

SMC Calling Convention

Document number: ARM DEN 0028C

Release Quality: Release

Issue Number: 1.2

Confidentiality: Non-Confidential

Date of Issue: August 2020

© Copyright Arm Limited 2013-2020. All rights reserved.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page ii

1.2 Non-Confidential

Contents

About this document v

Release Information v

Arm Non-Confidential Document Licence (“Licence”) vi

References viii

Terms and abbreviations viii

Feedback xi
Feedback on this book xi

1 Introduction 12

2 SMC and HVC calling conventions 13

2.1 Secure Monitor Calls 13

2.2 Hypervisor Calls 13

2.3 Fast Calls and Yielding Calls 13

2.4 32-bit and 64-bit conventions 13

2.5 Function Identifiers 13
2.5.1 Fast Calls 13
2.5.2 Yielding Calls 14
2.5.3 Conduits 14

2.6 SMC32/HVC32 argument passing 15

2.7 SMC64/HVC64 argument passing 16

2.8 SVE, SIMD and floating-point registers 16

2.9 SMC and HVC immediate value 16

2.10 Client ID (optional) 17
2.10.1 SMC calls 17
2.10.2 HVC calls 17

2.11 Secure OS ID (optional) 17

2.12 Session ID (optional) 17

3 AArch64 SMC and HVC calling conventions 18

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page iii

1.2 Non-Confidential

3.1 Register use in AArch64 SMC and HVC calls 18

4 AArch32 SMC and HVC calling convention 20

4.1 Register use in AArch32 SMC and HVC Calls 20

5 SMC and HVC results 21

5.1 Error codes 21

5.2 Unknown Function Identifier 21

5.3 Unique Identification format 21

5.4 Revision information format 22

6 Function Identifier Ranges 23

6.1 Allocation of values 23

6.2 General service queries 24

6.3 Implemented Standard Secure Service Calls 25

7 Arm Architecture Calls 27

7.1 Return codes 27

7.2 SMCCC_VERSION 27
7.2.1 Usage 27
7.2.2 Discovery 27
7.2.3 Caller responsibilities 28
7.2.4 Implementation responsibilities 28

7.3 SMCCC_ARCH_FEATURES 28
7.3.1 Usage 28
7.3.2 Discovery 28
7.3.3 Parameters 29
7.3.4 Return 29
7.3.5 Caller responsibilities 29
7.3.6 Implementation responsibilities 29

7.4 SMCCC_ARCH_SOC_ID 29
7.4.1 Usage 30
7.4.2 Discovery 30
7.4.3 Parameters 30
7.4.4 Return 30
7.4.5 Caller responsibilities 30

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page iv

1.2 Non-Confidential

7.4.6 Implementation responsibilities 30

7.5 SMCCC_ARCH_WORKAROUND_1 30
7.5.1 Usage 31
7.5.2 Discovery 31
7.5.3 Caller responsibilities 31
7.5.4 Implementation responsibilities 31

7.6 SMCCC_ARCH_WORKAROUND_2 32
7.6.1 Usage 32
7.6.2 Discovery 32
7.6.3 Caller responsibilities 33
7.6.4 Implementation responsibilities 33

8 Appendix A: Example implementation of Yielding Service calls 34

9 Appendix B: Discovery of Arm Architecture Service functions 35

Step 1: Determine if SMCCC_VERSION is implemented 35

Step 2: Determine if Arm Architecture Service function is implemented 35

10 Appendix C: Changes to PSCI 37

10.1 Overview 37
10.1.1 Discoverability of SMCCC implementation 37

10.2 Interface 37
10.2.1 PSCI_FEATURES 37

11 Appendix D: Changelog 39

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page v

1.2 Non-Confidential

About this document

Release Information

The change history table lists the changes that have been made to this document.

Date Version Confidentiality Change

June 2013 A Non-Confidential First release

November 2016 B Non-Confidential HVC calling convention.

SMC calling convention clarifications and updates.

August 2020 C Non-Confidential Merge information contained in DEN 0070 (see [12.]).

Add guidelines for SVE register context management
and SoC ID Arm architecture call.

Allow R4—R7 (SMC32/HVC32) to be used as result
registers.

Allow X8—X17 to be used as parameter registers in
SMC64/HVC64.

Allow X4—X17 to be used as result registers in
SMC64/HVC64.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page vi

1.2 Non-Confidential

SMC Calling Convention
Copyright ©2013-2020 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact
that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,

without limitation, any copyright) embodied in the document accompanying this Licence (“ Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the

Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or

indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of th is

Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the Document

owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is

not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or an y intellectual property

embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes

no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party

patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT

PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,

IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S

USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY

LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR

EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN

EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee

is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon giving

written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or by

Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this

Licence, all terms shall survive except for the licence grants.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page vii

1.2 Non-Confidential

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any

termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall

automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or

disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any

portion thereof is not exported, directly or indirectly, in violation of such export laws.

 This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between

the English version of this Licence and any translation, the terms of the English version of this Licenc e shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be th e

trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to

use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at

https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © [2020] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

https://www.arm.com/company/policies/trademarks

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page viii

1.2 Non-Confidential

References

This document refers to the following documents:

Ref Document Number Title

[1.] ARM DDI 0406 Arm® Architecture Reference Manual

Armv7-A and Armv7-R edition

[2.] ARM DDI 0487 Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile

[3.] ARM IHI 0042 Procedure Call Standard for the Arm 32-bit Architecture

[4.] ARM IHI 0055 Procedure Call Standard for the Arm 64-bit Architecture

[5.] ARM DEN 0022 Power State Coordination Interface

[6.] - RFC 4122 - A Universally Unique IDentifier (UUID) URN
Namespace

http://tools.ietf.org/html/rfc4122

[7.] - Arm Security Update
https://developer.arm.com/support/security-update

[8.] ARM_DEN 0054 Software Delegated Exception Interface (SDEI)

[9.] JEP106AZ Standard Manufacturer’s Identification Code

[10.] ARM DEN 0060 Arm Management Mode Interface Specification

[11.] ARM DDI 0584A Arm Architectural Reference Manual Supplement - The
Scalable Vector Extension (SVE), for Armv8-A

[12.] ARM DEN 0070 Firmware interfaces for mitigating cache speculation
vulnerabilities

[13.] - Cache Speculation Side-channels

https://developer.arm.com/support/arm-security-
updates/speculative-processor-vulnerability

[14.] ARM DEN 0091 SVE impact on Secure firmware

Terms and abbreviations

This document uses the following terms and abbreviations:

Term Meaning

AArch32 state The Arm 32-bit Execution state that uses 32-bit general purpose registers, and a
32-bit Program Counter (PC), Stack Pointer (SP), and Link Register (LR). AArch32
Execution state provides a choice of two instruction sets, A32 and T32, previously
called the Arm and Thumb instruction sets.

http://tools.ietf.org/html/rfc4122
https://developer.arm.com/support/security-update
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page ix

1.2 Non-Confidential

AArch64 state The Arm 64-bit Execution state that uses 64-bit general purpose registers, and a
64-bit program counter (PC), stack pointer (SP), and exception link registers (ELR).
AArch64 Execution state provides a single instruction set, A64.

ACPI The Advanced Configuration and Power Interface specification. This defines a
standard for device configuration and power management by an OS.

CPU A hardware implementation of the Arm Architecture.

EL0 The lowest Exception level. The Exception level that is used to execute user
applications in Non-secure state.

EL1 The privileged Exception level. The Exception level that is used to execute
operating systems in Non-secure state.

EL2 The hypervisor Exception level. The Exception level that is used to execute
hypervisor code in Non-secure state.

EL3 The Secure Monitor Exception level. The Exception level that is used to execute
Secure Monitor code, which handles the transitions between Non-secure and
Secure states. EL3 is always in Secure state.

Execution context The PE that is state associated with a thread of execution, including register state,
exception level and security state. Usually an execution context is managed by
another execution context at a higher exception level or an exception level in the
Secure state. For example, firmware manages one or more system software
execution contexts. However, the managing and managed execution contexts may
reside at the same exception level and security state. For example, a runtime
environment manages one or more interpreted applications.

Firmware Software that provides platform specific services. Firmware typically operates at an
exception level higher than the operating system or Hypervisor which makes use of
the firmware services.

Function Identifier A 32-bit integer that identifies which function is being invoked by an SMC or HVC
call. Passed in R0 or W0 into every SMC or HVC call.

HVC Hypervisor Call, an Arm assembler instruction that causes an exception that is
taken synchronously into EL2.

Hypervisor The hypervisor runs at the EL2 Exception level, and supports the execution of
multiple EL1 operating systems.

Non-secure state The Arm Execution state that restricts access to only the Non-secure system
resources, for example memory, peripherals, and System registers.

OEM Original Equipment Manufacturer. In this document, the final device
manufacturer.

OS Application operating system, for example Linux or Windows. This also includes a
virtualized OS running under a hypervisor.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page x

1.2 Non-Confidential

PE Processing element. The abstract machine that is defined in the Arm architecture,
see [2.]

Rx Register; A32 native 32-bit register, A64 architectural register

S-EL0 The Secure EL0 Exception level. The Exception level that is used to execute Trusted
application code in Secure state.

S-EL1 The Secure EL1 Exception level. The Exception level that is used to execute Trusted
OS code in Secure state.

S-EL2 The Secure EL2 Exception level. The Exception level that is used to execute
hypervisor code in Secure state.

Secure Monitor The Secure Monitor is software that executes at the EL3 Exception level. The
Secure Monitor receives and handles Secure Monitor exceptions, and provides
transitions between Secure state and Non-secure state.

Secure state The Arm Execution state that enables access to the Secure and Non-secure
systems resources, for example memory, peripherals, and System registers.

SiP Silicon Partner. In this document, the silicon manufacturer.

SMC Secure Monitor Call. An Arm assembler instruction that causes an exception that is
taken synchronously into EL3.

SMCCC SMC Calling Convention, this document.

SMCCC Implementation The firmware executing at either EL2, Secure EL2, or EL3 that is handling the SMC
or HVC call in a manner that is compliant with this document.

SMC32/HVC32 32-bit SMC and HVC calling convention

SMC64/HVC64 64-bit SMC and HVC calling convention

SoC System on Chip

Wx A64 32-bit register view

Xx A64 64-bit register view

Trusted OS The Secure operating system that is running in the Secure EL1 Exception level.
Trusted OS supports the execution of Trusted applications in Secure EL0.

Unknown Function
Identifier

A reserved return code defined by SMCCC that indicates that the function is not
implemented. The Unknown Function Identifier is declared as NOT_SUPPORTED in
the interface specification and takes the value -1.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page xi

1.2 Non-Confidential

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title (SMC Calling Convention)
• The number and issue (ARM DEN 0028 1.2 REL C)
• The page numbers to which your comments apply
• The rule identifiers to which your comments apply, if applicable
• A concise explanation of your comments

Arm also welcomes general suggestions for additions and improvements.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 12

1.2 Non-Confidential

1 Introduction
This document defines a common calling mechanism to be used with the Secure Monitor Call (SMC) and Hypervisor
Call (HVC) instructions in both the Armv7 and Armv8 architectures.

The SMC instruction is used to generate a synchronous exception that is handled by Secure Monitor code running
in EL3. Arguments and return values are passed in registers. After being handled by the Secure Monitor, calls that
result from the instructions can be passed on to a Trusted OS or some other entity in the Secure software stack.

The HVC instruction is used to generate a synchronous exception that is handled by a hypervisor running in EL2.
Arguments and return values are passed in registers. Hypervisors can also trap SMC calls that are made by guest
operating systems (at EL1), which allows the calls to be emulated, passed through, or denied as appropriate.

This specification aims to ease integration and reduce fragmentation between software layers, for example
operating systems, hypervisors, Trusted OSs, Secure monitors, and system firmware.

Note: This document is defined for the Armv8-A Exception levels, EL0 to EL3.
The relationship between these Exception levels and the 32-bit Armv7 Exception levels is described in
[2.]

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 13

1.2 Non-Confidential

2 SMC and HVC calling conventions

2.1 Secure Monitor Calls

In the Arm architecture, synchronous control is transferred between the normal Non-secure state and the
Secure state through Secure Monitor Call (SMC) exceptions [1.][2.]. SMC exceptions are generated by the SMC
instruction [1.][2.], and are handled by the Secure Monitor. The operation of the Secure Monitor is determined
by the parameters that are passed in through registers.

2.2 Hypervisor Calls

Hypervisor Calls (HVCs) that are made by an operating system at EL1 result in a synchronous transfer of control
to an EL2 hypervisor, and are regarded as HVC exceptions. The operation of the hypervisor is determined by the
parameters that are passed in through registers.

2.3 Fast Calls and Yielding Calls

Two types of calls are defined:

• Fast Calls execute atomic operations. The call appears to be atomic from the perspective of the calling
PE, and returns when the requested operation has completed

• Yielding Calls start operations that can be pre-empted by a Non-secure interrupt. The call can return
before the requested operation has completed. Appendix A: Example implementation of Yielding Service
calls provides an example of handling Yielding Calls.

2.4 32-bit and 64-bit conventions

For the SMC and HVC, two calling conventions instructions are defined:

• SMC32/HVC32: A 32-bit interface that can be used by either a 32-bit or a 64-bit client code, and passes
up to seven 32-bit arguments. Because only SMC32 and HVC32 calls are used for the identification of
Function Identifier ranges, the 32-bit calling convention is mandatory for all compliant systems, whether
they are 32-bit or 64-bit systems. For more information, see Section 6.2.

• SMC64/HVC64: A 64-bit interface that can be used only by 64-bit client code, and passes up to
seventeen 64-bit arguments. SMC64/HVC64 calls are expected to be the 64-bit equivalent to the 32-bit
call, where applicable.

2.5 Function Identifiers

The Function Identifier is passed on W0 on every SMC and HVC call. Its 32-bit integer value indicates which
function is being requested by the caller. It is always passed as the first argument to every SMC or HVC call in R0
or W0. The bit W0[31] determines if the call is Fast (W0[31]==1) or Yielding (W0[31]==0).

2.5.1 Fast Calls

In the Fast Call case (W0[31]==1), the bits W0[30:0] determine:

• The service to be invoked
• The function to be invoked

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 14

1.2 Non-Confidential

• The calling convention (32-bit or 64-bit) that is in use

Several bits within the 32-bit value have defined meanings valid for Fast Calls, as shown in Table 2-1.

Table 2-1 Bit usage within the SMC and HVC Function Identifier for Fast Call

Bit
Numbers

Bit Mask Description

31 0x80000000 Always set to 1 for Fast Calls.

30 0x40000000 If set to 0, the SMC32/HVC32 calling convention is used.

If set to 1, the SMC64/HVC64 calling convention is used.

29:24 0x3F000000 Service Call ranges. For more information, see Section 6.

Owning
Entity
Number

Bit Mask Description

0 0x00000000 Arm Architecture Calls

1 0x01000000 CPU Service Calls

2 0x02000000 SiP Service Calls

3 0x03000000 OEM Service Calls

4 0x04000000 Standard Secure
Service Calls

5 0x05000000 Standard Hypervisor
Service Calls

6 0x06000000 Vendor Specific
Hypervisor Service Calls

7-47 0x07000000 – 0x2F000000 Reserved for future use

48-49 0x30000000 – 0x31000000 Trusted Application Calls

50-63 0x32000000 – 0x3F000000 Trusted OS Calls

23:16 0x00FF0000 Must be zero (MBZ), for all Fast Calls, when bit[31] == 1.

All other values are reserved for future use.

Note: Some Armv7 legacy Trusted OS Fast Call implementations have all bits
set to 1.

15:0 0x0000FFFF Function number within the range call type that is defined by bits[29:24].

2.5.2 Yielding Calls

In the Yielding Call case (W0[31]==0), Trusted OS Yielding Calls are placed in the 0x02000000-0x1FFFFFFF range.
For more details on the Yielding Call Function ranges, see Table 6-2.

2.5.3 Conduits

Service calls are expected to be invoked through SMC instructions, except for Standard Hypervisor Calls and
Vendor Specific Hypervisor Calls. On some platforms, however, SMC instructions are not available, and the

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 15

1.2 Non-Confidential

services can be accessed through HVC instructions. The method that is used to invoke the service is referred to
as the conduit.

Table 2-2 describes which conduits are available, and how they depend on the Exception levels that are
implemented.

Table 2-2: Dependence of conduits on implemented Exception levels

EL3
Implemented

EL2
Implemented

Conduits Notes

Yes Yes SMC, HVC

Yes No SMC

No Yes HVC Only permitted on Armv8-A

No No N/A No conduit required

The SMC calling convention, however, does not specify which instruction, either SMC or HVC, to use to invoke a
particular service.

2.6 SMC32/HVC32 argument passing

When the SMC32/HVC32 convention is used, an SMC or HVC instruction takes a Function Identifier and up to
seven 32-bit register values as arguments, and returns the status and up to seven 32-bit register values.

When an SMC32/HVC32 call is made from AArch32:

• A Function Identifier is passed in register R0.
• Arguments are passed in registers R1-R7.
• Results are returned in R0-R7.
• The registers R4-R7 must be preserved unless they contain results, as specified in the function definition.
• Registers R8-R14 are saved by the function that is called, and must be preserved over the SMC or HVC

call.

When an SMC32/HVC32 call is made from AArch64:

• A Function Identifier is passed in register W0.
• Arguments are passed in registers W1-W7.
• Results are returned in W0-W7.
• Registers W4-W7 must be preserved unless they contain results, as specified in the function definition.
• Registers X8-X30 and stack pointers SP_EL0 and SP_ELx are saved by the function that is called, and must

be preserved over the SMC or HVC call.

Note: Unused result and scratch registers can leak information after an SMC or HVC call. An implementation
can mitigate this risk by either preserving the register state over the call, or returning a constant value,
such as zero, in each register.

Note: SMC32/HVC32 calls from AArch32 and AArch64 use the same physical registers for arguments and
results, since register names W0-W7 in AArch64 map to register names R0-R7 in AArch32.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 16

1.2 Non-Confidential

2.7 SMC64/HVC64 argument passing

When the SMC64/HVC64 convention is used, the SMC or HVC instruction takes a Function Identifier, up to
seventeen 64-bit arguments in registers, and returns the status and up to seventeen 64-bit values in registers.

When an SMC64/HVC64 call is made from AArch64:

• A Function Identifier is passed in register W0.
• Arguments are passed in registers X1-X17.
• Results are returned in X0-X17.
• Registers X4-X17 must be preserved unless they contain results, as specified in the function definition.
• Registers X18-X30 and stack pointers SP_EL0 and SP_ELx are saved by the function that is called, and

must be preserved over the SMC or HVC call.

This calling convention cannot be used by code executing in AArch32 state.

• Any SMC64/HVC64 call from AArch32 state receives the “Unknown Function Identifier” result, see
section 5.2.

Note: Unused result and scratch registers can leak information after an SMC or HVC call. An implementation
can mitigate against this risk by either preserving the register state over the call, or returning a constant
value, such as zero, in each register.

2.8 SVE, SIMD and floating-point registers

SVE, SIMD, and floating-point registers must not be used to pass arguments to or receive results from any SMC
or HVC call that complies with this specification.

The SMCCC implementation must ensure that the live state, belonging to the calling context, on all SVE [11.],
Advanced SIMD and floating-point registers, is preserved over all SMC and HVC calls.

The live state to be preserved is present in the following registers:

• Z0-Z31, P0-P15, FFR, FPSR and FPCR, if SVE is implemented

• V0-V31, FPSR and FPCR, if SVE is not implemented

The SMCCC implementation is responsible for ensuring that information is not disclosed between execution
contexts through SVE, SIMD, and floating-point registers.

Arm recommends that the SMCCC implementation adopts a design pattern, for SVE state preservation, from the
set of patterns that are described in [14.].

2.9 SMC and HVC immediate value

The SMC and HVC instructions encode an immediate value, as defined by the Arm architecture [1.][2.]. The size
of this immediate value, and mechanisms to access the value, differ between the Arm instruction sets. Also, it is
time-consuming for 32-bit Secure Monitor code to access this immediate value.

Therefore:

• For all compliant calls, an SMC or HVC immediate value of zero must be used.
• Nonzero immediate values in SMC instructions are reserved.
• Nonzero immediate values in HVC instructions are designated for use by hypervisor vendors.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 17

1.2 Non-Confidential

2.10 Client ID (optional)

Provisions have been made for Secure software to track and index client IDs.

2.10.1 SMC calls

If an implementation includes a hypervisor or similar supervisory software that executes at EL2, it might be
necessary to identify the client operating system from which the SMC call originated.

• A 16-bit client ID parameter is optionally defined for SMC calls.
• In AArch32, the client ID is passed in the R7 register. For more information, see Table 4-1.
• In AArch64, the client ID is passed in the W7 register. For more information, see Table 3-1.
• The client ID of 0x0000 is designated for SMC calls from the hypervisor itself.

The client ID is expected to be created within the hypervisor and used to register, reference, and de-register
client operating systems to a Trusted OS. It is not expected to correspond to the VMIDs used by the MMU.

If a client ID is implemented, all SMC calls that are generated by software executing at EL1 must be trapped by
the hypervisor. Identification information must be inserted into R7 or W7 register before forwarding any SMC
call on to the Secure Monitor.

If no hypervisor is implemented, the Guest OS is not required to set the client ID value.

2.10.2 HVC calls

The Client ID is ignored by the HVC calling convention.

2.11 Secure OS ID (optional)

In the presence of multiple Secure operating systems at S-EL1, the caller must specify the Secure OS for which
the call is intended:

• An optional 16-bit Secure OS ID parameter can be defined for SMC calls.
• In AArch32, the Secure OS ID is passed in the R7 register. For more information, see Table 4-1.
• In AArch64 state, the Secure OS ID is passed in the W7 register. For more information, see Table 3-1.

2.12 Session ID (optional)

To support multiple sessions within a Trusted OS or hypervisor, it might be necessary to identify multiple
instances of the same SMC or HVC call:

• An optional 32-bit Session ID can be defined for SMC and HVC calls.
• In AArch32, the Session ID is passed in the R6 register, see Table 4-1.
• In AArch64, the Session ID is passed in the W6 register, see Table 3-1.

The Session ID is expected to be provided by the Trusted OS or hypervisor, and is used by its clients in
subsequent calls.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 18

1.2 Non-Confidential

3 AArch64 SMC and HVC calling conventions
This specification defines common calling mechanisms for use with the SMC and HVC instructions from the
AArch64 state. These calling mechanisms are referred to as SMC32/HVC32 and SMC64/HVC64.

For Arm AArch64:

• All Trusted OS and Secure monitor implementations must conform to this specification.
• All hypervisors must implement the Standard Secure and Hypervisor Service calls.

3.1 Register use in AArch64 SMC and HVC calls

For the AArch64 calling conventions, usage of the architectural registers is defined in Table 3-1.

The working size of the register is identified by its name:

Xn All 64-bits are used.

Wn The least significant 32-bits are used, and the most significant 32-bits are zero. Implementations
must ignore the most significant bits.

Table 3-1 Register Usage in AArch64 SMC32, HVC32, SMC64, and HVC64 calls

Register Name Role during SMC or HVC call

SMC32/HVC32 SMC64/HVC64 Calling values Modified Return state

SP_ELx ELx stack pointer No

Register values are
preserved.

SP_EL0 EL0 stack pointer No

X30 The Link Register No

X29 The Frame Pointer No

X19…X28 Registers that are saved by the called
function

No

X18 The Platform Register No

X17 Parameter register

The second intra-procedure-call scratch
register

Dependent1

Registers values
are preserved or
contain call
results.

X16 Parameter register

The first intra-procedure-call scratch
register

Dependent1

X9…X15 Parameter registers

Temporary registers

Dependent1

X8 Parameter register

Indirect result location register

Dependent1

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 19

1.2 Non-Confidential

W7 X7

(or W7)

Parameter register

Optional Client ID in bits[15:0] (ignored
for HVC calls)

Optional Secure OS ID in bits[31:16]

Dependent1

W6 X6

(or W6)

Parameter register

Optional Session ID register

Dependent1

W4…W5 X4…X5 Parameter registers Dependent1

W1…W3 X1…X3 Parameter registers Yes SMC and HVC
result registers W0 W0 Function Identifier Yes

For more information, see [4.].

1 An SMC call or HVC call can return results in this register. Otherwise the call must preserve the value in the
register. Refer to the documentation for the defined behavior of each SMC or HVC call.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 20

1.2 Non-Confidential

4 AArch32 SMC and HVC calling convention
This specification defines a common calling mechanism for use with the SMC and HVC instructions from the
AArch32 state, which are referred to as SMC32/HVC32.

Note: Arm recognizes that some vendors already use a proprietary calling convention and are not able to meet
all the following requirements.

4.1 Register use in AArch32 SMC and HVC Calls

Table 4-1 Register usage in AArch32 SMC and HVC Calls

Register

SMC32/HVC32

Role during SMC or HVC call

Calling values Modified Return state

R15 The Program Counter Yes Next instruction

R14 The Link Register No

Unchanged

registers are saved or
restored.

R13 The stack pointer No

R12 The Intra-Procedure-call scratch register No

R11 Variable-register 8 No

R10 Variable-register 7 No

R9 Platform register No

R8 Variable-register 5 No

R7 Parameter register 7

Optional Client ID in bits[15:0]
(ignored for HVC calls)

Optional Secure OS ID in bits[31:16]

Dependent2

Register values are
preserved or contain call
results.

R6 Parameter register 6

Optional Session ID

Dependent2

R5 Parameter register 5 Dependent2

R4 Parameter register 4 Dependent2

R3 Parameter register 3 Yes

SMC and HVC results
registers

R2 Parameter register 2 Yes

R1 Parameter register 1 Yes

R0 Function Identifier Yes

For more information, see [3.].

All architecturally-banked registered must be preserved over AArch32 calls.

2 An SMC call or HVC call can return results in this register. Otherwise the call must preserve the value in the
register. Refer to the documentation for the defined behavior of each SMC or HVC call.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 21

1.2 Non-Confidential

5 SMC and HVC results

5.1 Error codes

Errors codes that are returned in R0, W0 and X0 are signed integers of the appropriate size:

• In AArch32:
o When using the SMC32/HVC32 calling convention, error codes, which are returned in R0, are 32-

bit signed integers.
• In AArch64:

o When using the SMC64/HVC64 calling convention, error codes, which are returned in X0, are 64-
bit signed integers.

o When using the SMC32/HVC32 calling convention, error codes, which are returned in W0, are
32-bit signed integers. X0[63:32] is UNDEFINED.

5.2 Unknown Function Identifier

The Unknown SMC Function Identifier is a sign-extended value of (-1) that is returned in the R0, W0 or X0
registers. An implementation must return this error code when it receives:

• An SMC or HVC call with an unknown Function Identifier
• An SMC or HVC call for a removed Function Identifier
• An SMC64/HVC64 call from AArch32 state

Note: The Unknown Function Identifier must not be used to discover the presence of an SMC or HVC function,
or that lack of a function. Function Identifiers must be determined from the UID and Revision
information. For the Arm Architecture Call range, Function Identifiers can be determined using
SMCCC_ARCH_FEATURES as described in Section 7.3 and Appendix B: Discovery of Arm Architecture
Service functions.

5.3 Unique Identification format

This value identifies the implementer of a subrange (see 6.2) of the API, and therefore what controls the actions
of SMCs in that subrange.

The Unique Identification UID is a UUID as defined by RFC 4122 [6.]. These UUIDs must be generated by any
method that is defined by RFC 4122 [6.], and are 16-byte strings.

UIDs are returned as a single 128-bit value using the SMC32 calling convention. This value is mapped to
argument registers as shown in Table 5-1.

Table 5-1: UUID register mapping

Register Value

AArch32 AArch64

R0 W0 Bytes 0…3 with byte 0 in the low-order bits

R1 W1 Bytes 4…7 with byte 4 in the low-order bits

R2 W2 Bytes 8…11 with byte 8 in the low-order bits

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 22

1.2 Non-Confidential

R3 W3 Bytes 12…15 with byte 12 in the low-order bits

UIDs with the least significant 32 bits set to 0xFFFFFFFF must not be used, because they are indistinguishable

from Unknown Function Identifiers.

There can be many implementers of standard APIs. The API compatibility is determined by revision numbers.

5.4 Revision information format

The revision information for a subrange (see 6.2) is defined by a 32-bit major version and a 32-bit minor version.

Different major version values indicate a possible incompatibility between SMC and HVC APIs for the affected
SMC and HVC range.

For two revisions, A and B, where the major version values are identical, and the minor version value of revision
B is greater than the minor version value of revision A, every SMC and HVC instruction in the affected range that
works in revision A must also work in revision B, with a compatible effect.

When returned by a call, the major version is returned in R0 or W0 and the minor version is returned in R1 or
W1. Such an SMC or HVC instruction must use the SMC32 or HVC32 calling conventions.

The rules for interface updates are:

• A Function Identifier, when issued, must never be reused.
• Subsequent SMC or HVC calls must take a new unused Function Identifier.
• Calls to Function Identifiers that have been removed must return the Unknown Function Identifier value.
• Incompatible argument changes cannot be made to an existing SMC or HVC call. A new call is required.
• Major revision numbers must be incremented when:

o Any SMC or HVC call is removed.
• Minor revision numbers must be incremented when:

o Any SMC or HVC call is added.
o Backwards compatible changes are made to existing function arguments .

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 23

1.2 Non-Confidential

6 Function Identifier Ranges
Arm defines the SMC and HVC Fast Call services that are listed in Table 6-1.

Table 6-1: SMC and HVC Services

Service Owning
Entity
Number

Comment

Arm Architecture Service 0 Provides interfaces to generic services for the Arm
Architecture.

CPU Service 1 Provides interfaces to CPU implementation-specific services
for this platform, for example access to errata workarounds.

SiP Service 2 Provides interfaces to SoC implementation-specific services on
this platform, for example Secure platform initialization,
configuration, and some power control services.

OEM Service 3 Provides interfaces to OEM-specific services on this platform.

Standard Secure Service 4 Standard Service Calls for the management of the overall
system. By standardizing such calls, the job of implementing
operating systems on Arm is made easier.

Section 6.3 lists Secure Services that are already defined.

Standard Hypervisor Service 5 Standardized Hypervisor Service Calls allow for common
hypervisor discovery mechanism from any Guest OS.

Vendor Specific Hypervisor Service 6 Proprietary Hypervisor Service Calls.

Trusted Applications 48—49

Trusted OS 50—63

The existing Arm Architecture Services are listed in Section 7. An example of a set of services residing in the
Standard Secure Services range is PSCI, defined in [5.].

6.1 Allocation of values

Table 6-2 shows the recommended allocation of Function Identifier value ranges for different entities and
purposes. The owner of a range is the entity that is responsible for that function in a specific SoC. Any subranges,
in the 0x0000 0000 – 0xFFFF FFFF range, that are not covered by the table are reserved.

Table 6-2: Allocated subranges of Function Identifier to different services

SMC Function Identifier Service type

0x00000000-0x0100FFFF Reserved for existing APIs

This region is already in use by the existing Armv7 devices.

0x02000000-0x1FFFFFFF Trusted OS Yielding Calls

0x20000000-0x7FFFFFFF Reserved for future expansion of Trusted OS Yielding Calls

0x80000000-0x8000FFFF SMC32: Arm Architecture Calls

0x81000000-0x8100FFFF SMC32: CPU Service Calls

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 24

1.2 Non-Confidential

0x82000000-0x8200FFFF SMC32: SiP Service Calls

0x83000000-0x8300FFFF SMC32: OEM Service Calls

0x84000000-0x8400FFFF SMC32: Standard Service Calls

0x85000000-0x8500FFFF SMC32: Standard Hypervisor Service Calls

0x86000000-0x8600FFFF SMC32: Vendor Specific Hypervisor Service Calls

0x87000000-0xAF00FFFF Reserved for future expansion

0xB0000000-0xB100FFFF SMC32: Trusted Application Calls

0xB2000000-0xBF00FFFF SMC32: Trusted OS Calls

0xC0000000-0xC000FFFF SMC64: Arm Architecture Calls

0xC1000000-0xC100FFFF SMC64: CPU Service Calls

0xC2000000-0xC200FFFF SMC64: SiP Service Calls

0xC3000000-0xC300FFFF SMC64: OEM Service Calls

0xC4000000-0xC400FFFF SMC64: Standard Service Calls

0xC5000000-0xC500FFFF SMC64: Standard Hypervisor Service Calls

0xC6000000-0xC600FFFF SMC64: Vendor Specific Hypervisor Service Calls

0xC7000000-0xEF00FFFF Reserved for future expansion

0xF0000000-0xF100FFFF SMC64: Trusted Application Calls

0xF2000000-0xFF00FFFF SMC64: Trusted OS Calls

6.2 General service queries

The following general queries are optional:

• Call Count Query3– Returns a 32-bit count of the available service calls. The count includes both 32 and
64 calling convention service calls and both Fast Calls and Yielding Calls.

• Call UID Query – Returns a unique identifier of the service provider, as specified in section 5.3.
• Revision Query – Returns revision details of the service implementor, as specified in section 5.4.

All queries listed in Table 6-3 are SMC32 or HVC32 Fast Calls.

When implemented, the general service queries must use the reserved function IDs that are defined in Table 6-3.
The reserved function IDs must only be used for the calls that are listed in Table 6-3.

If the service or the query is not implemented, general service queries must return the Unknown Function
Identifier error.

Table 6-3 Function Identifier values of general queries

Service Call Count Call UID Revision

Arm Architecture Service 0x8000_FF003 0x8000_FF013 0x8000_FF033

3 Query deprecated from SMCCC v1.2 onward

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 25

1.2 Non-Confidential

CPU Service 0x8100_FF003 0x8100_FF01 0x8100_FF03

SiP Service 0x8200_FF003 0x8200_FF01 0x8200_FF03

OEM Service 0x8300_FF003 0x8300_FF01 0x8300_FF03

Standard Secure Service 0x8400_FF003 0x8400_FF01 0x8400_FF03

Standard Hypervisor Service 0x8500_FF003 0x8500_FF01 0x8500_FF03

Vendor Specific Hypervisor Service 0x8600_FF003 0x8600_FF01 0x8600_FF03

Trusted Applications4 - - -

Trusted OS 0xBF00_FF003 0xBF00_FF01 0xBF00_FF03

In addition to the values in the table above, the other Function Identifiers in the 0xXXXXFF00 – 0xXXXXFFFF
range, for example 0x8000FF02 and 0x8000FF04-0x8000FFFF for Arm Architecture Service, are reserved
for future expansion. The Call Count Query of all services, the Call UID Query and the Revision Query from the
Arm Architecture Service, are deprecated from SMCCC v1.2 onward.

6.3 Implemented Standard Secure Service Calls

Arm def ines a set of Standard Secure Service Calls for the management of the overall system. Standard calls are
intended to provide system management services to operating systems.

The following Function Identifier values are reserved for the following Standard Secure Service Calls:

Table 6-4: Reserved Standard Secure Service Call range

Function Identifier Reserved for Notes

0x84000000-0x8400001F PSCI 32-bit calls

32-bit Power Secure Control Interface. For
details of functions and arguments, see [5.].

0xC4000000-0xC400001F PSCI 64-bit calls 64-bit Power Secure Control Interface. For
details of functions and arguments, see [5.].

0x84000020-0x8400003F SDEI 32-bit calls 32-bit Software Delegated Exception
Interface. For details of functions and
arguments, see [8.].

0xC4000020-0xC400003F SDEI 64-bit calls 64-bit Software Delegated Exception
Interface. For details of functions and
arguments, see [8.].

0x84000040-0x84000041 MM 32-bit calls 32-bit Management Mode. For details of
functions and arguments, see [10.].

0xC4000040-0xC4000041 MM 64-bit calls 64-bit Management Mode. For details of
functions and arguments, see [10.].

4 It is the responsibility of a Trusted OS to identify and describe the services that are provided by Trusted
applications.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 26

1.2 Non-Confidential

Note: When a hypervisor traps SMC calls, it must be able to determine f rom the Standard Service identifiers which
SMC calls are for power control and similar operations, so that it can emulate these calls for its clients.
Sometimes the standards defining these service calls might allow use of HVC instead of SMC, either to
support platforms that do not implement EL3, or to allow more f lexibil ity for the hypervisor implementation,
in which case the identifiers remain the same.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 27

1.2 Non-Confidential

7 Arm Architecture Calls

7.1 Return codes

Table 7-1 defines the possible values for the error codes that are used with the interface functions. The error
return type is signed integer. Zero and positive values denote success, and negative values indicate error.

Table 7-1 Return code and values

Name Description Value

SUCCESS The call completed successfully. 0

NOT_SUPPORTED The call is not supported by the
implementation.

-1

NOT_REQUIRED The call is deemed not required by
the implementation.

-2

INVALID_PARAMETER One of the call parameters has a
non-supported value.

-3

7.2 SMCCC_VERSION

Dependency MANDATORY from SMCCC v1.1

OPTIONAL for SMCCC v1.0

Description Retrieve the implemented version of the SMC Calling Convention

Parameters uint32 Function ID 0x8000 0000

Return int32 NOT_SUPPORTED Treat as v1.0

major:minor Bit[31] must be zero

Bits [30:16] Major version

Bits [15:0] Minor version

7.2.1 Usage

This call is used by system software to determine the version of SMCCC that is implemented. The version that is
implemented indicates the calling convention for AArch64 callers and the presence of the
SMCCC_ARCH_FEATURES function.

7.2.2 Discovery

This function was not defined in SMCCC version 1.0, and might not be safe on all platforms. Calling software can
detect the implementation of this function by one of the following methods:

• Built-in knowledge of the firmware implementation
• Discovery via PSCI_FEATURES with the psci_func_id parameter set to 0x8000 0000. For more

information, see [5.], Appendix C: Changes to PSCI and Appendix B: Discovery of Arm Architecture
Service functions.

• Information from firmware tables like the Flattened Device Tree table or ACPI tables.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 28

1.2 Non-Confidential

See Appendix B: Discovery of Arm Architecture Service functions for a description of the full discovery sequence.

If SMCCC_VERSION is implemented, calling SMCCC_ARCH_FEATURES with arch_func_id equal to 0x8000 0000
will return SUCCESS.

7.2.3 Caller responsibilities

Before calling this function, Arm recommends that the caller determines whether it is safe to do so on the
platform. This is because some firmware implementations do not implement this function safely. See Appendix
B: Discovery of Arm Architecture Service functions for the recommended discovery protocol.

The caller must interpret a NOT_SUPPORTED response as indicating the presence of firmware that implements
SMCCC v1.0.

7.2.4 Implementation responsibilities

For the values that must be returned by this call, see Table 11-1 in Appendix D: Changelog.

7.3 SMCCC_ARCH_FEATURES

Dependency MANDATORY from SMCCC v1.1

OPTIONAL for SMCCC v1.0

Description Determine the availability and capability of Arm Architecture Service functions

Parameters uint32 Function ID 0x8000 0001

uint32 arch_func_id Function ID of an Arm Architecture Service Function

Return int32 < 0 Function not implemented or arch_func_id not in
Arm Architecture Service range. The reason is
indicated by an error code specific to the function.

SUCCESS Function implemented.

> 0 Optional

Function implemented. Function capabilities are
indicated using feature flags specific to the function.

7.3.1 Usage

This call is used by system software to determine whether a specific Arm Architecture Service function is
implemented in the firmware. This function might also provide information about the capabilities of the
function.

7.3.2 Discovery

The implementation of this function can be detected by checking the SMCCC version. This function is mandatory
if SMCCC_VERSION indicates that version 1.1 or later is implemented.

See Appendix B: Discovery of Arm Architecture Service functions for the full discovery sequence.

If SMCCC_ARCH_FEATURES is implemented, calling SMCCC_ARCH_FEATURES with arch_func_id equal to
0x8000 0001 will return SUCCESS.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 29

1.2 Non-Confidential

7.3.3 Parameters

The arch_func_id parameter is the Function ID in the Arm Architecture Service range: 0x8000 0000-0x8000 FFFF
and 0xC000 0000-0xC000 FFFF. Values outside of this range are invalid.

7.3.4 Return

If the result is non-negative it indicates that the return function is implemented.

Some functions provide information about their capabilities in the result.

A description of how to interpret the result of calling SMCCC_ARCH_FEATURES is provided in the Discovery
section of the documentation for each function.

7.3.5 Caller responsibilities

The caller must only call SMCCC_ARCH_FEATURES on implementations that are compliant with SMCCC version
1.1 or later.

7.3.6 Implementation responsibilities

This function must return SUCCESS when arch_func_id is the SMCCC_VERSION or SMCCC_ARCH_FEATURES
function id.

7.4 SMCCC_ARCH_SOC_ID

Dependency OPTIONAL from SMCCC v1.0

Description Obtain a SiP defined SoC identification value

Parameters uint32 Function ID 0x8000 0002

uint32 SoC_ID_type 0: SoC version

1: SoC revision

2 – 0xFFFF FFFF: Reserved

Return int32 INVALID_PARAMETER

> 0 SoC_ID_type == 0

JEP-106 code for the SiP

Bit[31] must be zero

Bits [30:24] JEP-106 bank index for
the SiP (see [9.])5

Bits [23:16] JEP-106 identification
code with parity bit for the SiP (see
[9.])5

Bits [15:0] Implementation defined
SoC ID

5 As an example, the value of JEP-106 manufacturer code in Arm’s case is:

Bits[30:24] = 0x04 (the bank index is equal to the for continuation code bank number -1)
Bits [23:16] = 0x3B

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 30

1.2 Non-Confidential

SoC_ID_type == 1

Bit[31] must be zero

Bits [30:0] SoC revision

7.4.1 Usage

This call is used by system software to obtain the SiP defined SoC identification details.

7.4.2 Discovery

The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES (see 7.3) with
arch_func_id equal to 0x8000 0002. The result of that call should be interpreted as follows:

NOT_SUPPORTED Function is not implemented

0 Function is implemented

7.4.3 Parameters

The SoC_ID_type parameter value identifies the type of SoC identification that the function returns. The valid
values for the SoC_ID_type parameter are:

• 0: SoC version: Function returns the SiP defined SoC version.
• 1: SoC revision: Function returns the SiP defined SoC revision.

Any other SoC_ID_type parameter value is invalid.

7.4.4 Return

If the call returns NOT_IMPLEMENTED the function is not present in the SMCCC implementation. If the call
returns INVALID_PARAMETER, the SoC_ID_type parameter is outside of the {0,1} set.

On success the return value is a positive quantity which represents:

• SoC version, if SoC_ID_type == 0
• SoC revision, if SoC_ID_type == 1

7.4.5 Caller responsibilities

The caller must not call this function unless it has determined that it is implemented in the firmware, see Section
7.4.2.

7.4.6 Implementation responsibilities

 If implemented, the firmware must provide discovery of this function as defined in the Section 7.4.2.

7.5 SMCCC_ARCH_WORKAROUND_1

Dependency OPTIONAL from SMCCC v1.1

NOT SUPPORTED in SMCCC v1.0

Description Execute the mitigation for CVE-2017-5715 on the calling PE

Parameters uint32 Function ID 0x8000 8000

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 31

1.2 Non-Confidential

Return void This function has no return value.

7.5.1 Usage

This call is used by system software to execute a firmware workaround that is required to mitigate CVE-2017-
5715.

7.5.2 Discovery

The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES, as described in Section
7.3, with arch_func_id equal to 0x8000 8000. The result of that call should be interpreted as:

NOT_SUPPORTED The discovery call will return NOT_SUPPORTED on every PE in the system.

SMCCC_ARCH_WORKAROUND_1 must not be invoked on any PE in the system.

Either:

None of the PEs in the system require firmware mitigation for CVE-2017-5715.

The system contains at least 1 PE affected by CVE-2017-5715 that has no firmware
mitigation available.

The firmware does not provide any information about whether firmware mitigation is
required.

0 SMCCC_ARCH_WORKAROUND_1 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called requires firmware mitigation for CVE-
2017-5715.

1 SMCCC_ARCH_WORKAROUND_1 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called does not require firmware mitigation
for CVE-2017-5715.

7.5.3 Caller responsibilities

The caller must not call this function unless it has determined that it is implemented in the firmware, see Section
7.5.2.

Arm recommends that the caller only call this function on PEs that are affected by CVE-2017-5715 when a
firmware-based mitigation is required and a local workaround is infeasible. Calling this on other PEs is wasted
execution.

For more information, see [7.] and [13.].

7.5.4 Implementation responsibilities

This function must not be provided in firmware implementations that are not compliant with SMCCC version 1.1
or later.

If implemented, the firmware must provide discovery of this function as defined in the Section 7.5.2.

Arm recommends that firmware does not provide an implementation of this function on systems that return a
negative error code in the discovery call above.

If implemented, the firmware must fully implement this function for all PEs in the system that require firmware
mitigation for CVE-2017-5715.

In heterogeneous systems with some PEs that require mitigation and others that do not, the firmware must
provide a safe implementation of this function on all PEs. This allows callers to call the function on all PEs in a
system where the firmware implements the workaround, without risking functional stability. In such systems, on

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 32

1.2 Non-Confidential

PEs that do not require firmware mitigation, the firmware must provide an implementation that has no effect.
For more information, see [7.] and [13.].

7.6 SMCCC_ARCH_WORKAROUND_2

Dependency OPTIONAL from SMCCC v1.1

NOT SUPPORTED in SMCCC v1.0

Description Enable or disable the mitigation for CVE-2018-3639 on the calling PE

Parameters uint32 Function ID 0x8000 7FFF

uint32 enable A non-zero value indicates that the mitigation for CVE-2018-3639
must be enabled. A value of zero indicates that it must be disabled.

Return Void This function has no return value.

7.6.1 Usage

This call is used by system software to enable or disable a firmware workaround that is required to mitigate CVE-
2018-3639. The call only affects the mitigation state (enabled or disabled) for the calling execution context. The
workaround is enabled by default for all execution contexts that are managed by the firmware. Once the
workaround is disabled, it remains disabled until explicitly re-enabled by a subsequent call to this function.

7.6.2 Discovery

The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES, as described in Section
7.3, with arch_func_id equal to 0x8000 7FFF. The result of that call should be interpreted as:

NOT_SUPPORTED The discovery call will return NOT_SUPPORTED on every PE in the system.

SMCCC_ARCH_WORKAROUND_2 must not be invoked on any PE in the system.

Either:

The system contains at least one PE affected by CVE-2018-3639 that has no firmware
mitigation available, or

The firmware does not provide any information about whether firmware mitigation is
required or enabled.

NOT_REQUIRED The discovery call will return NOT_REQUIRED on every PE in the system.

SMCCC_ARCH_WORKAROUND_2 must not be invoked on any PE in the system.

For all PEs in the system, firmware mitigation for CVE-2018-3639 is either permanently
enabled or not required.

0 SMCCC_ARCH_WORKAROUND_2 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called requires dynamic firmware mitigation
for CVE-2018-3639 using SMCCC_ARCH_WORKAROUND_2.

1 SMCCC_ARCH_WORKAROUND_2 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called does not require dynamic firmware
mitigation for CVE-2018-3639 using SMCCC_ARCH_WORKAROUND_2.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 33

1.2 Non-Confidential

7.6.3 Caller responsibilities

The caller must not call this function unless it has determined that this function is implemented in the firmware,
see 7.6.2.

Arm recommends that the caller only call this on PEs that are affected by CVE-2018-3639 when a dynamic
firmware-based mitigation is required, and a local workaround is infeasible. Calling this on other PEs is wasted
execution.

Arm recommends that Secure world software does not use this call so that it always remains protected.

For more information, see the [7.] and [13.].

7.6.4 Implementation responsibilities

This function must not be provided in firmware implementations that are not compliant with SMCCC version 1.1
or later.

If implemented, the firmware must provide discovery of this function as defined in the Discovery section above.

Arm recommends that firmware does not provide an implementation of this function on systems that return a
negative error code in the discovery call above.

If implemented, the firmware must fully implement this function for all PEs in the system that require dynamic
firmware mitigation for CVE-2018-3639.

In heterogeneous systems with some PEs that require dynamic firmware mitigation and others that do not, the
firmware must provide a safe implementation of this function on all PEs. This permits callers to call the function
on all PEs in a system where the firmware implements the workaround, without risking functional stability. In
such systems, on PEs that do not require dynamic firmware mitigation, the firmware must provide an
implementation that has no effect.

If implemented, the firmware must separately maintain the logical mitigation state (enabled or disabled) for
each execution context that it manages. The default mitigation state (enabled) must be applied:

• To the primary PE following cold boot
• To a PE when it starts up following a CPU_ON call, as defined by the PSCI specification [5.]
• To a PE when it wakes up from a powerdown state (for example, following a CPU_SUSPEND call), as

defined by the PSCI specification [5.]

If implemented, Arm recommends that the firmware enables mitigation during its own execution.

If the firmware implements this function and the Software Delegated Exception Interface (SDEI) specification
[8.], then the firmware must apply the default mitigation state (enabled) to the execution context of each SDEI
client handler following each triggered event, irrespective of the mitigation state of the interrupted or client
execution contexts. The firmware must restore the mitigation state of the interrupted or client execution
context following a call to SDEI_EVENT_COMPLETE or SDEI_EVENT_COMPLETE_AND_RESUME respectively.

For more information, see [7.] and [13.].

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 34

1.2 Non-Confidential

8 Appendix A: Example implementation of Yielding Service
calls
Many aspects of Yielding Calls are specific to the internal implementation of Secure services, for example:

• Might a Yielding Call be resumed at another PE?

• Might there be more outstanding Yielding Calls per PE?

One approach for implementing Yielding Calls is for the Secure service to return a specific error code when that
call is pre-empted by an interrupt, as shown in the following example. The caller can then resume the operation
after the interrupt is serviced.

To allow Secure services to match the original Yielding Call after it resumes, the service might return opaque
handlers that can be passed back in resume_call():

(X0, X1, X2) = any_yielding_call(…);

while (X0 == SMCCC_PREEMPTED)
{
 (X0, X1, X2) = resume_call(X1, X2);
}

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 35

1.2 Non-Confidential

9 Appendix B: Discovery of Arm Architecture Service
functions
System software needs to run safely on any existing platform, but should make use of the mitigation
functionality whenever it is available. The following approach to discovery should maximize the ability to detect
this functionality without causing unsafe behavior on existing platforms.

Step 1: Determine if SMCCC_VERSION is implemented

The following pseudocode summarizes the proposed discovery flow using PSCI 1.0:

if (FirmwareTablesLookup(PSCI) == SUCCESS)
{
 if (invoke_psci_version() >= 0x10000)

 {
 if (invoke_psci_features(SMCCC_VERSION) == SUCCESS)
 return SUCCESS;
 }
}
return NOT_SUPPORTED

The steps are:

1. Use firmware data, device tree PSCI node, or ACPI FADT PSCI flag, to determine whether a PSCI
implementation is present.

2. Use PSCI_VERSION to learn whether PSCI_FEATURES is provided. PSCI_FEATURES is mandatory from
version 1.0 of PSCI.

3. Use PSCI_FEATURES with the SMCCC_VERSION Function Identifier as a parameter to determine that
SMCCC_VERSION is implemented.

In future, the ACPI and device tree might also be extended to indicate the compliance to the SMCCC directly.

Step 2: Determine if Arm Architecture Service function is implemented

The following pseudocode summarizes the proposed discovery flow of an Arm Architecture Service function,
using SMCCC_ARCH_WORKAROUND_1 as an example:

if (invoke_smccc_version() >= 0x10001)
{
 if (invoke_smccc_arch_features(SMCCC_ARCH_WORKAROUND_1) >= 0)
 return SUCCESS;

}
return NOT_SUPPORTED

The steps are:

1. Use SMCCC_VERSION to learn whether the calling convention complies to version 1.1 or above.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 36

1.2 Non-Confidential

2. Use SMCCC_ARCH_FEATURES to query whether the Arm Architecture Service function is implemented on
this system.

If the software is running on a heterogenous system, for example big.LITTLE, it can optimize use of an Arm
Architecture Service function by invoking SMCCC_ARCH_FEATURES on each PE and eliminating the calls to the
function on PEs that indicate the function call is not required, for example on PEs that return one (1) in the case
of SMCCC_ARCH_WORKAROUND_1.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 37

1.2 Non-Confidential

10 Appendix C: Changes to PSCI

10.1 Overview

10.1.1 Discoverability of SMCCC implementation

On platforms that fully implement the SMC Calling Convention version 1.0 (SMCCCv1.0) the functions that are
described in Section 7.2 and Section 7.3 are adequate for detecting the presence of the Arm Architecture Service
functionality.

However, some platform and virtualization firmware only implement a subset of SMCCC. Specifically, such
firmware might only implement the PSCI specification in order to meet operating system requirements, but not
provide a safe implementation of unimplemented SMCCC functions. A safe implementation is one that conforms
to the SMCCC calling convention and returns NOT_SUPPORTED (-1) for functions that are not defined or not
implemented.

System software that needs to use the mitigation functions that are described above, but must also run correctly
on such platforms, requires additional mechanisms to discover whether SMCCC is implemented, and whether it
is safe to call SMCCC_VERSION.

One mechanism is to add discoverability of this to the firmware description, for example Device Tree or ACPI
tables.

To accelerate adoption of these mitigations and protect more systems more rapidly from this vulnerability, Arm
strongly recommends that the firmware implementations also provide an additional discovery mechanism
though the firmware PSCI implementation of PSCI_FEATURES.

10.2 Interface

This is an updated excerpt from the PSCI specification for PSCI_FEATURES. The significant changes are
highlighted in gray. Note that the changes will apply from PSCI v1.0.

10.2.1 PSCI_FEATURES

Dependency Introduced in PSCI v1.0

Description Query API that allows discovering whether a specific PSCI function is implemented and its
features. See the PSCI specification [5.] for more details.

Parameters uint32
Function ID

0x8400 000A

uint32
psci_func_id

Function ID for a PSCI Function or SMCCC_VERSION

Return int32 NOT_SUPPORTED Function identified by psci_func_id not is not
implemented or not valid

SUCCESS Function implemented

> 0 Optional

A set of feature flags associated with an
implemented function identified by
psci_func_id. Feature flags are specific to each
function. In all cases the format is:

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 38

1.2 Non-Confidential

Bit[31] is zero

Bits[0:30] represent the feature flags. See PSCI
[5.] for details.

Usage

The usage of this function is as defined for PSCI v1.0 and later. For more information, see [5.].

In addition, this interface can be used to detect the implementation of SMCCC_VERSION in the firmware.

Parameters

The psci_func_id parameter is valid if it is any of:

• A PSCI SMC32 Function Identifier, in the range 0x8400 0000-0x8400 001F
• A PSCI SMC64 Function Identifier, in the range 0xC400 0000-0xC400 001F
• The SMCCC_VERSION Function Identifier, 0x8000 0000

Return

For valid PSCI Function Identifiers, see PSCI for details of the return value.

When psci_func_id is SMCCC_VERSION, a return value of SUCCESS (zero) indicates that SMCCC_VERSION is
implemented.

Implementation responsibilities

Arm recommends that this function reports the presence of SMCCC_VERSION for any firmware that implements
SMCCC v1.1 as described in this specification.

ARM DEN 0028C Copyright © 2013 - 2020 Arm Limited or its affiliates. All rights reserved. Page 39

1.2 Non-Confidential

11 Appendix D: Changelog
Table 11-1 relates the SMCCC version to the return of the SMCCC_VERSION Arm Architecture Call and to the
changes introduced on each SMCCC version release.

For further details on the SMCCC_VERSION Arm Architecture Call return values, see Section 7.2.

Table 11-1 SMCCC Changelog

SMCCC
version

SMCCC_VERSION call
return

Changes

1.0 -1 or 0x10000 Introduces:

General Service Queries (Section 6.2)

1.1 0x10001 Introduces:

SMCCC_VERSION (Section 7.2)

SMCCC_ARCH_FEATURES (Section 7.3)

SMCCC_ARCH_WORKAROUND_1 (Section 7.5)

SMCCC_ARCH_WORKAROUND_2 (Section 7.6)

1.2 0x10002 Argument/Result register set:

Permits calls to use R4—R7 as return register (Section 4.1).

Permits calls to use X4—X17 as return registers (Section 3.1).

Permits calls to use X8—X17 as argument registers (Section
3.1).

Introduces:

SMCCC_ARCH_SOC_ID (Section 7.4)

Deprecates:

UID, Revision Queries on Arm Architecture Service (Section
6.2)

Count Query on all services (Section 6.2)

