
 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0056B

Arm® System Control and Management Interface

Platform Design Document

Non-Confidential

Version 2.0

System Control and Management Interface

Page 2 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Contents

Release information ... 4

Proprietary notice ... 5

1 About this Document .. 6

1.1 References ... 6
1.2 Terms and abbreviations .. 6
1.3 Feedback .. 7

1.3.1 Feedback on this manual .. 7

2 Introduction .. 8

3 System Control and Management Interface structure .. 9

4 Protocols .. 11

4.1 Protocol structure ... 11
4.1.1 Agents, messages and channels .. 11
4.1.2 Message format .. 13
4.1.3 Protocol discovery ... 14
4.1.4 SCMI status codes .. 15

4.2 Base protocol ... 18
4.2.1 Agent specific permission configuration and reset ... 18
4.2.2 Commands ... 19
4.2.3 Notifications .. 29

4.3 Power domain management protocol ... 31
4.3.1 Power domain management protocol background .. 31
4.3.2 Commands ... 33
4.3.3 Notifications .. 40
4.3.4 Power state statistics shared memory region .. 41

4.4 System power management protocol .. 44
4.4.1 System power management protocol background ... 44
4.4.2 Commands ... 47
4.4.3 Notifications .. 52

4.5 Performance domain management protocol ... 54
4.5.1 Performance domain management protocol background 54
4.5.2 FastChannels .. 55
4.5.3 Commands ... 55
4.5.4 Notifications .. 68
4.5.5 Performance domain statistics shared memory region 69

4.6 Clock management protocol ... 72
4.6.1 Clock management protocol background .. 72
4.6.2 Commands ... 72
4.6.3 Delayed responses ... 79

4.7 Sensor management protocol ... 81
4.7.1 Sensor management protocol background .. 81
4.7.2 Commands from Agents to Platform ... 81
4.7.3 Delayed Responses from Platform to Agent .. 90

System Control and Management Interface

Page 3 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.7.4 Notifications .. 90
4.7.5 Sensor Values Shared Memory .. 91

4.8 Reset domain management protocol .. 93
4.8.1 Reset domain management protocol background ... 93
4.8.2 Commands ... 94
4.8.3 Delayed Responses .. 98
4.8.4 Notifications .. 99

5 Transports .. 100

5.1 Shared Memory based Transport ... 100
5.1.1 Message communications flow ... 100
5.1.2 Shared memory area layout .. 102
5.1.3 Shared memory based transport firmware representation guidelines 104

5.2 ACPI-based Transport .. 106
5.3 Shared Memory or MMIO based Transport for FastChannels 107

System Control and Management Interface

Page 4 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Copyright © 2017, 2019 Arm Limited. All rights reserved.

Release information

The Change History table lists the changes that are made to this document.

Table R.1. Change history

Date Issue Confidentiality Change

May 2017 Issue A Non-confidential Version 1.0, first external release

July 2019 Issue B

Non-confidential

Version 2.0.

1. Removed reference to specific document versions in section

1.1.

2. Replaced PSCA with the correct acronym (PCSA) for Power

Control System Architecture in Section 2.

3. Added clarifications to SCMI status codes NOT_FOUND and

NOT_SUPPORTED in Section 4.1.4.

4. Added clarifications on OSPM view in Section 4.3.5.

5. Added more context to the OUT_OF_RANGE and BUSY status

codes.

6. Added guidance on usage of ACPI PCC channels for SCMI

transport.

7. Added clarifying note on power costs of performance domains.

8. Added FastChannel support.

9. Added Power Domain Management pre-notification support.

10. Added Agent-specific Resource Isolation capability as a part of

Base protocol.

11. Add agent_id self-discovery.

12. Added notes on agent-id management.

13. Replaced SCMI overview diagram.

14. Cleaned up description/grammar and typos at multiple places.

15. Extended System Power Management Protocol notifier to

support Virtualized system implementations.

16. Added Reset Management Protocol.

17. Renamed Mailbox Transport to more appropriate Shared

Memory based Transport and made changes to allow

SMC/HVC based doorbells.

18. Added guidance on usage of ACPI PCC channels for SCMI

transport.

19. Added more context to the OUT_OF_RANGE and BUSY status

codes.

20. Added clarifications to SCMI status codes NOT_FOUND and

NOT_SUPPORTED.

21. Added support for notifications to agents on performance level

change events triggered by external factors.

22. Remove requirement for Statistics Regions to be reset after

system suspend.

System Control and Management Interface

Page 5 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Proprietary notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of Arm. No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document
unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information: (i) for the purposes of determining whether implementations infringe any third party
patents; (ii) for developing technology or products which avoid any of Arm’s intellectual property; or (iii) as a reference
for modifying existing patents or patent applications or creating any continuation, continuation in part, or extension of
existing patents or patent applications; or (iv) for generating data for publication or disclosure to third parties, which
compares the performance or functionality of the Arm technology described in this document with any other products
created by you or a third party, without obtaining Arm’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in
reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other company.
Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and
supersedes the conflicting provisions of these terms. This document may be translated into other languages for
convenience, and you agree that if there is any conflict between the English version of this document and any translation,
the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2017, 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England. 110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21585

http://www.arm.com/company/policies/trademarks

System Control and Management Interface

Page 6 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

1 About this Document

This document describers an extensible operating system-independent software interface to perform
various system control and management tasks, including power and performance management.

1.1 References

This document refers to the following documents.

Reference Document Number Title

[ACPI] Advanced Configuration and Power Interface Specification.
See https://uefi.org/specifications

[FDT] Flattened Device Tree. See https://www.devicetree.org

[PSCI] DEN0022 Power State Coordination Interface. See
http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/
Power_State_Coordination_Interface_PDD_v1_1_DEN0022
D.pdf

[PCSA] DEN0050 Power Control System Architecture Specification.

[ARMTF] Arm Trusted Firmware. See https://github.com/ARM-
software/arm-trusted-firmware.

[ARM] DDI 0487 Arm Architecture Reference Manual ARMv8, for ARMv8-A
architecture profile.

[SMCCC] DEN0028 Arm SMC Calling Convention.

1.2 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

ACPI Advanced Configuration and Power Interface

Agent Entity that sends commands to the platform using SCMI. For example, the
OSPM running on an AP or an on-chip management controller.

AP Application processor, that is a processor that is running the operating
system and applications in the system.

ASL ACPI Source Language. Interpreted language that is used by the boot
firmware to describe methods and data for the Operating System to use to
discover and configure system resources. Defined in [ACPI].

Channel The transport link over which the agent communicates to the platform.

Command A message that is sent from an agent to the platform.

Delayed response A message that is sent from the platform to an agent to indicate completion
of the work that is associated with an asynchronous command.

https://uefi.org/specifications
https://www.devicetree.org/
http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware

System Control and Management Interface

Page 7 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

FastChannel A FastChannel is a lightweight unidirectional channel that is dedicated to a
particular SCMI message for controlling a particular platform resource.

FDT Flattened Device Tree

Message An individual communication from an agent to the platform or from the
platform to an agent.

MMIO Memory Mapped IO.

Notification A message that is sent from the platform to an agent to alert of a change in
state.

OSPM Operating System-directed Power Management. Typically, this acronym
refers to the software components of an Operating System that interact
with the power management interfaces of the platform.

Platform The set of system components that interpret the SCMI messages and
provide the necessary functionality. An SCP is an example of a platform
component that could implement the SCMI messages.

PSCI Power State Coordination Interface.

SCMI System Control and Management Interface, which is described in this
specification.

SCP System Control Processor, see [PCSA].

1.3 Feedback

Arm welcomes feedback on its documentation.

1.3.1 Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title.

• The document and version number, DEN0056B.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

file:///C:/Users/toneve01/Documents/Server%20Base%20System%20Architecture/errata@arm.com

System Control and Management Interface

Page 8 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

2 Introduction

This document describes the System Control and Management Interface (SCMI), which is a set of
operating system-independent software interfaces that are used in system management. SCMI is
extensible and currently provides interfaces for:

• Discovery and self-description of the interfaces it supports.

• Power domain management, which is the ability to place a given device or domain into the various
power-saving states that it supports.

• Performance management, which is the ability to control the performance of a domain that is
composed of compute engines such as application processors (APs), GPUs, or other accelerators.

• Clock management, which is the ability to set and inquire rates on platform-managed clocks.

• Sensor management, which is the ability to read sensor data, and be notified of sensor value
changes.

• Reset domain management, which is the ability to place a given device or domain into various reset
states.

There is a strong trend in the industry to provide microcontrollers in systems to abstract various power,
or other system management tasks, away from APs. These controllers usually have similar interfaces,
both in terms of the functions that are provided by them, and in terms of how requests are
communicated to them. The Power Control System Architecture (PCSA) describes how systems using
this approach can be built. For detailed information about the PCSA, see [PCSA].

PCSA defines the concept of the System Control Processor (SCP), a processor that is used to abstract
power and system management tasks from the APs. The SCP can take requests from APs and other
system agents. It can coordinate these requests and place components in the platform into appropriate
power and performance states. The SCMI interface is particularly relevant to these kinds of systems.
The interface provides two levels of abstraction:

• Protocols
Each group of related functions is referred to as a protocol. The SCMI interface structure is
extensible, and therefore other protocols could be added in the future.

• Transports
The protocols communicate through transports. A transport specification describes how protocol
messages are communicated between agents using the interface and the platform components
that implement the protocol messages.

The interface is intended to be described in firmware, using either the Flattened Device Tree (FDT) or
Advanced Configuration and Power Interface (ACPI) specification. For more information, see [FDT] and
[ACPI]. Because the protocols are intended to be generic, they result in generic kernel code to drive
them. However, in the ACPI case, the interface can also be driven from ASL methods. This document is
arranged into the following sections:

• Section 3 provides background into the interface structure.

• Section 4 describes protocols.

• Section 5 describes transports.

System Control and Management Interface

Page 9 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

3 System Control and Management Interface structure

The SCMI is intended to allow agents such as an operating system to manage various functions that
are provided by the hardware platform it is running on, including power and performance functions. As
described in the introduction, SCMI provides two levels of abstraction: protocols and transports.
Protocols define individual groups of system control and management messages. A protocol
specification describes the messages that it supports. Transports describe the method by which
protocol messages are communicated between agents and the platform. Arm strongly recommends that
transports be operating system independent and capable of being virtualized.

Transports comply with the following rules:

• A transport might support multiple channels. Each agent has one or more dedicated channels.
Channels cannot be shared between agents.

• Systems that use Arm TrustZone technology can have both Secure and Non-secure channels. Data
in a Secure channel can only be read or written by Secure memory accesses. A Non-secure
channel cannot be used to access or modify Secure platform resources. An agent can be Secure or
Normal. Only a Secure agent can communicate over a Secure channel. A Normal agent cannot use
a Secure channel.

It is intended that protocols and transports are developed independently.

The protocols that are described in this document are intended to be used by power and performance
management agents such as an operating system, also referred to as Operating System-directed
Power Management (OSPM). Typical agents are:

• An OSPM that operates in Non-secure Exception levels.

• Secure-world software that is running on an AP.

• A privileged entity like a hypervisor on virtualized systems.

• External entities in the system, such as a management controller in an enterprise system, or a
modem in a mobile system.

The term platform is intended to describe the set of hardware components that interpret the messages
and provide the necessary functionality. The term agent is used to describe the caller of the interface.
Each agent that communicates with the platform must have its own set of dedicated channels. This
requirement removes the need for creating locking primitives across agents that are running entirely
different software stacks. For example, a management controller and an operating system. In addition,
dedicated channels provide a method for the platform to identify which agent is sending a message.

Figure 1 below illustrates an example system that implements the SCMI interface. In this example, the
platform includes an SCP that handles SCMI commands that are issued from APs. The latter
communicates with the SCP through Secure and Non-secure channels. The figure also shows a device
that uses SCMI protocols to manage its power and performance. As described in [PCSA], the SCP
coordinates requests from all requesting agents and drives the hardware into appropriate power or
performance states.

System Control and Management Interface

Page 10 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Figure 1 SCMI Overview

System Control and Management Interface

Page 11 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4 Protocols

4.1 Protocol structure

As described in section 3, a protocol is a group of messages. The following sections describe the
message flow, the structure of messages, and protocol discovery.

4.1.1 Agents, messages and channels

The term agent is used to describe components that are clients of the SCMI interface. Agents have the
following properties:

• Agents run a software stack with different privilege levels.

• Agent software stacks are independent from each other. This makes resource sharing, or the
ability to write cross-agent locking primitives difficult. For example, one agent might be an
operating system running on all APs, and another agent might be firmware running on a
manageability controller.

Agents and the platform communicate over transport channels. A channel can be a dedicated SCMI
FastChannel or a standard SCMI channel.

A FastChannel is a lightweight unidirectional channel that is dedicated to a single SCMI message type
for controlling a specific platform resource. Unlike a standard channel, a FastChannel cannot be used to
carry multiple message types, or to explicitly control multiple platform resources. A FastChannel cannot
be shared among agents. The absence of multiple message types and their header requirements
enables FastChannels to provide a potentially low latency mechanism for an agent to communicate with
the platform. However, a FastChannel does not guarantee that the time taken by the platform to
complete the requested operation is lower compared to a standard channel. Since FastChannels are
protocol and message specific, their behavior is detailed in the respective Protocol sections. For this
version of the specification, FastChannels are only supported for Performance management protocol
and their properties are described in Section 4.5.2. Unless explicitly specified, the word ‘channel’ in the
rest of the document will always refer to standard SCMI channels.

Figure 2 below describes how agents and the platform communicate over channels. The diagram
shows multiple agents communicating with the platform.

Figure 2 Messages and Channels

Each agent has dedicated channels, which are used to send messages to, and receive messages from,
the platform. Each channel is a bidirectional communication pipe between the agent and the platform,
except for FastChannels which are unidirectional. For a given channel either the agent or the platform is
the master, or initiator, of communications. The master can place a message on a channel. At the other
end, the slave processes the message, and if the channel is not a FastChannel, it might place return

System Control and Management Interface

Page 12 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

data on the channel as a response. Depending on which entity is the master, a channel is one of two
types:

• On Agent to Platform (A2P) channels, the agent is the master.

• On Platform to Agent (P2A) channels, the platform is the master.

Each agent can have one or more A2P channels and one or more P2A channels. However, these
channels have to be dedicated to that specific agent, and cannot be shared with other agents. Hence
the maximum number of agents that can co-exist in a system at any given time can be no more than the
number of available channels.

The platform considers that all communication over a channel is with a unique agent bearing a fixed
agent identifier. This notion enables the platform to identify which agents are communicating with it. The
platform statically assigns an agent identifier to every channel. An agent can discover the identifier
assigned to it through the channel that the agent owns. This discovery is done using the Base protocol.

The properties of channels are specific to the transport that is used to send messages. An A2P
transport might support interrupt-driven communication to send messages, where the platform
generates an interrupt when it processes the message. The interrupt alerts the agent that the channel
can now be used to send a further message. For a P2A transport, the agent might trigger an interrupt to
the platform when it has processed the message sent by the platform. This informs the platform that the
channel is now free and can be used to send a further message. Alternatively, a transport might only
support polling-based communications. A transport can also support both methods, and allow the agent
to choose.

Messages are used by agents to make requests to the platform. The messages can carry various
parameters, including an identifier for the requested operation. In turn, the platform carries out the
requested operation, and might generate data in response to the message. From this point of view,
messages are analogous to remote procedure calls, which can carry various parameters, and can also
provide return data. The platform can also send messages to an agent, typically to indicate completion
of a long job, or to notify of an event.

Messages that are sent by agents on A2P channels are known as commands and fall into two
categories:

• Synchronous
Commands that block the channel until the requested work has been completed. The platform
responds to these commands over the A2P channel that was used to send them. Therefore, the
channel cannot be used to send another command until the previous synchronous command
has completed, and the channel is free to accept further commands.

• Asynchronous
For these commands, the platform schedules the requested work to complete later in time.
Therefore, these commands return almost immediately to the calling agent, freeing the channel
for new commands. The response to an asynchronous command indicates the success or
failure in the ability to schedule the requested work. When the work has completed, the platform
can send an additional delayed response message to the client over a P2A channel.

Messages that the platform can send to an agent over P2A channels also fall into two categories:

• Delayed response
Messages sent to indicate completion of the work that is associated with an asynchronous
command.

• Notifications
These messages provide notifications of events taking place in the platform. Events might
include changes in power state, performance state, or other platform status.

System Control and Management Interface

Page 13 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

FastChannels do not support synchronous commands, delayed responses or notifications.

4.1.2 Message format

Messages are analogous to remote procedure calls, and therefore must be representative of the
particular operation being requested, and any parameters or return values thereof.

Each message carries a message header, which identifies the operation being requested. Each
message belongs to a protocol. Therefore, the header of the message includes an 8-bit protocol
identifier. This is known as the protocol_id. Within a protocol, each message is associated with a unique
8-bit identifier. This is known as the message_id.

A message can take several 32-bit arguments and can provide 32-bit return values. All parameters,
message headers, and return arguments are expressed in little endian format. The endianness rule
does not apply to strings. For all messages, any reserved field is set to zero.

Values for the protocol_id are described in Table 1.

Table 1 Protocol identifiers

protocol_id Description

0x0 - 0xF Reserved.

0x10 Base protocol.

0x11 Power domain management protocol.

0x12 System power management protocol.

0x13 Performance domain management protocol.

0x14 Clock management protocol.

0x15 Sensor management protocol.

0x16 Reset domain management protocol.

0x17-0x7F Reserved for future use by this specification.

0x80-0xFF
Reserved for vendor or platform-specific
extensions to this interface.

For all protocols and all transports using standard channels, messages are sent to the platform using a
32-bit message header, which is described in Table 2. FastChannels do not use a message header as
they are specialized for a single message.

Table 2 Message header format

Field Mnemonic Description

Bits[31:28] - Reserved, must be zero.

Bits[27:18] token Token.

Bits[17:10] protocol_id Protocol identifier.

Bits[9:8] message_type Message type.

System Control and Management Interface

Page 14 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Bits[7:0] message_id Message identifier.

Commands

All commands, synchronous or asynchronous, have a message type of 0.

How the token field is used is entirely up to the caller. However, when a command returns, the platform
must return the whole message header unmodified. The message header must always be the first
parameter that is sent by an agent and returned by the platform.

In addition to the message header, commands return error status codes and can return more data. Any
command that is sent with an unknown protocol_id or message_id must be responded to with a return
value of NOT_SUPPORTED as the status code. FastChannels do not return any status codes since
they are unidirectional. Status codes are provided in section 4.1.4.

Delayed responses

Delayed responses have a message type of 2.

Delayed response messages are sent by the platform to the agent to indicate completion of work that
was requested by an asynchronous command. The message header that is associated with a delayed
response uses the format that is described in Table 2. The message_id of a delayed response matches
that of its associated asynchronous command. The token in the message header matches the token of
the associated asynchronous command. The payload that is associated with a delayed response
includes a status code, and additional data depending on the command.

Notifications

Notifications have a message type of 3.

Notifications provide a mechanism for the platform to inform agents about events taking place in the
platform. Optionally, the implementation can provide information about which agent caused an event.
To this end, a notification payload carries an agent identifier, agent_id, as its first parameter. The
agent_id is an integer identifier that can be used to codify the agent that generated an event. The
agent_id uses the following rules:

• A value of 0 identifies the platform itself.

• Where implemented, agent_ids are sequential and start from one.

• Agent identifiers and their mapping to other components are platform-specific. Where
necessary, this must be described to operating system through firmware table technologies such
as FDT or ACPI.

• If agent identification is not supported, the implementation must set the agent_id to zero in
notifications to indicate that the notification has been issued by the platform itself.

Message type 1 is reserved for future use by this specification.

4.1.3 Protocol discovery

This specification encompasses various protocols. However, not every protocol has to be present in an
implementation, because not every protocol is relevant for every market segment. Furthermore, the
platform chooses which protocols it exposes to a given agent. The only protocol that must be

System Control and Management Interface

Page 15 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

implemented is the Base protocol, which is described in section 4.2. The Base protocol is used by an
agent to discover which protocols are available to it.

All protocols, whether they are generic or vendor specific, must mandatorily implement three special
messages with message_ids of 0x0, 0x1, and 0x2 respectively, as described in Table 3.

Table 3 Required messages

message_id Message Description

0x0 PROTOCOL_VERSION Returns the version of
protocol.

0x1 PROTOCOL_ATTRIBUTES Returns properties
that are associated
with the protocol
implementation.

0x2 PROTOCOL_MESSAGE_ATTRIBUTES Takes a message_id
as a parameter and
returns
implementation details
specific to that
message.

Protocols might implement additional messages.

Protocol versioning uses a 32-bit unsigned integer, where the upper 16 bits are the major revision, and
the lower 16 bits are the minor revision.

The following rules apply to the version numbering:

• Higher numbers denote newer versions.

• Different major revision values indicate possibly incompatible messages. For two protocol versions,
A and B, which differ in major revision, and where B is higher than A, the following might be true:

o B can remove messages that were present in A.

o B can add new messages that were not present A.

o B can modify the behavior or parameters of messages that are also present in A.

• Minor revisions allow extensions, but must retain compatibility. For two protocol versions, A and B,
that differ only in the minor revision, and where B is higher than A, the following must hold:

o Every message in A must also be present in B, and work with compatible effect.

o It is possible for revision B to have a higher message count than revision A.

4.1.4 SCMI status codes

Messages can return status codes to the sender. Negative 32-bit integers are used to return error
status codes. Values 0 to -127 are reserved by this specification. Values below -127 can be used for
vendor-specific errors.

Table 4 describes the error codes for SCMI messages.

System Control and Management Interface

Page 16 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Table 4 Status codes

Status code Description

0 SUCCESS

-1 NOT_SUPPORTED

-2 INVALID_PARAMETERS

-3 DENIED

-4 NOT_FOUND

-5 OUT_OF_RANGE

-6 BUSY

-7 COMMS_ERROR

-8 GENERIC_ERROR

-9 HARDWARE_ERROR

-10 PROTOCOL_ERROR

-11 to -127 Reserved

< -127 Vendor specific

The specification of each SCMI message describes which error codes are appropriate to that message.
However, unless otherwise specified, the following status codes apply to all command messages that
are sent from an agent to the platform:

Code Description

SUCCESS Successful completion of the command.

NOT_SUPPORTED The command or feature is not supported, or supported
but not within the calling agent’s view of the platform.

INVALID_PARAMETERS One or more parameters passed to the command are
invalid or beyond legal limits.

DENIED The caller is not permitted to perform the specific action,
such as accessing a resource or feature that it is not
allowed to use.

NOT_FOUND The entity that is being accessed does not exist. Examples
includes non-existent or invalid commands, resources
such as power domains, clocks or sensors.

OUT_OF_RANGE Requested settings are outside the legal range under the
current operating state or condition.

NOTE: Legal values can be different for different operating
states of the system, hence a setting can be legal at a

System Control and Management Interface

Page 17 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

given point in time, and yet illegal at another. The
operating state of the platform can change as a result of
external factors.

BUSY The platform is out of resources and thus unable to
process a command. Arm strongly recommends that the
implementation ensures that sufficient resources are
available to the platform to handle the more frequently
issued commands in order to guarantee availability of
service. In particular, the platform must guarantee service
for the following commands:

• System power protocol commands

• AP/domain power management commands.

• Reset domain commands

An agent receiving this status code must consider the
system as non-functional and might attempt recovery
through a system restart.

COMMS_ERROR The command could not be correctly transmitted to the
platform. Possible causes could include command buffer
overflows as a result of flow control on the message
transport. This error is a property of the transport.

GENERIC_ERROR The command failed to be processed owing to an
unspecified fault within the platform.

HARDWARE_ERROR A hardware error occurred in a platform component during
execution of a command.

PROTOCOL_ERROR Returned when the receiver detects that the caller has
violated the protocol specification.

System Control and Management Interface

Page 18 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.2 Base protocol

This protocol describes the properties of the implementation and provides generic error management.
The Base protocol provides commands to:

• Describe protocol version.

• Discover implementation attributes and vendor identification.

• Discover which protocols are implemented.

• Discover which agents are in the system.

• Register for notifications of platform errors.

• Configure the platform in order to control and modify an agent’s visibility of platform resources
and commands.

This protocol is mandatory.

4.2.1 Agent-specific permission configuration and reset

Where the system has multiple agents, the Base protocol provides commands that optionally allow a
trusted agent to configure the access permissions of other agents. An agent should not be able to
discover resources and commands that it does not have access to. If an agent tries to access resources
that it does not have access to, the platform returns a DENIED or NOT_SUPPORTED response.

In a system comprising multiple agents, there is typically one trusted agent which has elevated
privileges to configure and control the access rights of other agents in the system. Nominating a trusted
agent is an implementation defined choice that must take into account the deployment use case. Arm
recommends that only trusted agents have access to the Base Protocol commands to configure agent
specific permissions. A trusted agent may be based in the Secure world or in the Normal world. Non-
trusted agents should not be able to modify access permissions.

Platform resources can be Secure or Non-secure. Only a trusted agent based in the Secure world
should be able to modify access permissions of Secure platform resources. The trusted agent might not
always be resident in the Secure world. A trusted agent which is based in the Normal world should not
be able to modify the access permissions of Secure platform resources.

The system boots with default permission configurations for each agent. Typically, this might ensure
that Normal world agents do not have access to Secure platform resources. Thereafter, the trusted
agent might setup additional access permissions. However, a Normal world agent, trusted or not, can
never access Secure platform resources or modify access permissions of Secure platform resources.

In a virtualized system, a Virtual Machine (VM) is an example of a Normal world non-trusted agent, and
the hypervisor is an example of a Normal world trusted agent. Using agent-specific permission
configuration, the hypervisor can set up fine grained Non-secure resource access permissions for
Virtual Machines. The hypervisor discovers the agent identifier of the channel that it wants to assign to
a VM. The hypervisor then sets up access permissions of the agent identifier associated with that
channel and assigns the channel to the VM. The VM can now discover the agent identifier, and only
access those protocols and platform resources which have been permitted by the hypervisor.

4.2.1.1 Device specific access control

A platform usually includes a set of devices, or peripherals, for example Graphics Processing Units
(GPUs), UART, or USB. If a platform has multiple agents, all agents might not have access to all the
devices in the platform..The Base protocol provides the BASE_SET_DEVICE_PERMISSIONS
command to configure the devices that an agent has access to. A device, in this context, might also be

System Control and Management Interface

Page 19 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

a logical aggregation of platform components. The definition of a device is the responsibility of the
platform firmware and depends on the use case and the platform itself.

The platform must track all the resources that constitute a device. Platform resources refer to power
domains, performance domains, clocks, sensors and reset domains. A device might span multiple
domains. Also, multiple devices might share the same domain. An agent should be able to access
resources associated with a device, only when the agent has permissions to access the device itself.
When a resource is shared among multiple devices, the resource must be maintained in a state that
fulfils the requirements of all the devices that share it.

4.2.1.2 Protocol specific access control

The Base protocol allows a trusted agent to restrict the protocols that non-trusted agents can use to
access the platform resources that are associated with a specific device. This restriction is achieved by
the BASE_SET_PROTOCOL_PERMISSIONS command. The platform should generate a DENIED or
NOT_SUPPORTED response if an agent tries to use a restricted protocol to access the platform
resources that are associated with the specific device.

4.2.1.3 Agent specific configuration reset

The Base protocol provides the BASE_RESET_AGENT_CONFIGURATION command to reset all the
platform resource configurations that are requested by an agent and tracked by the platform. This
command can also be used to reset agent-specific permission configurations to access devices and
protocols.

A trusted agent might be allowed to reset the configuration of any agent in the system. However, a
trusted agent that is based in the Normal world should not be allowed to reset Secure platform resource
permissions or configurations. Non-trusted agents should not be allowed to reset the configuration of
other agents. A non-trusted agent might only request configuration reset for itself.

Agent configuration reset should not be confused with system reset which is achieved through System
power management protocol, or the reset of a domain which is achieved through the Reset domain
management protocol. Agent specific configuration reset might typically be used in a scenario in which
the trusted agent might want to remove an agent’s access to all devices previously assigned to it. Agent
specific configuration reset might also be useful when an agent has become unresponsive and the
trusted agent needs to tell the platform to clean up that agent’s resource configurations.

4.2.2 Commands

4.2.2.1 PROTOCOL_VERSION

This command returns the version of this protocol. For this version of the specification, the value that is
returned must be 0x20000, which corresponds to version 2.0.

message_id: 0x0

protocol_id: 0x10

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 20 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 version
For this revision of the specification, this value must be
0x20000.

4.2.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details that are associated with this protocol.

message_id: 0x1

protocol_id: 0x10

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:16] Reserved, must be zero.

Bits[15:8] Number of agents in the system.

Bits[7:0] Number of protocols that are implemented,
 excluding the Base protocol.

If the platform does not support agent discovery, then it reports the number of agents in the system as
zero, and all notifications carry a zero in the agent_id field.

4.2.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

message_id: 0x2

protocol_id: 0x10

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

System Control and Management Interface

Page 21 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

int32 status

One of the following:

• SUCCESS: in case the message is implemented and
available to use.

• NOT_FOUND: if the message identified by message_id
is not provided by this platform implementation.

See section 4.1.4 for status code definitions.

uint32 attributes

Flags that are associated with a specific command in the
protocol.

For all commands in this protocol, this parameter has a value
of 0.

4.2.2.4 BASE_DISCOVER_VENDOR

This command provides a vendor identifier ASCII string.

message_id: 0x3

protocol_id: 0x10

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint8 vendor_identifier [16]
Null terminated ASCII string of up to 16 bytes with a
vendor name.

4.2.2.5 BASE_DISCOVER_SUB_VENDOR

On success, this optional command provides a sub vendor identifier ASCII string.

message_id: 0x4

protocol_id: 0x10

This command is optional.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint8 vendor_identifier [16]
Null terminated ASCII string of up to 16 bytes with a
vendor name.

System Control and Management Interface

Page 22 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.2.2.6 BASE_DISCOVER_IMPLEMENTATION_VERSION

This command provides a vendor-specific 32-bit implementation version. The format of the version
number is vendor-specific, but version numbers must be strictly increasing so that a higher number
indicates a more recent implementation.

message_id: 0x5

protocol_id: 0x10

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32
implementation_version

Format is vendor-specific.

4.2.2.7 BASE_DISCOVER_LIST_PROTOCOLS

This command allows the agent to discover which protocols it is allowed to access. The protocol list
returned by this call should be in numeric ascending order.

message_id: 0x6

protocol_id: 0x10

This command is mandatory.

Parameters

Name Description

uint32 skip Number of protocols to skip.

Return values

Name Description

int32 status

One of the following:

• SUCCESS: if a valid list of protocols is found.

• INVALID_PARAMETERS: if skip field is invalid.

See section 4.1.4 for status code definitions.

uint32 num_protocols Number of protocols that are returned by this call.

uint32
protocols[1+(num_protocols-1)/4]

Array of protocol identifiers that are implemented,
excluding the Base protocol, with four protocol
identifiers packed into each array element. The
PROTOCOL_ATTRIBUTES command can be used
to determine the number of protocols implemented.

System Control and Management Interface

Page 23 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

The following pseudocode illustrates how this command can be used.

int status = 0;

int skip = 0;

int total_protocols = 0;

int num_protocols = 0;

uint32 attributes = 0;

uint32* protocols = NULL;

invoke_PROTOCOL_ATTRIBUTES(&status,&attributes);

if (status)

 goto clean_up_and_return;

total_protocols = (attributes & NUM_PROTOCOLS_MASK) >>

 NUM_PROTOCOLS_SHIFT;

if (!total_protocols)

 goto clean_up_and_return;

uint8* protocols;

do {

 invoke_BASE_DISCOVER_LIST_PROTOCOLS(skip,

 &status, &num_protocols, protocols);

 if (status)

 goto clean_up_and_return;

 for (int ix = 0; ix < num_protocols; ix++)

 {

 uint8 prot = protocols[ix/4] >> (ix % 4);

 add_to_protocol_database(prot);

 skip++;

 }

} while (skip < total_protocols);

4.2.2.8 BASE_DISCOVER_AGENT

This optional command allows the caller to discover the name of an agent, described through an ASCII
string of up to 16 bytes. A caller can discover if this command is implemented by issuing the
PROTOCOL_MESSAGE_ATTRIBUTES command and passing the message_id of this command. If
the command is implemented, PROTOCOL_MESSAGE_ATTRIBUTES returns SUCCESS (0).

Agent identifiers, agent_id, describe agents in the system that can use the SCMI protocols. Not every
agent can use all protocols, and some protocols can offer different views to different agents. An
agent_id of 0 is reserved to identify the platform itself. If the command is not implemented, the caller
does not interpret agent identifiers in notifications, and the platform sets agent_id to zero in
notifications. Where supported, agent_id values are sequential, start from one, and are limited by the
number of agents that is reported through PROTOCOL_ATTRIBUTES.

If called with an agent_id of 0, the string returned in the name parameter must start with the letters
“platform”.

An agent can discover its own agent_id and name by passing agent_id of 0xFFFFFFFF. In this case,
the command returns the agent_id and name of the calling agent.

System Control and Management Interface

Page 24 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0x7

protocol_id: 0x10

This command is optional.

Parameters

Name Description

uint32 agent_id Identifier of the agent whose identification is requested.

Return values

Name Description

int32 status
NOT_FOUND: if agent_id does not point to a valid agent.

See section 4.1.4 for status code definitions.

uint32 agent_id

ID of the agent whose identity is requested.

This field is:

• populated with the agent_id of the calling agent, when the
agent_id parameter passed via the command is
0xFFFFFFFF

• identical to the agent_id field passed via the calling
parameters, in all other cases

uint8 name[16] Null terminated ASCII string of up to 16 bytes in length.

4.2.2.9 BASE_NOTIFY_ERRORS

An implementation can optionally provide notifications of errors in the platform to an agent that has
registered through this command. A caller can discover if this command is implemented by issuing the
PROTOCOL_MESSAGE_ATTRIBUTES command and passing the message_id of this command. If
the command is implemented, PROTOCOL_MESSAGE_ATTRIBUTES returns SUCCESS.

Error notification is used to notify agents of commands that could not proceed due to unpredictable
circumstances, such as internal hardware errors. Further information on the error notification and
associated payload is provided in section 4.2.3.1, which describes the BASE_ERROR_EVENT
notification.

message_id: 0x8

protocol_id: 0x10

This command is optional.

Parameters

Name Description

System Control and Management Interface

Page 25 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 notify_enable

Bits[31:1] Reserved, must be zero.

Bit[0] Notify enable:

 If this value is 0, the platform does not send any
 BASE_ERROR_EVENT messages to the calling
 agent.

 If this value is 1, the platform sends
 BASE_ERROR_EVENT messages to the calling
 agent when an error is detected.

 For more details on the BASE_ERROR_EVENT
 notification, see 4.2.3.1.

Return values

Name Description

int32 status

INVALID_PARAMETERS; if notify_enable contains illegal or
incorrect values.

See section 4.1.4 for status code definitions.

4.2.2.10 BASE_SET_DEVICE_PERMISSIONS

This command is used to indicate to the platform whether an agent has permissions to access devices,
as specified by a device identifier. An agent can only operate on devices to which it has access, and by
extension can only operate on the power, performance, clock, sensor and reset domains that are
associated with that device. At system boot, the default device-specific access permission of an agent
is IMPLEMENTATION defined. Arm recommends that only trusted agents in the system are given
permission to invoke this command.

The Base protocol does not cover the discovery of device identifiers for devices in a platform. This
information is provided to the caller by way of firmware tables in FDT or ACPI.

A caller can discover if this command is implemented by issuing the
PROTOCOL_MESSAGE_ATTRIBUTES command and passing the message_id of this command. If
the command is implemented, PROTOCOL_MESSAGE_ATTRIBUTES returns SUCCESS.

message_id: 0x9

protocol_id: 0x10

This command is optional.

Parameters

Name Description

uint32 agent_id Identifier of the Agent.

uint32 device_id Identifier of the device.

System Control and Management Interface

Page 26 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 flags

Bits[31:1] Reserved, must be zero.

Bit[0] Access Type

 This bit defines the permissions of the agent to
 access platform resources associated with the
 device.

 If set to 0, deny agent access to the device.

 If set to 1, allow agent access to the device.

Return values

Name Description

int32 status

One of the following:

• SUCCESS: in case the device permissions for the
agent specified by agent_id were set successfully.

• NOT_FOUND: if agent_id or device_id does not exist.

• INVALID_PARAMETERS: if flags field is invalid.

• NOT_SUPPORTED: if the command is not
supported.

• DENIED: if the calling agent is not allowed to set the
permissions of the agent specified by agent_id.

See section 4.1.4 for status code definitions.

4.2.2.11 BASE_SET_PROTOCOL_PERMISSIONS

An agent can have access to multiple devices. The agent uses commands to access platform resources
that are associated with those devices. The command BASE_SET_PROTOCOL_PERMISSIONS is
used to indicate to the platform whether an agent has permissions to use a protocol to access the
platform resources that are associated with a specific device. This command cannot be used to change
the agent’s permissions to access a device. This command only affects the protocols which the agent
can use to access the platform resources that are associated with a particular device. At system boot,
the default per-device protocol specific access permissions of an agent are IMPLEMENTATION
defined.

Arm recommends that only trusted agents in the system are given permissions to invoke this command.

A caller can discover if this command is implemented by issuing the
PROTOCOL_MESSAGE_ATTRIBUTES command and passing the message_id of this command. If
the command is implemented, PROTOCOL_MESSAGE_ATTRIBUTES returns SUCCESS.

message_id: 0xA

protocol_id: 0x10

This command is optional.

Parameters

Name Description

System Control and Management Interface

Page 27 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 agent_id Identifier of the Agent.

uint32 device_id Identifier of the device.

uint32 command_id

Bits[31:8] Reserved, must be zero.

Bits[7:0] Protocol ID

 This field should not be set to 0x10, since it is
 mandatory to implement the Base protocol for
 all agents.

uint32 flags

Bits[31:1] Reserved, must be zero.

Bit[0] Access Type.

 This bit defines the permissions of the agent to
 use the protocol specified by command_id, to
 access platform resources that are a part of the
 device specified by device_id.

 If set to 0, deny agent access to the protocol.

 If set to 1, allow agent access to the protocol.

Return values

Name Description

int32 status

One of the following:

• SUCCESS: in case the command permissions were
set successfully.

• NOT_FOUND: if any of agent_id, device_id or
protocol_id does not exist.

• INVALID_PARAMETERS: if flags field is invalid.

• NOT_SUPPORTED: if the command is not
supported.

• DENIED: if the calling agent is not allowed to set the
protocol permissions for the agent specified by
agent_id.

See section 4.1.4 for status code definitions.

4.2.2.12 BASE_RESET_AGENT_CONFIGURATION

This command is used to reset platform resource settings that were previously configured by an agent.
Platform resource settings refer to power domain, performance domain, clock, sensors and other
settings associated with a device that the agent has access to. This command can also be used to reset
agent-specific permission configurations to access devices and protocols.

When this command is received, the platform might need to flush all pending requests from the agent
that is undergoing configuration reset. It might also need to wait for requests that are being processed
on behalf of the agent to complete. Alternatively, the platform can choose to abort all agent-related
transactions in flight and reset its configuration. The platform needs to revert the platform resources that
are solely dedicated to the agent into their default state. Shared platform resources need to be moved

System Control and Management Interface

Page 28 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

into a state that continues to meet the requirements of the remaining agents using that resource.
Shared platform resources are those which are shared among and used by multiple agents. Agent
configuration reset should not be confused with the reset of the platform or its components.

If the Permissions Reset flag is set, the platform resets all the device and protocol access permissions
that are configured for the agent. When permission reset completes, IMPLEMENTATION defined
platform-specific default permissions are restored for that agent.

Arm recommends that only trusted agents in the system are given permissions to invoke this command
for other agents. An agent can invoke this command for itself.

A caller can discover if this command is implemented by issuing the
PROTOCOL_MESSAGE_ATTRIBUTES command and passing the message_id of this command. If
the command is implemented, PROTOCOL_MESSAGE_ATTRIBUTES returns SUCCESS.

message_id: 0xB

protocol_id: 0x10

This command is optional.

Parameters

Name Description

uint32 agent_id Identifier of the Agent

uint32 flags

Bits[31:1] Reserved, must be zero.

Bit[0] Permissions Reset

 If set to 0, maintain all access permission
 settings of the agent.

 If set to 1, reset all access permission settings
 of the agent.

This command must always reset the platform resource
settings configured by the agent specified by agent_id.
Platform resource settings refer to Device, Power Domain,
Performance Domain, Clocks, Sensors and other settings
configured by the agent specified by agent_id.

Return values

Name Description

System Control and Management Interface

Page 29 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

int32 status

One of the following:

• SUCCESS: in case the command is processed
successfully.

• NOT_FOUND: if the agent specified by agent_id does
not exist.

• INVALID_PARAMETERS: if the flags field is invalid.

• NOT_SUPPORTED: if the command is not
supported.

• DENIED: if the calling agent is not allowed to reset
the agent specified by agent_id.

See section 4.1.4 for status code definitions.

4.2.3 Notifications

4.2.3.1 BASE_ERROR_EVENT

These notifications are sent to any agent that has registered to receive them, provided the platform
implements base error notifications.

Errors that are reported by the platform are one of two types:

• Fatal error
Indicates that the platform is no longer able to process commands. The error might be
accompanied by the list of messages that were being processed when the failure took place.

• Non-fatal error
Indicates that the platform was not able to process some commands, but it is still operational.
The error notification is accompanied by the list of commands that could not be processed.

By definition, fatal error notifications cannot be guaranteed, and the platform must not rely on these
notifications as a mechanism to enable recovery.

Error notifications must not be used as mechanism to report that a command cannot be executed as
requested due to constraints that arise in normal operation.

On initial boot of an agent, these notifications must be disabled by default to that agent.

message_id: 0x0

protocol_id: 0x10

This command is optional.

Parameters

Name Description

uint32 agent_id Identifier of the agent that caused this notification.

System Control and Management Interface

Page 30 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 error_status

Bit[31] Fatal.

 Set if error is fatal and platform cannot continue.

 Cleared if error is non-fatal but commands have
 failed.

Bits[30:10] Reserved, must be zero.

Bits[9:0] Command count, number of commands in the
 command list. A value of zero is possible if the
 error cannot be attributed.

{uint32
message_header

unit32 status}[N]

Each entry in the command list is a tuple, where the first
entry is the message header of the command, and second is
an error status code that is associated with the command.
The size of the list is specified by the command count sub-
field.

System Control and Management Interface

Page 31 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.3 Power domain management protocol

This protocol is intended for management of power states of power domains.

The power domain management protocol provides commands to:

• Describe the protocol version.

• Discover implementation attributes.

• Set the power state of a domain.

• Get the current power state of a domain.

• Optionally get notifications when power domains change state or when an agent requests for a
power domain state change.

• Optionally return statistics on residency and usage count of a given power state.

4.3.1 Power domain management protocol background

In this document, a power domain is defined as a group of components that are powered together. For
example, a set of components that share a power source, and can only be turned ON or OFF as a
group, form a power domain. Power domains have the following properties:

• They can include one or more devices.

• They must at least support the ON and OFF states, but can support additional power states.

• In the ON state, the domain is operational and devices within it can run.

• In the OFF state, the domain has no power supplied to it. Devices within it cannot run and lose
all context.

Domains can have dependencies on other domains. For example, a parent domain can include a child
domain. In such a case, if the child domain is ON, the parent domain is also necessarily ON.
Dependencies can also be implicit. For example, a slave domain that is in use by multiple agents in
other power domains must be in a power state that can ensure service guarantees to those agents.

The protocol does not cover discovery of power states that are supported by a domain, or description of
the properties of the states, for example associated latencies, context loss, or domain dependencies.
This information is expected to be provided to the caller by way of firmware tables in FDT or ACPI.

Protocol commands take integer identifiers to identify the power domain that they apply to. The
identifiers are sequential and start from 0.

The protocol can be used to manage the power state of application processors and devices in the
system.

Operating systems that are running on application processors must not directly use SCMI to manage
the power state of these processors. Instead, power states for domains that include APs must be
managed using PSCI calls from the operating system. When the OSPM calls a PSCI function, the PSCI
implementation, which is described in [PSCI, ARMTF], can communicate with the platform using this
protocol over Secure channels. This protocol allows SCMI to provide an implementation for PSCI
functions designed to manage the power of application processors, such as
CPU_DEFAULT_SUSPEND, CPU_SUSPEND, CPU_FREEZE, CPU_ON and CPU_OFF. These
functions map to various use cases including idle, secondary core boot, and hot plug. The list does not
include system power state transitions such as system shutdown or reset, which are covered by the
system power management protocol instead, as described in section 4.4.

System Control and Management Interface

Page 32 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Agents that are not running on application processors can register to receive notifications of power state
changes to these power domains.

Non-secure channels can be used to manage power domains for devices that do not include application
processors and which are not used by Secure entities in the system. Any agent can register for power
state change notifications for these domains.

An implementation can include devices that are intended for use only by Secure entities in the system
such as a trusted OS. Power domains for such devices must be managed through Secure channels.

Agents other than the OSPM can manage power domains. In a multi-agent system with multiple
domains, several scenarios are possible:

• A power domain is exclusive to an agent.

• A power domain can be shared by multiple agents.

In all of these cases, the agents can coordinate with the platform to access power domains, and to
perform power management of the domains. For AP power domains, the coordination models are
analogous to those described in [ACPI] and [PSCI]. For all combinations of power domains and agents,
platform policy dictates which agents can access which power domains, and whether a power domain is
shared or exclusive.

For all messages in this protocol, the interpretation of the power state parameter is specific to the
combination of the agent and the power domain that it is managing. A power domain with Application
Processors that is managed by a PSCI agent must support representation of the power state parameter
based on definitions in [PSCI]. On the other hand, for power domains pertaining to devices, the power
state parameter must minimally represent two pre-defined states, ON and OFF. Power state encoding
for device power domains is described in Table 5.

Table 5: Power State Parameter Layout for Device Power Domains

Bit field Description

31 Reserved. Must be zero.

30

StateType

If set to 0, indicates that context is
preserved.

If set to 1, indicates that context is lost.

29:28 Reserved. Must be zero.

27:0

StateID

A value of zero when StateType is set
to 0 represents the ON state.

A value of zero when StateType is set
to 1 represents the OFF state.

All other values are
IMPLEMENTATION_DEFINED.

System Control and Management Interface

Page 33 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.3.2 Commands

4.3.2.1 PROTOCOL_VERSION

On success, this command returns the Protocol version. For this version of the specification, the return
value must be 0x20000, which corresponds to version 2.0.

message_id: 0x0

protocol_id: 0x11

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 version
For this revision of the specification, this value must be
0x20000.

4.3.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

message_id: 0x1

protocol_id: 0x11

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes
Bits[31:16] Reserved, must be zero.

Bits[15:0] Number of power domains.

uint32
statistics_address_low

The lower 32 bits of the physical address where the
statistics shared memory region is located. The address
must be in the memory map of the calling agent. This field
is invalid and must be ignored if the statistics_len field is
set to 0. The statistics shared memory region is described
in section 4.3.4.

uint32
statistics_address_high

The upper 32 bits of the physical address where the
statistics shared memory region is located. The address
must be in the memory map of the calling agent. This field
is invalid and must be ignored if the statistics_len field is
set to 0. The statistics shared memory region is described
in section 4.3.4.

System Control and Management Interface

Page 34 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 statistics_len
The length in bytes of the statistics shared memory region.
A value of 0 in this field indicates that the platform doesn’t
support the statistics shared memory region.

4.3.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

This command can be used to inquire if power state change notifications are supported, by passing
POWER_STATE_NOTIFY or POWER_STATE_CHANGE_REQUESTED_NOTIFY message identifier
to the call. If the platform returns SUCCESS then it supports power state change notifications.
Otherwise, if the platform returns NOT_FOUND, then it is an indication that notifications are not
implemented, or that notifications are not available to the calling agent. The notifications commands are
described in sections 4.3.2.7 and 4.3.3.1.

message_id: 0x2

protocol_id: 0x11

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status

One of the following:

• SUCCESS: in case the message is implemented and
available to use.

• NOT_FOUND: if the message identified by message_id
is invalid or not implemented.

See section 4.1.4 for status code definitions.

uint32 attributes

Flags that are associated with a specific command in the
protocol.

In the current version of the specification, this value is always
0.

4.3.2.4 POWER_DOMAIN_ATTRIBUTES

This command returns the attribute flags associated with a specific power domain.

System Control and Management Interface

Page 35 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0x3

protocol_id: 0x11

This command is mandatory.

Parameters

Name Description

uint32 domain_id
Identifier for the domain. Domain identifiers are limited to 16
bits, and the upper 16 bits of this field are ignored by the
platform.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id pertains to a non-existent
domain.

See section 4.1.4 for status code definitions.

uint32 attributes

Bit[31] Power state change notifications support.

 Set to 1 if power state change notifications are
 supported on this domain.

 Set to 0 if power state change notifications are
 not supported on this domain.

Bit[30] Power state asynchronous support.

 Set to 1 if power state can be set
 asynchronously.

 Set to 0 if power state cannot be set
 asynchronously.

Bit[29] Power state synchronous support.

 Set to 1 if power state can be set
 synchronously.

 Set to 0 if power state cannot be set
 synchronously.

Bits[28:0] Reserved, must be zero.

uint8 name[16]
Null-terminated ASCII string of up to 16 bytes in length
describing the power domain name.

For some agents, the platform might only allow registration and receipt of notifications for power
domains, and disallow setting of power states of those domains.

4.3.2.5 POWER_STATE_SET

This command allows an agent to set the power state of a power domain. Power domains can be
managed synchronously or asynchronously:

System Control and Management Interface

Page 36 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

• Synchronous Mode
A call with valid parameters completes and frees the channel when the domain has transitioned
to the desired power state.

• Asynchronous Mode
The call completes immediately and the caller can register for notifications if it wishes to observe
the power state transition. These notifications are described in section 4.3.3.1.

When this command is used for power domains that include application processors, the Async flag is
ignored. This call must return to the calling AP before that AP is powered down. Following this call, the
AP executes some instructions before invoking a Wait for Interrupt (WFI) instruction [ARM]. The
platform controller that implements SCMI begins the transition to the required power state when it
observes the WFI. The method used by the platform controller to observe the WFI is
IMPLEMENTATION DEFINED. For these power domains, this protocol can be used to implement PSCI
CPU_SUSPEND, CPU_ON, CPU_FREEZE, CPU_DEFAULT_SUSPEND and CPU_OFF functions.

A power domain can contain other power domains. If the caller wants to change the state of a power
domain and one of its parents, the power domain parameter must identify the child. The required power
state for the child domain, and its parents, must be encoded in the power state parameter. How this is
encoded in the power_state parameter is IMPLEMENTATION DEFINED.

message_id: 0x4

protocol_id: 0x11

This command is mandatory.

Parameters

Name Description

uint32 flags

Bits[31:1] Reserved, must be zero.

Bit[0] Async flag.

 Set to 1 if power transition must be done
 asynchronously.

 Set to 0 if power state transition must be done
 synchronously.

 The async flag is ignored for application
 processor domains.

uint32 domain_id Identifier for the power domain.

uint32 power_state
Platform-specific parameter identifying the power state of the
domain. For device power domains, this parameter is
encoded as described in Table 5.

Return values

Name Description

System Control and Management Interface

Page 37 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

int32 status

One of the following:

• SUCCESS: for a power domain that can only be set
synchronously, this status is returned after the power
domain has transitioned to the desired state. For a
power domain that is managed asynchronously, this
status is returned if the command parameters are
valid and the power state change has been
scheduled.

• NOT_FOUND: if the power domain identified by
domain_id does not exist.

• INVALID_PARAMETERS: if the requested power
state does not represent a valid state for the power
domain that is identified by domain_id.

• NOT_SUPPORTED: if the request is not supported.

• DENIED: if the calling agent is not allowed to set the
state of this power domain. An example would be if
this power domain is exclusive to another agent.

See section 4.1.4 for status code definitions.

4.3.2.6 POWER_STATE_GET

This command allows the calling agent to request the current power state of a power domain.

─── Note ───────────────

It is possible for the power_state value returned by this command to be stale by the time the command
completes, as another state change request could have been initiated and completed in the interim.

──────────────────────

message_id: 0x5

protocol_id: 0x11

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the power domain.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid power
domain.

See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 38 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 power_state
Platform-specific parameter identifying the power state of this
domain. For device power domains, this parameter is
encoded as described in Table 5.

4.3.2.7 POWER_STATE_NOTIFY

This command allows the caller to request notifications from the platform for state changes in a specific
power domain. These notifications are sent using the POWER_STATE_CHANGED notification, which
is described in section 4.3.3.1.

Notification support is optional, and PROTOCOL_MESSAGE_ATTRIBUTES must be used to discover
whether this command is implemented.

These notifications must be disabled by default during initial boot of the platform.

message_id: 0x6

protocol_id: 0x11

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier for the power domain.

uint32 notify_enable

Bits[31:1] Reserved must be zero.

Bit[0] Notify enable. This bit can have one of the
 following values:

 0, which indicates that the platform does not
 send any POWER_STATE_CHANGED
 messages to the calling agent.

 1, which indicates that the platform does send
 POWER_STATE_CHANGED messages to the
 calling agent when a domain changes power
 state.

 See section 4.3.3.1 for more details about the
 POWER_STATE_CHANGED notification.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid domain.

INVALID_PARAMETERS: if notify_enable specifies values
that are either illegal or incorrect.

See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 39 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.3.2.8 POWER_STATE_CHANGE_REQUESTED_NOTIFY

This command allows the caller to receive notifications from the platform, when the platform receives a
request from another agent to change the state of a power domain. These notifications are sent using
the POWER_STATE_CHANGE_REQUESTED notification, which is described in section 4.3.3.2.

POWER_STATE_CHANGE_REQUESTED notifications are useful for the co-operative management of
power domains that are shared among agents. When a power domain is shared among agents, the
platform maintains the power domain in a state that meets the requirements of all the agents that are
sharing it.

For example, the POWER_STATE_CHANGE_REQUESTED notification can be used when a request is
made by one agent to turn off a shared power domain. The platform will not act on this request if other
agents have requested the same power domain to be active. The platform will notify the other agents
sharing the power domain through the POWER_STATE_CHANGE_REQUESTED notification, if the
other agents have subscribed to it. This notification enables the other agents to allow the power state
transition of the shared power domain, by voluntarily relinquishing the use of the shared power domain.
The decision to voluntarily relinquish the use of a shared power domain is based on an implementation-
defined policy.

Notification support is optional, and PROTOCOL_MESSAGE_ATTRIBUTES must be used to discover
whether this command is implemented.

These notifications must be disabled by default during initial boot of the platform.

message_id: 0x7

protocol_id: 0x11

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier for the power domain.

uint32 notify_enable

Bits[31:1] Reserved must be zero.

Bit[0] Notify enable. This bit can have one of the
 following values:

 0, which indicates that the platform does not
 send
 POWER_STATE_CHANGE_REQUESTED
 messages to the calling agent.

 1, which indicates that the platform sends
 POWER_STATE_CHANGE_REQUESTED
 messages to the calling agent when another
 agent requests for a change in the state of the
 power domain.

 See section 4.3.3.2 for more details about the
 POWER_STATE_CHANGE_REQUESTED
 notification.

Return values

System Control and Management Interface

Page 40 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Name Description

int32 status
NOT_FOUND: if domain_id does not point to a valid domain.

See section 4.1.4 for status code definitions.

4.3.3 Notifications

4.3.3.1 POWER_STATE_CHANGED

If an agent has registered to receive power state change notifications for the power domain that is
identified by domain_id, the platform sends these notifications to that agent when the power domain
state changes, including transitions to an ON state.

The platform is not required to guarantee sending a notification to an agent for every state transition. In
particular, if a number of power states transitions take place in quick succession, the platform is allowed
to issue a notification for the last transition only.

Note that notified power states might not match those requested by the agent that is notified. The power
state that is finally selected by the platform might differ from that requested by an agent, due to
coordination with other requests on the same domain.

message_id: 0x0

protocol_id: 0x11

This command is optional.

Parameters

Name Description

uint32 agent_id Identifier of the agent that caused the power transition.

uint32 domain_id
Identifier of the power domain whose power state was
changed.

uint32 power_state
The power state that the power domain transitioned to.
These notifications take place when the transition has
completed.

4.3.3.2 POWER_STATE_CHANGE_REQUESTED

An agent might have registered, via POWER_STATE_CHANGE_REQUESTED_NOTIFY, to receive
notifications when the platform receives a request from a different agent to change the power state of a
power domain. The platform sends this notification to the interested agent when such a request is
received by it. For more details on how POWER_STATE_CHANGE_REQUESTED notifications can be
used, see section 4.3.2.8.

System Control and Management Interface

Page 41 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0x1

protocol_id: 0x11

This command is optional.

Parameters

Name Description

uint32 agent_id Identifier of the agent that requested the power transition.

uint32 domain_id
Identifier of the power domain whose power state change is
being requested.

uint32 power_state The requested power state.

4.3.4 Power state statistics shared memory region

Optionally, the platform can provide a statistics shared memory region that is associated with the power
state protocol. Whether support is present is indicated by the PROTOCOL_ATTRIBUTES command,
which is described in section 4.3.2.2. The PROTOCOL_ATTRIBUTES command also provides the
address and the size of the shared memory region. The region provides usage counts and residency
information for each power state that is used by each power state domain. The memory must be
accessible from the Non-secure world, and OSPM must map it as non-cached normal memory or
device memory. For a given power domain, and for each power state in a domain, statistics in the
shared memory region track the number of times the state has been used and the amount of time the
domain has been in the state. The statistics must be updated regardless of the agent in the system that
placed a domain into a given power state. After a system reset or shutdown, all the statistics must be
initialized to zero. Time measurements are in microseconds.

The design of the statistics shared memory region allows the platform implementation to choose which
power domains are included. However, if a domain is included, all its power states must be
represented, including time that is spent in an ON state.

The format of the frame is described in Table 6.

Table 6 Power state statistics shared memory region

Field Byte

Length

Byte

Offset

Description

Signature 0x4 0x0 0x504F5752 (‘POWR’).

Revision 0x2 0x4 For this revision, this field must be zero.

Attributes 0x2 0x6 For this revision, this field must be zero.

Number of
domains

0x2 0x8 Number of domains for which statistics are
collected.

Reserved 0x6 0xA Must be zero.

System Control and Management Interface

Page 42 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Power domain
offset array

0x4 ×

(Total
number
of power
domains)

0x10 For each power domain, this array provides a
4-byte offset, from the start of the shared
memory area, to the memory location of the
power domain entry in the data section. The
entry is described in Table 7.

A value of zero for the offset of a given power
domain indicates that statistics are not
collected for that domain.

Power domain
data section

-- -- This area must start at an offset of
0x10 + 0x4 × (Number of power domains), or

higher.

The power domain data section contains an entry for each power domain for which statistics are
collected. The format for each entry is described in Table 7.

Table 7 Power domain entry

Field Byte

Length

Byte Offset Description

Number of power
states

0x2 0x0 Number of power state entries in the power
state array.

Current power
state Index

0x2 0x2 Index into power state array for current power
state.

Reserved 0x4 0x4 Must be zero.

Time of last
change

0x8 0x8 Timestamp in microseconds, from the
beginning of the current boot, of the last power
state transition, including to a running state.

Power state array N ×
0x18

0x10 Where N is the number of power states.
Described in Table 8.

The format for each entry in the power state array is described in Table 8.

Table 8 Power state entry

Field Byte

Length

Byte

Offset

Description

Power state 0x4 0x0 Identifier for the power state.

Reserved 0x4 0x4 Must be zero.

Usage count 0x8 0x8 Number of times this domain has entered the
power state. This value must be updated when
the domain transitions into the power state.

System Control and Management Interface

Page 43 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Residency 0x8 0x10 Amount of time in microseconds domain has
been resident in the power state. This value
must be updated when the domain transitions
out of the power state.

For 64-bit statistics, races can arise between the platform updating a statistic and the reader accessing
it. For example, the platform can use a 32-bit controller to update a statistic and thus require two
accesses. On the other hand, the reader can be a 32 or 64-bit processor. Races might arise between
the write accesses by the platform and the read accesses by the processor, leading to a stale value
being reported. To prevent this problem, the reader must read the statistic twice, and compare the
values that were obtained. If the two reads match, the statistic was read successfully, otherwise further
reads must be done until the last two reads match.

System Control and Management Interface

Page 44 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.4 System power management protocol

This protocol is intended for system shutdown, suspend and reset.

The system power protocol provides commands to:

• Describe the protocol version.

• Discover implementation attributes.

• Shut down the system.

• Suspend the system.

• Reset the system.

• Request a graceful shutdown or reset.

• Allow an agent to forcibly power down or reset the system.

4.4.1 System power management protocol background

The OSPM must be able to power down or reset the whole system it is running on. ACPI provides S
states (S1-S5) for this purpose. In turn, PSCI provides SYSTEM_RESET, SYSTEM_RESET2,
SYSTEM_SUSPEND and SYSTEM_OFF. On some systems, other agents might be required to initiate
a system power down or reset. This protocol is designed to allow more than one agent to request these
types of system power transitions. It is envisaged that, in the common case, there might be up to three
agents:

• On application processors, a PSCI implementation. The PSCI implementation fulfills OSPM calls
to SYSTEM_OFF, SYSTEM_SUSPEND, SYSTEM_RESET and SYSTEM_RESET2 functions.
In order to do so, the PSCI implementation uses the SCMI protocol to request system power
down or reset transitions.

• The management agent or privileged agent:

o Particularly in enterprise systems, there might be a management agent that can request
a shutdown or a reset, either gracefully through cooperation with the OSPM, or forcibly.

o Virtualized systems might have a privileged agent, like a Hypervisor, that can request a
shutdown or a reset, either gracefully through cooperation with the OSPM of the virtual
machines, or forcibly.

o Systems that deploy multiple Operating Systems running on different PE clusters within
the same System-on-Chip might have a privileged agent. The privileged agent can
request a shutdown or a reset, either gracefully through cooperation with the OSPM of
the operating system entities in the different PE clusters, or forcibly in exceptional
scenarios.

• The OSPM, which might receive notifications for a graceful shutdown request.

An agent can request the system to forcibly shut down or reset. The platform responds by performing
the action that has been requested and then sending informational notifications to any remaining active
agents in the system who have subscribed to the notification. An agent can also request a graceful
shutdown or reset. In this case, the platform might send notifications to any subscribing OSPM agent,
which can, in turn, initiate the requested action. To this end, the protocol allows an agent to request
notifications of system power state transition requests generated by other agents. Table 9 describes the
expected behavior for the various operations that are provided by this interface, depending on the
calling agent.

System Control and Management Interface

Page 45 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Table 9 System power management operations, and expected responses depending on type of agent

Notifications of system power state transitions are not propagated to the agent that requests the
transition.

The protocol supports four kinds of system transitions:

• System powerup or shutdown.

• System suspend, as defined in PSCI for SYSTEM_SUSPEND, which is essentially a low-power
system state. An example of a system suspend state is the suspend to RAM scenario that is
analogous to S3 in ACPI.

• Architectural system resets, which are resets that are defined by this specification. These resets
include system cold reset and system warm reset.

• Vendor defined transitions.

A system cold reset is equivalent to power cycling the system. All components in the system are
powered down or held in reset. Components that are involved in the system boot are powered up or
released from reset. In this context, the term cold boot refers to the expected boot flow after the first
application of power to the system.

Operation Type of agent Response

Request a
forceful
power state
transition

OSPM If the PE that the agent runs on supports PSCI, deny the
request as NOT_SUPPORTED, as the calling agent is not
in Secure world. Otherwise shutdown or reset as
requested and send notifications.

PSCI implementation on
application processor

Shutdown or reset as requested and send notifications.

Management agent or
privileged agent

Shutdown or reset as requested and send notifications.

Request a
graceful
power state
transition

OSPM If the PE that the agent runs on supports PSCI, deny the
request as NOT_SUPPORTED, as the calling agent is not
in Secure world. Otherwise allow the request and send
notifications to other subscribing agents.

PSCI implementation on
application processor

Allow the request and send notifications to other
subscribing agents.

Management agent or
privileged agent

Allow the request and send notifications to other
subscribing OSPM agents.

Request for
notification
of power
state
transition
requests

OSPM Allow, as this agent will initiate a shutdown or reset in
response to the notification.

Management agent or
privileged agent

Allow, to enable the management or privileged agent to
confirm that the OSPM has requested shutdown or reset.

PSCI Deny. NOT_SUPPORTED, because it is not required to
handle notifications.

System Control and Management Interface

Page 46 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

A system warm reset is one that preserves all memory that is visible to application processors. Similar
to cold reset, all components in the system, except those involved in the provision of system memory to
application processors, are powered down or held in reset. This definition of system memory does not
extend to caches or to memory mapped I/O. As in the cold reset case, only those components that are
involved in a system boot are powered up or released from reset.

System suspends could be of varying depths and wake latencies. Some suspend states could involve
relatively large wake latencies, for example, suspend-to-RAM or SYSTEM_SUSPEND. Other suspend
states, such as S0 idle states, could involve much lower wake latencies.

The view of the system that is affected by a system power state transition depends on the target
segment and type of system being implemented. In some implementations, the system that is being
powered down includes all the agents that can use this interface, as well as the platform controller that
implements it. In this case this protocol is said to have a full-system view. However, for some platform
implementations, the platform controller that implements this SCMI protocol might be in a dedicated
always-on domain, such that it is not included in the system power transitions. In this case, this protocol
is said to have an OSPM-system view, and the system power state transitions only affect those parts of
the system that the OSPM controls. These parts are collectively called the OSPM world. In this latter
kind of system, if an agent requests a system shutdown, the platform controller remains powered, so
that it can service further commands, for example, a command to power up the system.Table 10
describes the expected behavior for the various forcible (non-graceful) operations that are provided by
this interface, depending on the calling agent and the view of the system implemented.

Table 10 System power management forcible operations, and expected responses depending on view

System

view

Operation

(forcible)

Calling Agent Expected behavior

OSPM

Shutdown
or system
suspend

PSCI on behalf of the OSPM The OSPM world is shut down or suspended.

System power state notifications to other
agents are sent at the point at which it is
possible to request a system power up.

Management agent or
privileged agent

Message returns at the point at which it is
possible to request a system power up.

Reset

PSCI on behalf of the OSPM The OSPM world is reset.

System power state notifications to other
agents are sent when it is possible to request
forcible system shutdown or reset.

Management agent or
privileged agent

The OSPM world is reset. The message
returns when it is possible to request forcible
system shutdown or reset.

Power-up

PSCI on behalf of the OSPM Not supported.

Management agent or
privileged agent

The OSPM world is powered up. The
message returns at the point at which forcible
system power state requests are possible.

PSCI on behalf of the OSPM Not supported.

System Control and Management Interface

Page 47 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Get
system
power
state

Management agent or
privileged agent

Message returns system power state of
OSPM world.

Full

Shutdown
or
suspend

PSCI on behalf of the OSPM Whole system – or the full-system world – is
shut down or suspended.

System power state notifications to other
agents are sent at the point at which PSCI
makes its request.

Management agent or
privileged agent

Whole system – or the full-system world – is
shut down or suspended. Notifications in this
case are not required.

Reset

PSCI on behalf of the OSPM System is Reset.

System power state notifications to other
agents are sent at the point at which PSCI
makes its request.

Management agent or
privileged agent

System is Reset. Notifications in this case
are not required.

Power up
or get
system
state

PSCI on behalf of the OSPM Not supported.

Management agent or
privileged agent

Not supported.

In both full and OSPM-system view implementations, the behavior towards a PSCI or an OSPM agent
remains unchanged. The change in behavior is only visible to an external agent, such as a
management agent or privileged agent. Commands to power up or get system state are only present in
systems that implement the OSPM system view.

4.4.2 Commands

4.4.2.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
value returned must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x12

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 48 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

unt32 version For this revision of the specification, this must be 0x10000.

4.4.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

message_id: 0x1

protocol_id: 0x12

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes Bits[31:0] Reserved, must be zero.

4.4.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

message_id: 0x2

protocol_id: 0x12

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message

Return values

Name Description

int32 status

One of the following:

• SUCCESS: in case the message is implemented and
available to use.

• NOT_FOUND: if the message identified by message_id
is invalid or not provided by this platform implementation.

• NOT_SUPPORTED: when message_id is set to the
SYSTEM_POWER_STATE_NOTIFY command identifier
and notifications are not supported.

See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 49 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 attributes

Flags associated with a specific command in the protocol.

If message_id is for SYSTEM_POWER_STATE_SET the
attributes have the following format:

Bit[31] System warm reset support

 Set to 1 if system warm reset is supported.

 Set to 0 if system warm reset is not supported.

Bit[30] System suspend support.

 Set to 1 if system suspend is supported

 Set to 0 if system suspend is not supported

Bits[29:0] Reserved, must be zero.

 For all values of message_id, this value is zero.

4.4.2.4 SYSTEM_POWER_STATE_SET

This command is used to power down or reset the system.

System power-up must only be available to agents other than a PSCI implementation on systems that
implement OSPM system view, as discussed in section 4.4.1.

message_id: 0x3

protocol_id: 0x12

This command is mandatory.

Parameters

Name Description

uint32 flags

This parameter has the following format:

Bits[31:1] Reserved, must be zero.

Bit[0] Graceful request. This flag is ignored for power
up requests.

 Set to 1 if the request is a graceful request.

 Set to 0 if the request is a forceful request.

System Control and Management Interface

Page 50 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 system_state

Can be one of:

0x0 System shutdown.

0x1 System cold reset.

0x2 System warm reset.

0x3 System power-up.

0x4 System suspend.

0x5 – 0x7FFFFFFF

Reserved, must not be used.

0x80000000 – 0xFFFFFFFF

Might be used for vendor-defined implementations of system
power state. These can include additional parameters. The
prototype for vendor-defined calls is beyond the scope of this
specification.

Return values

Name Description

int32 status

INVALID_PARAMETERS: if the requested power state is not
valid.

NOT_SUPPORTED: if the requested state is not supported
for the calling agent.

DENIED: for system suspend requests when there are
application processors, other than the caller, in a running or
idle state.

See section 4.1.4 for other status code definitions.

4.4.2.5 SYSTEM_POWER_STATE_GET

This command must only be available to agents other than a PSCI implementation on systems that
implement OSPM view, as discussed in section 4.4.1. The command is to get the power state of the
system.

message_id: 0x4

protocol_id: 0x12

This command is mandatory in an OSPM view implementation.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 51 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 system_state

Can be one of:

0x0 System shutdown.

0x3 System power-up.

0x4 System suspend.

0x5 – 0x7FFFFFFF

Reserved, must not be used.

0x80000000 – 0xFFFFFFFF

Available for vendor-defined states.

4.4.2.6 SYSTEM_POWER_STATE_NOTIFY

This command is used to request notification of system power state requests. This command might be
used:

• By the OSPM to receive notifications of graceful system power state requests.

• By a management agent or a privileged agent to be notified that the OSPM requested a
forceful transition.

On initial boot of an agent, these notifications must be disabled by default to that agent.

message_id: 0x5

protocol_id: 0x12

This command is mandatory in an OSPM view implementation.

Parameters

Name Description

uint32 notify_enable

Bits[31:1] Reserved, must be zero.

Bit[0] Notify enable:

 If this value is set to 0, the platform does not
 send any
 SYSTEM_POWER_STATE_NOTIFIER
 messages to the calling agent.

 If this value is set to 1, the platform does send
 SYSTEM_POWER_STATE_NOTIFIER
 messages commands to the calling agent.

 See section 4.4.3.1 for details about
 SYSTEM_POWER_STATE_NOTIFIER
 notifications.

Return values

Name Description

System Control and Management Interface

Page 52 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

int32 status

NOT_SUPPORTED: if notifications are not supported or
available to the calling agent

INVALID_PARAMETERS: if notify_enable specifies invalid or
impermissible values.

See section 4.1.4 for status code definitions.

4.4.3 Notifications

4.4.3.1 SYSTEM_POWER_STATE_NOTIFIER

If an agent has registered for system power state notifications with
SYSTEM_POWER_STATE_NOTIFY, the platform sends this notification to the agent. Typically, the
agent is either:

• The OSPM that initiates a system power state transition in response to this notification.The
OSPM needs this notification to become aware that a remote entity such as the management
agent or the privileged agent is requesting a graceful power state transition.

• A management agent or a privileged agent that initiated a graceful power state transition and is
waiting for the OSPM to perform a power state transition in response. The management agent
or privileged agent needs this notification to confirm that the platform controller has successfully
received the power state transition request from the PSCI agent, or from the OSPM for non-
PSCI compliant systems.

message_id: 0x0

protocol_id: 0x12

This command is optional.

Parameters

Name Description

uint32 agent_id
Identifier for the agent that caused the system power state
transition.

uint32 flags

This parameter has the following format:

Bits[31:1] Reserved, must be zero.

Bit[0] Graceful request.

 Set to 1 if the notification indicates that a system
 power state transition has been gracefully
 requested.

 Set to 0 if the notification indicates that a system
 power state has been forcibly requested.

System Control and Management Interface

Page 53 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 system_state

System power state that the system has transitioned to, or
which has been requested.

Can be one of:

0x0 System shutdown.

0x1 System cold reset.

0x2 System warm reset.

0x3 System power-up.

0x4 System suspend.

0x5 – 0x7FFFFFFF

Reserved, must not be used.

0x80000000 – 0xFFFFFFFF

Available for vendor-defined implementations of system
power state. These can include additional parameters. The
prototype for vendor-defined call is beyond the scope of this
specification.

System Control and Management Interface

Page 54 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.5 Performance domain management protocol

This protocol is intended for performance management of groups of devices or APs that run in the same
performance domain. Performance domains must not be confused with power domains. A performance
domain is defined by a set of devices that always have to run at the same performance level. For a
given performance domain, there is a single point of control that affects all the devices in the domain,
making it impossible to set the performance level of an individual device in the domain independently
from other devices in that domain. For example, a set of CPUs that share a voltage domain, and have a
common frequency control, is said to be in the same performance domain. The commands in this
protocol provide functionality to:

• Describe the protocol version.

• Describe attribute flags of the protocol.

• Set the performance level of a domain.

• Read the current performance level of a domain.

• Return the list of performance levels supported by a performance domain, and the properties of
each performance level.

• Optionally return statistics on residency and usage count of a performance level in performance
domains.

4.5.1 Performance domain management protocol background

The command set operates in an abstract integer performance scale. The implementation can choose
what this scale represents. For example, in some systems, the values in the scale might represent
actual frequencies, while in others they might represent a percentage of the maximum performance of
the domain. In all cases, the scale must be linear, meaning that a value of 2X delivers twice the
performance as compared to a value of X.

Although this protocol uses an abstract scale to represent performance levels, the underlying
implementation only provides a discrete set of performance levels.

Each of these levels has an associated power cost, which is defined as the power consumed by each
device in the performance domain when the domain is run at the given performance level. The protocol
provides a command to discover these levels and their associated power cost. The power can be
expressed in mW or in an abstract scale. Vendors are not obliged to reveal power costs if it is
undesirable, but a linear scale is required.

Protocol commands take integer identifiers to describe which performance domain a given command
applies to. The identifiers are sequential and start from 0.

In a multi-agent system, a given agent exclusively owns the performance of a set of domains. Agents,
other than the platform agent, are not allowed to directly change the performance of domains they do
not own. However, an agent can request the platform to set limits on the performance of a domain it
does not own. Agents are also allowed to read performance data, or register for notifications issued on
performance changes. The platform is responsible for resolution of limits when multiple agents send
simultaneous request limits changes on the same power domain.

A performance domain can be characterized by three distinct levels that are advertised by the platform.
These distinct levels are described in Table 11. The performance domain can support additional
performance levels.

System Control and Management Interface

Page 55 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Table 11 Performance Domain Levels with Special Significance

Performance Level Description

Highest Performance This is the theoretical maximum performance level of the
domain.

Sustained Performance This is the maximum performance level that the platform can
sustain under normal conditions. In exceptional circumstances,
such as thermal runaway, the platform might not be be able to
guarantee this level.

Lowest Performance This is the lowest performance level supported by the domain.

4.5.2 FastChannels

This section describes the properties of FastChannels for Performance Domain Management Protocol.

• Only PERFORMANCE_LIMITS_SET, PERFORMANCE_LIMITS_GET,
PERFORMANCE_LEVEL_SET and PERFORMANCE_LEVEL_GET commands are supported
over FastChannels.

• If FastChannel is supported, it needs to be unique for any combination of performance domain
and performance domain management command. It is not necessary for every performance
domain or every Performance Domain Management Command to support a FastChannel.

• FastChannels are discoverable via the PERFORMANCE_DESCRIBE_FASTCHANNEL
command.

• Doorbell is not supported for PERFORMANCE_LEVEL_GET and
PERFORMANCE_LIMITS_GET commands. If FastChannels are implemented for these
commands, the last known valid performance level or performance limits must always available
over the FastChannel without a doorbell trigger. This property reduces complexity due to latency
considerations between doorbell trigger and the availability of return values over the
FastChannel. For all other commands, Doorbell support is optional.

For more details on FastChannels, see Section 5.3.

4.5.2.1 Payload Requirements

The payload of a FastChannel should contain the message-specific parameters and exclude the
domain_id. Since a FastChannel is domain_id and message_id specific, the domain_id or any other
channel-specific and message-specific headers do not need to be included while using a FastChannel.
For example, the payload of the PERFORMANCE_LEVEL_SET message should be ‘uint32
performance_level’.

4.5.3 Commands

4.5.3.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
value returned must be 0x20000, which corresponds to version 2.0.

System Control and Management Interface

Page 56 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0x0

protocol_id: 0x13

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 version For this revision of the specification, this must be 0x20000.

4.5.3.2 PROTOCOL_ATTRIBUTES

This command returns the attributes associated with this protocol.

message_id: 0x1

protocol_id: 0x13

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:17] Reserved, must be zero.

Bit[16] Power values expressed in mW:

 Set to 1 if the value described for a power
 consumption of performance level is
 expressed in mW.

 Set to 0 if the value described for a power
 consumption of performance level is
 expressed in a proprietary scale.

Bits[15:0] Number of performance domains.

uint32
statistics_address_low

The lower 32 bits of the physical address where the
statistics shared memory region is located. The address
must be in the memory map of the calling agent. If the
statistics_len field is 0, then this field is invalid and must
be ignored. The statistics shared memory region is
described in section 4.5.5.

uint32
statistics_address_high

The upper 32 bit of the physical address where the
shared memory region is located. The address must be
in the memory map of the calling agent. If the
statistics_len field is 0, then this field is invalid and must
be ignored. The statistics shared memory region is
described in section 4.5.5.

System Control and Management Interface

Page 57 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 statistics_len
The length in bytes of the shared memory region. A
value of 0 in this field indicates that the platform doesn’t
support the statistics shared memory region.

4.5.3.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

This command can be used to enquire if performance level or limit change notifications are supported
by the platform. This is achieved by passing message identifiers for the
PERFORMANCE_NOTIFY_LEVEL or PERFORMANCE_NOTIFY_LIMITS messages to the call. The
platform then returns a status code of NOT_FOUND to indicate that notifications are not implemented,
or that they are not available to the calling agent. The notification commands are described in sections
4.5.3.11 and 4.5.3.10. This command can also be used to discover if FastChannels are supported for a
command specified by message_id.

message_id: 0x2

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status

One of the following:

• SUCCESS: in case the message is implemented and
available to use.

• NOT_FOUND: if the message identified by message_id
is invalid or not provided by this platform implementation.

See section 4.1.4 for status code definitions.

uint32 attributes

Flags associated with a specific command in the protocol.

Bits[31:1] Reserved, must be zero.

Bit[0] FastChannel Support

 Set to 1 if there is at least one dedicated
 FastChannel available for this message.

 Set to 0 if this there are no FastChannels
 available this message.

System Control and Management Interface

Page 58 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.5.3.4 PERFORMANCE_DOMAIN_ATTRIBUTES

This command returns attributes that are specific to a given domain.

message_id: 0x3

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid
domain.

See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 59 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 attributes

Bit[31] Can set limits.

 Set to 1 if calling agent is allowed to set
 the performance limits on the domain.

 Set to 0 if a calling agent is not allowed to
 set limits on the performance limits on the
 domain.

Bit[30] Can set performance level.

 Set to 1 if calling agent is allowed to set
 the performance of a domain.

 Set to 0 if a calling agent is not allowed to
 set the performance of a domain.

 Only one agent can set the performance
 of a given domain.

Bit[29] Performance limits change notifications
 support.

 Set to 1 if performance limits change
 notifications are supported for this
 domain.

 Set to 0 if performance limits change
 notifications are not supported for this
 domain.

Bit[28] Performance level change notifications
 support.

 Set to 1 if performance level change
 notifications are supported for this
 domain.

 Set to 0 if performance level change
 notifications are not supported for this
 domain.

Bit[27] FastChannel Support

 Set to 1 if there is atleast one FastChannel
 available for this domain.

 Set to 0 if there are no FastChannels
 available for this domain.

Bits[26:0] Reserved and set to zero.

uint32 rate_limit

Bits[31:20] Reserved and set to zero.

Bits[19:0] Rate Limit in microseconds, indicating the
 minimum time required between
 successive requests. A value of 0
 indicates that this field is not supported
 by the platform. This field does not apply
 to FastChannels.

System Control and Management Interface

Page 60 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 sustained_freq
Base frequency corresponding to the sustained
performance level. Expressed in units of kHz.

uint32
sustained_perf_level

The performance level value that corresponds to the
sustained performance delivered by the platform.

uint8 name[16]
Null terminated ASCII string of up to 16 bytes in length
describing a domain name.

4.5.3.5 PERFORMANCE_DESCRIBE_LEVELS

This command allows the agent to ascertain the discrete performance levels that are supported by the
platform, and their respective power costs. On success, the command returns an array that consists of
several performance level entries, each of which describes an expected performance and power cost.
The power cost can be expressed in milliwatts or in an abstract scale. How the numbers in that scale
convert to the actual wattage is IMPLEMENTATION DEFINED, but the conversion must be linear,
meaning that a power of 2X is twice the power of X. The size of the array, which is also returned,
depends on the number of return values that a given transport can support. Therefore, it might not be
possible to return information for all performance levels with just one call. To solve this problem, the
interface allows multiple calls. The performance levels returned by this call should be in numeric
ascending order.

message_id: 0x4

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

uint32 level_index
Index to the first level to be described in the return
level array.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid
domain.

See section 4.1.4 for status code definitions.

uint32 num_levels

Bits[31:16] Number of remaining performance levels.

Bits[15:12] Reserved, must be zero.

Bits[11:0] Number of performance levels that are
 returned by this call.

System Control and Management Interface

Page 61 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

{uint32, uint32, uint32}
perf_levels[N]

Array of performance levels, in numeric ascending
order, to be described. Each array entry is composed
of three 32-bit words with the following format:

uint32 entry[0] Performance level value.

uint32 entry[1] Power cost.

uint32 entry[2] Attributes

 Bits[31:16] Reserved, must
 be zero.

 Bits[15:0] Worst-case
 transition latency
 in microseconds
 to move from any
 supported
 performance to
 the level
 indicated by this
 entry in the array.

The following pseudocode describes how the command can be used to discover information about
every supported performance level for the performance domain:

uint16 level_index = 0;
int32 status = 0;
struct number_of_perf_levels {
 uint perf_levels_array_len:12;
 uint reserved: 4;
 uint remaining:16;
} num_levels = {0,0,0};

struct perf_level_data {
 uint32 perf_value;
 uint32 power;
 uint16 transition_latency;
 uint16 reserved;
};

struct perf_level_data perf_levels[];

do {
 invoke_PERFORMANCE_DESCRIBE_LEVELS (
 domain_id,

level_index,
 &status,

&num_levels,
perf_levels
);

 if (status)
 goto clean_up_and_return;

 add_levels_to_database (domain_id,

level_index, // process
 num_levels.perf_levels_array_len,

System Control and Management Interface

Page 62 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

 perf_levels
);

 level_index += num_levels.perf_levels_array_len;

 } while(num_levels.remaining);

4.5.3.6 PERFORMANCE_LIMITS_SET

This command allows the caller to set limits on the performance level of a domain.

message_id: 0x5

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

uint32 range_max Maximum allowed performance level.

uint32 range_min Minimum allowed performance level.

Return values

Name Description

int32 status

SUCCESS: if the command successfully set the limits of
operation. If setting a limit requires modifying the current
performance level of the domain, the command can return
before this change has been completed. However, the
change in performance level must still take place.

NOT_FOUND: if the performance domain identified by
domain_id does not exist.

OUT_OF_RANGE: if the limits set lie outside the highest and
lowest performance levels that are described by
PERFORMANCE_DESCRIBED_LEVELS.

DENIED: if the calling agent is not permitted to change the
performance limits for the domain, as described by
PERFORMANCE_DOMAIN_ATTRIBUTES.

See section 4.1.4 for status code definitions.

4.5.3.7 PERFORMANCE_LIMITS_GET

This command allows the agent to ascertain the range of allowed performance levels. The returned
value reflects the currently set limits for the performance domain. These limits might have been set
implicitly by the platform, or explicitly by a preceding call to PERFORMANCE_LIMIT_SET.

On success, the range return value provides the minimum and maximum allowed performance level.

System Control and Management Interface

Page 63 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0x6

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid
domain.

See section 4.1.4 for status code definitions.

uint32 range_max Maximum allowed performance level.

uint32 range_min Minimum allowed performance level.

4.5.3.8 PERFORMANCE_LEVEL_SET

This command allows the agent to set the performance level of a domain. This command can return
before the domain has transitioned to the required performance level. The platform simply has to
acknowledge that it has received the command. The agent can register for performance level
notifications to ascertain whether a performance transition has taken place. For further details, see
section 4.5.4.2.

message_id: 0x7

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

uint32
performance_level

Requested performance level.

Return values

Name Description

System Control and Management Interface

Page 64 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

int32 status

SUCCESS: if the platform has accepted the command and
scheduled it for processing.

NOT_FOUND: if the domain_id parameter does not point to
a valid domain.

OUT_OF_RANGE: if the requested performance level is
outside the currently allowed range.

DENIED: if the calling agent is not permitted to change the
performance level for a domain, as described by
PERFORMANCE_DOMAIN_ATTRIBUTES.

See section 4.1.4 for status code definitions.

4.5.3.9 PERFORMANCE_LEVEL_GET

On success, this command returns the current performance level of a domain. Note the performance
level value that is returned by this command might be stale by the time the command completes, as a
subsequent performance change might have been initiated in the meantime.

message_id: 0x8

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

Return values

Name Description

int32 status
NOT_FOUND: if domain_id does not point to a valid domain.

See section 4.1.4 for status code definitions.

uint32
performance_level

Current performance level of the domain.

4.5.3.10 PERFORMANCE_NOTIFY_LIMITS

This command allows the agent to request notifications from the platform for changes in the allowed
maximum and minimum performance levels. These notifications are sent using the
PERFORMANCE_LIMITS_CHANGED command which is described in section 4.5.4.1.

If no domain supports limit notifications, the command can be omitted. The
PROTOCOL_MESSAGE_ATTRIBUTES command, that is described in section 4.5.3.4, can be used to
determine whether this command is implemented.

On initial boot of an agent, by default, these notifications must be disabled from being sent to that
agent.

System Control and Management Interface

Page 65 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0x9

protocol_id: 0x13

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

uint32 notify_enable

Bits[31:1] Reserved, must be zero.

Bit[0] Notify enable:

 If this value is 0, the platform does not send any
 PERFORMANCE_LIMITS_CHANGED
 messages to the agent.

 If this value is set to 1, the platform does send
 PERFORMANCE_LIMITS_CHANGED
 messages to the agent.

 See section 4.5.4.1 for more details about
 PERFORMANCE_LIMITS_CHANGED
 notifications.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid domain.

NOT_SUPPORTED: if notifications are not supported for the
indicated performance domain.

INVALID_PARAMETERS: if notify_enable specifies values
that are not legal or valid.

See section 4.1.4 for status code definitions.

4.5.3.11 PERFORMANCE_NOTIFY_LEVEL

This command allows the agent to request notifications from the platform when the performance level
for a domain changes in value when the agent did not voluntarily request the level change. Examples
include autonomous platform action or requests from agents other than the calling agent. These
notifications are sent using the PERFORMANCE_LEVEL_CHANGED command which is described in
section 4.5.4.2.

If no domains support level change notifications the command can be omitted. The
PROTOCOL_MESSAGE_ATTRIBUTES command, that is described in section 4.5.3.4, can be used to
determine whether this command is implemented.

On initial boot of an agent, by default, these notifications must be disabled from being sent to that
agent.

System Control and Management Interface

Page 66 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0xA

protocol_id: 0x13

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain

uint32 notify_enable

Bits[31:1] Reserved, must be zero.

Bit[0] Notify enable:

 If this value is 0, the platform does not send any
 PERFORMANCE_LEVEL_CHANGED
 notifications to the agent.

 If this value is set to 1, the platform does send
 PERFORMANCE_LEVEL_CHANGED
 notifications to the agent.

 See section 4.5.4.2 for more details about the
 PERFORMANCE_LEVEL_CHANGED
 notification.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid domain.

NOT_SUPPORTED: SUPPORTED if notifications are not
supported for the indicated performance domain.

INVALID_PARAMETERS: if notify_enable specifies illegal or
unimplemented options.

See section 4.1.4 for status code definitions.

4.5.3.12 PERFORMANCE_DESCRIBE_FASTCHANNEL

This command allows the agent to discover the attributes of the FastChannel for the specified
performance domain and the specified message.

The PERFORMANCE_DOMAIN_ATTRIBUTES command can be used to discover if a performance
domain supports FastChannels. The PROTOCOL_MESSAGE_ATTRIBUTES command can be used to
discover if a command, specified by message_id, supports FastChannels.

message_id: 0xB

protocol_id: 0x13

This command is optional.

Parameters

Name Description

System Control and Management Interface

Page 67 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 domain_id
Identifier for the performance domain for which the fast
channel is allocated.

uint32 message_id Message-id for which the FastChannel is allocated.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid
domain or message_id does not point to a valid message.

NOT_SUPPORTED: if FastChannel is not supported for
this domain or this message.

See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:3] Reserved. Should be zero in this
 version of the specification.

Bits[2:1] Doorbell Register width. This field is
 only valid if Doorbell Support is set to 1.

 If 0, then doorbell register is 8bits wide.

 If 1, then doorbell register is 16bits wide.

 If 2, then doorbell register is 32bits wide.

 If 3, then doorbell register is 64bits wide.

Bit[0] Doorbell Support.

 If 0, then the FastChannel does not
 have a doorbell register.

 If 1, then the FastChannel has a
 doorbell register.

uint32 rate_limit

Bits[31:20] Reserved and set to zero.

Bits[19:0] Rate Limit in microseconds, indicating
 the minimum time required between
 successive requests. A value of 0
 indicates that this field is not applicable
 or supported on the platform.

uint32 chan_addr_low Lower 32 bits of the FastChannel address.

uint32 chan_addr_high Higher 32 bits of the FastChannel address.

uint32 chan_size

Size of the FastChannel in bytes.

The value of this field should be sufficient to
accommodate the payload of the message this
FastChannel is used for. For more details on payload
requirements please refer Section 4.5.2.1

uint32 doorbell_addr_low
Lower 32 bits of the doorbell address. This field is not
used if doorbell is not supported.

System Control and Management Interface

Page 68 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 doorbell_addr_high
Higher 32 bits of the doorbell address. This field is not
used if doorbell is not supported.

uint32
doorbell_set_mask_low

Contains a mask of lower 32 bits to set when writing to
the doorbell register. If the doorbell register width, n, is
less than 32 bits, then only n lower bits are considered
from this mask. This field is not used if doorbell is not
supported.

uint32
doorbell_set_mask_high

Contains a mask of higher 32 bits to set when writing to
the doorbell register. This field is only valid if the doorbell
register width is 64 bits. This field is not used if doorbell is
not supported.

uint32
doorbell_preserve_mask_
low

Contains a mask of lower 32 bits to preserve when writing
to the doorbell register. If the doorbell register width, n, is
less than 32 bits, then only n lower bits are considered
from this mask. This field is not used if doorbell is not
supported.

uint32
doorbell_preserve_mask_
high

Contains a mask of higher 32 bits to preserve when
writing to the doorbell register. This field is only valid if the
doorbell register width is 64 bits. This field is not used if
doorbell is not supported.

Bits which are set neither in set_mask nor in preserve_mask are to be cleared.

4.5.4 Notifications

4.5.4.1 PEFORMANCE_LIMITS_CHANGED

If an agent has registered for limit change notifications for the domain that is identified by domain_id,
the platform sends this notification to the agent when the performance limits for that domain change.

The platform is not required to guarantee sending a notification to an agent for every limits change. In
particular, if several changes take place in quick succession, the platform is allowed to only issue a
notification for the last change.

message_id: 0x0

protocol_id: 0x13

This command is optional.

Parameters

Name Description

uint32 agent_id
Identifier for the agent that caused the performance limit
change.

uint32 domain_id
Identifier for the performance domain whose limit was
changed.

System Control and Management Interface

Page 69 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 range_max Maximum allowed performance level.

uint32 range_min Minimum allowed performance level.

4.5.4.2 PERFORMANCE_LEVEL_CHANGED

If an agent has registered to receive performance level change notifications for the domain that is
identified by domain_id, the platform sends this notification to the agent when the performance level of
that domain is changed by a different agent or entity in the system, including the platform itself.

The platform might autonomously change the performance level of the domain in order to apply thermal
or power constraints. An external agent, such as a system management agent, can also request the
platform to change the performance level. In each of these occurrences, the original agent will be
notified so that it can become aware of the change.

message_id: 0x1

protocol_id: 0x13

This command is optional.

Parameters

Name Description

uint32 agent_id
Identifier for the agent that caused the performance
level change.

uint32 domain_id
Identifier for the performance domain whose level
was changed.

uint32 performance_level
The new performance level of the domain that results
from the change.

4.5.5 Performance domain statistics shared memory region

Optionally, the platform can provide a statistics memory region that is associated with the performance
domain management protocol. Whether support is present is indicated by the
PROTOCOL_ATTRIBUTES command, which is described in section 4.5.3.2. This command also
provides the address and size of the shared memory region. For a given performance domain, and for
each performance level in that domain, statistics in the shared memory region track the number of times
that the level has been used and the amount of time that the domain has been in that performance
level. The statistics must be updated regardless of the agent in the system that placed a domain into a
given performance level. After a system reset or shutdown, all the statistics must be initialized to zero
when the system first starts up. Time measurements are in microseconds.

For APs, the shared memory must be accessible from the Non-secure world, and must be mapped as
non-cached normal memory or device memory. The format of the shared memory structure is described
in Table 12.

System Control and Management Interface

Page 70 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Table 12 Performance level statistics memory region

Field Byte Length Byte

Offset

Description

Signature 0x4 0x0 0x50455246 (‘PERF’).

Revision 0x2 0x4 For this revision, this value must be zero.

Attributes 0x2 0x6 For this revision, this value must be zero.

Number of
domains 0x2 0x8

Number of domains for which statistics are
collected.

Reserved 0x6 0xA Must be zero.

Performance
domain offset
array

0x4 ×

(Number of
domains)

0x10 For each performance domain, this array provides
a 4-byte offset, from the start of the shared
memory area, to the memory location of the
performance domain entry in the data section. The
entry format is described in Table 13.

A value of zero for the offset of a given
performance domain indicates that statistics are
not collected for that domain.

Performance
domain data
section

-- -- This area must start at an offset of 0x10 +

0x4 × (Number of performance domains), or

higher.

The performance domain data section contains entries for each power domain. The format for each
entry is described in Table 13.

Table 13 Performance domain entry

Field Byte

Length

Byte

Offset

Description

Number of
performance
levels

0x2 0x0

Number of performance level entries in the
performance levels array.

Current
performance level
index

0x2 0x2

Index into performance level array for current
performance level.

Extended
statistics table
offset

0x4 0x4

Contains the 4-byte offset, from the start of
shared memory, to the start of the domain’s
Extended Statistics Table. This field is set to 0 if
the Extended Statistics table is not supported.

System Control and Management Interface

Page 71 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

The Extended Statistics table definition is
implementation specific.

Time of last
change

0x8 0x8
Timestamp in microseconds since boot, of the
last performance level transition.

Performance level
array

N × 0x18 0x10
Performance level array, where N is the number
of performance levels. Described in Table 14.

The format for each entry in the performance level array is described in Table 14.

Table 14 Performance level array entry

Field Byte

Length

Byte

Offset

Description

Performance level 0x4 0x0 Performance level.

Reserved 0x4 0x4 Reserved, must be set to zero.

Usage count

0x8 0x8

Number of times this domain has used this
performance level. This value must be updated
when the domain transitions into the
performance level.

Residency

0x8 0x10

This value represents the amount of time domain
has been running at the performance level, and
is given in microseconds. This value must be
updated every time the domain transitions to
different performance level.

Accessing multi-word statistics can cause races between platform write accesses and the read
accesses by agents in the system. This problem and its solution are described in section 4.3.4.

System Control and Management Interface

Page 72 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.6 Clock management protocol

This protocol is intended for management of clocks. It is used to enable or disable clocks, and to set
rates. The protocol provides commands to:

• Describe the protocol version.

• Discover implementation attributes.

• Describe a clock.

• Enable or disable a clock.

• Set the rate of the clock synchronously or asynchronously.

4.6.1 Clock management protocol background

This protocol can be used for managing clock rates. It is not to be confused with the performance
management protocol, which is used to manage the speed of compute engines such as application
processors or GPUs. Examples of usage for the clock protocol might be setting rates for LCD clocks or
I2C buses.

The protocol does not cover discovery of the clock tree, which must be described through firmware
tables instead.

Protocol commands take integer identifiers to describe which clock a given command applies to. The
identifiers are sequential and start from 0.

4.6.2 Commands

4.6.2.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
return value must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x14

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 version
For this revision of the specification, this value must be
0x10000.

4.6.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

System Control and Management Interface

Page 73 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0x1

protocol_id: 0x14

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:24] Reserved, must be zero.

Bits[23:16] Maximum number of pending asynchronous
 clock rate changes supported by the platform.

Bits[15:0] Number of clocks.

4.6.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

message_id: 0x2

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status

One of the following:

• SUCCESS: in case the message is implemented and
available to use.

• NOT_FOUND: if the message identified by message_id
is invalid or not provided by this platform implementation.

See section 4.1.4 for status code definitions.

uint32 attributes

Flags that are associated with a specific command in the
protocol.

For all commands in this protocol, this parameter has a value
of 0.

System Control and Management Interface

Page 74 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.6.2.4 CLOCK _ATTRIBUTES

This command returns the attributes that are associated with a specific clock. An agent might be
allowed access to only a subset of the clocks available in the system. The platform must thus guarantee
that clocks that an agent cannot access are not visible to it.

message_id: 0x3

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 clock_id Identifier for the clock device.

Return values

Name Description

int32 status

NOT_FOUND: if clock_id does not point to a valid clock
device.

See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:1] Reserved, must be zero.

Bit[0] Enabled/disabled

 If set to 1, the clock device is enabled.

 If set to 0, the clock device is disabled.

uint8 clock_name[16]
A NULL terminated ASCII string with the clock name, of up to
16 bytes.

4.6.2.5 CLOCK_DESCRIBE_RATES

This command allows the agent to ascertain the valid rates to which the clock can be set. On success,
the command returns an array, which contains a number of rate entries. Clocks can support many rates
and sometimes individually describing each rate might be too onerous. In such cases, the array can
return only the lowest rate, the highest rate and the step size between two successive physical rates
that the clock device can synthesize. It also returns the number of supported rates.

Sometimes it might not be possible to return the whole array with just one call. To solve this problem,
the interface allows multiple calls. The size of the array returned depends on the number of return
values a given transport can support.

The clock levels returned by this call should be in numeric ascending order.

message_id: 0x4

protocol_id: 0x14

This command is mandatory.

System Control and Management Interface

Page 75 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Parameters

Name Description

uint32 clock_id Identifier for the clock device.

uint32 rate_index
Index to the first rate value to be described in the
return rate array.

Return values

Name Description

int32 status

NOT_FOUND: if the clock identified by clock_id does
not exist

OUT_OF_RANGE: if the rate_index is outside of valid
range.

See section 4.1.4 for status code definitions.

uint32 num_rates_flags

Descriptor for the rates supported by this clock.

Bits[31:16] Number of remaining rates.

Bits[15:13] Reserved, must be zero.

Bit[12] Return format:

 If this bit is set to 1, the Rate Array is a
 triplet that constitutes a segment in the
 following form:

 rates[0] is the lowest physical rate that
 the clock can synthesize in the segment.

 rates[1] is the highest physical rate that
 the clock can synthesize in the segment.

 rates[2] is the step size between two
 successive physical rates that the clock
 can synthesize within the segment.

 If this bit is set to 0, each element of the
 Rate Array represents a discrete physical
 rate that the clock can synthesize.

Bits[11:0]: Number of rates that are returned by this
 call.

System Control and Management Interface

Page 76 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

{uint32, uint32} rates [N]

Rate Array:

If Bit 12 of the num_rates_flags field is set to 0, each
array entry is composed of two 32-bit words and has
the following format:

Lower word: Lower 32 bits of the physical rate in
Hertz.

Upper word: Upper 32 bits of the physical rate in
Hertz.

If Bit 12 of the num_rates_flags field is set to 1, then
each entry is a member of a segment {lowest rate,
highest rate, step size} as described above.

For an example of using this kind of API, see 4.5.3.5.

4.6.2.6 CLOCK_RATE_SET

This command allows the caller to select the clock rate of a clock synchronously or asynchronously.

The command returns when the clock rate has been changed.

message_id: 0x5

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

System Control and Management Interface

Page 77 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 flags

Bits[31:4] Reserved, must be zero.

Bits[3:2] Round up/down:

 If Bit 3 is set to 1, the platform rounds up/down
 autonomously to choose a physical rate closest
 to the requested rate, and Bit 2 is ignored.

 If Bit 3 is set to 0, then the platform rounds up if
 Bit 2 is set to 1, and rounds down if Bit 2 is set
 to 0.

Bit[1] Ignore delayed response:

 If the Async flag, bit 0, is set to 1 and this bit is
 set to 1, the platform does not send a
 CLOCK_RATE_SET delayed response.

 If the Async flag, bit 0, is set to 1 and this bit is
 set to 0, the platform does send a
 CLOCK_RATE_SET delayed response.

 If the Async flag, bit 0, is set to 0, then this bit
 field is ignored by the platform.

Bit[0] Async flag:

 Set to 1 if clock rate is to be set asynchronously.
 In this case the call is completed with
 CLOCK_RATE_SET_COMPLETE message if
 bit 1 is set to 0. For more details, see section
 4.6.3.1. A SUCCESS return code in this case
 indicates that the platform has successfully
 queued this command.

 Set 0 to if the clock rate is to be set
 synchronously. In this case, the call with return
 the clock rate setting has been completed.

uint32 clock_id Identifier for the clock device.

uint32 rate[2]
Lower word: Lower 32 bits of the physical rate in Hertz.

Upper word: Upper 32 bits of the physical rate in Hertz.

Return values

Name Description

System Control and Management Interface

Page 78 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

int32 status

NOT_FOUND: if the clock identified by clock_id does not
exist.

INVALID_PARAMETERS: if the requested rate is not
supported by the clock, or the flags parameter specifies
invalid or illegal options.

BUSY: if there are too many asynchronous clock rate
changes pending. The PROTOCOL_ATTRIBUTES
command provides the maximum number of pending
asynchronous clock rate changes supported by the platform.

DENIED: if the clock rate cannot be set because of
dependencies, e.g. if there are other users of the clock.

See section 4.1.4 for status code definitions.

4.6.2.7 CLOCK_RATE_GET

This command allows the calling agent to request the current clock rate.

─── Note ───────────────

If the clock rate is set asynchronously, the rate value that is returned by this command might be stale by
the time the command completes.

──────────────────────

message_id: 0x6

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 clock_id Identifier for the clock device.

Return values

Name Description

int32 status

NOT_FOUND: if the clock identified by clock_id does not
exist.

See section 4.1.4 for status code definitions.

uint32 rate[2]
Lower word: Lower 32 bits of the physical rate in Hertz.

Upper word: Upper 32 bits of the physical rate in Hertz.

System Control and Management Interface

Page 79 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.6.2.8 CLOCK_CONFIG_SET

This command allows the calling agent to configure a clock device.

message_id: 0x7

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 clock_id Identifier for the clock device.

uint32 attributes

Bits[31:1] Reserved, must be zero.

Bit[0] Enable/Disable:

 If set to 1, the clock device is enabled.

 If set to 0, the clock device is disabled.

Return values

Name Description

int32 status

NOT_FOUND: if the clock identified by clock_id does not
exist.

INVALID_PARAMETERS, if the input attributes flag specifies
unsupported or invalid configurations.

See section 4.1.4 for status code definitions.

4.6.3 Delayed responses

4.6.3.1 CLOCK_RATE_SET_COMPLETE

If the agent has changed the clock rate asynchronously through CLOCK_RATE_SET, the platform
sends this delayed response to the agent when the clock rate changes.

message_id: 0x5

protocol_id: 0x14

This command is optional.

Parameters

Name Description

System Control and Management Interface

Page 80 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

int32 status

SUCCESS: if clock rate was set successfully.

DENIED: if the request was denied because there are other
users of the clock.

Other vendor-specific errors can also be generated
depending on the implementation.

See section 4.1.4 for status code definitions.

uint32 clock_id Identifier for the clock device.

uint32 rate[2]

Value of the rate that the clock transitioned to.

Lower word: Lower 32 bits of the physical rate in Hertz.

Upper word: Upper 32 bits of the physical rate in Hertz.

System Control and Management Interface

Page 81 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.7 Sensor management protocol

This protocol provides functions to manage platform sensors, and provides the following commands:

• Describe the protocol version.

• Describe the attribute flags of the protocol.

• Discover sensors that are implemented and managed by the platform.

• Read a sensor synchronously or asynchronously as allowed by the platform.

• Obtain and program sensor attributes, if applicable.

• Receive notifications on specific changes to sensor data, for example when a sensor value
crosses a threshold.

• Specify a region of shared memory for conveying sensor values, if supported by the platform.

4.7.1 Sensor management protocol background

The protocol supports accessing sensors through one of the following mechanisms:

• Synchronous Access – This method is recommended for sensors whose data is immediately
available or is internally cached by the platform, and can be returned immediately to the
requesting agent. Examples include platform event counters, or sensor data samples that are
stored in internal memory within the platform.

• Asynchronous Access – This method is recommended for sensors whose data is not cached by
the platform or for sensors that are slow to read. An example of this could be an on-die thermal
sensor.

• Event Notification – The agent can register for receiving notifications on specific sensor values,
conditions, or states of interest.

• Shared Memory – In this scheme, the platform periodically updates the sensor value in an area
of memory that is shared between agents and the platform.

Agents can discover the access mechanisms that are supported by a particular sensor by examining
the attributes that are advertised for the sensor. The platform can support multiple access mechanisms.

4.7.2 Commands from Agents to Platform

4.7.2.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
return value must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x15

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 82 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 version
For this revision of the specification, this value must be
0x10000.

4.7.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

message_id: 0x1

protocol_id: 0x15

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:24] Reserved, must be zero.

Bits[23:16] Maximum number of outstanding
asynchronous commands that is supported by the
platform.

Bits[15:0] Number of sensors that is present and
managed by the platform.

uint32
sensor_reg_address_low

This value indicates the lower 32 bits of the physical
address where the sensor shared memory region is
located. The address must be in the memory map of
the calling agent. If the sensor_reg_len field is 0, then
this field is invalid and must be ignored by the agent.

uint32
sensor_reg_address_high

This value indicates the upper 32 bits of the physical
address where the shared memory region is located.
The address must be in the memory map of the
calling agent. If the sensor_reg_len field is 0, then
this field is invalid and must be ignored by the agent.

uint32 sensor_reg_len

This value indicates the length in bytes of the shared
memory region. A value of 0 in this field indicates that
the platform does not implement the sensor shared
memory.

The sensor shared memory region is described in section 4.7.5.

4.7.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

System Control and Management Interface

Page 83 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

If the message is not supported or implemented by the platform, then this command returns a
NOT_FOUND status code. This allows calling agents to comprehend which commands are supported
on a particular platform, and configure themselves accordingly.

message_id: 0x2

protocol_id: 0x15

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status

One of the following:

• SUCCESS: in case the message is implemented and
available to use.

• NOT_FOUND: if the message identified by message_id
is not provided by this platform implementation.

Other status codes according to section 4.1.4 might be
returned for general error or status reporting.

uint32 attributes
Attributes that are associated with the message that is
specified by message_id. Currently, this field returns the
value of 0.

4.7.2.4 SENSOR_ DESCRIPTION_GET

This command can be used for sensor discovery on the platform. On success, it returns an array of
Sensor Descriptors as described in 4.7.2.4.1.

message_id: 0x3

protocol_id: 0x15

This command is mandatory.

Parameters

Name Description

uint32 desc_index
Index of the first sensor descriptor to be read in
the sensor descriptor array.

Return values

Name Description

System Control and Management Interface

Page 84 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

int32 status See section 4.1.4 for status code definitions.

uint32 num_sensor_flags

Bits[31:16] Number of remaining sensor
 descriptors.

Bits[15:12] Reserved, must be zero.

Bits[11:0] Number of sensor descriptors that
 are returned by this current call.

SENSOR_DESC desc[N]
An array of sensor descriptors, of format
described in 4.7.2.4.1.

4.7.2.4.1 Sensor Descriptor

The SENSOR_DESC structure describes the sensor properties, such as the unique identifier for the
sensor, its name, reading types and other characteristics.

uint32 sensor_id Identifier for the sensor.

uint32 sensor_attributes_low

Bit[31] Asynchronous sensor read support.

 If this flag is set to 1, then this sensor
 can be read asynchronously through
 the SENSOR_READING_GET
 command, and its value is returned in
 the SENSOR_READING_COMPLETE
 delayed response.

 If this flag is set to 0, the sensor must
 be only be read using a synchronous
 call to SENSOR_READING_GET
 command.

Bits[30:8] Reserved for future use.

Bits[7:0] Number of trip points supported.

System Control and Management Interface

Page 85 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 sensor_attributes_high

Bits[31:22] sensor_update_interval:

 Bits[31:27] sec – Seconds

 Bits[26:22] mult – two’s
 complement format representing the
 power-of-10 multiplier that is applied to
 the sec field.

 The time duration between successive
 updates to the sensor value. The
 representation is in the [sec] x 10[mult]
 format, in units of seconds. This field is
 set to 0 if the sensor doesn’t require a
 minimum update interval.

Bits[21:16] Reserved

Bits[15:11] The power-of-10 multiplier in two’s-
 complement format that is applied to
 the sensor unit specified by the
 SensorType field.

Bits[10:8] Reserved

Bits[7:0] SensorType: The type of sensor and
 the measurement system it
 implements, as described in Table 15.

uint8 sensor_name[16]
A NULL terminated ASCII string with the sensor
name, of up to 16 bytes.

Table 15 Sensor Type Enumerations1:

Enum Sensor Unit
Description

Enum Sensor Unit
Description

Enum Sensor Unit
Description

0 None 30 Cubic Feet 60 Bits

1 Unspecified 31 Meters 61 Bytes

2 Degrees C 32 Cubic Centimeters 62 Words (data)

3 Degrees F 33 Cubic Meters 63 Doublewords

4 Degrees K 34 Liters 64 Quadwords

5 Volts 35 Fluid Ounces 65 Percentage

6 Amps 36 Radians 66 Pascals

7 Watts 37 Steradians 67 Counts

8 Joules 38 Revolutions 68 Grams

9 Coulombs 39 Cycles 69 Newton-meters

System Control and Management Interface

Page 86 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

10 VA 40 Gravities 70 Hits

11 Nits 41 Ounces 71 Misses

12 Lumens 42 Pounds 72 Retries

13 Lux 43 Foot-Pounds 73 Overruns/Overflows

14 Candelas 44 Ounce-Inches 74 Underruns

15 kPa 45 Gauss 75 Collisions

16 PSI 46 Gilberts 76 Packets

17 Newtons 47 Henries 77 Messages

18 CFM 48 Farads 78 Characters

19 RPM 49 Ohms 79 Errors

20 Hertz 50 Siemens 80 Corrected Errors

21 Seconds 51 Moles 81 Uncorrectable Errors

22 Minutes 52 Becquerels 82 Square Mils

23 Hours 53 PPM (parts/million) 83 Square Inches

24 Days 54 Decibels 84 Square Feet

25 Weeks 55 DbA 85 Square Centimeters

26 Mils 56 DbC 86 Square Meters

27 Inches 57 Grays - All others – reserved

28 Feet 58 Sieverts

29 Cubic Inches 59 Color Temperature
Degrees K

255 OEM Unit

1: This table is based on the Distributed Management Task Force (DMTF) specification number DSP 0249 (Platform
Level Data Model specification).

4.7.2.5 SENSOR_TRIP_POINT_NOTIFY

This command is used by the agent to globally control generation of notifications on cross-over events
for the trip-points that have been configured using the SENSOR_TRIP_POINT_CONFIG command.

message_id: 0x4

protocol_id: 0x15

This command is optional.

Parameters

System Control and Management Interface

Page 87 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Name Description

uint32 sensor_id Identifier for the sensor.

uint32 sensor_event_control

Bits[31:1] Reserved.

Bit[0] Globally controls generation of
 notifications on crossing of configured
 trip-points pertaining to the specified
 sensor.

 If this bit is set to 1, notifications are sent
 whenever the sensor value crosses any
 of the trip-points that have been
 configured using the
 SENSOR_TRIP_POINT_CONFIG
 command.

 If this bit is set to 0, no notifications are
 sent for any of the trip-points.

Return values

Name Description

int32 status

NOT_FOUND: if sensor_id does not point to an
existing sensor.

INVALID_PARAMETERS: if the input
sensor_event_control flag contains invalid or illegal
settings.

NOT_SUPPORTED: if the platform does not support
notifications.

See section 4.1.4 for status code definitions.

4.7.2.6 SENSOR_TRIP_POINT_CONFIG

This command is used for selecting and configuring a trip-point of interest. Following the successful
completion of this command, the platform generates the SENSOR_TRIP_POINT_EVENT event
whenever the sensor value crosses the programmed trip point value, provided notifications have been
enabled for trip-points globally using the SENSOR_TRIP_POINT_NOTIFY command.

An agent can use this command for various use-cases. For example:

• The agent can invoke this command twice to program the upper and lower values of a
hysteresis band, respectively.

• For a counter-type sensor that is required to fire a notification on reaching a certain count, the
agent can issue this command to program the count value.

System Control and Management Interface

Page 88 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

message_id: 0x5

protocol_id: 0x15

This command is mandatory if at least one of the implemented sensors in the platform

supports trip points.

Parameters

Name Description

uint32 sensor_id Identifier for the sensor.

uint32 trip_point_ev_ctrl

Bits[31:12] Reserved.

Bits[11:4] trip_point_id: Identifier for the selected
 trip point. This value should be equal to
 or less than the total number of trip points
 that are supported by this sensor as
 advertised in its descriptor.

Bits[3:2] Reserved for future use.

Bits[1:0] Event control for the trip-point:

 If set to 0, disables event generation for
 this trip-point (this is the default state)

 If set to 1, enables event generation
 when this trip-point value is reached or
 crossed in a positive direction

 If set to 2, enables event generation
 when this trip-point value is reached or
 crossed in a negative direction

 If set to 3, enables event generation
 when this trip-point value is reached or
 crossed in either direction.

uint32 trip_point_val_low
Lower 32 bits of the sensor value corresponding to
this trip-point. The default value is 0.

uint32 trip_point_val_high
Higher 32 bits of the sensor value corresponding to
this trip-point. The default value is 0.

Return values

Name Description

int32 status

NOT_FOUND: if sensor_id does not point to an
existing sensor.

INVALID_PARAMETERS: if the input parameters
specify incorrect or illegal values.

NOT_SUPPORTED: if the platform does not support
notifications.

See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 89 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.7.2.7 SENSOR_READING_GET

This command requests the platform to provide the current value of the sensor that is represented by
sensor_id. For synchronous mode of access, the platform provides the sensor reading in the response
to this command itself. For asynchronous accesses, the platform returns the sensor value in the
SENSOR_READING_COMPLETE delayed response.

When the platform notices failure or fault conditions in the sensor or its associated logic or circuitry, it
returns the HARDWARE_ERROR status. Other errors pertain to the interface itself, and are
enumerated in 4.1.4.

Agents should assess the sensor attributes to determine the optimal mode of access for the sensor. A
slow sensor like a temperature sensor can be more optimally read asynchronously, while a shared
memory-based sensor can be read synchronously.

message_id: 0x6

protocol_id: 0x15

This command is mandatory.

Parameters

Name Description

uint32 sensor_id The identifier for the sensor to be read

uint32 flags

Bits[31:1] Reserved

Bit[0] Async flag:

 Set to 1 if the sensor is to be read
 asynchronously.

 Set to 0 to if the sensor is to be read
 synchronously.

Return values

Name Description

int32 status

NOT_FOUND: if sensor_id does not point to an existing

sensor.

INVALID_PARAMETERS: if the flags input specifies

illegal or invalid settings.

See section 4.1.4 for status code definitions. If this is an

asynchronous call, then the returned status code

pertains to this command itself, and any error that

occurs during the actual sensor read operation is

reported subsequently with the

SENSOR_READING_COMPLETE delayed response.

uint32 sensor_value_low
Lower 32 bits of the sensor value. This value is invalid if

an error status is returned.

System Control and Management Interface

Page 90 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 sensor_value_high
Higher 32 bits of the sensor value. This value is invalid if

an error status is returned.

4.7.3 Delayed Responses from Platform to Agent

4.7.3.1 SENSOR_READING_COMPLETE

This response is the delayed response to an asynchronous SENSOR_READING_GET command
issued by an agent. When the platform determines that there are certain failure conditions in the sensor
itself, such as a fault in the sensor hardware or related circuitry or logic, it returns
HARDWARE_ERROR to report that condition to the caller. Other errors apply to the interface itself, and
are enumerated in 4.1.4.

message_id: 0x6

protocol_id: 0x15

This response is mandatory and is generated if the caller used the asynchronous

method to read the sensor.

Return Values

Name Description

int32 status
An appropriate status code, as described in section
4.1.4.

uint32 sensor_id Identifier for the sensor.

uint32 sensor_value_low

Value that is read from the sensor.

Lower 32 bits of the sensor value. This value is invalid
if an error status is returned.

uint32 sensor_value_high

Value that is read from the sensor.

Higher 32 bits of the sensor value. This value is invalid
if an error status is returned.

4.7.4 Notifications

4.7.4.1 SENSOR_TRIP_POINT_EVENT

This notification is issued by the platform when a sensor crosses a specific trip point that the agent had
requested event notification for, by using the SENSOR_TRIP_POINT_CONFIG command.

The platform might read sensors periodically using polling, or program sensors to generate interrupts on
trip points, depending on implementation. If the sensor value changes such that it crosses several trip-
points between successive reads by the platform, then the platform might minimally send only one
notification to the agent to represent the multiple cross-over condition.

System Control and Management Interface

Page 91 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Message_id: 0x0

protocol_id: 0x15

This notification is optional.

Return Values

Name Description

uint32 agent_id

Refers to the agent that caused this event. For the
current version of the specification, this field is set to 0
to indicate that the platform is the generator of all
sensor events.

uint32 sensor_id Identifier for the sensor that has tripped

uint32 trip_point_desc

Bits[31:17] Reserved.

Bit[16] Direction.

 If set to 1, indicates that the trip point was
 reached or crossed in the positive
 direction.

 If set to 0, indicates that the trip point was
 reached or crossed in the negative
 direction.

Bits[15:8] Reserved for future use.

Bits[7:0] trip_point_id

 The identifier for the trip point that was
 crossed or reached.

4.7.5 Sensor Values Shared Memory

Optionally, the platform might provide sensor values through the shared memory region that is
associated with the sensor management protocol. Whether support is present is indicated by the
PROTOCOL_ATTRIBUTES command, which is described in section 4.7.2.2. This command also
provides the address and the size of the shared memory region. The memory must be accessible from
the Non-secure world, and OSPM must map it as non-cached normal memory or device memory.

The format of the frame is described in Table 16.

Table 16 Sensor shared memory region

Field Byte Length Byte Offset Description

Signature 0x4 0x0 0x53454E53 (‘SENS’).

Revision 0x2 0x4 For this revision, this value must be zero.

Attributes 0x2 0x6 For this revision, this value must be zero.

System Control and Management Interface

Page 92 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Number of
sensors

0x2 0x8 Number of sensors.

Reserved 0x6 0xA Must be zero.

Sensor
domain offset
array

0x4 ×

Number of
sensors

0x10 For each sensor, this array provides a 4-
byte offset, from the start of the shared
memory area, to the memory location
where the sensor value is stored. A value
of 0 indicates that the sensor value is not
reported through shared memory. The
array is indexed by sensor_id.

Sensor
values data
section

-- 0x10 + 0x4

× (Number

of sensors)

Each sensor value is stored on a 64-bit
aligned boundary, with a number that might
be up to 64 bits.

Accessing multi-word values might cause races between platform write accesses and the read
accesses by agents in the system. This problem and its solution are described in section 4.3.4.

System Control and Management Interface

Page 93 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.8 Reset domain management protocol

This protocol is intended for control of reset capable domains in the platform. The reset management
protocol provides commands to:

• Describe the protocol version.

• Discover the attributes and capabilities of the reset domains in the system.

• Reset a given domain.

• Receive notifications when a given domain is reset.

4.8.1 Reset domain management protocol background

Devices that can be collectively reset through a common reset signal constitute a reset domain. A reset
domain can be reset autonomously or explicitly. When autonomous reset is chosen, the firmware is
responsible for taking the necessary steps to reset the domain and to subsequently bring it out of reset.
When explicit reset is chosen, the caller has to specifically assert and then de-assert the reset signal by
issuing two separate RESET commands.

Reset State encoding for reset domains is described below in Table 17.

Table 17: Reset State Parameter Layout

Bit field Description

31

Reset Type

If set to 0, indicates Architectural Reset.

If set to 1, indicates IMPLEMENTATION defined Reset.

30:0 Reset ID

The two distinct reset types possible are architectural reset and IMPLEMENTATION defined reset.
Reset Types and Reset IDs are described in Table 18.

Table 18: Reset Type and Reset ID Description

Reset Type Reset ID Description

Architectural Reset

0x0

COLD_RESET.

Full loss of context of all devices in the
domain.

0x1-0x7FFFFFFF
Reserved for future use.

Lower values indicate greater context loss.

IMPLEMENTATION
defined Reset

0x0-0x7FFFFFFF

IMPLEMENTATION defined Resets.

All values represent resets that result in
varying levels of context loss.

Lower values indicate greater context loss.

System Control and Management Interface

Page 94 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Reset domains are not the same as power domains, although they can be the same. There could be
multiple reset domains within a given power domain. There could also be reset domains that straddle
multiple power domains.

Resets might impose the requirement that devices in the affected reset domain are in a state of
quiescence before the reset is issued. Support for such quiescence might be provided by the reset
domain. In the absence of such a support, it is the calling agent’s responsibility to ensure quiescence
prior to invocation of the reset.

4.8.2 Commands

4.8.2.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
value returned must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x16

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

unt32 version For this revision of the specification, this must be 0x10000.

4.8.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

message_id: 0x1

protocol_id: 0x16

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes
Bits[31:16] Reserved, must be zero.

Bits[15:0] Number of reset domains.

System Control and Management Interface

Page 95 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

4.8.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

message_id: 0x2

protocol_id: 0x16

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message

Return values

Name Description

int32 status

One of the following:

• SUCCESS: in case the message is implemented and
available to use.

• NOT_FOUND: if the message identified by message_id
is not provided by this platform implementation.

See section 4.1.4 for status code definitions.

uint32 attributes Reserved, must be zero.

4.8.2.4 RESET_DOMAIN_ATTRIBUTES

This command returns attributes of the reset domain specified in the command.

message_id: 0x3

protocol_id: 0x16

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the reset domain.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id pertains to a non-existent
domain.

See section 4.1.4 for status code definitions.

uint32 attributes Bit[31] Asynchronous reset support.

System Control and Management Interface

Page 96 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

 Set to 1 if this domain can be reset
 asynchronously.

 Set to 0 if this domain can only be reset
 synchronously.

Bit[30] Reset notifications support.

 Set to 1 if reset notifications are supported for
 this domain.

 Set to 0 if reset notifications are not supported
 for this domain.

Bits[29:0] Reserved, must be zero.

uint32 latency
Maximum time (in microseconds) required for the reset to
take effect on the given domain. A value of 0xFFFFFFFF
indicates this field is not supported by the platform.

uint8 name[16]
Null-terminated ASCII string of up to 16 bytes in length
describing the reset domain name.

4.8.2.5 RESET

This command allows an agent to reset the specified reset domain. If the reset request is issued as an
asynchronous call, the platform must return immediately upon receipt of the request. The platform might
need to ensure that the domain and all dependent logic have reached a state of quiescence before
performing the actual reset, although this is not mandatory.

When the reset is done, the platform should then send a RESET_COMPLETE delayed response,
described in section 4.8.3.1.The platform has the option to inform agents other than the caller of the
reset incident, using the RESET_ISSUED notification that is described in section 4.8.4.1.

message_id: 0x4

protocol_id: 0x16

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the reset domain.

System Control and Management Interface

Page 97 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

uint32 flags

This parameter allows the agent to specify additional
conditions and requirements specific to the request, and has
the following format:

Bits[31:3] Reserved, must be zero.

Bit[2] Async flag. Only valid if Bit[0] is set to 1.

 Set to 1 if the reset must complete
 asynchronously.

 Set to 0 if the reset must complete
 synchronously.

Bit[1] Explicit signal. This flag is ignored when
 Bit[0] is set to 1.

 Set to 1 to explicitly assert reset signal.

 Set to 0 to explicitly de-assert reset signal.

Bit[0] Autonomous Reset action.

 Set to 1 if the reset must be performed
 autonomously by the platform.

 Set to 0 if the reset signal shall be explicitly
 asserted and de-asserted by the caller.

uint32 reset_state
The reset state being requested. The format of this
parameter is specified in Table 17.

Return values

Name Description

int32 status

One of the following:

• SUCCESS: if the operation was successful.

• NOT_FOUND: if the reset domain identified by
domain_id does not exist.

• INVALID_PARAMETERS: if an illegal or unsupported
reset state is specified or if the flags field is invalid.

• GENERIC_ERROR: if the operation failed, for
example if there are other active users of the reset
domain.

• DENIED: if the calling agent is not allowed to reset
the specified reset domain.

See section 4.1.4 for status code definitions.

4.8.2.6 RESET_NOTIFY

This command allows the caller to request notifications from the platform when a reset domain has
been reset. If reset has been explicitly signaled, the platform generates this notification when the reset

System Control and Management Interface

Page 98 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

signal has been asserted. These notifications are sent using the RESET_ISSUED notification, which is
described in section 4.8.4.1.

Notification support is optional, and PROTOCOL_MESSAGE_ATTRIBUTES must be used to discover
whether this command is implemented.

These notifications must be disabled by default during initial boot of the platform.

message_id: 0x5

protocol_id: 0x16

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier for the reset domain.

uint32 notify_enable

Bits[31:1] Reserved must be zero.

Bit[0] Notify enable. This bit can have one of the
 following values:

 1, which indicates that the platform should send
 RESET_ISSUED notifications to the calling
 agent when the domain is reset.

 0, which indicates that the platform should not
 send any RESET_ISSUED notifications to the
 calling agent.

Return values

Name Description

int32 status

NOT_FOUND: if domain_id does not point to a valid domain.

INVALID_PARAMETERS: if notify_enable specifies values
that are either illegal or incorrect.

See section 4.1.4 for status code definitions.

4.8.3 Delayed Responses

4.8.3.1 RESET_COMPLETE

The platform sends this delayed response to the caller that requested an asynchronous reset of the
specified domain.

message_id: 0x4

protocol_id: 0x16

This command is optional.

System Control and Management Interface

Page 99 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Parameters

Name Description

int32 status

SUCCESS: if reset was successful.

GENERIC_ERROR: if the operation failed, for example if
there were other users of the reset domain, or if the domain
could not be brought to a state of quiescence preparatory to
the reset.

Other vendor-specific errors can also be generated
depending on the implementation.

See section 4.1.4 for status code definitions.

uint32 domain_id Identifier for the reset domain.

4.8.4 Notifications

4.8.4.1 RESET_ISSUED

The platform sends this notification to an agent that has registered to receive notifications when the
reset domain identified by domain_id has been reset. The notification might not be received if the agent
is affected as a result of the reset.

message_id: 0x0

protocol_id: 0x16

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier of the reset domain.

uint32 reset_state
The reset state issued on the domain. The format of this
parameter is specified in Table 17.

System Control and Management Interface

Page 100 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

5 Transports

Transports describe how messages are exchanged between agents and the platform.

5.1 Shared Memory based Transport

This form of transport relies on the use of shared memory between the platform and the agents.

The transport optionally supports interrupt based communication, where, on completion of the
processing of a message, the caller receives an interrupt. Polling for completion is also supported.

The transport can be used to provide an agent to platform, or a platform to agent channel. Each
channel in the transport includes:

• Shared memory area
This is an area of memory that is shared between the caller and the callee. At any point in time,
the shared memory is owned by the caller or the callee. The ownership is reflected by a
channel status word in the shared memory area. The channel is said to be free when the
memory area is owned by the caller, and busy when it passed to the callee. When a channel is
free, the caller can write a message and associated payload to this shared memory area. After
this, the caller updates the status field, thereby relinquishing ownership of the shared memory
and marking the channel as busy. The callee can then use the shared memory to pass return
values that are associated with the processing of the message. When the callee has completed
processing the message, it updates the channel status field to indicate that the channel is now
free. The layout of the memory area is described in section 5.1.2.

• Doorbell
This is a mechanism that the caller can use to alert the callee of the presence of a message.

Typically, this mechanism is implemented as a register in caller, which, when written, raises an
interrupt on the callee. In case the callee chooses to poll over the ‘Channel free’ bit in the
Channel status field of the shared memory area in order to discover new messages from the
caller, then the doorbell support is optional.

The doorbell can also be implemented through Secure Monitor Call (SMC) or Hypervisor Call
(HVC) instructions if the callee is resident in the Secure world or at a different exception level.

• Completion interrupt
This transport supports polling or interrupt driven modes of communication. In interrupt mode,
when the callee completes processing a message, it raises an interrupt on the caller. Hardware
support for completion interrupts is optional.

5.1.1 Message communications flow

A flow chart for sending a message from the caller to the callee using interrupt mode is shown in Figure
3. The steps are as follows:

1. The caller must ensure that the channel is free.

2. The caller populates the shared memory area with the message and its payload.

3. The caller marks the channel as busy by updating the channel status.

4. The caller rings the doorbell. This signals the callee that a pending message is in the shared
memory area.

5. The callee processes the command in shared memory area.

6. Optionally, the callee updates the shared memory area with any return data that are associated
with the message processing.

System Control and Management Interface

Page 101 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

7. The callee marks the channel as free by updating the channel status.

8. The callee issues a completion interrupt to the caller.

9. Optionally the caller processes the contents of the shared memory area.

Figure 3 Interrupt-driven Communications flow

A flow chart for sending a message using polling mode is shown in Figure 4. The main difference is that
the caller has to poll for command completion by checking the status of the channel, as there is no
completion interrupt.

System Control and Management Interface

Page 102 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Figure 4: Polling based Communication Flow

The caller must ensure the appropriate ordering of memory operations so that all updates to the shared
memory must be visible to the callee before ringing the doorbell. Equally, the callee must ensure that all
shared memory changes are visible to the caller before updating the status.

If the caller contains multiple processing elements that can share a transport channel, then appropriate
locking must be put in place to ensure that only one processing element can use the channel at any one
time. The channel must be locked until the message processing completes and the results are
processed by the caller.

5.1.2 Shared memory area layout

For a given channel, the layout of the memory that is shared between the agent and platform is
described in Table 19.

Table 19 Layout of the shared memory area

Field Byte

Length

Byte

Offset

Description

Reserved 0x4 0x0 Reserved, must be zero.

Channel status

0x4 0x4 The field has the following format:

Bits[31:2] Reserved, must be zero.

Bit[1] Channel error

System Control and Management Interface

Page 103 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

 This bit is set to 1 if the previous
 message was not transmitted due to
 a communications error. The caller
 must clear it when it has ownership of
 the channel.

Bit[0] Channel free

 This bit is set to 1 if the channel is
 free.

 This bit is cleared to 0 if the channel
 is busy.

Reserved 0x8 0x8 IMPLEMENTATION DEFINED field.

Channel flags 0x4 0x10 Channel flags are described in Table 20.

Length 0x4 0x14 Length in bytes of the Message header and
Payload areas (4+N). If the message length does
not match the message, the payload must contain
the PROTOCOL_ERROR status as the first return
value upon completion of message processing.
Status codes are described in detail in section
4.1.4.

Message header 0x4 0x18 Message header field as described in section 4.1,
Table 2.

Message
Payload

N 0x1C Array of 32-bit values that are used to hold any
parameters or return values.

The arguments are sent out in the same order
they are declared in a protocol command.

Return values are sent back in the same order as
they are declared in a protocol command.

If a message is not known to the callee, the
payload must contain NOT_SUPPORTED as the
first return value.

Status codes are described in detail in section
4.1.4.

When interrupt driven communication is supported, the transport allows the caller to choose between
interrupt and polling driven communications. This can be done on any transfer, and is useful when the
caller wants to operate in a fire and forget fashion, without having to handle interrupts. To make the
choice, the channel flags are used. The format of the flags is described in Table 20.

Table 20 Channel flags

System Control and Management Interface

Page 104 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

Field Description

Bits[31:1] Reserved, must be zero.

Bit[0] Interrupt communication enable:

Set to 1 if the command should complete via an
interrupt.

Set to 0 if the command should not result in an
interrupt assertion.

5.1.3 Shared memory based transport firmware representation guidelines

An operating system on an agent needs a description of the shared memory based transport and its
properties before using it. Arm recommends using firmware technologies such as FDT and ACPI for this
purpose. This section details the properties that are required to be defined for each channel.

5.1.3.1 Doorbell

For agent to platform channels, a doorbell is required to alert the platform that a message is present in
the shared memory area. In case the doorbell is a register, writing to it requires a read-modify-write
sequence. Firmware tables can be used to describe the properties of the register to an OSPM running
on the AP. The properties that must be described are shown in Table 21.

Table 21 Properties of the doorbell register

Field Description

Register address Physical address of the register that is written to,
to issue a command to the platform.

Preserve Mask Mask of bits that must be preserved when
modifying the doorbell register to issue a
command.

Modify Mask Mask of bits that must be set when modifying the
doorbell register to issue a command.

Channels can share a register address for the doorbell, but in this case must have unique preserve and
modify masks. If the callee chooses to poll over the ‘Channel free’ bit in the Channel status field of the
shared memory area in order to discover new messages from the caller, then doorbell support is
optional.

If the doorbell is SMC or HVC based, it should follow the SMC Calling Convention [SMCCC]. The
doorbell needs to provide the identifier of the Shared Memory area that contains the payload. The
Shared Memory area containing the payload is updated with the SCMI return response when the call
returns. The identifier of the Shared Memory area should be 32-bits and each identifier should map to a
distinct Shared Memory area.

System Control and Management Interface

Page 105 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

For platform to agent channels, a message interrupt can be described. This interrupt is raised by the
platform on notification or delayed response messages. Not describing this interrupt implies that that
platform messages have to be polled by agents.

5.1.3.2 Shared memory area address and size

The physical address of the shared memory area, and its size, must be described to the OSPM.

5.1.3.3 Completion interrupt

For agent-to-platform channels, where interrupt mode is supported, the properties of the completion
interrupt,if present, must be described by agent firmware. The properties of the completion interrupt to
be described are covered in Table 22.

Table 22 Properties of the completion interrupt

Field Description

Interrupt identifier

Identifier for the interrupt asserted by the
platform on command completion.

Interrupt
properties

Whether interrupt is level or edge triggered.

Register address If the interrupt is level sensitive, the physical
address of the interrupt clearing register that
must be written to, to clear the interrupt.

Preserve Mask If the interrupt is level sensitive, mask of bits that
must be preserved when accessing the register
to clear the interrupt.

Modify Mask If the interrupt is level sensitive, mask of bits that
must be set when accessing the register to clear
the interrupt.

If the interrupt is level-sensitive, it can be shared by more than one channel. In this case, the preserve-
and modify-masks must be unique for each channel.

System Control and Management Interface

Page 106 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

5.2 ACPI-based Transport

ACPI-based implementations can leverage SCMI protocols to provide platform services using standard
ACPI methods. For example, a device may be power managed by an ACPI-aware OS using the
standard ACPI control methods that are described in [ACPI]. These ACPI methods can internally send
SCMI Power Management Protocol requests to the platform to transition the power state of the device.
In such an implementation, the platform is an ACPI-compliant platform controller as defined by Chapter
14 of [ACPI]. The SCMI transport is represented as a standard ACPI Platform Communications
Channel (PCC) of Type 3. SCMI transports that follow the format outlined in section 5.1 are compatible
with PCC type 3 channel definition. Also, ACPI version 6.3 introduces the concept and use of PCC
operation regions. This enables ACPI methods that rely on underlying SCMI services to access the
SCMI transport through PCC operation regions.

System Control and Management Interface

Page 107 of 107 Copyright © 2017, 2019 Arm Limited or its affiliates. All rights reserved. DEN0056B
 Non-Confidential

5.3 Shared Memory or MMIO based Transport for FastChannels

FastChannels might rely on the use of shared memory between the platform and the agents.
Alternatively FastChannels can be MMIO based. Any MMIO or shared memory based FastChannel
must be visible and readable by both the caller and the callee. However, only the caller or the callee,
but not both, must have write permissions to enforce unidirectionality. FastChannels must be mapped
as non-cached device memory.

A FastChannel:

a) must be the same width as the payload requirements of the message for which the FastChannel
is used. The payload layout of the FastChannel is described in the relevant Protocol sections.

b) can have optional doorbell support. The doorbell can be used to inform the platform that the
agent has posted a new request over the FastChannel. If doorbell support is absent, the
platform might need to poll over the FastChannel for any messages from the agent.

The discovery of the FastChannel is described in the relevant Protocol sections.

	Release information
	Proprietary notice
	1 About this Document
	1.1 References
	1.2 Terms and abbreviations
	1.3 Feedback
	1.3.1 Feedback on this manual

	2 Introduction
	3 System Control and Management Interface structure
	4 Protocols
	4.1 Protocol structure
	4.1.1 Agents, messages and channels
	4.1.2 Message format
	4.1.3 Protocol discovery
	4.1.4 SCMI status codes

	4.2 Base protocol
	4.2.1 Agent-specific permission configuration and reset
	4.2.1.1 Device specific access control
	4.2.1.2 Protocol specific access control
	4.2.1.3 Agent specific configuration reset

	4.2.2 Commands
	4.2.2.1 PROTOCOL_VERSION
	4.2.2.2 PROTOCOL_ATTRIBUTES
	4.2.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.2.2.4 BASE_DISCOVER_VENDOR
	4.2.2.5 BASE_DISCOVER_SUB_VENDOR
	4.2.2.6 BASE_DISCOVER_IMPLEMENTATION_VERSION
	4.2.2.7 BASE_DISCOVER_LIST_PROTOCOLS
	4.2.2.8 BASE_DISCOVER_AGENT
	4.2.2.9 BASE_NOTIFY_ERRORS
	4.2.2.10 BASE_SET_DEVICE_PERMISSIONS
	4.2.2.11 BASE_SET_PROTOCOL_PERMISSIONS
	4.2.2.12 BASE_RESET_AGENT_CONFIGURATION

	4.2.3 Notifications
	4.2.3.1 BASE_ERROR_EVENT

	4.3 Power domain management protocol
	4.3.1 Power domain management protocol background
	4.3.2 Commands
	4.3.2.1 PROTOCOL_VERSION
	4.3.2.2 PROTOCOL_ATTRIBUTES
	4.3.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.3.2.4 POWER_DOMAIN_ATTRIBUTES
	4.3.2.5 POWER_STATE_SET
	4.3.2.6 POWER_STATE_GET
	4.3.2.7 POWER_STATE_NOTIFY
	4.3.2.8 POWER_STATE_CHANGE_REQUESTED_NOTIFY

	4.3.3 Notifications
	4.3.3.1 POWER_STATE_CHANGED
	4.3.3.2 POWER_STATE_CHANGE_REQUESTED

	4.3.4 Power state statistics shared memory region

	4.4 System power management protocol
	4.4.1 System power management protocol background
	4.4.2 Commands
	4.4.2.1 PROTOCOL_VERSION
	4.4.2.2 PROTOCOL_ATTRIBUTES
	4.4.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.4.2.4 SYSTEM_POWER_STATE_SET
	4.4.2.5 SYSTEM_POWER_STATE_GET
	4.4.2.6 SYSTEM_POWER_STATE_NOTIFY

	4.4.3 Notifications
	4.4.3.1 SYSTEM_POWER_STATE_NOTIFIER

	4.5 Performance domain management protocol
	4.5.1 Performance domain management protocol background
	4.5.2 FastChannels
	4.5.2.1 Payload Requirements

	4.5.3 Commands
	4.5.3.1 PROTOCOL_VERSION
	4.5.3.2 PROTOCOL_ATTRIBUTES
	4.5.3.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.5.3.4 PERFORMANCE_DOMAIN_ATTRIBUTES
	4.5.3.5 PERFORMANCE_DESCRIBE_LEVELS
	4.5.3.6 PERFORMANCE_LIMITS_SET
	4.5.3.7 PERFORMANCE_LIMITS_GET
	4.5.3.8 PERFORMANCE_LEVEL_SET
	4.5.3.9 PERFORMANCE_LEVEL_GET
	4.5.3.10 PERFORMANCE_NOTIFY_LIMITS
	4.5.3.11 PERFORMANCE_NOTIFY_LEVEL
	4.5.3.12 PERFORMANCE_DESCRIBE_FASTCHANNEL

	4.5.4 Notifications
	4.5.4.1 PEFORMANCE_LIMITS_CHANGED
	4.5.4.2 PERFORMANCE_LEVEL_CHANGED

	4.5.5 Performance domain statistics shared memory region

	4.6 Clock management protocol
	4.6.1 Clock management protocol background
	4.6.2 Commands
	4.6.2.1 PROTOCOL_VERSION
	4.6.2.2 PROTOCOL_ATTRIBUTES
	4.6.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.6.2.4 CLOCK _ATTRIBUTES
	4.6.2.5 CLOCK_DESCRIBE_RATES
	4.6.2.6 CLOCK_RATE_SET
	4.6.2.7 CLOCK_RATE_GET
	4.6.2.8 CLOCK_CONFIG_SET

	4.6.3 Delayed responses
	4.6.3.1 CLOCK_RATE_SET_COMPLETE

	4.7 Sensor management protocol
	4.7.1 Sensor management protocol background
	4.7.2 Commands from Agents to Platform
	4.7.2.1 PROTOCOL_VERSION
	4.7.2.2 PROTOCOL_ATTRIBUTES
	4.7.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.7.2.4 SENSOR_ DESCRIPTION_GET
	4.7.2.4.1 Sensor Descriptor

	4.7.2.5 SENSOR_TRIP_POINT_NOTIFY
	4.7.2.6 SENSOR_TRIP_POINT_CONFIG
	4.7.2.7 SENSOR_READING_GET

	4.7.3 Delayed Responses from Platform to Agent
	4.7.3.1 SENSOR_READING_COMPLETE

	4.7.4 Notifications
	4.7.4.1 SENSOR_TRIP_POINT_EVENT

	4.7.5 Sensor Values Shared Memory

	4.8 Reset domain management protocol
	4.8.1 Reset domain management protocol background
	4.8.2 Commands
	4.8.2.1 PROTOCOL_VERSION
	4.8.2.2 PROTOCOL_ATTRIBUTES
	4.8.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.8.2.4 RESET_DOMAIN_ATTRIBUTES
	4.8.2.5 RESET
	4.8.2.6 RESET_NOTIFY

	4.8.3 Delayed Responses
	4.8.3.1 RESET_COMPLETE

	4.8.4 Notifications
	4.8.4.1 RESET_ISSUED

	5 Transports
	5.1 Shared Memory based Transport
	5.1.1 Message communications flow
	5.1.2 Shared memory area layout
	5.1.3 Shared memory based transport firmware representation guidelines
	5.1.3.1 Doorbell
	5.1.3.2 Shared memory area address and size
	5.1.3.3 Completion interrupt

	5.2 ACPI-based Transport
	5.3 Shared Memory or MMIO based Transport for FastChannels

