
Arm® CoreLink™ AHB Cache
Revision: r0p0

Technical Reference Manual

Copyright © 2019, 2020 Arm Limited or its affiliates. All rights reserved.
101807_0000_03_en

Arm® CoreLink™ AHB Cache
Technical Reference Manual
Copyright © 2019, 2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-01 13 December 2019 Confidential First beta release for r0p0.

0000-02 24 April 2020 Non-Confidential First early access release for r0p0.

0000-03 06 October 2020 Non-Confidential First full release for r0p0.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2019, 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

 Arm® CoreLink™ AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

 Arm® CoreLink™ AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

https://developer.arm.com

Contents
Arm® CoreLink™ AHB Cache Technical Reference
Manual

Preface
About this book 7
Feedback .. 10

Chapter 1 Overview
1.1 Basic terms .. 1-12
1.2 About the AHB Cache 1-14
1.3 Configurable features 1-17
1.4 Compatibility .. 1-18
1.5 Implementations 1-19
1.6 Compliance .. 1-20
1.7 Product documentation .. 1-21
1.8 Product revisions 1-22

Chapter 2 Interfaces
2.1 Clocking and reset 2-24
2.2 AHB interface 2-25
2.3 APB interface 2-29
2.4 Interrupts 2-30
2.5 Low-Power Interface .. 2-31

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

Chapter 3 Operation
3.1 Basic operations .. 3-35
3.2 Performance monitoring 3-37
3.3 Maintenance .. 3-38

Chapter 4 Programmers model
4.1 About the programmers model .. 4-45
4.2 Programming considerations 4-46
4.3 Register summary 4-47
4.4 Register descriptions 4-51

Chapter 5 Using software to program the AHB Cache
5.1 Enable the AHB Cache by using software 5-96
5.2 Disable the AHB Cache using software 5-100
5.3 Use Non-secure software to check cache enable status 5-103
5.4 Configurable cache diagnostics available for Non-secure software 5-104
5.5 Use software for manual maintenance on the AHB Cache 5-105
5.6 Use software to access the statistics counters in the AHB Cache 5-112
5.7 Power control 5-116

Appendix A Signal descriptions
A.1 Clock and reset signals .. Appx-A-118
A.2 LPI signals Appx-A-119
A.3 AHB Slave interface signals Appx-A-120
A.4 AHB Master interface signals Appx-A-122
A.5 APB interface signals Appx-A-124
A.6 System interface signals .. Appx-A-125
A.7 Memory interface signals Appx-A-126
A.8 Configuration input ports .. Appx-A-128

Appendix B Revisions
B.1 Revisions Appx-B-130

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Arm® CoreLink™ AHB Cache Technical Reference Manual.

It contains the following:
• About this book on page 7.
• Feedback on page 10.

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This book describes the functionality of the components in the Arm® CoreLink™ AHB Cache. It also
provides the programming information and the signal descriptions.

 Product revision status

The rxpy identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is written for system designers and programmers who are designing or programming a System
on Chip (SoC) that uses the AHB Cache.

 Using this book

This book is organized into the following chapters:

Chapter 1 Overview
This chapter introduces the AHB Cache.

Chapter 2 Interfaces
This chapter describes the functional interfaces of the AHB Cache.

Chapter 3 Operation
This chapter describes the operation of the AHB Cache.

Chapter 4 Programmers model
This chapter describes the functionality of the AHB Cache from a programming perspective.

Chapter 5 Using software to program the AHB Cache
This chapter provides details on programming the AHB Cache by exploring typical scenarios.

Appendix A Signal descriptions
This appendix describes the AHB Cache interface signals.

Appendix B Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

 Preface
 About this book

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

https://developer.arm.com/support/arm-glossary

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm Publications

 Preface
 About this book

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

Document name Document ID Licensee only Y/N

Arm® CoreLink™ AHB Cache Configuration and Integration Manual 101808 Y

Arm® AMBA® 5 AHB Protocol Specification, issue B.b IHI 0033 N

AMBA® APB Protocol Specification Version 2.0, issue C IHI 0024 N

AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces, Issue
C

IHI 0068 N

 Preface
 About this book

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm CoreLink AHB Cache Technical Reference Manual.
• The number 101807_0000_03_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

mailto:errata@arm.com

Chapter 1
Overview

This chapter introduces the AHB Cache.

It contains the following sections:
• 1.1 Basic terms on page 1-12.
• 1.2 About the AHB Cache on page 1-14.
• 1.3 Configurable features on page 1-17.
• 1.4 Compatibility on page 1-18.
• 1.5 Implementations on page 1-19.
• 1.6 Compliance on page 1-20.
• 1.7 Product documentation on page 1-21.
• 1.8 Product revisions on page 1-22.

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.1 Basic terms
You should be familiar with the terms that are used to describe the AHB Cache and its operation.

This document uses the terms that are defined in the Arm® AMBA® 5 AHB Protocol Specification, issue
B.b to describe AHB transfers:
• Bufferable
• Modifiable
• Lookup
• Allocate

The following table describes the complex transfer attributes that are used by AHB Cache.

Table 1-1 Complex attributes

Name Signals
asserted

AHB transfer type Description

Cacheable HPROT[4:3] A transfer that is both
Modifiable and Lookup.

A Cacheable transfer is looked up in the cache. If a transfer is not
Cacheable, it is passed through.

Write-Back HPROT[4:2] A Cacheable Write transfer
for which the Bufferable
attribute is set.

A Write-Back transfer updates the data in the cache if the cache
line is already allocated (or being allocated due to this transfer).
The main memory is only updated when the cache line is evicted.

Write-
Through

HPROT[4:3] A Cacheable Write transfer
for which the Bufferable
attribute is not set.

A Write-Through transfer updates the data in the cache if the
cache line is already allocated (or being allocated due to this
transfer). A Write-Through transfer forwards the transaction to
update the data in the main memory.

Early response HPROT[2] or
HPROT[3]

Writes that are Bufferable or
Modifiable.

When a Write-Access is buffered, the AHB Cache can send an
early write response to the Write-Access without waiting for the
main memory to respond.

The basic operations of the AHB Cache are described in 3.1 Basic operations on page 3-35.

Other caching terms

Cache line

A cache line is the unit of data transfers between the cache and main memory. The AHB Cache
has 32-byte cache lines.

Index

A part of the address of a Cacheable access which is used to select between the sets of lines in
the cache.

Set
A group of lines with the same index. For a 4-way cache, each set has four lines.

Tag
A part of the address of a Cacheable access that is stored in one of the four ways of the tag
RAM when allocating a cacheline. This is the part of the address that is compared to a
maximum of four valid tags stored in the four ways during a lookup.

Streaming
If a cacheable transfer addresses a word that is currently being fetched as part of a linefill, the
response and read data is streamed directly to the transfer. In this case, the response and read
data does not have to wait for the word to be written to the linefill buffer first.

1 Overview
1.1 Basic terms

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

Linefill
See 3.1.4 Linefill on page 3-36.

Eviction
See 3.1.5 Eviction on page 3-36.

Cache hit and cache miss
See 3.1.3 Lookup on page 3-35.

1 Overview
1.1 Basic terms

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

1.2 About the AHB Cache
The AHB Cache is a configurable cache which improves performance for IoT devices. The AHB Cache
is designed to reduce the effect of high latency or slow memory on system performance.

The AHB Cache can help reduce both system memory bandwidth used and access latency by storing
recently accessed memory contents for reuse. Reducing system memory accesses may also help save
power at system level.

The AHB Cache can be integrated to connect directly to a processor. It can be implemented as a
processor cache (data or generic), or a system cache. It can be used for both code and data.

The cache provides AHB5 data interfaces and an APB configuration interface, both with Arm
TrustZone® for Armv8-M support. The configuration interface is designed to run at the AHB bus
frequency, but it supports running the APB bus on a slower clock by using the pclken clock enable input.

The AHB Cache is a non-coherent cache. The AHB5 HPROT[6] (Shareable) attribute does not prevent a
transfer from being cached or buffered. For more information about how to integrate the AHB Cache into
a coherent system, see Arm® CoreLink™ AHB Cache Configuration and Integration Manual.

The AHB Cache has the following features:
• AHB5 data interfaces with 32-bit wide data and address bus
• Zero wait state for cache hit accesses
• 4-way set associativity
• TrustZone for Armv8-M support
• Configurable cache size (2KB-64KB)
• 32-byte cache lines
• Write-Through and Write-Back policy support
• Forceable Write-Through policy
• Pseudo-random replacement policy
• AMBA 4 Low Power Interface (LPI) Q-Channel interfaces for clock and power management.
• Internal buffers for temporarily storing cache lines

Figure 1-1 AHB Cache overview on page 1-15 shows how the AHB Cache connects to the processor
and the system memory.

1 Overview
1.2 About the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

AHB Cache wrapper

AHB Cache

AHB5 MasterAHB5 Slave

Main Memory
APB4

configurat ion
interface

Processor

IRQs

Memory wrapper

Key

AHB Cache

AHB Cache interfaces

External to the AHB Cache

Figure 1-1 AHB Cache overview

Figure 1-2 AHB Cache wrapper on page 1-16 shows the AHB Cache wrapper.

1 Overview
1.2 About the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

Memory wrapper

Data RAM

Tag RAM

Dirty RAM

Power LPI Q-
Channel

Clock LPI Q-
Channel

On-Chip SRAM

C
on

fig
ur

at
io

n
in

pu
t p

or
ts

Unlabelled lines mark the
route data travels inside the
AHB Cache

Key

AHB Cache wrapper

AHB Cache
nsec_irq

sec_irq

APB

hrxom_s

hdebug_s

AHB_S

hrxom_m
AHB_M

Figure 1-2 AHB Cache wrapper

For the possible configurations of the AHB Cache, see 1.5 Implementations on page 1-19 and the Arm®

CoreLink™ AHB Cache Configuration and Integration Manual. The AHB Cache is not designed for
safety critical applications.

1 Overview
1.2 About the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.3 Configurable features
The AHB Cache provides configurable features.

The AHB Cache configurable features are:
• Write-Through and Write-Back policy support with forceable Write-Through policy. For more

information, see 2.3 APB interface on page 2-29.
• Configurable eXecute Only Memory (XOM) support. For more information, see 2.2.6 XOM

on page 2-27.
• Configurable automatic maintenance. For more information, see 3.3.7 Automatic maintenance

features on page 3-39.
• Configurable AHB and APB violation responses. For more information, see 2.2.6 XOM

on page 2-27 and 2.3 APB interface on page 2-29.
• Performance monitoring with configurable snapshotting. For more information, see 3.2 Performance

monitoring on page 3-37.
• Configurable automatic power_on _enable. For more information, see 3.3.9 power_on_enable

on page 3-43.

1 Overview
1.3 Configurable features

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.4 Compatibility
The AHB Cache is compatible with several other products.

Compatible processors
The AHB Cache is compatible with the following Arm Cortex®-M processors:
• Cortex‑M0
• Cortex-M0+
• Cortex-M3
• Cortex-M4
• Cortex-M23
• Cortex-M33

Other compatible products
The AHB Cache is compatible with the following products:
• CoreLink SIE‑200 System IP for Embedded
• CoreLink PCK‑600 Power Control Kit

1 Overview
1.4 Compatibility

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

1.5 Implementations
The AHB Cache can be implemented as a processor cache or a system cache.

Processor cache
The AHB Cache can be implemented as:
• A dedicated data cache
• A dedicated instruction cache
• A generic cache

System cache
A system cache implementation of the AHB Cache can be used to:
• Share memory access among several masters
• Reduce latency when connecting an AHB processor to an AXI subsystem

For more details on how to implement the AHB Cache, see Chapter 2 System Design with the
AHB Cache in the Arm® CoreLink™ AHB Cache Configuration and Integration Manual.

1 Overview
1.5 Implementations

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

1.6 Compliance
Arm CoreLink AHB Cache is compliant with Arm specifications and protocols:

• Arm® AMBA® 5 AHB Protocol Specification, issue B.b
• AMBA® APB Protocol Specification Version 2.0, issue C
• AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces, Issue C

 Note

The AHB Cache supports the Cortex-M0, M0+, M3, M4 processors even though they are not AHB5
compliant. For more information, see section 8.6.2 Integration with non-AHB5 compliant processors
in the Arm® CoreLink™ AHB Cache Configuration and Integration Manual.

1 Overview
1.6 Compliance

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.7 Product documentation
Documentation that is provided with this product includes a Technical Reference Manual (TRM) and a
Configuration and Integration Manual (CIM), together with architecture and protocol information.

For relevant protocol and architectural information that relates to this product, see Additional reading
on page 8.

The AHB Cache documentation is as follows:

Technical Reference Manual
The TRM describes the functionality and the effects of functional options on the behavior of
AHB Cache. It is required at all stages of the design flow. The choices that are made in the
design flow can mean that some behaviors that the TRM describes are not relevant. If you are
programming AHB Cache, contact:
• The implementer to determine:

— The build configuration of the implementation
— What integration, if any, was performed before implementing AHB Cache.

• The integrator to determine the signal configuration of the device that you use.

The TRM complements architecture and protocol specifications and relevant external standards.
It does not duplicate information from these sources.

Configuration and Integration Manual
The CIM describes:
• The available build configuration options
• How to configure the RTL with the build configuration options
• How to integrate AHB Cache into an SoC
• How to implement AHB Cache into your design
• The processes to validate the configured design

The Arm product deliverables include reference scripts and information about using them to
implement your design.

The CIM is a confidential book that is only available to licensees.

1 Overview
1.7 Product documentation

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

1.8 Product revisions
This section describes the differences in functionality between product revisions.

r0p0 First release.

1 Overview
1.8 Product revisions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

Chapter 2
Interfaces

This chapter describes the functional interfaces of the AHB Cache.

It contains the following sections:
• 2.1 Clocking and reset on page 2-24.
• 2.2 AHB interface on page 2-25.
• 2.3 APB interface on page 2-29.
• 2.4 Interrupts on page 2-30.
• 2.5 Low-Power Interface on page 2-31.

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

2.1 Clocking and reset
The AHB Cache uses a single clock and a single reset.

The clock signal, clk, drives all the clocked logic, including the interfaces and the SRAM blocks.

The APB configuration interface uses a clock enable signal, pclken, to support APB running on a
divided frequency. This enable signal must be periodical and synchronous to the clock, clk.

The cache uses a single, active-LOW reset, resetn. This reset must be deasserted synchronously with clk
but it can be asserted asynchronously.

For more information, see the Arm® CoreLink™ AHB Cache Configuration and Integration Manual.

Related references
A.1 Clock and reset signals on page Appx-A-118

2 Interfaces
2.1 Clocking and reset

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

2.2 AHB interface
The AHB Cache has standard AHB5 data interfaces, which support XOM, locked sequences, and
exclusive accesses.

The AHB Cache has an AHB5 Slave interface that receives transfers and serves them from the cache.
The AHB Cache is optimized for single cycle hit latency on its AHB5 Slave interface.

The AHB Cache also has an AHB5 Master interface, which:
• Passes through transfers
• Fills data into the cache
• Writes back data from the cache

This section contains the following subsections:
• 2.2.1 Latency and stalling on the AHB interface on page 2-25.
• 2.2.2 Write-Through and Write-Back support on page 2-26.
• 2.2.3 Exclusive access sequences on page 2-26.
• 2.2.4 Locked accesses and locked sequences on page 2-26.
• 2.2.5 Error responses on page 2-27.
• 2.2.6 XOM on page 2-27.
• 2.2.7 Debug accesses on page 2-28.

2.2.1 Latency and stalling on the AHB interface

The AHB Cache operates transparently when disabled, without any latency added. When the cache is
enabled, the AHB interface responds with some delay to certain transactions.

Normal latencies
Table 2-1 Normal access latencies on page 2-25 shows the normal access latencies. More latency
cycles can occur when:
• Maintenance is ongoing.
• Linefill is ongoing.

Table 2-1 Normal access latencies

Added latency cycles Cacheable transaction Reason for latency

0 Hit or No-Allocate Write-Through miss Normal operation

1 No-Allocate Write-Back miss Forwarding the transfer after lookup

3 Allocate miss Internal maintenance before linefill is started

AHB interface response to enabling and disabling the cache

When a register access on the APB interface enables or disables the cache, the new setting becomes
effective at the next IDLE or NONSEQ transaction on the AHB interface. This operation takes place so
that the AHB Cache can avoid changing behavior in the middle of an AHB Burst.

If cache enable maintenance is on when enabling the cache, the AHB interface continues to operate
transparently.

If cache disable maintenance is on when disabling the cache, the cache stalls the AHB interface at the
next NONSEQ transaction.

The AHB Slave interface remains stalled until the related clean all maintenance is completed. The
duration of the maintenance depends on the number of dirty cache lines found in the cache memories.

See Cache enable maintenance on page 3-41 and Cache disable maintenance on page 3-42 for more
information.

2 Interfaces
2.2 AHB interface

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

Write-Allocate
If a Write-Allocate transaction misses the cache, the cache response depends on whether the XOM
configuration is enabled:
• If the XOM configuration is enabled, the transaction is stalled. The Write-Allocate transaction is only

responded to after the related (critical) word of the triggered linefill has been received from main
memory. While the critical word of the triggered linefill is being fetched, the AHB Slave interface
remains stalled. Linefill is started with the critical word.

• If the XOM configuration is disabled, the cache buffers the written data and it does not need to wait
for the linefill. The cache responds when the internal maintenance is completed.

2.2.2 Write-Through and Write-Back support

The AHB Cache supports both Write-Through and Write-Back policies.

By default, the cache selects the write policy based on the transfer attributes, as defined by the Arm®

AMBA® 5 AHB Protocol Specification, issue B.b. For more information about Write-Through and Write-
Back transfer attributes, see 1.1 Basic terms on page 1-12.

Write-Through policy can also be forced if necessary. Forced Write-Through policy makes the cache
always select the Write-Through attribute for cacheable transfers. For more information, see 4.4.2 CTRL,
control register on page 4-54.

The cache requires that a cache line is always accessed as either Write-Back or Write-Through only.
Bursts must not cross between regions of different types. This is normally the case for a Memory
Protection Unit (MPU) with a 1KB granularity.

2.2.3 Exclusive access sequences

The AHB interface supports exclusive accesses.

Exclusive accesses are triggered by hexcl_s and hexcl_m. Exclusive cacheable accesses are looked up in
the cache. If the result is a hit, then the line is cleaned and invalidated before the access proceeds. Then
the access continues as an exclusive non-cacheable access and is forwarded to the AHB Master interface.
For more information, see the Exclusive access section of the Arm® CoreLink™ AHB Cache
Configuration and Integration Manual.

Exclusive accesses do not trigger a linefill.

2.2.4 Locked accesses and locked sequences

The AHB interface supports locked accesses.

The AHB Cache responds to locked transfers as outlined by the Arm® AMBA® 5 AHB Protocol
Specification, issue B.b.

IDLE transfers

When the cache is enabled, the AHB Cache inserts an unlocked IDLE transfer after the end of a locked
sequence, as recommended by the AHB specification. If an unlocked IDLE transfer is already present
after the end of the locked sequence, the AHB Cache does not insert another unlocked IDLE transfer.

hmastlock

The AHB Cache propagates hmastlock when the cache is transparent. While a locked access is being
looked up in the cache, hmastlock appears on the AHB master interface.

If the lookup results in a hit and the cache line is dirty, the data needs to be written back before the
locked access proceeds. Therefore, hmastlock is masked. This behavior produces an empty locked
sequence. When the Write-Back is completed, hmastlock is reasserted.

2 Interfaces
2.2 AHB interface

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

Eviction Write-Back Burst
If an AHB locked sequence contains accesses to different addresses, an eviction Write-Back Burst can
interrupt it.

 Note

Normal use cases of locked transfers in Arm-based systems are:
• Read-modify-write of semaphore data
• Cortex-M3 and Cortex-M4 bit band operations

These use cases are not affected by this limitation because the locked sequence in these cases targets the
same address and never crosses a cache line boundary.

When the AHB Cache receives a locked access that hits the cache, the access is stalled until the related
cache line is cleaned and invalidated.

It can be the case that a locked sequence crosses a cache line boundary and the subsequent cache line is
stored in the cache and dirty. In that situation, the locked sequence is broken at the boundary by the
eviction Write-Back Burst and the AHB master interface deasserts hmastlock. The sequence is
continued with a NONSEQ transaction after the eviction is finished.

hmastlock being deasserted can result in the locked sequence progressing further during the eviction
Write-Back Burst without completing the previous access.

2.2.5 Error responses

The AHB Cache operates transparently when disabled, without any latency added.

The AHB Cache forwards the error response from the master interface to the slave interface for:
• Transfers that must be responded from the endpoint. For example, non-cacheable, non-bufferable,

and non-modifiable transfers.
• Streaming hits during a linefill

To learn more about error responses to XOM reads, see 2.2.6 XOM on page 2-27.

Linefill error and data loss

If a linefill receives an error response on the AHB Master interface, data from a Write-Back access can
be lost.

If a linefill encounters a bus error, the data from the entire linefill Burst is invalidated. Any data written
to this cache line before the bus error occurred is lost. The AHB Cache signals the linefill error through
an interrupt, TR_ERR, which is generated by the transfer error.

Further errors are not reported for the given linefill Burst. If a subsequent Burst beat is responded to with
an AHB error, it does not trigger the TR_ERR interrupt again. The AHB error is not captured in the
IRQINFO registers, and does not overwrite the information saved earlier for the first error. Therefore
regardless of the number of errors received during a linefill Burst, the AHB Cache reports only a single
interrupt for the first error.

A linefill error does not affect read data.

Related concepts
3.1.4 Linefill on page 3-36

2.2.6 XOM

The AHB interface can be configured to support the configurable eXecute Only Memory (XOM) feature.

• Instruction read accesses to a memory location flagged as XOM proceed as normal.
• Data read accesses and writes to XOM regions are not allowed.

The AHB interface supports XOM using hrxom_s and hrxom_m sideband signals.

2 Interfaces
2.2 AHB interface

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

hrxom_s and hrxom_m follow the same timing as hruser_s and hruser_m.

The downstream AHB slave must assert the hrxom_m signal when a read access hits an XOM region.

The hrxom_m signal must be consistent throughout a cache line. The AHB Cache can detect that a
memory region belongs to an XOM region when the hrxom_m signal is set on its AHB master interface.
The XOM attribute is saved for each cache line. On read accesses, the hrxom_s signal is driven
according to the previously saved XOM attribute or, for streaming purposes, by the hrxom_m input
signal.

If a data access read (hprot_s[0]=1) hits an XOM line already in the cache, the read data is masked and
the transfer is responded with an error or an OK response depending on the ahb_violation_resp. If a
Write-Access hits an XOM line already in the cache, the line is invalidated and the transfer is always
forwarded. When such XOM violations are detected by the AHB Cache, the AHB Cache sets the XOM
error interrupt flag. For more information, see 4.4.9 SECIRQEN, Secure interrupt enable register
on page 4-62 and 4.4.14 NSECIRQEN, Non-secure interrupt enable register on page 4-67.

2.2.7 Debug accesses

The AHB Cache supports debug accesses.

Debug accesses must be flagged using the hdebug_s input port. hdebug _s follows the same timing as
hmaster_s.

Debug accesses are looked up in the cache, even if they are marked as non-cacheable. The lookup takes
place in case the debugger has used the wrong attributes or the MPU overwrote them.

2 Interfaces
2.2 AHB interface

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

2.3 APB interface
The APB interface provides a software control and status interface for the AHB Cache.

It allows software to complete the following actions:
• Enable and disable the cache
• Configure Non-secure permissions
• Configure forceable Write-Through policy
• Read the statistics registers
• Perform manual maintenance operations
• Handle interrupt enables and interrupt statuses
• Setup and trigger snapshots, when SNAPSHOTTING is configured

Access rules

The APB interface only accepts an access that meets all the following conditions:

• The access is privileged.
• The access is a data access.
• The address is aligned.
• Writes have all strobe bits set.

An access that does not meet the preceding conditions is considered a failed APB access. The cache
responds to failed APB accesses as follows:
• Read accesses return zero.
• Writes accesses are ignored.

If the apb_violation_resp is set to HIGH, the AHB Cache responds with errors to failed APB accesses
by asserting pslverr. For more information, see the AMBA® APB Protocol Specification Version 2.0,
issue C.

The APB interface is security aware. Each register and individual bits have security attributes as
described in the Chapter 4 Programmers model on page 4-44.

Table 2-2 Secure and Non-secure accesses

Access Type Permissions

Secure accesses Secure accesses can access all registers and fields, including registers and fields marked as Non-secure.

Non-secure
accesses

Non-secure accesses can only access Non-secure registers and fields. Attempts to access Secure information are
ignored: Reads As Zero, Writes Ignored (RAZ/WI) or pslverr HIGH, depending on apb_violation_resp. No
interrupts are triggered.

 Note

You can configure some Non-secure access permissions using the CTRL register.

Configuring Non-secure access permissions
Only Secure accesses can configure the Non-secure access permission registers. You can configure the
CTRL register so that Non-secure accesses are allowed to perform the following actions:
• Checking if the cache is enabled
• Reading Non-secure statistics registers
• Triggering some Non-secure line maintenance features

For more information, see 4.4.2 CTRL, control register on page 4-54. Non-secure software can read the
NSEC_ACCESS register to see which information and features it can access. For more information, see
4.4.3 NSEC_ACCESS, Non-secure access information register on page 4-56.

2 Interfaces
2.3 APB interface

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

2.4 Interrupts
The AHB Cache has two interrupt signals: one for Secure and one for Non-secure interrupt sources.

The AHB Cache can generate interrupts for the following events:
• Maintenance finished
• A maintenance request being ignored
• Interface errors on the AHB Master interface
• Saturation of the statistics counters.
• The AHB Cache being either enabled or disabled
• Access violations

 Note

Access violations can be triggered by bus masters that are able to generate speculative accesses.

The following table lists the interrupt signals used by the AHB Cache.

Table 2-3 Interrupt signals

Signal Description

sec_irq Secure interrupt

nseq_irq Non-secure interrupt

Each interrupt has a set of associated registers. If an interrupt source is not enabled, its status register is
still set as normal, but it does not contribute to the interrupt signal. Two associated information registers
help diagnose the source of the interrupt generated by a transfer error. For interrupt register descriptions,
see from section 4.4.7 SECIRQSTAT, Secure interrupt request status register on page 4-60 to section
4.4.16 NSECIRQINFO2, Non-secure transfer error information register 2 on page 4-69 of the
Chapter 4 Programmers model on page 4-44.

Related references
A.6 System interface signals on page Appx-A-125

2 Interfaces
2.4 Interrupts

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

2.5 Low-Power Interface
The AHB Cache has two LPI Q-Channel interfaces to support low-power applications: one for clock and
one for power management.

For a description of the signals that are used by the LPI Q-Channel, see A.2 LPI signals
on page Appx-A-119.

This section contains the following subsections:
• 2.5.1 Dirty status indicator on page 2-31.
• 2.5.2 Clock LPI on page 2-31.
• 2.5.3 Power LPI on page 2-31.
• 2.5.4 Quiescent state on page 2-32.

2.5.1 Dirty status indicator

The AHB Cache uses a simplified model to track the overall dirty status of the cache.

The simplified model does not track the actual dirty status of individual lines. Instead, it reports if there
is potentially any dirty data in the cache, using the CACHE_IS_CLEAN bit in the MAINT_STATUS
register. For more information, see 4.4.6 MAINT_STATUS, maintenance status for the cache register
on page 4-59.

Any write to an allocated or soon-to-be allocated cache line sets the dirty status indicator. Once set, this
bit remains set and is only cleared by a completed clean all, invalidate all, or clean and invalidate all
cache maintenance operation (automatic or manual).

Therefore the AHB Cache can report a dirty status, even if all lines are clean. If the AHB Cache reports a
clean status, it guarantees that the cache is clean.

2.5.2 Clock LPI

The clock LPI module signals activity on the AHB Cache and responds to incoming quiescence requests.

The clock LPI module is active and denies quiescence requests in the following situations:

• There is activity on the AHB or APB interface.
• An internal operation (for example, maintenance) is ongoing.
• There is activity on the power Q-Channel.

Otherwise the quiescence request is accepted and the response is synchronized with pcklen.
 Note

When the AHB Cache is in a clock quiescent state, it can asynchronously request clk for itself.

Related references
A.2 LPI signals on page Appx-A-119

2.5.3 Power LPI

The power LPI module responds to incoming quiescence requests.

The power LPI module is active and denies quiescence requests in the following situations:

• There is activity on the AHB or APB interfaces.
• An internal operation, for example, maintenance is ongoing.
• There is any outstanding interrupt.
• The DENY_POWERDOWN bit in the CTRL register is set.

Otherwise the request is accepted and the response is synchronized with pcklen.

2 Interfaces
2.5 Low-Power Interface

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

 Note

When the AHB Cache is in power and clock quiescent state, it cannot asynchronously request power for
itself.

When the clock LPI module is in a quiescent state, the power LPI module does not respond to requests or
update pwr_qactive. Instead, the power LPI module waits for the clock request to be granted.

By default, the AHB Cache runs typical maintenance tasks automatically, see 3.3.7 Automatic
maintenance features on page 3-39.

 Note

By default, the AHB Cache automatically cleans all cache lines before accepting a quiescence request.
However, it is possible to disable automatic cache maintenance through the configuration input,
dis_pwr_down_maint. We recommend that the cache is cleaned before it enters any retention state,
unless optimization requirements demand otherwise.

The AHB Cache does not monitor dirty cache lines for activity reporting.

When the AHB Cache receives a quiescence request, it checks the cache activity and status:
• If the cache status is clean and the cache otherwise idle, then it accepts the quiescence request.
• If the cache status is dirty but otherwise idle, it starts a clean all maintenance process. The

AHB Cache delays the response and only denies the request if a dirty line is actually found in the
cache memory during the maintenance operation. If no dirty line was found and the maintenance
operation is completed, the AHB Cache accepts the request.

Quiescence requests are denied until the powerdown maintenance is completed. The AHB Cache aborts
the powerdown maintenance process, if it receives new transfer on the AHB Slave interface.

Before requesting quiescence again, the software can check the MAINT_STATUS register to see if the
cache is clean. For more information, see 4.4.6 MAINT_STATUS, maintenance status for the cache
register on page 4-59.

Related references
A.2 LPI signals on page Appx-A-119

2.5.4 Quiescent state

The quiescent state affects the way that the AHB Cache processes transactions on its AHB slave
interface.

The AHB Cache is not intended to be on the power, reset, or clock domain border with its AHB or APB
interfaces.

By default, the AHB Cache is not expected to receive a transaction on the AHB slave interface while in
quiescent state.

If an access is received while the cache is in a quiescent state, the access is stalled while the AHB Cache
is wakened. The AHB address phase cannot be stalled according to the Arm® AMBA® 5 AHB Protocol
Specification, issue B.b. However, the Q-Channel handshakes might not have finished yet, while the
AHB Cache might already have stable power and clock. Therefore, the AHB slave interface buffers the
address phase of the access to avoid data loss if possible.

If the AHB Cache is powered off after the AHB slave interface has buffered the address phase of the
access, the buffered address phase is lost. The transfer is completed with the isolation values of the data
phase signals.

If the cache is not reset after entering quiescent state, but returned to functional state instead, then the
cache enable status remains unchanged. This process takes place in, for example, retention states. The
RAM content is still valid and the previously enabled cache continues to function.

2 Interfaces
2.5 Low-Power Interface

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

Related references
A.2 LPI signals on page Appx-A-119

2 Interfaces
2.5 Low-Power Interface

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

Chapter 3
Operation

This chapter describes the operation of the AHB Cache.

It contains the following sections:
• 3.1 Basic operations on page 3-35.
• 3.2 Performance monitoring on page 3-37.
• 3.3 Maintenance on page 3-38.

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

3.1 Basic operations
This section describes some of the basic operations performed by the AHB Cache.

This section contains the following subsections:
• 3.1.1 Cache enable on page 3-35.
• 3.1.2 Cache disable on page 3-35.
• 3.1.3 Lookup on page 3-35.
• 3.1.4 Linefill on page 3-36.
• 3.1.5 Eviction on page 3-36.

3.1.1 Cache enable

The AHB Cache must be enabled to start caching accesses. You can enable the AHB Cache using either
software or hardware.

Software can enable the cache by setting the ENABLE field of the CTRL register using the APB
configuration interface. For more information about using software to enable the AHB Cache, see
5.1 Enable the AHB Cache by using software on page 5-96.

Hardware can also enable the cache by setting the configuration port power_on_enable, which triggers
the cache to enable when the LPI interfaces reach the QRUN state for the first time after reset.

If cache enable maintenance is turned on, the AHB Cache runs invalidate all maintenance in the
background. When the maintenance is completed, the cache is enabled. For more information about
cache enable maintenance, see Cache enable maintenance on page 3-41.

If cache enable maintenance is turned off by setting the configuration port dis_cache_en_maint and it is
unclear whether the cache memory is still valid, the software must invalidate the cache before enabling
it. For more information about invalidate all maintenance, see 3.3.4 Invalidate all maintenance
on page 3-39.

Related references
4.4.2 CTRL, control register on page 4-54

3.1.2 Cache disable

Software can disable the AHB Cache using the APB configuration interface.

For more information, see 5.2 Disable the AHB Cache using software on page 5-100. If cache disable
maintenance is turned on, the AHB Cache starts clean all maintenance. After the maintenance is
completed, the AHB Cache is disabled. For more information about cache disable maintenance, see
Cache disable maintenance on page 3-42.

If cache disable maintenance is turned off by setting the configuration port dis_cache_dis_maint, then
the software is responsible for cleaning the cache before the cache is disabled to avoid data loss. For
more information, see 3.3.2 Clean all maintenance on page 3-38.

Related references
4.4.2 CTRL, control register on page 4-54

3.1.3 Lookup

The AHB Cache looks up accesses that are marked as cacheable.

The AHB Cache performs a lookup in the four tag RAMs and in the internal buffers. The result of a
lookup can be either hit or miss.

3 Operation
3.1 Basic operations

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

Table 3-1 Cache hit and cache miss

Lookup
result

Description

Hit A cache hit means that the data is already in the cache or being filled. The AHB Cache responds to the access without
added latency, unless the destination cache line is being filled and the given word has not yet been received.

Miss A cache miss means that the data is not in the cache:
• Allocate miss accesses trigger a linefill.
• No-allocate miss accesses are forwarded.

Cache miss accesses might affect latency. For more information, see Table 2-1 Normal access latencies
on page 2-25.

3.1.4 Linefill

A linefill is a read Burst transaction that takes place when a new cache line must be brought into the
cache from the external memory.

The linefill results in an entire 32-byte cache line being stored in the internal buffers where it can be
looked up. If the target cache set is full, the cache evicts a cache line.

Related concepts
Linefill error and data loss on page 2-27

3.1.5 Eviction

The eviction process creates space for new data in the AHB Cache.

Cacheable accesses, which have addresses with the same index, can be stored in one of the four lines of
the corresponding set.

The eviction process takes place when the corresponding set is full and a new line needs to be cached
with the same index.

One of the previously stored cache lines is randomly selected and evicted to make room for a new line.
After eviction, the cache line is invalidated in the cache memory. If the evicted cache line was dirty, it is
also written back to main memory after eviction.

3 Operation
3.1 Basic operations

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

3.2 Performance monitoring
The AHB Cache provides statistical counters to record cache hits and misses. Non-cacheable accesses
and debug transactions are not counted.

The statistical counters are available in every configuration. Four counters are available for performance
monitoring. Secure and Non-secure hits and misses are counted separately on dedicated counters.

Secure software

By default, the counters are only visible to Secure software.

Non-secure software

Secure software can enable Non-secure software to access the Non-secure counters. For more
information, see 4.4.2 CTRL, control register on page 4-54. However, Non-secure software cannot
access the Secure counters.

3.2.1 Snapshotting

The AHB Cache can support snapshots, which are enabled by a hardware configuration,
'SNAPSHOTTING' in the HWPARAMS register. By using the snapshotting functionality, you can
capture all four statistical counters into capture registers at the same time.

When enabled, two triggers are provided:

• A hardware trigger as an input port
• A software trigger as a register bit

The AHB Cache uses the pmsnapshotreq input port, which serves as a hardware trigger, to ensure that
gathered statistics are captured at the same time across multiple components.

 Note

If there is power and the clock is running, the pmsnapshotreq sample port is sampled and snapshots are
taken, even when the cache is in clock and power quiescence.

Table 3-2 Snapshotting registers

Name Summary Description

PMSSCR Software can trigger a snapshot by writing 1 to this register. 4.4.28 PMSSCR, PMU snapshot capture
register on page 4-81

PMSSSR The PMSSSR register allows software to check that a capture occurred. The
value 1 means no capture has occurred. The value is set to 0 by hardware or
software trigger when a snapshot is taken. The value is cleared to 1 by reset
only.

4.4.27 PMSSSR, PMU snapshot status
register on page 4-80

PMSSRR Setting the PMSSRR register makes each snapshot automatically reset the
counters on capture, so that the next snapshot does not contain data from an
already captured interval.

4.4.29 PMSSRR, PMU snapshot reset
register on page 4-82

For more information, see the Arm® CoreLink™ AHB Cache Configuration and Integration Manual.

3 Operation
3.2 Performance monitoring

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

3.3 Maintenance
The AHB Cache receives requests on the APB interface that can either directly or indirectly trigger a
maintenance operation. The APB interface responds to those requests using the APB status registers and
interrupts.

Quiescence requests received through the Q-Channel interface can also trigger a maintenance operation.
The AHB Cache responds to these requests depending on whether there is any maintenance already
ongoing. The AHB Cache also has a dedicated output port, pwr_maintenance, to track the status of
powerdown maintenance.

The AHB Cache initiates automatic maintenance activities, see 3.3.7 Automatic maintenance features
on page 3-39. Software can initiate manual maintenance, see 3.3.8 Manual maintenance on page 3-43.

All maintenance delays subsequent operations on the cache until the maintenance is complete.

The AHB Cache performs the following maintenance:
• Clean by address
• Clean all
• Invalidate by address
• Invalidate all
• Clean and invalidate by address
• Clean and invalidate all

This section contains the following subsections:
• 3.3.1 Clean by address maintenance on page 3-38.
• 3.3.2 Clean all maintenance on page 3-38.
• 3.3.3 Invalidate by address maintenance on page 3-38.
• 3.3.4 Invalidate all maintenance on page 3-39.
• 3.3.5 Clean and invalidate by address maintenance on page 3-39.
• 3.3.6 Clean and invalidate all maintenance on page 3-39.
• 3.3.7 Automatic maintenance features on page 3-39.
• 3.3.8 Manual maintenance on page 3-43.
• 3.3.9 power_on_enable on page 3-43.

3.3.1 Clean by address maintenance

Clean by address maintenance performs a lookup for a cache line with a selected address.

If the lookup results in a hit and the cache line is dirty, then the AHB Cache writes it back to main
memory. The dirty status of the cache line is cleared in the process.

3.3.2 Clean all maintenance

Clean all maintenance walks through all cache lines and writes back all dirty cache lines.

The dirty status of each line is cleared during the clean all maintenance process. After clean all
maintenance is completed, the cache status is set to clean. For more information, see
4.4.6 MAINT_STATUS, maintenance status for the cache register on page 4-59.

Related concepts
Powerdown maintenance on page 3-41
Cache disable maintenance on page 3-42

3.3.3 Invalidate by address maintenance

Invalidate by address maintenance performs a lookup of a cache line with a specific address. If the
lookup results in a hit, then the AHB Cache invalidates the selected cache line.

3 Operation
3.3 Maintenance

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

 Caution

Only Secure software can perform invalidate by address maintenance. Invalidating a dirty cache line can
cause data loss.

3.3.4 Invalidate all maintenance

Invalidate all maintenance walks through all cache lines and invalidates them.

 Caution

Only Secure software can perform invalidate all maintenance. Invalidating a dirty cache line can cause
data loss.

Invalidate all maintenance usually delays subsequent operations on the cache until the maintenance is
complete. However, when the cache is being enabled, automatic invalidate all maintenance does not stall
the AHB interface.

Invalidate all is the only type of maintenance that is allowed when the AHB Cache is disabled. If
invalidate all takes place when the cache is disabled, it also does not stall the AHB interface.

Related concepts
Cache enable maintenance on page 3-41

3.3.5 Clean and invalidate by address maintenance

The APB interface can initiate clean and invalidate maintenance by address.

Clean and invalidate by address maintenance combines the 3.3.1 Clean by address maintenance
on page 3-38 and 3.3.3 Invalidate by address maintenance on page 3-38. The address is looked up in the
cache. Depending on the result of the lookup, the AHB Cache performs a corresponding action:
• If the lookup results in a hit and the address is dirty, then the address is cleaned, and then invalidated.
• If the lookup results in a hit and the address is clean, the address is invalidated.
• If the lookup results in a miss, the maintenance is complete and no further action is taken.

3.3.6 Clean and invalidate all maintenance

The APB interface can initiate clean and invalidate all maintenance for the entire cache.

 Note

Only Secure software can perform clean and invalidate all maintenance. Invalidating a dirty cache line
can cause data loss.

Clean and invalidate all maintenance combines 3.3.2 Clean all maintenance on page 3-38 and
3.3.4 Invalidate all maintenance on page 3-39. The maintenance cycles through all the lines in the cache.
Depending on the cache line status, the AHB Cache performs a corresponding action:
• If the line is valid and dirty, then it is cleaned, and then invalidated.
• If the line is valid and clean, it is invalidated.

3.3.7 Automatic maintenance features

Automatic maintenance operations are triggered by default in some situations.

Automatic maintenance operations do not generate a MAINT_DONE interrupt, but they do generate
error interrupts if errors occur.

3 Operation
3.3 Maintenance

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

Configurable automatic maintenance
Configurable automatic maintenance is triggered by default, when one of the following conditions is
met:
• The AHB Cache is enabled or disabled.
• There is a quiescence request.

The configurable automatic maintenance processes are described in the following table.

Table 3-3 Configurable automatic maintenance

Trigger Maintenance Condition

Quiescence request (while the AHB Cache is enabled and
idle)

Clean all When the dis_pwr_down_maint signal is not asserted.

Enabling the cache Invalidate all When the dis_cache_en_maint signal is not asserted.

Disabling the cache Clean all When the dis_cache_dis_maint signal is not asserted.

You can change the default automatic maintenance settings using Maintenance configuration input ports
on page 3-40.

Automatic maintenance to maintain consistency
Automatic maintenance is triggered to maintain consistency in the following situations:
• An AHB locked access hits the cache.
• An AHB Write-Access hits an XOM line in the AHB Cache.
• An AHB exclusive access hits the cache.

The following table describes automatic maintenance triggered for consistency.

Table 3-4 Automatic maintenance to maintain consistency

Trigger Maintenance Condition

An AHB exclusive access hits the AHB Cache. Clean and invalidate by address -

An AHB Write-Access hits an XOM line in the AHB
Cache.

Invalidate by address (an XOM line cannot be
dirty)

When XOM support is
configured

An AHB locked access hits the AHB Cache. Clean and invalidate by address -

Maintenance configuration input ports

To change the default automatic maintenance settings, use the configuration input ports.

Table 3-5 Maintenance configuration input ports

Input port Maintenance process Description

dis_pwr_down_maint Powerdown maintenance
on page 3-41

Configuration input port to disable automatic clean at a power Q-Channel
quiescence request. Sampled when the AHB Cache is preparing for powerdown
maintenance. This signal must be stable until the cache has finished preparing
for powerdown. The cache indicates it has finished preparing for powerdown by
deasserting the pwr_maintenance signal.

dis_cache_en_maint Cache enable maintenance
on page 3-41

Configuration input port to disable automatic maintenance (invalidate all) at
enabling the cache. Sampled while the AHB Cache is preparing for cache
enable maintenance. This signal must be stable until the AHB Cache is enabled.

dis_cache_dis_maint Cache disable maintenance
on page 3-42

Configuration input port to disable automatic maintenance (clean all) at
disabling the cache. Sampled when the AHB Cache is preparing for cache
disable maintenance. This signal must be stable until the AHB Cache is
disabled.

3 Operation
3.3 Maintenance

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

 Note

Software can check whether the automatic maintenance is enabled or disabled by reading the
corresponding bits in the HWPARAMS register. For more information, see 4.4.1 HWPARAMS, hardware
parameter register on page 4-52.

Powerdown maintenance

Powerdown maintenance takes place whenever a quiescence request is received through the power Q-
Channel interface.

When the dis_pwr_down_maint input port is asserted, a power Q-Channel quiescence request does not
trigger an automatic clean. You can use this configuration when the cache is not to be powered down or
the cache memory contents are preserved through retention.

The pwr_maintenance output status port is asserted while the powerdown maintenance is ongoing.
While powerdown maintenance is disabled, this status port might still be asserted for a few clock cycles
while preparing internally for powerdown.

Powerdown maintenance on

The AHB Cache checks if the cache is clean whenever a quiescence request is received through
the power Q-Channel interface. For more information, see 2.5.1 Dirty status indicator
on page 2-31.

If the cache status is clean and otherwise idle, then it accepts the quiescence request.

If the cache status is dirty but otherwise idle, it starts a clean all maintenance process.

The AHB Cache delays the response and only denies the request if a dirty line is actually found
in the cache memory during the maintenance operation. If no dirty line was found and the
maintenance operation is completed, the AHB Cache accepts the request.

While the maintenance is in progress, the cache reports activity on pwr_qactive signal.

Any activity on the AHB Slave interface aborts this type of maintenance.

When the clean is completed, the module stops reporting activity on the pwr_qactive signal, so
a consecutive quiescence request is accepted. If a Write-Back access makes the cache dirty
again, then another clean all maintenance starts at the next quiescence request.

Powerdown maintenance off
The AHB Cache does not check if the cache is clean but accepts the quiescence request if the
cache is idle.

 Caution

If automatic maintenance is turned off, care must be taken to avoid data loss in Write-Back
memory regions, when powering down the AHB Cache.

Related concepts
3.3.2 Clean all maintenance on page 3-38

Cache enable maintenance

When cache enable maintenance is on, cache enable maintenance is triggered automatically when the
cache is enabled.

For more information, see 3.1.1 Cache enable on page 3-35.

3 Operation
3.3 Maintenance

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

Cache enable maintenance on

When an enable command is received, the AHB Cache starts a sequence similar to
3.3.4 Invalidate all maintenance on page 3-39.

Traffic is not stalled on the AHB Slave interface, since caching is disabled and therefore no
lookup would use the RAM interfaces. While the invalidation is in progress, the cache stays
disabled and forwards all transactions. This process takes place so that the AHB Cache RAM is
initialized to a known empty state. When the invalidation is completed, caching is enabled and
the next cacheable nonsequential transaction is looked up.

 Note

If the configuration port power_on_enable is set, cache enable maintenance can also be
triggered by hardware. For more information, see A.8 Configuration input ports
on page Appx-A-128.

Cache enable maintenance off
When cache enable maintenance is off and the cache is enabled, the AHB Cache immediately
looks up the next nonsequential transaction, without regard for the actual content of the cache
memory. If the cache memory contents are not valid, the related data is corrupted.

 Caution

When enabling the AHB Cache with cache enable maintenance turned off, you must take care to
avoid memory corruption.

Related concepts
3.3.4 Invalidate all maintenance on page 3-39

Cache disable maintenance

When cache disable maintenance is on, cache disable maintenance is triggered automatically when the
cache is disabled.

For more information, see 3.1.2 Cache disable on page 3-35.

Cache disable maintenance on

When the AHB Cache is disabled, it starts clean all maintenance when a disable command is
received through the APB software programming interface. Before starting the clean
maintenance, all traffic to the AHB Slave interface is stalled for the next nonsequential
transaction. While the clean is in progress, the AHB Slave interface remains stalled. When the
clean is completed, then the cache is disabled, the AHB Slave interface is released and
upcoming transactions are forwarded.

3 Operation
3.3 Maintenance

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

Cache disable maintenance off
When the cache disable maintenance is off, the cache disable command immediately disables
the cache. The AHB Cache does not look up the next nonsequential transaction.

 Caution

When disabling the AHB Cache with cache disable maintenance turned off, you must make sure
that there is no dirty data in the cache memory. If the dirty data is not cleaned and the cache is
disabled, then the dirty data is no longer visible to the system.

We do not expect the software to send cacheable write transactions while trying to disable the
cache with manual maintenance. However, when cache disable automatic maintenance is turned
off, we recommend that the cache disable command follows a clean all command. We
recommend that the cache disable command is issued without waiting for the maintenance to
complete or generate an interrupt. If the cache disable command is received while the clean all
maintenance is still running, then the cache executes the disable command before it would
service any possible pending transactions.

Related concepts
3.3.2 Clean all maintenance on page 3-38

3.3.8 Manual maintenance

Software can initiate manual maintenance activities including clean and invalidate.

Secure manual maintenance

Secure software can manually start any all-cache or by-address maintenance activities in the AHB Cache.
It can also enable Non-secure maintenance.

Non-secure manual maintenance

Secure software can enable Non-secure maintenance.

Non-secure maintenance allows Non-secure software to start maintenance on Non-secure addresses.
Non-secure software cannot start maintenance on Secure addresses, and it cannot perform any all-cache
maintenance. It also cannot start invalidate-only maintenance.

3.3.9 power_on_enable

You can use the power_on_enable input configuration port to allow hardware to enable the AHB Cache.

The power_on_enable port is sampled when the cache is directed to running state on its power LPI Q-
Channel interface at the first time after reset. When triggered, this feature starts the normal cache enable
process. For more information, see 4.4.1 HWPARAMS, hardware parameter register on page 4-52.

If enable maintenance is disabled through the dis_cache_en_maint configuration port, then the related
maintenance is not performed and the cache is enabled immediately.

Subsequent interface transitions have no effect on power_on_enable until the cache is reset.

Forcing Write-Through can be affected by power_on_enable. For more information, see 4.4.2 CTRL,
control register on page 4-54.

3 Operation
3.3 Maintenance

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

Chapter 4
Programmers model

This chapter describes the functionality of the AHB Cache from a programming perspective.

It contains the following sections:
• 4.1 About the programmers model on page 4-45.
• 4.2 Programming considerations on page 4-46.
• 4.3 Register summary on page 4-47.
• 4.4 Register descriptions on page 4-51.

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-44

Non-Confidential

4.1 About the programmers model
This section describes the functions and programmers model of the AHB Cache.

When using the programmers model, adhere to the following guidelines:
• Do not attempt to access reserved or unused address locations. Attempting to access these locations

can result in unpredictable behavior.
• Unless otherwise stated in the accompanying text:

— Do not modify undefined register bits.
— Ignore undefined register bits on reads.
— Unless otherwise specified, all register bits are reset to a logic 0 by a system or power up reset.

The following describes the access type:

RW Read and write.
RO Read-only.
WO Write-only.
RAZ Read as zero.
WI Writes ignored.

4 Programmers model
4.1 About the programmers model

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-45

Non-Confidential

4.2 Programming considerations
To avoid data leaks or corruption when programming the AHB Cache, adhere to the following guidance.

 Caution

When the memory map needs to be changed (for example, the Security Attribution Unit (SAU) is
reconfigured), adhere to the following guidance:
• If the cache content is dirty, it should be cleaned before the memory map is changed.
• The cache should stay disabled while the change is in progress.
• After changing the memory map, the cache should be invalidated before being enabled, as it would

be during automatic cache enable maintenance.

 Note

The AHB Cache requires memory attribute granularity or XOM granularity not to be smaller than a 32-
byte cache line. Bursts should not cross between regions of different types.

The AHB Cache allows both the Secure and Non-secure view of an address to be allocated in the cache
simultaneously.

 Caution

EXEMPT memory regions are not security checked, therefore software security is applied to these
regions. If an EXEMPT region is defined as cacheable, Software security for EXEMPT memory regions
can cause the following issues:
• Data changes made by Secure code might remain hidden from Non-secure code.
• Data changes made by Non-secure code might remain hidden from the Secure code.

 Caution

If the system has a Security Extension and the Secure and Non-secure code use any shared memory
regions, the Secure and Non-secure code must be set to use the same memory attributes.

 Caution

When the AHB Cache brings in a Non-secure line from external memory, it can evict a Secure line stored
in the cache. Likewise, a Secure line brought in from external memory can evict a Non-secure line stored
in the cache.

You must evaluate whether Non-secure code or data evicting Secure code or data can cause Secure state
leakage in your system. Based on your evaluation you must decide whether you want to mitigate against
Secure state leakage: for example, by setting the affected Secure memory region as Non-cacheable.

4 Programmers model
4.2 Programming considerations

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-46

Non-Confidential

4.3 Register summary
This section provides a summary of the AHB Cache register map.

The AHB Cache register map is divided into sections.

Table 4-1 AHB Cache register sections

Offset Section

0x000,

0x010-0x014,

0x020-0x028

General configuration and status

0x100-0x110,

0x140-0x150

Interrupts

0x300-0x308,

0x310-0x318

Performance counters

0x600-0x6F4 Performance monitor snapshotting

0xFD0-0xFFC Product identification registers

 Note

The performance monitor snapshotting registers are only present if configured before rendering,
otherwise the region is reserved and RAZ/WI.

 Note

Locations that are not listed in the table are Reserved.

The following table shows the registers in offset order from the base memory adddress.

Table 4-2 cg095 - APB4_Slave register summary

Offset Name Type Security Reset Width Description

0x000 HWPARAMS RO Secure Configuration-
dependent

32 4.4.1 HWPARAMS, hardware parameter
register on page 4-52

0x010 CTRL RW Secure 0x0 32 4.4.2 CTRL, control register on page 4-54

0x014 NSEC_ACCESS RO Non-secure 0x0 32 4.4.3 NSEC_ACCESS, Non-secure access
information register on page 4-56

0x020 MAINT_CTRL_ALL WO Secure 0x0 32 4.4.4 MAINT_CTRL_ALL, maintenance
control for the entire cache register
on page 4-57

0x024 MAINT_CTRL_LINES WO Software-
configurable

0x0 32 4.4.5 MAINT_CTRL_LINES, maintenance
control for individual lines register
on page 4-58

4 Programmers model
4.3 Register summary

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-47

Non-Confidential

Table 4-2 cg095 - APB4_Slave register summary (continued)

Offset Name Type Security Reset Width Description

0x028 MAINT_STATUS RO Software-
configurable

0x0 32 4.4.6 MAINT_STATUS, maintenance status
for the cache register on page 4-59

0x100 SECIRQSTAT RO Secure 0x0 32 4.4.7 SECIRQSTAT, Secure interrupt request
status register on page 4-60

0x104 SECIRQSCLR WO Secure 0x0 32 4.4.8 SECIRQSCLR, Secure interrupt status
clear register on page 4-61

0x108 SECIRQEN RW Secure 0x0 32 4.4.9 SECIRQEN, Secure interrupt enable
register on page 4-62

0x10C SECIRQINFO1 RO Secure 0x0 32 4.4.10 SECIRQINFO1, Secure transfer error
information register 1 on page 4-63

0x110 SECIRQINFO2 RO Secure 0x0 32 4.4.11 SECIRQINFO2, Secure transfer error
information register 2 on page 4-64

0x140 NSECIRQSTAT RO Non-secure 0x0 32 4.4.12 NSECIRQSTAT, Non-secure interrupt
request status register on page 4-65

0x144 NSECIRQSCLR WO Non-secure 0x0 32 4.4.13 NSECIRQSCLR, Non-secure interrupt
status clear register on page 4-66

0x148 NSECIRQEN RW Non-secure 0x0 32 4.4.14 NSECIRQEN, Non-secure interrupt
enable register on page 4-67

0x14C NSECIRQINFO1 RO Non-secure 0x0 32 4.4.15 NSECIRQINFO1, Non-secure transfer
error information register 1 on page 4-68

0x150 NSECIRQINFO2 RO Non-secure 0x0 32 4.4.16 NSECIRQINFO2, Non-secure transfer
error information register 2 on page 4-69

0x300 SECHIT RO Secure 0x0 32 4.4.17 SECHIT, Secure transfers hit register
on page 4-70

0x304 SECMISS RO Secure 0x0 32 4.4.18 SECMISS, Secure transfers miss
register on page 4-71

0x308 SECSTATCTRL RW Secure 0x0 32 4.4.19 SECSTATCTRL, Secure transfers
statistic counters control on page 4-72

0x310 NSECHIT RO Software-
configurable

0x0 32 4.4.20 NSECHIT, Non-secure transfers hit
register on page 4-73

0x314 NSECMISS RO Software-
configurable

0x0 32 4.4.21 NSECMISS, Non-secure transfers miss
register on page 4-74

0x318 NSECSTATCTRL RW Software-
configurable

0x0 32 4.4.22 NSECSTATCTRL, Non-secure
transfers statistic counters control register
on page 4-75

4 Programmers model
4.3 Register summary

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-48

Non-Confidential

Table 4-2 cg095 - APB4_Slave register summary (continued)

Offset Name Type Security Reset Width Description

0x600 PMSVR0 RO Secure 0x0 32 4.4.23 PMSVR0, saved value register 0 -
Secure hit on page 4-76

0x604 PMSVR1 RO Secure 0x0 32 4.4.24 PMSVR1, saved value register 1 -
Secure miss on page 4-77

0x608 PMSVR2 RO Software-
configurable

0x0 32 4.4.25 PMSVR2, saved value register 2 - Non-
secure hit on page 4-78

0x60C PMSVR3 RO Software-
configurable

0x0 32 4.4.26 PMSVR3, saved value register 3 - Non-
secure miss on page 4-79

0x680 PMSSSR RO Software-
configurable

0x1 32 4.4.27 PMSSSR, PMU snapshot status
register on page 4-80

0x6F0 PMSSCR WO Software-
configurable

0x0 32 4.4.28 PMSSCR, PMU snapshot capture
register on page 4-81

0x6F4 PMSSRR RW Software-
Configurable

0x0 32 4.4.29 PMSSRR, PMU snapshot reset register
on page 4-82

0xFD0 PIDR4 RO Non-secure 0x4 32 4.4.30 PIDR4, peripheral ID register 4
on page 4-83

0xFD4 PIDR5 RO Non-secure 0x0 32 4.4.31 PIDR5, peripheral ID register 5
on page 4-84

0xFD8 PIDR6 RO Non-secure 0x0 32 4.4.32 PIDR6, peripheral ID register 6
on page 4-85

0xFDC PIDR7 RO Non-secure 0x0 32 4.4.33 PIDR7, peripheral ID register 7
on page 4-86

0xFE0 PIDR0 RO Non-secure 0x31 32 4.4.34 PIDR0, peripheral ID register 0
on page 4-87

0xFE4 PIDR1 RO Non-secure 0xB8 32 4.4.35 PIDR1, peripheral ID register 1
on page 4-88

0xFE8 PIDR2 RO Non-secure 0xB 32 4.4.36 PIDR2, peripheral ID register 2
on page 4-89

0xFEC PIDR3 RO Non-secure 0x0 32 4.4.37 PIDR3, peripheral ID register 3
on page 4-90

0xFF0 CIDR0 RO Non-secure 0xD 32 4.4.38 CIDR0, component ID register 0
on page 4-91

0xFF4 CIDR1 RO Non-secure 0xF0 32 4.4.39 CIDR1, component ID register 1
on page 4-92

4 Programmers model
4.3 Register summary

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-49

Non-Confidential

Table 4-2 cg095 - APB4_Slave register summary (continued)

Offset Name Type Security Reset Width Description

0xFF8 CIDR2 RO Non-secure 0x5 32 4.4.40 CIDR2, component ID register 2
on page 4-93

0xFFC CIDR3 RO Non-secure 0xB1 32 4.4.41 CIDR3, component ID register 3
on page 4-94

4 Programmers model
4.3 Register summary

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-50

Non-Confidential

4.4 Register descriptions
This section describes the AHB Cache registers.

4.3 Register summary on page 4-47 provides cross references to individual registers.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-51

Non-Confidential

4.4.1 HWPARAMS, hardware parameter register

The HWPARAMS register allows the software to check the implementation options of the AHB Cache.

The HWPARAMS register characteristics are:

Attributes

Offset 0x0000

Type Read-only

Reset The reset value is configuration-dependent.

Width 32

The following figure shows the bit assignments.

31 29 27 26 25 24 23 16 15 8 7 4 3 2 1 0

MASTER_ID

SNAPSHOTTING
XOM
ENDIANNESS

RESERVED_0
CACHE_MEM_SIZE

APB_VIOLATION_RESP

DIS_PWR_DOWN_MAINT

DIS_CACHE_DIS_MAINT

RESERVED_1

AHB_VIOLATION_RESP

30

DIS_CACHE_EN_MAINT

POWER_ON_ENABLE

Figure 4-1 HWPARAMS register bit assignments

The following table shows the bit assignments.

Table 4-3 HWPARAMS register bit assignments

Bits Name Security Function

[31] AHB_VIOLATION_RESP Secure Respond with error (1) or RAZ/WI (0) to illegal AHB operations on XOM. Fixed
to 0 if the XOM render parameter is OFF.

[30] APB_VIOLATION_RESP Secure Respond with error (1) or RAZ/WI (0) to illegal APB operations. Illegal
operations include transfers that are any of: non-privileged, instruction, unaligned
or incomplete write strobes. The error response takes place only for a cacheable
transfer.

[29:28] RESERVED_1 Non-secure Read-As-Zero, Writes Ignored.

[27] POWER_ON_ENABLE Secure Value of the input configuration port that controls the function that enables the
cache automatically after powerup.

[26] DIS_PWR_DOWN_MAINT Secure Value of the input configuration port that controls the function to turn off
powerdown maintenance.

[25] DIS_CACHE_DIS_MAINT Secure Value of the input configuration port that controls the function to turn off cache
disable automatic maintenance.

[24] DIS_CACHE_EN_MAINT Secure Value of the input configuration port that controls the function to turn off cache
enable automatic maintenance.

[23:16] MASTER_ID Secure The cache generates transactions with this ID. For more information, see
A.4 AHB Master interface signals on page Appx-A-122.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-52

Non-Confidential

Table 4-3 HWPARAMS register bit assignments (continued)

Bits Name Security Function

[15:8] CACHE_MEM_SIZE Secure Cache memory size in address bits. The actual size is this value to the power of
2.

11 = 2KB

12 = 4KB

13 = 8KB

14 = 16KB

15 = 32KB

16 = 64KB

[7:4] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[3] SNAPSHOTTING Secure SNAPSHOTTING support.

1 = ON

0 = OFF

[2] XOM Secure XOM support.

1 = ON

0 = OFF

[1:0] ENDIANNESS Secure The endianness of the module.

0 = LE

1 = BE8

2 = BE32

Related concepts
Maintenance configuration input ports on page 3-40
Powerdown maintenance on page 3-41
Cache enable maintenance on page 3-41
Cache disable maintenance on page 3-42
3.3.9 power_on_enable on page 3-43

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-53

Non-Confidential

4.4.2 CTRL, control register

The CTRL register allows the software to turn the cache off or on, and to configure it.

The CTRL register characteristics are:

Attributes

Offset 0x0010

Type Read-write

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 19 18 17 16 15 2 1 0

RESERVED_1RESERVED_2

FORCE_WT
ENABLE

ALLOW_NSEC_NSECSTAT

ALLOW_NSEC_MAINT_LINES
ALLOW_NSEC_ENABLE_READ

9

DENY_POWERDOWN

RESERVED_0

78

Figure 4-2 CTRL register bit assignments

The following table shows the bit assignments.

Table 4-4 CTRL register bit assignments

Bits Name Security Function

[31:19] RESERVED_2 Non-secure Read-As-Zero, Writes Ignored.

[18] ALLOW_NSEC_NSECSTAT Secure Allow Non-secure software to read and control Non-secure statistics
counter registers and receive saturation interrupt.

[17] ALLOW_NSEC_MAINT_LINES Secure Allow Non-secure software to trigger maintenance (only for lines and only
Non-secure views of cache lines).

[16] ALLOW_NSEC_ENABLE_READ Secure Allow Non-secure software to see if the cache is enabled.

[15:9] RESERVED_1 Non-secure Read-As-Zero, Writes Ignored.

[8] DENY_POWERDOWN Secure When set, powerdown LPI requests are denied. Does not affect clock LPI
requests.

[7:2] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-54

Non-Confidential

Table 4-4 CTRL register bit assignments (continued)

Bits Name Security Function

[1] FORCE_WT Secure Forces Write-Through policy.
 Note

Enabling FORCE_WT can be blocked when POWER_ON_ENABLE is
set, as caching is already enabled by the time Force Write-Through would
be activated from software. If you are using POWER_ON_ENABLE, you
can force Write-Through by using software to complete the following
steps.
1. Disable the cache.
2. Enable FORCE_WT.
3. Re-enable the cache.

[0] ENABLE Secure Request to enable or disable cache.

1 = Enabled

0 = Disable.

Enabling causes the AHB Cache to invalidate the cache memory unless
DIS_CACHE_EN_MAINT is set.

Disabling causes a clean of all cache lines, unless
DIS_CACHE_DIS_MAINT is set.

If another maintenance or enable or disable is in progress, the read value
of ENABLE shows the requested state of the cache, not the current
effective internal state which is shown in the MAINT_STATUS register.

If the POWER_ON_ENABLE port is asserted, the enable request triggers
automatically when the AHB Cache leaves Power down mode.

Related concepts
3.1.1 Cache enable on page 3-35
3.1.2 Cache disable on page 3-35

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-55

Non-Confidential

4.4.3 NSEC_ACCESS, Non-secure access information register

The NSEC_ACCESS register allows Non-secure software to check its access level and to see if the
AHB Cache is enabled.

The NSEC_ACCESS register characteristics are:

Attributes

Offset 0x0014

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 19 18 17 16 15 1 0

RESERVED_0RESERVED_1

NSEC_MAINT_LINES_ALLOWED
NSEC_ENABLE_READ_ALLOWED
CACHE_ENABLED

NSEC_NSECSTAT_ALLOWED

Figure 4-3 NSEC_ACCESS register bit assignments

The following table shows the bit assignments.

Table 4-5 NSEC_ACCESS register bit assignments

Bits Name Security Function

[31:19] RESERVED_1 Non-secure Read-As-Zero, Writes Ignored.

[18] NSEC_NSECSTAT_ALLOWED Non-secure Non-secure software is allowed to read and control Non-secure
statistics counters and receives saturation interrupt.

[17] NSEC_MAINT_LINES_ALLOWED Non-secure Non-secure software is allowed to trigger maintenance (only for
lines).

[16] NSEC_ENABLE_READ_ALLOWED Non-secure Non-secure software is allowed to see the cache enabled state.

[15:1] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[0] CACHE_ENABLED Software-
configurable

Shows if the cache is enabled or disabled.

1 = Enabled

0 = Disabled

If the NSEC_ENABLE_READ_ALLOWED bit is not set, then
CACHE_ENABLED is masked for Non-secure reads.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-56

Non-Confidential

4.4.4 MAINT_CTRL_ALL, maintenance control for the entire cache register

The MAINT_CTRL_ALL register is used to trigger maintenance operations on the entire cache.

For more information, see 3.3 Maintenance on page 3-38. The MAINT_CTRL_ALL register
characteristics are:

Attributes

Offset 0x0020

Type Write-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 2 1 0

RESERVED_0

TRIG_INVALIDATE_ALL
TRIG_CLEAN_ALL

Figure 4-4 MAINT_CTRL_ALL register bit assignments

The following table shows the bit assignments.

Table 4-6 MAINT_CTRL_ALL register bit assignments

Bits Name Security Function

[31:2] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[1] TRIG_INVALIDATE_ALL Secure Trigger invalidate all maintenance. It can be used together with
TRIG_CLEAN_ALL. TRIG_INVALIDATE_ALL can be used even if the cache is
not enabled, but only if used without clean.

[0] TRIG_CLEAN_ALL Secure Trigger clean all maintenance. This can be used together with
TRIG_INVALIDATE_ALL.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-57

Non-Confidential

4.4.5 MAINT_CTRL_LINES, maintenance control for individual lines register

The MAINT_CTRL_LINES register is used to trigger maintenance operations for a specific address.

For more information, see 3.3 Maintenance on page 3-38. The MAINT_CTRL_LINES register
characteristics are:

Attributes

Offset 0x0024

Type Write-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 5 4 3 2 1 0

ADDR

SECURITY
TRIG_INVALIDATE
TRIG_CLEAN

RESERVED_0

Figure 4-5 MAINT_CTRL_LINES register bit assignments

The following table shows the bit assignments.

Table 4-7 MAINT_CTRL_LINES register bit assignments

Bits Name Security Function

[31:5] ADDR Software-
configurable

Address to look up in the cache and perform invalidate or cleaning on matching
cache line. Use bits [31:5] of the address.

[4:3] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[2] SECURITY Secure Cache maintenance is performed on the Secure or Non-secure view of the
address. It is possible to have both the Secure and Non-secure views of the same
address allocated in the cache.

0 = Secure

1 = Non-secure

For Non-secure accesses, the Secure view is ignored, and the Non-secure view is
always selected.

[1] TRIG_INVALIDATE Software-
configurable

Trigger invalidate by address on the addressed cache line. It can be used together
with TRIG_CLEAN.

[0] TRIG_CLEAN Software-
configurable

Trigger clean by address on the addressed cache line.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-58

Non-Confidential

4.4.6 MAINT_STATUS, maintenance status for the cache register

Reading the MAINT_STATUS register returns if any maintenance is already in progress on the
AHB Cache. The software can check the value of the register before attempting to issue a maintenance
operation. Otherwise the write operation is stalled until new maintenance can be started.

The MAINT_STATUS register characteristics are:

Attributes

Offset 0x0028

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 9 8 7 3 2 1 0

RESERVED_1

ONGOING_MAINT
ONGOING_EN_DIS
CACHE_ENABLED

RESERVED_0

CACHE_IS_CLEAN

4

ONGOING_PWR_MAINT

Figure 4-6 MAINT_STATUS register bit assignments

The following table shows the bit assignments.

Table 4-8 MAINT_STATUS register bit assignments

Bits Name Security Function

[31:9] RESERVED_1 Non-secure Read-As-Zero, Writes Ignored.

[8] CACHE_IS_CLEAN Software-
configurable

Reading 1 means that the cache has no dirty data. The AHB Cache uses a
simplified model to check for dirty data. For more information, see
2.5.1 Dirty status indicator on page 2-31.

[7:4] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[3] ONGOING_PWR_MAINT Software-
configurable

Reading 1 means low-power request automatic maintenance is in
progress.

[2] ONGOING_MAINT Software-
configurable

Reading 1 means that a cache maintenance operation is in progress (clean,
invalidate, or cache enable or cache disable).

[1] ONGOING_EN_DIS Software-
configurable

Ongoing Enable or Disable. Reading 1 means that the cache is in progress
of being disabled or enabled. The CACHE_ENABLED bit changes when
done.

[0] CACHE_ENABLED Software-
configurable

Cache enable status.

1 = The cache is enabled

0 = The cache is disabled.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-59

Non-Confidential

4.4.7 SECIRQSTAT, Secure interrupt request status register

The SECIRQSTAT register is used to check the source of a Secure interrupt.

The SECIRQSTAT register characteristics are:

Attributes

Offset 0x0100

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

RESERVED_0

MAINT_DONE
DISABLE_DONE
ENABLE_DONE

MAINT_IGNORED
TR_ERR

XOM_ERR
NSECURE_CNT_SAT
SECURE_CNT_SAT

Figure 4-7 SECIRQSTAT register bit assignments

The following table shows the bit assignments.

Table 4-9 SECIRQSTAT register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7] XOM_ERR Secure A data, write, locked, or exclusive access was attempted to an XOM by a Secure
transfer.

 Note

If a bus master connected to the cache generates Speculative data transfers, these
Speculative data transfers can cause a data access to XOM. In such a situation, a data
access to XOM might not be an indication of a security threat.

[6] NSECURE_CNT_SAT Secure Non-secure statistics counters are saturated and stopped (when
ALLOW_NSEC_NSECSTAT is not set).

[5] SECURE_CNT_SAT Secure Secure statistics counters are saturated and stopped.

[4] TR_ERR Secure Secure transaction error on master side (any bus error, data type access to XOM).

[3] MAINT_IGNORED Secure Secure software attempted maintenance or enable or disable of the cache. One of those
operations was already in progress and the new request was ignored.

[2] MAINT_DONE Secure Manual maintenance operation (either or both of clean or invalidate) started by Secure
software finished.

[1] DISABLE_DONE Secure The disable operation is complete. The AHB Cache is bypassed.

[0] ENABLE_DONE Secure The enable operation is complete. The AHB Cache is operational.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-60

Non-Confidential

4.4.8 SECIRQSCLR, Secure interrupt status clear register

The SECIRQSCLR register allows clearing sources for Secure interrupt.

The SECIRQSCLR register characteristics are:

Attributes

Offset 0x0104

Type Write-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

RESERVED_0

MAINT_DONE
DISABLE_DONE
ENABLE_DONE

MAINT_IGNORED
TR_ERR

XOM_ERR
NSECURE_CNT_SAT
SECURE_CNT_SAT

Figure 4-8 SECIRQSCLR register bit assignments

The following table shows the bit assignments.

Table 4-10 SECIRQSCLR register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7] XOM_ERR Secure Clear XOM_ERR interrupt

[6] NSECURE_CNT_SAT Secure Clear NSECURE_CNT_SAT interrupt

[5] SECURE_CNT_SAT Secure Clear SECURE_CNT_SAT interrupt

[4] TR_ERR Secure Clear TR_ERR Interrupt

[3] MAINT_IGNORED Secure Clear Secure MAINT_IGNORED interrupt

[2] MAINT_DONE Secure Clear Secure MAINT_DONE interrupt

[1] DISABLE_DONE Secure Clear DISABLE_DONE interrupt

[0] ENABLE_DONE Secure Clear ENABLE_DONE interrupt

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-61

Non-Confidential

4.4.9 SECIRQEN, Secure interrupt enable register

The SECIRQEN register allows enabling sources for Secure interrupt. If a bit is set to zero, that source
does not trigger an interrupt.

The SECIRQEN register characteristics are:

Attributes

Offset 0x0108

Type Read-write

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

RESERVED_0

MAINT_DONE
DISABLE_DONE
ENABLE_DONE

MAINT_IGNORED
TR_ERR

XOM_ERR
NSECURE_CNT_SAT
SECURE_CNT_SAT

Figure 4-9 SECIRQEN register bit assignments

The following table shows the bit assignments.

Table 4-11 SECIRQEN register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7] XOM_ERR Secure Enable XOM_ERR interrupt.

[6] NSECURE_CNT_SAT Secure Enable NSECURE_CNT_SAT interrupt.

[5] SECURE_CNT_SAT Secure Enable SECURE_CNT_SAT interrupt.

[4] TR_ERR Secure Enable TR_ERR interrupt.

[3] MAINT_IGNORED Secure Enable Secure MAINT_IGNORED interrupt.

[2] MAINT_DONE Secure Enable Secure MAINT_DONE interrupt.

[1] DISABLE_DONE Secure Enable DISABLE_DONE interrupt.

[0] ENABLE_DONE Secure Enable ENABLE_DONE interrupt.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-62

Non-Confidential

4.4.10 SECIRQINFO1, Secure transfer error information register 1

The SECIRQINFO1 register contains the address of the operation which caused the error that triggered
the Secure TR_ERR interrupt.

The SECIRQINFO1 register characteristics are:

Attributes

Offset 0x010c

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

ADDR

Figure 4-10 SECIRQINFO1 register bit assignments

The following table shows the bit assignments.

Table 4-12 SECIRQINFO1 register bit assignments

Bits Name Security Function

[31:0] ADDR Secure Address used by the Secure transfer that caused the Secure TR_ERR.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-63

Non-Confidential

4.4.11 SECIRQINFO2, Secure transfer error information register 2

The SECIRQINFO2 register contains the master ID of the operation which caused the error that
triggered the Secure TR_ERR interrupt. It also identifies the source of the error.

The SECIRQINFO2 register characteristics are:

Attributes

Offset 0x0110

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 10 9 8 7 0

MASTERRESERVED_0

ERROR_SRC

Figure 4-11 SECIRQINFO2 register bit assignments

The following table shows the bit assignments.

Table 4-13 SECIRQINFO2 register bit assignments

Bits Name Security Function

[31:10] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[9:8] ERROR_SRC Secure Origin of the Secure transfer that received the bus error:

0 = Early write response

1 = Eviction Write-Back

2 = Linefill read error not propagated to master. The fetched line is invalidated and any writes
to it are lost.

[7:0] MASTER Secure The HMASTER ID of the Secure transfer that caused the error.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-64

Non-Confidential

4.4.12 NSECIRQSTAT, Non-secure interrupt request status register

The NSECIRQSTAT register is used to check what source caused a Non-secure interrupt.

The NSECIRQSTAT register characteristics are:

Attributes

Offset 0x0140

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

RESERVED_2

MAINT_IGNORED
MAINT_DONE
RESERVED_0

TR_ERR
RESERVED_1

XOM_ERR
NSECURE_CNT_SAT

Figure 4-12 NSECIRQSTAT register bit assignments

The following table shows the bit assignments.

Table 4-14 NSECIRQSTAT register bit assignments

Bits Name Security Function

[31:8] RESERVED_2 Non-secure Read-As-Zero, Writes Ignored.

[7] XOM_ERR Non-secure A data, write, locked, or exclusive access was attempted to an XOM by a Non-secure
transfer.

 Note

If a bus master connected to the cache generates Speculative data transfers, these
Speculative data transfers can cause a data access to XOM. In such a situation, a data
access to XOM might not be an indication of a security threat.

[6] NSECURE_CNT_SAT Non-secure Non-secure statistics counters are saturated and stopped (when
ALLOW_NSEC_NSECSTAT is not set).

[5] RESERVED_1 Non-secure Read-As-Zero, Writes Ignored.

[4] TR_ERR Non-secure Non-secure transaction error on master side. The details of the transaction are saved in
the NSECIRQINFOx registers.

[3] MAINT_IGNORED Non-secure Non-secure software attempted maintenance or enabling or disabling of the cache while
such an operation was already in progress and the new request was ignored.

[2] MAINT_DONE Non-secure Manual maintenance operations (either or both of clean or invalidate) started by Non-
secure software have finished.

[1:0] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-65

Non-Confidential

4.4.13 NSECIRQSCLR, Non-secure interrupt status clear register

The NSECIRQCLR register allows clearing sources for Non-secure interrupt.

The NSECIRQSCLR register characteristics are:

Attributes

Offset 0x0144

Type Write-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

RESERVED_2

MAINT_IGNORED
MAINT_DONE
RESERVED_0

TR_ERR
RESERVED_1

XOM_ERR
NSECURE_CNT_SAT

Figure 4-13 NSECIRQSCLR register bit assignments

The following table shows the bit assignments.

Table 4-15 NSECIRQSCLR register bit assignments

Bits Name Security Function

[31:8] RESERVED_2 Non-secure Read-As-Zero, Writes Ignored.

[7] XOM_ERR Non-secure Clear Non-secure XOM_ERR interrupt

[6] NSECURE_CNT_SAT Non-secure Clear NSECURE_CNT_SAT interrupt

[5] RESERVED_1 Non-secure Read-As-Zero, Writes Ignored.

[4] TR_ERR Non-secure Clear Non-secure TR_ERR interrupt

[3] MAINT_IGNORED Non-secure Clear Non-secure MAINT_IGNORED interrupt

[2] MAINT_DONE Non-secure Clear Non-secure MAINT_DONE interrupt

[1:0] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-66

Non-Confidential

4.4.14 NSECIRQEN, Non-secure interrupt enable register

The NSECIRQEN register allows enabling sources for Non-secure interrupt. If a bit is set to zero, the
source does not trigger an interrupt.

The NSECIRQEN register characteristics are:

Attributes

Offset 0x0148

Type Read-write

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

RESERVED_2

MAINT_IGNORED
MAINT_DONE
RESERVED_0

TR_ERR
RESERVED_1

XOM_ERR
NSECURE_CNT_SAT

Figure 4-14 NSECIRQEN register bit assignments

The following table shows the bit assignments.

Table 4-16 NSECIRQEN register bit assignments

Bits Name Security Function

[31:8] RESERVED_2 Non-secure Read-As-Zero, Writes Ignored.

[7] XOM_ERR Non-secure Enable Non-secure XOM_ERR interrupt.

[6] NSECURE_CNT_SAT Non-secure Enable NSECURE_CNT_SAT interrupt.

[5] RESERVED_1 Non-secure Read-As-Zero, Writes Ignored.

[4] TR_ERR Non-secure Enable Non-secure TR_ERR interrupt.

[3] MAINT_IGNORED Non-secure Enable Non-secure MAINT_IGNORED interrupt.

[2] MAINT_DONE Non-secure Enable Non-secure MAINT_DONE interrupt.

[1:0] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-67

Non-Confidential

4.4.15 NSECIRQINFO1, Non-secure transfer error information register 1

The NSECIRQINFO1 register contains the address of the operation which caused the error that triggered
Non-secure TR_ERR interrupt.

The NSECIRQINFO1 register characteristics are:

Attributes

Offset 0x014c

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

ADDR

Figure 4-15 NSECIRQINFO1 register bit assignments

The following table shows the bit assignments.

Table 4-17 NSECIRQINFO1 register bit assignments

Bits Name Security Function

[31:0] ADDR Non-secure Address used by the Non-secure transfer that caused Non-secure TR_ERR.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-68

Non-Confidential

4.4.16 NSECIRQINFO2, Non-secure transfer error information register 2

The NSECIRQINFO2 register contains the master ID of the operation which caused the error that
triggered Non-secure TR_ERR interrupt. It also identifies the source of the error.

The NSECIRQINFO2 register characteristics are:

Attributes

Offset 0x0150

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 10 9 8 7 0

MASTERRESERVED_0

ERROR_SRC

Figure 4-16 NSECIRQINFO2 register bit assignments

The following table shows the bit assignments.

Table 4-18 NSECIRQINFO2 register bit assignments

Bits Name Security Function

[31:10] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[9:8] ERROR_SRC Non-secure The origin of the Non-secure transfer that received the bus error.

0 = Early write response

1 = Eviction Write-Back

2 = Linefill read error not propagated to master. The fetched line is invalidated and any writes
to it are lost.

[7:0] MASTER Non-secure The HMASTER ID of the Non-secure transfer that caused the error.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-69

Non-Confidential

4.4.17 SECHIT, Secure transfers hit register

The SECHIT register displays the value of the Secure hit counter.

The SECHIT register characteristics are:

Attributes

Offset 0x0300

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

SECHITCNT

Figure 4-17 SECHIT register bit assignments

The following table shows the bit assignments.

Table 4-19 SECHIT register bit assignments

Bits Name Security Function

[31:0] SECHITCNT Secure The number of Secure transfers that have hit the cache.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-70

Non-Confidential

4.4.18 SECMISS, Secure transfers miss register

The SECMISS register displays the value of the Secure miss counter.

The SECMISS register characteristics are:

Attributes

Offset 0x0304

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

SECMISSCNT

Figure 4-18 SECMISS register bit assignments

The following table shows the bit assignments.

Table 4-20 SECMISS register bit assignments

Bits Name Security Function

[31:0] SECMISSCNT Secure The number of Secure transfers that have missed the cache.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-71

Non-Confidential

4.4.19 SECSTATCTRL, Secure transfers statistic counters control

The SECSTATCTRL register provides control over the Secure counters.

The SECSTATCTRL register characteristics are:

Attributes

Offset 0x0308

Type Read-write

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 2 1 0

RESERVED_0

RESET
ENABLE

Figure 4-19 SECSTATCTRL register bit assignments

The following table shows the bit assignments.

Table 4-21 SECSTATCTRL register bit assignments

Bits Name Security Function

[31:2] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[1] RESET Secure Reset statistics counters for Secure transactions.

[0] ENABLE Secure Enable statistics counters for Secure transactions.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

4.4.20 NSECHIT, Non-secure transfers hit register

The NSECHIT register displays the value of the Non-secure hit counter.

The NSECHIT register characteristics are:

Attributes

Offset 0x0310

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

NSECHITCNT

Figure 4-20 NSECHIT register bit assignments

The following table shows the bit assignments.

Table 4-22 NSECHIT register bit assignments

Bits Name Security Function

[31:0] NSECHITCNT Software-configurable The number of Non-secure transfers that have hit the cache.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

4.4.21 NSECMISS, Non-secure transfers miss register

The NSECMISS register displays the value of the Non-secure miss counter.

The NSECMISS register characteristics are:

Attributes

Offset 0x0314

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

NSECMISSCNT

Figure 4-21 NSECMISS register bit assignments

The following table shows the bit assignments.

Table 4-23 NSECMISS register bit assignments

Bits Name Security Function

[31:0] NSECMISSCNT Software-configurable The number of Non-secure transfers that have missed the cache.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

4.4.22 NSECSTATCTRL, Non-secure transfers statistic counters control register

The NSECSTATCTRL register provides control over the Non-secure counters.

The NSECSTATCTRL register characteristics are:

Attributes

Offset 0x0318

Type Read-write

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 2 1 0

RESERVED_0

RESET
ENABLE

Figure 4-22 NSECSTATCTRL register bit assignments

The following table shows the bit assignments.

Table 4-24 NSECSTATCTRL register bit assignments

Bits Name Security Function

[31:2] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[1] RESET Software-configurable Reset statistics counters for Non-secure transactions

[0] ENABLE Software-configurable Enable statistics counters for Non-secure transactions.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

4.4.23 PMSVR0, saved value register 0 - Secure hit

Secure hit counter snapshot register.

The PMSVR0 register characteristics are:

Attributes

Offset 0x0600

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

SHCS

Figure 4-23 PMSVR0 register bit assignments

The following table shows the bit assignments.

Table 4-25 PMSVR0 register bit assignments

Bits Name Security Function

[31:0] SHCS Secure Secure hit counter snapshot

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

4.4.24 PMSVR1, saved value register 1 - Secure miss

Secure miss counter snapshot register.

The PMSVR1 register characteristics are:

Attributes

Offset 0x0604

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

SMCS

Figure 4-24 PMSVR1 register bit assignments

The following table shows the bit assignments.

Table 4-26 PMSVR1 register bit assignments

Bits Name Security Function

[31:0] SMCS Secure Secure miss counter snapshot

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

4.4.25 PMSVR2, saved value register 2 - Non-secure hit

Non-secure hit counter snapshot register.

The PMSVR2 register characteristics are:

Attributes

Offset 0x0608

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

NSHCS

Figure 4-25 PMSVR2 register bit assignments

The following table shows the bit assignments.

Table 4-27 PMSVR2 register bit assignments

Bits Name Security Function

[31:0] NSHCS Software-configurable Non-secure hit counter snapshot

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

4.4.26 PMSVR3, saved value register 3 - Non-secure miss

Non-secure miss counter snapshot register.

The PMSVR3 register characteristics are:

Attributes

Offset 0x060C

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

NSMCS

Figure 4-26 PMSVR3 register bit assignments

The following table shows the bit assignments.

Table 4-28 PMSVR3 register bit assignments

Bits Name Security Function

[31:0] NSMCS Software-configurable Non-secure miss counter snapshot

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

4.4.27 PMSSSR, PMU snapshot status register

PMU Snapshot status register.

The PMSSSR register characteristics are:

Attributes

Offset 0x0680

Type Read-only

Reset 0x1

Width 32

The following figure shows the bit assignments.

31 1 0

RESERVED_0

NC

Figure 4-27 PMSSSR register bit assignments

The following table shows the bit assignments.

Table 4-29 PMSSSR register bit assignments

Bits Name Security Function

[31:1] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[0] NC Software-configurable No capture. Indicates whether the PMU counters have been captured.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

4.4.28 PMSSCR, PMU snapshot capture register

PMU snapshot capture register

The PMSSCR register characteristics are:

Attributes

Offset 0x06F0

Type Write-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 1 0

RESERVED_0

SS

Figure 4-28 PMSSCR register bit assignments

The following table shows the bit assignments.

Table 4-30 PMSSCR register bit assignments

Bits Name Security Function

[31:1] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[0] SS Software-configurable Provides a mechanism for software to initiate a snapshot.

Writing:

1 = Initiates a capture immediately.

0 = Ignored.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

4.4.29 PMSSRR, PMU snapshot reset register

PMU snapshot reset register

The PMSSRR register characteristics are:

Attributes

Offset 0x06F4

Type Read-write

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 4 3 2 1 0

RESERVED_0

RP_NSHC
RP_SMC
RP_SHC

RP_NSMC

Figure 4-29 PMSSRR register bit assignments

The following table shows the bit assignments.

Table 4-31 PMSSRR register bit assignments

Bits Name Security Function

[31:4] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[3] RP_NSMC Software-configurable Reset Non-secure miss counter when making snapshot. Mirrors RP_NSHC as the two
counters are grouped and should not be reset separately. This field is read-only.

[2] RP_NSHC Software-configurable Reset Non-secure hit counter when making snapshot. The miss counter copies this
value.

[1] RP_SMC Secure Reset Secure miss counter when making snapshot. Mirrors RP_SHC as the two
counters are grouped and should not be reset separately. This field is read-only.

[0] RP_SHC Secure Reset Secure hit counter when making snapshot. The miss counter copies this value.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

4.4.30 PIDR4, peripheral ID register 4

Peripheral ID 4.

The PIDR4 register characteristics are:

Attributes

Offset 0x0FD0

Type Read-only

Reset 0x4

Width 32

The following figure shows the bit assignments.

31 8 7 4 3 0

DES_2SIZERESERVED_0

Figure 4-30 PIDR4 register bit assignments

The following table shows the bit assignments.

Table 4-32 PIDR4 register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7:4] SIZE Non-secure 4KB Count.

[3:0] DES_2 Non-secure JEP106 Continuation Code.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-83

Non-Confidential

4.4.31 PIDR5, peripheral ID register 5

Peripheral ID 5.

The PIDR5 register characteristics are:

Attributes

Offset 0x0FD4

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

RESERVED_0

Figure 4-31 PIDR5 register bit assignments

The following table shows the bit assignments.

Table 4-33 PIDR5 register bit assignments

Bits Name Security Function

[31:0] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-84

Non-Confidential

4.4.32 PIDR6, peripheral ID register 6

Peripheral ID 6.

The PIDR6 register characteristics are:

Attributes

Offset 0x0FD8

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

RESERVED_0

Figure 4-32 PIDR6 register bit assignments

The following table shows the bit assignments.

Table 4-34 PIDR6 register bit assignments

Bits Name Security Function

[31:0] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-85

Non-Confidential

4.4.33 PIDR7, peripheral ID register 7

Peripheral ID 7.

The PIDR7 register characteristics are:

Attributes

Offset 0x0FDC

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 0

RESERVED_0

Figure 4-33 PIDR7 register bit assignments

The following table shows the bit assignments.

Table 4-35 PIDR7 register bit assignments

Bits Name Security Function

[31:0] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-86

Non-Confidential

4.4.34 PIDR0, peripheral ID register 0

Peripheral ID 0.

The PIDR0 register characteristics are:

Attributes

Offset 0x0FE0

Type Read-only

Reset 0x31

Width 32

The following figure shows the bit assignments.

31 8 7 0

PART_0RES0_0

Figure 4-34 PIDR0 register bit assignments

The following table shows the bit assignments.

Table 4-36 PIDR0 register bit assignments

Bits Name Security Function

[31:8] RES0_0 Non-secure Read-As-Zero, Writes Ignored

[7:0] PART_0 Non-secure Part Number [7:0].

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-87

Non-Confidential

4.4.35 PIDR1, peripheral ID register 1

Peripheral ID 1.

The PIDR1 register characteristics are:

Attributes

Offset 0x0fe4

Type Read-only

Reset 0xb8

Width 32

The following figure shows the bit assignments.

31 8 7 4 3 0

PART_1DES_0RESERVED_0

Figure 4-35 PIDR1 register bit assignments

The following table shows the bit assignments.

Table 4-37 PIDR1 register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7:4] DES_0 Non-secure JEP106 Identity Code [3:0].

[3:0] PART_1 Non-secure Part Number [11:8].

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-88

Non-Confidential

4.4.36 PIDR2, peripheral ID register 2

Peripheral ID 2.

The PIDR2 register characteristics are:

Attributes

Offset 0x0FE8

Type Read-only

Reset 0xB

Width 32

The following figure shows the bit assignments.

31 8 7 4 3 2 0

DES_1RES0_0

REVISION
JEDEC

Figure 4-36 PIDR2 register bit assignments

The following table shows the bit assignments.

Table 4-38 PIDR2 register bit assignments

Bits Name Security Function

[31:8] RES0_0 Non-secure Read-As-Zero, Writes Ignored

[7:4] REVISION Non-secure Revision Code.

[3] JEDEC Non-secure JEDEC.

[2:0] DES_1 Non-secure JEP106 Identity Code [6:4].

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-89

Non-Confidential

4.4.37 PIDR3, peripheral ID register 3

Peripheral ID 3.

The PIDR3 register characteristics are:

Attributes

Offset 0x0FEC

Type Read-only

Reset 0x0

Width 32

The following figure shows the bit assignments.

31 8 7 4 3 0

CMODREVANDRESERVED_0

Figure 4-37 PIDR3 register bit assignments

The following table shows the bit assignments.

Table 4-39 PIDR3 register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7:4] REVAND Non-secure Manufacturer revision number.

[3:0] CMOD Non-secure Customer Modified.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-90

Non-Confidential

4.4.38 CIDR0, component ID register 0

Component ID 0.

The CIDR0 register characteristics are:

Attributes

Offset 0x0FF0

Type Read-only

Reset 0xD

Width 32

The following figure shows the bit assignments.

31 8 7 0

PRMBL_0RESERVED_0

Figure 4-38 CIDR0 register bit assignments

The following table shows the bit assignments.

Table 4-40 CIDR0 register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7:0] PRMBL_0 Non-secure Preamble.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-91

Non-Confidential

4.4.39 CIDR1, component ID register 1

Component ID 1.

The CIDR1 register characteristics are:

Attributes

Offset 0x0FF4

Type Read-only

Reset 0xF0

Width 32

The following figure shows the bit assignments.

31 8 7 4 3 0

CLASSRESERVED_0

PRMBL_1

Figure 4-39 CIDR1 register bit assignments

The following table shows the bit assignments.

Table 4-41 CIDR1 register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7:4] CLASS Non-secure Component class.

[3:0] PRMBL_1 Non-secure Preamble.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-92

Non-Confidential

4.4.40 CIDR2, component ID register 2

Component ID 2.

The CIDR2 register characteristics are:

Attributes

Offset 0x0FF8

Type Read-only

Reset 0x5

Width 32

The following figure shows the bit assignments.

31 8 7 0

PRMBL_2RES0_0

Figure 4-40 CIDR2 register bit assignments

The following table shows the bit assignments.

Table 4-42 CIDR2 register bit assignments

Bits Name Security Function

[31:8] RES0_0 Non-secure Read-As-Zero, Writes Ignored

[7:0] PRMBL_2 Non-secure Preamble.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-93

Non-Confidential

4.4.41 CIDR3, component ID register 3

Component ID 3.

The CIDR3 register characteristics are:

Attributes

Offset 0x0FFC

Type Read-only

Reset 0xB1

Width 32

The following figure shows the bit assignments.

31 8 7 0

PRMBL_3RESERVED_0

Figure 4-41 CIDR3 register bit assignments

The following table shows the bit assignments.

Table 4-43 CIDR3 register bit assignments

Bits Name Security Function

[31:8] RESERVED_0 Non-secure Read-As-Zero, Writes Ignored.

[7:0] PRMBL_3 Non-secure Preamble.

4 Programmers model
4.4 Register descriptions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-94

Non-Confidential

Chapter 5
Using software to program the AHB Cache

This chapter provides details on programming the AHB Cache by exploring typical scenarios.

It contains the following sections:
• 5.1 Enable the AHB Cache by using software on page 5-96.
• 5.2 Disable the AHB Cache using software on page 5-100.
• 5.3 Use Non-secure software to check cache enable status on page 5-103.
• 5.4 Configurable cache diagnostics available for Non-secure software on page 5-104.
• 5.5 Use software for manual maintenance on the AHB Cache on page 5-105.
• 5.6 Use software to access the statistics counters in the AHB Cache on page 5-112.
• 5.7 Power control on page 5-116.

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-95

Non-Confidential

5.1 Enable the AHB Cache by using software
Non-secure software cannot enable the cache. Secure software can enable the cache by setting the
ENABLE field of the CTRL register using the APB configuration interface.

This section contains the following subsections:
• 5.1.1 About the CACHE_ENABLED bit on page 5-96.
• 5.1.2 Enable the AHB Cache by using software with automatic maintenance on on page 5-96.
• 5.1.3 Enable the AHB Cache by using software with automatic maintenance off on page 5-97.

5.1.1 About the CACHE_ENABLED bit

The CACHE_ENABLED bit is mirrored in two registers: in NSEC_ACCESS register and the
MAINT_STATUS register.

This duplication is to ensure that the CACHE_ENABLED bit is sampled at the same time as other
relevant information.

The CACHE_ENABLED bit in the NSEC_ACCESS register

In the NSEC_ACCESS register, the CACHE_ENABLED bit only holds a valid value when
NSEC_ENABLE_READ_ALLOWED is set.

If NSEC_ENABLE_READ_ALLOWED is not set, the CACHE_ENABLED bit in the NSEC_ACCESS
register is masked for Non-secure reads.

The CACHE_ENABLED bit in the MAINT_STATUS register

When checking the CACHE_ENABLED_bit in the MAINT_STATUS register, you should also check if
the ONGOING_EN_DIS bit is set. The ONGOING_EN_DIS bit indicates that cache enable or cache
disable is ongoing. If this bit is set, the CACHE_ENABLED bit only changes state once the process of
enabling or disabling the cache is complete.

For example: the software reads that the cache is enabled, but the ONGOING_EN_DIS bit is also set.
This means that the cache is transitioning to disabled state.

5.1.2 Enable the AHB Cache by using software with automatic maintenance on

You can use software to enable the AHB Cache when automatic maintenance is turned on.

The AHB Cache receives the enable command on the APB interface. If the dis_cache_en_maint is set to
0, the software makes the AHB Cache start automatic cache enable maintenance. After the AHB Cache
completes the automatic cache enable maintenance, it applies the enable command.

Procedure
1. If you do not want to use interrupt handling, skip to step 2. If you want the software to use interrupt

handling:
a. Ensure that there are no pending interrupts in the Secure interrupt status register. SECIRQSTAT

must read as 0x0. If there are pending interrupts, the software must serve and clear them. The
software can clear the pending interrupts by writing the active bits in the SECIRQSCLR register.

b. Enable the ENABLE_DONE interrupt in the SECIRQEN register by writing 0x1 to the
ENABLE_DONE field.

2. Enable the cache by writing 0x1 to the ENABLE field of the CTRL register.
3. Wait until the enable takes effect. Do one of the following:

• If you are not using interrupt handling, poll the MAINT_STATUS register and wait until the
CACHE_ENABLED field is set to 0x1.

• If you are using interrupt handling, then wait for the interrupt to occur. Check in the
SECIRQSTAT register that the ENABLE_DONE field is set to 0x1. Then clear the interrupt in the
SECIRQSCLR register by writing 0x1 to the ENABLE_DONE field.

5 Using software to program the AHB Cache
5.1 Enable the AHB Cache by using software

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-96

Non-Confidential

The cache is now enabled and ready to perform caching.

Example 5-1 Enable the AHB Cache by using software with automatic maintenance on

global bool cache_enabled_interrupt_occured = false;

EnableAHBCacheAutoMaintenanceOn()

 if(InterruptHandling) then
 // Ensure that there are no pending interrupts in
 // the Secure Interrupt Status Register
 bool no_pending_interrupts = false;
 repeat
 service_and_clear_interrupts();
 no_pending_interrupts = (ReadRegister(SECIRQSTAT) == 0x0);
 until no_pending_interrupts;

 // clear global interrupt occured flag
 cache_enabled_interrupt_occured = false;
 // Enable the ENABLE_DONE interrupt
 WriteRegisterField(SECIRQEN_ENABLE_DONE,0x1);

 // Enable the cache
 WriteRegisterField(CTRL_ENABLE,0x1);

 if(InterruptHandling) then
 // wait for interrupt to arrive (InterruptHandler)
 repeat
 Wait();
 until cache_enabled_interrupt_occured;
 else
 bool cache_enabled = false;
 repeat
 cache_enabled = (ReadRegisterField(MAINT_STATUS_CACHE_ENABLED) == 0x1);
 until cache_enabled;

SecureInterruptHandler()
 if(ReadRegisterField(SECIRQSTAT_ENABLE_DONE) == 0x1) then
 // The cache is now enabled, continue
 cache_enabled_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_ENABLE_DONE,0x1);

5.1.3 Enable the AHB Cache by using software with automatic maintenance off

Software can enable the AHB Cache when automatic maintenance is turned off. The AHB Cache
receives the enable command on the APB interface. If the dis_cache_en_maint is set to 1, the cache is
enabled immediately.

 Note

When the cache is disabled, it can only run invalidate all maintenance.

Procedure
1. If you do not want to use interrupt handling, skip to step 2. If you want the software to use interrupt

handling:
a. Ensure that there are no pending interrupts in the Secure interrupt status register. SECIRQSTAT

must read as 0x0. If there are pending interrupts, the software must serve and clear them. The
software can clear the pending interrupts by writing the active bits in the SECIRQSCLR register.

b. Enable the MAINT_DONE and ENABLE_DONE interrupts in the SECIRQEN register by
writing 0x1 to the MAINT_DONE and ENABLE_DONE fields.

2. Trigger a manual invalidate all operation by writing 0x1 to the TRIG_INVALIDATE_ALL field in
the MAINT_CTRL_ALL register.

5 Using software to program the AHB Cache
5.1 Enable the AHB Cache by using software

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-97

Non-Confidential

3. Wait until the maintenance is finished. Do one of the following:
• If you are not using interrupt handling, poll the MAINT_STATUS register and wait until the

ONGOING_MAINT field is set to 0x0.
• If you are using interrupt handling, wait for the interrupt to occur. Check that the MAINT_DONE

field is set to 0x1 in the SECIRQSTAT register. Then clear the interrupt by writing the
MAINT_DONE field with 0x1 in the SECIRQSCLR register.

4. Enable the cache by writing 0x1 to the ENABLE field in the CTRL register.
5. Wait until the enable takes effect. Do one of the following:

• If you are not using interrupt handling, poll the MAINT_STATUS register and wait until the
CACHE_ENABLED field is set to 0x1.

• If you are using interrupt handling, wait for the interrupt to occur. Check that the
ENABLE_DONE field is set to 0x1 in the SECIRQSTAT register. Clear the interrupt by writing
the ENABLE_DONE field with 0x1. in the SECIRQSCLR register.

The cache is now enabled and ready to perform caching.

Example 5-2 Enable the AHB Cache by using software with automatic maintenance off

global bool cache_enabled_interrupt_occured = false;
global bool cache_invalidate_all_interrupt_occured = false;

EnableAHBCacheAutoMaintenanceOff()

 if(InterruptHandling) then
 // Ensure that there are no pending interrupts in
 // the Secure Interrupt Status Register
 bool no_pending_interrupts = false;
 repeat
 service_and_clear_interrupts();
 no_pending_interrupts = (ReadRegister(SECIRQSTAT) == 0x0);
 until no_pending_interrupts;

 // clear all global interrupt occured flags
 cache_enabled_interrupt_occured = false;
 cache_invalidate_all_interrupt_occured = false;

 // Enable the ENABLE_DONE interrupt
 WriteRegisterField(SECIRQEN_ENABLE_DONE,0x1);
 // Enable the MAINT_DONE interrupt
 WriteRegisterField(SECIRQEN_MAINT_DONE,0x1);

 // Trigger a manual invalidate all operation
 WriteRegisterField(MAINT_CTRL_ALL_TRIG_INVALIDATE_ALL,0x1);

 if(InterruptHandling) then
 // wait for maint_done interrupt to arrive (InterruptHandler)
 repeat
 Wait();
 until cache_invalidate_all_interrupt_occured;
 else
 bool maint_finished = false;
 repeat
 maint_finished = (ReadRegisterField(MAINT_STATUS_ONGOING_MAINT) == 0x0);
 until maint_finished;

 // Enable the cache
 WriteRegisterField(CTRL_ENABLE,0x1);

 if(InterruptHandling) then
 // wait for enable_done interrupt to arrive (InterruptHandler)
 repeat
 Wait();
 until cache_enabled_interrupt_occured;
 else
 bool cache_enabled = false;
 repeat
 cache_enabled = (ReadRegisterField(MAINT_STATUS_CACHE_ENABLED) == 0x1);
 until cache_enabled;

SecureInterruptHandler()
 if(ReadRegisterField(SECIRQSTAT_ENABLE_DONE) == 0x1) then

5 Using software to program the AHB Cache
5.1 Enable the AHB Cache by using software

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-98

Non-Confidential

 // The cache is now enabled, continue
 cache_enabled_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_ENABLE_DONE,0x1);
 if (ReadRegisterField(SECIRQSTAT_MAINT_DONE) == 0x1) then
 // The cache is invalidated, continue
 cache_invalidate_all_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_MAINT_DONE,0x1);

5 Using software to program the AHB Cache
5.1 Enable the AHB Cache by using software

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-99

Non-Confidential

5.2 Disable the AHB Cache using software
Non-secure software cannot disable the cache. Secure software can disable the AHB Cache using the
APB configuration interface.

This section contains the following subsections:
• 5.2.1 Disable the AHB Cache by using software with automatic maintenance on on page 5-100.
• 5.2.2 Disable the AHB Cache by using software with automatic maintenance off on page 5-101.

5.2.1 Disable the AHB Cache by using software with automatic maintenance on

Software can disable the AHB Cache when automatic maintenance is turned on.

The AHB Cache receives the disable command on the APB interface. If the dis_cache_dis_maint is set
to 1’b0, the software makes the AHB Cache start automatic cache disable maintenance. During cache
disable maintenance, traffic on the AHB interface is stalled so that new accesses cannot make the cache
dirty. After the AHB Cache completes the automatic cache disable maintenance, it applies the disable
command.

Procedure
1. If you do not want to use interrupt handling, skip to step 2. If you want the software to use interrupt

handling:
a. Ensure that there are no pending interrupts in the Secure interrupt status register. SECIRQSTAT

register must read as 0x0. If there are pending interrupts, the software must serve and clear them.
The software can clear the pending interrupts by writing the active bits in the SECIRQSCLR
register.

b. Enable the DISABLE_DONE interrupt by writing 0x1 to the DISABLE_DONE field in the
SECIRQEN register.

2. Disable the cache by writing 0x0 to the ENABLE field in the CTRL register.
3. Wait until the disable takes effect. Do one of the following:

• If you are not using interrupt handling, poll the MAINT_STATUS register and wait until the
CACHE_ENABLED field is set to 0x0.

• If you are using interrupt handling, wait for the interrupt to occur. Check in the SECIRQSTAT
register that the DISABLE_DONE field is set to 0x1. Then clear the interrupt by writing 0x1 to
the DISABLE_DONE field in the SECIRQSCLR register.

The cache is now disabled.

Example 5-3 Disable the AHB Cache by using software with automatic maintenance on

global bool cache_disabled_interrupt_occured = false;

DisableAHBCacheAutoMaintenanceOn()

 if(InterruptHandling) then
 // Ensure that there are no pending interrupts in
 // the Secure Interrupt Status Register
 bool no_pending_interrupts = false;
 repeat
 service_and_clear_interrupts();
 no_pending_interrupts = (ReadRegister(SECIRQSTAT) == 0x0);
 until no_pending_interrupts;

 // clear global interrupt occured flag
 cache_disabled_interrupt_occured = false;
 // Enable the DISABLE_DONE interrupt
 WriteRegisterField(SECIRQEN_DISABLE_DONE,0x1);

 // Disable the cache
 WriteRegisterField(CTRL_ENABLE,0x0);

 if(InterruptHandling) then

5 Using software to program the AHB Cache
5.2 Disable the AHB Cache using software

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-100

Non-Confidential

 // wait for interrupt to arrive (InterruptHandler)
 repeat
 Wait();
 until cache_disabled_interrupt_occured;
 else
 bool cache_disabled = false;
 repeat
 cache_disabled = (ReadRegisterField(MAINT_STATUS_CACHE_ENABLED) == 0x0);
 until cache_disabled;

SecureInterruptHandler()
 if(ReadRegisterField(SECIRQSTAT_DISABLE_DONE) == 0x1) then
 // The cache is now disabled, continue
 cache_disabled_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_DISABLE_DONE,0x1);

5.2.2 Disable the AHB Cache by using software with automatic maintenance off

Software can disable the AHB Cache when automatic maintenance is turned off. The following sequence
describes how the software can disable the cache, assuming that the dis_cache_dis_maint is set to 1.

If the dis_cache_dis_maint is set to 1, the cache does not start clean all maintenance before it applies the
cache disable command that it has received on the APB interface. To prevent data loss, software must
perform clean all maintenance before disabling the cache. The software must also make sure that no
Cacheable transaction is generated after the clean all maintenance and before the cache disable
commands.

 Note

We recommend you use a data memory barrier (DMB or DSB).

Procedure
1. If you want to use interrupts, then complete the following steps, otherwise skip to step 3:

a. Ensure that there are no pending interrupts in the Secure interrupt status register. SECIRQSTAT
register must read as 0x0. If there are pending interrupts, the software must serve and clear them.
The software can clear the pending interrupts by writing the active bits in the SECIRQSCLR
register.

b. Enable the DISABLE_DONE interrupt by writing 0x1 to the DISABLE_DONE field in the
SECIRQEN register.
The MAINT_DONE interrupt is not required, as the commands are launched back-to-back and
the cache performs the maintenance and disable operations in the right order if initiated properly.

2. Trigger a manual clean all operation by writing 0x1 to the TRIG_CLEAN_ALL register field in the
MAINT_CTRL_ALL register.

3. Disable global interrupts.
4. Disable the cache by writing 0x0 to the ENABLE field in the CTRL register.
5. Enable the global interrupt.
6. Wait until the disable takes effect. Do one of the following:

• If you are not using interrupt handling, poll the MAINT_STATUS register. Wait until both
CACHE_ENABLED and ONGOING_MAINT fields are set to 0x0.

• If you are using interrupt handling, then wait for the interrupt to occur, check that both
DISABLE_DONE and MAINT_DONE fields are set to 0x1 in the SECIRQSTAT register. Then
clear the interrupt by writing the DISABLE_DONE and MAINT_DONE fields with 0x1 in the
SECIRQSCLR register.

The cache is now disabled.

5 Using software to program the AHB Cache
5.2 Disable the AHB Cache using software

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-101

Non-Confidential

Example 5-4 Disable the AHB Cache by using software with automatic maintenance off

global bool cache_disabled_interrupt_occured = false;
global bool cache_invalidate_all_interrupt_occured = false;

DisableAHBCacheAutoMaintenanceOff()

 if(InterruptHandling) then
 // Ensure that there are no pending interrupts in
 // the Secure Interrupt Status Register
 bool no_pending_interrupts = false;
 repeat
 service_and_clear_interrupts();
 no_pending_interrupts = (ReadRegister(SECIRQSTAT) == 0x0);
 until no_pending_interrupts;

 // clear global interrupt occured flags
 cache_disabled_interrupt_occured = false;
 cache_invalidate_all_interrupt_occured = false;

 // Enable the DISABLE_DONE interrupt
 WriteRegisterField(SECIRQEN_DISABLE_DONE,0x1);

 // Disable global interrupts
 DisableGlogalInterrupts();

 // Trigger a manual clean all operation
 WriteRegisterField(MAINT_CTRL_ALL_TRIG_CLEAN_ALL,0x1);

 // Disable the cache
 WriteRegisterField(CTRL_ENABLE,0x0);

 // Enable global interrupts
 EnableGlogalInterrupts();

 if(InterruptHandling) then
 // wait for the DISABLE_DONE interrupt to arrive (InterruptHandler)
 repeat
 Wait();
 until (cache_disabled_interrupt_occured && cache_invalidate_all_interrupt_occured);
 else
 bool cache_disabled = false;
 repeat
 cache_disabled = ((ReadRegisterField(MAINT_STATUS_CACHE_ENABLED) == 0x0) &&
 (ReadRegisterField(MAINT_STATUS_ONGOING_MAINT) == 0x0));
 until cache_disabled;

SecureInterruptHandler()
 if(ReadRegisterField(SECIRQSTAT_DISABLE_DONE) == 0x1) then
 // The cache is now disabled, continue
 cache_disabled_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_DISABLE_DONE,0x1);
 if (ReadRegisterField(SECIRQSTAT_MAINT_DONE) == 0x1) then
 // The cache is invalidated, continue
 cache_invalidate_all_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_MAINT_DONE,0x1);

5 Using software to program the AHB Cache
5.2 Disable the AHB Cache using software

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-102

Non-Confidential

5.3 Use Non-secure software to check cache enable status
Non-secure software can check the cache enable status.

To allow Non-secure software to check the cache enable state, Secure software writes 0x1 to the
ALLOW_NSEC_ENABLE_READ field in the CTRL register. Non-secure software can then perform
the following steps:

Procedure
1. Read the NSEC_ENABLE_READ_ALLOWED field in the NSEC_ACCESS register to check that it

can read the cache enable state. The field should be set to 0x1.
2. Check the CACHE_ENABLED register field value matches with expectations.

5 Using software to program the AHB Cache
5.3 Use Non-secure software to check cache enable status

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-103

Non-Confidential

5.4 Configurable cache diagnostics available for Non-secure software
Non-secure software cannot enable or disable the cache. It has limited access to the cache enable status.

Secure software can grant rights to Non-secure software by writing to the specific fields in the CTRL
register. The following table describes the relevant fields.

Table 5-1 CTRL register fields for configuring Non-secure software permissions

Field name Description

ALLOW_NSEC_NSECSTAT Non-secure software can access and manage the Non-secure statistics counters.

ALLOW_NSEC_MAINT_LINES Non-secure software can request maintenance by cache lines operations for cached Non-secure
data. Non-secure software can access ongoing maintenance status information in the
MAIN_STATUS register.

 Note

Non-secure software cannot destroy data inside the cache. Non-secure software cannot request an
invalidate without requesting a clean at the same time.

ALLOW_NSEC_ENABLE_READ Non-secure software can read the cache enable status in the MAIN_STATUS register.

Non-secure software can check the granted rights by reading the corresponding register field values in
the NSEC_ACCESS status register.

 Note

When NSEC_ACCESS.NSEC_MAINT_LINES_ALLOWED=0, Non-secure software is not allowed to
initiate any type of manual maintenance.

The following table shows which maintenance type is available to Secure and Non-secure software.

Table 5-2 Manual maintenance available for software

Maintenance type Available to
Secure software

Available to Non-secure software when
NSEC_ACCESS.NSEC_MAINT_LINES_ALLOWED=1

Manual invalidate all Yes No

Manual clean all Yes No

Manual clean and invalidate all Yes No

Manual invalidate by address Yes No

Manual clean by address Yes Yes

Manual clean and invalidate by
address

Yes Yes

5 Using software to program the AHB Cache
5.4 Configurable cache diagnostics available for Non-secure software

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-104

Non-Confidential

5.5 Use software for manual maintenance on the AHB Cache
Secure and Non-secure software can perform manual maintenance on the AHB Cache.

This section contains the following subsections:
• 5.5.1 Use Secure software to perform manual clean all or invalidate all maintenance on page 5-105.
• 5.5.2 Use Secure software to perform manual maintenance by address on page 5-107.
• 5.5.3 Use Non-secure software to perform manual maintenance by address on page 5-109.

5.5.1 Use Secure software to perform manual clean all or invalidate all maintenance

If the cache is enabled, Secure software can trigger manual maintenance operations. Software can
manually trigger clean all, invalidate all, or clean and invalidate all maintenance. Secure software
acknowledges when the maintenance is completed, if interrupt handling is enabled.

 Note

Invalidate all maintenance is the only type of maintenance that can be started with a disabled cache.

Procedure
1. Ensure that the cache is able to accept a new maintenance request.

To check that no maintenance is running, read the MAINT_STATUS register. The
ONGOING_EN_DIS, ONGOING_MAINT, and ONGOING_PWR_MAINT fields must read as 0x0.
If maintenance is running, you must wait until it completes.

2. Ensure that there are no pending interrupts in the interrupt status register.
The SECIRQSTAT register must read as 0x0. If there are pending interrupts, the software has to serve
and clear them. The software can clear the pending interrupts by writing the active bits in the
SECIRQSCLR register.

3. If you are not using interrupt handling, skip this step.
If you are using interrupt handling: in the SECIRQEN register, enable the MAINT_DONE and the
MAINT_IGNORED interrupt by writing 0x1 to the MAINT_DONE and the MAINT_IGNORED
fields.

4. Write the relevant value to one of the following fields in the MAINT_CTRL_ALL register to trigger
manual invalidate or clean all maintenance.

Table 5-3 Triggering maintenance operations using the MAINT_CTRL_ALL register

Maintenance operation Register field Value

Clean all TRIG_CLEAN_ALL 0x1

Invalidate all TRIG_INVALIDATE_ALL 0x2

Clean and invalidate all TRIG_CLEAN_ALL and TRIG_INVALIDATE_ALL 0x3

5. Wait until the maintenance is completed. Do one of the following:
• If you are not using interrupt handling, poll the SECIRQSTAT register and wait until the

MAINT_DONE or the MAINT_IGNORED field is set to 0x1.
• If you are using interrupt handling, wait for the interrupt to occur. In the SECIRQSTAT register,

either the MAINT_DONE or the MAINT_IGNORED field must be set to 0x1.
6. Check the cache maintenance status. If in the SECIRQSTAT register the MAINT_DONE field is set

to 0x1 and MAINT_IGNORED is 0x0, the cache maintenance is complete. Otherwise the cache has
not been not cleaned or invalidated properly. The maintenance request could have been ignored.

7. In the SECIRQSCLR register, write 0x1 to the corresponding field to clear the SECIRQSTAT
register.

5 Using software to program the AHB Cache
5.5 Use software for manual maintenance on the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-105

Non-Confidential

Example 5-5 Use Secure software to perform manual clean all or invalidate all maintenance

global bool cache_maint_ignored_interrupt_occured = false;
global bool cache_maint_done_interrupt_occured = false;

// The function returns true when the maintenance was successful or
// false when the maintenance was ignored.
// maintenance_type can be CLEAN_ALL INVALIDATE_ALL or CLEAN_AND_INVALIDATE_ALL
bool AHBCacheMaintenance(maintenance_type)

 // Ensure the cache is able to accept a new maintenance request
 bool no_ongoing_maintenance = false;
 repeat
 no_ongoing_maintenance = (!ReadRegisterField(MAINT_STATUS_ONGOING_EN_DIS) &&
 !ReadRegisterField(MAINT_STATUS_ONGOING_MAINT) &&
 !ReadRegisterField(MAINT_STATUS_ONGOING_PWR_MAINT);
 until no_ongoing_maintenance;

 // Ensure that there are no pending interrupts in the Secure Interrupt Status Register
 bool no_pending_interrupts = false;
 repeat
 service_and_clear_interrupts();
 no_pending_interrupts = (ReadRegister(SECIRQSTAT) == 0x0);
 until no_pending_interrupts;

 if(InterruptHandling) then
 // clear global interrupt occured flags
 cache_maint_ignored_interrupt_occured = false;
 cache_maint_done_interrupt_occured = false;

 // Enable the MAINT_DONE and MAINT_IGNORED interrupts
 WriteRegisterField(SECIRQEN_MAINT_DONE,0x1);
 WriteRegisterField(SECIRQEN_MAINT_IGNORED,0x1);

 // Trigger the maintenance operation
 case maintenance_type of
 when CLEAN_ALL
 WriteRegisterField(MAINT_CTRL_ALL_TRIG_CLEAN_ALL,0x1);
 when INVALIDATE_ALL
 WriteRegisterField(MAINT_CTRL_ALL_TRIG_INVALIDATE_ALL,0x1);
 when CLEAN_AND_INVALIDATE_ALL
 WriteRegister(MAINT_CTRL_ALL,0x3);

 if(InterruptHandling) then
 // wait for MAINT_DONE or MAINT_IGNORED interrupt to arrive (InterruptHandler)
 repeat
 Wait();
 until (cache_maint_ignored_interrupt_occured || cache_maint_done_interrupt_occured);
 // evaluate result
 if(cache_maint_ignored_interrupt_occured) then
 return false;
 else
 return true;
 else
 while true do
 if(ReadRegisterField(SECIRQSTAT_MAINT_IGNORED) == 0x1) then
 WriteRegisterField(SECIRQCLR_MAINT_IGNORED,0x1);
 return false;
 elsif(ReadRegisterField(SECIRQSTAT_MAINT_DONE) == 0x1) then
 WriteRegisterField(SECIRQCLR_MAINT_DONE,0x1);
 return true;

SecureInterruptHandler()
 if(ReadRegisterField(SECIRQSTAT_MAINT_IGNORED) == 0x1) then
 // The cache maintenance is ignored, continue
 cache_maint_ignored_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_MAINT_IGNORED,0x1);
 if(ReadRegisterField(SECIRQSTAT_MAINT_DONE) == 0x1) then
 // The cache maintenance is completed, continue
 cache_maint_done_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_MAINT_DONE,0x1);

5 Using software to program the AHB Cache
5.5 Use software for manual maintenance on the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-106

Non-Confidential

5.5.2 Use Secure software to perform manual maintenance by address

If the cache is enabled, Secure software can trigger manual maintenance operations by address.

 Note

To perform manual by address maintenance, you must provide an address range which aligns with cache
line boundaries.

Procedure
1. Ensure that the cache is able to accept a new maintenance request.

To check that no enable or disable maintenance is running, read the MAINT_STATUS register. The
ONGOING_EN_DIS, ONGOING_MAINT, and ONGOING_PWR_MAINT fields must read as 0x0.
If maintenance is running, you must wait until it has completed.

2. Ensure that there are no pending interrupts in the interrupt status register.
The SECIRQSTAT register must read as 0x0. If there are pending interrupts, the Secure software
must serve and clear them. The software can clear the pending interrupts by writing the active bits in
the SECIRQSCLR register.

3. If you are not using interrupt handling, skip this step.
If you are using interrupt handling, enable the MAINT_DONE and the MAINT_IGNORED interrupt.
Write 0x1 to the MAINT_DONE and the MAINT_IGNORED fields in the SECIRQEN register.

4. You must use a single Write-Access to perform a, b, and c:
a. Write the address which you want to invalidate or clean to the ADDR field of the

MAIN_CTRL_LINES register. The address bits [4:0] are ignored.
b. Write to the SECURITY field of the MAINT_CTRL_LINES register to set the security for the

memory range which is going to be invalidated or cleaned
c. Write the relevant value to one of the following fields in the MAINT_CTRL_LINES register to

trigger manual invalidate or clean all maintenance for a memory range with the parameters set in
step 4.

Table 5-4 Triggering maintenance operations using the MAINT_CTRL_LINES register

Maintenance operation Register field Value

Clean TRIG_CLEAN 0x1

Invalidate TRIG_INVALIDATE 0x2

Clean and invalidate TRIG_CLEAN and TRIG_INVALIDATE 0x3

5. Wait until the maintenance is completed. Do one of the following:
• If you are not using interrupt handling, poll the SECIRQSTAT register, and wait until the

MAINT_DONE or the MAINT_IGNORED field is set to 0x1.
• If you are using interrupt handling, wait for the interrupt to occur. In the SECIRQSTAT register,

the MAINT_DONE or the MAINT_IGNORED field must be set to 0x1.
6. Check the cache maintenance status. If in the SECIRQSTAT register the MAINT_DONE field is set

to 0x1 and the MAINT IGNORED field is set to 0x0, the cache maintenance is complete. Otherwise,
the cache line written in the ADDR field of the MAINT_CTRL_LINES has not been cleaned or
invalidated properly. The maintenance request could have been ignored.

7. In the SECIRQSCLR register, write 0x1 to the corresponding field to clear the SECIRQSTAT
register.

5 Using software to program the AHB Cache
5.5 Use software for manual maintenance on the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-107

Non-Confidential

 Note

Perform steps 4-5 for the remaining addresses in the memory region which you want to be invalidated or
cleaned.

Example 5-6 Use Secure software to perform manual maintenance by address

global bool cache_maint_ignored_interrupt_occured = false;
global bool cache_maint_done_interrupt_occured = false;

// The function returns true when the maintenance was successful or
// false when the maintenance was ignored.
// address is the 32 bit address you want to invalidate or clean, security is the memory
// type of that address - NON_SECURE or SECURE, maintenance_type can be CLEAN, INVALIDATE
// or CLEAN_AND_INVALIDATE
bool AHBCacheMaintenancebyAddressSecure(address, security, maintenance_type)

 // Ensure the cache is able to accept a new maintenance request
 bool no_ongoing_maintenance = false;
 repeat
 no_ongoing_maintenance = (!ReadRegisterField(MAINT_STATUS_ONGOING_EN_DIS) &&
 !ReadRegisterField(MAINT_STATUS_ONGOING_MAINT) &&
 !ReadRegisterField(MAINT_STATUS_ONGOING_PWR_MAINT);
 until no_ongoing_maintenance;

 // Ensure that there are no pending interrupts in the Secure Interrupt Status Register
 bool no_pending_interrupts = false;
 repeat
 service_and_clear_interrupts();
 no_pending_interrupts = (ReadRegister(SECIRQSTAT) == 0x0);
 until no_pending_interrupts;

 if(InterruptHandling) then
 // clear global interrupt occured flags
 cache_maint_ignored_interrupt_occured = false;
 cache_maint_done_interrupt_occured = false;

 // Enable the MAINT_DONE and MAINT_IGNORED interrupts
 WriteRegisterField(SECIRQEN_MAINT_DONE,0x1);
 WriteRegisterField(SECIRQEN_MAINT_IGNORED,0x1);

 // Write the address you want to invalidate and/or clean
 LineMaintenanceSecure(address, security, maintenance_type);

 if(InterruptHandling) then
 // wait for MAINT_DONE or MAINT_IGNORED interrupt to arrive (InterruptHandler)
 repeat
 Wait();
 until (cache_maint_ignored_interrupt_occured || cache_maint_done_interrupt_occured);
 // evaluate result
 if(cache_maint_ignored_interrupt_occured) then
 return false;
 else
 return true;
 else
 while true do
 if(ReadRegisterField(SECIRQSTAT_MAINT_IGNORED) == 0x1) then
 WriteRegisterField(SECIRQCLR_MAINT_IGNORED,0x1);
 return false;
 elsif(ReadRegisterField(SECIRQSTAT_MAINT_DONE) == 0x1) then
 WriteRegisterField(SECIRQCLR_MAINT_DONE,0x1);
 return true;

LineMaintenanceSecure(address, security, maintenance_type)
 integer secure;
 integer maintenance;

 // Resolve the security
 case security of
 when NON_SECURE
 secure = 0x0;
 when SECURE
 secure = 0x1;

 // Resolve the maintenance_type
 case maintenance_type of
 when CLEAN

5 Using software to program the AHB Cache
5.5 Use software for manual maintenance on the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-108

Non-Confidential

 maintenance = 0x1;
 when INVALIDATE
 maintenance = 0x2;
 when CLEAN_AND_INVALIDATE
 maintenance = 0x3;

 // Set the value to be written to the MAINT_CTRL_LINES register
 // -- address [31:5], reserved [4:3], security [2], invalidate [1], clean [0]
 maintenance_register_value = (address & 0xffffffe0) + (secure << 2) + maintenance;
 WriteRegister(MAINT_CTRL_LINES,maintenance_register_value);

SecureInterruptHandler()
 if(ReadRegisterField(SECIRQSTAT_MAINT_IGNORED) == 0x1) then
 // The cache maintenance is ignored, continue
 cache_maint_ignored_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_MAINT_IGNORED,0x1);
 if(ReadRegisterField(SECIRQSTAT_MAINT_DONE) == 0x1) then
 // The cache maintenance is completed, continue
 cache_maint_done_interrupt_occured = true;
 WriteRegisterField(SECIRQCLR_MAINT_DONE,0x1);

5.5.3 Use Non-secure software to perform manual maintenance by address

If the cache is enabled and Secure software sets the correct register field, Non-secure software can trigger
manual maintenance operations by address.

To allow Non-secure software to trigger manual maintenance, Secure software must set the
NSEC_MAINT_LINES_ALLOWED register field to 0x1 in the CTRL register.

 Note

To perform manual by address maintenance, you must provide an address range which aligns with cache
line boundaries.

Procedure
1. Read the NSEC_ACCESS register and ensure that the NSEC_MAINT_LINES_ALLOWED register

field is set to 0x1.
2. Ensure that the cache is able to accept a new maintenance request.

To check that no enable or disable maintenance is running, read the MAINT_STATUS register. The
ONGOING_EN_DIS, ONGOING_MAINT, and ONGOING_PWR_MAINT fields must read as 0x0.
If maintenance is running, you must wait until it has completed.

3. Ensure that there are no pending interrupts in the interrupt status register.
NSECIRQSTAT register must read as 0x0. If there are pending interrupts, the Non-secure software
must serve and clear them. The Non-secure software can clear the interrupts by writing the
corresponding bits in the NSECIRQSCLR register.

4. If you are not using interrupt handling, skip this step.

If you are using interrupt handling: write 0x1 to the MAINT_DONE and the MAINT_IGNORED
fields in the NSECIRQEN register, to enable the MAINT_DONE and the MAINT_IGNORED
interrupt.

5. Use the same Write-Access to perform steps a and b.
a. Write the address which needs to be invalidated or cleaned to the ADDR field of the

MAIN_CTRL_LINES register. The address bits [4:0] are ignored. This address is automatically
considered as Non-secure.

b. To trigger manual clean or clean and invalidate maintenance for a memory range with the
parameters set in step a, write the relevant value to one of the following fields in the
MAINT_CTRL_LINES register.

5 Using software to program the AHB Cache
5.5 Use software for manual maintenance on the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-109

Non-Confidential

 Note

Non-secure software cannot perform invalidate by address maintenance without also performing
clean by address maintenance.

Table 5-5 Triggering maintenance operations using the MAINT_CTRL_LINES register

Maintenance operation Register field Value

Clean TRIG_CLEAN 0x1

Clean and invalidate TRIG_INVALIDATE and TRIG_CLEAN 0x3

6. Wait until the maintenance is complete. Do one of the following:
• If you are not using interrupt handling, poll the SECIRQSTAT register, and wait until the

MAINT_DONE or the MAINT_IGNORED field is set to 0x1.
• If you are using interrupt handling, wait for the interrupt to occur. In the NSECIRQSTAT register,

the MAINT_DONE or the MAINT_IGNORED field must be set to 0x1.
7. Check the cache maintenace status. If the MAINT_IGNORED field is not set to 0x1 in the

NSECIRQSTAT register, the memory range written in the ADDR field of the MAINT_CTRL_LINES
is now cleaned or cleaned and invalidated. Otherwise it means that the cache line is not cleaned or
invalidated properly.

 Note

Perform steps 5-6 for the remaining addresses in the memory region which needs to be invalidated or
cleaned.

8. Clear the interrupt by writing 1 to the corresponding field in the NSECIRQSCLR register.

Example 5-7 Use Non-secure software to perform manual maintenance by address

global bool cache_maint_ignored_interrupt_occured = false;
global bool cache_maint_done_interrupt_occured = false;

// The function returns true when the maintenance is succesful or
// false when the maintenance is ignored.
// address is the 32 bit address you want to invalidate or clean, maintenance_type can be
// CLEAN or CLEAN_AND_INVALIDATE (Non secure software cannot perform invalidate by
// address without clean)
bool AHBCacheMaintenancebyAddressNonSecure(address, maintenance_type)

 // Make sure the Non secure software maintenance is enabled
 if (ReadRegisterField(NSEC_ACCESS_NSEC_MAINT_LINES_ALLOWED) == 0) then
 Error();

 // Make sure the cache is able to accept a new maintenance request
 bool no_ongoing_maintenance = false;
 repeat
 no_ongoing_maintenance = (!ReadRegisterField(MAINT_STATUS_ONGOING_EN_DIS) &&
 !ReadRegisterField(MAINT_STATUS_ONGOING_MAINT) &&
 !ReadRegisterField(MAINT_STATUS_ONGOING_PWR_MAINT);
 until no_ongoing_maintenance;

 // Make sure that there are no pending interrupts in the Non secure Interrupt
 // Status Register
 bool no_pending_interrupts = false;
 repeat
 service_and_clear_interrupts();
 no_pending_interrupts = (ReadRegister(NSECIRQSTAT) == 0x0);
 until no_pending_interrupts;

 if(InterruptHandling) then
 // clear global interrupt occured flags
 cache_maint_ignored_interrupt_occured = false;
 cache_maint_done_interrupt_occured = false;

 // Enable the MAINT_DONE and MAINT_IGNORED interrupts

5 Using software to program the AHB Cache
5.5 Use software for manual maintenance on the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-110

Non-Confidential

 WriteRegisterField(NSECIRQEN_MAINT_DONE,0x1);
 WriteRegisterField(NSECIRQEN_MAINT_IGNORED,0x1);

 // Write the address you want to invalidate and/or clean
 LineMaintenanceNonSecure(address, maintenance_type);

 if(InterruptHandling) then
 // wait for MAINT_DONE or MAINT_IGNORED interrupt to arrive (InterruptHandler)
 repeat
 Wait();
 until (cache_maint_ignored_interrupt_occured || cache_maint_done_interrupt_occured);
 // evaluate result
 if(cache_maint_ignored_interrupt_occured) then
 return false;
 else
 return true;
 else
 while true do
 if(ReadRegisterField(NSECIRQSTAT_MAINT_IGNORED) == 0x1) then
 WriteRegisterField(NSECIRQCLR_MAINT_IGNORED,0x1);
 return false;
 elsif(ReadRegisterField(NSECIRQSTAT_MAINT_DONE) == 0x1) then
 WriteRegisterField(NSECIRQCLR_MAINT_DONE,0x1);
 return true;

LineMaintenanceNonSecure(address, maintenance_type)
 integer maintenance;

 // Resolve the maintenance_type
 case maintenance_type of
 when CLEAN
 maintenance = 0x1;
 when CLEAN_AND_INVALIDATE
 maintenance = 0x3;

 // Set the value to be written to the MAINT_CTRL_LINES register
 // -- address [31:5], reserved [4:3], security = 0 [2], invalidate [1], clean [0]
 maintenance_register_value = (address & 0xffffffe0) + maintenance;
 WriteRegister(MAINT_CTRL_LINES,maintenance_register_value);

NonSecureInterruptHandler()
 if(ReadRegisterField(NSECIRQSTAT_MAINT_IGNORED) == 0x1) then
 // The cache maintenance is ignored, continue
 cache_maint_ignored_interrupt_occured = true;
 WriteRegisterField(NSECIRQCLR_MAINT_IGNORED,0x1);
 if(ReadRegisterField(NSECIRQSTAT_MAINT_DONE) == 0x1) then
 // The cache maintenance is completed, continue
 cache_maint_done_interrupt_occured = true;
 WriteRegisterField(NSECIRQCLR_MAINT_DONE,0x1);

5 Using software to program the AHB Cache
5.5 Use software for manual maintenance on the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-111

Non-Confidential

5.6 Use software to access the statistics counters in the AHB Cache
The AHB Cache provides four statistics counters: Secure hit and miss, and Non-secure hit and miss
counters.

This section contains the following subsections:
• 5.6.1 Access the Secure statistics counters on page 5-112.
• 5.6.2 Use Secure software to access the Non-secure statistics counters on page 5-113.
• 5.6.3 Use Non-secure software to access the Non-secure statistics counters on page 5-114.

5.6.1 Access the Secure statistics counters

Only Secure software can use the Secure statistics counters in the design.

Procedure
1. Ensure that there are no pending interrupts in the interrupt status register. The SECIRQSTAT register

must read as 0x0.
If there are pending interrupts, the Secure software must serve and clear them. The software can clear
the pending interrupts by writing the active bits in the SECIRQSCLR register.

2. Enable the statistics counters for Secure transactions by writing 0x1 to the ENABLE field in the
SECSTATCTRL register.

3. Reset the statistics counters for Secure transactions by writing 0x1 to the RESET field in the
SECSTATCTRL register.

4. Execute the code on which the profiling is needed.
5. Disable the statistics counters for Secure transactions by writing 0x0 to the ENABLE field in the

SECSTATCTRL register.
6. Check that the SECURE_CNT_SAT field is not set in the SECIRQSTAT register to ensure that the

measurements are valid.
7. Read the hit statistics from the SECHIT register.
8. Read the miss statistics from the SECMISS register.

Example 5-8 The Secure statistics counters

// Call this function when there are no pending interrupts in the interrupt status register.
// (The SECIRQSTAT register must read as 0x0.)
AHBCacheSecureStatisticCounter()

 // Clear SECIRQSTAT_SECURE_CNT_SAT if it is set
 WriteRegisterField(SECIRQSCLR_SECURE_CNT_SAT, 0x1);

 // Enable the statistics counters for Secure transactions
 WriteRegisterField(SECSTATCTRL_ENABLE,0x1);

 // Reset the statistics counters for Secure transactions
 WriteRegisterField(SECSTATCTRL_RESET,0x1);

 // Execute the code you need to profile

 ...

 // Disable the statistics counters for Secure transactions
 WriteRegisterField(SECSTATCTRL_ENABLE,0x0);

 integer hit_count;
 integer miss_count;

 // If the counters were saturated then their values are invalid
 if (ReadRegisterField(SECIRQSTAT_SECURE_CNT_SAT) == 0x1) then
 Error();
 else
 hit_count = ReadRegister(SECHIT);
 miss_count = ReadRegister(SECMISS);

5 Using software to program the AHB Cache
5.6 Use software to access the statistics counters in the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-112

Non-Confidential

 print("Hit count is " + hit_count);
 print("Miss count is " + miss_count);

5.6.2 Use Secure software to access the Non-secure statistics counters

Secure software can use the Non-secure statistics counters in the design.

If ALLOW_NSEC_NSECSTAT is set and the Secure software starts the Non-secure counters, then
saturation triggers a Secure interrupt.

Procedure
1. Ensure that there are no pending interrupts in the interrupt status register. The SECIRQSTAT register

must read as 0x0.
If there are pending interrupts, the Secure software must serve and clear them. The software can clear
the pending interrupts by writing the active bits in the SECIRQSCLR register.

2. Enable the statistics counters for Non-secure transactions by writing 0x1 to the ENABLE field in the
NSECSTATCTRL register.

3. Reset the statistics counters for Non-secure transactions by writing 0x1 to the RESET field in the
NSECSTATCTRL register.

4. Execute the code on which the profiling is needed.
5. Disable the statistics counters for Non-secure transactions by writing 0x0 to the ENABLE field in the

NSECSTATCTRL register.
6. Check in the SECIRQSTAT register that the NSECURE_CNT_SAT field is not set to ensure that the

measurements are valid.
7. Read the hit statistics from the NSECHIT register.
8. Read the miss statistics from the NSECMISS register.

Example 5-9 Use Secure software to access the Non-secure statistics counters

// Call this function when there are no pending interrupts in the interrupt status register.
// (The SECIRQSTAT register must read as 0x0.)
AHBCacheSecureUsingNonSecureStatisticCounter()

 // Clear SECIRQSTAT_NSECURE_CNT_SAT if it is set
 WriteRegisterField(SECIRQSCLR_NSECURE_CNT_SAT, 0x1);

 // Enable the statistics counters for Secure transactions
 WriteRegisterField(NSECSTATCTRL_ENABLE,0x1);

 // Reset the statistics counters for Secure transactions
 WriteRegisterField(NSECSTATCTRL_RESET,0x1);

 // Execute the code you need to profile

 ...

 // Disable the statistics counters for Secure transactions
 WriteRegisterField(NSECSTATCTRL_ENABLE,0x0);

 integer hit_count;
 integer miss_count;

 // If the counters were saturated then their values are invalid
 if (ReadRegisterField(SECIRQSTAT_NSECURE_CNT_SAT) == 0x1) then
 Error();
 else
 hit_count = ReadRegister(NSECHIT);
 miss_count = ReadRegister(NSECMISS);

 print("Hit count is " + hit_count);
 print("Miss count is " + miss_count);

5 Using software to program the AHB Cache
5.6 Use software to access the statistics counters in the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-113

Non-Confidential

5.6.3 Use Non-secure software to access the Non-secure statistics counters

Non-secure software can use the Non-secure statistics counters.

To allow the Non-secure software to use the Non-secure counters, Secure software must set the
NSEC_NSECSTAT_ALLOWED register field to 0x1 in the CTRL register.

 Note

Non-secure software cannot access the Secure statistics.

Procedure
1. Read the NSEC_ACCESS register and ensure that the NSEC_NSECSTAT_ALLOWED register field

is set to 0x1.
2. Ensure that there are no pending interrupts in the interrupt status register. NSECIRQSTAT register

must read as 0x0.
If there are pending interrupts, the Non-secure software must serve and clear them. The Non-secure
software can clear the interrupts by writing the corresponding bits in the NSECIRQSCLR register.

3. Enable the statistics counters for Non-secure transactions by writing 0x1 to the ENABLE field in the
NSECSTATCTRL register.

4. Reset the statistics counters for Non-secure transactions by writing 0x1 to the RESET field in the
NSECSTATCTRL register.

5. Execute the Non-secure code on which the profiling is needed.
6. Disable the statistics counters for Non-secure transactions by writing 0x0 to the ENABLE field in the

NSECSTATCTRL register.
7. Check in the SECIRQSTAT register that the NSECURE_CNT_SAT field is not set to ensure that the

measurements are valid.
8. Read the hit statistics from the NSECHIT register.
9. Read the miss statistics from the NSECMISS register.

Example 5-10 Use Non-secure software to access the Non-secure statistics counters

// Call this function when there are no pending interrupts in the interrupt status register.
// (The SECIRQSTAT register must read as 0x0.)
AHBCacheNonSecureUsingNonSecureStatisticCounter()

 // Ensure the non secure statistics is enabled
 if (ReadRegisterField(NSEC_ACCESS_NSEC_NSECSTAT) == 0) then
 Error();

 // Clear NSECIRQSTAT_NSECURE_CNT_SAT if it is set
 WriteRegisterField(NSECIRQSCLR_NSECURE_CNT_SAT, 0x1);

 // Enable the statistics counters for non secure transactions
 WriteRegisterField(NSECSTATCTRL_ENABLE,0x1);

 // Reset the statistics counters for non secure transactions
 WriteRegisterField(NSECSTATCTRL_RESET,0x1);

 // Execute the code you need to profile

 ...

 // Disable the statistics counters for non secure transactions
 WriteRegisterField(NSECSTATCTRL_ENABLE,0x0);

 integer hit_count;
 integer miss_count;

5 Using software to program the AHB Cache
5.6 Use software to access the statistics counters in the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-114

Non-Confidential

 // If the counters were saturated then their values are invalid
 if (ReadRegisterField(NSECIRQSTAT_NSECURE_CNT_SAT) == 0x1) then
 Error();
 else
 hit_count = ReadRegister(NSECHIT);
 miss_count = ReadRegister(NSECMISS);

 print("Hit count is: " + hit_count);
 print("Miss count is: " + miss_count);

5 Using software to program the AHB Cache
5.6 Use software to access the statistics counters in the AHB Cache

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-115

Non-Confidential

5.7 Power control
The AHB Cache supports various low-power features such as clock or power gating.

This section contains the following subsections:
• 5.7.1 Sleep mode and clock gating on page 5-116.
• 5.7.2 Sleep mode with cache RAMs in retention on page 5-116.
• 5.7.3 Sleep mode with cache RAMs in power down state on page 5-116.
• 5.7.4 Handle Warm reset by using software on page 5-116.

5.7.1 Sleep mode and clock gating

The design supports architectural clock gating.

You do not need to use software to perform architectural clock gating.

When the QSTOPPED state is requested on the LPI Clock Q-Channel interface, a hardware handshake is
performed through the LPI.

If no clock is required, the AHB Cache automatically accepts the quiescence state. The cache requests a
clock when it is needed for its internal operation.

5.7.2 Sleep mode with cache RAMs in retention

The AHB Cache supports retention or RAM retention through the QSTOPPED state of LPI Power Q-
Channel interface.

You do not have to use software to trigger sleep mode with cache RAMs in retention.

When the QSTOPPED state is requested, the AHB Cache starts clean all automatic maintenance.
 Note

You can use software to check that the configuration port dis_pwr_down_maint is set to 0 by reading
the DIS_PWR_DOWN_MAINT field in the HWPARAMS register.

When exiting from retention state, the cache returns to its previous state. For example, if the AHB Cache
was enabled before entering retention state, it is enabled again after exiting the retention state and it
remains enabled. The cache data is preserved.

5.7.3 Sleep mode with cache RAMs in power down state

As the LPI Q-Channel supports only a single power domain, the individual management of logic and
RAM domains is not supported.

5.7.4 Handle Warm reset by using software

The cache supports Warm reset through the QSTOPPED state of LPI Power Q-Channel interface.

When the QSTOPPED state is requested, the AHB Cache starts clean all automatic maintenance.

To ensure reliably quick acceptance of the low-power request, you can use software to disable clean all
automatic maintenance by setting the configuration port dis_pwr_down_maint to 1. Otherwise, no
software interaction is needed.

The software can check that the configuration port dis_pwr_down_maint is set to 1 by reading the
DIS_PWR_DOWN_MAINT field in the HWPARAMS register.

When exiting from Warm reset state without being reset, the cache returns to its previous state. If the
cache was enabled in its previous state, it remains enabled. The cached data is preserved.

5 Using software to program the AHB Cache
5.7 Power control

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-116

Non-Confidential

Appendix A
Signal descriptions

This appendix describes the AHB Cache interface signals.

It contains the following sections:
• A.1 Clock and reset signals on page Appx-A-118.
• A.2 LPI signals on page Appx-A-119.
• A.3 AHB Slave interface signals on page Appx-A-120.
• A.4 AHB Master interface signals on page Appx-A-122.
• A.5 APB interface signals on page Appx-A-124.
• A.6 System interface signals on page Appx-A-125.
• A.7 Memory interface signals on page Appx-A-126.
• A.8 Configuration input ports on page Appx-A-128.

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-117

Non-Confidential

A.1 Clock and reset signals
To reduce power consumption when not in active use, the AHB Cache allows clock gating of the module.

Table A-1 Clock and reset signals

Signal name Direction Connection Description

clk Input Clock generator Clock signal. All signal timings are related to the rising edge.

resetn Input Reset controller Active-LOW reset. This signal resets all flops asynchronously when asserted.
 Note

resetn must be deasserted synchronously with clk.

Related concepts
2.1 Clocking and reset on page 2-24

A Signal descriptions
A.1 Clock and reset signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-118

Non-Confidential

A.2 LPI signals
The AHB Cache uses LPI Q-Channels for power and clock management.

AHB Cache clock and power management is based on the standard modes and handshake behavior as
specified in the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces,
Issue C.

Table A-2 Power control LPI-Q signals

Signal name Direction Connection Description

pwr_qreqn Input PPU or power controller Active-LOW quiescence request signal driven by the power controller.

pwr_qacceptn Output PPU or power controller When LOW, this signal indicates that the AHB Cache accepts the quiescence
request from the power controller.

pwr_qdeny Output PPU or power controller When HIGH, this signal indicates that the AHB Cache denies the quiescence
request from the power controller.

pwr_qactive Output PPU or power controller This signal, when HIGH, indicates to the controller that the AHB Cache needs
power. When the signal is driven LOW, the AHB Cache might accept a
quiescence request.

Table A-3 Clock control LPI-Q signals

Signal name Direction Connection Description

clk_qreqn Input Clock controller Active-LOW quiescence request signal driven by the clock controller.

clk_qacceptn Output Clock controller When LOW, this signal indicates that the AHB Cache accepts the quiescence request
from the clock controller.

clk_qdeny Output Clock controller When HIGH, this signal indicates that the AHB Cache denies the quiescence request
from the clock controller.

clk_qactive Output Clock controller This signal, when HIGH, indicates to the controller that the AHB Cache requires the
clock. When the signal is driven LOW, the AHB Cache might accept a quiescence
request.

Related concepts
2.5 Low-Power Interface on page 2-31
2.5.2 Clock LPI on page 2-31
2.5.3 Power LPI on page 2-31

A Signal descriptions
A.2 LPI signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-119

Non-Confidential

A.3 AHB Slave interface signals
The AHB Slave interface receives AHB transfers and forwards them to the AHB master or performs a
cache lookup.

 Note

The parameterized indexes are derived from configuration parameters. For more information, see the
Arm® CoreLink™ AHB Cache Configuration and Integration Manual.

Table A-4 AHB slave interface signals

Signal name Direction Connection Description

hsel_s Input CPU or system
interconnect

Slave select. This signal qualifies a valid transfer.

hnonsec_s Input CPU or system
interconnect

Non-secure transfer indicator

haddr_s[31:0] Input CPU or system
interconnect

This is a 32-bit bus address.

htrans_s[1:0] Input CPU or system
interconnect

Transfer type

hsize_s[2:0] Input CPU or system
interconnect

Indicates the size of the transfer.

hwrite_s Input CPU or system
interconnect

Indicates the direction of a transfer.

hready_s Input CPU or system
interconnect

Indicates the completion of a transfer.

hprot_s[6:0] Input CPU or system
interconnect

This signal indicates whether the transfer is:
• A privileged or normal access
• A data or an instruction access

It also indicates the memory attributes of a transfer.

hburst_s[2:0] Input CPU or system
interconnect

Indicates the Burst type.

hmastlock_s Input CPU or system
interconnect

Indicates a locked sequence.

hwdata_s[31:0] Input CPU or system
interconnect

Write data. The AHB Cache can forward this signal
through a direct path or a buffer path.

hexcl_s Input CPU or system
interconnect

Indicates an exclusive transfer.

hmaster_s[HMASTER_WIDTH-1:0] Input CPU or system
interconnect

Master identifier, configurable width. The AHB Cache
forwards this input when forwarding a transfer to the
AHB Master interface.

hrdata_s[31:0] Output CPU or system
interconnect

Read data

A Signal descriptions
A.3 AHB Slave interface signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-120

Non-Confidential

Table A-4 AHB slave interface signals (continued)

Signal name Direction Connection Description

hreadyout_s Output CPU or system
interconnect

Completion indicator for transfers targeting the
AHB Cache. The AHB Cache drives this signal LOW
to extend the transfer.

hresp_s Output CPU or system
interconnect

Transfer response. The slave uses this signal to indicate
errors.

hexokay_s Output CPU or system
interconnect

Exclusive okay

hruser_s[HRUSER_WIDTH-1:0] Output CPU or system
interconnect

Read channel User signals, configurable bus width. If
the AHB Cache cannot provide valid read channel user
signals for cacheable read transfers, it sets the value to
0. The input for hruser_s is 0x0 for a cacheable
transfer.

 Note

Only present when HRUSER_WIDTH > 0.

hauser_s[HAUSER_WIDTH-1:0] Input CPU or system
interconnect

Address channel User signals, configurable bus width.
 Note

Only present when HAUSER_WIDTH > 0.

hwuser_s[HWUSER_WIDTH-1:0] Input CPU or system
interconnect

Write channel User signals, configurable bus width.
 Note

Only present when HWUSER_WIDTH > 0.

Table A-5 AHB Slave sideband signals

Signal
name

Direction Connection Description

hrxom_s Output CPU or system
interconnect

The AHB Cache drives this signal in response to a read request. The timing for
hrxom_s must follow the timing for hruser_s[HRUSER_WIDTH-1:0].

 Note

Only present when XOM=ON.

hdebug_s Input CPU, debugger, or
system interconnect

AHB address phase sideband signal. This signal indicates that the AHB access is a
debug access. hdebug_s can be decoded from HMASTER, if the debugger has a
specific identifier.

A Signal descriptions
A.3 AHB Slave interface signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-121

Non-Confidential

A.4 AHB Master interface signals
The AHB master interface has many functions, including generating the Linefill and Write-Back AHB
transactions and forwarding Non-cacheable transactions.

 Note

The parameterized indexes are derived from configuration parameters. For more information, see the
Arm® CoreLink™ AHB Cache Configuration and Integration Manual.

Table A-6 AHB Master signals

Signal name Direction Connection Description

hnonsec_m Output System interconnect or
memory controller

Non-secure transfer indicator

haddr_m[31:0] Output System interconnect or
memory controller

Address

htrans_m[1:0] Output System interconnect or
memory controller

Transfer type

hsize_m[2:0] Output System interconnect or
memory controller

Indicates the size of the transfer.

hwrite_m Output System interconnect or
memory controller

Indicates the direction of a transfer.

hready_m Input System interconnect or
memory controller

Indicates the completion of a transfer. The slave
drives this ready signal LOW to extend the transfer.
The inactive state is HIGH.

hprot_m[6:0] Output System interconnect or
memory controller

Protection control

hburst_m[2:0] Output System interconnect or
memory controller

Indicates the burst type.

hmastlock_m Output System interconnect or
memory controller

Indicates a locked sequence.

hwdata_m[31:0] Output System interconnect or
memory controller

Write data

hexcl_m Output System interconnect or
memory controller

Indicates an exclusive transfer.

hmaster_m[HMASTER_WIDTH-1:0] Output System interconnect or
memory controller

Master identifier, configurable width.

hrdata_m[31:0] Input System interconnect or
memory controller

Read data

hresp_m Input System interconnect or
memory controller

Transfer response. The slave uses this signal to
indicate errors.

hexokay_m Input System interconnect or
memory controller

Exclusive okay

A Signal descriptions
A.4 AHB Master interface signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-122

Non-Confidential

Table A-6 AHB Master signals (continued)

Signal name Direction Connection Description

hruser_m[HRUSER_WIDTH-1:0] Input System interconnect or
memory controller

Read channel User signals, configurable width.
 Note

Only present when HRUSER_WIDTH > 0.

hauser_m[HAUSER_WIDTH-1:0] Output System interconnect or
memory controller

Address channel User signals, configurable width.
Set to 0 when the transfer is a linefill or a Write-
Back generated by the cache. All other transfers,
including buffered write transfers, forward this user
signal.

 Note

Only present when HAUSER_WIDTH > 0.

hwuser_m[HWUSER_WIDTH-1:0] Output System interconnect or
memory controller

Write channel User signals, configurable width. Set
to 0 when the transfer is a linefill or a Write-Back
generated by the cache. All other transfers,
including buffered write transfers, forward this user
signal.

 Note

Only present when HWUSER_WIDTH > 0.

Table A-7 AHB Master sideband signals

Signal name Direction Connection Description

hrxom_m Input System interconnect
or memory controller

The slave asserts this signal responding to a read request, when a transaction hits
an XOM region. The XOM attribute must be consistent throughout each cache
line. The signal must follow the same timing as hruser_m.

 Note

Only present when XOM=ON.

A Signal descriptions
A.4 AHB Master interface signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-123

Non-Confidential

A.5 APB interface signals
The APB interface provides a software control interface to the AHB Cache.

Table A-8 APB interface signals

Signal name Direction Connection Description

paddr[11:0] Input APB bridge or interconnect 12-bit address bus

pwrite Input APB bridge or interconnect When HIGH, this signal indicates a write. When LOW, it indicates a read.

psel Input APB bridge or interconnect When HIGH, the APB slave is selected.

penable Input APB bridge or interconnect Starts the APB transfer one cycle after psel.

pwdata [31:0] Input APB bridge or interconnect The data input of the APB slave when pwrite is HIGH.

prdata [31:0] Output APB bridge or interconnect The read data output of the APB slave when pwrite is LOW.

pready Output APB bridge or interconnect The slave drives this ready signal LOW to extend the transfer.

pslverr Output APB bridge or interconnect The slave uses this error signal to indicate that an error has occurred during
the transfer and that the transfer was aborted.

pprot[2:0] Input APB bridge or interconnect APB Protection type. This signal indicates the privilege or security level of
the transaction and whether the transaction is a data access or an instruction
access.

pstrb[3:0] Input APB bridge or interconnect Write strobes. This signal indicates which byte lanes to update during a
write transfer. There is one write strobe for every 8 bits of the write data
bus. Write strobes must not be active during a read transfer.

Table A-9 APB interface sideband signals

Signal name Direction Connection Description

pclken Input Clock generator The clock enable signal. This signal allows the APB to run on a divided
frequency.

 Note

This signal must be periodical and synchronous to clk.

pwakeup Input APB bridge or
interconnect

Wake up signal. This signal is used to indicate that there is ongoing activity that
is associated with the APB interface.

A Signal descriptions
A.5 APB interface signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-124

Non-Confidential

A.6 System interface signals
The AHB Cache has separate interrupt lines for signaling Secure or Non-secure transaction-related
events. It also has a hardware status signal for powerdown maintenance. For performance monitoring,
the AHB Cache provides a hardware trigger signal for the snapshotting feature.

Table A-10 System signals

Signal name Direction Connection Description

sec_irq Output CPU or NVIC Secure interrupt request

nsec_irq Output CPU or NVIC Non-secure interrupt request

pwr_maintenance Output CPU or power controller Status signal for an ongoing powerdown maintenance operation.

pmsnapshotreq Input Performance Monitoring
Unit (PMU)

A trigger signal which initiates the capture of the current value of the
statistics counters. Must be a synchronous pulse.

 Note

Only present when SNAPSHOTTING=ON.

Related concepts
2.4 Interrupts on page 2-30

A Signal descriptions
A.6 System interface signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-125

Non-Confidential

A.7 Memory interface signals
Each type of memory interface has a dedicated set of signals.

This section contains the following subsections:
• A.7.1 Data RAM interface signals on page Appx-A-126.
• A.7.2 Tag RAM interface signals on page Appx-A-126.
• A.7.3 Dirty RAM interface signals on page Appx-A-127.

A.7.1 Data RAM interface signals

The Data RAM interface executes Data-RAM-related read or write requests.

For information about the Index Width (IW), Data RAM Address Width (DAW), and Tag RAM Data
Width (TDW), see section 6.3.1. RAM bus widths in the Arm® CoreLink™ AHB Cache Configuration and
Integration Manual.

Table A-11 Cache Data RAM interface signals

Signal name Direction Connection Description

data_ram_cs[3:0] Output Data RAM Data RAM chip select for the respective data RAM block.

data_ram_bytewe[3:0] Output Data RAM Data RAM byte-write enable. This bus is connected to each RAM block.

data_ram_addr0[DAW-1:0] Output Data RAM Address for Data RAM block0. The upper index is cache-size dependent.

data_ram_addr1[DAW-1:0] Output Data RAM Address for Data RAM block1. The upper index is cache-size dependent.

data_ram_addr2[DAW-1:0] Output Data RAM Address for Data RAM block2. The upper index is cache-size dependent.

data_ram_addr3[DAW-1:0] Output Data RAM Address for Data RAM block3. The upper index is cache-size dependent.

data_ram_wdata0[31:0] Output Data RAM Write data to Data RAM block0

data_ram_wdata1[31:0] Output Data RAM Write data to Data RAM block1

data_ram_wdata2[31:0] Output Data RAM Write data to Data RAM block2

data_ram_wdata3[31:0] Output Data RAM Write data to Data RAM block3

data_ram_rdata0[31:0] Input Data RAM Read data from Data RAM block0

data_ram_rdata1[31:0] Input Data RAM Read data from Data RAM block1

data_ram_rdata2[31:0] Input Data RAM Read data from Data RAM block2

data_ram_rdata3[31:0] Input Data RAM Read data from Data RAM block3

A.7.2 Tag RAM interface signals

The Tag RAM interface executes Tag RAM-related read or write requests.

For information about the Index Width (IW), Data RAM Address Width (DAW), and Tag RAM Data
Width (TDW), see section 6.3.1. RAM bus widths in the Arm® CoreLink™ AHB Cache Configuration and
Integration Manual.

Table A-12 Cache Tag RAM interface signals

Signal name Direction Connection Description

tag_ram_cs[3:0] Output Tag RAM Data RAM chip select for the respective Tag RAM block.

tag_ram_we[3:0] Output Tag RAM Tag RAM write enable for the respective Tag RAM block.

A Signal descriptions
A.7 Memory interface signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-126

Non-Confidential

Table A-12 Cache Tag RAM interface signals (continued)

Signal name Direction Connection Description

tag_ram_addr[IW-1:0] Output Tag RAM Address for Tag RAMs. This bus is connected to each RAM block. The
upper index is cache-size dependent.

tag_ram_wdata[TDW-1:0] Output Tag RAM Write data to the Tag RAMs. This bus is connected to each RAM block.
The upper index is cache-size dependent.

tag_ram_rdata0[TDW-1:0] Input Tag RAM Read data from Tag RAM block0. The upper index is cache-size dependent.

tag_ram_rdata1[TDW-1:0] Input Tag RAM Read data from Tag RAM block1. The upper index is cache-size dependent.

tag_ram_rdata2[TDW-1:0] Input Tag RAM Read data from Tag RAM block2. The upper index is cache-size dependent.

tag_ram_rdata3[TDW-1:0] Input Tag RAM Read data from Tag RAM block3. The upper index is cache-size dependent.

A.7.3 Dirty RAM interface signals

The Cache Dirty RAM interface executes Dirty-RAM-related read or write requests.

For information about the Index Width (IW), Data RAM Address Width (DAW), and Tag RAM Data
Width (TDW), see section 6.3.1. RAM bus widths in the Arm® CoreLink™ AHB Cache Configuration and
Integration Manual.

Table A-13 Cache Dirty RAM interface

Signal name Direction Connection Description

dirty_ram_cs Output Dirty RAM Dirty RAM chip select

dirty_ram_bitwe[3:0] Output Dirty RAM Dirty RAM bit-write enable

dirty_ram_addr[IW-1:0] Output Dirty RAM Address to the Dirty RAM. The upper index is cache-size independent.

dirty_ram_wdata[3:0] Output Dirty RAM Write data to the Dirty RAM.

dirty_ram_rdata[3:0] Input Dirty RAM Read data from the Dirty RAM.

A Signal descriptions
A.7 Memory interface signals

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-127

Non-Confidential

A.8 Configuration input ports
There are several configuration signals that you must use to configure AHB Cache behavior.

For more information about the configuration input ports, see the Arm® CoreLink™ AHB Cache
Configuration and Integration Manual.

Table A-14 Configuration input ports

Name Direction Connection Description

apb_violation_resp Input CPU or tie-off The AHB Cache uses this signal to respond with an error to illegal
operations on the APB interface.

Illegal operations on the APB interface include:
• Writing with no full write strobe
• Accessing non-word aligned addresses
• Instruction accesses
• Non-privileged accesses

ahb_violation_resp Input CPU or tie-off The AHB Cache uses this signal to control whether illegal access
attempts to the cached data are responded with a bus error or silently
ignored. Illegal accesses currently only include data type reads into
XOM cached memory.

The signal has no effect on responses that are returned from the
downstream interface.

 Note

Only present when XOM=ON.

power_on_enable Input CPU or tie-off This signal enables the cache automatically after powerup.

dis_pwr_down_maint Input CPU, power controller,
or tie-off

This signal turns off powerdown maintenance.

dis_cache_en_maint Input CPU, power controller,
or tie-off

This signal turns off cache enable maintenance.

dis_cache_dis_maint Input CPU, power controller,
or tie-off

This signal turns off cache disable maintenance.

A Signal descriptions
A.8 Configuration input ports

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-128

Non-Confidential

Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• B.1 Revisions on page Appx-B-130.

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-129

Non-Confidential

B.1 Revisions
This appendix describes changes between released issues of this book.

Table B-1 Issue 0000-01

Change Location

First release. -

Table B-2 Differences between issue 0000-01 and issue 0000-02

Change Location

Added information about the AHB interface • 2.2.2 Write-Through and Write-Back support on page 2-26
• 2.2.3 Exclusive access sequences on page 2-26

Added information about cache enable and cache disable maintenance • Cache enable maintenance on page 3-41
• Cache disable maintenance on page 3-42

Added information about power_on_enable 3.3.9 power_on_enable on page 3-43

Added POWER_ON_ENABLE, DIS_PWR_DOWN_MAINT,
DIS_CACHE_DIS_MAINT, and DIS_CACHE_EN_MAINT to
HWPARAMS bit description

4.4.1 HWPARAMS, hardware parameter register on page 4-52

Added DENY_POWERDOWN to CTRL bit description 4.4.2 CTRL, control register on page 4-54

Added PIDR7, PIDR6, and PIDR5 registers • 4.4.33 PIDR7, peripheral ID register 7 on page 4-86
• 4.4.32 PIDR6, peripheral ID register 6 on page 4-85
• 4.4.31 PIDR5, peripheral ID register 5 on page 4-84

Table B-3 Differences between issue 0000-02 and 0000-03

Change Location

Added note about snapshotting during clock and power
quiescence

3.2.1 Snapshotting on page 3-37

Added detail on cache disable maintenance Cache disable maintenance on page 3-42

Added Chapter 5 Chapter 5 Using software to program the AHB Cache on page 5-95

Changed signal name from pwakeup_s to pwakeup A.5 APB interface signals on page Appx-A-124

B Revisions
B.1 Revisions

101807_0000_03_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-130

Non-Confidential

	Arm® CoreLink™ AHB Cache Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Overview
	1.1 : Basic terms
	1.2 : About the AHB Cache
	1.3 : Configurable features
	1.4 : Compatibility
	1.5 : Implementations
	1.6 : Compliance
	1.7 : Product documentation
	1.8 : Product revisions

	2 : Interfaces
	2.1 : Clocking and reset
	2.2 : AHB interface
	2.2.1 : Latency and stalling on the AHB interface
	2.2.2 : Write-Through and Write-Back support
	2.2.3 : Exclusive access sequences
	2.2.4 : Locked accesses and locked sequences
	2.2.5 : Error responses
	Linefill error and data loss

	2.2.6 : XOM
	2.2.7 : Debug accesses

	2.3 : APB interface
	2.4 : Interrupts
	2.5 : Low-Power Interface
	2.5.1 : Dirty status indicator
	2.5.2 : Clock LPI
	2.5.3 : Power LPI
	2.5.4 : Quiescent state

	3 : Operation
	3.1 : Basic operations
	3.1.1 : Cache enable
	3.1.2 : Cache disable
	3.1.3 : Lookup
	3.1.4 : Linefill
	3.1.5 : Eviction

	3.2 : Performance monitoring
	3.2.1 : Snapshotting

	3.3 : Maintenance
	3.3.1 : Clean by address maintenance
	3.3.2 : Clean all maintenance
	3.3.3 : Invalidate by address maintenance
	3.3.4 : Invalidate all maintenance
	3.3.5 : Clean and invalidate by address maintenance
	3.3.6 : Clean and invalidate all maintenance
	3.3.7 : Automatic maintenance features
	Maintenance configuration input ports
	Powerdown maintenance
	Cache enable maintenance
	Cache disable maintenance

	3.3.8 : Manual maintenance
	3.3.9 : power_on_enable

	4 : Programmers model
	4.1 : About the programmers model
	4.2 : Programming considerations
	4.3 : Register summary
	4.4 : Register descriptions
	4.4.1 : HWPARAMS, hardware parameter register
	4.4.2 : CTRL, control register
	4.4.3 : NSEC_ACCESS, Non-secure access information register
	4.4.4 : MAINT_CTRL_ALL, maintenance control for the entire cache register
	4.4.5 : MAINT_CTRL_LINES, maintenance control for individual lines register
	4.4.6 : MAINT_STATUS, maintenance status for the cache register
	4.4.7 : SECIRQSTAT, Secure interrupt request status register
	4.4.8 : SECIRQSCLR, Secure interrupt status clear register
	4.4.9 : SECIRQEN, Secure interrupt enable register
	4.4.10 : SECIRQINFO1, Secure transfer error information register 1
	4.4.11 : SECIRQINFO2, Secure transfer error information register 2
	4.4.12 : NSECIRQSTAT, Non-secure interrupt request status register
	4.4.13 : NSECIRQSCLR, Non-secure interrupt status clear register
	4.4.14 : NSECIRQEN, Non-secure interrupt enable register
	4.4.15 : NSECIRQINFO1, Non-secure transfer error information register 1
	4.4.16 : NSECIRQINFO2, Non-secure transfer error information register 2
	4.4.17 : SECHIT, Secure transfers hit register
	4.4.18 : SECMISS, Secure transfers miss register
	4.4.19 : SECSTATCTRL, Secure transfers statistic counters control
	4.4.20 : NSECHIT, Non-secure transfers hit register
	4.4.21 : NSECMISS, Non-secure transfers miss register
	4.4.22 : NSECSTATCTRL, Non-secure transfers statistic counters control register
	4.4.23 : PMSVR0, saved value register 0 - Secure hit
	4.4.24 : PMSVR1, saved value register 1 - Secure miss
	4.4.25 : PMSVR2, saved value register 2 - Non-secure hit
	4.4.26 : PMSVR3, saved value register 3 - Non-secure miss
	4.4.27 : PMSSSR, PMU snapshot status register
	4.4.28 : PMSSCR, PMU snapshot capture register
	4.4.29 : PMSSRR, PMU snapshot reset register
	4.4.30 : PIDR4, peripheral ID register 4
	4.4.31 : PIDR5, peripheral ID register 5
	4.4.32 : PIDR6, peripheral ID register 6
	4.4.33 : PIDR7, peripheral ID register 7
	4.4.34 : PIDR0, peripheral ID register 0
	4.4.35 : PIDR1, peripheral ID register 1
	4.4.36 : PIDR2, peripheral ID register 2
	4.4.37 : PIDR3, peripheral ID register 3
	4.4.38 : CIDR0, component ID register 0
	4.4.39 : CIDR1, component ID register 1
	4.4.40 : CIDR2, component ID register 2
	4.4.41 : CIDR3, component ID register 3

	5 : Using software to program the AHB Cache
	5.1 : Enable the AHB Cache by using software
	5.1.1 : About the CACHE_ENABLED bit
	5.1.2 : Enable the AHB Cache by using software with automatic maintenance on
	5.1.3 : Enable the AHB Cache by using software with automatic maintenance off

	5.2 : Disable the AHB Cache using software
	5.2.1 : Disable the AHB Cache by using software with automatic maintenance on
	5.2.2 : Disable the AHB Cache by using software with automatic maintenance off

	5.3 : Use Non-secure software to check cache enable status
	5.4 : Configurable cache diagnostics available for Non-secure software
	5.5 : Use software for manual maintenance on the AHB Cache
	5.5.1 : Use Secure software to perform manual clean all or invalidate all maintenance
	5.5.2 : Use Secure software to perform manual maintenance by address
	5.5.3 : Use Non-secure software to perform manual maintenance by address

	5.6 : Use software to access the statistics counters in the AHB Cache
	5.6.1 : Access the Secure statistics counters
	5.6.2 : Use Secure software to access the Non-secure statistics counters
	5.6.3 : Use Non-secure software to access the Non-secure statistics counters

	5.7 : Power control
	5.7.1 : Sleep mode and clock gating
	5.7.2 : Sleep mode with cache RAMs in retention
	5.7.3 : Sleep mode with cache RAMs in power down state
	5.7.4 : Handle Warm reset by using software

	A : Signal descriptions
	A.1 : Clock and reset signals
	A.2 : LPI signals
	A.3 : AHB Slave interface signals
	A.4 : AHB Master interface signals
	A.5 : APB interface signals
	A.6 : System interface signals
	A.7 : Memory interface signals
	A.7.1 : Data RAM interface signals
	A.7.2 : Tag RAM interface signals
	A.7.3 : Dirty RAM interface signals

	A.8 : Configuration input ports

	B : Revisions
	B.1 : Revisions

