
Advanced Communications Channel
Architecture Specification
Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
IHI 0076A (ID041218)



  
 

Advanced Communications Channel

Architecture Specification

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained 
in this document may be protected by one or more patents or pending patent applications. No part of this document may be 
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by 
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use 
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, 
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR 
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, 
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, 
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR 
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING 
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure 
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof 
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers 
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document 
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written 
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the 
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that 
if there is any conflict between the English version of this document and any translation, the terms of the English version of the 
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its 
subsidiaries) in the US and/or elsewhere. All rights reserved.  Other brands and names mentioned in this document may be the 
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at  
http://www.arm.com/company/policies/trademarks.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in 
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Change history

Date Issue Confidentiality Change

02 May 2018 A Non-Confidential First release. 
ii Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
Non-Confidential ID041218



  
 

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
IHI 0076A Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. iii
ID041218 Non-Confidential



  
 

iv Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
Non-Confidential ID041218



Contents
Advanced Communications Channel Architecture 
Specification

Preface
About this book .........................................................................................................  viii
Using this book ...........................................................................................................  ix
Conventions ................................................................................................................  x
Additional reading ...................................................................................................... xii
Feedback ..................................................................................................................  xiii

Chapter 1 Introduction
1.1 About the Advanced Communications Channel .....................................................  1-16

Chapter 2 COM Encapsulation Protocol
2.1 About the COM Encapsulation Protocol  ................................................................  2-20
2.2 Specification  ..........................................................................................................  2-23

Chapter 3 COM Port programmers’ model
3.1 About the COM Port programmers’ model .............................................................  3-26
3.2 COM Port register index .........................................................................................  3-27
3.3 COM Port register resets .......................................................................................  3-28
3.4 COM Port register descriptions ..............................................................................  3-29

Chapter 4 COM Port Peripheral programmers’ model
4.1 About the COM Port Peripheral .............................................................................  4-42
4.2 Com Port Peripheral register map ..........................................................................  4-43
4.3 CoreSight Management register index ...................................................................  4-44
4.4 CoreSight Management register descriptions ........................................................  4-45
IHI 0076A Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. v
ID041218 Non-Confidential



  
Appendix A Example Messages
A.1 Examples ..............................................................................................................  A-58

Appendix B Pseudocode Definition
B.1 About Arm pseudocode .........................................................................................  B-62
B.2 Data types .............................................................................................................  B-63
B.3 Expressions ...........................................................................................................  B-67
B.4 Operators and built-in functions ............................................................................  B-69
B.5 Statements and program structure ........................................................................  B-74

Glossary
vi Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
Non-Confidential ID041218



Preface

This preface introduces the Advanced Communications Channel Architecture Specification. It contains the 
following sections:
• About this book on page viii.
• Using this book on page ix.
• Conventions on page x.
• Additional reading on page xii.
• Feedback on page xiii.
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 Preface 
 About this book
About this book
This book is the Architecture Specification for the Advanced Communications Channel.

Intended audience

This specification is written for:

• System designers who require a communications channel for communication between an external debugger 
and a hardware or software agent on a target system.

• System designers who require communications functionality for simple on-chip communication.
viii Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
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 Preface 
 Using this book
Using this book
This book is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an introduction to the Advanced Communications Channel.

Chapter 2 COM Encapsulation Protocol 

Read this chapter for a description of the COM Encapsulation Protocol, Flag bytes, and Session 
management.

Chapter 3 COM Port programmers’ model 

Read this chapter for a description of the programmers’ model for the COM Port.

Chapter 4 COM Port Peripheral programmers’ model 

Read this chapter for a description of the programmers’ model for the COM Port Peripheral.

Appendix A Example Messages 

Read this appendix for a description of example Messages.

Appendix B Pseudocode Definition 

Read this appendix for a description of the pseudocode that is used in this document.

 Glossary 

Read this glossary for definitions of some of the terms that are used in this manual. The Arm 
Glossary does not contain terms that are industry standard unless the Arm meaning differs from the 
generally accepted meaning.

Note
 Arm publishes a single glossary that relates to most Arm products, see the Arm Glossary 

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html. A definition in the 
glossary in this book might be more detailed than the corresponding definition in the Arm Glossary.
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 Preface 
 Conventions
Conventions
The following sections describe conventions that this book can use:
• Typographic conventions.
• Signals.
• Timing diagrams.
• Numbers on page xi.
• Pseudocode descriptions on page xi.

Typographic conventions

The following table describes the typographical conventions:

Signals

In general this specification does not define processor signals, but it does include some signal examples and 
recommendations. 

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or 
active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Timing diagrams

The figure Key to timing diagram conventions on page xi explains the components used in timing diagrams. 
Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in 
the diagrams.

Shaded bus and signal areas are UNDEFINED, so the bus or signal can assume any value within the shaded area at 
that time. The actual level is unimportant and does not affect normal operation.

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items 
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings, and are included in the Glossary 
on page Glossary-81.

Colored text Indicates a link. This can be:
• A URL, for example http://infocenter.arm.com.
• A cross-reference, that includes the page number of the referenced information if it is 

not on the current page, for example, Pseudocode descriptions on page xi.
• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document 

that defines the colored term, for example AMBA on page Glossary-81.
x Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
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 Preface 
 Conventions
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to 
the bus change shown in Key to timing diagram conventions. If a timing diagram shows a single-bit signal in this 
way then its value does not affect the accompanying description.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In 
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode 
is written in a monospace font, and is described in Appendix B Pseudocode Definition.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
IHI 0076A Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. xi
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 Additional reading
Additional reading
This section lists relevant publications from Arm and third parties.

See the Infocenter http://infocenter.arm.com, for access to Arm documentation.

Arm publications

This book contains information that is specific to this product. See the following documents for other relevant 
information:
• ADIv5 Architecture Specification (ARM IHI 0031).
• ADIv6 Architecture Specification (ARM IHI 0074).
• Arm® CoreSight™ Architecture Specification (ARM IHI 0029).

Other publications

This section lists relevant documents published by third parties:

• JEDEC, Standard Manufacturers Identification Code, JEP106 hhtp://www.jedec.org.
xii Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
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 Preface 
 Feedback
Feedback
Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
• The title.
• The number, IHI 0076A.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note
 Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of 
any document when viewed with any other PDF reader.
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Chapter 1 
Introduction

This chapter introduces the Advanced Communications Channel. It contains the following section:

• About the Advanced Communications Channel on page 1-16.
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1 Introduction 
1.1 About the Advanced Communications Channel
1.1 About the Advanced Communications Channel

This section introduces and describes the components that make up the Advanced Communications Channel 
architecture. It contains the following subsections:

• Advanced Communications Channel functionality.

• Duplex and Simplex communication.

1.1.1 Advanced Communications Channel functionality 

The Advanced Communications Channel is a communications channel that provides low-cost transport of 
byte-based protocols in a point-to-point system. 

The primary objective of the Communications Channel is to enable communication from an external debugger to a 
hardware or software agent on a target system. The architecture in this specification also applies to simple on-chip 
communication. 

The Advanced Communications Channel functionality can be divided into two parts:

The COM Encapsulation Protocol 

The COM Encapsulation Protocol encapsulates individual arbitrary byte-based messages using byte 
stuffing. Extra commands are provided for session management. For more information, see 
Chapter 2 COM Encapsulation Protocol.

The COM Port 

The COM Port provides a memory-mapped programmers’ model for sending and receiving an 
arbitrary byte stream. This byte stream is encapsulated using the COM Encapsulation Protocol. For 
more information, see Chapter 3 COM Port programmers’ model.

1.1.2 Duplex and Simplex communication

A system incorporating the Advanced Communications Channel can be one of two types:

Duplex 

For bidirectional communication.

Simplex 

For unidirectional communication.

Figure 1-1 shows a conceptual diagram of Duplex communication where typically, a Master Agent initiates 
communication.

Figure 1-1 Block diagram of a typical Duplex communication

Master
Agent

TxEngine

RxEngine TxEngine

RxEngine

COM
Encapsulation

Wire 
Protocol(s)

COM
Encapsulation

Wire 
Protocol(s)

Slave
Agent

COM Port COM Port

COM
Encapsulation

COM
Encapsulation
1-16 Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
Non-Confidential ID041218



1 Introduction 
1.1 About the Advanced Communications Channel
Figure 1-2 shows a conceptual diagram of Simplex communication.

Figure 1-2  Block diagram of a typical Simplex communication

Note
 For each TxEngine, there is a corresponding remote RxEngine. This is situated in the destination COM Port where 
the COM Encapsulation bytes are sent. In a Duplex system, each TxEngine also has a local RxEngine in the same 
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Chapter 2 
COM Encapsulation Protocol

This chapter describes the COM Encapsulation Protocol. It contains the following sections:

• About the COM Encapsulation Protocol on page 2-20.

• Specification on page 2-23.
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2 COM Encapsulation Protocol 
2.1 About the COM Encapsulation Protocol
2.1 About the COM Encapsulation Protocol 

This section introduces the COM Encapsulation Protocol. It contains the following subsections:

• Byte stuffing.

• Flag bytes.

• Duplex session management.

2.1.1 Byte stuffing

The COM Encapsulation Protocol uses byte stuffing to encapsulate an individual byte-based message of arbitrary 
length. 

2.1.2 Flag bytes

Special Flag bytes exist for control and encapsulation purposes. These are:

• Start and End Flag bytes, for framing.

• An Escape Flag byte, for distinguishing message bytes from Flag bytes.

• A Null Flag byte, for padding at any time.

• Session management Flag bytes. 

• Link persistency Flag bytes.

• ID request and ID response Flag bytes, to inform agents of the messaging protocols used.

Flag bytes are always detectable in the byte stream by analyzing any individual byte, and do not occur anywhere 
else.

2.1.3 Duplex session management 

The COM Encapsulation Protocol provides mechanisms to manage a communication session between two agents. 

In a Duplex system, the Master Agent establishes a session with the Slave Agent, before sending any normal 
messages. The process to establish a session consists of the following phases:

• Phase 1: Ensuring the remote RxEngine and TxEngine are both connected and active.

• Phase 2: Ensuring the Slave Agent is active, and ready to communicate. 

• Phase 3: Determining the identification of the Slave Agent to ensure that the correct messaging protocol is 
used. 

The following pseudocode demonstrates a possible Duplex session approach:

SessionEstablish()
  bool poll_complete = false;
  
  // Assert nSRST if needed
  if (RemoteRebootRequired && nsrstRequired()) then 
    nSRST = LOW;

  // Power up
  if (RemotePowerRequired()) then
    // Release the link first, to get the link into a known state.
    SendTxEngine(LPH1RL);
    poll_complete = false;
    repeat
      if TimeoutReached() then
        Error();
      case ReadRxEngine() of
        when LPH1RL
2-20 Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
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          poll_complete = true;
        when NULL
          // do nothing
        otherwise
          Error();
    until poll_complete;

    // Send a new link power up request
    SendTxEngine(LPH1RA);
    poll_complete = false;
    repeat
      if TimeoutReached() then
        Error();
      case ReadRxEngine() of
        when LPH1RA
          poll_complete = true;
        when NULL
          // do nothing
        otherwise
          Error();
    until poll_complete;

  // Link Establish
  SendTxEngine(LPH2RA);
  if (RemoteRebootRequired()) then
    if (nsrstRequired()) then 
      nSRST = 1;
    else 
      SendTxEngine(LPH2RR); 
  poll_complete = false;
  repeat
    if TimeoutReached() then
      Error();
    case ReadRxEngine() of
      when LPH2RA
        poll_complete = true;
      when NULL
        // do nothing
      otherwise
        Error();
  until poll_complete;

  // ID Request
  SendTxEngine(IDR);
  poll_complete = false;
  repeat
    case ReadRxEngine() of
      when IDA
        poll_complete = true;
      when NULL
        // do nothing
      otherwise
        Error();
  until poll_complete;

  next_is_non_flag = false;
  poll_complete = false;
  repeat
    rdbyte = ReadRxEngine();
    if ((rdbyte & 0xE0) != 0xA0) then
      if next_is_non_flag then
        rdbyte = rdbyte ^ 0x80;
        next_is_non_flag = false;
      AddByteToID(rdbyte);
    else
      case rdbyte of
        when NULL
          // do nothing
IHI 0076A Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. 2-21
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        when ESC
          next_is_non_flag = true;
        when END
          poll_complete = true;
        otherwise
          Error();
  until poll_complete;

When the session is established, the Master Agent sends and receives messages according to the messaging protocol 
used by the Master and Slave Agents. The Master Agent must terminate the session when the session is complete.

The following pseudocode demonstrates a possible approach to terminating the session:

SessionTerminate()
  bool poll_complete = false;

  // Link Terminate
  SendTxEngine(LPH2RL);
  poll_complete = false;
  repeat
    if TimeoutReached() then
      Error();
    case ReadRxEngine() of
      when LPH2RL
        poll_complete = true;
      when NULL
        // do nothing
      otherwise
        Error();
  until poll_complete;

  // Power release
  if (RemotePowerRequired()) then
    SendTxEngine(LPH1RL);
    poll_complete = false;
    repeat
      if TimeoutReached() then
        Error();
      case ReadRxEngine() of
        when LPH1RL
          poll_complete = true;
        when NULL
          // do nothing
        otherwise
          Error();
    until poll_complete;
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2.2 Specification
2.2 Specification 

This section outlines the specification for the COM Encapsulation Protocol. It contains the following section:

• Rules.

2.2.1 Rules

The following rules apply when implementing the Advanced Communication Channel Architecture Specification:

RTYNM A message consists of one or more Message bytes.

RPLZQ All bytes with bits [7:5] that take the value b101 are classified as Flag bytes.

RMMQW Every byte transmitted is either a Message byte or a Flag byte.

RGHLK The Flag byte values that are shown in Table 2-1 have defined meanings.

RHKML Each Message byte that matches one of the Flag bytes is immediately preceded by the ESC Flag byte, and bit [7] of 
the Message byte is inverted. 

RTZVZ Any Flag byte that immediately follows an ESC Flag byte is treated as if the ESC byte does not apply. The effect of 
the ESC Flag byte is delayed until the following byte. This delay continues until one of the following occurs: 

• A Message byte, which has bit [7] inverted.

• A START Flag byte, which is unmodified.

• An IDR Flag byte, which is unmodified.

RBMNP A Message Protocol Data Unit (Message PDU) consists of the following, in sequential order:

• A START Flag byte.

• Zero or more Message bytes, including any required ESC Flag bytes.

• An END Flag byte.

Table 2-1 Flag bytes

Value Name (S)implex / (D)uplex Meaning

0xA0 IDR D Identification Request.

0xA1 IDA D Identification Acknowledge and start of ID PDU.

0xA2 - 0xA5 - - Reserved.

0xA6 LPH1RA S, D Link Phase 1 Request/Acknowledge.

0xA7 LPH1RL S, D Link Phase 1 Release/Acknowledge.

0xA8 LPH2RA D Link Phase 2 Request/Acknowledge.

0xA9 LPH2RL D Link Phase 2 Release/Acknowledge.

0xAA LPH2RR S, D Link Phase 2 Reboot Request.

0xAB LERR S, D Link Error.

0xAC START S, D Start of PDU.

0xAD END S, D End of PDU.

0xAE ESC S, D Escape.

0xAF NULL S, D Null.

0xB0 - 0xBF - - Reserved.
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ID041218 Non-Confidential



2 COM Encapsulation Protocol 
2.2 Specification
RPZGZ A NULL Flag byte can occur at any time and the receiver discards it.

RTXOX A LPH1RA Flag byte is a request for the link to the receiver to be enabled.

RTLPP In a Duplex system, an LPH1RA Flag byte is sent back to the transmitter when an LPH1RA Flag byte is received 
and a link between the transmitter and receiver is enabled. 

IXDDS A LPH1RL Flag byte is an indication that the link to the receiver can be disabled. 

RYYZS In a Duplex system, when an LPH1RL Flag byte is received, an LPH1RL Flag byte is sent back to the transmitter 
as an acknowledgement that the first LPH1RL Flag byte has been received and processed.

RJBNS A LPH2RA Flag byte is a request for the receiver to proceed to a state where the receiver can process any future 
bytes.

RSVJJ In a Duplex system, when the RxEngine receives a LPH2RA Flag byte, the Slave Agent sends a LPH2RA Flag byte 
back to the transmitter when the Slave Agent is ready to receive more bytes in addition to the LPH2RA Flag byte.

RYPLJ An ID Protocol Data Unit (ID PDU) consists of the following, in sequential order:

• An IDA Flag byte.

• One or more Message bytes which indicate the protocol that is used by Message PDUs. This portion might 
include any required ESC Flag bytes.

• An END Flag byte.

RYZMX An ID PDU is not interleaved with a Message PDU.

RJBBC In a Duplex system, an LERR Flag byte is queued up in the transmitter’s RxEngine if the link between transmitter 
and receiver is disabled or terminated, and the system can detect that one or more bytes in transit have been lost.

IKKLD Owing to the handshake nature of establishing a link between a Master Agent and Slave Agent, only one of the 
link-establishing Flag bytes is in-flight at any one time. If more than one of the following Flag bytes is queued up 
in an RxEngine, two or more are permitted to be replaced by a single LERR Flag byte:

• LPH1RA.

• LPH1RL.

• LPH2RA.

• LPH2RL.

• LERR.
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Chapter 3 
COM Port programmers’ model

This chapter describes the COM Port programmers’ model. It contains the following sections:

• About the COM Port programmers’ model on page 3-26.

• COM Port register index on page 3-27.

• COM Port register resets on page 3-28.

• COM Port register descriptions on page 3-29.
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3.1 About the COM Port programmers’ model

The COM Port provides a memory-mapped programmers’ model to send and receive messages using the COM 
Encapsulation Protocol. 

An optional TxEngine is provided to send one or more bytes.

An optional RxEngine is provided to receive one or more bytes.

Optional interrupt controls are provided to indicate when the RxEngine or TxEngine requires attention. 

3.1.1 Interrupts

The TxEngine and RxEngine provide optional interrupt outputs to indicate to an agent that the COM Port needs 
attention. The TxEngine interrupt is used to instruct the agent that the TxEngine might be able to accept more bytes 
for transmission. The RxEngine interrupt is used to instruct the agent that there is data ready for processing.

When enabled, an TxEngine interrupt is generated when the following is true:

• A TxEngine FIFO has less than a programmed number of bytes remaining to transmit.

When enabled, an RxEngine interrupt is generated when any of the following are true:

• The RxEngine FIFO has at least a programmed number of bytes are ready to be read.

• A Flag byte is received that is not one of the following:

— ESC.

— NULL.

— START.

• The RxEngine FIFO is full.
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3.2 COM Port register index

Table 3-1 shows the register index for the COM Port programmers’ model.

Table 3-1 Memory-mapped register map

Offset Access Size Register Description

0x00 RO 32 VIDR Version ID Register.

0x08 RO 32 FIDTXR Feature ID TxEngine Register.

0x0C RO 32 FIDRXR Feature ID RxEngine Register.

0x10 R/W 32 ICSR Interrupt Control/Status Register.

0x20 R/W 32 DR Data Register.

0x2C R/W 32 SR Status Register.

0x30 R/W 32 DBR Data Blocking Register.

0x3C R/W 32 SR Status Register.
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3.3 COM Port register resets

Table 3-2 shows the register reset values for the COM Port programmers’ model.

All other resettable registers and fields are reset to an IMPLEMENTATION DEFINED value, which can be UNKNOWN.

Table 3-2 Register resets

Register Field Reset value

ICSR RXFIS 0

RXFIL 0x1

TXFIS 0

TXFIL 0x0

SR RXLE 0

RXF 0

TXLE 0

TXOE 0
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3.4 COM Port register descriptions

This section contains register descriptions for the COM Port programmers’ model. It contains the following 
subsections:

• DBR, Data Blocking Register.

• DR, Data Register on page 3-30.

• FIDRXR, Feature ID RxEngine Register on page 3-31.

• FIDTXR, Feature ID TxEngine Register on page 3-33.

• ICSR, Interrupt Control/Status Register on page 3-34.

• SR, Status Register on page 3-36.

• VIDR, Version ID Register on page 3-38.

3.4.1 DBR, Data Blocking Register

The DBR characteristics are:

Purpose The DBR is used to send data via the TxEngine and receive data from the RxEngine.

The DR and DBR operate identically, except on writes where more data is written to the 
TxEngine than the COM port can accept, demonstrated as follows:

• When writing to the DR, the write access completes and an overflow error is logged 
in SR.TXOE.

• When writing to the DBR, the write access stalls until there is sufficient space.

Usage constraints  The DBR accesses are as follows:
• RW when both the TxEngine and RxEngine are implemented.
• RO when only the RxEngine is implemented.
• WO when only the TxEngine is implemented. 

Configurations Always implemented.

Attributes 32-bit read/write memory-mapped register at offset 0x30.

Field descriptions

The DBR bit assignments are:

DATA, bits[31:0] This field is used for data transfer.

The FIDTXR and FIDRXR indicate the supported access sizes to the DBR.

On writes:

• Transfers bytes into the TxEngine FIFO for transmission.

• Bytes are transmitted from the least significant byte first.

• If FIDTXR.TXW indicates that the TxEngine width is less than the number of bytes 
written, the TxEngine ignores the upper unimplemented bytes. The upper 
unimplemented bytes must be written with the NULL Flag byte value.

• The TxEngine ignores any bytes which contain the NULL Flag byte value.

31 0

DATA
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• If there is insufficient space in the TxEngine FIFO for all the bytes which are not 
NULL Flag bytes, the write to the DBR stalls until there is sufficient space. These 
writes do not complete immediately. 

• If SR.TXOE is 1, writes are ignored.

• If SR.TXLE is 1, writes are ignored.

On reads:

• Returns bytes from the RxEngine FIFO.

• The oldest received byte is returned in the least significant byte.

• If there are fewer bytes in the RxEngine FIFO than requested by the access, the upper 
bytes are padded by the RxEngine with the NULL Flag byte.

• Read accesses complete immediately.

Accessing DBR

DBR can be accessed at the following address:

3.4.2 DR, Data Register

The DR characteristics are:

Purpose The Data Register is used to send data via the TxEngine and receive data from the 
RxEngine.

The DR and DBR operate identically except on writes where more data is written to the 
TxEngine than the COM port can accept, demonstrated as follows:

• When writing to the DR, the write access completes and an overflow error is logged 
in the SR.TXOE.

• When writing to the DBR, the write access stalls until there is sufficient space.

Usage constraints The DR accesses are as follows:

• RW when both the TxEngine and RxEngine are implemented.

• RO when only the RxEngine is implemented.

• WO when only the TxEngine is implemented.

Configurations Always implemented.

Attributes 32-bit read/write memory-mapped register at offset 0x20.

The DR bit assignments are:

DATA, bits[31:0] This field is used for data transfer.

The FIDTXR and FIDRXR indicate the supported access sizes to DBR.

On writes:

• Transfers bytes into the TxEngine FIFO for transmission.

Offset

0x30

31 0

DATA
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• Bytes are transmitted from the least significant byte first.

• If FIDTXR.TXW indicates that the TxEngine width is less than the number of bytes 
written, the TxEngine ignores the upper unimplemented bytes. The upper 
unimplemented bytes must be written with the NULL Flag byte value.

• The TxEngine ignores any bytes which contain the NULL Flag byte value.

• If there is insufficient space in the TxEngine FIFO for all the bytes which are not 
NULL Flag bytes, a TxEngine Overflow error occurs and SR.TXOE is set to 1. The 
TxEngine discards excess bytes.

• If SR.TXOE is 1, writes are ignored.

• If SR.TXLE is 1, writes are ignored.

• Write accesses complete immediately.

On reads: 

• Returns bytes from the RxEngine FIFO.

• The oldest received byte is returned in the least significant byte.

• If there are fewer bytes in the RxEngine FIFO than requested by the access, the upper 
bytes are padded by the RxEngine with the NULL Flag byte.

• Read accesses complete immediately. 

Accessing DR

DR can be accessed at the following address:

3.4.3 FIDRXR, Feature ID RxEngine Register

The FIDRXR characteristics are:

Purpose The FIDRXR provides information about the features that are implemented in the COM 
Port RxEngine.

Usage constraints  None.

Configurations  Always implemented.

Attributes  32-bit read-only memory-mapped register at offset 0x0C.

Field descriptions

The FIDRXR bit assignments are:

Bits[31:20, 15:11, 7:2] RES0.

RXFD, bits[19:16] RxEngine FIFO depth. 

Offset

0x20

31 0127891011

RES0 RES0

RXSZ32 RXSZ8

RXSZ16

RXINT RXI

RXFD RES0

15161920
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The defined values of this field are:

0x0 - 0xF RxEngine FIFO has a capacity of at least 2N bytes, where N is the value of this 
field.

This field is RES0 if the RxEngine is not implemented.

RXSZ32, bit[10] This field is for RxEngine 32-bit read support. 

The defined values of this bit are:

0b0 RxEngine does not support 32-bit wide reads.

0b1 RxEngine supports 32-bit wide reads.

This field is RES0 if the RxEngine is not implemented. 

RXSZ16, bit[9] This field is for RxEngine 16-bit read support. 

The defined values of this bit are:

0b0 RxEngine does not support 16-bit wide reads.

0b1 RxEngine supports 16-bit wide reads.

This field is RES0 if the RxEngine is not implemented.

RXSZ8, bit[8] This field is for RxEngine 8-bit read support. 

The defined values of this bit are:

0b0 RxEngine does not support 8-bit wide reads.

0b1 RxEngine supports 8-bit wide reads.

This field is RES0 if the RxEngine is not implemented.

RXINT, bit[1] This field indicates whether the RxEngine generates interrupts. 

The defined values of this bit are:

0b0 RxEngine interrupts not implemented.

0b1 RxEngine interrupts are implemented.

This field is RES0 if the RxEngine is not implemented. 

If the RxEngine interrupts are implemented, the following are implemented:

• ICSR.RXFIL.

• ICSR.RXFIS.

RXI, bit[0] This field indicates whether the RxEngine is implemented. 

The defined values of this bit are:

0b0 RxEngine not implemented.

0b1 RxEngine implemented.

If the RxEngine is implemented, the following are implemented:

• SR.RXF.

• SR.RXLE.

• Reads of DR and DBR.

Accessing FIDRXR

FIDRXR can be accessed at the following address:

Offset

0x0C
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3.4.4 FIDTXR, Feature ID TxEngine Register

The FIDTXR characteristics are:

Purpose The FIDTXR provides information about the features that are implemented in the COM Port 
TxEngine.

Usage constraints None.

Configurations  Always implemented.

Attributes  32-bit read-only memory-mapped register at offset 0x08.

Field descriptions

The FIDTXR bit assignments are:

Bits[31:20, 15:11, 3:2] RES0.

TXFD, bits[19:16] TxEngine FIFO depth. 

The defined values of this field are:

0x0 - 0xF TxEngine FIFO has a capacity of at least 2N bytes, where N is the value of this 
field.

This field is RES0 if the TxEngine is not implemented.

TXSZ32, bit[10] This field is for TxEngine 32-bit write support. 

The defined values of this bit are:

0b0 TxEngine does not support 32-bit wide writes.

0b1 TxEngine supports 32-bit wide writes.

This field is RES0 if the TxEngine is not implemented.

TXSZ16, bit[9] This field is for TxEngine 16-bit write support. 

The defined values of this bit are:

0b0 TxEngine does not support 16-bit wide writes.

0b1 TxEngine supports 16-bit wide writes.

This field is RES0 if the TxEngine is not implemented.

TXSZ8, bit[8] This field is for TxEngine 8-bit write support. 

The defined values of this bit are:

0b0 TxEngine does not support 8-bit wide writes.

0b1 TxEngine supports 8-bit wide writes. 

This field is RES0 if the TxEngine is not implemented.

TXW, bits[7:4] This field indicates the implemented width of the TxEngine. 

The defined values of this field are:

0x1 1-byte wide TxEngine. Writes to DR or DBR must either be 1-byte wide or must 
have all bytes other than bits [7:0] set to the NULL Flag byte value.

31 0127891011

RES0 RES0

TXSZ32 TXSZ8

TXSZ16

TXINT TXI

34

TXWTXFD RES0

15161920
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0x2 2-byte wide TxEngine. Writes to DR or DBR must either be 1-byte or 2-bytes 
wide or must have all bytes other than bits [15:0] set to the NULL Flag byte 
value.

0x4 4-byte wide TxEngine.

All other values are reserved. Reserved values might be defined in a future version of the 
architecture. 

This field is RES0 if the TxEngine is not implemented. 

TXINT, bit[1] This field indicates whether or not the TxEngine generates interrupts. 

The defined values of this bit are:

0b0 TxEngine interrupts not implemented.

0b1 TxEngine interrupts implemented. 

This field is RES0 if the TxEngine is not implemented.

If the TxEngine interrupts are implemented, the following are implemented:

• ICSR.TXFIL.

• ICSR.TXFIS.

TXI, bit[0] This field indicates whether the TxEngine is implemented. 

The defined values of this bit are:

0b0 TxEngine not implemented.

0b1 TxEngine implemented.

If the TxEngine is implemented, the following are implemented:

• SR.TXS.

• SR.TXOE.

• SR.TXLE.

• Writes to DR and DBR.

Accessing FIDTXR

FIDTXR can be accessed at the following address:

3.4.5 ICSR, Interrupt Control/Status Register

The ICSR characteristics are:

Purpose The Interrupt Control/Status register controls the interrupts that the COM Port generates.

Usage constraints None.

Configurations  Present only if FIDR.TXINT is 1 or FIDR.RXINT is 1. 
RES0 otherwise.

Attributes 32-bit read/write memory-mapped register at offset 0x10.

Field descriptions

The ICSR bit assignments are:

Offset

0x08
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RXFIS, bit[31] This field indicates the RxEngine FIFO interrupt status. 

The possible values of this bit are:

0b0 RxEngine FIFO interrupt has not occurred.

0b1 RxEngine FIFO interrupt has occurred.

This field is RES0 if FIDRXR.RXINT is 0.

This bit is read/write-one-to-clear.

This bit resets to zero.

Bits[30:20, 14:4] RES0.

RXFIL, bits[19:16] This field indicates the RxEngine FIFO interrupt level select. 

The possible values of this field are:

0x0  RxEngine FIFO interrupts disabled.

0x1-0xF Generate RxEngine FIFO interrupt when any of the following occur:

• RxEngine FIFO has at least the specified number of bytes ready.

• RxEngine FIFO is full.

• RxEngine FIFO detects a Flag byte other than one of the following:

— ESC.

— NULL.

— START.

This field is RW.

This field is RES0 if FIDRXR.RXINT is 0.

This field resets to 0x1.

TXFIS, bit[15] This field indicates the TxEngine FIFO interrupt status. 

The possible values of this bit are:

0b0 TxEngine FIFO interrupt has not occurred.

0b1 TxEngine FIFO interrupt has occurred.

This field is RES0 if FIDTXR.TXINT is 0.

This bit is read/write-one-to-clear.

This bit resets to zero.

TXFIL, bits[3:0] This field indicates the TxEngine FIFO interrupt level select. 

The possible values of this field are:

0x0 TxEngine FIFO interrupts disabled.

0x1-0xF Generate TxEngine FIFO interrupt when the TxEngine FIFO has less than the 
specified number of bytes remaining to process. 

This field is RW.

This field is RES0 if FIDTXR.TXINT is 0.

This field resets to 0x0.

31 014

RES0 TXFIL

34

RES0

30 1520 19 16

RXFIS TXFIS

RXFIL
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Accessing ICSR

ICSR can be accessed at the following address:

3.4.6 SR, Status Register

The SR characteristics are:

Purpose The Status Register indicates the status of the COM Port.

Usage constraints None.

Configurations Always implemented.

Attributes 32-bit read/write memory-mapped register located at both:

• Offset 0x2C.

• Offset 0x3C.

SR is aliased in more than one location. Accesses to any SR location access a single physical 
SR.

Field descriptions

The SR bit assignments are:

PEN, bit[31] This field indicates the COM Port enabled status. 

The defined values of this bit are:

0b0 COM Port is disabled.

• Writes to DR and DBR are ignored.

• Reads of DR and DBR behave as if the RxEngine FIFO is empty.

• Interrupt outputs are disabled.

0b1 COM Port is enabled.

This bit is read-only.

RXLE, bit[30] This field indicates whether an RxEngine link error has been detected. 

The possible values of this bit:

0b0 No link error detected.

0b1 A link error has been detected in the RxEngine.

This field is RES0 if FIDRXR.RXI is 0.

This bit is read/write-one-to-clear.

This bit resets to zero.

Bits[29:24, 11:8] RES0.

Offset

0x10

31 012

RES0 RES0

30 1415

PEN
TXLE

7

TXS

81316

RXF

29 24 23

RXLE TXOETRINPROG
RRDIS

11
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RXF, bits[23:16] This field indicates the RxEngine FIFO full level. 

The possible values of this field are:

0x00 RxEngine has no data.

0x01-0xFF RxEngine has at least the specified number of bytes available to read.

This field is RO.

This field is RES0 if FIDRXR.RXI is 0.

This field resets to zero.

TRINPROG, bit[15] Transaction in progress. The possible values of this bit are:

0b0 No transaction in progress.

0b1 An input transaction has been aborted but the internal operation of that 
transaction, or a previous transaction is still in progress.

This field is RES0 if the DP abort functionality is not implemented.

TXLE, bit[14] This field indicates whether a TxEngine link error has been detected. 

The possible values of this bit are:

0b0 No link error detected.

0b1 A link error has been detected in the TxEngine.

This field is RES0 if FIDTXR.TXI is 0.

Set to 1 on any of the following:

• One or more bytes written to the TxEngine are discarded because the link to the 
remote RxEngine is not operating.

• A LERR Flag byte is inserted into the local RxEngine due to the link to the remote 
RxEngine not operating. 

This bit is read/write-one-to-clear.

This bit resets to zero.

TXOE, bit[13] This field indicates the TxEngine FIFO overflow. 

The possible values of this bit are:

0b0 No overflow logged.

0b1 At least 1 byte written to the TxEngine has not been accepted and has been lost.

This field is RES0 if FIDTXR.TXI is 0.

This bit is read/write-one-to-clear.

This bit resets to zero.

RRDIS, bits[12] This field indicates whether Remote Reboot requests are disabled. The defined values of 
this bit are:

0b0 Remote Reboot requests enabled.

0b1 Remote Reboot requests disabled.

When this field is 1, the TxEngine discards any LPH2RR Flag bytes written to the 
TxEngine.

This field is RES0 if FIDTXR.TXI is 0.

This bit is read-only.

TXS, bits[7:0] This field indicates the TxEngine FIFO space. 

The defined values for this field are:

0x00 TxEngine has no space for new data.

0x01-0xFF TxEngine has at least the specified number of bytes available.

This field resets to an IMPLEMENTATION DEFINED value.
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This field is RES0 if FIDTXR.TXI is 0.

This field is read-only.

Accessing SR

SR can be accessed at the following addresses:

3.4.7 VIDR, Version ID Register

The VIDR characteristics are:

Purpose  The Version ID Register provides information about the architecture version of the COM 
Port. 

Usage constraints None.

Configurations Always implemented.

Attributes 32-bit read-only memory-mapped register at offset 0x00.

Field descriptions

The VIDR bit assignments are:

Bits[31:8] RES0.

PROTVERSION, bits[7:4] 

This field indicates the COM Port Protocol version. 

The defined values of this field are:

0x0 COM Port Protocol version 0 implemented.

All other values are reserved. Reserved values might be defined in a future version of the 
architecture.

PMVERSION, bits[3:0] 

This field indicates the COM Port programmers’ model version. 

The defined values of this field are:

0x0 COM Port programmers’ model version 0 implemented.

All other values are reserved. Reserved values might be defined in a future version of the 
architecture.

Offset

0x2C

0x3C

31 078

RES0

4 3

PROTVERSION PMVERSION
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Accessing VIDR

VIDR can be accessed at the following address:

Offset

0x00
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Chapter 4 
COM Port Peripheral programmers’ model

This chapter describes the COM Port Peripheral programmers’ model. It contains the following sections:

• About the COM Port Peripheral on page 4-42.
• Com Port Peripheral register map on page 4-43.
• CoreSight Management register descriptions on page 4-45.
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4.1 About the COM Port Peripheral

IFSZV The COM Port functionality can be provided in a peripheral, which can be accessed by:

• On-chip software.

• An external debugger, via an interface that is Arm Debug Interface v6 compliant, see ADIv6 Architecture 
Specification for more information.

IHZLK For usage models where an external debugger uses the COM Port to gain access to a system and communicate with 
on-chip software, typically two instances of the COM Port will exist. One for the external debugger to use and one 
for the on-chip software.
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4.2 Com Port Peripheral register map

RASJF A COM Port Peripheral implements the register map that is shown in Table 4-1.

4.2.1 DP abort

The DP abort behavior is described as follows:

ROKLP The COM Port Peripheral optionally implements the ADI DP abort mechanism.

RZIJF If there is no ongoing input transaction to the COM Port Peripheral when an abort request occurs, then the abort is 
ignored.

RTYZO If there is an ongoing input transaction to the COM Port Peripheral when an abort request occurs:

• The input transaction must complete in finite time.

• If the input transaction did not complete normally, SR.TRINPROG is set to 0b1 until the input transaction 
would have completed normally.

IZPLF If the input transaction did not complete normally, Arm recommends that the COM Port Peripheral returns an error 
to the requestor of the input transaction.

IVZPF After an abort request, the COM Port Peripheral is in an UNKNOWN state and it is IMPLEMENTATION DEFINED which 
COM Port Peripheral registers are accessible. Arm recommends that:

• Reads of all registers operate as normal.

• Writes to DR and DBR while SR.TRINPROG is 0b1 return an error, otherwise writes operate as normal. 

ILKMS Typically, only writes to the DBR have the possibility of stalling input transactions for a variable amount of time 
until there is space in the TxEngine FIFO. This means that DP aborts normally only affect DBR writes. 

Table 4-1 COM Port Peripheral register map

Offset Description

0x000-0xCFC Reserved, RES0.

0xD00-0xD7C COM Port programmers’ model. See About the COM Port programmers’ model on 
page 3-26.

0xD80-0xE7C Reserved, RES0.

0xE80-0xEFC IMPLEMENTATION DEFINED.

0xF00-0xFFC CoreSight Management registers. See CoreSight Management register descriptions on 
page 4-45.
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4.3 CoreSight Management register index
Table 4-2 shows the register index for the CoreSight Management registers.

Table 4-2 CoreSight component register address offsets

Offset Type Name Description

0xF00 RW ITCTRL Integration Mode Control Register See the Arm® 
CoreSight™  
Architecture 
Specification for full 
implementation details.

0xF04-0xF9C RES0 - Reserved

0xFA0 RW CLAIMSET Claim Tag Set Register Claim Tag Registers.

0xFA4 RW CLAIMCLR Claim Tag Clear Register

0xFA8 RO DEVAFF0 Device Affinity Registers See the Arm® 
CoreSight™  
Architecture 
Specification for full 
implementation details.

0xFAC RO DEVAFF1 Device Affinity Registers

0xFB4 RO LSR Software Lock Status Register Software Lock Register.

0xFB8 RO AUTHSTATUS Authentication Status Register

0xFBC RO DEVARCH Device Architecture Register

0xFC0 RO DEVID2 Device Configuration Register 2

0xFC4 RO DEVID1 Device Configuration Register 1

0xFC8 RO DEVID Device Configuration Register

0xFCC RO DEVTYPE Device Type Identifier Register

0xFD0 RO PIDR4 Component size (deprecated) and 
JEP106 identification

Peripheral Identification 
Registers. See the Arm® 
CoreSight™  
Architecture 
Specification for full 
implementation details.

0xFD4 RO PIDR5

0xFD8 RO PIDR6

0xFDC RO PIDR7

0xFE0 RO PIDR0 Part number

0xFE4 RO PIDR1 JEP106 identification and Part number

0xFE8 RO PIDR2 Revision and JEP106 identification

0xFEC RO PIDR3 RevAnd and Customer modified

0xFF0 RO CIDR0 Preamble Component 
Identification Registers.

0xFF4 RO CIDR1 Component class and Preamble

0xFF8 RO CIDR2 Preamble

0xFFC RO CIDR3 Preamble
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4.4 CoreSight Management register descriptions
This section contains descriptions for the CoreSight Management registers. It contains the following subsections:

• CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register.

• LSR, Software Lock Status Register on page 4-49.

• AUTHSTATUS, Authentication Status Register on page 4-47.

• DEVARCH, Device Architecture Register on page 4-51.

• DEVID, Device Configuration Register on page 4-52.

• DEVID1, Device Configuration Register 1 on page 4-53.

• DEVID2, Device Configuration Register 2 on page 4-54.

• DEVTYPE, Device Type Identifier Register on page 4-52.

• CIDR0-CIDR3, Component Identification Registers on page 4-55.

Note
 Full details on CoreSight Management can be found in the Arm® CoreSight™  Architecture Specification.

4.4.1 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register

The characteristics of CLAIMSET and CLAIMCLR are:

Purpose Often there are several debug agents that must cooperate to control the resources that the 
CoreSight components make available. For example, an external debugger and a debug 
monitor running on the target might both require control of the breakpoint resources of a PE. 
It is important that a debug agent does not reprogram debug resources that another debug 
agent is using.

The Claim tag registers provide various bits that can be separately set and cleared to indicate 
whether functionality is in use by a debug agent. All debug agents must implement a 
common protocol to use these bits. 

The COM Port Peripheral programmers’ model specifies that at least two claim tag bits 
must be implemented. 

This specification does not define the claim tag protocol, but consider the following 
examples that illustrate how these bits can be used:

Protocol 1: Set common bit to claim 
In this scenario, debug functionality is only claimed on a few rare, well-defined 
points, for example when the target is powered up or when a debugger is 
connected.
Each bit in the claim tag corresponds to an area of debug functionality, which is 
shared between all debug agents. For example, four bits can control four areas 
of functionality. The following shows a pseudocode implementation of this 
protocol:

read claim tag bit
if (bit is set)

functionality is not available
else

set bit
use functionality
IHI 0076A Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. 4-45
ID041218 Non-Confidential



4 COM Port Peripheral programmers’ model 
4.4 CoreSight Management register descriptions
Protocol 2: Set private bit to claim 
In this scenario, debug functionality is also only claimed on a few rare, 
well-defined points, but it is necessary to be able to determine which other agent 
has claimed functionality.
Each bit in the claim tag corresponds to an area of debug functionality for a 
debug agent. For example, four bits can control two areas of functionality each 
for two debug agents. The following shows a pseudocode implementation of 
this protocol:

read all claim tag bits for this functionality
if (any bits are set)

functionality is not available
else

set bit for this agent
use functionality

Protocol 3: Set private bit and check for race 
In this scenario, debug functionality is claimed regularly and it is possible for 
two debug agents to attempt to claim it simultaneously. In common with 
protocol 2, each bit in the claim tag corresponds to an area of debug 
functionality for a debug agent. The following shows a pseudocode 
implementation of this protocol:

read all claim tag bits for this functionality
if (any bits are set)

functionality is not available
else

set bit for this agent
read all claim tag bits for this functionality
if (any bits are set by other agents)

clear bit for this agent
wait a random amount of time
go back to start

else
use functionality

Usage constraints The value of CLAIMCLR must be zero at reset.

CLAIMSET and CLAIMCLR are accessible as follows:

Configurations Included in all implementations. At least two claim tag bits are implemented.

Attributes CLAIMSET and CLAIMCLR are 32-bit registers.

Field Descriptions

The CLAIMSET and CLAIMCLR bit assignments are:

Default

RW

31 0

CLRRAZ/WI

nTags-1nTags

CLAIMCLR 0xFA4
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CLAIMCLR bits[31:nTags] 

RAZ/WI

CLR, CLAIMCLR bits[nTags-1:0] 

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of bits 
set in CLAIMSET.

Permitted values of CLR[n] are:

Write 0 No effect.

Write 1 Clear the claim tag for bit[n].

Read 0 The claim tag bit is not set.

Read 1 The claim tag bit is set.

CLAIMSET bits[31:nTags] 

RAZ/WI

SET, CLAIMSET bits[nTags-1:0] 

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of claim 
bits that are implemented.

Permitted values of SET[n] are:

Write 0 No effect.

Write 1 Set the claim tag for bit[n].

Read 0 The claim tag that is represented by bit[n] is not implemented.

Read 1 The claim tag that is represented by bit[n] is implemented.

Accessing CLAIMCLR and CLAIMSET

CLAIMCLR and CLAIMSET can be accessed at the following address:

4.4.2 AUTHSTATUS, Authentication Status Register

The AUTHSTATUS characteristics are:

Purpose Reports the required security level and status of the authentication interface. Where 
functionality changes on a given security level, the change in status must be reported in this 
register. For details about the authentication interface, see the Arm® CoreSight™  
Architecture Specification.

Offset

CLAIMCLR CLAIMSET

0xFA4 0xFA0

31 0

SETRAZ/WI

nTags-1nTags

CLAIMSET 0xFA0
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Usage constraints Some components might not distinguish between Secure and Non-secure debug. For 
example, a trace component for a simple bus might connect to a Secure or a Non-secure bus, 
while its enable signals connect differently depending on which bus the component 
connects to. A failure to distinguish between Secure and Non-secure debug can result in:

• A component that indicates only Non-secure debug capabilities while performing 
only Secure debug functions.

• A component that indicates only Secure debug capabilities while performing only 
Non-secure debug functions.

Debuggers must be able to accommodate this possibility.

AUTHSTATUS is accessible as follows:

Configurations Included in all implementations.

Attributes AUTHSTATUS is a 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:12] res0.

HNID, bits[11:10] Hypervisor non-invasive debug. 

This field can have one of the following values:

0b00 Separate controls for hypervisor non-invasive debug are not implemented, or no 
hypervisor is implemented.

All other values are reserved.

HID, bits[9:8] Hypervisor invasive debug. 

This field can have one of the following values:

0b00 Separate controls for hypervisor invasive debug are not implemented, or no 
hypervisor is implemented. 

All other values are reserved.

SNID, bits[7:6] Secure noninvasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

All other values are reserved.

SID, bits[5:4] Secure invasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

Default

RO

01

NSID

2345

SID

67

SNID

31

RES0

NSNID

89

HID

1011

HNID

12
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All other values are reserved.

NSNID, bits[3:2] Non-secure noninvasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

All other values are reserved.

NSID, bits[1:0] Non-secure invasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

All other values are reserved.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

4.4.3 LSR, Software Lock Status Register

The characteristics of the Software lock registers are:

Purpose The Software lock mechanism prevents accidental access to the registers of CoreSight 
components. Software that is being debugged might accidentally write to memory used by 
CoreSight components. Accidental accesses might disable those components, rendering the 
software impossible to debug. The CoreSight programmers’ model includes a Lock Status 
Register, LSR, and a Lock Access Register, LAR. These registers control software access 
to CoreSight components to minimize the likelihood of accidental access to CoreSight 
components.

Note
 From CoreSight version 3.0 onwards, implementation of the Software lock mechanism that 

is controlled by LAR and LSR is deprecated.

To ensure that the software being debugged can never access an unlocked CoreSight 
component, a software monitor that accesses debug registers must unlock the component 
before accessing any registers, and lock the component again before exiting the monitor.

Arm recommends that external accesses from a debugger are not subject to the Software 
lock, and that external reads of the LSR return zero. For information on how CoreSight 
components can distinguish between external and internal accesses, see the Arm® 
CoreSight™  Architecture Specification.

A system can include several bus masters capable of accessing the same CoreSight 
component, for example in systems that include several PE’s. In this case, it is possible for 
software running on one PE, PE A, to accidentally access the component while it is being 
programmed by a debug monitor running on another PE, PE B. Because the component that 
is being accessed cannot distinguish between the two PE’s, PE A might disable the 
component and cause problems for PE B. The probability of this occurring is low, but must 
be considered if there are special circumstances that make this scenario more likely.

Note
 The claim tag cannot be used to manage accesses to the Software lock registers, because 

access to the claim tag is subject to the Software lock mechanism.

Offset

0xFB8
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Usage constraints LSR is accessible as follows:

Configurations LSR is included in all implementations, and LSR.SLI indicates whether LAR is 
implemented. 

LAR is not implemented in a COM Port Peripheral.

Attributes The Software lock registers are 32-bit registers.

Field Descriptions

The bit assignments of the Software lock registers are:

LSR, bits[31:3] RES0.

nTT, LSR bits[2] This bit is always zero, which indicates that the component implements a 32-bit LAR.

SLK, LSR bits[1] This field is used to return the current software lock status.

Permitted values of SLK are:

0 Writing to the other registers in the component is permitted.

SLI, LSR bits[0] This field indicates whether a Software lock mechanism is implemented.

Permitted values of SLI are:

0 Software lock mechanism is not implemented.

Accessing LSR 

LSR can be accessed at the following address:

Default

LSR

RO

Offset

LSR

0xFB4

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4(0) (0) (0)
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4.4.4 DEVARCH, Device Architecture Register

The DEVARCH characteristics are:

Purpose Identifies the architect and architecture of a CoreSight component. The architect might 
differ from the designer of a component, for example when Arm defines the architecture but 
another company designs and implements the component.

Usage constraints DEVARCH is accessible as follows:

Configurations Included in all implementations.

Attributes DEVARCH is a 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21] 

Defines the architect of the component:

Bits[31:28] Indicates the JEP106 continuation code.

Bits[27:21] Indicates the JEP106 identification code.

See the Standard Manufacturers Identification Code for information about JEP106. 

This field returns 0x23B indicating Arm Ltd.

PRESENT, bit[20] Indicates the presence of this register:

1 = DEVARCH is present.

REVISION, bits[19:16] 

Architecture revision. 

This field returns 0x0.

ARCHID, bits[15:0] Architecture ID. 

This field returns 0x0A57.

Accessing DEVARCH

DEVARCH can be accessed at the following address:

Default

RO

Offset

0xFBC

ARCHITECT

31 21 20 19 16 15 0

ARCHIDREVISION

PRESENT
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4.4.5 DEVTYPE, Device Type Identifier Register

The DEVTYPE characteristics are:

Purpose If the part number field is not recognized, a debugger reports the information that is 
provided by DEVTYPE about the component instead.

Usage constraints DEVTYPE is accessible as follows:

Configurations Included in all implementations.

Attributes DEVTYPE is a 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8] RES0.

SUB, bits[7:4] Sub type for the component device type, as described in Table 4-3.

MAJOR, bits[3:0] Major type for the component device type, as described in Table 4-3.

Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

4.4.6 DEVID, Device Configuration Register

The DEVID characteristics are:

Purpose Indicates the capabilities of the component.

Usage constraints This register is IMPLEMENTATION DEFINED for each part number and designer. 

Default

RO

Table 4-3 Device type encoding

MAJOR type [3:0] SUB type [7:4]

Value Description Value Description

0x0 Miscellaneous. 0x0 Other, undefined.

Offset

0xFCC

31 7 4 3 0

RES0 SUB MAJOR

8
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The entire 32-bit field can be used because the data width is determined by the component 
itself. 

Unused bits must be RES0. 

If the component is configurable, Arm recommends that this register reflects any changes 
to a standard configuration.

DEVID is accessible as follows:

Configurations Included in all implementations.

Attributes DEVID is a 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID bit assignments are:

Bits[31:0] RES0.

Accessing DEVID

DEVID can be accessed at the following address:

4.4.7 DEVID1, Device Configuration Register 1

The DEVID1 characteristics are:

Purpose Indicates the capabilities of the component.

Usage constraints This register is IMPLEMENTATION DEFINED for each part number and designer. 

The entire 32-bit field can be used because the data width is determined by the component 
itself. 

Unused bits must be res0.

If the component is configurable, Arm recommends that this register reflects any changes 
to a standard configuration.

DEVID1 is accessible as follows:

Configurations Included in all implementations.

Default

RO

Offset

0xFC8

31 0

RES0

Default

RO
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Attributes DEVID1 is a 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID1 bit assignments are:

Bits[31:0] RES0.

Accessing DEVID1

DEVID1 can be accessed at the following address:

4.4.8 DEVID2, Device Configuration Register 2

The DEVID2 characteristics are:

Purpose Indicates the capabilities of the component.

Usage constraints This register is IMPLEMENTATION DEFINED for each part number and designer. 

The entire 32-bit field can be used because the data width is determined by the component 
itself. 

Unused bits must be RES0. 

If the component is configurable, Arm recommends that this register reflects any changes 
to a standard configuration.

DEVID2 is accessible as follows:

Configurations Included in all implementations.

Attributes DEVID2 is a 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID2 bit assignments are:

Offset

0xFC4

31 0

RES0

Default

RO

31 0

RES0
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Bits[31:0]  RES0.

Accessing DEVID2

DEVID2 can be accessed at the following address:

4.4.9 CIDR0-CIDR3, Component Identification Registers
The CIDR characteristics are:CIDR1CIDR2

Purpose Provide information that can be used to identify a CoreSight component. 

Usage constraints CIDR0-CIDR3 are accessible as follows:

Configurations Included in all implementations.

Attributes CIDR0-CIDR3 are four 32-bit management registers.

Field Descriptions

The CIDR bit assignments are:

Offset

0xFC0

Default

RO

31 0

RES0 PRMBL_3

8 7

CIDR3 0xFFC

31 0

RES0 PRMBL_2

8 7

CIDR2 0xFF8

31 0

RES0 PRMBL_1

8 7

CLASS

4 3

CIDR1 0xFF4

31 0

RES0 PRMBL_0

8 7

CIDR0 0xFF0
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Bits[31:8] of CIDR3 RES0.

PRMBL_3, CIDR3 bits[7:0] 

Preamble, segment 3. Must be 0xB1.

Bits[31:8] of CIDR2 RES0.

PRMBL_2, CIDR2 bits[7:0] 

Preamble, segment 2. Must be 0x05.

Bits[31:8] of CIDR1 RES0.

CLASS, CIDR1 bits[7:4] 

The component class, which can be one of the values that are listed in Table 4-4.

PRMBL_1, CIDR1 bits[3:0] 

Preamble, segment 1. Must be 0x0.

Bits[31:8] of CIDR0 RES0.

PRMBL_0, CIDR0 bits[7:0] 

Preamble, segment 0. Must be 0x0D.

Accessing CIDR

CIDR0-CIDR3 can be accessed at the following addresses:

Table 4-4 CLASS field encodings

Value Description

0x9 CoreSight component. See the Arm® CoreSight™  Architecture 
Specification.

Offset

CIDR0 CIDR1 CIDR2 CIDR3

0xFF0 0xFF4 0xFF8 0xFFC
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This appendix lists some example messages. It contains the following section:

• Examples on page A-58.
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A.1 Examples

This section contains example messages in the following subsections:

• Simple Message.

• Simple Message with escaped byte 1.

• Simple Message with escaped byte 2.

• ID request on page A-59.

A.1.1 Simple Message

A message consisting of the bytes 0x15, 0xED is transmitted as the sequence shown in Table A-1.

A.1.2 Simple Message with escaped byte 1

A message consisting of the bytes 0x15, 0xAD is transmitted in the sequence as shown in Table A-2.

A.1.3 Simple Message with escaped byte 2

A message consisting of the bytes 0x15, 0xAE is transmitted in the sequence as shown in Table A-3.

Table A-1 Simple Message

Byte Notes

0xAC START.

0x15 Message byte.

0xED Message byte.

0xAD END.

Table A-2 Simple Message with escaped byte 1

Byte Notes

0xAC START.

0x15 Message byte.

0xAE ESC.

0x2D Message byte 0xAD with MSB inverted.

0xAD END.

Table A-3 Simple Message with escaped byte 2

Byte Notes

0xAC START.

0x15 Message byte.

0xAE ESC.

0x2E Message byte 0xAE with MSB inverted.

0xAD END.
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A.1.4 ID request 

The Master Agent sends a single IDR byte.

The Slave Agent responds with an IDA byte plus six Message bytes 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, then an END 
byte as shown in Table A-4.

If a Message byte matches a Flag value, an ESC Flag byte is sent and then the Message byte with the MSB inverted. 
For example, for a Message byte sequence of 0x01, 0xA1, 0x03, 0xAE, 0x05, 0x06 as shown in Table A-5.

Table A-4 ID request

Byte Notes

0xA1 IDA.

0x01 Message byte.

0x02 Message byte.

0x03 Message byte.

0x04 Message byte.

0x05 Message byte.

0x06 Message byte.

0xAD END.

Table A-5 ID request 2

Byte Notes

0xA1 IDA.

0x01 Message byte.

0xAE ESC.

0x21 Message byte 0xA1 with MSB inverted.

0x03 Message byte.

0xAE ESC.

0x2E Message byte 0xAE with MSB inverted.

0x05 Message byte.

0x06 Message byte.

0xAD END.
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Pseudocode Definition

This appendix provides a definition of the pseudocode used in this document, and lists the helper procedures and 
functions used by pseudocode to perform useful architecture-specific jobs. It contains the following sections:
• About Arm pseudocode on page B-62.
• Data types on page B-63.
• Expressions on page B-67.
• Operators and built-in functions on page B-69.
• Statements and program structure on page B-74.
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B.1 About Arm pseudocode

Arm pseudocode provides precise descriptions of some areas of the architecture. The following sections describe 
the Armv7 pseudocode in detail:
• Data types on page B-63.
• Expressions on page B-67.
• Operators and built-in functions on page B-69.
• Statements and program structure on page B-74.

B.1.1 General limitations of Arm pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, SUBARCHITECTURE_DEFINED, UNDEFINED, and UNPREDICTABLE 
indicate behavior that differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to 
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs. This means that these statements terminate 
pseudocode execution.

For more information, see Simple statements on page B-74.
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B.2 Data types

This section describes:
• General data type rules.
• Bitstrings.
• Integers on page B-64.
• Reals on page B-64.
• Booleans on page B-64.
• Enumerations on page B-64.
• Lists on page B-65.
• Arrays on page B-66.

B.2.1 General data type rules

Arm architecture pseudocode is a strongly-typed language. Every constant and variable is of one of the following 
types:
• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• List.
• Array.

The type of a constant is determined by its syntax. The type of a variable is normally determined by assignment to 
the variable, with the variable being implicitly declared to be of the same type as whatever is assigned to it. For 
example, the assignments x = 1, y = '1', and z = TRUE implicitly declare the variables x, y, and z to have types 
integer, bitstring of length 1, and Boolean, respectively.

Variables can also have their types declared explicitly by preceding the variable name with the name of the type. 
This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

B.2.2 Bitstrings

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted 
length of a bitstring is 1.

The type name for bitstrings of length N is bits(N). A synonym of bits(1) is bit.

Bitstring constants are written as a single quotation mark, followed by the string of 0s and 1s, followed by another 
single quotation mark. For example, the two constants of type bit are '0' and '1'. Spaces can be included in 
bitstrings for clarity.

A special form of bitstring constant with 'x' bits is permitted in bitstring comparisons, see Equality and 
non-equality testing on page B-69.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is, 
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the 
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and 
bitstrings derived from encoding diagrams, this order matches the way they are printed.

Bitstrings are the only concrete data type in pseudocode, in the sense that they correspond directly to the contents 
of, for example, registers, memory locations, and instructions. All of the remaining data types are abstract.
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B.2.3 Integers

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical 
integers rather than what computer languages and architectures commonly call integers. Computer integers are 
represented in pseudocode as bitstrings of the appropriate length, associated with suitable functions to interpret 
those bitstrings as integers.

The type name for integers is integer.

Integer constants are normally written in decimal, such as 0, 15, –1234. They can also be written in C-style 
hexadecimal, such as 0x55 or 0x80000000. Hexadecimal integer constants are treated as positive unless they have a 
preceding minus sign. For example, 0x80000000 is the integer +231. If –231 must be written in hexadecimal, it must be 
written as –0x80000000.

B.2.4 Reals

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer 
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the 
appropriate length, associated with suitable functions to interpret those bitstrings as reals.

The type name for reals is real.

Real constants are written in decimal with a decimal point. This means 0 is an integer constant but 0.0 is a real 
constant.

B.2.5 Booleans

A Boolean is a logical true or false value.

The type name for Booleans is boolean. This is not the same type as bit, which is a length–1 bitstring. Boolean 
constants are TRUE and FALSE.

B.2.6 Enumerations

An enumeration is a defined set of symbolic constants, such as:

enumeration InstrSet {InstrSet_A32, InstrSet_T32, InstrSet_A64};

An enumeration always contains at least one symbolic constant, and a symbolic constant must not be shared 
between enumerations.

Enumerations must be declared explicitly, although a variable of an enumeration type can be declared implicitly by 
assigning one of the symbolic constants to it. By convention, each of the symbolic constants starts with the name of 
the enumeration followed by an underscore. The name of the enumeration is its type name, or type, and the symbolic 
constants are its possible constants.

Note
 A Boolean is a pre-declared enumeration that does not follow the normal naming convention and it has a special 
role in some pseudocode constructs, such as if statements, for example:

enumeration boolean {FALSE, TRUE};
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B.2.7 Lists

A list is an ordered set of other data items, separated by commas and enclosed in parentheses, for example:

(bits(32) shifter_result, bit shifter_carry_out)

A list always contains at least one data item.

Lists are often used as the return type for a function that returns multiple results. For example, this list at the start 
of this section is the return type of the function Shift_C() that performs a standard Arm shift or rotation, when its 
first operand is of type bits(32).

Some specific pseudocode operators use lists surrounded by other forms of bracketing than the (…) parentheses. 
These are:

• Bitstring extraction operators, that use lists of bit numbers or ranges of bit numbers surrounded by angle 
brackets <…>.

• Array indexing, that uses lists of array indexes surrounded by square brackets […].

• Array-like function argument passing, that uses lists of function arguments surrounded by square brackets 
[…].

Each combination of data types in a list is a separate type, with type name given by listing the data types. This means 
that the example list at the start of this section is of type (bits(32), bit). The general principle that types can be 
declared by assignment extends to the types of the individual list items in a list. For example:

(shift_t, shift_n) = ('00', 0);

implicitly declares shift_t, shift_n, and (shift_t, shift_n) to be of types bits(2), integer, and (bits(2), 
integer), respectively.

A list type can also be explicitly named, with explicitly named elements in the list. For example:

type ShiftSpec is (bits(2) shift, integer amount);

After this definition and the declaration:

ShiftSpec abc;

the elements of the resulting list can then be referred to as abc.shift, and abc.amount. This qualified naming of list 
elements is only permitted for variables that have been explicitly declared, not for those that have been declared by 
assignment only.

Explicitly naming a type does not alter what type it is. For example, after the definition of ShiftSpec, ShiftSpec, and 
(bits(2), integer) are two different names for the same type, not the names of two different types. To avoid 
ambiguity in references to list elements, it is an error to declare a list variable multiple times using different names 
of its type or to qualify it with list element names not associated with the name by which it was declared.

An item in a list that is being assigned to can be written as "-" to indicate that the corresponding item of the assigned 
list value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

List constants are written as a list of constants of the appropriate types, for example the ('00', 0) in the earlier 
example.
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B.2.8 Arrays

Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the 
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

// The names of the Banked core registers.

enumeration RName {RName_0usr, RName_1usr, RName_2usr, RName_3usr, RName_4usr, RName_5usr,
                   RName_6usr, RName_7usr, RName_8usr, RName_8fiq, RName_9usr, RName_9fiq,
                   RName_10usr, RName_10fiq, RName_11usr, RName_11fiq, RName_12usr, RName_12fiq,
                   RName_SPusr, RName_SPfiq, RName_SPirq, RName_SPsvc,
                   RName_SPabt, RName_SPund, RName_SPmon, RName_SPhyp,
                   RName_LRusr, RName_LRfiq, RName_LRirq, RName_LRsvc,
                   RName_LRabt, RName_LRund, RName_LRmon,
                   RName_PC};

array bits(8) _Memory[0..0xFFFFFFFF];

Arrays are always explicitly declared, and there is no notation for a constant array. Arrays always contain at least 
one element, because:
• Enumerations always contain at least one symbolic constant.
• Integer ranges always contain at least one integer.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are 
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package 
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register 
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD 
element processing.
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B.3 Expressions

This section describes:
• General expression syntax.
• Operators and functions - polymorphism and prototypes on page B-68.
• Precedence rules on page B-68.

B.3.1 General expression syntax

An expression is one of the following:
• A constant.
• A variable, optionally preceded by a data type name to declare its type.
• The word UNKNOWN preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or 
underscore character.

Each register described in the text is to be regarded as declaring a correspondingly named bitstring variable, and 
that variable has the stated behavior of the register. For example, if a bit of a register is defined as RAZ/WI, then 
the corresponding bit of its variable reads as 0 and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the 
architecture does not specify what value it is and software must not rely on such values. The value produced must 
not constitute a security hole and must not be promoted as providing any useful information to software.

Note
 Some earlier documentation describes this as an UNPREDICTABLE value. UNKNOWN values are similar to the 
definition of UNPREDICTABLE, but do not indicate that the entire architectural state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on 
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the 
circumstances under which it does so. For example, those circumstances might require that one or more of 
the expressions the operator operates is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function 
specifies the circumstances under which it can generate an assignable expression.

Every expression has a data type:

• For a constant, this data type is determined by the syntax of the constant.

• For a variable, there are the following possible sources for the data type:

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or 
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them 
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.
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• For a function, the definition of the function determines the data type.

B.3.2 Operators and functions - polymorphism and prototypes

Operators and functions in pseudocode can be polymorphic, producing different functionality when applied to 
different data types. Each resulting form of an operator or function has a different prototype definition. For example, 
the operator + has forms that act on various combinations of integers, reals, and bitstrings.

One particularly common form of polymorphism is between bitstrings of different lengths. This is represented by 
using bits(N), bits(M), or similar, in the prototype definition.

B.3.3 Precedence rules

The precedence rules for expressions are:

1. Constants, variables, and function invocations are evaluated with higher priority than any operators using 
their results.

2. Expressions on integers follow the normal operator precedence rules of exponentiation before multiply/divide 
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but this is 
not necessary if all permitted precedence orders under the type rules necessarily lead to the same result. For 
example, if i, j, and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k 
> 0 is not.
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B.4 Operators and built-in functions

This section describes:
• Operations on generic types.
• Operations on Booleans.
• Bitstring manipulation.
• Arithmetic on page B-72.

B.4.1 Operations on generic types

The following operations are defined for all types.

Equality and non-equality testing

Any two values x and y of the same type can be tested for equality by the expression x == y and for non-equality by 
the expression x != y. In both cases, the result is of type boolean.

A special form of comparison is defined with a bitstring constant that includes 'x' bits in addition to '0' and '1' 
bits. The bits corresponding to the 'x' bits are ignored in determining the result of the comparison. For example, if 
opcode is a 4-bit bitstring, opcode == '1x0x' is equivalent to opcode<3> == '1' && opcode<1> == '0'.

Note
 This special form is permitted in the implied equality comparisons in when parts of case … of … structures.

Conditional selection

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression 
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

B.4.2 Operations on Booleans

If x is a Boolean, then !x is its logical inverse.

If x and y are Booleans, then x && y is the result of ANDing them together. As in the C language, if x is FALSE, the 
result is determined to be FALSE without evaluating y.

If x and y are Booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result 
is determined to be TRUE without evaluating y.

If x and y are Booleans, then x ^ y is the result of exclusive-ORing them together.

B.4.3 Bitstring manipulation

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:
• The bitstring length function Len(x) returns the length of x as an integer.
• TopBit(x) is the leftmost bit of x. Using bitstring extraction, this means:

TopBit(x)= x<Len(x)–1>.

Bitstring concatenation and replication

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by 
concatenating x and y in left-to-right order.
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If x is a bitstring and n is an integer with n > 0:
• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together
• Zeros(n) = Replicate('0', n), Ones(n) = Replicate('1', n).

Bitstring extraction

The bitstring extraction operator extracts a bitstring from either another bitstring or an integer. Its syntax is 
x<integer_list>, where x is the integer or bitstring being extracted from, and <integer_list> is a list of integers 
enclosed in angle brackets rather than the usual parentheses. The length of the resulting bitstring is equal to the 
number of integers in <integer_list>. In x<integer_list>, each of the integers in <integer_list> must be:
• >= 0

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, let y be the unique integer in the range 0 to 2^(i+1)–1 that is congruent to x modulo 
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.
Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement 
representation of it as a bitstring.

In <integer_list>, the notation i:j with i >= j is shorthand for the integers in order from i down to j, with both 
end values included. For example, instr<31:28> is shorthand for instr<31, 30, 29, 28>.

The expression x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than 
once in <integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. 

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained 
by logically ANDing, ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring count

If x is a bitstring, BitCount(x) produces an integer result equal to the number of bits of x that are ones.
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Testing a bitstring for being all zero or all ones

If x is a bitstring:
• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones.
• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)

IsOnes(x) = (BitCount(x) == Len(x))

IsZeroBit(x) = if IsZero(x) then '1' else '0'

IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of its bits that are ones. If all of its bits are zeros, 
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of its bits that are ones. If all of its bits are zeros, 
HighestSetBit(x) = –1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N – 1 – HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign 
bit itself, and is in the range 0 to N–1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N–1:1> EOR x<N–2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient 
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i–Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient 
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i–Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that 
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt(x) is the integer whose two’s complement representation is x:

// SInt()
// ======

integer SInt(bits(N) x)
    result = 0;
    for i = 0 to N-1
        if x<i> == '1' then result = result + 2^i;
    if x<N-1> == '1' then result = result - 2^N;
    return result;

UInt(x) is the integer whose unsigned representation is x:

// UInt()
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// ======

integer UInt(bits(N) x)
    result = 0;
    for i = 0 to N-1
        if x<i> == '1' then result = result + 2^i;
    return result;

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument:

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
    result = if unsigned then UInt(x) else SInt(x);
    return result;

B.4.4 Arithmetic

Most pseudocode arithmetic is performed on integer or real values, with operands being obtained by conversions 
from bitstrings and results converted back to bitstrings afterwards. As these data types are the unbounded 
mathematical types, no issues arise about overflow or similar errors.

Unary plus, minus, and absolute value

If x is an integer or real, then +x is x unchanged, –x is x with its sign reversed, and Abs(x) is the absolute value of x. 
All three are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x–y are their sum and difference. Both are of type integer if x and y are both 
of type integer, and real otherwise.

Addition and subtraction are particularly common arithmetic operations in pseudocode, and so it is also convenient 
to have definitions of addition and subtraction acting directly on bitstring operands.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x–y are the least significant 
N bits of the results of converting them to integers and adding or subtracting them. Signed and unsigned conversions 
produce the same result:

x+y = (SInt(x) + SInt(y))<N–1:0>
= (UInt(x) + UInt(y))<N–1:0>

x–y = (SInt(x) – SInt(y))<N–1:0>
= (UInt(x) – UInt(y))<N–1:0>

If x is a bitstring of length N and y is an integer, x+y and x–y are the bitstrings of length N defined by x+y = x + y<N–1:0> 
and x–y = x – y<N–1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x–y are the bitstrings of 
length M defined by x+y = x<M–1:0> + y and x–y = x<M–1:0> – y.

Comparisons

If x and y are integers or reals, then x == y, x != y, x < y, x <= y, x > y, and x >= y are equal, not equal, less than, 
less than or equal, greater than, and greater than or equal comparisons between them, producing Boolean results. In 
the case of == and !=, this extends the generic definition applying to any two values of the same type to also act 
between integers and reals.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type 
integer, and real otherwise.
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Division and modulo

If x and y are integers or reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x – y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Square root

If x is an integer or a real, Sqrt(x) is its square root, and is always of type real.

Rounding and aligning

If x is a real:
• RoundDown(x) produces the largest integer n such that n <= x.
• RoundUp(x) produces the smallest integer n such that n >= x.
• RoundTowardsZero(x) produces RoundDown(x) if x > 0.0, 0 if x == 0.0, and RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y) is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)–1:0> is a bitstring of 
the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y) 
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its 
argument with its n low-order bits forced to zero.

Scaling

If n is an integer, 2^n is the result of raising 2 to the power n and is of type real.

If x and n are of type integer, then:
• x << n = RoundDown(x * 2^n).
• x >> n = RoundDown(x * 2^(–n)).

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. Both 
are of type integer if x and y are both of type integer, and real otherwise.
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B.5 Statements and program structure

The following sections describe the control statements used in the pseudocode:
• Simple statements.
• Compound statements on page B-75.
• Comments on page B-79.

B.5.1 Simple statements

Each of the following simple statements must be terminated with a semicolon, as shown.

Assignments

An assignment statement takes the form:

<assignable_expression> = <expression>;

Procedure calls

A procedure call takes the form:

<procedure_name>(<arguments>);

Return statements

A procedure return takes the form:

return;

and a function return takes the form:

return <expression>;

where <expression> is of the type declared in the function prototype line.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is that the Undefined 
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;
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This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a 
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The 
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {<text>};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION 
DEFINED. An optional <text> field can give more information.

SUBARCHITECTURE_DEFINED

This subsection describes the statement:

SUBARCHITECTURE_DEFINED <text>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is SUBARCHITECTURE 
DEFINED. An optional <text> field can give more information.

B.5.2 Compound statements

Indentation normally indicates the structure in compound statements. The statements contained in structures such 
as if … then … else … or procedure and function definitions are indented more deeply than the statement itself, and 
their end is indicated by returning to the original indentation level or less.

Indentation is normally done by four spaces for each level.

if … then … else …

A multi-line if … then … else … structure takes the form:

if <boolean_expression> then

<statement 1>

<statement 2>

…

<statement n>

elsif <boolean_expression> then

<statement a>

<statement b>

…

<statement z>

else

<statement A>

<statement B>

…

<statement Z>
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The block of lines consisting of elsif and its indented statements is optional, and multiple such blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when there are only simple statements in the then part and in the else part, 
if it is present, such as:

if <boolean_expression> then <statement 1>

if <boolean_expression> then <statement 1> else <statement A>

if <boolean_expression> then <statement 1> <statement 2> else <statement A>

Note
 In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and the 
fact that the else part is optional are differences from the if … then … else … expression.
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repeat … until …

A repeat … until … structure takes the form:

repeat

<statement 1>

<statement 2>

…

<statement n>

until <boolean_expression>;

while … do

A while … do structure takes the form:

while <boolean_expression> do

<statement 1>

<statement 2>

…

<statement n>

for …

A for … structure takes the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>

<statement 1>

<statement 2>

…

<statement n>

case … of …

A case … of … structure takes the form:

case <expression> of

when <constant values>

<statement 1>

<statement 2>

…

<statement n>

… more "when" groups …

otherwise

<statement A>

<statement B>

…

<statement Z>
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In this structure, <constant values> consists of one or more constant values of the same type as <expression>, 
separated by commas. Abbreviated one line forms of when and otherwise parts can be used when they contain only 
simple statements.

If <expression> has a bitstring type, <constant values> can also include bitstring constants containing 'x' bits. For 
details see Equality and non-equality testing on page B-69.
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Procedure and function definitions

A procedure definition takes the form:

<procedure name>(<argument prototypes>)

<statement 1>

<statement 2>

…

<statement n>

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument 
definition consists of a type name followed by the name of the argument.

Note
 This first prototype line is not terminated by a semicolon. This helps to distinguish it from a procedure call.

A function definition is similar but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)

<statement 1>

<statement 2>

…

<statement n>

An array-like function is similar but with square brackets:

<return type> <function name>[<argument prototypes>]

<statement 1>

<statement 2>

…

<statement n>

An array-like function also usually has an assignment prototype:

<function name>[<argument prototypes>] = <value prototypes>

<statement 1>

<statement 2>

…

<statement n>

B.5.3 Comments

Two styles of pseudocode comment exist:
• // starts a comment that is terminated by the end of the line.
• /* starts a comment that is terminated by */.
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This glossary describes some of the terms that are used in Arm documentation.

Abort An abort occurs when an illegal memory access causes an exception. An abort can be generated by the hardware 
that manages memory accesses, or by the external memory system. 

ADI See Arm Debug Interface (ADI).

AHB An AMBA bus protocol supporting pipelined operation, with the address and data phases occurring during different 
clock periods, meaning that the address phase of a transfer can occur during the data phase of the previous transfer. 
AHB provides a subset of the functionality of the AMBA AXI protocol.

See also AMBA.

Aligned A data item stored at an address that is exactly divisible by the number of bytes that defines its data size. Aligned 
doublewords, words, and halfwords have addresses that are divisible by eight, four, and two respectively. An aligned 
access is one where the address of the access is aligned to the size of each element of the access.

AMBA The AMBA family of protocol specifications is the Arm open standard for on-chip buses. AMBA provides solutions 
for the interconnection and management of the functional blocks that make up a System-on-Chip (SoC). 
Applications include the development of embedded systems with one or more processors or signal processors and 
multiple peripherals.

APB An AMBA bus protocol for ancillary or general-purpose peripherals such as timers, interrupt controllers, UARTs, 
and I/O ports. It connects to the main system bus through a system-to-peripheral bus bridge that helps reduce system 
power consumption.

Arm Debug Interface (ADI)

The ADI connects a debugger to a device. The ADI is used to access memory-mapped components in a system, such 
as processors and CoreSight components. The ADI protocol defines the physical wire protocols permitted, and the 
logical programmers model.

AXI An AMBA bus protocol that supports:
• Separate phases for address or control and data.
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• Unaligned data transfers using byte strobes.
• Burst-based transactions with only start address issued.
• Separate read and write data channels.
• Issuing multiple outstanding addresses.
• Out-of-order transaction completion.
• Optional addition of register stages to meet timing or repropagation requirements.

The AXI protocol includes optional signaling extensions for low-power operation.

Big-endian In the context of the Arm architecture, big-endian is defined as the memory organization in which the least 
significant byte of a word is at a higher address than the most significant byte, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that 
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

See also Little-endian and Endianness.

Boundary scan chain

A boundary scan chain is made up of serially-connected devices that implement boundary scan technology using a 
standard JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form 
the chain connected between TDI and TDO, through which test data is shifted. A core can contain several shift 
registers, enabling a scan to access selected parts of the device..

Burst A group of transfers that form a single transaction. With AMBA protocols, only the first transfer of the burst 
includes address information, and the transfer type determines the addresses used for subsequent transfers.

Cold reset A cold reset has the same effect as starting the processor by turning the power on. This clears main memory and 
many internal settings. Some program failures can lock up the core and require a cold reset to restart the system.

This is also known as power-on or powerup reset.

See also Processing Element (PE), Warm reset.

Core reset See Warm reset.

DAP See Debug Access Port (DAP).

Data Link layer The layer of an ADIv5 implementation that provides the functional and procedural means to transfer data between 
the external debugger and the Debug Port (DP). ADIv5 and upwards define two Data Link layers, one based on the 
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture, referred to as JTAG, and one based on the 
Arm Serial Wire Debug protocol interface, referred to as SW-DP.

DATA LINK DEFINED

Means that the behavior is not defined by the base architecture, but must be defined and documented by individual 
Data Link layers of the architecture.

When DATA LINK DEFINED appears in body text, it is always in SMALL CAPITALS.

DBGTAP See Debug Test Access Port (DBGTAP).

Debug Access Port (DAP)

A block that acts as an AMBA, AHB, or AHB-Lite master on a system bus, to provide access to the debug target.

Debug Test Access Port (DBGTAP)

A debug control and data interface based on IEEE 1149.1 JTAG Test Access Port (TAP).

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, together with 
custom hardware that supports software debugging.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.
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Doubleword-aligned

A data item having a memory address that is divisible by eight.

Embedded Trace Macrocell (ETM)

A hardware macrocell that, when connected to a core, outputs trace information on a trace port. The ETM provides 
core-driven trace through a trace port compliant to the ATB protocol. An ETM always supports instruction trace, 
and might support data trace. 

Endianness The scheme that determines the order of the successive bytes of data in a larger data structure when that structure 
is stored in memory.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell (ETM).

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned
A data item having a memory address that is divisible by 2.

Host A computer that provides data and other services to another computer. In the context of an Arm debugger, a 
computer providing debugging services to a target being debugged.

IMP DEF See IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED

Behavior that is not defined by the architecture, but must be defined and documented by individual 
implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in SMALL CAPITALS.

Joint Test Action Group (JTAG)

An IEEE group focussed on silicon chip testing methods. Many debug and programming tools use a Joint Test 
Action Group (JTAG) interface port to communicate with processors.

See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan Architecture specification available 
from the IEEE Standards Association.

JTAG See Joint Test Action Group (JTAG).

JTAG Access Port (JTAG-AP)

An optional component of the DAP that provides debugger access to on-chip scan chains.

JTAG Debug Port (JTAG-DP)

An optional external interface for the DAP that provides a standard JTAG interface for debug access.

JTAG-AP See JTAG Access Port (JTAG-AP).

JTAG-DP See JTAG Debug Port (JTAG-DP).

Little-endian In the context of the Arm architecture, little-endian is defined as the memory organization in which the most 
significant byte of a word is at a higher address than the least significant byte.

See also Big-endian and Endianness.

PE See Processing Element (PE).

Powerup reset See Cold reset.

Processing Element (PE)

The abstract machine defined in the Arm architecture, as documented in the Arm Architecture Reference Manual. 
A PE implementation that is compliant with the Arm architecture must conform with the behaviors described in the 
corresponding Arm Architecture Reference Manual.
IHI 0076A Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. Glossary-83
ID041218 Non-Confidential



 Glossary 
 

RAO See Read-As-One (RAO).

RAO/WI Read-as-One, Writes Ignored. 

Hardware must implement the field as Read-as-One, and must ignore writes to the field. Software can rely on the 
field reading as all 1s, and on writes being ignored. This description can apply to a single bit that reads as 0b1, or to 
a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-as-Zero, Writes ignored. 

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field. Software can rely on the 
field reading as all 0s, and all writes being ignored. This description can apply to a single bit that reads as 0b0, or to 
a field that reads as all 0s.

See also Read-As-Zero (RAZ). 

Read-As-One (RAO)

Hardware must implement the field as reading as all 1s. Software can rely on the field reading as all 1s. This 
description can apply to a single bit that reads as 0b1, or to a field that reads as all 1s.

Read-As-Zero (RAZ)

Hardware must implement the field as reading as all 0s. Software can rely on the field reading as all 0s. This 
description can apply to a single bit that reads as 0b0, or to a field that reads as all 0s.

RES0 A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior. Used for fields in register descriptions, 
and for fields in architecturally-defined data structures that are held in memory, for example in translation table 
descriptors.

Note
 RES0 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

This means the definition of RES0 for register fields is:

If a bit is RES0 in all contexts 

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0b0. In this case:

• Reads of the bit always return 0b0.

• Writes to the bit are ignored.
The bit might be described as RES0, WI, to distinguish it from a bit that behaves as described 
in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0b0.

• A read of the bit returns the last value successfully written to the bit.

Note
 As indicated in this list, this value might be written by an indirect write to the register.
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If the bit has not been successfully written since reset, then the read of the bit returns 
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the core, other than 
determining the value read back from the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is implementation defined on a 
field-by-field basis.

If a bit is RES0 only in some contexts 

When the bit is described as RES0:

• An indirect write to the register sets the bit to 0b0.

• A read of the bit must return the value last successfully written to the bit, regardless of the 
use of the register when the bit was written.

Note
 As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset 
value if there is one, or otherwise returns an unknown value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must 
have no effect on the operation of the core, other than determining the value read back from 
that bit.

For any RES0 bit, software:

• Must not rely on the bit reading as 0b0.

• Must use an SBZP policy to write to the bit.

The RES0 description can apply to bits or bitfields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0b0, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

This RES0 description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field 
that should be written as its preserved value or as all 0s.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. Used for fields in register descriptions, 
and for fields in architecturally-defined data structures that are held in memory, for example in translation table 
descriptors.

Note
 RES1 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

This means the definition of RES1 for register fields is:

If a bit is RES1 in all contexts 
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It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0b1. In this case:

• Reads of the bit always return 0b1.

• Writes to the bit are ignored.
The bit might be described as RES1, WI, to distinguish it from a bit that behaves as described 
in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0b1.

• A read of the bit returns the last value successfully written to the bit.

Note
 As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns 
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the core, other than 
determining the value read back from the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is implementation defined on a 
field-by-field basis.

If a bit is RES1 only in some contexts 

When the bit is described as RES1:

• An indirect write to the register sets the bit to 0b1.

• A read of the bit must return the value last successfully written to the bit, regardless of the 
use of the register when the bit was written.

Note
 As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset 
value if there is one, or otherwise returns an unknown value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must 
have no effect on the operation of the core, other than determining the value read back from 
that bit.

For any RES1 bit, software:

• Must not rely on the bit reading as 0b1.

• Must use an SBOP policy to write to the bit.

The RES1 description can apply to bits or bitfields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 0b1, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

This RES1 description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field 
that should be written as its preserved value or as all 1s.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved Unless otherwise stated in the architecture or product documentation:
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• Reserved instruction and 32-bit system control register encodings are unpredictable.
• Reserved 64-bit system control register encodings are undefined.
• Reserved register bit fields are UNK/SBZP.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan technology using a standard 
JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form the chain 
connected between TDI and TDO, through which test data is shifted. Processors can contain several shift registers 
to enable you to access selected parts of the device.

Serial Wire debug (SWD)
A debug implementation that uses a serial connection between the SoC and a debugger. This connection normally 
requires a bidirectional data signal and a separate clock signal, rather than the four to six signals required for a JTAG 
connection.

Serial-Wire Debug Port (SW-DP)

The interface for Serial Wire Debug.

Serial Wire JTAG Debug Port (SWJ-DP)

The SWJ-DP is a combined JTAG-DP and SW-DP that you can use to connect either a Serial Wire Debug (SWD) 
or JTAG probe to a target.

Should-Be-One (SBO)

Hardware must ignore writes to the field.

Software should write the field as all 1s. If software writes a value that is not all 1s, it must expect an 
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0b1, or to a field that should be written as all 1s.

Should-Be-One-or-Preserved (SBOP)

The Armv7 Large Physical Address Extension modified the definition of SBOP to apply to register fields that are 
SBOP in some but not all contexts. From the introduction of Armv8 such register fields are described as RES1, see 
RES1. The definition of SBOP given here applies only to fields that are SBOP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, it should preserve 
the value of the field by writing the value that it previously read from the field. Otherwise, it should write the field 
as all 1s.

If software writes a value to the field that is not a value previously read for the field and is not all 1s, it must expect 
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0b1, or to a field that 
should be written as its preserved value or as all 1s.

See also Should-Be-Zero-or-Preserved (SBZP), Should-Be-One (SBO).

Should-Be-Zero (SBZ)

Hardware must ignore writes to the field.

Software should write the field as all 0s. If software writes a value that is not all 0s, it must expect an 
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0b0, or to a field that should be written as all 0s.
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Should-Be-Zero-or-Preserved (SBZP)

The Armv7 Large Physical Address Extension modified the definition of SBZP to apply to register fields that are 
SBZP in some but not all contexts. From the introduction of Armv8 such register fields are described as RES0, see 
RES0. The definition of SBZP given here applies only to field that are SBZP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, it must preserve the 
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all 
0s.

If software writes a value to the field that is not a value previously read for the field and is not all 0s, it must expect 
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field that 
should be written as its preserved value or as all 0s.

See also Should-Be-One-or-Preserved (SBOP), Should-Be-Zero (SBZ).

SWD See Serial Wire debug (SWD).

SW-DP See Serial-Wire Debug Port (SW-DP).

SWJ-DP See Serial Wire JTAG Debug Port (SWJ-DP)

TAP See Test Access Port (TAP).

Test Access Port (TAP)

The collection of four mandatory and one optional terminals that form the input/output and control interface to a 
JTAG boundary-scan architecture. The mandatory terminals are TDI, TDO, TMS, and TCK. In the JTAG standard, 
the nTRST signal is optional, but this signal is mandatory in Arm processors because it is used to reset the debug 
logic.

See also Joint Test Action Group (JTAG), Debug Test Access Port (DBGTAP).

Trace port A port on a device, such as a processor or ASIC, to output trace information.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of the elements of the 
access.

See also Aligned.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction, 
and implementation to implementation. An UNKNOWN value must not return information that cannot be accessed at 
the current or a lower level of privilege using instructions that are not UNPREDICTABLE or CONSTRAINED 
UNPREDICTABLE and do not return UNKNOWN values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNP See UNPREDICTABLE.

UNPREDICTABLE

For an Arm processor, UNPREDICTABLE means the behavior cannot be relied upon. UNPREDICTABLE behavior must 
not perform any function that cannot be performed at the current or a lower level of privilege using instructions that 
are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect. An instruction that is 
UNPREDICTABLE can be implemented as UNDEFINED.

In an implementation that supports Virtualization, the Non-secure execution of unpredictable instructions at a lower 
level of privilege can be trapped to the hypervisor, provided that at least one instruction that is not unpredictable can 
be trapped to the hypervisor if executed at that lower level of privilege.
Glossary-88 Copyright © 2018 Arm Limited (or its affiliates). All rights reserved. IHI 0076A
Non-Confidential ID041218



 Glossary 
 

For an Arm trace macrocell, UNPREDICTABLE means that the behavior of the macrocell cannot be relied on. Such 
conditions have not been validated. When applied to the programming of an event resource, only the output of that 
event resource is UNPREDICTABLE. UNPREDICTABLE behavior can affect the behavior of the entire system, because 
the trace macrocell can cause the core to enter Debug state, and external outputs can be used for other purposes.

Note
 In issue A of this document, UNPREDICTABLE also meant an UNKNOWN value.

When UNPREDICTABLE appears in body text, it is always in SMALL CAPITALS.

W1C Hardware must implement the bit as follows:

• Writing a 0b1 to the bit clears the bit to 0b0.

• Writing a 0b0 to the bit has no effect.

Warm reset Also known as a core reset. Initializes most of the processor functionality, excluding the debug controller and debug 
logic. This type of reset is useful if you are using the debugging features of a processor.

See also Cold reset.

WI Hardware must must ignore writes to the field. Software can rely on writes being ignored. This description can apply 
to a single bit, or to a field.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned A data item having a memory address that is divisible by four.
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