
ARM® AMBA® 5 CHI Architecture
Specification
Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved.
ARM IHI 0050B (ID080717)

ARM AMBA 5 CHI Architecture Specification
Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved.

Release Information

The Change history lists the changes made to this specification.

Proprietary Notice

This document is NON-CONFIDENTIAL and any use by you is subject to the terms of this notice and the ARM AMBA
Specification Licence set about below.

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines http://www.arm.com/about/trademark-usage-guidelines.php.

Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Change history

Date Issue Confidentiality Change

12 June 2014 A Confidential First limited release

04 August 2017 B Non-Confidential First public release
ii Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

ARM AMBA SPECIFICATION LICENCE

THIS END USER LICENCE AGREEMENT (“LICENCE”) IS A LEGAL AGREEMENT BETWEEN YOU (EITHER A
SINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND ARM LIMITED (“ARM”) FOR THE USE OF THE RELEVANT
AMBA SPECIFICATION ACCOMPANYING THIS LICENCE. ARM IS ONLY WILLING TO LICENSE THE RELEVANT
AMBA SPECIFICATION TO YOU ON CONDITION THAT YOU ACCEPT ALL OF THE TERMS IN THIS LICENCE. BY
CLICKING “I AGREE” OR OTHERWISE USING OR COPYING THE RELEVANT AMBA SPECIFICATION YOU
INDICATE THAT YOU AGREE TO BE BOUND BY ALL THE TERMS OF THIS LICENCE. IF YOU DO NOT AGREE TO
THE TERMS OF THIS LICENCE, ARM IS UNWILLING TO LICENSE THE RELEVANT AMBA SPECIFICATION TO YOU
AND YOU MAY NOT USE OR COPY THE RELEVANT AMBA SPECIFICATION AND YOU SHOULD PROMPTLY
RETURN THE RELEVANT AMBA SPECIFICATION TO ARM.

“LICENSEE” means You and your Subsidiaries.

“Subsidiary” means, if You are a single entity, any company the majority of whose voting shares is now or hereafter owned or
controlled, directly or indirectly, by You. A company shall be a Subsidiary only for the period during which such control exists.

1. Subject to the provisions of Clauses 2, 3 and 4, ARM hereby grants to LICENSEE a perpetual, non-exclusive, non-transferable,
royalty free, worldwide licence to:

(i) use and copy the relevant AMBA Specification for the purpose of developing and having developed products that comply with
the relevant AMBA Specification;

(ii) manufacture and have manufactured products which either: (a) have been created by or for LICENSEE under the licence
granted in Clause 1(i); or (b) incorporate a product(s) which has been created by a third party(s) under a licence granted by ARM
in Clause 1(i) of such third party’s ARM AMBA Specification Licence; and

(iii) offer to sell, sell, supply or otherwise distribute products which have either been (a) created by or for LICENSEE under the
licence granted in Clause 1(i); or (b) manufactured by or for LICENSEE under the licence granted in Clause 1(ii).

2. LICENSEE hereby agrees that the licence granted in Clause 1 is subject to the following restrictions:

(i) where a product created under Clause 1(i) is an integrated circuit which includes a CPU then either: (a) such CPU shall only
be manufactured under licence from ARM; or (b) such CPU is neither substantially compliant with nor marketed as being
compliant with the ARM instruction sets licensed by ARM from time to time;

(ii) the licences granted in Clause 1(iii) shall not extend to any portion or function of a product that is not itself compliant with
part of the relevant AMBA Specification; and

(iii) no right is granted to LICENSEE to sublicense the rights granted to LICENSEE under this Agreement.

3. Except as specifically licensed in accordance with Clause 1, LICENSEE acquires no right, title or interest in any ARM
technology or any intellectual property embodied therein. In no event shall the licences granted in accordance with Clause 1 be
construed as granting LICENSEE, expressly or by implication, estoppel or otherwise, a licence to use any ARM technology except
the relevant AMBA Specification.

4. THE RELEVANT AMBA SPECIFICATION IS PROVIDED “AS IS” WITH NO REPRESENTATION OR WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY
QUALITY, MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT ANY
USE OR IMPLEMENTATION OF SUCH ARM TECHNOLOGY WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

5. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS AGREEMENT, TO THE FULLEST
EXTENT PETMITTED BY LAW, THE MAXIMUM LIABILITY OF ARM IN AGGREGATE FOR ALL CLAIMS MADE
AGAINST ARM, IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS
AGREEMENT (INCLUDING WITHOUT LIMITATION (I) LICENSEE’S USE OF THE ARM TECHNOLOGY; AND (II) THE
IMPLEMENTATION OF THE ARM TECHNOLOGY IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS
AGREEMENT) SHALL NOT EXCEED THE FEES PAID (IF ANY) BY LICENSEE TO ARM UNDER THIS AGREEMENT.
THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE
RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

6. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the ARM
tradename, or AMBA trademark in connection with the relevant AMBA Specification or any products based thereon. Nothing in
Clause 1 shall be construed as authority for LICENSEE to make any representations on behalf of ARM in respect of the relevant
AMBA Specification.

7. This Licence shall remain in force until terminated by you or by ARM. Without prejudice to any of its other rights if LICENSEE
is in breach of any of the terms and conditions of this Licence then ARM may terminate this Licence immediately upon giving
written notice to You. You may terminate this Licence at any time. Upon expiry or termination of this Licence by You or by ARM
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. iii
ID080717 Non-Confidential

LICENSEE shall stop using the relevant AMBA Specification and destroy all copies of the relevant AMBA Specification in your
possession together with all documentation and related materials. Upon expiry or termination of this Licence, the provisions of
clauses 6 and 7 shall survive.

8. The validity, construction and performance of this Agreement shall be governed by English Law.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
iv Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Contents
ARM AMBA 5 CHI Architecture Specification

Preface
About this specification .. x
Feedback ... xv

Chapter 1 Introduction
1.1 Architecture overview ... 1-18
1.2 Topology .. 1-20
1.3 Terminology ... 1-21
1.4 Transaction classification ... 1-23
1.5 Coherence overview .. 1-25
1.6 Component naming .. 1-27
1.7 Read data source ... 1-29

Chapter 2 Transactions
2.1 Channels overview ... 2-32
2.2 Channel fields .. 2-33
2.3 Transaction structure ... 2-39
2.4 Ordering ... 2-63
2.5 Introduction to identifier fields .. 2-72
2.6 Transaction identifier fields .. 2-73
2.7 Transaction identifier field flows ... 2-75
2.8 Logical Processor Identifier .. 2-90
2.9 Address, Control, and Data .. 2-91
2.10 Data transfer .. 2-100
2.11 Request Retry .. 2-111

Chapter 3 Network Layer
3.1 System address map ... 3-116
3.2 Node ID .. 3-117
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. v
ID080717 Non-Confidential

Contents
3.3 Target ID determination for messages from an RN ... 3-118
3.4 Network layer flow examples .. 3-120

Chapter 4 Coherence Protocol
4.1 Cache line states .. 4-124
4.2 Request types .. 4-126
4.3 Snoop requests .. 4-141
4.4 Request types and corresponding snoop requests .. 4-144
4.5 Response types .. 4-146
4.6 Silent cache state transitions .. 4-156
4.7 Cache state transitions ... 4-157
4.8 Shared clean state return ... 4-176
4.9 Hazard conditions ... 4-177

Chapter 5 Interconnect Protocol Flows
5.1 Read transaction flows ... 5-180
5.2 Dataless transaction flows .. 5-189
5.3 Write transaction flows ... 5-192
5.4 Atomic transaction flows ... 5-195
5.5 Stash transaction flows .. 5-202
5.6 Hazard handling examples ... 5-205

Chapter 6 Exclusive Accesses
6.1 Overview .. 6-214
6.2 Exclusive monitors ... 6-215
6.3 Exclusive transactions .. 6-218

Chapter 7 Cache Stashing
7.1 Overview .. 7-224
7.2 Write with Stash hint .. 7-226
7.3 Independent Stash request .. 7-227
7.4 Stash target identifiers .. 7-229
7.5 Stash messages ... 7-230

Chapter 8 DVM Operations
8.1 DVM transaction flow ... 8-232
8.2 DVM Operation types ... 8-241
8.3 DVM Operations ... 8-244

Chapter 9 Error Handling
9.1 Error types .. 9-252
9.2 Error response fields .. 9-253
9.3 Errors and transaction structure ... 9-254
9.4 Error response use by transaction type .. 9-255
9.5 Poison .. 9-261
9.6 Data Check ... 9-262
9.7 Interoperability and Poison and DataCheck ... 9-263
9.8 Hardware and software error categories .. 9-264

Chapter 10 Quality of Service
10.1 Overview .. 10-266
10.2 QoS priority value ... 10-267
10.3 Repeating a transaction with higher QoS value ... 10-268

Chapter 11 Data Source and Trace Tag
11.1 Data Source indication ... 11-270
11.2 Trace Tag ... 11-273
vi Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Contents
Chapter 12 Link Layer
12.1 Introduction .. 12-276
12.2 Links ... 12-277
12.3 Flits .. 12-278
12.4 Channels .. 12-279
12.5 Port .. 12-281
12.6 Node interface definitions .. 12-282
12.7 Channel interface signals ... 12-285
12.8 Flit packet definitions ... 12-289
12.9 Protocol flit fields .. 12-293
12.10 Link flit .. 12-314

Chapter 13 Link Handshake
13.1 Clock, and initialization .. 13-316
13.2 Link layer Credit ... 13-317
13.3 Low power signaling .. 13-318
13.4 Flit level clock gating .. 13-319
13.5 Interface activation and deactivation .. 13-320
13.6 Transmit and receive link Interaction ... 13-326
13.7 Protocol layer activity indication ... 13-332

Chapter 14 System Coherency Interface
14.1 Overview .. 14-338
14.2 Handshake ... 14-339

Chapter 15 Properties, Parameters, and Broadcast Signals
15.1 Interface properties and parameters .. 15-342
15.2 Optional interface broadcast signals .. 15-344
15.3 Atomic transaction support .. 15-346

Appendix A Message Field Mappings
A.1 Request message field mappings .. A-351
A.2 Response message field mappings ... A-352
A.3 Data message field mappings .. A-353
A.4 Snoop Request message field mappings .. A-354

Appendix B Communicating Nodes
B.1 Request communicating nodes .. B-356
B.2 Snoop communicating nodes ... B-358
B.3 Response communicating nodes ... B-359
B.4 Data communicating nodes ... B-360

Appendix C Revisions

Glossary
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. vii
ID080717 Non-Confidential

Contents
viii Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Preface

This preface introduces the AMBA 5 CHI Architecture Specification. It contains the following sections:
• About this specification on page x.
• Using this specification on page x.
• Conventions on page xii.
• Additional reading on page xiv.
• Feedback on page xv.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ix
ID080717 Non-Confidential

 Preface
 About this specification
About this specification
This specification describes the AMBA 5 CHI architecture.

Intended audience

This specification is written for hardware and software engineers who want to become familiar with the CHI
architecture and design systems and modules that are compatible with the CHI architecture.

Using this specification

This book is organized into the following chapters:

Chapter 1 Introduction

Read this for an introduction to the CHI architecture, and the terminology used in this specification.

Chapter 2 Transactions

Read this for an overview of the communication channels between nodes, the associated packet
fields, and the transaction structure.

Chapter 3 Network Layer

Read this for a description of the Network layer that is responsible for determining the node ID of
a destination node.

Chapter 4 Coherence Protocol

Read this for an introduction to the coherence protocol.

Chapter 5 Interconnect Protocol Flows

Read this for examples of protocol flows for different transaction types.

Chapter 6 Exclusive Accesses

Read this for a description of the mechanisms that the architecture includes to support Exclusive
accesses.

Chapter 7 Cache Stashing

Read this for a description of the cache stashing mechanism whereby data can be installed in a
cache.

Chapter 8 DVM Operations

Read this for a description of DVM operations that the protocol uses to manage virtual memory.

Chapter 9 Error Handling

Read this for a description of the error response requirements.

Chapter 10 Quality of Service

Read this for a description of the mechanisms that the protocol includes to support Quality of
Service (QoS).

Chapter 11 Data Source and Trace Tag

Read this for a description of the mechanisms that provide additional support for the debugging,
tracing, and performance measurement of systems.

Chapter 12 Link Layer

Read this for a description of the Link layer that provides a mechanism for packet based
communication between protocol nodes and the interconnect.

Chapter 13 Link Handshake

Read this for a description of the Link layer handshake requirements.
x Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

 Preface
 About this specification
Chapter 14 System Coherency Interface

Read this for a description of the interface signals that support connecting and disconnecting
components from both the Coherency and DVM domains.

Chapter 15 Properties, Parameters, and Broadcast Signals

Read this for a description of the optional signals that provide flexibility in configuring optional
interface properties.

Appendix A Message Field Mappings

Read this for the field mappings for messages.

Appendix B Communicating Nodes

Read this for the node pairs that can legally communicate within the protocol.

Appendix C Revisions

Read this for a description of the technical changes between released issues of this specification.

 Glossary Read this for definitions of terms used in this specification.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. xi
ID080717 Non-Confidential

 Preface
 About this specification
Conventions

The following sections describe conventions that this specification can use:
• Typographical conventions.
• Timing diagrams.
• Signals on page xiv.
• Numbers on page xiv.

Typographical conventions

The typographical conventions are:

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items

appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings.

Timing diagrams

The Key to timing diagram conventions figure explains the components used in timing diagrams. Variations, when
they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that
time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to
the bus change that the Key to timing diagram conventions figure shows. If a timing diagram shows a single-bit
signal in this way then its value does not affect the accompanying description.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xii Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

 Preface
 About this specification
Time-Space diagrams

The Key to Time-Space diagram conventions figure explains the format used to illustrate protocol flow.

Key to Time-Space diagram conventions

In the Time-Space diagram:

• The protocol nodes are positioned along the horizontal axis and time is indicated vertically, top to bottom.

• The lifetime of a transaction at a protocol node is shown by an elongated shaded rectangle along the time axis
from allocation to the deallocation time.

• The initial cache state at the node is shown at the top.

• The diamond shape on the timeline indicates arrival of a request and whether its processing is blocked
waiting for another event to complete.

• The cache state transition, upon the occurrence of an event, is indicated by I->UC.

RN-F HN-F

I->UC

I

Time

Space

Protocol
nodes

Allocation

Deallocation

Lifetime of a
transaction

Allocated but forward
progress is blocked

REQ

Direction of
message flow

RESP

Forward progress
is unblocked

Initial cache
state

Cache state
change
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. xiii
ID080717 Non-Confidential

 Preface
 About this specification
Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
Both are written in a monospace font.

Additional reading

This section lists relevant publications from ARM.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications
• ARM® AMBA® AXI and ACE Protocol Specification (ARM IHI 0022).
xiv Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this specification

If you have comments on the content of this specification, send an e-mail to errata@arm.com. Give:
• The title, ARM AMBA 5 CHI Architecture Specification.
• The number, ARM IHI 0050B.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. xv
ID080717 Non-Confidential

 Preface
 Feedback
xvi Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 1
Introduction

This chapter introduces the CHI architecture and the terminology used throughout this specification. It contains the
following sections:
• Architecture overview on page 1-18.
• Topology on page 1-20.
• Terminology on page 1-21.
• Transaction classification on page 1-23.
• Coherence overview on page 1-25.
• Component naming on page 1-27.
• Read data source on page 1-29.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 1-17
ID080717 Non-Confidential

1 Introduction
1.1 Architecture overview
1.1 Architecture overview
The CHI architecture provides a comprehensive layered specification to build small, medium, and large systems
comprising of multiple components using a scalable coherent hub interface and on chip interconnect. The CHI
architecture permits flexibility on the topology of the component connections, and this can be driven from the
system performance, power, and area requirements.

The components of CHI based systems can comprise of standalone processors, processor clusters, graphic
processors, memory controllers, I/O bridges, PCIe subsystems and the interconnect itself.

The key features of the architecture are:

• Scalable architecture enabling modular designs that scale from small to large systems.

• Independent layered approach, comprising of Protocol, Network, and Link layer, with distinct functionalities.

• Packet based communication.

• All transactions handled by an interconnect based Home Node that co-ordinates required snoops, cache, and
memory accesses.

• The CHI coherence protocol supports:
— Coherency granule of 64-byte cache line.
— Snoop filter and directory based systems for snoop scaling.
— Both MESI and MOESI cache models with forwarding of data from any cache state.
— Additional partial and empty cache line states.

• The CHI transaction set includes:

— Enriched transaction types that permit performance, area, and power efficient system cache
implementation.

— Support for atomic operations and synchronization within the interconnect.

— Transactions for the efficient movement and placement of data, to move data in a timely manner closer
to the point of anticipated use.

— Virtual memory management through Distributed Virtual Memory (DVM) operations.

• Request retry to manage protocol resources.

• Support for end-to-end Quality of Service (QoS).

• Configurable data width to meet the requirements of the system.

• ARM TrustZone™ support on a transaction by transaction basis.

• Optimized transaction flow for coherent writes with a producer-consumer ordering model.

• Error reporting and propagation across components and interconnect for system reliability and integrity
needs.

• Handling sub cache line data errors using Data Poisoning and per byte error indication.

• Power aware signaling on the component interface:
— Enabling flit level clock gating.
— Component activation and deactivation sequence for clock-gate and power-gate control.
— Protocol activity indication for power and clock control.
1-18 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

1 Introduction
1.1 Architecture overview
1.1.1 Architecture layers

Functionality is grouped into the following layers:
• Protocol.
• Network.
• Link.

Table 1-1 describes the primary function of each layer.

Table 1-1 Layers of the CHI architecture

Layer
Communication
granularity

Primary function

Protocol Transaction The Protocol layer is the top-most layer in the CHI architecture. The function
of the Protocol layer is to:
• Generate and process requests and responses at the protocol nodes.
• Define the permitted cache state transitions at the protocol nodes that

include caches.
• Define the transaction flows for each request type.
• Manage the protocol level flow control.

Network Packet The function of the Network layer is to:
• Packetize the protocol message.
• Determine, and add to the packet, the source and target node IDs

required to route the packet over the interconnect to the required
destination.

Link Flit The function of the Link layer is to:
• Provide flow control between network devices.
• Manage link channels to provide deadlock free switching across the

network.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 1-19
ID080717 Non-Confidential

1 Introduction
1.2 Topology
1.2 Topology
The CHI architecture is primarily topology independent. However, certain topology dependent optimizations are
included in this specification to make implementation more efficient. Figure 1-1 shows three examples of topologies
selected to show the range of interconnect bandwidth and scalability options that are available.

Figure 1-1 Example interconnect topologies

Crossbar This topology is simple to build, and naturally provides an ordered network with low latency. It is
suitable where the wire counts are still relatively small. This topology is suitable for an interconnect
with a small number of nodes.

Ring This topology provides a good trade-off between interconnect wiring efficiency and latency. The
latency linearly increases with the number of nodes on the ring. This topology is suitable for a
medium size interconnect.

Mesh This topology provides greater bandwidth at the cost of more wires. It is very modular and can be
easily scaled to larger systems by adding more rows and columns of switches. This topology is
suitable for a larger scale interconnect.

Ring

4×4 Mesh

0 1 2 33210

7654

111098

15141312

Protocol node such as processor complex, Memory Controller, or I/O complex

Router

3

2

1

0

4×4
Crossbar

7654
1-20 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

1 Introduction
1.3 Terminology
1.3 Terminology
The following terms have a specific meaning in this specification:

Transaction A transaction carries out a single operation. Typically, a transaction either reads from
memory or writes to memory.

Message A Protocol layer term that defines the granule of exchange between two components.
Examples are:
• Request.
• Data response.
• Snoop request.

A single Data response message might be made up of a number of packets.

Packet The granule of transfer over the interconnect between endpoints. A message might be made
up of one or more packets. For example, a single Data response message might be made up
of 1 to 4 packets. Each packet contains routing information, such as destination ID and
source ID that enables it to be routed independently over the interconnect.

Flit The smallest flow control unit. A packet might be made up of one or more flits. All the flits
of a given packet follow the same path through the interconnect.

Note
 For CHI, all packets consist of a single flit.

Phit The physical layer transfer unit. A flit might be made up of one or more phits. A phit is
defined as one transfer between two adjacent network devices.

Note
 For CHI, all flits consist of a single phit.

PoS Point of Serialization. A point within the interconnect where the ordering between Requests
from different agents is determined.

PoC Point of Coherence. A point at which all agents that can access memory are guaranteed to
see the same copy of a memory location. In a typical CHI based system it is the HN-F in the
interconnect.

Downstream cache A downstream cache is defined from the perspective of a Request Node. A downstream
cache for a Request, is a cache that the Request accesses using CHI Request transactions. A
Request Node can allocate cache lines into a downstream cache.

Requester A component that starts a transaction by issuing a Request message. The term Requester can
be used for a component that independently initiates transactions and such a component is
also referred to as a master. The term Requester can also be used for an interconnect
component that issues a downstream Request message as a side-effect of other transactions
that are occurring in the system.

Completer Any component that responds to a transaction it receives from another component. A
Completer can either be an interconnect component or a component, such as a slave, that is
outside of the interconnect.

Master An agent that independently issues transactions. Typically a master is the most upstream
agent in a system. A master can also be referred to as a Requester.

Slave An agent that receives transactions and completes them appropriately. Typically, a slave is
the most downstream agent in a system. A slave can also be referred to as a Completer or
Endpoint.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 1-21
ID080717 Non-Confidential

1 Introduction
1.3 Terminology
Endpoint Another name for a slave component. As the name implies, an endpoint is the final
destination for a transaction.

Protocol Credit A credit, or guarantee, from a Completer that it will accept a transaction.

Link layer Credit A credit, or guarantee, that a flit will be accepted on the other side of the link. A Link layer
Credit (L-Credit) can be considered to be a credit for a single hop at the Link layer.

ICN A short form of interconnect, which is the CHI transport mechanism that is used for
communication between protocol nodes. An ICN might include a fabric of switches
connected in a ring, mesh, crossbar, or some other topology. The ICN might include
protocol nodes such as Home Node and Misc Node. The topology of the ICN is
IMPLEMENTATION DEFINED.

IPA Intermediate Physical Address. In two stage address translation:
• Stage one results in an Intermediate Physical Address.
• Stage two provides the Physical Address.

RN Request Node. Generates protocol transactions, including reads and writes, to the
interconnect.

HN Home Node. Node located within the interconnect that receives protocol transactions from
Request Nodes, completes the required Coherency action, and returns a Response.

SN Slave Node. Node that receives a Request from a Home Node, completes the required
action, and returns a Response.

MN Misc or Miscellaneous Node. Node located within the interconnect that receives DVM
messages from Request Nodes, completes the required action, and returns a Response.

IO Coherent node An RN that generates some Snoopable requests in addition to Non-snoopable requests. The
Snoopable requests that an IO Coherent node generates do not result in the caching of the
received data in a coherent state. Therefore, an IO Coherent node does not receive any
Snoop requests.

Write-Invalidate protocol

A protocol in which an RN writing to a cache line that is shared in the system must
invalidate all the shared copies before proceeding with the write. The CHI protocol is a
Write-Invalidate protocol.

In a timely manner The protocol cannot define an absolute time within which something must occur. However,
in a sufficiently idle system, it will make progress and complete without requiring any
explicit action.

Don’t Care A field value that indicates that the field can be set to any value, including reserved or illegal
values. Any component receiving a packet with a field value set to Don't Care must ignore
the value set for that field.

Inapplicable A field value that indicates that the field is not used in the processing of the message.
1-22 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

1 Introduction
1.4 Transaction classification
1.4 Transaction classification
The protocol transactions that this specification supports, and their major classification, are as follows:
Read

• ReadNoSnp.
• ReadOnce.
• ReadOnceCleanInvalid.
• ReadOnceMakeInvalid.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

Dataless
• CleanUnique.
• MakeUnique.
• Evict.
• StashOnceUnique.
• StashOnceShared.
• CleanShared.
• CleanSharedPersist.
• CleanInvalid.
• MakeInvalid.

Write
• WriteNoSnpPtl, WriteNoSnpFull.
• WriteUniquePtl, WriteUniqueFull.
• WriteUniqueStashPtl, WriteUniqueStashFull.
• WriteBackPtl, WriteBackFull.
• WriteCleanFull.
• WriteEvictFull.

Atomic
• AtomicStore.
• AtomicLoad.
• AtomicSwap.
• AtomicCompare.

In this specification, unless specifically stated otherwise:

• ReadOnce* represents ReadOnce, ReadOnceCleanInvalid and ReadOnceMakeInvalid.

• WriteNoSnp represents both WriteNoSnpPtl and WriteNoSnpFull.

• WriteUnique represents WriteUniquePtl, WriteUniqueFull, WriteUniqueStashPtl and WriteUniqueStashFull.

• WriteBack represents both WriteBackPtl and WriteBackFull.

• StashOnce represents both StashOnceUnique and StashOnceShared.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 1-23
ID080717 Non-Confidential

1 Introduction
1.4 Transaction classification
Other
• DVMOp.
• PrefetchTgt.
• PCrdReturn.

Snoop
• SnpOnceFwd.
• SnpOnce.
• SnpStashUnique.
• SnpStashShared.
• SnpCleanFwd.
• SnpClean.
• SnpNotSharedDirtyFwd.
• SnpNotSharedDirty.
• SnpSharedFwd.
• SnpShared.
• SnpUniqueFwd.
• SnpUnique.
• SnpUniqueStash.
• SnpCleanShared.
• SnpCleanInvalid.
• SnpMakeInvalid.
• SnpMakeInvalidStash.
• SnpDVMOp.
1-24 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

1 Introduction
1.5 Coherence overview
1.5 Coherence overview
Hardware coherency enables the sharing of memory by system components without the software requirement to
perform software cache maintenance to maintain coherency between caches.

Regions of memory are coherent if writes to the same memory location by two components are observable in the
same order by all components.

1.5.1 Coherency model

Figure 1-2 shows an example coherent system that includes three master components, each with a local cache and
coherent protocol node. The protocol permits cached copies of the same memory location to reside in the local cache
of one or more master components.

Figure 1-2 Example coherency model

The coherence protocol ensures that all masters observe the correct data value at any given address location by
enforcing that no more than one copy exists whenever a store occurs to the location. After each store to a location,
other masters can obtain a new copy of the data for their own local cache, to permit multiple cached copies to exist.

All coherency is maintained at cache line granularity. A cache line is defined as a 64-byte aligned memory region
that is 64-bytes in size.

The protocol does not require main memory to be up to date at all times. Main memory is only required to be updated
before a copy of the memory location is no longer held in any cache.

Note
 Although not a requirement, it is acceptable to update main memory while cached copies still exist.

The protocol enables master components to determine whether a cache line is the only copy of a particular memory
location, or if there might be other copies of the same location, so that:

• If a cache line is the only copy, a master component can change the value of the cache line without notifying
any other master components in the system.

• If a cache line might also be present in another cache, a master component must notify the other caches using
an appropriate transaction.

Main
memory

Optional
cache

Coherent interconnect (ICN)

RN-F
Cache

Master 1

RN-F
Cache

Master 2

RN-F
Cache

Master 3

SN-F

Slave 1

ICN Cache
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 1-25
ID080717 Non-Confidential

1 Introduction
1.5 Coherence overview
1.5.2 Cache state model

To determine whether an action is required when a component accesses a cache line, the protocol defines cache
states. Each cache state is based on the following cache line characteristics:

Valid, Invalid When Valid, the cache line is present in the cache. When Invalid, the cache line is not
present in the cache.

Unique, Shared When Unique, the cache line exists only in this cache. When Shared, the cache line might
exist in more than one cache, but this is not guaranteed.

Clean, Dirty When Clean, the cache does not have responsibility for updating main memory. When Dirty,
the cache line has been modified with respect to main memory, and this cache must ensure
that main memory is eventually updated.

Full, Partial, Empty A Full cache line has all bytes valid. A Partial cache line might have some bytes valid, but
not all bytes valid. An Empty cache line has no bytes valid.

Figure 1-3 shows the seven state cache model. Cache line states on page 4-124 gives further information about each
cache state.

Note
 A valid cache state name that is not Partial or Empty is considered to be Full. In Figure 1-3 UC, UD, SC, and SD
are all Full cache line states.

Figure 1-3 Cache state model

UCE

SCUC

UDP

SDUD
I

Shared

Clean

Dirty

Valid Invalid

Unique
1-26 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

1 Introduction
1.6 Component naming
1.6 Component naming
Components are classified by CHI protocol node type:

RN Request Node. Generates protocol transactions, including reads and writes to the interconnect.

An RN is further categorized as:

RN-F Fully coherent Request Node:
• Includes a hardware-coherent cache.
• Permitted to generate all transactions defined by the protocol.
• Supports all Snoop transactions.

RN-D IO coherent Request Node with DVM support:
• Does not include a hardware-coherent cache.
• Receives DVM transactions.
• Generates a subset of transactions defined by the protocol.

RN-I IO coherent Request Node:

• Does not include a hardware-coherent cache.
• Does not receive DVM transactions.

• Generates a subset of transactions defined by the protocol.
• Does not require snoop functionality.

HN Home Node. Node located within the interconnect that receives protocol transactions from RNs.

An HN is further categorized as:

HN-F Is expected to receive all Request types except DVMOp:

• Includes a Point of Coherence (PoC) that manages coherency by snooping the
required RN-Fs, consolidating the snoop responses for a transaction, and sending
a single response to the requesting RN.

• Is expected to be the Point of Serialization (PoS) that manages order between
memory requests.

• Might include a directory or snoop filter to reduce redundant snoops.

Note
 IMPLEMENTATION SPECIFIC, can include an integrated ICN cache.

HN-I Processes a limited subset of Request types defined by the protocol:

• Is expected to be the PoS which manages order for requests targeting the IO
subsystem.

• Does not include a PoC and is not capable of processing a Snoopable request. On
receipt of a Snoopable request must respond with a protocol compliant message.

MN Miscellaneous Node:

• Receives a DVM transaction from an RN, completes the required action, and
returns a response.

SN Slave Node. An SN receives a request from an HN, completes the required action and returns a
response.

An SN is further categorized as:

SN-F A Slave Node type used for Normal memory. It can process Non-snoopable read write,
and atomic requests, including exclusive variants of them, and Cache Maintenance
Operation (CMO) requests.

SN-I A Slave Node type used for peripherals or Normal memory. It can process
Non-snoopable read, write and atomic requests, including exclusive variants of them,
and CMO requests.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 1-27
ID080717 Non-Confidential

1 Introduction
1.6 Component naming
Figure 1-4 shows various protocol node types connected through an interconnect.

Figure 1-4 Protocol node examples

Interconnect (ICN)

HN-I HN-F

MN

HN-F

RN-F0 RN-F1 RN-F2

SN-I SN-F

Masters
(Fully coherent)

Slaves
Slave

(Normal Memory)

RN-I

Master
(IO coherent)

Slave
(Peripheral and/or Normal Memory)
1-28 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

1 Introduction
1.7 Read data source
1.7 Read data source
In a CHI based system, a Read request can obtain data from different sources. These sources, as Figure 1-5 shows
are:
• Cache within ICN.
• Slave Node.
• Peer RN-F.

Figure 1-5 Possible Data providers for a Read request

One option for Home is to request that the RN-F or Slave Node returns data only to Home. The Home in turn
forwards a copy of the received data to the Requester. A hop in obtaining Data in this Read transaction flow can be
removed if the Data provider is enabled to forward the Data response directly to the Requester instead of via the
Home.

This specification expects the following Read latency saving techniques to be used by the system:

Direct Memory Transfer (DMT)

Defines the feature that permits the Slave Node to send Data directly to the Requester.

Direct Cache Transfer (DCT)

Defines the feature which permits a peer RN-F to send Data directly to the Requester.

The Data provider in the DCT Read transaction flows has to inform the Home that it has sent Data to the Requester
and, in some cases, it also has to send a copy of Data to the Home.

Requester

ICN

D
at

a

R
eq

RN-F

S
no

op

D
at

a

RN-F

Home

Slave

D
at

a

R
eq

Data providers
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 1-29
ID080717 Non-Confidential

1 Introduction
1.7 Read data source
1-30 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 2
Transactions

This chapter gives an overview of the communication channels between nodes, the associated packet fields, and the
transaction structure. It contains the following sections:
• Channels overview on page 2-32.
• Channel fields on page 2-33.
• Transaction structure on page 2-39.
• Ordering on page 2-63.
• Introduction to identifier fields on page 2-72.
• Transaction identifier fields on page 2-73.
• Transaction identifier field flows on page 2-75.
• Logical Processor Identifier on page 2-90.
• Address, Control, and Data on page 2-91.
• Data transfer on page 2-100.
• Request Retry on page 2-111.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-31
ID080717 Non-Confidential

2 Transactions
2.1 Channels overview
2.1 Channels overview
Communication between nodes is channel based. Table 2-1 shows the channel naming and the channel designations
at the RN and SN nodes.

This section uses shorthand naming for the channels to describe the transaction structure. Table 2-1 shows the
shorthand name and the physical channel name that exists on the RN or SN component.

See Channels on page 12-279 for the mapping of physical channels on the RN and SN components.

Table 2-1 Channel naming and designation at the RN and SN nodes

Channel RN channel designation SN channel designation

REQ TXREQ. Outbound Request. RXREQ. Inbound Request.

WDAT TXDAT. Outbound Data.
Used for write data, atomic data, snoop data, forward data.

RXDAT. Inbound Data.
Used for write data, atomic data.

SRSP TXRSP. Outbound Response.
Used for Snoop Response and Completion Acknowledge.

-

CRSP RXRSP. Inbound Response.
Used for responses from the Completer.

TXRSP. Outbound Response.
Used for responses from the Completer.

RDAT RXDAT. Inbound Data.
Used for read data, atomic data.

TXDAT. Outbound Data.
Used for read data, atomic data.

SNP RXSNP. Inbound Snoop Request. -
2-32 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.2 Channel fields
2.2 Channel fields
This section gives a brief overview of the channel fields and indicates which fields will affect the transaction
structure. The fields associated with each channel are described in the following sections:
• Transaction request fields.
• Snoop request fields on page 2-35.
• Data fields on page 2-36.
• Response fields on page 2-38.

2.2.1 Transaction request fields

Table 2-2 shows the fields associated with a Request packet.

The term transaction structure is used to describe the different packets that build a transaction and the transaction
structure can vary depending on a number of factors. Table 2-2 shows which Request fields can affect the
transaction structure. More information on the different transaction structures can be found in Transaction structure
on page 2-39 and Flit packet definitions on page 12-289.

Table 2-2 Request channel fields

Field
Affects
structure

Description

QoS No Quality of Service priority. Specifies 1 of 16 possible priority levels for the
transaction with ascending values of QoS indicating higher priority levels. See
Chapter 10 Quality of Service.

TgtID No Target ID. The node ID of the port on the component to which the packet is
targeted. See Transaction identifier fields on page 2-73 and System address
map on page 3-116.

SrcID No Source ID. The node ID of the port on the component from which the packet
was sent. See Transaction identifier fields on page 2-73.

TxnID No Transaction ID. A transaction has a unique transaction ID per source node. See
Transaction identifier fields on page 2-73.

LPID No Logical Processor ID. Used in conjunction with the SrcID field to uniquely
identify the logical processor that generated the request. See Logical
Processor Identifier on page 2-90.

ReturnNID No Return Node ID. The node ID that the response with Data is to be sent to. See
Transaction identifier fields on page 2-73.

ReturnTxnID No Return Transaction ID. The unique transaction ID that conveys the value of
TxnID in the data response from the Slave. See Transaction identifier fields on
page 2-73.

StashNID No Stash Node ID. The node ID of the Stash target. See Stash messages on
page 7-230.

StashNIDValid Yes Stash Node ID Valid. Indicates that the StashNID field has a valid Stash target
value. See Stash messages on page 7-230.

StashLPID No Stash Logical Processor ID. The ID of the logical processor at the Stash target.
See Stash messages on page 7-230.

StashLPIDValid No Stash Logical Processor ID Valid. Indicates that the StashLPID field value
must be considered as the Stash target. See Stash messages on page 7-230.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-33
ID080717 Non-Confidential

2 Transactions
2.2 Channel fields
Opcode Yes Request opcode. Specifies the transaction type and is the primary field that
determines the transaction structure. See Request types on page 4-126 and
REQ channel opcodes on page 12-297.

Addr No Address. The address of the memory location being accessed for read and
write requests. See Address on page 2-91 and Addr on page 12-301.

NS No Non-secure. Determines if the transaction is Non-secure or Secure. See
Non-secure bit on page 2-92 and NS on page 12-301.

Size Yes Data size. Specifies the size of the data associated with the transaction. This
determines the number of data packets within the transaction. See Data
transfer on page 2-100.

AllowRetry Yes Allow Retry. Determines if the target is permitted to give a Retry response. See
Request Retry on page 2-111.

PCrdType No Protocol Credit Type. Indicates the type of Protocol Credit being used by a
request that has the AllowRetry field deasserted. See Request Retry on
page 2-111.

ExpCompAck Yes Expect CompAck. Indicates that the transaction will include a Completion
Acknowledge message. See Transaction structure on page 2-39 and Ordering
on page 2-63.

MemAttr No Memory attribute. Determines the memory attributes associated with the
transaction. See Memory Attributes on page 2-92.

SnpAttr No Snoop attribute. Specifies the snoop attributes associated with the transaction.
See Likely Shared on page 2-97.

SnoopMe No Snoop Me. Indicates that Home must determine whether to send a snoop to the
Requester. See Atomic on page 2-54.

LikelyShared No Likely Shared. Provides an allocation hint for downstream caches. See Likely
Shared on page 2-97.

Excl No Exclusive access. Indicates that the corresponding transaction is an Exclusive
access transaction. See Chapter 6 Exclusive Accesses.

Order Yes Order requirement. Determines the ordering requirement for this request with
respect to other transactions from the same agent. See Ordering on page 2-63.

Endian No Endianness. Indicates the endianness of Data in the Data packet. See
Endianness on page 2-104.

TraceTag No Trace Tag. Provides additional support for the debugging, tracing, and
performance measurement of systems. See Chapter 11 Data Source and Trace
Tag.

RSVDC No User defined. See RSVDC on page 12-313.

Table 2-2 Request channel fields (continued)

Field
Affects
structure

Description
2-34 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.2 Channel fields
2.2.2 Snoop request fields

A Snoop request contains a subset of the fields defined for a Request packet. Table 2-3 shows which Request fields
can affect the transaction structure.

Note
 This specification does not define a TgtID field for the Snoop Request. See Target ID determination for Snoop
Request messages on page 3-119.

Table 2-3 Snoop request fields

Field
Affects
structure

Description

QoS No Quality of Service priority. As defined in Request channel fields on page 2-33. See
Chapter 10 Quality of Service.

TxnID No Transaction ID. As defined in Request channel fields on page 2-33. See
Transaction identifier fields on page 2-73.

FwdNID No Forward Node ID. Node ID of the original Requester. See Transaction identifier
fields on page 2-73.

FwdTxnID No Forward Transaction ID. The transaction ID used in the Request by the original
Requester. See Transaction identifier fields on page 2-73.

StashLPID No Stash Logical Processor ID. As defined in Request channel fields on page 2-33. See
Stash messages on page 7-230.

StashLPIDValid No Stash Logical Processor ID Valid. As defined in Request channel fields on
page 2-33. See Stash messages on page 7-230.

VMIDExt No Virtual Machine ID Extension. See DVM Operation types on page 8-241.

SrcID No Source ID. As defined in Request channel fields on page 2-33. See Transaction
identifier fields on page 2-73.

Opcode Yes Snoop opcode. See Snoop request fields and SNP channel opcodes on page 12-300.

Addr No Address. The address of the memory location being accessed for snoop requests.
See Address on page 2-91 and Addr on page 12-301.

NS No Non-secure or Secure access. As defined in Request channel fields on page 2-33.
See Non-secure bit on page 2-92 and NS on page 12-301.

DoNotGoToSD No Do Not Go To SD state. Controls Snoopee use of SD state. See Do not transition to
SD on page 2-99.

DoNotDataPull Yes Do Not Data Pull. Instructs the Snoopee that it is not permitted to use the Data Pull
feature associated with Stash requests. See Snoop requests and Data Pull on
page 7-224.

RetToSrc Yes Return to Source. Instructs the receiver of the snoop to return Data with the Snoop
response. See Shared clean state return on page 4-176.

TraceTag No Trace Tag. As defined in Request channel fields on page 2-33. See Chapter 11 Data
Source and Trace Tag.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-35
ID080717 Non-Confidential

2 Transactions
2.2 Channel fields
2.2.3 Data fields

Table 2-4 describes the fields associated with a Data packet. Data packets can be sent on the RDAT or WDAT
channels. The fields in a Data packet do not affect the transaction structure.

Table 2-4 Data packet fields

Field Description

QoS Quality of Service priority. As defined in Request channel fields on
page 2-33. See Chapter 10 Quality of Service.

TgtID Target ID. As defined in Request channel fields on page 2-33. See
Transaction identifier fields on page 2-73.

SrcID Source ID. As defined in Request channel fields on page 2-33. See
Transaction identifier fields on page 2-73.

TxnID Transaction ID. As defined in Request channel fields on page 2-33. See
Transaction identifier fields on page 2-73.

HomeNID Home Node ID. The Node ID of the target of the CompAck response to be
sent from the Requester. See Transaction identifier fields on page 2-73.

DBID Data Buffer ID. The ID provided to be used as the TxnID in the response to
this message. See Transaction identifier fields on page 2-73 and Ordering on
page 2-63.

Opcode Data opcode. Indicates, for example, if the data packet is related to a Read
transaction, a Write transaction, or a Snoop transaction. See DAT channel
opcodes on page 12-301.

RespErr Response Error status. Indicates the error status associated with a data
transfer. See Chapter 6 Exclusive Accesses and Error response fields on
page 9-253.

Resp Response status. Indicates the cache line state associated with a data transfer.
See Response types on page 4-146.

FwdState Forward State. Indicates the cache line state associated with a data transfer
to the Requester from the receiver of the snoop. See FwdState on
page 12-310.

DataPull Data Pull. Indicates the inclusion of an implied Read request in the Data
response. See Snoop requests and Data Pull on page 7-224.

DataSource Data Source. The value indicates the source of the data in a read Data
response. See Data Source indication on page 11-270.

CCID Critical Chunk Identifier. Replicates the address offset of the original
transaction request. See Data transfer on page 2-100.

DataID Data Identifier. Provides the address offset of the data provided in the packet.
See Data transfer on page 2-100.

BE Byte Enable. For a data write, or data provided in response to a snoop,
indicates which bytes are valid. See Data transfer on page 2-100.

Data Data payload. See Data transfer on page 2-100.

DataCheck Data Check. Detects data errors in the DAT packet. See Data Check on
page 9-262.
2-36 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.2 Channel fields
Poison Poison. Indicates that a set of data bytes has previously been corrupted. See
Poison on page 9-261.

TraceTag Trace Tag. As defined in Request channel fields on page 2-33. See
Chapter 11 Data Source and Trace Tag.

RSVDC User defined. See RSVDC on page 12-313.

Table 2-4 Data packet fields (continued)

Field Description
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-37
ID080717 Non-Confidential

2 Transactions
2.2 Channel fields
2.2.4 Response fields

Table 2-5 describes the fields associated with a Response packet. The fields in a Response packet do not affect the
transaction structure.

Table 2-5 Response packet fields

Field Description

QoS Quality of Service priority. As defined in Request channel fields on
page 2-33. See Chapter 10 Quality of Service.

TgtID Target ID. As defined in Request channel fields on page 2-33. See
Transaction identifier fields on page 2-73.

SrcID Source ID. As defined in Request channel fields on page 2-33. See
Transaction identifier fields on page 2-73.

TxnID Transaction ID. As defined in Request channel fields on page 2-33. See
Transaction identifier fields on page 2-73.

DBID Data Buffer ID. As defined in Data packet fields on page 2-36. See
Transaction identifier fields on page 2-73 and Ordering on page 2-63.

PCrdType Protocol Credit Type. See PCrdType on page 2-113.

Opcode Response opcode. Specifies the response type. See RSP channel opcodes on
page 12-299.

RespErr Response Error status. As defined in Data packet fields on page 2-36. See
Chapter 6 Exclusive Accesses and Error response fields on page 9-253.

Resp Response status. As defined in Data packet fields on page 2-36. See
Response types on page 4-146.

FwdState Forward State. As defined in Data packet fields on page 2-36. See FwdState
on page 12-310.

DataPull Data Pull. As defined in Data packet fields on page 2-36. See Snoop requests
and Data Pull on page 7-224.

TraceTag Trace Tag. As defined in Request channel fields on page 2-33. See
Chapter 11 Data Source and Trace Tag.
2-38 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
2.3 Transaction structure
This section describes the structure of the transactions described in Transaction classification on page 1-23 together
with the channel usage.

Where sufficient, the structure of a transaction is described as seen at a single interface.

The transaction types presented in this section are:
• Request transactions without a Retry.
• Request transactions with a Retry.
• Snoop transactions.

For a Request transaction to complete, a Snoop transaction might be required. However, such dependencies are not
visible at the Requester, so these two transaction types are generally presented separately. See Chapter 5
Interconnect Protocol Flows for examples of how Request and Snoop flows are related.

All transaction types, except PCrdReturn and PrefetchTgt can have a Retry sequence at the start of the transaction.
For ease of presentation, the Retry sequence is described separately. See Transaction Retry sequence on page 2-57.

2.3.1 Request transaction structure

The Request transaction structure is described in the following groupings:
• Snoopable Reads.
• ReadNoSnp, ReadOnce, ReadOnceCleanInvalid, ReadOnceMakeInvalid on page 2-44.
• Dataless on page 2-48.
• WriteNoSnp on page 2-49.
• WriteUnique on page 2-51.
• CopyBack on page 2-53.
• Atomic on page 2-54.
• DVM on page 2-55.
• PrefetchTgt on page 2-56.

Snoopable Reads

The Snoopable Read transactions are:
• ReadOnce.
• ReadOnceCleanInvalid.
• ReadOnceMakeInvalid.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

Snoopable Read transactions are used by a fully coherent Requester (RN-F) to carry out a read when the snooping
of other Snoopable Requesters (RN-Fs) is required.

In this section, the transaction structure for ReadClean, ReadNotSharedDirty, ReadShared and ReadUnique is
described. The transaction structure for ReadOnce* is described along with ReadNoSnp in subsequent sections of
this chapter.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-39
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Snoopable Read transaction structure with DMT

A Snoopable Read transaction with DMT is used when the data is to be sent directly from the Slave to the original
Requester. The progress of the Snoopable Read transaction with DMT is as follows:

1. The Requester sends a Snoopable read request on the REQ channel:
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

2. The ICN sends a ReadNoSnp request to SN on the REQ channel:

3. The SN, as Completer, forwards the read data and any associated transaction response with the CompData
opcode directly to the Requester on the RDAT channel.

The read data can be sent using multiple transfers. See Data transfer on page 2-100.

4. Because the transaction request ExpCompAck bit is set, the Requester must return an acknowledgement,
using the CompAck opcode on the SRSP channel to indicate that the transaction has completed.

CompAck must not be sent until all transfers of read data have been received.

Figure 2-1 shows the transaction structure.

Figure 2-1 Snoopable Read DMT structure

REQ

RDAT

Snoopable
Read

RN-F ICN SN

CompData

ReadNoSnp REQ

RDAT

CompAckSRSP
2-40 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
DMT restrictions

The following restrictions apply to DMT transactions:

• A Requester can reuse the TxnID only after all the responses that could use the TxnID have been returned.

• Home must wait to send a DMT request to SN-F until it is guaranteed that all the following applicable
conditions are true:

— A Snoop request does not need to be sent.

— If a Snoop request is sent, then the Snoop response is received without a Dirty copy of the cache line
being returned.

— If the Snoop response returns a partial Dirty copy of the cache line, then the DMT can only be sent if
the partial data is written to SN-F and a completion for the write is received.

— If the snoop was a Forwarding type snoop, then it did not result in the cache line being forwarded to
the Requester.

Note
 Home can use DMT in combination with DCT but must wait for the DCT response to be received before sending
the DMT request to SN-F.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-41
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Snoopable Read transaction structure with DCT

A Snoopable Read transaction with DCT is used when the data is to be sent directly from the Snooped RN-F to the
original Requester. The progress of the Snoopable read transaction with DCT is as follows:

1. The Requester sends a Snoopable read request on the REQ channel:
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

2. The ICN sends a Snp[*]Fwd request to RN-F on the SNP channel.

3. The RN-F as Completer forwards the read data and any associated transaction response to RN with the
CompData opcode on the DAT channel.

The data can be sent using multiple transfers. See Data transfer on page 2-100.

4. The RN-F also forwards a SnpRespFwded response to the ICN on the SRSP channel to indicate that read data
was forwarded to the Requester.

5. Because the transaction request ExpCompAck bit is set, the Requester must return an acknowledgement,
using the CompAck opcode on the SRSP channel to indicate that the transaction has completed.

CompAck must not be sent until all transfers of read data have been received.

Figure 2-2 shows the transactions structure.

Figure 2-2 Snoopable Read DCT structure

REQ

RDAT

Snoopable
Read

RN ICN RN-F

CompData

Snp[*]Fwd SNP

WDAT

CompAckSRSP

SnpRespFwded SRSP
2-42 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
Snoopable Read transaction structure without Direct Data Transfer

This section shows the Read transactions structure without DMT or DCT.

The progress of a Snoopable Read transaction without Direct Data Transfer, from the Requester perspective, is
identical to a Snoopable Read transaction with Direct Data Transfer and is as follows:

1. The Requester sends a Snoopable read request on the REQ channel:
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• ReadUnique.

2. The Completer returns the read data and any associated transaction response with the CompData opcode on
the RDAT channel.

The read data can be sent using multiple transfers. See Data transfer on page 2-100.

3. Because the ExpCompAck bit is set, the Requester must return an acknowledgement, using the CompAck
opcode on the SRSP channel to indicate that the transaction has completed.

CompAck must only be sent after all transfers of read data are received.

Figure 2-3 shows the transaction structure.

Figure 2-3 Snoopable Read structure without Direct Data Transfer

The Request/Response rules are:

• CompData must only be sent by the Completer after the associated request is received.
• CompAck must only be sent by the Requester after all transfers of CompData are received.

REQ

RDAT

SRSP CompAck

RN ICN

Snoopable
Read

CompData
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-43
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
ReadNoSnp, ReadOnce, ReadOnceCleanInvalid, ReadOnceMakeInvalid

A ReadNoSnp transaction is used to carry out a read when the snooping of other masters is not required.

Data obtained by ReadNoSnp either comes directly from the Slave Node or via the interconnect.

A ReadOnce, ReadOnceCleanInvalid, and ReadOnceMakeInvalid transaction is used to carry out a read when the
snooping of other masters is required but the Requester is not going to allocate the cache line in its own cache.

Note
 ReadOnce, ReadOnceCleanInvalid, and ReadOnceMakeInvalid obtain a snapshot of the coherent data value. If a
component holds this value in a local buffer or cache, the data value will no longer be coherent.

In the remainder of this section ReadOnce* represents the three transaction types, ReadOnce,
ReadOnceCleanInvalid, and ReadOnceMakeInvalid.

Data obtained by ReadOnce* either comes directly from the Slave Node or a peer Request Node, or via the
interconnect.

ReadNoSnp and ReadOnce* transactions can optionally have an ordering requirement. For transactions that require
ordering, the Home must ensure that a transaction is observable before taking any action that could make a later
ordered transaction observable.

ReadNoSnp and ReadOnce* transactions can optionally set the ExpCompAck field, indicating that the transaction
will include a CompAck response. The use of a CompAck response is not functionally required for ReadNoSnp and
ReadOnce* transactions, as the RN issuing the transaction will not hold a copy of the cache line. However, use of
CompAck can permit the use of DMT in some cases.

Table 2-6 shows the use of DMT and DCT, with different combinations of ordering and CompAck.

Note
 A Request Accepted response in the form of a ReadReceipt from SN only guarantees that a transaction will not be
given a RetryAck response. It does not guarantee ordering with respect to any other request.

Table 2-6 Use of DMT and DCT with different combinations of ordering and CompAck

Ordering CompAck DMT DCT Notes

No Ordering No CompAck Y Y Home does not need to be notified of transaction completion.
For DMT, Home must obtain the Request Accepted response from SN to ensure the
request to SN is not given a RetryAck response.

No Ordering CompAck Y Y Home does not need to be notified of transaction completion.
For DMT, Home can ensure the request to SN is not given a RetryAck response by
either obtaining the Request Accepted response from SN or waiting for the
CompAck response.

Ordering No CompAck N Y For DCT, Home uses the SnpRespFwd or SnpRespDataFwd snoop response to
determine transaction completion.

Ordering CompAck Y Y For DMT, Home uses the CompAck response to determine transaction completion.
For DCT, Home uses the SnpRespFwd or SnpRespDataFwd snoop response to
determine transaction completion.
2-44 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
ReadNoSnp and ReadOnce* structure with DMT

The progress of the ReadNoSnp and ReadOnce* transaction with DMT is as follows:

1. Requester sends a request with the ReadNoSnp or ReadOnce* opcode on the REQ channel.

2. ICN sends a ReadNoSnp request to SN on the REQ channel.

3. SN returns an optional ReadReceipt response to ICN on the CRSP channel.

4. SN, as Completer, returns the read data and any associated transaction response with the CompData opcode
directly to the Requester on the RDAT channel.

The read data can be sent using multiple transfers. See Data transfer on page 2-100.

5. If the transaction request ExpCompAck bit is set, the Requester must return an acknowledgement, using the
CompAck opcode on the SRSP channel to indicate that the transaction has completed.

CompAck must not be sent until all transfers of read data have been received.

Figure 2-4 shows the transaction structure.

Figure 2-4 ReadNoSnp and ReadOnce* DMT structure

The life time at Home of ReadNoSnp and ReadOnce* transactions that use DMT can be reduced by using a read
received acknowledgment from the Slave to deallocate the transaction at Home. This is instead of using CompAck
from the Requester for deallocation. See Optimized DMT flow for ReadOnce* and ReadNoSnp on page 5-188 for
an example of this type of flow.

The following requirements apply to this type of transaction flow optimization:

• This optimization is applicable to:
— Both ordered and unordered ReadOnce* and ReadNoSnp transactions when ExpCompAck is asserted.
— Unordered ReadOnce* and ReadNoSnp transactions when ExpCompAck is not asserted.

• Home must set Order[1:0] to the value 0b01 in the Read request to the Slave Node.

• For a Request with Order[1:0] set to the value 0b01 the Slave must send a ReadReceipt to acknowledge the
Read request when it can guarantee that the request is accepted and that it will not send a RetryAck response.

• Home is permitted to deallocate the request after receiving the ReadReceipt without waiting for a CompAck.

• Home is permitted to receive CompAck even after the request is deallocated.

REQ

RDAT

ReadNoSnp
ReadOnce*

RN ICN SN

CompData

ReadNoSnp REQ

RDAT

CompAckSRSP

ReadReceipt

Optional

CRSP

Optional
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-45
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
ReadOnce* structure with DCT

The progress of the ReadOnce* transaction with DCT is as follows:

1. Requester sends a request with the ReadOnce* opcode on the REQ channel.

2. ICN sends a Snp[*]Fwd request to RN-F on the SNP channel.

3. RN-F, as Completer, forwards the read data and any associated transaction response to RN with the
CompData opcode on the DAT channel.

The read data can be sent using multiple transfers. See Data transfer on page 2-100.

4. RN-F also forwards a SnpRespFwded response to ICN on the SRSP channel to indicate that read data was
forwarded to the Requester. Alternatively, the response to the ICN can include data and will be a
SnpRespDataFwded response.

5. If the transaction request ExpCompAck bit is set, Requester must return an acknowledgement, using the
CompAck opcode on the SRSP channel to indicate that the transaction has completed.

CompAck must not be sent until all transfers of read data have been received.

Figure 2-5 shows the transaction structure.

Figure 2-5 ReadNoSnp and ReadOnce* DCT structure

REQ

RDAT

ReadOnce*

RN ICN RN-F

CompData

Snp[*]Fwd SNP

WDAT

CompAckSRSP

SnpRespFwded SRSPOptional
2-46 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
ReadNoSnp and ReadOnce* structure without Direct Data Transfer

This section shows the Read transaction structure without DMT or DCT.

The progress of a ReadNoSnp and a ReadOnce* transaction without Direct Data Transfer, from the Requester
perspective, is identical to a ReadNoSnp and ReadOnce* transaction with Direct Data Transfer and is as follows:

1. Requester sends a request with the ReadNoSnp or ReadOnce* opcode on the REQ channel.

2. If the request Order field indicates that ordering is required then a ReadReceipt response must be returned on
the CRSP channel when order has been established.

3. Completer returns the read data and any associated transaction response with the CompData opcode on the
RDAT channel.

The read data can be sent using multiple transfers. See Data transfer on page 2-100.

4. If the transaction request ExpCompAck bit is set, Requester must return an acknowledgement, using the
CompAck opcode on the SRSP channel to indicate that the transaction has completed.

CompAck must not be sent until all transfers of read data have been received.

Figure 2-6 shows the transaction structure.

Figure 2-6 ReadNoSnp and ReadOnce* structure without Direct Data Transfer

The Request/Response rules are:

• ReadReceipt, if part of the transaction:

— Must only be sent by the Completer after the associated request is received.

— Typically is sent by the Completer before CompData. However it is permitted to be sent after
CompData.

— Typically is received by the Requester before CompData. However it is permitted to be received after
CompData.

• CompData must only be sent by the Completer after the associated request is received.

• If CompAck is part of the transaction:
— The Requester must only send CompAck after all transfers of CompData are received.
— The Requester is permitted, but not required, to wait for the ReadReceipt before sending CompAck.
— The Completer is not permitted to wait for the CompAck before sending the ReadReceipt.

REQ

CRSP

RDAT

SRSP

ReadNoSnp
ReadOnce*

ReadReceipt

CompAck

RN ICN

CompAck is sent if
ExpCompAck is set in

the transaction request.

ReadReceipt is sent if
Order is set in the

transaction request.
CompData
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-47
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Dataless

The Dataless transactions are:
• CleanUnique.
• MakeUnique.
• Evict.
• StashOnceUnique.
• StashOnceShared.
• CleanShared.
• CleanSharedPersist.
• CleanInvalid.
• MakeInvalid.

These transactions serve a number of functions such as:
• Obtaining permission to store to a cache.
• Performing cache maintenance.
• Updating the state of a snoop filter.
• Moving data closer to the point of expected future use.

The progress of a Dataless transaction from the Requester perspective is as follows:

1. The Requester sends a Dataless request on the REQ channel.

2. The Completer returns a Comp response on the CRSP channel. Only a single response is given for Dataless
transactions.

3. If the transaction request ExpCompAck field is set, the Requester must return an acknowledgement that the
transaction has completed with the CompAck opcode on the SRSP channel:
• ExpCompAck must be asserted for:

— CleanUnique.
— MakeUnique.

• ExCompAck must not be asserted for:
— Evict.
— StashOnceUnique.
— StashOnceShared.
— CleanShared.
— CleanSharedPersist.
— CleanInvalid.
— MakeInvalid.

Figure 2-7 on page 2-49 shows the transaction structure.
2-48 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
Figure 2-7 Snoopable Dataless transaction structure

The Request/Response rules are:
• Comp must only be sent by the Completer after the associated request is received.
• CompAck must only be sent by the Requester after the associated Comp is received.

WriteNoSnp

The WriteNoSnp transactions are:

• WriteNoSnpPtl, WriteNoSnpFull.

A WriteNoSnp transaction is used to carry out a store where the snooping of other masters is not required.

The progress of the WriteNoSnp transaction is as follows:

1. The Requester sends a request with the WriteNoSnpPtl or WriteNoSnpFull opcode on the REQ channel.

2. The Completer has one of the following options:

• Return separate responses:

— Return a DBIDResp response that provides a data buffer identifier to indicate that it can accept
the write data for the transaction.

— Provide a Comp response to indicate that the transaction is observable by other Requesters.
Both responses are sent on the CRSP channel.

• Return a single combined CompDBIDResp response to indicate:
— It can accept the write data for the transaction.
— The transaction is observable by other Requesters.
The combined response is sent on the CRSP channel.

3. The Requester sends the write data and any associated byte enables with the NonCopyBackWrData opcode
on the WDAT channel. The write data can be sent using multiple transfers. See Data transfer on page 2-100.

Figure 2-8 on page 2-50 shows the transaction structure options.

REQ

CRSP

SRSP

Snoopable
Dataless

Comp

CompAck

RN ICN

CompAck is sent if
ExpCompAck is permitted and
set in the transaction request.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-49
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Figure 2-8 WriteNoSnp transaction structure options

The Request/Response rules are:

• The separate DBIDResp and Comp, or the combined CompDBIDResp, must only be sent by the Completer
after the associated request is received.

• WriteData must only be sent by the Requester after either DBIDResp or CompDBIDResp is received.

• If the DBIDResp and Comp responses are sent separately:

— The Requester must send the write data after it has received the DBIDResp response. The Requester
must not wait to receive the Comp response before the write data is sent.

— Typically the DBIDResp is sent by the Completer before Comp. However it is permitted for
DBIDResp and Comp to be sent in any order.

— Typically the DBIDResp is received by the Requester before Comp. However it is permitted for
DBIDResp and Comp to arrive in any order.

• The Completer is permitted to wait for the WriteData before sending the Comp response.

Comp response
permitted to wait

for WriteData

REQ

CRSP

WDAT

WriteData refers to
NonCopyBackWrData

ICN

REQ

CRSP

WDAT

WriteNoSnp

DBIDResp

RN

Comp

WriteData

WriteNoSnp

CompDBIDResp

RN ICN

WriteData

REQ

CRSP

WDAT

WriteNoSnp

DBIDResp

RN ICN

CompCRSP

WriteData
2-50 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
WriteUnique

The WriteUnique transactions are:

• WriteUniquePtl.
• WriteUniqueFull.
• WriteUniquePtlStash.
• WriteUniqueFullStash.

In the remainder of this section WriteUnique represents the four transaction types.

WriteUnique transactions are used to perform a store to a location when the snooping of other Snoopable Requesters
(RN-Fs) might be required to obtain permission to store.

There is one optional behavior associated with WriteUnique transactions. The behavior is determined by the Order
field in the transaction request. See Streaming Ordered WriteUnique transactions on page 2-69 for details on the use
of CompAck to force the order in which requests are observed.

The progress of the WriteUnique transaction, from the Requesters perspective, is as follows:

1. The Requester sends a request with the WriteUnique opcode on the REQ channel.

2. The Completer has one of the following options:

• Return separate responses:

— Return a DBIDResp response that provides a data buffer identifier indicating that it can accept
the write data for the transaction.

— Return a Comp response to indicate that the transaction is observable by other Requesters.
Both responses are sent on the CRSP channel.

• Return a single combined CompDBIDResp response to indicate:
— It can accept the write data for the transaction.
— The transaction is observable by other Requesters.
The combined response is sent on the CRSP channel.

3. The Requester sends the write data and any associated byte enables with the NonCopyBackWrData opcode
on the WDAT channel. The write data can be sent using multiple transfers. See Data transfer on page 2-100.

4. If the ExpCompAck field is set in the transaction request, then the transaction completes with a CompAck
transaction acknowledge.

Figure 2-9 on page 2-52 shows the transaction structures.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-51
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Figure 2-9 WriteUnique transaction structure options

The Request/Response rules are:

• The separate DBIDResp and Comp, or the combined CompDBIDResp, must only be sent by the interconnect
after the associated request is received.

• WriteData must only be sent by the Requester after either DBIDResp or CompDBIDResp is received.

• If the DBIDResp and Comp responses are sent separately:

— The Requester must send the write data after it has received the DBIDResp response. The Requester
must not wait to receive the Comp response before the write data is sent.

— Typically the DBIDResp is sent by the Completer before Comp. However it is permitted for
DBIDResp and Comp to be sent in any order.

— Typically the DBIDResp is received by the Requester before Comp. However it is permitted for
DBIDResp and Comp to arrive in any order.

— The Requester is permitted to wait for the DBIDResp response before sending a CompAck.

— The Completer must not wait for WriteData before sending Comp.

• If the CompAck acknowledge is part of the transaction then CompAck must only be sent by the Requester
after either the Comp or CompDBIDResp response is received.

— The Requester is permitted to send the WriteData and CompAck in any order.

ICN

CompAck is sent if
ExpCompAck is set in the

transaction request.

REQ

CRSP

WDAT

WriteUnique

DBIDResp

RN

Comp

SRSP CompAck

WriteData

CompAck is sent if
ExpCompAck is set in the

transaction request.

REQ

CRSP

WDAT

SRSP

ICN

WriteUnique

CompDBIDResp

RN

CompAck

WriteData
2-52 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
CopyBack

The CopyBack transactions are:
• WriteBackPtl, WriteBackFull.
• WriteCleanFull.
• WriteEvictFull.

CopyBack transactions, except WriteEvictFull, are used to update main memory or a downstream cache for a
coherent location.

A WriteEvictFull transaction is used to update only a downstream cache for a coherent location.

A WriteEvictFull must not propagate beyond its Snoop domain.

The progress of a CopyBack transaction is as follows:

1. The Requester sends a CopyBack request on the REQ channel.

2. The Completer returns a single combined CompDBIDResp response on the CRSP channel to indicate:
• It can accept the write data for the transaction.
• This request will complete before any snoop to the same address is received.

3. After the Requester has received the CompDBIDResp response it sends the write data, and any associated
byte enables, with the CopyBackWrData opcode on the WDAT channel. The write data can be sent using
multiple transfers. See Data transfer on page 2-100.

Figure 2-10 shows the transaction structure.

Figure 2-10 CopyBack transaction structure

The Request/Response rules are:
• CompDBIDResp must only be sent by the Completer after the associated request is received.
• WriteData must only be sent by the Requester after the CompDBIDResp response is received.

REQ

CRSP

WDAT

CompDBIDResp

RN ICN

CopyBack

WriteData
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-53
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Atomic

Atomic transactions can be classified in two categories based on their transaction structure:

• The following transaction returns only a completion response:

— AtomicStore.

• The following transactions return Data with a completion response:
— AtomicLoad.
— AtomicSwap.
— AtomicCompare.

Figure 2-11 shows the structure of Atomic transactions at the Requester interface.

Figure 2-11 Atomic transaction structure

The progress of an Atomic transaction is as follows:

• The Requester issues the request on the REQ channel.

• The Completer returns a DBIDResp response, on the CRSP channel, to indicate that it can accept the
WriteData associated with the transaction:

— For the AtomicStore transaction, it is permitted to give either a separate DBIDResp and Comp
response or a combined CompDBIDResp response.

— For the AtomicLoad, AtomicSwap, and AtomicCompare transaction, a CompDBIDResp response is
not permitted because the completion is included in the CompData response.

• When sending a separate Comp and DBIDResp response:
— The Completer must not wait for Data from the Requester before sending the DBIDResp response.
— The Completer is permitted to wait for Data from the Requester before sending the Comp response.

Note
 Sending a separate Comp, and delaying it until Data is received and the execution of the atomic

operation completes, permits the Completer to convey an error in the data received or in the execution
of the atomic operation. The precise nature of this error reporting is IMPLEMENTATION DEFINED.

• When sending a combined response, the Completer must not wait for Data from the Requester before sending
the CompDBIDResp response.

• On receiving the DBIDResp or CompDBIDResp response the Requester must send the transaction WriteData
on the WDAT channel:
— The Requester must not wait for a CompData or Comp response to send the transaction data.

ICN

REQ

CRSP

WDAT

AtomicLoad
AtomicSwap

AtomicCompare

DBIDResp

RN

WriteData

CompData

Can wait

Completion with data

REQ

CRSP

WDAT

AtomicStore

DBIDResp

RN ICN

Comp

WriteData

Can wait

Completion without data
2-54 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
• The Completer is permitted, when applicable:

— To give the read data response at any point after receiving the request.

— To wait until it has received all write data associated with the transaction before giving the read data
response.

Note
 An advantage of an early DBIDResp response is that it permits pipelining of Atomic transactions to distant
locations. In addition, by separating DBIDResp from Comp, the Completer has an opportunity to signal an error to
the Requester if the received data is in error, or the atomic operation has an error.

Self-snoop in Atomic transactions

This specification permits self-snooping of the Requester in Atomic transactions. The optional self-snoop is not
shown in the figure. Self-snooping is controlled by the SnoopMe bit value in the Atomic request. See SnoopMe on
page 12-305. The Request-Response rules for self-snooping in Atomic transactions are:

• An RN that does not invalidate its own cached copy of the cache line before sending an Atomic request must
rely on self-snooping to:
— Invalidate its own cached copy of the cache line.
— Obtain a copy of the cache line if Dirty.

• The Home Node:

— Must send a snoop to the Requester if the SnoopMe bit is set and Home determines that the cache line
is present at the Requester.

— Is permitted, but not required, to send a snoop to the Requester if the SnoopMe bit is set, and Home
determines that the cache line is not present at the Requester.

— Is permitted, but not required, to snoop the Requester when the SnoopMe bit is not set in an Atomic
request.

— Is expected to send a SnpUnique in response to an Atomic request, but is permitted to send a
SnpCleanInvalid.

Note
 An RN is permitted:

• To send a CopyBack request while the Atomic request to the same address with SnoopMe asserted is in
progress.

• To issue an Atomic request with SnoopMe asserted while a CopyBack request to the same address is in
progress.

DVM

The DVM transaction is DVMOp.

A DVM transaction is used to send a Distributed Virtual Memory (DVM) operation.

The progress of the DVM transaction is as follows:

1. The Requester sends a request with the DVMOp opcode on the REQ channel.

2. The Completer returns a DBIDResp response that provides a data buffer identifier indicating that it can
accept the write data for the transaction.

3. The Requester sends the write data for the DVM transaction, with the NonCopyBackWrData opcode, on the
WDAT channel. Only a single data transfer occurs for a DVM transaction.

4. The Completer returns a Comp response on the CRSP channel.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-55
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Figure 2-12 shows the transaction structure.

Figure 2-12 DVM transaction structure

The Request/Response rules are:
• DBIDResp must only be sent by the Completer after the associated request is received.
• WriteData must only be sent by the Requester after the DBIDResp response is received.
• Comp must only be sent by the Completer after the data transfer is received.

PrefetchTgt

A Request to a shareable memory address sent from a Request Node directly to a Slave Node. The request can be
used by the Slave Node to fetch and buffer data from main memory in anticipation of a subsequent Read request to
the same location.

The progress of a PrefetchTgt transaction is as follows:

• The Requester sends a PrefetchTgt request on the REQ channel. The PrefetchTgt transaction does not include
a response.

Figure 2-13 shows the transaction structure.

Figure 2-13 PrefetchTgt transaction structure

The Request/Response rules are:
• The Requester can deallocate the request as soon as the request is sent.
• The request must be accepted by the SN without any dependency and no Retry is permitted.
• The SN can drop the Request without taking any action.

REQ

CRSP

WDAT

DVMOp

DBIDResp

RN ICN

Comp

WriteData

CRSP

REQ PrefetchTgt

RN SN
2-56 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
2.3.2 Transaction Retry sequence

With the exception of PrefetchTgt, all Request transactions, as described in Request transaction structure on
page 2-39, can begin with a Retry sequence.

Retry sequence

Request transactions are first sent without a Protocol Credit (P-Credit). If the transaction cannot be accepted at its
Completer, then a RetryAck response must be given that indicates that the transaction has not been accepted and
can be sent again when an appropriate credit is provided. When a transaction is sent a second time, with a credit, it
is guaranteed to be accepted.

 For further details on the Retry process and the use of credits see Request Retry on page 2-111.

The transaction Retry sequence is as follows:

1. The Requester sends a request, without a P-Credit, on the REQ channel.

2. The Completer provides a RetryAck response on the CRSP channel.

3. The Completer provides a PCrdGrant response on the CRSP channel, when appropriate, to indicate that a
credit is available to re-send the transaction.

4. The Requester sends the transaction again, with a credit, on the REQ channel.

Figure 2-14 shows the RetryAck sequence.

Figure 2-14 Transaction Retry sequence

The transaction Retry sequence rules are:

• RetryAck must only be sent by the Completer after the associated request is received.

• PCrdGrant must only be sent by the Completer after the associated request is received.

• RetryAck is typically sent by the Completer before PCrdGrant. However, it is permitted to send RetryAck
after PCrdGrant.

• RetryAck is typically received by the Requester before PCrdGrant. However, it is permitted to receive
RetryAck after PCrdGrant.

• The transaction with credit must only be sent by the Requester after both the RetryAck response and an
appropriate PCrdGrant response are received.

REQ

CRSP

REQ

Transaction
no Credit

RN ICN

RetryAck

PCrdGrant

Transaction
with Credit
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-57
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Not retrying a transaction

The protocol supports the cancelling of a transaction between the point that it receives a RetryAck and the point that
it is resent using a credit. The sequence is identical to the transaction Retry sequence that Figure 2-14 on page 2-57
shows, except that the final transaction with credit is sent as a PCrdReturn transaction. This acts as a null transaction
and returns the credit to the Completer.

The sequence and rules are identical to those for a Retry sequence.

Figure 2-15 shows the cancelled transaction sequence.

Figure 2-15 Cancelled transaction sequence

2.3.3 Snoop transactions

Snoop transactions are sent from the interconnect to a Request Node:

• An RN-F is fully coherent and is required to accept all Snoop transactions.

• An RN-D only accepts DVM maintenance operations and is only required to support the SnpDVMOp
transaction.

• An RN-F and RN-D must respond to received snoop requests, except for DVMOp(Sync), in a timely manner,
without creating any dependency on completion of outstanding requests.

There are several options for the transaction structure of a snoop:
• Snoop with response to Home.
• Snoop with Data to Home.
• Snoop with Data return to Requester and response to Home.
• Snoop with Data return to Requester and Data to Home.
• Snoop DVM operation.

A snoop transaction can also be used to stash data at the Snoopee. The options for the transaction structure of a Stash
type snoop are:
• Stashing snoop with Data from Home.
• Stashing snoop with Data using DMT.

Note
 Figures relating to Snoop transactions show the snooped Request Node (RN) on the right, and the interconnect
(ICN) on the left. This is consistent with the ordering of the Request/Snoop process.

Transaction
no Credit

RetryAck

PCrdGrant

PCrdReturn

REQ

RSP

REQ

RN ICN
2-58 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
Snoop with response to Home

The progress of a Snoop transaction with response to Home is as follows:

1. The interconnect provides a snoop request on the SNP channel that can be any Snoop transaction supported
by the RN.

2. The RN returns the SnpResp snoop response on the SRSP channel.

Figure 2-16 shows the transaction structure.

Figure 2-16 Snoop transaction structure with response to Home

The snoop with response to Home rules are:

• SnpResp must only be sent by the RN after the associated Snoop request is received.

Snoop with Data to Home

The progress of a Snoop transaction with Data to Home is as follows:

1. The interconnect provides a snoop request on the SNP channel. This can be one of the following Snoop
transactions:
• SnpOnceFwd, SnpOnce.
• SnpCleanFwd, SnpClean.
• SnpNotSharedDirtyFwd, SnpNotSharedDirty.
• SnpSharedFwd, SnpShared.
• SnpUniqueFwd, SnpUnique.
• SnpCleanShared.
• SnpCleanInvalid.

2. The RN returns the data and associated response using the SnpRespData or SnpRespDataPtl opcode on the
DAT channel.

Figure 2-17 shows the transaction structure.

Figure 2-17 Snoop transaction structure with data to Home

The snoop with data to Home rules are:

• SnpRespData or SnpRespDataPtl, as required, must only be sent by the RN-F after the associated snoop
request is received.

SNP

SRSP SnpResp

RN-FICN

Snoop
Transaction

SNP

WDAT

Snoop
transaction

RN-FICN

SnpRespData
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-59
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Snoop with Data forwarded to Requester without or with Data to Home

The progress of a Snoop transaction with Data forwarded to the Requester is as follows:

1. The interconnect provides a Snoop request on the SNP channel. This can be one of the following Snoop
transactions:
• SnpOnceFwd.
• SnpCleanFwd.
• SnpNotSharedDirtyFwd.
• SnpSharedFwd.
• SnpUniqueFwd.

2. The snooped RN forwards the Data to the Requester using the CompData opcode on the WDAT channel and
either:
• Sends a response to Home using the SnpRespFwded opcode on the SRSP channel.
• Sends Data to Home using the SnpRespDataFwded opcode on the WDAT channel.

Figure 2-18 shows the transaction structure with response to Home.

Figure 2-18 Snoop with Data forwarded to Requester with response to Home

SNP

WDAT

Snoop
transaction

RN-F1ICNRN-F0

SRSPSnpRespFwded

CompDataRDAT

REQ Request
transaction

CompAckSRSP
2-60 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.3 Transaction structure
Figure 2-19 shows the transaction structure with data to Home.

Figure 2-19 Snoop with Data forwarded to Requester with Data to Home

The Snoop request/response rules for Forward snoops are:
• SnpRespFwded or SnpRespDataFwded must only be sent by the Snoopee after the associated Snoop request

is received.
• CompData must only be sent by the Snoopee after the associated Snoop request is received.
• SnpRespFwded or SnpRespDataFwded and CompData responses by the Snoopee can be sent in any order.

Stashing snoops

Figure 2-20 shows an example of a stashing snoop with Data Pull, Data response from Snoopee, and Data from
Home. The RN-F provides data in response to the snoop. The RN-F is then returned CompData in response to the
Read transaction initiated by the SnpRespData_Read response.

Figure 2-20 Stashing snoop with Data Pull, Data response from Snoopee, and Data from Home

SNP

WDAT

Snoop
transaction

RN-F1ICNRN-F0

WDAT

RDAT

REQ Request
transaction

CompAckSRSP

SnpRespDataFwded

CompData

ICN RN-F

SnpUniqueStash SNP

RDAT

WDATSnpRespData_Read

CompAck SRSP

CompData
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-61
ID080717 Non-Confidential

2 Transactions
2.3 Transaction structure
Figure 2-21 shows an example of a stashing snoop with Data Pull, no Data response from Snoopee, and DMT. Data
is provided by a DMT read from memory.

Figure 2-21 Stashing snoop with Data Pull, no Data response from Snoopee, and DMT

Snoop DVMOp

The progress of a SnpDVMOp transaction is as follows:
1. The interconnect provides two snoop requests with the SnpDVMOp opcode on the SNP channel.
2. The RN returns a single SnpResp snoop response on the SRSP channel.

Figure 2-22 shows the transaction structure.

Figure 2-22 SnpDVMOp transaction structure

The SnpDVMOp rules are:

• The SnpResp response must only be sent by the RN after both snoop requests are received.

ICN RN-F

SnpStashShared SNP

RDAT

SRSPSnpResp_Read

CompAck SRSP

CompData

SN-F

ReadNoSnp REQ

RDAT

SNP

SRSP SnpResp

RNICN

SnpDVMOp RN-F or RN-D
2-62 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.4 Ordering
2.4 Ordering
This section describes the mechanisms that the protocol includes to support system ordering requirements. It
contains the following subsections:
• Multi-copy atomicity.
• Completion Response and Ordering.
• Completion acknowledgement on page 2-64.
• Transaction ordering on page 2-66.

For the meaning of the terms EWA, Device, and Cacheable see Memory Attributes on page 2-92.

2.4.1 Multi-copy atomicity

This specification requires a multi-copy atomic architecture. All compliant components must ensure that all
write-type requests are multi-copy atomic. A write is defined as multi-copy atomic if both of the following
conditions are true:

• All writes to the same location are serialized, that is, they are observed in the same order by all Requesters,
although some Requesters might not observe all of the writes.

• A read of a location does not return the value of a write until all Requesters observe that write.

In this specification, two addresses are considered to be the same with respect to coherence, observability, and
hazarding if their cache line addresses and NS attribute are the same.

2.4.2 Completion Response and Ordering

To guarantee the ordering of a transaction with respect to later transactions, either from the same agent or from
another agent, the Comp or CompData response is used as follows:

• For a Read transaction to a Non-cacheable or Device location, a CompData response guarantees that the
transaction is observable to a later transaction from any agent to the same endpoint address range. The size
of the endpoint address range is IMPLEMENTATION DEFINED.

• For a Read transaction to a Cacheable location, a CompData response guarantees that the transaction is
observable to a later transaction from any agent to the same location.

• For a Dataless transaction that is only permitted to a Cacheable memory location, a Comp response
guarantees that the transaction is observable to a later transaction from any agent to the same memory
location. In addition, for CleanSharedPersist transactions, an HN must send a Comp response only after the
HN receives a Completion from downstream that indicates that the location has been made persistent.

• For a Write or an Atomic transaction to Non-cacheable or Device nRnE or Device nRE, a Comp or
CompData response guarantees that the transaction is observable to a later transaction from any agent to the
same endpoint address range.

• For a Write or Atomic transaction to a Cacheable or Device RE location, a Comp or CompData response
guarantees that the transaction is observable to a later transaction, from any agent, to the same location.

Note
 • The size of an endpoint address range is IMPLEMENTATION DEFINED. Typically, this is:

— The size of a peripheral device, for a region used for peripherals.
— The size of a cache line, for a region used for memory.

• A Cacheable location can be determined by the assertion of the MemAttr[2] Cacheable bit in the request. A
Non-cacheable or Device location can be determined by the deassertion of the MemAttr[2] Cacheable bit in
the request.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-63
ID080717 Non-Confidential

2 Transactions
2.4 Ordering
If the Comp response for a Write transaction, with EWA asserted, to a Non-cacheable or Device location does not
guarantee that the transaction is observable to a later transaction from any agent to the same endpoint address range,
then one of the following techniques can be used to ensure ordering to the same endpoint address range:

• If the Write transaction has an Endpoint Order requirement, then a later transaction from the same agent that
also has an Endpoint Order requirement and is to the same endpoint address range will be ordered. See
Transaction ordering on page 2-66.

• The CompData response of a later Read transaction to the same location ensures the ordering of the Write
transaction with respect to a later transaction from any agent to any location within the same endpoint address
range.

A component must only give a Comp or CompDBIDResp response when it is guaranteed that all observers will see
the result of the atomic operation.

2.4.3 Completion acknowledgement

The relative ordering of transactions issued by a Requester, and Snoop transactions caused by transactions from
different Requesters, is controlled by the use of a Completion Acknowledgment response. This ensures that a Snoop
transaction that is ordered after the transaction from the Requester is guaranteed to be received after the transaction
response.

The sequencing of the completion of a transaction and the sending of CompAck is as follows:
1. An RN-F sends a CompAck after receiving Comp or CompData.
2. An HN-F waits for CompAck before sending a subsequent snoop to the same address. For CopyBack

transactions, WriteData acts as an implicit CompAck and an HN-F must wait for WriteData before sending
a snoop to the same address.

This sequence guarantees that an RN-F receives completion for a transaction and a snoop to the same cache line in
the same order as they are sent from an HN-F. This ensures transactions to the same cache line are observed in the
correct order.

When an RN-F has a transaction in progress that uses CompAck, except for ReadOnce*, then it is guaranteed not
to receive a Snoop request to the same address between the point that it receives Comp and the point that it sends
CompAck.

The use of CompAck for a transaction is determined by the Requester setting the ExpCompAck field in the original
request. The rules for an RN setting the ExpCompAck field and generating a CompAck response are as follows:

• An RN-F must include a CompAck response in all Read transactions except ReadNoSnp and ReadOnce*.

• Although not required, an RN-F is permitted to include a CompAck response in ReadNoSnp and ReadOnce*
transactions.

• An RN-F must not include a CompAck response in StashOnce, CMO, Atomic or Evict transactions.

• An RN-I or RN-D is permitted, but not required, to include a CompAck response in Read transactions.

• An RN-I or RN-D must not include a CompAck response in Dataless or Atomic transactions.

• For Write transactions, CompAck can only be used for WriteUnique transactions. See Streaming Ordered
WriteUnique transactions on page 2-69.

For transactions between an RN and an HN, where the HN is the Completer, the HN must support the use of
CompAck for all transactions that are required or permitted to use CompAck.

An SN is not required to support the use of CompAck.

A Requester, such as an HN-F or HN-I that communicates with an SN-F or SN-I respectively, must not send a
CompAck response.
2-64 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.4 Ordering
Table 2-7 shows the Request types that require a CompAck response, and the corresponding Requester types that
are required to provide that response.

Table 2-7 Requester CompAck requirement

Request type CompAck Required

RN-F RN-D, RN-I

ReadNoSnp Optional Optional

ReadOnce* Optional Optional

ReadClean Yes -

ReadNotSharedDirty Yes -

ReadShared Yes -

ReadUnique Yes -

CleanUnique Yes -

MakeUnique Yes -

CleanShared No No

CleanSharedPersist No No

CleanInvalid No No

MakeInvalid No No

WriteBack No -

WriteClean No -

WriteUnique Optional Optional

Evict No -

WriteEvictFull No -

WriteNoSnp No No

Atomics No No

StashOnce No No
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-65
ID080717 Non-Confidential

2 Transactions
2.4 Ordering
2.4.4 Transaction ordering

In addition to using a Comp response to order a sequence of requests from a Requester, this specification also
defines mechanisms for ordering of requests between an RN, HN pair and a HN-I, SN-I pair. Between an HN-F,
SN-F pair the order field is used to obtain a request accepted acknowledgment.

Requester Order between an RN, HN pair and a HN-I, SN-I pair is supported by the Order field in a request. The
Order field indicates that the transaction requires one of the following forms of ordering:

Request Order This guarantees the order of multiple transactions, from the same agent, to the same address
location.

Endpoint Order This guarantees the order of multiple transactions, from the same agent, to the same
endpoint address range. This guarantee also includes the guarantee of Request Order.

Ordered Write Observation

This guarantees the observation order by other agents in the system, for a sequence of write
transactions from a single agent.

Request Accepted

This guarantees that the receiver has accepted the Request and will not send a RetryAck
response.

Table 2-8 shows the Order field encodings.

Ordering requirements

The Order field must only be set to a non-zero value for the following transactions:
• ReadNoSnp.
• ReadOnce*.
• WriteNoSnp.
• WriteUnique.
• Atomic.

When a ReadNoSnp or ReadOnce* transaction requires Request Order or Endpoint Order:

• The Requester requires a ReadReceipt to determine when it can send the next ordered request.

• At the Completer a ReadReceipt means the request has reached the next ordering point that will maintain
requests in the order they were received:

— For requests that require Request Order it will maintain order between requests to the same address
from the same source.

— For requests that require Endpoint Order it will maintain order between requests to the same endpoint
address range from the same source.

Table 2-8 Order field encodings

Order[1:0] Description Notes Between pairs

0b00 No ordering required - All pairs

0b01 Request Accepted Applicable in Read request from
HN-F to SN-F only.
Reserved in all other cases.

HN-F to SN-F

0b10 Request Order/Ordered Write Observation required Reserved in Read requests from
HN-F to SN-F.

RN to HN
HN-I to SN-I

0b11 Endpoint Order required, which includes Request Order
2-66 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.4 Ordering
When a WriteNoSnp or a non-Snoopable Atomic transaction requires Request Order or Endpoint Order:

• The Requester requires a DBIDResp to determine when it can send the next ordered request.

• The Completer sending a DBIDResp response means that a data buffer is available, and that the write request
has reached a PoS that will maintain requests in the order they were received:

— For requests that require Request Order it will maintain order between requests to the same address
from the same source.

— For requests that require Endpoint Order it will maintain order between requests to the same endpoint
address range from the same source.

When a WriteUnique transaction without ExpCompAck asserted, or a Snoopable Atomic transaction require
Request Order:
• The Requester requires a DBIDResp to determine when it can send the next ordered request.
• The Completer sending a DBIDResp response means that it will maintain order between requests to the same

address from the same source.

When a WriteUnique transaction requires Ordered Write Observation:

• CompAck is required. The RN must assert ExpCompAck.

• The RN requires a DBIDResp.

• The Completer is a PoS. A PoS sending DBIDResp means:

— A data buffer is available.

— The PoS guarantees that the completion of the coherence action on this write does not depend on
completion of the coherence action on a subsequent write that requires Ordered Write Observation.

— The write is not made visible until CompAck is received.

Table 2-9 shows the ordering guarantee that is obtained for different combinations of transactions that require order.

The transactions that Table 2-9 shows as First Transaction and Second Transaction are from the same Requester.

When transactions from the same Requester specify a different ordering requirement, the ordering guarantee that is
provided is the least restrictive of the two.

Table 2-9 Order between transactions

First Transaction Second Transaction Order Guarantee

No ordering No ordering No ordering

No ordering Request Order No ordering

No ordering Endpoint Order No ordering

Request Order No ordering No ordering

Request Order Request Order Request Order

Request Order Endpoint Order Request Order

Endpoint Order No ordering No ordering

Endpoint Order Request Order Request Order

Endpoint Order Endpoint Order Endpoint Order
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-67
ID080717 Non-Confidential

2 Transactions
2.4 Ordering
Read Request Order example

Figure 2-23 shows the request ordering of three read requests.

Figure 2-23 Series of ordered read requests

HNRN

ReadNoSnp-1

ReadReceipt-1

ReadNoSnp-2

RetryAck-2

PCrdGrant

ReadNoSnp-2

ReadReceipt-2

ReadNoSnp-3

ReadNoSnp-2 waits
for a CreditGrant

Request
accepted

Request gets
a Retry

response

ReadNoSnp-2 is sent
after ReadReceipt-1

is received

ReadReceipt-3

CompData_I-3

ReadNoSnp-3
continues waiting for

ReadNoSnp-2 to
make progress

ReadNoSnp-3 is sent
after Read Receipt-2

is received
2-68 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.4 Ordering
Three ordered requests are sent from RN to HN as follows:

1. RN sends the ReadNoSnp-1 request to HN.

2. HN accepts the request and returns the ReadReceipt-1 response to RN.

3. After the ReadReceipt-1 response is received, RN sends the ReadNoSnp-2 request to HN.

4. HN cannot immediately accept the ReadNoSnp-2 request and returns the RetryAck-2 response to RN.

5. RN must now wait for a PCrdGrant to be sent from HN before resending the ReadNoSnp-2 request. RN does
not send ReadNoSnp-3 at this point, as it wants to order ReadNoSnp-3 behind ReadNoSnp-2. This ordering
requires that ReadNoSnp-2 must be accepted at HN before ReadNoSnp-3 is sent to HN.

6. After receipt of an appropriate PCrdGrant, RN resends the ReadNoSnp-2 request.

7. HN accepts the request and returns a ReadReceipt-2 response to RN.

8. After receipt of the ReadReceipt-2 response, RN sends the ReadNoSnp-3 request to HN.

9. HN accepts the request and returns the ReadReceipt-3 response to RN.

10. HN completes the Request transactions by sending a combined Completion and Data response to the RN for
each request.

Note
 Figure 2-23 on page 2-68 shows a single ordered stream of three reads from RN. However, an RN can have multiple
streams of reads, in which case requests must be ordered within a stream, but ordering dependency does not exist
between streams. One example of this is when the streams are from different threads within the RN, in which case,
the RN waits for the ReadReceipt of the previous request from the same thread only before sending out the next
ordered request from that stream.

CopyBack Request order

An RN-F must wait for the CompDBIDResp response to be received for an outstanding CopyBack transaction
before issuing another request to the same cache line. It is permitted for an Atomic transaction with SnoopMe
asserted to be issued before the CompDBID response is received for an outstanding CopyBack to the same cache
line.

Streaming Ordered WriteUnique transactions

If a Requester requires a sequence of WriteUnique transactions to be observed in the same order as they are issued,
then the Requester can wait for completion for a WriteUnique before issuing the next WriteUnique in the sequence.
Such an observation ordering is typically termed Ordered Write Observation. This specification provides a
mechanism termed Streaming Ordered WriteUniques to more efficiently stream such ordered WriteUnique
transactions.

The Streaming Ordered WriteUniques mechanism relies on the use of the Ordered Write Observation ordering
requirement and CompAck. Responsibilities of Requesters and HN-F when utilizing the Streaming Ordered
WriteUnique solution are:

• The Requester must set the Order field to require Ordered Write Observation and ExpCompAck on the
WriteUnique request.

• The Ordered Write Observation requirement in a WriteUnique request indicates to the HN-F that the
completion of coherence action on this write must not depend on completion of coherence action on a
subsequent write.

• The Requester must wait for DBIDResp for a WriteUnique transaction before sending the next WriteUnique
request.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-69
ID080717 Non-Confidential

2 Transactions
2.4 Ordering
• The Requester must send a CompAck response after receiving Comp for the corresponding WriteUnique, as
well as Comp responses for all earlier related ordered WriteUniques.

Note
 Waiting to send CompAck until all prior ordered WriteUniques have received their Comp responses ensures

that they have completed their operations at their respective HN-Fs and any Requester observing the
WriteUnique for which CompAck is sent will also observe all prior ordered WriteUniques.

• HN-F must wait for a CompAck response from RN before deallocating a WriteUnique transaction and
making the write visible to other observers.

Optimized Streaming Ordered WriteUniques

The Streaming Ordered WriteUniques mechanism can be further optimized. If a previously sent WriteUnique is to
a different target, then the Requester does not need to wait for the DBIDResp for the request before sending the next
ordered WriteUnique. However, if the interconnect can remap the TgtID, then the Requester must presume that all
WriteUniques are targeting the same HN-F and must not use the optimized version of the Streaming Ordered
WriteUniques flow.

An implementation using an optimized or non-optimized Streaming Ordered WriteUniques solution must avoid
deadlock and livelock situations.

Note
 • A technique for avoiding resource related deadlock or livelock issues is to limit Streaming Ordered

WriteUniques optimization to one Requester in the system. All other Requesters in the system can use the
Streaming Ordered WriteUniques solution without the optimization.

• In a typical system, the optimized Streaming Ordered WriteUniques solution is most beneficial to an RN-I
that is a conduit for PCIe style, non-relaxed order, Snoopable writes. In most systems, one RN-I hosting this
type of PCIe traffic is adequate.

• Optimized Streaming Ordered WriteUnique can be used by more than one Requester by making use of
WriteDataCancel messages to avoid Resource related deadlocks and livelocks.
2-70 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.4 Ordering
Figure 2-24 shows a typical transaction flow in which an RN-I uses Streaming Ordered WriteUniques. This flow
prevents a read acquiring the new value of Write-B before Write-A has completed.

Note
 For clarity, in Figure 2-24 the Write-B DBIDResp and the NCBWrData flow is omitted.

Figure 2-24 Streaming Ordered WriteUniques transaction flow

RN-IHN-FRN-F1

WriteUnique-A

DBIDResp-A

CompAck-A

RN-F2

SnpResp_I-A

SnpCleanInvalid-A

Comp-A

III

NCBWrData-A

WriteUnique-B

SnpCleanInvalid-A

SnpResp_I-A

SnpCleanInvalid-B

SnpResp_I-B SnpCleanInvalid-B

SnpResp_I-B

Comp-B

CompAck-B

CompAck for B is
not sent until the

Comp for A is
received

Request B is sent
after receiving
DBIDResp for

request A
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-71
ID080717 Non-Confidential

2 Transactions
2.5 Introduction to identifier fields
2.5 Introduction to identifier fields
Each transaction consists of a number of different packets that are transferred across the interconnect. A set of
identifier fields, within a packet, are used to provide additional information about a packet. The different identifier
fields are:

Target Identifier (TgtID), Source Identifier (SrcID)

These identifiers route packets across the interconnect. See Transaction identifier fields on
page 2-73 and Chapter 3 Network Layer.

Transaction Identifier (TxnID), Data Buffer Identifier (DBID), Return Transaction Identifier (ReturnTxnID),
Forward Transaction Identifier (FwdTxnID)

These fields relate all the packets associated with a single transaction. See Transaction identifier
fields on page 2-73.

Data Identifier (DataID), Critical Chunk Identifier (CCID)

These fields identify the individual data packets within a transaction. See Data packetization on
page 2-102.

Logical Processor Identifier (LPID), Stash Logical Processor Identifier (StashLPID)

These fields identify individual processing agents within a single Requester. See Logical Processor
Identifier on page 2-90.

Stash Node Identifier (StashNID)

This field identifies the node that is the Stash target. See Supporting REQ packet fields on
page 7-230.

Return Node Identifier (ReturnNID), Forward Node Identifier (FwdNID)

These fields identify the node that the response with Data is to be sent to. See Transaction identifier
fields on page 2-73.

Home Node Identifier (HomeNID)

This field is used to identify the node that the CompAck response is to be sent to. See Transaction
identifier fields on page 2-73.
2-72 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.6 Transaction identifier fields
2.6 Transaction identifier fields
A transaction request includes a TgtID that identifies the target node, and a SrcID that identifies the source node.
These IDs are used to route packets across the interconnect.

A transaction request includes a TxnID that is used to identify the transaction from a given Requester. It is required
that the TxnID must be unique for a given Requester. The Requester is identified by the SrcID. This ensures that
any returning read data or response information can be associated with the correct transaction.

An 8-bit field is defined for the TxnID to accommodate up to 256 outstanding transactions. A Requester is permitted
to reuse a TxnID value after it has received all responses associated with a previous transaction that has used the
same value. Transaction identifier field flows on page 2-75 gives more detailed rules for the different transaction
types. The TxnID field is not applicable in a PrefetchTgt request from Request Node to Slave and must be zero.

A transaction that is retried is not required to use the same TxnID. See Request Retry on page 2-111.

A transaction request from Home to Slave includes a ReturnNID that is used to determine the TgtID for the Data
response from the Slave. Its value must be either the Node ID of Home or the Node ID of the original Requester.

ReturnNID only applicable in a ReadNoSnp request from Home to Slave. The field is inapplicable in all other
requests from Home to Slave and must be set to zero.

ReturnNID is inapplicable from Requester to Home and must be set to zero in all requests.

A transaction request from Home to Slave also includes a ReturnTxnID field to convey the value of TxnID in the
data response from the Slave. Its value, when applicable, must be either:
• The TxnID generated by Home, when the ReturnNID is the Node ID of the Home.
• The TxnID of the original Requester, when the ReturnNID is the Node ID of the original Requester.

ReturnTxnID is only applicable in a ReadNoSnp request from Home to Slave. The field is inapplicable in all other
requests from Home to Slave and must be set to zero.

ReturnTxnID is inapplicable from Requester to Home and Requester to Slave, and must be set to zero in all requests.

CompData from Home, and from the Slave node, includes the HomeNID field that is used by the Requester to
identify the target of the CompAck that it might need to send in response to CompData. HomeNID is applicable in
CompData and is inapplicable, and must be set to zero, for all other data messages.

A Snoop request from Home to RN-F includes a FwdNID that is used to determine the TgtID for the Data response
from the RN-F. Its value must be the NodeID of the original Requester.

The FwdNID field is only applicable in:
• SnpSharedFwd.
• SnpCleanFwd.
• SnpOnceFwd.
• SnpNotSharedDirtyFwd.
• SnpUniqueFwd.

It is inapplicable and must be set to zero in all other snoops.

A Snoop request from Home to RN-F also includes a FwdTxnID field to convey the value of TxnID in the Data
response from the RN-F. Its value must be the TxnID of the original Request.

The FwdTxnID field is only applicable in:
• SnpSharedFwd.
• SnpCleanFwd.
• SnpOnceFwd.
• SnpNotSharedDirtyFwd.
• SnpUniqueFwd.

It is inapplicable and must be set to zero in all other snoops.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-73
ID080717 Non-Confidential

2 Transactions
2.6 Transaction identifier fields
The DBID field permits the Completer of a transaction to provide its own identifier for a transaction. The Completer
sends a response that includes a DBID. The DBID value is used as the TxnID field value in the:
• WriteData response of Write, Atomic, and DVMOp transactions.
• CompData response of Stash transactions for Data Pull purposes.
• CompAck response of Read, Dataless, and WriteUnique transactions that include a CompAck response.

The DBID value used by a Completer in responses of a given transaction must be unique for a given Requester in
the following cases:
• DBIDResp or CompDBIDResp for all Write transactions.
• Comp for Write transactions that include CompAck.
• DBIDResp or CompDBIDResp for Atomic transactions.
• DBIDResp for DVMOp transactions.
• CompData for Read transactions that include CompAck, except in the case when ReadOnce* and

ReadNoSnp do not use the resultant CompAck for deallocation of the request at Home.
• Comp for Dataless transactions that include CompAck.

The DBID value used by a Snoop Completer in response to a Stash type snoop that includes a Data Pull must be
unique with respect to:
• The DBID values in other Snoop responses to Stash type snoops that use Data Pull.
• The TxnID of any outstanding Request from that Snoop Completer.

The Completer is not required to utilize the DBID field for:
• Read transactions without CompAck.
• Dataless transactions without CompAck.
• Snoop response to a Stash type snoop that does not include Data Pull.
• Snoop response to a Non-stash type snoop.

A Comp response message sent separate from a DBIDResp message for a Write transaction must include the same
DBID field value in the Comp and DBIDResp message.

A Comp response message sent separate from a DBIDResp message for a Atomic transaction is permitted, but is
not required, to include the same DBID field value in Comp and DBIDResp message.

A Completer is permitted, but not required, to use the same DBID value for two transactions with different
Requesters. A Completer is permitted to reuse a DBID value after it has received all packets associated with a
previous transaction that has used the same value. Transaction identifier field flows on page 2-75 gives more
detailed rules for the different transaction types.

Note
 The advantage of using the DBID assigned by the Completer, instead of the TxnID assigned by the Requester, is
that the Completer can use the DBID to index into its request structure instead of performing a lookup using TxnID
and SrcID to determine which transaction write data or completion acknowledge is associated with which request.

If a Completer is using the same DBID value for different Requesters, which it must do if its operation requires more
than 256 DBID responses to be active at the same time, then it must use SrcID in combination with DBID to
determine which request should be associated with a write data or response message.

The DBIDResp response is also used to provide certain ordering guarantees relating to the transaction. See
Transaction ordering on page 2-66.
2-74 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.7 Transaction identifier field flows
2.7 Transaction identifier field flows
This section shows the transaction identifier field flows for different transaction types.

In the associated figures:

• The fields included in each packet are:
— For a Request packet: TgtID, SrcID, TxnID, StashNID, StashLPID, ReturnNID and ReturnTxnID.
— For a Response packet: TgtID, SrcID, TxnID and DBID.
— For a Data packet: TgtID, SrcID, TxnID, HomeNID and DBID.
— For a Snoop packet: SrcNID, TxnID, FwdNID, FwdTxnID and StashLPID.

• All fields with the same color are the same value.

• The curved loop-back arrows show how the Requester and Completer use fields from earlier packets to
generate fields for subsequent packets.

• A box containing an asterix [*] indicates when a field is first generated, that is, it indicates the agent that
determines the original value of the field.

• A field enclosed in parentheses indicates that the value is effectively a fixed value. Typically this is the case
for the SrcID field when a packet is sent, and the TgtID field when a packet arrives at its destination.

• A field that is crossed-out indicates that the field is not valid.

• It is permitted for the TgtID of the original transaction to be re-mapped by the interconnect to a new value.
This is shown by a box containing the letter R. This is explained in more detail in Chapter 3 Network Layer.

Note
 An identifier field, in every packet sent, belongs to one of the following categories:
• New value. An asterix indicates that a new value is generated.
• Generated from an earlier packet. A loop back arrow indicates the source.
• Fixed value. The value is enclosed in brackets.
• Not valid. The field is crossed-out.

In the following examples, any transaction IDs that are not relevant for the example have been omitted for clarity.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-75
ID080717 Non-Confidential

2 Transactions
2.7 Transaction identifier field flows
2.7.1 Read transactions

For Read transactions without snoops, this specification recommends the use of Direct Memory Transfer (DMT).

Identifier field flow with DMT in Read transactions

Figure 2-25 shows how the Target and Transaction ID values in the DMT transaction messages are derived. For
example, the value of SrcID in the ReadNoSnp request from ICN is assigned by ICN, whereas the ReturnNID,
which is used as TgtID in the Data response, is set to the value of SrcID of the received Read request.

Figure 2-25 ID value transfer in a DMT transaction

The required steps in the flow that Figure 2-25 shows are:

1. The Requester starts the transaction by sending a Request packet.

The identifier fields of the request are generated as follows:
• The TgtID is determined by the destination of the Request.

Note
 The TgtID field can be remapped to a different value by the interconnect.

• The SrcID is a fixed value for the Requester.
• The Requester generates a TxnID field that is unique for that Requester.

RN

Read ReadNoSnp

CompAck

ICN SN

To RN

ReadReceipt
(Optional)

CompData CompData

SrcID
TxnID

(TgtID)

ReturnNID
ReturnTxnID

TgtID*
(SrcID)*
TxnID*

TgtID

TxnID
HomeNID

DBID

(SrcID)
(TgtID)
SrcID

DBID
HomeNID

TxnID

TgtID

TxnID
(SrcID)

DBID

SrcID
TxnID

ReturnNID
ReturnTxnID

(TgtID)

TgtID

TxnID
(SrcID)

DBID

(SrcID)*
TxnID*

TgtID* R
2-76 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.7 Transaction identifier field flows
2. The recipient Home Node in the ICN generates a Request to the Slave Node.

The identifier fields of the request are generated as follows:
• The TgtID is set to the value required for the Slave.
• The SrcID is a fixed value for the Home.
• The TxnID is a unique value generated by the Home.
• The ReturnNID is set to the same value as the SrcID of the original request.
• The ReturnTxnID is set to the same value as the TxnID of the original request.

3. If the request to the Slave requires a ReadReceipt, the Slave provides the read

receipt.

The identifier fields of the ReadReceipt response are generated as follows:
• The TgtID is set to the same value as the SrcID of the request.
• The SrcID is a fixed value for the Slave. This also matches the TgtID received.
• The TxnID is set to the same value as the TxnID of the request.
• The DBID field is not valid.

4. The Slave provides the read data.

The identifier fields of the read data response are generated as follows:
• The TgtID is set to the same value as the ReturnNID of the request.
• The SrcID is a fixed value for the Slave. This also matches the TgtID received.
• The TxnID is set to the same value as the ReturnTxnID of the request.
• The HomeNID is set to the same value as the SrcID of the request.
• The DBID is set to the same value as the TxnID of the request.

5. The Requester receives the read data and sends a CompAck acknowledgment.

The identifier fields of the CompAck are generated as follows:
• The TgtID is set to the same value as the HomeNID of the read data.
• The SrcID is a fixed value for the Requester. This also matches the TgtID that was received.
• The TxnID is set to the same value as the DBID of the read data.
• The DBID field is not valid.

The CompAck response from Requester to Home is not required for all Requests.

If the original request requires a ReadReceipt, the following additional step is included:

• The Home receives the Request packet and provides the read receipt.

The identifier fields of the ReadReceipt response are generated as follows:
— The TgtID is set to the same value as the SrcID of the request.
— The SrcID is a fixed value for the Completer. This also matches the TgtID received.
— The TxnID is set to the same value as the TxnID of the request.
— The DBID field is not valid.

After receiving all read data packets, and if the transaction does not include a ReadReceipt, the Requester can reuse
the same TxnID value for another transaction.

If the transaction includes a ReadReceipt, then the Requester must only reuse the same TxnID after it has received
all read data packets and the ReadReceipt response.

After receiving the CompAck response, the Completer can reuse the same DBID value for another transaction.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-77
ID080717 Non-Confidential

2 Transactions
2.7 Transaction identifier field flows
Identifier field flow with DCT in Read transactions

For Read transactions with snoops, this specification recommends the use of Direct Cache Transfer (DCT).

Figure 2-26 shows how the identifier field values are derived in DCT transaction messages. In this example, the data
is forwarded to RN and a Snoop response is sent to HN-F with or without data.

Figure 2-26 ID value transfer in a DCT transaction

The required steps in the flow that Figure 2-26 shows are:

1. The Requester starts the transaction by sending a Request packet.

The identifier fields of the request are generated as follows:
• The TgtID is determined by the destination of the Request.

Note
 The TgtID field can be remapped to a different value by the interconnect.

• The SrcID is a fixed value for the Requester.
• The Requester generates a TxnID field that is unique for that Requester.

RN

Read Snp[*]Fwd

CompAck

ICN RN-F

To RN

To HN-FTo HN-F

CompData CompData

SrcID
TxnID

(TgtID)

FwdNID
FwdTxnID

(SrcID)*
TxnID*

SnpRespFwded
or

SnpRespDataFwded

SrcID
TxnID

FwdNID
FwdTxnID

TgtID

TxnID
HomeNID

DBID

(SrcID)*
(TgtID)

TxnID

DBID
HomeNID

SrcID

TgtID

TxnID
(SrcID)*

DBID

TgtID

TxnID
(SrcID)

DBID

(SrcID)*
TxnID*

TgtID* R
2-78 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.7 Transaction identifier field flows
2. The recipient Home Node in the ICN generates a fowarding snoop to the RN-F node.

The identifier fields of the snoop are generated as follows:
• The SrcID is a fixed value for the Home.
• The TxnID is a unique value generated by the Home.
• The FwdNID is set to the same value as the SrcID of the original request.
• The FwdTxnID is set to the same value as the TxnID of the original request.

3. The RN-F provides the read data.

The identifier fields of the read data response are generated as follows:
• The TgtID is set to the same value as the FwdNID of the snoop.
• The SrcID is a fixed value for the RN-F.
• The TxnID is set to the same value as the FwdTxnID of the snoop.
• The HomeNID is set to the same value as the SrcID of the snoop.
• The DBID is set to the same value as the TxnID of the snoop.

4. The RN-F also provides a response to Home, either with or without read data.

The identifier fields of the response are generated as follows:
• The TgtID is set to the same value as the SrcID of the snoop.
• The SrcID is a fixed value for the RN-F.
• The TxnID is set to the same value as the TxnID of the snoop.
• The DBID field is not valid.

5. The Requester receives the read data and sends a CompAck acknowledgment.

The identifier fields of the CompAck are generated as follows:
• The TgtID is set to the same value as the HomeNID of the read data.
• The SrcID is a fixed value for the Requester. This also matches the TgtID that was received.
• The TxnID is set to the same value as the DBID of the read data.
• The DBID field is not valid.

Note
 An optional ReadReceipt from ICN to Requester can also be included.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-79
ID080717 Non-Confidential

2 Transactions
2.7 Transaction identifier field flows
Identifier field flow without Direct Data Transfer in Read transactions

This section gives an example of a Read identifier field flow without DMT or DCT and describes the use of the
TxnID and DBID fields for Read transactions.

The Requester and Completer in this example are an RN and an HN-F respectively.

The identifier field flow includes an optional ReadReceipt response from the Completer, and an optional CompAck
response from the Requester.

For Read transactions that include a CompAck response the DBID is used by the Completer to associate the
CompAck with the original transaction.

A Read transaction that does not include a CompAck response does not require a valid DBID field in the data
response.

Figure 2-27 shows the identifier field flow.

Figure 2-27 Identifier field flow for a Read request with ReadReceipt and CompAck

The required steps in the flow that Figure 2-27 shows are:

1. The Requester starts the transaction by sending a Request packet. The identifier fields of the request are
generated as follows:
• The TgtID is determined by the destination of the Request.

Note
 The TgtID field can be re-mapped to a different value by the interconnect.

• The SrcID is a fixed value for the Requester.
• The Requester generates a TxnID field that is unique for that Requester.

ReadReq

Requester

CompAck

Completer

ReadReceipt

Optional

Optional

CompData

(TgtID)
SrcID
TxnID

(SrcID)
TgtID

TxnID
DBID

DBIDDBID

(TgtID)
SrcID
TxnID
DBID

(TgtID)
SrcID
TxnID

TgtID
(SrcID)
TxnID

TgtID
(SrcID)
TxnID

DBID *
(HomeNID) *

(TgtID)
SrcID
TxnID

DBID
HomeNID

(SrcID)*
TxnID*

TgtID R*
2-80 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.7 Transaction identifier field flows
2. If the transaction includes a ReadReceipt, the Completer receives the Request packet and provides the read
receipt. The identifier fields of the ReadReceipt response are generated as follows:
• The TgtID is set to the same value as the SrcID of the request.
• The SrcID is a fixed value for the Completer. This also matches the TgtID received.
• The TxnID is set to the same value as the TxnID of the request.
• The DBID field is not valid.

3. The Completer receives the Request packet and provides the read data. The identifier fields of the read data
response are generated as follows:
• The TgtID is set to the same value as the SrcID of the request.
• The SrcID is a fixed value for the Completer. This also matches the TgtID received.
• The TxnID is set to the same value as the TxnID of the request.
• The Completer generates a unique DBID value if ExpCompAck in the request is asserted.

4. The Requester receives the read data and sends a CompAck acknowledgment.

The identifier fields of the CompAck are generated as follows:
• The TgtID is set to the same value as the HomeNID of the read data.
• The SrcID is a fixed value for the Requester. This also matches the TgtID that was received.
• The TxnID is set to the same value as the DBID of the read data.
• The DBID field is not valid.

2.7.2 Dataless transactions

For Dataless transactions the use of identifier fields is similar to Identifier field flow without Direct Data Transfer
in Read transactions on page 2-80. The only difference is that the response from the Completer to the Requester is
sent as a single packet on the CRSP channel instead of multiple packets on the RDAT channel.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-81
ID080717 Non-Confidential

2 Transactions
2.7 Transaction identifier field flows
2.7.3 Write transactions

This section describes the use of the TxnID and DBID fields for Write transactions:
• CopyBack and single response WriteNoSnp transaction.
• WriteNoSnp transaction with multiple responses on page 2-83.
• WriteUnique transaction on page 2-85.
• StashOnce transaction on page 2-86.

CopyBack and single response WriteNoSnp transaction

This section describes the use of the identifier fields for a write transaction with a single combined CompDBIDResp
response. Further details on the meaning of the response fields, and when a combined response is used, can be found
in Response types on page 4-146.

Figure 2-28 shows the transaction identifier field flow.

Figure 2-28 Identifier field flow for CopyBack and single response WriteNoSnp

The required steps in the flow that Figure 2-28 shows are:

1. The Requester starts the transaction by sending a Request packet. The identifier fields of the request are
generated as follows:
• The TgtID is determined by the destination of the Request.

Note
 The TgtID field can be remapped to a different value by the interconnect.

• The SrcID is a fixed value for the Requester.
• The Requester generates a unique TxnID field.

2. The Completer receives the request packet and generates a CompDBIDResp response. The identifier fields
of the response are generated as follows:
• The TgtID is set to the same value as the SrcID of the request.
• The SrcID is a fixed value for the Completer. This also matches the TgtID received.
• The TxnID is set to the same value as the TxnID of the request.
• The Completer generates a unique DBID value.

CopyBack or
WriteNoSnp

Requester

CompDBIDResp

Completer

WriteData

TgtID
(SrcID)
TxnID
DBID *

(TgtID)
SrcID
TxnID

(TgtID)
SrcID
TxnID
DBID

*
*

TgtID
(SrcID)
TxnID
DBID

(TgtID)
SrcID
TxnID
DBID

(SrcID)
TxnID

TgtID R*
2-82 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.7 Transaction identifier field flows
3. The Requester receives the CompDBIDResp response and sends the write data. The identifier fields of the
write data are generated as follows:

• The TgtID is set to the same value as the SrcID of the CompDBIDResp response. This can be different
from the original TgtID of the request if the value was remapped by the interconnect.

• The SrcID is a fixed value for the Requester.

• The TxnID is set to the same value as the DBID value provided in the CompDBIDResp response.

• The DBID field in the write data is not used.

• The TgtID, SrcID, and TxnID fields must be the same for all write data packets.

After receiving the CompDBIDResp response, the Requester can reuse the same TxnID value used in the
request packet for another transaction.

4. The Completer receives the write data and uses the TxnID field, which now contains the DBID value that the
Completer generated, to determine which transaction the write data is associated with.

After receiving all write data packets, the Completer can reuse the same DBID value for another transaction.

WriteNoSnp transaction with multiple responses

This section describes the use of the identifier fields for a WriteNoSnp transaction with multiple responses.

Figure 2-29 shows the transaction identifier field flow.

Figure 2-29 Identifier field flow for a WriteNoSnp with multiple responses

The use of the identifier fields are the same as for a transaction with a combined response with the additional
requirements that:

• The identifier fields used for the separate DBIDResp and Comp responses must be identical.

• The TxnID value must only be reused by a Requester when both the DBIDResp and Comp responses have
been received.

WriteNoSnp

Requester

DBIDResp

Completer

Comp

WriteData

(TgtID)
SrcID
TxnID

TgtID
(SrcID)
TxnID
DBID

(TgtID)
SrcID
TxnID
DBID

(TgtID)
SrcID
TxnID
DBID

TgtID
(SrcID)
TxnID
DBID *

TgtID
(SrcID)
TxnID
DBID

(TgtID)
SrcID
TxnID
DBID

TxnID*
(SrcID)*
TgtID R*
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-83
ID080717 Non-Confidential

2 Transactions
2.7 Transaction identifier field flows
The required steps in the flow that Figure 2-29 on page 2-83 shows are:

1. The Requester starts the transaction by sending a Request packet. The identifier fields of the request are
generated as follows:
• The TgtID is determined by the destination of the Request.

Note
 The TgtID field can be remapped to a different value by the interconnect.

• The SrcID is a fixed value for the Requester.
• The Requester generates a unique TxnID field.

2. The Completer receives the Request packet and generates a DBIDResp response. The identifier fields of the
response are generated as follows:
• The TgtID is set to the same value as the SrcID of the request.
• The SrcID is a fixed value for the Completer. This also matches the TgtID received.
• The TxnID is set to the same value as the TxnID of the request.
• The Completer generates a unique DBID value.

3. The Requester receives the DBIDResp response and sends the write data. The identifier fields of the write
data are generated as follows:

• The TgtID is set to the same value as the SrcID of the DBIDResp response. This can be different from
the original TgtID of the request if the value was remapped by the interconnect.

• The SrcID is a fixed value for the Requester.

• The TxnID is set to the same value as the DBID value provided in the DBIDResp response.

• The DBID field in the write data is not used.

• The TgtID, SrcID, and TxnID fields must be the same for all write data packets.

4. The Completer receives the write data and uses the TxnID field, which now contains the DBID value that the
Completer generated, to determine which transaction the write data is associated with.

5. The Completer generates a Comp response when it has completed the transaction.

The identifier fields of the Comp response must be the same as the DBIDResp response and are generated as
follows:
• The TgtID is set to the same value as the SrcID of the request.
• The SrcID is a fixed value for the Completer. This also matches the TgtID received.
• The TxnID is set to the same value as the TxnID of the request.
• The Completer uses the same DBID value as is used in the DBIDResp response.

After receiving both the Comp and DBIDResp response, the Requester can reuse the same TxnID value for another
transaction.

After receiving all write data packets, the Completer can reuse the same DBID value for another transaction.

Note
 There is no ordering requirement between the separate DBIDResp and Comp responses. The specification
requirement is that the values used are identical.
2-84 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.7 Transaction identifier field flows
WriteUnique transaction

This section describes the use of the identifier fields for a WriteUnique transaction. The WriteUnique transaction
can, under certain circumstances, additionally include a CompAck response from the Requester to the Completer.
In this case, the additional rules for the use of the identifier fields are:

• The TgtID, SrcID, and TxnID identifier fields of the CompAck response from the Requester to the Completer
must be the same as the fields used for the write data, that is:

— The TgtID is set to the same value as the SrcID of the CompDBIDResp response. If separate Comp
and DBIDResp responses are given, the TgtID is set to the same value as the SrcID of either the Comp
or DBIDResp response because the SrcID value in both must be identical. However, this can be
different from the original TgtID of the request if the value has been remapped by the interconnect.

— The SrcID is a fixed value for the Requester.

— The TxnID is set to the same value as the DBID value provided in the CompDBIDResp response. If
separate Comp and DBIDResp responses are given, the TxnID is set to the same value as the DBID of
either the Comp or DBIDResp response because the DBID value in both must be identical.

— The DBID field in the WriteData and in the CompAck is not used.

• The Completer must receive all items of write data and the CompAck response before reusing the same DBID
value for another transaction.

Figure 2-30 shows the transaction identifier field flow with a combined CompDBIDResp response.

Figure 2-30 Identifier field flow for a WriteUnique

WriteUnique

Requester

CompDBIDResp

Completer

CompAck

WriteData

(TgtID)
SrcID
TxnID
DBID

(TgtID)
SrcID
TxnID

TgtID
(SrcID)
TxnID
DBID

(TgtID)
SrcID
TxnID
DBID

TgtID
(SrcID)
TxnID
DBID *

TgtID
(SrcID)
TxnID
DBID

(TgtID)
SrcID
TxnID
DBID

(SrcID)*
TxnID*

TgtID R*
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-85
ID080717 Non-Confidential

2 Transactions
2.7 Transaction identifier field flows
StashOnce transaction

This section describes the use of the identifier fields for a StashOnce transaction.

Figure 2-31 shows the transaction identifier field flow.

Figure 2-31 ID value transfer in a Stash transaction

The required steps in the flow that Figure 2-31 shows are:

1. The Requester starts the transaction by sending a Stash request packet.

The identifier fields of the request are generated as follows:
• The TgtID is determined by the destination of the Request.

Note
 The TgtID field can be remapped to a different value by the interconnect.

• The SrcID is a fixed value for the Requester.
• The Requester generates a TxnID field that is unique for that Requester.
• The Requester includes the StashNID field to indicate the RN-F to send the Stash to.
• The Requester includes the StashLPID field to indicate the logical processor within the RN-F.

RN

Stash

Snp[*]Stash

ICN RN-F

Comp SnpResp_I_Read

CompAck

TgtID
TxnID

RN-F NID
same as
StashNID

CompData

TxnID*
StashNID*
StashLPID*

TgtID* R
(SrcID)* SrcID

TxnID

StashLPID
StashNID

(TgtID)
StashLPID

(SrcID)*
TxnID*

SrcID
TxnID

StashLPID

SrcID
(TgtID)

DBID
TxnID

TgtID
TxnID

(SrcID)

DBID*
(HomeNID)*

(SrcID)
TgtID
TxnID
DBID *

(SrcID)
TxnID

TgtID

DBID

SrcID
(TgtID)

DBID
TxnID

HomeNID
2-86 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.7 Transaction identifier field flows
2. The Home Node in the ICN receives the Stash request packet and generates a snoop with Stash to the
appropriate RN-F.

The identifier fields of the request are generated as follows:
• The SrcID is a fixed value for the Home.
• The TxnID is a unique value generated by the Home.
• The StashLPID is set to the same value as the StashLPID of the original request.

Note
 A Snoop request does not include a TgtID field.

3. The snooped RN-F generates a Snoop response. In this example, it includes a Data Pull indication.

The identifier fields of the Snoop response are generated as follows:
• The TgtID is set to the same value as the SrcID of the request.
• The SrcID is a fixed value for the RN-F.
• The TxnID is set to the same value as the TxnID of the request.
• The DBID field is a unique value generated by the RN-F.

4. The Home provides the read data.

The identifier fields of the read Data response are generated as follows:
• The TgtID is set to the same value as the SrcID of the Snoop response.
• The SrcID is a fixed value for the Home.

Note
 In this example the read data is being provided by the Home. If the read data is provided from another

source, for example using DMT, then the SrcID will be the ID of the node providing the read data.

• The TxnID is set to the same value as the DBID of the Snoop response.
• The DBID field is a unique value generated by Home.
• The HomeNID is a fixed value for the Home.

5. The RN-F receives the read data and sends a CompAck acknowledgment.

The identifier fields of the CompAck are generated as follows:
• The TgtID is set to the same value as the HomeNID of the read data.
• The SrcID is a fixed value for the RN-F. This also matches the TgtID received.
• The TxnID is set to the same value as the DBID of the read data.
• The DBID field is not valid.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-87
ID080717 Non-Confidential

2 Transactions
2.7 Transaction identifier field flows
2.7.4 DVMOp transaction

The use of the TgtID, SrcID, TxnID and DBID identifier fields for a DVMOp transaction is identical to that for the
WriteNoSnp transaction with multiple responses on page 2-83.

2.7.5 Transaction requests with Retry

For transactions that receive a RetryAck response, there are specific rules on how the identifier fields are used. See
Request Retry on page 2-111, for more details on the Retry mechanism, and Protocol Credit Return transaction on
page 2-89, for rules about the return of unused credits.

Figure 2-32 shows the transaction identifier field flow for a transaction request with retry.

Figure 2-32 Identifier field flow for a transaction request with retry

The required steps in the flow that Figure 2-32 shows are:

1. The Requester starts the transaction by sending a Request packet. The identifier fields of the request are
generated as follows:
• The TgtID is determined by the destination of the Request.

Note
 The TgtID field can be remapped to a different value by the interconnect.

• The SrcID is a fixed value for the Requester.
• The Requester generates a unique TxnID field.

Request

Requester

*
*

RetryAck

PCrdGrant

Completer

Request
with Credit

TxnId

(SrcID)
TxnID

TgtID R*

(TgtID)
SrcID
TxnID

PCrdType
DBID

(TgtID)
SrcID

PCrdType

TxnId
DBID

(SrcID)

PCrdType

RTgtID

TxnID*

(TgtID)
SrcID
TxnID

TgtID
(SrcID)
TxnID
DBID

PCrdType *

TgtID
(SrcID)

PCrdType
DBID

(TgtID)
SrcID
TxnID

PCrdType
2-88 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.7 Transaction identifier field flows
2. The Completer receives the Request packet and determines that it is going to send a RetryAck response. The
identifier fields of the RetryAck response are generated as follows:

• The TgtID is set to the same value as the SrcID of the request.

• The SrcID is a fixed value for the Completer. This also matches the TgtID received.

• The TxnID is set to the same value as the TxnID of the request.

• The DBID field is not valid.

• The Completer uses a PCrdType value that indicates the type of credit required to retry the transaction.

3. When the Completer is able to accept the retried transaction of a given PCrdType it sends a credit to the
Requester, using the PCrdGrant response. The identifier fields of the PCrdGrant response are generated as
follows:
• The TgtID is set to the same value as the SrcID of the request.
• The SrcID is a fixed value for the Completer. This also matches the TgtID of the request.
• The TxnID field is not used and must be set to zero.
• The DBID field is not used and must be set to zero.
• The PCrdType value is set to the type required to issue the original transaction again.

4. The Requester receives the credit grant and reissues the original transaction by sending a Request packet. The
identifier fields of the request are generated as follows:

• The TgtID is set to either the same value as the SrcID of the RetryAck response, which is also the same
as the SrcID of the PCrdGrant response, or the value used in the original request.

• The SrcID is a fixed value for the Requester.

• The Requester generates a unique TxnID field. This is permitted to be different from the original
request that received a RetryAck response.

• The PCrdType value is set to the PCrdType value in the RetryAck response to the original request,
which is also the same as the PCrdType of the PCrdGrant response.

2.7.6 Protocol Credit Return transaction

A P-Credit Return transaction uses the PCrdReturn Request to return a granted, but no longer required, credit. The
TgtID, SrcID, and TxnID requirements are:

• The Requester sends the Protocol Credit Return transaction by sending a PCrdReturn Request packet. The
identifier fields of the request are generated as follows:
— The TgtID must match the SrcID of the credit that was obtained.
— The SrcID is a fixed value for the Requester.
— The TxnID field is not used and must be set to zero.

The PCrdType must match the value of the PCrdType in the original PCrdGrant that was required to issue the
original transaction again.

There is no response or use made of the DBID field associated with Protocol Credit Return transactions.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-89
ID080717 Non-Confidential

2 Transactions
2.8 Logical Processor Identifier
2.8 Logical Processor Identifier
The specification defines a Logical Processor Identifier (LPID) field within a transaction request. This field is used
when a single Requester contains more than one logically separate processing agent.

The LPID must be set to the correct value for the following transactions:

• For any Non-snoopable Non-cacheable or Device access:
— ReadNoSnp.
— WriteNoSnp.

• For Exclusive accesses, that can be one of the following transaction types:
— ReadClean.
— ReadShared.
— ReadNotSharedDirty.
— CleanUnique.
— ReadNoSnp.
— WriteNoSnp.

 See Chapter 6 Exclusive Accesses for further details.

Note
 For other transactions, the LPID value can be used to indicate the original logical processor that caused a transaction
to be issued. However, this information is not required in CHI and is optional.
2-90 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.9 Address, Control, and Data
2.9 Address, Control, and Data
A transaction includes attributes defining the manner in which the transaction is handled by the interconnect. These
include the address, memory attributes, snoop attributes, and data formatting. Each attribute is defined in this
section.

2.9.1 Address

This specification supports:
• Physical Address (PA) of 44 to 52 bits, in one bit increments.
• Virtual Address (VA) of 49 to 53 bits.

The REQ and SNP packet address fields are specified as follows:
• REQ channel: Addr[(MPA-1):0]
• SNP channel: Addr[(MPA-1):3]

MPA is the maximum PA supported.

Table 2-10 shows the relationship between the physical address field width and the supported virtual address.

See DVMOp and SnpDVMOp packet on page 8-242 for DVM payload mapping in the REQ and SNP fields with
different ADDR field widths.

The Req_Addr_Width parameter is used to specify the maximum physical address in bits that is supported by a
component. Valid values for this parameter are 44 to 52, when not specified, the parameter takes the default value
of 44.

The REQ and SNP channel messages address field in the REQ channel is a 44-bit to 52-bit field labeled
Addr[(43-51):0] and in the SNP channel it is a 41-bit to 49-bit field labeled Addr[(43-51):3]. This field is used by
the different message types as follows:

• For Read, Dataless, and Write transactions the Addr field includes the address of the memory location being
accessed.

• For a Snoop request, except SnpDVMOp, the field includes the address of the location being snooped:

— Addr[(43-51):6] is the cache line address and is sufficient to uniquely identify the cache line to be
accessed by the snoop.

— Addr[5:4] identifies the critical chunk being accessed by the transaction. See Critical Chunk Identifier
on page 2-105. This specification recommends that the snooped cache returns the data in wrap order
with the critical chunk returned first.

Note
 Addr[3] is supplied, but is not used.

• For a DVMOp and SnpDVMOp request the Addr field is used to carry information related to a DVM
operation. See Chapter 8 DVM Operations.

Table 2-10 Addr field width and supported PA and VA size

REQ Addr field
width in bits

Maximum address
supported in bits

PA VA

44 44 49

45 45 51

46 to 52 46 to 52 53
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-91
ID080717 Non-Confidential

2 Transactions
2.9 Address, Control, and Data
• The Addr field value is not used for the PcrdReturn transaction and must be set to zero.

2.9.2 Non-secure bit

Secure and Non-secure transactions are defined to support Secure and Non-secure operating states.

This bit is defined so that when it is asserted the transaction is identified as a Non-secure transaction.

For Snoopable transactions this field can be considered as an additional address bit that defines two address spaces,
a Secure address space, and a Non-secure address space. Any aliasing between the Secure and Non-secure address
spaces must be handled correctly.

Note
 Hardware coherency does not manage coherency between Non-Secure and Secure address spaces.

The NS assertion requirements are:
• Can be asserted in any Read, Dataless, Write and Atomic transaction.
• Can be asserted in PrefetchTgt transaction.
• Is not applicable in the DVMOp or PCrdReturn transaction, and must be set to zero.

2.9.3 Memory Attributes

The Memory Attributes (MemAttr) consist of Early Write Acknowledgement (EWA), Device, Cacheable, and
Allocate.

EWA

EWA indicates whether the write completion response for a transaction:
• Is permitted to come from an intermediate point in the interconnect, such as a Home Node.
• Must come from the final endpoint that a transaction is destined for.

If EWA is asserted, the write completion response for the transaction can come from an intermediate point or from
the endpoint. A completion that comes from an intermediate point must provide the same guarantees required by a
Comp as described in Completion Response and Ordering on page 2-63.

If EWA is deasserted, the write completion response for the transaction must come from the endpoint.

Note
 It is permitted for an implementation not to use the EWA attribute, in this case completion must be given from the
endpoint.

The EWA assertion requirements are:
• Can take any value in a ReadNoSnp transaction.
• Can take any value in a WriteNoSnp transaction.
• Can take any value in Atomic transactions.
• Must be asserted in any Read or Dataless transaction that is not a ReadNoSnp transaction.
• Must be asserted in any Write transaction that is not a WriteNoSnp transaction.
• Is inapplicable in the DVMOp or PCrdReturn transactions and must be set to zero.
• Is inapplicable in PrefetchTgt transaction and can take any value.
2-92 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.9 Address, Control, and Data
Device

Device attribute indicates if the memory type is either Device or Normal.

Device memory type

Device memory type must be used for locations that exhibit side-effects. Use of Device memory type for locations
that do not exhibit side-effects is permitted.

The requirements for a transaction to a Device type memory location are:

• A Read transaction must not read more data than requested.

• Prefetching from a Device memory location is not permitted.

• A read must get its data from the endpoint. A read must not be forwarded data from a write to the same
address location that completed at an intermediate point.

• Combining requests to different locations into one request, or combining different requests to the same
location into one request, is not permitted.

• Writes must not be merged.

• Writes to Device memory that obtain completion from an intermediate point must make the write data visible
to the endpoint in a timely manner.

Accesses to Device memory must use the following types, exclusive variants are permitted:
• Read accesses to a Device memory location must use ReadNoSnp.
• Write accesses to a Device memory location must use either WriteNoSnpFull or WriteNoSnpPtl.
• CMO transactions are permitted to Device memory locations.
• Atomic transactions are permitted to Device memory locations.

Normal memory type

Normal memory type is appropriate for memory locations that do not exhibit side-effects.

Accesses to Normal memory do not have the same restrictions regarding prefetching or forwarding as Device type
memory:
• A Read transaction that has EWA asserted can obtain read data from a Write transaction that has sent its

completion from an intermediate point and is to the same address location.
• Writes can be merged.

Any Read, Dataless, Write, PrefetchTgt or Atomic transaction type can be used to access a Normal memory
location. The transaction type used is determined by the memory operation to be accomplished, and the Snoopable
attributes.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-93
ID080717 Non-Confidential

2 Transactions
2.9 Address, Control, and Data
Cacheable

The Cacheable attribute indicates if a transaction must perform a cache lookup:
• When Cacheable is asserted the transaction must perform a cache lookup.
• When Cacheable is deasserted the transaction must access the final destination.

The Cacheable attribute value requirements are:
• Must not be asserted for any Device memory transaction.
• Must be asserted for any Read transaction except for ReadNoSnp.
• Must be asserted for any Dataless transaction except for CleanShared, CleanSharedPersist, CleanInvalid,

MakeInvalid.
• Must be asserted for any Write transaction except WriteNoSnpFull and WriteNoSnpPtl.
• Can take any value for ReadNoSnp, WriteNoSnpFull, and WriteNoSnpPtl to a Normal memory location.
• Can take any value for CleanShared, CleanSharedPersist, CleanInvalid and MakeInvalid.
• Can take any value for an Atomic transaction.
• Is inapplicable in DVMOp and PCrdReturn transactions and must be set to zero.
• Is inapplicable in the PrefetchTgt transaction and can take any value.

Note
 In a transaction that can take any Cacheable value, the value is typically determined from the page table attributes.

Allocate

The Allocate attribute is a an allocation hint. It indicates the recommended allocation policy for a transaction:

• If Allocate is asserted, it is recommended that the transaction is allocated into the cache for performance
reasons. However, it is permitted to not allocate the transaction.

• If Allocate is deasserted, it is recommended that the transaction is not allocated into the cache for
performance reasons. However, it is permitted to allocate the transaction.

The Allocate attribute value requirements are:
• Can be asserted for transactions that have the Cacheable attribute asserted.
• Must be asserted for the WriteEvictFull transaction.

Note
 A Requester can convert a WriteEvictFull with the Allocate bit not asserted to an Evict transaction.

• Must not be asserted for Device memory transactions.
• Must not be asserted for Normal Non-cacheable memory transactions.
• Is inapplicable in DVMOp, PCrdReturn and Evict transactions and must be set to zero.
• Is inapplicable in the PrefetchTgt transaction and can take any value.
2-94 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.9 Address, Control, and Data
Propagation of Attr

The MemAttr bits EWA, Device, Cacheable, and Allocate, must be preserved on a request from HN to SN that is
sent in response to a request to HN. The only exception to this rule is when the downstream memory is known to
be Normal, then the Device field value can be set to 0b0 to indicate Normal.

The SnpAttr attribute bit value does not need to be preserved but must be set to 0b0.

For a ReadNoSnp or WriteNoSnp generated within the interconnect due to a Prefetch from Home, or an eviction
from the System cache:
• MemAttr bits EWA, Cacheable, and Allocate must all be set to 0b1.
• Device field value must be set to 0b0 to indicate Normal.
• SnpAttr field value must be set to 0b0 to indicate Non-snoopable.

2.9.4 Transaction attribute combinations

Table 2-11 lists the legal combinations of MemAttr, SnpAttr, and Order field values and the equivalent ARM
memory type. The Order field is described in Ordering on page 2-63.

Table 2-11 Legal combinations of MemAttr, SnpAttr, and Order field values

MemAttr[3:0] Order[1:0] ARM Memory Type

[1] [3] [2] [0] [1] [0]

D
ev

ic
e

A
llo

ca
te

C
ac

he
ab

le

EW
A

Sn
pA

ttr

Li
ke

ly
Sh

ar
ed

1 0 0 0 0 0 1 1 Device nRnE

0 0 1 0 0 1 1 Device nRE

0 0 1 0 0 0/1a

a. Order = 0b10 is permitted in ReadOnce*, WriteUnique, ReadNoSnp, WriteNoSnp and Atomic transactions
only.

0 Device RE

All other valuesb

b. Order = 0b01 is valid in ReadNoSnp from HN-F to SN-F.

Not valid

0 0 0 0 0 0 0/1a 0 Non-cacheable Non-bufferablec

c. Non-cacheable Non-bufferable is an AXI memory type, not an ARM memory type.

0 0 1 0 0 0/1a 0 Non-cacheable Bufferable

0 1 1 0 0 0/1a 0 Non-snoopable WriteBack No-allocate

1 1 1 0 0 0/1a 0 Non-snoopable WriteBack Allocate

0 1 1 1 0/1d

d. LikelyShared = 1 is only permitted for ReadShared, ReadNotSharedDirty, ReadClean, WriteBackFull,
WriteCleanFull, WriteEvictFull, WriteUnique and StashOnce transactions.

0/1a 0 Snoopable WriteBack No-allocate

1 1 1 1 0/1d 0/1a 0 Snoopable WriteBack Allocate

All other valuesb Not valid
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-95
ID080717 Non-Confidential

2 Transactions
2.9 Address, Control, and Data
Memory type

This section specifies the required behavior for each of the memory types that Table 2-11 on page 2-95 shows.

Device nRnE

The required behavior for Device nRnE memory type is:
• The write response must be obtained from the final destination.
• Read data must be obtained from the final destination.
• A read must not fetch more data than is required.
• A read must not be prefetched.
• Writes must not be merged.
• A write must not write to a larger address range than the original transaction.
• All Read and Write transactions from the same source to the same endpoint must remain ordered.

Device nRE

The required behavior for the Device nRE memory type is the same as for the Device nRnE memory type except
that:
• The write response can be obtained from an intermediate point.

Device RE

The required behavior for the Device RE memory type is same as for the Device nRE memory type except that:
• Read and Write transactions from the same source to the same endpoint need not remain ordered.
• Read and Write transactions from the same source to addresses that overlap must remain ordered.

Normal Non-cacheable Non-bufferable

The required behavior for the Normal Non-cacheable Non-bufferable memory type is:
• The write response must be obtained from the final destination.
• Read data must be obtained from the final destination.
• Writes can be merged.
• Read and Write transactions from the same source to addresses that overlap must remain ordered.

Normal Non-cacheable Bufferable

The required behavior for the Normal Non-cacheable Bufferable memory type is:
• The write response can be obtained from an intermediate point.
• Write transactions must be made visible at the final destination in a timely manner.

Note
 There is no mechanism to determine when a Write transaction is visible at its final destination.

• Read data must be obtained either from:
— The final destination.
— A Write transaction that is progressing to its final destination.
If read data is obtained from a Write transaction:
— It must be obtained from the most recent version of the write.
— The data must not be cached to service a later read.

• Writes can be merged.
• Read and Write transactions from the same source to addresses that overlap must remain ordered.
2-96 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.9 Address, Control, and Data
Note
 For a Normal Non-cacheable Bufferable read, data can be obtained from a Write transaction that is still progressing
to its final destination. This is indistinguishable from the Read and Write transactions propagating to arrive at the
final destination at the same time. Read data returned in this manner does not indicate that the Write transaction is
visible at the final destination.

Write-back No-allocate

The required behavior for the Write-back No-allocate memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions are not required to be made visible at the final destination.

• Read data can be obtained from an intermediate cached copy.

• Reads can be prefetched.

• Writes can be merged.

• A cache lookup is required for Read and Write transactions.

• Read and Write transactions from the same source to addresses that overlap must remain ordered.

• The No-allocate attribute is an allocation hint, that is, it is a recommendation to the memory system that, for
performance reasons, the transaction is not allocated. However, the allocation of the transaction is not
prohibited.

Write-back Allocate

The required behavior for the WriteBack Allocate memory type is the same as for WriteBack No-allocate memory.
However, in this case, the allocation hint is a recommendation to the memory system that, for performance reasons,
the transaction is allocated.

2.9.5 Likely Shared

The LikelyShared attribute is a cache allocation hint. When asserted this attribute indicates that the requested data
is likely to be shared by other Request Nodes within the system. This acts as a hint to shared system level caches
that the allocation of the cache line is recommended for performance reasons.

There is no required behavior associated with this transaction attribute.

The LikelyShared assertion requirements are:
• Can be asserted in:

— ReadClean.
— ReadNotSharedDirty.
— ReadShared.
— StashOnceUnique.
— StashOnceShared.
— WriteUniquePtl.
— WriteUniqueFull.
— WriteUniquePtlStash.
— WriteUniqueFullStash.
— WriteBackFull.
— WriteCleanFull.
— WriteEvictFull.

• Must not be asserted in any other Read or Write transaction.
• Must not be asserted in any Dataless or Atomic transaction.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-97
ID080717 Non-Confidential

2 Transactions
2.9 Address, Control, and Data
• Is not applicable in the DVMOp or PCrdReturn transaction, and must be set to zero.
• Is not applicable in the PrefetchTgt transaction and can take any value.

2.9.6 Snoop Attribute

An access to a Snoopable memory region can result in the interconnect generating a snoop to the Request Node in
the transaction specified snoop domain.

The snoop domain identifies a set of Request Nodes that for a particular set of address regions:
• Are hardware coherent.
• Generate Snoopable transactions.
• Receive snoops for Snoopable transactions.

The characteristics and requirements of a snoop domain are:

• A system can be partitioned into multiple snoop domains.

• Snoop domains must be non-overlapping.

• A Request Node can only belong to one snoop domain.

• A Request Node does not need to be part of any snoop domain. Such a Request Node does not generate
Snoopable transactions.

The Snoop Attribute (SnpAttr) indicates if a transaction requires snooping.

Table 2-12 shows the SnpAttr field encodings.

Table 2-13 shows the snoop attributes for the different transaction types.

Table 2-12 SnpAttr field encodings

SnpAttr Snoop attribute

0 Non-snoopable

1 Snoopable

Table 2-13 Snoop attributes for the different transaction types

Transaction Non-snoopable Snoopable

ReadNoSnp Y -

ReadOnce*, ReadClean, ReadShared, ReadNotSharedDirty, ReadUnique - Y

CleanUnique, MakeUnique, StashOnce - Y

CleanShared, CleanSharedPersist, CleanInvalid, MakeInvalid Y Y

Evict - Y

WriteNoSnp Y -

WriteBack, WriteClean, WriteEvictFull - Y

WriteUnique - Y

Atomic transactions Y Y

DVMOp RES0 -

PrefetchTgt Xa Xa
2-98 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.9 Address, Control, and Data
The SnpAttr field value in a CMO from Home to Slave must be set to zero, irrespective of the field value in the
Request from the original Requester to Home.

Note
 For transactions that can take more than one value of SnpAttr, the value is typically determined from page table
attributes.

2.9.7 Do not transition to SD

Do not transition to SD is a modifier on Non-invalidating snoops.

It specifies that the Snoopee must not transition to SD state as a result of the Snoop request.

The modifier is applicable to the following Snoop requests:
• SnpOnceFwd.
• SnpOnce.
• SnpCleanFwd.
• SnpClean.
• SnpNotSharedDirtyFwd.
• SnpNotSharedDirty.
• SnpSharedFwd.
• SnpShared.

The field value must be set to 1 in the following Snoop requests:
• SnpUniqueFwd.
• SnpUnique.
• SnpCleanShared.
• SnpCleanInvalid.
• SnpMakeInvalid.

See DoNotGoToSD on page 12-306 for the field value encoding.

2.9.8 Mismatched Memory attributes

It is permitted for two different agents to access the same location using mismatched MemAttr or SnpAttr memory
attributes, at the same point in time.

If the memory accesses from the different agents are made with mismatched snoopability or cacheability attributes
it is defined as a software protocol error. A software protocol error can cause a loss of coherency and result in the
corruption of data values. It is required that the system does not deadlock for a software protocol error, and that
transactions always make forward progress.

A software protocol error for an access in one 4KB memory region must not cause data corruption in a different
4KB memory region.

For locations held in Normal memory, the use of appropriate software cache maintenance can be used to return
memory locations to a defined state.

The use of mismatched memory attributes can result in an RN-F observing a Snoop transaction to the same address
that it is performing a ReadNoSnp or WriteNoSnp transaction to. In this situation there is no defined relationship
between the Snoop transaction and the transaction that the RN-F has issued.

a. Not applicable, can take any value.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-99
ID080717 Non-Confidential

2 Transactions
2.10 Data transfer
2.10 Data transfer
Read transactions, Write transactions, Atomic transactions, and Snoop responses with data, include a data payload.
This section defines the data alignment rules, and the data bytes that are accessed for different combinations of
address, transaction size, and memory type.

2.10.1 Data size

The Size field in a packet is used, in combination with other fields, to determine the number of bytes transferred.
Table 2-14 shows the Size field value encodings. Snoop transactions do not include a Size field. All snoop data
transfers are 64-byte.

2.10.2 Bytes access in memory

The MemAttr[1] bit field determines if the memory type is Device or Normal. See Memory Attributes on page 2-92.
The bytes that are accessed are determined by the memory type as follows:

Normal memory

Transactions with a Normal memory type access the number of bytes defined by the Size field. Data
access is from the Aligned_Address, that is, the transaction address rounded down to the nearest Size
boundary, and ends at the byte before the next Size boundary.

This is calculated as:

Start_Address = Addr field value.

Number_Bytes = 2^Size field value.

INT(x) = Rounded down integer value of x.

Aligned_Address = (INT(Start_Address / Number_Bytes)) x Number_Bytes.

The bytes accessed are from (Aligned_Address) to (Aligned_Address + Number_Bytes) - 1.

Device Transactions with a Device memory type access the number of bytes from the transaction address
up to the byte before the next Size boundary.

The bytes accessed are from (Start_Address) to (Aligned_Address + Number_Bytes) - 1.

For write transactions to Device locations, byte enables must only be asserted for the bytes that are
accessed. See Byte Enables on page 2-101.

Table 2-14 Size field value encodings

Size[2:0] Bytes

0b000 1

0b001 2

0b010 4

0b011 8

0b100 16

0b101 32

0b110 64

0b111 Reserved
2-100 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.10 Data transfer
2.10.3 Byte Enables

Byte Enables, also referred to as BE, are used alongside Write transactions, and Snoop responses with Data.

For Write transactions, an asserted byte enable indicates that the associated data byte is valid and must be updated
in memory or cache. A deasserted byte enable indicates that the associated data byte is not valid and must not be
updated in memory or cache.

In Write Data and Snoop response Data a byte enable value of zero must set the associated data byte value to zero.

A Requester must deassert all BE values in a CopyBackWrData_I packet. A CopyBackWrData_I packet is sent as
a result of a Copyback canceling snoop occurring between the sending of the Request and the sending of Data. A
Requester must also deassert all BE values in a WriteDataCancel packet that are a result of canceling of a
WriteUniquePtl, WriteUniquePtlStash or WriteNoSnpPtl transaction.

The following Write transactions must have all byte enables asserted during the data transfers:
• WriteNoSnpFull.
• WriteBackFull.
• WriteCleanFull.
• WriteEvictFull.
• WriteUniqueFull.
• WriteUniqueFullStash.

The following Write transactions are permitted to have any combination of byte enables asserted during the data
transfers. This includes asserting all and asserting none:
• WriteBackPtl.
• WriteUniquePtl.
• WriteUniquePtlStash.

For the WriteNoSnpPtl transaction the following rules apply:

• For a transaction to Normal memory, any combination of byte enables can be asserted during the data
transfers. This includes asserting all and asserting none.

• For a transaction to Device memory, byte enables must only be asserted for bytes at or above the address
specified in the transaction. Any combination of byte enables can be asserted that meets this requirement.
This includes asserting all and asserting none.

For all Write transactions, byte enables that are not within the data window, specified by Addr and Size, must be
deasserted.

For Atomic transactions, byte enables that are not within the data window, as specified below by Addr and Size,
must be deasserted:
• If Addr is aligned to Size, then the Data window is [Addr:(Addr+Size-1)].
• If Addr is not aligned to Size, then the Data window is [(Addr-Size/2):(Addr+Size/2-1)].

For snoop responses with data that use the SnpRespData opcode, all byte enables must be asserted.

For snoop responses with data that use the SnpRespDataPtl opcode, any combination of byte enables can be asserted
alongside the data transfers. This includes asserting all and asserting none.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-101
ID080717 Non-Confidential

2 Transactions
2.10 Data transfer
2.10.4 Data packetization

For each transaction that involves data, the data bytes can be transferred in multiple packets.

The number of packets required is determined by:
• Number of bytes.
• Data bus width.

The number of bytes transferred in each packet is determined by:

• Data bus width.

This specification supports the following data bus widths:
• 128-bit.
• 256-bit.
• 512-bit.

The Data Identifier and Critical Chunk Identifier fields are used to identify data packets within a transaction.

A transaction size of up to 16-byte is always contained in a single packet. The DataID field value must be set to
Addr[5:4] because the DataID field represents Addr[5:4] of the lowest addressed byte within the packet.

Table 2-15 shows the relationship between the DataID field and the bytes that are contained within the packet, for
different data bus widths.

Within a data packet, all bytes are located at their natural byte positions. This is true even if fewer data bytes are
transferred than the width of the data bus.

The number of data packets used for transactions to Device memory is independent of the address of the transaction.
The number of data packets required is determined only by the Size field and the data bus width.

Note
 For some transactions to Device memory, it can be determined from the address at the start of the transaction that
some data packets will not contain valid data and are redundant. However, this specification requires that these data
packets are transferred.

Table 2-15 DataID and the bytes within a packet for different data widths

DataID Data Width

128-bit 256-bit 512-bit

0b00 Data[127:0] Data[255:0] Data[511:0]

0b01 Data[255:128] Reserved Reserved

0b10 Data[383:256] Data[511:256] Reserved

0b11 Data[511:384] Reserved Reserved
2-102 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.10 Data transfer
2.10.5 Size, Address and Data alignment in Atomic transactions

This section describes the data size and alignment requirements for Atomic transactions. It contains the following
sub-sections:
• Size.
• Address and Data alignment.
• Endianness on page 2-104.

Size

The Size field of the packet specifies the total data size of the Atomic transaction.

For the AtomicCompare transaction, the data size is the sum of the Compare and Swap data values.

Table 2-16 shows the permitted data sizes, and the relationship between inbound and outbound valid data size for
each Atomic transaction type. The size of the data value returned in response to an AtomicCompare transaction is
half the number of bytes specified in the Size field in the associated Request packet.

Address and Data alignment

In the AtomicStore, AtomicLoad and AtomicSwap transactions:

• The byte address is aligned in the Data packet to the outbound data size.

• The position of data bytes in the Data packet matches the endianness of the operation, as specified in the
Endian field of the request.

• The big-endian data is byte invariant.

The write data associated with an AtomicSwap and AtomicCompare transaction is provided as if it were for a
transaction that is aligned to the outbound data size.

In the AtomicCompare transaction:

• The byte address must be aligned in the Data packet to the inbound data size, which is equivalent to half the
outbound data size.

The two data values in an AtomicCompare transaction are placed in the data field in the following manner:

• The Compare and Swap data values are concatenated and the resulting data payload is aligned in the Data
packet to the outbound data size.

• The Compare data is always at the addressed byte location.

• The Swap data is always in the remaining half of the valid data.

For any given Compare data address, the Swap data address can be determined by inverting bit[n] in the Compare
data address where:

• n = log2(Compare data size in bytes)

Table 2-16 Atomic transaction outbound and inbound data sizes

Atomic transaction Outbound Inbound

AtomicStore 1, 2, 4 or 8 byte -

AtomicLoad 1, 2, 4 or 8 byte Same as outbound

AtomicSwap 1, 2, 4 or 8 byte Same as outbound

AtomicCompare 2, 4, 8, 16 or 32 byte Half size of outbound
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-103
ID080717 Non-Confidential

2 Transactions
2.10 Data transfer
Alignment example

Figure 2-33 shows examples of data placement with different addresses and different Data size.

Figure 2-33 Data value packing for AtomicCompare transaction

In the first example that Figure 2-33 shows, the addressed byte location is 0x2 and the total size of data is two bytes.
In this case, the Compare and Swap data must be placed in an address location aligned to a two byte boundary that
includes the addressed location, that is, addresses 0x2 to 0x3. Compare data is placed in location 0x2 and Swap data
is placed in location 0x3.

Note
 The address of the Swap data can be determined by inverting bit[0] of the Compare data address. Bit[0] is inverted
because the size of the Compare data and the size of the Swap data is one byte.

In the third example that Figure 2-33 shows, the addressed location is 0x2 and the total size of data is four bytes. In
this case, the Compare and Swap data must be placed in an address location aligned to a four byte boundary that
includes the addressed location, that is, addresses 0x0 to 0x3. Compare data is placed in location 0x2 and Swap data
is placed in location 0x0.

Note
 The address of the Swap data can be determined by inverting bit[1] of the Compare data address. Bit[1] is inverted
because the size of the Compare data and the size of the Swap data is two bytes.

Endianness

The data on which an atomic operation executes can be in either little-endian or big-endian format. For arithmetic
operations, such as ADD, MAX, and MIN the component performing the operation needs to know the format of the
data.

The endian format of the data is defined by the Endian bit in the Atomic transaction Request packet. See Endian on
page 12-304.

C S
7 6 5 4 3 2 1 0

Only 8 bytes of the 16 byte data packet are shown

1 Byte each

2 Byte each

Comp and Data
Value size

Example 1: Addr = 0x2

Example 2: Addr = 0x5

Example 3: Addr = 0x2

Example 4: Addr = 0x4

S C
7 6 5 4 3 2 1 0

C C S S
7 6 5 4 3 2 1 0

S S C C
7 6 5 4 3 2 1 0
2-104 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.10 Data transfer
2.10.6 Critical Chunk Identifier

The CCID field is used to identify the data bytes that are the most critical in the transaction request.

The CCID field must match the value of Addr[5:4] of the original request. Transactions which contain multiple data
packets must use the same CCID value for all data packets.

When read data or write data is reordered by the interconnect, the CCID field permits quick identification of the
most critical bytes within a transaction by comparing the CCID value with the DataID value. When the two values
match, the data bytes being transferred are the critical bytes.

The bits to match is dependent on the data bus width:
• For a data bus width of 128 bits, the CCID and DataID bits must match.
• For data bus width of 256 bits only the upper order CCID and DataID bits must match.

2.10.7 Critical chunk first wrap order

The Sender of Data is permitted, but is not required, to send individual Data packets of a transaction in critical chunk
first wrap order.

The interface property, CCF_Wrap_Order defines the capabilities of a Sender, and the guarantees provided by the
Receiver:

• CCF_Wrap_Order at the Sender:
True The Sender signals that it is capable of sending Data packets in critical chunk first wrap order.
False The Sender signals that it is not capable of sending Data packets in critical chunk first wrap order.

• CCF_Wrap_Order at the ICN:
True ICN guarantees that it will maintain the Data packets of a transaction in the order they are

received.
False ICN signals that it does not guarantee it can maintain the Data packets of a transaction in the order

they are received.

• CCF_Wrap_Order at the Receiver that is not an ICN:
True The Receiver requires the Data packets to be received in critical chunk first wrap order.
False The Receiver does not require the Data packets to be received in critical chunk first wrap order.

If some components in the system do not support sending Data packets in critical chunk first wrap order then the
receiver of Data must not rely on Data being received in critical chunk first wrap order.

Note
 At design time, the CCF_Wrap_Order parameter can help a component to identify if Data packets need to be sent
in critical chunk first wrap order. For example, if the component knows that it is connected to an out-of-order
interconnect, then it might be able to simplify its Data packet path by not returning the Data packets in critical chunk
first wrap order.

If the interconnect has the CCF_Wrap_Order property set to True, then a component interfacing to that
interconnect, if capable, can send Data packets in critical chunk first wrap order, and the receiver can make use of
possible latency optimization due to receiving the critical chunk first.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-105
ID080717 Non-Confidential

2 Transactions
2.10 Data transfer
2.10.8 Data Beat ordering

This specification permits reordering of data packets within a transaction when passing across an interconnect.
However, the original source of data packets is permitted, but not required, to provide the packets in a critical chunk
first, wrap order. See Critical chunk first wrap order on page 2-105.

Note
 Critical chunk first wrap order ensures that interfacing to protocols that do not support data reordering, such as AXI,
can be done in the most efficient manner when an ordered interconnect is used.

Wrap order is defined as follows:

Start_Address = Addr

Number_Bytes = 2^Size

INT(x) = Rounded down integer value of x

Aligned_Address = (INT(Start_Address / Number_Bytes)) x Number_Bytes

Lower_Wrap_Boundary = Aligned_Address

Upper_Wrap_Boundary = Aligned_Address + Number_Bytes - 1

To maintain wrap order, the order must be:
1. The first data packet must correspond to the data bytes specified by the Start_Address of the transaction.
2. Subsequent packets must correspond to incrementing byte addresses up to the Upper_Wrap_Boundary.
3. Subsequent packets must correspond to the Lower_Wrap_Boundary.
4. Subsequent packets must correspond to incrementing byte addresses up to the Start_Address.

Note
 Some of the steps to maintain wrap order might overlap and not be required if the required bytes are included in a
previous step.
2-106 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.10 Data transfer
2.10.9 Data transfer examples

This section gives a number of examples of the data transfer requirements defined in this specification.

In most of the examples, the size of the transaction is 64-byte and the data bus width is 128-bit. This requires 4 data
packets for each transaction.

In the following examples, the accompanying text highlights some interesting aspects. It is not intended to describe
all aspects of the example.

Example 2-1 Normal memory 64-byte Read transaction from an aligned address

• The order of the data packets, as indicated by Packet 0, Packet 1, Packet 2, and Packet 3, is such that they

follow wrap order.

• The DataID changes for each packet, while the CCID field remains constant.

• The packet containing the data bytes specified by the address of the transaction has the same value for the

CCID and DataID fields.

202F303F404F505F606F707F808F

Data Size
Boundary

Data Size
Boundary

Packet 0Packet 1Packet 2Packet 3

Size = 0b110 (64B)

Addr = 0x0040

DataID = 0x3
CCID = 0x0

DataID = 0x2
CCID = 0x0

DataID = 0x1
CCID = 0x0

DataID = 0x0
CCID = 0x0

Normal Memory
Read Transaction
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-107
ID080717 Non-Confidential

2 Transactions
2.10 Data transfer
Example 2-2 Normal memory 64-byte Read transaction from an unaligned address

• The order of the data packets, as indicated by Packet 0, Packet 1, Packet 2, and Packet 3, is such that they

follow wrap order.

• The DataID changes for each packet, while the CCID field remains constant.

• The packet containing the data bytes specified by the address of the transaction has the same value for the

CCID and DataID fields.

Example 2-3 Normal memory 32-byte Read transaction from an unaligned address

• The size of the transaction is 32-byte and the data bus width is 128-bit, resulting in 2 data packets.
• The order of the data packets, as indicated by Packet 0 and Packet 1, is such that they follow wrap order.

202F303F404F505F606F707F808F

Data Size
Boundary

Data Size
Boundary

Packet 2Packet 3Packet 0Packet 1

Size = 0b110 (64B)

Addr = 0x0068

DataID = 0x3
CCID = 0x2

DataID = 0x2
CCID = 0x2

DataID = 0x1
CCID = 0x2

DataID = 0x0
CCID = 0x2

68 67

Normal Memory
Read Transaction

202F303F404F505F606F707F808F

Data Size
Boundary

Data Size
Boundary

Packet 1Packet 0

Size = 0b101 (32B)

Addr = 0x0078

DataID = 0x3
CCID = 0x3

DataID = 0x2
CCID = 0x3

78 77

Normal Memory
Read Transaction
2-108 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.10 Data transfer
Example 2-4 Normal memory 14-byte consecutive write transaction from an unaligned address

• The order of the data packets, as indicated by Packet 0, Packet 1, Packet 2, and Packet 3, is such that they

follow wrap order.

• The DataID changes for each packet, while the CCID field remains constant.

• The packet containing the data bytes specified by the address of the transaction has the same value for the

CCID and DataID fields.

• Fourteen consecutive bytes in memory are written, as indicated by the byte enables. However, other
combinations of byte enables are permitted. See Byte Enables on page 2-101.

202F303F404F505F606F707F808F

Data Size
Boundary

Data Size
Boundary

Packet 3Packet 0Packet 1Packet 2

Size = 0b110 (64B)

Addr = 0x0058
14-bytes written

DataID = 0x3
CCID = 0x1

BE = 0x0000

58 57

Normal Memory
Write Transaction

DataID = 0x2
CCID = 0x1

BE = 0x003F

DataID = 0x1
CCID = 0x1

BE = 0xFF00

DataID = 0x0
CCID = 0x1

BE = 0x0000
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-109
ID080717 Non-Confidential

2 Transactions
2.10 Data transfer
Example 2-5 Device Read transaction from an unaligned address

• The shaded area indicates the valid bytes in the transaction. The valid bytes extend from the transaction
address up to the next Size boundary.

• The transaction includes the transfer of a packet that contains no valid data.

Example 2-6 Device write transaction to an unaligned address

• Byte enables are only permitted to be asserted for the bytes from the transaction address up to the next Size
boundary. It is not required that all byte enables meeting this criteria are asserted.

• Byte enables for bytes below the start address must not be asserted.

202F303F404F505F606F707F808F

Data Size
Boundary

Data Size
Boundary

Packet 3Packet 0Packet 1Packet 2

Size = 0b110 (64B)

Addr = 0x0058

DataID = 0x3
CCID = 0x1

DataID = 0x2
CCID = 0x1

DataID = 0x1
CCID = 0x1

DataID = 0x0
CCID = 0x1

58 57

Device
Read Transaction

202F303F404F505F606F707F808F

Data Size
Boundary

Data Size
Boundary

Packet 2Packet 3Packet 0Packet 1

Size = 0b110 (64B)

Addr = 0x0068
24-bytes written

DataID = 0x3
CCID = 0x2

BE = 0xFFFF

68 67

Device
Write Transaction

DataID = 0x2
CCID = 0x2

BE = 0xFF00

DataID = 0x1
CCID = 0x2

BE = 0x0000

DataID = 0x0
CCID = 0x2

BE = 0x0000
2-110 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.11 Request Retry
2.11 Request Retry
This specification provides a request retry mechanism that ensures when a request reaches a Completer it is either
accepted, or is given a RetryAck response, to prevent blocking of the REQ channel.

Request Retry is not applicable to the PrefetchTgt transaction. The PrefetchTgt transaction cannot be retried because
there is no response associated with this request.

A Requester is required to hold all the details of the request until it receives a response indicating that the request
has either been accepted, or must be sent again at a later point in time. To meet this requirement, with the exception
of PrefetchTgt, the AllowRetry field must be asserted the first time a transaction is sent.

A Completer that is receiving requests is able to give a RetryAck response to a request that it is not able to accept.
Typically, it will not be able to accept a request when it has limited resources and insufficient storage to hold the
current request until some earlier transactions have completed.

When a Completer gives a RetryAck response it is responsible for recording where the request came from, as
determined by the SrcID of the request. The Completer is also responsible for determining and recording the type
of Protocol Credit required to process the request. The PCrdType field in the RetryAck encodes the type of Protocol
Credit that will be granted by the Completer. When required resources become available, at a later point in time, the
Completer must then send a P-Credit to the Requester, using a PCrdGrant response. The PCrdGrant response
indicates to the Requester that the transaction can be retried.

Note
 There is no explicit mechanism to request a credit. A transaction that is given a RetryAck response implicitly
requests a credit.

It is possible that a reordering interconnect can reorder the responses such that the PCrdGrant is received by the
Requester before the RetryAck response for the transaction is received. In this case, the Requester must record the
credit it has received, including the credit type, so that it can assign the credit appropriately when it does receive the
RetryAck response.

Note
 It is expected to be rare that a PCrdGrant would be re-ordered with respect to a RetryAck response, as the delay
between a RetryAck and a PCrdGrant response will typically be much longer than any delay caused by interconnect
re-ordering.

When the Requester receives a credit, it can then resend the request with an indication that it has been allocated a
credit. This is done by deasserting the AllowRetry field. This second attempt to carry out the transaction is
guaranteed to be accepted.

The transaction that is resent must have the same field values as the original request, except for the following:
• TgtID. See Target ID determination for Request messages on page 3-118.
• QoS.
• TxnID.
• RSVDC.
• AllowRetry, which must be deasserted.
• PCrdType, which must be set to the value in the Retry response for the original transaction.

There is no fixed relationship between credits and particular transactions. If a Requester has received multiple
RetryAck responses for different transactions and it then receives a credit, there is no fixed credit allocation, the
Requester is free to choose the most appropriate transaction from the list of transactions that received a RetryAck
response with that particular Protocol Credit Type.

The retry mechanism supports up to sixteen different credit types. This lets the Completer use different credit types
for different resources. For example, a Completer might use one credit type for the resources associated with Read
transactions, and another credit type for Write transactions. Using different credit types gives the Completer the
ability to efficiently manage its resources by controlling which of the retried requests can be sent again.

The transaction must only be retried by the Requester when a PCrdGrant is received with the correct PCrdType.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-111
ID080717 Non-Confidential

2 Transactions
2.11 Request Retry
Note
 If a Completer is only using one credit type, this specification recommends that the PCrdType value of 0b00 is used.
See PCrdType on page 2-113.

A Completer that is giving RetryAck responses must be able to record all the RetryAck responses that it has given
to ensure it can correctly distribute credits. If the Completer is using more than one credit type the RetryAck
responses that have been given for each credit type must be recorded.

A Requester must limit the transactions it issues so that the Completer is never required to track more than 256
transactions that require a PCrdGrant response. This is achieved by limiting the maximum number of outstanding
transactions to 256 for each Requester.

A transaction is outstanding from the cycle that the request is first issued until either:

• The transaction is fully completed, as determined by the return of all the following responses that are
expected for the transaction:

— ReadReceipt, CompData, DBIDResp, Comp, and CompDBIDResp.

• It receives RetryAck and PCrdGrant and is either:
— Retried using a credit of the appropriate PCrdType and then is fully completed as determined by the

return of all responses.
— Cancelled and returns the received credit using the PCrdReturn message.

Each transaction request includes a QoS value which can be used by the Completer to influence the allocation of
credits as resources become available. See Chapter 10 Quality of Service for further details.

2.11.1 Credit Return

It is possible for a Requester to be given more credits than it requires.

This specification does not define when this can occur, but two typical scenarios are:

• A transaction is canceled between the first attempt and the point at which it can be resent with P-Credit.

• A transaction is requested multiple times with increasing QoS values. However, only a single completion of
the transaction is required.

Note
 If a Requester makes a second request before the first request has been given a RetryAck response then it must be
acceptable for both transactions to occur. However, as an example, this behavior would typically not be acceptable
for accesses to a peripheral device.

A Requester returns a credit by the use of the PCrdReturn transaction. This is effectively a No OPeration (NOP)
transaction that uses the credit that is not required. This transaction is used to inform the Completer that the allocated
resources are no longer required for the given PCrdType.

Any credits that are not required must be returned in a timely manner.

Note
 Any unused pre-allocated credit must be returned to avoid components holding on to credits in expectation of using
them later. Such behavior is likely to result in an inefficient use of resources and to make analysis of the system
performance difficult.
2-112 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

2 Transactions
2.11 Request Retry
2.11.2 Transaction Retry mechanism

The following sections describe the Request transaction fields used by the Retry mechanism.

The transaction retry mechanism is not applicable to the PrefetchTgt transaction.

AllowRetry

The AllowRetry field indicates if the Request transaction can be given a RetryAck response. See Table 12-27 on
page 12-304 for the AllowRetry value encodings. The AllowRetry field must be asserted the first time a transaction
is sent.

The AllowRetry field must be deasserted when either:
• The transaction is using a pre-allocated P-Credit.
• The transaction is PrefetchTgt.

PCrdType

The PCrdType field indicates the credit type associated with the request and is determined as follows:

• For a Request transaction:

— If the AllowRetry field is asserted, the PCrdType field must be set to 0b00.

— If the AllowRetry field is deasserted, the PCrdType field must be set to the value that was returned in
the RetryAck response from the Completer when the transaction was first attempted.

• A PCrdReturn transaction must have the credit type set to the value of the credit type that is being returned.
See PCrdType on page 12-307 for the PCrdType value encodings.

• For destinations that have a single credit class, or do not implement credit type classification, this
specification recommends that the PCrdType field is set to 0b00.

Note
 The value a Completer assigns to PCrdType is IMPLEMENTATION DEFINED.

The Completer must implement a starvation prevention mechanism to ensure that all transactions, irrespective of
QoS value or credit type required, will eventually make forward progress, even if over a significantly long time
period. This is done by ensuring that credits are eventually given to every transaction that has received a RetryAck
response. See Chapter 10 Quality of Service for more details on the distribution of credits for the purposes of QoS.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 2-113
ID080717 Non-Confidential

2 Transactions
2.11 Request Retry
2.11.3 Transaction Retry flow

Figure 2-34 shows a typical Transaction Retry flow.

Figure 2-34 Transaction Retry flow

The steps that Figure 2-34 shows are:

1. The Requester sends a ReadOnce request.

• This is done without a credit, so AllowRetry is asserted.

2. The Completer receives the request and sends a RetryAck response because it is not able to process the
transaction at this time.

• The request is logged and a PCrdType is determined at the Completer.

3. The Completer sends a P-Credit, using the PCrdGrant response, when it has allocated resource for the
transaction.

• The PCrdGrant includes the PCrdType allocated for the original request.

4. The Requester re-sends the transaction with AllowRetry deasserted.

• The request uses the P-Credit and sets the PCrdType field to the value allocated for the original
request.

It is permitted, but not expected, for a Completer to send a PCrdGrant before it has sent the associated RetryAck
response.

Note
 The Requester might receive PCrdGrant before RetryAck.

The second attempt at a transaction must not be sent until both a RetryAck response and an appropriate P-Credit is
received for the transaction.

RN-F HN-F

ReadOnce
(AllowRetry = 1)

(PCrdType = 0b00)
HN-F buffer entry

not gained

(Log credit request)

RetryAck
(PCrdType = n)

PCrdGrant
(PCrdType = n)

(P-Credit allocated)

ReadOnce
(AllowRetry = 0)
(PCrdType = n)

Wait for
P-Credit

n = 0x0 to 0xF
2-114 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 3
Network Layer

This chapter describes the network layer that is responsible for determining the node ID of a destination node. It
contains the following sections:
• System address map on page 3-116.
• Node ID on page 3-117.
• Target ID determination for messages from an RN on page 3-118.
• Network layer flow examples on page 3-120.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 3-115
ID080717 Non-Confidential

3 Network Layer
3.1 System address map
3.1 System address map
Each Requester, that is, each RN and HN in the system, must have a System Address Map (SAM) to determine the
target ID of a request. The scope of the SAM might be as simple as providing a fixed node ID value to all the
outgoing requests.

The exact format and structure of the SAM is IMPLEMENTATION DEFINED and is outside the scope of this
specification.

The SAM must provide a complete decode of the entire address space. This specification recommends that any
address that does not correspond to a physical component is sent to an agent that can provide an appropriate error
response.
3-116 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

3 Network Layer
3.2 Node ID
3.2 Node ID
Each component connected to a Port on the interconnect is assigned a node ID that is used to identify the source and
destination of packets communicated over the interconnect. A Port can be assigned multiple node IDs. A node ID
value can be assigned only to a single Port.

This specification supports a variable NodeID field width of 7 to 11 bits.

The width can be configured to any fixed value within this range for a given implementation and this value must be
consistent across all NodeID fields.

Defining and assigning a node ID for each node in a system is IMPLEMENTATION DEFINED and is outside the scope
of this specification.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 3-117
ID080717 Non-Confidential

3 Network Layer
3.3 Target ID determination for messages from an RN
3.3 Target ID determination for messages from an RN
This section describes how the target ID is determined for the different message types. It contains the following
sections:
• Target ID determination for Request messages.
• Target ID determination for Response messages on page 3-119.
• Target ID determination for Snoop Request messages on page 3-119.

3.3.1 Target ID determination for Request messages

For mapping of target ID in requests from the RN, this specification requires the System Address Map (SAM) logic
to be present in the RN or in the interconnect. In the case of the interconnect, it might remap the target ID in the
Request packet provided by the RN.

The target ID of a Request message is determined in the following manner using the system address map logic.

Except for PCrdReturn:

• If the request does not use a pre-allocated credit, then the target ID is determined by:
— Opcode for DVMOp.
— Address to node ID mapping for all other requests.

PrefetchTgt uses a different Address to Node ID mapper than other Requests. Two Requests from an
RN to the same Address, where one is a PrefetchTgt, target different nodes. PrefetchTgt always targets
an SN. All other Requests from an RN that use an Address to Node ID mapper target an HN.

• If the request uses pre-allocated credit, the target ID of the request must be obtained from either the source
ID of the RetryAck, provided as a response to the original Request message, or the target ID of the original
request.

For PCrdReturn:

• The target ID provided by the RN must match the source ID included in the prior PCrdGrant which provided
the credit being returned.

An RN must expect the interconnect to remap the target ID of a request.

For transactions from an RN, with the exception of PrefetchTgt which is targeted to an SN-F, this specification
expects a Snoopable transaction to be targeted to HN-F and a Non-snoopable transaction to target HN-I or HN-F. It
is legal for a Snoopable transaction to be targeted at an HN-I. This might occur, for example, due to a software
programming error. In this case, the HN-I is required to respond to the transaction in a protocol compliant manner,
but coherency is not guaranteed.

An HN might also use address map logic to determine the target Slave Node ID for each Request.
3-118 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

3 Network Layer
3.3 Target ID determination for messages from an RN
3.3.2 Target ID determination for Response messages

Response packets are issued as a result of a received message. The target ID in Response packets must match either
the SrcID or the HomeNID, or the ReturnNID or the FwdNID in the received message that resulted in the response
being sent. Table 3-1 shows the source of the Response packet target ID for each Response message type and the
field in the received message that determines the target ID.

3.3.3 Target ID determination for Snoop Request messages

A Snoop Request does not include a target ID. The protocol does not define an architectural mechanism to address
and send a Snoop Request to a target. It is expected that this mechanism will be IMPLEMENTATION DEFINED and is
outside the scope of this specification.

Table 3-1 Source of response packet target ID

Response Message Target ID obtained from

At the HN At the SN At the RN

RetryAck Request.SrcID Request.SrcID -

PCrdGrant Request.SrcID Request.SrcID -

ReadReceipt Request.SrcID Request.SrcID -

Comp Request.SrcID Request.SrcID -

CompData Request.SrcID or
SnpResp.SrcIDa

Request.ReturnNID Snoop.FwdNID

CompAck - - Comp.SrcID or CompData.HomeNID

DBIDResp Request.SrcID Request.SrcID -

WriteData - - DBIDResp.SrcID or CompDBIDResp.SrcID

SnpResp*b - - Snoop.SrcID

a. For Data Pull requests.
b. SnpResp, SnpRespData, SnpRespDataPtl, SnpRespFwded, and SnpRespDataFwded.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 3-119
ID080717 Non-Confidential

3 Network Layer
3.4 Network layer flow examples
3.4 Network layer flow examples
This section shows transaction flows at the network layer. It contains the following sections:
• Simple flow.
• Flow with interconnect based SAM on page 3-121.
• Flow with interconnect based SAM and Retry request on page 3-121.

3.4.1 Simple flow

Figure 3-1 is an example of a simple transaction flow and shows how the TgtID is determined for the requests and
responses:

1. RN0 sends a request with Target ID of HN0 using the SAM internal to RN0.

• The interconnect does not remap the node ID.

2. HN0 looks up an internal SAM to determine the target SN.

3. SN0 receives the request and sends a data response.

• The data response packet has the TgtID derived from the requests ReturnNID.

4. RN0 receives the data response from SN0.

5. RN0 sends, if required, a CompAck with TgtID of HN0 derived from the HomeNID in the Data Response
packet to complete the transaction.

Figure 3-1 Target ID assignment without remapping

Dec Req

RN0 TgtID=HN0
SrcID=RN0

Dec

HN0
TgtID=SN0
SrcID=HN0

ReturnNID=RN0
SN0

Addr

TgtID=RN0
SrcID=SN0

HomeNID=HN0

Req

Resp

TgtID=HN0
SrcID=RN0

RDATA
3-120 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

3 Network Layer
3.4 Network layer flow examples
3.4.2 Flow with interconnect based SAM

Figure 3-2 shows a case where remapping of the target ID occurs in the interconnect.

Note
 Only the target ID of the request from the RN is remapped. The TgtID in all other packets in the transaction flow is
determined in a similar manner to Simple flow on page 3-120.

Figure 3-2 Target ID assignment with remapping logic

3.4.3 Flow with interconnect based SAM and Retry request

Figure 3-3 on page 3-122 shows a case of a request getting retried.

1. The interconnect remaps the TgtID provided by RN0 to HN1.

2. The request receives a RetryAck response.

• The RetryAck and PCrdGrant responses get the TgtID information from the SrcID in the received
request.

3. RN0 resends the request once both RetryAck and PCrdGrant responses are received.

• The TgtID in the retried request is the same as the SrcID in the received RetryAck or the TgtID in the
original request. The TgtID must pass through the remapping logic again.

4. The packets in the rest of the transaction flow get the TgtID in a similar manner to Flow with interconnect
based SAM.

Dec Req

TgtID=HN0
SrcID=RN0

Dec

HN1 SN0

Addr

Req

RN0

Dec

TgtID=SN0
SrcID=HN1

ReturnNID=RN0

TgtID=RN0
SrcID=SN0

HomeNID=HN1

Remap
Dec Req

TgtID=HN1
SrcID=RN0

Resp

TgtID=HN1
SrcID=RN0

Remapped TgtIDInitial target

RDATA
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 3-121
ID080717 Non-Confidential

3 Network Layer
3.4 Network layer flow examples
Figure 3-3 Remapping of TgtID and retried request

Dec Req

TgtID=HN0
SrcID=RN0

Dec

HN1 SN0

Addr

RN0

Dec

TgtID=RN0
SrcID=SN0

HomeNID=HN1

Remap
Dec Req

TgtID=HN1
SrcID=RN0

Resp

TgtID=HN1
SrcID=RN0

Remapped TgtIDInitial target

Dec Req

TgtID=HN1
SrcID=RN0

Dec

Addr

ReqDec

TgtID=SN0
SrcID=HN1

ReturnNID=RN0
Remap

Dec Req

TgtID=HN1
SrcID=RN0

Retry
PCrdGrant

TgtID=RN0
SrcID=HN1

RDATA
3-122 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 4
Coherence Protocol

This chapter describes the coherence protocol and contains the following sections:
• Cache line states on page 4-124.
• Request types on page 4-126.
• Snoop requests on page 4-141.
• Request types and corresponding snoop requests on page 4-144.
• Response types on page 4-146.
• Silent cache state transitions on page 4-156.
• Cache state transitions on page 4-157.
• Shared clean state return on page 4-176.
• Hazard conditions on page 4-177.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-123
ID080717 Non-Confidential

4 Coherence Protocol
4.1 Cache line states
4.1 Cache line states
The action required when a protocol node accesses a cache line is determined by the cache line state. The protocol
defines the following cache line states:

I Invalid:

• The cache line is not present in the cache.

UC Unique Clean:

• The cache line is present only in this cache.

• The cache line has not been modified with respect to memory.

• The cache line can be modified without notifying other caches.

• In response to a snoop that requests data, the cache line is permitted, but not required to be:
— Returned to Home when requested.
— Forwarded directly to the Requester when instructed by the snoop.

UCE Unique Clean Empty:
• The cache line is present only in this cache.
• The cache line is in a unique state but none of the data bytes are valid.
• The cache line can be modified without notifying other caches.
• In response to a snoop that requests data, the cache line must not be:

— Returned to Home even when requested.
— Forwarded directly to the Requester even when instructed by the snoop.

UD Unique Dirty:
• The cache line is present only in this cache.
• The cache line has been modified with respect to memory.
• The cache line must be written back to next level cache or memory on eviction.
• The cache line can be modified without notifying other caches.
• In response to a snoop that requests data, the cache line must be:

— Returned to Home when requested.
— Forwarded directly to the Requester when instructed by the snoop.

UDP Unique Dirty Partial:

• The cache line is present only in this cache.

• The cache line is unique. Only a part of the cache line is Valid and Dirty.

• The cache line has been modified with respect to memory.

• When the cache line is evicted, it must be merged with data from next level cache or memory
to form the complete Valid cache line.

• The cache line can be modified without notifying other caches.

• In response to a snoop that requests data, the cache line must:

— Be returned to Home.

— Not forward the cache line directly to the Requester even when instructed by the
snoop.
4-124 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.1 Cache line states
SC Shared Clean:

• Other caches might have a shared copy of the cache line.

• The cache line might have been modified with respect to memory.

• It is not the responsibility of this cache to write the cache line back to memory on eviction.

• The cache line cannot be modified without invalidating any shared copies and obtaining
unique ownership of the cache line.

• In response to a snoop that requests data, the cache line:
— Is required to not return data if RetToSrc bit is not set.
— Can return data if RetToSrc bit is set.
— Is forwarded directly to the Requester when instructed by the snoop.

SD Shared Dirty:

• Other caches might have a shared copy of the cache line.

• The cache line has been modified with respect to memory.

• The cache line must be written back to next level cache or memory on eviction.

• The cache line cannot be modified without invalidating any shared copies and obtaining
unique ownership of the cache line.

• In response to a snoop that requests data, the cache line must be:
— Returned to Home when requested.
— Forwarded directly to the Requester when instructed by the snoop.

A cache is permitted to implement a subset of these states.

4.1.1 Empty cache line ownership

An empty cache line is a cache line that is held in a Unique state, so no other copies of the cache line exist, but none
of the data bytes are Valid. This cache line state is UCE.

The following are examples of when empty cache line ownership can occur:

• A Requester can deliberately obtain an empty cache line:

— Before starting a write, to save system bandwidth, a Requester that expects to write to a cache line can
obtain an empty cache line with permission to store, instead of obtaining a Valid copy of the cache line.

• A Requester can transition into an empty state:

— If the Requester has a copy of the cache line when it requests permission to store, and that copy of the
cache line is invalidated before the Requester obtains permission to store, this results in the Requester
having an empty cache line with permission to store.

4.1.2 Ownership of cache line with partial Dirty data

Once ownership of a cache line without data is obtained, the Requester is permitted to store to the cache line. If the
Requester modifies part of the cache line, the cache line remains partially Unique Dirty. This cache line state is UDP.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-125
ID080717 Non-Confidential

4 Coherence Protocol
4.2 Request types
4.2 Request types
Protocol requests are categorized as follows:

• Read requests:
— A data response is provided to the Requester.
— Can result in data movement among other agents in the system.
— Can result in a cache state change at the Requester.
— Can result in a cache state change at other Requesters in the system.

• Dataless requests:
— No data response is provided to the Requester.
— Can result in data movement among other agents in the system.
— Can result in a cache state change at the Requester.
— Can result in a cache state change at other Requesters in the system.

• Write requests:
— Move data from the Requester.
— Can result in data movement among other agents in the system.
— Can result in a cache state change at the Requester.
— Can result in a cache state change at other Requesters in the system.

• Atomic requests:
— Move data from the Requester.
— A data response is provided to the Requester in some Request types.
— Can result in data movement among other agents in the system.
— Can result in a cache state change at the Requester.
— Can result in a cache state change at other Requesters in the system.

• Other requests:

— Do not involve any data movement in the system.

— Used for assisting with Distributed Virtual Memory (DVM) maintenance.

— Used to warm the memory controller for a following read request.

The following subsections enumerate the resulting transactions and their characteristics.

Note
 In Read transactions on page 4-127, Dataless transactions on page 4-131 and Write transactions on page 4-133,
information is provided on the expected communicating node pairs. It is also legal for any transaction that is
expected to target an HN-F, but not an HN-I, to target an HN-I. This can occur in the case of an incorrect assignment
of memory type for a transaction. It is required that the HN-I responds to such a transaction in a protocol compliant
manner. See Appendix B Communicating Nodes for complete information on communication node pairs.
4-126 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.2 Request types
4.2.1 Read transactions

ReadNoSnp Read request to a Non-snoopable address region:
• Data is included with the completion response.
• Data size is up to a cache line length, based on size attribute value in the request,

irrespective of memory attributes.
• Data will not be cached at the Requester in a system coherent manner.

Note
 It is permitted to retain a copy of the data obtained in a local cache, or buffer, but this

copy of the data will not remain coherent.

• Can have exclusive attribute asserted. See Chapter 6 Exclusive Accesses for details.
— Data cannot be obtained directly from the Slave Node using DMT if the

Exclusive bit is set.
• Permitted, but not required, to assert ExpCompAck in the Request.
• Permitted to assert Order field in the Request.
• Permitted to use DMT if ExpCompAck is asserted in the Request.
• Permitted to use DMT if both ExpCompAck and Order are deasserted in the

Request.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

ReadOnce Read request to a Snoopable address region to obtain a snapshot of the coherent data.
• Data is included with the completion response.
• Data size is a cache line length.
• Data will not be cached at the Requester.

Note
 It is permitted to retain a copy of the data obtained in a local cache, or buffer, but this

copy of the data will not remain coherent.

• Permitted, but not required, to assert ExpCompAck in the Request.
• Permitted to assert Order field in the Request.
• Permitted to use DMT if ExpCompAck is asserted in the Request.
• Permitted to use DMT if both ExpCompAck and Order are deasserted in the

Request.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-127
ID080717 Non-Confidential

4 Coherence Protocol
4.2 Request types
ReadOnceCleanInvalid

Read request to a Snoopable address region to obtain a snapshot of the coherent data:
• Data is included with the completion response.
• Data size is a cache line length.
• Data will not be cached in a coherent state at the Requester.
• Permitted, but not required to assert ExpCompAck in the request.
• Permitted to assert Order field in the request.
• Permitted to use DMT if ExpCompAck is asserted in the Request.
• Permitted to use DMT if both ExpCompAck and Order field are deasserted in the

Request.
• It is recommended, but not required that a snooped cached copy is invalidated.
• If a Dirty copy is invalidated, it must be written back to memory.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).

Note
 ReadOnceCleanInvalid is used instead of ReadOnce or ReadOnceMakeInvalid where the

application determines that the data is still Valid, but will not be used in the near future.

Use of ReadOnceCleanInvalid by an application improves cache efficiency by reducing
cache pollution.

The following should be considered when using ReadOnceCleanInvalid:

• The invalidation in the ReadOnceCleanInvalid transaction is a hint. Completion of
the transaction does not guarantee removal of all cached copies, therefore it cannot
be used as a replacement for a CMO.

• Use of the transaction can cause the deallocation of a cache line and therefore caution
is needed if the transaction could target the same cache line that other agents in the
system are using for Exclusive accesses.

• Apart from the interaction with Exclusive accesses, the ReadOnceCleanInvalid
transaction only provides a hint for deallocation of a cache line and has no other
impact on the correctness of a system.

ReadOnceMakeInvalid

Read request to a Snoopable address region to obtain a snapshot of the coherent data:
• Data is included with the completion response.
• Data size is a cache line length.
• Data will not be cached in a coherent state at the Requester.
• Permitted, but not required, to assert ExpCompAck in the Request.
• Permitted to assert Order field in the Request.
• Permitted to use DMT if ExpCompAck is asserted in the Request.
• Permitted to use DMT if both ExpCompAck and Order field are deasserted in the

Request.
• It is recommended, but not required, that all snooped cached copies are invalidated.
• If a Dirty copy is invalidated, it does not need to be written back to memory.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).

Note
 ReadOnceMakeInvalid is used in preference to ReadOnce or ReadOnceCleanInvalid to

obtain a snapshot of a data value when the application determines that the cached data is not
going to be used again.
4-128 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.2 Request types
The application can free up the caches and also, by discarding Dirty data, avoid an
unnecessary WriteBack to memory.

The following should be considered when using ReadOnceMakeInvalid:

• The invalidation in the ReadOnceMakeInvalid transaction is a hint. Completion of
the transaction does not guarantee removal of all cached copies, therefore it cannot
be used as a replacement for a CMO.

• Use of the transaction can cause the deallocation of a cache line and therefore caution
is needed if the transactions could target the same cache line that other agents in the
system are using for Exclusive accesses.

• The use of the ReadOnceMakeInvalid transaction can cause the loss of a Dirty cache
line. Use of this transaction must be strictly limited to scenarios where it is known
that the loss of a Dirty cache line is harmless.

• For a ReadOnceMakeInvalid transaction, it is required that the invalidation of the
cache line is committed prior to the read data response for the transaction. The
invalidation of the cache line is not required to have completed at this point, but it
must be ensured that any later write transaction from any agent, which starts after this
point, is guaranteed not to be invalidated by this transaction.

ReadClean Read request to a Snoopable address region:
• Data is included with the completion response.
• Data size is a cache line length.
• Data must be provided to the Requester in clean state only:

— UC, or SC.
• Can have exclusive attribute asserted. See Chapter 6 Exclusive Accesses for details.

— Data cannot be obtained directly from the Slave Node using DMT if the
Exclusive bit is set.

• Communicating node pairs:
— RN-F to ICN(HN-F).

ReadNotSharedDirty

Read request to a Snoopable address region.
• Data is included with the completion response.
• Data size is a cache line length.
• Requester will accept the data in any valid state except SD:

— UC, UD, SC.
• Can have exclusive attribute asserted. See Chapter 6 Exclusive Accesses for details.

— Data cannot be obtained directly from the Slave Node using DMT if the
Exclusive bit is set.

• Communicating node pairs:
— RN-F to ICN(HN-F).

• Request is included in this specification for use by caches that do not support the
SharedDirty state.

ReadShared Read request to a Snoopable address region.
• Data is included with the completion response.
• Data size is a cache line length.
• Requester will accept the data in any valid state:

— UC, UD, SC, or SD.
• Can have exclusive attribute asserted. See Chapter 6 Exclusive Accesses for details.

— Data cannot be obtained directly from the Slave Node using DMT if the
Exclusive bit is set.

• Communicating node pairs:
— RN-F to ICN(HN-F).
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-129
ID080717 Non-Confidential

4 Coherence Protocol
4.2 Request types
ReadUnique Read request to a Snoopable address region to carry out a store to the cache line.
• All other cached copies must be invalidated.
• Data is included with the completion response.
• Data size is a cache line length.
• Data must be provided to the Requester in unique state only:

— UC, or UD.
• Communicating node pairs:

— RN-F to ICN(HN-F).
4-130 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.2 Request types
4.2.2 Dataless transactions

CleanUnique Request to a Snoopable address region to change the state to Unique to carry out a store to
the cache line. Typical usage is when the Requester has a shared copy of the cache line and
wants to obtain permission to store to the cache line.
• Data is not included with the completion response.
• Any dirty copy of the cache line at a snooped cache must be written back to the next

level cache or memory.
• Can have exclusive attribute asserted. See Chapter 6 Exclusive Accesses for details.
• Communicating node pairs:

— RN-F to ICN(HN-F).

MakeUnique Request to Snoopable address region to obtain ownership of the cache line without a data
response. This request is used only when the Requester guarantees that it will carry out a
store to all bytes of the cache line.
• Data is not included with the completion response.
• Any dirty copy of the cache line at a snooped cache must be invalidated without

carrying out a data transfer.
• Communicating node pairs:

— RN-F to ICN(HN-F).

Evict Used to indicate that a Clean cache line is no longer cached by an RN.
• Data is not sent for this transaction.
• The cache line must not remain in the cache.
• Communicating node pairs:

— RN-F to ICN(HN-F).

StashOnceUnique

Request to a Snoopable address region. Request includes the Node ID of another RN and
the Request can optionally include the ID of a Logical Processor within that node. It is
recommended, but not required, that the other agent is snooped to indicate that it reads the
addressed cache line and ensures that it is in a cache state suitable for writing to the cache
line. The expected Read request is ReadUnique, or CleanUnique.
• Data is not included with the completion response.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).

StashOnceShared

Request to a Snoopable address region. Request includes the Node ID of another RN and
the Request can optionally include the ID of a Logical Processor within that node. It is
recommended, but not required, that the other agent is snooped to indicate that it reads the
addressed cache line. The expected Read request is ReadShared or ReadNotSharedDirty.
When a valid target is not specified, then the addressed cache line can be fetched to be
cached at the request Completer.
• Data is not included with the completion response.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-131
ID080717 Non-Confidential

4 Coherence Protocol
4.2 Request types
Cache maintenance transactions

A Cache Maintenance Operation (CMO) assists with software cache management. The protocol includes the
following four transactions to support a CMO:

CleanShared Ensures that all cached copies are changed to a Non-dirty state and any Dirty copy is written
back to memory.
• Data is not included with the completion response. The Resp field value in the

completion, indicating cache state, must be ignored by both the Requester and the
Home.

• Sending of CleanShared to the interconnect from an RN and from the interconnect to
an SN is controlled by the BROADCASTPERSIST (BP) and
BROADCASTCACHEMAINTENANCE (BCM) interface signals.
See Optional interface broadcast signals on page 15-344.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

CleanSharedPersist The completion response to a CleanSharedPersist request ensures that all cached copies are
changed to a Non-dirty state and any Dirty cached copy is written back to the Point of
Persistence (PoP).

• Data is not included with the completion response. The Resp field value in the
completion, indicating cache state, must be ignored by both the Requester and the
Home.

• Sending of CleanSharedPersist to the interconnect from an RN and from the
interconnect to an SN is controlled by the BP and BCM interface signals.
See Optional interface broadcast signals on page 15-344.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

CleanInvalid Invalidates all cached copies and any Dirty copy is written to memory.
• Data is not included with the completion response.
• Sending of CleanInvalid to the interconnect from an RN and from the interconnect to

an SN is controlled by the BP and BCM interface signals.
See Optional interface broadcast signals on page 15-344.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.
4-132 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.2 Request types
MakeInvalid Invalidates all cached copies and any Dirty copy can be discarded.
• Data is not included with the completion response.
• Sending of MakeInvalid to the interconnect from an RN and from the interconnect to

an SN is controlled by the BP and BCM interface signals.
See Optional interface broadcast signals on page 15-344.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

ExpectCompAck must not be asserted in CleanShared, CleanInvalid, MakeInvalid, and CleanSharedPersist
transactions for any Requester type,

Note
 Permitting CMOs to be forwarded downstream of the Home Node incorporates system topologies where some
observers might directly access locations downstream of the Home Node and software cache maintenance is
required to make cached data visible to such observers.

A CMO intended for a particular address must not be sent to the interconnect before all previous transactions sent
to the same address have completed.

A transaction, except Evict, WriteEvictFull, and PrefetchTgt, intended for a particular address, must not be sent to
the interconnect before a previous CMO sent to the same address has completed.

4.2.3 Write transactions

Write transactions move data from a Requester to a Completer, this might be the next level cache, memory, or a
peripheral. The data being transferred, depending on the transaction type, can be coherent or non-coherent. Each
write transaction must assert appropriate byte enables with the data.

WriteNoSnpFull Write a full cache line of data to a Non-snoopable address region.
• Data size is a cache line length.
• All byte enables must be asserted.
• Can have the exclusive attribute asserted. See Chapter 6 Exclusive Accesses.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

WriteNoSnpPtl Write to Non-snoopable address region.

• Data size is up to a cache line length.

• Byte enables must be asserted for the appropriate byte lanes within the specified data
size and deasserted in the rest of the data transfer.

• Can have the exclusive attribute asserted. See Chapter 6 Exclusive Accesses.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

WriteUniqueFull Write to a Snoopable address region. Write a full cache line of data to the next-level cache
or memory when the cache line is Invalid at the Requester.
• Data size is a cache line length.
• All byte enables must be asserted.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-133
ID080717 Non-Confidential

4 Coherence Protocol
4.2 Request types
WriteUniquePtl Write to a Snoopable address region. Write up to a cache line of data to the next-level cache
or memory when the cache line is Invalid at the Requester.

• Data size is up to a cache line length.

• Byte enables must be asserted for the appropriate byte lanes within the specified data
size and deasserted in the rest of the data transfer.

• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).

WriteUniqueFullStash

Write to a Snoopable address region. Write a full cache line of data to the next-level cache
or memory when the cache line is Invalid at the Requester. Also includes a request to the
Stash target node to read the addressed cache line. The expected Read request is
ReadUnique.
• Data size is a cache line length.
• All byte enables must be asserted.
• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).

WriteUniquePtlStash

Write to a Snoopable address region. Write up to a cache line of data to the next-level cache
or memory when the cache line is Invalid at the Requester. Also includes a request to the
Stash target node to read the addressed cache line. The expected Read request type is
ReadUnique.

• Data size is up to a cache line length.

• Byte enables must be asserted for the appropriate byte lanes within the specified data
size and deasserted in the remainder of the data transfer.

• Communicating node pairs:

— RN-F, RN-D, RN-I to ICN(HN-F).

CopyBack transactions

CopyBack transactions are a subclass of Write transactions. CopyBack transactions move coherent data from a
cache to the next level cache or memory. Each CopyBack transaction must assert the appropriate byte enables with
the data. CopyBack transactions do not require the snooping of other agents in the system.

WriteBackFull Write-back a full cache line of Dirty data to the next level cache or memory.
• Data size is a cache line length.
• All byte enables must be asserted.
• The cache line must not remain in the cache.
• Communicating node pairs:

— RN-F to ICN(HN-F).

WriteBackPtl Write-back up to a cache line of Dirty data to the next level cache or memory.
• Data size is a cache line length.
• All appropriate byte enables, up to all 64, must be asserted.
• The cache line must not remain in the cache.
• Communicating node pairs:

— RN-F to ICN(HN-F).
4-134 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.2 Request types
WriteCleanFull Write-back a full cache line of Dirty data to the next level cache or memory and retain a
Clean copy in the cache.
• Data size is a cache line length.
• All byte enables must be asserted.
• The cache line is expected to be in Clean state at completion of the transaction.
• Communicating node pairs:

— RN-F to ICN(HN-F).

WriteEvictFull Write-back of UniqueClean data to the next-level cache.
• Data size is a cache line length.
• All byte enables must be asserted.
• The cache line must not remain in the cache.
• The cache line must not propagate beyond its Snoop domain.
• Communicating node pairs:

— RN-F to ICN(HN-F).

4.2.4 Atomic transactions

An Atomic transaction permits a Requester to send to the interconnect a transaction with a memory address and an
operation to be performed on that memory location. This transaction type moves the operation closer to where the
data resides and is useful for atomically executing an operation and updating the memory location in a performance
efficient manner.

Without an Atomic transaction, an atomic operation has to be executed using a sequence of memory accesses. These
accesses might rely on Exclusive reads and writes.

Using an Atomic transaction:

• A more deterministic latency can be estimated for atomic operations.

• The blocking period of access to the memory location being modified is reduced, which then reduces the
impact on the forward progress of memory accesses by other agents.

• Providing fairness among different Requesters accessing a memory location becomes simpler, because
accessing of that memory location by an atomic operation is arbitrated at the PoS or PoC.

This specification defines the following terms relating to atomic operations and Atomic transactions:

Atomic operation The execution of a function involving multiple data values such that, the loading of the
original value, the execution of the function, and the storing of the updated value, occurs in
an atomic manner so that no other agent has access to the location during the entire
operation.

Atomic transaction A transaction that is used to pass an atomic operation, along with the data values required
for the execution of the atomic operation, from one agent in a system to another, so that the
atomic operation can be carried out by a different component in the system than the
component that requires the operation to be performed.

Atomic transaction types

This specification defines four Atomic transaction types:
• AtomicStore.
• AtomicLoad.
• AtomicSwap.
• AtomicCompare.

The following terminology is used to refer to the different data elements in the execution of an atomic operation:

TxnData The write data in the AtomicLoad, and AtomicStore transactions.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-135
ID080717 Non-Confidential

4 Coherence Protocol
4.2 Request types
CompareData The compare value in the AtomicCompare transaction.

SwapData The swap value in the AtomicCompare, and AtomicSwap transactions.

InitialData The content of the addressed location before the atomic operation.

Enumeration of the four Atomic transaction types is as follows:

AtomicStore • Sends a single data value with an address and the atomic operation to be performed.

• The target, an HN or an SN, performs the required operation on the address location
specified with the data supplied in the Atomic transaction.

• The target returns a completion response without data.

• Outbound data size is 1, 2, 4, or 8 byte.

• Only appropriate byte enables must be asserted.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

• Number of operations supported is 8.

Table 4-1 shows the eight operations supported by the AtomicStore transaction.

Each of the AtomicStore operations apply to 1, 2, 4, or 8 byte data sizes.

Table 4-1 AtomicStore operations

STADD • Update location with (TxnData + InitialData).
• InitialData is not returned to the Requester.

STCLR • Update location with (InitialData AND (NOT TxnData)). Bitwise.
• InitialData is not returned to the Requester.

STEOR • Update location with (InitialData XOR TxnData). Bitwise.
• InitialData is not returned to the Requester.

STSET • Update location with (InitialData OR TxnData). Bitwise.
• InitialData is not returned to the Requester.

STSMAX
• Update location with TxnData if:

— (((Signed INT) TxnData – (Signed INT) InitialData) > 0).
• InitialData is not returned to the Requester.

STSMIN • Update location with TxnData if:
— (((Signed INT) TxnData – (Signed INT) InitialData) < 0).

• InitialData is not returned to the Requester.

STUMAX
• Update location with TxnData if:

— (((Unsigned INT) TxnData – (Unsigned INT) InitialData) > 0).
• InitialData is not returned to the Requester.

STUMIN • Update location with TxnData if:
— (((Unsigned INT) TxnData – (Unsigned INT) InitialData) < 0).

• InitialData is not returned to the Requester.
4-136 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.2 Request types
AtomicLoad • Sends a single data value with an address and the atomic operation to be performed.

• The target, an HN or an SN, performs the required operation on the address location
specified with the data value supplied in the Atomic transaction.

• The target returns the completion response with data. The data value is the original
value at the addressed location.

• Data will not be cached at the Requester.

• Outbound data size is 1, 2, 4, or 8 byte.

• Only appropriate byte enables must be asserted.

• Inbound data size is the same as the outbound data size.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

• Number of operations supported is 8.

Table 4-2 shows the eight operations supported by the AtomicLoad transaction.

Each of the AtomicLoad operations apply to 1, 2, 4, or 8 byte data sizes.

Table 4-2 AtomicLoad operations

LDADD • Update location with (TxnData + InitialData).
• Return InitialData to the Requester.

LDCLR • Update location with (InitialData AND (NOT TxnData)). Bitwise.
• Return InitialData to the Requester.

LDEOR • Update location with (InitialData XOR TxnData). Bitwise.
• Return InitialData to the Requester.

LDSET • Update location with (InitialData OR TxnData). Bitwise.
• Return InitialData to the Requester.

LDSMAX
• Update location with TxnData if:

— (((Signed INT) TxnData – (Signed INT) InitialData) > 0).
• Return InitialData to the Requester.

LDSMIN • Update location with TxnData if:
— (((Signed INT) TxnData – (Signed INT) InitialData) < 0).

• Return InitialData to the Requester.

LDUSMAX
• Update location with TxnData if:

— (((Unsigned INT) TxnData – (Unsigned INT) InitialData) > 0).
• Return InitialData to the Requester.

LDUMIN • Update location with TxnData if:
— (((Unsigned INT) TxnData – (Unsigned INT) InitialData) < 0).

• Return InitialData to the Requester.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-137
ID080717 Non-Confidential

4 Coherence Protocol
4.2 Request types
AtomicSwap • Sends a single data value, the swap value, together with the address of the location to
be operated on.

• The target, an HN or an SN, swaps the value at the address location with the data
value supplied in the transaction.

• The target returns the completion response with data. The data value is the original
value at the addressed location.

• Data will not be cached at the Requester.

• Outbound data size is 1, 2, 4, or 8 byte.

• Only appropriate byte enables must be asserted.

• Inbound data size is the same as the outbound data size.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

• Number of operations supported is 1.
4-138 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.2 Request types
AtomicCompare

• Sends two data values, the compare value and the swap value, with the address of the
location to be operated on.

• The target, an HN or an SN, compares the value at the addressed location with the
compare value:

— If the values match, the target writes the swap value to the addressed location.

— If the values do not match, the target does not write the swap value to the
addressed location.

• The target returns the completion response with data. The data value is the original
value at the addressed location.

• Data will not be cached at the Requester.

• Outbound data size is 2, 4, 8, 16, or 32 byte.

• Only appropriate byte enables must be asserted.

• Inbound data size is half of the outbound data size.

• Communicating node pairs:
— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

• Number of operations supported is 1.

The request/response rules for Atomic transactions are:

• Transaction ordering is supported for Atomic transactions:

— In Atomic transactions to a Normal memory region, only Request Order is permitted to be asserted,
Endpoint Order must not be asserted.

— In Atomic transactions to a Device region, both Request Order and Endpoint Order are permitted to
be asserted.

• For Atomic transactions with Request Order asserted, receiving of DBIDResp at the Requester is sufficient
to provide the appropriate request ordering guarantees. See Ordering requirements on page 2-66.

• The Completer must wait for all snoop responses before sending the Comp or CompData response.

When the Slave Node supports the execution of atomic operations, the Home is permitted to forward Atomic
transactions to the Slave Node. Home cannot use DMT for Non-store atomics that are forwarded to SN. The rules
governing such forwarding are:

• The Atomic transaction must be sent to the Slave Node only after all the required Snoop transactions are
completed and any Dirty cached data is written back to the Slave Node.

• The Slave Node can either send a separate Comp and DBIDResp or a combined CompDBIDResp as a
response to the Atomic Store transaction. For AtomicLoad, AtomicSwap, and AtomicCompare transactions
the Slave node must send DBIDResp and Comp with Data as CompData.

Note
 By separating the Comp and DBIDResp responses, the Slave Node has an opportunity to signal an error in

the received data, or an error during execution of the atomic operation.

• Home must send Atomic transaction data after receiving DBIDResp without waiting for completion.

• Home is permitted to send the completion response to the Requester without waiting for the initiation or
completion of the Atomic transaction at the Slave Node.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-139
ID080717 Non-Confidential

4 Coherence Protocol
4.2 Request types
4.2.5 Other transactions

This section describes the protocol transactions that carry out miscellaneous actions.

DVM transactions

DVM transactions are used for virtual memory system maintenance.

DVMOp DVM Operation. Actions include the passing of messages between components within a distributed
virtual memory system. See Chapter 8 DVM Operations for details.

• Communicating node pairs:
— RN-F, RN-D to ICN(MN).

Prefetch transaction

The prefetch target transaction is used to speculatively read data from main memory.

PrefetchTgt Prefetch Target. A Request to a shareable memory address, sent from a Request Node directly to a
Slave Node:

• The PrefetchTgt transaction does not include a response.

• The request can be used by the Slave Node to fetch the data from off-chip memory and buffer
it in anticipation of a subsequent Read request to the same location.

• The request does not include a response, therefore the Requester can deallocate the request
as soon as the request is sent.

• The following fields are inapplicable and can take any value:
— Order.
— Endian.
— Size.
— MemAttr.
— SnpAttr.
— Excl.
— LikelyShared.

• The Transaction ID field is inapplicable and must be set to zero.

• The Receiver must not send any response, including RetryAck.

• The Receiver is permitted to initiate an internal action or discard the request without any
further action.

• Data read from off-chip memory using PrefetchTgt must not hold Slave Node resources
waiting indefinitely for a future Read request to the same address.

• Communicating node pairs:

— RN-F, RN-D, RN-I to SN-F.

The receiver must accept the request without any dependency on receiving of a subsequent Read request to the same
address.
4-140 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.3 Snoop requests
4.3 Snoop requests
The ICN generates a snoop request either in response to a request from an RN or due to an internal cache or snoop
filter maintenance operation. A snoop transaction, except for SnpDVMOp, operates on the cached data at the RN-F.
A SnpDVMOp transaction carries out a DVM maintenance operation at the target node.

This specification permits snoops to Non-snoopable address locations.

SnpOnceFwd, SnpOnce

Snoop request to obtain the latest copy of the cache line, preferably without changing the
state of the cache line at the Snoopee:
• SnpOnceFwd is permitted to be sent only to one RN-F.
• See Forwarding type snoops on page 4-169 for the permitted responses to

SnpOnceFwd.
• See Snoop request transactions on page 4-161 for the permitted responses to

SnpOnce.
• Expected not to change cache state.

SnpStashUnique

Snoop request recommending that the Snoopee obtains a copy of the cache line in a Unique
state:

• Permitted to be sent to only one RN-F.

• This specification recommends not sending the snoop for a StashOnceUnique request
if the cache line is cached in Unique state at the Stash target.

• Permitted to send the snoop to the Stash target for WriteUniqueFullStash and
WriteUniquePtlStash only if the Snoopee does not have a cached copy of the cache
line.

• The Snoopee must not return data with the Snoop response.

• Permits the Snoop response to include a Data Pull if the value of the DoNotDataPull
field is 0b0 in the Snoop request.

• If not using Data Pull, then this specification recommends, but it is not required, that
the Snoopee uses ReadUnique to prefetch the cache line.

• Must not change the cache line state at the Snoopee.

SnpStashShared

Snoop request recommending that the Snoopee obtains a copy of the cache line in a Shared
state:

• Permitted to be sent to only one RN-F.

• This specification recommends not sending the snoop if the cache line is cached at
the target.

• The Snoopee must not return data with the Snoop response.

• Permits the Snoop response to include a Data Pull if the value of the DoNotDataPull
field is 0b0 in the Snoop request.

• If not using Data Pull, then this specification recommends, but it is not required, that
the Snoopee uses ReadShared, or ReadSharedNotDirty to prefetch the cache line.

• Must not change the cache line state at the Snoopee.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-141
ID080717 Non-Confidential

4 Coherence Protocol
4.3 Snoop requests
SnpCleanFwd, SnpClean

Snoop request to obtain a copy of the cache line in Clean state while leaving any cache copy
in Shared state:
• SnpCleanFwd is permitted to be only sent to one RN-F.
• See Forwarding type snoops on page 4-169 for permitted responses to

SnpCleanFwd.
• See Snoop request transactions on page 4-161 for permitted responses to SnpClean.
• Must not leave the cache line in Unique state.

SnpNotSharedDirtyFwd, SnpNotSharedDirty

Snoop request to obtain a copy of the cache line in SharedClean state while leaving any
cached copy in a Shared state:

• SnpNotSharedDirtyFwd is permitted to be sent only to one RN-F.

• See Forwarding type snoops on page 4-169 for permitted responses to
SnoopNotSharedDirtyFwd.

• See Snoop request transactions on page 4-161 for permitted responses to
SnpNotSharedDirty.

SnpSharedFwd, SnpShared

Snoop request to obtain a copy of the cache line in Shared state while leaving any cached
copy in Shared state:
• SnpSharedFwd is permitted to be only sent to one RN-F.
• See Forwarding type snoops on page 4-169 for permitted responses to

SnpSharedFwd.
• See Snoop request transactions on page 4-161 for permitted responses to SnpShared.
• Must not leave the cache line in Unique state.

SnpUniqueFwd, SnpUnique

Snoop request to obtain a copy of the cache line in Unique state while invalidating any
cached copies:
• SnpUniqueFwd is permitted to be sent to only one RN-F.
• See Forwarding type snoops on page 4-169 for permitted responses to

SnpUniqueFwd.
• See Snoop request transactions on page 4-161 for permitted responses to SnpUnique.
• Must change the cache line to Invalid state.

SnpUniqueStash

Snoop request to invalidate the cached copy at the Snoopee and recommends that the
Snoopee obtains a copy of the cache line in Unique state:

• Permitted to be sent to only one RN-F.

• Snoop response can include data.

• See Stash type snoops on page 4-166 for responses to SnpUniqueStash.

• Permits the Snoop response to include a Data Pull if the value of the DoNotDataPull
field in the Snoop request is 0b0.

• If not using Data Pull, then this specification recommends, but it is not required, that
the Snoopee uses ReadUnique to prefetch the cache line.

SnpCleanShared Snoop request to remove any Dirty copy of the cache line at the Snoopee:
• Snoop response can include data.
• See Snoop request transactions on page 4-161 for permitted SnpCleanShared

responses.
• Must not leave the cache line in a Dirty state.
4-142 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.3 Snoop requests
SnpCleanInvalid Snoop request to Invalidate the cache line at the Snoopee and obtain any Dirty copy. Might
also be generated by the ICN without a corresponding request:
• Snoop response can include data.
• See Snoop request transactions on page 4-161 for permitted SnpCleanInvalid

responses.
• Must change the cache line to Invalid state.

SnpMakeInvalid Snoop request to Invalidate the cache line at the Snoopee and discard any Dirty copy:
• Does not return data with the Snoop response, Dirty data is discarded.
• Must change the cache line to Invalid state.

SnpMakeInvalidStash

Snoop request to invalidate the copy of the cache line and recommends that the Snoopee
obtains a copy of the cache line in Unique state:

• Permitted to be sent to only one RN-F.

• Snoopee must not return data with the Snoop response, Dirty data must be discarded.

• See Stash type snoops on page 4-166 for the permitted SnpMakeInvalidStash
responses.

• Permits the Snoop response to include a Data Pull if the value of the DoNotDataPull
field in the Snoop request is 0b0.

• If not using Data Pull, then this specification recommends, but it is not required, that
the Snoopee uses ReadUnique to prefetch the cache line.

SnpDVMOp Generated at the ICN, initiated by the DVMOp request:
• A single DVMOp request generates two snoop requests.
• Returns a single Snoop response for the two snoop requests.

See Non-sync type DVM transaction flow on page 8-232.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-143
ID080717 Non-Confidential

4 Coherence Protocol
4.4 Request types and corresponding snoop requests
4.4 Request types and corresponding snoop requests
Table 4-3 shows the Request transactions and the corresponding Snoop transactions that are generated by the
interconnect. A Requester can implement a subset of the Request transactions but must be able to respond to all
Snoop transactions.

Table 4-3 Request types and the corresponding snoop requests

Request type Request Snoop

Expected Alternative snoop
Snoop to
non-target

Read ReadNoSnp - SnpOnceFwd -

ReadOnce SnpOnceFwd SnpOnce -

ReadOnceCleanInvalid SnpUnique SnpOnceFwd -

ReadOnceMakeInvalid SnpUnique SnpOnceFwd -

ReadClean SnpCleanFwd SnpClean -

ReadNotSharedDirty SnpNotSharedDirtyFwd SnpNotSharedDirty -

ReadShared SnpSharedFwd SnpShared -

ReadUnique SnpUniqueFwd SnpUnique -

Dataless CleanUnique SnpCleanInvalid - -

MakeUnique SnpMakeInvalid - -

Evict - - -

CleanShared SnpCleanShared - -

CleanSharedPersist SnpCleanShared - -

CleanInvalid SnpCleanInvalid - -

MakeInvalid SnpMakeInvalid - -

Dataless-Stash StashOnceUnique SnpStashUnique - -

StashOnceShared SnpStashShared - -

Write WriteNoSnp - - -

WriteUniqueFull SnpMakeInvalid - -

WriteUniquePtl SnpCleanInvalid or SnpUnique - -

Write-Stash WriteUniqueFullStash SnpMakeInvalidStash - SnpMakeInvalid

WriteUniquePtlStash SnpUniqueStash - SnpUnique

Write - CopyBack WriteBack - - -

WriteClean - - -

WriteEvictFull - - -
4-144 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.4 Request types and corresponding snoop requests
The interconnect has the following behavior when generating a snoop request on receipt of a request from an RN:

• This specification supports a snoop filter or directory within the interconnect to track the state of cache lines
present in RN-F caches. The tracking can be as detailed as knowing each RN-F that has a copy of the cache
line, or as nonspecific as knowing that a cache line is present in one of the RN-F caches. Such tracking
permits the ICN to filter unnecessary snooping of an RN-F, for example:

— If the snoop filter indicates that the cache line is not present in any of the RN-F caches, then the
interconnect does not send a snoop request.

— If the cache line in the RN-F caches is already in the required state, for example the received request
is ReadShared and all cached copies of the cache line are in SharedClean (SC) state, then the
interconnect does not send a snoop request.

• It is permitted for the interconnect to generate a snoop request spontaneously without a corresponding request
from an RN. For example, the interconnect can send a SnpUnique or SnpCleanInvalid request as a result of
a backward invalidation from a snoop filter or interconnect cache.

• This specification permits the interconnect to select which snoop request to send. For example:

— For a WriteUniquePtl request, either a SnpCleanInvalid or SnpUnique snoop request can be sent. Both
of these snoop transactions invalidate the cache line and if the cache line is dirty then data is returned
with the response. The write data is written to memory once all Snoop responses are received and the
partial data has been merged with any dirty data received with the Snoop response.
The only difference in the behavior between the SnpCleanInvalid and SnpUnique snoop requests is
that SnpUnique can return data from the UniqueClean (UC) state but SnpCleanInvalid does not. Using
SnpUnique therefore might result in an unnecessary data transfer. This example shows the
disadvantage of using SnpUnique instead of SnpCleanInvalid in certain circumstances.

• This specification permits the interconnect to:
— Use SnpSharedNotDirty or SnpShared or SnpClean for ReadNotSharedDirty, ReadShared and

ReadClean transactions.
— Use any non-Forwarding snoop types except SnpMakeInvalid for the ReadOnce,

ReadOnceCleanInvalid and ReadOnceMakeInvalid transactions.
— Use Forwarding snoop type SnpOnceFwd for the ReadOnce, ReadOnceCleanInvalid and

ReadOnceMakeInvalid transactions.
— Send SnpStashUnique to the target RN for WriteUniqueFullStash and WriteUniquePtlStash if the

target RN does not have the cache line.
— Replace any invalidating Snoop request by the SnpUnique or SnpCleanInvalid request.
— Replace any Forwarding snoop with a corresponding non-Forwarding type.

Atomic AtomicStore SnpUnique - -

AtomicLoad SnpUnique - -

AtomicSwap SnpUnique - -

AtomicCompare SnpUnique - -

Others DVMOp SnpDVMOp - -

PCrdReturn - - -

PrefetchTgt - - -

Table 4-3 Request types and the corresponding snoop requests (continued)

Request type Request Snoop

Expected Alternative snoop
Snoop to
non-target
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-145
ID080717 Non-Confidential

4 Coherence Protocol
4.5 Response types
4.5 Response types
Each request can generate one or more responses. Some responses can also include data. A Response is classified
as follows:
• Completion response.
• WriteData response on page 4-148.
• Snoop response on page 4-149.
• Miscellaneous response on page 4-155.

4.5.1 Completion response

A completion response is required for all transactions except PCrdReturn and PrefetchTgt. It is typically the last
message sent, from the Completer, to conclude a request transaction. The Requester might, however, still need to
send a CompAck response to conclude the transaction. A completion guarantees that the request has reached a PoS
or a PoC, where it will be ordered with respect to requests to the same address from any Requester in the system.
See Ordering on page 2-63 for details on the Ordering guarantees.

Read and Atomic transaction completion

A Read, AtomicLoad, AtomicSwap and AtomicCompare Completion is sent on the RDAT channel and uses the
CompData opcode.

The completion response includes the Resp field that indicates the following:

Cache state The final permitted state of the cache line at the Requester for all reads except ReadNoSnp and
ReadOnce*.

Pass Dirty Indicates if the responsibility for updating memory is passed to the Requester. The assertion of the
Pass Dirty bit is shown by _PD in the response name.

Table 4-4 shows the permitted Read transaction completion, the encoding of the Resp field, and the meaning of the
response.

In a response with an error indication, the cache state is permitted to be any value, including reserved values. See
Errors and transaction structure on page 9-254.

Table 4-4 Permitted Read transaction completion and Resp field encodings

Response Resp[2:0] Description

CompData_I 0b000 Indicates that a coherent copy of the cache line cannot be kept.

CompData_UC 0b010 The final state of the cache line can be UC, UCE, SC or I, when
the cache state in the response is applicable.
This response is also permitted for ReadNoSnp and ReadOnce*
transactions but the cache line will not be coherent.
Responsibility for a Dirty cache line is not being passed.

CompData_SC 0b001 The final state of the cache line can be SC or I.
Responsibility for a Dirty cache line is not being passed.

CompData_UD_PD 0b110 The final state of the cache line can be UD or SD.
Responsibility for a Dirty cache line is being passed.

CompData_SD_PD 0b111 The final state of the cache line must be SD.
Responsibility for a Dirty cache line is being passed.
4-146 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.5 Response types
Dataless transaction completion

A Dataless Completion is sent on the CRSP channel and uses the Comp opcode.

The completion response includes the Resp field that indicates the following:

Cache state The final state the cache line is permitted to be in at the Requester, except for CMO transactions.
For CMO transactions, the cache state field value is ignored and the cache state remains unchanged.

Note
 Dataless transactions do not pass responsibility for a Dirty cache line.

Table 4-5 shows the permitted Dataless transaction completion, the encoding of the Resp field, and the meaning of
the response.

In a response with an error indication, the cache state is permitted to be any value, including reserved values. See
Errors and transaction structure on page 9-254.

Write and Atomic transaction completion

A Write and AtomicStore Completion is sent on the CRSP channel and uses the Comp or CompDBID opcode.

No cache state information, or responsibility for a Dirty cache line, is communicated using the Write transaction
completion. The Resp field of a Comp or CompDBIDResp response must be set to zero for a Write transaction
completion. All cache state information and responsibility for a Dirty cache line are communicated with the
WriteData, See WriteData response on page 4-148.

The permitted Write transaction completion responses are:

Comp Used when the Completion response is separate from the DBIDResp response.

CompDBIDResp Used when the Completion response is combined with the DBIDResp response. This
combined response is used by:

• CopyBack transactions. All CopyBack requests must use this completion response
type.

• Non-CopyBack writes and AtomicStore, where the Completer can opportunistically
combine the Comp and DBIDResp responses if both are ready to be sent to the
Requester.

Miscellaneous transaction completion

A Comp response, with the Resp field set to zero, is always used for DVM transaction completion.

Table 4-5 Permitted Dataless transaction completion and Resp field encodings

Response Resp[2:0] Description

Comp_I 0b000 The final state of the cache line must be I

Comp_UC 0b010 The final state of the cache line can be UC, UCE, SC or I

Comp_SC 0b001 The final state of the cache line can be SC or I
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-147
ID080717 Non-Confidential

4 Coherence Protocol
4.5 Response types
4.5.2 WriteData response

The WriteData response is part of Write request and DVMOp transactions. The Requester sends WriteData to the
Completer after receiving a guarantee that a buffer is available to accept the data. Buffer availability is signaled
through a DBIDResp response sent from the Completer.

The WriteData response is sent on the WDAT channel and uses either the CopyBackWrData or
NonCopyBackWrData opcode.

CopyBackWrData • Used for WriteBack, WriteClean, and WriteEvictFull transactions.
• Transfers coherent data from the cache at the Requester to the interconnect.
• Includes an indication of the cache line state prior to sending the WriteData response.

NonCopyBackWrData

• Used for WriteUnique and WriteNoSnp transactions.

• Used for a DVMOp transaction. WriteData provides additional information required
to perform DVM operations.

• The cache state in the response must be I.

The response includes the Resp field, which indicates the following:

Cache state Indicates the state of the cache line before sending the WriteData response. This state can differ from
the state of the cache line when the original transaction request was sent if a snoop request, to the
same address, is received by the Requester after sending the original transaction request, but before
sending the corresponding WriteData response.

Pass Dirty Indicates if the responsibility for updating memory is passed by the Requester. The assertion of the
Pass Dirty bit is shown by _PD in the response name.

Table 4-6 shows the permitted WriteData responses, the Opcode and Resp field encodings, and the meaning of the
response.

Table 4-6 Permitted WriteData responses and Opcode and Resp field encodings

Response DAT Opcode Resp[2:0] Description

CopyBackWrData_I 0x2 0b000 Data corresponding to a CopyBack request.
Cache line state when data was sent is I.

CopyBackWrData_UC 0x2 0b010 Data corresponding to a CopyBack request.
Cache line state when data was sent is UC.

CopyBackWrData_SC 0x2 0b001 Data corresponding to a CopyBack request.
Cache line state when data was sent is SC.

CopyBackWrData_UD_PD 0x2 0b110 Data corresponding to a CopyBack request.
Cache line state when data was sent is UD or UDP.
Responsibility for updating the memory is passed.

CopyBackWrData_SD_PD 0x2 0b111 Data corresponding to a CopyBack request.
Cache line state when data was sent is SD.
Responsibility for updating the memory is passed.

NonCopyBackWrData 0x3 0b000 Data corresponding to a Non-CopyBack Write request.
4-148 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.5 Response types
Note
 The cache line state at the Requester after the write transaction has completed is not determined from the cache state
information in the WriteData response. It can be determined if the cache line remains Valid or not after the
transaction by the opcode of the transaction:
• A WriteBack or WriteEvictFull transaction must be in I state.
• A WriteClean transaction can remain allocated and in a Clean state.

The cache line state associated with a WriteData completion can be any value when the WriteData RespErr field
indicates there is a data error.

A Requester of any RN type can choose to cancel a WriteUniquePtl, WriteUniquePtlStash, or WriteNoSnpPtl after
sending the Write request and before sending the Write data. The DAT channel message WriteDataCancel is used
to cancel the Write request.

The WriteDataCancel response rules are:

• Can be used in WriteUniquePtl, WriteUniquePtlStash and WriteNoSnpPtl transactions only.

• Must not be used in WriteNoSnp transactions with Device memory type.

• All data packets originally intended to be transferred must be sent.

• In WriteNoSnpPtl transactions RN must wait for DBIDResp and must not wait for Comp before sending
either non-canceled or canceled Data.

• In WriteUniquePtl and WriteUniquePtlStash transactions, RN must wait for DBIDResp and must not wait to
receive the Comp response before the write data is sent either non-canceled or canceled Data.

• WriteDataCancel message that is visible at external interfaces must have its BE and Data field values zeroed.

 External interfaces include:
— External RN to ICN.
— ICN to an external SN.

4.5.3 Snoop response

A Snoop request transaction includes a Snoop response. A Snoop response can be with or without data. The forms
of Snoop response are:
Snoop response without data

• This Snoop response is used when no data transfer is required.
• It is sent on the SRSP channel and uses the SnpResp opcode.
• It can include a Data Pull request for stashing snoops.
• Snoop response without data is always used for the response to a SnpDVMOp transaction.

Snoop response without Data to Home and Direct Cache Transfer (DCT)
• This Snoop response is used when the Snoopee sends Data to the Requester and a data

transfer to the Home is not required.
• It is sent on the SRSP channel and uses the SnpRespFwded opcode.

Snoop response with data
• This Snoop response is used when a full cache line of data is transferred to Home.
• It is sent on the WDAT channel and uses the SnpRespData opcode.
• It can include a Data Pull request for stashing snoops.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-149
ID080717 Non-Confidential

4 Coherence Protocol
4.5 Response types
Snoop response with partial data
• This Snoop response is used when a partial cache line of data is transferred to the Home.
• It is sent on the WDAT channel and uses the SnpRespDataPtl opcode.
• It can include a Data Pull request for stashing snoops.
• It is sent when the combination of the Snoop request and cache line state is:

— Any Snoop request except SnpMakeInvalid, and the cache line state is UDP.
Snoop response with Data to Home and DCT

• This Snoop response is used when the Snoopee sends Data to the Requester and a data
transfer to the Home is also required.

• It is sent on the DAT channel and uses the SnpRespDataFwded opcode.

The Snoop response includes the Resp field, which indicates the following:

Cache state The final state of the cache line at the snooped node after sending the Snoop response.

Pass Dirty Indicates that the responsibility for updating memory is passed to the Requester or ICN.

Pass Dirty must only be asserted for a Snoop response with data. The assertion of the Pass Dirty bit
is shown by _PD in the response name.

The Snoop response also includes the FwdState field that is applicable in Snoop responses with DCT and indicates
the cache state and pass dirty value in the CompData response sent to the Requester.

These attributes convey sufficient information for the interconnect to determine the appropriate response to the
initial Requester, and to determine if data must be written back to memory. It is also sufficient to support snoop filter
or directory maintenance in the interconnect.

Note
 The Snoop response cache state information provides the state of the cache line after the Snoop response is sent.
This is different from:

• A write data response, where the cache state information provides the state of the cache line at the point the
write data is sent.

• A read data response, where the cache state information indicates the permitted state of the cache line after
the transaction completes.

Table 4-7 shows the permitted Non-forward type snoop responses without data, the RSP Opcode and Resp field
encodings, and the meaning of the response.

Table 4-7 Permitted Non-forward type snoop responses without data

Response RSP Opcode Resp[2:0] Description

SnpResp_I 0x1 0b000 Snoop response without data.
Cache line state is I.

SnpResp_SC 0x1 0b001 Snoop response without data.
Cache line state is SC, or I.

SnpResp_UC 0x1 0b010 Snoop response without data.
Cache line state is UC, UCE, SC, or I.

SnpResp_UD 0x1 0b010 Snoop response without data.
Cache line state is UD.

SnpResp_SD 0x1 0b011 Snoop response without data.
Cache line state is SD.
4-150 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.5 Response types
Table 4-8 shows the permitted Forward type snoop responses without data, the RSP Opcode, Resp, and FwdState
field encodings, and the meaning of the response.

Table 4-8 Permitted Forward type snoop responses without data

Response RSP Opcode Resp[2:0] FwdState[2:0] Description

SnpResp_I_Fwded_I 0x9 0b000 0b000 Snoop response without data.
Cache line state is I.
Copy of data forwarded to the Requester.
Forward State is I.

SnpResp_I_Fwded_SC 0x9 0b000 0b001 Snoop response without data.
Cache line state is I.
Copy of data forwarded to the Requester.
Forward State is SC.

SnpResp_I_Fwded_UC 0x9 0b000 0b010 Snoop response without data.
Cache line state is I.
Copy of data forwarded to the Requester.
Forward State is UC.

SnpResp_I_Fwded_UD_PD 0x9 0b000 0b110 Snoop response without data.
Cache line state is I.
Copy of data forwarded to the Requester.
Forward State is UD.
Responsibility for updating the memory is
passed.

SnpResp_I_Fwded_SD_PD 0x9 0b000 0b111 Snoop response without data.
Cache line state is I.
Copy of data forwarded to the Requester.
Forward State is SD.
Responsibility for updating the memory is
passed.

SnpResp_SC_Fwded_I 0x9 0b001 0b000 Snoop response without data.
Cache line state is SC.
Copy of data forwarded to the Requester.
Forward State is I.

SnpResp_SC_Fwded_SC 0x9 0b001 0b001 Snoop response without data.
Cache line state is SC.
Copy of data forwarded to the Requester.
Forward State is SC.

SnpResp_SC_Fwded_SD_PD 0x9 0b001 0b111 Snoop response without data.
Cache line state is SC.
Copy of data forwarded to the Requester.
Forward State is SD.
Responsibility for updating the memory is
passed.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-151
ID080717 Non-Confidential

4 Coherence Protocol
4.5 Response types
Table 4-9 shows the permitted Non-forward type snoop responses with data, the DAT Opcode and Resp field
encodings, and the meaning of the response.

SnpResp_UC_Fwded_I
SnpResp_UD_Fwded_I

0x9 0b010 0b000 Snoop response without data.
Cache line state is UC or UD.
Copy of data forwarded to the Requester.
Forward State is I.

Note
 A single encoding is used to indicate that the
cache line is unique.
This encoding is used for UC and UD.

SnpResp_SD_Fwded_I 0x9 0b011 0b000 Snoop response without data.
Cache line state is SD.
Copy of data forwarded to the Requester.
Forward State is I.

SnpResp_SD_Fwded_SC 0x9 0b011 0b001 Snoop response without data.
Cache line state is SD.
Copy of data forwarded to the Requester.
Forward State is SC.

Table 4-8 Permitted Forward type snoop responses without data (continued)

Response RSP Opcode Resp[2:0] FwdState[2:0] Description

Table 4-9 Permitted Non-forward type snoop responses with data

Response DAT Opcode Resp[2:0] Description

SnpRespData_I 0x1 0b000 Snoop response with data.
Cache line state is I.

SnpRespData_UC
SnpRespData_UD

0x1 0b010 Snoop response with data.
Cache line state is UC or UD.

Note
 A single encoding is used to indicate that
the cache line is unique.
This encoding is used for UC and UD.

SnpRespData_SC 0x1 0b001 Snoop response with data.
Cache line state is SC.

SnpRespData_SD 0x1 0b011 Snoop response with data.
Cache line state is SD.

SnpRespData_I_PD 0x1 0b100 Snoop response with data.
Cache line state is I.
Responsibility for updating the memory is
passed.
4-152 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.5 Response types
Table 4-10 shows the permitted Forward type snoop responses with data, the DAT Opcode, Resp, and FwdState
field encodings, and the meaning of the response.

SnpRespData_UC_PD 0x1 0b110 Snoop response with data.
Cache line state is UC.
Responsibility for updating the memory is
passed.

SnpRespData_SC_PD 0x1 0b101 Snoop response with data.
Cache line state is SC.
Responsibility for updating the memory is
passed.

SnpRespDataPtl_I_PD 0x5 0b100 Snoop response with partial data.
Cache line state is I.
Responsibility for updating the memory is
passed.

SnpRespDataPtl_UD 0x5 0b010 Snoop response with partial data.
Cache line state is UDP.

Table 4-9 Permitted Non-forward type snoop responses with data (continued)

Response DAT Opcode Resp[2:0] Description

Table 4-10 Permitted Forward type snoop responses with data

Response DAT Opcode Resp[2:0] FwdState[2:0] Description

SnpRespData_I_Fwded_SC 0x6 0b000 0b001 Snoop response with data.
Cache line state is I.
Copy of data forwarded to the Requester.
Forward State is SC.

SnpRespData_I_Fwded_SD_PD 0x6 0b000 0b111 Snoop response with data.
Cache line state is I.
Copy of data forwarded to the Requester.
Forward State is SD.
Responsibility for updating the memory is
passed.

SnpRespData_SC_Fwded_SC 0x6 0b001 0b001 Snoop response with data.
Cache line state is SC.
Copy of data forwarded to the Requester.
Forward State is SC.

SnpRespData_SC_Fwded_SD_PD 0x6 0b001 0b111 Snoop response with data.
Cache line state is SC.
Copy of data forwarded to the Requester.
Forward State is SD.
Responsibility for updating the memory is
passed.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-153
ID080717 Non-Confidential

4 Coherence Protocol
4.5 Response types
Note
 The cache line state associated with a Snoop response with data must be a legal value, even if the RespErr field
indicates there is a error.

In responses to Stashing snoops, the Snoopee can send a Read request combined with the Snoop response
(SnpResp_X_Read), by setting the DataPull bit. The permitted Snoop responses with Data Pull are:

• For SnpUniqueStash:
— SnpResp_I_Read.
— SnpRespData_I_Read.
— SnpRespData_I_PD_Read.
— SnpRespDataPtl_I_PD_Read.

SnpRespData_SD_Fwded_SC 0x6 0b011 0b001 Snoop response with data.
Cache line state is SD.
Copy of data forwarded to the Requester.
Forward State is SC.

SnpRespData_I_PD_Fwded_I 0x6 0b100 0b000 Snoop response with data.
Cache line state is I.
Responsibility for updating the memory is
passed.
Copy of data forwarded to the Requester.
Forward State is I.

SnpRespData_I_PD_Fwded_SC 0x6 0b100 0b001 Snoop response with data.
Cache line state is I.
Responsibility for updating the memory is
passed.
Copy of data forwarded to the Requester.
Forward State is SC.

SnpRespData_SC_PD_Fwded_I 0x6 0b101 0b000 Snoop response with data.
Cache line state is SC.
Responsibility for updating the memory is
passed.
Copy of data forwarded to the Requester.
Forward State is I.

SnpRespData_SC_PD_Fwded_SC 0x6 0b101 0b001 Snoop response with data.
Cache line state is SC.
Responsibility for updating the memory is
passed.
Copy of data forwarded to the Requester.
Forward State is SC.

Table 4-10 Permitted Forward type snoop responses with data (continued)

Response DAT Opcode Resp[2:0] FwdState[2:0] Description
4-154 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.5 Response types
• For SnpMakeInvalidStash:
— SnpResp_I_Read.

• For SnpStashUnique:
— SnpResp_I_Read.
— SnpResp_UC_Read.
— Snp_Resp_SC_Read.
— SnpResp_SD_Read.

• For SnpStashShared:
— SnpResp_I_Read.
— SnpResp_UC_Read.

4.5.4 Miscellaneous response

This section describes responses that cannot be classified as a Completion, WriteData or Snoop response.

For all responses in this section the Resp and RespErr fields have no meaning and must be set to zero.

The miscellaneous responses are:

CompAck
• Sent by the Requester on receipt of the Completion response.
• Used by Read, Dataless, and WriteUnique transactions.

See Transaction structure on page 2-39.

RetryAck

• Sent by a Completer to a Requester if the request is not accepted at the Completer due to lack
of appropriate resources.

• Response is permitted for any request transaction except PCrdReturn or PrefetchTgt.

See Transaction Retry sequence on page 2-57.

PCrdGrant

• Grants a Protocol Credit. A subsequent request, sent using the Protocol Credit, is guaranteed
to be accepted by the target.

See Transaction Retry sequence on page 2-57.

ReadReceipt

• Sent for a request that requires Request Order in the interconnect with respect to other
ordered requests from the same Requester.

• Sent by a Slave Node to indicate it has accepted a Read request and will not send a RetryAck
response.

• Applies to ReadNoSnp and ReadOnce* request transactions.

See ReadNoSnp, ReadOnce, ReadOnceCleanInvalid, ReadOnceMakeInvalid on page 2-44.

DBIDResp

• Response sent as part of a write and an Atomic transaction to signal to the Requester that
resources are available to accept the WriteData response.

See Transaction structure on page 2-39.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-155
ID080717 Non-Confidential

4 Coherence Protocol
4.6 Silent cache state transitions
4.6 Silent cache state transitions
A cache can change state due to an internal event without notifying the rest of the system.

The legal silent cache state transitions are shown in Table 4-11. In some cases it is possible, but not required, to issue
a transaction to indicate that the transition has occurred. If such a transaction is issued then the cache state transition
is visible to the interconnect and is not classified as a silent transition.

The RN-F action described in Table 4-11 as Local sharing, describes the case where an RN-F specifies a Unique
cache line as Shared, effectively disregarding the fact that the cache line remains Unique to the RN-F. For example,
this can happen when the RN-F contains multiple internal agents and the cache line becomes shared between them.

For silent cache state transitions:

• Cache eviction and Local sharing transitions can occur at any point and are IMPLEMENTATION DEFINED.

• Store and Cache Invalidate transitions can only occur as the result a deliberate action, which in the case of a
core is caused by the execution of a particular program instruction.

The Notes column in Table 4-11 indicates how a silent cache transition can be made non-silent or visible at the
interface.

A cache state change from UC to UCE is not permitted.

Note
 Sequences of silent transitions can also occur. Any silent transition that results in the cache line being in UD, UDP,
or SC state can undergo a further silent transition.

Table 4-11 Legal silent cache state transitions

RN-F action RN-F Cache state Notes

Present Next

Cache eviction UC I Can use Evict or WriteEvictFull transaction

UCE I Can use Evict transaction

SC I Can use Evict transaction

Local sharing UC SC -

UD SD -

Store UC UD Full or partial cache line store

UCE UDP Partial cache line store

UCE UD Full cache line store

UDP UD Store that fills the cache line

Cache Invalidate UD I Can use Evict transaction

UDP I Can use Evict transaction
4-156 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
4.7 Cache state transitions
This section specifies the cache state transitions and completion responses for the following request transactions:
• Read request transactions.
• Dataless request transactions on page 4-159.
• Write request transactions on page 4-160.
• Atomic transactions on page 4-161.
• Other request transactions on page 4-161.
• Snoop request transactions on page 4-161.
• Stash type snoops on page 4-166.
• Forwarding type snoops on page 4-169.

4.7.1 Read request transactions

Table 4-12 shows the cache state transitions at the Requester, and the completion responses, for Read request
transactions.

The cache state in the Data response to the Requester from the Slave Node is UC, that is, CompData_UC
irrespective of the original request type. The Requester must ignore the cache state in the CompData response to
ReadNoSnp, ReadOnce, ReadOnceCleanInvalid and ReadOnceMakeInvalid and implicitly assume the cache state
value to be I.

Note
 In a non-DMT data transfer, where the CompData response is sent from the Slave to Home, the cache state in the
response can be either I or UC, but it is expected that typically a slave design can be simplified by always using UC.
Home then sends CompData to the Requester with the appropriate cache state value.

Table 4-12 Cache state transitions at the Requester for Read request transactions

Request type Cache state

Initial Final Comp response

Expected Others Permitted

ReadNoSnp I - I CompData_UC, CompData_I

ReadOnce I, UCE - I CompData_UC, CompData_I

ReadOnceCleanInvalid I, UCE - I CompData_UC, CompData_I

ReadOnceMakeInvalid I, UCE - I CompData_UC, CompData_I

ReadClean I, UCE - SC CompData_SC

UC CompData_UC

ReadNotSharedDirty I, UCE - SC CompData_SC

UC CompData_UC

UD CompData_UD_PD
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-157
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
Note
 • The Other Permitted initial cache states in Table 4-12 on page 4-157 are the cache states that are permitted

while the transaction is in progress.

• For any of the transactions in Table 4-12 on page 4-157, it is legal to use the transaction if the cache line can
silently transition to any Expected or Other Permitted state. This silent transition must occur before the
transaction is issued.

ReadShared I, UCE - SC CompData_SC

UC CompData_UC

SD CompData_SD_PD

UD CompData_UD_PD

ReadUnique I, SC UC, UCE UD CompData_UD_PD

UC CompData_UC

SD UD, UDPa UD CompData_UC, CompData_UD_PD

a. Data received from memory must be dropped if the cache state is UD, or merged if the cache state is UDP. Data received
from memory must be the same as the cached data when the cache state is SC or UC.

Table 4-12 Cache state transitions at the Requester for Read request transactions (continued)

Request type Cache state

Initial Final Comp response

Expected Others Permitted
4-158 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
4.7.2 Dataless request transactions

Table 4-13 shows the cache state transitions at the Requester, and the completion responses, for Dataless request
transactions.

Before a CleanInvalid, MakeInvalid or Evict transaction it is permitted for the cache state to be UC, UCE or SC.
However, it is required that the cache state transitions to the I state before the transaction is issued. Therefore
Table 4-13 shows I state as the only initial state.

Note
 • The Other Permitted initial cache states in Table 4-13 are the cache states that are permitted while the

transaction is in progress.

• For any of the transactions in Table 4-13, it is legal to use the transaction if the cache line can silently
transition to any Expected or Other Permitted state. This silent transition must occur before the transaction
is issued.

Table 4-13 Cache state transitions at the Requester for Dataless request transactions

Request type Cache state Comp Response

Initial Final

Expected Others permitted

CleanUnique I UC, UCE UCE Comp_UC

SC UC UC Comp_UC

SD UD UD Comp_UC

MakeUnique I, SC, SD UC, UCE UD Comp_UC

Evict I - I Comp_I

StashOnceUnique I - I Comp

StashOnceShared I - I Comp

CleanShared
CleanSharedPersist

I, SC, UC - No Change Comp_UC

Comp_SC

Comp_I

CleanInvalid I - I Comp_I

MakeInvalid I - I Comp_I
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-159
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
4.7.3 Write request transactions

Table 4-14 shows the cache state transitions at the Requester, the Write data response, and the combined or separate
Completion and DBID response for Write and WriteBack request transactions.

Note
 After completion of a WriteClean transaction, it is possible for the cache line in a Unique state to immediately
transition to a Dirty state.

Table 4-14 Requester cache state transitions for Write request transactions

Request Type Cache state at Requester WriteData response Comp response

Initial Before WriteData responsea Final

WriteNoSnpPtl I - I NCBWrData_I or
WriteDataCancel

DBIDResp + Comp or
CompDBIDResp

WriteNoSnpFull I - I NCBWrData_I DBIDResp + Comp or
CompDBIDResp

WriteUniquePtl
WriteUniquePtlStash

I I I NCBWrData_I or
WriteDataCancel

DBIDResp + Comp or
CompDBIDResp

WriteUniqueFull
WriteUniqueFullStash

I I I NCBWrData_I DBIDResp + Comp or
CompDBIDResp

WriteBackFull UD UD I CBWrData_UD_PD CompDBIDResp

UC I CBWrData_UC CompDBIDResp

UD, SD SD I CBWrData_SD_PD CompDBIDResp

SC I CBWrData_SC CompDBIDResp

I I CBWrData_I CompDBIDResp

WriteBackPtl UDP UDP I CBWrData_UD_PD CompDBIDResp

I I CBWrData_I CompDBIDResp

WriteCleanFull UD UD UC CBWrData_UD_PD CompDBIDResp

UC UC CBWrData_UC CompDBIDResp

UD, SD SD SC CBWrData_SD_PD CompDBIDResp

SC SC CBWrData_SC CompDBIDResp

I I CBWrData_I CompDBIDResp

WriteEvictFull UC UC I CBWrData_UC CompDBIDResp

SC I CBWrData_SC CompDBIDResp

I I CBWrData_I CompDBIDResp

a. A snoop might be received while a write is pending and result in a cache line state change before the WriteData response.
4-160 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
4.7.4 Atomic transactions

Table 4-15 shows the cache state transitions at the Requester, and the completion and response for Atomic
transactions.

4.7.5 Other request transactions

DVMOp and PrefetchTgt requests do not have any cache state transitions associated with them.

4.7.6 Snoop request transactions

For snoop Non-forward requests, the response must be either a SnpResp or SnpRespData. In the case of multiple
final cache state options, the response that is used is IMPLEMENTATION DEFINED.

A Request Node does not have to respond to a snoop with data when in UC state. Except for SnpOnce, the receiver
of the snoop response can not differentiate between:

• A Request Node not responding with data from an UC state.

• A Request Node silently transitioning to SC or I state, prior to receiving the snoop request, and therefore not
including data with the snoop response.

Table 4-16 on page 4-162 shows for SnpOnce, the initial, expected final, and other permitted final cache states at
the snooped Requester, the RetToSrc field value, and the valid completion response from a snooped RN-F.

Table 4-15 Requester cache state transitions for Atomic request transactions

Atomic request Cache state WriteData response Comp response

Initial Final

Expected Others permitted

AtomicStore I, SC
UCE, SD

UC, UD, UDP I NCBWrData_I DBIDResp + Comp_I
or CompDBIDResp

AtomicLoad I, SC
UCE, SD

UC, UD, UDP I NCBWrData_I DBIDResp + CompData_I

AtomicSwap I, SC
UCE, SD

UC, UD, UDP I NCBWrData_I DBIDResp + CompData_I

AtomicCompare I, SC
UCE, SD

UC, UD, UDP I NCBWrData_I DBIDResp + CompData_I
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-161
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
Table 4-16 Cache state transitions, RetToSrc value, and valid completion responses

Snoop request type Initial cache state Final cache state RetToSrca Snoop response

Expected
Others
permitted

SnpOnce I I - X SnpResp_I

UC UC I, SC 0 SnpResp_UC

SnpRespData_UC

1 SnpResp_UC

SnpRespData_UC

SC I 0 SnpResp_SC

SnpRespData_SC

1 SnpResp_SC

SnpRespData_SC

I - 0 SnpResp_I

SnpRespData_I

1 SnpResp_I

SnpRespData_I

UCE UCE I X SnpResp_UC

I - X SnpResp_I

UD UD SD X SnpRespData_UD

SDb - X SnpRespData_SD

SC I X SnpRespData_SC_PD

I - X SnpRespData_I_PD

UDP I - X SnpRespDataPtl_I_PD

UDP - X SnpRespDataPtl_UD

SC SC I 0 SnpResp_SC

1 SnpRespData_SC

I - 0 SnpResp_I

1 SnpRespData_I

SD SDb - X SnpRespData_SD

SC I X SnpRespData_SC_PD

I - X SnpRespData_I_PD

a. X indicates that the protocol requirements apply for both states of RetToSrc.
b. This state transition is not permitted if DoNotGoToSD is set.
4-162 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
Table 4-17 shows for SnpClean, SnpShared, and SnoopNotSharedDirty, the initial, expected final, and other
permitted final cache states at the snooped Requester, the RetToSrc field value, and the valid completion response
from a snooped RN-F.

Table 4-17 Cache state transitions, RetToSrc value, and valid completion responses

Snoop request type Initial cache state Final cache state RetToSrca Snoop response

Expected
Others
permitted

SnpClean,
SnpShared,
SnpNotSharedDirty

I I - X SnpResp_I

UC SC I 0 SnpResp_SC

SnpRespData_SC

1 SnpResp_SC

SnpRespData_SC

I - 0 SnpResp_I

SnpRespData_I

1 SnpResp_I

SnpRespData_I

UCE I - X SnpResp_I

UD SDb - X SnpRespData_SD

SC I X SnpRespData_SC_PD

I - X SnpRespData_I_PD

UDP I - X SnpRespDataPtl_I_PD

SC SC I 0 SnpResp_SC

1 SnpRespData_SC

I - 0 SnpResp_I

1 SnpRespData_I

SD SDb - X SnpRespData_SD

SC I X SnpRespData_SC_PD

I - X SnpRespData_I_PD

a. X indicates that the protocol requirements apply for both states of RetToSrc.
b. This state transition is not permitted if DoNotGoToSD is set.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-163
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
Table 4-18 shows for SnpUnique, the initial, expected final, and other permitted final cache states at the snooped
Requester, the RetToSrc field value, and the valid completion response from a snooped RN-F for SnpUnique.

Table 4-19 on page 4-165 shows for SnpCleanShared, SnpCleanInvalid, and SnpMakeInvalid the initial, expected
final, and other permitted final cache states at the snooped Requester, the RetToSrc field value, and the valid
completion response from a snooped RN-F.

Table 4-18 Cache state transitions, RetToSrc value, and valid completion responses

Snoop request type Initial cache state Final cache state RetToSrca Snoop response

Expected
Others
permitted

SnpUnique I I - X SnpResp_I

UC I - 0 SnpResp_I

SnpRespData_I

1 SnpResp_I

SnpRespData_I

UCE I - X SnpResp_I

UD I - X SnpRespData_I_PD

UDP I - X SnpRespDataPtl_I_PD

SC I - 0 SnpResp_I

1 SnpRespData_I

SD I - X SnpRespData_I_PD

a. X indicates that the protocol requirements apply for both states of RetToSrc.
4-164 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
Table 4-19 Cache state transitions, RetToSrc value, and valid completion responses

Snoop request type Initial cache state Final cache state RetToSrc Snoop response

Expected
Others
permitted

SnpCleanShared I I - 0 SnpResp_I

UC UC I, SC 0 SnpResp_UC

SC I 0 SnpResp_SC

I - 0 SnpResp_I

UCE I - 0 SnpResp_I

UD UC I, SC 0 SnpRespData_UC_PD

SC I 0 SnpRespData_SC_PD

I - 0 SnpRespData_I_PD

UDP I - 0 SnpRespDataPtl_I_PD

SC SC I 0 SnpResp_SC

I - 0 SnpResp_I

SD SC I 0 SnpRespData_SC_PD

I - 0 SnpRespData_I_PD

SnpCleanInvalid I I - 0 SnpResp_I

UC I - 0 SnpResp_I

UCE I - 0 SnpResp_I

UD I - 0 SnpRespData_I_PD

UDP I - 0 SnpRespDataPtl_I_PD

SC I - 0 SnpResp_I

SD I - 0 SnpRespData_I_PD

SnpMakeInvalid I I - 0 SnpResp_I

UC I - 0 SnpResp_I

UCE I - 0 SnpResp_I

UD I - 0 SnpResp_I

UDP I - 0 SnpResp_I

SC I - 0 SnpResp_I

SD I - 0 SnpResp_I
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-165
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
4.7.7 Stash type snoops

The following sub-sections show the permitted responses for the Stash type snoops.

SnpUniqueStash and SnpMakeInvalidStash

The permitted responses to SnpUniqueStash and SnpMakeInvalidStash are the same as the responses to SnpUnique
and SnpMakeInvalid respectively.

The RetToSrc bit value must not be set to 1 in SnpUniqueStash and SnpMakeInvalidStash.

A Snoop response can include Data Pull only if the DoNotDataPull in the Snoop request is deasserted.

Table 4-20 shows the Snoopee cache state transitions and required Snoop responses. The Snoop responses do not
include the Data Pull options. Data Pull is permitted with any Snoop response.

Table 4-20 Snoop response to SnpUniqueStash and SnpMakeInvalidStash

Snoop request type Cache state RetToSrc Snoop response

Initial Final

Expected
Others
permitted

SnpUniqueStash I I - 0 SnpResp_I

UC I - 0 SnpRespData_I

SnpResp_I

UCE I - 0 SnpResp_I

UD I - 0 SnpRespData_I_PD

UDP I - 0 SnpRespDataPtl_I_PD

SC I - 0 SnpResp_I

SnpRespData_I

SD I - 0 SnpRespData_I_PD

SnpMakeInvalidStash Any I - 0 SnpResp_I
4-166 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
SnpStashUnique and SnpStashShared

For SnpStashUnique and SnpStashShared the Snoopee must not change cache state.

The Snoopee is permitted to not perform a cache lookup before responding, in which case the Snoop response must
be SnpResp_I.

The Snoopee is permitted to include the precise cache state in the response.

A Snoop response can include Data Pull only if the cache state in the response is precise and DoNotDataPull in the
corresponding Snoop request is deasserted.

The inclusion of Data Pull in the Snoop response must ensure that the initial state must not violate the initial state
conditions permitted for the corresponding independent Read requests. See Read transactions on page 4-127.

Table 4-21 shows the Snoopee cache state transitions, the required Snoop responses, and Data Pull options for
SnpStashUnique.

Table 4-21 Snoop response to SnpStashUnique

Snoop request type Cache state RetToSrc Snoop response

Initial Final

Expected
Others
permitted

SnpStashUnique I I - 0 SnpResp_I

SnpResp_I_Read

UC UC - 0 SnpResp_UC

SnpResp_I

UCE UCE - 0 SnpResp_UC

SnpResp_UC_Read

SnpResp_I

UD UD - 0 SnpResp_UD

SnpResp_I

UDP UDP - 0 SnpResp_UD

SnpResp_I

SC SC - 0 SnpResp_SC

SnpResp_SC_Read

SnpResp_I

SD SD - 0 SnpResp_SD

SnpResp_SD_Read

SnpResp_I
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-167
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
Table 4-22 shows the Snoopee cache state transitions, the required Snoop responses, and Data Pull options for
SnpStashShared.

Table 4-22 Snoop response to SnpStashShared

Snoop request type Cache state RetToSrc Snoop response

Initial Final

Expected
Others
permitted

SnpStashShared I I - 0 SnpResp_I_Read

SnpResp_I

UC UC - 0 SnpResp_UC

SnpResp_I

UCE UCE - 0 SnpResp_UC

SnpResp_UC_Read

SnpResp_I

UD UD - 0 SnpResp_UD

SnpResp_I

UDP UDP - 0 SnpResp_UD

SnpResp_I

SC SC - 0 SnpResp_SC

SnpResp_I

SD SD - 0 SnpResp_SD

SnpResp_I
4-168 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
4.7.8 Forwarding type snoops

Forwarding (Fwd) type snoops are used by Home to support DCT. The rules, common to all Fwd type snoops at the
Snoopee are:

• Must forward a copy to the Requester if the cache line is in one of the following states:
— UD.
— UC.
— SD.
— SC.

• Not permitted to convert to the corresponding Non-fwd type snoop.

• Must not forward data in Unique state in response to a Non-invalidating type snoop.

• Snoopee receiving a Snoop request with the DoNotGoToSD bit set must not transition to SD, even if the
coherency conditions permit it.

• In certain cases, based on the Snoop type, the state of the cache line at the Snoopee, and the RetToSrc value
in the Snoop request, the Snoopee forwards a copy to Home along with a copy to the Requester.

• Home is not permitted to send a Forwarding type snoop for:
— Atomic transactions.
— Passing Exclusive read transactions.

Note
 Exclusive read transactions that fail due to Non-exclusive support for the address range being accessed

are treated as corresponding Non-exclusive reads, Home can therefore use Forwarding type snoops in
these cases.

For the rules that are specific to a particular Fwd type snoop see the following individual sub-section.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-169
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
SnpOnceFwd

The rules, in addition to the common rules, to be followed by a Snoopee that receives a SnpOnceFwd are:
• Snoopee must forward the cache line in I state.

— As a consequence, the Snoopee must not forward Pass Dirty to the Requester.
• Snoopee must return data to Home only when Dirty state is changed to Clean or Invalid.
• RetToSrc bit in the snoop must be set to zero.

Table 4-23 shows the Snoopee cache state transition and required Snoop responses for SnpOnceFwd.

Table 4-23 Snoop response to SnpOnceFwd

Snoopee cache state RetToSrc Response to

Initial Final Requester Home

Expected
Other
permitted

I I - 0 No Fwd SnpResp_I

UC UC - 0 CompData_I SnpResp_UC_Fwded_I

SC I 0 CompData_I SnpResp_SC_Fwded_I

I - 0 CompData_I SnpResp_I_Fwded_I

UCE UCE - 0 No Fwd SnpResp_UC

I - 0 No Fwd SnpResp_I

UD UD - 0 CompData_I SnpResp_UD_Fwded_I

SDa

a. This state transition is not permitted if DoNotGoToSD is set.

- 0 CompData_I SnpResp_SD_Fwded_I

SC I 0 CompData_I SnpRespData_SC_PD_Fwded_I

I - 0 CompData_I SnpRespData_I_PD_Fwded_I

UDP UDP - 0 No Fwd SnpRespDataPtl_UD

I - 0 No Fwd SnpRespDataPtl_I_PD

SC SC I 0 CompData_I SnpResp_SC_Fwded_I

I - 0 CompData_I SnpResp_I_Fwded_I

SD SDa - 0 CompData_I SnpResp_SD_Fwded_I

SC I 0 CompData_I SnpRespData_SC_PD_Fwded_I

I - 0 CompData_I SnpRespData_I_PD_Fwded_I
4-170 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
SnpCleanFwd

The rules, in addition to the common rules, to be followed by a Snoopee that receives a SnpCleanFwd are:
• Snoopee must forward the cache line in SC state.
• Snoopee must transition to either SD, SC or I state.
• For behavior related to the RetToSrc bit see Shared clean state return on page 4-176.

Table 4-24 shows the Snoopee cache state transitions and required Snoop responses for SnpCleanFwd.

Table 4-24 Snoop response to SnpCleanFwd

Snoopee cache state RetToSrc Response to

Initial Final Requester Home

Expected
Other
permitted

I I - Xa

a. The protocol requirements apply for both states of RetToSrc.

No Fwd SnpResp_I

UC SC I 0 CompData_SC SnpResp_SC_Fwded_SC

1 CompData_SC SnpRespData_SC_Fwded_SC

I - 0 CompData_SC SnpResp_I_Fwded_SC

1 CompData_SC SnpRespData_I_Fwded_SC

UCE I - Xa No Fwd SnpResp_I

UD SDb

b. This state transition is not permitted if DoNotGoToSD is asserted.

- 0 CompData_SC SnpResp_SD_Fwded_SC

1 CompData_SC SnpRespData_SD_Fwded_SC

SC I Xa CompData_SC SnpRespData_SC_PD_Fwded_SC

I - Xa CompData_SC SnpRespData_I_PD_Fwded_SC

UDP I - Xa No Fwd SnpRespDataPtl_I_PD

SC SC I 0 CompData_SC SnpResp_SC_Fwded_SC

1 CompData_SC SnpRespData_SC_Fwded_SC

I - 0 CompData_SC SnpResp_I_Fwded_SC

1 CompData_SC SnpRespData_I_Fwded_SC

SD SDb - 0 CompData_SC SnpResp_SD_Fwded_SC

1 CompData_SC SnpRespData_SD_Fwded_SC

SC I Xa CompData_SC SnpRespData_SC_PD_Fwded_SC

I - Xa CompData_SC SnpRespData_I_PD_Fwded_SC
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-171
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
SnpNotSharedDirtyFwd

The rules, in addition to the common rules, to be followed by a Snoopee that receives a SnpNotSharedDirtyFwd are:
• Snoopee must forward the cache line in SC state.
• Snoopee must transition to SD, SC or I state.
• For behavior related to the RetToSrc bit see Shared clean state return on page 4-176.

Table 4-25 shows the Snoopee cache state transitions and required Snoop responses for SnpNotSharedDirtyFwd.

Table 4-25 Snoop response to SnpNotSharedDirtyFwd

Snoopee cache state RetToSrc Response to

Initial Final Requester Home

Expected
Other
permitted

I I - Xa

a. The protocol requirements apply for both states of RetToSrc.

No Fwd SnpResp_I

UC SC I 0 CompData_SC SnpResp_SC_Fwded_SC

1 CompData_SC SnpRespData_SC_Fwded_SC

I - 0 CompData_SC SnpResp_I_Fwded_SC

1 CompData_SC SnpRespData_I_Fwded_SC

UCE I - Xa No Fwd SnpResp_I

UD SDb

b. This state transition is not permitted if DoNotGoToSD is asserted.

- 0 CompData_SC SnpResp_SD_Fwded_SC

1 CompData_SC SnpRespData_SD_Fwded_SC

SC I Xa CompData_SC SnpRespData_SC_PD_Fwded_SC

I - Xa CompData_SC SnpRespData_I_PD_Fwded_SC

UDP I - Xa No Fwd SnpRespDataPtl_I_PD

SC SC I 0 CompData_SC SnpResp_SC_Fwded_SC

1 CompData_SC SnpRespData_SC_Fwded_SC

I - 0 CompData_SC SnpResp_I_Fwded_SC

1 CompData_SC SnpRespData_I_Fwded_SC

SD SDb - 0 CompData_SC SnpResp_SD_Fwded_SC

1 CompData_SC SnpRespData_SD_Fwded_SC

SC I Xa CompData_SC SnpRespData_SC_PD_Fwded_SC

I - Xa CompData_SC SnpRespData_I_PD_Fwded_SC
4-172 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
SnpSharedFwd

The rules, in addition to the common rules, to be followed by a Snoopee that receives a SnpSharedFwd are:
• Snoopee is permitted to forward the cache line in either SD or SC state.
• Snoopee must transition to either SD, SC or I state.
• For behavior related to the RetToSrc bit see Shared clean state return on page 4-176.

Table 4-26 shows the Snoopee cache state transition and required Snoop responses for SnpSharedFwd.

Table 4-26 Snoop response to SnpSharedFwd

Snoopee cache state RetToSrc Response to

Initial Final Requester Home

Expected
Other
permitted

I I - Xa No Fwd SnpResp_I

UC SC I 0 CompData_SC SnpResp_SC_Fwded_SC

1 CompData_SC SnpRespData_SC_Fwded_SC

I - 0 CompData_SC SnpResp_I_Fwded_SC

1 CompData_SC SnpRespData_I_Fwded_SC

UCE I - Xa No Fwd SnpResp_I

UD SDb - 0 CompData_SC SnpResp_SD_Fwded_SC

1 CompData_SC SnpRespData_SD_Fwded_SC

SC I 0 CompData_SD_PD SnpResp_SC_Fwded_SD_PD

1 CompData_SD_PD SnpRespData_SC_Fwded_SD_PD

Xa CompData_SC SnpRespData_SC_PD_Fwded_SC

I - 0 CompData_SD_PD SnpResp_I_Fwded_SD_PD

1 CompData_SD_PD SnpRespData_I_Fwded_SD_PD

Xa CompData_SC SnpRespData_I_PD_Fwded_SC

UDP I - Xa No Fwd SnpRespDataPtl_I_PD

SC SC I 0 CompData_SC SnpResp_SC_Fwded_SC

1 CompData_SC SnpRespData_SC_Fwded_SC

I - 0 CompData_SC SnpResp_I_Fwded_SC

1 CompData_SC SnpRespData_I_Fwded_SC
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-173
ID080717 Non-Confidential

4 Coherence Protocol
4.7 Cache state transitions
SnpUniqueFwd

Use of the SnpUniqueFwd snoop is only permitted if the cache line is cached at a single RN-F:

• Home is permitted to send the SnpUniqueFwd snoop to an RN-F in Shared state if Home determines that the
invalidating snoop needs to be sent to only one cache.

The rules, in addition to the common rules, to be followed by a Snoopee that receives a SnpUniqueFwd are:
• Snoopee must forward the cache line in Unique state.
• Snoopee that has the cache line in Dirty state must Pass Dirty to the Requester not to Home.
• Snoopee must transition to I state.
• Snoopee must not return data to Home.
• RetToSrc bit in the snoop must be set to zero.

Table 4-27 shows the Snoopee cache state transitions and required Snoop responses for SnpUniqueFwd.

SD SDb - 0 CompData_SC SnpResp_SD_Fwded_SC

1 CompData_SC SnpRespData_SD_Fwded_SC

SC I 0 CompData_SD_PD SnpResp_SC_Fwded_SD_PD

1 CompData_SD_PD SnpRespData_SC_Fwded_SD_PD

Xa CompData_SC SnpRespData_SC_PD_Fwded_SC

I - 0 CompData_SD_PD SnpResp_I_Fwded_SD_PD

1 CompData_SD_PD SnpRespData_I_Fwded_SD_PD

Xa CompData_SC SnpRespData_I_PD_Fwded_SC

a. The protocol requirements apply for both states of RetToSrc.
b. This state transition is not permitted if DoNotGoToSD is asserted.

Table 4-27 Snoop response to SnpUniqueFwd

Snoopee cache state RetToSrc Response to

Initial Final Requester Home

Expected
Other
permitted

I I - 0 No Fwd SnpResp_I

UC I - 0 CompData_UC SnpResp_I_Fwded_UC

UCE I - 0 No Fwd SnpResp_I

UD I - 0 CompData_UD_PD SnpResp_I_Fwded_UD_PD

Table 4-26 Snoop response to SnpSharedFwd (continued)

Snoopee cache state RetToSrc Response to

Initial Final Requester Home

Expected
Other
permitted
4-174 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.7 Cache state transitions
UDP I - 0 No Fwd SnpRespDataPtl_I_PD

SC I - 0 CompData_UC SnpResp_I_Fwded_UC

SD I - 0 CompData_UD_PD SnpResp_I_Fwded_UD_PD

Table 4-27 Snoop response to SnpUniqueFwd (continued)

Snoopee cache state RetToSrc Response to

Initial Final Requester Home

Expected
Other
permitted
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-175
ID080717 Non-Confidential

4 Coherence Protocol
4.8 Shared clean state return
4.8 Shared clean state return
A RetToSrc field is included in the Snoop request to instruct the Snoopee to return a copy of the cache line to Home.

The rules for returning a copy of the cache line to Home are as follows:

If the RetToSrc field value is set to 1:

• For a Forwarding snoop:
— Must return a copy to Home if the cache line is Dirty or Clean.

• For Non-forwarding snoops SnpOnce, SnpClean, SnpNotSharedDirty, SnpShared, and SnpUnique:
— Return a copy to Home from SC state.
— Must return a copy to Home from UD, UDP, and SD state.
— Optionally can return a copy to Home from UC state.

If the RetToSrc field value is set to 0:

• For a Forwarding snoop:

— Must not return a copy to Home except when the responsibility for updating memory is being passed
to Home, or the Snoopee has the cache line in UDP state and does not relinquish the state.

— Passing of Dirty to Home is required when neither the Snoopee nor the Requester retain a Dirty copy.

• For Non-forwarding snoops SnpOnce, SnpClean, SnpNotSharedDirty, SnpShared, and SnpUnique:
— Must not return a copy to Home from SC state.
— Must return a copy to Home from UD, UDP, and SD state.
— Optionally can return a copy to Home from UC state.

The RetToSrc field must be set to 0 in the following Non-forwarding snoops because these snoops never return data
from Clean cache state:
• SnpStashUnique.
• SnpStashShared.
• SnpUniqueStash.
• SnpCleanShared.
• SnpCleanInvalid.
• SnpMakeInvalid.
• SnpMakeInvalidStash.

The RetToSrc field must be set to 0 in the following Forwarding snoops:
• SnpOnceFwd.
• SnpUniqueFwd.

Home must only set RetToSrc on the Snoop request to a single Request Node.
4-176 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

4 Coherence Protocol
4.9 Hazard conditions
4.9 Hazard conditions
This section lists the responsibilities of the RN-F and HN-F to handle address hazards and race conditions among
Snoopable transactions. Ordering among Non-snoopable transactions and among Snoopable transactions is
described in Ordering on page 2-63.

In addition to many Requesters issuing transactions at the same time, the protocol also permits each Requester to
make multiple outstanding requests, and to receive multiple outstanding snoop requests. It is the responsibility of
the interconnect, that is, ICN(HN-F, HN-I and MN), to ensure that there is a defined order in which transactions to
the same cache line can occur, and that the defined order is the same for all components.

4.9.1 At the RN-F node

An RN-F node must respond to received snoop requests, except for SnpDVMOp(Sync), in a timely manner without
creating any Protocol layer dependency on completion of outstanding requests:

• If a pending request to the same cache line is present at the RN-F:

— The snoop request must be processed normally.

— The cache state must transition as applicable for each snoop request type.

— The cached data or CopyBack request data must be returned with the snoop response, or forwarded to
the Requester, if required by the Snoop request type, Snoop request attributes, and cache state.

• If the pending request is a CopyBack request then the following additional requirements apply:

— Request transaction flow must be completed after receiving the CompDBIDResp.

— The cache state in the WriteData response must be the state of the cache line after the snoop request is
processed, not the state at the time of sending the CopyBack request.

— An RN is permitted to cancel the CopyBack, if the cache line state after the Snoop response is sent is
I or SC. The cache state in the WriteData response after CopyBack cancellation must be I and all byte
enables must be deasserted.

— If the state of the cache line in the WriteData is I then the RN can deassert all the byte enables in the
write data. If all the byte enables are deasserted then the data must be zeroed.

— If data is included with WriteData it must be the same data that as sent with the Snoop response or
more up to date data.

Note
 More recent data than that sent with the snoop can only be provided if the snoop was a SnpOnce,

SnpOnceFwd, or SnpCleanShared and the Snoop response indicates that the cache line can be further
modified.

The RN-F might receive multiple snoop requests before it receives a response for a pending CopyBack request for
the same cache line, in which case the data response carries the cache line state after completion of the response to
the last snoop request. Such a scenario is possible because the CopyBack request can be queued behind multiple
Read and Dataless requests at the HN-F.

4.9.2 At the ICN(HN-F) node

An HN-F orders transactions to the same cache line by sequencing transaction responses and snoop transactions to
the Requesters. As the interconnect is not required to be ordered, the arrival order of these messages, in certain cases,
might not be the same as the order in which they were issued at the HN-F.

While a Snoop transaction response is pending, the only transaction responses that are permitted to be sent to the
same address are:
• RetryAck for a CopyBack.
• RetryAck and DBIDResp for a WriteUnique.
• RetryAck and, if applicable, a ReadReceipt for a Read request type.
• RetryAck for a Dataless request type.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 4-177
ID080717 Non-Confidential

4 Coherence Protocol
4.9 Hazard conditions
Once a completion is sent for a transaction, the HN-F must not send a snoop request to the same cache line until it
receives:
• A CompAck for any Read and Dataless requests except for ReadOnce* and ReadNoSnp.
• A WriteData response for CopyBack and Atomic requests.
• For WriteUnique, a WriteData response and, if applicable, CompAck.

If a Response message that includes data requires multiple packets or beats of transfers over the interconnect, then
receiving or sending the message implies sending or receiving all the packets corresponding to that message. That
is, when a Sender starts sending the message, it must send all packets of the message without dependence on
completion of any other Request or Response message.

Similarly, a receiver, when it accepts part of the data message, must accept the remaining packets of that message
without any dependence on forward progress of any other request or response message.

When a subsequent action depends upon receiving a data message, the action must not occur until all data packets
are received.
4-178 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 5
Interconnect Protocol Flows

This chapter shows interconnect protocol flows for different transaction types, and interconnect hazard conditions.
The protocol flows are illustrated using Time-Space diagrams. It contains the following sections:
• Read transaction flows on page 5-180.
• Dataless transaction flows on page 5-189.
• Write transaction flows on page 5-192.
• Atomic transaction flows on page 5-195.
• Stash transaction flows on page 5-202
• Hazard handling examples on page 5-205.

See Time-Space diagrams on page xiii for details of the conventions used to illustrate protocol flow in this
specification.

In the transaction flow diagrams that follow:

• There are multiple coherent RNs, an HN-F and a SN-F.

• If the HN-F receives multiple data responses, that is, one response from a snooped RN-F and another from a
SN-F, then the data being forwarded to the Requester is highlighted in bold.

• There is no ICN cache at the HN-F, this results in all requests to the HN-F initiating a request to the SN-F.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-179
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.1 Read transaction flows
5.1 Read transaction flows
This section gives examples of the interconnect protocol flow for Read transactions.

5.1.1 Read transactions with DMT and without snoops

For Read transactions without snoops, this specification recommends the use of Direct Memory Transfer (DMT).

Figure 5-1 shows an example DMT transaction flow using the ReadShared transaction.

In this example a response from SN-F to HN-F is not required because CompAck from the Requester is used to
deallocate the request at Home.

The steps in the ReadShared transaction flow are:

1. RN-F sends a Read request to HN-F.

2. HN-F sends a Read request to SN-F.

• The ID field values in the Read request are based on where the Data response is to be sent. Data can
be sent to the Requester or to the HN-F. See Figure 2-25 on page 2-76 that shows an example of how
the ID field values are derived.

3. SN-F sends a Data response directly to RN-F.

4. RN-F sends CompAck to HN-F as the Request is ReadShared and requires CompAck to complete the
transaction.

Figure 5-1 DMT Read transaction example without snoops

HN-F SN-F

ReadShared

ReadNoSnp

CompData_UC

RN-F
I

CompAck

UC->
5-180 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.1 Read transaction flows
5.1.2 Read transaction with DMT and with snoops

For Read transactions with snoops and data from memory this specification recommends the use of DMT.

Figure 5-2 shows an example DMT transaction flow using the ReadShared transaction.

In this example a response from SN-F to HN-F is not required because CompAck from the Requester is used to
deallocate the request at Home.

The steps in the ReadShared transaction flow are:

1. RN-F0 sends a Read request to HN-F.

2. HN-F sends a Snoop request to RN-F1.

3. HN-F sends a Read request to SN-F after receiving the Snoop response from RN-F1, which guarantees that
RN-F1 has not responded with data.

• The ID field values in the Read request are based on where the Data response is to be sent. Data can
be sent to the Requester or to the HN-F. See Figure 2-25 on page 2-76 that shows an example of how
the ID field values are derived.

4. SN-F sends a Data response directly to RN-F0.

5. RN-F0 sends CompAck to HN-F as the Request is ReadShared and requires CompAck to complete the
transaction.

Figure 5-2 DMT transaction example flow

RN-F1 HN-F SN-F

ReadShared

ReadNoSnp

CompData_UC

RN-F0
I

CompAck

I

SnpShared

SnpResp_I

UC->
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-181
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.1 Read transaction flows
5.1.3 Read transaction with DCT

For Read transactions with snoops and data from cache memory. this specification recommends use of Direct Cache
Transfer (DCT).

DCT from cache line in UC state

Figure 5-3 on page 5-183 shows an example flow for a DCT transaction. The Requester is RN-F0 and the
forwarding cache is located at RN-F1.

The steps in the DCT transaction flow are:

1. RN-F0 sends a ReadShared request to HN-F.

2. HN-F sends a SnpSharedFwd, a forward Snoop request to RN-F1.

3. RN-F1 cache line state transitions from UC to SC.

4. RN-F1 forwards CompData_SC response to RN-F0.

5. RN-F1 also sends a SnpResp_SC_Fwded_SC Snoop response to HN-F that indicates:
• The data was forwarded to the Requester.
• The final state of the cache line in the snooped cache is SC.
• The state in which the cache line can be cached at the Requester is SC.

6. After receiving the CompData response RN-F0 sends a CompAck response to HN-F to conclude the
transaction.

Note
 Steps 4 and 5 in the DCT transaction flow can occur in any order as CompData and SnpResp are sent on different
channels.
5-182 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.1 Read transaction flows
Figure 5-3 Direct Cache Transfer from cache line in UC state

Double data return in a DCT transaction

Figure 5-4 on page 5-184 shows an example DCT transaction flow that sends the data to HN-F as well as forwarding
the data to the RN-F0.

The steps in the DCT transaction flow are:

1. RN-F0 sends a ReadShared request to HN-F.

2. HN-F sends a SnpSharedFwd Snoop request to RN-F1.

3. RN-F1 cache line state transitions from UD to SC.

4. RN-F1 sends CompData_SC response to RN-F0.

5. RN-F1 also sends a SnpRespData_SC_PD_Fwded_SC Snoop response to HN-F that includes a copy of the
cache line and passes responsibility for the Dirty cache line to HN-F:
• The data was forwarded to the Requester.
• The final state of the cache line in the snooped cache is SC.
• The state in which the cache line can be cached at the Requester is SC.

6. The RN-F0 sends CompAck after it receives the Data response to conclude the transaction.

RN-F0 HN-F

ReadShared
(TxnID = A)

SnpResp_SC_Fwded_SC
(TxnID = B)

RN-F1

SnpSharedFwd
(FwdNID = RN-F0)

(FwdTxnID = A)
(TxnID = B)

SN-F

I->SC
CompAck

(TgtID = HN-F)
(TxnID = B)

I UC

CompData_SC
(HomeNID = HN-F)

(TxnID = A)
(DBID = B)

UC->SC
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-183
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.1 Read transaction flows
Figure 5-4 Double data return in a DCT transaction

RN-F0 HN-F

ReadShared

SnpRespData_SC_PD_Fwded_SC

RN-F1

SnpSharedFwd

SN-F

I->SC

CompAck

I UD

CompData_SC

UD->SC

WriteNoSnp

CompDBIDResp

NCBWriteData
5-184 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.1 Read transaction flows
5.1.4 Read transaction with neither DMT nor DCT

Figure 5-5 shows an example of the flow without DMT using the ReadNoSnp transaction. In this example, the
ReadNoSnp has the ExpCompAck set in the original request.

The request does not generate any snoops and receives the data from a response to a memory read by the HN-F. The
steps in the ReadNoSnp transaction flow are:
1. RN-F0 issues a ReadNoSnp transaction.
2. HN-F receives and allocates the request.

Note
 HN-F does not send snoops as the request is recognized as a Non-snoopable request type.

3. HN-F sends a ReadNoSnp to SN-F.
4. SN-F returns data response to HN-F.
5. HN-F in turn returns the data to RN-F0. If ExpCompAck was not asserted in the ReadNoSnp request then

HN-F deallocates the request.
6. If ExpCompAck was asserted in the ReadNoSnp request, RN-F0 sends a CompAck response to HN-F.
7. RN-F0 deallocates the request.
8. HN-F receives the CompAck response and deallocates the request.

Figure 5-5 shows the transaction flow, the copy of data being transferred is marked in bold.

Figure 5-5 ReadNoSnp transaction flow

RN-F0 HN-FRN-F1

ReadNoSnp

CompData_I

RN-F2 SN-F

I->I

CompAck

I

ReadNoSnp

CompData_I
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-185
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.1 Read transaction flows
5.1.5 Read transaction with snoop response with partial data and no memory update

An example of this type of flow is a ReadUnique transaction.

RN-F1 has the cache line in UDP state. RN-F1 responds to the snoop with a snoop response with partial cache line
data and passes responsibility for updating memory.

HN-F waits for the data response from memory, merges the partial snoop response data with the data response from
memory, and sends the resultant data to the Requester.

HN-F does not update memory because responsibility for updating memory is passed on to the Requester.

Figure 5-6 shows the transaction flow, the copy of data being transferred is marked in bold.

Figure 5-6 ReadUnique with partial data snoop response

RN-F0 HN-FRN-F1

ReadUnique

CompData_UD_PD

SnpResp_I

RN-F2

SnpRespDataPtl_I_PD

SnpUnique

SN-F

I->UD

CompAck

I IUDP

ReadNoSnp

CompData_I

UDP->I

Merge
data

SnpUnique
5-186 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.1 Read transaction flows
5.1.6 Read transaction with snoop response with partial data and memory update.

An example of this type of flow is a ReadClean transaction.

RN-F1 has the cache line in UDP state. RN-F1 responds to the snoop with a snoop response with partial cache line
data and passes responsibility for updating memory.

HN-F waits for the data response from memory, merges the partial snoop response data with the data response from
memory, and sends the resultant data to the Requester.

HN-F updates memory as the responsibility for updating memory is not passed on to the Requester.

Figure 5-7 shows the transaction flow, the copy of data being transferred is marked in bold.

Figure 5-7 ReadClean with partial data snoop response

RN-F0 HN-FRN-F1

ReadClean

SnpClean

CompData_UC

SnpResp_I

RN-F2

SnpRespDataPtl_I_PD

SnpClean

SN-F

I->UC

CompAck

I IUDP

ReadNoSnp

CompData_I

UDP->I

WriteNoSnp

CompDBIDResp

NCBWrData

NCBWrData = NonCopyBackWrData

Merge
data
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-187
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.1 Read transaction flows
5.1.7 Optimized DMT flow for ReadOnce* and ReadNoSnp

Figure 5-8 shows the optimized flow for an unordered ReadOnce request.

The steps in the optimized ReadOnce transaction flow are:
1. RN-F0 sends an unordered ReadOnce request to HN-F with Order[1:0] set to 0b00.
2. HN-F sends a DMT ReadNoSnp request to SN-F with the Order[1:0] set to 0b01.
3. SN-F sends ReadReceipt to Home.
4. HN-F deallocates the request after receiving the ReadReceipt response.
5. SN-F sends CompData_UC directly to RN-F0.

Figure 5-8 DMT optimization for unordered ReadOnce

RN-F1 HN-F SN-F

ReadOnce
(ExpCompAck = 0)
(Order[1:0] = 0b00)

ReadNoSnp
(Order[1:0] = 0b01)

CompData_UC

RN-F0
I

UC->

ReadReceipt
5-188 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.2 Dataless transaction flows
5.2 Dataless transaction flows
This section gives examples of the interconnect protocol flow for Dataless transactions.

5.2.1 Dataless transaction without memory update

An example of this type of flow is a MakeUnique transaction.

RN-F1 has the cache line in UC state. RN-F1 responds to the snoop with a snoop response without data and changes
the cache line state to I.

HN-F waits for all snoop responses and then sends a Comp_UC response to the Requester.

HN-F does not send a read request to SN-F because the request is a Dataless transaction.

Figure 5-9 shows the transaction flow.

Figure 5-9 MakeUnique without memory update

RN-F0 HN-FRN-F1

 MakeUnique

Comp_UC

SnpResp_I

RN-F2

SnpResp_I

SnpMakeInvalid

UC->I

SN-F

I->UC

CompAck

I IUC

SnpMakeInvalid
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-189
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.2 Dataless transaction flows
5.2.2 Dataless transaction with memory update

An example of this type of flow is a CleanUnique transaction.

RN-F1 has the cache line in SD state and responds to the snoop with a snoop response with data and PD asserted.

HN-F waits for all snoop responses and then sends a Comp_UC response to the Requester.

HN-F sends a write request to update memory with the data received from RN-F1.

Figure 5-10 shows the transaction flow.

Figure 5-10 CleanUnique with memory update

RN-F0 HN-FRN-F1

 CleanUnique

Comp_UC

SnpResp_I

RN-F2

SnpRespData_I_PD

SnpCleanInvalid

SD->I

SN-F

SC->UC

CompAck

SC ISD

SnpCleanInvalid

WriteNoSnp

CompDBIDResp

NCBWrData

NCBWrData = NonCopyBackWrData
5-190 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.2 Dataless transaction flows
5.2.3 Evict transaction

Figure 5-11 shows the Evict transaction flow.

RN-F0 moves the cache line to I state and issues an Evict transaction.

HN-F receives and allocates the request.

Note
 The Evict request is a hint. A Comp response can be given by HN-F without updating the Snoop Filter or Snoop
Directory.

HN-F returns the Comp response and deallocates the request.

RN-F0 deallocates the request.

Figure 5-11 Evict transaction flow

Note
 The cache state at the Requester must change to Invalid before the Evict message is sent.

RN-F0 HN-FRN-F1

Evict

Comp_I

RN-F2 SN-F

UC->I

UC I I

Update
Snoop Filter or

Snoop Directory
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-191
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.3 Write transaction flows
5.3 Write transaction flows
This section gives examples of the interconnect protocol flow for Write transactions.

5.3.1 Write transaction with no snoop and separate responses

An example of this type of flow is a WriteNoSnp transaction. The steps in the WriteNoSnp transaction flow are:
1. RN-F0 issues a WriteNoSnp transaction.
2. HN-F receives and allocates the request.
3. HN-F sends DBIDResp without Comp.
4. RN-F0 responds with data.
5. HN-F sends a Comp after it receives CompDBIDResp from SN-F.

Note
 This flow example shows Comp is sent after CompDBIDResp is received from SN-F. However, HN-F is

permitted to send Comp anytime after it receives the WriteNoSnp request from RN-F0.

6. RN-F0 waits for Comp from HN-F and deallocates its request.

Figure 5-12 shows the flow, the copy of data being transferred is marked in bold.

Figure 5-12 WriteNoSnp with separate responses from HN to RN

RN-F0 HN-FRN-F1

WriteNoSnp

DBIDResp

RN-F2

NCBWrData

SN-F

I II

WriteNoSnp

CompDBIDResp

NCBWrData

NCBWrData = NonCopyBackWrData

Comp
5-192 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.3 Write transaction flows
5.3.2 Write transaction with snoop and separate responses

An example of this type of flow is a WriteUniquePtl transaction.

The Comp_I response from HN-F must be sent when the coherency activity is complete at HN-F.

Figure 5-13 shows the transaction flow, the copy of data being transferred is marked in bold.

Figure 5-13 WriteUniquePtl with snoop

RN-F0 HN-FRN-F1

WriteUniquePtl

RN-F2

NCBWrData

SN-F
I UDI

WriteNoSnp

CompDBIDResp

NCBWrData

SnpCleanInvalid
SnpCleanInvalid

SnpRespData_I_PD

Comp

SnpResp_I

DBIDResp

Merge
data

NCBWrData = NonCopyBackWriteData

UD->I
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-193
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.3 Write transaction flows
5.3.3 CopyBack write transaction to memory

An example of this type of flow is a WriteBackFull transaction.

The data received from RN-F0 is written to SN-F by HN-F using a WriteNoSnp transaction.

Figure 5-14 shows the transaction flow, the copy of data being transferred is marked in bold.

Figure 5-14 WriteBackFull returning Data Buffer Identifier

RN-F0 HN-FRN-F1

WriteBackFull

CompDBIDResp

RN-F2

CBWrData_UD_PD

SN-F

UD->I

UD II

WriteNoSnp

CompDBIDRresp

NCBWrData

CBWrData = CopyBackWrData

NCBWrData = NonCopyBackWrData
5-194 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.4 Atomic transaction flows
5.4 Atomic transaction flows
This section shows flows for different Atomic transaction types. It contains the following sub-sections:
• Atomic transactions with data return.
• Atomic transaction without data return on page 5-198.
• Atomic operation executed at the SN on page 5-200.

5.4.1 Atomic transactions with data return

This flow is applicable to:
• AtomicLoad.
• AtomicCompare.
• AtomicSwap.

Atomic transaction with snoops and data return

Figure 5-15 on page 5-196 shows the atomic operation executed at HN-F.

The steps in this transaction flow are:

1. RN-F0 sends an Atomic transaction to HN-F.

2. After receiving the Atomic request, HN-F:

• Sends DBIDResp to RN-F0 to obtain the Atomic transaction data.
• Sends SnpUnique Snoop request to other RN-Fs after determining that snoops are required.
• HN-F is permitted to send a speculative ReadNoSnp to SN-F.

3. RN-F2 has the cache line in UD state and responds by sending data and invaliding its own cached copy.

• The response is SnpRespData_I_PD.

• This data is marked as (Old_Data) in Figure 5-15 on page 5-196 to distinguish it from both the data
sent by the Requester and the data written to SN-F after the atomic operation is executed.

• HN-F also receives a second Snoop response, SnpResp_I, from RN-F1.

4. After receiving all Snoop responses, HN-F sends CompData_I to the Requester.
• The data sent with Comp is the old copy of the data.
• This data must not be cached in a coherent state at RN-F0.

5. In response to the DBIDResp sent previously, HN-F receives the NonCopyBackWrData_I response from the
Requester.

• This data is marked as (New_Data) in Figure 5-15 on page 5-196 to distinguish it from the data sent
by RN-F2 in response to the Snoop request from HN-F,

6. Once HN-F receives the NonCopyBackWrData_I response from the Requester, and the Snoop response with
data from RN-F2, it executes the atomic operation.

7. The resulting value after atomic operation execution is written to SN-F.

8. In this example, the read data received due to the speculative read is discarded by HN-F.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-195
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.4 Atomic transaction flows
Figure 5-15 AtomicLoad, AtomicSwap, or AtomicCompare executed at HN-F

Note
 In Figure 5-15, the CompData_I response from HN-F can be sent as soon as all Snoop responses are received.

Alternatively, to aid error reporting, CompData_I can be delayed until NCBWrData is received from the Requester
and the atomic operation is executed.

RN-F0 HN-FRN-F1

AtomicLoad
AtomicSwap

AtomicCompare

DBIDResp

RN-F2

NCBWrData
(Txn_Data)

SN-F
I UDI

ReadNoSnp

RespData_I

SnpUnique

SnpUnique

SnpRespData_I_PD
(Old_Data)

CompData_I
(Old_Data)

SnpResp_I

NCBWrData
(New_Data)

CompDBIDResp

NCBWrData = NonCopyBackWrData

Speculative
Read

UD->I

WriteNoSnp

Executes
Atomic operation
5-196 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.4 Atomic transaction flows
Atomic transaction without snoops and with data return

Figure 5-16 shows the atomic operation executed at HN.

Figure 5-16 AtomicLoad, AtomicSwap, or AtomicCompare executed at HN

RN HNRN-F1

AtomicLoad
AtomicSwap

AtomicCompare

DBIDResp

RN-F2

NCBWrData
(Txn_Data)

SN
I UDI

ReadNoSnp

RespData_I
(Old_Data)

CompData_I
(Old_Data) WriteNoSnp

NCBWrData
(New_Data)

CompDBIDResp

NCBWrData = NonCopyBackWrData

Executes
Atomic operation
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-197
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.4 Atomic transaction flows
5.4.2 Atomic transaction without data return

This flow is applicable to AtomicStore transactions.

Atomic transaction with snoops and without data return

Figure 5-17 shows the atomic operation executed at HN-F. The flow is similar to the Atomic transaction with snoop
and with data return, except that the Comp response to RN-F0 does not include data.

Figure 5-17 AtomicStore executed at HN-F

RN-F0 HN-FRN-F1

AtomicStore

DBIDResp

RN-F2

NCBWrData
(Txn_Data)

SN-F
I UDI

SnpUnique
SnpUnique

SnpRespData_I_PD
(Old_Data)

Comp

SnpResp_I

WriteNoSnp

NCBWrData
(New_Data)

CompDBIDResp

NCBWrData = NonCopyBackWrData

UD->I

Executes
Atomic operation
5-198 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.4 Atomic transaction flows
Atomic transaction without snoops and without data return

Figure 5-18 shows the atomic operation executed at HN. The flow is similar to the Atomic transaction without
snoop and with data return except that the Comp response to RN does not include data.

Figure 5-18 AtomicStore executed at HN

Note
 • In Figure 5-18, the read from SN is required to obtain the Old_Data and is not speculative.
• The Comp response from HN can be combined with the DBIDResp response.

RN HNRN-F1

AtomicStore

DBIDResp

RN-F2

NCBWrData
(Txn_Data)

SN
I UDI

Comp

WriteNoSnp

NCBWrData
(New_Data)

CompDBIDResp

NCBWrData = NonCopyBackWrData

ReadNoSnp

RespData_I
(Old_Data)

Executes
Atomic operation
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-199
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.4 Atomic transaction flows
5.4.3 Atomic operation executed at the SN

Figure 5-19 on page 5-201 shows an example Atomic transaction flow where the SN-F is executing the atomic
operation.

The steps in this transaction flow are:

1. RN-F0 sends an AtomicStore transaction to HN-F.

• The Atomic request is to a Snoopable address location.

2. After receiving the Atomic request, HN-F:

• Sends DBIDResp to RN-F0 to obtain the Atomic transaction data.

• Sends a SnpUnique to other RN-Fs after determining that snoops are required.

3. RN-F2 has the cache line in UD state and responds by sending data and invaliding its own cached copy.

• The response is SnpRespData_I_PD.

• This data is marked as (Old_Data) in Figure 5-19 on page 5-201 to distinguish it from both the data
sent by the Requester and the data written to SN-F after the atomic operation is executed.

• HN-F also receives a second Snoop response, SnpResp_I, from the other snooped RN-F.

4. HN-F writes the received data to SN-F using a WriteNoSnp transaction.

5. In response to the DBIDResp sent previously, HN-F receives the NonCopyBackWrData response from the
Requester.

6. HN-F after sending the Snoop response data to SN-F, sends an AtomicStore transaction request to SN-F, and
executes the sequence of messages required to complete the Atomic transaction.

7. The HN-F deallocates the request once the Comp response is sent to the Requester and the Comp response
for the Atomic transaction is received from SN-F.

• The Comp response from HN-F can be sent as soon as all the Snoop responses are received.
5-200 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.4 Atomic transaction flows
Figure 5-19 AtomicStore executed at SN-F

RN-F0 HN-F

AtomicStore
(Normal, Snoopable)

DBIDResp

NCBWrData
(Txn_Data)

SN-F

I UD

SnpUnique
SnpUnique

SnpRespData_I_PD
(Old_Data)

Comp

SnpResp_I

WriteNoSnp

CompDBIDResp

AtomicStore

DBIDResp

NCBWrData
(Txn_Data)

Comp

NCBWrData
(Old_Data)

RN-F1 RN-F2

I

NCBWrData = NonCopyBackWrData

UD->I
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-201
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.5 Stash transaction flows
5.5 Stash transaction flows
This section shows example interconnect protocol flows for the two Stash transaction types:
• Write with Stash hint.
• Independent Stash request on page 5-203.

5.5.1 Write with Stash hint

Figure 5-20 on page 5-203 shows an example WriteUniqueStash with Data Pull transaction flow.

1. RN sends a WriteUniqueFullStash request to HN-F with the Stash target identified as RN-F1. Typically, the
reqesting RN is an RN-I.

2. HN-F sends SnpMakeInvalidStash to RN-F1 and SnpUnique to RN-F2.

3. RN-F1 and RN-F2 send SnpResp response to HN-F. The Snoop response from RN-F1 also includes a Read
request, that is, the Data Pull.

4. HN-F treats the Read request from RN-F1 as a ReadUnique, and sends a combined CompData to RN-F1.
CompData response includes the data written by RN.

5. RN-F1 sends CompAck to HN-F to complete the Read transaction.
5-202 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.5 Stash transaction flows
Figure 5-20 WriteUniqueStash with Data Pull

5.5.2 Independent Stash request

Figure 5-21 on page 5-204 shows an example StashOnce with Data Pull transaction flow.

1. RN sends a StashOnceShared request to HN-F with the Stash target identified as RN-F1.

2. HN-F can immediately send Comp to RN to acknowledge the Stash request.

3. HN-F sends a SnpStashShared snoop to RN-F1, and a ReadNoSnp request to SN-F to fetch Data.

4. RN-F1 sends SnpResp_I_Read response to HN-F.

5. HN-F treats the Read request from RN-F1 as a ReadNotSharedDirty, and sends a combined CompData to
RN-F1.

6. RN-F1 sends CompAck to HN-F to complete the Read transaction.

RN HN-FRN-F1

WriteUniqueFullStash
(StashNID = RN-F1)

RN-F2

NCBWrData

SN-F
I ISC

SnpMakeInvalidStash SnpUnique

SnpResp_I

Comp_I

SnpResp_I_Read

DBIDResp

NCBWrData = NonCopyBackWriteData

SC->I

CompData_UD_PD

CompAck
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-203
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.5 Stash transaction flows
Figure 5-21 StashOnceShared with Data Pull

RN HN-FRN-F1

StashOnceShared
(StashNID = RN-F1)

SN-F
I

SnpStashShared

CompData_I

ReadNoSnp

Comp
SnpResp_I_Read

I->UC

CompData_UC

CompAck
5-204 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.6 Hazard handling examples
5.6 Hazard handling examples
This section shows how CopyBack-Snoop request hazard conditions are handled at the Requester and how various
request to request, and request to snoop request hazard conditions are handled at the HN-F. It contains the following
subsections:
• CopyBack-Snoop hazard at RN-F.
• Request hazard at HN-F on page 5-208.
• Read - CopyBack or Dataless - CopyBack hazard at HN-F on page 5-210.
• Request-CompAck to HN-F race hazard on page 5-211.

5.6.1 CopyBack-Snoop hazard at RN-F

Figure 5-22 on page 5-206 shows a Snoop request to an RN-F hazarding a pending CopyBack request at time C.
The steps required to resolve this hazard are:

1. At time C:
• The SnpShared transaction ignores the hazard and reads the cache line data.
• The cache line state is changed from UD to SC.

2. At time D:
• The CompDBIDResp for the CopyBack is sent to RN-F0.
• RN-F0 sends back a CopyBackWrData_SC response.
• The cache line state is changed from SC to I.

The data is clean for coherence and is not required to be sent to the interconnect for correct functionality.
However, the protocol requires the CopyBack flow to be consistent irrespective of a snoop hazard.

The cache line state in the WriteData response is SC because that is the state of the cache line when the
WriteData response is sent.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-205
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.6 Hazard handling examples
Figure 5-22 CopyBack-Snoop hazard at RN-F example

Note
 • The response to a snoop request that hazards with an outstanding Evict must be SnpResp_I.

• During the period between receiving a snoop request and sending a snoop response, including data if
applicable, while a CopyBack request to the same address is pending, the only response that can be received
for the CopyBack request is a RetryAck.

Figure 5-23 on page 5-207 shows a further example of a snoop request hazarding with an outstanding CopyBack
request. In this example, the snoop request is a SnpOnce request generated as a result of a ReadOnce request from
RN-F1. The SnpOnce request receives a copy of the data with the snoop response but does not change the cache
line state. In this case, the final data response from RN-F0 indicates that the data is Dirty and that HN-F must write
the data back to memory.

RN-F0 HN-F

Req2: WriteBack

RN-F1

UD I
Req1: ReadShared

SnpShared

SnpRespData_SC_PD

CompData_SC

CompAck

I->SC

SC->I CompDBIDResp

CopyBackWrData_SC
(PS = SC, NS(implied) = I)

Hazard detected
Req2 progress

blocked

Req2 progress
un-blocked

A

B

UD->SC

D

C

Hazard with
CopyBack detected

but ignored

CopyBack
Completed with a

WriteData response

PS = PresentState
NS = NextState
5-206 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.6 Hazard handling examples
Figure 5-23 CopyBack-Snoop hazard with no cache state change example

RN-F0 HN-FRN-F1

ReadOnce

SN-F

UD I

WriteBack
SnpOnce

SnpRespData_UD

CompData_I

CompAck

UD->I

WrNoSnp

CompDBIDResp

CBWrData_UD
(PS=UD, NS[implied]=I)

UD->UD

PS = PresentState

ReadOnce
does not

write back
Data

NS = NextState

Hazard detected
WriteBack progress

blocked

WriteBack progress
un-blocked

CopyBack
Completed with a

WriteData response

Hazard detected
but ignored
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-207
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.6 Hazard handling examples
5.6.2 Request hazard at HN-F

If more than one request to the same cache line is ready to be processed at the HN-F, then the HN-F can select the
next request in any order, except for when the two requests have an ordering requirement and are from the same
source, then the order of processing must match the order of arrival.

Figure 5-24 on page 5-209 shows an example where a ReadShared and a ReadUnique, for the same cache line,
arrive at the HN-F at approximately the same time. The steps required to resolve this hazard are:

1. At time A:

• ReadUnique from RN-F0 arrives and hazards a ReadShared request from RN-F2 for which the HN-F
has already sent snoop requests.

• ReadUnique progress is blocked at the HN-F.

2. At time B:

• The HN-F has completed the ReadShared transaction request from RN-F2.

• The ReadShared transaction is considered to be complete and the HN-F unblocks the ReadUnique
transaction request from RN-F0.

With the exception of ReadNoSnp, the flows will be similar if the two transactions, that Figure 5-24 on page 5-209
shows, are replaced by any Read request type, or Dataless request type:

• A Read transaction request is completed at the HN-F when both of the following are true:

— All CompData is sent and, if applicable, CompAck is received. A CompAck is only required for
transactions that assert ExpCompAck in the original Request message.

— A memory update is completed if required.
5-208 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.6 Hazard handling examples
Figure 5-24 Read-Read request hazard example

RN-F0 HN-FRN-F1

Req2: ReadUnique

RN-F2 SN-F

SC II
Req1: ReadShared

SnpShared

SnpResp_SC

CompData_SC

SnpShared

SnpResp_I

ReadNoSnp

CompData_I

SnpUnique
SnpUnique

CompAck
I->SC

SC->UC

SC->ISnpResp_I
SnpResp_I

ReadNoSnp

CompData_I

CompData_UC

CompAck

Hazard detected
Req2 progress

blocked

Req2 progress
un-blocked

A

B

ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-209
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.6 Hazard handling examples
5.6.3 Read - CopyBack or Dataless - CopyBack hazard at HN-F

A hazard between a Read or Dataless request and a CopyBack request at the HN-F is treated similarly to the
Read-Read hazard described in Request hazard at HN-F on page 5-208. See also CopyBack-Snoop hazard at RN-F
on page 5-205.

Figure 5-25 on page 5-211 shows the case where a ReadShared and a WriteBack, for the same cache line, arrive at
the HN-F at approximately the same time. The steps required to resolve this hazard are:

1. At time A:

• A WriteBack encounters a hazarding condition at the HN-F. The reason for the hazard is a ReadShared
transaction that is already in progress.

• The hazard detection results in the WriteBack being blocked.

• The ReadShared transaction receives data with the snoop response and needs to update memory in
addition to sending the data to the Requester.

2. At time B:

• The WriteBack is unblocked because the HN-F has sent the Data response to the Requester and a
WriteData response to memory for the ReadShared transaction.

If the ReadShared request reaches the HN-F, after the HN-F has started processing the WriteBack request, then the
ReadShared request will be blocked until completion of the WriteBack request.

 A CopyBack request is completed at HN-F when both of the following are true:
• A Data message corresponding to the CopyBack request is received.
• A memory update is completed if required.
5-210 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

5 Interconnect Protocol Flows
5.6 Hazard handling examples
Figure 5-25 Read - CopyBack or Dataless - Copyback hazard example

5.6.4 Request-CompAck to HN-F race hazard

After completion, a request might silently evict the cache line from the cache and generate another request to the
same address. For example:

1. The regenerated request reaches the HN-F before the CompAck response associated with the earlier request.

2. The HN-F detects an address hazard and blocks the processing of the new request until the CompAck
response is received.

In such a scenario, upon arrival at HN-F, the CompAck response deallocates the previous request from the HN-F
and unblocks the processing of the new request.

RN-F0 HN-FRN-F1

Req2: WriteBack

RN-F2 SN-F

UD II
Req1: ReadShared

SnpShared

SnpRespData_SC_PD

CompData_SC

CompAck

I->SC

SC->I

WriteNoSnp

CompDBIDResp

CompDBIDResp

CopyBackWrData_SC
(PS = SC, NS(implied) = I)

Hazard detected
Req2 progress

blocked

Req2 progress
un-blocked

A

B

UD->SC

NCBWrData

PS = PresentState
NS = NextState
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 5-211
ID080717 Non-Confidential

5 Interconnect Protocol Flows
5.6 Hazard handling examples
5-212 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 6
Exclusive Accesses

This chapter describes the mechanisms that the architecture includes to support Exclusive accesses. It contains the
following sections:
• Overview on page 6-214.
• Exclusive monitors on page 6-215.
• Exclusive transactions on page 6-218.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 6-213
ID080717 Non-Confidential

6 Exclusive Accesses
6.1 Overview
6.1 Overview
The principles of Exclusive accesses are that a Logical Processor (LP) performing an exclusive sequence does the
following:
• Performs an Exclusive Load from a location.
• Calculates a value to store to that location.
• Performs an Exclusive Store to the location.

Two different forms of Exclusive access are supported:
• Exclusive accesses to a Snoopable memory location.
• Exclusive accesses to a Non-snoopable memory location.

If the location is updated since the Exclusive Load, by a different LP, then the Exclusive Store must fail. In this case,
the store does not occur and the LP does not update the value held at the location.

Note
 • The term Exclusive Load is used to describe the action of an LP executing an appropriate program instruction

such as LDREX. This action requires:
— Obtaining the data from the location to which it wants to perform an exclusive sequence.
— Indicating that it is starting an exclusive sequence.

• The term Exclusive Load transaction is used to describe a transaction issued on the interface to obtain data
for an Exclusive Load, if the data is not available in the cache at the LP. Not every Exclusive Load requires
an Exclusive Load transaction.

• The term Exclusive Store is used to describe the action of an LP executing an appropriate program instruction
such as STREX. This action requires:
— Determining if the exclusive sequence has passed or failed.
— If appropriate, updating the data at the location.

An Exclusive Store can pass or fail and this result is known to the executing processor. When an Exclusive
Store passes, the data value at the address location is updated. When an Exclusive Store fails, this indicates
that the data value at the address location has not been updated, and the Exclusive sequence must be restarted.

• The term Exclusive Store transaction is used to describe a transaction issued on the interface that might be
required to complete an Exclusive Store. Not every Exclusive Store requires an Exclusive Store transaction.
An Exclusive Store transaction can pass or fail and this result is made known to the LP using the transaction
response.
6-214 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

6 Exclusive Accesses
6.2 Exclusive monitors
6.2 Exclusive monitors
The progress of an exclusive sequence is tracked by an exclusive monitor. The location of the monitor, and the
request type generated to support the Exclusive accesses, is dependent on the memory attributes of the address.

6.2.1 Snoopable memory location

For a Snoopable memory location two monitors are defined:

LP monitor Each LP within an RN-F must implement an exclusive monitor that observes the location used by
an exclusive sequence. The LP monitor is set when the LP executes an Exclusive Load. The LP
monitor is reset when either:

• The location is updated by another LP, which is indicated by an invalidating snoop request to
the same address.

• There is a store to that address within the same RN-F. It is IMPLEMENTATION DEFINED
whether or not a non-exclusive store from the same LP resets the monitor.

PoC monitor An HN-F must implement a PoC monitor that can pass or fail an Exclusive Store transaction. A pass
indicates that the transaction has been propagated to other coherent RN-Fs. A fail indicates that the
transaction has not been propagated to other coherent RN-Fs and therefore the Exclusive Store
cannot pass.

The monitor is used to ensure that an Exclusive Store transaction from an LP is only successful if
that LP could not have received a snoop transaction, relating to an Exclusive Store to the same
address from another LP, after it issued its own Exclusive Store transaction.

The minimum requirement of the PoC monitor is to record when any LP performs a Snoopable
transaction related to an exclusive sequence.

If an LP has performed a transaction related to an Exclusive sequence, and it then performs an
Exclusive Store transaction before a successful Exclusive Store transaction from another LP is
scheduled, then the Exclusive Store transaction must be successful.

The monitor must support the parallel monitoring of all exclusive-capable LPs in the system.

When the HN-F receives a transaction associated with an Exclusive Load or an Exclusive Store, the
monitor registers that the LP is attempting an exclusive sequence.

When the HN-F receives an Exclusive Store transaction:

• If the PoC monitor has registered that the LP is performing an exclusive sequence, that is, it
has not been reset by an Exclusive Store transaction from another LP, then the Exclusive
Store transaction is successful and is permitted to proceed. In such a case, registered attempts
of all other LPs must be reset. This specification recommends, but does not require, that the
PoC monitor for the successful LP is left as registered.

• If the PoC monitor has not registered that the LP is performing an exclusive sequence, that
is, it has been reset by an Exclusive Store from another LP, then the Exclusive Store
transaction is failed and is not permitted to proceed. The monitor must register that the LP is
attempting an exclusive sequence.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 6-215
ID080717 Non-Confidential

6 Exclusive Accesses
6.2 Exclusive monitors
Note
 A successful Exclusive Store transaction from an LP does not have to reset that the LP is

performing an exclusive sequence. The LP can continue to perform a sequence of Exclusive
Store transactions, which will all be successful, until another LP performs a successful
Exclusive Store transaction.
From initial system reset, the first LP to perform an Exclusive Store transaction can be
successful, but this specification does not require it. At that point, all other LPs must then
register the start of their exclusive sequence for their Exclusive Store transaction to be
successful.
When an Exclusive Store transaction from one LP passes and the registered attempts of all
other LPs is reset, the other LPs can only register a new exclusive sequence after the
CompAck response is observed for the Exclusive Store transaction that passed.

Note
 An LP and PoC monitor pair are required to support an Exclusive access to a Snoopable memory location.

6.2.2 Additional address comparison

The PoC monitor can be enhanced to include some address comparison. A full address comparison is not required
and it is permitted to only record a subset of address bits. This approach reduces the chances of an Exclusive Store
transaction failing because of another LP’s Exclusive Store transaction to a different address location. The number
of bits of address comparison used is IMPLEMENTATION DEFINED.

Where an additional address comparison monitor is used, the monitored address bits are recorded at the start of an
exclusive sequence on either a Load Exclusive or Store Exclusive transaction. It is reset by a successful Exclusive
Store transaction from another LP to a matching address.

A monitor that includes additional address comparison must still include a minimum monitor of a single bit for
every Exclusive-capable LP to ensure forward progress.

An Exclusive Store transaction is permitted to progress if one of the following occurs:

• The address monitor has registered an exclusive sequence for a matching address from the same LP and has
not been reset by an Exclusive Store transaction from a different LP with a matching address.

• The minimum single-bit monitor has been set by an exclusive sequence from the same LP, and it has not been
reset by an Exclusive Store transaction from a different LP to any address.

Note
 • The term matching address is used to describe where a monitor only records a subset of address bits. The

address bits that are recorded are identical, but the address bits that are not recorded can be different.

• An implementation does not require an address monitor for each Exclusive-capable LP. Because the address
monitor provides a performance enhancement it is acceptable to have fewer address monitors and for the use
of these to be IMPLEMENTATION DEFINED. For example, additional address monitors can be used on a
first-come first-served basis, or by allocation to particular LPs. Alternatively, a more complex algorithm
might be implemented.

• Additional PoC exclusive monitor functionality can be provided to prevent interference, or denial of service,
caused by one agent in the system issuing a large number of Exclusive access transactions. This specification
recommends that Secure Exclusive accesses are permitted to make forward progress independently of the
progress of Non-secure accesses.
6-216 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

6 Exclusive Accesses
6.2 Exclusive monitors
6.2.3 Non-snoopable memory location

For a Non-snoopable memory location a single monitor is used:

System monitor The System monitor tracks Exclusive accesses to a Non-snoopable region. This monitor
type is set by a ReadNoSnp(Excl) transaction and reset by an update to the location by
another LP.

System monitors can be placed at a PoS or at endpoint devices. Potentially, the number of
devices in the system is much larger than the number of PoS and placing System monitors
at a PoS can:
• Reduce System monitor duplication.
• Reduce the time taken for the system to detect failure of an Exclusive access.

A System monitor must be located so it can observe all transactions to the monitored
location.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 6-217
ID080717 Non-Confidential

6 Exclusive Accesses
6.3 Exclusive transactions
6.3 Exclusive transactions
The following transaction types support Exclusive accesses through an Excl bit:
• Exclusive Load transaction to a Snoopable location:

— ReadClean.
— ReadNotSharedDirty.
— ReadShared.

• Exclusive Store transaction to a Snoopable location:
— CleanUnique.

• Exclusive Load transaction to a Non-snoopable location:
— ReadNoSnp.

• Exclusive Store transaction to a Non-snoopable location:
— WriteNoSnp.

The communicating node pairs are:
• For Exclusives to a Snoopable location:

— RN-F to ICN(HN-F).
• For Exclusives to a Non-snoopable location:

— RN-F, RN-D, RN-I to ICN(HN-F, HN-I).
— ICN(HN-F) to SN-F.
— ICN(HN-I) to SN-I.

An exclusive transaction must use the correct LPID value, See Logical Processor Identifier on page 2-90.

Exclusive reads must not use Direct data transfer flow.
6-218 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

6 Exclusive Accesses
6.3 Exclusive transactions
6.3.1 Responses to exclusive requests

Transaction responses to exclusive requests are similar to the normal responses to reads and writes. However, the
response must also indicate if the exclusive request has passed or failed. The RespErr field in the response is used
for this purpose. See RespErr on page 12-310. The RespErr field value of 0b01, Exclusive Okay, indicates a pass
and a RespErr field value of 0b00, Normal Okay, indicates an Exclusive access failure.

The Exclusive Okay response must only be given for a transaction that has the Excl attribute set.

Not all memory locations are required to support Exclusive accesses. An Exclusive Load transaction to a location
that does not support Exclusive accesses must not be given an Exclusive Okay response.

Whether or not an Exclusive Store transaction to a location that does not support Exclusive accesses will update that
location is IMPLEMENTATION DEFINED.

This specification recommends that an Exclusive Store transaction is not performed to a location that does not
support Exclusive accesses.

Table 6-1 shows the Snoopable attributes of the request, the relevant monitor type and possible reasons for fail
conditions and response requirements.

6.3.2 System responsibilities

A system that implements the CHI protocol has the following responsibilities:

• Should include a monitor per LP for the efficient handling of Exclusive accesses.

• Must have a starvation prevention mechanism for all exclusive requests, whether using the monitor
mechanism or some other means.

• This specification recommends that progress on Secure Exclusive requests is independent of progress on
Non-secure Exclusive requests.

Table 6-1 Responses to an Exclusive access request

Request type Snoopable Monitor type Fail condition Response

ReadNoSnp(Excl) No System Target does not support
Exclusive accesses

Target must return a data
response

WriteNoSnp(Excl) No System Address content modified The Requester must still
complete the write flow by
sending the data messageAddress not present due to

monitor overflow

Target does not support
Exclusive accesses

ReadClean(Excl)
ReadNotSharedDirty(Excl)
ReadShared(Excl)

Yes LP, PoC Target does not support
Exclusive accesses

Target must return a data
response

CleanUnique(Excl) Yes LP, PoC Address content modified Target must return a Comp
response

Address not present due to
monitor overflow

Target does not support
Exclusive accesses
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 6-219
ID080717 Non-Confidential

6 Exclusive Accesses
6.3 Exclusive transactions
6.3.3 Exclusive accesses to Snoopable locations

This section describes the behavior of an LP when performing Exclusive accesses to a Snoopable address location.

Snoopable Exclusive Load

The LP starts an exclusive sequence with an Exclusive Load. The start of the exclusive sequence must set the LP
exclusive monitor.

An LP wanting to perform an Exclusive access to a Snoopable location might already hold the cache line in its local
cache:

• If the LP holds the cache line in a Unique state, then it is permitted, but not recommended by this
specification, that it performs an Exclusive Load transaction.

• If the LP holds the cache line in a Shared state, then it is permitted, but not required by this specification, that
it performs an Exclusive Load transaction.

• If the LP does not hold a copy of the cache line, this specification recommends that the LP uses an Exclusive
Load transaction to obtain the cache line, but is permitted to use ReadClean or ReadShared or
ReadNotSharedDirty without the Excl attribute asserted.

Snoopable Exclusive Load to Snoopable Exclusive Store

After the execution of an Exclusive Load an LP will typically calculate a new value to store to the location before
it attempts the Exclusive Store.

It is not required that an LP always completes an exclusive sequence. For example, the value obtained by the
Exclusive Load can indicate that a semaphore is held by another LP and that the value cannot be changed until the
semaphore is released by the other LP. Therefore, a new exclusive sequence can be started with no attempt to
complete the current exclusive sequence.

During the time between the Exclusive Load and the Exclusive Store the LP exclusive monitor must monitor the
location to determine whether another LP might have updated the location.

Snoopable Exclusive Store

An LP must not permit an Exclusive Store transaction to be in progress at the same time as any transaction that
registers that it is performing an exclusive sequence. The LP must wait for all messages for any such transaction to
be exchanged, or to receive a RetryAck response, before issuing an Exclusive Store transaction. The transactions
that register that an LP is performing an exclusive sequence are:
• Exclusive Load transactions to any location.
• Exclusive Store transactions to any location.

When an LP executes an Exclusive Store the following behavior is required:

• If the LP exclusive monitor has been reset the Exclusive Store must fail and the LP must not issue an
Exclusive Store transaction. The LP must restart the exclusive sequence.

Note
 When the LP monitor has been reset, not issuing a transaction for an Exclusive Store that must eventually fail

avoids unnecessary invalidation of other copies of the cache line.

• If the cache line is held in a Unique state and the LP exclusive monitor is set then the Exclusive Store has
passed and it can update the location without issuing a transaction.

• If the cache line is held in a Shared state and the LP exclusive monitor is set then the LP must issue an
Exclusive Store transaction. A CleanUnique transaction with the Excl attribute asserted must be used. The
LP exclusive monitor must continue to operate and check that the cache line is not updated while the
CleanUnique transaction is in progress.

The transaction will receive a Normal Okay or an Exclusive Okay response.
6-220 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

6 Exclusive Accesses
6.3 Exclusive transactions
If the transaction receives an Exclusive Okay response, then this indicates that the transaction has passed and
has completed invalidating all other copies of the cache line. After an exclusive transaction completes with
an Exclusive Okay response the LP must again check the LP exclusive monitor:

— If the LP exclusive monitor is set then the Exclusive Store has passed and the update is performed.

— If the LP exclusive monitor is not set, it indicates that an update to the cache line has occurred between
the point that the Exclusive Store transaction was issued and the point that it completed. The Exclusive
Store must fail and the exclusive sequence must be restarted.

— If the LP has not been able to track the exclusive nature of the cache line, because the cache line has
been evicted, then the Exclusive Store must fail and the exclusive sequence must be restarted.

If the Exclusive Store transaction receives a Normal Okay response then this indicates another LP has been
permitted to progress a transaction associated with an Exclusive Store. The transaction associated with the
Exclusive Store, from this LP, has failed and has not propagated to other LPs in the system. When an
Exclusive Store transaction completes with a Normal Okay response the options are:

— The LP can fail the Exclusive Store and restart the exclusive sequence with or without checking the
state of the cache line when the access completed.

— The LP can check the LP exclusive monitor, and if the LP exclusive monitor has been reset, then the
LP must fail the Exclusive Store and restart the exclusive sequence.

— The LP can check the LP exclusive monitor, and if the LP exclusive monitor is set, then the LP can
repeat the Exclusive Store transaction.

Exclusive accesses to Non-snoopable locations

The following restrictions apply to Exclusive accesses to Non-snoopable locations:

• The address of an Exclusive access must be aligned to the total number of bytes in the transaction.

• The number of bytes to be transferred in an Exclusive access must be a legal data transfer size, that is, 1, 2,
4, 8, 16, 32, or 64 bytes.

Failure to observe these restrictions results in behavior that is UNPREDICTABLE.

For Exclusive read and Exclusive write transactions to be considered a pair, the following criteria must apply:

• The addresses of the Exclusive read and the Exclusive write must be identical.

• The value of the control signals, that is MemAttr and SnpAttr of the Exclusive read and the Exclusive write
transaction, must be identical.

• The data size in the Exclusive read and the Exclusive write must be identical.

• The LPID value of the Exclusive read must match the LPID value of the Exclusive write transaction.

The minimum number of bytes to be monitored during an exclusive operation is defined by the transaction size. The
System monitor can monitor a larger number of bytes, up to 64, which is the maximum size of an Exclusive access.
However, this can result in a successful Exclusive access being indicated as failing because a neighboring byte was
updated while the Exclusive access was in progress.

Multiple Exclusive transactions to Non-snoopable memory locations, either read or write, to the same or different
addresses, from the same LP must not be outstanding at the same time.

If the SN does not support Exclusive accesses, as indicated by an Exclusive Fail on the Exclusive ReadNoSnp, then
the write will update the location if the write is given an Exclusive Fail response.

If the SN does support Exclusive accesses, as indicated by an Exclusive Pass on the Exclusive ReadNoSnp, then the
write will not update the location if the write is given an Exclusive Fail response.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 6-221
ID080717 Non-Confidential

6 Exclusive Accesses
6.3 Exclusive transactions
6-222 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 7
Cache Stashing

This chapter describes the cache stashing mechanism whereby data that is written from an RN can be installed in a
peer cache. It contains the following sections:
• Overview on page 7-224.
• Write with Stash hint on page 7-226.
• Independent Stash request on page 7-227.
• Stash target identifiers on page 7-229.
• Stash messages on page 7-230.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 7-223
ID080717 Non-Confidential

7 Cache Stashing
7.1 Overview
7.1 Overview
Cache stashing is a mechanism to install data within particular caches in a system. Cache stashing ensures that data
is located close to its point of use, therefore improving the system performance.

Cache stashing is permitted to Snoopable memory only.

This specification supports two main forms of cache stashing transaction:

Write with stash hint

WriteUniqueStash. This is used when the cache in which the data should be allocated is known at
the point in time that the data is written. A write with stash hint can be a [Full] or [Ptl] cache line
write, and this will affect the Snoop transactions that are used. See Write with Stash hint on
page 7-226.

Independent stash request

StashOnce. This is used when the request to stash data into a particular cache is separated from the
writing of the data. An independent Stash transaction can indicate if the cache line should be held
in a Unique or Shared state by using a StashOnceUnique or StashOnceShared transaction
respectively, which corresponds to whether the next expected use of the cache line is for storing or
for reading respectively. See Independent Stash request on page 7-227.

Both forms of cache stashing can target installation of data at different cache levels. The Stash target cache can be
a peer cache, specified by using the peer cache target NodeID, or a logical processor cache within the peer node, if
the peer node has multiple logical processors. The logical processor is identified by the LPID in the target cache
field. See Stash target identifiers on page 7-229.

The cache stashing requests can also target the cache below the peer cache in the cache hierarchy, which can be an
interconnect cache or a system cache. This is done by not specifying the peer cache NodeID. See Stash target not
specified on page 7-229.

In all cases of cache stashing, the stashing is only a performance hint and it is permitted for the Stash request receiver
to not perform the stashing behavior.

7.1.1 Snoop requests and Data Pull

The following Snoop requests are used to notify a peer cache that it is the target of a Stash request:
• SnpUniqueStash.
• SnpMakeInvalidStash.
• SnpStashUnique.
• SnpStashShared.

Table 7-1 shows the Snoop requests associated with each of the Stash requests.

Table 7-1 Stash request and the corresponding Snoop request

Stash request Snoop request

WriteUniquePtlStash SnpUniqueStash

WriteUniqueFullStash SnpMakeInvalidStash

StashOnceUnique SnpStashUnique

StashOnceShared SnpStashShared
7-224 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

7 Cache Stashing
7.1 Overview
A Snoopee that receives a Stash type Snoop request does one of the following:

• Provides a Snoop response that also acts as a Read request for the associated cache line. Including a Read
request with Snoop response is referred to as a Data Pull. Data Pull can only be used if the DoNotDataPull
field in the Snoop request is deasserted. Table 7-2 shows the type of Read request that is implied by a Data
Pull in the response to each Stash type Snoop request.

• Provides a Snoop response without the use of Data Pull but sends a separate Read request to obtain a copy
of the cache line. If this approach is used, there is no mechanism to associate the Read request with the stash
operation. It cannot be determined if the Read request is directly as a result of the stash operation or if it is
unrelated.

• Provides a Snoop response with neither a Data Pull nor a follow up request, ignoring the cache stash hint.

The value of the DataPull field in the SnpResp and SnpRespData responses indicates if Data Pull is requested. See
DataPull on page 12-305 for legal values for DataPull.

The use of Data Pull to complete a Snoop request with Stash is optional and can be controlled by both sides of the
interface:

• If Home is not able to support the Data Pull transaction flow then it must assert the DoNotDataPull field
within the Snoop request.

• If the Requester is not able to support the Data Pull transaction flow then it is permitted to either ignore the
stash operation or to issue an independent Read request.

Note
 Using the Data Pull transaction flow removes the need to send an additional Request packet after the Snoop response
and it can also improve the Home efficiency by ensuring a closer coupling between the original stash operation and
the movement of the data to the targeted cache.

Table 7-2 Read request and corresponding Data Pull response

Snoop request Implied Read request

SnpUniqueStash ReadUnique

SnpMakeInvalidStash ReadUnique

SnpStashUnique ReadUnique

SnpStashShared ReadNotSharedDirty
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 7-225
ID080717 Non-Confidential

7 Cache Stashing
7.2 Write with Stash hint
7.2 Write with Stash hint
The rules for sending and processing a WriteUniqueFullStash and WriteUniquePtlStash request at the Stash
requester, the Home, and the Stash target node are as follows:

Requester responsibilities:

• Sends a WriteUniqueFullStash or WriteUniquePtlStash request depending on whether a full cache line or a
partial cache line is to be written.

• The request is expected to include a Stash target.

Home responsibilities:

• Permitted to send a RetryAck response to a WriteUniqueStash request and follow the Retry transaction flow.

• Sends SnpUniqueStash to the identified Stash target.

• Sends SnpUnique to all other Requesters that share the cache line.

• Permitted to send SnpMakeInvalidStash and SnpMakeInvalid instead of SnpUniqueStash and SnpUnique
respectively for WriteUniqueFullStash.

• Permitted to ignore the stash hint in the Write request and process the request as a regular WriteUnique.

• Handles a request without a Stash target in the manner described in Stash target not specified on page 7-229.

• Permitted to use DMT to get data from SN-F to the Stash target in response to a Data Pull request, when the
data is neither available at Home nor obtained from any caches.

The Stash target responsibilities:

• This specification recommends, but does not require, that the Read request is combined with the Snoop
response if the DoNoDataPull bit in the Snoop request is not set.

• The responses that include Data Pull are:
— SnpResp_I_Read.
— SnpRespData_I_Read.
— SnpRespData_I_PD_Read.
— SnpRespDataPtl_I_PD_Read.

• Must not request Data Pull if:
— DoNotDataPull bit is set.
— Snoop has an address hazard with an outstanding request.

• When requesting Data Pull:

— The Stash target must guarantee the Read data is accepted without any structural or protocol
dependencies that might result in deadlock.

— The Read request is treated by Home as ReadUnique.

— The Stash target must populate the DBID field in the response with the TxnID that is to be used by
Home for the Read transaction.

• Permitted not to request Data Pull but to send a separate Read request. In this case this specification
recommends, but does not require, that the Stash target uses ReadUnique for the read.

• Permitted to ignore the Stash hint and handle the snoop as SnpUnique.
7-226 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

7 Cache Stashing
7.3 Independent Stash request
7.3 Independent Stash request
The second mechanism for implementing cache stashing is to permit the Stash request to be sent separated in time
from the writing of Stash data. Examples of when such a mechanism is useful are:

• When the data that is being written is not required by the target immediately. This delayed stash avoids
polluting the cache with data that is not used immediately.

• When the data is already in the system and the data has to be prefetched into caches.

• When the process using the data being written is not scheduled when the data is written, and therefore the
precise target of the Stash data is not known until later.

In these cases, a Requester can use StashOnce requests to request Home or a peer node to fetch a cache line.

The rules for sending and processing an independent Stash request at the Stash requester, Home, and the Stash target
are as follows:

Requester Node responsibilities:

• Sends either StashOnceUnique or StashOnceShared to Home, based on whether the stashed cache line is to
be modified.

• The StashOnce request provides a Stash target when the data is to be stashed in a peer cache.

• The StashOnce request does not provide a Stash target when the data is to be allocated to the next level cache.

Home Node responsibilities:

• Permitted to send a RetryAck response to a StashOnce request and follow the Retry transaction flow.

• Send a SnpStashUnique to the target RN-F for StashOnceUnique.

• Send a SnpStashShared to the target RN-F for StashOnceShared.

• Permitted to not send a Snoop request in response to a StashOnce request.

• Must send a Comp response, even if it abandons the Stash request.

• Fetches the addressed cache line from memory into the shared system cache when a StashOnce request
without a Stash target is received.

• Permitted to send Comp after receiving the StashOnce request, and before sending any SnpStash or receiving
the Snoop response.

• Send Comp_[X], where [X] is not I state, if the request hit the cache line at Home.

The [X] state is permitted only when it matches the cache state of the cache line at Home.

• Send a Comp_I response if either the cache look up at Home is a miss or Home did not look up the cache
before responding.

• Permitted to use DMT to get data from SN-F to the Stash target in response to a Data Pull request.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 7-227
ID080717 Non-Confidential

7 Cache Stashing
7.3 Independent Stash request
Stash target responsibilities:

• The snoop must not change the state of the cache line at the Stash target.

• The snoop is treated as a hint at the Stash target to obtain a copy of the cache line.

• This specification recommends, but does not require, that the Stash target includes a Data Pull request in the
Snoop response if the DoNoDataPull bit in the Snoop request is not set.

• Must not request Data Pull if:
— DoNotDataPull bit is set.
— Snoop has an address hazard with an outstanding request.
— Response is sent before performing a local cache lookup.
— The snoop is SnpStashShared and the cache has a copy of the cache line.

• When requesting Data Pull:

— The Stash target must guarantee the Read data is accepted without any structural or protocol
dependencies that might result in deadlock.

— The DataPull request is treated by Home as ReadNotSharedDirty for SnpOnceShared.

— The DataPull request is treated by Home as ReadUnique for SnpOnceUnique.

— The Stash target must populate the DBID field in the response with the TxnID that is to be used by
Home for the Read transaction.

• A DataPull request or an independent CleanUnique request can be sent, but is not required to be sent, when
the snoop is SnpStashUnique and a shared copy is present.

• The Stash target is permitted, but not required, to wait till it completes the local cache lookup before sending
the Snoop response.

• The cache state in the Snoop response is not required to be precise:
— An imprecise response must be SnpResp_I.
— Any state other than I in the response must be precise.

Note
 • For StashOnceShared or StashOnceUnique transactions, care is needed to avoid any action that could result

in the deallocation of the cache line from the cache where it is expected to be used.

• A StashOnceUnique transaction can cause the invalidation of a copy of the cache line and care must be taken
to ensure such transactions do not interfere with Exclusive access sequences.
7-228 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

7 Cache Stashing
7.4 Stash target identifiers
7.4 Stash target identifiers
For all Stash requests, both options of specified and non-specified Stash target are supported.

7.4.1 Stash target specified

If the Stash target is available in the Stash request then Home sends the snoop with a stash hint to the specified target.
The specified target can be an RN or a logical processor within an RN.

7.4.2 Stash target not specified

The Home Node that receives a WriteUniquePtlStash or WriteUniqueFullStash request without a Stash target does
the following:

• If the cache line is cached in a Unique state at an RN, then Home can treat that RN as the Stash target.

• If the cache line is not cached in a Unique state then Home must only send SnpUnique as required, and must
not send SnpUniqueStash to any RN.

• For WriteUniquePtlStash, if the cache line is not in any cache then this specification recommends Home to
prefetch and allocate the cache line in the system cache. It is permitted, but not recommended, to perform a
partial write to main memory.

• For WriteUniqueFullStash, if the cache line is not in any cache then Home is permitted to allocate the cache
line in the shared system cache.

The Home Node that receives a StashOnceUnique or StashOnceShared request without a Stash target does the
following:

• If the cache line is not cached in any peer cache then this specification recommends that the cache line is
allocated in the shared system cache.

• If the cache line is cached in a peer cache then it is IMPLEMENTATION DEFINED if a snoop is sent to transfer a
copy of the cache line and allocate it in the shared system cache. For StashOnceUnique, it is also
IMPLEMENTATION DEFINED if all cached copies are invalidated before allocating the cache line in the shared
system cache.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 7-229
ID080717 Non-Confidential

7 Cache Stashing
7.5 Stash messages
7.5 Stash messages
Stash messages are classified as:
• Write requests:

— WriteUniqueFullStash.
— WriteUniquePtlStash.
See Write transactions on page 4-133.

• Dataless requests:
— StashOnceUnique.
— StashOnceShared.
See Dataless transactions on page 4-131.

• Snoop requests:
— SnpUniqueStash.
— SnpMakeInvalidStash.
— SnpStashUnique.
— SnpStashShared.
See Snoop requests on page 4-141.

7.5.1 Supporting REQ packet fields

The fields defined in the REQ packet to support Stash requests are:
• StashNID, StashLPID.
• StashNIDValid, StashLPIDValid.

See Protocol flit fields on page 12-293.

7.5.2 Supporting SNP packet fields

The fields defined in the SNP packet to support Stash requests are:
• StashLPID.
• StashLPIDValid.
• DoNotDataPull.

See Protocol flit fields on page 12-293.

7.5.3 Supporting RSP packet field

The field defined in the RSP packet to support Stash requests is:

• DataPull.

See Protocol flit fields on page 12-293.

7.5.4 Supporting DAT packet fields

The field defined in the DAT packet to support Stash requests is:

• DataPull.

See Protocol flit fields on page 12-293.
7-230 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 8
DVM Operations

This chapter describes Distributed Virtual Memory (DVM) operations that the protocol uses to manage virtual
memory. It contains the following sections:
• DVM transaction flow on page 8-232.
• DVM Operation types on page 8-241.
• DVM Operations on page 8-244.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-231
ID080717 Non-Confidential

8 DVM Operations
8.1 DVM transaction flow
8.1 DVM transaction flow
All DVM transactions have similar requirements and are mapped to a single flow. The following sections show the
Non-sync and Sync type DVM transaction requirements:
• Non-sync type DVM transaction flow.
• Sync type DVM transaction flow on page 8-234.
• Flow control on page 8-235.
• DVMOp field value restrictions on page 8-237.
• Field value requirements on page 8-240.

8.1.1 Non-sync type DVM transaction flow

Figure 8-1 shows the steps in a Non-sync type DVM transaction.

Figure 8-1 Non-sync type DVM transaction flow

SnpDVMOp_P2

MNRN-F0 RN-F1

DVMOp(Non-sync)

SnpResp_I

RN-F2

SnpResp_I

SnpDVMOp_P1

NCBWrData

SnpDVMOp_P2

Comp

DBIDResp

SnpDVMOp_P1

Core-1

Snoop sent
to core

Core-2

NCBWrData = NonCopyBackWrData

DVMOp(Sync) can only
be sent after all prior
DVMOp transactions

receive Comp responses.
8-232 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.1 DVM transaction flow
The required steps that Figure 8-1 on page 8-232 shows are:

1. RN-F0 sends a DVMOp(Non-sync) to the MN using the appropriate write semantics for the DVMOp type.

2. The MN accepts the DVMOp(Non-sync) request and provides a DBIDResp response.

3. The RN-F0 sends an 8-byte data packet on the data channel.

4. The MN broadcasts the SnpDVMOp snoop request to all the RN-F and RN-D nodes in the system. The
SnpDVMOp is sent on the snoop channel, and requires two snoop requests. The two parts of the SnpDVMOp
are labeled by the suffix _P1 and _P2 respectively.

Note
 • Both parts of the message must carry the same Transaction ID (TxnID).

• RN must have resources available to accept the SnpDVMOp. See Flow control on page 8-235.

5. After completing the required actions, each recipient of the SnpDVMOp sends a single SnpResp response to
the MN.

Note
 Sending of a SnpResp implies that the target RN has forwarded the SnpDVMOp to the required RN structures

and has freed up the resources needed to accept another DVM operation. It does not imply that the requested
DVM operation has completed. See Sync type DVM transaction flow on page 8-234.

6. After receiving all the SnpResp responses, the MN sends a Comp response to the requesting node.

Note
 DBIDResp and Comp responses cannot be opportunistically combined for DVMOps.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-233
ID080717 Non-Confidential

8 DVM Operations
8.1 DVM transaction flow
8.1.2 Sync type DVM transaction flow

Figure 8-2 shows the flow in a Sync type DVM transaction.

Figure 8-2 Sync type DVM transaction flow

MNRN-F0 RN-F1

DVMOp(Sync)

SnpResp_I

NCBWrData

SnpDVMOp_P2

Comp

DBIDResp

SnpDVMOp_P1

Core-1

SnpResp only sent
after all DVM related

operations are
complete in the core

NCBWrData = NonCopyBackWrData
8-234 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.1 DVM transaction flow
The required steps that Figure 8-2 on page 8-234 shows are:

1. RN-F0 sends a DVMOp(Sync) to the MN.

Note
 All previous DVMOp requests whose completion needs to be guaranteed by the DVMOp(Sync) must have

received a Comp response before the RN can send a DVMOp(Sync).

2. The MN accepts the DVMOp(Sync) request and sends a DBIDResp response to the Requester.

3. The RN-F0 sends a data packet on the data channel with a data size of 8 bytes.

4. The MN sends the SnpDVMOp to RN-F1. The SnpDVMOp is sent on the snoop channel, and requires two
snoop requests. The two parts of a SnpDVMOp are labeled by the suffix _P1 and _P2 respectively.

5. After completing the DVM Sync operation, RN-F1 sends a SnpResp response to the MN.

Note
 Sending of a SnpResp implies that all DVM related operations have completed at the RN structures and the

target RN has freed up the resources needed to accept another SnpDVMOp.

6. After receiving the SnpResp, the MN sends a Comp response to RN-F0.

8.1.3 Flow control

DVMOp request flow control:

• A DVMOp can receive a RetryAck response from an MN.

• A DVMOp that receives a RetryAck response must wait for a PCrdGrant response from the MN that has the
appropriate PCrdType.

• All previous DVMOp requests whose completion needs to be guaranteed by the DVMOp(Sync) must have
received a Comp response before the RN can send the DVMOp(Sync).

• An MN must have sufficient resources to accept all DVMOp(Sync) in the system and still have resources to
accept at least one DVMOp(Non-sync) request.

• It is permitted to overlap a DVMOp(Non-sync) and a DVMOp(Sync), from the same RN, if the
DVMOp(Sync) is not required to guarantee completion of the DMVOp(Non-sync).

SnpDVMOp flow control:

• Each SnpDVMOp transaction requires two SnpDVMOp request packets.

• Both SnpDVMOp request packets corresponding to a single transaction must use the same TxnID.

• The two SnpDVMOp request packets corresponding to a single transaction can be sent or received in any
order.

• Multiple SnpDVMOp(Non-sync) transactions can be outstanding from an MN.

• Only one SnpDVMOp(Sync) transaction can be outstanding from an MN to an RN.

• To prevent deadlocks, due to the two part SnpDVMOp requests that uses the snoop channel, a SnpDVMOp
transaction must only be sent when the receiving RN has pre-allocated resources to accept both parts of the
SnpDVMOp transaction.

• An RN must provide a response to a SnpDVMOp transaction only after it has received both SnpDVMOp
request packets corresponding to that transaction.

• An RN must provide a response to a SnpDVMOp only when it can accept a further SnpDVMOp from an MN.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-235
ID080717 Non-Confidential

8 DVM Operations
8.1 DVM transaction flow
• Each RN-F and RN-D in the system specifies the number of SnpDVMOp transactions it can accept
concurrently.

• Each RN-F and RN-D in the system must be able to accept at least one SnpDVMOp(Non-Sync) transaction
in addition to a SnpDVMOp(Sync) transaction.

• The minimum number of SnpDVMOp transactions that must be accepted concurrently is two. This is the
default number for RNs that do not specify a number.
8-236 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.1 DVM transaction flow
8.1.4 DVMOp field value restrictions

Table 8-1 shows the Request, Data, Snoop, and Response message field value restrictions during a DVMOp
transaction.

Table 8-1 DVMOp transaction field value restrictions

Message type Field Restriction

Request QoS None. Can be any value.

TgtID Expected to be node ID of MN. Can be remapped to correct TgtID by the
interconnect.

SrcID Source ID of the Requester that initiated the DVM message.

TxnID An ID generated by the Requester. Must follow the same rules as any other
transaction.

ReturnNID
StashNID

Must be 0b0000000…

StashNIDValid
Endian

Must be zero.

ReturnTxnID
StashLPIDValid
StashLPID

Must be 0b00000000.

Opcode Must be DVMOp.

Size Must be 8-byte.

Addr See DVM Operations on page 8-244.

NS Must be zero.

LikelyShared Must be zero.

AllowRetry Can be any value, because a DVMOp can be given a Retry.

Order Must be 0b00.

PCrdType Must be 0b0000 if AllowRetry is asserted, otherwise the credit type value.

Allocate Must be zero.

Cacheable Must be zero.

Device Must be zero.

EWA Must be zero.

SnpAttr Must be zero.

LPID None. Don’t Care.

Excl
SnoopMe

Must be zero.

ExpCompAck Must be zero.

TraceTag None.

RSVDC None. Don’t Care.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-237
ID080717 Non-Confidential

8 DVM Operations
8.1 DVM transaction flow
Data QoS None. Can be any value.

TgtID Must be the same as SrcID returned in the DBIDResp response.

SrcID Must be ID of the original Requester.

TxnID Must be the same as DBID of the DBIDResp response.

HomeNID Must be 0b0000000…

Opcode Must be NonCopyBackWriteData.

RespErr Must be 0b00.

Resp Must be 0b000.

FwdState
DataPull
DataSource

Must be 0b000.

DBID None. Don’t Care.

CCID Must be 0b00.

DataID Must be 0b00.

TraceTag None.

BE Only BE[7:0] must be asserted.

Data Unused bits must be zero for Data[63:0] and Data[n:64] = Don’t Care.

DataCheck Must be the appropriate value for the Data field.

Poison None. Can take any value.

SnpDVMOp QoS None. Can be any value.

SrcID Must be node ID of MN.

TxnID An ID generated by MN.

FwdNID Must be 0b0000000…

VMIDExt Must be used for VMID Extension.

Opcode Must be SnpDVMOp.

Addr See DVM Operations on page 8-244.

NS Must be zero.

DoNotGoToSD
DoNotDataPull

Must be zero.

RetToSrc Must be zero.

TraceTag None.

Table 8-1 DVMOp transaction field value restrictions (continued)

Message type Field Restriction
8-238 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.1 DVM transaction flow
Response RetryAck QoS None. Can be any value.

TgtID Must be ID of the original Requester.

SrcID Must be ID of the MN that is handling DVMs.

TxnID Must match TxnID of the original request.

Opcode Must be RetryAck.

RespErr Must be 0b00.

Resp Must be 0b000.

FwdState
DataPull

Must be zero.

DBID None. Don’t Care.

PCrdType None. Can be any value.

TraceTag None.

DBIDResp QoS None. Can be any value.

TgtID Must be ID of the original Requester.

SrcID Must be ID of the MN that is handling DVMs.

TxnID Must match TxnID of the original request.

Opcode Must be DBIDResp.

RespErr Must be 0b00.

Resp Must be 0b000.

FwdState
DataPull

Must be zero.

DBID Generated by the MN that is handling DVMOps.

PCrdType Must be 0b0000.

TraceTag None.

SnpResp QoS None. Can be any value.

TgtID Must be ID of the MN that is handling DVMOps.

SrcID Must be ID of the node that is responding to the snoop.

TxnID Must match the TxnID of the SnpDVMOp snoop request.

Opcode Must be SnpResp.

RespErr Must be 0b00 or 0b11.

Resp Must be 0b000.

FwdState
DataPull

Must be zero.

Table 8-1 DVMOp transaction field value restrictions (continued)

Message type Field Restriction
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-239
ID080717 Non-Confidential

8 DVM Operations
8.1 DVM transaction flow
8.1.5 Field value requirements

Both SnpDVMOp request packets, corresponding to a single DVMOp, must have the same value in the following
fields:
• TxnID
• Opcode
• SrcID
• TgtID

Response SnpResp DBID None. Don’t Care.

TraceTag None.

PCrdType Must be 0b0000.

Comp QoS None. Can be any value.

TgtID Must be ID of the original Requester

SrcID Must be ID of the MN that is handling DVMs.

TxnID Must match TxnID of the original request.

Opcode Must be Comp.

RespErr Must be 0b00 or 0b11.

Resp Must be 0b000.

FwdState
DataPull

Must be zero.

DBID Generated by the MN that is handling DVMs.

PCrdType Must be 0b0000.

TraceTag None.

Table 8-1 DVMOp transaction field value restrictions (continued)

Message type Field Restriction
8-240 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.2 DVM Operation types
8.2 DVM Operation types
The following DVM Operations are supported:
• TLB Invalidate.
• Branch Predictor Invalidate.
• Instruction Cache Invalidate:

— Physical address invalidate.
— Virtual address invalidate.

• Synchronization.

8.2.1 DVMOp payload

The payload of a DVM operation from the RN to the MN is distributed within:
• The address field in the DVM request from the RN.
• The lower 8 bytes of write data in the NonCopyBackWrData packet.

The payload of a DVM operation from the MN to the RN is distributed over two SnpDVMOp request packets using
the address fields.

The various fields in the payload and their encodings are shown in Table 8-2.

Table 8-2 DVMOp fields and encodings

Field Bits Function

VA Valid 1 0b1 indicates that the specified address is valid

VMID Valid 1 0b1 indicates that the Virtual Machine IDentifier (VMID) or Virtual Index (VI) is valid

ASID Valid 1 0b1 indicates that the Address Space IDentifier (ASID) or VI is valid

Security 2 Indicates that the transaction applies to:
0b00 Secure and Non-secure
0b01 Reserved
0b10 Secure
0b11 Non-secure

Exception Level 2 Indicates that the transaction applies to:
0b00 Hypervisor and all Guest OS
0b01 EL3a

0b10 Guest OS
0b11 Hypervisor

DVMOp type 3 Indicates the DVM operation type as:
0b000 TLB Invalidate
0b001 Branch Predictor Invalidate
0b010 Physical Instruction Cache Invalidate
0b011 Virtual Instruction Cache Invalidate
0b100 Synchronization
0b101-0b111 Reserved

VMID 8 Virtual Machine ID VMID[7:0] or Virtual Index VA[27:20]

ASID 16 Address Space ID or Virtual Index VA[19:12]b
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-241
ID080717 Non-Confidential

8 DVM Operations
8.2 DVM Operation types
8.2.2 DVMOp and SnpDVMOp packet

Table 8-3 on page 8-243 shows the distribution of the payload in the DVMOp request from the RN, using 8-byte
write semantics, and the distribution of the payload in the SnpDVMOp requests from the MN.

In the DVMOp, the combination of the address field in the request and the 8-byte write data transports the complete
payload. Addr[3] is not used in the request and must be set to zero.

In the two SnpDVMOp requests the combination of the two address fields transports the complete payload. Addr[3]
is used in a SnpDVMOp request to indicate which part of the payload is being transported.

The valid combinations of Maximum PA (MPA) and Maximum VA (MVA) address bits are:
• MPA = 44 : MVA = 49.
• MPA = 45 : MVA = 51.
• MPA = 46 to 52 : MVA = 53.

Note
 In Table 8-3 on page 8-243, the number given shows which Address or Data bit is replaced by the DVMOp field.

For example, the VA Valid field is placed in the same position that Addr[4] normally occupies. In a Request packet,
this would be the fifth bit position in the Addr field, but in a Snoop packet it would be the second bit position because
the Snoop packet does not include the three least significant address bits.

Also, PA[6] is placed in the same position that Data[4] normally occupies in a write data packet, and in the same
position that Addr[4] normally occupies in a Snoop packet. PA[6] is provided in the Part 2 Snoop packet, while VA
Valid is provided in the Part 1 Snoop packet.

S2-S1 Staged Invalidation 2 Indicates Stage 2 or Stage 1 invalidation:
0b00 Used for all DVMv7 transactions. For DVMv8 transactions, used for both

Stage 1 and stage 2 invalidations.
0b01 Stage 1 invalidation only.
0b10 Stage 2 invalidation only.
0b11 Reserved.

Leaf Entry Invalidation 1 0b1 indicates that only leaf level translation invalidation is required

VA or
PA

49 to 53
44 to 52

Virtual address
Physical address

VMIDExt 8 Virtual Machine ID VMID[15:8]

a. DVMv8 only.
b. When used as Virtual Index, the upper 8-bits of ASID are Don’t Care.

Table 8-2 DVMOp fields and encodings (continued)

Field Bits Function
8-242 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.2 DVM Operation types
Table 8-3 DVMOp and SnpDVMOp request payloads using a 49-bit VA and 44-bit PA

Field Bits Request Data Snoop Notes

Addr Data Addr

Part 1 Part 2

Part Num 1 [3] - [3] [3] Must be 0b0 for the Request
and Snoop Part 1.
Must be 0b1 for Snoop Part 2.

VA Valid 1 [4] - [4] - -

VMID Valid 1 [5] - [5] - -

ASID Valid 1 [6] - [6] - -

Security 2 [8:7] - [8:7] - -

Exception Level 2 [10:9] - [10:9] - -

DVMOp type 3 [13:11] - [13:11] - -

VMID[7:0] 8 [21:14] - [21:14] - For VMID[15:8], see below.

ASID 16 [37:22] - [37:22] - -

S2-S1 Staged Invalidation 2 [39:38] - [39:38] - -

Leaf Entry Invalidation 1 [40] - [40] - -

PA[(MPA-1):6] (MPA-6) - [(MPA-3):4] - [(MPA-3):4] -

VA bits when REQ Addr width = 44 bits

VA[45:6]
VA[48:46]

40
3

-
-

[43:4]
[46:44]

-
[43:41]

[43:4]
-

Either VA or PA are used not
both.

Additional VA bits where REQ Addr = 45 bits

VA[49]
VA[50]

1
1

-
-

[47]
[48]

-
[44]

[44]
-

Either VA or PA are used not
both.

Additional VA bits where REQ Addr = 46 to 52 bits

VA[51]
VA[52]

1
1

-
-

[49]
[50]

-
[45]

[45]
-

Either VA or PA are used not
both.

VMID[15:8] 8 - [63:56] VMIDext - VMIDExt is a separate field
outside of the Addr field. See
Table 8-2 on page 8-241.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-243
ID080717 Non-Confidential

8 DVM Operations
8.3 DVM Operations
8.3 DVM Operations
This section describes the supported DVM Operations:
• TLB Invalidate on page 8-245.
• Branch Predictor Invalidate on page 8-246.
• Physical Instruction Cache Invalidate on page 8-248.
• Virtual Instruction Cache Invalidate on page 8-249.
• Synchronization on page 8-250.

Table 8-4 shows the values for the Part Num field in all supported DVM Operations.

Table 8-4 Part Num field values

Addr Value Status

Bit Field Request Snoop

Part 1 Part 2

[3] Part Num 0b0 0b0 0b1 Not utilized in the Request, must be
set to zero.
8-244 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.3 DVM Operations
8.3.1 TLB Invalidate

Table 8-5 shows the supported TLB Invalidate operations.

Table 8-5 TLB Invalidate operations

Addr Operation

[13:11]
DVMOp type

[10:9]
Exception
Level

[8:7]
Secure

[6]
ASID
valid

[5]
VMID
valid

[40]
LEAF

[39:38]
S2-S1

[4]
VA
valid

0b000

TLBI
0b10

All Guest OS
0b10

Secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
Secure TLB Invalidate all

0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
Secure TLB Invalidate by VA

0b0

Ignore
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
Secure TLB Invalidate by VA
Leaf Entry only

0b1

Match
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
Secure TLB Invalidate by
ASID

0b1

Match
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
Secure TLB Invalidate by
ASID and VA

0b1

Match
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
Secure TLB Invalidate by
ASID and VA Leaf Entry only

0b10

All Guest OS
0b11

Non-secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
All Guest OS TLB Invalidate
all

0b0

Ignore
0b1

Match
0b0

Ignore
0b01

S1
0b0

Ignore
Guest OS TLB Invalidate all
Stage 1 invalidation only

0b0

Ignore
0b1

Match
0b0

Ignore
0b00a 0b0

Ignore
Guest OS TLB Invalidate all
ARMv7 must carry out Stage
1 and 2 invalidation

0b0

Ignore
0b1

Match
0b0

Ignore
0b00a 0b1

Match
Guest OS TLB Invalidate by
VA

0b0

Ignore
0b1

Match
0b1

Leaf
0b00a 0b1

Match
Guest OS TLB Invalidate by
VA Leaf Entry only

0b1

Match
0b1

Match
0b0

Ignore
0b00a 0b0

Ignore
Guest OS TLB Invalidate by
ASID

0b1

Match
0b1

Match
0b0

Ignore
0b00a 0b1

Match
Guest OS TLB Invalidate by
ASID and VA

0b1

Match
0b1

Match
0b1

Leaf
0b00a 0b1

Match
Guest OS TLB Invalidate by
ASID and VA Leaf Entry only

0b0

Ignore
0b1

Match
0b0

Ignore
0b10

S2
0b1

IPAb

Guest OS TLB Invalidate by
IPA

0b0

Ignore
0b1

Match
0b1

Leaf
0b10

S2
0b1

IPAb

Guest OS TLB Invalidate by
IPA Leaf Entry only
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-245
ID080717 Non-Confidential

8 DVM Operations
8.3 DVM Operations
8.3.2 Branch Predictor Invalidate

This section shows the Branch Predictor Invalidate operations.

Table 8-6 shows the fixed value fields in the Branch Predictor Invalidate operation.

0b000

TLBI
0b11

Hypervisor
0b11

Non-secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
Hypervisor TLB Invalidate all

0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
Hypervisor TLB Invalidate by
VA

0b0

Ignore
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
Hypervisor TLB Invalidate by
VA Leaf Entry only

0b1

Match
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
Hypervisor TLB Invalidate by
ASID

0b1

Match
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
Hypervisor TLB Invalidate by
ASID and VA

0b1

Match
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
Hypervisor TLB Invalidate by
ASID and VA Leaf Entry only

0b01

EL3
0b10

Secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b1

Match
EL3 TLB Invalidate by VA

0b0

Ignore
0b0

Ignore
0b1

Leaf
0b00a 0b1

Match
EL3 TLB Invalidate by VA
Leaf Entry only

0b0

Ignore
0b0

Ignore
0b0

Ignore
0b00a 0b0

Ignore
EL3 TLB Invalidate All

a. All DVMv7 transactions must use 0b00.
b. IPA is the Intermediate Physical Address. The IPA is sent using the same format as the Virtual Address (VA).

Table 8-5 TLB Invalidate operations (continued)

Addr Operation

[13:11]
DVMOp type

[10:9]
Exception
Level

[8:7]
Secure

[6]
ASID
valid

[5]
VMID
valid

[40]
LEAF

[39:38]
S2-S1

[4]
VA
valid

Table 8-6 Branch Predictor Invalidate operation fixed values

Addr Value Status

Bits Field

[3] Part Num - See Table 8-4 on page 8-244

[5] VMID Valid 0b0 VMID field not valid

[6] ASID Valid 0b0 ASID field not valid

[8:7] Secure 0b00 Applies to both secure and Non-secure

[10:9] Exception Level 0b00 Applies to all Guest OS and Hypervisor

[21:14] VMID 0xXX VMID not specified
8-246 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.3 DVM Operations
Note
 The use of Branch Predictor Invalidate with a 16-bit ASID is not supported.

Table 8-7 shows the operations supported by Branch Predictor Invalidate.

[37:22] ASID 0xXXXX ASID not specified

[39:38] S2, S1 Staged Invalidation 0b00 Reserved, set to Zero

[40] Leaf Entry Invalidation 0b0 Reserved, set to Zero

Table 8-7 Branch Predictor Invalidate operations

Addr Operation

[13:11]
DVMOp type

[4]
VA valid

0b001 0b0

Ignore
Branch Predictor Invalidate all

0b1

Match
Branch Predictor Invalidate by VA

Table 8-6 Branch Predictor Invalidate operation fixed values (continued)

Addr Value Status

Bits Field
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-247
ID080717 Non-Confidential

8 DVM Operations
8.3 DVM Operations
8.3.3 Physical Instruction Cache Invalidate

This section shows the Physical Instruction Cache Invalidate operations.

Table 8-8 shows the fixed value fields in the Physical Instruction Cache Invalidate operation.

Table 8-9 shows the operations supported by Physical Instruction Cache Invalidate.

Note
 When Virtual Index is 0b11, then VA[19:12] and VA[27:20], at Addr[29:22] and Addr[21:14] respectively, are used
as part of the Physical Address. Addr[37:30] are not used, and are Don’t Care values.

Table 8-8 Physical Instruction Cache Invalidate operation fixed values

Addr Value Status

Bits Field

[3] Part Num - See Table 8-4 on page 8-244

[10:9] Exception Level 0b00 Applies to all Guest OS and Hypervisor

[39:38] S2, S1 Staged Invalidation 0b00 Reserved, set to zero

[40] Leaf Entry Invalidation 0b0 Reserved, set to zero

Table 8-9 Physical Instruction Cache Invalidate operations

[13:11]
DVMOp type

[8:7]
Secure

[6:5]
Virtual Index

[4]
VA

Operation

0b010

PICI
0b10

Secure
0b00 0b0

Ignore
Secure Physical Address Cache Invalidate all

0b00 0b1

Match
Secure Physical Address Cache Invalidate by PA without Virtual Index

0b11 0b1

Match
Secure Physical Address Cache Invalidate by PA with Virtual Index

0b11

Non-secure
0b00 0b0

Ignore
Non-secure Physical Address Cache Invalidate all

0b00 0b1

Match
Non-secure Physical Address Cache Invalidate by PA without Virtual
Index

0b11 0b1

Match
Non-secure Physical Address Cache Invalidate by PA with Virtual
Index
8-248 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

8 DVM Operations
8.3 DVM Operations
8.3.4 Virtual Instruction Cache Invalidate

This section shows the Virtual Instruction Cache Invalidate operations.

Table 8-10 shows the fixed value fields in the Virtual Instruction Cache Invalidate operation.

Table 8-11 shows the operations supported by Virtual Instruction Cache Invalidate.

Table 8-10 Virtual Instruction Cache Invalidate operation fixed values

Addr Value Status

Bits Field

[3] Part Num - See Table 8-4 on page 8-244

[39:38] S2, S1 Staged Invalidation 0b00 Reserved. set to zero

[40] Leaf Entry Invalidation 0b0 Reserved, set to zero

Table 8-11 Virtual Instruction Cache Invalidate operations

Addr Operation

[13:11]
DVMOp type

[10:9]
Exception
Level

[8:7]
Secure

[6]
ASID
valid

[5]
VMID
valid

[4]
VA
valid

0b011

VICI
0b00

Hypervisor and
all Guest OS

0b00

Secure and
Non-secure

0b0

Ignore
0b0

Ignore
0b0

Ignore
Invalidate all. Applies to Secure and Non-secure.
Applies to Hypervisor and all Guest OS.

0b11

Non-secure
0b0

Ignore
0b0

Ignore
0b0

Ignore
Invalidate all. Applies to Non-secure. Applies to
Hypervisor and all Guest OS.

0b10

Guest OS
0b10

Secure
0b1

Match
0b0

Ignore
0b1

Match
Secure Invalidate by ASID and VA.

0b11

Non-secure
0b0

Ignore
0b1

Match
0b0

Ignore
Guest OS, Invalidate all.

0b1

Match
0b1

Match
0b1

Match
Guest OS, Invalidate by ASID and VA.

0b11

Hypervisor
0b11

Non-secure
0b0

Ignore
0b0

Ignore
0b1

Match
Hypervisor, Invalidate by VA.

0b1

Match
0b0

Ignore
0b1

Match
Hypervisor, Invalidate by ASID and VA
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 8-249
ID080717 Non-Confidential

8 DVM Operations
8.3 DVM Operations
8.3.5 Synchronization

This section shows the DVMSync Operation.

Table 8-12 shows the fixed value fields in the Sync operation.

Table 8-12 Sync operation fixed values

Addr Value Status

Bits Field

[3] Part Num - See Table 8-4 on page 8-244

[4] VA Valid 0b0 Not applicable

[5] VMID Valid 0b0 Ignore VMID

[6] ASID Valid 0b0 Ignore ASID

[8:7] Secure 0b00 Applies to both Secure and Non-secure

[10:9] Exception Level 0b00 Applies to all Guest OS and Hypervisor

[13:11] DVMOp type 0b100 Synchronization message

[21:14] VMID 0xXX VMID not specified

[37:22] ASID 0xXXXX ASID not specified

[39:38] S2, S1 Staged Invalidation 0b00 Set to zero

[40] Leaf Entry Invalidation 0b0 Set to zero
8-250 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 9
Error Handling

This chapter describes the error handling requirements. It contains the following sections:
• Error types on page 9-252.
• Error response fields on page 9-253.
• Errors and transaction structure on page 9-254.
• Error response use by transaction type on page 9-255.
• Poison on page 9-261.
• Data Check on page 9-262.
• Interoperability and Poison and DataCheck on page 9-263.
• Hardware and software error categories on page 9-264.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 9-251
ID080717 Non-Confidential

9 Error Handling
9.1 Error types
9.1 Error types
This specification supports two types of error reporting at sub packet level, and two types of error reporting at packet
level.

The packet level error reporting types are:

Data Error Used when the correct address location has been accessed, but an error is detected within
the data. Typically, this is used when data corruption has been detected by ECC or a parity
check.

Data Error reporting is supported by the RespErr, Poison, and DataCheck fields in the DAT
packet.

Non-data Error Used when an error is detected that is not related to data corruption. This specification does
not define all cases when this error type is reported. Typically, this error type is reported for:
• An attempt to access a location that does not exist.
• An illegal access, such as a write to a read only location.
• An attempt to use a transaction type that is not supported.

Non-data Error reporting is supported by the RespErr field in the RSP and DAT packets.
9-252 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

9 Error Handling
9.2 Error response fields
9.2 Error response fields
The RespErr field is used to indicate error conditions. The RespErr field is included in both response and data
packets.

Table 9-1 shows the encoding of the RespErr field. See Responses to exclusive requests on page 6-219 for more
details on the Exclusive Okay response.

A single transaction is not permitted to mix OK and EXOK responses.

The mixing of OK, DERR, and NDERR responses within a single transaction is permitted.

The mixing of EXOK, DERR and NDERR responses within a single transaction is permitted.

Table 9-1 Error response field encodings

RespErr[1:0] Name Description

0b00 OK Okay. Indicates that a Non-exclusive access has been successful.
Also used to indicate an Exclusive access failure.

0b01 EXOK Exclusive Okay. Indicates that either the read or write portion of an
Exclusive access has been successful.

0b10 DERR Data Error.

0b11 NDERR Non-data Error.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 9-253
ID080717 Non-Confidential

9 Error Handling
9.3 Errors and transaction structure
9.3 Errors and transaction structure
All transactions must complete in a protocol compliant manner, even if they include an error response.

Error handling for a transaction that utilizes DMT is the same as the error handling for the same request without
DMT.

Because there is no mechanism to propagate errors on requests or snoops, a request must not use DMT or DCT if
an error is detected at the interconnect.

If the transaction contains data packets then the source of the data packets is required to send the correct number of
packets, but the data values are not required to be valid.

The Resp field gives the cache states associated with a transaction and can be influenced by an error condition. See
Response types on page 4-146 for more details on the legal Resp field values. If a response to a transaction does not
have a legal cache state, then the RespErr field must indicate a Non-data Error for all data packets.

The Resp field in a response must have the same value for every packet of a data message regardless of whether or
not there is an error condition.
9-254 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

9 Error Handling
9.4 Error response use by transaction type
9.4 Error response use by transaction type
This section defines the permitted use of the error fields for each transaction type.

The tables that follow show the Data and Response packets associated with the following transaction types:
• Read Transactions.
• Dataless transactions.
• Write transactions on page 9-256.
• Atomic transactions on page 9-257.
• Other transactions on page 9-258.
• Cache Stashing transactions on page 9-259.
• Snoop transactions on page 9-259.

The following keys are used by the tables:
OK The RespErr field must contain the OK RespErr value of 0b00.
Y This value of RespErr is permitted.
N This value of RespErr is not permitted.
- Data or Response packet is not used for this transaction type.

9.4.1 Read Transactions

Read transactions can contain multiple CompData data packets. Each data packet can use a different error type, as
indicated by Table 9-2, with the restriction that a single transaction cannot mix OK and EXOK responses.

9.4.2 Dataless transactions

A Data Error can be reported for a Dataless transaction when the processing of the transaction by another component
encounters a data corruption error. This data error can be indicated back to the originating component, even though
a transfer of data does not occur.

Table 9-2 Read transaction packets legal RespErr field values

Read transaction Associated Data and Response packets

Read Receipt CompData CompAck

OK EXOK DERR NDERR

ReadNoSnp OK Y Y Y Y OK

ReadOnce
ReadOnceCleanInvalid
ReadOnceMakeInvalid

OK Y N Y Y OK

ReadClean
ReadNotSharedDirty
ReadShared

- Y Y Y Y OK

ReadUnique - Y N Y Y OK
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 9-255
ID080717 Non-Confidential

9 Error Handling
9.4 Error response use by transaction type
Table 9-3 shows the Dataless transaction packets legal RespErr field values.

9.4.3 Write transactions

A Write transaction can include either a Non-data Error or a Data Error. Errors can be signalled in both directions,
from the Requester to the Completer, and from the Completer back to the Requester.

For a Write transaction an error can be signalled from the Completer back to the Requester using either the
combined CompDBIDResp or using the Comp response. It is permitted for the Completer to signal an error even
before it has observed the WriteData for the transaction and this can occur when the processing of the transaction,
such as the cache lookup, encounters a data corruption error.

Table 9-4 shows the Write transaction response packets legal RespErr field values.

A Requester that detects an error in the write data to be sent can include an error indication with the write data
packet. This indicates that the data value is known to be corrupt.

Table 9-3 Dataless transaction packets legal RespErr field values

Dataless transaction Associated Response packets

Comp CompAck

OK EXOK DERR NDERR

CleanUnique Y Y Y Y OK

MakeUnique Y N Y Y OK

CleanShared
CleanSharedPersist
CleanInvalid
MakeInvalid

Y N Y Y -

Evict Y N N Y -

StashOnceUnique
StashOnceShared

Y N Y Y -

Table 9-4 Write transaction response packets legal RespErr field values

Write transaction Associated Response packets

DBIDResp Comp CompDBIDResp CompAck

OK EXOK DERR NDERR OK EXOK DERR NDERR

WriteNoSnp OK Y Y Y Y Y Y Y Y -

WriteUnique OK Y N Y Y Y N Y Y OK

WriteBack
WriteClean
WriteEvictFull

- - - - - Y N Y Y -
9-256 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

9 Error Handling
9.4 Error response use by transaction type
Table 9-5 shows the Write transaction data packets legal RespErr field values.

9.4.4 Atomic transactions

It is permitted for a Completer to give a Comp response before it has received all the write data associated with a
transaction and has performed the required operation. This behavior is not compatible with a component that wants
to signal a data error associated with the write data, and such components must use a delayed form of Comp or
CompData response.

A Data Error or Non-data Error can be signaled at the following points within a transaction:
• With the DBIDResp response, before write data is sent.
• With the CompDBIDResp response, before write data is sent.
• For an AtomicStore transaction, with the Comp response.
• For an AtomicLoad, AtomicSwap, and AtomicCompare transaction, with the CompData response.

For Atomic transactions that are not able to complete, a Non-data Error must be used. The transaction structure,
including all write data transfers, read data transfers, and other responses must still take place.

There is no need to specify an error associated with the execution of an atomic operation, such as overflow. All
atomic operations are fully specified for all input combinations.

A transaction includes both outbound and inbound data, but only has a single Error field. For Atomic transactions
it is permitted for the Error field to indicate an error on either write data or read data. There is no mechanism
supported within the transaction to differentiate between the potential different causes of an error. A fault log, or a
similar structure, might be able to provide such information, but this is not a requirement of this specification.

The permitted RespErr values in Atomic transactions are an amalgamation of those permitted in Read and Write
transactions.

A Data Error can vary between data packets.

Table 9-5 Write transaction data packets legal RespErr field values

Write transaction Associated data packets

WriteData

OK EXOK DERR NDERR

WriteNoSnp Y N Y N

WriteUnique Y N Y N

WriteBack
WriteClean
WriteEvictFull

Y N Y N
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 9-257
ID080717 Non-Confidential

9 Error Handling
9.4 Error response use by transaction type
Table 9-6 shows the Atomic transaction response packets legal RespErr field values

Table 9-7 shows the Atomic transaction data packets legal RespErr field values.

9.4.5 Other transactions

This section describes the error handling requirements for the DVMOp and PrefetchTgt transactions.

DVMOp

A DVMOp transaction can include a Non-data Error in the Comp response. The interconnect must consolidate error
responses from all the snoop responses for a DVMOp and include a single error response in the final Comp message
to the Requester. The DBIDResp packet must only use the OK response. Even though the Sender of a WriteData
response might not use DERR, the packet can be marked as DERR if it encounters errors during transmission. See
Interoperability and Poison and DataCheck on page 9-263.

Table 9-8 shows the DVM transaction packets legal RespErr field values.

Table 9-6 Atomic transaction response packets legal RespErr field values

Atomic transaction Associated response packets

DBIDResp Comp CompDBIDResp

OK EXOK DERR NDERR OK EXOK DERR NDERR

AtomicStore OK Y N Y Y Y N Y Y

AtomicLoad
AtomicSwap
AtomicCompare

OK Y N Y Y - - - -

Table 9-7 Atomic transaction data packets legal RespErr field values

Atomic transaction Associated response packets

WriteData CompData

OK EXOK DERR NDERR OK EXOK DERR NDERR

AtomicStore Y N Y N - - - -

AtomicLoad
AtomicSwap
AtomicCompare

Y N Y N Y N Y Y

Table 9-8 DVM transaction packets legal RespErr field values

DVM transaction Associated response and data packets

DBIDResp NCBWrData Comp

OK EXOK DERR NDERR OK EXOK DERR NDERR

DVMOp OK Y N Y N Y N Y Y
9-258 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

9 Error Handling
9.4 Error response use by transaction type
PrefetchTgt

A PrefetchTgt transaction request to a non-supporting address must be discarded.

Note
 A component is permitted to record and report such an error.

9.4.6 Cache Stashing transactions

If the specified stash target does not support receiving Stash type snoops then Home must disregard the Stash hint
and complete the transaction without Stashing. Examples of such Stash targets are RN-I, RN-D, legacy RN-F or a
Non-request node. In these circumstances, Home must not signal an error to the Requester. Such a wrongly specified
Stash target can be attributed to a software based error.

If the Home does not support Stash requests, it must complete the transaction in a protocol-compliant manner
without signaling an error.

9.4.7 Snoop transactions

A snoop transaction response that includes data can indicate a Data Error. A Snoop transaction response that
includes data can mix Okay and Data Error responses for different packets within the transaction. A snoop
transaction response that does not include data can indicate a Non-data Error.

Table 9-9 shows the Snoop request response packets legal RespErr field values.

A DERR in response to the Data Pull request is not expected to be transferred to the Comp response to the Stash
request.

Table 9-9 Snoop request response packets legal RespErr field values

Snoop Transaction Associated Data and Response packets

SnpResp SnpRespData

OK EXOK DERR NDERR OK EXOK DERR NDERR

SnpOnce
SnpClean
SnpNotSharedDirty
SnpShared
SnpUnique
SnpUniqueStash
SnpCleanShared
SnpCleanInvalid

Y N N Y Y N Y N

SnpStashUnique
SnpStashShared
SnpMakeInvalid
SnpMakeInvalidStash
SnpDVMOp

Y N N Y - - - -
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 9-259
ID080717 Non-Confidential

9 Error Handling
9.4 Error response use by transaction type
A fowarding Snoop transaction can include an error indication similar to those in a snoop as well as in a completion
with data from the Snoopee to the Requester. When simultaneously forwarding data to the Requester and returning
Data to Home, it is permitted for only one response to include an indication of a Data Error if the other response did
not encounter the error.

The Non-data Error in SnpRespFwded is permitted to include the case where the error is detected after the data is
forwarded to the Requester but before the response is sent to Home. FwdState in the SnpRespFwded response with
Non-data Error must be the RESP state in the CompData to the Requester.

Table 9-10 shows the forward Snoop response packets legal RespErr field values.

Table 9-11 shows the forward snoop Data response packets legal RespErr field values.

Table 9-10 Forward Snoop response packets legal RespErr field values

Snoop transaction Associated Response packets

SnpResp SnpRespFwded

OK EXOK DERR NDERR OK EXOK DERR NDERR

SnpOnceFwd
SnpCleanFwd
SnpNotSharedDirtyFwd
SnpSharedFwd
SnpUniqueFwd

Y N N Y Y N Y Y

Table 9-11 Forward snoop Data response packets legal RespErr field values

Snoop transaction Associated Data packets

SnpRespData
SnpRespDataFwded

CompData

OK EXOK DERR NDERR OK EXOK DERR NDERR

SnpOnceFwd
SnpCleanFwd
SnpNotSharedDirtyFwd
SnpSharedFwd
SnpUniqueFwd

Y N Y N Y N Y N
9-260 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

9 Error Handling
9.5 Poison
9.5 Poison
The Poison bit is used to indicate that a set of data bytes have previously been corrupted. Passing the Poison bit
alongside the data in the DAT packet permits any future user of the data to be notified that the data might be corrupt.

When Poison is supported:
• The DAT packet includes one Poison bit per 64 bits of data.
• Data marked as poisoned:

— Must not be utilized by any master.
— Is permitted to be stored in caches and memory if marked as poisoned.

• The Poison value, once set, must be propagated along with the data.
• When a Poison error is detected, it is permitted to over poison the data.

Poison must be accurate if there are any valid bytes in the 64-bit chunk, which is Poison granularity, Otherwise, the
Poison bit it is a Don’t Care, that is, when all 8 bytes in the 64-bit chunk are invalid, then it is a Don’t Care.

A Data_Poison property is used to indicate if a component supports Poison.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 9-261
ID080717 Non-Confidential

9 Error Handling
9.6 Data Check
9.6 Data Check
The DataCheck field is used to detect data errors in the DAT packet.

When Data Check is supported:
• The DAT packet carries eight Data Check bits per 64 bits of data.
• The Data Check bit is a parity bit that generates Odd Byte parity.

The Data_Check property is used to indicate if Data Check is supported.
9-262 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

9 Error Handling
9.7 Interoperability and Poison and DataCheck
9.7 Interoperability and Poison and DataCheck
If the recipient of a Data packet does not support the Poison and DataCheck features then the interconnect must
enumerate and convert, as necessary, the Poison and Data Check error responses to a Data Error in the DAT packet.

If support for the Poison and DataCheck features is not similar across an interface, then the following rules apply:
• Poison must be mapped to DataCheck or DERR if Poison is not supported across the interface. At such an

interface, Poison is expected but not required to be mapped to DataCheck instead of DERR, if DataCheck is
supported.
When converting from Poison to DataCheck, when an 8-byte chunk is marked as Poisoned, all 8 bits of
DataCheck corresponding to that chunk must be manipulated to generate a parity error.

• DataCheck must be mapped to Poison or DERR if DataCheck is not supported across the interface. At such
an interface, DataCheck is expected but not required to be mapped to Poison instead of DERR, if Poison is
supported.
When converting from DataCheck to Poison, if one or more DataCheck bits in a given 8-byte chunk generates
a parity error, then the Poison bit corresponding to that chunk must be set.

Note
 The difference between the handling of Poison and DERR is that a Poison error in a received Data packet is typically
deferred by the receiver, but a DERR error is typically not deferred by the receiver.

It is sufficient for the Sender of a Data packet that detects a Poison error to indicate this in the Poison bits. It is not
a requirement that the Sender sets the RespErr field value to DERR.

It is sufficient for the Sender of a Data packet that detects a DataCheck error to indicate this in the DataCheck field
and is not required to set RespErr field value to DERR.

As Poison and DataCheck fields are independently set, one type of error does not require setting of the other.

In a Data packet that has the RespErr field value set to DERR or NDERR the value of the Poison and DataCheck
fields are Don’t Care.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 9-263
ID080717 Non-Confidential

9 Error Handling
9.8 Hardware and software error categories
9.8 Hardware and software error categories
This specification defines two error categories, a software based error and a hardware based error.

9.8.1 Software based error

A software based error occurs when multiple accesses to the same location are made with mismatched Snoopable
or Memory attributes.

A software based error can cause a loss of coherency and the corruption of data values. This specification requires
that the system does not deadlock for a software based error, and that transactions always progress through a system
in a timely manner.

A software based error, for an access within one 4KB memory region, must not cause data corruption within a
different 4KB memory region.

For locations held in Normal memory, the use of appropriate stores and software cache maintenance can be used to
return memory locations to a defined state.

When accessing a peripheral device the correct operation of the peripheral cannot be guaranteed. The only
requirement is that the peripheral continues to respond to transactions in a protocol compliant manner. The sequence
of events that might be required to return a peripheral device that has been accessed incorrectly to a known working
state is IMPLEMENTATION DEFINED.

9.8.2 Hardware based error

A hardware based error is defined as any protocol error that is not a software based error. This specification does
not support hardware based errors.

Warning
 If a hardware based error occurs then recovery from the error is not guaranteed. The system might crash, lock-up,
or suffer some other non-recoverable failure.
9-264 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 10
Quality of Service

This chapter describes the mechanisms in the CHI protocol to support Quality of Service (QoS). It contains the
following sections:
• Overview on page 10-266.
• QoS priority value on page 10-267.
• Repeating a transaction with higher QoS value on page 10-268.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 10-265
ID080717 Non-Confidential

10 Quality of Service
10.1 Overview
10.1 Overview
A system might utilize a QoS scheme to achieve:
• A guaranteed maximum latency for transactions in a particular stream.
• Minimum bandwidth guarantees for a stream of requests.
• Best effort value of bandwidth and latency provided to requests of a particular stream.

The low latency, or guaranteed throughput requirements, required to meet system QoS demands are primarily the
responsibility of the transaction end points with support from the intermediate interconnect. The protocol supports
this by defining a QoS priority value for packets and controlling request flow using a defined credit mechanism.
10-266 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

10 Quality of Service
10.2 QoS priority value
10.2 QoS priority value
A 4-bit value is used to prioritize the processing of the packets at protocol nodes and within the interconnect. The
QoS Priority Value (PV) for packets is assigned by the source of the transaction. In typical usage models this value
is dependent on the source type and the class of traffic, with ascending values of QoS indicating a higher priority
level. The source might also dynamically vary this value depending on some accumulated latency and required
throughput metric.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 10-267
ID080717 Non-Confidential

10 Quality of Service
10.3 Repeating a transaction with higher QoS value
10.3 Repeating a transaction with higher QoS value
When a transaction has been sent with a particular QoS value, it is permitted to send the same transaction again with
a different, typically higher, QoS value. The Completer is required to handle this situation as multiple different
requests.

In this situation, if one of the transactions receives a RetryAck response, then it is permitted to cancel the transaction
and return the credit. See Credit Return on page 2-112.
10-268 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 11
Data Source and Trace Tag

This chapter describes the mechanisms of Data Source and Trace Tag that provide additional support for the
debugging and tracing of systems and the monitoring of performance. It contains the following sections:
• Data Source indication on page 11-270.
• Trace Tag on page 11-273.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 11-269
ID080717 Non-Confidential

11 Data Source and Trace Tag
11.1 Data Source indication
11.1 Data Source indication
This specification permits the Completer of a Read request to specify the source of the data. The source is specified
in the DataSource field of the CompData response to a Read request and in SnpRespData and SnpRespDataPtl.

11.1.1 DataSource value assignment

The DataSource values must be assigned as follows:

• Fixed values are used for DataSource when Data comes from memory and are used to indicate the following:

— 0b110 PrefetchTgt memory prefetch was useful.
Read data was obtained from Slave with lower latency as the PrefetchTgt request already
read or initiated a read of data from memory.

— 0b111 PrefetchTgt memory prefetch was not useful.
Read request went through a complete memory access and therefore did not have any
latency reduction due to the PrefetchTgt request sent earlier.
The precise reason for signaling that a prefetch was not useful is IMPLEMENTATION
DEFINED.

Note
 There are several reasons why the PrefetchTgt request might not be useful. Examples are that the

prefetch was dropped by the Slave, the data obtained by the prefetch was replaced in the buffer, or the
Read request arrived at the Slave before the prefetch.

• For a response not from memory, that is, from a cache, the DataSource value is IMPLEMENTATION DEFINED.

This specification recommends, but does not require, settings for DataSource in these cases.

A component is permitted to have software programmability to override the DataSource value to:
— Change the groupings to more suitable specific configuration settings.
— Change the values where the values are not correct.

• A responder is permitted to not support sending a useful DataSource value:
— The responder, except for a memory SN-F, must return a 0b000 value.
— A memory SN-F component is permitted to return 0b111 as a default value.

Such exceptions must be understood by the system.

11.1.2 Crossing a chip-to-chip interface

It is the responsibility of the chip interface module, if one exists, to map DataSource values in the incoming
CompData packets to different values to identify that the response came from the remote chip caches.

Example approaches that the chip interface module might take are:

• Group the remote caches into a single encoding, as Figure 11-1 on page 11-271 shows.

• Have a maximum size of an eight entry table, to remap the implementation values of the DataSource field in
the incoming CompData message to new values in the outgoing packet.
11-270 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

11 Data Source and Trace Tag
11.1 Data Source indication

r

Suggested DataSource values

Figure 11-1 shows an example multichip configuration and the suggested mapping of DataSource values to different
components in the system:

• Each chip in the system has two processors per cluster, with a three level cache hierarchy.

• The cache in the chip-to-chip interface module is identified as part of the interconnect caches.

• All the caches in the remote peer chip are grouped together.

• A non-memory component that is not programmed to identify itself as the source of data can return the
default value of 0b000.

Table 11-1 lists the suggested DataSource encodings.

Figure 11-1 Suggested DataSource values

Table 11-1 Suggested DataSource value encodings

DataSource Suggested mapping

0b000 Non-memory default. Source does not support sending a useful DataSource value

0b001 Peer processor cache within local cluster

0b010 Local cluster cache

0b011 Interconnect cache

0b100 Peer cluster caches

0b101 Remote chip caches

Memory Memory

Prefetch useful = 110

Prefetch not useful = 111

Memory Memory

Prefetch useful = 110

Prefetch not useful = 111

C
ac

he

= 010

= 011

= 100

= 101

= 001

Chip

C
ac

he Interconnect
Cache Cache Cache Cache C

ac
he

Cache

Cluster
Processor

Cache
Processor

Cache

Peer Cluster

Cache

Processor
Cache

Processor
Cache

Pee
Chip

Interconnect
Cache Cache Cache Cache C

ac
he

Cache

Cluster
Processor

Cache
Processor

Cache

Peer Cluster

Cache

Processor
Cache

Processor
Cache
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 11-271
ID080717 Non-Confidential

11 Data Source and Trace Tag
11.1 Data Source indication
11.1.3 Example use cases

Two examples of how DataSource information can be used by a Requester are:

• To determine the usefulness of a PrefetchTgt transaction in initiating a memory controller prefetch.

— By monitoring the DataSource value in the data returned from the memory SNF, the Requester can
determine the usefulness of sending PrefetchTgt requests and can modulate the rate, as well as the
sending, of PrefetchTgt requests.

• Can be used by performance profiling and debug software to evaluate and optimize the data sharing pattern.
11-272 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

11 Data Source and Trace Tag
11.2 Trace Tag
11.2 Trace Tag
This specification includes a TraceTag bit per channel that provides enhanced support for debugging, tracing, and
performance measurement of systems.

11.2.1 TraceTag usage and rules

The rules for when to set and how to propagate TraceTag bit values are:

• The TraceTag bit can be set by the transaction initiator or an interconnect component.

• A component that receives a packet with a TraceTag bit set must preserve and reflect the value back in any
response packet or spawned packet generated in response to the received packet.

• If a received packet spawns multiple responses, such as a Write request resulting in separate Comp and
DBIDResp responses, all such spawned responses are required to have the TraceTag bit set if the spawning
packet has the TraceTag bit set. If the spawning packet does not have the TraceTag bit set then the value of
the TraceTag bit in a spawned packet is independent of the value of the bit in other related spawned packets.

• If a component can receive multiple packets that are associated with a single transaction, then for each packet
that it, in turn, generates, the TraceTag value is only required to be set if it is set in the associated received
packet. For example a Write transaction flow at RN might have write data and CompAck as two responses
for received packets DBIDResp and Comp respectively. As CompAck is in response to the received Comp
only, its TraceTag bit value is only required to be dependent on the TraceTag bit value in the Comp packet
and similarly for the write data and DBIDResp Response-Received Packet pair.

• When an interconnect receives a packet with the TraceTag bit set, it must preserve the value and not reset the
value.

Note
 • Propagating the value of the TraceTag bit on a resulting cache eviction is IMPLEMENTATION DEFINED.
• The precise mechanism to trigger and utilize the TraceTag bit is IMPLEMENTATION DEFINED.
• It is expected that the TraceTag bit will be limited to single system wide use at any time.

Some of the ways the trace tag mechanism can be used are:
— Debug, by tracing transaction flows through the system.
— Performance counting.
— Latency measurement.

Examples of Request-Response pairs are:
• Snoop response, with or without data, in response to a Snoop request.
• A Snoop response in response to a SnpDVMOp request.
• Data response from SN in response to a Read request.
• Spawned requests from HN-F:

— Snoops generated in response to a request from RN.
— Request to SN-F generated in response to a request from RN.

• Spawned request from HN-I:
— Read or Write request to SN-I generated in response to a request from RN.

• A RetryAck response from HN or SN to any request.
• A ReadReceipt response to a Read request.
• A DBIDResp response to a Write request.
• Data response to RN from HN or SN for a Read request.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 11-273
ID080717 Non-Confidential

11 Data Source and Trace Tag
11.2 Trace Tag
11-274 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 12
Link Layer

This chapter describes the Link layer that provides a streamlined mechanism for packet based communication
between nodes and the interconnect across links. It contains the following sections:
• Introduction on page 12-276.
• Links on page 12-277.
• Flits on page 12-278.
• Channels on page 12-279.
• Port on page 12-281.
• Node interface definitions on page 12-282.
• Channel interface signals on page 12-285.
• Flit packet definitions on page 12-289.
• Protocol flit fields on page 12-293.
• Link flit on page 12-314.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-275
ID080717 Non-Confidential

12 Link Layer
12.1 Introduction
12.1 Introduction
The Link layer provides a streamlined mechanism for packet based communication between nodes and the
interconnect.

The Link layer defines:
• Packet and flit formats.
• Flow control across a link.

Figure 12-1 shows a typical system using link based communication.

Figure 12-1 System using link based communication

Interconnect

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6

Links

Tx Rx Tx Rx Tx Rx

Tx Rx Tx Rx Tx Rx

TxRx TxRx TxRx

TxRx TxRx Rx Tx
12-276 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.2 Links
12.2 Links
Flit communication occurs between a transmitter and a receiver pair.

The connection between a transmitter and a receiver is referred to as a link.

Two-way communication between a node and the interconnect requires a pair of links. Figure 12-2 shows the link
requirements.

Figure 12-2 Two-way link communication

12.2.1 Outbound and inbound links

The link used by a transmitter to send packets is defined as the outbound link.

The link used by a receiver to receive packets is defined as the inbound link.

Figure 12-3 shows the outbound and inbound links at a node. The interface at the interconnect has a complementary
pair of links.

Figure 12-3 Outbound and inbound links

Transmitter
(TX)

Receiver
(RX)

Receiver
(RX)

Transmitter
(TX)

Node Interconnect

Link 1

Link 2

Transmitter
(TX)

Receiver
(RX)

Node

Outbound Link

Inbound Link
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-277
ID080717 Non-Confidential

12 Link Layer
12.3 Flits
12.3 Flits
A flit is the basic unit of transfer in the Link layer.

Packets are formatted into flits and transmitted across a link. There are two types of flits:

Protocol flit A Protocol flit carries a protocol packet in its payload. In this specification, every protocol packet
is mapped into exactly one protocol flit.

Link flit A Link flit carries messages associated with link maintenance. For example, a transmitter uses a
Link flit to return a Link layer Credit, also referred to as an L-Credit, to the receiver during a link
deactivation sequence.

Link flits originate at a link transmitter and terminate at the link receiver connected at the other side
of the link.
12-278 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.4 Channels
12.4 Channels
In this specification, the Link layer provides a set of channels for flit communication.

Each channel has a defined flit format that has multiple fields and some of the field widths have multiple possible
values. In some cases, the defined flit format can be used on both an inbound and an outbound channel.

Table 12-1 shows the channels, and the mapping onto the RN and SN component channels.

12.4.1 Channel dependencies

The following dependencies are permitted between the channels in the protocol.

For RN:

• An RN must make forward progress on the inbound SNP channel without requiring forward progress on
outbound REQ channel.

• An RN is permitted to wait for forward progress on the outbound RSP channel before making forward
progress on the inbound SNP channel.

• An RN is permitted to wait for forward progress on the outbound DAT channel before making forward
progress on the inbound SNP channel.

• An RN must make forward progress on the inbound RSP channel without requiring forward progress on any
other channel.

• An RN must make forward progress on the inbound DAT channel without requiring forward progress on any
other channel.

Note
 The requirement that an RN must make forward progress on the inbound RSP and DAT channel, without requiring
forward progress on any other channel, means that an RN must be able to accept all Comp and CompData responses
for outstanding transactions without sending any CompAck responses.

Table 12-1 Channels’ mapping onto the RN and SN component channels

Channel Description Usage RN Channel SN Channel

REQ
Request

The request channel transfers flits associated
with request messages such as Read
Requests and Write Requests. See REQ
channel on page 12-285.

All Requests TXREQ RXREQ

RSP
Response

The response channel transfers flits
associated with response messages that do
not have a data payload such as write
completion messages. See RSP channel on
page 12-285.

Responses from the Completer RXRSP TXRSP

Snoop Response and Completion
Acknowledge

TXRSP -

SNP
Snoop

The snoop channel transfers flits associated
with Snoop and SnpDVMOp Request
messages. See SNP channel on page 12-286.

All Snoop requests RXSNP -

DAT
Data

The data channel transfers flits associated
with protocol messages that have a data
payload such as read completion and write
data messages. See DAT channel on
page 12-288.

Write data, and Snoop response data
from an RN

TXDAT RXDAT

Read data RXDAT TXDAT
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-279
ID080717 Non-Confidential

12 Link Layer
12.4 Channels
For SN:

• An SN is permitted to wait for forward progress on the outbound RSP channel before making forward
progress on the inbound REQ channel.

• An SN must make forward progress on the inbound REQ channel without requiring forward progress on the
outbound DAT channel.

• An SN must make forward progress on the inbound DAT channel without requiring forward progress on any
other channel.
12-280 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.5 Port
12.5 Port
A Port is defined as the set of all links at the interface of a node.

Figure 12-4 shows the relationship between links, channels, and port. See Node interface definitions on page 12-282
for the specific node requirements, See Channel interface signals on page 12-285, and Chapter 13 Link Handshake
for signal details.

Figure 12-4 Relationship between links, channels, and port

RN-F

REQ channel

RSP channel

DAT channel

RSP channel

DAT channel

SNP channel
RXSNPFLITPEND

RXSNPFLITV

RXSNPLCRDV

TXREQFLITPEND
TXREQFLITV

TXREQLCRDV

TXRSPFLITPEND
TXRSPFLITV

TXRSPLCRDV

TXDATFLITPEND
TXDATFLITV

TXDATLCRDV

RXRSPFLITPEND
RXRSPFLITV

RXRSPLCRDV

RXDATFLITPEND
RXDATFLITV

RXDATLCRDV

TX

RX

Port

Outbound Link

TXLINKACTIVEREQ
TXLINKACTIVEACK

RXLINKACTIVEREQ
RXLINKACTIVEACK

Inbound Link

RXSACTIVE
TXSACTIVE

TXREQFLIT

TXRSPFLIT

TXDATFLT

RXRSPFLT

RXDATFLIT

RXSNPFLIT
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-281
ID080717 Non-Confidential

12 Link Layer
12.6 Node interface definitions
12.6 Node interface definitions
Nodes communicate by exchanging Link flits using the node interface. This section describes the node interfaces:
• Request Nodes.
• Slave Nodes on page 12-283.

Note
 The LINKACTIVE interface pins and signals used by each node for link management are described in Chapter 13
Link Handshake.

12.6.1 Request Nodes

This section describes the Request Node interfaces:
• RN-F.
• RN-D on page 12-283.
• RN-I on page 12-283.

RN-F

The RN-F interface uses all channels and is used by a fully coherent Requester such as a core or cluster. Figure 12-5
shows the RN-F interface.

Figure 12-5 RN-F interface

RN-F

TXREQ
RXRSP

RXSNP
TXRSP
TXDAT

RXDAT

ICN

RXREQ
TXRSP

TXSNP
RXRSP
RXDAT

TXDAT

DAT
RSP
SNP
DAT
RSP
REQ
12-282 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.6 Node interface definitions
RN-D

The RN-D interface uses all channels and is used by an IO coherent node that processes DVM messages. Use of the
SNP channel is limited to DVM transactions. See DVM transaction flow on page 8-232 for details. Figure 12-6
shows the RN-D interface.

Figure 12-6 RN-D interface

RN-I

The RN-I interface uses all channels, with the exception of the SNP channel, and is used by an IO coherent Request
Node such as a GPU or IO bridge. A SNP channel is not required because an RN-I node does not include a
hardware-coherent cache or TLB. Figure 12-7 shows the RN-I interface.

Figure 12-7 RN-I interface

12.6.2 Slave Nodes

This section describes the Slave Node interfaces:
• SN-F.
• SN-I.

SN-F and SN-I

The SN-F and SN-I interfaces are identical and use a RX request channel, a TX response channel, a TX data channel,
and an RX data channel. The SN-F and SN-I receive request messages from the interconnect, and return response
messages to the interconnect. However, the SN-F and SN-I receive different types of transactions. Figure 12-8 on
page 12-284 shows the SN-F and SN-I interface.

RN-D

TXREQ
RXRSP

RXSNP
TXRSP
TXDAT

RXDAT

ICN

RXREQ
TXRSP

TXSNP
RXRSP
RXDAT

TXDAT

DAT
RSP

SNP(DVM)
DAT
RSP
REQ

RN-I

TXREQ
RXRSP

TXRSP
TXDAT

RXDAT

ICN

RXREQ
TXRSP

RXRSP
RXDAT

TXDAT

DAT
RSP
DAT
RSP
REQ
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-283
ID080717 Non-Confidential

12 Link Layer
12.6 Node interface definitions
Figure 12-8 SN-F and SN-I interface

ICN

TXREQ
RXRSP
RXDAT
TXDAT

SN-F - SN-I

TXRSP
TXDAT
RXDAT

RXREQREQ
RSP

DAT
DAT
12-284 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.7 Channel interface signals
12.7 Channel interface signals
This section describes the channel interfaces. It contains the following sections:
• REQ channel.
• RSP channel.
• SNP channel on page 12-286.
• DAT channel on page 12-288.

12.7.1 REQ channel

Figure 12-9 shows the REQ channel interface pins, where R is the width of REQFLIT.

Figure 12-9 REQ channel interface pins

Table 12-2 shows the REQ channel interface signals.

12.7.2 RSP channel

Figure 12-10 on page 12-286 shows the RSP channel interface pins, where T is the width of RSPFLIT. The same
interface is used for both inbound and outbound RSP channels.

Transmitter

REQFLIT[(R-1):0]

Receiver

TXREQFLITV
TXREQFLIT

TXREQLCRDV

RXREQFLITV
RXREQFLIT

RXREQLCRDV

REQFLITV

REQLCRDV

TXREQFLITPEND RXREQFLITPENDREQFLITPEND

Table 12-2 REQ channel interface signals

Signal Description

REQFLITPEND Request Flit Pending. Early indication that a request flit might be transmitted in the following
cycle. See Flit level clock gating on page 13-319.

REQFLITV Request Flit Valid. The transmitter sets this signal HIGH to indicate when REQFLIT[(R-1):0] is
valid.

REQFLIT[(R-1):0] Request Flit. See Request flit on page 12-289 for a description of the request flit format.

REQLCRDV Request L-Credit Valid. The receiver sets this signal HIGH to return a request channel L-Credit to
a transmitter. See L-Credit flow control on page 13-317.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-285
ID080717 Non-Confidential

12 Link Layer
12.7 Channel interface signals
Figure 12-10 RSP channel interface pins

Table 12-3 shows the RSP channel interface signals.

12.7.3 SNP channel

Figure 12-11 shows the SNP channel interface pins, where S is the width of SNPFLIT.

Figure 12-11 SNP channel interface pins

Table 12-4 on page 12-287 shows the SNP channel interface signals.

Transmitter

RSPFLIT[(T-1):0]

Receiver

TXRSPFLITV
TXRSPFLIT

TXRSPLCRDV

TXRSPFLITPEND
RXRSPFLITV
RXRSPFLIT

RXRSPLCRDV

RSPFLITV

RSPLCRDV

RXRSPFLITPENDRSPFLITPEND

Table 12-3 RSP channel interface signals

Signal Description

RSPFLITPEND Response Flit Pending. Early indication that a response flit might be transmitted in the following
cycle. See Flit level clock gating on page 13-319.

RSPFLITV Response Flit Valid. The transmitter sets this signal HIGH to indicate when RSPFLIT[(T-1):0] is
valid.

RSPFLIT[(T-1):0] Response Flit. See Response flit on page 12-290 for a description of the response flit format.

RSPLCRDV Response L-Credit Valid. The receiver sets this signal HIGH to return a response channel L-Credit
to a transmitter. See L-Credit flow control on page 13-317.

Transmitter

SNPFLIT[(S-1):0]

Receiver

TXSNPFLITV
TXSNPFLIT

TXSNPLCRDV

TXSNPFLITPEND
RXSNPFLITV
RXSNPFLIT

RXSNPLCRDV

SNPFLITV

SNPLCRDV

RXSNPFLITPENDSNPFLITPEND
12-286 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.7 Channel interface signals
Table 12-4 SNP channel interface signals

Signal Description

SNPFLITPEND Snoop Flit Pending. Early indication that a snoop flit might be transmitted in the following cycle.
See Flit level clock gating on page 13-319.

SNPFLITV Snoop Flit Valid. The transmitter sets this signal HIGH to indicate when SNPFLIT[(S-1):0] is
valid.

SNPFLIT[(S-1):0] Snoop Flit. See Snoop flit on page 12-291 for a description of the snoop flit format.

SNPLCRDV Snoop L-Credit Valid. The receiver sets this signal HIGH to return a snoop channel L-Credit to a
transmitter. See L-Credit flow control on page 13-317.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-287
ID080717 Non-Confidential

12 Link Layer
12.7 Channel interface signals
12.7.4 DAT channel

Figure 12-12 shows the DAT channel interface pins, where D is the width of DATFLIT. The same interface is used
for both inbound and outbound DAT channels.

Figure 12-12 DAT channel interface pins

Table 12-5 shows the DAT channel interface signals.

Transmitter

DATFLIT[(D-1):0]

Receiver

TXDATFLITV
TXDATFLIT

TXDATLCRDV

TXDATFLITPEND
RXDATFLITV
RXDATFLIT

RXDATLCRDV

DATFLITV

DATLCRDV

RXDATFLITPENDDATFLITPEND

Table 12-5 DAT channel interface signals

Signal Description

DATFLITPEND Data Flit Pending. Early indication that a data flit might be transmitted in the following cycle. See
Flit level clock gating on page 13-319.

DATFLITV Data Flit Valid. The transmitter sets this signal HIGH to indicate when DATFLIT[(D–1):0] is
valid.

DATFLIT[(D-1):0] Data Flit. See Data flit on page 12-292 for a description of the data flit format.

DATLCRDV Data L-Credit Valid. The receiver sets this signal HIGH to return a data channel L-Credit to a
transmitter. See L-Credit flow control on page 13-317.
12-288 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.8 Flit packet definitions
12.8 Flit packet definitions
This section defines the flit format. See:
• Request flit.
• Response flit on page 12-290.
• Snoop flit on page 12-291.
• Data flit on page 12-292.

12.8.1 Request flit

Table 12-6 shows the Request flit format in a REQ channel packet starting at bit zero.

Table 12-6 Request flit format

REQFLIT[(R-1):0] format

Field Field width Comments

QoS 4 -

TgtID 7 to 11 Width determined by NodeID_Width

SrcID 7 to 11 Width determined by NodeID_Width

TxnID 8 -

ReturnNID
StashNID

7 to 11 Used for DMT
Used for Stash

StashNIDValid
Endian

1 Used for Stash
Used for Atomic

ReturnTxnID[7:0]
{0b00,
StashLPIDValid,
StashLPID[4:0]}

8 Used for DMT
SBZ
Used for Stash
Used for Stash

Opcode 6 -

Size 3 -

Addr 44 to 52 Width determined by Req_Addr_Width

NS 1 -

LikelyShared 1 -

AllowRetry 1 -

Order 2 -

PCrdType 4 -

MemAttr 4 -

SnpAttr 1 -

LPID 5 -

Excl
SnoopMe

1 Used for Exclusive transactions
Used for Atomic
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-289
ID080717 Non-Confidential

12 Link Layer
12.8 Flit packet definitions
12.8.2 Response flit

Table 12-7 shows the Response flit format in a RSP channel packet starting at bit zero,

ExpCompAck 1 -

TraceTag 1 -

RSVDC X = 0 No RSVDC bus

X = 4, 12, 16, 24, 32 Permitted RSVDC bus widths

Total R = (117 to 137) + X -

Table 12-6 Request flit format (continued)

REQFLIT[(R-1):0] format

Field Field width Comments

Table 12-7 Response flit format

RSPFLIT[(T-1):0] format

Field Field width Comments

QoS 4 -

TgtID 7 to 11 Width determined by NodeID_Width

SrcID 7 to 11 Width determined by NodeID_Width

TxnID 8 -

Opcode 4 -

RespErr 2 -

Resp 3 -

FwdState
DataPull

3 Used for DCT
Used for Stash

DBID 8 -

PCrdType 4 -

TraceTag 1 -

Total T = 51 to 59 -
12-290 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.8 Flit packet definitions
12.8.3 Snoop flit

Table 12-8 shows the Snoop flit format in a SNP channel packet starting at bit zero.

Table 12-8 Snoop flit format

SNPFLIT[(S-1):0] format

Field Field width Comments

QoS 4 -

SrcID 7 to 11 Width determined by NodeID_Width

TxnID 8 -

FwdNID 7 to 11 Width determined by NodeID_Width

FwdTxnID[7:0]
{0b00,
StashLPIDValid,
StashLPID[4:0]}
VMIDExt[7:0]

8 Used for DCT
SBZ
Used for Stash
Used for Stash
Used to extend VMID value

Opcode 5 -

Addr 41 to 49 Width determined by Req_Addr_Width

NS 1 -

DoNotGoToSD
DoNotDataPull

1 -

RetToSrc 1 -

TraceTag 1 -

Total S = 84 to 100
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-291
ID080717 Non-Confidential

12 Link Layer
12.8 Flit packet definitions
12.8.4 Data flit

Table 12-9 shows the Data flit format in a DAT channel packet starting at bit zero.

The number of data flits required is dependent on the number of data bytes, and the data bus width. See Data
packetization on page 2-102.

The data channel interface supports a 128-bit, 256-bit, and 512-bit data bus width. There are three data flit formats
defined, one for each of the three data bus widths supported at the data channel interface.

DataCheck (DC) field width is either zero or equal to the width of the Data field divided by 8.

Poison (P) field width is either zero or equal to the width of the Data field divided by 64.

Table 12-9 Data flit fields

DATFLIT[D-1:0] format

Field Field width Comments

QoS 4 -

TgtID 7 to 11 Width determined by NodeID_Width

SrcID 7 to 11 Width determined by NodeID_Width

TxnID 8 -

HomeNID 7 to 11 Width determined by NodeID_Width

Opcode 3 -

RespErr 2 -

Resp 3 -

FwdState
DataPull
DataSource

3 Used for DCT
Used for Stash
Indicates Data source in a response

DBID 8 -

CCID 2 -

DataID 2 -

TraceTag 1 -

RSVDC Y = 0 No RSVDC bus

Y = 4, 12, 16, 24, 32 Permitted RSVDC bus widths

BE 16, 32, 64 -

Data 128, 256, 512 -

DataCheck 0, 16, 32, 64 -

Poison 0, 2, 4, 8 -

Total D = (201 to 213) + Y + DC + P 128 bit Data

D = (345 to 357) + Y + DC + P 256 bit Data

D = (633 to 645) + Y + DC + P 512 bit Data
12-292 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
12.9 Protocol flit fields
A Protocol flit is identified by a non-zero value in the opcode field. All the flit fields defined in this section are
applicable for a Protocol flit.

The following sections describe the encoding of the Protocol flit fields:
• TgtID on page 12-294.
• SrcID on page 12-294.
• HomeNID on page 12-294.
• ReturnNID on page 12-294.
• FwdNID on page 12-294.
• LPID on page 12-295.
• StashNID on page 12-295.
• StashNIDValid on page 12-295.
• StashLPID on page 12-295.
• StashLPIDValid on page 12-295.
• TxnID on page 12-296.
• ReturnTxnID on page 12-296.
• FwdTxnID on page 12-296.
• DBID on page 12-296.
• Opcode on page 12-297.
• Addr on page 12-301.
• NS on page 12-301.
• Size on page 12-302.
• MemAttr on page 12-302.
• SnpAttr on page 12-303.
• LikelyShared on page 12-303.
• Order on page 12-303.
• Excl on page 12-304.
• Endian on page 12-304.
• AllowRetry on page 12-304.
• ExpCompAck on page 12-305.
• SnoopMe on page 12-305.
• RetToSrc on page 12-305.
• DataPull on page 12-305.
• DoNotGoToSD on page 12-306.
• DoNotDataPull on page 12-307.
• QoS on page 12-307.
• PCrdType on page 12-307.
• TraceTag on page 12-307.
• VMIDExt on page 12-308.
• Resp on page 12-308.
• FwdState on page 12-310.
• RespErr on page 12-310.
• Data on page 12-311.
• CCID on page 12-311.
• DataID on page 12-311.
• BE on page 12-312.
• DataCheck on page 12-312.
• Poison on page 12-312.
• DataSource on page 12-312.
• RSVDC on page 12-313.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-293
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
12.9.1 TgtID

Target Identifier associated with the message. The node ID of the component to which the message is targeted. This
is used by the interconnect to determine the port to which the message is sent. See Transaction identifier fields on
page 2-73.

12.9.2 SrcID

Source Identifier associated with the message. The node ID of the component from which the message is sent. This
is used by the interconnect to determine the port from which the message has been sent. See Transaction identifier
fields on page 2-73.

12.9.3 HomeNID

Home identifier associated with the original request. The Requester uses the value in this field to determine the
TgtID of the CompAck to be sent in response to CompData. See Transaction identifier fields on page 2-73.

Applicable in CompData from the Slave and Home.

Inapplicable and must be zero in all other data messages.

12.9.4 ReturnNID

Return NID. Identifies the node to which the SN-F sends the CompData response. The value can be either the NID
of Home or the Requester that originated the transaction. See Transaction identifier fields on page 2-73.

Applicable in ReadNoSnp from HN-F to SN-F.

Inapplicable and must be zero for all other requests. For Stash requests, the same bits in the packet are used for
StashNID.

12.9.5 FwdNID

Identifies the Requester to which the CompData response can be forwarded. The value must be the NID of the
Requester that initiated the transaction. See Transaction identifier fields on page 2-73.

Applicable in Forward type snoops.

Inapplicable and must be zero in all other Snoop requests.
12-294 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
12.9.6 LPID

Logical Processor Identifier. Used in conjunction with the SrcID to uniquely identify the logical processor that
generated the request. See Logical Processor Identifier on page 2-90.

12.9.7 StashNID

Stash NID. Identifies the target of the stash request. Provides a valid stash target value when the corresponding
StashNIDValid bit is asserted. See Stash target identifiers on page 7-229.

Applicable in Stash requests.

Inapplicable and must be zero for all other requests. For ReadNoSnp requests, the same bits in the packet are used
for ReturnNID.

12.9.8 StashNIDValid

Stash NID valid. Indicates if StashNID field has a valid value. See Stash target identifiers on page 7-229.

Applicable in Stash requests, inapplicable in all other requests.

Table 12-10 shows the StashNIDValid value encoding.

12.9.9 StashLPID

Stash Logical Processor ID. Provides a valid Logical Processor target value within the Request Node specified by
StashNID. See Stash target identifiers on page 7-229.

Applicable in Stash requests and Stash type snoop requests.

Inapplicable and must be zero for all other requests. For ReadNoSnp requests the same bits in the packet are used
for ReturnTxnID.

Inapplicable and must be zero for all other snoop requests. For Fwd snoops the same bits in the packet are used for
FwdTxnID and for SnpDVMOp snoops the same bits in the packet are used for VMIDExt.

12.9.10 StashLPIDValid

Stash LPID valid. Indicates if the StashLPID field has a valid value. See Stash target identifiers on page 7-229.

Applicable in Stash requests and Stash type snoop requests, inapplicable in all other requests.

Table 12-11 shows the StashLPIDValid value encoding.

Table 12-10 StashNIDValid value encoding

StashNIDValid Description

0 StashNID field value is inapplicable and must be set to zero.

1 The StashNID field in the Request has a valid Stash target.

Table 12-11 StashLPIDValid value encoding

StashLPIDValid Description

0 StashLPID field value is inapplicable and must be set to zero.

1 The StashLPID field in the Request has a valid Stash target.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-295
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
Table 12-12 shows the valid StashNIDValid and StashLPIDValid encodings.

12.9.11 TxnID

Transaction Identifier associated with the message. When there are multiple outstanding transactions from a given
source node they will each use a unique transaction ID. See Transaction identifier fields on page 2-73.

Link flits do not have a unique ID. Table 12-13 shows the link flit TxnID field value encodings.

12.9.12 ReturnTxnID

Return TxnID. Identifies the value the SN-F must use in the TxnID field of the CompData response. It can be either
the TxnID generated by Home for this transaction or the TxnID in the Request packet from the Requester that
originated the transaction. See Transaction identifier fields on page 2-73.

Applicable only in ReadNoSnp from HN-F to SN-F.

Inapplicable and must be zero for all other requests. For Stash requests the same bits in the packet are used for
StashLPID.

12.9.13 FwdTxnID

Identifies the TxnID of the original Request associated with the Snoop transaction. See Transaction identifier fields
on page 2-73.

Applicable in Forward type snoops.

Inapplicable and must be zero in all other snoop requests. For Stash snoops the same bits in the packet are used
StashLPID and for SnpDVMOp snoops the same bits in the packet are used for VMIDExt.

12.9.14 DBID

Data Buffer Identifier. The DBID field value in the response packet from a Completer is used as the TxnID for
CompAck or WriteData sent from the Requester. In Snoop responses with data pull, this field value indicates the
value to be used in the TxnID field of data pull response messages. See Transaction identifier fields on page 2-73.

Table 12-12 Valid StashNIDValid and StashLPIDValid encodings

StashNIDValid StashLPIDValid Comments

0 0 Stash target is not specified

0 1 Reserved

1 0 Only a target RN is specified

1 1 Both target RN and LPID are specified

Table 12-13 Link flit TxnID Encodings

TxnID Description

0x00 L-Credit return

0x01 to 0xFF Reserved
12-296 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
12.9.15 Opcode

Specifies the operation to be carried out. The Opcode encodings are specific to each channel. See:
• REQ channel opcodes.
• RSP channel opcodes on page 12-299.
• SNP channel opcodes on page 12-300.
• DAT channel opcodes on page 12-301.

REQ channel opcodes

Table 12-14 shows the opcodes for the request channel.

Table 12-14 REQ channel opcodes

Opcode[5:0] Request command

0x00 ReqLCrdReturn

0x01 ReadShared

0x02 ReadClean

0x03 ReadOnce

0x04 ReadNoSnp

0x05 PCrdReturn

0x06 Reserved

0x07 ReadUnique

0x08 CleanShared

0x09 CleanInvalid

0x0A MakeInvalid

0x0B CleanUnique

0x0C MakeUnique

0x0D Evict

0x0E Reserved (EOBarrier)

0x0F Reserved (ECBarrier)

0x10 - 0x13 Reserved

0x14 DVMOp

0x15 WriteEvictFull

0x16 Reserved (WriteCleanPtl)

0x17 WriteCleanFull

0x18 WriteUniquePtl

0x19 WriteUniqueFull

0x1A WriteBackPtl

0x1B WriteBackFull
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-297
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
0x1C WriteNoSnpPtl

0x1D WriteNoSnpFull

0x1E - 0x1F Reserved

0x20 WriteUniqueFullStash

0x21 WriteUniquePtlStash

0x22 StashOnceShared

0x23 StashOnceUnique

0x24 ReadOnceCleanInvalid

0x25 ReadOnceMakeInvalid

0x26 ReadNotSharedDirty

0x27 CleanSharedPersist

0x28 - 0x2F AtomicStore

0x30 - 0x37 AtomicLoad

0x38 AtomicSwap

0x39 AtomicCompare

0x3A PrefetchTgt

0x3B - 0x3F Reserved

Table 12-14 REQ channel opcodes (continued)

Opcode[5:0] Request command
12-298 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
Table 12-15 shows the sub-opcodes for AtomicStore and AtomicLoad.

RSP channel opcodes

Table 12-16 shows the opcodes for the response channel.

Table 12-15 Sub-codes for AtomicStore and AtomicLoad

Opcode[5:3] Opcode[2:0] Operation

AtomicStore AtomicLoad

101 110 000 ADD

001 CLR

010 EOR

011 SET

100 SMAX

101 SMIN

110 UMAX

111 UMIN

Table 12-16 RSP channel opcodes

Opcode[3:0] Response command

0x0 RespLCrdReturn

0x1 SnpResp

0x2 CompAck

0x3 RetryAck

0x4 Comp

0x5 CompDBIDResp

0x6 DBIDResp

0x7 PCrdGrant

0x8 ReadReceipt

0x9 SnpRespFwded

0xA - 0xF Reserved
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-299
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
SNP channel opcodes

Table 12-17 shows the opcodes for the snoop channel.

Table 12-17 SNP channel opcodes

Opcode[4:0] Snoop command

0x00 SnpLCrdReturn

0x01 SnpShared

0x02 SnpClean

0x03 SnpOnce

0x04 SnpNotSharedDirty

0x05 SnpUniqueStash

0x06 SnpMakeInvalidStash

0x07 SnpUnique

0x08 SnpCleanShared

0x09 SnpCleanInvalid

0x0A SnpMakeInvalid

0x0B SnpStashUnique

0x0C SnpStashShared

0x0D SnpDVMOp

0x0E - 0x0F Reserved

0x10 Reserved

0x11 SnpSharedFwd

0x12 SnpCleanFwd

0x13 SnpOnceFwd

0x14 SnpNotSharedDirtyFwd

0x15 - 0x16 Reserved

0x17 SnpUniqueFwd

0x18 - 0x1F Reserved
12-300 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
DAT channel opcodes

Table 12-18 shows the opcodes for the data channel.

12.9.16 Addr

Address. Specifies the address associated with the message.

This specification supports a Physical Address (PA) of 44 to 52 bits. This permits the REQ and SNP packets to
support 49 to 53 bits of Virtual Address (VA) in DVM operations.
• Request messages support a 44 to 52 bit address field, Addr[(43-51):0].
• Snoop messages support a 41 to 49 bit address field, Addr[(43-51):3]:

— Addr[(43-51):6] specifies the aligned address of the 64-byte cache line.
— Addr[5:4] indicates the 16-byte critical chunk within the cache line. See Critical Chunk Identifier on

page 2-105.
— Addr[3] is relevant in SnpDVMOp, for all other Snoop packets it is Don’t Care and can take any value.

12.9.17 NS

Non Secure. Indicates a Non-secure access or a Secure access. See Non-secure bit on page 2-92.

Table 12-19 shows the NS field value encoding.

Table 12-18 DAT channel opcodes

Opcode[2:0] Data command

0x0 DataLCrdReturn

0x1 SnpRespData

0x2 CopyBackWrData

0x3 NonCopyBackWrData

0x4 CompData

0x5 SnpRespDataPtl

0x6 SnpRespDataFwded

0x7 WriteDataCancel

Table 12-19 NS value encoding

NS Description

0 Secure access

1 Non-secure access
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-301
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
12.9.18 Size

Size. Specifies the size of the data associated with the transaction. See Data size on page 2-100.

Table 12-20 shows the Size field value encodings.

12.9.19 MemAttr

Memory Attribute. Memory attribute associated with the transaction.

Table 12-21 shows the MemAttr value encodings.

See Memory Attributes on page 2-92.

Table 12-20 Size field value encodings

Size[2:0] Bytes

0b000 1

0b001 2

0b010 4

0b011 8

0b100 16

0b101 32

0b110 64

0b111 Reserved

Table 12-21 MemAttr value encodings

MemAttr[3:0] Description

[3] Allocate hint bit. Indicates whether or not the cache receiving the transaction is recommended
to allocate the transaction:
0 Recommend that it does not allocate.
1 Recommend that it allocates.

[2] Cacheable bit. Indicates a Cacheable transaction for which the cache, when present, must be
looked up in servicing the transaction:
0 Non-cacheable. Looking up a cache is not required.
1 Cacheable. Looking up a cache is required.

[1] Device bit. Indicates if the memory type associated with the transaction is Device or Normal:
0 Normal memory type.
1 Device memory type.

[0] Early Write Acknowledge bit. Specifies the Early Write Acknowledge status for the
transaction:
0 Early Write Acknowledge not permitted.
1 Early Write Acknowledge permitted.
12-302 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
12.9.20 SnpAttr

Snoop Attribute. Specifies the snoop attribute associated with the transaction.

Table 12-22 shows the SnpAttr value encoding.

See Snoop Attribute on page 2-98.

12.9.21 LikelyShared

Likely Shared. Indicates whether the requested data is likely to be shared with another RN. See Likely Shared on
page 2-97.

Table 12-23 shows the LikelyShared field value encoding.

12.9.22 Order

Specifies the ordering requirements for a transaction. See Ordering on page 2-63 for more information on the
ordering requirements.

Table 12-24 shows the Order field value encodings.

Table 12-22 SnpAttr value encoding

SnpAttr Snoop attribute

0 Non-snoopable

1 Snoopable

Table 12-23 LikelyShared value encoding

LikelyShared Description

0 Not likely to be shared by another RN

1 Likely to be shared by another RN

Table 12-24 Order value encodings

Order[1:0] Description Note

0b00 No ordering required

0b01 Request accepted Applicable in Read request from
HN-F to SN-F, and HN-I to SN-I.

Reserved Reserved in all other cases

0b10 Request Order/Ordered Write Observation

0b11 Endpoint Order, which also includes Request Order
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-303
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
12.9.23 Excl

Exclusive. Indicates that the corresponding transaction is an Exclusive type transaction. The Exclusive bit must only
be used with the following transactions:
• ReadNotSharedDirty.
• ReadShared.
• ReadClean.
• CleanUnique.
• ReadNoSnp.
• WriteNoSnp.

Table 12-25 shows the Excl value encoding.

See Exclusive transactions on page 6-218.

12.9.24 Endian

Endian. Indicates the endianness of Data in an Atomic transaction. See Endianness on page 2-104.

Applicable in Atomic requests, inapplicable in all other requests.

Table 12-26 shows the Endian value encoding.

12.9.25 AllowRetry

Allow Retry. Specifies that the request is being sent without a P-Credit and that the target can determine if a retry
response is given. See Transaction Retry mechanism on page 2-113.

Table 12-27 shows the AllowRetry value encoding.

Table 12-25 Excl value encoding

Excl Description

0 Normal transaction

1 Exclusive transaction

Table 12-26 Endian value encoding

Endian Description

0 Little Endian

1 Big Endian

Table 12-27 AllowRetry value encodings

AllowRetry Description

0 RetryAck response not permitted

1 RetryAck response permitted
12-304 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
12.9.26 ExpCompAck

Expect CompAck. Indicates that the transaction will include a CompAck response.

Table 12-28 shows the ExpCompAck value encoding.

12.9.27 SnoopMe

SnoopMe. Indicates that Home must determine whether to send a snoop to the Requester. See Atomic on page 2-54.

Only applicable in Atomic requests.

Table 12-29 shows the SnoopMe value encoding.

12.9.28 RetToSrc

Return to Source. Requesting Snoopee to return a copy of the cache line to Home.

Applicable in the following Fwd and non-Fwd type snoops, inapplicable to all other Snoop requests:
• SnpShared[Fwd].
• SnpClean[Fwd].
• SnpOnce[Fwd].
• SnpUnique[Fwd].
• SnpNotSharedDirty[Fwd].

For RetToSrc bit semantics see Shared clean state return on page 4-176.

12.9.29 DataPull

Data Pull. Indicates the inclusion of a Read request, also referred to as a Data Pull, in the Snoop response. See Snoop
requests and Data Pull on page 7-224.

Applicable in SnpResp and SnpRespData response to a Stash request, not applicable in all other Snoop responses.

Table 12-28 ExpCompAck value encoding

ExpCompAck Description

0 Transaction does not include a CompAck response

1 Transaction includes a CompAck response

Table 12-29 SnoopMe value encoding

SnoopMe Description

0 Home does not need to send a snoop to the Requester.

1 Home must send a Snoop to the Requester if it determines the cache line might be present at the
Requester.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-305
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
Table 12-30 shows the DataPull field value encodings.

12.9.30 DoNotGoToSD

Do not transition to SD state. This is an indication in Snoop requests.

DoNotGoToSD shares the SNP packet field with DoNotDataPull. See Snoop flit on page 12-291.

DoNotGoToSD is applicable in all Snoop requests except:
• SnpUniqueStash.
• SnpMakeInvalidStash.
• SnpStashShared.
• SnpStashUnique.
• SnpDVMOp.

DoNotGoToSD can take any value in:
• SnpOnceFwd, SnpOnce.
• SnpCleanFwd, SnpClean.
• SnpNotSharedDirtyFwd, SnpNotSharedDirty.
• SnpSharedFwd, SnpShared.

DoNoGoToSD value must be set to 1 in:
• SnpUniqueFwd, SnpUnique.
• SnpCleanShared.
• SnpCleanInvalid.
• SnpMakeInvalid.

Table 12-31 shows the DoNotGoToSD value encoding.

Table 12-30 DataPull value encodings

DataPull[2:0] Description Comment

0b000 No Read Inclusion of Data Pull in the Snoop response

0b001 Read

0b010- 0b111 - Reserved

Table 12-31 DoNotGoToSD value encoding

DoNotGoToSD Description

0 Permitted to transition to SD state.

1 Transitioning to SD state is not permitted.
If already in SD state, then must exit SD state in response to the Snoop.
12-306 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
12.9.31 DoNotDataPull

Do not Data Pull. Do not combine a Read request with Snoop response.

DoNotDataPull shares the SNP packet field with DoNotGoToSD. See Snoop flit on page 12-291.

DoNotDataPull is applicable in:
• SnpUniqueStash.
• SnpMakeInvalidStash.
• SnpStashShared.
• SnpStashUnique.

This field is inapplicable in all other Snoop requests.

Table 12-32 shows the DoNotDataPull value encoding.

12.9.32 QoS

Quality of Service priority level. Ascending values of QoS indicate higher priority levels. See Chapter 10 Quality
of Service for more information.

12.9.33 PCrdType

Protocol Credit Type. Indicates the type of credit being granted or returned. See Transaction Retry mechanism on
page 2-113.

Table 12-33 shows the PCrdType value encodings.

12.9.34 TraceTag

Trace Tag. A bit in a packet used to tag the packets associated with a transaction for tracing purposes.

Table 12-34 shows the TraceTag field value encoding.

See Chapter 11 Data Source and Trace Tag.

Table 12-32 DoNotDataPull value encoding

DoNotDataPull Description

0 Data Pull with Stash snoop response is permitted but not required.

1 Must not include Data Pull with Stash snoop response.

Table 12-33 PCrdType value encodings

PCrdType Description

0x0 - 0xF P-Credit type 0 to 15 respectively.

Table 12-34 TraceTag value encoding

TraceTag Description

0 Packet is not tagged.

1 Packet is tagged.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-307
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
12.9.35 VMIDExt

Virtual Machine Identifier extension. It is used to extend VMID value from 8-bits to 16-bits. See DVMOp payload
on page 8-241.

12.9.36 Resp

Response Status. The Resp field must have the same value in all data flits of a multi-flit data transfer.

Table 12-35 shows the Resp value encodings.

Table 12-36 shows the valid Resp value encodings.

Table 12-35 Resp value encodings

Resp[2:0] Description

Resp[2] PassDirty. Indicates that the data included in the response message is Dirty with
respect to memory and that the responsibility of writing back the cache line is being
passed to the recipient of the response message.
0 Returned data is not Dirty.
1 Returned data is Dirty and the responsibility of writing back the

cache line is being passed on.

Resp[1:0] For snoop responses, this field indicates the final state of the snooped target node.
For completion responses, this field indicates the final state in the RN.
For write data responses, this field indicates the state of the data in the RN when
the data is sent.

Table 12-36 Valid Resp value encodings for different message types

Response Type Resp[2:0] State Notes

Snoop responses 0b000 I Final state of the snooped RN-F.

0b001 SC

0b010 UC, UD

0b011 SD

0b100 I_PD Final state of the snooped RN-F. Responsibility for
updating memory is passed to Home.

0b101 SC_PD

0b110 UC_PD

0b111 - Reserved.
12-308 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
Comp responses 0b000 I Final state of the requesting RN-F.

0b001 SC

0b010 UC

0b011 - Reserved.

0b100 -

0b101 -

0b110 UD_PD Final state of the requesting RN-F. Responsibility for
updating memory is passed to the Requester.

0b111 SD_PD

WriteData responses 0b000 I State of the cache line at the RN-F when data is sent.

0b001 SC

0b010 UC

0b011 - Reserved.

0b100 -

0b101 -

0b110 UD_PD State of the cache line at the RN-F when data is sent.
Responsibility for updating memory is passed to
Home.0b111 SD_PD

Table 12-36 Valid Resp value encodings for different message types (continued)

Response Type Resp[2:0] State Notes
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-309
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
12.9.37 FwdState

Forward State. Indicates the state in the CompData sent from the Snoopee to the Requester. Applicable in
SnpRespFwded and SnpRespDataFwded, inapplicable in all other Snoop responses.

Table 12-37 shows the FwdState value encodings.

Table 12-38 enumerates the FwdState value encodings.

12.9.38 RespErr

Response Error. This field indicates the error status of the response. See Chapter 9 Error Handling.

Table 12-39 shows the RespErr value encodings.

Table 12-37 FwdState value encodings

FwdState[2:0] Description

FwdState[2] PassDirty.
0 Forwarded data is not Dirty.
1 Forwarded data is Dirty and the responsibility of writing back the cache line

is passed on to the Requester.

FwdState[1:0] Indicates the final state at the Requester. See Table 12-38.

Table 12-38 Valid FwdState value encodings

FwdState[2:0] State Comment

0b000 I Final state at the Requester.

0b001 SC

0b010 UC

0b011 - Reserved.

0b100 -

0b101 -

0b110 UD_PD Final state at the Requester.
Responsibility for updating
memory is passed to the
Requester.

0b111 SD_PD

Table 12-39 RespErr value encodings

RespErr[1:0] Description

0b00 Normal Okay. Indicates that either:
• The Normal access was successful.
• The Exclusive access failed.

0b01 Exclusive Okay. Indicates that either the read or write portion of an Exclusive access was successful.

0b10 Data Error.

0b11 Non-data Error.
12-310 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
12.9.39 Data

Data payload. This is the data payload that is being transported in a Data packet.

The following data bus widths are supported:
• 128-bit.
• 256-bit.
• 512-bit.

See Data packetization on page 2-102.

12.9.40 CCID

Critical Chunk Identifier. The CCID indicates the critical 128-bit chunk of the data that is being requested. See
Critical Chunk Identifier on page 2-105.

Table 12-40 shows the CCID value encodings.

12.9.41 DataID

Data Identifier. The DataID indicates the relative position of the data chunk within the 512-bit cache line that is
being transferred. See Data packetization on page 2-102.

Table 12-41 shows the DataID value encodings.

Table 12-40 CCID value encodings

CCID[1:0] Critical data chunk

0b00 Data[127:0]

0b01 Data[255:128]

0b10 Data[383:256]

0b11 Data[511:384]

Table 12-41 DataID and the bytes within a packet for different data widths

DataID Data Width

128-bit 256-bit 512-bit

0b00 Data[127:0] Data[255:0] Data[511:0]

0b01 Data[255:128] Reserved Reserved

0b10 Data[383:256] Data[511:256] Reserved

0b11 Data[511:384] Reserved Reserved
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-311
ID080717 Non-Confidential

12 Link Layer
12.9 Protocol flit fields
12.9.42 BE

Byte Enable. Indicates if the byte of data corresponding to this byte enable bit is valid. The BE field is defined for
write data, DVM payload, and snoop response data transfers. For read response data transfers, this field is
inapplicable and can have any value. It consists of a bit for each data byte in the DAT flit. See Byte Enables on
page 2-101.

Table 12-42 shows the BE value encodings.

12.9.43 DataCheck

Data Check. Used to supply the DataCheck bit for the corresponding byte of Data. See Data Check on page 9-262.

12.9.44 Poison

Indicates if the 64-bit chunk of data corresponding to a Poison bit is poisoned, that is, has an error, and must not be
consumed. See Poison on page 9-261.

Table 12-43 shows the Poison value encodings.

12.9.45 DataSource

Data Source. Identifies the Sender of the data response. See DataSource value assignment on page 11-270.

Applicable in CompData response to a Read request and in SnpRespData and SnpRespDataPtl, inapplicable in all
other responses.

Table 12-44 shows the DataSource value encodings.

Table 12-42 BE value encodings

BE Byte enable

0 Corresponding byte of data is not valid.

1 Corresponding byte of data is valid.

Table 12-43 Poison value encodings

Poison 64-bit chunk poisoned

0 Corresponding 64-bit chunk is not poisoned.

1 Corresponding 64-bit chunk is poisoned.

Table 12-44 DataSource value encodings

DataSource Description Comment

0b000 DataSource is not supported Applicable only to a non-memory component

0b001 - 0b101 IMPLEMENTATION DEFINED See Suggested DataSource values on page 11-271

0b110 PrefetchTgt was useful Indication from memory that the earlier sent prefetch was useful or
memory received a prefetch.

0b111 PrefetchTgt was not useful Indication from memory that the earlier sent prefetch was not useful
or memory did not receive a prefetch.
12-312 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

12 Link Layer
12.9 Protocol flit fields
12.9.46 RSVDC

Reserved for customer use. Any value is valid in a Protocol flit. Propagation of this field through the interconnect
is IMPLEMENTATION DEFINED.

This field is applicable to the REQ and DAT channels as follows:
• The presence of this field is optional.
• The permitted field widths are 4-bit, 8-bit, 12-bit, 16-bit, 24-bit and 32-bit.
• The field widths:

— Can be different between REQ and DAT channels.
— Need not be the same across all REQ channels in the system.
— Need not be the same across all DAT channels in the system.

When connecting TX and RX flit interfaces that have mismatched RSVDC widths:

• The corresponding lower-order bits of the RSVDC field must be connected at each side of the interface.

• The higher-order RSVDC bits at the RX interface that do not have corresponding bits at the TX interface
must be tied LOW.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 12-313
ID080717 Non-Confidential

12 Link Layer
12.10 Link flit
12.10 Link flit
A link flit is used to return L-Credits to the receiver during a link deactivation sequence. Link flits originate at a link
transmitter and terminate at the link receiver on the other side of the link.

A link flit is identified by a zero value in the Opcode field. The TxnID field of the link flit is required to be zero.
The remaining fields are not used and can be any value. See Opcode on page 12-297 for the link flit type encoding.
12-314 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 13
Link Handshake

This chapter describes the link handshake requirements. It contains the following sections:
• Clock, and initialization on page 13-316.
• Link layer Credit on page 13-317.
• Low power signaling on page 13-318.
• Flit level clock gating on page 13-319.
• Interface activation and deactivation on page 13-320.
• Transmit and receive link Interaction on page 13-326.
• Protocol layer activity indication on page 13-332.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-315
ID080717 Non-Confidential

13 Link Handshake
13.1 Clock, and initialization
13.1 Clock, and initialization
This section specifies the AMBA 5 CHI requirement for global clock and reset signals.

13.1.1 Clock

This architecture specification does not define a specific clocking microarchitecture, but it is expected that all
devices, interconnects, etc. will include one or more clocks that can be relied upon by other Link layer functions
that require synchronous communication. A generic clock signal is referred to as CLK in the following sections,
where applicable.

13.1.2 Reset

This architecture specification does not define a specific reset microarchitecture, but it is expected that all devices,
interconnects, etc will include a specific reset deassertion event that can be relied upon by other Link layer
functions. A generic reset signal is referred to as RESETn in the following sections, where applicable.

13.1.3 Initialization

During reset the following interface signals must be deasserted by the component:
• TX***LCRDV.
• TX***FLITV.
• TXLINKACTIVEREQ and RXLINKACTIVEACK.

The earliest point after reset that it is permitted to begin driving these signals HIGH is at a rising CLK edge after
RESETn is HIGH.

All other signals can be any value.
13-316 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.2 Link layer Credit
13.2 Link layer Credit
This section describes the Link layer Credit (L-Credit) mechanism. Information is transferred across an interface
channel by the use of L-Credits. To transfer one flit from the transmitter to the receiver the transmitter must have
obtained an L-Credit.

13.2.1 L-Credit flow control

An L-Credit is sent from the receiver to the transmitter by asserting the appropriate LCRDV signal for a single clock
cycle. There is one LCRDV signal for each channel. See Channel interface signals on page 12-285 for the LCRDV
signal naming for each channel.

Each transfer of a flit from the transmitter to the receiver consumes one L-Credit.

The minimum number of L-Credits that a receiver can provide is one. The maximum number of L-Credits that a
receiver can provide is 15.

A receiver must guarantee that it can accept all the flits for which it has issued L-Credits.

When the link is active, the receiver must provide L-Credits in a timely manner without requiring any action on the
part of the transmitter.

Note
 An L-Credit cannot be used in the cycle it is received.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-317
ID080717 Non-Confidential

13 Link Handshake
13.3 Low power signaling
13.3 Low power signaling
This section describes the signaling used to enhance the low power operation of the interface. There are several
different levels of operation:

Flit Level Clock Gating

This technique is used to provide a cycle by cycle indication of the activity of each of the channels
of the interface. For each channel an additional signal is provided to indicate if a transfer might
occur in the following cycle. This signaling permits local clock gating of certain registers associated
with the interface.

Link Activation

Link activation and deactivation is supported to permit the interface to be taken to a safe state, so
that both-sides of the interface can enter a low power state that permits them to be either clock-gated
or power-gated.

Protocol Activity Indication

The Protocol layer activity indication is used by components to indicate if there are ongoing
transactions in progress. The Protocol layer activity indication can be used to influence the decision
to use other low power techniques.
13-318 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.4 Flit level clock gating
13.4 Flit level clock gating
The FLITPEND signal associated with a channel is used to indicate if a valid flit is going to be sent in the next
clock cycle. There is one FLITPEND signal for each channel. See Channel interface signals on page 12-285 for
the FLITPEND signal naming for each channel.

The requirements for the use of FLITPEND are:
• It is required that the signal is asserted exactly one cycle before a flit is sent from the transmitter.
• When asserted it is permitted, but not required, that the transmitter sends a flit in the next cycle.
• When deasserted, it is required that the transmitter does not send a flit in the next cycle.
• A transmitter is permitted to keep the signal permanently asserted. It might do this, for example, if it is unable

to determine in advance when a flit is to be sent.
• A transmitter is permitted to assert this signal when it does not have an L-Credit.
• A transmitter is permitted to assert and then deassert this signal without sending a flit.

Figure 13-1 shows an example of the use of the FLITPEND signal.

Figure 13-1 FLITPEND indicating a valid flit in next cycle

flit flit

CLK

FLITPEND

FLITV

FLIT
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-319
ID080717 Non-Confidential

13 Link Handshake
13.5 Interface activation and deactivation
13.5 Interface activation and deactivation
A mechanism is provided for an entire interface to move between a full running operational state and a low power
state. When moving between operational states, including when exiting from reset, it is important that the exchange
of L-Credits, and also the exchange of Link flits, is carefully controlled to avoid the loss of flits or credits.

On exit from reset, or when moving to a full running operational state, the interface will start in an idle state and the
transfer of flits can only commence when L-Credits have been exchanged. L-Credits can only be exchanged when
the Sender of the credits knows the receiver is ready to receive them.

A two signal, four phase, handshake mechanism is used. This two signal interface is used for all channels traveling
in the same direction, rather than being required for each individual channel. An entire interface uses a total of four
signals, two signals are used for all the transmit channels and two signals are used for all the receive channels.

13.5.1 Request and Acknowledge handshake

For the purposes of description, the two signal Request and Acknowledge signaling is described using the signal
names LINKACTIVEREQ and LINKACTIVEACK.

This section describes the operation of the LINKACTIVEREQ and LINKACTIVEACK handshake pairs for all
channels moving in one direction. Transmit and receive link Interaction on page 13-326 describes the interaction
between the handshake pairs for the transmit channels and those for the receive channels.

For a single channel, or group of channels traveling in the same direction, Figure 13-2 shows the relationship
between the Payload, Credit, LINKACTIVEREQ and LINKACTIVEACK signals.

Figure 13-2 Relationship between Payload, Credit and LINKACTIVE signals

As Figure 13-2 shows, during normal operation the transmitter, which sends the payload flits, requires a credit
before it can send a flit. A credit is passed from the receiver when it has resources available to accept a flit:

• On exit from reset, credits are held by the receiver and must be passed to the transmitter before flit transfer
can begin.

• During normal operation, there is an ongoing exchange of flits and credits between the two sides of the
interface.

• Before entering a low power state, the sending of payload flits must be stopped and all credits must be
returned to the receiver, this effectively returns the interface to the same state that it was at immediately after
reset.

Receiver
Payload

Credit

LINKACTIVEACK

LINKACTIVEREQ

Transmitter
13-320 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.5 Interface activation and deactivation
Four states are defined for the interface operation:

RUN There is an ongoing exchange of flits and credits between the two components.

STOP The interface is in a low power state and it is not operational. All credits are held by the
receiver and the transmitter is not permitted to send any flits.

ACTIVATE This state is used when moving from the STOP state to the RUN state.

DEACTIVATE This state is used when moving from the RUN state to the STOP state.

RUN and STOP are stable states and when one of these states is entered a channel can remain in this state for an
indefinite period of time.

DEACTIVATE and ACTIVATE are transient states and it is expected that when one of these states is entered a
channel will move to the next stable state in a relatively short period of time.

Note
 The specification does not define a maximum period of time in a transient state, but it is expected that for any given
implementation it is deterministic.

The state is determined by the LINKACTIVEREQ and LINKACTIVEACK signals. Figure 13-3 shows the
relationship between the four states.

Figure 13-3 Request and Acknowledge handshake states

Table 13-1 shows the mapping of the states to the LINKACTIVEREQ and LINKACTIVEACK signals.

Table 13-2 on page 13-322 describes the behavior of both the transmitter and the receiver of a single link for each
of the four states.

STOP

DEACTIVATE ACTIVATE

RUN

10

1101

00

Table 13-1 Mapping of states to the LINKACTIVE signals

LINKACTIVEREQ LINKACTIVEACK

STOP 0 0

ACTIVATE 1 0

RUN 1 1

DEACTIVATE 0 1
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-321
ID080717 Non-Confidential

13 Link Handshake
13.5 Interface activation and deactivation
Table 13-2 Behavior for each Request and Acknowledge state

State Transmitter Behavior Receiver Behavior

STOP The transmitter has no credits and must not send any flits.
The transmitter is guaranteed not to receive any credits.
The transmitter must assert LINKACTIVEREQ to
move to the ACTIVATE state if it has flits to send.

The receiver is guaranteed not to receive any flits.
The receiver must not send any credits.

ACTIVATE
(ACT)

The transmitter must not send any flits.
The transmitter must be prepared to receive credits in this
state, although it must not use them until in the RUN
state.
The transmitter remains in the ACTIVATE state while it
is waiting for the receiver to acknowledge the move to
the RUN state.

Note
 The transmitter will only receive credits in the
ACTIVATE state when there is a race between the
receiver sending credits and asserting
LINKACTIVEACK to move to the RUN state.

The receiver is guaranteed not to receive any flits.
The receiver must not send any credits.
The ACTIVATE state is a transient state and the
receiver controls the move to the RUN state by
asserting LINKACTIVEACK.
The receiver must assert LINKACTIVEACK and
move to the RUN state before sending credits. It is
permitted to assert LINKACTIVEACK and send a
credit in the same cycle.

Note
 It can appear that a receiver has sent credits in the
ACTIVATE state if there is a race between the receiver
sending credits and asserting LINKACTIVEACK to
move to the RUN state.

RUN The transmitter can receive credits.
The transmitter can send flits when it has credits
available.
The transmitter deasserts LINKACTIVEREQ to exit
from this state if it wants to move to a low power state.

The receiver can receive flits corresponding to the
credits it has sent.
The receiver sends credits when it has resources
available to accept further flits.
The receiver must remain in the RUN state until it
observes the deassertion of LINKACTIVEREQ.

DEACTIVATE
(DEACT)

The transmitter must return credits using Protocol flits or
L-Credit return flits.
It is recommended that the transmitter enters the
DEACTIVATE state only when it has no more Protocol
flits to send. Therefore, it is expected that the transmitter
will return credits using only L-Credit return flits.
The transmitter must be prepared to continue receiving
credits. For each additional credit received it must send
an L-Credit return flit to return the credit.
The transmitter remains in the DEACTIVATE state while
it is waiting for the receiver to acknowledge the move to
the STOP state. At this point, it will be guaranteed to
receive no more credits.

During this state the receiver stops sending credits and
collects all returned credits.
The receiver must be prepared to receive flits, other
than Link flits to return credits, in this state. This is not
expected, but can occur.
The receiver is permitted to send credits when first
entering this state. However, it must have stopped
sending credits and had all credits returned before
exiting this state.
The receiver will receive L-Credit return flits until all
credits are returned.
The receiver must wait for all credits to be returned
before deasserting LINKACTIVEACK.

Note
 The receiver will only receive flits in the
DEACTIVATE state when there is a race between the
transmitter sending the last remaining flits and
deasserting LINKACTIVEREQ to move to the
DEACTIVATE state.
13-322 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.5 Interface activation and deactivation
 Table 13-5 on page 13-330 summarizes the required behavior described in detail in Table 13-2 on page 13-322.

Race conditions

There are two situations where one side of the interface performs two actions at or around the same time:
• Changing the LINKACTIVEREQ or LINKACTIVEACK signal to change the state of the interface.
• Sending an associated credit or flit around the time of the state change.

This occurs in the following situations:

• When the receiver is asserting LINKACTIVEACK, to move from ACTIVATE to RUN, it is also permitted
to start sending credits:

— A race can occur between the sending of a credit, which is expected in the new state, and the assertion
of the LINKACTIVEACK signal indicating the state change.

— This is acceptable because the transmitter is required to be able to accept the credit in the previous state
as well as in the new state.

— For the receiver, it is permitted to send a credit in the same cycle that LINKACTIVEACK is asserted.

— For the transmitter, it is required to accept a credit both before and after the assertion of
LINKACTIVEACK.

• When the transmitter is deasserting LINKACTIVEREQ, to move from RUN to DEACTIVATE, it must stop
sending flits, other than L-Credit return flits:

— A race can occur between the last flit sent, which is expected in the previous state, and the deassertion
of the LINKACTIVEREQ signal indicating the state change.

— This is acceptable because the receiver is required to be able to accept the flit in the next state, as well
as in the previous state.

— For the transmitter, it is permitted to send a flit in the last cycle that LINKACTIVEREQ is asserted.

— For the receiver, it is required to accept flits both before and after the deassertion of
LINKACTIVEREQ.

Table 13-3 Summary of behavior for each Request and Acknowledge state

Transmitter Receiver

STOP Must not send flits.
Will not receive credits.

Must not send credits.
Will not receive flits.

ACT Must not send flits.
Must accept credits.

Must not send credits.
Will not receive flits.

RUN Can send flits.
Must accept credits.

Must accept flits.
Can send credits.

DEACT Must not send flits, except for credit return flits.
Must accept credits.
Must return credits.

Must accept flits.
Must stop sending credits.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-323
ID080717 Non-Confidential

13 Link Handshake
13.5 Interface activation and deactivation
Response to new state

When moving to a new state, where the state change has been initiated by the other-side of the interface, a
component might be required to change its behavior.

If the state change requires a component to start sending flits or credits, then there is no defined limit on the time
taken for the component to start the new behavior. This new behavior will only occur in the new state.

If the state change requires a component to stop sending flits or credits, then the component is permitted to take
some time to respond. In this scenario, it is possible to see behavior when first entering a new state which is not
expected within that state.

The state change from RUN to DEACTIVATE is the point at which flits and credits stop being sent.

Flits are sent by the transmitter, which is also the component that determines the state change, and therefore the
transmitter can ensure flits are not sent after the state change. However, a race condition might still occur as
described in Race conditions on page 13-323.

Credits are sent by the receiver, but that component does not determine the state change. The receiver might take
some time to react to the state change and therefore it is possible for credits to be sent when first entering the
DEACTIVATE state.

The protocol requires that the receiver has stopped sending credits and has had all credits returned before it signals
the change from DEACTIVATE to STOP.

Determining when to move to ACTIVATE or DEACTIVATE

For a given channel, or set of channels in the same direction, the transmitter is always responsible for initiating the
state change from RUN to STOP, or from STOP to RUN.

The transmitter itself can determine that a state change is needed. This can happen through a number of mechanisms.
The following examples are not exhaustive:

• The transmitter can determine that it has flits to send, so must move from STOP to RUN.

• The transmitter can determine that it has no activity to perform for a significant period of time, so can move
from RUN to STOP.

• The transmitter can observe an independent sideband signal that indicates it should move either from RUN
to STOP, or from STOP to RUN.

• The transmitter can determine that a transaction is not fully complete and therefore the channels should
remain in RUN state until all activity has completed.

• The transmitter can observe a state change on the channel, or set of channels, that are used in the opposite
direction. See Transmit and receive link Interaction on page 13-326.
13-324 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.5 Interface activation and deactivation
Multiple channels in the same direction

Figure 13-4 shows an example of a multiple channel interface, also referred to as a link, that transfers payload flits
in the same direction. A single pair of LINKACTIVEREQ and LINKACTIVEACK signals are used for all
channels.

Figure 13-4 Example of a multiple channel unidirectional interface

The rules regarding the relationship between the LINKACTIVEREQ and LINKACTIVEACK signals must be
applied appropriately across all channels:

• When a state change requires the transmitter to be able to accept credits it must be able to accept credits on
all channels.

• When a state change requires the receiver to be able to accept flits it must be able to accept flits on all
channels.

• When the sending of flits must stop before a state change the sending of flits must stop on all channels.

• When the sending of credits must stop before a state change the sending of flits must stop on all channels.

• A credit can only be associated with a flit on the same channel.

LINKACTIVEACK

LINKACTIVEREQ

Payload flit

Credit

Payload flit

Credit

Credit

Payload flit

ReceiverTransmitter
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-325
ID080717 Non-Confidential

13 Link Handshake
13.6 Transmit and receive link Interaction
13.6 Transmit and receive link Interaction
This section describes the interaction between a link transmitter and receiver. It contains the following subsections:
• Introduction.
• Tx and Rx state machines on page 13-327.
• Expected transitions on page 13-329.

13.6.1 Introduction

A single component has a number of different channels, some of which are inputs and some of which are outputs.

For a single component:
• All the channels where the Payload is an output are defined to be the Transmit Link (TXLINK).
• All the channels where the Payload is an input are defined to be the Receive Link (RXLINK).

This specification requires that the activation and deactivation of the TXLINK and RXLINK are coordinated.

When the TXLINK and RXLINK are both in the stable STOP state:

• If the RXLINK moves to the ACTIVATE state, which is controlled by the component on the other side of the
interface, then it is required that the TXLINK also moves to the ACTIVATE state, in a timely manner.

• If a component moves the TXLINK to the ACTIVATE state, which it controls, then it can expect the
RXLINK to also move to the ACTIVATE state, in a timely manner.

When the TXLINK and RXLINK are both in the stable RUN state:

• If the RXLINK moves to the DEACTIVATE state, which is controlled by the component on the other side of
the interface, then it is required that the TXLINK also moves to the DEACTIVATE state, in a timely manner.

• If a component moves the TXLINK to the DEACTIVATE state, which it controls, then it can expect the
RXLINK to also move to the DEACTIVATE state, in a timely manner.

When the TXLINK and RXLINK are changing states, the rules about the sending and receiving of credits and flits
can be considered independently for each link.
13-326 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.6 Transmit and receive link Interaction
13.6.2 Tx and Rx state machines

Figure 13-5 shows the permitted relationships between the Tx and Rx state machines. It is formatted so that the
independent nature of the Tx and Rx state machines can be seen.

Figure 13-5 Combined Tx and Rx state machines

Figure 13-5 shows the combined Tx and Rx state machines for a single component:

• For clarity, shortened state names and signal names are used.

• A green arrow represents a transition that the local agent can control.

• A blue arrow represents a transition that is under the control of the remote agent on the other side of the
interface.

• A black arrow represents a transition that is made when both the local and remote agents make a transition
at the same time.

• Around the edge of Figure 13-5 is an indication of the individual Tx and Rx states, the green and blue arrows
show which agent controls the transition. There is also an indication of the signal change that causes the state
transition.

• A vertical or horizontal arrow is a state change caused by just one signal change, that is, only the Rx state
machine or the Tx state machine changes state, not both.

• A diagonal arrow is a state change caused by two signals changing at the same time. If the diagonal arrow is
green or blue then the same agent is changing both signals.

TxStop

RxStop RxAct

TxAct
RxStop

Local
Initiate

TxAct

Remote
Initiate

Banned
Output
Race

RxRun

TxRun

Async
Input
Race

RxDeact RxStop RxAct

Async
Input
Race

Remote
Initiate

Permitted

Banned
Output
Race

Permitted

Banned
Output
Race

RXREQ RXACKRXACK RXREQ

Async
Input
Race

TxDeact

TXREQ

TXACK

Permitted

TxStop

Async
Input
Race

Permitted

Permitted

RXREQ

TxAct

Permitted

TXREQ

TXACK

TXREQ
Banned
Output
Race

TxStop
RxAct

TxAct
RxDeact+

TxAct
RxAct

TxAct
RxRun

TxRun+
RxStop

TxDeact
RxAct+

TxRun
RxAct

TxRun
RxRun

TxRun
RxDeact

TxDeact
RxRun

TxDeact
RxDeact

TxDeact
RxStop

TxStop+
RxRun

TxStop
RxDeact

TxStop
RxStop

TxStop
RxAct

TxAct+
RxDeact

TxAct
RxStop

TxStop
RxRun+

TxStop
RxStop

TxDeact+
RxAct

TxRun
RxStop+

Local
Initiate
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-327
ID080717 Non-Confidential

13 Link Handshake
13.6 Transmit and receive link Interaction
• There are a few cases where, by coincidence, a state change occurs due to two events, one on each side of the
link, occurring at the same time. This is always a diagonal path and is shown by a black arrow.

• The stub-lines show dead-end paths where an exit from a state is not permitted. The color of a stub-line
indicates which agent is responsible for ensuring that the path is not taken.

• The TxStop/RxStop and TxRun/RxRun states are expected to be stable states, and are typically the states
where the state machines stay for long periods of time. These states are highlighted with a bold outline. All
other states are considered transient states that are exited in a timely manner.

• The grey states, on the bottom right of Figure 13-5 on page 13-327, are replications of those on the top left.
They are shown to aid clarity and maintain the symmetry of the diagram.

• The yellow states can only be reached by observing a race between two input signals. The transition into these
states is labeled with Async Input Race. See Asynchronous race condition on page 13-330.

• The red states can only be reached by observing a race between two output signals. A race between two
outputs is not permitted at the edge of a component and therefore the transition into these states is labeled
with Banned Output Race. These states can only be observed at a midpoint between two components. See
Asynchronous race condition on page 13-330.

• The bold arrows are used to indicate the expected transitions around the state machine. These are described
in more detail in Expected transitions on page 13-329.

• The arrows labeled Permitted are state transactions that would not normally be expected, but they are
permitted by the protocol.

State naming

Figure 13-5 on page 13-327 shows the full set of states, including those that can only be reached through race
conditions. A more detailed discussion of race conditions can be found in Asynchronous race condition on
page 13-330.

There are two different TxStop/RxRun states, and two different TxRun/RxStop states. These states differ in how
they are reached and how it is permitted to exit from them. To differentiate between these states, a [+] suffix is used
to indicate which state machine, that is, Tx or Rx, is running ahead. For example:

• TxStop/RxRun+ indicates that the Tx state machine has remained in the previous Stop state, while the Rx
state machine has advanced to the next Run state.

• TxStop+/RxRun indicates that the Tx state machine has advanced to the next Stop state, while the Rx state
machine remains in the previous Run state.
13-328 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.6 Transmit and receive link Interaction
13.6.3 Expected transitions

Figure 13-6 shows the expected state transitions.

Figure 13-6 Expected Tx and Rx state machines transitions

Figure 13-6 shows, using bold arrows, the routes between the stable TxStop/RxStop and TxRun/RxRun states, and
between the stable TxRun/RxRun and the TxStop/RxStop states.

The difference between the two routes moving from TxStop/RxStop to TxRun/RxRun states compared to moving
from TxRun/RxRun to TxStop/RxStop states is due to the requirement to return Link layer Credits (L-Credits) in
the latter case. The differences are detailed in the following sections.

Expected transitions from TxStop/RxStop to TxRun/RxRun

There are two expected routes from a stable Stop/Stop to Run/Run state. Table 13-4 shows, in terms of the state
transitions, the two expected paths.

TxStop

RxStop RxAct

TxAct
RxStop

Local
Initiate

TxAct

Remote
Initiate

Banned
Output
Race

RxRun

TxRun

Async
Input
Race

RxDeact RxStop RxAct

Async
Input
Race

Remote
Initiate

Permitted

Banned
Output
Race

Permitted

Banned
Output
Race

RXREQ RXACKRXACK RXREQ

Async
Input
Race

TxDeact

TXREQ

TXACK

Permitted

TxStop

Async
Input
Race

Permitted

Permitted

RXREQ

TxAct

Permitted

TXREQ

TXACK

TXREQ
Banned
Output
Race

TxStop
RxAct

TxAct
RxDeact+

TxAct
RxAct

TxAct
RxRun

TxRun+
RxStop

TxDeact
RxAct+

TxRun
RxAct

TxRun
RxRun

TxRun
RxDeact

TxDeact
RxRun

TxDeact
RxDeact

TxDeact
RxStop

TxStop+
RxRun

TxStop
RxDeact

TxStop
RxStop

TxStop
RxAct

TxAct+
RxDeact

TxAct
RxStop

TxStop
RxRun+

TxStop
RxStop

TxDeact+
RxAct

TxRun
RxStop+

Local
Initiate

Table 13-4 Stop/Stop to Run/Run state paths

State 1 State 2 State 3 State 4

Path 1 TxStop/RxStop TxStop/RxAct TxAct/RxRun TxRun/RxRun

Path 2 TxStop/RxStop TxAct/RxStop TxRun/RxAct TxRun/RxRun
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-329
ID080717 Non-Confidential

13 Link Handshake
13.6 Transmit and receive link Interaction
The annotations on the diagram arrows in Figure 13-6 on page 13-329 are:

Local Initiate Indicates that the local agent has initiated the process of leaving one stable state towards the
other stable state.

Remote Initiate Indicates that the remote agent on the other side of the interface has initiated the process of
leaving one stable state towards the other stable state.

Expected transitions from TxRun/RxRun to TxStop/RxStop

A transition from a Run/Run state to a Stop/Stop state requires that L-Credits are returned. A link must remain in
the DEACTIVATE state until all L-Credits are returned.

There are four expected routes from a stable Run/Run to Stop/Stop state. Table 13-5 shows, in terms of the state
transitions, the four expected paths.

Transitioning around a stable state

It is permitted, but not expected, to transition around a stable TxRun/RxRun or TxStop/RxStop state.

In the majority of cases, moving to the stable Run/Run or Stop/Stop state would be expected.

The most likely use case for wanting to move quickly out of one of the stable states is when an interface has started
to enter a low power state, but there is still some activity required. It might be that the low power state was entered
prematurely, or it might be that some new activity arose, by coincidence, while the low power state was being
entered. In this use case, it is desirable to be able to move back to the Run/Run state as quickly as possible.

Asynchronous race condition

There are situations where two output signals, X and Y, have a defined relationship such that:

• Output X must change after or at the same time as output Y, but it is not permitted to change before output Y.

This relationship applies specifically as follows:
• The assertion of RXACK must not occur before the assertion of TXREQ.
• The deassertion of RXACK must not occur before the deassertion of TXREQ.
• The assertion of TXREQ must not occur before the deassertion of RXACK.
• The deassertion of TXREQ must not occur before the assertion of RXACK.

In Figure 13-5 on page 13-327, these transitions are labeled as Banned Output Race and the resultant state is shown
in red.

It is possible to observe these states if monitoring the output signals at a point in the system where asynchronous
race conditions can result in two signals, that are asserted within the same cycle, are observed in different clock
cycles.

A component that is on the other side of the interface, and has the two signals as inputs, can see the state transition
if an asynchronous input race occurs. These transitions are labeled on the diagram as Aysnc Input Race and the
resultant state is shown in yellow.

Table 13-5 State 5

State 1 State 2 State 3 State 4 State 5

Path 1 TxRun/RxRun TxDeact/RxRun TxDeact/RxDeact TxStop/RxDeact TxStop/RxStop

Path 2 TxRun/RxRun TxDeact/RxRun TxDeact/RxDeact TxDeact/RxStop TxStop/RxStop

Path 3 TxRun/RxRun TxRun/RxDeact TxDeact/RxDeact TxStop/RxDeact TxStop/RxStop

Path 4 TxRun/RxRun TxRun/RxDeact TxDeact/RxDeact TxDeact/RxStop TxStop/RxStop
13-330 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.6 Transmit and receive link Interaction
For all input race conditions, a component that observes the input race is required to wait for both signals before
changing any output signals. This is represented in Figure 13-5 on page 13-327 by the fact that the only permitted
output transition from a race state is caused by the arrival of the other signal associated with the race condition.

Combined Tx and Rx state machines without race conditions

In Figure 13-7 all transitions and states that occur as a result of a race condition in the combined Tx and Rx state
machines have been removed.

Figure 13-7 Combined Tx and Rx state machines without race conditions

TxStop

RxStop RxAct

TxAct
RxStop

Local
Initiate

TxAct

Remote
Initiate

RxRun

TxRun

RxDeact RxStop RxAct

Remote
Initiate

Permitted

Permitted

RXREQ RXACKRXACK RXREQ

TxDeact

TXREQ

TXACK

Permitted

TxStop

Permitted

Permitted

RXREQ

TxAct

Permitted

TXREQ

TXACK

TXREQ

TxStop
RxAct

TxAct
RxAct

TxAct
RxRun

TxRun
RxAct

TxRun
RxRun

TxRun
RxDeact

TxDeact
RxRun

TxDeact
RxDeact

TxDeact
RxStop

TxStop
RxDeact

TxStop
RxStop

TxStop
RxAct

TxAct
RxStop

TxStop
RxStop

Local
Initiate
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-331
ID080717 Non-Confidential

13 Link Handshake
13.7 Protocol layer activity indication
13.7 Protocol layer activity indication
This section describes the signals that indicate Protocol layer activity. It contains the following subsections:
• Introduction.
• TXSACTIVE signal.
• RXSACTIVE signal on page 13-335.
• Relationship between SACTIVE and LINKACTIVE on page 13-335.

13.7.1 Introduction

SACTIVE signaling indicates that there are transactions in progress.

TXSACTIVE is an output signal that is asserted by an interface where there is a transaction either in progress or
about to start:

• TXSACTIVE must be asserted before or in the same cycle in which the first flit relating to a transaction is
sent.

• TXSACTIVE must remain asserted until after the last flit relating to all transactions is sent or received.

This means that the deassertion of TXSACTIVE on an interface implies that the component has completed all
transactions in progress and does not need to send or receive any further flits.

A transaction that is given a RetryAck response is considered to be in progress, so TXSACTIVE must remain
asserted until the associated credit has been supplied and used or returned.

RXSACTIVE is an input signal which indicates that the other side of the interface has ongoing Protocol layer
activity. When RXSACTIVE is asserted a component must respond to Protocol layer activity in a timely manner.

13.7.2 TXSACTIVE signal

The following rules apply to the TXSACTIVE signal:

• TXSACTIVE must be asserted when the transmitter has flits to send.

• A component that asserts TXSACTIVE must also, if required, initiate the link activation sequence. It is not
permitted for a component to assert the TXSACTIVE signal and then wait for the other side of the interface
to initiate the link activation sequence.

• TXSACTIVE must remain asserted until after the last flit relating to all transactions is sent or received.

• It is permitted for TXSACTIVE to be deasserted while transmitting link flits as part of the link deactivation
sequence.

Note
 To ensure an efficient power-down sequence, ARM recommends not to assert a deasserted TXSACTIVE signal
during a link deactivation sequence.
13-332 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.7 Protocol layer activity indication
Figure 13-8 shows the requirements for TXSACTIVE assertion during the life of a transaction.

Figure 13-8 TXSACTIVE assertion during the life of a transaction

RN-F0

ReadUnique

SnpUnique

CompData_UC

SnpResp_ISnpResp_I

SnpUnique

I->UC

CompAck

ReadNoSnp

CompData

RN-F1 RN-F1
I II

ICN-RN SN-FICN-SN

Interconnect
=TXSACTIVE
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-333
ID080717 Non-Confidential

13 Link Handshake
13.7 Protocol layer activity indication
TXSACTIVE signaling from an RN

When initiating new transactions, an RN must assert TXSACTIVE in the same cycle or before TXREQFLITV is
asserted and must keep it asserted until after the final completing flit of a transaction is sent or received.

The type of flit that completes a transaction initiated by an RN will depend on both the transaction type and the
manner in which the transaction progresses. For example, a ReadNoSnp transaction might typically complete with
the receipt of the last CompData flit, but could equally complete with a ReadReceipt, if this is later than the last
CompData flit.

Table 13-6 shows the flit types that can complete a transaction. The PrefetchTgt transaction does not include an
explicit completion message, the transaction is considered completed the cycle after it is sent.

An RN-F or RN-D component must also assert TXSACTIVE while a Snoop transaction is in progress.
TXSACTIVE must be asserted after receiving an initiating Snoop or SnpDVMOp flit, and no later than when its
first Response flit is sent. It must keep TXSACTIVE asserted until after the final completing flit is sent for all
Snoop transactions.

For an RN-F or RN-D the TXSACTIVE output is the logical OR of the requirements for the Request interface and
the Snoop interface.

TXSACTIVE signaling from an SN

An SN cannot initiate new transactions and is only required to assert TXSACTIVE while it is processing a
transaction that is in progress.

It must assert TXSACTIVE after receiving a transaction initiating flit and it must be asserted before or in the same
cycle in which its first Response flit is sent. It must keep TXSACTIVE asserted until after the final completing flit
is sent or received.

TXSACTIVE signaling from an ICN interface to an RN

The interconnect interface to an RN must assert TXSACTIVE in both the following conditions:

• On receiving a transaction initiating flit, it must be asserted before or in the same cycle in which its first
Response flit is sent. It must keep TXSACTIVE asserted until after the final completing flit is sent or
received.

• Before or in the same cycle in which its initiating Snoop or SnpDVMOp flit is sent. It must keep
TXSACTIVE asserted until after the final completing flit is sent, which will be either SnpResp or
SnpRespData.

Table 13-6 RN completing flits for RN initiated transactions

Completing flit Channel Transaction type

CompAck TXRSP Read, Dataless, WriteUnique

Comp RXRSP Dataless, WriteUnique, WriteNoSnp, AtomicStore, DVM

CompData RXDAT Read, Atomic

ReadReceipt RXRSP ReadNoSnp, ReadOnce

PCrdReturn TXREQ All transaction types

NonCopyBackWrData TXDAT WriteUnique, WriteNoSnp, Atomic

CopyBackWrData TXDAT CopyBack
13-334 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

13 Link Handshake
13.7 Protocol layer activity indication
TXSACTIVE signaling from an ICN interface to an SN

The interconnect interface to an SN must assert TXSACTIVE before, or in the same cycle in which its initiating
Request flit is sent. It must keep TXSACTIVE asserted until after the final completing flit is sent or received.

13.7.3 RXSACTIVE signal

When RXSACTIVE is asserted, the receiver must respond to a link activation request in a timely manner. It is
permitted for a receiver to delay responding to a link activation request when RXSACTIVE is deasserted.

Note
 The deassertion of RXSACTIVE does not indicate that all Protocol layer activity has completed. It is possible for
a receiver to receive a Protocol flit, which corresponds to a transaction that was in progress while RXSACTIVE
was asserted, after RXSACTIVE is deasserted.

RXSACTIVE can be used in combination with a knowledge of the ongoing transactions, which will be indicated
by the components TXSACTIVE output, to indicate that no further transactions are required. This can be used to
control entry to a low power state.

13.7.4 Relationship between SACTIVE and LINKACTIVE

SACTIVE signaling is an indication of Protocol layer activity. A node can be considered inactive when both
TXSACTIVE and RXSACTIVE are deasserted.

LINKACTIVE state is an indication of the Link layer activity. The Link layer at a node, or interconnect, can be
considered inactive when its receiver is in TxStop state and its receiver is in RxStop state.

SACTIVE signaling is orthogonal to the LINKACTIVE states with one constraint as specified in RXSACTIVE
signal.

A node, or interconnect, should only enable higher level clock gating and low power optimizations when both its
Protocol and Link layers are inactive.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 13-335
ID080717 Non-Confidential

13 Link Handshake
13.7 Protocol layer activity indication
13-336 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 14
System Coherency Interface

This chapter describes the interface signals that support connecting and disconnecting an RN-F from both the
Coherency and DVM domains and an RN-D from the DVM domain. It contains the following sections:
• Overview on page 14-338.
• Handshake on page 14-339.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 14-337
ID080717 Non-Confidential

14 System Coherency Interface
14.1 Overview
14.1 Overview
The system coherency interface signals are:
SYSCOREQ Master coherency request.
SYSCOACK Interconnect coherency acknowledge.

Figure 14-1 shows the system coherency interface signals connections.

Figure 14-1 System coherency interface signals

Note
 In this chapter:
• Coherency when stated, includes the DVM domain, unless explicitly stated otherwise.
• Snoop when stated, includes SnpDVMOp, unless explicitly stated otherwise.

SYSCOREQ SYSCOACK

Interconnect

RN-F or RN-D
14-338 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

14 System Coherency Interface
14.2 Handshake
14.2 Handshake
A Request Node, an RN-F or an RN-D, requests connection to system coherency by setting SYSCOREQ HIGH.
The interconnect indicates that coherency is enabled by setting SYSCOACK HIGH.

The Request Node requests disconnection from system coherency by setting SYSCOREQ LOW. The interconnect
indicates that coherency is disabled by setting SYSCOACK LOW.

Requests to enter and exit coherency are always initiated by the Request Node.

Figure 14-2 shows the system coherency interface handshake timing.

Figure 14-2 System coherency interface handshake timing

As Figure 14-2 shows, the interface signaling obeys four-phase handshake rules:
• SYSCOREQ can only change when SYSCOACK is at the same logic state.
• SYSCOACK can only change when SYSCOREQ is at the opposite logic state.

14.2.1 RN rules

Referring to Figure 14-2, an RN must:
• Be able to service Snoop requests when it sets SYSCOREQ HIGH at t1.
• Not issue a transaction that permits it to cache a coherent location until SYSCOACK goes HIGH at t2.
• Ensure all transactions that permit it to cache a coherent location are complete before it sets SYSCOREQ

LOW at t3.
SYSCOREQ can only be deasserted on the cycle after all of the following:
— All data packets are received for Reads.
— All data packets are sent for CopyBack.
— All data packets are sent for Snoops and forwarding snoops.

• Keep servicing Snoop requests until SYSCOACK is sampled LOW at t4.

SACTIVE must be asserted during coherency connect transition periods to guarantee the SYSCOACK transition
will occur. See Protocol layer activity indication on page 13-332.

Note
 The transactions that permit a coherent location to be cached are:
• ReadUnique.
• ReadClean.
• ReadNotSharedDirty.
• ReadShared.
• CleanUnique.
• MakeUnique.

SYSCOREQ

SYSCOACK

t0 t1

Coherency Disabled Coherency Connect Coherency Enabled

t2 t3

Coherency Disconnect

t4

Coherency Disabled
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 14-339
ID080717 Non-Confidential

14 System Coherency Interface
14.2 Handshake
14.2.2 Interconnect rules

Referring to Figure 14-2 on page 14-339, the interconnect must:

• When it samples SYSCOREQ HIGH, be able to service coherent data accesses from the interface when it
sets SYSCOACK HIGH at t2.

• When it samples SYSCOREQ LOW, it must complete all snoop accesses to the interface before it sets
SYSCOACK LOW at t4.

14.2.3 Protocol states

Table 14-1 shows the interface states and the rules that the master must follow in relation to the interface state.

Table 14-1 System coherency interface states

State name SYSCOREQ SYSCOACK Description

Coherency Disabled 0 0 • RN caches must not contain coherent data.
• RN must not issue transactions that permit it to cache a coherent

location or send DVM transactions.
• RN not required to respond to Snoop requests.
• Interconnect must not send Snoop requests.

Coherency Connect 1 0 • RN caches must not contain coherent data.
• RN must not issue transactions that permit it to cache a coherent

location or send DVM transactions.
• RN must respond to Snoop requests.
• Interconnect can send Snoop requests.

Coherency Enabled 1 1 • RN caches can contain coherent data.
• RN can issue transactions that cache a coherent location and send

DVM transactions.
• RN must respond to Snoop requests.

Coherency Disconnect 0 1 • RN caches must not contain coherent data.
• RN must not issue transactions that permit it to cache a coherent

location or send DVM transactions.
• RN must respond to Snoop requests.
• Interconnect must complete outstanding Snoop requests but must

not generate new Snoop requests.
14-340 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Chapter 15
Properties, Parameters, and Broadcast Signals

This chapter describes the properties, parameters, and optional broadcast signals that specify the behavior supported
by an interface. It contains the following sections:
• Interface properties and parameters on page 15-342.
• Optional interface broadcast signals on page 15-344.
• Atomic transaction support on page 15-346.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 15-341
ID080717 Non-Confidential

15 Properties, Parameters, and Broadcast Signals
15.1 Interface properties and parameters
15.1 Interface properties and parameters
A property is used to declare a capability. If a property is not declared, it is considered False.

The properties and parameters that specify the interface behavior are:

Atomic_Transactions

An Atomic_Transactions property is used to indicate if a component supports Atomic transactions:
• When not specified, or set to False, Atomic transactions are not supported.
• When set to True, Atomic transactions are supported.

A component that supports Atomic transactions must support all Atomic transactions. However, it
is not required that a component that supports Atomic transactions supports the targeting of all
memory types.

Cache_Stash_Transactions

A Cache_Stash_Transactions property is used to indicate if a component supports Cache Stashing
transactions:
• When not specified, or set to False, Cache Stashing transactions are not supported.
• When set to True, Cache Stashing Transactions are supported.

Direct_Memory_Transfer

A Direct_Memory_Transfer property is used to indicate if a component supports Direct Memory
Transfer transactions:
• When not specified, or set to False, Direct Memory Transfer transactions are not supported.
• When set to True, Direct Memory Transfer transactions are supported.
• The Direct_Memory_Transfer property is defined at each HN for each SN.

Direct_Cache_Transfer

A Direct_Cache_Transfer property is used to indicate if a component supports Direct Cache
Transfer transactions:

• When not specified, or set to False, Direct Cache Transfer transactions are not supported.

• When set to True, Direct Cache Transfer transactions are supported.

• It is the responsibility of the HN-F to determine the correct snoop type to use.

Data_Poison A Data_Poison property is used to indicate if a component supports Poison:

• When not specified, or set to false, Poison is not supported and the Poison field is not present
in the DAT packet.

• When set to True, Poison is supported and the Poison field is present in the DAT packet.

See Poison on page 9-261.

Data_Check The Data Check property is used to indicate if Data Check is supported:

• When not specified, or set to false, Data Check is not supported and the DataCheck field is
not present in the DAT packet.

• When set to Odd_Parity, Data Check is supported and the DataCheck field is present in the
DAT packet.

See Data Check on page 9-262.

CCF_Wrap_Order

See Critical chunk first wrap order on page 2-105.

Req_Addr_Width

This parameter specifies the maximum physical address supported by a component:
• Legal values for this parameter are 44 to 52.
• When Req_Addr_Width is not specified, the default value is 44.
15-342 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

15 Properties, Parameters, and Broadcast Signals
15.1 Interface properties and parameters
NodeID_Width

This parameter specifies the width of NodeID fields supported by a component, which determines
the maximum permitted NodeID value in the system:
• The width specified is uniformly applied to all NodeID related fields.
• Legal values of NodeID_Width are 7 to 11.
• When NodeID_Width is not specified, the default value is 7.

Data_Width This parameter specifies the data width in the DAT channel packet supported by a component:
• Legal values for Data_Width are 128, 256, and 512.
• When Data_Width is not specified, the default value is 128.

Enhanced_Features

The Enhanced_Features property describes the combined support for some of the miscellaneous
features in the CHI specification that do not have an explicit property or parameter defined.

When the Enhanced_Features property is True, the component supports all the following enhanced
features:
• Data return from SC state.
• I/O Deallocation transactions.
• ReadNotSharedDirty transaction.
• CleanSharedPersist transaction.
• Receiving of Forwarding snoops.

When not specified, or set to False, the component does not support the enhanced features that do
not have an explicitly defined property or parameter.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 15-343
ID080717 Non-Confidential

15 Properties, Parameters, and Broadcast Signals
15.2 Optional interface broadcast signals
15.2 Optional interface broadcast signals
This specification includes three sets of optional pins to determine broadcasting of certain groups of transactions in
the interconnect. These pins are optional at the RN to ICN and ICN to SN interfaces. The three sets of optional
broadcast pins are:
• BROADCASTINNER and BROADCASTOUTER.
• BROADCASTCACHEMAINTENANCE and BROADCASTPERSIST.
• BROADCASTATOMIC.

An implementation that includes these signals at the interface must ensure that the signal values are stable when
Reset is deasserted.

BROADCASTINNER and BROADCASTOUTER determine respectively if inner and outer domain transactions
must be broadcast. This specification requires that these two pins must be set to the same value. When set to zero
none of the inner and outer transactions are broadcast except for Cache Maintenance Operations (CMO).

The BROADCASTCACHEMAINTENANCE and BROADCASTPERSIST interface signals provide efficient
maintenance of downstream caches in the interconnect space. The broadcast signals are used as follows:

BROADCASTCACHEMAINTENANCE

• When asserted, CMO transactions must be broadcast beyond the interface for maintenance
of downstream caches.
CleanSharedPersist must be converted to CleanShared before broadcasting to downstream
caches if BROADCASTPERSIST is deasserted.

• When deasserted, broadcasting of Persistent CMO beyond the interface is determined by the
assertion of the BROADCASTPERSIST signal.

BROADCASTPERSIST

• When asserted, CleanSharedPersist must be broadcast beyond the interface for maintenance
of downstream caches. This requirement is independent of the
BROADCASTCACHEMAINTENANCE signal value.

• When deasserted, broadcasting of the Persistent CMO beyond the interface is determined by
the BROADCASTCACHEMAINTENANCE signal value.

The direction of the signal at the RN to ICN interface is input to RN and at the ICN to SN interface it is input to ICN.

Table 15-1 on page 15-345 shows the broadcast signal encodings using the following keys:
BI BROADCASTINNER.
BO BROADCASTOUTER.
BCM BROADCASTCACHEMAINTENANCE.
BP BROADCASTPERSIST.
15-344 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

15 Properties, Parameters, and Broadcast Signals
15.2 Optional interface broadcast signals
BROADCASTATOMIC
• When asserted, the interface is permitted to generate Atomic transactions.
• When deasserted, the interface must not generate Atomic transactions.

An RN is not required to make use of Atomic transactions. An RN that does not make use of Atomic transactions
itself, needs no added functionality to be compatible with an interconnect that supports Atomic transactions.

An RN that supports atomic operations but does not include support for the execution of atomic operations must be
able to send Atomic transactions.

Table 15-1 CMO broadcast at the interface with unspecified BI and BO

Broadcast signal Transaction to be broadcast

BI = BO BCM BP

0 0 0 None.

0 0 1 Persistent CMO only.

0 1 0 Both Non-persistent and Persistent CMO.
Persistent CMO is converted to Non-persistent CMO.

0 1 1 Both Non-persistent and Persistent CMO.

1 0 0 All inner and outer transactions.
Persistent CMO is converted to Non-persistent CMO

1 0 1 All inner and outer transactions.
All Persistent CMO.

1 1 0 All inner and outer transactions including all Non-persistent
and Persistent CMO.
Persistent CMO is converted to Non-persistent CMO.

1 1 1 All inner and outer transactions including all Non-persistent
and Persistent CMO.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 15-345
ID080717 Non-Confidential

15 Properties, Parameters, and Broadcast Signals
15.3 Atomic transaction support
15.3 Atomic transaction support
The CHI component support requirements for Atomic transactions are described in the following sections:
• Request Node support.
• Interconnect support on page 15-347.
• Slave Node support on page 15-347.

15.3.1 Request Node support

A Requester component is required to support a mechanism to suppress the generation of Atomic transactions to
ensure compatibility in systems where Atomic transactions are not supported. A Requester can use the optional
interface pin BROADCASTATOMIC to determine whether Atomic transactions are transmitted.

An RN is not required to make use of Atomic transactions. An RN that does not make use of Atomic transactions
itself, needs no added functionality to be compatible with an interconnect that supports Atomic transactions.

An RN that supports atomic operations but does not include support for the execution of atomic operations must be
able to send Atomic transactions.

For an RN that supports both the execution of atomic operations as well as the sending of Atomic transactions the
following applies:

• For cacheable locations, both Snoopable and Non-snoopable, an RN is able to perform an atomic operation
locally without generating an Atomic transaction at its interface. To achieve this, the Requester obtains a copy
of the location in its local cache, in the same manner that it would for a store operation, and then performs
the atomic operation within its local cache. For cacheable locations that are Snoopable, if the contents of the
cache line are updated and the cache line was not previously Dirty, then the cache line must be marked as
Dirty.

A Requester with a cache can handle an Atomic transaction request to a Snoopable memory region as follows:

• If the cache line is Unique, then it can perform the atomic operation locally without generating an Atomic
transaction.

• If the cache line is Shared but not Dirty, it can either:

— Generate a ReadUnique or CleanUnique to gain ownership of the cache line and perform the atomic
operation locally.

— Invalidate the local copy and send the Atomic transaction to the interconnect.

• If the cache line is Shared Dirty, it can either:

— Generate a CleanUnique or ReadUnique, gain ownership of the cache line, and perform the operation
locally.

— WriteBack and Invalidate the local copy and then send the Atomic transaction to the interconnect.

• Optionally, in all the above cases, the Requester is permitted to send the Atomic transaction with the
SnoopMe bit set to direct the interconnect to send a Snoop request to the Requester to invalidate, and if
required, extract the cached copy. See SnoopMe on page 12-305.
15-346 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

15 Properties, Parameters, and Broadcast Signals
15.3 Atomic transaction support
15.3.2 Interconnect support

Interconnect support for Atomic transactions is optional.

The Atomic_Transactions property is used to indicate that an interconnect supports Atomic transactions.

If Atomic transactions are not supported by the interconnect, all attached RNs must be configured to not generate
Atomic transactions. The BROADCASTATOMIC pin can be used for this purpose, when implemented. See
Request Node support on page 15-346.

For interconnects that support Atomic transactions, atomic operation execution can be supported at any point within
an interconnect, including passing an Atomic transaction downstream to a Slave Node.

Atomic transactions are not required to be supported for every address location.

If Atomic transactions are supported for a given Snoopable address location, then they must be supported for the
complete Snoopable address range.

If Atomic transactions are not supported for a given address location, then an appropriate error response can be
given for the Atomic transaction. See Atomic transactions on page 9-257.

For transactions to a Device the Atomic transaction must be passed to the appropriate endpoint slave. If the slave is
configured to indicate that it does not support Atomic transactions, then the interconnect must return an Error
response for the transaction.

For Non-snoopable transactions, the Atomic transaction must be performed either:
• At a point, or past a point, where the transaction is visible to all other agents.
• At the endpoint.

For Snoopable transactions, the interconnect can either:

• Perform the atomic operation required by an Atomic transaction within the interconnect.

— This requires that the interconnect performs the appropriate Read, Write and Snoop transactions to
complete the Atomic transaction.

• If the appropriate endpoint slave is configured to indicate that it supports Atomic transactions, then the
interconnect can pass the Atomic transaction to the slave.

— The interconnect is still required to perform the appropriate Snoop and Write transactions before
issuing the Atomic transaction to the Slave.

15.3.3 Slave Node support

Slave Node support for Atomic transactions is optional.

The Atomic_Transaction property is used to indicate that an SN supports Atomic transactions.

If an SN supports Atomic transactions for particular memory types, or for particular address regions, then on
receiving an Atomic transaction that it does not support, the SN must give an appropriate Error response.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. 15-347
ID080717 Non-Confidential

15 Properties, Parameters, and Broadcast Signals
15.3 Atomic transaction support
15-348 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Appendix A
Message Field Mappings

This appendix shows the field mappings for the request, response, data, and snoop request messages. It contains the
following sections:
• Request message field mappings on page A-351.
• Response message field mappings on page A-352.
• Data message field mappings on page A-353.
• Snoop Request message field mappings on page A-354.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. A-349
ID080717 Non-Confidential

Appendix A Message Field Mappings

Table A-1 shows the conventions used in the field mapping tables.

Table A-1 Key to field mapping table conventions

Symbol Description

CF Common Field. Two or more protocol message
fields share the same set of bits in this packet field.

X Field value is not defined and can be any value.

1 Applicable. Field value is used, must be set to one.

0 Applicable. Field value is used, must be set to zero.

0a Inapplicable. Field value must be set to zero.

Y Applicable. Field value is used. See specification for
permitted values and usage.

8B Size field must be set to 8-byte encoding.

64B Size field must be set to 64-byte encoding.

- Assigned to another protocol message field that
shares the same set of bits in this packet field.
A-350 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Appendix A Message Field Mappings
A.1 Request message field mappings
A.1 Request message field mappings
Table A-2 shows the request message field mappings. See Table A-1 on page A-350 for the conventions used in the
field mappings. CF indicates a Common Field. For further information on field use see Protocol flit fields on
page 12-293.

Table A-2 Request vc message field mappings

MemAttr CF CF CF CF

Request message

Q
os

Tg
tID

Sr
cI

D
Tx

nI
D

O
pc

od
e

Si
ze

A
dd

r
N

S
Li

ke
ly

Sh
ar

ed
A

llo
w

R
et

ry
O

rd
er

PC
rd

Ty
pe

A
llo

ca
te

C
ac

he
ab

le
D

ev
ic

e
EW

A
Sn

pA
ttr

LP
ID

Ex
cl

Sn
oo

pM
e

Ex
pC

om
pA

ck
R

SV
D

C
R

et
ur

nN
ID

St
as

hN
ID

St
as

hN
ID

Va
lid

En
di

an
R

et
ur

nT
xn

ID
St

as
hL

PI
D

Va
lid

St
as

hL
PI

D
Tr

ac
eT

ag

ReqLCrdReturn X X X 0 Y X

PrefetchTgt Y Y Y 0a Y X Y Y X 0 X X X X X X X Y X - 0a Y 0a X 0a Y

PCrdReturn Y Y Y 0a Y 0a 0a 0a 0a 0a 0a Y 0a 0a 0a 0a 0a 0a 0a 0 Y 0a 0a 0a Y

DVMOp Y Y Y Y Y 8B Y 0a 0a Y 0a Y 0a 0a 0a 0a 0a Y 0a 0 Y 0a 0a 0a Y

ReadNoSnp Y Y Y Y Y Y Y Y 0 Y Y Y Y Y Y Y 0 Y Y - Y Y Y - 0a Y - - Y

ReadShared Y Y Y Y Y 64B Y Y Y Y 0 Y Y 1 0 1 1 Y Y - 1 Y 0a 0a - - Y Y

ReadClean Y Y Y Y Y 64B Y Y Y Y 0 Y Y 1 0 1 1 Y Y - 1 Y 0a 0a 0a Y

ReadOnce Y Y Y Y Y 64B Y Y 0 Y Y Y Y 1 0 1 1 Y 0 - Y Y 0a 0a 0a Y

ReadUnique Y Y Y Y Y 64B Y Y 0 Y 0 Y Y 1 0 1 1 Y 0 - 1 Y 0a 0a 0a Y

ReadNotSD Y Y Y Y Y 64B Y Y Y Y 0 Y Y 1 0 1 1 Y Y - 1 Y 0a 0a 0a Y

CleanShared Y Y Y Y Y 64B Y Y 0 Y 0 Y Y Y Y 1 1 Y 0 - 0 Y 0a 0a 0a Y

CleanSharedPersist Y Y Y Y Y 64B Y Y 0 Y 0 Y Y Y Y 1 1 Y 0 - 0 Y 0a 0a 0a Y

CleanInvalid Y Y Y Y Y 64B Y Y 0 Y 0 Y Y Y Y 1 1 Y 0 - 0 Y 0a 0a 0a Y

MakeInvalid Y Y Y Y Y 64B Y Y 0 Y 0 Y Y Y Y 1 1 Y 0 - 0 Y 0a 0a 0a Y

ReadOnceCleanInvalid Y Y Y Y Y 64B Y Y 0 Y Y Y Y 1 0 1 1 Y 0 - Y Y 0a 0a 0a Y

ReadOnceMakeInvalid Y Y Y Y Y 64B Y Y 0 Y Y Y 0 1 0 1 1 Y 0 - Y Y 0a 0a 0a Y

CleanUnique Y Y Y Y Y 64B Y Y 0 Y 0 Y Y 1 0 1 1 Y Y - 1 Y 0a 0a 0a Y

MakeUnique Y Y Y Y Y 64B Y Y 0 Y 0 Y Y 1 0 1 1 Y 0 - 1 Y 0a 0a 0a Y

Evict Y Y Y Y Y 64B Y Y 0 Y 0 Y 0 1 0 1 1 Y 0 - 0 Y 0a 0a 0a Y

WriteNoSnpPtl Y Y Y Y Y Y Y Y 0 Y Y Y Y Y Y Y 0 Y Y - 0 Y 0a 0a 0a Y

WriteNoSnpFull Y Y Y Y Y 64B Y Y 0 Y Y Y Y Y Y Y 0 Y Y - 0 Y 0a 0a 0a Y

WriteEvictFull Y Y Y Y Y 64B Y Y Y Y 0 Y 1 1 0 1 1 Y 0 - 0 Y 0a 0a 0a Y

WriteCleanFull Y Y Y Y Y 64B Y Y Y Y 0 Y Y 1 0 1 1 Y 0 - 0 Y 0a 0a 0a Y

WriteBackPtl Y Y Y Y Y 64B Y Y 0 Y 0 Y Y 1 0 1 1 Y 0 - 0 Y 0a 0a 0a Y

WriteBackFull Y Y Y Y Y 64B Y Y Y Y 0 Y Y 1 0 1 1 Y 0 - 0 Y 0a 0a 0a Y

WriteUniquePtlStash Y Y Y Y Y Y Y Y Y Y Y Y Y 1 0 1 1 Y 0 - Y Y - Y Y - - Y Y Y

WriteUniqueFullStash Y Y Y Y Y 64B Y Y Y Y Y Y Y 1 0 1 1 Y 0 - Y Y - Y Y - - Y Y Y

WriteUniquePtl Y Y Y Y Y Y Y Y Y Y Y Y Y 1 0 1 1 Y 0 - Y Y 0a 0a 0a Y

WriteUniqueFull Y Y Y Y Y 64B Y Y Y Y Y Y Y 1 0 1 1 Y 0 - Y Y 0a 0a 0a Y

StashOnceUnique Y Y Y Y Y 64B Y Y Y Y 0 Y Y 1 0 1 1 Y 0 - 0 Y - Y Y - - Y Y Y

StashOnceShared Y Y Y Y Y 64B Y Y Y Y 0 Y Y 1 0 1 1 Y 0 - 0 Y - Y Y - - Y Y Y

AtomicLoad Y Y Y Y Y Y Y Y 0 Y Y Y Y Y Y Y Y Y - Y 0 Y 0a - Y 0a Y

AtomicStore Y Y Y Y Y Y Y Y 0 Y Y Y Y Y Y Y Y Y - Y 0 Y 0a - Y 0a Y

AtomicCompare Y Y Y Y Y Y Y Y 0 Y Y Y Y Y Y Y Y Y - Y 0 Y 0a - Y 0a Y

AtomicSwap Y Y Y Y Y Y Y Y 0 Y Y Y Y Y Y Y Y Y - Y 0 Y 0a - Y 0a Y
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. A-351
ID080717 Non-Confidential

Appendix A Message Field Mappings
A.2 Response message field mappings
A.2 Response message field mappings
Table A-3 shows the response message field mappings. See Table A-1 on page A-350 for the conventions used in
the field mappings. For further information on field use see Protocol flit fields on page 12-293.

Table A-3 Response message field mappings

Response message

CF

Q
oS

Tg
tID

Sr
cI

D

Tx
nI

D

O
pc

od
e

R
es

pE
rr

R
es

p

D
B

ID

PC
rd

Ty
pe

Fw
dS

ta
te

D
at

aP
ul

l

Tr
ac

eT
ag

RspLCrdReturn X X X 0 Y X X X X X X

SnpResp Y Y Y Y Y Y Y Y 0a - Y Y

SnpRespFwded Y Y Y Y Y Y Y X 0a Y - Y

CompAck Y Y Y Y Y 0 0a X 0a 0a Y

RetryAck Y Y Y Y Y 0 0a X Y 0a Y

Comp Y Y Y Y Y Y Y Y 0a 0a Y

CompDBIDResp Y Y Y Y Y Y 0 Y 0a 0a Y

DBIDResp Y Y Y Y Y 0 0a Y 0a 0a Y

PCrdGrant Y Y Y 0a Y 0 0a 0a Y 0a Y

ReadReceipt Y Y Y Y Y 0 0a X 0a 0a Y
A-352 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Appendix A Message Field Mappings
A.3 Data message field mappings
A.3 Data message field mappings
Table A-4 shows the data message field mappings. See Table A-1 on page A-350 for the conventions used in the
field mappings. For further information on field use see Protocol flit fields on page 12-293.

Table A-4 Data message field mappings

Common Field

Data message

Q
oS

Tg
tID

Sr
cI

D

Tx
nI

D

O
pc

od
e

R
es

pE
rr

R
es

p

D
B

ID

C
C

ID

D
at

aI
D

R
SV

D
C

B
E

D
at

a

H
om

eN
ID

Fw
dS

ta
te

D
at

aP
ul

l

D
at

aS
ou

rc
e

Tr
ac

eT
ag

D
at

aC
he

ck

Po
is

on

DatLCrdReturn X X X 0 Y X X X X X X X X X X X X X

SnpRespData Y Y Y Y Y Y Y Y Y Y Y Y Y 0a - Y Y Y Y Y

SnpRespDataFwded Y Y Y Y Y Y Y X Y Y Y Y Y 0a Y - - Y Y Y

CopyBackWrData Y Y Y Y Y Y Y X Y Y Y Y Y 0a 0a Y Y Y

NonCopyBackWrData Y Y Y Y Y Y Y X Y Y Y Y Y 0a 0a Y Y Y

CompData Y Y Y Y Y Y Y X Y Y Y X Y Y - - Y Y Y Y

SnpRespDataPtl Y Y Y Y Y Y Y X Y Y Y Y Y 0a - Y Y Y Y Y

WriteDataCancel Y Y Y Y Y Y Y X Y Y Y 0 Y 0a 0a Y Y Y
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. A-353
ID080717 Non-Confidential

Appendix A Message Field Mappings
A.4 Snoop Request message field mappings
A.4 Snoop Request message field mappings
Table A-5 shows the snoop request message field mappings. See Table A-1 on page A-350 for the conventions used
in the field mappings. For further information on field use see Protocol flit fields on page 12-293.

Table A-5 Snoop Request message field mappings

Snoop Request message

Common Field CF

Q
oS

Sr
cI

D

Tx
nI

D

O
pc

od
e

A
dd

r[
(4

3-
51

):3
]

N
S

Fw
dN

ID

Fw
dT

xn
ID

St
as

hL
PI

D
Va

lid

St
as

hL
PI

D

VM
ID

Ex
t

D
oN

ot
G

oT
oS

D

D
oN

ot
D

at
aP

ul
l

R
et

To
Sr

c

Tr
ac

eT
ag

SnpLCrdReturn X X 0 Y X X X X X X X X X X X

SnpShared Y Y Y Y Y Y 0a 0a Y - Y Y

SnpClean Y Y Y Y Y Y 0a 0a Y - Y Y

SnpOnce Y Y Y Y Y Y 0a 0a Y - Y Y

SnpNotSharedDirty Y Y Y Y Y Y 0a 0a Y - Y Y

SnpUnique Y Y Y Y Y Y 0a 0a 1 - Y Y

SnpCleanShared Y Y Y Y Y Y 0a 0a 1 - 0 Y

SnpCleanInvalid Y Y Y Y Y Y 0a 0a 1 - 0 Y

SnpMakeInvalid Y Y Y Y Y Y 0a 0a 1 - 0 Y

SnpSharedFwd Y Y Y Y Y Y Y Y - - - Y - Y Y

SnpCleanFwd Y Y Y Y Y Y Y Y - - - Y - Y Y

SnpOnceFwd Y Y Y Y Y Y Y Y - - - Y - 0 Y

SnpNotSharedDirtyFwd Y Y Y Y Y Y Y Y - - - Y - Y Y

SnpUniqueFwd Y Y Y Y Y Y Y Y - - - 1 - 0 Y

SnpUniqueStash Y Y Y Y Y Y 0a - Y Y - - Y 0 Y

SnpMakeInvalidStash Y Y Y Y Y Y 0a - Y Y - - Y 0 Y

SnpStashUnique Y Y Y Y Y Y 0a - Y Y - - Y 0 Y

SnpStashShared Y Y Y Y Y Y 0a - Y Y - - Y 0 Y

SnpDVMOp Y Y Y Y Y 0a 0a - - - Y 0a 0a Y
A-354 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Appendix B
Communicating Nodes

This appendix specifies, for each packet type, the nodes that communicate using that packet type. It contains the
following sections:
• Request communicating nodes on page B-356.
• Snoop communicating nodes on page B-358.
• Response communicating nodes on page B-359.
• Data communicating nodes on page B-360.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. B-355
ID080717 Non-Confidential

Appendix B Communicating Nodes
B.1 Request communicating nodes
B.1 Request communicating nodes
Table B-1 shows the Request communicating nodes.

For some Requests, both an expected target and a permitted target are given. The use of the permitted target can
occur in the case of a software based error. The permitted target must complete the transaction in a protocol
compliant manner, this might require the use of an error response.

Table B-1 Request communicating nodes

Request From To

Expected Permitted

ReadNoSnp
WriteNoSnpFull
WriteNoSnpPtl

RN-F, RN-D, RN-I ICN(HN-F, HN-I) -

ICN(HN-F) SN-F -

ICN(HN-I) SN-I -

ReadClean
ReadShared
ReadNotSharedDirty
ReadUnique
CleanUnique
MakeUnique
Evict
WriteBackFull
WriteBackPtl
WriteEvictFull
WriteCleanFull

RN-F ICN(HN-F) ICN(HN-I)

ReadOnce
ReadOnceCleanInvalid
ReadOnceMakeInvalid
StashOnceUnique
StashOnceShared
WriteUniqueFull
WriteUniqueFullStash
WriteUniquePtl
WriteUniquePtlStash

RN-F, RN-D, RN-I ICN(HN-F) ICN(HN-I)

CleanShared
CleanSharedPersist
CleanInvalid
MakeInvalid

RN-F, RN-D, RN-I ICN(HN-F, HN-I) -

ICN(HN-F) SN-F -

ICN(HN-I) SN-I -

DVMOp RN-F, RN-D ICN(MN) -

PCrdReturn RN-F, RN-D, RN-I ICN(HN-F, HN-I, MN) -

ICN(HN-F) SN-F -

ICN(HN-I) SN-I -
B-356 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Appendix B Communicating Nodes
B.1 Request communicating nodes
AtomicStore
AtomicLoad
AtomicSwap
AtomicCompare

RN-F, RN-D, RN-I ICN(HN-F, HN-I) -

ICN(HN-F) SN-F -

ICN(HN-I) SN-I -

PrefetchTgt RN-F, RN-D, RN-I SN-F -

Table B-1 Request communicating nodes (continued)

Request From To

Expected Permitted
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. B-357
ID080717 Non-Confidential

Appendix B Communicating Nodes
B.2 Snoop communicating nodes
B.2 Snoop communicating nodes
Table B-2 shows the Snoop communicating nodes.

Table B-2 Snoop communicating nodes

Snoop From To

SnpShared
SnpClean
SnpOnce
SnpNotSharedDirty
SnpUnique
SnpCleanShared
SnpCleanInvalid
SnpMakeInvalid
SnpSharedFwd
SnpCleanFwd
SnoopOnceFwd
SnoopNotSharedDirtyFwd
SnpUniqueFwd
SnpUniqueStash
SnoopMakeInvalidStash
SnpStashUnique
SnpStashShared

ICN(HN-F) RN-F

SnpDVMOp ICN(MN) RN-F, RN-D
B-358 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Appendix B Communicating Nodes
B.3 Response communicating nodes
B.3 Response communicating nodes
Table B-3 shows the Response communicating nodes.

Table B-3 Response communicating nodes

Response From To

Upstream RetryAck
DBIDResp
PCrdGrant
Comp

ICN(HN-F, HN-I, MN) RN-F, RN-D, RN-I

SN-F ICN(HN-F)

SN-I ICN(HN-I)

CompDBIDResp
ReadReceipt

ICN(HN-F, HN-I) RN-F, RN-D, RN-I

SN-F ICN(HN-F)

SN-I ICN(HN-I)

Downstream CompAck RN-F, RN-D, RN-I ICN(HN-F, HN-I)

SnpResp RN-F ICN(HN-F)

RN-F, RN-D ICN(MN)

SnpRespFwded RN-F ICN(HN-F)
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. B-359
ID080717 Non-Confidential

Appendix B Communicating Nodes
B.4 Data communicating nodes
B.4 Data communicating nodes
Table B-4 shows the Data communicating nodes.

For some Data, both an expected target and a permitted target are given. The use of the permitted target can occur
in the case of an incorrect address decode. The permitted target must complete the transaction in a protocol
compliant manner.

Table B-4 Data communicating nodes

Data From To

Expected Permitted

Upstream CompData ICN(HN-F, HN-I) RN-F, RN-D, RN-I -

SN-F RN-F, RN-D,
RN-I, ICN(HN-F)

-

SN-I RN-F, RN-D,
RN-I, ICN(HN-I)

-

Downstream CopyBackWrData RN-F ICN(HN-F) ICN(HN-I)

WriteDataCancel RN-F, RN-D, RN-I ICN(HN-F, HN-I) -

ICN(HN-F) SN-F -

ICN(HN-I) SN-I -

NonCopyBackWrData RN-F, RN-D, RN-I ICN(HN-F, HN-I) -

RN-F, RN-D ICN(MN) -

ICN(HN-F) SN-F -

ICN(HN-I) SN-I -

SnpRespData
SnpRespDataFwded
SnpRespDataPtl

RN-F ICN(HN-F) -

Peer-to-Peer CompData RN-F RN-F, RN-D, RN-I -
B-360 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Appendix C
Revisions

This appendix describes the technical changes between released issues of this specification.

Table C-1 Issue B

Change Location Affects

No changes, first public release − −
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. C-361
ID080717 Non-Confidential

Appendix C Revisions

C-362 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

Glossary

This glossary describes some of the technical terms used in AMBA 5 CHI documentation.

Advanced Microcontroller Bus Architecture (AMBA)
The AMBA family of protocol specifications is the ARM open standard for on-chip buses. AMBA provides
solutions for the interconnection and management of the functional blocks that make up a System-on-Chip (SoC).
Applications include the development of embedded systems with one or more processors or signal processors and
multiple peripherals.

Aligned A data item stored at an address that is divisible by the highest power of 2 that divides into its size in bytes. Aligned
halfwords, words, and doublewords therefore have addresses that are divisible by 2, 4, and 8 respectively.

An aligned access is one where the address of the access is aligned to the size of each element of the access.

AMBA See Advanced Microcontroller Bus Architecture (AMBA).

At approximately the same time
Two events occur at approximately the same time if a remote observer might not be able to determine the order in
which they occurred.

Barrier An operation that forces a defined ordering of other actions.

Blocking Describes an operation that prevents following actions from continuing until the operation completes.

A non-blocking operation can permit following operations to continue before it completes.

Byte An 8-bit data item.

Cache Any cache, buffer, or other storage structure that can hold a copy of the data value for a particular address location.

Cache hierarchy
The organization of different size caches in a hierarchy, typically with the cache with faster access and smaller size
closer to the core and larger and slower access ones farther away from the core. The last level of this hierarchy might
be connected to the memory. In this specification, in relation to a referenced cache, above refers to caches closer to
the core, and below refers to caches farther from the core.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. Glossary-363
ID080717 Non-Confidential

 Glossary

Cache line The basic unit of storage in a cache. Its size in words is always a power of two. A cache line must be aligned to the
size of the cache line.

The size of the cache line is equivalent to the coherency granule.

See also Coherency granule.

Cache state State of a block of data in a cache, of 64-byte size in this specification. The state determines if the block is cached
in any other caches in the system and also if it is different from the copy of the block in memory. See Cache state
model on page 1-26 for a description of the cache states supported in this specification.

Channel A set of signals grouped together to communicate a particular set of messages between a transmitter and receiver
pair. For example Request channel is used to communicate request messages.

A channels consist of a set of information signals and a separate Valid and Credit signal to provide the channel
handshake mechanism.

Coherent Data accesses from a set of observers to a memory location are coherent accesses to that memory location by the
members of the set of observers are consistent with there being a single total order of all writes to that memory
location by all members of the set of observers.

Coherency granule
The minimum size of the block of memory affected by any coherency consideration. For example, an operation to
make two copies of an address coherent makes the two copies of a block of memory coherent, where that block of
memory is:
• At least the size of the coherency granule.
• Aligned to the size of the coherency granule.

See also Cache line.

Completer See Completer on page 1-21.

Component A distinct functional unit that has at least one AMBA interface. Component can be used as a general term for master,
slave, peripheral, and interconnect components.

See also Interconnect component, Master component, Memory slave component, Peripheral slave component,
Slave component.

Deprecated Something that is present in the specification for backwards compatibility. Whenever possible you must avoid using
deprecated features. These features might not be present in future versions of the specification.

Device See Peripheral slave component.

Direct Data Transfer
Sending Read data directly from a Snoopee or Slave to the Requester bypassing the Home node.

Don’t Care See Don’t Care on page 1-22.

Downstream A transaction operates between a master component and one or more slave components, and can pass through one
or more intermediate components. At any intermediate component, for a given transaction, downstream means
between that component and a destination slave component, and includes the destination slave component.

Downstream and upstream are defined relative to the transaction as a whole, not relative to individual data flows
within the transaction.

See also Master component, Peer to Peer, Slave component, Upstream.

Downstream Cache
See Downstream cache on page 1-21.

Endpoint See Endpoint on page 1-22.

Final Destination
Final destination for a Memory transaction is a peripheral or physical memory, also called an Endpoint.

Flit See Flit on page 1-21.
Glossary-364 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

 Glossary

HN See HN on page 1-22.

ICN See ICN on page 1-22.

In a timely manner
See In a timely manner on page 1-22.

IMPLEMENTATION DEFINED
Behavior that is not defined by the architecture, but is defined and documented by individual implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in small capitals.

IMPLEMENTATION SPECIFIC
Behavior that is not architecturally defined, and might not be documented by an individual implementation. Used
when there are a number of implementation options available and the option chosen does not affect software
compatibility.

When IMPLEMENTATION SPECIFIC appears in body text, it is always in small capitals.

Interconnect component
A component with more than one AMBA interface that connects one or more master components to one or more
slave components.

An interconnect component can be used to group together either:
• A set of masters so that they appear as a single master interface.
• A set of slaves so that they appear as a single slave interface.

See also Component, Master component, Slave component.

IO Coherent node
See IO Coherent node on page 1-22.

Line See Cache line.

Link A Link is the connection used for communicating between a transmitter and receiver pair.

Link layer Credit
See Link layer Credit on page 1-22.

Load The action of a master component reading the value held at a particular address location. For a processor, a load
occurs as the result of executing a particular instruction. Whether the load results in the master issuing a Read
transaction depends on whether the accessed cache line is held in the local cache.

See also Speculative read, Store.

Main memory The memory that holds the data value of an address location when no cached copies of that location exist. For any
location, main memory can be out of date with respect to the cached copies of the location, but main memory is
updated with the most recent data value when no cached copies exist neither in the RNs nor in the Interconnect.

Main memory can be referred to as memory when the context makes the intended meaning clear.

Master See Master on page 1-21.

Master component
A component that initiates transactions.

It is possible that a single component can act as both a master component and as a slave component. For example,
a Direct Memory Access (DMA) component can be a master component when it is initiating transactions to move
data, and a slave component when it is being programmed.

See also Component, Interconnect component, Slave component.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. Glossary-365
ID080717 Non-Confidential

 Glossary

Memory Management Unit (MMU)
Provides detailed control of the part of a memory system that provides address translation. Most of the control is
provided using translation tables that are held in memory, and define the attributes of different regions of the
physical memory map.

See also System Memory Management Unit (SMMU).

Memory slave component
A memory slave component, or memory slave, is a slave component with the following properties:
• A read of a byte from a memory slave returns the last value written to that byte location.
• A write to a byte location in a memory slave updates the value at that location to a new value that is obtained

by subsequent reads.
• Reading a location multiple times has no side-effects on any other byte location.
• Reading or writing one byte location has no side-effects on any other byte location.

See also Component, Master component, Peripheral slave component.

Message See Message on page 1-21.

Observer A processor or other master component, such as a peripheral device, that can generate reads from or writes to
memory.

Outstanding Request
A transaction is outstanding from the cycle that the Request is first issued until either:

• The transaction is fully completed, as determined by the return of all ReadReceipt, CompData, DBIDResp,
Comp, CompDBIDResp responses that are expected for the transaction.

• It receives RetryAck and PCrdGrant and is either:
— Retried using a credit of the appropriate PCrdType, and then is fully completed as determined above.
— Cancelled, and returns the received credit using the PCrdReturn message.

Peer node A protocol node of the same type with reference to itself. For example, the peer node for a Request Node is another
Request Node.

Peer to Peer Communication between the same type of nodes. For example, from one RN to another RN.

See also Downstream, Upstream.

Peripheral slave component
A peripheral slave component is also described as a peripheral slave. This specification recommends that a
peripheral slave has an IMPLEMENTATION DEFINED method of access that is typically described in the data sheet for
the component. Any access that is not defined as permitted might cause the peripheral slave to fail, but must
complete in a protocol-compliant manner to prevent system deadlock. The protocol does not require continued
correct operation of the peripheral.

See also Memory slave component, Slave component.

Permission to store
A component has permission to store if it can perform a store to the associated cache line without informing any
other components or the interconnect.

Packet See Packet on page 1-21.

Phit See Phit on page 1-21.

PoC See PoC on page 1-21.

PoS See PoS on page 1-21.

Prefetching Prefetching refers to speculatively fetching instructions or data from the memory system. In particular, instruction
prefetching is the process of fetching instructions from memory before the instructions that precede them, in simple
sequential execution of the program, have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.
Glossary-366 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

 Glossary

In this specification, references to instruction or data fetching apply also to prefetching, unless the context explicitly
indicates otherwise.

Protocol Credit See Protocol Credit on page 1-22.

Requester See Requester on page 1-21.

RN See RN on page 1-22.

Slave See Slave on page 1-21.

Slave component
A component that receives transactions and responds to them.

It is possible that a single component can act as both a slave component and as a master component. For example,
a Direct Memory Access (DMA) component can be a slave component when it is being programmed and a master
component when it is initiating transactions to move data.

See also Master component, Memory slave component, Peripheral slave component.

SN See SN on page 1-22.

Snooped cache A hardware-coherent cache that receives Snoop transactions.

Snoop filter A snoop filter is able to track the cache lines that might be allocated within a master.

Speculative read
A transaction that a component issues when it might not need the transaction to be performed because it already has
a copy of the accessed cache line in its local cache. Typically, a speculative read is performed in parallel with a local
cache lookup. This gives lower latency than looking in the local cache first, and then issuing a Read transaction only
if the required cache line is not found in the local cache.

See also Load.

Stash The action of placing data in a cache closer to the agent that is expected to be the next user of the data.

Store The action of a master component changing the value held at a particular address location. For a processor, a store
occurs as the result of executing a particular instruction. Whether the store results in the master issuing a Read or
Write transaction depends on whether the accessed cache line is held in the local cache, and if it is in the local cache,
the state it is in.

See also Load, Permission to store.

Synchronization barrier
See Barrier.

System Memory Management Unit (SMMU)
A system-level MMU. That is, a system component that provides address translation from one address space to
another. An SMMU provides one or more of:
• Virtual Address (VA) to Physical Address (PA) translation.
• VA to Intermediate Physical Address (IPA) translation.
• IPA to PA translation.

See also Memory Management Unit (MMU).

TLB See Translation Lookaside Buffer (TLB).

Transaction See Transaction on page 1-21.

Translation Lookaside Buffer (TLB)
A memory structure containing the results of translation table walks. TLBs help to reduce the average cost of a
memory access.

See also System Memory Management Unit (SMMU), Translation table, Translation table walk.
ARM IHI 0050B Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. Glossary-367
ID080717 Non-Confidential

 Glossary

Translation table
A table held in memory that defines the properties of memory areas of various sizes from 1KB.

See also Translation Lookaside Buffer (TLB), Translation table walk.

Translation table walk
The process of doing a full translation table lookup.

See also Translation Lookaside Buffer (TLB), Translation table.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of an element of the access.

Unaligned memory accesses
Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or
doubleword-aligned.

See also Aligned.

UNPREDICTABLE In the AMBA Architecture means that the behavior cannot be relied upon.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

When UNPREDICTABLE appears in body text, it is always in small capitals.

Upstream A transaction operates between a master component and one or more slave components, and can pass through one
or more intermediate components. At any intermediate component, for a given transaction, upstream means
between that component and the originating master component, and includes the originating master component.

Downstream and upstream are defined relative to the transaction as a whole, not relative to individual data flows
within the transaction.

See also Downstream, Master component, Peer to Peer, Slave component.

Write-Back cache
A cache in which, when a store is permitted to store, the data is only written to the cache. Data in the cache can
therefore be more up-to-date than data in main memory. Any such data is written back to next level cache or main
memory when the cache line is cleaned or re-allocated. Another common term for a Write-Back cache is a
Copy-Back cache.

Write-Invalidate protocol
See Write-Invalidate protocol on page 1-22.
Glossary-368 Copyright © 2014, 2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0050B
Non-Confidential ID080717

	ARM AMBA 5 CHI Architecture Specification
	Contents
	Preface
	About this specification
	Intended audience
	Using this specification
	Conventions
	Additional reading

	Feedback
	Feedback on this specification

	1: Introduction
	1.1 Architecture overview
	1.1.1 Architecture layers

	1.2 Topology
	1.3 Terminology
	1.4 Transaction classification
	1.5 Coherence overview
	1.5.1 Coherency model
	1.5.2 Cache state model

	1.6 Component naming
	1.7 Read data source

	2: Transactions
	2.1 Channels overview
	2.2 Channel fields
	2.2.1 Transaction request fields
	2.2.2 Snoop request fields
	2.2.3 Data fields
	2.2.4 Response fields

	2.3 Transaction structure
	2.3.1 Request transaction structure
	2.3.2 Transaction Retry sequence
	2.3.3 Snoop transactions

	2.4 Ordering
	2.4.1 Multi-copy atomicity
	2.4.2 Completion Response and Ordering
	2.4.3 Completion acknowledgement
	2.4.4 Transaction ordering

	2.5 Introduction to identifier fields
	2.6 Transaction identifier fields
	2.7 Transaction identifier field flows
	2.7.1 Read transactions
	2.7.2 Dataless transactions
	2.7.3 Write transactions
	2.7.4 DVMOp transaction
	2.7.5 Transaction requests with Retry
	2.7.6 Protocol Credit Return transaction

	2.8 Logical Processor Identifier
	2.9 Address, Control, and Data
	2.9.1 Address
	2.9.2 Non-secure bit
	2.9.3 Memory Attributes
	2.9.4 Transaction attribute combinations
	2.9.5 Likely Shared
	2.9.6 Snoop Attribute
	2.9.7 Do not transition to SD
	2.9.8 Mismatched Memory attributes

	2.10 Data transfer
	2.10.1 Data size
	2.10.2 Bytes access in memory
	2.10.3 Byte Enables
	2.10.4 Data packetization
	2.10.5 Size, Address and Data alignment in Atomic transactions
	2.10.6 Critical Chunk Identifier
	2.10.7 Critical chunk first wrap order
	2.10.8 Data Beat ordering
	2.10.9 Data transfer examples

	2.11 Request Retry
	2.11.1 Credit Return
	2.11.2 Transaction Retry mechanism
	2.11.3 Transaction Retry flow

	3: Network Layer
	3.1 System address map
	3.2 Node ID
	3.3 Target ID determination for messages from an RN
	3.3.1 Target ID determination for Request messages
	3.3.2 Target ID determination for Response messages
	3.3.3 Target ID determination for Snoop Request messages

	3.4 Network layer flow examples
	3.4.1 Simple flow
	3.4.2 Flow with interconnect based SAM
	3.4.3 Flow with interconnect based SAM and Retry request

	4: Coherence Protocol
	4.1 Cache line states
	4.1.1 Empty cache line ownership
	4.1.2 Ownership of cache line with partial Dirty data

	4.2 Request types
	4.2.1 Read transactions
	4.2.2 Dataless transactions
	4.2.3 Write transactions
	4.2.4 Atomic transactions
	4.2.5 Other transactions

	4.3 Snoop requests
	4.4 Request types and corresponding snoop requests
	4.5 Response types
	4.5.1 Completion response
	4.5.2 WriteData response
	4.5.3 Snoop response
	4.5.4 Miscellaneous response

	4.6 Silent cache state transitions
	4.7 Cache state transitions
	4.7.1 Read request transactions
	4.7.2 Dataless request transactions
	4.7.3 Write request transactions
	4.7.4 Atomic transactions
	4.7.5 Other request transactions
	4.7.6 Snoop request transactions
	4.7.7 Stash type snoops
	4.7.8 Forwarding type snoops

	4.8 Shared clean state return
	4.9 Hazard conditions
	4.9.1 At the RN-F node
	4.9.2 At the ICN(HN-F) node

	5: Interconnect Protocol Flows
	5.1 Read transaction flows
	5.1.1 Read transactions with DMT and without snoops
	5.1.2 Read transaction with DMT and with snoops
	5.1.3 Read transaction with DCT
	5.1.4 Read transaction with neither DMT nor DCT
	5.1.5 Read transaction with snoop response with partial data and no memory update
	5.1.6 Read transaction with snoop response with partial data and memory update.
	5.1.7 Optimized DMT flow for ReadOnce* and ReadNoSnp

	5.2 Dataless transaction flows
	5.2.1 Dataless transaction without memory update
	5.2.2 Dataless transaction with memory update
	5.2.3 Evict transaction

	5.3 Write transaction flows
	5.3.1 Write transaction with no snoop and separate responses
	5.3.2 Write transaction with snoop and separate responses
	5.3.3 CopyBack write transaction to memory

	5.4 Atomic transaction flows
	5.4.1 Atomic transactions with data return
	5.4.2 Atomic transaction without data return
	5.4.3 Atomic operation executed at the SN

	5.5 Stash transaction flows
	5.5.1 Write with Stash hint
	5.5.2 Independent Stash request

	5.6 Hazard handling examples
	5.6.1 CopyBack-Snoop hazard at RN-F
	5.6.2 Request hazard at HN-F
	5.6.3 Read - CopyBack or Dataless - CopyBack hazard at HN-F
	5.6.4 Request-CompAck to HN-F race hazard

	6: Exclusive Accesses
	6.1 Overview
	6.2 Exclusive monitors
	6.2.1 Snoopable memory location
	6.2.2 Additional address comparison
	6.2.3 Non-snoopable memory location

	6.3 Exclusive transactions
	6.3.1 Responses to exclusive requests
	6.3.2 System responsibilities
	6.3.3 Exclusive accesses to Snoopable locations

	7: Cache Stashing
	7.1 Overview
	7.1.1 Snoop requests and Data Pull

	7.2 Write with Stash hint
	7.3 Independent Stash request
	7.4 Stash target identifiers
	7.4.1 Stash target specified
	7.4.2 Stash target not specified

	7.5 Stash messages
	7.5.1 Supporting REQ packet fields
	7.5.2 Supporting SNP packet fields
	7.5.3 Supporting RSP packet field
	7.5.4 Supporting DAT packet fields

	8: DVM Operations
	8.1 DVM transaction flow
	8.1.1 Non-sync type DVM transaction flow
	8.1.2 Sync type DVM transaction flow
	8.1.3 Flow control
	8.1.4 DVMOp field value restrictions
	8.1.5 Field value requirements

	8.2 DVM Operation types
	8.2.1 DVMOp payload
	8.2.2 DVMOp and SnpDVMOp packet

	8.3 DVM Operations
	8.3.1 TLB Invalidate
	8.3.2 Branch Predictor Invalidate
	8.3.3 Physical Instruction Cache Invalidate
	8.3.4 Virtual Instruction Cache Invalidate
	8.3.5 Synchronization

	9: Error Handling
	9.1 Error types
	9.2 Error response fields
	9.3 Errors and transaction structure
	9.4 Error response use by transaction type
	9.4.1 Read Transactions
	9.4.2 Dataless transactions
	9.4.3 Write transactions
	9.4.4 Atomic transactions
	9.4.5 Other transactions
	9.4.6 Cache Stashing transactions
	9.4.7 Snoop transactions

	9.5 Poison
	9.6 Data Check
	9.7 Interoperability and Poison and DataCheck
	9.8 Hardware and software error categories
	9.8.1 Software based error
	9.8.2 Hardware based error

	10: Quality of Service
	10.1 Overview
	10.2 QoS priority value
	10.3 Repeating a transaction with higher QoS value

	11: Data Source and Trace Tag
	11.1 Data Source indication
	11.1.1 DataSource value assignment
	11.1.2 Crossing a chip-to-chip interface
	11.1.3 Example use cases

	11.2 Trace Tag
	11.2.1 TraceTag usage and rules

	12: Link Layer
	12.1 Introduction
	12.2 Links
	12.2.1 Outbound and inbound links

	12.3 Flits
	12.4 Channels
	12.4.1 Channel dependencies

	12.5 Port
	12.6 Node interface definitions
	12.6.1 Request Nodes
	12.6.2 Slave Nodes

	12.7 Channel interface signals
	12.7.1 REQ channel
	12.7.2 RSP channel
	12.7.3 SNP channel
	12.7.4 DAT channel

	12.8 Flit packet definitions
	12.8.1 Request flit
	12.8.2 Response flit
	12.8.3 Snoop flit
	12.8.4 Data flit

	12.9 Protocol flit fields
	12.9.1 TgtID
	12.9.2 SrcID
	12.9.3 HomeNID
	12.9.4 ReturnNID
	12.9.5 FwdNID
	12.9.6 LPID
	12.9.7 StashNID
	12.9.8 StashNIDValid
	12.9.9 StashLPID
	12.9.10 StashLPIDValid
	12.9.11 TxnID
	12.9.12 ReturnTxnID
	12.9.13 FwdTxnID
	12.9.14 DBID
	12.9.15 Opcode
	12.9.16 Addr
	12.9.17 NS
	12.9.18 Size
	12.9.19 MemAttr
	12.9.20 SnpAttr
	12.9.21 LikelyShared
	12.9.22 Order
	12.9.23 Excl
	12.9.24 Endian
	12.9.25 AllowRetry
	12.9.26 ExpCompAck
	12.9.27 SnoopMe
	12.9.28 RetToSrc
	12.9.29 DataPull
	12.9.30 DoNotGoToSD
	12.9.31 DoNotDataPull
	12.9.32 QoS
	12.9.33 PCrdType
	12.9.34 TraceTag
	12.9.35 VMIDExt
	12.9.36 Resp
	12.9.37 FwdState
	12.9.38 RespErr
	12.9.39 Data
	12.9.40 CCID
	12.9.41 DataID
	12.9.42 BE
	12.9.43 DataCheck
	12.9.44 Poison
	12.9.45 DataSource
	12.9.46 RSVDC

	12.10 Link flit

	13: Link Handshake
	13.1 Clock, and initialization
	13.1.1 Clock
	13.1.2 Reset
	13.1.3 Initialization

	13.2 Link layer Credit
	13.2.1 L-Credit flow control

	13.3 Low power signaling
	13.4 Flit level clock gating
	13.5 Interface activation and deactivation
	13.5.1 Request and Acknowledge handshake

	13.6 Transmit and receive link Interaction
	13.6.1 Introduction
	13.6.2 Tx and Rx state machines
	13.6.3 Expected transitions

	13.7 Protocol layer activity indication
	13.7.1 Introduction
	13.7.2 TXSACTIVE signal
	13.7.3 RXSACTIVE signal
	13.7.4 Relationship between SACTIVE and LINKACTIVE

	14: System Coherency Interface
	14.1 Overview
	14.2 Handshake
	14.2.1 RN rules
	14.2.2 Interconnect rules
	14.2.3 Protocol states

	15: Properties, Parameters, and Broadcast Signals
	15.1 Interface properties and parameters
	15.2 Optional interface broadcast signals
	15.3 Atomic transaction support
	15.3.1 Request Node support
	15.3.2 Interconnect support
	15.3.3 Slave Node support

	A: Message Field Mappings
	A.1 Request message field mappings
	A.2 Response message field mappings
	A.3 Data message field mappings
	A.4 Snoop Request message field mappings

	B: Communicating Nodes
	B.1 Request communicating nodes
	B.2 Snoop communicating nodes
	B.3 Response communicating nodes
	B.4 Data communicating nodes

	C: Revisions
	Glossary

