
ARM® System Trace Macrocell

Programmers’ Model Architecture Specification Version
1.1
Copyright © 2010, 2013 ARM. All rights reserved.
ARM IHI 0054B (ID092613)

ARM System Trace Macrocell
Programmers’ Model Architecture Specification Version 1.1

Copyright © 2010, 2013 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php.

Copyright © 2010, 2013, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

23 April 2010 A Non-Confidential First release for v1.0

26 September 2013 B Non-Confidential First release for v1.1
ii Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Contents
ARM System Trace Macrocell Programmers’ Model
Architecture Specification Version 1.1

Preface
About this book ... vi
Using this book .. vii
Conventions .. viii
Additional reading ... ix
Feedback ... x

Chapter 1 Introduction
1.1 About the System Trace Macrocell .. 1-12

Chapter 2 Configuration Registers Programmers’ Model
2.1 About the configuration registers programmers’ model ... 2-14
2.2 Register summary .. 2-15
2.3 Register descriptions ... 2-17
2.4 Programming the STM ... 2-45
2.5 Triggers .. 2-46
2.6 Authentication control .. 2-49

Chapter 3 Extended Stimulus Ports
3.1 About extended stimulus ports ... 3-52
3.2 STM transactions ... 3-54
3.3 Address decoding .. 3-55
3.4 Grouping stimulus ports ... 3-56
3.5 More than one master .. 3-57
3.6 Data sizes .. 3-58
3.7 Bus endianness ... 3-59
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. iii
ID092613 Non-Confidential

3.8 Implementation options .. 3-60
3.9 Reserved locations ... 3-61
3.10 Timestamping ... 3-62
3.11 Mapping onto STPv2 .. 3-63

Chapter 4 Implementation Defined Controls
4.1 About implementation defined controls and registers .. 4-66
4.2 Standard hardware event tracing ... 4-67
4.3 DMA control .. 4-77

Appendix A Recommended Configurations
A.1 About recommended configurations .. A-82

Appendix B Revisions

Glossary
iv Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Preface

This preface introduces the System Trace Macrocell (STM) Programmers’ Model Architecture Specification. It
contains the following sections:
• About this book on page vi.
• Using this book on page vii.
• Conventions on page viii.
• Additional reading on page ix.
• Feedback on page x.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. v
ID092613 Non-Confidential

 Preface
 About this book
About this book
This book describes the ARM System Trace Macrocell (STM) programmers’ model architecture. Some parts of the
STM programmers’ model architecture are IMPLEMENTATION DEFINED. For more information see the applicable
STM Technical Reference Manual (TRM).

Intended audience

This book is written for the following target audiences:

• Designers of development tools providing support for STM functionality. All chapters in this book are of
interest to these users.

• Advanced users of development tools providing support for STM functionality. Chapter 2 is particularly
relevant to these users.

• Designers of an ARM processor based product that includes an STM trace port. Chapter 3 is particularly
relevant to these users.

• Engineers who want to specify, design, or implement an STM to the ARM STM Architecture.

Hardware engineers who want to incorporate an ARM STM into their design must consult the applicable STM
Technical Reference Manual listed in Additional reading on page ix. ARM recommends that all users of this book
have experience of the ARM architecture.
vi Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

 Preface
 Using this book
Using this book
This book is organized into the following chapters:

Chapter 1 Introduction

Read this for an introduction to the STM.

Chapter 2 Configuration Registers Programmers’ Model

Read this for information about the configuration registers, and how to program the STM. It also
describes triggers and authentication control.

Chapter 3 Extended Stimulus Ports

Read this for information about the extended stimulus ports and the transaction types.

Chapter 4 Implementation Defined Controls

Read this for information about the IMPLEMENTATION DEFINED controls and registers.

Appendix A Recommended Configurations

Read this for information about the recommendations for using the STM architecture in different
implementations.

Appendix B Revisions

Read this for a description of the technical changes between released issues of this book.

 Glossary Read this for definitions of terms used in this book.

Note
 ARM publishes a single glossary that relates to most ARM products, see the ARM® Glossary

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014- . A definition in the glossary in this
specification might be more detailed than the corresponding definition in the ARM® Glossary.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. vii
ID092613 Non-Confidential

 Preface
 Conventions
Conventions
The following sections describe conventions that this book can use:
• Typographic conventions.
• Signals.
• Numbers.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:

• A URL, for example http://infocenter.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, About the System Trace Macrocell on page 1-12.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example STMSPSCR.

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.
viii Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

 Preface
 Additional reading
Additional reading
This section lists relevant publications from ARM and third parties.

See Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This specification defines the System Trace Macrocell programmers’ model architecture. See the following
documents for other relevant information:
• ARM® CoreSight™ System Trace Macrocell Technical Reference Manual (ARM DDI 0444).
• ARM® CoreSight™ System Trace Macrocell-500 Technical Reference Manual (ARM DDI 0528).
• ARM® Architecture Reference Manual, ARMv7-M edition (ARM DDI 0403).
• ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).
• ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture profile (ARM DDI 0487).
• ARM® CoreSight™ Architecture Specification (ARM IHI 0029).
• ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (ARM IHI 0031).
• ARM® RealView® ICE and RealView Trace User Guide (ARM DUI 0155).

Other publications

This section lists relevant documents published by third parties:
• MIPI System Trace Protocol version 2 (STPv2).
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. ix
ID092613 Non-Confidential

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM IHI 0054B.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
x Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Chapter 1
Introduction

This chapter introduces the System Trace Macrocell (STM). It contains the following section:
• About the System Trace Macrocell on page 1-12.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 1-11
ID092613 Non-Confidential

1 Introduction
1.1 About the System Trace Macrocell
1.1 About the System Trace Macrocell
The STM enables tracing of system activity from various sources:
• Instrumented software, using memory-mapped stimulus ports.
• Hardware events.

The activity observed by the STM is packaged into a trace stream, for output to trace capture devices such as those
provided by CoreSight technology.

This version of the STM architecture supports a trace stream that conforms to the MIPI System Trace Protocol
version 2 (STPv2).

Figure 1-1 shows the STM inputs and outputs.

Figure 1-1 STM inputs and outputs

The STM programmers’ model has two main parts:

Configuration registers

These registers are accessible both by software running on the chip and by an external debugger and
are used to configure the tracing activity of the STM. The configuration registers also include
optional basic stimulus port registers. For more information on the configuration registers, see
Chapter 2 Configuration Registers Programmers’ Model.

Extended stimulus port registers

These registers are accessible by instrumented software running on the chip, but are not necessarily
accessible by an external debugger. Up to 65536 extended stimulus ports are provided. For more
information on the extended stimulus port registers, see Chapter 3 Extended Stimulus Ports.

The STM supports the following:

• Multiple software masters writing software instrumentation independently. Each master can use multiple
stimulus ports.

• Timestamping of the system activity. The timestamp is a global timestamp which can be shared with other
trace sources in the system, to enable correlation of activity from multiple trace sources.

• Interaction with DMA controllers, to manage the flow of data in the system.

• Indicating that specific events have occurred, such as the occurrence of a particular hardware event or a
particular piece of software instrumentation. These events are known as triggers and can be indicated in the
trace stream, or through signals to other system components.

STM

Software instrumentation

Hardware events

Configuration and control

Trace output
1-12 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Chapter 2
Configuration Registers Programmers’ Model

This chapter describes the configuration registers that you can program to set up and control the STM. It contains
the following sections:
• About the configuration registers programmers’ model on page 2-14.
• Register summary on page 2-15.
• Register descriptions on page 2-17.
• Programming the STM on page 2-45.
• Triggers on page 2-46.
• Authentication control on page 2-49.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-13
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.1 About the configuration registers programmers’ model
2.1 About the configuration registers programmers’ model
The configuration registers occupy a 4KB block, with a CoreSight programmers’ model compatible structure. The
STM configuration registers are used to set up the STM implementation.

The following apply to the STM registers:
• Accesses to Reserved locations are UNK/SBZP.
• Accesses to Reserved bits in defined registers are UNK/SBZP unless otherwise stated.
• Registers reset to an UNKNOWN value unless specifically defined.
2-14 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.2 Register summary
2.2 Register summary
Table 2-1 shows the STM registers. In the table, access type is described as follows:
RW Read and write.
RO Read only.
WO Write only.

Table 2-1 STM configuration register summary

Address
offset Name Type Description

0x000-0x07C Basic Stimulus Ports RW See STMSTIMR<n>, Basic Stimulus Ports on page 2-17

0x080-0x9FC - - Reserved

0xA00-0xAFC IMPLEMENTATION DEFINED Block 3 See Chapter 4 Implementation Defined Controls

0xB00-0xBFC IMPLEMENTATION DEFINED Block 2

0xC00-0xCFC IMPLEMENTATION DEFINED Block 1

0xD00-0xDFC IMPLEMENTATION DEFINED Block 0

0xE00-0xE7C Stimulus Port Control Registers

0xE00 Stimulus Port Enable RW See STMSPER, Stimulus Port Enable Register on page 2-17

0xE04-0xE1C - - Reserved

0xE20 Stimulus Port Trigger Enable RW See STMSPTER, Stimulus Port Trigger Enable Register on page 2-18

0xE24-0xE3C - - Reserved

0xE40 Trace Privilege RW See STMPRIVMASKR, Trace Privilege Register on page 2-19

0xE44-0xE5C - - Reserved

0xE60 Stimulus Port Select
Configuration

RW See STMSPSCR, Stimulus Port Select Configuration Register on page 2-20

0xE64 Stimulus Port Master Select
Configuration

RW See STMSPMSCR, Stimulus Port Master Select Configuration Register on
page 2-22

0xE68 Stimulus Port Override RW See STMSPOVERRIDER, Stimulus Port Override Register on page 2-24

0xE6C Stimulus Port Master
Override

RW See STMSPMOVERRIDER, Stimulus Port Master Override Register on
page 2-26

0xE70 Stimulus Port Trigger Control
and Status

RW See STMSPTRIGCSR, Stimulus Port Trigger Control and Status Register on
page 2-28

0xE74-0xE7C - - Reserved

0xE80-0xE9C Primary Control and Status Registers

0xE80 Trace Control and Status RW See STMTCSR, Trace Control and Status Register on page 2-29

0xE84 Timestamp Stimulus WO See STMTSSTIMR, Timestamp Stimulus Register on page 2-31

0xE88 - - Reserved

0xE8C Timestamp Frequency RW See STMTSFREQR, Timestamp Frequency Register on page 2-32

0xE90 Synchronization Control RW See STMSYNCR, Synchronization Control Register on page 2-33
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-15
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.2 Register summary
0xE94 Auxiliary Control RW See STMAUXCR, Auxiliary Control Register on page 2-33

0xE94-0xE9C - - Reserved

0xEA0-0xEAC Identification Registers

0xEA0 Features 1 RO See STMFEAT1R, Features 1 Register on page 2-34

0xEA4 Features 2 RO See STMFEAT2R, Features 2 Register on page 2-36

0xEA8 Features 3 RO See STMFEAT3R, Features 3 Register on page 2-37

0xEAC-0xEFC - - Reserved

0xF00-0xFFC CoreSight Management Registers

0xF00 Integration Mode Control RW See STMITCTRL, Integration Mode Control Register on page 2-38

0xF04-0xF9C - - Reserved

0xFA0 Claim Tag Set RW See STMCLAIMSET, Claim Tag Set Register on page 2-39

0xFA4 Claim Tag Clear RW See STMCLAIMCLR, Claim Tag Clear Register on page 2-39

0xFA8-0xFAC - - Reserved

0xFB0 Lock Access WO See STMLAR, Lock Access Register on page 2-40

0xFB4 Lock Status RO See STMLSR, Lock Status Register on page 2-41

0xFB8 Authentication Status RO See STMAUTHSTATUS, Authentication Status Register on page 2-41

0xFBC Device Architecture RO See STMDEVARCH, Device Architecture Register on page 2-41

0xFC0-0xFC4 - - Reserved

0xFC8 Device Configuration RO See STMDEVID, Device Configuration Register on page 2-42

0xFCC Device Type RO See STMDEVTYPE, Device Type Register on page 2-43

0xFD0-0xFEC Peripheral ID RO See STMPIDR0-7, Peripheral ID Registers on page 2-43

0xFF0-0xFFC Component ID RO See STMCIDR0-3, Component ID Registers on page 2-44

Table 2-1 STM configuration register summary (continued)

Address
offset Name Type Description
2-16 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
2.3 Register descriptions
Table 2-1 on page 2-15 lists the STM registers. This section describes each of the registers.

2.3.1 STMSTIMR<n>, Basic Stimulus Ports

The STMSTIMR<n> characteristics are:

Purpose Provides up to 32 stimulus ports.

Write accesses to these basic stimulus ports are identical to write accesses to the I_DMTS
variant of the corresponding extended stimulus ports 0-31 on master 0. See Chapter 3
Extended Stimulus Ports.

Read accesses are used to determine if a future write to the register is accepted.

Usage constraints There are no usage constraints. Accesses to these registers are unaffected by the lock
mechanism, see Lock Registers on page 2-40.

Configurations These registers are optional. Read STMFEAT2R to determine if the basic stimulus ports are
implemented.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-1 shows the STMSTIMR<n> bit assignments on reads.

Figure 2-1 STMSTIMR<n> bit assignments on reads

Table 2-2 shows the STMSTIMR<n> bit assignments on reads.

Note
 Only supports up to 32 basic stimulus ports, even if the STM supports more than 32 extended stimulus ports.

2.3.2 STMSPER, Stimulus Port Enable Register

The STMSPER characteristics are:

Purpose Enables the stimulus port registers to generate trace. This register defines one bit per
stimulus port. Writing 0b1 enables the appropriate stimulus port, writing 0b0 disables the
appropriate stimulus port. This register is used in conjunction with the STMSPSCR.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Reserved

31 1 0

READY

Table 2-2 STMSTIMR<n> bit assignments on reads

Bits Name Description

[31:1] - Reserved, UNK/SBZP.

[0] READY 0b0 A write to the stimulus port is not accepted. This value is returned when the selected stimulus port
is disabled or when the STM is unable to accept a write, for example, when any buffering is full.

0b1 The STM can accept a write to a stimulus port.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-17
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-2 shows the STMSPER bit assignments.

Figure 2-2 STMSPER bit assignments

Table 2-3 shows the STMSPER bit assignments.

Note
 Bit[0] applies to the lowest-numbered port and bit[31] to the highest-numbered port.

2.3.3 STMSPTER, Stimulus Port Trigger Enable Register

The STMSPTER characteristics are:

Purpose Enables trigger generation on writes to enabled stimulus port registers.

Usage constraints There are no usage constraints.

Configurations This register is optional. Read STMFEAT2R to determine if it is implemented or write a
non-zero value and read it back. If a non-zero value is returned, this register is implemented.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-3 shows the STMSPTER bit assignments.

Figure 2-3 STMSPTER bit assignments

SPE

31 0

Table 2-3 STMSPER bit assignments

Bits Name Description

[31:0] SPE Stimulus port enable, with one bit per stimulus port:
0b0 Stimulus port disabled.
0b1 Stimulus port enabled.
The reset value of each bit is 0b0.
If the number of stimulus ports is less than or equal to 32, the number of bits in the SPE field is the number of
stimulus ports.
If the number of stimulus ports is greater than 32, the SPE field is 32-bits wide and the STMSPSCR controls which
stimulus ports are enabled in conjunction with the SPE field.

SPTE

31 0
2-18 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Table 2-4 shows the STMSPTER bit assignments.

Note
 Bit[0] applies to the lowest-numbered port and bit[31] to the highest-numbered port.

2.3.4 STMPRIVMASKR, Trace Privilege Register

The STMPRIVMASKR characteristics are:

Purpose Enables an operating system to control which stimulus ports are accessible by user code.

Usage constraints You can only write to this register in a privileged mode or from an external debugger.

Configurations This register is optional. Read STMFEAT2R to determine if it is implemented or write a
non-zero value and read it back. If a non-zero value is returned, this register is implemented.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-4 shows the STMPRIVMASKR bit assignments.

Figure 2-4 STMPRIVMASKR bit assignments

Table 2-5 shows the STMPRIVMASKR bit assignments.

Table 2-4 STMSPTER bit assignments

Bits Name Description

[31:0] SPTE Bit mask to enable trigger generation from the stimulus port registers, with one bit per stimulus port register:
0b0 Disabled.
0b1 Enabled.
The reset value of each bit is 0b0.
If the number of stimulus ports is less than or equal to 32, the number of bits in the SPTE field is the number of
stimulus ports.
If the number of stimulus ports is greater than 32
The SPTE field is 32-bits wide.
The STMSPSCR controls which stimulus ports have triggers enabled, in conjunction with the SPTE field.

Reserved

31 m m-1 0

PRIVMASK

Table 2-5 STMPRIVMASKR bit assignments

Bits Name Description

[31:m] - Reserved, RAZ.

[m-1:0] PRIVMASK Bit mask to control user mode access to stimulus ports. Each bit controls eight stimulus ports:
0b0 User mode and privileged accesses are permitted.
0b1 User mode accesses are ignored.
Bit[n] controls access to stimulus ports (8n to 8n+7).
The reset value is 0b0.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-19
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Note
 • The variable m is defined by the number of supported stimulus ports. For example if 32 stimulus ports are

supported, m is 4.

• This register only supports control for up to 256 stimulus ports. The access permissions apply to the basic
stimulus ports and extended stimulus ports.

2.3.5 STMSPSCR, Stimulus Port Select Configuration Register

The STMSPSCR characteristics are:

Purpose Enables a debugger to program which stimulus ports the STMSPER and STMSPTER apply
to.

Usage constraints There are no usage constraints.

Configurations If 32 or fewer stimulus ports are implemented, this register is not implemented and is
Reserved.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-5 shows the STMSPSCR bit assignments.

Figure 2-5 STMSPSCR bit assignments

Table 2-6 shows the STMSPSCR bit assignments.

PORTCTL == 0b00

When PORTCTL is 0b00, the STMSPER and STMSPTER apply equally to every group of 32 stimulus ports and
PORTSEL is ignored. For example:
• Bit[0] of the STMSPER is 0b1.
• Bit[0] of the STMSPTER is 0b1.

PORTSEL

31 20 19 2 1 0

Reserved

PORTCTL

Table 2-6 STMSPSCR bit assignments

Bits Name Description

[31:20] PORTSEL Port Selection. This field defines which stimulus ports the STMSPER and/or STMSPTER apply to.
The size of this field is defined by the number of implemented stimulus ports.
The reset value is UNKNOWN.

[19:2] - Reserved, UNK/SBZP.

[1:0] PORTCTL This defines how the port selection is applied:
0b00 Port selection not used.
0b01 Port selection applies only to the STMSPTER.
0b10 Reserved.
0b11 Port selection applies to both the STMSPER and STMSPTER.
The reset value is 0b00.
2-20 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
This enables stimulus ports 0, 32, 64, 96, 128, and so on. Triggers are caused on writes to stimulus ports 0, 32, 64,
96, 128, and so on. All other stimulus ports are disabled and do not cause triggers.

PORTCTL != 0b00

When PORTCTL is not 0b00, the PORTSEL field enables you to select a subset of the full stimulus ports to which
the STMSPER and STMSPTER apply. PORTSEL enables you to select a single group of 32 stimulus ports or
power-of-two multiples of consecutive groups to which to apply the STMSPER and STMSPTER.

To program PORTSEL, the bottom N bits which are 0 define a mask to apply to the port selection, then a 1 in bit
N+1 demarks the mask from the port selection. The bits from N+2 to M select the groups to which the STMSPER
and STMSPTER apply.

For example:
PORTSEL = bbb_bbbb_bbbb_1

A single group of 32 stimulus ports bbb_bbbb_bbbb is selected.
PORTSEL = bbb_bbb1_0000_0

A selection of 32 groups of 32 stimulus ports from bbb_bbb0_0000 to bbb_bbb1_1111 is selected.
PORTSEL = 100_0000_0000_0

All stimulus ports are selected. This is equivalent to PORTCTL == 0b00.

Programming PORTCTL != 00 and PORTSEL = 000_0000_0000_0 is UNPREDICTABLE.

Programming a PORTSEL value which enables more stimulus ports than are implemented results in
UNPREDICTABLE behavior, for example, programming 100_0000_0000_0 when only 32 stimulus ports are
implemented. To enable all 32 stimulus ports, program 000_0001_0000_0.

Triggers cannot be generated by writes to stimulus ports which are not enabled. Enabling a trigger on a stimulus
port which is not enabled results in UNPREDICTABLE behavior.

Using PORTCTL

Table 2-7 shows how to use PORTCTL.

Table 2-7 Using PORTCTL

PORTCTL Description

0b00 Port selection select is not used.
STMSPER and STMSPTER apply equally to every group of 32 stimulus ports. PORTSEL is ignored. For example:
• Only bit[0] of the STMSPER is 0b1.
• Only bit[0] of the STMSPTER is 0b1.
This enables stimulus ports 0, 32, 64, 96, 128, and so on. Triggers are caused on writes to stimulus ports 0, 32, 64,
96, 128, and so on. All other stimulus ports are disabled and do not cause triggers.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-21
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
2.3.6 STMSPMSCR, Stimulus Port Master Select Configuration Register

The STMSPMSCR characteristics are:

Purpose Enables a debugger to program which masters the STMSPSCR applies to.

Usage constraints There are no usage constraints.

Configurations If only one master is implemented, this register is not implemented and is Reserved.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-6 shows the STMSPMSCR bit assignments.

Figure 2-6 STMSPMSCR bit assignments

0b01 Port selection only applies to the STMSPTER.
STMSPER applies equally to every group of 32 stimulus ports.
STMSPTER only applies to the groups of 32 stimulus ports selected by PORTSEL and other groups do not cause
triggers.
For example:
• PORTSEL is b000_0000_0001_1 (select group 1).
• Only bit[0] of the STMSPER is 0b1.
• Only bit[0] of the STMSPTER is 0b1.
This enables stimulus ports 0, 32, 64, 96, 128, and so on. Triggers are only caused on writes to stimulus port 32. All
other stimulus ports are disabled and do not cause triggers.

0b10 Reserved.

0b11 Port selection applies to STMSPER and STMSPTER.
STMSPER and STMSPTER only apply to the groups selected by PORTSEL. Other groups are not enabled and do
not cause triggers.
For example:
• PORTSEL is b000_0000_0001_1 (select group 1).
• Only bit[0] of the STMSPER is 0b1.
• Only bit[0] of the STMSPTER is 0b1.
This enables only stimulus port 32 and triggers are only caused on writes to stimulus port 32. All other stimulus ports
are disabled and do not cause triggers.

Table 2-7 Using PORTCTL (continued)

PORTCTL Description

MASTSEL

31 15 14 1 0

Reserved

MASTCTL
2-22 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Table 2-8 shows the STMSPMSCR bit assignments.

MASTCTL == 0b0

When MASTCTL is 0b0 the port selection used by the STMSPSCR applies equally to all masters and MASTSEL
is ignored.

MASTCTL == 0b1

When MASTCTL is 0b1, the MASTSEL field enables you to select a subset of the full masters to which the
STMSPSCR applies. MASTSEL enables you to select a single master or power-of-two multiples of consecutive
masters to which to apply the STMSPSCR.

To program MASTSEL, the bottom N bits which are 0 define a mask to apply to the master selection, then a 1 in
bit N+1 demarks the mask from the master selection. The bits from N+2 to M select the master to which the
STMSPSCR applies.

For example:
MASTSEL = bbbb_bbbb_bbbb_bbbb_1

A single master bbbb_bbbb_bbbb_bbbb is selected.
MASTSEL = bbbb_bbbb_bbb1_0000_0

A selection of 32 masters from bbbb_bbbb_bbb0_0000 to bbbb_bbbb_bbb1_1111 is selected.
MASTSEL = 1000_0000_0000_0000_0

All masters are selected. This is equivalent to MASTCTL == 0b0.

Programming MASTCTL == 1 and MASTSEL = 0000_0000_0000_0000_0 is UNPREDICTABLE.

Programming a MASTSEL value which enables more masters than are implemented results in UNPREDICTABLE
behavior. For example, programming 1000_0000_0000_0000_0 when only 32 masters are implemented. To enable all
32 masters program 0000_0000_0001_0000_0.

Table 2-8 STMSPMSCR bit assignments

Bits Name Description

[31:15] MASTSEL Master Selection. This field defines which master the STMSPSCR applies to.
The size of this field is defined by the number of implemented masters.
The reset value is UNKNOWN.

[14:1] - Reserved, UNK/SBZP.

[0] MASTCTL This bit defines how the master is applied:
0b0 Master selection not used.
0b1 Master selection applies to the STMSPSCR.
The reset value is 0b0.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-23
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Using MASTCTL

Table 2-9 shows how to use MASTCTL.

2.3.7 STMSPOVERRIDER, Stimulus Port Override Register

The STMSPOVERRIDER characteristics are:

Purpose Enables a debugger to override various features of the STM. This register is used in
conjunction with STMSPMOVERRIDER.

Usage constraints There are no usage constraints.

Configurations This register is optional. Read STMFEAT2R to determine if it is implemented.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-7 shows the STMSPOVERRIDER bit assignments.

Figure 2-7 STMSPOVERRIDER bit assignments

Table 2-9 Using MASTCTL

MASTCTL Description

0b0 Master selection select is not used.
STMSPSCR applies equally to every master. MASTSEL is ignored.
For example:
• MASTCTL is 0b0.
• STMSPSCR.PORTSEL is 0b00.
• Only bit[0] of the STMSPER is 0b1.
• Only bit[0] of the STMSPTER is 0b1.
This enables stimulus ports 0, 32, 64, 96, 128, and so on, on all masters. Triggers are caused on writes to stimulus ports
0, 32, 64, 96, 128, and so on, on all masters. All other stimulus ports on all masters are disabled and do not cause triggers.

0b1 Master selection applies to STMSPSCR.
STMSPSCR only applies to the masters selected by MASTSEL. Other masters are not enabled and do not cause triggers.
For example:
• MASTCTL is 0b1.
• MASTSEL is b0000_0000_0000_0001_1 (select master 1).
• STMSPSCR.PORTCTL is 0b11.
• STMSPSCR.PORTSEL is b000_0000_0001_1 (select group 1).
• Only bit[0] of the STMSPER is 0b1.
• Only bit[0] of the STMSPTER is 0b1.
This enables only stimulus port 32 on master 1 and triggers are only caused on writes to stimulus port 32 on master 1.
All other stimulus ports on all masters are disabled and do not cause triggers.

PORTSEL

31 15 14 3 2 1 0

Reserved

OVERTS
OVERCTL
2-24 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Table 2-10 shows the STMSPOVERRIDER bit assignments.

OVERCTL != 0b00

When OVERCTL is not 0b00, the PORTSEL field enables you to select a subset of the full stimulus ports to which
the override controls apply. PORTSEL enables you to select a single stimulus ports or power-of-two multiples of
consecutive stimulus ports to which to apply the override controls.

To program PORTSEL, the bottom N bits which are 0 define a mask to apply to the port selection, then a 1 in bit
N+1 delimits the mask from the port selection. The bits from N+2 to M select the ports to which the override
controls apply.

For example:
PORTSEL = pppp_pppp_pppp_pppp_1

A single port pppp_pppp_pppp_pppp is selected.
PORTSEL = pppp_pppp_ppp1_0000_0

A selection of 32 ports from pppp_pppp_ppp0_0000 to pppp_pppp_ppp1_1111 are selected.
PORTSEL = 1000_0000_0000_0000_0

All ports are selected.

Programming OVERCTL != 00 and PORTSEL = 0000_0000_0000_0000_0 is UNPREDICTABLE.

Programming a PORTSEL value which enables more stimulus ports than are implemented results in
UNPREDICTABLE behavior. For example, programming 1000_0000_0000_0000_0 when only 32 stimulus ports are
implemented. To enable all 32 stimulus ports, program 0000_0000_0001_0000_0.

Table 2-10 STMSPOVERRIDER bit assignments

Bits Name Description

[31:15] PORTSEL Port selection.
This field defines which stimulus ports the override controls apply to.
The size of this field is defined by the number of implemented stimulus ports.
The reset value is UNKNOWN.

[14:3] - Reserved, UNK/SBZP.

[2] OVERTS Timestamping override.
This override requests all stimulus port writes that cause trace to be traced with a timestamp (where
possible). As with normal operation, this does not ensure all packets are generated with timestamps.
This field is independent of OVERCTL and PORTSEL and STMSPMOVERRIDER.
0b0 Override not enabled.
0b1 Override enabled.
The reset value is 0b0.

[1:0] OVERCTL This defines how the port selection is applied:
0b00 Override controls disabled.
0b01 Ports selected by PORTSEL always behave as guaranteed transactions.
0b10 Ports selected by PORTSEL always behave as invariant timing transactions.
0b11 Reserved.
The reset value is 0b00.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-25
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Using OVERCTL

Table 2-11 shows how to use OVERCTL.

2.3.8 STMSPMOVERRIDER, Stimulus Port Master Override Register

The STMSPMOVERRIDER characteristics are:

Purpose Enables a debugger to select which masters the STMSPOVERRIDER applies to.

Usage constraints There are no usage constraints.

Configurations This register is optional. Read STMFEAT2R to determine if it is implemented.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-8 shows the STMSPMOVERRIDER bit assignments.

Figure 2-8 STMSPMOVERRIDER bit assignments

Table 2-11 Using OVERCTL

OVERCTL Description

0b00 Override controls disabled. PORTSEL is ignored.

0b01 Ports selected by PORTSEL always behave as guaranteed transactions. For example, PORTSEL is
b0000_0000_0000_0000_1, selecting port 0. All stimulus port writes to stimulus port 0 behave as guaranteed transactions.
Writes to other stimulus ports are treated as they would normally behave. For example, PORTSEL is
b0000_0000_0011_0000_0, selecting ports 32-63. All stimulus port writes to stimulus ports 32-63 behave as guaranteed
transactions. Writes to other stimulus ports are treated as they would normally behave.

0b10 Ports selected by PORTSEL always behave as invariant timing transactions. For example, PORTSEL is
b0000_0000_0000_0000_1, selecting port 0. All stimulus port writes to stimulus port 0 behave as invariant timing
transactions.
Writes to other stimulus ports are treated as they would normally behave. For example, PORTSEL is
b0000_0000_0011_0000_0, selecting ports 32-63. All stimulus port writes to stimulus ports 32-63 behave as invariant
timing transactions. Writes to other stimulus ports are treated as they would normally behave.

0b11 Reserved.

MASTSEL

31 15 14 1 0

Reserved

MASTCTL
2-26 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Table 2-12 shows the STMSPMOVERRIDER bit assignments.

MASTCTL == 0b0

When MASTCTL is 0b0 the override controls used by the STMSPOVERRIDER apply equally to all masters and
MASTSEL is ignored.

MASTCTL == 0b1

When MASTCTL is 0b1, the MASTSEL field enables you to select a subset of the full masters to which the
STMSPOVERRIDER applies. MASTSEL enables you to select a single master or power-of-two multiples of
consecutive masters to which to apply the STMSPOVERRIDER.

To program MASTSEL, the bottom N bits which are 0 define a mask to apply to the master selection, then a 1 in
bit N+1 demarks the mask from the master selection. The bits from N+2 to M select the master to which the
STMSPOVERRIDER applies.

For example:
MASTSEL = bbbb_bbbb_bbbb_bbbb_1

A single master bbbb_bbbb_bbbb_bbbb is selected.
MASTSEL = bbbb_bbbb_bbb1_0000_0

A selection of 32 masters from bbbb_bbbb_bbb0_0000 to bbbb_bbbb_bbb1_1111 is selected.
MASTSEL = 1000_0000_0000_0000_0

All masters are selected. This is equivalent to MASTCTL == 0b0.

Programming MASTCTL == 1 and MASTSEL = 0000_0000_0000_0000_0 is UNPREDICTABLE.

Programming a MASTSEL value which enables more masters than are implemented results in UNPREDICTABLE
behavior. For example, programming 1000_0000_0000_0000_0 when only 32 masters are implemented. To enable all
32 masters, program 0000_0000_0001_0000_0.

Table 2-12 STMSPMOVERRIDER bit assignments

Bits Name Description

[31:15] MASTSEL Master selection.
This field defines which master the override controls apply to.
The size of this field is defined by the number of implemented masters.
The reset value is UNKNOWN.

[14:1] - Reserved, UNK/SBZP.

[0] MASTCTL This bit defines how the master selection is applied:
0b0 Master selection not enabled. STMSPOVERRIDER applies equally to all masters.
0b1 Master selection enabled. STMSPOVERRIDER applies to the masters selected by

MASTSEL.
The reset value is 0b0.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-27
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Using MASTCTL

Table 2-13 shows how to use MASTCTL.

2.3.9 STMSPTRIGCSR, Stimulus Port Trigger Control and Status Register

The STMSPTRIGCSR characteristics are:

Purpose Controls the STM triggers caused by the STMSPTER.

Usage constraints There are no usage constraints.

Configurations This register is optional. Read STMFEAT1R to determine if it is implemented.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-9 shows the STMSPTRIGCSR bit assignments.

Figure 2-9 STMSPTRIGCSR bit assignments

Table 2-13 Using MASTCTL

MASTCTL Description

0b0 Master selection for override controls disabled and STMSPOVERRIDER applies equally to all masters.
MASTSEL is ignored.

0b1 The STMSPOVERRIDER applies to the masters selected by MASTSEL.
For example:
• MASTSEL is b0000_0000_0000_0001_1, selecting master 1.
• STMSPOVERRIDER.OVERCTL is 0b01.
• STMSPOVERRIDER.PORTSEL is b0000_0000_0000_0001_1, selecting port 1.
All stimulus port writes to stimulus port 1 on master 1 behave as guaranteed transactions. Writes to other
stimulus ports on all other masters are treated as they would normally behave.
For example:
• MASTSEL is b0000_0000_0000_0011_0, selecting masters 2-3.
• STMSPOVERRIDER.OVERCTL is 0b10.
• STMSPOVERRIDER.PORTSEL is b0000_0000_0011_0001_1, selecting ports 32-63.
All stimulus port writes to stimulus ports 32-63 on masters 2 and 3 behave as invariant timing transactions.
Writes to other stimulus ports on all other masters are treated as they would normally behave.

Reserved

31 5 4 3 2 1 0

ATBTRIGEN_DIR
ATBTRIGEN_TE

TRIGCLEAR
TRIGSTATUS

TRIGCTL
2-28 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Table 2-14 shows the STMSPTRIGCSR bit assignments.

2.3.10 STMTCSR, Trace Control and Status Register

The STMTCSR characteristics are:

Purpose Controls the STM settings.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-10 on page 2-30 shows the STMTCSR bit assignments.

Table 2-14 STMSPTRIGCSR bit assignments

Bits Type Name Description

[31:5] - - Reserved, UNK/SBZP.

[4] RW ATBTRIGEN_DIR ATB trigger enable on direct writes to TRIG locations in an Extended Stimulus Port. When
set, this bit enables the STM to use the ATID value of 0x7D when software writes to the TRIG
locations.
See Triggers on page 2-46 for more information.
The reset value is 0b0.

[3] RW ATBTRIGEN_TE ATB trigger enable on writes to Stimulus Ports being monitored using the STMSPTER.
When set, this bit enables the STM to use the ATID value of 0x7D when software writes to an
enabled Stimulus Port.
See Triggers on page 2-46 and STMSPTER, Stimulus Port Trigger Enable Register on
page 2-18 for more information.
The reset value is 0b0.

[2] WO TRIGCLEAR When TRIGCTL indicates single-shot mode, this bit is used to clear TRIGSTATUS:
0b0 No effect.
0b1 Clears TRIGSTATUS if TRIGSTATUS is 0b1.
Writing a 0b1 to this bit when in multi-shot mode is Unpredictable.

[1] RO TRIGSTATUS When TRIGCTL indicates single-shot mode, this bit indicates whether the single trigger has
occurred:
0b0 Trigger has not occurred.
0b1 Trigger has occurred.
In multi-shot mode this bit is always UNK/SBZP.

[0] RW TRIGCTL Trigger control:
0b0 Triggers are multi-shot.
0b1 Triggers are single-shot.
See Triggers on page 2-46 for more information.
The reset value is 0b0.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-29
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Figure 2-10 STMTCSR bit assignments

Table 2-15 shows the STMTCSR bit assignments.

Reserved

31 24 23 22 16 15 10 9 8 7 6 5 4 3 2 1 0

TRACEID Reserved

BUSY TSPRESCALE
Reserved
COMPEN
SWOEN
HWTEN
SYNCEN

TSEN
EN

Table 2-15 STMTCSR bit assignments

Bits Type Name Description

[31:24] - - Reserved, UNK/SBZP.

[23] RO BUSY STM is busy, for example the STM trace FIFO is not empty.
The reset value is IMPLEMENTATION SPECIFIC.

[22:16] RWa TRACEID TRACEID[6:0] value.
The reset value is UNKNOWN.

[15:10] - - Reserved, UNK/SBZP.

[9:8] RWa TSPRESCALE Timestamp prescaler. The reference clock source is selected by SWOEN:
0b00 No prescaling.
0b01 Divide by 4.
0b10 Divide by 16.
0b11 Divide by 64.
The reset value is 0b00.

[7:6] - - Reserved, UNK/SBZP.

[5] RWb COMPEN Compression enable for stimulus ports:
0b0 Compression disabled, data transfers are transmitted at the size of the

transaction.
0b1 Compression enabled, data transfers are compressed to save bandwidth.
The reset value is 0b0.

[4] RWa SWOEN Enables asynchronous-specific usage model for timestamps, when TSEN == 0b1:
0b0 Timestamp counter uses a system clock and counts continuously.
0b1 Timestamp counter uses a clock from an external trace output interface.

The timestamp counter is held in reset while the trace output line is idle.
The reset value is 0b0.

[3] RWa HWTEN Enable hardware event trace packet emission.
The reset value is 0b0.
2-30 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
To avoid trace stream corruption, the STM must be disabled with STMTCSR.EN == 0b0 and the STMTCSR.BUSY
bit polled until it is 0b0 before STMTCSR.TRACEID is modified.

To ensure that all writes to the STM stimulus ports are traced before disabling the STM, ARM recommends that
software writes to the stimulus port then reads from any stimulus port before clearing STMTCSR.EN. This is only
required if the same piece of software is writing to the stimulus ports and disabling the STM.

2.3.11 STMTSSTIMR, Timestamp Stimulus Register

The STMTSSTIMR characteristics are:

Purpose Forces the next packet caused by a stimulus port write to have a timestamp output.

Usage constraints There are no usage constraints.

Configurations This register is only implemented if the STMFEAT1R.FORCETS bit is set, otherwise it
ignores writes.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-11 shows the STMTSSTIMR bit assignments.

Figure 2-11 STMTSSTIMR bit assignments

[2] RWac SYNCEN Enable synchronization packets. Synchronization period is defined by the STMSYNCR,
if implemented, or by another IMPLEMENTATION DEFINED mechanism.
The reset value is 0b0c.

[1] RWa TSEN Enable timestamps. Timestamp behavior might be qualified by SWOEN.
When this bit is zero no timestamps are generated and, when using STPv2, FREQ packets
are not generated.
The reset value is 0b0.

[0] RW EN Global STM enable. Always present.
The reset value is 0b0.

a. These bits are optional. To determine which bits are implemented, read STMFEAT1R, or write each bit with a value of 0b1 and read
back. If the value returned is 0b1, the bit is implemented. Only perform this when STMTCSR.EN is 0b0. For more information on
recommended configurations, see Appendix A.

b. These bits are optional. The STMFEAT1R and STMFEAT2R identify the presence of these bits.
c. The STMTCSR.SYNCEN bit is not always implemented as RW. When the STMSYNCR register is implemented, this bit is RO and

always reads as 0b1.

Table 2-15 STMTCSR bit assignments (continued)

Bits Type Name Description

Reserved

31 1 0

FORCETS
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-31
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Table 2-16 shows the STMTSSTIMR bit assignments.

If timestamping is not enabled, that is, when STMTCSR.TSEN ==0b0, writes to this register are ignored.

Implementations are allowed to ignore the timestamp indication on a stimulus port write, for example, if there is
insufficient buffer space to trace the timestamp. However, the timestamp request initiated by writes to this register
is persistent until a trace packet with a timestamp is generated.

The timestamp request initiated by writes to this register is persistent except through a reset of the STM. This means
that disabling and re-enabling the STM using STMTCSR.EN does not clear this request.

2.3.12 STMTSFREQR, Timestamp Frequency Register

The STMTSFREQR characteristics are:

Purpose Indicates the frequency of the timestamp counter. The unit of measurement is increments
per second.

Usage constraints There are no usage constraints.

Configurations This register is only implemented when STMFEAT1R.PROT indicates STPv2 is
implemented.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-12 shows the STMTSFREQR bit assignments.

Figure 2-12 STMTSFREQR bit assignments

Table 2-17 shows the STMTSFREQR bit assignments.

If timestamping is enabled, writing to this register causes a FREQ or FREQ_TS packet to be generated, indicating
the new timestamp frequency. A value of zero indicates the timestamp frequency is not known.

This register might be read-only in some implementations. In read-only implementations, the reset value indicates
the timestamp frequency. In read/write implementations software must program this with the frequency of the
timestamp clock, although the reset value might also indicate the initial value of the timestamp frequency.

The presence and configuration of this register is defined in the STMFEAT1R register.

Table 2-16 STMTSSTIMR bit assignments

Bits Type Name Description

[31:1] - - Reserved, UNK/SBZP.

[0] WO FORCETS Force timestamp stimulus. A write to this register with this bit as 0b1 requests the
next stimulus port write which causes trace to be upgraded to have a timestamp.
Writes with this bit 0b0 are ignored.

FREQ

31 0

Table 2-17 STMTSFREQR bit assignments

Bits Type Name Description

31:0 IMPDEF FREQ The timestamp frequency in Hz.
The reset value is IMPLEMENTATION DEFINED.
2-32 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
2.3.13 STMSYNCR, Synchronization Control Register

The STMSYNCR characteristics are:

Purpose Controls the interval between synchronization packets, in terms of the number of bytes of
trace generated. This register only provides a hint of the desired synchronization frequency,
because implementations are permitted to be inaccurate.

Writing a value of 0x00000000 to this register disables the synchronization counter, however
any other IMPLEMENTATION DEFINED synchronizations mechanism continue to operate
independently.

When this register is written, the STM must perform synchronization immediately if
enabled, and reset the count value to the newly programmed value immediately, ensuring
subsequent synchronization occurs in the desired period.

Usage constraints There are no usage constraints.

Configurations This register is optional. Read STMFEAT1R to determine if it is implemented.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-13 shows the STMSYNCR bit assignments.

Figure 2-13 STMSYNCR bit assignments

Table 2-18 shows the STMSYNCR bit assignments.

To determine if this register is implemented, read the STMFEAT1R.SYNC field. If STMFEAT1R.SYNC returns
0b00, write the value 0x00001FFF to this register and read it back. If the returned value is zero this register is not
implemented, otherwise the register is implemented.

Some lower-order bits of STMSYNCR.COUNT might not be implemented. This can be determined when reading
back the value after writing 0x00001FFF.

2.3.14 STMAUXCR, Auxiliary Control Register

The STMAUXCR characteristics are:

Purpose Used for IMPLEMENTATION DEFINED STM controls. The contents of the register are
IMPLEMENTATION DEFINED. Setting any bits in this register to anything other than 0b0 might
result in behavior which contravenes this architecture.

Reserved

31 13 12 11 0

COUNT

MODE

Table 2-18 STMSYNCR bit assignments

Bits Name Description

[31:13] - Reserved, UNK/SBZP

[12] MODE Mode control:
0b0 COUNT[11:0] defines a value N. Synchronization period is N bytes.
0b1 COUNT[11:7] defines a value N. Synchronization period is 2N bytes. N must be in the range of

12 to 27 inclusive and other values are UNPREDICTABLE.
The reset value is 0b0.

[11:0] COUNT Counter value for the number of bytes between synchronization packets. Reads return the value of this register.
The reset value is IMPLEMENTATION DEFINED.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-33
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Table 2-19 shows the STMAUXCR bit assignments.

2.3.15 STMFEAT1R, Features 1 Register

The STMFEAT1R characteristics are:

Purpose Indicates the features of the STM.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-14 shows the STMFEAT1R bit assignments.

Figure 2-14 STMFEAT1R bit assignments

Table 2-20 shows the STMFEAT1R bit assignments.

Table 2-19 STMAUXCR bit assignments

Bits Name Description

[31:0] - IMPLEMENTATION DEFINED.
The reset value is 0b0.

Reserved

31 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1 0

TRACEBUS TS PROT

TSFREQSWOEN
SYNCEN
HWTEN

TSPRESCALE

TRIGCTL

SYNC
FORCETS

Table 2-20 STMFEAT1R bit assignments

Bits Name Description

[31:24] - Reserved, RAZ.

[23:22] SWOEN STMTCSR.SWOEN support:
0b00 Support not defined here. Support for STMTCSR.SWOEN can be detected by direct

access to the STMTCSR.
0b01 STMTCSR.SWOEN not implemented.
0b10 STMTCSR.SWOEN implemented.

[21:20] SYNCEN STMTCSR.SYNCEN support:
0b00 Support not defined here. Support for STMTCSR.SYNCEN can be detected by direct

access to the STMTCSR.
0b01 STMTCSR.SYNCEN not implemented and always reads as 0b0.
0b10 STMTCSR.SYNCEN implemented but always reads as 0b1.
0b11 STMTCSR.SYNCEN implemented and is writeable.
2-34 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Unspecified encodings of fields in this register are Reserved.

[19:18] HWTEN STMTCSR.HWTEN support:
0b00 Support not defined here. Support for STMTCSR.HWTEN can be detected by direct

access to the STMTCSR.
0b01 STMTCSR.HWTEN not implemented.
0b10 STMTCSR.HWTEN implemented.

[17:16] TSPRESCALE Timestamp prescale support:
0b00 Support not defined here. Support for timestamp prescaling can be detected by direct

access to the STMTCSR.
0b01 Timestamp prescale not implemented.
0b10 Timestamp prescale implemented.

[15:14] TRIGCTL Trigger control support:
0b00 Trigger support not defined here.
0b01 Multi-shot triggers supported only.
0b10 Multi-shot and single-shot triggers supported. STMSPTRIGCSR.TRIGCTL

implemented.

[13:10] TRACEBUS Trace bus support:
0b0000 CoreSight ATB implemented. STMTCSR.TRACEID implemented.
0b0001 CoreSight ATB plus ATB trigger support implemented. STMTCSR.TRACEID and

STMSPTRIGCSR.ATBTRIGEN_DIR and STMSPTRIGCSR.ATBTRIGEN_TE
implemented.

[9:8] SYNC STMSYNCR support:
0b00 Support not defined here. Support for the STMSYNCR can be detected by direct access

to the STMSYNCR.
0b01 STMSYNCR not implemented.
0b10 STMSYNCR implemented without MODE control.
0b11 STMSYNCR implemented with MODE control.

[7] FORCETS STMTSSTIMR support:
0b0 STMTSSTIMR bit[0] not implemented.
0b1 STMTSSTIMR bit[0] implemented.

[6] TSFREQ Timestamp frequency indication configuration:
0b0 STMTSFREQR is read-only.
0b1 STMTSFREQR is read-write.

[5:4] TS Timestamp support:
0b00 Differential timestamps implemented.
0b01 Absolute timestamps implemented.
0b10 Timestamping not implemented.

[3:0] PROT Protocol type:
0b0001 STPv2.

Table 2-20 STMFEAT1R bit assignments (continued)

Bits Name Description
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-35
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
2.3.16 STMFEAT2R, Features 2 Register

The STMFEAT2R characteristics are:

Purpose Indicates the features of the STM.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-15 shows the STMFEAT2R bit assignments.

Figure 2-15 STMFEAT2R bit assignments

Table 2-21 shows the STMFEAT2R bit assignments.

Reserved

31 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

DSIZE

SPTYPE Reserved
SPTRTYPE
PRIVMASK

SPOVERRIDE

SPTER
SPER
Reserved
SPCOMP

Table 2-21 STMFEAT2R bit assignments

Bits Name Description

[31:18] - Reserved, RAZ.

[17:16] SPTYPE Stimulus Port type support:
0b00 Only Basic Stimulus Ports implemented.
0b01 Only Extended Stimulus Ports implemented.
0b10 Both Basic and Extended Stimulus Ports implemented.

[15:12] DSIZE Fundamental data size:
0b0000 32-bit data.
0b0001 64-bit data.

[11] - Reserved, RAZ.

[10:9] SPTRTYPE Stimulus Port Transaction Type support:
0b00 Only invariant timing transactions are supported.
0b01 Only guaranteed transactions are supported.
0b10 Both invariant timing and guaranteed transactions are supported.

[8:7] PRIVMASK STMPRIVMASKR support:
0b00 STMPRIVMASKR support not defined here. Support for the STMPRIVMASKR can

be detected by direct access to the STMPRIVMASKR.
0b01 STMPRIVMASKR not implemented.
0b10 STMPRIVMASKR implemented.

[6] SPOVERRIDE STMSPOVERRIDER and STMSPMOVERRIDER support:
0b0 STMSPOVERRIDER and STMSPMOVERRIDER not implemented.
0b1 STMSPOVERRIDER and STMSPMOVERRIDER implemented.
2-36 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Unspecified encodings of fields in this register are Reserved.

2.3.17 STMFEAT3R, Features 3 Register

The STMFEAT3R characteristics are:

Purpose Indicates the features of the STM.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-16 shows the STMFEAT3R bit assignments.

Figure 2-16 STMFEAT3R bit assignments

Table 2-22 shows the STMFEAT3R bit assignments.

[5:4] SPCOMP Data compression on stimulus ports support:
0b00 Data compression support is not defined here. Use the part number of the device to

determine if data compression is supported.
0b01 No data compression supported.
0b10 Data compression always enabled.
0b11 Data compression support is programmable. STMTCSR.COMPEN is implemented.

[3] - Reserved, RAZ.

[2] SPER STMSPER presence:
0b0 STMSPER is implemented.

[1:0] SPTER STMSPTER support:
0b00 STMSPTER presence is not indicated here, check the STMSPTER.
0b01 STMSPTER is not implemented.
0b10 STMSPTER is implemented.

Table 2-21 STMFEAT2R bit assignments (continued)

Bits Name Description

Reserved

31 16 15 0

NUMMAST

Table 2-22 STMFEAT3R bit assignments

Bits Name Description

[31:16] - Reserved, UNK/SBZP

[15:0] NUMMAST The number of stimulus port masters implemented, minus 1. For example:
0x0000 1 master implemented.
0x00FF 256 masters implemented.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-37
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
2.3.18 STMITCTRL, Integration Mode Control Register

The STMITCTRL characteristics are:

Purpose Controls whether the STM is in integration mode.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-17 shows the STMITCTRL bit assignments.

Figure 2-17 STMITCTRL bit assignments

Table 2-23 shows the STMITCTRL Register bit assignments.

This register must only be programmed with a value of 0b1 when STMTCSR.EN is 0b0.

This presence of this register is IMPLEMENTATION DEFINED. Writing 0b1 to STMITCTRL.IME and reading the value
back can determine the presence. If the returned value has STMITCTRL.IME 0b1, the register is present.

2.3.19 Claim Tag Registers

The claim tag mechanism enables multiple agents to arbitrate over access control to the STM configuration
registers. For example, in a system where multiple processors all use the same STM and each processor has separate
hardware events which are connected to the STM, each processor might need to independently control the
configuration of its hardware events. The claim tag mechanism enables each processor to attempt to claim access
to the STM configuration registers so that it can reconfigure the STM without risk of other processors corrupting
the configuration.

Note
 The claim tag mechanism does not prevent access to any registers, it merely acts as an arbitration mechanism.

The claim tag registers have an IMPLEMENTATION DEFINED number of claim tag bits, typically one per agent. If an
agent requires access to the configuration registers, the agent must set its relevant claim tag bit using the
STMCLAIMSET register. It must then read the status of the claim tag and, if its own bit is the only bit which is set,
it has then claimed access. If any other bits are set, this agent has not necessarily claimed access and must clear its
bit using the STMCLAIMCLR register and attempt the process again.

At least four claim tag bits are implemented.

Reserved

31 1 0

IME

Table 2-23 STMITCTRL bit assignments

Bits Name Description

[31:1] - Reserved, UNK/SBZP.

[0] IME When 0b1, the STM is in integration mode.
The reset value is 0b0.
2-38 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
STMCLAIMSET, Claim Tag Set Register

The STMCLAIMSET characteristics are:

Purpose On writes this register sets bits of the claim tag. On reads it indicates the number of claim
tag bits implemented.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-18 shows the STMCLAIMSET bit assignments.

Figure 2-18 STMCLAIMSET bit assignments

Table 2-24 shows the STMCLAIMSET Register bit assignments.

STMCLAIMCLR, Claim Tag Clear Register

The STMCLAIMCLR characteristics are:

Purpose On writes this register clears bits of the claim tag. On reads it indicates the current status of
the claim tag.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-19 shows the STMCLAIMCLR bit assignments.

Figure 2-19 STMCLAIMCLR bit assignments

Reserved

31 n n-1 0

SET

Table 2-24 STMCLAIMSET bit assignments

Bits Name Description

[31:n] - Reserved, UNK/SBZP.

[n-1:0] SET On reads, each bit reads as 0b1 if the claim tag bit is implemented. For example
if four claim tag bits are implemented, this register reads as 0xF.
On writes, a 0b1 in a bit position causes the corresponding claim tag bit to be set.

Reserved

31 n n-1 0

CLR
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-39
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Table 2-25 shows the STMCLAIMCLR register bit assignments.

2.3.20 Lock Registers

The lock mechanism controls memory-mapped software access to all configuration registers except for the
STMLAR.

If you lock the STM using this feature, it ignores memory-mapped software writes to configuration registers.
Memory-mapped debugger accesses and all reads are unaffected. The basic stimulus ports and extended stimulus
ports are not affected by the lock mechanism.

To write to the configuration registers, the on-chip software that accesses the STM must access the STM registers
as follows:
1. Unlock the STM by writing 0xC5ACCE55 to the STMLAR.
2. Access the other STM configuration registers.
3. Lock the STM by writing any other value, for example 0x0, to the STMLAR.

STMLAR, Lock Access Register

The STMLAR characteristics are:

Purpose Locks or unlocks write access to the other configuration registers.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-20 shows the STMLAR bit assignments.

Figure 2-20 STMLAR bit assignments

Table 2-26 shows the STMLAR bit assignments.

Table 2-25 STMCLAIMCLR bit assignments

Bits Name Description

[31:n] - Reserved, UNK/SBZP.

[n-1:0] CLR On reads, each bit reads as one if the claim tag bit is set.
On writes, a 0b1 in a bit position causes the corresponding claim tag bit to be cleared.
On a reset the claim tags are reset to 0b0.

KEY

31 0

Table 2-26 STMLAR bit assignments

Bits Name Description

[31:0] KEY Write a value of 0xC5ACCE55 to unlock access to the configuration registers.
Write a value which is not 0xC5ACCE55 to lock access to the configuration registers.
2-40 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
STMLSR, Lock Status Register

The STMLSR characteristics are:

Purpose Indicates the status of the lock mechanism.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-21 shows the STMLSR bit assignments.

Figure 2-21 STMLSR bit assignments

Table 2-27 shows the STMLSR bit assignments.

2.3.21 STMAUTHSTATUS, Authentication Status Register

This read-only register returns the authentication status values for the four different debug types. This register is
defined by the CoreSight Architecture.

See Authentication control on page 2-49 for more information.

2.3.22 STMDEVARCH, Device Architecture Register

The STMDEVARCH characteristics are:

Purpose Identifies the architect and architecture of a CoreSight component. The architect might
differ from the designer of a component, for example ARM defines the architecture but
another company designs and implements the component.

Reserved

31 1 0

nTT

23

SLK
SLI

Table 2-27 STMLSR bit assignments

Bits Name Description

[31:3] - Reserved, UNK/SBZP

[2] nTT RAZ. Indicates that the STMLAR is 32 bits.

[1] SLK Indicates whether the STM configuration registers are locked:
0b0 Writes to the configuration registers are permitted.
0b1 STM is locked. Writes to the configuration registers are ignored.
If this register is accessed from an interface where the lock mechanism is ignored, for example, an
external debugger, this field reads as 0b0 regardless of whether the STM is locked.
The reset value of this bit is 0b1 for accesses from interfaces where the lock mechanism is required.

[0] SLI Indicates whether the lock mechanism is implemented for this interface:
0b0 This access is from an interface that ignores the lock mechanism. The Locked bit

reads as 0b0 and writes to the STMLAR are ignored.
0b1 This access is from an interface that requires the STM to be unlocked.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-41
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Usage constraints There are no usage constraints.

Configurations This register is either:

• Not present, and all bits read as zero.

• Present, as indicated by PRESENT, bit[20].

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-22 shows the STMDEVARCH bit assignments.

Figure 2-22 STMDEVARCH bit assignments

Table 2-28 shows the STMDEVARCH bit assignments.

2.3.23 STMDEVID, Device Configuration Register

The STMDEVID characteristics are:

Purpose Controls the number of stimulus ports implemented.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-23 shows the STMDEVID bit assignments.

Figure 2-23 STMDEVID bit assignments

REVISIONARCHITECT

31 19 16 0

ARCHID

152021

PRESENT

Table 2-28 STMDEVARCH bit assignments

Bits Name Description

[31:21] ARCHITECT Defines the architect of the component:
Always takes the value 0x23B, because ARM is the architect of this architecture.

[20] PRESENT Indicates the presence of this register:
0b0 STMDEVARCH is not present so bits[31:0] read as zero.
0b1 STMDEVARCH is present.

[19:16] REVISION Architecture revision:
0b0000 STMv1.0.
0b0001 STMv1.1.

[15:0] ARCHID Architecture ID:
Always takes the value 0x0A63, indicating STM Architecture version 1.

Reserved

31 17 16 0

NUMSP
2-42 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
Table 2-29 shows the STMDEVID bit assignments.

There are 32 stimulus ports if STMDEVID.NUMSP == 0x0000.

2.3.24 STMDEVTYPE, Device Type Register

The STMDEVTYPE characteristics are:

Purpose Returns the device type identifier value.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Figure 2-24 shows the STMDEVTYPE bit assignments.

Figure 2-24 STMDEVTYPE bit assignments

Table 2-30 shows the STMDEVTYPE bit assignments.

2.3.25 STMPIDR0-7, Peripheral ID Registers

The STMPIDR0-7 characteristics are:

Purpose Returns the Peripheral ID value. See the ARM Debug Interface v5 Architecture Specification
for more information on these registers.

Usage constraints There are no usage constraints.

Configurations These registers are available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Table 2-29 STMDEVID bit assignments

Bits Name Description

[31:17] - Reserved, UNK/SBZP.

[16:0] NUMSP The number of stimulus ports implemented. For example:
0x00020 32 stimulus ports implemented
0x10000 65536 stimulus ports implemented.

Reserved

31 8 7 4 3 0

0x6 0x3

Table 2-30 STMDEVTYPE bit assignments

Bits Name Description

[31:8] - Reserved, UNK/SBZP

[7:4] SUB 0x6, indicating the trace is derived from software activity

[3:0] MAJOR 0x3, indicating the device is a trace source
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-43
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.3 Register descriptions
2.3.26 STMCIDR0-3, Component ID Registers

The STMCID0R-3 characteristics are:

Purpose Returns the Component ID value. See the ARM Debug Interface v5 Architecture
Specification for more information on these registers.

Usage constraints There are no usage constraints.

Configurations These registers are available in all implementations.

Attributes See the register summary in Table 2-1 on page 2-15.

Table 2-31 shows the values for the STMCIDR0-3 registers.

Table 2-31 STMCIDR0-3 values

Register Offset Value

STMCIDR0 0xFF0 0x0D

STMCIDR1 0xFF4 0x90

STMCIDR2 0xFF8 0x05

STMCIDR3 0xFFC 0xB1
2-44 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.4 Programming the STM
2.4 Programming the STM
You do not have to disable the STM to reprogram it. You can modify the following registers while the
STMTCSR.EN bit is 0b1:
• STMSPER.
• STMSPTER.
• STMSPSCR.
• STMSPMSCR.
• STMPRIVMASKR.
• STMSPTRIGCSR.
• STMSPOVERRIDER.
• STMSPMOVERRIDER.
• STMTCSR, except STMTCSR.TRACEID field.
• STMSYNCR.
• STMTSFREQR.
• CoreSight Management registers.

2.4.1 Modifying the STMSPSCR and STMSPMSCR

Take care when changing the STMSPSCR and STMSPMSCR, because changes to the STMSPSCR, STMSPMSCR,
STMSPER, and STMSPTER are not atomic. Certain sequences of changes might result in some stimulus ports
being enabled or disabled during the reprogramming process.

For example, when switching from enabling stimulus port 0 to stimulus port 63, both the STMSPSCR and
STMSPER must be modified:
• STMSPER from 0x00000001 to 0x80000000.
• STMSPSCR from 0x00100001 to 0x00300001.

If you change the STMSPSCR first, stimulus port 32 is enabled until the STMSPER is modified. Similarly, if you
change the STMSPER first, stimulus port 31 is enabled until the STMSPSCR is modified. ARM recommends that
you clear the STMSPER to 0x00000000, modify the STMSPSCR, and finally modify the STMSPER to the required
final value.

2.4.2 Modifying the STMSYNCR

Modifying the STMSYNCR when STMTCSR.EN is 0b1 might not immediately change the synchronization period.
The STM might wait until the current synchronization period has finished before recognizing the change to the
STMSYNCR.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-45
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.5 Triggers
2.5 Triggers
Triggers are used to identify points of interest in the trace stream. STPv2 has packets which indicate a trigger has
occurred.

The following mechanisms are provided for generating triggers:
• The Stimulus Port Trigger Enable Register (STMSPTER).
• The Hardware Event Trigger Enable Register (STMHETER), if hardware event tracing is implemented.
• Dedicated trigger locations in each extended stimulus port.

Triggers are indicated using one or more of the following mechanisms:
• Dedicated output signals for each cause.
• Insertion of specific trigger packets into the trace stream.
• Insertion of the trigger ATID on an ATB interface.

Table 2-32 shows a summary of trigger generation.

The following sections describe triggers in more detail:
• Triggers caused by matches using the STMSPTER.
• Triggers caused by matches using the STMHETER on page 2-47.
• Triggers caused by writes to TRIG locations in the extended stimulus port on page 2-47.

2.5.1 Triggers caused by matches using the STMSPTER

For more information on how these triggers are caused, see STMSPTER, Stimulus Port Trigger Enable Register on
page 2-18. This mechanism only generates trigger events on a channel which is enabled for tracing.

These triggers operate in one of two modes, single-shot or multi-shot, controlled by the STMSPTRIGCSR.
• In single-shot mode, only the first detected trigger causes a trigger event.
• In multi-shot mode, every detected trigger causes a trigger event.

Dedicated output signal

Each trigger event caused by a match using the STMSPTER asserts a dedicated output signal:
• In single-shot mode, only the first match causes this output signal to be asserted.
• If multiple writes occur in close succession, this signal might not be asserted for every write.

This signal is usually connected to a CoreSight cross trigger network.

Table 2-32 Trigger generation summary

Cause
Outcome

Dedicated output asserted Trigger on ATB Trigger packet

Match using STMSPTERa

a. Only on stimulus ports which are enabled for tracing.

Yesb

b. In single-shot mode only the first match, controlled by the STMSPTRIGCSR.

Yesbc

c. Controlled using the STMSPTRIGCSR.

No

Match using STMHETERd

d. Only on hardware events which are enabled for tracing.

Yese

e. In single-shot mode only the first match, controlled by the STMHEMCR.

Yesef

f. Controlled using the STMHEMCR.

No

Write to TRIG locationa Yes Yesc Yes
2-46 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.5 Triggers
Writes to both guaranteed and invariant timing locations cause the output signal to be asserted, regardless of whether
the data for that transaction is successfully traced.

Insertion of trigger packets into the trace stream

Trigger events caused by a match using the STMSPTER do not cause trigger packets to be inserted into the trace
stream.

Insertion of trigger ATID on an ATB interface

Each trigger event caused by a match using the STMSPTER causes insertion of the trigger ATID on the ATB
interface. This functionality can be controlled using the STMSPTRIGCSR. In single-shot mode only the first match
causes the trigger ATID to be inserted.

Writes to both guaranteed and invariant timing locations cause the trigger ATID to be generated, regardless of
whether the data for that transaction is successfully traced.

When this feature is enabled, the STM outputs a single byte ATB transaction with the ATID encoding of 0x7D. The
payload of this transaction is always the STMTCSR.TRACEID in the lower seven bits. Bit[7] is SBZ.

2.5.2 Triggers caused by matches using the STMHETER

For more information on how these triggers are caused, see STMHETER, Hardware Event Trigger Enable Register
on page 4-68. This mechanism only generates trigger events on a hardware event which is enabled for tracing.

These triggers operate in one of two modes, single-shot or multi-shot, controlled by the STMHEMCR:
• In single-shot mode, only the first detected trigger causes a trigger event.
• In multi-shot mode, every detected trigger causes a trigger event.

Dedicated output signal

Each trigger event caused by a match using the STMHETER asserts a dedicated output signal:
• In single-shot mode, only the first match causes this output signal to be asserted.
• If multiple events occur in close succession, this signal might not be asserted for every event.

This signal is usually connected to a CoreSight cross trigger network.

Insertion of trigger packets into the trace stream

Trigger events caused by a match using the STMHETER do not cause trigger packets to be inserted into the trace
stream.

Insertion of trigger ATID on an ATB interface

Each trigger event caused by a match using the STMHETER causes insertion of the trigger ATID on the ATB
interface. This functionality can be controlled using the STMHEMCR. In single-shot mode only the first match
causes the trigger ATID to be inserted.

When this feature is enabled, the STM outputs a single byte ATB transaction with the ATID encoding of 0x7D. The
payload of this transaction is always the STMTCSR.TRACEID in the lower seven bits. Bit[7] is SBZ.

2.5.3 Triggers caused by writes to TRIG locations in the extended stimulus port

This section describes triggers generated by writes to the TRIG locations in the extended stimulus ports. See
Chapter 3 Extended Stimulus Ports for more information.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-47
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.5 Triggers
Dedicated output signal

Each write to a TRIG location asserts a dedicated output signal, if that stimulus port is enabled using the STMSPER.
If multiple writes occur in close succession, this signal might not be asserted for every write.

This signal is usually connected to a CoreSight cross trigger network.

Insertion of trigger packets into the trace stream

Each write to a TRIG location inserts a trigger packet into the trace stream, if that stimulus port is enabled using the
STMSPER. All explicit writes to TRIG locations generate a separate trigger packet.

If the write is not traced because the STM cannot produce trace for the transaction, the trigger packet is not generated
and a MERR or GERR packet must be generated to indicate this loss.

Insertion of trigger ATID on an ATB interface

Each write to a TRIG location causes insertion of the trigger ATID on the ATB interface, if that stimulus port is
enabled using the STMSPER. This functionality is controlled using STMSPTRIGCSR.

When this feature is enabled, the STM outputs a single byte ATB transaction with the ATID encoding of 0x7D. The
payload of this transaction is always the STMTCSR.TRACEID in the lower seven bits. Bit[7] is SBZ.
2-48 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

2 Configuration Registers Programmers’ Model
2.6 Authentication control
2.6 Authentication control
The CoreSight architecture defines an authentication interface for controlling the permitted level of debug
capabilities for a device. It defines three levels of control:
• No debug permitted.
• Only non-invasive debug permitted.
• Invasive and non-invasive debug permitted.

These levels are duplicated for secure and non-secure states, permitting different levels of debug for secure and
non-secure states.

The STM is generally considered a non-invasive debug component despite guaranteed transfers causing invasion,
because system software chooses the level of invasion. When non-invasive debug is disabled, the STM:
• Treats all stimulus port writes as invariant timing.
• Ignores all stimulus port writes.
• Does not generate any trace.
• Does not generate any triggers.

The STMSPOVERRIDER, Stimulus Port Override Register on page 2-24 and STMSPMOVERRIDER, Stimulus Port
Master Override Register on page 2-26 enable tools to override what the software chooses. When overriding
transactions to be guaranteed, this is considered invasive debug. This override mode does not operate when invasive
debug is disabled.

Table 2-33 shows the behavior of the STM override functions based on the permitted level of debug.

Table 2-33 Authentication control with guaranteed override selected

Permitted
debug level Request type Override selected Request treated as

None - - Invariant timing, write ignored

Non-invasive Guaranteed None Guaranteed

Non-invasive Invariant timing None Invariant timing

Non-invasive Guaranteed Guaranteed Guaranteed

Non-invasive Invariant timing Guaranteed Invariant timing

Non-invasive - Invariant timing Invariant timing

Invasive Guaranteed None Guaranteed

Invasive Invariant timing None Invariant timing

Invasive - Guaranteed Guaranteed

Invasive - Invariant timing Invariant timing
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 2-49
ID092613 Non-Confidential

2 Configuration Registers Programmers’ Model
2.6 Authentication control
2-50 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Chapter 3
Extended Stimulus Ports

This chapter describes the extended stimulus ports. It contains the following sections:
• About extended stimulus ports on page 3-52.
• STM transactions on page 3-54.
• Address decoding on page 3-55.
• Grouping stimulus ports on page 3-56.
• More than one master on page 3-57.
• Data sizes on page 3-58.
• Bus endianness on page 3-59.
• Implementation options on page 3-60.
• Reserved locations on page 3-61.
• Timestamping on page 3-62.
• Mapping onto STPv2 on page 3-63.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 3-51
ID092613 Non-Confidential

3 Extended Stimulus Ports
3.1 About extended stimulus ports
3.1 About extended stimulus ports
Each extended stimulus port occupies 256 consecutive bytes in the memory map.

The STM extended stimulus ports must be marked as Device memory. This ensures writes to the STM occur in
program order.

Multiple locations are available for each stimulus port. Each location allows software to choose the type of trace
packet to be generated.

Data accesses can be optionally marked, for example to indicate the start or end of messages consisting of multiple
transactions. Data accesses can also optionally request a timestamp to be generated with the trace packet.

Non-data accesses can generate the following types of trace packet:

Flag This is a simple marker with no data payload and can be used to indicate messages consisting of
multiple packets.

Trigger This can be used to indicate a significant event in the trace.

Non-data accesses can be optionally timestamped.

All locations are write-only. Read accesses return zero, but software must not rely on this value.

Unaligned accesses are not supported. All accesses must be aligned to the access size.

Data accesses must be aligned to the bottom of the 8-byte window for each access type and, therefore, every data
packet access must have address bits[2:0] == 0b000. Accesses with address bits[2:0] != 0b000 are UNPREDICTABLE.
See Data sizes on page 3-58 for more information on data accesses.

Non-data accesses must be written as zero and the implementation must ignore the data value.

Table 3-1 shows the address map for a single stimulus port.

Table 3-1 Address map for a single stimulus port

Address offset Short name Description

Guaranteed data accesses

0x00-0x04 G_DMTS Data, marked with timestamp, guaranteed

0x08-0x0C G_DM Data, marked, guaranteed

0x10-0x14 G_DTS Data, with timestamp, guaranteed

0x18-0x1C G_D Data, guaranteed

0x20-0x5C - Reserved

Guaranteed non-data accesses

0x60-0x64 G_FLAGTS Flag with timestamp, guaranteed

0x68-0x6C G_FLAG Flag, guaranteed

0x70-0x74 G_TRIGTS Trigger with timestamp, guaranteed

0x78-0x7C G_TRIG Trigger, guaranteed

Invariant Timing data accesses

0x80-0x84 I_DMTS Data, marked with timestamp, invariant timing

0x88-0x8C I_DM Data, marked, invariant timing

0x90-0x94 I_DTS Data, with timestamp, invariant timing
3-52 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

3 Extended Stimulus Ports
3.1 About extended stimulus ports
0x98-0x9C I_D Data, invariant timing

0xA0-0xDC - Reserved

Invariant Timing non-data accesses

0xE0-0xE4 I_FLAGTS Flag with timestamp, invariant timing

0xE8-0xEC I_FLAG Flag, invariant timing

0xF0-0xF4 I_TRIGTS Trigger with timestamp, invariant timing

0xF8-0xFC I_TRIG Trigger, invariant timing

Table 3-1 Address map for a single stimulus port (continued)

Address offset Short name Description
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 3-53
ID092613 Non-Confidential

3 Extended Stimulus Ports
3.2 STM transactions
3.2 STM transactions
The STM supports the following transactions:
• Guaranteed transactions.
• Invariant timing transactions.

3.2.1 Guaranteed transactions

Guaranteed transactions are guaranteed to be traced. This might involve stalling the bus or system to ensure the
transaction is accepted by the STM, for example when the STM trace buffer is full.

When a guaranteed transaction is performed, the following aspects of the transaction are guaranteed to be traced if
specified:
• Data.
• Mark.
• Timestamp.
• Flag.
• Trigger.

Note
 Guaranteed transactions are also known as blocking transactions.

3.2.2 Invariant timing transactions

Invariant timing transactions are not guaranteed to be traced. These transactions will take an invariant amount of
time regardless of the state of the STM.

When an invariant timing transaction is traced, the following aspects of the transaction are traced if specified:
• Data.
• Mark.
• Flag.
• Trigger.

If the transaction is dropped because the STM cannot accept it, none of these aspects is traced, except a trigger. For
more information on triggers, see Triggers on page 2-46.

When a write to an invariant timing location in a stimulus port requests a timestamp, this does not guarantee a
timestamp is traced. The STM might choose to omit the timestamp, or assign the timestamp to a later packet if there
is insufficient trace buffering or bandwidth.

Other system behavior might affect the timing of invariant timing transactions. In addition, mixing guaranteed and
invariant timing transactions might cause the invariant timing transactions to take a variable amount of time to
complete, because a guaranteed transaction might change the timing on the system bus which affects a subsequent
invariant timing transaction.

If only invariant timing transactions are used, the STM responds identically to these transactions regardless of its
state.

Note
 Invariant timing transactions are also known as non-blocking transactions.
3-54 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

3 Extended Stimulus Ports
3.3 Address decoding
3.3 Address decoding
The address bits are used to define the type of packet.

Table 3-2 shows the address bit meanings for accesses where address bit[6] == 0b0.

Table 3-3 shows the address bit meanings for accesses where address bits[6:5] == 0b11.

Table 3-2 Address bit meanings for data accesses

Address bit Function if clear Function if set

[7] The transaction is guaranteed The transaction is invariant timing

[4] This packet is marked This packet is not marked

[3] This packet is timestamped This packet is not timestamped

Table 3-3 Address bit meanings for non-data accesses

Address bit Function if clear Function if set

[7] The transaction is guaranteed The transaction is invariant timing

[4] This transaction causes a flag packet to be traced This transaction causes a trigger event

[3] This packet is timestamped This packet is not timestamped
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 3-55
ID092613 Non-Confidential

3 Extended Stimulus Ports
3.4 Grouping stimulus ports
3.4 Grouping stimulus ports
Stimulus ports are grouped, where 16 stimulus ports occupy a 4KB page in memory, as Table 3-4 shows.

An integer number of stimulus ports are supported. Where more than 16 stimulus ports are required, additional 4KB
blocks are required for each additional full or partial group of 16 stimulus ports. These 4KB blocks are contiguous
in the physical address space. The number of stimulus ports supported is IMPLEMENTATION DEFINED, up to 65536
in a memory map requiring 16MB of address space.

Table 3-4 Address map for a group of 16 stimulus ports

Address offset Description

0x000-0x0FF Stimulus port 0

0x100-0x1FF Stimulus port 1

.

.

.

.

.

.

0xE00-0xEFF Stimulus port 14

0xF00-0xFFF Stimulus port 15
3-56 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

3 Extended Stimulus Ports
3.5 More than one master
3.5 More than one master
Where more than 65536 stimulus ports are required, or where multiple independent system masters are required,
the STM architecture supports extending the memory map to up to 65536 groups of stimulus ports, each group
known as a master.

Each master supports the same number of stimulus ports, as defined by the STMDEVID register.

The number of masters is defined in the STMFEAT3R register.

Each master requires up to 16MB of address space. Each of these 16MB blocks are aligned to a 16MB boundary,
even if the number of stimulus ports per master is fewer than 65536.

An implementation might support more than one master, but not all address spaces for every master are necessarily
accessible by all masters in a system. For example, each processor in a system might be assigned a different master
block, but might not be able to access the blocks for any another master.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 3-57
ID092613 Non-Confidential

3 Extended Stimulus Ports
3.6 Data sizes
3.6 Data sizes
An STM implementation supports a maximum fundamental data size, from one of the following:
• 32-bit.
• 64-bit.

Note
 An STM does not generate a packet with a data size greater than its maximum fundamental data size.

Table 3-5 shows how many packets are generated for each transaction size, based on the fundamental data size of
the implementation. The transaction size is dependent on the source of the transaction, for example, a processor, and
the bus infrastructure used to transmit the transaction. For example, if a processor writes a 64-bit value over a 32-bit
bus to an STM with a 32-bit fundamental data size, this might be presented as two STM packets because the bus
might have separated the 64-bit value into two 32-bit transfers.

If compression is enabled, the packet might be smaller than the transaction size. When analyzing the trace protocol
and when compression is used to reduce the size of a trace packet, the trace packet must not be expanded to more
than the maximum fundamental data size.

To ensure that code is portable between processor micro-architectures and system implementations, ARM
recommends that only the native data size of the machine is used, and smaller sizes. For the 32-bit ARMv7
architecture, only 8, 16, and 32-bit transfers are recommended. For an ARMv8 processor that supports the AArch64
Execution state, it is recommended that the fundamental data size of 64-bits is implemented.

Generally, the data width of the interconnect driving the STM is at least as large as the fundamental data size of the
STM. Where this is not the case, the interconnect must be able to indicate multiple parts of a single transaction so
that they can be reconstituted atomically. For example, where the fundamental data size is 64 bits and the
interconnect is 32 bits, the interconnect must be able to indicate that two halves of a 64-bit transaction must be
combined to create a 64-bit transaction, and this must be performed atomically.

Although software stimulus must not perform data accesses where address bits[2:0] != 0b000, an implementation
must support accesses aligned to its fundamental data size. For example, if the implementation has a fundamental
data size of 32 bits, it must accept accesses where address bits[2:0] == 0b100. These accesses might occur in systems
where a 64-bit transaction is downsized by the bus fabric to 2x32-bit transactions, and therefore the second access
is to address 0x004 and the STM must accept this as a write to location 0x000.

Table 3-5 Expected packets based on fundamental data size

Transaction size

Fundamental
data size

32 64

8 1 1

16 1 1

32 1 1

64 2 1
3-58 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

3 Extended Stimulus Ports
3.7 Bus endianness
3.7 Bus endianness
As a memory-mapped implementation, the endianness is determined by the system in which the STM is
implemented. For example, a write of a 32-bit register containing the value 0x11223344 must be presented in the trace
stream with 0x44 in the least significant byte.

If the STM is little-endian but the system is big-endian, hardware byte-swizzling must be implemented to ensure
the value written into the STM has the least-significant byte at the bottom of the access.

For example, for an STM supporting up to 32-bit transactions, a big-endian byte write to 0x00 results in the byte of
data being located in bits[31:24] of the value presented to the STM. A little-endian STM expects the data in
bits[7:0], so the value must be swizzled.

Note
 This refers to bus endianness and not processor endianness, for example, the endianness defined by the CPSR.E bit
in the ARM Architecture.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 3-59
ID092613 Non-Confidential

3 Extended Stimulus Ports
3.8 Implementation options
3.8 Implementation options
Table 3-6 shows the implementation options.

Table 3-6 Implementation options

Feature Options

Data types All implementations which implement STPv2 support the following basic data types:
• D, DTS, DM, DMTS, FLAG, FLAG_TS, TRIG, and TRIG_TS

Fundamental data size It is IMPLEMENTATION DEFINED what data sizes are supported. The fundamental data size is
indicated in the STMFEAT1R.

Invariant timing and
guaranteed transactions

Invariant timing transactions and guaranteed transactions are optional, but at least one of the
transaction types must be supported:
• When not supported, the invariant timing locations in the extended stimulus port memory

map behave as guaranteed transactions
• When not supported, the guaranteed locations in the extended stimulus port memory map

behave as invariant timing transactions.
3-60 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

3 Extended Stimulus Ports
3.9 Reserved locations
3.9 Reserved locations
The STM does not permit transactions to Reserved locations in the stimulus port memory map. The operation of the
STM is UNPREDICTABLE on writes to these locations.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 3-61
ID092613 Non-Confidential

3 Extended Stimulus Ports
3.10 Timestamping
3.10 Timestamping
When a write to an invariant timing location in a stimulus port requests a timestamp, this does not always guarantee
a timestamp is traced. The STM might omit the timestamp or assign the timestamp to a later packet if there is
insufficient trace buffering or bandwidth.

The STM might also choose to timestamp a guaranteed or invariant timing transaction which was not requested to
have a timestamp.

Timestamps are not generated when timestamping is disabled using the STMTCSR.TSEN control.

Timestamps are only guaranteed to be generated for a transaction which is requested to have a timestamp and:
• The transaction is marked as guaranteed.
• The STMTCSR.TSEN field is set.

Software must not rely on timestamps being generated for any messaging protocol.
3-62 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

3 Extended Stimulus Ports
3.11 Mapping onto STPv2
3.11 Mapping onto STPv2
All stimulus ports are mapped onto an STPv2 channel with the same number as the stimulus port. The mapping onto
STPv2 masters is IMPLEMENTATION DEFINED. An example is where all the masters are mapped into contiguous
16MB blocks and the upper address bits are used to define the master number.

If the STM drops a write to a invariant timing stimulus port, an error packet is generated which indicates that trace
has been lost before tracing resumes. The packet might indicate that trace has been lost from a single specific master,
or that the master which lost trace cannot be determined.

Synchronization of the trace stream generates the following packets:
• ASYNC.
• VERSION.
• FREQ, if STMTCSR.TSEN is set.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 3-63
ID092613 Non-Confidential

3 Extended Stimulus Ports
3.11 Mapping onto STPv2
3-64 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Chapter 4
Implementation Defined Controls

This chapter describes the IMPLEMENTATION DEFINED controls and registers. It contains the following sections:
• About implementation defined controls and registers on page 4-66.
• Standard hardware event tracing on page 4-67.
• DMA control on page 4-77.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 4-65
ID092613 Non-Confidential

4 Implementation Defined Controls
4.1 About implementation defined controls and registers
4.1 About implementation defined controls and registers
Two blocks of 64 locations at 0xC00-0xCFC and 0xD00-0xDFC are reserved for IMPLEMENTATION DEFINED controls. This
functionality might include:
• Hardware event tracing.
• DMA communication and configuration.

Each of these two blocks of 64 locations has an identification mechanism to enable identification of common
functionality that might be present in multiple STMs. Location 0xFC in each block identifies any common function.

Figure 4-1 shows the Implementation Defined Controls Identification Register bit assignments.

Figure 4-1 Implementation Defined Controls Identification Register bit assignments

Table 4-1 shows the Implementation Defined Controls Identification Register bit assignments.

You can interpret this register in the following order:
1. The CLASS field identifies the programmer’s model.
2. The CLASSREV field identifies the revision of the programmer’s model.
3. The VENDSPEC field identifies any vendor-specific modifications or mappings.

Reserved

31 12 11 8 7 4 3 0

VENDSPEC CLASSREV CLASS

Table 4-1 Implementation Defined Controls Identification Register bit assignments

Bits Name Description

[31:12] - Reserved, UNK/SBZP.

[11:8] VENDSPEC The contents of this field are IMPLEMENTATION DEFINED.

[7:4] CLASSREV This field depends on the value of the Class field.

[3:0] CLASS The type of controls implemented. This defines the programmer’s model of this block of controls:
0b0000 No controls implemented here. All other fields are UNK/SBZP.
0b0001 Hardware Event Control.
0b0010 DMA control.
0b1111 Unknown controls implemented.
4-66 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

4 Implementation Defined Controls
4.2 Standard hardware event tracing
4.2 Standard hardware event tracing
A value of 0b0001 in the CLASS field of register 0xFC identifies standard hardware event tracing. This functionality
provides a simple mechanism to trace simple signals in a system. Up to 256 signals are supported.

4.2.1 Hardware event control registers

The hardware event control registers operate simultaneously on a bank of 32 hardware events. If more than 32
hardware events are implemented, selection of the currently controlled bank is performed using the Hardware Event
Bank Select Register.

Table 4-2 shows the standard hardware event tracing control registers, in register order. In the table, access type is
described as follows:
RW Read and write.
RO Read only.

STMHEER, Hardware Event Enable Register

The STMHEER characteristics are:

Purpose This register is used to enable hardware events to generate trace.

Usage constraints There are no usage constraints.

Configurations This is a banked register. Bank selection is done using the STMHEBSR.

Attributes See the register summary in Table 4-2.

Figure 4-2 on page 4-68 shows the STMHEER bit assignments.

Table 4-2 Standard hardware event tracing control register summary

Register Name Type Description

0x00 Event Enable RW See STMHEER, Hardware Event Enable Register

0x04-0x1C - - Reserved

0x20 Trigger Enable RW See STMHETER, Hardware Event Trigger Enable Register on page 4-68

0x24-0x5C - - Reserved

0x60 Bank Select RW See STMHEBSR, Hardware Event Bank Select Register on page 4-69

0x64 Main Control RW See STMHEMCR, Hardware Event Main Control Register on page 4-69

0x68 Hardware Event External
Multiplex Control

RW See STMHEEXTMUXR, Hardware Event External Multiplex Control
Register on page 4-71

0x6C-0xF0 - - Reserved

0xF4 Master Number RO or RWa See STMHEMASTR, Hardware Event Master Number Register on page 4-72

0xF8 Features 1 RO See STMHEFEAT1R, Hardware Event Features 1 Register on page 4-72

0xFC ID RO See STMHEIDR, Hardware Event ID Register on page 4-73

a. Read the STMHEFEAT1R to determine if this register is RO or RW.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 4-67
ID092613 Non-Confidential

4 Implementation Defined Controls
4.2 Standard hardware event tracing
Figure 4-2 STMHEER bit assignments

Table 4-3 shows the STMHEER bit assignments.

This register must always be initialized for each bank before enabling event tracing in the STMHEMCR.

STMHETER, Hardware Event Trigger Enable Register

The STMHETER characteristics are:

Purpose Enables trigger generation on hardware events.

Usage constraints There are no usage constraints.

Configurations This is a banked register. Bank selection is done using the STMHEBSR.

Attributes See the register summary in Table 4-2 on page 4-67.

Figure 4-3 shows the STMHETER bit assignments.

Figure 4-3 STMHETER bit assignments

Table 4-4 shows the STMHETER bit assignments.

This register must always be initialized for each bank before enabling event tracing in the STMHEMCR.

HEE

31 0

Table 4-3 STMHEER bit assignments

Bits Name Type Description

[31:0] HEE RW Hardware event enable, with one bit per hardware event:
0b0 Hardware event disabled.
0b1 Hardware event enabled.
Reset value is UNKNOWN.

HETE

31 0

Table 4-4 STMHETER bit assignments

Bits Name Type Description

[31:0] HETE RW Bit mask to enable trigger generation from the hardware events, with
one bit per hardware event:
0b0 Disabled.
0b1 Enabled.
Reset value is UNKNOWN.
4-68 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

4 Implementation Defined Controls
4.2 Standard hardware event tracing
STMHEBSR, Hardware Event Bank Select Register

The STMHEBSR characteristics are:

Purpose Select a bank of 32 hardware events to control. For example:

• When this register is set to 0x0, reads from and writes to the STMHEER and
STMHETER correspond to hardware event 0-31.

• When this register is set to 0x1, reads from and writes to the STMHEER and
STMHETER correspond to hardware event 32-63.

The size of this register is IMPLEMENTATION DEFINED but is based on the number of
implemented hardware events as indicated in the STMHEFEAT1R. If 32 or fewer hardware
events are implemented, this register ignores writes, and reads as zero.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 4-2 on page 4-67.

Figure 4-4 shows the STMHEBSR bit assignments.

Figure 4-4 STMHEBSR bit assignments

Table 4-5 shows the STMHEBSR bit assignments.

STMHEMCR, Hardware Event Main Control Register

The STMHEMCR characteristics are:

Purpose Controls the primary functions of the hardware event tracing.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 4-2 on page 4-67.

Figure 4-5 on page 4-70 shows the STMHEMCR bit assignments.

Reserved

31 n n-1 0

HEBS

Table 4-5 STMHEBSR bit assignments

Bits Name Type Description

[31:n] - - Reserved, UNK/SBZP.

[n-1:0] HEBS RW Selects the bank of 32 hardware events to control.
Reset value of each bit is 0b0.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 4-69
ID092613 Non-Confidential

4 Implementation Defined Controls
4.2 Standard hardware event tracing
Figure 4-5 STMHEMCR bit assignments

Table 4-6 shows the STMHEMCR bit assignments.

Reserved

31 8 7 6 5 4 3 2 1 0

ATBTRIGEN
TRIGCLEAR
TRIGSTATUS

TRIGCTL
Reserved

ERRDETECT
COMPEN

EN

Table 4-6 STMHEMCR bit assignments

Bits Name Type Description

[31:8] - - Reserved, UNK/SBZP.

[7] ATBTRIGEN RW ATB trigger enable on events being monitored using the STMHETER. When set, this bit
enables the STM to use the ATID value of 0x7D. For more information, see Triggers on
page 2-46 and STMHETER, Hardware Event Trigger Enable Register on page 4-68.
Reset value is UNKNOWN.
This bit is implemented only when the STMFEAT1R.TRACEBUS is 0b0001.

[6] TRIGCLEAR WO When TRIGCTL indicates single-shot mode, this bit is used to clear TRIGSTATUS:
0b0 No effect.
0b1 Clears TRIGSTATUS if TRIGSTATUS is 0b1.
Writing a 0b1 to this bit when in multi-shot mode is UNPREDICTABLE.

[5] TRIGSTATUS RO When TRIGCTL indicates single-shot mode, this indicates whether the single trigger has
occurred:
0b0 Trigger has not occurred.
0b1 Trigger has occurred.
In multi-shot mode this bit is always UNKNOWN.

[4] TRIGCTL RW Trigger Control:
0b0 Triggers are multi-shot.
0b1 Triggers are single-shot.
Reset value is UNKNOWN. For more information see Triggers on page 2-46.
This bit is implemented only when the STMHEFEAT1R.TRIGCTL is 0b10.

[3] - - Reserved
4-70 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

4 Implementation Defined Controls
4.2 Standard hardware event tracing
STMHEEXTMUXR, Hardware Event External Multiplex Control Register

The STMHEEXTMUXR characteristics are:

Purpose Control the multiplexing of many hardware events on the available hardware event inputs
to the STM.

Usage constraints There are no usage constraints.

Configurations This register is implemented if STMHEFEAT1R.HEEXTMUXSIZE is not zero.

Attributes See the register summary in Table 4-2 on page 4-67.

Figure 4-6 shows the STMHEEXTMUXR bit assignments.

Figure 4-6 STMHEEXTMUXR bit assignments

Table 4-7 shows the STMHEEXTMUXR bit assignments.

[2] ERRDETECT RW Enable error detection on the hardware event tracing:
0b0 Disabled.
0b1 Enabled.
If an event cannot be traced, this bit enables indication of the lost information.
Reset value is UNKNOWN.

[1] COMPEN RW Enable leading zero suppression of hardware event data values in the trace stream:
0b0 Disabled.
0b1 Enabled.
Reset value is UNKNOWN.

[0] EN RW Enable Hardware Event Tracing:
0b0 Disabled.
0b1 Enabled.
To enable hardware event tracing, the STMTCSR.EN bit must also be 0b1.
Reset value is 0b0.

Table 4-6 STMHEMCR bit assignments (continued)

Bits Name Type Description

Reserved

31 n n-1 0

EXTMUX

Table 4-7 STMHEEXTMUXR bit assignments

Bits Name Type Description

[31:n] - - Reserved.

[n-1:0] EXTMUX RWa Provides a value to optional multiplexing logic, to control which hardware events are
connected to the STM.
The behavior of this multiplexing logic is IMPLEMENTATION DEFINED.
This field is reset to zero.

a. The size of this field is defined by STMHEFEAT1R.HEEXTMUXSIZE.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 4-71
ID092613 Non-Confidential

4 Implementation Defined Controls
4.2 Standard hardware event tracing
STMHEMASTR, Hardware Event Master Number Register

The STMHEMASTR characteristics are:

Purpose Indicate the master number of hardware event trace. This number is the master number
presented in the trace protocol.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 4-2 on page 4-67.

Figure 4-7 shows the STMHEMASTR bit assignments.

Figure 4-7 STMHEMASTR bit assignments

Table 4-8 shows the STMHEMASTR bit assignments.

STMHEFEAT1R, Hardware Event Features 1 Register

The STMHEFEAT1R characteristics are:

Purpose Indicates the hardware event tracing features of the STM.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 4-2 on page 4-67.

Figure 4-8 shows the STMHEFEAT1R bit assignments.

Figure 4-8 STMHEFEAT1R bit assignments

Reserved

31 16 15 0

MASTER

Table 4-8 STMHEMASTR bit assignments

Bits Name Type Description

[31:16] - - Reserved, UNK/SBZP

[15:0] MASTER RO or RWa

a. Read the STMHEFEAT1R to determine if this register is RO or RW.

The master number for hardware event trace.
Reset value is IMPLEMENTATION DEFINED.

Reserved

31 24 23 15 14 6 5 4 3 2 1 0

NUMHE Reserved

HECOMP
HEMASTR
HEERR

Reserved
HETER

30 28 27

HEEXTMUXSIZE
Reserved
4-72 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

4 Implementation Defined Controls
4.2 Standard hardware event tracing
Table 4-9 shows the STMHEFEAT1R bit assignments.

If 32 or fewer hardware events are supported, STMHEBSR is not implemented.

STMHEIDR, Hardware Event ID Register

This register uses the 0b0001 encoding of the CLASS field.

Table 4-9 STMHEFEAT1R bit assignments

Bits Name Description

[31] - Reserved, RAZ.

[30:28] HEEXTMUXSIZE Indicates size of STMHEEXTMUXR:
0b000 STMHEEXTMUXR is not implemented.
0b001 STMHEEXTMUXR is implemented and STMHEEXTMUXR.EXTMUX is 2-bits

wide.
0b010 STMHEEXTMUXR is implemented and STMHEEXTMUXR.EXTMUX is 4-bits

wide.
0b011 STMHEEXTMUXR is implemented and STMHEEXTMUXR.EXTMUX is 8-bits

wide.
0b100 STMHEEXTMUXR is implemented and STMHEEXTMUXR.EXTMUX is 16-bits

wide.
0b101 STMHEEXTMUXR is implemented and STMHEEXTMUXR.EXTMUX is 32-bits

wide.
0b110 Reserved.
0b111 Reserved.
This field is always 0b000 if STMHEIDR.CLASSREV is 0b0000.

[27:24] - Reserved, RAZ.

[23:15] NUMHE Number of hardware events supported. 0 to 256 events are supported.

[14:6] - Reserved, RAZ.

[5:4] HECOMP Data compression on hardware event tracing support:
0b00 Data compression support is not defined here. Use the part number of the device to

determine if data compression is supported.
0b01 No data compression supported.
0b10 Data compression always enabled.
0b11 Data compression support is programmable. STMHEMCR.COMPEN is

implemented.

[3] HEMASTR STMHEMASTR support:
0b0 STMHEMASTR is RO.
0b1 STMHEMASTR is RW.

[2] HEERR Hardware event error detection support:
0b0 Hardware event error detection not implemented.
0b1 Hardware event error detection implemented. STMHEMCR.ERRDETECT is

implemented.

[1] - Reserved, RAZ.

[0] HETER STMHETER support:
0b0 STMHETER is not implemented.
0b1 STMHETER is implemented.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 4-73
ID092613 Non-Confidential

4 Implementation Defined Controls
4.2 Standard hardware event tracing
There are two possible values of the CLASSREV field:
0b0000 Hardware event controls version 1.
0b0001 Hardware event controls version 2.

Version 2 adds the following features:
• STMHEFEAT1R.HEEXTMUXSIZE.
• STMHEEXTMUXR.

For more information about this register, see About implementation defined controls and registers on page 4-66.

4.2.2 Changing the STM programming

Hardware event tracing is only enabled when both the STMTCSR.EN and STMHEMCR.EN bits are both 0b1.

The STM does not have to be disabled to be reprogrammed. The following registers can be modified while the
STMTCSR.EN and STMHEMCR.EN bits are 0b1:
• STMHEER.
• STMHETER.
• STMHEBSR.
• STMHEEXTMUXR.

4.2.3 Tracing hardware events

Data packets are output using channels 0-7 for tracing the hardware events. Events are encoded as a function of the
channel number and the payload of the data packet. STMHEMASTR specifies the master number. The data is output
in two formats:
• DM/DMTS where the payload indicates the number of the event.
• D/DTS where the payload is a bit field with 1 bit per event. A bit is set for each event which occurred.

When a timestamp is included, the events indicated in the data packet occurred at the time indicated. When a
timestamp is not included, the STM was unable to add an accurate timestamp. There will be a subsequent packet
with a timestamp to indicate the approximate time of the events.

Table 4-10 shows hardware event tracing using STPv2.

Table 4-10 Hardware event tracing

Packet Payload Meaning

M8/M16 8-bit/16-bit master identifier The STPv2 master number for hardware event tracing.

C8 8-bit channel identifier Used in combination with data packets to indicate which events have occurred.

DxMTS Up to 8 bits of data,
timestamp

The data payload indicates the event number from 0 to 255:
Event number = (floor(channel / 8) * 256) + payload

The timestamp represents the time the event indicated occurred.

DxM Up to 8 bits of data The data payload indicates the event number from 0 to 255:
Event number = (floor(channel / 8) * 256) + payload

An accurate timestamp was not available for this event.
4-74 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

4 Implementation Defined Controls
4.2 Standard hardware event tracing
If the same event occurs multiple times before a data packet is output indicating the event, an error packet is traced
indicating an event has been lost when STMHEMCR.ERRDETECT is 0b1.

The payload might be leading-zero suppressed. This is enabled using the STMHEMCR.COMPEN field. When
enabled, if the higher-order bits of the data value to be traced are zero, a smaller packet might be output. For
example, if only event 5 is to be traced, a D4MTS packet might be output with a payload of 0x5. Similarly, if events
0 and 3 occurred simultaneously, a D4TS packet might be output with a payload of 0x9.

Hardware event tracing examples

All of these examples assume that STMHEMCR.COMPEN is b1, enabling leading-zero suppression of the payload
values. Also, these examples assume that the current master is the value in STMHEMASTR.MASTER and
therefore do not include the trace required for changing to that master number.

Example 1

Only event 4 is asserted.

• A D4MTS packet is generated with a payload of 0x4, indicating event 4 was asserted. The timestamp value
is the time the event was asserted.

Example 2

Event 4 and event 0 are asserted.

• A D8TS packet is generated with a payload of 0x11, with the bitfield indicating events 0 and 4 were asserted.
The timestamp value is the time the events were asserted.

Example 3

Event 31 is asserted, however the STM cannot output this immediately.

On the next cycle, this can be output.

• A D8M packet is output with a payload of 0x1F, indicating event 31 was asserted. There is no timestamp in
this packet because the packet output was delayed from the time the event occurred.

• Later, a FLAG_TS packet is output with the current timestamp value. This can be used to determine that event
31 was asserted approximately near this timestamp.

DxTS Up to 64 bits of data,
timestamp

The data payload is encoded with 1 bit per hardware event:
Event number = (channel * 32) + bit position

The timestamp represents the time the events indicated occurred. When multiple events
are indicated, they all occurred at the same time.

Dx Up to 64 bits of data The data payload is encoded with 1 bit per hardware event:
Event number = (channel * 32) + bit position

An accurate timestamp was not available for these events. When multiple events are
indicated, they did not necessarily occur at the same time

FLAG_TS Timestamp The timestamp indicates the time the FLAG_TS packet was generated. All events traced
before this packet occurred on or before this timestamp. This is typically output soon
after a D/DM packet to indicate the approximate time of those non-timestamped events.
The channel number is irrelevant for FLAG_TS packets.

Table 4-10 Hardware event tracing (continued)

Packet Payload Meaning
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 4-75
ID092613 Non-Confidential

4 Implementation Defined Controls
4.2 Standard hardware event tracing
Example 4

Event 31 is asserted, however the STM cannot output this immediately.

On the next cycle, event 0 is asserted and a packet can be output.

• A D32 packet is output with a payload of 0x80000001, with the bitfield indicating events 31 and 0 were
asserted. There is no timestamp in this packet because the packet output was delayed from the time that event
31 occurred.

• Later, a FLAG_TS packet is output with the current timestamp value. This can be used to determine that
events 31 and 0 were asserted approximately near this timestamp.

Example 5

Event 17 is asserted, however the STM cannot output this immediately.

On the next cycle, this can be output.

• A D8M packet is output with a payload of 0x11, indicating event 17 was asserted. There is no timestamp in
this packet because the packet output was delayed from the time the event occurred.

On the following cycle, event 5 is asserted, and again the STM cannot output this immediately. On the next cycle
this can be output.

• A D4M packet is output with a payload of 0x5, indicating event 5 was asserted. Again, there is no timestamp
in this packet because the packet output was delayed from the time the event occurred.

• Later, a FLAG_TS packet is output with the current timestamp value. This can be used to determine that
events 17 and 5 were asserted approximately near this timestamp.
4-76 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

4 Implementation Defined Controls
4.3 DMA control
4.3 DMA control
This section describes registers for basic control of Direct Memory Access (DMA) transfers to and from the STM.
These controls are implemented when the CLASS field of the STMDMAIDR is 0b0010.

4.3.1 DMA control registers

Table 4-11 shows the example DMA control registers, in register order. In the table, access type is described as
follows:
RW Read and write.
RO Read only.
WO Write only.

STMDMASTARTR, DMA Transfer Start Register

The STMDMASTARTR characteristics are:

Purpose Starts a DMA transfer:

• A write of 0b1 when the DMA peripheral request interface is idle starts a DMA
transfer.

• A write of 0b0 has no effect.

• A write of 0b1 when the DMA peripheral request interface is active has no effect.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 4-11.

Figure 4-9 shows the STMDMASTARTR bit assignments.

Figure 4-9 STMDMASTARTR bit assignments

Table 4-11 Example DMA control registers

Register Name Type Description

0x00 - - Reserved

0x04 Transfer Start WO See STMDMASTARTR, DMA Transfer Start Register

0x08 Transfer Stop WO See STMDMASTOPR, DMA Transfer Stop Register on page 4-78

0x0C Transfer Status RO See STMDMASTATR, DMA Transfer Status Register on page 4-78

0x10 Control RW See STMDMACTLR, DMA Control Register on page 4-79

0x14-0xF8 - - Reserved

0xFC ID RO See STMDMAIDR, DMA ID Register on page 4-80

Reserved

31 1 0

START
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 4-77
ID092613 Non-Confidential

4 Implementation Defined Controls
4.3 DMA control
Table 4-12 shows the STMDMASTARTR bit assignments.

STMDMASTOPR, DMA Transfer Stop Register

The STMDMASTOPR characteristics are:

Purpose Stops a DMA transfer:
• A write of 0b1 stops an active DMA transfer.
• A write of 0b0 has no effect.
• A write of 0b1 when the DMA peripheral request interface is idle has no effect.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 4-11 on page 4-77.

Figure 4-10 shows the STMDMASTOPR bit assignments.

Figure 4-10 STMDMASTOPR bit assignments

Table 4-13 shows the STMDMASTOPR bit assignments.

STMDMASTATR, DMA Transfer Status Register

The STMDMASTATR characteristics are:

Purpose Indicates whether a DMA transfer is in progress.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 4-11 on page 4-77.

Figure 4-11 on page 4-79 shows the STMDMASTATR bit assignments.

Table 4-12 STMDMASTARTR bit assignments

Bits Name Description

[31:1] - Reserved, UNK/SBZP

[0] START Start a DMA transfer

Reserved

31 1 0

STOP

Table 4-13 STMDMASTOPR bit assignments

Bits Name Description

[31:1] - Reserved, UNK/SBZP.

[0] STOP Stop a DMA transfer
4-78 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

4 Implementation Defined Controls
4.3 DMA control
Figure 4-11 STMDMASTATR bit assignments

Table 4-14 shows the STMDMASTATR bit assignments.

STMDMACTLR, DMA Control Register

The STMDMACTLR characteristics are:

Purpose Controls the DMA transfer request mechanism.

Usage constraints There are no usage constraints.

Configurations This register is available in all implementations.

Attributes See the register summary in Table 4-11 on page 4-77.

Figure 4-12 shows the STMDMACTLR bit assignments.

Figure 4-12 STMDMACTLR bit assignments

Table 4-15 shows the STMDMACTLR bit assignments.

The STMDMACTLR.SENS field is a hint to the hardware and does not necessarily correspond to any specific
buffer levels. This field is intended to be used to balance the usage of the STM to ensure there is sufficient buffer
space and appropriate throughput.

Reserved

31 1 0

STATUS

Table 4-14 STMDMASTATR bit assignments

Bits Name Description

[31:1] - Reserved, UNK/SBZP.

[0] STATUS Status of the DMA peripheral request interface:
0b0 Interface is idle.
0b1 Interface is active.

Reserved

31 4 3 0

SENS

Table 4-15 STMDMACTLR bit assignments

Bits Name Description

[31:4] - Reserved, UNK/SBZP.

[3:0] SENS Determines the sensitivity of the DMA request to the current buffer level in the STM.
A smaller value indicates that the STM waits for a large amount of buffer space to be available before
requesting a DMA transfer.
Not all bits of this field might be implemented. Lower order bits might not be implemented. To detect the
implemented bits, write 0b1111 to this field and read it back. The bits that return 0b1 are implemented. If no
bits are implemented, there is no control over the sensitivity.
Reset value is 0b0000.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. 4-79
ID092613 Non-Confidential

4 Implementation Defined Controls
4.3 DMA control
STMDMAIDR, DMA ID Register

This register uses the 0b0010 encoding of the CLASS field. For more information about this register, see About
implementation defined controls and registers on page 4-66.
4-80 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Appendix A
Recommended Configurations

This appendix describes the recommended configurations for using the STM architecture. It contains the following
section:
• About recommended configurations on page A-82.
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. A-81
ID092613 Non-Confidential

Appendix A Recommended Configurations
A.1 About recommended configurations
A.1 About recommended configurations
The STM architecture has many IMPLEMENTATION DEFINED options. Table A-1 shows the recommended
configurations.

For systems with an ARMv7 processor, ARM recommends configuration 1 or configuration 2.

For systems with an ARMv8-A processor, ARM recommends configuration 2.

Table A-1 Recommended configurations

Feature Recommended configuration 1 Recommended configuration 2

Trace protocol STPv2 STPv2

Timestamping Absolute Absolute

STMTSFREQR Read-write Read-write

STMTSSTIMR Implemented Implemented

STMSYNCR Implemented Implemented

Claim tags 4 4

TRACEID CoreSight ATB plus ATB trigger CoreSight ATB plus ATB trigger

Trigger control Multi-shot and single-shot Multi-shot and single-shot

STMTCSR.TSPRESCALE Not implemented Not implemented

STMTCSR.HWTEN Not implemented Not implemented

STMTCSR.SYNCEN Always reads as 0b1 Always reads as 0b1

STMTCSR.SWOEN Not implemented Not implemented

Number of stimulus ports 65536 65536

Number of masters Minimum of 2 Minimum of 2

Stimulus port types Extended only Extended only

Fundamental data size 32 64

Transaction types Invariant timing and guaranteed Invariant timing and guaranteed

STMSPER Implemented Implemented

STMSPTER Implemented Implemented

STMPRIVMASKR Not implemented Not implemented

STMSPOVERRIDER and
STMSPMOVERRIDER

Implemented Implemented

STMSPSCR and STMSPMSCR Implemented Implemented

Data compression on stimulus ports Programmable Programmable

Hardware event tracing See Table A-2 on page A-83 See Table A-2 on page A-83
A-82 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Appendix A Recommended Configurations
A.1 About recommended configurations
Table A-2 shows the Hardware Event (HE) tracing recommended configuration.

Table A-2 Hardware event tracing recommended configuration

Feature Recommended configuration

Number of HW events 0-256

STMHETER Implemented

HW error detection Implemented

STMHEMASTR Read only

Data compression on HW trace Programmable
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. A-83
ID092613 Non-Confidential

Appendix A Recommended Configurations
A.1 About recommended configurations
A-84 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Appendix B
Revisions

This appendix describes the main technical changes between released issues of this book.

Table B-1 Differences between issue A and issue B

Change Location

Added support for the STMv1.1 architecture:

Added STMDEVARCH register STMDEVARCH, Device Architecture Register on page 2-41

Added support for version 2 of the Standard hardware event tracing
controls:
• Added the STMHEEXTMUXR register.

• Added the STMHEFEAT1R.HEEXTMUXSIZE field.

• Updated the possible values of STMHEIDR.CLASSREV.

STMHEEXTMUXR, Hardware Event External Multiplex
Control Register on page 4-71
STMHEFEAT1R, Hardware Event Features 1 Register on
page 4-72
STMHEIDR, Hardware Event ID Register on page 4-73

Renamed some fields in the CoreSight Management registers to be
consistent with the CoreSight Architecture specification.

Entire document

Corrected the address decoding for Extended Stimulus Ports for
non-data accesses.

Address decoding on page 3-55

Added some examples for hardware event tracing. Tracing hardware events on page 4-74

Added a new recommended configuration for ARMv8-A processors. Table A-1 on page A-82
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. B-85
ID092613 Non-Confidential

Appendix B Revisions

B-86 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

Glossary

This glossary describes some of the terms used in ARM manuals. Where terms can have several meanings, the
meaning presented here is intended.

CoreSight The infrastructure for monitoring, tracing, and debugging a complete system on chip.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, together with
custom hardware that supports software debugging.

An application that monitors and controls the operation of a second application. Usually used to find errors in the
application program flow.

IMPLEMENTATION DEFINED
The behavior is not architecturally defined, but must be defined and documented by individual implementations.

IMPLEMENTATION SPECIFIC
The exact behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option chosen does
not affect software compatibility.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system comprises several macrocells
(such as a processor, an ETM, and a memory block) plus application-specific logic.

RAZ See Read-As-Zero fields.

Read-As-Zero fields (RAZ)
Appear as zero when read.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the implementation, or
produces UNPREDICTABLE results if the contents of the field are not zero. These fields are reserved for use in future
extensions of the architecture or are IMPLEMENTATION SPECIFIC. All reserved bits not used by the implementation
must be written as zero and are Read-As-Zero.

SBZP See Should-Be-Zero-or-Preserved
ARM IHI 0054B Copyright © 2010, 2013 ARM. All rights reserved. Glossary-87
ID092613 Non-Confidential

 Glossary

Should-Be-Zero-or-Preserved (SZBP)
Must be written as 0, or all 0s for a bit field, by software if the value is being written without having been previously
read, or if the register has not been initialized. Where the register was previously read on the same processor, since
the processor was last reset, the value in the field should be preserved by writing the value that was previously read.

Hardware must ignore writes to these fields.

If a value is written to the field that is neither 0 (or all 0s for a bit field), nor a value previously read for the same
field on the same processor, the result is UNPREDICTABLE.

TPA See Trace Port Analyzer.

Trace port A port on a device, such as a processor or ASIC, that is used to output trace information.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This can be a low-cost product designed
specifically for trace acquisition, or a logic analyzer.

UNDEFINED Indicates an instruction that generates an Undefined Instruction exception.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not be a security hole. UNKNOWN values must not
be documented or promoted as having a defined value or effect.

UNPREDICTABLE Means that the behavior of the STM cannot be relied on. Such conditions have not been validated. UNPREDICTABLE
behavior can affect the behavior of the entire system.
Glossary-88 Copyright © 2010, 2013 ARM. All rights reserved. ARM IHI 0054B
Non-Confidential ID092613

	ARM System Trace Macrocell Programmers’ Model Architecture Specification Version 1.1
	Contents
	Preface
	About this book
	Intended audience

	Using this book
	Conventions
	Typographic conventions
	Signals
	Numbers

	Additional reading
	ARM publications
	Other publications

	Feedback
	Feedback on this book

	1: Introduction
	1.1 About the System Trace Macrocell

	2: Configuration Registers Programmers’ Model
	2.1 About the configuration registers programmers’ model
	2.2 Register summary
	2.3 Register descriptions
	2.3.1 STMSTIMR<n>, Basic Stimulus Ports
	2.3.2 STMSPER, Stimulus Port Enable Register
	2.3.3 STMSPTER, Stimulus Port Trigger Enable Register
	2.3.4 STMPRIVMASKR, Trace Privilege Register
	2.3.5 STMSPSCR, Stimulus Port Select Configuration Register
	2.3.6 STMSPMSCR, Stimulus Port Master Select Configuration Register
	2.3.7 STMSPOVERRIDER, Stimulus Port Override Register
	2.3.8 STMSPMOVERRIDER, Stimulus Port Master Override Register
	2.3.9 STMSPTRIGCSR, Stimulus Port Trigger Control and Status Register
	2.3.10 STMTCSR, Trace Control and Status Register
	2.3.11 STMTSSTIMR, Timestamp Stimulus Register
	2.3.12 STMTSFREQR, Timestamp Frequency Register
	2.3.13 STMSYNCR, Synchronization Control Register
	2.3.14 STMAUXCR, Auxiliary Control Register
	2.3.15 STMFEAT1R, Features 1 Register
	2.3.16 STMFEAT2R, Features 2 Register
	2.3.17 STMFEAT3R, Features 3 Register
	2.3.18 STMITCTRL, Integration Mode Control Register
	2.3.19 Claim Tag Registers
	2.3.20 Lock Registers
	2.3.21 STMAUTHSTATUS, Authentication Status Register
	2.3.22 STMDEVARCH, Device Architecture Register
	2.3.23 STMDEVID, Device Configuration Register
	2.3.24 STMDEVTYPE, Device Type Register
	2.3.25 STMPIDR0-7, Peripheral ID Registers
	2.3.26 STMCIDR0-3, Component ID Registers

	2.4 Programming the STM
	2.4.1 Modifying the STMSPSCR and STMSPMSCR
	2.4.2 Modifying the STMSYNCR

	2.5 Triggers
	2.5.1 Triggers caused by matches using the STMSPTER
	2.5.2 Triggers caused by matches using the STMHETER
	2.5.3 Triggers caused by writes to TRIG locations in the extended stimulus port

	2.6 Authentication control

	3: Extended Stimulus Ports
	3.1 About extended stimulus ports
	3.2 STM transactions
	3.2.1 Guaranteed transactions
	3.2.2 Invariant timing transactions

	3.3 Address decoding
	3.4 Grouping stimulus ports
	3.5 More than one master
	3.6 Data sizes
	3.7 Bus endianness
	3.8 Implementation options
	3.9 Reserved locations
	3.10 Timestamping
	3.11 Mapping onto STPv2

	4: Implementation Defined Controls
	4.1 About implementation defined controls and registers
	4.2 Standard hardware event tracing
	4.2.1 Hardware event control registers
	4.2.2 Changing the STM programming
	4.2.3 Tracing hardware events

	4.3 DMA control
	4.3.1 DMA control registers

	A: Recommended Configurations
	A.1 About recommended configurations

	B: Revisions
	Glossary

