
Arm® Embedded Trace Router
Architecture Specification
Copyright © 2018 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0081A (ID071318)

Arm Embedded Trace Router
Architecture Specification

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Change History

Date Issue Confidentiality Change

13 July 2018 A Non-Confidential First Release.
ii Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. iii
ID071318 Non-Confidential

iv Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Contents
Arm Embedded Trace Router Architecture
Specification

Preface
About this book ... viii
Using this book ... ix
Conventions .. x
Additional reading .. xi
Feedback ... xii

Chapter 1 Introduction
1.1 About trace capture .. 1-14
1.2 About the ETR architecture .. 1-15

Chapter 2 Specification
2.1 Overview .. 2-18
2.2 Configurations ... 2-19
2.3 Operation ... 2-20
2.4 Trigger and Flush Operation .. 2-23
2.5 Scatter mode .. 2-25

Chapter 3 Programmers’ model
3.1 Memory-mapped registers ... 3-28

Appendix A Pseudocode Definition
A.1 About Arm pseudocode ... A-104
A.2 Data types ... A-105
A.3 Expressions ... A-109
A.4 Operators and built-in functions .. A-111
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. v
ID071318 Non-Confidential

A.5 Statements and program structure .. A-116

Glossary
vi Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Preface

This preface introduces the Embedded Trace Router (ETR) Architecture Specification. It contains the following
sections:
• About this book on page viii.
• Using this book on page ix.
• Conventions on page x.
• Additional reading on page xi.
• Feedback on page xii.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. vii
ID071318 Non-Confidential

 Preface
 About this book
About this book
This book describes the architecture for the Embedded Trace Router (ETR).

Intended audience

This document targets the following audiences:

• Designers of development tools supporting processor trace functionality.

• Advanced users of development tools supporting processor trace functionality.

• Designers of an Arm-based product that includes processor trace functionality.

Arm recommends that all users of this specification have experience of the Arm architecture.
viii Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

 Preface
 Using this book
Using this book
This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to processor-originated trace, the Embedded Trace Router, and
the overlap with the CoreSight Trace Memory Controller.

Chapter 2 Specification

Read this chapter for the Embedded Trace Router specification, register configurations for optional
features, and operation modes.

Chapter 3 Programmers’ model

Read this chapter for a description of the programmers’ model for the Embedded Trace Router.

Appendix A Pseudocode Definition

Read this appendix for a description of the pseudocode that is used in this document.

 Glossary Read this for definitions of some of the terms used in this book. The glossary does not contain terms
that are industry standard unless the Arm meaning differs from the generally accepted meaning.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ix
ID071318 Non-Confidential

 Preface
 Conventions
Conventions
The following sections describe conventions that this document might use:
• Typographic conventions.
• Signals.
• Numbers.
• Pseudocode descriptions.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:

• A URL, for example http://infocenter.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Pseudocode descriptions.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example JTAG Access Port (JTAG-AP) or Debug Access Port
(DAP).

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font, and is described in Appendix A Pseudocode Definition.
x Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

 Preface
 Additional reading
Additional reading
This section lists relevant publications from Arm and third parties.

See the Infocenter http://infocenter.arm.com, for access to Arm documentation.

Arm publications

This book contains information that is specific to this product. See the following documents for other relevant
information:
• CoreSight™ Trace Memory Controller (ARM DDI 0461).
• Arm® CoreSight™ Architecture Specification (ARM DDI 0029).
• Arm® CoreSight™ System-on-Chip SoC-600 Technical Reference Manual (ARM 100806).
• Arm® Embedded Trace Macrocell Architecture Specification ETMv4.0to ETMv4.4 (ARM IHI 0064).

Other publications

The following books are referred to in this book, or provide more information:

• JEDEC, Standard Manufacturers Identification Code, JEP106 hhtp://www.jedec.org.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. xi
ID071318 Non-Confidential

 Preface
 Feedback
Feedback
Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM IHI 0081A.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note
 Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
xii Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Chapter 1
Introduction

This chapter introduces the Embedded Trace Router. It contains the following sections:
• About trace capture on page 1-14.
• About the ETR architecture on page 1-15.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-13
ID071318 Non-Confidential

1 Introduction
1.1 About trace capture
1.1 About trace capture

In many CoreSight systems, trace is routed over a CoreSight trace fabric (AMBA ATB) through a series of trace
funnels, and replicators, to one or more trace sinks.

One such trace sink is the CoreSight Trace Memory Controller (TMC). This can take various forms, one of which
is an Embedded Trace Router (ETR). The function of the ETR is to write formatted trace to a buffer in memory. In
effect, it is a bridge between the trace and memory fabrics.

This specification describes the ETR architecture, which is useful for both:

• Self-hosted trace, where trace is captured in system memory, for analysis by software running on the same
system.

• External trace, where trace is captured in system memory, for subsequent export to an external debugger.

1.1.1 Trace format

This specification does not define the trace format used. It is expected that it is used in conjunction with an ETMv4
trace unit. However, other options are permitted.

Note
 If the trace protocol uses variable packet sizes, it must support an Alignment Synchronization mechanism to allow
use in Circular Buffer mode.

The ETMv4 Ignore packet allows the ETM to pad trace in the trace buffer to an arbitrary alignment. For earlier
versions of the ETMv4 protocol, a trace formatter must be implemented in the ETR.

1.1.2 Interrupts

An event is raised on a trigger or other buffer service event, such as an abort or the buffer filling.

For self-hosted trace, this is ideally a PPI interrupt. For external trace, this is either an SPI, LPI (MSI) or a
cross-trigger event.

The ETR architecture also supports message-signaled interrupts, providing configuration registers to control these
interrupts.

Table 1-1 Comparison of self-hosted and external trace

Term Self-hosted trace External trace

Definition Located within the software stack.
The agent controlling trace collection is part of the same
software stack as the software being traced.

Located outside of the software stack.
The agent controlling trace collection is
not part of the same software stack as the
software being traced.

Examples perf: trace of applications and the operating system is
collected by the operating system.
gdb: the debugger is an application but uses operating
system services to trace another application running under
that operating system.

Arm DS-5 Debugger: Trace is collected
on-chip and exported to a debugger on a
different host for analysis.
Post-mortem: Trace is collected by a
system control processor to provide
crash dump information.
1-14 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

1 Introduction
1.2 About the ETR architecture
1.2 About the ETR architecture
The ETR architecture provides control mechanisms for storing trace data in a buffer in main system memory. Such
a trace buffer can operate in one of the following modes:

Circular Buffer

In Circular Buffer mode, trace data is written to the buffer continuously. When the end of the buffer
is reached, trace continues to be written from the start of the buffer, overwriting the oldest data in
the buffer.

Circular Buffer mode is used to continuously capture trace. When the trace capture stops, the buffer
contains the most recently generated trace, and provides a recent history of trace up to the stop point.
Trace data can only be read out of the buffer when trace capture has stopped.

An ETR always implements the Circular Buffer mode.

Software Read FIFO Modes

In the Software Read FIFO modes, trace is written to the buffer continuously until the buffer is full.
When the buffer is full, trace stops being written until space is freed in the buffer. Usually, a software
agent concurrently reads trace data out of the buffer, and the memory buffer is used as an
intermediate FIFO.

In Software Read FIFO mode 1, the trace data is read out of the buffer using the RRD in the ETR
programmer’s model.

In Software Read FIFO mode 2, the trace data is read directly out of the memory buffer, which is
typically faster than Software Read FIFO mode 1. The software agent reading the buffer uses the
RURP in the ETR programmers’ model to indicate when data has been read out of the buffer.

The Software Read FIFO modes are optional.

1.2.1 Overlap with CoreSight Trace Memory Controller

The ETR architecture is based on the Embedded Trace Router configuration of the CoreSight Trace Memory
Controller (TMC), but makes the following major features optional:

• Scatter mode.

• Software Read FIFO mode 1.

• Buffer Watermark and Level registers.

An ETR without Scatter mode and without Software Read FIFO mode 1 means that the ETR does not need to read
memory, which can simplify the ETR design.

An ETR without the buffer watermark feature can still generate interrupts, by initializing the RWP in a specific way.

Note
 To generate an interrupt when the buffer is almost full (around 90%), software can:

• Set DBA to the base of the buffer and RSZ to the size of the buffer.

• Set RWP to DBA + RSZ × 10%.

• Set MODE.MODE to Circular Buffer.

• Configure ETR to generate an interrupt on FULL event.

Software written for the CoreSight TMC is not guaranteed to be compatible with an ETR compliant with this
specification.

Software written for this specification is not guaranteed to be compatible with the CoreSight TMC.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-15
ID071318 Non-Confidential

1 Introduction
1.2 About the ETR architecture
1-16 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Chapter 2
Specification

This chapter describes the Embedded Trace Router Specification. It contains the following sections:

• Overview on page 2-18.

• Configurations on page 2-19.

• Operation on page 2-20.

• Trigger and Flush Operation on page 2-23.

• Scatter mode on page 2-25.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-17
ID071318 Non-Confidential

2 Specification
2.1 Overview
2.1 Overview
IJDFA The ETR architecture specifies the following features not defined in CoreSight ETR:

•

• Self-hosted support through interrupt generation.

RASDF The following ETR features are optional:

• Trace formatter.

• Software Read FIFO mode 1, including the buffer watermark and level registers.

• Software Read FIFO mode 2, including the buffer watermark and level registers.

• Self-hosted support through interrupt generation.

• Periodic synchronization counter (PSCR).

• Claim tags.

• CoreSight Software Lock.

• RAM Write Data register (RWD) and the Integration Test registers.

RIUYE If the trace formatter is not implemented, the ETR does not support:

• Multiple trace sources.

• Embedded Flush.

• Embedded Triggers on flush.

• Embedded Triggers on Trigger Events.
2-18 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

2 Specification
2.2 Configurations
2.2 Configurations
RAYIK DEVID.MEMWIDTH specifies the IMPLEMENTATION DEFINED minimum alignment for the DBA, RRP, RURP,

RWP, BUFWM and RSZ registers. Software must treat the corresponding low-order bits of these registers as SBZP:

• When software first writes to a pointer register, the value written must be aligned to a multiple of the size
specified by DEVID.MEMWIDTH.

• When context switching the ETR context, software must preserve the low-order bits.

DBA, BUFWM and RSZ have a minimum architectural alignment of 32-bits. The BUFWM and RSZ registers
always specify a number of 32-bit words.

RCXVZ Circular Buffer mode must be implemented.

RZXCA It is IMPLEMENTATION DEFINED whether Software Read FIFO mode 1 is implemented.

RZXCV It is IMPLEMENTATION DEFINED whether Software Read FIFO mode 2 is implemented.

RIFHM If both Software Read FIFO modes are not implemented, RRP, CBUFLEVEL, LBUFLEVEL and BUFWM are not
implemented.

INWUI The mode is controlled by MODE.MODE. DEVID.MODES describes which modes are implemented.

IGHKL A system including an ETR might support the input trace to the ETR being routed to trace sinks other than the ETR,
for example via a AMBA ATB interface. Arm recommends that when CTL.TraceCaptEn is 0b1, the routing of trace
to other trace sinks does not limit the input trace bandwidth to the ETR.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-19
ID071318 Non-Confidential

2 Specification
2.3 Operation
2.3 Operation
IASDF The ETR state machine is defined by CTL.TraceCaptEn, STS.TMCReady and the state of the trace formatter (if

implemented) and internal buffers:

Figure 2-1 ETR state machine

ISDFV When the ETR leaves the Disabled state, the ETR starts collecting trace to a buffer starting from the address in the
RWP register.

Note
 In CoreSight Trace Memory Controller (TMC), when leaving the Disabled state, RWP is set to the value in DBA.
The ETR architecture does not automatically set RWP when leaving the Disabled state. To ensure compatibility,
software should not rely on the ETR resetting RWP to DBA

RSDFG If the trace formatter is not implemented or disabled, when the ETR is in the Running state, each trace data byte
received by the ETR is written to the address specified by RWP.

RXOVD If the trace formatter is implemented and enabled, when the ETR is in the Running state, each trace byte received
by the ETR is formatted. Each formatted byte is written to the address specified by RWP.

Table 2-1 ETR state machine index

State CTL.TraceCaptEn STS.TMCReady Formatter and buffer(s)

Disabled 0 1 Empty

Running 1 0 -

Stopping 1 0 Not empty

Stopped 1 1 Empty

Disabling 0 0 Not empty

Disabled
CTL.TraceCaptEn==0
STS.TMCReady==1

reset

Running
CTL.TraceCaptEn==1
STS.TMCReady==0

CTL.TraceCaptEn=1

Stopping
CTL.TraceCaptEn==1
STS.TMCReady==0

Stop Event

Disabling
CTL.TraceCaptEn==0
STS.TMCReady==0

CTL.TraceCaptEn=0

CTL.TraceCaptEn=0

Stopped
CTL.TraceCaptEn==1
STS.TMCReady==1

Formatter and
all buffers empty

Formatter empty CTL.TraceCaptEn=0
2-20 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

2 Specification
2.3 Operation
IDFAV The trace formatter protocol is described by the CoreSight Architecture Specification.

RKPDF For each byte written by the ETR, RWP is incremented by 1.

IMGHJ The ETR might buffer multiple bytes into a single write, and increment RWP by the number of bytes written, so
long as it does not write past the end of the buffer.

RBWUA If Scatter mode is not implemented or is disabled, and the ETR increments RWP to (DBA + RSZ×4), then all of:

• RWP is set to DBA.

• If MODE.MODE == 0b00 (Circular Buffer) then STS.Full is set to 1.

RCVBN If Scatter mode is not implemented or is disabled, and the ETR increments RRP to (DBA + RSZ × 4), then RRP is
set to DBA.

RNLSF If MODE.MODE != 0b00, the buffer fill level is defined as:

• ((RWP - RRP) modulo (RSZ × 4)) when the trace buffer is not full.

• RSZ × 4 when the trace buffer is full.

RALRU If MODE.MODE != 0b00, STS.Full is:

• Set to 1 when the buffer fill level is greater than or equal to (RSZ - BUFWM)×4.

• Set to 0 when the buffer fill level is less than (RSZ - BUFWM)×4.

IFGHB In Software Read FIFO modes:

• The trace buffer is empty when RRP increments to RWP.

• The trace buffer is full when RWP increments to RRP.

RBYUU In Circular Buffer mode, the ETR continues to write trace data to the trace buffer until a Stop Event occurs.

RFGJH In Software FIFO modes, the ETR continues to write trace data to the trace buffer until a Stop Event occurs or the
trace buffer becomes full. While the trace buffer is full, the ETR stalls the acceptance of new trace data until space
becomes available in the trace buffer.

IVNWN If the self-hosted interrupts are implemented, software configures which interrupts are generated using
MODE.IRQOnReady and MODE.IRQOnFull.

RNZKO If Software Read FIFO mode 2 is implemented, the buffer interrupt for Software Read FIFO mode 2 is enabled
whenever Software Read FIFO mode 2 is selected and the ETR is enabled.

RYDHF In Circular Buffer mode and if RRP is implemented, if RWP increments to RRP then any subsequent increment to
RWP also increments RRP to the new value of RWP. This tracking continues until the ETR stops or is disabled.

RLPZF If the trace formatter is implemented and enabled when trace capture is stopped, then the traces are padded in the
formatted frames with additional bytes of data with a value of 0x00 and an ID of 0x00, until the following conditions
are met:

• A whole number of frames have been generated.

• RWP is aligned to a multiple of DEVID.MEMWIDTH.

RNQWE If the trace formatter is not implemented or is disabled when trace capture is stopped, then it is IMPLEMENTATION
DEFINED whether the ETR writes the stop sequence to the end of the trace buffer. The stop sequence consists of:

• A single byte of value 0x01, to indicate the position of the last byte before the stop sequence.

• Zero or more bytes of 0x00, to align RWP to a multiple of DEVID.MEMWIDTH.

IMLIU If the trace formatter is not implemented and the ETR is tightly-coupled to a trace source, Arm recommends that
the trace source generates sufficient padding bytes in its own trace protocol to align RWP before trace capture is
stopped, and the ETR does not generate the stop sequence.

ROUYG When the ETR is in the Running state, on a Stop Event the ETR enters the Stopping state.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-21
ID071318 Non-Confidential

2 Specification
2.3 Operation
RLQWE A Stop Event occurs when any of the following occur:

• A Flush Completion occurs when FFCR.StopOnFl is 0b1.

• A Trigger Event occurs when FFCR.StopOnTrigEvt is 0b1.

RHDGP The ETR moves from Stopping state to Stopped state when all trace which was received by the ETR before entering
Stopping state has been output to the trace buffer, including any stop sequence or padding frames.

RMFGS In the Stopped state, the ETR moves to the Disabled state when CTL.TraceCaptEn is changed from 0b1 to 0b0.

IOUTJ In Software Read FIFO modes, the ETR might not move from the Stopping state to the Stopped state if there is
insufficient space to insert the remaining trace data in the trace buffer. Reads of the trace buffer via the RRD or
updates using the RURP might be needed before the ETR enters the Stopped state.

RPLOK If CTL.TraceCaptEn is changed from 0b1 to 0b0 when not in the Stopped state, the trace captured in the trace buffer
might be incomplete and the ETR pointers might not reflect the correct position of the trace buffer.

RZEWQ In the Stopping, Stopped, Disabling, and Disabled states, no new trace is captured by the ETR and:

• If MODE.StallOnStop is 0b0, the ETR discards any new trace received.

• If MODE.StallOnStop is 0b1, the ETR does not discard any new trace received.
2-22 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

2 Specification
2.4 Trigger and Flush Operation
2.4 Trigger and Flush Operation
IBUIR The ETR architecture supports detection of a trigger condition. A trigger condition is typically used to stop trace

capture to ensure trace is captured around a point of interest.

A Detected Trigger is where the ETR detects a trigger condition from an external source, such as a trace source or
a Cross Trigger Interface. A Detected Trigger consists of one or more of the following:

• An external Trigger Input.

• A Trigger ID indicated with the trace from the trace source(s).

An Embedded Trigger is where the ETR inserts a special trace source ID into a formatted trace stream. Embedded
Triggers are not supported if the trace formatter is not implemented.

A Trigger Event occurs when the Trigger Counter has counted the specified number of trace bytes after a Detected
Trigger.

The Trigger Counter is a counter used to delay a Trigger Event for a specified number of trace bytes after a Detected
Trigger.

ICHSD The ETR architecture supports flushing of the ETR and any trace sources connected to the ETR. Flushing involves
requesting all outstanding data from any upstream trace sources, and ensuring all of the flushed data is inserted into
the trace buffer. Typically, a flush is used when stopping trace capture to ensure all outstanding data has been
captured.

A Detected Flush is where the ETR detects a request for a flush, such as via the ETR programmers’ model or a Cross
Trigger Interface. A Detected Flush consists of one or more of the following:

• An external Flush Input when FFCR.FOnFlIn is 0b1.

• A Manual Flush initiated via FFCR.FlushMan.

• When a Trigger Event occurs FFCR.FOnTrigEvt is 0b1.

An Embedded Flush is where the ETR inserts a special trace source ID into a formatted trace stream. Embedded
Flushes are not supported if the trace formatter is not implemented.

A Flush Completion occurs when the ETR has ensured that all outstanding data has been captured in the trace buffer.

RZXMN When the first Detected Trigger occurs, the Trigger Counter starts counting the number of bytes written to the trace
buffer.

RKLFG When the Trigger Counter has counted the number of bytes programmed into the TRG register, a Trigger Event
occurs.

Note
 The TRG register specifies a number of 32-bit words.

RVMCB When the trace formatter is implemented and enabled, an Embedded Trigger is inserted into the formatted trace
stream when any of the following occur:

• FFCR.TrigOnTrigEvt is 0b1 and a Trigger Event occurs.

• FFCR.TrigOnTrigIn is 0b1 and a Detected Trigger occurs via an external Trigger Input.

• FFCR.TrigOnFl is 0b1 and a Flush Completion occurs.

RPWTY An Embedded Trigger consists of a single zero data byte with a trace ID of 0x7D.

RHGFD An Embedded Flush consists of a single zero data byte with a trace ID of 0x7B.

RVORH A Detected Flush occurs when any of the following occur:

• The external Flush Input is asserted and FFCR.FOnFlIn is 0b1.

• FFCR.FlushMan is written with 0b1.

• A Trigger Event occurs and FFCR.FOnTrigEvt is 0b1.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-23
ID071318 Non-Confidential

2 Specification
2.4 Trigger and Flush Operation
RLDFG When a Detected Flush occurs, the ETR performs the following sequence:

1. Requests all connected trace sources to output all data that has been accrued.

2. Outputs all the data received from the trace sources to the trace buffer.

3. Indicates a Flush Completion.

RSGCV When the trace formatter is implemented and enabled, an Embedded Flush is inserted into the formatted trace stream
when a Flush Completion occurs and FFCR.EmbedFlush is 0b1. The Embedded Flush is inserted after the last byte
of trace data and before the end of the padding data.
2-24 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

2 Specification
2.5 Scatter mode
2.5 Scatter mode
IASDF Scatter mode is used in CoreSight Trace Memory Controller (TMC) to distribute the trace buffer in non-contiguous

memory pages.

RIJKS Scatter mode is not implemented, and DEVID.NOSCAT is 0b1.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-25
ID071318 Non-Confidential

2 Specification
2.5 Scatter mode
2-26 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Chapter 3
Programmers’ model

This chapter describes the Embedded Trace Router programmers’ model. It contains the following sections:

• Memory-mapped registers on page 3-28.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-27
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1 Memory-mapped registers
Table 3-1 shows the register index for the Embedded Trace Router programmers’ model.

Table 3-1 Index of ETR registers ordered by offset

Register Offset Length Description, see

RSZ 0x004 32 RSZ, RAM Size Register on page 3-94

STS 0x00C 32 STS, Status Register on page 3-98

RRD 0x010 32 RRD, RAM Read Data register on page 3-92

RRP 0x014

0x038

64 RRP, RAM Read Pointer on page 3-93

RWP 0x018

0x03C

64 RWP, RAM Write Pointer on page 3-97

TRG 0x01C 32 TRG, Trigger Counter Register on page 3-102

CTL 0x020 32 CTL, Control Register on page 3-52

RWD 0x024 32 RWD, RAM Write Data register on page 3-96

MODE 0x028 32 MODE, Mode Register on page 3-79

LBUFLEVEL 0x02C 32 LBUFLEVEL, Latched Buffer Fill Level on page 3-76

CBUFLEVEL 0x030 32 CBUFLEVEL, Current Buffer Fill Level on page 3-45

BUFWM 0x034 32 BUFWM, Buffer Watermark register on page 3-33

BUSCTL 0x110 32 BUSCTL, Bus Control Register on page 3-34

DBA 0x118 64 DBA, Data Buffer Address on page 3-53

RURP 0x120 32 RURP, RAM Update Read Pointer on page 3-95

FFSR 0x300 32 FFSR, Formatter and Flush Status Register on page 3-68

FFCR 0x304 32 FFCR, Formatter and Flush Control Register on page 3-63

PSCR 0x308 32 PSCR, Periodic Synchronization Control Register on page 3-90

IRQCR0 0xE80 64 IRQCR0, Interrupt Configuration Register on page 3-70

IRQCR1 0xE88 32 IRQCR1, Interrupt Configuration Register 1 on page 3-71

IRQCR2 0xE8C 32 IRQCR2, Interrupt Configuration Register 2 on page 3-72

ITCTRL 0xF00 32 ITCTRL, Integration Mode Control Register on page 3-74

CLAIMSET 0xFA0 32 CLAIMSET, Claim Tag Set Register on page 3-51

CLAIMCLR 0xFA4 32 CLAIMCLR, Claim Tag Clear Register on page 3-50

LAR 0xFB0 32 LAR, Lock Access Register on page 3-75

LSR 0xFB4 32 LSR, Lock Status Register on page 3-77

AUTHSTATUS 0xFB8 32 AUTHSTATUS, Authentication Status Register on page 3-31

DEVARCH 0xFBC 32 DEVARCH, Device Architecture Register on page 3-54

DEVID1 0xFC4 32 DEVID1, Device Configuration Register 1 on page 3-61
3-28 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
Table 3-2 shows the reset values for the Embedded Trace Router programmers’ model.

DEVID 0xFC8 32 DEVID, Device Configuration Register on page 3-56

DEVTYPE 0xFCC 32 DEVTYPE, CoreSight Device Type Register on page 3-62

PIDR4 0xFD0 32 PIDR4, Peripheral Identification Register on page 3-86

PIDR5 0xFD4 32 PIDR5, Peripheral Identification Register on page 3-87

PIDR6 0xFD8 32 PIDR6, Peripheral Identification Register on page 3-88

PIDR7 0xFDC 32 PIDR7, Peripheral Identification Register on page 3-89

PIDR0 0xFE0 32 PIDR0, Peripheral Identification Register on page 3-82

PIDR1 0xFE4 32 PIDR1, Peripheral Identification Register on page 3-83

PIDR2 0xFE8 32 PIDR2, Peripheral Identification Register on page 3-84

PIDR3 0xFEC 32 PIDR3, Peripheral Identification Register on page 3-85

CIDR0 0xFF0 32 CIDR0, Component Identification Register 0 on page 3-46

CIDR1 0xFF4 32 CIDR1, Component Identification Register 1 on page 3-47

CIDR2 0xFF8 32 CIDR2, Component Identification Register 2 on page 3-48

CIDR3 0xFFC 32 CIDR3, Component Identification Register 3 on page 3-49

Table 3-2 ETR register field reset values

Register field Reset value

BUSCTL.SORGN 0

BUSCTL.SIRGN 0

BUSCTL.BAttr 0

CLAIMCLR.CLR<m> 0

CTL.TraceCaptEn 0

FFCR.EmbedFlush 0

FFCR.StopOnTrigEvt 0

FFCR.StopOnFl 0

FFCR.TrigOnFl 0

FFCR.TrigOnTrigEvt 0

FFCR.TrigOnTrigIn 0

FFCR.FlushMan 0

FFCR.FOnTrigEvt 0

FFCR.FOnFlIn 0

Table 3-1 Index of ETR registers ordered by offset (continued)

Register Offset Length Description, see
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-29
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
FFCR.EnFmt 0

FFCR.StopOnTrigEvt 0

FFCR.StopOnFI 0

FFCR.FlushMan 0

FFCR.FOnTrigEvt 0

FFCR.FOnFIIn 0

ITCTRL.IME 0

PSCR.PSCount 10

STS.TMCReady 1

Table 3-2 ETR register field reset values (continued)

Register field Reset value
3-30 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.1 AUTHSTATUS, Authentication Status Register

The AUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

AUTHSTATUS is a 32-bit register.

Field descriptions

The AUTHSTATUS bit assignments are:

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Secure Non-invasive Debug. Indicates whether Secure non-invasive debug is enabled. The defined
values of this field are:

0b00 Secure non-invasive debug not implemented.

This field reads as 0b00.

SID, bits [5:4]

Secure Invasive Debug. Indicates whether Secure invasive debug is enabled. The defined values of
this field are:

0b00 Secure invasive debug not implemented.

0b10 Secure invasive debug disabled.

0b11 Secure invasive debug enabled.

NSNID, bits [3:2]

Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug is enabled. The
defined values of this field are:

0b00 Non-secure non-invasive debug not implemented.

This field reads as 0b00.

NSID, bits [1:0]

Non-secure Invasive Debug. Indicates whether Non-secure invasive debug is enabled. The defined
values of this field are:

0b00 Non-secure invasive debug not implemented.

RES0

31 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-31
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
0b10 Non-secure invasive debug disabled.

0b11 Non-secure invasive debug enabled.

Arm recommends that Non-secure invasive debug is always enabled at the ETR.

Accessing the AUTHSTATUS:

AUTHSTATUS can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

Component Offset

ETR 0xFB8
3-32 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.2 BUFWM, Buffer Watermark register

The BUFWM characteristics are:

Purpose

Provides threshold vacancy level in 32-bit words in the trace memory.

Usage constraints

Writes to BUFWM are UNPREDICTABLE unless the ETR is in the Disabled state.

Configurations

This register is present only when DEVID.MODES != 0b010. Otherwise, direct accesses to
BUFWM are RES0.

Attributes

BUFWM is a 32-bit register.

Field descriptions

The BUFWM bit assignments are:

Bits [31:30]

Reserved, RES0.

BUFWM, bits [29:0]

Buffer Watermark. Indicates the desired threshold vacancy level in the trace memory in 32-bit
words. When the available space in the trace memory is less than or equal to this value, STS.Full is
set to 1.

Software must set this field to a multiple of the minimum alignment defined by
DEVID.MEMWIDTH divided by 4.

This field is ignored by the ETR when MODE.MODE == 0b00, meaning Circular Buffer mode is
selected.

Accessing the BUFWM:

BUFWM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

31 30

BUFWM

29 0

RES0

Component Offset

ETR 0x034
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-33
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.3 BUSCTL, Bus Control Register

The BUSCTL characteristics are:

Purpose

Controls ETR accesses to system memory.

Usage constraints

If any field in this register is set to a reserved value:

• The behavior is as if the field is set to an UNKNOWN implemented value.

• The ETR must not generate invalid bus transactions.

• This might lead to a loss of coherency.

Writes to BUSCTL are UNPREDICTABLE unless the ETR is in the Disabled state.

Configurations

Some or all RW fields of this register have defined reset values.

Attributes

BUSCTL is a 32-bit register.

Field descriptions

The BUSCTL bit assignments are:

Bits [31:28]

Reserved, RES0.

Bits [27:26]

Reserved, RES0.

Bits [25:24]

Reserved, RES0.

Bits [23:22]

Reserved, RES0.

BSH, bits [21:20]

Buffer shareability domain. Defines the shareability domain for Normal memory used by the buffer.
The possible values of this field are:

0b00 Not shared.

0b10 Outer shareable.

0b11 Inner shareable.

All other values are reserved.

RES0

31 28

RES0

27 26 25 24 23 22

BSH

21 20

BAttr

19 16

RES0

15 12

WrBurstLen

11 8 7 6

BAttr

5 2

NS

1 0

RES0
RES0

Privileged
RES0

ScatterGatherMode
3-34 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
BAttr, bits [19:16]

When DEVID.CACHETYPE == 0b0x:

BAttr is a split field that occupies BUSCTL[19:16, 5:2].

Memory type. Defines the type of memory addressed by the buffer when an IMPLEMENTATION
DEFINED bus interface, such as AXI, is implemented. The definition of this field is IMPLEMENTATION
DEFINED. Recommended values for an AXI bus and a fully coherent system are defined. If
DEVID.CACHETYPE == 0b00 and DEVID.NOSCAT == 0b0, then this field applies also to the
scatter table. When AMBA AXI3 bus, the possible values of BAttr[7:0] are:

All other values are reserved.

When AMBA AXI4 bus, if Software Read FIFO and Scatter modes are not implemented, the
possible values of values of BAttr[7:0] are:

All other values are reserved.

BAttr Meaning

0b00000000 Non-cacheable , Non-bufferable.

0b00000001 Non-cacheable , Bufferable.

0b00000010 Normal Memory, Cacheable, No-allocate.

0b00000011 Normal Memory, Cacheable and Bufferable, No-allocate.

0b00000110 Normal Memory, Write-through cacheable, Read-allocate.

0b00000111 Normal Memory, Write-back cacheable, Read-allocate.

0b00001010 Normal Memory, Write-through cacheable, Write-allocate.

0b00001011 Normal Memory, Write-back cacheable, Write-allocate.

0b00001110 Normal Memory, Write-through cacheable, Read and Write-allocate.

0b00001111 Normal Memory, Write-back cacheable, Read and Write-allocate.

BAttr Meaning

0b00000000 Device-nGnRnE.

0b00000001 Device-nGnRE.

0b00000010 Normal Memory, Non-cacheable, Non-bufferable.

0b00000011 Normal Memory, Non-Cacheable, Bufferable.

0b00000110 Normal Memory, Write-through cacheable, No-allocate.

0b00000111 Normal Memory, Write-back cacheable, No-allocate.

0b00001110 Normal Memory, Write-through cacheable, Write-allocate.

0b00001111 Normal Memory, Write-back cacheable, Write-allocate.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-35
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
When AMBA AXI4 bus, if Software Read FIFO or Scatter modes are implemented, the possible
values of values of BAttr[7:0] are:

All other values are reserved.

When Fully coherent system, the possible values of values of BAttr[7:0] are:

All other values are reserved.

If this field is set to a type that this implementation does not support, the behavior is as if set to a
compatible type and this field reads as an UNKNOWN value.

Note
 The recommended AXI bus values match the ARCACHE and AWCACHE encodings on AXI.

On a reset, this field resets to 0.

When DEVID.CACHETYPE == 0b1x:

BAttr is a split field that occupies BUSCTL[19:16, 5:2].

BAttr[7:4] Specifies the outer buffer memory type. Defines the Outer attributes for memory
addressed by the buffer. The possible values of BAttr[7:4] are:

BAttr Meaning

0b00000000 Device-nGnRnE.

0b00010001 Device-nGnRE.

0b00100010 Normal Memory, Non-cacheable, Non-bufferable.

0b00110011 Normal Memory, Non-Cacheable, Bufferable.

0b10100110 Normal Memory, Write-through cacheable, No-allocate.

0b10101110 Normal Memory, Write-through cacheable, Write-allocate.

0b10110111 Normal Memory, Write-back cacheable, No-allocate.

0b10111111 Normal Memory, Write-back cacheable, Write-allocate.

0b11100110 Normal Memory, Write-through cacheable, Read-allocate.

0b11101110 Normal Memory, Write-through cacheable, Read and Write-allocate.

0b11110111 Normal Memory, Write-back cacheable, Read-allocate.

0b11111111 Normal Memory, Write-back cacheable, Read and Write-allocate.

BAttr Meaning

0b00000000 Coherent.

BAttr[7:4] Meaning

0b0000 Device memory. The device memory type is defined by BAttr[3:0].

0b0001 Normal memory, Outer write-through cacheable, transient Write allocate.

0b0010 Normal memory, Outer write-through cacheable, transient Read allocate.

0b0011 Normal memory, Outer write-through cacheable, transient Read and Write allocate.
3-36 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
If this field is set to a type that this implementation does not support, the behavior is as if set to a
compatible type and this field reads as an UNKNOWN value.

This field resets to 0x0.

Note
 The generic encodings match the ARMv8 MAIR register values.

BAttr[3:0] specifies the inner buffer memory type. Defines the Inner attributes for memory
addressed by the buffer.

When BAttr[7:4] != 0b0000 and separate Inner attributes are not supported, the possible values of
BAttr[3:0] are:

All other values are reserved.

When BAttr[7:4] != 0b0000 and separate Inner attributes are supported, the possible values of
BAttr[3:0] are:

0b0100 Normal memory, Outer non-cacheable.

0b0101 Normal memory, Outer write-back cacheable, transient Write allocate.

0b0110 Normal memory, Outer write-back cacheable, transient Read allocate.

0b0111 Normal memory, Outer write-back cacheable, transient Read and Write allocate.

0b1000 Normal memory, Outer write-through cacheable, No allocate.

0b1001 Normal memory, Outer write-through cacheable, Write allocate.

0b1010 Normal memory, Outer write-through cacheable, Read allocate.

0b1011 Normal memory, Outer write-through cacheable, Read and Write allocate.

0b1100 Normal memory, Outer write-back cacheable, No allocate.

0b1101 Normal memory, Outer write-back cacheable, Write allocate.

0b1110 Normal memory, Outer write-back cacheable, Read allocate.

0b1111 Normal memory, Outer write-back cacheable, Read and Write allocate.

BAttr[3:0] Meaning

0b0000 Should be zero.

BAttr[3:0] Meaning

0b0001 Normal memory, Inner write-through cacheable, transient Write allocate.

0b0010 Normal memory, Inner write-through cacheable, transient Read allocate.

0b0011 Normal memory, Inner write-through cacheable, transient Read and Write allocate.

0b0100 Normal memory, Inner non-cacheable.

0b0101 Normal memory, Inner write-back cacheable, transient Write allocate.

0b0110 Normal memory, Inner write-back cacheable, transient Read allocate.

BAttr[7:4] Meaning
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-37
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
All other values are reserved.

When BAttr[7:4] == 0b0000, the possible values of BAttr[3:0] are:

All other values are reserved.

If this field is set to a type that this implementation does not support, the behavior is as if set to a
compatible type and this field reads as an UNKNOWN value.

This field resets to 0x0.

Note
 The generic encodings match the ARMv8 MAIR register values.

Otherwise:

Reserved, RES0.

Bits [15:12]

Reserved, RES0.

WrBurstLen, bits [11:8]

Write Burst Length.

Controls the maximum number of data transfers that can occur within each burst initiated by the
ETR on the bus master interface. This field is a hint to the ETR.

Arm recommends that this value is set to no more than half the write buffer depth. Arm also
recommends that this value is set to enable a burst of at least one frame of trace data.

The possible values of this field are:

0b0000 One data transfer per burst. This is the default.

0b0111 Normal memory, Inner write-back cacheable, transient Read and Write allocate.

0b1000 Normal memory, Inner write-through cacheable, No allocate.

0b1001 Normal memory, Inner write-through cacheable, Write allocate.

0b1010 Normal memory, Inner write-through cacheable, Read allocate.

0b1011 Normal memory, Inner write-through cacheable, Read and Write allocate.

0b1100 Normal memory, Inner write-back cacheable, No allocate.

0b1101 Normal memory, Inner write-back cacheable, Write allocate.

0b1110 Normal memory, Inner write-back cacheable, Read allocate.

0b1111 Normal memory, Inner write-back cacheable, Read and Write allocate.

BAttr[3:0] Meaning

0b0000 Device-nGnRnE.

0b0100 Device-nGnRE.

0b1000 Device-nGRE.

0b1100 Device-GRE.

BAttr[3:0] Meaning
3-38 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
0b0001 Maximum of two data transfers per burst.

0b0010 Maximum of three data transfers per burst.

0b0011 Maximum of four data transfers per burst.

0b0100 Maximum of five data transfers per burst.

0b0101 Maximum of six data transfers per burst.

0b0110 Maximum of seven data transfers per burst.

0b0111 Maximum of eight data transfers per burst.

0b1000 Maximum of nine data transfers per burst.

0b1001 Maximum of ten data transfers per burst.

0b1010 Maximum of eleven data transfers per burst.

0b1011 Maximum of twelve data transfers per burst.

0b1100 Maximum of thirteen data transfers per burst.

0b1101 Maximum of fourteen data transfers per burst.

0b1110 Maximum of fifteen data transfers per burst.

0b1111 No maximum.

Note
 In the CoreSight TMC programming an incompatible burst length results in UNPREDICTABLE

behavior. In the ETR architecture, all values must give predictable behavior as the interpretation is
IMPLEMENTATION DEFINED.

ScatterGatherMode, bit [7]

When DEVID.NOSCAT == 0b0:

Scatter mode. Controls whether trace memory is accessed as a single buffer in system memory or
through a scatter linked-list memory. The possible values of this bit are:

0b0 Trace memory is a single contiguous block of system memory.

0b1 Trace memory is spread over multiple blocks of system memory using a linked-list.

This bit is ignored when in Disabled state.

Otherwise:

Reserved, RES0.

Bit [6]

Reserved, RES0.

BAttr, bits [5:2]

When DEVID.CACHETYPE == 0b0x:

BAttr is a split field that occupies BUSCTL[19:16, 5:2].

Memory type. Defines the type of memory addressed by the buffer when an IMPLEMENTATION
DEFINED bus interface, such as AXI, is implemented. The definition of this field is IMPLEMENTATION
DEFINED. Recommended values for an AXI bus and a fully coherent system are defined. If
DEVID.CACHETYPE == 0b00 and DEVID.NOSCAT == 0b0, then this field applies also to the
scatter table. When AMBA AXI3 bus, the possible values of BAttr[7:0] are:

BAttr Meaning

0b00000000 Non-cacheable , Non-bufferable.

0b00000001 Non-cacheable , Bufferable.

0b00000010 Normal Memory, Cacheable, No-allocate.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-39
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
All other values are reserved.

When AMBA AXI4 bus, if Software Read FIFO and Scatter modes are not implemented, the
possible values of values of BAttr[7:0] are:

All other values are reserved.

When AMBA AXI4 bus, if Software Read FIFO or Scatter modes are implemented, the possible
values of values of BAttr[7:0] are:

0b00000011 Normal Memory, Cacheable and Bufferable, No-allocate.

0b00000110 Normal Memory, Write-through cacheable, Read-allocate.

0b00000111 Normal Memory, Write-back cacheable, Read-allocate.

0b00001010 Normal Memory, Write-through cacheable, Write-allocate.

0b00001011 Normal Memory, Write-back cacheable, Write-allocate.

0b00001110 Normal Memory, Write-through cacheable, Read and Write-allocate.

0b00001111 Normal Memory, Write-back cacheable, Read and Write-allocate.

BAttr Meaning

0b00000000 Device-nGnRnE.

0b00000001 Device-nGnRE.

0b00000010 Normal Memory, Non-cacheable, Non-bufferable.

0b00000011 Normal Memory, Non-Cacheable, Bufferable.

0b00000110 Normal Memory, Write-through cacheable, No-allocate.

0b00000111 Normal Memory, Write-back cacheable, No-allocate.

0b00001110 Normal Memory, Write-through cacheable, Write-allocate.

0b00001111 Normal Memory, Write-back cacheable, Write-allocate.

BAttr Meaning

0b00000000 Device-nGnRnE.

0b00010001 Device-nGnRE.

0b00100010 Normal Memory, Non-cacheable, Non-bufferable.

0b00110011 Normal Memory, Non-Cacheable, Bufferable.

0b10100110 Normal Memory, Write-through cacheable, No-allocate.

0b10101110 Normal Memory, Write-through cacheable, Write-allocate.

0b10110111 Normal Memory, Write-back cacheable, No-allocate.

0b10111111 Normal Memory, Write-back cacheable, Write-allocate.

0b11100110 Normal Memory, Write-through cacheable, Read-allocate.

BAttr Meaning
3-40 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
All other values are reserved.

When Fully coherent system, the possible values of values of BAttr[7:0] are:

All other values are reserved.

If this field is set to a type that this implementation does not support, the behavior is as if set to a
compatible type and this field reads as an UNKNOWN value.

Note
 The recommended AXI bus values match the ARCACHE and AWCACHE encodings on AXI.

On a reset, this field resets to 0.

When DEVID.CACHETYPE == 0b1x:

BAttr is a split field that occupies BUSCTL[19:16, 5:2].

BAttr[7:4] Specifies the outer buffer memory type. Defines the Outer attributes for memory
addressed by the buffer. The possible values of BAttr[7:4] are:

0b11101110 Normal Memory, Write-through cacheable, Read and Write-allocate.

0b11110111 Normal Memory, Write-back cacheable, Read-allocate.

0b11111111 Normal Memory, Write-back cacheable, Read and Write-allocate.

BAttr Meaning

0b00000000 Coherent.

BAttr[7:4] Meaning

0b0000 Device memory. The device memory type is defined by BAttr[3:0].

0b0001 Normal memory, Outer write-through cacheable, transient Write allocate.

0b0010 Normal memory, Outer write-through cacheable, transient Read allocate.

0b0011 Normal memory, Outer write-through cacheable, transient Read and Write allocate.

0b0100 Normal memory, Outer non-cacheable.

0b0101 Normal memory, Outer write-back cacheable, transient Write allocate.

0b0110 Normal memory, Outer write-back cacheable, transient Read allocate.

0b0111 Normal memory, Outer write-back cacheable, transient Read and Write allocate.

0b1000 Normal memory, Outer write-through cacheable, No allocate.

0b1001 Normal memory, Outer write-through cacheable, Write allocate.

0b1010 Normal memory, Outer write-through cacheable, Read allocate.

0b1011 Normal memory, Outer write-through cacheable, Read and Write allocate.

0b1100 Normal memory, Outer write-back cacheable, No allocate.

BAttr Meaning
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-41
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
If this field is set to a type that this implementation does not support, the behavior is as if set to a
compatible type and this field reads as an UNKNOWN value.

This field resets to 0x0.

Note
 The generic encodings match the ARMv8 MAIR register values.

BAttr[3:0] specifies the inner buffer memory type. Defines the Inner attributes for memory
addressed by the buffer.

When BAttr[7:4] != 0b0000 and separate Inner attributes are not supported, the possible values of
BAttr[3:0] are:

All other values are reserved.

When BAttr[7:4] != 0b0000 and separate Inner attributes are supported, the possible values of
BAttr[3:0] are:

0b1101 Normal memory, Outer write-back cacheable, Write allocate.

0b1110 Normal memory, Outer write-back cacheable, Read allocate.

0b1111 Normal memory, Outer write-back cacheable, Read and Write allocate.

BAttr[3:0] Meaning

0b0000 Should be zero.

BAttr[3:0] Meaning

0b0001 Normal memory, Inner write-through cacheable, transient Write allocate.

0b0010 Normal memory, Inner write-through cacheable, transient Read allocate.

0b0011 Normal memory, Inner write-through cacheable, transient Read and Write allocate.

0b0100 Normal memory, Inner non-cacheable.

0b0101 Normal memory, Inner write-back cacheable, transient Write allocate.

0b0110 Normal memory, Inner write-back cacheable, transient Read allocate.

0b0111 Normal memory, Inner write-back cacheable, transient Read and Write allocate.

0b1000 Normal memory, Inner write-through cacheable, No allocate.

0b1001 Normal memory, Inner write-through cacheable, Write allocate.

0b1010 Normal memory, Inner write-through cacheable, Read allocate.

0b1011 Normal memory, Inner write-through cacheable, Read and Write allocate.

0b1100 Normal memory, Inner write-back cacheable, No allocate.

0b1101 Normal memory, Inner write-back cacheable, Write allocate.

0b1110 Normal memory, Inner write-back cacheable, Read allocate.

0b1111 Normal memory, Inner write-back cacheable, Read and Write allocate.

BAttr[7:4] Meaning
3-42 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
All other values are reserved.

When BAttr[7:4] == 0b0000, the possible values of BAttr[3:0] are:

All other values are reserved.

If this field is set to a type that this implementation does not support, the behavior is as if set to a
compatible type and this field reads as an UNKNOWN value.

This field resets to 0x0.

Note
 The generic encodings match the ARMv8 MAIR register values.

Otherwise:

Reserved, RES0.

NS, bit [1]

Secure memory attributes. Defines the Secure attribute for memory addressed by the buffer. The
possible values of this bit are:

0b0 Secure.

0b1 Non-secure.

If the system implements both Secure and Non-secure memory, it is IMPLEMENTATION DEFINED
which of the following is true:

• This field is RES1, and the ETR can only write to Non-secure memory.

• This field is RES0, and the ETR can only write to Secure memory.

• This field is RW, and the ETR can write to either Secure or Non-secure memory based on the
value of this field.

If the system implements only Secure memory, it is IMPLEMENTATION DEFINED which of the
following is true:

• This field is RES0, and the ETR can only write to Secure memory.

• This field is RW, but if the field is set to 1 it is UNKNOWN which of the following occurs:

— The ETR ignores this bit.

— The ETR sets STS.MemErr when a memory access is performed, and does not
perform the access

— The memory system returns an error response to the ETR when a memory access is
performed.

If the system implements only Non-secure memory, it is IMPLEMENTATION DEFINED which of the
following is true:

• This field is RES1, and the ETR can only write to Non-secure memory.

• This field is RW, but if the field is set to 0b0 it is UNKNOWN which of the following occurs:

— The ETR ignores this bit.

BAttr[3:0] Meaning

0b0000 Device-nGnRnE.

0b0100 Device-nGnRE.

0b1000 Device-nGRE.

0b1100 Device-GRE.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-43
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
— The ETR sets STS.MemErr when a memory access is performed, and does not
perform the access.

— The memory system returns an error response to the ETR when a memory access is
performed.

Privileged, bit [0]

Privileged memory attributes. Defines the Privileged attribute for memory addressed by the buffer.
The possible values of this bit are:

0b0 Unprivileged.

0b1 Privileged.

This bit is RES1 if this bit is not supported.

Accessing the BUSCTL:

BUSCTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

Component Offset

ETR 0x110
3-44 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.4 CBUFLEVEL, Current Buffer Fill Level

The CBUFLEVEL characteristics are:

Purpose

The current fill level of the trace memory in 32-bit words.

Usage constraints

The value of this register is UNKNOWN when CTL.TraceCaptEn == 0

Configurations

This register is present only when DEVID.MODES != 0b010. Otherwise, direct accesses to
CBUFLEVEL are RES0.

Attributes

CBUFLEVEL is a 32-bit register.

Field descriptions

The CBUFLEVEL bit assignments are:

Bit [31]

Reserved, RES0.

CBUFLEVEL, bits [30:0]

Current Buffer Fill Level. The current fill level of the trace memory in 32-bit words. This field is
not valid and reads UNKNOWN if any of the following are true:

• MODE.MODE == 0b00, meaning Circular Buffer mode is selected

• CTL.TraceCaptEn == 0, meaning Trace capture is disabled

Accessing the CBUFLEVEL:

CBUFLEVEL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

31

CBUFLEVEL

30 0

RES0

Component Offset

ETR 0x030
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-45
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.5 CIDR0, Component Identification Register 0

The CIDR0 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

CIDR0 is a 32-bit register.

Field descriptions

The CIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

CoreSight component identification preamble. See CoreSight Architecture Specification.

This field reads as 0x0D

Accessing the CIDR0:

CIDR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

PRMBL_0

7 0

Component Offset

ETR 0xFF0
3-46 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.6 CIDR1, Component Identification Register 1

The CIDR1 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

CIDR1 is a 32-bit register.

Field descriptions

The CIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

CoreSight component class. See CoreSight Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]

CoreSight component identification preamble. See CoreSight Architecture Specification.

This field reads as 0x0.

Accessing the CIDR1:

CIDR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

CLASS

7 4

PRMBL_1

3 0

Component Offset

ETR 0xFF4
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-47
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.7 CIDR2, Component Identification Register 2

The CIDR2 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

CIDR2 is a 32-bit register.

Field descriptions

The CIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

CoreSight component identification preamble. See CoreSight Architecture Specification.

This field reads as 0x05.

Accessing the CIDR2:

CIDR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

PRMBL_2

7 0

Component Offset

ETR 0xFF8
3-48 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.8 CIDR3, Component Identification Register 3

The CIDR3 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

CIDR3 is a 32-bit register.

Field descriptions

The CIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

CoreSight component identification preamble. See CoreSight Architecture Specification.

This field reads as 0xB1.

Accessing the CIDR3:

CIDR3 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

PRMBL_3

7 0

Component Offset

ETR 0xFFC
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-49
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.9 CLAIMCLR, Claim Tag Clear Register

The CLAIMCLR characteristics are:

Purpose

In conjunction with CLAIMSET, provides bits that can be separately set and cleared to indicate
whether functionality is in use by a debug agent.

Usage constraints

There are no usage constraints.

Configurations

Some or all RW fields of this register have defined reset values.

Attributes

CLAIMCLR is a 32-bit register.

Field descriptions

The CLAIMCLR bit assignments are:

CLR<m>, bit [31:0], for m = 0 to 31

Claim Tag Clear. Each bit indicates the current status of the claim tag bit, and is used to clear the
relevant claim tag bit.

The defined values of this bit are:

0b0 When Read Claim tag bit not set.

0b1 When Read Claim tag bit set.

0b0 When Written Ignored.

0b1 When Written Clear claim tag bit to 0.

The number of claim tag bits implemented is IMPLEMENTATION DEFINED and indicated in
CLAIMSET. The ETR architecture does not require any claim tag bits to be implemented.

On a reset, this field resets to 0.

Accessing the CLAIMCLR:

CLAIMCLR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

CLR<m>, bit [31:0], for m = 0 to 31

31 0

Component Offset

ETR 0xFA4
3-50 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.10 CLAIMSET, Claim Tag Set Register

The CLAIMSET characteristics are:

Purpose

In conjunction with CLAIMCLR, provides bits that can be separately set and cleared to indicate
whether functionality is in use by a debug agent.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

CLAIMSET is a 32-bit register.

Field descriptions

The CLAIMSET bit assignments are:

SET<m>, bit [31:0], for m = 0 to 31

Claim Tag Set. Each bit indicates whether the claim tag bit is implemented, and is used to set the
relevant claim tag bit.

The defined values of this bit are:

0b0 When Read Claim tag bit not implemented.

0b1 When Read Claim tag bit implemented.

0b0 When Written Ignored.

0b1 When Written Set claim tag bit to 1.

The number of claim tag bits implemented is IMPLEMENTATION DEFINED. The ETR architecture
does not require any claim tag bits to be implemented.

Accessing the CLAIMSET:

CLAIMSET can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

SET<m>, bit [31:0], for m = 0 to 31

31 0

Component Offset

ETR 0xFA0
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-51
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.11 CTL, Control Register

The CTL characteristics are:

Purpose

Controls trace stream capture.

Usage constraints

There are no usage constraints.

Configurations

Some or all RW fields of this register have defined reset values.

Attributes

CTL is a 32-bit register.

Field descriptions

The CTL bit assignments are:

Bits [31:1]

Reserved, RES0.

TraceCaptEn, bit [0]

Trace Capture Enable. Controls trace capture. The possible values of this bit are:

0b0 Trace capture disabled.

0b1 Trace capture enabled.

On a reset, this field resets to 0.

Accessing the CTL:

CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

RES0

31 1 0

TraceCaptEn

Component Offset

ETR 0x020
3-52 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.12 DBA, Data Buffer Address

The DBA characteristics are:

Purpose

Locates the trace buffer in system memory.

Usage constraints

Writes to DBA are UNPREDICTABLE unless the ETR is in the Disabled state.

Configurations

There are no configuration notes.

Attributes

DBA is a 64-bit register.

Field descriptions

The DBA bit assignments are:

Bits [63:56]

Reserved, RES0.

BUFADDR[55:2], bits [55:2]

Buffer Address. Locates the trace buffer in system memory.

Software must set this field to a multiple of both the minimum alignment defined by
DEVID.MEMWIDTH and 4.

Unimplemented most-significant address bits are RES0.

Bits [1:0]

Reserved, RES0.

Accessing the DBA:

DBA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

RES0

63 56

BUFADDR[55:2]

55 2 1 0

RES0

Component Offset

ETR 0x118
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-53
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.13 DEVARCH, Device Architecture Register

The DEVARCH characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

DEVARCH is a 32-bit register.

Field descriptions

The DEVARCH bit assignments are:

When DEVARCH.PRESENT == 1:

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code. The defined values of this field
are:

0b01000111011
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present. The defined values of this bit
are:

0b0 DEVARCH information not present. The rest of the register is RES0.

0b1 DEVARCH information present.

This bit reads as 1.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component. The defined values of this field are:

0b0000 Revision 0 of Version 0 of the ETR Architecture.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component. The defined values of this
field are:

0b0000 Version 0 of the ETR Architecture.

ARCHITECT

31 21 20

REVISION

19 16

ARCHVER

15 12

ARCHPART

11 0

PRESENT
3-54 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
All other values are reserved. Reserved values might be defined in a future version of the
architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHVER is
ARCHID[15:12].

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component. The defined values of this field are:

0xA21 ETR Architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHPART is
ARCHID[11:0].

This field reads as 0xA21.

When DEVARCH.PRESENT == 0:

Bits [31:21]

Reserved, RES0.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present. The defined values of this bit
are:

0b0 DEVARCH information not present. The rest of the register is RES0.

0b1 DEVARCH information present.

This bit reads as 0

Bits [19:0]

Reserved, RES0.

Accessing the DEVARCH:

DEVARCH can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 21 20

RES0

19 0

PRESENT

Component Offset

ETR 0xFBC
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-55
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.14 DEVID, Device Configuration Register

The DEVID characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

DEVID is a 32-bit register.

Field descriptions

The DEVID bit assignments are:

IRQ, bits [31:30]

Interrupt Controls. Defines which interrupt controls are implemented. The defined values of this
field are:

0b00 No interrupt controls implemented. MODE.IRQOnReady, MODE.IRQOnFull,
STS.MSI, and the IRQCR<n> registers are RES0.
The ETR behaves as if MODE.IRQOnFull is 0b1 and MODE.IRQOnReady is 0b0.

Note
 If Software Read FIFO mode 2 is implemented then an interrupt for the Software Read

FIFO mode 2 operation is always implemented, even if this field is set to 0b00.

0b01 Wired interrupt controls implemented. MODE.IRQOnReady and MODE.IRQOnFull
are RW, and STS.MSI and the IRQCR<n> registers are RES0.

0b10 Message-signaled interrupt controls implemented. MODE.IRQOnReady,
MODE.IRQOnFull and the IRQCR<n> registers are RW, and STS.MSI is a RO status
bit.

Other values are Reserved.

IRQ

31 30 29 28

MODES

27 25 24

AW

23 17 16 15 14 13 11 10 8 7 6 5 4 0

CACHETYPE
NOSCAT
AWVALID

ATBINPORTCOUNT
CLKSCHEME
CONFIGTYPE

MEMWIDTH
WBUF_DEPTH

MEMWIDTH
RES0
3-56 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
CACHETYPE, bits [29:28]

When DEVID.CONFIGTYPE == 0b01:

Cacheability Controls. Defines the format of the BUSCTL bus control fields. The defined values of
this field are:

0b00 BUSCTL.{BSH} are not implemented. BUSCTL.BAttr uses an IMPLEMENTATION
DEFINED non-generic format, and applies to both scatter table and buffer accesses.

0b01 BUSCTL.{BSH, BAttr} use an IMPLEMENTATION DEFINED non-generic format.

0b10 BUSCTL.{BSH, BAttr} use a generic format with only Outer attributes.

0b11 BUSCTL.{BSH, BAttr} use a generic format with separate Inner and Outer attributes.

Otherwise:

Reserved, RES0.

MODES, bits [27:25]

When DEVID.CONFIGTYPE == 0b01:

Implemented modes. Indicates which modes, and associated registers, are implemented. The
defined values of this field are:

0b000 Circular Buffer and Software Read FIFO mode 1 implemented. The RRP, RRD,
LBUFLEVEL, CBUFLEVEL and BUFWM registers are all implemented. The RURP
register is not implemented.

0b001 Circular Buffer, Software Read FIFO mode 1, and Software Read FIFO mode 2
implemented. The RRP, RURP, RRD, LBUFLEVEL, CBUFLEVEL and BUFWM
registers are all implemented.

0b010 Circular Buffer mode only. The RRP, RURP, RRD, LBUFLEVEL, CBUFLEVEL and
BUFWM registers are not implemented.

0b011 Circular Buffer and Software Read FIFO mode 2 implemented. The RRP,
LBUFLEVEL, CBUFLEVEL and BUFWM registers are all implemented. The RRD
register is not implemented.

All other values are reserved.

Otherwise:

Reserved, UNKNOWN.

NOSCAT, bit [24]

When DEVID.CONFIGTYPE == 0b01:

No Scatter Mode. Indicates whether Scatter mode is supported. The defined values of this bit are:

0b0 Scatter mode is implemented.

0b1 Scatter mode is not implemented.

Otherwise:

Reserved, RES0.

AW, bits [23:17]

Address Width. Defines the width of the RRP, RURP, RWP and DBA registers. The defined values
of this field are:

0b0000000 Configured as a streaming device.

0b0100000 32 bits.

0b0100100 36 bits.

0b0101000 40 bits.

0b0101100 44 bits.

0b0110000 48 bits.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-57
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
0b0110100 52 bits.

0b0111000 56 bits.

Other values are Reserved.

Only valid if DEVID.AWVALID indicates this field is valid.

AWVALID, bit [16]

Address Width Valid. The defined values of this bit are:

0b0 AW field is not valid.

0b1 AW field is valid.

Bit [15]

Reserved, RES0.

MEMWIDTH, bit [14]

MEMWIDTH is a split field that occupies DEVID[14, 10:8].

Minimum Alignment. This value indicates the required alignment of the RRP, RURP, RWP, DBA,
BUFWM and RSZ registers. The defined values of this field are:

0b0000 No minimum alignment.

0b0001 Minimum alignment is 2 bytes.

0b0010 Minimum alignment is 4 bytes.

0b0011 Minimum alignment is 8 bytes.

0b0100 Minimum alignment is 16 bytes.

0b0101 Minimum alignment is 32 bytes.

0b0110 Minimum alignment is 64 bytes.

0b0111 Minimum alignment is 128 bytes.

0b1000 Minimum alignment is 256 bytes.

0b1001 Minimum alignment is 512 bytes.

0b1010 Minimum alignment is 1024 bytes.

0b1011 Minimum alignment is 2,048 bytes.

All other values are reserved.

• The RRP and RWP address pointers must be aligned to a multiple of the minimum alignment.

• The value written to RURP (if implemented) must be a multiple of the minimum alignment.

• If the trace formatter is not implemented, or not enabled, DBA, BUFWM and RSZ must be
aligned to a multiple of the smaller of 4 bytes and the minimum alignment.

• If the trace formatter is implemented and enabled, DBA, BUFWM and RSZ must be aligned
to a multiple of the smaller of 16 bytes and the minimum alignment.

However, the RSZ register always allows the value 1 (4 bytes), regardless of the minimum
alignment.

Note
 The BUFWM and RSZ registers always specify a number of 32-bit words.

WBUF_DEPTH, bits [13:11]

Write Buffer Depth. Indicates, in powers of two, the number of entries in the Write buffer. Each
entry is of size MEMWIDTH. The defined values of this field are:

0b000 IMPLEMENTATION DEFINED.

0b010 Depth of the Write buffer is 4 entries.

0b011 Depth of the Write buffer is 8 entries.
3-58 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
0b100 Depth of the Write buffer is 16 entries.

0b101 Depth of the Write buffer is 32 entries.

Other values are Reserved.

MEMWIDTH, bits [10:8]

MEMWIDTH is a split field that occupies DEVID[14, 10:8].

Minimum Alignment. This value indicates the required alignment of the RRP, RURP, RWP, DBA,
BUFWM and RSZ registers. The defined values of this field are:

0b0000 No minimum alignment.

0b0001 Minimum alignment is 2 bytes.

0b0010 Minimum alignment is 4 bytes.

0b0011 Minimum alignment is 8 bytes.

0b0100 Minimum alignment is 16 bytes.

0b0101 Minimum alignment is 32 bytes.

0b0110 Minimum alignment is 64 bytes.

0b0111 Minimum alignment is 128 bytes.

0b1000 Minimum alignment is 256 bytes.

0b1001 Minimum alignment is 512 bytes.

0b1010 Minimum alignment is 1024 bytes.

0b1011 Minimum alignment is 2,048 bytes.

All other values are reserved.

• The RRP and RWP address pointers must be aligned to a multiple of the minimum alignment.

• The value written to RURP (if implemented) must be a multiple of the minimum alignment.

• If the trace formatter is not implemented, or not enabled, DBA, BUFWM and RSZ must be
aligned to a multiple of the smaller of 4 bytes and the minimum alignment.

• If the trace formatter is implemented and enabled, DBA, BUFWM and RSZ must be aligned
to a multiple of the smaller of 16 bytes and the minimum alignment.

However, the RSZ register always allows the value 1 (4 bytes), regardless of the minimum
alignment.

Note
 The BUFWM and RSZ registers always specify a number of 32-bit words.

CONFIGTYPE, bits [7:6]

Configuration Type. This value indicates TMC configuration types. The defined values of this field
are:

0b00 ETB.

0b01 ETR.

0b10 ETF.

This field reads as 0b01.

CLKSCHEME, bit [5]

Reserved. This field is RES0.

ATBINPORTCOUNT, bits [4:0]

Reserved. This field is RES0.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-59
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
Accessing the DEVID:

DEVID can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

Component Offset

ETR 0xFC8
3-60 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.15 DEVID1, Device Configuration Register 1

The DEVID1 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

DEVID1 is a 32-bit register.

Field descriptions

The DEVID1 bit assignments are:

Bits [31:1]

Reserved, RES0.

RMC, bit [0]

Register Management Configuration mode.

The defined values of this bit are:

0b0 Register Management Configuration mode is IMPLEMENTATION DEFINED. Some
registers values might be automatically managed when entering or leaving the Disabled
state.

0b1 Register Management Configuration mode 1. Registers behave as defined in this
architecture specification.

All implementations compliant to this specification implement Register Management Configuration
mode 1, however some implementations which are compliant to this specification might have this
field set to 0. Arm recommends that all implementations compliant to this specification set this field
to 1.

Accessing the DEVID1:

DEVID1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 1 0

RMC

Component Offset

ETR 0xFC4
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-61
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.16 DEVTYPE, CoreSight Device Type Register

The DEVTYPE characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

DEVTYPE is a 32-bit register.

Field descriptions

The DEVTYPE bit assignments are:

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

The defined values of this field are:

0b0010 ETR or ETB.

0b0011 ETF.

This field reads as 0x2.

MAJOR, bits [3:0]

The defined values of this field are:

0b0001 ETR or ETB.

0b0010 ETF.

This field reads as 0x1.

Accessing the DEVTYPE:

DEVTYPE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

SUB

7 4

MAJOR

3 0

Component Offset

ETR 0xFCC
3-62 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.17 FFCR, Formatter and Flush Control Register

The FFCR characteristics are:

Purpose

Controls the formatter.

Usage constraints

There are no usage constraints.

Configurations

Some or all RW fields of this register have defined reset values.

Attributes

FFCR is a 32-bit register.

Field descriptions

The FFCR bit assignments are:

When FFSR.FtNotPresent == 0:

Bits [31:16]

Reserved, RES0.

EmbedFlush, bit [15]

Embed flush completion packet. The possible values of this bit are:

0b0 Disabled.

0b1 Embed a flush immediately following the last data byte after a flush completes.

An embedded flush consists of a single zero data byte with a trace ID of 0x7B.

This bit is ignored by the ETR when FFCR.EnFmt == 0b00, meaning the formatter is in Bypass
mode.

On a reset, this field resets to 0.

RES0

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EnFmt
RES0

FOnFlIn
FOnTrigEvt

FlushMan
RES0

TrigOnTrigIn
TrigOnTrigEvt

TrigOnFl
RES0

StopOnFl
StopOnTrigEvt

RES0
EmbedFlush
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-63
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
Bit [14]

Reserved, RES0.

StopOnTrigEvt, bit [13]

Stop On Trigger Event. The possible values of this bit are:

0b0 Disabled.

0b1 Stop the formatter when a Trigger Event has been observed.

A Trigger Event occurs when TRG decrements to zero.

Enabling the ETR with this bit set to 1 is UNPREDICTABLE when MODE.MODE != 0b00 (Circular
Buffer).

On a reset, this field resets to 0.

StopOnFl, bit [12]

Stop On Flush. The possible values of this bit are:

0b0 Disabled.

0b1 Stop the formatter on a Flush Completion.

On a reset, this field resets to 0.

Bit [11]

Reserved, RES0.

TrigOnFl, bit [10]

Trigger On Flush. The possible values of this bit are:

0b0 Disabled.

0b1 Embed a trigger on a Flush Completion.

An embedded trigger consists of a single zero data byte with a trace ID of 0x7D.

This bit is ignored by the ETR when FFCR.EnFmt == 0b00, meaning the formatter is in Bypass
mode.

On a reset, this field resets to 0.

TrigOnTrigEvt, bit [9]

Trigger On Trigger Event. The possible values of this bit are:

0b0 Disabled.

0b1 Insert an Embedded Trigger on a Trigger Event.

A Trigger Event occurs when TRG decrements to zero.

An Embedded Trigger consists of a single zero data byte with a trace ID of 0x7D.

Enabling the ETR with this bit set to 1 is UNPREDICTABLE when MODE.MODE != 0b00 (Circular
Buffer).

This bit is ignored by the ETR when FFCR.EnFmt == 0b00, meaning the formatter is in Bypass
mode.

On a reset, this field resets to 0.

TrigOnTrigIn, bit [8]

Trigger On TRIGIN. The possible values of this bit are:

0b0 Disabled.

0b1 Insert an Embedded Trigger on assertion of the IMPLEMENTATION DEFINED TRIGIN
signal.

An Embedded Trigger consists of a single zero data byte with a trace ID of 0x7D.

It is IMPLEMENTATION DEFINED whether this bit is R/W or RAO. If the TRIGIN signal is not
supported, this field is RES0.
3-64 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
This bit is ignored by the ETR when FFCR.EnFmt == 0b00, meaning the formatter is in Bypass
mode.

Note
 If an Embedded Cross Trigger is implemented, Arm recommends that the TRIGIN signal is

implemented and connected to a CTI output trigger.

On a reset, this field resets to 0.

Bit [7]

Reserved, RES0.

FlushMan, bit [6]

Manually Generate Flush.

0b0 When Read Manual flush not in progress.

0b1 When Read Manual flush in progress.

0b0 When Written Ignored.

0b1 When Written Cause a Detected Flush.

This bit ignores writes if CTL.TraceCaptEn == 0.

On a reset, this field resets to 0.

FOnTrigEvt, bit [5]

Flush On Trigger Event. The possible values of this bit are:

0b0 Disabled.

0b1 Cause a Detected Flush when a Trigger Event occurs.

A Trigger Event occurs when TRG decrements to zero.

Enabling the ETR with this bit set to 1 is UNPREDICTABLE when MODE.MODE != 0b00 (Circular
Buffer).

This bit is ignored by the ETR when FFCR.StopOnTrigEvt == 1.

On a reset, this field resets to 0.

FOnFlIn, bit [4]

Flush On FLUSHIN. The possible values of this bit are:

0b0 Disabled.

0b1 Cause a Detected Flush on assertion of the IMPLEMENTATION DEFINED FLUSHIN
signal, if the formatter is not already stopped.

On a reset, this field resets to 0.

Bits [3:2]

Reserved, RES0.

EnFmt, bits [1:0]

Formatter control. Selects the output formatting mode. The possible values of this field are:

0b00 Bypass. Disable formatting. Trace data on reserved trace IDs other than 0x00 is
discarded.

0b01 Normal. Enable formatting but do not embed triggers in the formatted output.

0b10 Reserved. The ETR behaves as 0b11, and the value read back from this field is
UNKNOWN.

0b11 Continuous. Enable formatting and embed triggers in the formatted output.

It is IMPLEMENTATION DEFINED whether Normal mode is supported.

It is IMPLEMENTATION DEFINED whether Continuous mode is supported.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-65
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
When the formatter is implemented, at least one of Normal or Continuous modes are implemented.

Changing the value of this bit when not in the Disabled state is UNPREDICTABLE.

This field resets to 0.

When FFSR.FtNotPresent == 1:

Bits [31:16]

Reserved, RES0.

Bit [15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

StopOnTrigEvt, bit [13]

Stop On Trigger Event. The possible values of this bit are:

0b0 Disabled.

0b1 Stop the formatter when a Trigger Event has been observed.

A Trigger Event occurs when TRG decrements to zero.

Enabling the ETR with this bit set to 1 is UNPREDICTABLE when MODE.MODE != 0b00 (Circular
Buffer).

On a reset, this field resets to 0.

StopOnFl, bit [12]

Stop On Flush. The possible values of this bit are:

0b0 Disabled.

0b1 Stop the formatter on a Flush Completion.

On a reset, this field resets to 0.

Bit [11]

Reserved, RES0.

Bits [10:8]

Reserved, RES0.

RES0

31 16 15 14 13 12 11

RES0

10 8 7 6 5 4 3 2 1 0

RES0
RES0

FOnFIIn
FOnTrigEvt

FlushMan
RES0
RES0

StopOnFI
StopOnTrigEvt

RES0
RES0
3-66 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
Bit [7]

Reserved, RES0.

FlushMan, bit [6]

Manually Generate Flush.

0b0 When Read Manual flush not in progress.

0b1 When Read Manual flush in progress.

0b0 When Written Ignored.

0b1 When Written Cause a Detected Flush.

This bit ignores writes if CTL.TraceCaptEn == 0.

On a reset, this field resets to 0.

FOnTrigEvt, bit [5]

Flush On Trigger Event. The possible values of this bit are:

0b0 Disabled.

0b1 Cause a Detected Flush when a Trigger Event occurs.

A Trigger Event occurs when TRG decrements to zero.

Enabling the ETR with this bit set to 1 is UNPREDICTABLE when MODE.MODE != 0b00 (Circular
Buffer).

This bit is ignored by the ETR when FFCR.StopOnTrigEvt == 1.

On a reset, this field resets to 0.

FOnFlIn, bit [4]

Flush On FLUSHIN. The possible values of this bit are:

0b0 Disabled.

0b1 Cause a Detected Flush on assertion of the IMPLEMENTATION DEFINED FLUSHIN
signal, if the formatter is not already stopped.

On a reset, this field resets to 0.

Bits [3:2]

Reserved, RES0.

Bits [1:0]

Reserved, RES0.

Accessing the FFCR:

FFCR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

Component Offset

ETR 0x304
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-67
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.18 FFSR, Formatter and Flush Status Register

The FFSR characteristics are:

Purpose

Shows the status and capabilities of the formatter.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

FFSR is a 32-bit register.

Field descriptions

The FFSR bit assignments are:

Bits [31:6]

Reserved, RES0.

BypassNoPad, bit [5]

No padding in Bypass. Indicates whether the ETR inserts the Stop Sequence when trace is disabled
and Bypass mode is selected. The defined values of this bit are:

0b0 ETR inserts the Stop Sequence at end of trace in Bypass mode.

0b1 ETR does not insert the Stop Sequence at end of trace in Bypass mode.

If the ETR does not insert the Stop Sequence, the trace source must ensure that the trace buffer is
aligned to a multiple of DEVID.MEMWIDTH when trace is disabled.

This bit reads-as-zero if the formatter is implemented and cannot be stopped.

FtNotPresent, bit [4]

Formatter not present. Indicates the presence of the formatter. The defined values of this bit are:

0b0 Formatter is implemented.

0b1 Formatter is not implemented.

The formatter must be implemented if the ETR supports multiple trace sources.

FtNonStop, bit [3]

Non-stop. Indicates the trace cannot be stopped. The defined values of this bit are:

0b0 Formatter can be stopped.

0b1 Formatter cannot be stopped.

RES0

31 6 5 4 3 2 1 0

FInProg
FtStopped
TCPresent
FtNonStop

FtNotPresent
BypassNoPad
3-68 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
The ETR can always be stopped.

This bit reads as zero.

TCPresent, bit [2]

TRACECTL present. Indicates the presence of the TRACECTL pin.

The ETR does not include a trace port and so never implements a TRACECTL pin.

This bit reads as zero.

FtStopped, bit [1]

Formatter stopped. The defined values of this bit are:

0b0 Formatter is enabled.

0b1 The formatter has received a stop request signal and all trace data and post-amble has
been output. Any further trace data is ignored.

This bit reads-as-zero if any of the following are true:

• The formatter is not implemented.

• The formatter cannot be stopped.

FInProg, bit [0]

Flush in progress. Set to one when a Detected Flush occurs and clears to zero on a Flush
Completion. A Flush Completion occurs when all data received before the flush is acknowledged
has been output to the trace buffer.

Accessing the FFSR:

FFSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

Component Offset

ETR 0x300
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-69
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.19 IRQCR0, Interrupt Configuration Register

The IRQCR0 characteristics are:

Purpose

Interrupt configuration register.

Usage constraints

Writes to IRQCR0 are UNPREDICTABLE unless the ETR is in the Disabled state and STS.MSI is 0.

Configurations

Present only if message-signaled interrupts are implemented. RES0 otherwise.

Attributes

IRQCR0 is a 64-bit register.

Field descriptions

The IRQCR0 bit assignments are:

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address. Specifies the address that ETR writes to when signaling an
interrupt.

The size of a physical address is IMPLEMENTATION DEFINED. Unimplemented high-order physical
address bits are RES0.

Bits [1:0]

Reserved, RES0.

Accessing the IRQCR0:

IRQCR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

RES0

63 56

ADDR

55 2 1 0

RES0

Component Offset

ETR 0xE80
3-70 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.20 IRQCR1, Interrupt Configuration Register 1

The IRQCR1 characteristics are:

Purpose

Interrupt configuration register.

Usage constraints

Writes to IRQCR1 are UNPREDICTABLE unless the ETR is in the Disabled state and STS.MSI is 0.

Configurations

Present only if message-signaled interrupts are implemented. RES0 otherwise.

Attributes

IRQCR1 is a 32-bit register.

Field descriptions

The IRQCR1 bit assignments are:

DATA, bits [31:0]

Payload for a message signaled interrupt.

Accessing the IRQCR1:

IRQCR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

DATA

31 0

Component Offset

ETR 0xE88
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-71
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.21 IRQCR2, Interrupt Configuration Register 2

The IRQCR2 characteristics are:

Purpose

Interrupt configuration register.

Usage constraints

Writes to IRQCR2 are UNPREDICTABLE unless the ETR is in the Disabled state and STS.MSI is 0.

Configurations

Present only if message-signaled interrupts are implemented. RES0 otherwise.

Attributes

IRQCR2 is a 32-bit register.

Field descriptions

The IRQCR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

MSIEN, bit [7]

Message signaled interrupt enable. Enables generation of message signaled interrupts.

The possible values of this bit are:

0b0 Disabled.

0b1 Enabled.

NSMSI, bit [6]

Non-secure. Defines the physical address space for message signaled interrupts. The possible values
of this bit are:

0b0 Secure.

0b1 Non-secure.

If the ETR supports both Secure and Non-secure message signaled interrupts, this field is RW, and
the MSI is Secure or Non-secure based on the value of this field.

If the ETR supports only Secure message signaled interrupts, this field is RES0, and the MSI is
Secure.

If the ETR supports only Non-secure message signaled interrupts, this field is RES0, and the MSI is
Non-secure.

If Invasive debug is disabled, message signaled interrupts are not generated.

If Secure Invasive debug is disabled, Secure message signaled interrupts are not generated.

RES0

31 8 7 6

SH

5 4

MemAttr

3 0

NSMSI
MSIEN
3-72 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
SH, bits [5:4]

Shareability. Defines the shareability domain for message signaled interrupts. The possible values
of this field are:

0b00 Not shared.

0b10 Outer shareable.

0b11 Inner shareable.

This field is RES0 if the ETR does not support configuring the shareability domain, meaning
shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

Memory type. Defines the memory type for message signaled interrupts. The possible values of this
field are:

0b0000 Device-nGnRnE.

0b0001 Device-nGnRE.

0b0010 Device-nGRE.

0b0011 Device-GRE.

0b0101 Outer Non-cacheable, Inner Non-cacheable.

0b0110 Outer Non-cacheable, Inner Write-through Cacheable.

0b0111 Outer Non-cacheable, Inner Write-back Cacheable.

0b1001 Outer Write-through Cacheable, Inner Non-cacheable.

0b1010 Outer Write-through Cacheable, Inner Write-through Cacheable.

0b1011 Outer Write-through Cacheable, Inner Write-back Cacheable.

0b1101 Outer Write-back Cacheable, Inner Non-cacheable.

0b1110 Outer Write-back Cacheable, Inner Write-through Cacheable.

0b1111 Outer Write-back Cacheable, Inner Write-back Cacheable.

This field is RES0 if the ETR does not support configuring the memory type, meaning the memory
type used for message signaled interrupts is IMPLEMENTATION DEFINED.

Note
 This is the same format as the VMSAv8-64 stage 2 memory region attributes.

Accessing the IRQCR2:

IRQCR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

Component Offset

ETR 0xE8C
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-73
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.22 ITCTRL, Integration Mode Control Register

The ITCTRL characteristics are:

Purpose

A component can use this register to switch between functional mode and integration mode.

Usage constraints

There are no usage constraints.

Configurations

Some or all RW fields of this register have defined reset values.

Attributes

ITCTRL is a 32-bit register.

Field descriptions

The ITCTRL bit assignments are:

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration Mode Enable. The values of this bit are:

0b0 Functional mode.

0b1 Integration mode.

Support for integration mode is optional. If no integration mode is implemented, this field is RES0.

After switching to integration mode and performing integration tests or topology detection, reset the
system to ensure correct behavior of CoreSight and other connected system components.

On a reset, this field resets to 0.

Accessing the ITCTRL:

ITCTRL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

RES0

31 1 0

IME

Component Offset

ETR 0xF00
3-74 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.23 LAR, Lock Access Register

The LAR characteristics are:

Purpose

Used to lock and unlock the software lock.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

LAR is a 32-bit register.

Field descriptions

The LAR bit assignments are:

KEY, bits [31:0]

Software Lock Key. Writes to this register are ignored.

Accessing the LAR:

LAR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is WO.

KEY

31 0

Component Offset

ETR 0xFB0
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-75
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.24 LBUFLEVEL, Latched Buffer Fill Level

The LBUFLEVEL characteristics are:

Purpose

The maximum fill level of the trace memory in 32-bit words since the register was last read.

Usage constraints

There are no usage constraints.

Configurations

Present only if Software Read FIFO modes 1 or 2 are implemented. RES0 otherwise.

Attributes

LBUFLEVEL is a 32-bit clears-to-zero-after-read memory-mapped register (RC).

Field descriptions

The LBUFLEVEL bit assignments are:

Bit [31]

Reserved, RES0.

LBUFLEVEL, bits [30:0]

Latched Buffer Fill Level. The maximum fill level of the trace memory in 32-bit words since the
register was last read.

This field is cleared to zero:

• After being read, if CTL.TraceCaptEn == 1

• On exiting the Disabled state.

This field is not valid and reads UNKNOWN if MODE.MODE == 0b00, meaning Circular Buffer
mode is selected.

Accessing the LBUFLEVEL:

LBUFLEVEL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RC.

31

LBUFLEVEL

30 0

RES0

Component Offset

ETR 0x02C
3-76 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.25 LSR, Lock Status Register

The LSR characteristics are:

Purpose

Indicates whether the software lock is implemented, and the current status of the software lock.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

LSR is a 32-bit register.

Field descriptions

The LSR bit assignments are:

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

This field is always zero. This bit reads as zero.

SLK, bit [1]

This field is used to indicate the current software lock status. The defined values of this bit are:

0b0 Software lock is not locked. Writing to the other registers in the ETR is permitted.

0b1 Software lock is locked. Writing to the other registers in the ETR except the LAR is
blocked.

This bit reads as zero.

SLI, bit [0]

This field is used to indicate whether the software lock is implemented. The defined values of this
bit are:

0b0 Software lock is not implemented. Writes to the LAR are ignored.

0b1 Software lock is implemented.

This bit reads as zero.

RES0

31 3 2 1 0

SLI
SLK
nTT
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-77
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
Accessing the LSR:

LSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

Component Offset

ETR 0xFB4
3-78 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.26 MODE, Mode Register

The MODE characteristics are:

Purpose

Controls ETR operating mode and buffer interrupt generation.

Usage constraints

Always implemented.

Configurations

There are no configuration notes.

Attributes

MODE is a 32-bit register.

Field descriptions

The MODE bit assignments are:

When DEVID.IRQ != 0b00:

Bits [31:7]

Reserved, RES0.

IRQOnReady, bit [6]

Interrupt on Ready. Controls buffer interrupt generation when the ETR is in the Stopped state. The
possible values of this bit are:

0b0 No interrupt generated.

0b1 Buffer interrupt generated when the ETR enters the Stopped state.

The buffer interrupt is generated when CTL.TraceCaptEn == 1 and:

• If the interrupt is message-signaled or edge-triggered, when STS.TMCReady changes from
0 to 1.

• If the interrupt is level-sensitive, while STS.TMCReady == 1.

Writes to MODE must not change this bit while STS.MSI == 1.

IRQOnFull, bit [5]

Interrupt on Full. Controls buffer interrupt generation when STS.Full == 1. The possible values of
this bit are:

0b0 No interrupt generated.

0b1 Buffer interrupt generated when STS.Full becomes set to 1.

The buffer interrupt is generated when the ETR is not in the Disabled state and:

• If the interrupt is message-signaled or edge-triggered, when STS.Full changes from 0 to 1.

RES0

31 7 6 5 4 3 2 1 0

MODE
RES0

StallOnStop
IRQOnFull

IRQOnReady
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-79
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
• If the interrupt is level-sensitive, while STS.Full == 1.

Writes to MODE must not change this bit while STS.MSI == 1.

StallOnStop, bit [4]

Stall trace input when formatter stops. The possible values of this bit are:

0b0 Discard trace when in the Stopped or Disabled states.

0b1 Do not discard trace when in the Stopped or Disabled states.

Setting this bit to 1 might avoid loss of trace while reprogramming the ETR. However, this cannot
be guaranteed because the trace source might start discarding trace if it cannot stop generating trace
and there is not sufficient storage for it.

Support for this bit is IMPLEMENTATION DEFINED. When not implemented, this field is RES0 and the
ETR behaves as if the bit is 0.

Bits [3:2]

Reserved, RES0.

MODE, bits [1:0]

Mode. Selects the operating mode. The possible values of this field are:

0b00 Circular Buffer mode.

0b01 Software Read FIFO mode 1.

0b11 Software Read FIFO mode 2. The buffer interrupt signal is asserted when the trace
memory fill level (RWP - RRP) crosses the programmed watermark level (RSZ -
BUFWM). If the buffer interrupt is level-sensitive it stays asserted until the fill level
drop below the watermark. The buffer interrupt is enabled regardless of the value of the
MODE.IRQOnReady and MODE.IRQOnFull bits.

All other values are reserved. If DEVID.MODES<0> == 0, the value 0b11 is reserved. If
DEVID.MODES<1> == 1, the value 0b01 is reserved. If this field is programmed with a reserved
value, the ETR behaves as if this field has a defined value, other than for a direct read of the register.
Software must not rely on the behavior of reserved values, as they might change in a future version
of the architecture.

When DEVID.IRQ == 0b00:

Bits [31:7]

Reserved, RES0.

Bit [6]

Reserved, RES0.

Bit [5]

Reserved, RES0.

RES0

31 7 6 5 4 3 2 1 0

MODE
RES0

StallOnStop
RES0
RES0
3-80 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
StallOnStop, bit [4]

Interrupt on Full. Controls buffer interrupt generation when STS.Full == 1. The possible values of
this bit are:

0b0 Discard trace when in the Stopped or Disabled states.

0b1 Do not discard trace when in the Stopped or Disabled states.

Setting this bit to 1 might avoid loss of trace while reprogramming the ETR. However, this cannot
be guaranteed because the trace source might start discarding trace if it cannot stop generating trace
and there is not sufficient storage for it. Support for this bit is IMPLEMENTATION DEFINED. When not
implemented, this field is RES0 and the ETR behaves as if the bit is 0.

Bits [3:2]

Reserved, RES0.

MODE, bits [1:0]

Mode. Selects the operating mode. The possible values of this field are:

0b00 Circular Buffer mode.

0b01 Software Read FIFO mode 1.

0b11 Software Read FIFO mode 2. The buffer interrupt signal is asserted when the trace
memory fill level (RWP - RRP) crosses the programmed watermark level (RSZ -
BUFWM). If the buffer interrupt is level-sensitive it stays asserted until the fill level
drop below the watermark.

All other values are reserved. If DEVID.MODES<0> == 0, the value 0b11 is reserved. If
DEVID.MODES<1> == 1, the value 0b01 is reserved. If this field is programmed with a reserved
value, the ETR behaves as if this field has a defined value, other than for a direct read of the register.
Software must not rely on the behavior of reserved values, as they might change in a future version
of the architecture.

Accessing the MODE:

MODE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

Component Offset

ETR 0x028
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-81
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.27 PIDR0, Peripheral Identification Register

The PIDR0 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

PIDR0 is a 32-bit register.

Field descriptions

The PIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number bits [7:0]. See CoreSight Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the PIDR0:

PIDR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

PART_0

7 0

Component Offset

ETR 0xFE0
3-82 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.28 PIDR1, Peripheral Identification Register

The PIDR1 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

PIDR1 is a 32-bit register.

Field descriptions

The PIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

JEP106 identification code bits [3:0]. See CoreSight Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]

Part number bits [11:8]. See CoreSight Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the PIDR1:

PIDR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

DES_0

7 4

PART_1

3 0

Component Offset

ETR 0xFE4
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-83
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.29 PIDR2, Peripheral Identification Register

The PIDR2 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

PIDR2 is a 32-bit register.

Field descriptions

The PIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. See CoreSight Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC assignee value is used. See CoreSight Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]

JEP106 identification code bits [6:4]. See CoreSight Architecture Specification.

Accessing the PIDR2:

PIDR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

REVISION

7 4 3

DES_1

2 0

JEDEC

Component Offset

ETR 0xFE8
3-84 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.30 PIDR3, Peripheral Identification Register

The PIDR3 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

PIDR3 is a 32-bit register.

Field descriptions

The PIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

RevAnd. See CoreSight Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

Customer Modified. See CoreSight Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the PIDR3:

PIDR3 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

REVAND

7 4

CMOD

3 0

Component Offset

ETR 0xFEC
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-85
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.31 PIDR4, Peripheral Identification Register

The PIDR4 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

PIDR4 is a 32-bit register.

Field descriptions

The PIDR4 bit assignments are:

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

4KB count. See CoreSight Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]

JEP106 continuation code. See CoreSight Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the PIDR4:

PIDR4 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 8

SIZE

7 4

DES_2

3 0

Component Offset

ETR 0xFD0
3-86 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.32 PIDR5, Peripheral Identification Register

The PIDR5 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

PIDR5 is a 32-bit register.

Field descriptions

The PIDR5 bit assignments are:

Bits [31:0]

Reserved, RES0.

Accessing the PIDR5:

PIDR5 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 0

Component Offset

ETR 0xFD4
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-87
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.33 PIDR6, Peripheral Identification Register

The PIDR6 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

PIDR6 is a 32-bit register.

Field descriptions

The PIDR6 bit assignments are:

Bits [31:0]

Reserved, RES0.

Accessing the PIDR6:

PIDR6 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 0

Component Offset

ETR 0xFD8
3-88 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.34 PIDR7, Peripheral Identification Register

The PIDR7 characteristics are:

Purpose

Provides CoreSight discovery information.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

PIDR7 is a 32-bit register.

Field descriptions

The PIDR7 bit assignments are:

Bits [31:0]

Reserved, RES0.

Accessing the PIDR7:

PIDR7 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RES0

31 0

Component Offset

ETR 0xFDC
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-89
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.35 PSCR, Periodic Synchronization Control Register

The PSCR characteristics are:

Purpose

Defines the reload value for the periodic Synchronization Counter register. The Synchronization
Counter decrements for each byte that is output, and, on reaching zero, forces completion of the
current formatter frame if the formatter is implemented and enabled.

Usage constraints

Writes to PSCR are UNPREDICTABLE unless the ETR is in the Disabled state.

Configurations

Some or all RW fields of this register have defined reset values.

Implementation of this register is OPTIONAL.

Attributes

PSCR is a 32-bit register.

Field descriptions

The PSCR bit assignments are:

Bits [31:6]

Reserved, RES0.

EmbedSync, bit [5]

When FFSR.FtNotPresent == 0b0:

Embed Frame Sync Packet in the trace stream. Enables the formatter to insert frame synchronization
packets in the trace stream at periodic intervals. The possible values of this bit are:

0b0 Do not insert frame sync packet.

0b1 If the Synchronization Counter is enabled, the formatter inserts a 32-bit frame sync
packet in the trace stream when the counter reaches 0.

This field is optional and when not implemented is RAZ.

This bit is ignored by the ETR when FFCR.EnFmt == 0b00, meaning the formatter is in Bypass
mode.

Otherwise:

Reserved, RES0.

PSCount, bits [4:0]

Determines the reload value of the Synchronization Counter. The reload value takes effect the next
time the counter reaches zero. Reads from this register return the reload value programmed into this
register. The possible values of this field are:

0b00000 Synchronization disabled.

0b00111 128 bytes.

0b01000 256 bytes.

RES0

31 6 5

PSCount

4 0

EmbedSync
3-90 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
0b01001 512 bytes.

0b01010 1024 bytes.

0b01011 2 to the power of 11 bytes.

0b01100 2 to the power of 12 bytes.

0b01101 2 to the power of 13 bytes.

0b01110 2 to the power of 14 bytes.

0b01111 2 to the power of 15 bytes.

0b10000 2 to the power of 16 bytes.

0b10001 2 to the power of 17 bytes.

0b10010 2 to the power of 18 bytes.

0b10011 2 to the power of 19 bytes.

0b10100 2 to the power of 20 bytes.

0b10101 2 to the power of 21 bytes.

0b10110 2 to the power of 22 bytes.

0b10111 2 to the power of 23 bytes.

0b11000 2 to the power of 24 bytes.

0b11001 2 to the power of 25 bytes.

0b11010 2 to the power of 26 bytes.

0b11011 2 to the power of 27 bytes.

0b11100 2 to the power of 28 bytes.

0b11101 2 to the power of 29 bytes.

0b11110 2 to the power of 30 bytes.

0b11111 2 to the power of 31 bytes.

All other values are reserved. If this field is programmed with a reserved value, the ETR behaves as
if this field has a defined value, other than for a direct read of the register. Software must not rely
on the behavior of reserved values, as they might change in a future version of the architecture.

The Synchronization Counter might have a maximum value smaller than 2 to the power of 31. In
this case, if the programmed reload value is greater than the maximum value, then the
Synchronization Counter is reloaded with its maximum value.

This field is optional and when not implemented is RAZ, and synchronization requests are not
implemented.

This field resets to 0x0A.

Accessing the PSCR:

PSCR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

Component Offset

ETR 0x308
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-91
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.36 RRD, RAM Read Data register

The RRD characteristics are:

Purpose

Reads data from the trace memory.

Usage constraints

There are no usage constraints.

Configurations

Present only if Software Read FIFO mode 1 is implemented. RES0 otherwise.

Attributes

RRD is a 32-bit register.

Field descriptions

The RRD bit assignments are:

RRD, bits [31:0]

RAM Read Data.

Returns read data from trace memory. If STS.MemErr == 1, a read returns an error response.

Returns the contents of the memory at the location addressed by the RRP register, and the RRP
register is incremented by 4, if any of:

• CTL.TraceCaptEn == 0 and STS.TMCReady == 1

• MODE.MODE == 0b00 (Circular Buffer), CTL.TraceCaptEn == 1, the trace buffer is not
empty, and STS.TMCReady == 1

• MODE.MODE == 0b01 (Software Read FIFO 1), the trace buffer is not empty, and either
CTL.TraceCaptEn == 1 or STS.TMCReady == 0

Otherwise returns 0xFFFFFFFF and RRP is unchanged.

Accessing the RRD:

RRD can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RO.

RRD

31 0

Component Offset

ETR 0x010
3-92 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.37 RRP, RAM Read Pointer

The RRP characteristics are:

Purpose

The read pointer used to read entries from trace buffer through RRD.

Usage constraints

Writes to RRP are UNPREDICTABLE unless the ETR is in the Disabled state.

Configurations

Present only if Software Read FIFO modes 1 or 2 are implemented. RES0 otherwise.

Attributes

RRP is a 64-bit register.

Field descriptions

The RRP bit assignments are:

Bits [63:56]

Reserved, RES0.

RRP, bits [55:0]

RAM Read Pointer.

When initializing this field, software must write a value that is aligned to the minimum alignment
defined by DEVID.MEMWIDTH. When saving and restoring this field, software must preserve all
bits.

Unimplemented most-significant address bits are RES0.

Accessing the RRP:

RRP[31:0] can be accessed through its memory-mapped interface:

RRP[63:32] can be accessed through its memory-mapped interface:

These interfaces are accessible as follows:

• Access to RRP[31:0] is RW.

• Access to RRP[63:32] is RW.

RES0

63 56

RRP

55 0

Component Offset Range

ETR 0x014 31:0

Component Offset Range

ETR 0x038 63:32
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-93
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.38 RSZ, RAM Size Register

The RSZ characteristics are:

Purpose

Defines the size, in 32-bit words, of the trace buffer.

Usage constraints

Writes to RSZ are UNPREDICTABLE unless the ETR is in the Disabled state.

Configurations

There are no configuration notes.

Attributes

RSZ is a 32-bit register.

Field descriptions

The RSZ bit assignments are:

Bit [31]

Reserved, RES0.

Size, bits [30:0]

Size. Size of the trace buffer in 32-bit words.

Values greater than 0x40000000 (4GB) are reserved.

Software must set this field to either 1 or a multiple of the minimum alignment defined by
DEVID.MEMWIDTH divided by 4.

If this field is set to 1, the ETR writes all trace in single writes to the same location. Each write writes
DEVID.MEMWIDTH bytes.

Accessing the RSZ:

RSZ can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

31

Size

30 0

RES0

Component Offset

ETR 0x004
3-94 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.39 RURP, RAM Update Read Pointer

The RURP characteristics are:

Purpose

Increment RAM Read Pointer.

Usage constraints

There are no usage constraints.

Configurations

Present only if Software Read FIFO mode 2 is implemented. RES0 otherwise.

Attributes

RURP is a 32-bit register.

Field descriptions

The RURP bit assignments are:

Bits [31:21]

Reserved, RES0.

RURP, bits [20:0]

Update RAM Read Pointer. The RAM Read Pointer is incremented by the amount written to this
field, modulo the size of the buffer.

The value written to RURP must be a multiple of the larger of:

• The memory width indicated by DEVID.MEMWIDTH.

• 16 bytes, if the formatter is enabled.

Accessing the RURP:

RURP can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is WO.

RES0

31 21

RURP

20 0

Component Offset

ETR 0x120
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-95
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.40 RWD, RAM Write Data register

The RWD characteristics are:

Purpose

Write data to the trace memory.

Usage constraints

Writes to RWD are UNPREDICTABLE unless the ETR is in the Disabled state.

Configurations

Implementation of this register is OPTIONAL.

Attributes

RWD is a 32-bit register.

Field descriptions

The RWD bit assignments are:

RWD, bits [31:0]

RAM Write Data. This register is used for testing.

Accessing the RWD:

RWD can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is WO.

RWD

31 0

Component Offset

ETR 0x024
3-96 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
3.1.41 RWP, RAM Write Pointer

The RWP characteristics are:

Purpose

The write pointer used to write entries into trace buffer.

Usage constraints

Writes to RWP are UNPREDICTABLE unless the ETR is in the Disabled state.

Configurations

There are no configuration notes.

Attributes

RWP is a 64-bit register.

Field descriptions

The RWP bit assignments are:

Bits [63:56]

Reserved, RES0.

RWP, bits [55:0]

RAM Write Pointer. Indicates the next location where the ETR will write data in system memory.

High-order unimplemented address bits are RES0.

When initializing this field, software must write a value that is aligned to the minimum alignment
defined by DEVID.MEMWIDTH. When saving and restoring this field, software must preserve all
bits.

Accessing the RWP:

RWP[31:0] can be accessed through its memory-mapped interface:

RWP[63:32] can be accessed through its memory-mapped interface:

These interfaces are accessible as follows:

• Access to RWP[31:0] is RW.

• Access to RWP[63:32] is RW.

RES0

63 56

RWP

55 0

Component Offset Range

ETR 0x018 31:0

Component Offset Range

ETR 0x03C 63:32
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-97
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.42 STS, Status Register

The STS characteristics are:

Purpose

Status register.

Usage constraints

None.

Configurations

Some or all RW fields of this register have defined reset values.

Attributes

STS is a 32-bit register.

Field descriptions

The STS bit assignments are:

Bits [31:7]

Reserved, RES0.

MSI, bit [6]

When DEVID.IRQ == 0b10:

Message Signaled Interrupt status.

Indicates that a Message Signaled Interrupt is in flight. This bit is set to 1 when a message signaled
interrupt is sent by the ETR and cleared to zero when the message acknowledge is received.

The defined values of this bit are:

0b0 No interrupt is in flight.

0b1 An interrupt message has been sent and the acknowledge not yet received.

This bit is RES0 if message-signaled interrupts are not implemented.

This bit is read-only.

Otherwise:

Reserved, RES0.

MemErr, bit [5]

Memory Error.

RES0

31 7 6 5 4 3 2 1 0

Full
Triggered

TMCReady
FtEmpty

Empty
MemErr

MSI
3-98 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
Indicates that an error has occurred on the memory interface. The error could be because of an error
response from a slave or because of the status of the Authentication interface inputs.

The possible values of this bit are:

0b0 No error has occurred since the last time this bit was cleared to zero.

0b1 Since the last time this bit was cleared to zero, one of:

• A read or write error response was encountered.

• An access would have been initiated when Non-secure Invasive Debug is
disabled.

• A secure access would have been initiated when Secure Invasive Debug is
disabled.

While set to 1:

• No more accesses are performed other than any commands in the internal pipeline.

• Outstanding read and write responses are ignored. Pending responses are counted, but the
responses received are discarded.

• A read of RRD or a write to RWD returns an error. This includes accesses to these registers
that would otherwise have been ignored without returning an error, for example, when the
ETR is enabled and MODE.MODE == 0b00 (Circular Buffer).

• If the formatter is implemented, the formatter stops, and sets STS.TMCReady when it has
stopped.

• Reading the RWP and RRP registers returns UNKNOWN values.

This bit is cleared to zero by:

• Writing to STS with this bit set to 1 when STS.TMCReady was previously set to 1.

• Setting CTL.TraceCaptEn to 1 when CTL.TraceCaptEn was previously set to 0.

Empty, bit [4]

Indicates the trace memory does not contain any valid trace data. The defined values of this bit are:

0b0 Trace memory does contain valid trace data or CTL.TraceCaptEn == 0.

0b1 Trace memory does not contain valid trace data and CTL.TraceCaptEn == 1.

Note
 However trace data might be present internally to the ETR and not yet written to memory. Software

must use STS.TMCReady to determine whether there is trace data present internally to the ETR.

This bit resets to an UNKNOWN value. On leaving the Disabled state, this bit dynamically indicates
the current status of the trace buffer. This bit retains its current value on entering the Disabled state.

This bit is read-only.

Note
 If MODE.MODE == 0b00 (Circular Buffer), it is possible that STS.Empty and STS.Full read as one

at the same time.

FtEmpty, bit [3]

Formatter empty. Trace capture has stopped. Set to 1 when trace capture has stopped, and all internal
pipelines and buffers have drained. Unlike STS.TMCReady, it is not affected by buffer drains and
accesses.

This bit is read-only.

TMCReady, bit [2]

Ready. The defined values of this bit are:

0b0 ETR not ready.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-99
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
0b1 All of the following are true:

• Trace capture has stopped and all internal pipelines and buffers have drained.
This is equivalent to being in the Stopped or Disabled state.

• The memory interface is not busy. This case can be used to detect page table reads
in Scatter mode when in Stopped state.

This bit is read-only.

On a reset, this field resets to 1.

Triggered, bit [1]

Triggered.

Set to 1 when all of the following apply:

• MODE.MODE == 0b00 (Circular Buffer).

• Trace capture is in progress.

• The ETR has detected a Trigger Event.

This bit is cleared to 0 when leaving Disabled state.

This bit does not indicate that a trigger has been embedded in the formatted output trace data from
the ETR. Trigger indication on the output trace stream is controlled by the FFCR.

This bit reads-as-zero if MODE.MODE != 0b00, meaning Circular Buffer mode is not selected.

Full, bit [0]

Used to help to determine how much of the trace buffer contains valid data.

When MODE.MODE != 0b00 (Software Read FIFO) and not in Disabled state, the possible values
of this bit are:

0b0 The current space in the trace memory is greater than the value programmed in BUFWM

0b1 The current space in the trace memory is less than or equal to the value programmed in
BUFWM. That is, Fill level >= (RSZ - BUFWM).

Note
 If the ETR is programmed for Scatter operation, this bit indiscates whether the Trace memory is

currently full regardless of the value programmed in the BUFWM Register.

When MODE.MODE == 0b00 (Circular buffer) and not in Disabled state, the possible values of this
bit are:

0b0 The RAM Write pointer has not wrapped around the top of the buffer since this bit was last
cleared by software.

0b1 The RAM Write pointer has wrapped around the top of the buffer since this bit was last cleared
by software.

This bit is not updated by the ETR while the ETR is in the Disabled state.

This bit retains its value on entering the Disabled state.

Note
 In Scatter mode, the ETR might be unable to accept new trace without this bit being set to 1, if a

read from the Scatter tables is delayed sufficiently.

In previous versions of the ETR, this bit is cleared to 0 when exiting Disabled state. This ETR
architecture requires software to initialize this bit before leaving Disabled, which also permits
saving and restoring of the ETR state.
3-100 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

3 Programmers’ model
3.1 Memory-mapped registers
Accessing the STS:

STS can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

Component Offset

ETR 0x00C
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-101
ID071318 Non-Confidential

3 Programmers’ model
3.1 Memory-mapped registers
3.1.43 TRG, Trigger Counter Register

The TRG characteristics are:

Purpose

Specifies the number of words to capture following a Detected Trigger before a Trigger Event.

Usage constraints

There are no usage constraints.

Configurations

There are no configuration notes.

Attributes

TRG is a 32-bit register.

Field descriptions

The TRG bit assignments are:

TRG, bits [31:0]

Trigger count. Specifies the number of words to capture following a Detected Trigger before a
Trigger Event.

Accessing the TRG:

TRG can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Access to this register is RW.

TRG

31 0

Component Offset

ETR 0x01C
3-102 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A
Pseudocode Definition

This appendix provides a definition of the pseudocode used in this document, and lists the helper procedures and
functions used by pseudocode to perform useful architecture-specific jobs. It contains the following sections:
• About Arm pseudocode on page A-104.
• Data types on page A-105.
• Expressions on page A-109.
• Operators and built-in functions on page A-111.
• Statements and program structure on page A-116.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-103
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.1 About Arm pseudocode
A.1 About Arm pseudocode

Arm pseudocode provides precise descriptions of some areas of the architecture. The following sections describe
the ARMv7 pseudocode in detail:
• Data types on page A-105.
• Expressions on page A-109.
• Operators and built-in functions on page A-111.
• Statements and program structure on page A-116.

A.1.1 General limitations of Arm pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, SUBARCHITECTURE_DEFINED, UNDEFINED, and UNPREDICTABLE
indicate behavior that differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs. This means that these statements terminate
pseudocode execution.

For more information, see Simple statements on page A-116.
A-104 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.2 Data types
A.2 Data types

This section describes:
• General data type rules.
• Bitstrings.
• Integers on page A-106.
• Reals on page A-106.
• Booleans on page A-106.
• Enumerations on page A-106.
• Lists on page A-107.
• Arrays on page A-108.

A.2.1 General data type rules

Arm architecture pseudocode is a strongly-typed language. Every constant and variable is of one of the following
types:
• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• List.
• Array.

The type of a constant is determined by its syntax. The type of a variable is normally determined by assignment to
the variable, with the variable being implicitly declared to be of the same type as whatever is assigned to it. For
example, the assignments x = 1, y = '1', and z = TRUE implicitly declare the variables x, y, and z to have types
integer, bitstring of length 1, and Boolean, respectively.

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

A.2.2 Bitstrings

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 1.

The type name for bitstrings of length N is bits(N). A synonym of bits(1) is bit.

Bitstring constants are written as a single quotation mark, followed by the string of 0s and 1s, followed by another
single quotation mark. For example, the two constants of type bit are '0' and '1'. Spaces can be included in
bitstrings for clarity.

A special form of bitstring constant with 'x' bits is permitted in bitstring comparisons, see Equality and
non-equality testing on page A-111.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is,
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings derived from encoding diagrams, this order matches the way they are printed.

Bitstrings are the only concrete data type in pseudocode, in the sense that they correspond directly to the contents
of, for example, registers, memory locations, and instructions. All of the remaining data types are abstract.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-105
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.2 Data types
A.2.3 Integers

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, associated with suitable functions to interpret
those bitstrings as integers.

The type name for integers is integer.

Integer constants are normally written in decimal, such as 0, 15, –1234. They can also be written in C-style
hexadecimal, such as 0x55 or 0x80000000. Hexadecimal integer constants are treated as positive unless they have a
preceding minus sign. For example, 0x80000000 is the integer +231. If –231 must be written in hexadecimal, it must be
written as –0x80000000.

A.2.4 Reals

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, associated with suitable functions to interpret those bitstrings as reals.

The type name for reals is real.

Real constants are written in decimal with a decimal point. This means 0 is an integer constant but 0.0 is a real
constant.

A.2.5 Booleans

A Boolean is a logical true or false value.

The type name for Booleans is boolean. This is not the same type as bit, which is a length–1 bitstring. Boolean
constants are TRUE and FALSE.

A.2.6 Enumerations

An enumeration is a defined set of symbolic constants, such as:

enumeration InstrSet {InstrSet_A32, InstrSet_T32, InstrSet_A64};

An enumeration always contains at least one symbolic constant, and a symbolic constant must not be shared
between enumerations.

Enumerations must be declared explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the symbolic constants to it. By convention, each of the symbolic constants starts with the name of
the enumeration followed by an underscore. The name of the enumeration is its type name, or type, and the symbolic
constants are its possible constants.

Note
 A Boolean is a pre-declared enumeration that does not follow the normal naming convention and it has a special
role in some pseudocode constructs, such as if statements, for example:

enumeration boolean {FALSE, TRUE};
A-106 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.2 Data types
A.2.7 Lists

A list is an ordered set of other data items, separated by commas and enclosed in parentheses, for example:

(bits(32) shifter_result, bit shifter_carry_out)

A list always contains at least one data item.

Lists are often used as the return type for a function that returns multiple results. For example, this list at the start
of this section is the return type of the function Shift_C() that performs a standard Arm shift or rotation, when its
first operand is of type bits(32).

Some specific pseudocode operators use lists surrounded by other forms of bracketing than the (…) parentheses.
These are:

• Bitstring extraction operators, that use lists of bit numbers or ranges of bit numbers surrounded by angle
brackets <…>.

• Array indexing, that uses lists of array indexes surrounded by square brackets […].

• Array-like function argument passing, that uses lists of function arguments surrounded by square brackets
[…].

Each combination of data types in a list is a separate type, with type name given by listing the data types. This means
that the example list at the start of this section is of type (bits(32), bit). The general principle that types can be
declared by assignment extends to the types of the individual list items in a list. For example:

(shift_t, shift_n) = ('00', 0);

implicitly declares shift_t, shift_n, and (shift_t, shift_n) to be of types bits(2), integer, and (bits(2),
integer), respectively.

A list type can also be explicitly named, with explicitly named elements in the list. For example:

type ShiftSpec is (bits(2) shift, integer amount);

After this definition and the declaration:

ShiftSpec abc;

the elements of the resulting list can then be referred to as abc.shift, and abc.amount. This qualified naming of list
elements is only permitted for variables that have been explicitly declared, not for those that have been declared by
assignment only.

Explicitly naming a type does not alter what type it is. For example, after the definition of ShiftSpec, ShiftSpec, and
(bits(2), integer) are two different names for the same type, not the names of two different types. To avoid
ambiguity in references to list elements, it is an error to declare a list variable multiple times using different names
of its type or to qualify it with list element names not associated with the name by which it was declared.

An item in a list that is being assigned to can be written as "-" to indicate that the corresponding item of the assigned
list value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

List constants are written as a list of constants of the appropriate types, for example the ('00', 0) in the earlier
example.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-107
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.2 Data types
A.2.8 Arrays

Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

// The names of the Banked core registers.

enumeration RName {RName_0usr, RName_1usr, RName_2usr, RName_3usr, RName_4usr, RName_5usr,
 RName_6usr, RName_7usr, RName_8usr, RName_8fiq, RName_9usr, RName_9fiq,
 RName_10usr, RName_10fiq, RName_11usr, RName_11fiq, RName_12usr, RName_12fiq,
 RName_SPusr, RName_SPfiq, RName_SPirq, RName_SPsvc,
 RName_SPabt, RName_SPund, RName_SPmon, RName_SPhyp,
 RName_LRusr, RName_LRfiq, RName_LRirq, RName_LRsvc,
 RName_LRabt, RName_LRund, RName_LRmon,
 RName_PC};

array bits(8) _Memory[0..0xFFFFFFFF];

Arrays are always explicitly declared, and there is no notation for a constant array. Arrays always contain at least
one element, because:
• Enumerations always contain at least one symbolic constant.
• Integer ranges always contain at least one integer.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD
element processing.
A-108 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.3 Expressions
A.3 Expressions

This section describes:
• General expression syntax.
• Operators and functions - polymorphism and prototypes on page A-110.
• Precedence rules on page A-110.

A.3.1 General expression syntax

An expression is one of the following:
• A constant.
• A variable, optionally preceded by a data type name to declare its type.
• The word UNKNOWN preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register described in the text is to be regarded as declaring a correspondingly named bitstring variable, and
that variable has the stated behavior of the register. For example, if a bit of a register is defined as RAZ/WI, then
the corresponding bit of its variable reads as 0 and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not constitute a security hole and must not be promoted as providing any useful information to software.

Note
 Some earlier documentation describes this as an UNPREDICTABLE value. UNKNOWN values are similar to the
definition of UNPREDICTABLE, but do not indicate that the entire architectural state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

Every expression has a data type:

• For a constant, this data type is determined by the syntax of the constant.

• For a variable, there are the following possible sources for the data type:

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-109
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.3 Expressions
• For a function, the definition of the function determines the data type.

A.3.2 Operators and functions - polymorphism and prototypes

Operators and functions in pseudocode can be polymorphic, producing different functionality when applied to
different data types. Each resulting form of an operator or function has a different prototype definition. For example,
the operator + has forms that act on various combinations of integers, reals, and bitstrings.

One particularly common form of polymorphism is between bitstrings of different lengths. This is represented by
using bits(N), bits(M), or similar, in the prototype definition.

A.3.3 Precedence rules

The precedence rules for expressions are:

1. Constants, variables, and function invocations are evaluated with higher priority than any operators using
their results.

2. Expressions on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but this is
not necessary if all permitted precedence orders under the type rules necessarily lead to the same result. For
example, if i, j, and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k
> 0 is not.
A-110 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.4 Operators and built-in functions
A.4 Operators and built-in functions

This section describes:
• Operations on generic types.
• Operations on Booleans.
• Bitstring manipulation.
• Arithmetic on page A-114.

A.4.1 Operations on generic types

The following operations are defined for all types.

Equality and non-equality testing

Any two values x and y of the same type can be tested for equality by the expression x == y and for non-equality by
the expression x != y. In both cases, the result is of type boolean.

A special form of comparison is defined with a bitstring constant that includes 'x' bits in addition to '0' and '1'
bits. The bits corresponding to the 'x' bits are ignored in determining the result of the comparison. For example, if
opcode is a 4-bit bitstring, opcode == '1x0x' is equivalent to opcode<3> == '1' && opcode<1> == '0'.

Note
 This special form is permitted in the implied equality comparisons in when parts of case … of … structures.

Conditional selection

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

A.4.2 Operations on Booleans

If x is a Boolean, then !x is its logical inverse.

If x and y are Booleans, then x && y is the result of ANDing them together. As in the C language, if x is FALSE, the
result is determined to be FALSE without evaluating y.

If x and y are Booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result
is determined to be TRUE without evaluating y.

If x and y are Booleans, then x ^ y is the result of exclusive-ORing them together.

A.4.3 Bitstring manipulation

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:
• The bitstring length function Len(x) returns the length of x as an integer.
• TopBit(x) is the leftmost bit of x. Using bitstring extraction, this means:

TopBit(x)= x<Len(x)–1>.

Bitstring concatenation and replication

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-111
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.4 Operators and built-in functions
If x is a bitstring and n is an integer with n > 0:
• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together
• Zeros(n) = Replicate('0', n), Ones(n) = Replicate('1', n).

Bitstring extraction

The bitstring extraction operator extracts a bitstring from either another bitstring or an integer. Its syntax is
x<integer_list>, where x is the integer or bitstring being extracted from, and <integer_list> is a list of integers
enclosed in angle brackets rather than the usual parentheses. The length of the resulting bitstring is equal to the
number of integers in <integer_list>. In x<integer_list>, each of the integers in <integer_list> must be:
• >= 0

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, let y be the unique integer in the range 0 to 2^(i+1)–1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.
Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

In <integer_list>, the notation i:j with i >= j is shorthand for the integers in order from i down to j, with both
end values included. For example, instr<31:28> is shorthand for instr<31, 30, 29, 28>.

The expression x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than
once in <integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained
by logically ANDing, ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring count

If x is a bitstring, BitCount(x) produces an integer result equal to the number of bits of x that are ones.
A-112 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.4 Operators and built-in functions
Testing a bitstring for being all zero or all ones

If x is a bitstring:
• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones.
• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)

IsOnes(x) = (BitCount(x) == Len(x))

IsZeroBit(x) = if IsZero(x) then '1' else '0'

IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of its bits that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of its bits that are ones. If all of its bits are zeros,
HighestSetBit(x) = –1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N – 1 – HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign
bit itself, and is in the range 0 to N–1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N–1:1> EOR x<N–2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i–Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i–Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt(x) is the integer whose two’s complement representation is x:

// SInt()
// ======

integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 if x<N-1> == '1' then result = result - 2^N;
 return result;

UInt(x) is the integer whose unsigned representation is x:

// UInt()
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-113
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.4 Operators and built-in functions
// ======

integer UInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 return result;

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument:

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

A.4.4 Arithmetic

Most pseudocode arithmetic is performed on integer or real values, with operands being obtained by conversions
from bitstrings and results converted back to bitstrings afterwards. As these data types are the unbounded
mathematical types, no issues arise about overflow or similar errors.

Unary plus, minus, and absolute value

If x is an integer or real, then +x is x unchanged, –x is x with its sign reversed, and Abs(x) is the absolute value of x.
All three are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x–y are their sum and difference. Both are of type integer if x and y are both
of type integer, and real otherwise.

Addition and subtraction are particularly common arithmetic operations in pseudocode, and so it is also convenient
to have definitions of addition and subtraction acting directly on bitstring operands.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x–y are the least significant
N bits of the results of converting them to integers and adding or subtracting them. Signed and unsigned conversions
produce the same result:

x+y = (SInt(x) + SInt(y))<N–1:0>
= (UInt(x) + UInt(y))<N–1:0>

x–y = (SInt(x) – SInt(y))<N–1:0>
= (UInt(x) – UInt(y))<N–1:0>

If x is a bitstring of length N and y is an integer, x+y and x–y are the bitstrings of length N defined by x+y = x + y<N–1:0>
and x–y = x – y<N–1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x–y are the bitstrings of
length M defined by x+y = x<M–1:0> + y and x–y = x<M–1:0> – y.

Comparisons

If x and y are integers or reals, then x == y, x != y, x < y, x <= y, x > y, and x >= y are equal, not equal, less than,
less than or equal, greater than, and greater than or equal comparisons between them, producing Boolean results. In
the case of == and !=, this extends the generic definition applying to any two values of the same type to also act
between integers and reals.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type
integer, and real otherwise.
A-114 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.4 Operators and built-in functions
Division and modulo

If x and y are integers or reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x – y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Square root

If x is an integer or a real, Sqrt(x) is its square root, and is always of type real.

Rounding and aligning

If x is a real:
• RoundDown(x) produces the largest integer n such that n <= x.
• RoundUp(x) produces the smallest integer n such that n >= x.
• RoundTowardsZero(x) produces RoundDown(x) if x > 0.0, 0 if x == 0.0, and RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y) is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)–1:0> is a bitstring of
the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y)
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its
argument with its n low-order bits forced to zero.

Scaling

If n is an integer, 2^n is the result of raising 2 to the power n and is of type real.

If x and n are of type integer, then:
• x << n = RoundDown(x * 2^n).
• x >> n = RoundDown(x * 2^(–n)).

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. Both
are of type integer if x and y are both of type integer, and real otherwise.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-115
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.5 Statements and program structure
A.5 Statements and program structure

The following sections describe the control statements used in the pseudocode:
• Simple statements.
• Compound statements on page A-117.
• Comments on page A-121.

A.5.1 Simple statements

Each of the following simple statements must be terminated with a semicolon, as shown.

Assignments

An assignment statement takes the form:

<assignable_expression> = <expression>;

Procedure calls

A procedure call takes the form:

<procedure_name>(<arguments>);

Return statements

A procedure return takes the form:

return;

and a function return takes the form:

return <expression>;

where <expression> is of the type declared in the function prototype line.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that the Undefined
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;
A-116 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.5 Statements and program structure
This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {<text>};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION
DEFINED. An optional <text> field can give more information.

SUBARCHITECTURE_DEFINED

This subsection describes the statement:

SUBARCHITECTURE_DEFINED <text>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is SUBARCHITECTURE
DEFINED. An optional <text> field can give more information.

A.5.2 Compound statements

Indentation normally indicates the structure in compound statements. The statements contained in structures such
as if … then … else … or procedure and function definitions are indented more deeply than the statement itself, and
their end is indicated by returning to the original indentation level or less.

Indentation is normally done by four spaces for each level.

if … then … else …

A multi-line if … then … else … structure takes the form:

if <boolean_expression> then

<statement 1>

<statement 2>

…

<statement n>

elsif <boolean_expression> then

<statement a>

<statement b>

…

<statement z>

else

<statement A>

<statement B>

…

<statement Z>
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-117
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.5 Statements and program structure
The block of lines consisting of elsif and its indented statements is optional, and multiple such blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when there are only simple statements in the then part and in the else part,
if it is present, such as:

if <boolean_expression> then <statement 1>

if <boolean_expression> then <statement 1> else <statement A>

if <boolean_expression> then <statement 1> <statement 2> else <statement A>

Note
 In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and the
fact that the else part is optional are differences from the if … then … else … expression.
A-118 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.5 Statements and program structure
repeat … until …

A repeat … until … structure takes the form:

repeat

<statement 1>

<statement 2>

…

<statement n>

until <boolean_expression>;

while … do

A while … do structure takes the form:

while <boolean_expression> do

<statement 1>

<statement 2>

…

<statement n>

for …

A for … structure takes the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>

<statement 1>

<statement 2>

…

<statement n>

case … of …

A case … of … structure takes the form:

case <expression> of

when <constant values>

<statement 1>

<statement 2>

…

<statement n>

… more "when" groups …

otherwise

<statement A>

<statement B>

…

<statement Z>
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-119
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.5 Statements and program structure
In this structure, <constant values> consists of one or more constant values of the same type as <expression>,
separated by commas. Abbreviated one line forms of when and otherwise parts can be used when they contain only
simple statements.

If <expression> has a bitstring type, <constant values> can also include bitstring constants containing 'x' bits. For
details see Equality and non-equality testing on page A-111.
A-120 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Appendix A Pseudocode Definition
A.5 Statements and program structure
Procedure and function definitions

A procedure definition takes the form:

<procedure name>(<argument prototypes>)

<statement 1>

<statement 2>

…

<statement n>

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument
definition consists of a type name followed by the name of the argument.

Note
 This first prototype line is not terminated by a semicolon. This helps to distinguish it from a procedure call.

A function definition is similar but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)

<statement 1>

<statement 2>

…

<statement n>

An array-like function is similar but with square brackets:

<return type> <function name>[<argument prototypes>]

<statement 1>

<statement 2>

…

<statement n>

An array-like function also usually has an assignment prototype:

<function name>[<argument prototypes>] = <value prototypes>

<statement 1>

<statement 2>

…

<statement n>

A.5.3 Comments

Two styles of pseudocode comment exist:
• // starts a comment that is terminated by the end of the line.
• /* starts a comment that is terminated by */.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-121
ID071318 Non-Confidential

Appendix A Pseudocode Definition
A.5 Statements and program structure
A-122 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

Glossary

This glossary describes some of the terms that are used in Arm documentation.

Abort An abort occurs when an illegal memory access causes an exception. An abort can be generated by the hardware
that manages memory accesses, or by the external memory system.

ADI See Arm Debug Interface (ADI).

AHB An AMBA bus protocol supporting pipelined operation, with the address and data phases occurring during different
clock periods, meaning that the address phase of a transfer can occur during the data phase of the previous transfer.
AHB provides a subset of the functionality of the AMBA AXI protocol.

See also AMBA.

Aligned A data item stored at an address that is exactly divisible by the number of bytes that defines its data size. Aligned
doublewords, words, and halfwords have addresses that are divisible by eight, four, and two respectively. An aligned
access is one where the address of the access is aligned to the size of each element of the access.

AMBA The AMBA family of protocol specifications is the Arm open standard for on-chip buses. AMBA provides solutions
for the interconnection and management of the functional blocks that make up a System-on-Chip (SoC).
Applications include the development of embedded systems with one or more processors or signal processors and
multiple peripherals.

APB An AMBA bus protocol for ancillary or general-purpose peripherals such as timers, interrupt controllers, UARTs,
and I/O ports. It connects to the main system bus through a system-to-peripheral bus bridge that helps reduce system
power consumption.

Arm Debug Interface (ADI)

The ADI connects a debugger to a device. The ADI is used to access memory-mapped components in a system, such
as processors and CoreSight components. The ADI protocol defines the physical wire protocols permitted, and the
logical programmers model.

AXI An AMBA bus protocol that supports:
• Separate phases for address or control and data.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. Glossary-123
ID071318 Non-Confidential

 Glossary

• Unaligned data transfers using byte strobes.
• Burst-based transactions with only start address issued.
• Separate read and write data channels.
• Issuing multiple outstanding addresses.
• Out-of-order transaction completion.
• Optional addition of register stages to meet timing or repropagation requirements.

The AXI protocol includes optional signaling extensions for low-power operation.

Big-endian In the context of the Arm architecture, big-endian is defined as the memory organization in which the least
significant byte of a word is at a higher address than the most significant byte, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

See also Little-endian and Endianness.

Boundary scan chain

A boundary scan chain is made up of serially-connected devices that implement boundary scan technology using a
standard JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form
the chain connected between TDI and TDO, through which test data is shifted. A core can contain several shift
registers, enabling a scan to access selected parts of the device.

Burst A group of transfers that form a single transaction. With AMBA protocols, only the first transfer of the burst
includes address information, and the transfer type determines the addresses used for subsequent transfers.

Cold reset A cold reset has the same effect as starting the processor by turning the power on. This clears main memory and
many internal settings. Some program failures can lock up the core and require a cold reset to restart the system.

This is also known as power-on or powerup reset.

See also Processing Element (PE), Warm reset.

Core reset See Warm reset.

DAP See Debug Access Port (DAP).

Data Link layer The layer of an ADIv5 implementation that provides the functional and procedural means to transfer data between
the external debugger and the Debug Port (DP). ADIv5 and upwards define two Data Link layers, one based on the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture, referred to as JTAG, and one based on the
Arm Serial Wire Debug protocol interface, referred to as SW-DP.

DATA LINK DEFINED

Means that the behavior is not defined by the base architecture, but must be defined and documented by individual
Data Link layers of the architecture.

When DATA LINK DEFINED appears in body text, it is always in SMALL CAPITALS.

DBGTAP See Debug Test Access Port (DBGTAP).

Debug Access Port (DAP)

A block that acts as an AMBA, AHB, or AHB-Lite master on a system bus, to provide access to the debug target.

Debug Test Access Port (DBGTAP)

A debug control and data interface based on IEEE 1149.1 JTAG Test Access Port (TAP).

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, together with
custom hardware that supports software debugging.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.
Glossary-124 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

 Glossary

Doubleword-aligned

A data item having a memory address that is divisible by eight.

Embedded Trace Macrocell (ETM)

A hardware macrocell that, when connected to a core, outputs trace information on a trace port. The ETM provides
core-driven trace through a trace port compliant to the ATB protocol. An ETM always supports instruction trace,
and might support data trace.

Endianness The scheme that determines the order of the successive bytes of data in a larger data structure when that structure
is stored in memory.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell (ETM).

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned
A data item having a memory address that is divisible by 2.

Host A computer that provides data and other services to another computer. In the context of an Arm debugger, a
computer providing debugging services to a target being debugged.

IMP DEF See IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED

Behavior that is not defined by the architecture, but must be defined and documented by individual
implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in SMALL CAPITALS.

Joint Test Action Group (JTAG)

An IEEE group focussed on silicon chip testing methods. Many debug and programming tools use a Joint Test
Action Group (JTAG) interface port to communicate with processors.

See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan Architecture specification available
from the IEEE Standards Association.

JTAG See Joint Test Action Group (JTAG).

JTAG Access Port (JTAG-AP)

An optional component of the DAP that provides debugger access to on-chip scan chains.

JTAG Debug Port (JTAG-DP)

An optional external interface for the DAP that provides a standard JTAG interface for debug access.

JTAG-AP See JTAG Access Port (JTAG-AP).

JTAG-DP See JTAG Debug Port (JTAG-DP).

Little-endian In the context of the Arm architecture, little-endian is defined as the memory organization in which the most
significant byte of a word is at a higher address than the least significant byte.

See also Big-endian and Endianness.

PE See Processing Element (PE).

Powerup reset See Cold reset.

Processing Element (PE)

The abstract machine defined in the Arm architecture, as documented in the Arm Architecture Reference Manual.
A PE implementation that is compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm Architecture Reference Manual.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. Glossary-125
ID071318 Non-Confidential

 Glossary

RAO See Read-As-One (RAO).

RAO/WI Read-as-One, Writes Ignored.

Hardware must implement the field as Read-as-One, and must ignore writes to the field. Software can rely on the
field reading as all 1s, and on writes being ignored. This description can apply to a single bit that reads as 0b1, or to
a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-as-Zero, Writes ignored.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field. Software can rely on the
field reading as all 0s, and all writes being ignored. This description can apply to a single bit that reads as 0b0, or to
a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-As-One (RAO)

Hardware must implement the field as reading as all 1s. Software can rely on the field reading as all 1s. This
description can apply to a single bit that reads as 0b1, or to a field that reads as all 1s.

Read-As-Zero (RAZ)

Hardware must implement the field as reading as all 0s. Software can rely on the field reading as all 0s. This
description can apply to a single bit that reads as 0b0, or to a field that reads as all 0s.

RES0 A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior. Used for fields in register descriptions,
and for fields in architecturally-defined data structures that are held in memory, for example in translation table
descriptors.

Note
 RES0 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

This means the definition of RES0 for register fields is:

If a bit is RES0 in all contexts

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0b0. In this case:

• Reads of the bit always return 0b0.

• Writes to the bit are ignored.
The bit might be described as RES0, WI, to distinguish it from a bit that behaves as described
in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0b0.

• A read of the bit returns the last value successfully written to the bit.

Note
 As indicated in this list, this value might be written by an indirect write to the register.
Glossary-126 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

 Glossary

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the core, other than
determining the value read back from the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is implementation defined on a
field-by-field basis.

If a bit is RES0 only in some contexts

When the bit is described as RES0:

• An indirect write to the register sets the bit to 0b0.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
 As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an unknown value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must
have no effect on the operation of the core, other than determining the value read back from
that bit.

For any RES0 bit, software:

• Must not rely on the bit reading as 0b0.

• Must use an SBZP policy to write to the bit.

The RES0 description can apply to bits or bitfields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0b0, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

This RES0 description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field
that should be written as its preserved value or as all 0s.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. Used for fields in register descriptions,
and for fields in architecturally-defined data structures that are held in memory, for example in translation table
descriptors.

Note
 RES1 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

This means the definition of RES1 for register fields is:

If a bit is RES1 in all contexts
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. Glossary-127
ID071318 Non-Confidential

 Glossary

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0b1. In this case:

• Reads of the bit always return 0b1.

• Writes to the bit are ignored.
The bit might be described as RES1, WI, to distinguish it from a bit that behaves as described
in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0b1.

• A read of the bit returns the last value successfully written to the bit.

Note
 As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the core, other than
determining the value read back from the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is implementation defined on a
field-by-field basis.

If a bit is RES1 only in some contexts

When the bit is described as RES1:

• An indirect write to the register sets the bit to 0b1.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
 As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an unknown value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the core, other than determining the value read back from
that bit.

For any RES1 bit, software:

• Must not rely on the bit reading as 0b1.

• Must use an SBOP policy to write to the bit.

The RES1 description can apply to bits or bitfields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 0b1, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

This RES1 description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field
that should be written as its preserved value or as all 1s.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved Unless otherwise stated in the architecture or product documentation:
Glossary-128 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

 Glossary

• Reserved instruction and 32-bit system control register encodings are unpredictable.
• Reserved 64-bit system control register encodings are undefined.
• Reserved register bit fields are UNK/SBZP.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan technology using a standard
JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form the chain
connected between TDI and TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

Serial Wire debug (SWD)
A debug implementation that uses a serial connection between the SoC and a debugger. This connection normally
requires a bidirectional data signal and a separate clock signal, rather than the four to six signals required for a JTAG
connection.

Serial-Wire Debug Port (SW-DP)

The interface for Serial Wire Debug.

Serial Wire JTAG Debug Port (SWJ-DP)

The SWJ-DP is a combined JTAG-DP and SW-DP that you can use to connect either a Serial Wire Debug (SWD)
or JTAG probe to a target.

Should-Be-One (SBO)

Hardware must ignore writes to the field.

Software should write the field as all 1s. If software writes a value that is not all 1s, it must expect an
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0b1, or to a field that should be written as all 1s.

Should-Be-One-or-Preserved (SBOP)

The ARMv7 Large Physical Address Extension modified the definition of SBOP to apply to register fields that are
SBOP in some but not all contexts. From the introduction of ARMv8 such register fields are described as RES1, see
RES1. The definition of SBOP given here applies only to fields that are SBOP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, it should preserve
the value of the field by writing the value that it previously read from the field. Otherwise, it should write the field
as all 1s.

If software writes a value to the field that is not a value previously read for the field and is not all 1s, it must expect
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0b1, or to a field that
should be written as its preserved value or as all 1s.

See also Should-Be-Zero-or-Preserved (SBZP), Should-Be-One (SBO).

Should-Be-Zero (SBZ)

Hardware must ignore writes to the field.

Software should write the field as all 0s. If software writes a value that is not all 0s, it must expect an
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0b0, or to a field that should be written as all 0s.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. Glossary-129
ID071318 Non-Confidential

 Glossary

Should-Be-Zero-or-Preserved (SBZP)

The ARMv7 Large Physical Address Extension modified the definition of SBZP to apply to register fields that are
SBZP in some but not all contexts. From the introduction of ARMv8 such register fields are described as RES0, see
RES0. The definition of SBZP given here applies only to field that are SBZP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, it must preserve the
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all
0s.

If software writes a value to the field that is not a value previously read for the field and is not all 0s, it must expect
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field that
should be written as its preserved value or as all 0s.

See also Should-Be-One-or-Preserved (SBOP), Should-Be-Zero (SBZ).

SWD See Serial Wire debug (SWD).

SW-DP See Serial-Wire Debug Port (SW-DP).

SWJ-DP See Serial Wire JTAG Debug Port (SWJ-DP)

TAP See Test Access Port (TAP).

Test Access Port (TAP)

The collection of four mandatory and one optional terminals that form the input/output and control interface to a
JTAG boundary-scan architecture. The mandatory terminals are TDI, TDO, TMS, and TCK. In the JTAG standard,
the nTRST signal is optional, but this signal is mandatory in Arm processors because it is used to reset the debug
logic.

See also Joint Test Action Group (JTAG), Debug Test Access Port (DBGTAP).

Trace port A port on a device, such as a processor or ASIC, to output trace information.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of the elements of the
access.

See also Aligned.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not return information that cannot be accessed at
the current or a lower level of privilege using instructions that are not UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE and do not return UNKNOWN values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNP See UNPREDICTABLE.

UNPREDICTABLE

For an Arm processor, UNPREDICTABLE means the behavior cannot be relied upon. UNPREDICTABLE behavior must
not perform any function that cannot be performed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect. An instruction that is
UNPREDICTABLE can be implemented as UNDEFINED.

In an implementation that supports Virtualization, the Non-secure execution of unpredictable instructions at a lower
level of privilege can be trapped to the hypervisor, provided that at least one instruction that is not unpredictable can
be trapped to the hypervisor if executed at that lower level of privilege.
Glossary-130 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

 Glossary

For an Arm trace macrocell, UNPREDICTABLE means that the behavior of the macrocell cannot be relied on. Such
conditions have not been validated. When applied to the programming of an event resource, only the output of that
event resource is UNPREDICTABLE. UNPREDICTABLE behavior can affect the behavior of the entire system, because
the trace macrocell can cause the core to enter Debug state, and external outputs can be used for other purposes.

Note
 In issue A of this document, UNPREDICTABLE also meant an UNKNOWN value.

When UNPREDICTABLE appears in body text, it is always in SMALL CAPITALS.

W1C Hardware must implement the bit as follows:

• Writing a 0b1 to the bit clears the bit to 0b0.

• Writing a 0b0 to the bit has no effect.

Warm reset Also known as a core reset. Initializes most of the processor functionality, excluding the debug controller and debug
logic. This type of reset is useful if you are using the debugging features of a processor.

See also Cold reset.

WI Hardware must ignore writes to the field. Software can rely on writes being ignored. This description can apply to
a single bit, or to a field.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned A data item having a memory address that is divisible by four.
ARM IHI 0081A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. Glossary-131
ID071318 Non-Confidential

 Glossary

Glossary-132 Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ARM IHI 0081A
Non-Confidential ID071318

	Arm Embedded Trace Router Architecture Specification
	Contents
	Preface
	About this book
	Intended audience

	Using this book
	Conventions
	Typographic conventions
	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this book

	1: Introduction
	1.1 About trace capture
	1.1.1 Trace format
	1.1.2 Interrupts

	1.2 About the ETR architecture
	1.2.1 Overlap with CoreSight Trace Memory Controller

	2: Specification
	2.1 Overview
	2.2 Configurations
	2.3 Operation
	2.4 Trigger and Flush Operation
	2.5 Scatter mode

	3: Programmers’ model
	3.1 Memory-mapped registers
	3.1.1 AUTHSTATUS, Authentication Status Register
	3.1.2 BUFWM, Buffer Watermark register
	3.1.3 BUSCTL, Bus Control Register
	3.1.4 CBUFLEVEL, Current Buffer Fill Level
	3.1.5 CIDR0, Component Identification Register 0
	3.1.6 CIDR1, Component Identification Register 1
	3.1.7 CIDR2, Component Identification Register 2
	3.1.8 CIDR3, Component Identification Register 3
	3.1.9 CLAIMCLR, Claim Tag Clear Register
	3.1.10 CLAIMSET, Claim Tag Set Register
	3.1.11 CTL, Control Register
	3.1.12 DBA, Data Buffer Address
	3.1.13 DEVARCH, Device Architecture Register
	3.1.14 DEVID, Device Configuration Register
	3.1.15 DEVID1, Device Configuration Register 1
	3.1.16 DEVTYPE, CoreSight Device Type Register
	3.1.17 FFCR, Formatter and Flush Control Register
	3.1.18 FFSR, Formatter and Flush Status Register
	3.1.19 IRQCR0, Interrupt Configuration Register
	3.1.20 IRQCR1, Interrupt Configuration Register 1
	3.1.21 IRQCR2, Interrupt Configuration Register 2
	3.1.22 ITCTRL, Integration Mode Control Register
	3.1.23 LAR, Lock Access Register
	3.1.24 LBUFLEVEL, Latched Buffer Fill Level
	3.1.25 LSR, Lock Status Register
	3.1.26 MODE, Mode Register
	3.1.27 PIDR0, Peripheral Identification Register
	3.1.28 PIDR1, Peripheral Identification Register
	3.1.29 PIDR2, Peripheral Identification Register
	3.1.30 PIDR3, Peripheral Identification Register
	3.1.31 PIDR4, Peripheral Identification Register
	3.1.32 PIDR5, Peripheral Identification Register
	3.1.33 PIDR6, Peripheral Identification Register
	3.1.34 PIDR7, Peripheral Identification Register
	3.1.35 PSCR, Periodic Synchronization Control Register
	3.1.36 RRD, RAM Read Data register
	3.1.37 RRP, RAM Read Pointer
	3.1.38 RSZ, RAM Size Register
	3.1.39 RURP, RAM Update Read Pointer
	3.1.40 RWD, RAM Write Data register
	3.1.41 RWP, RAM Write Pointer
	3.1.42 STS, Status Register
	3.1.43 TRG, Trigger Counter Register

	A: Pseudocode Definition
	A.1 About Arm pseudocode
	A.1.1 General limitations of Arm pseudocode

	A.2 Data types
	A.2.1 General data type rules
	A.2.2 Bitstrings
	A.2.3 Integers
	A.2.4 Reals
	A.2.5 Booleans
	A.2.6 Enumerations
	A.2.7 Lists
	A.2.8 Arrays

	A.3 Expressions
	A.3.1 General expression syntax
	A.3.2 Operators and functions - polymorphism and prototypes
	A.3.3 Precedence rules

	A.4 Operators and built-in functions
	A.4.1 Operations on generic types
	A.4.2 Operations on Booleans
	A.4.3 Bitstring manipulation
	A.4.4 Arithmetic

	A.5 Statements and program structure
	A.5.1 Simple statements
	A.5.2 Compound statements
	A.5.3 Comments

	Glossary

