMBA ACE5
	E3.1 About the ACE5 protocol
	E3.2 Signal descriptions
	E3.2.1 Changes to existing ACE channels
	E3.2.2 Additional signaling

	E4: AMBA ACE5-Lite
	E4.1 About the ACE5-Lite protocol
	E4.2 ACE5-Lite signal descriptions
	E4.2.1 Changes to existing ACE-Lite channels
	E4.2.2 Additional signaling

	E5: AMBA ACE5-LiteDVM
	E5.1 About the ACE5-LiteDVM protocol
	E5.2 ACE5-LiteDVM signal descriptions
	E5.2.1 Changes to existing ACE-Lite channels
	E5.2.2 Additional channels
	E5.2.3 Additional signaling

	E6: ACE5-LiteACP
	E6.1 Definition of ACE5-LiteACP
	E6.2 Optional Extensions
	E6.3 Interoperability
	E6.4 ACE-LiteACP signal list

	Part F: Appendices
	F1: Transaction Naming
	F1.1 Full and partial cache line write transaction naming

	F2: Signal Lists
	F2.1 Signal Matrix

	F3: AMBA 5 interface properties
	F3.1 Summary of interface properties

	F4: Summary of AxSNOOP Encodings
	F4.1 ARSNOOP encodings
	F4.2 AWSNOOP encodings

	F5: Revisions
	Glossary

