
 Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Document number: DEN0056A

ARM® System Control and Management Interface

Platform Design Document

Non-Confidential

System Control and Management Interface

Page 2 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

System Control and Management Interface
Platform Design Document

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Release information

The Change History table lists the changes that are made to this document.

Table 1 Change history

Date Issue Confidentiality Change

May 2017 Issue A Non-confidential Version 1.0, first external release

Proprietary notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of ARM Limited
(“ARM”). No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict
between the English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner”
in reference to ARM’s customers is not intended to create or refer to any partnership relationship with any other
company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement
specifically covering this document with ARM, then the signed written agreement prevails over and supersedes the
conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the
EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. You must follow the ARM trademark usage guidelines
http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

System Control and Management Interface

Page 3 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

http://www.arm.com/

System Control and Management Interface

Page 4 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Contents

1 About this Document ... 6

1.1 References .. 6
1.2 Terms and abbreviations .. 6
1.3 Feedback... 7

1.3.1 Feedback on this manual ... 7

2 Introduction ... 8

3 System Control and Management Interface structure ... 9

4 Protocols ... 11

4.1 Protocol structure .. 11
4.1.1 Agents, messages, and channels .. 11
4.1.2 Message format .. 12
4.1.3 Protocol discovery... 14
4.1.4 SCMI status codes .. 15

4.2 Base protocol .. 16
4.2.1 Commands .. 16
4.2.2 Notifications .. 22

4.3 Power domain management protocol ... 23
4.3.1 Power domain management protocol background .. 23
4.3.2 Commands .. 25
4.3.3 Notifications .. 31
4.3.4 Power state statistics shared memory region .. 31

4.4 System power management protocol ... 33
4.4.1 System power management protocol background... 34
4.4.2 Commands .. 37
4.4.3 Notifications .. 41

4.5 Performance domain management protocol .. 42
4.5.1 Performance domain management protocol background 43
4.5.2 Commands .. 43
4.5.3 Notifications .. 54
4.5.4 Performance domain statistics shared memory region 55

4.6 Clock management protocol ... 57
4.6.1 Clock management protocol background ... 58
4.6.2 Commands .. 58
4.6.3 Delayed responses ... 64

4.7 Sensor management protocol... 65
4.7.1 Sensor management protocol background .. 65
4.7.2 Commands from Agents to Platform .. 65
4.7.3 Delayed Responses from Platform to Agent .. 73
4.7.4 Notifications .. 74
4.7.5 Sensor Values Shared Memory.. 75

5 Transports ... 77

5.1 Mailbox transport... 77

System Control and Management Interface

Page 5 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

5.1.1 Message communications flow... 78
5.1.2 Mailbox memory.. 79

System Control and Management Interface

Page 6 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

1 About this Document

This document describers an extensible operating system-independent software interface to perform
various system control and management tasks, including power and performance management.

1.1 References

This document refers to the following documents.

Reference Document Number Title

[ACPI] Advanced Configuration and Power Interface Specification.

[FDT] Flattened Device Tree.

[PSCI] DEN0022D Power State Coordination Interface.

[PCSA] DEN0050B Power Control System Architecture Specification.

[ARMTF] ARM Trusted Firmware.

[ARM] DDI 0487 ARM Architecture Reference Manual ARMv8, for ARMv8-A
architecture profile.

1.2 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

ACPI Advanced Configuration and Power Interface

Agent Entity that sends commands to the platform using SCMI. For example, the
OSPM running on an AP or an on-chip management controller.

AP Application processor, that is a processor that is running the operating
system and applications in the system.

Command A message that is sent from an agent to the platform.

Delayed response A message that is sent from the platform to an agent to indicate completion
of the work that is associated with an asynchronous command.

FDT Flattened Device Tree

Message An individual communication from an agent to the platform or from the
platform to an agent.

Notification A message that is sent from the platform to an agent to alert of a change in
state.

OSPM Operating System-directed Power Management. Typically, this acronym
refers to the software components of an Operating System that interact
with the power management interfaces of the platform.

Platform Components in the system that implement SCMI protocols. An SCP is an
example of a platform component that could implement the SCMI

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.devicetree.org/
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
https://github.com/ARM-software/arm-trusted-firmware

System Control and Management Interface

Page 7 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

protocols.

PSCI Power State Coordination Interface

SCMI System Control and Management Interface, which is described in this
specification.

SCP System Control Processor, see [PCSA].

1.3 Feedback

ARM welcomes feedback on its documentation.

1.3.1 Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title.

• The document and version number, ARM DEN 0056A.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

file:///C:/Users/toneve01/Documents/Server%20Base%20System%20Architecture/errata@arm.com

System Control and Management Interface

Page 8 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

2 Introduction

This document describes the System Control and Management Interface (SCMI), which is a set of
operating system-independent software interfaces that are used in system management. SCMI is
extensible and currently provides interfaces for:

• Discovery and self-description of the interfaces it supports.

• Power domain management, which is the ability to place a given device or domain into the various
power-saving states that it supports.

• Performance management, which is the ability to control the performance of a domain that is
composed of compute engines such as application processors (APs), GPUs, or other accelerators.

• Clock management, which is the ability to set and inquire rates on platform-managed clocks.

• Sensor management, which is the ability to read sensor data, and be notified of sensor value
changes.

There is a strong trend in the industry to provide microcontrollers in systems to abstract various power,
or other system management tasks, away from APs. These controllers usually have similar interfaces,
both in terms of the functions that are provided by them, and in terms of how requests are
communicated to them. The Power Control System Architecture (PSCA) describes how systems using
this approach can be built. For detailed information about the PSCA, see [PSCA].

PSCA defines the concept of the System Control Processor (SCP), a processor that is used to abstract
power and system management tasks from the APs. The SCP can take requests from APs and other
system agents. It can coordinate these requests and place components in the platform into appropriate
power and performance states. The SCMI interface is particularly relevant to these kinds of systems.
The interface provides two levels of abstraction:

• Protocols
Each group of related functions is referred to as a protocol. The SCMI interface structure is
extensible, and therefore other protocols could be added in the future.

• Transports
The protocols communicate through transports. A transport specification describes how protocol
messages are communicated between agents using the interface and the platform components
that implement the protocol messages.

The interface is intended to be described in firmware, using either the Flattened Device Tree (FDT) or
Advanced Configuration and Power Interface (ACPI) specification. For more information, see [FDT] and
[ACPI]. Because the protocols are intended to be generic, they result in generic kernel code to drive
them. However, in the ACPI case, the interface can also be driven from ASL methods. This document is
arranged into the following sections:

• Section 3 provides background into the interface structure.

• Section 4 describes protocols.

• Section 5 describes transports.

System Control and Management Interface

Page 9 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

3 System Control and Management Interface structure

The SCMI is intended to allow agents such as an operating system to manage various functions that
are provided by the hardware platform it is running on, including power and performance functions. As
described in the introduction, SCMI provides two levels of abstraction, protocols and transports.
Protocols define individual groups of system control and management messages. A protocol
specification describes the messages that it supports. Transports describe the method by which
protocol messages are communicated between agents and the platform. ARM strongly recommends
that transports be operating system independent and capable of being virtualized.

Transports comply with the following rules:

• A transport might support multiple channels. Each agent has one or more dedicated channels.
Channels cannot be shared between agents.

• Systems that use TrustZone technology can have both secure and non-secure channels. Data in a
secure channel can only be read or written by secure memory accesses.

It is intended that protocols and transports are developed independently.

The protocols that are described in this document are intended to be used by power and performance
management agents such as an operating system, also referred to as Operating System-directed
Power Management (OSPM). Typical agents are:

• An OSPM that operates in Non-secure Exception levels.

• Secure-world software that is running on an AP.

• External entities in the system, such as a management controller in an enterprise system, or a
modem in a mobile system.

The term platform is intended to describe the set of hardware components that interpret the messages
and provide the necessary functionality. The term agent is used to describe the caller of the interface.
Each agent that communicates with the platform must have its own set of dedicated channels. This
requirement removes the need for create locking primitives across agents that are running entirely
different software stacks. For example, a management controller and an operating system. In addition,
dedicated channels provide a method for the platform to identify which agent is sending a message.

Figure 1 illustrates an example system that implements the SCMI interface. In this example, the
platform includes an SCP that handles SCMI commands that are issued from APs. The latter
communicates with the SCP through secure and non-secure channels. The figure also shows a device
that uses SCMI protocols to manage its power and performance. As described in [PCSA], the SCP
coordinates requests from all requesting agents and drives the hardware into appropriate power or
performance states.

System Control and Management Interface

Page 10 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Figure 1 Example system that implements SCMI.

System Control and Management Interface

Page 11 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

4 Protocols

4.1 Protocol structure

As described in System Control and Management Interface structure, a protocol is a group of
messages. The following sections describe the message flow, the structure of messages, and
discovery.

4.1.1 Agents, messages, and channels

The term agent is used to describe components that are clients of the SCMI interface. Agents have the
following properties:

• Agents run a software stack with different privilege levels.

• Agent software stacks are independent from each other. This makes resource sharing, or the
ability to write cross-agent locking primitives difficult. For example, one agent might be an
operating system running on all APs, and another agent might be firmware running on a
manageability controller.

Figure 2 describes how agents and the platform communicate. The diagram shows multiple agents
communicating with the platform. Agents and the platform communicate over transport channels. Each
agent has dedicated channels, which are used to send messages to, and receive messages from, the
platform. Each channel is a bidirectional communication pipe between the agent and the platform. For a
given channel either the agent or the platform is the master, or initiator, of communications. The master
can place a message on a channel. At the other end, the slave processes the message, and, as a
response, it might place return data on the channel. Depending on which entity is the master, a channel
is one of two types:

• On Agent to Platform (A2P) channels, the agent is the master.

• On Platform to Agent (P2A) channels, the platform is the master.

Figure 2 messages and channels

Each agent can have one or more A2P channels and one or more P2A channels. However, these
channels have to be dedicated to that specific agent, and cannot be shared with other agents. This
enables the platform to identify which agents are communicating with it.

The properties of channels are specific to the transport that is used to send messages. An A2P
transport might support interrupt-driven communication to send messages, where the platform
generates an interrupt when it processes the message. The interrupt alerts the agent that the channel
can now be used to send a further message. The same holds true for a P2A transport, where the agent

System Control and Management Interface

Page 12 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

triggers an interrupt to the platform when it posts a command, which alerts the platform that it has a new
command to process. On the other hand, a transport might only support polling-based communications.
A transport can also support both methods, and allow the agent to choose.

Messages are used by agents to make requests to the platform. The messages can carry various
parameters, including an identifier for the requested operation. In turn, the platform carries out the
requested operation, and might generate data in response to the message. From this point of view,
messages are analogous to remote procedure calls, which can carry various parameters, and can also
provide return data. The platform can also send messages to an agent, typically to indicate completion
of a long job, or to notify of an event.

Messages that are sent by agents on A2P channels are known as commands and fall into two
categories:

• Synchronous
Commands that free the channel when the requested work has been completed. The platform
responds to these commands over the A2P channel that was used to send them. Therefore, the
channel cannot be used to send another command until the previous synchronous command
has completed.

• Asynchronous
For these commands, the platform schedules the requested work to complete later in time.
Therefore, these commands complete almost immediately to the calling agent, freeing the
channel for new commands. The response to an asynchronous command indicates the success
or failure in the ability to schedule the requested work. When the work has completed, the
platform sends an additional delayed response message to the client over a P2A channel.

Messages that the platform can send to an agent over P2A channels also fall into two categories:

• Delayed response
Messages sent to indicate completion of the work that is associated with an asynchronous
command.

• Notifications
These messages provide notifications of events taking place in the platform. Events might
include changes in power state, performance state, or other platform status.

4.1.2 Message format

Messages are analogous to remote procedure calls, and therefore must be representative of the
particular operation being requested, and any parameters or return values.

Each message carries a message header, which identifies the operation being requested. Each
message belongs to a protocol. Therefore, the header of the message includes an 8-bit protocol
identifier. This is known as the protocol_id. Within a protocol, each message is associated with a unique
8-bit identifier. This is known as the message_id.

A message can take several 32-bit arguments and can provide 32-bit return values. All parameters,
message headers, and return arguments are expressed in little endian format. The endianness rule
does not apply to strings. For all messages, any reserved field is set to all zeros.

Values for the protocol_id are described in Table 2.

Table 2 Protocol identifiers

protocol_id Description

0x0 - 0xF Reserved.

System Control and Management Interface

Page 13 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

0x10 Base protocol.

0x11 Power domain management protocol.

0x12 System power management protocol.

0x13 Performance domain management protocol.

0x14 Clock management protocol.

0x15 Sensor Management Protocol.

0x16-0x7F Reserved for future use by this specification.

0x80-0xFF
Might be used for platform-specific extensions to
this interface.

For all protocols and all transports, messages are sent to the platform using a 32-bit message header,
which is described in Table 3.

Table 3 Message header format

Field Description

Bits[31:28] Reserved, must be zero.

Bits[27:18] Token.

Bits[17:10] protocol_id.

Bits[9:8] Message type.

Bits[7:0] message_id.

Each message type has additional requirements that are described below.

Commands

All commands, synchronous or asynchronous, have a message type of 0.

How the token field is used is entirely up to the caller. However, when a command returns, the platform
must return the whole message header unmodified. The message header must always be the first
parameter that is sent by an agent and returned by the platform.

In addition to the message header, commands return error status codes and can return more data. Any
command that is sent with an unknown protocol_id or message_id must be responded to with a return
value of NOT_SUPPORTED as the status code. Status codes are provided in section 4.1.4.

Delayed responses

Delayed responses have a message type of 2.

Delayed response messages are sent by the platform to the agent to indicate completion of work that
was requested by an asynchronous command. The message header that is associated with a delayed
response uses the format that is described in Table 3. The message_id of a delayed response matches
that of its associated asynchronous command. The token in the message header matches the token of

System Control and Management Interface

Page 14 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

the associated asynchronous command. The payload that is associated with a delayed response
includes a status error code, but might include additional data.

Notifications

Notifications have a message type of 3.

Notifications provide a mechanism for the platform to inform agents about events taking place in the
platform. Optionally, the implementation can provide information about which agent caused an event.
To this end, a notification payload carries an agent identifier, agent_id, as its first parameter. The
agent_id is an integer identifier that can be used to codify the agent that generated an event. The
agent_id uses the following rules:

• A value of 0 identifies the platform itself.

• Where implemented, agent_ids are sequential and start from one.

• Agent identifiers and their mapping to other components are platform-specific. Where
necessary, this must be described to operating system through firmware table technologies such
as FDT or ACPI.

• If agent identification is not supported, the implementation must set the agent_id to zero in
notifications.

4.1.3 Protocol discovery

This specification encompasses various protocols. However, not every protocol has to be present in an
implementation, because not every protocol is relevant for every market segment. Furthermore, the
platform chooses which protocols it exposes to a given agent. The only protocol that must be
implemented is the base protocol, which is described in section 4.2. The base protocol is used by an
agent to discover which protocols are available to it.

All protocols, whether they are generic or vendor specific, must implement three messages with
message_ids of 0x0, 0x1, and 0x2 as described in Table 4.

Table 4 Required messages

Message_id Message Description

0x0 PROTOCOL_VERSION Returns the version of protocol.

0x1 PROTOCOL_ATTRIBUTES Returns properties that are
associated with the protocol
implementation.

0x2 PROTOCOL_MESSAGE_ATTRIBUTES Takes a message_id as a
parameter and returns
implementation details specific to
that message.

Protocols might implement additional discovery messages.

Protocol versioning uses a 32-bit unsigned integer, where the upper 16 bits are the major revision, and
the lower 16 bits are the minor revision.

The following rules apply to the version numbering:

• Higher numbers denote newer versions.

System Control and Management Interface

Page 15 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

• Different major revision values indicate possibly incompatible messages. For two protocol versions,
A and B, which differ in major revision, and where B is higher than A, the following might be true:

o B can remove messages that were present in A.

o B can add new messages that were not present A.

o B can modify the behavior or parameters of messages that are also present in A.

• Minor revisions allow extensions, but must retain compatibility. For two protocol versions, A and B,
that differ only in the minor revision, and where B is higher than A, the following must hold:

o Every message in A must also be present in B, and work with compatible effect.

o It is possible for revision B to have a higher message count than revision A.

4.1.4 SCMI status codes

Messages can return status codes to the sender. Negative 32-bit integers are used to return error
status codes. Values 0 to -127 are reserved by this specification. Values below -127 can be used for
vendor-specific errors.

Table 5 describes the error codes for SCMI messages.

Table 5 Status codes

Status code Description

0 SUCCESS

-1 NOT_SUPPORTED

-2 INVALID_PARAMETERS

-3 DENIED

-4 NOT_FOUND

-5 OUT_OF_RANGE

-6 BUSY

-7 COMMS_ERROR

-8 GENERIC_ERROR

-9 HARDWARE_ERROR

-10 PROTOCOL_ERROR

-11 to -127 Reserved

< -127 Vendor specific

The specification of each SCMI message describes which error codes are appropriate to that message.
However, unless otherwise specified, the following status codes apply to all command messages that
are sent from an agent to the platform:

System Control and Management Interface

Page 16 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Code Description

SUCCESS Successful completion of the command.

INVALID_PARAMETERS One or more parameters passed to the command are
invalid or beyond legal limits.

NOT_SUPPORTED The command is not implemented or not available to the
calling agent.

COMMS_ERROR The command could not be correctly transmitted to the
platform.

GENERIC_ERROR The command failed to be processed owing to an
unspecified fault within the platform.

BUSY The platform is out of resources and thus unable to
process a command. While the platform might need to use
this error when it is out of resources, ARM strongly
recommends that the implementation ensures that
sufficient resources are available to handle the more
frequently issued commands in order to guarantee
availability of service. In particular, the platform must
guarantee service for the following commands:

• System power protocol commands

• AP/domain power management commands.

HARDWARE_ERROR A hardware error occurred in a platform component during
execution of a command.

PROTOCOL_ERROR Returned when the receiver detects that the caller has
violated the protocol specification.

4.2 Base protocol

This protocol describes the properties of the implementation and provide generic error management.
The Base protocol provides commands to:

• Describe protocol version.

• Discover implementation attributes and vendor identification.

• Discover which protocols are implemented.

• Discover which agents are in the system.

• Register for notifications of platform errors.

This protocol is mandatory.

4.2.1 Commands

4.2.1.1 PROTOCOL_VERSION

System Control and Management Interface

Page 17 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

This command returns the version of this protocol. For this version of the specification, the value that is
returned must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x10

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 version
For this revision of the specification, this value must be
0x10000.

4.2.1.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details that are associated with this protocol.

message_id: 0x1

protocol_id: 0x10

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:16] Reserved, must be zero.

Bits[15:8] Number of agents in the system

Bits[7:0] Number of protocols that are implemented,
excluding the base protocol.

If the platform does not support agent discovery, then it reports the number of agents in the system as
zero, and all notifications carry a zero in the agent_id.

4.2.1.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

The command returns the NOT_FOUND status code to indicate that the message identified by
message_id is not provided by the platform implementation. Other status codes and their usage by this
protocol are described in section 4.1.4.

System Control and Management Interface

Page 18 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

message_id: 0x2

protocol_id: 0x10

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 attributes

Flags that are associated with a specific command in the
protocol.

For all commands in this protocol, this parameter has a value
of 0.

4.2.1.4 BASE_DISCOVER_VENDOR

This command provides a vendor identifier ASCII string.

message_id: 0x3

protocol_id: 0x10

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint8 vendor_identifier [16]
Null terminated ASCII string of up to 16 bytes with a
vendor name.

4.2.1.5 BASE_DISCOVER_SUB_VENDOR

On success, this optional command provides a sub vendor identifier ASCII string.

message_id: 0x4

protocol_id: 0x10

This command is optional.

Return values

System Control and Management Interface

Page 19 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Name Description

int32 status See section 4.1.4 for status code definitions.

uint8 vendor_identifier [16]
Null terminated ASCII string of up to 16 bytes with a
vendor name.

4.2.1.6 BASE_DISCOVER_IMPLEMENTATION_VERSION

This command provides a vendor-specific implementation 32-bit version. The format of the version
number is vendor-specific, but version numbers must be strictly increasing so that a higher number
indicates a more recent implementation.

message_id: 0x5

protocol_id: 0x10

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32
implementation_version

Format is vendor-specific.

4.2.1.7 BASE_DISCOVER_LIST_PROTOCOLS

This command allows the agent to discover which protocols it is allowed to access.

message_id: 0x6

protocol_id: 0x10

This command is mandatory.

Parameters

Name Description

uint32 skip Number of protocols to skip.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 num_protocols Number of protocols that are returned by this call.

System Control and Management Interface

Page 20 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

The following pseudocode illustrates how this command can be used.

int status = 0;

int skip = 0;

int total_protocols = 0;

int num_protocols = 0;

uint32 attributes = 0;

uint32* protocols = NULL;

invoke_PROTOCOL_ATTRIBUTES(&status,&attributes);

if (status)

 goto clean_up_and_return;

total_protocols = (attributes & NUM_PROTOCOLS_MASK) >>

 NUM_PROTOCOLS_SHIFT;

if (!total_protocols)

 goto clean_up_and_return;

uint8* protocols;

do {

 invoke_BASE_DISCOVER_LIST_PROTOCOLS(skip,

 &status, &num_protocols, protocols);

 if (status)

 goto clean_up_and_return;

 for (int ix = 0; ix < num_protocols; ix++)

 {

 uint8 prot = protocols[ix];

 add_to_protocol_database(prot);

 skip++;

 }

} while (skip < total_protocols);

4.2.1.8 BASE_DISCOVER_AGENT

This optional command allows the caller to discover the name of an agent, described through an ASCII
string of up to 16 bytes. Where agent identifiers, and this message, are supported, this command also
allows the caller to obtain their agent identifier. A caller can discover if the command is implemented by
issuing the PROTOCOL_MESSAGE_ATTRIBUTES command and passing its message_id. If the
command is implemented, PROTOCOL_MESSAGE_ATTRIBUTES returns SUCCESS (0).

In addition to the standard status codes described in section 4.1.4, the command can return the
NOT_FOUND error if the agent that is identified by agent_id does not exist. This would be the case if
the agent identifier is larger than the number of agents that is reported through
PROTOCOL_ATTRIBUTES.

On success, the call returns the agent identifier of the calling agent in the status field.

uint32
protocols[1+(num_protocols-1)/4]

Array of protocol identifiers that are implemented,
excluding the base protocol, with four protocol
identifiers packed into each array elementThe
PROTOCOL_ATTRIBUTES command can be used
to determine the number of protocols implemented.

System Control and Management Interface

Page 21 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Agent identifiers, agent_id, describe agents in the system that can use the SCMI protocols. Not every
agent can use all protocols, and some protocols can offer different views to different agents. An
agent_id of 0 is reserved to identify the platform itself. If the command is not implemented, the caller
does not interpret agent identifiers in notifications, and the platform sets agent_id to zero in
notifications. Where supported, agent_id values are sequential, start from one, and are limited by the
number of agents that is reported through PROTOCOL_ATTRIBUTES.

If called with an agent_id of 0, the string returned in the name parameter must start with the letters
“platform”.

message_id: 0x7

protocol_id: 0x10

This command is optional.

Parameters

Name Description

uint32 agent_id Identifier for the agent.

Return values

Name Description

int32 status
NOT_FOUND.

See section 4.1.4 for status code definitions.

uint8 name[16] Null terminated ASCII string of up to 16 bytes in length.

4.2.1.9 BASE_NOTIFY_ERRORS

An implementation can optionally provide notifications of errors in the platform to an agent that has
registered through this command. A caller can discover if this command is implemented by issuing the
PROTOCOL_MESSAGE_ATTRIBUTES command and passing the message_id of this command. If
the command is implemented, PROTOCOL_MESSAGE_ATTRIBUTES returns SUCCESS (0).

Error notification is used to notify agents of commands that could not proceed due to unpredictable
circumstances, such as internal hardware errors. Further information on the error notification and
associated payload is provided in section 4.2.2.1, which describes the BASE_ERROR_EVENT
notification.

message_id: 0x8

protocol_id: 0x10

This command is optional.

Parameters

Name Description

System Control and Management Interface

Page 22 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 notify_enable

Bits[31:1] Reserved, must be zero.

Bit[0] Notify enable:

 If this value is zero, the platform does not send
any BASE_ERROR_EVENT messages to the
calling agent.

 If this value is one, the platform sends
BASE_ERROR_EVENT messages to the calling
agent when an error is detected.

 For more details on the BASE_ERROR_EVENT
notification, see 4.2.2.1.

Return values

Name Description

int32 status
INVALID_PARAMETERS

See section 4.1.4 for status code definitions.

4.2.2 Notifications

4.2.2.1 BASE_ERROR_EVENT

These notifications are sent to any agent that has registered to receive them, provided the platform
implements Base error notifications.

Errors that are reported by the platform are one of two types:

• Fatal error
Indicates that the platform is no longer able to process commands. The error might be
accompanied by the list of messages that were being processed when the failure took place.

• Non-fatal error
Indicates that the platform was not able to process some commands, but it is still operational.
The error notification is accompanied by the list of commands that could not be processed.

By definition, fatal error notifications cannot be guaranteed, and the platform must not rely on these
notifications as a mechanism to enable recovery.

Error notifications must not be used as mechanism to report that a command cannot be executed as
requested due to constraints that arise in normal operation.

On initial boot of an agent, these notifications must be disabled by default to that agent.

message_id: 0x0

protocol_id: 0x10

This command is optional.

Parameters

Name Description

System Control and Management Interface

Page 23 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 agent_id Identifier of the agent that caused this notification.

uint32 error_status

Bit[31] Fatal.

 Set if error is fatal and platform cannot continue.

 Cleared if error is non-fatal but commands have
failed.

Bits[30:10] Reserved, must be zero.

Bits[9:0] Command count, number of commands in the
command list. A value of zero is possible if the
error cannot be attributed.

{uint32
message_header

unit32 status}[N]

Each entry in the command list is a tuple, where the first
entry is the message header of the command, and second is
an error status code that is associated with the command.
The size of the list is specified by the command count sub-
field.

4.3 Power domain management protocol

This protocol is intended for management of power states of power domains.

The power domain management protocol provides commands to:

• Describe the protocol version.

• Discover implementation attributes.

• Set the power state of a domain.

• Get the current power state of a domain.

• Optionally get notifications when power domains change state.

• Optionally return statistics on residency and usage count of a given power state.

4.3.1 Power domain management protocol background

In this document, a power domain is defined as a group of components that are powered together. For
example, a set of components that share a power source, and can only be turned ON or OFF as a
group, form a power domain. Power domains have the following properties:

They can include one or more devices.

• Power domains must at least support ON and OFF, but can support additional power states.

• In the ON state, the domain is operational and devices within it can run.

• In the OFF state, the domain has no power supplied to it and devices within it cannot run.

Domains can have dependencies on other domains. For example, a parent domain can include a child
domain. In such a case, if the child domain is ON, the parent domain is also necessarily ON.

The protocol does not cover discovery of power states that are supported by a domain, or description of
the properties of the states, for example associated latencies, context loss, or domain dependencies.
This information is expected to be provided to the caller by way of firmware tables in FDT or ACPI.

System Control and Management Interface

Page 24 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Protocol commands take integer identifiers to identify the power domain that they apply to. The
identifiers are sequential and start from 0.

The protocol can be used to manage the power state of application processors, or to manage the power
state of other devices in the system.

Operating systems that are running on application processors must not directly use SCMI to manage
the power state of these processors. Instead, power states for domains that include APs must be
managed using PSCI calls from the operating system. When the OSPM calls a PSCI function, the PSCI
implementation, which is described in [PSCI, ARMTF], can communicate with the platform using this
protocol over secure channels. This protocol allows SCMI to provide an implementation for PSCI
functions designed to manage the power of application processors, such as
CPU_DEFAULT_SUSPEND, CPU_SUSPEND, CPU_FREEZE, CPU_ON and CPU_OFF. These
functions map to various use cases including idle, secondary core boot, and hot plug. The list does not
include system power state transitions such as system shutdown or reset, which are covered by the
system power management protocol instead, as described in section 4.4.

Agents that are not running on application processors can register to receive notifications of power state
changes to these power domains.

Non-secure channels can be used to manage power domains for devices that do not include application
processors. Any agent can register for power state change notifications for these domains.

An implementation can include devices that are intended for use only by secure entities in the system
such as a trusted OS. Power domains for such devices must be managed through secure channels.

Agents other than the OSPM can manage power domains. In a multi-agent system, domains that are
presented to a given agent might be exclusive to it, or they might be shared with others. If the domain is
shared, the platform must track power state change requests from each agent. The power domain must
be in the shallowest state that is requested among the agents. These conditions follow a platform-
coordinated model analogous to that described in [ACPI] and [PSCI]. Platform policy dictates which
agents can see which domains.

For all messages in this protocol, the interpretation of the power state parameter is specific to the
combination of agent and the power domain that the agent is managing. A power domain with
Application Processors that is managed by a PSCI agent must support representation of the power
state parameter based on definitions in [PSCI]. On the other hand, for power domains pertaining to
devices, the power state parameter must minimally represent two pre-defined states, ON and OFF.
Power state encoding for device power domains is described in Table 6.

Table 6: Power State Parameter Layout for Device Power Domains

Bit field Description

31 Reserved. Must be zero.

30

StateType

If set to 0, indicates that context is
preserved.

If set to 1, indicates that context is lost.

29:28 Reserved. Must be zero.

27:0 StateID

System Control and Management Interface

Page 25 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

A value of zero when StateType is set
to 0 represents the ON state.

A value of zero when StateType is set
to 1 represents the OFF state.

All other values are
IMPLEMENTATION_DEFINED.

4.3.2 Commands

4.3.2.1 PROTOCOL_VERSION

On success, this command returns the Protocol version. For this version of the specification, the return
value must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x11

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 version
For this revision of the specification, this value must be
0x10000.

4.3.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

message_id: 0x1

protocol_id: 0x11

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes
Bits[31:16] Reserved, must be zero.

Bits[15:0] Number of power domains.

System Control and Management Interface

Page 26 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32
statistics_address_low

The lower 32 bits of the physical address where the
statistics shared memory region is located. The address
must be in the memory map of the calling agent. This field
is invalid and must be ignored if the statistics_len field is
set to 0.

uint32
statistics_address_high

The upper 32 bits of the physical address where the
statistics shared memory region is located. The address
must be in the memory map of the calling agent. This field
is invalid and must be ignored if the statistics_len field is
set to 0.

uint32 statistics_len
The length in bytes of the statistics shared memory region.
A value of 0 in this field indicates that the platform doesn’t
support the statistics shared memory region.

The statistics shared memory region is described in section 4.3.4.

4.3.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol. In addition to the standard status codes that are described in section 4.1.4, the command
can return NOT_FOUND if the message that is identified by message_id is not implemented.

This command can be used to inquire if power state change notifications are supported, by passing
POWER_STATE_NOTIFY message identifier to the call. If the platform returns SUCCESS then it
supports power state change notifications. Otherwise, if the platform returns NOT_FOUND, then it is an
indication that notifications are not implemented, or that notifications are not available to the calling
agent. The notifications commands are described in sections 4.3.2.7 and 4.3.3.1.

message_id: 0x2

protocol_id: 0x11

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 attributes

Flags that are associated with a specific command in the
protocol.

In the current version of the specification, this value is always
0.

System Control and Management Interface

Page 27 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

4.3.2.4 POWER_DOMAIN_ATTRIBUTES

This command returns the attribute flags associated with a specific power domain. The command
returns the NOT_FOUND status code if the domain identified by domain_id does not exist.

message_id: 0x3

protocol_id: 0x11

This command is mandatory.

Parameters

Name Description

uint32 domain_id
Identifier for the domain. Domain identifiers are limited to 16
bits, and the upper 16 bits of this field are ignored by the
platform.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 attributes

Bit[31] Power state change notifications support.

 Set to 1 if power state change notifications are
supported on this domain.

 Set to 0 if power state change notifications are
not supported on this domain.

Bit[30] Power state asynchronous support.

 Set to 1 if power state can be set
asynchronously.

 Set to 0 if power state cannot be set
asynchronously.

Bit[29] Power state synchronous support.

 Set to 1 if power state can be set
synchronously.

 Set to 0 if power state cannot be set
synchronously.

Bits[28:0] Reserved, must be zero.

uint8 name[16]
Null terminated ASCII string of up to 16 bytes in length
describing the power domain name.

For some agents, the platform might only allow registration and receipt of notifications for power
domains, and disallow setting of power states of those domains.

4.3.2.5 POWER_STATE_SET

System Control and Management Interface

Page 28 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

This command allows an agent to set the power state of a power domain. Power domains can be
managed synchronously or asynchronously:

• Synchronous Mode
A call with valid parameters completes and frees the channel when the domain has transitioned
to the desired power state.

• Asynchronous Mode
The call completes immediately and the caller can register for notifications if it wishes to observe
the power state transition. These notifications are described in section 4.3.3.1.

When this command is used for power domains that include application processors, the Async flag is
ignored. This call must return to the calling AP before that AP is powered down. Following this call, the
AP executes some instructions before invoking a Wait for Interrupt (WFI) instruction [ARM]. The
platform controller that implements SCMI begins the transition to the required power state when it
observes the WFI. The method used by the platform controller to observe the WFI is
IMPLEMENTATION DEFINED. For these power domains, this protocol can be used to implement PSCI
CPU_SUSPEND, CPU_ON, CPU_FREEZE, CPU_DEFAULT_SUSPEND and CPU_OFF functions.

In addition to the standard usage of status codes described in section 4.1.4, the command involves
special significance for the following status codes, as described:

• SUCCESS for a power domain that can only be set synchronously, this status is returned after
the power domain has transitioned to the desired state. For a power domain that is managed
asynchronously, this status is returned if the command parameters are valid and the power state
change has been scheduled.

• NOT_FOUND if the power domain identified by domain_id does not exist.

• INVALID_PARAMETERS if the requested power state does not represent a valid state for the
power domain that is identified by domain_id.

• NOT_SUPPORTED if the request is not supported.

A power domain can contain other power domains. If the caller wants to change the state of a power
domain and one of its parents, the power domain parameter must identify the child. The required power
state for the child domain, and its parents, must be encoded in the power state parameter. How this is
encoded in the power_state parameter is IMPLEMENTATION DEFINED.

message_id: 0x4

protocol_id: 0x11

This command is mandatory.

Parameters

Name Description

System Control and Management Interface

Page 29 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 flags

Bits[31:1] Reserved, must be zero.

Bit[0] Async flag.

 Set to 1 if power transition must be done
asynchronously.

 Set to 0 if power state transition must be done
synchronously.

 The async flag is ignored for application
processor domains.

uint32 domain_id Identifier for the power domain.

uint32 power_state
Platform-specific parameter identifying the power state of the
domain. For device power domains, this parameter is
encoded as described in Table 6.

Return values

Name Description

int32 status

One of the following:

• SUCCESS

• NOT_FOUND

• INVALID_PARAMETERS

• NOT_SUPPORTED

See section 4.1.4 for status code definitions.

4.3.2.6 POWER_STATE_GET

This command allows the calling agent to request the current power state of a power domain.

─── Note ────────────────

It is possible for the power_state value returned by this command to be stale by the time the command
completes, as another state change request could have been initiated and completed in the interim.

───────────────────────

In addition to the standard status codes described in section 4.1.4, the command can return the error
NOT_FOUND if the power domain identified by domain_id does not exist.

message_id: 0x5

protocol_id: 0x11

This command is mandatory.

Parameters

Name Description

System Control and Management Interface

Page 30 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 domain_id Identifier for the power domain.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 power_state
Platform-specific parameter identifying the power state of this
domain.

4.3.2.7 POWER_STATE_NOTIFY

This command allows the caller to request notifications from the platform for state changes in a specific
power domain. These notifications are sent using the POWER_STATE_CHANGED notification, which
is described in section 4.3.3.1. In addition to the standard status codes described in section 4.1.4, the
command can return the error NOT_FOUND if the power domain identified by domain_id does not
exist.

Notification support is optional, and PROTOCOL_MESSAGE_ATTRIBUTES must be used to discover
whether this command is implemented.

These notifications must be disabled by default during initial boot of the platform.

message_id: 0x6

protocol_id: 0x11

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier for the power domain.

uint32 notify_enable

Bits[31:1] Reserved must be zero.

Bit[0] Notify enable. This bit can have one of the
following values:

 0, which indicates that the platform does not
send any POWER_STATE_CHANGED
messages to the calling agent.

 1, which indicates that the platform does send
POWER_STATE_CHANGED messages to the
calling agent when a domain changes power
state.

 See section 4.3.3.1 for more details about the
POWER_STATE_CHANGED notification.

Return values

Name Description

System Control and Management Interface

Page 31 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

int32 status

NOT_FOUND

INVALID_PARAMETERS

See section 4.1.4 for status code definitions.

4.3.3 Notifications

4.3.3.1 POWER_STATE_CHANGED

If an agent has registered to receive power state change notifications for the power domain that is
identified by domain_id, the platform sends these notifications to that agent when a power state
transition commences, including transitions to an ON state.

The platform is not required to guarantee sending a notification to an agent for every state transition. In
particular, if a number of power states transitions take place in quick succession, the platform is allowed
to issue a notification for the last transition only.

Note that notified power states might not match those requested by the agent that is notified. The power
state that is finally selected by the platform might differ from that requested by an agent, due to
coordination with other requests on the same domain.

message_id: 0x0

protocol_id: 0x11

This command is optional.

Parameters

Name Description

uint32 agent_id Identifier of the agent that caused the power transition.

uint32 domain_id
Identifier of the power domain whose power state was
changed.

uint32 power_state
The value of the power state that the power domain
transitioned to. These notifications take place when the
transition has completed.

4.3.4 Power state statistics shared memory region

Optionally, the platform can provide a statistics shared memory region that is associated with the power
state protocol. Whether support is present is indicated by the PROTOCOL_ATTRIBUTES command,
which is described in section 4.3.2.2. The PROTOCOL_ATTRIBUTES command also provides the
address and the size of the shared memory region. The region provides usage counts and residency
information for each power state that is used by each power state domain. The memory must be
accessible from the Non-secure world, and OSPM must map it as non-cached normal memory or
device memory. For a given power domain, and for each power state in a domain, statistics in the
shared memory region track the number of times the state has been used and the amount of time the
domain has been in the state. The statistics must be updated regardless of the agent in the system that
placed a domain into a given power state. After a system reset, suspend, or shutdown, all the statistics
must be initialized to zero. Time measurements are in microseconds.

System Control and Management Interface

Page 32 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

The design of the statistics shared memory region allows the platform implementation to choose which
power domains are included. However, if a domain is included, all its power states must be
represented, including time that is spent in an ON state.

The format of the frame is described in Table 7.

Table 7 Power state statistics shared memory region

Field Byte

Length

Byte Offset Description

Signature 0x4 0x0 0x504F5752 (‘POWR’).

Revision 0x2 0x4 For this revision, this field must be zero.

Attributes 0x2 0x6 For this revision, this field must be zero.

Number of
domains

0x2 0x8 Number of domains for which statistics are
collected.

Reserved 0x6 0xA Must be zero.

Power domain
offset array

0x4 ×

(Total
number
of power
domains)

0x10 For each power domain, this array provides
a 4-byte offset, from the start of the shared
memory area, to the memory location of the
power domain entry in the data section.
The entry is described in Table 8.

A value of zero for the offset of a given
power domain indicates that statistics are
not collected for that domain.

Power domain
data section

-- -- This area must start at an offset of
0x10 + 0x4 × (Number of power domains),

or higher.

The power domain data section contains an entry for each power domain for which statistics are
collected. The format for each entry is described in Table 8.

Table 8 Power domain entry

Field Byte

Length

Byte Offset Description

Number of power
states

0x2 0x0 Number of power state entries in the power
state array.

Current power
state

0x2 0x2 Index into power state array for current power
state.

Reserved 0x4 0x4 Must be zero.

System Control and Management Interface

Page 33 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Time of last
change

0x8 0x8 Timestamp in microseconds since boot of the
last power state transition, including to a
running state.

Power state array N × 0x18 0x10 Where N is the number of power states.
Described in Table 9.

The format for each entry in the power state array is described in Table 9.

Table 9 Power state entry

Field Byte

Length

Byte

Offset

Description

power_state 0x4 0x0 Identifier for the power state.

Reserved 0x4 0x4 Must be zero.

Usage count 0x8 0x8 Number of times this domain has entered the
power state. This value must be updated when
the domain transitions into the power state.

Residency 0x8 0x10 Amount of time in microseconds domain has
been resident in the power state. This value
must be updated when the domain transitions
out of the power state.

For 64-bit statistics, races can arise between the platform updating a statistic and the reader accessing
it. For example, the platform can use a 32-bit controller to update a statistic and thus require two
accesses. On the other hand, the reader can be a 32 or 64-bit processor. Races might arise between
the write accesses by the platform and the read accesses by the processor, leading to a stale value
being reported. To prevent this problem, the reader must read the statistic twice, and compare the
values that were obtained. If the two reads match, the statistic was read successfully, otherwise further
reads must be done until the last two reads match.

4.4 System power management protocol

This protocol is intended for system shutdown, suspend and reset.

The system power protocol provides commands to:

• Describe the protocol version.

• Discover implementation attributes.

• Shut down the system.

• Suspend the system.

System Control and Management Interface

Page 34 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

• Reset the system.

• Request a graceful shutdown or reset.

• Allow an agent to forcibly power down or reset the system.

4.4.1 System power management protocol background

The OSPM must be able to power down or reset the whole system it is running on. ACPI provides S
states (S1-S5) for this purpose. In turn, PSCI provides SYSTEM_RESET, SYSTEM_RESET2,
SYSTEM_SUSPEND and SYSTEM_OFF. On some systems, other agents might be required to initiate
a system power down or reset. This protocol is designed to allow more than one agent to request these
types of system power transitions. It is envisaged that, in the common case, there are up to three
agents:

• On application processors, a PSCI implementation. The PSCI implementation fulfills OSPM calls
to SYSTEM_OFF, SYSTEM_SUSPEND, SYSTEM_RESET and SYSTEM_RESET2 functions.
In order to do so, the PSCI implementation uses the SCMI protocol to request system power
down or reset transitions.

• Particularly in enterprise systems, there might be a management agent that can request a
shutdown or a reset, either gracefully, through cooperation with the OSPM, or forcibly.

• The OSPM, which might receive notifications for a graceful shutdown request.

An agent can request the system to forcibly shut down or reset. The platform responds by performing
the action that is requested. An agent can also request a graceful shutdown or reset. In this case, the
platform will send a notification to the OSPM that will, in turn, initiate the requested action. To this end,
the protocol allows an agent to request notifications of system power state transition requests
generated by other agents. Table 10 describes the expected behavior for the various operations that
are provided by this interface, depending on the calling agent.

Table 10 System power management operations, and expected responses depending on type of agent

Operation Type of agent Response

Request a power
state transition

OSPM Deny request as
NOT_SUPPORTED, as
the agent is not secure.

PSCI implementation on
application processor

Shutdown or reset as
requested.

Management agent Shutdown or reset as
requested.

Request a graceful
power state
transition

OSPM or PSCI
implementation

Deny the request as
NOT_SUPPORTED.

Management agent Allow the request and
notify the OSPM agent.

Request for
notification of power
state transition
requests

OSPM Allow, as this agent will
initiates a shutdown or
reset in response to the
notification.

System Control and Management Interface

Page 35 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Management agent Allow, to enable the
management to confirm
that the OSPM has
requested shutdown or
reset (through PSCI).

PSCI Deny.
NOT_SUPPORTED,
because it is not required
to handle notifications.

Notifications of system power state transitions are not propagated to the agent that requests the
transition.

The protocol supports four kinds of system transitions:

• System powerup or shutdown.

• System suspend, as defined in PSCI for SYSTEM_SUSPEND, this is effectively a suspend to
RAM scenario analogous to S3 in ACPI.

• Architectural system resets, which are resets that are defined by this specification. These resets
include system cold reset and system warm reset.

• Vendor defined transitions.

A system cold reset is equivalent to power cycling the system. All components in the system are
powered down or held in reset. Components that are involved in the system boot are powered up or
released from reset. In this context, the term cold boot refers to the expected boot flow after the first
application of power to the system.

A system warm reset is one that preserves all memory that is visible to application processors. Similar
to cold reset, all components in the system, except those involved in the provision of system memory to
application processors, are powered down or held in reset. This definition of system memory does not
extend to caches or to memory mapped I/O. As in the cold reset case, only those components that are
involved in a system boot are powered up or released from reset.

The view of the system that is affected by a system power state transition depends on the target
segment and type of device being implemented. In some implementations, the system that is being
powered down includes all the agents that can use this interface, as well as the platform controller that
implements it. In this case we say that this protocol has a full system view. However, for some platform
implementations, the platform controller that implements this SCMI protocol might be in a dedicated
always-on domain, such that it is not included in the system power transitions. In this case, we say that
this protocol has an OSPM system view, and the system power state transitions only affect those parts
of the system that the OSPM controls. In this latter kind of system, if an agent requests a system
shutdown, the platform controller remains powered, so that it can service further commands, for
example, a command to power up the system. Table 11 describes the expected behavior for the various
operations that are provided by this interface, depending on the calling agent and the view of the
system implemented.

Table 11 System power management operations, and expected responses depending on view

System

view

Operation

(all are forcible)

Calling Agent Expected behavior

System Control and Management Interface

Page 36 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

OSPM

Shutdown or
system
suspend

PSCI on behalf of the
OSPM

Calling agent view of the system is
shut down or suspended.

System power state notifications to
other agents are sent at the point at
which it is possible to request a
system power up.

Management agent Message returns at the point at which
it is possible to request a system
power up.

Reset

PSCI on behalf of the
OSPM

Calling agent view of the system is
reset.

System power state notifications to
other agents are sent when it is
possible to request forcible system
shutdown or reset.

Management agent. OSPM view is reset. The message
returns when it is possible to request
forcible system shutdown or reset.

Power-up

PSCI on behalf of the
OSPM

Not supported.

Management agent. OSPM view is powered up. The
message returns at the point at which
forcible system power state requests
are possible.

Get system
power state

PSCI on behalf of the
OSPM

Not supported.

Management agent Message returns system power state
of OSPM view.

Full

Shutdown or
suspend

PSCI on behalf of the
OSPM

Whole system is shut down or
suspended.

System power state notifications to
other agents are sent at the point at
which PSCI makes its request.

Management agent Whole system is shut down or
suspended. Notifications in this case
are not required.

Reset

PSCI on behalf of the
OSPM

System is Reset.

System power state notifications to
other agents are sent at the point at
which PSCI makes its request.

Management agent System is Reset. Notifications in this

System Control and Management Interface

Page 37 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

case are not required.

Power up or
get system
state

PSCI on behalf of the
OSPM

Not supported.

Management agent Not supported.

In both full and OSPM view implementations, the behavior towards a PSCI or an OSPM agent remains
unchanged. The change in behavior is only visible to an external agent, such as a management agent.
Commands to power up or get system state are only present in systems that implement the OSPM
view.

4.4.2 Commands

4.4.2.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
value returned must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x12

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

unt32 version For this revision of the specification, this must be 0x10000.

4.4.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

message_id: 0x1

protocol_id: 0x12

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

attributes Bits[31:0] Reserved, must be zero.

4.4.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

System Control and Management Interface

Page 38 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

On success, this command returns the implementation details associated with a specific message in
this protocol. In addition to the standard status codes described in section 4.1.4, the command can
return the following errors:

• NOT_FOUND if the message identified by the message_id is not provided by the
implementation.

• If notifications are not supported for the calling agent, this command returns NOT_SUPPORTED
for the SYSTEM_POWER_STATE_NOTIFY command, which is described in section 4.4.2.4,
and the SYSTEM_POWER_STATE_NOTIFIER notification, which is described in section
4.4.3.1.

message_id: 0x2

protocol_id: 0x12

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message

Return values

Name Description

int32 status
NOT_FOUND.

See section 4.1.4 for status code definitions.

uint32 attributes

Flags associated with a specific command in the protocol.

If message_id is for SYSTEM_POWER_STATE_SET the
attributes have the following format:

Bit[31] System warm reset support

 Set to 1 if system warm reset is supported.

 Set to 0 if system warm reset is not supported.

Bit[30] System suspend support.

 Set to 1 if system suspend is supported

 Set to 0 if system suspend is not supported

Bits[29:0] Reserved, must be zero.

 For all values of message_id, this value is zero.

4.4.2.4 SYSTEM_POWER_STATE_SET

This command is used to power down or reset the system.

In addition to the standard status codes described in section 4.1.4, the command can return the
following errors:

• INVALID_PARAMETERS if the requested power state is not valid.

System Control and Management Interface

Page 39 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

• NOT_SUPPORTED if the requested state is not supported for the calling agent.

• DENIED for system suspend requests when there are application processors, other than the
caller, in a running or idle state.

System power-up must only be available to agents other than a PSCI implementation on systems that
implement OSPM view, as discussed in section 4.4.1.

message_id: 0x3

protocol_id: 0x12

This command is mandatory.

Parameters

Name Description

uint32 flags

This parameter has the following format:

Bits[31:1] Reserved, must be zero.

Bit[0] Graceful request. This flag is ignored for power
up requests.

 Set to 1 if the request is a graceful request.

 Set to 0 if the request is a forceful request.

uint32 system_state

Can be one of:

0x0 System shutdown.

0x1 System cold reset.

0x2 System warm reset.

0x3 System power-up.

0x4 System suspend.

0x5 – 0x7FFFFFFF

Reserved, must not be used.

0x80000000 – 0xFFFFFFFF

Might be used for vendor-defined
implementations of reset, power-up, or
shutdown. These can include additional
parameters. The prototype for vendor-defined
call is beyond the scope of this specification.

Return values

Name Description

int32 status

Specific status codes outlined above in 4.4.2.4 for particular
cases as described.

See section 4.1.4 for other status code definitions.

System Control and Management Interface

Page 40 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

4.4.2.5 SYSTEM_POWER_STATE_GET

This command must only be available to agents other than a PSCI implementation on systems that
implement OSPM view, as discussed in section 4.4.1. The command is to get the power state of the
system.

message_id: 0x4

protocol_id: 0x12

This command is mandatory in an OSPM view implementation.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 system_state

Can be one of:

0x0 System shutdown.

0x3 System power-up.

0x4 System suspend.

0x5 – 0x7FFFFFFF

Reserved, must not be used.

0x80000000 – 0xFFFFFFFF

Might be used for vendor defined states.

4.4.2.6 SYSTEM_POWER_STATE_NOTIFY

This command is used to request notification of system power state requests. This command might be
used:

• By the OSPM to receive notifications of graceful system power state requests.

• By a management agent to be notified that the OSPM requested a forceful transition.

In addition to the standard status codes that are described in section 4.1.4, the command can return the
error NOT_SUPPORTED if notifications are not supported or available to the calling agent.

On initial boot of an agent, these notifications must be disabled by default to that agent.

message_id: 0x5

protocol_id: 0x12

This command is mandatory in an OSPM view implementation.

Parameters

Name Description

System Control and Management Interface

Page 41 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 notify_enable

Bits[31:1] Reserved, must be zero.

Bit[0] Notify enable:

 If this value is zero, the platform does not send
any SYSTEM_POWER_STATE_NOTIFIER
messages to the calling agent.

 If this value is set to one, the platform does send
SYSTEM_POWER_STATE_NOTIFIER
messages commands to the calling agent.

 See section 4.4.3.1 for details about
SYSTEM_POWER_STATE_NOTIFIER
notifications.

Return values

Name Description

int32 status

NOT_SUPPORTED

INVALID_PARAMETERS

See section 4.1.4 for status code definitions.

4.4.3 Notifications

4.4.3.1 SYSTEM_POWER_STATE_NOTIFIER

If an agent has registered for system power state notifications with
SYSTEM_POWER_STATE_NOTIFY, the platform sends this notification to the agent. Typically, the
agent is either:

• The OSPM that initiates a system power state transition in response to this notification.The
OSPM needs this notification to become aware that a remote entity such as the management
agent is requesting a graceful power state transition.

• A management agent that initiated a graceful power state transition and is waiting for the OSPM
to perform a power state transition in response. The management agent needs this notification
to confirm that the platform controller has successfully received the power state transition
request from the PSCI.

message_id: 0x0

protocol_id: 0x12

This command is optional.

Parameters

Name Description

uint32 agent_id
Identifier for the agent that caused the system power state
transition.

System Control and Management Interface

Page 42 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 flags

This parameter has the following format:

Bits[31:1] Reserved, must be zero.

Bit[0] Graceful request.

 Set to 1 if the notification indicates that a system
power state transition has been gracefully
requested.

 Set to 0 if the notification indicates that a system
power state has been forcibly requested.

uint32 system_state

System power state that the system has transitioned to, or
which has been requested.

Can be one of:

0x0 System shutdown.

0x1 System cold reset.

0x2 System warm reset.

0x3 System power-up.

0x4 System suspend.

0x5 – 0x7FFFFFFF

Reserved, must not be used.

0x80000000 – 0xFFFFFFFF

Might be used for vendor-defined
implementations of reset, power-up, or
shutdown. These can include additional
parameters. The prototype for vendor-defined
call is beyond the scope of this specification.

4.5 Performance domain management protocol

This protocol is intended for performance management of groups of devices or APs that run in the same
performance domain. Performance domains must not be confused with power domains. A performance
domain is defined by a set of devices that always have to run at the same performance level. For a
given performance domain, there is a single point of control that affects all the devices in the domain,
making it impossible to set the performance level of an individual device in the domain independently
from other devices in that domain. For example, a set of CPUs that share a voltage domain, and have a
common frequency control, is said to be in the same performance domain. The commands in this
protocol provide functionality to:

• Describe the protocol version.

• Describe attribute flags of the protocol.

• Set the performance level of a domain.

• Read the current performance level of a domain.

System Control and Management Interface

Page 43 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

• Return the list of performance levels supported by a performance domain, and the properties of
each performance level.

• Optionally return statistics on residency and usage count of a performance level in performance
domains.

4.5.1 Performance domain management protocol background

The command set operates in an abstract integer performance scale. The implementation can choose
what this scale represents. For example, in some systems, the values in the scale might represent
actual frequencies, while in others they might represent a percentage of the maximum performance of
the domain. In all cases, the scale must be linear, meaning that a value of 2X delivers twice the
performance as compared to a value of X.

Although this protocol uses an abstract scale to represent performance levels, the underlying
implementation only provides a discrete set of performance levels. Each of these levels has an
associated power cost. The protocol provides a command to discover these levels and their associated
power cost. The power can be expressed in mW or in an abstract scale. Vendors are not obliged to
reveal power costs if it is undesirable, but a linear scale is required.

Protocol commands take integer identifiers to describe which performance domain a given command
applies to. The identifiers are sequential and start from 0.

In a multi-agent system, a given agent exclusively owns the performance of a set of domains. Agents,
other than the platform agents, are not allowed to change the performance of domains they do not own.
However, an agent can be allowed to set limits on the performance of a domain it does not own. Agents
are also allowed to read performance data, or register for notifications issued on performance changes.

A performance domain can be characterized by three distinct levels that are advertised by the platform.
These distinct levels are described in Table 12.

Table 12 Performance Domain Levels with Special Significance

Performance Level Description

Highest Performance This is the theoretical maximum performance level of the
domain.

Sustained Performance This is the maximum performance level that the platform can
sustain under normal conditions. In exceptional circumstances,
such as thermal runaway, the platform may not be be able to
guarantee this level.

Lowest Performance This is the lowest performance level supported by the domain.

4.5.2 Commands

4.5.2.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
value returned must be 0x10000, which corresponds to version 1.0.

System Control and Management Interface

Page 44 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

message_id: 0x0

protocol_id: 0x13

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 version For this revision of the specification, this must be 0x10000.

4.5.2.2 PROTOCOL_ATTRIBUTES

This command returns the attribute flags associated with this protocol.

message_id: 0x1

protocol_id: 0x13

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:17] Reserved, must be zero.

Bit[16] Power values expressed in mW:

 Set to 1 if the value described for a power
consumption of performance level is
expressed in mW.

 Set to 0 if the value described for a power
consumption of performance level is
expressed in a proprietary scale.

Bits[15:0] Number of performance domains.

uint32
statistics_address_low

The lower 32 bits of the physical address where the
statistics shared memory region is located. The address
must be in the memory map of the calling agent. If the
statistics_len field is 0, then this field is invalid and must
be ignored.

uint32
statistics_address_high

The upper 32 bit of the physical address where the
shared memory region is located. The address must be
in the memory map of the calling agent. If the
statistics_len field is 0, then this field is invalid and must
be ignored.

System Control and Management Interface

Page 45 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 statistics_len
The length in bytes of the shared memory region. A
value of 0 in this field indicates that the platform doesn’t
support the statistics shared memory region.

The statistics shared memory region is described in section 4.5.4.

4.5.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol. In addition to the standard status codes described in section 4.1.4, the command can
return the error NOT_FOUND if the message identified by the message_id is not provided by the
implementation.

This command can be used to enquire if performance level or limit change notifications are supported
by the platform. This is achieved by passing message identifiers for the
PERFORMANCE_NOTIFY_LEVEL or PERFORMANCE_NOTIFY_LIMITS messages to the call. The
platform then returns a status code of NOT_FOUND to indicate that notifications are not implemented,
or that they are not available to the calling agent. The notification commands are described in sections
4.5.2.11 and 4.5.2.10.

message_id: 0x2

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status
NOT_FOUND.

See section 4.1.4 for status code definitions.

uint32 attributes

Flags associated with a specific command in the protocol.

For all commands in this protocol, this parameter has a value
of 0.

4.5.2.4 PERFORMANCE_DOMAIN_ATTRIBUTES

This command returns attributes that are specific to a given domain. In addition to the standard status
codes described in section 4.1.4, the command can return the error NOT_FOUND if the performance
domain identified by domain_id does not exist.

System Control and Management Interface

Page 46 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

message_id: 0x3

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 47 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 attributes

Bit[31] Can set limits.

 Set to 1 if calling agent is allowed to set
the performance limits on the domain.

 Set to 0 if a calling agent is not allowed to
set limits on the performance limits on the
domain.

Bit[30] Can set performance level.

 Set to 1 if calling agent is allowed to set
the performance of a domain.

 Set to 0 if a calling agent is not allowed to
set the performance of a domain.

 Only one agent can set the performance
of a given domain.

Bit[29] Performance limits change notifications
support.

 Set to 1 if performance limits change
notifications are supported for this
domain.

 Set to 0 if performance limits change
notifications are not supported for this
domain.

Bit[28] Performance level change notifications
support.

 Set to 1 if performance level change
notifications are supported for this
domain.

 Set to 0 if performance level change
notifications are not supported for this
domain.

Bits[27:0] Reserved and set to zero.

uint32 rate_limit

Bits[31:20] Reserved and set to zero.

Bit[19:0] Rate Limit in microseconds. A value of
 zero indicates that this field is not
 supported by the platform.

uint32 sustained_freq
Frequency base corresponding to the sustained
performance level, to be used for informational
purposes only. Expressed in units of kHz.

uint32 sustained_perf_level
The performance level value that corresponds to the
sustained performance delivered by the platform.

uint8 name[16]
Null terminated ASCII string of up to 16 bytes in length
describing a domain name.

System Control and Management Interface

Page 48 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

4.5.2.5 PERFORMANCE_DESCRIBE_LEVELS

This command allows the agent to ascertain the discrete performance levels that are supported by the
platform, and their respective power costs. On success, the command returns an array that consists of
several performance level entries, each of which describes an expected performance and power cost.
The power cost can be expressed in milliwatts or in an abstract scale. How the numbers in that scale
convert to the actual wattage is IMPLEMENTATION DEFINED, but the conversion must be linear,
meaning that a power of 2X is twice the power of X. The size of the array, which is also returned,
depends on the number of return values that a given transport can support. Therefore, it might not be
possible to return information for all performance levels with just one call. To solve this problem, the
interface allows multiple calls.

In addition to the standard status codes described in section 4.1.4, the command can return the error
NOT_FOUND if the performance domain identified by domain_id does not exist.

message_id: 0x4

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

uint32 level_index
Index to the first level to be described in the return
level array.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 num_levels

Bits[31:16] Number of remaining performance levels.

Bits[15:12] Reserved, must be zero.

Bits[11:0] Number of performance levels that are
returned by this call.

System Control and Management Interface

Page 49 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

{uint32, uint32, uint32}
perf_levels[N]

Array of performance levels to be described. Each
array entry is composed of three 32-bit words with the
following format:

uint32 entry[0] Performance level value.

uint32 entry[1] Power cost.

uint32 entry[2] Attributes

 Bits[31:16] Reserved, must
 be zero.

 Bit[15:0] Worst-
case
 transition latency
 in microseconds
 to move from any
 supported
 performance to
 the level
 indicated by this
 entry in the array.

The following pseudocode describes how the command can be used to discover information about
every supported performance level for the performance domain:

uint16 level_index = 0;
int32 status = 0;
struct number_of_perf_levels {
 uint perf_levels_array_len:12;
 uint reserved: 4;
 uint remaining:16;
} num_levels = {0,0,0};

struct perf_level_data {
 uint32 power;
 uint32 perf_value;
 uint16 reserved;
 uint16 transition_latency;
};

struct perf_level_data perf_levels[];

do {
 invoke_PERFORMANCE_DESCRIBE_LEVELS(
 domain_id, level_index,
 &status, &num_levels, perf_levels);

 if (status)
 goto clean_up_and_return;
 num_levels.perf_levels_array_len
 add_levels_to_database(domain_id, level_index, // process
 num_levels.perf_levels_array_len,
 perf_levels);

 level_index += num_levels.perf_levels_array_len;

System Control and Management Interface

Page 50 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

 } while(num_levels.remaining);

4.5.2.6 PERFORMANCE_LIMITS_SET

This command allows the caller to set limits on the performance level of a domain. In addition to the
standard status codes described in section 4.1.4, the command can return the following statuses:

• SUCCESS if the command successfully set the limits of operation. If setting a limit requires
modifying the current performance level of the domain, the command can return before this
change has been completed. However, the change in performance level must still take place.

• NOT_FOUND if the performance domain identified by domain_id does not exist.

• OUT_OF_RANGE if the limits set lie outside the highest and lowest performance levels that are
described by PERFORMANCE_DESCRIBED_LEVELS.

• DENIED if the calling agent is not permitted to change the performance limits for the domain, as
described by PERFORMANCE_DOMAIN_ATTRIBUTES.

message_id: 0x5

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

uint32 range_max Maximum allowed performance level.

uint32 range_min Minimum allowed performance level.

Return values

Name Description

int32 status

NOT_FOUND

OUT_OF_RANGE

DENIED

See section 4.1.4 for status code definitions.

4.5.2.7 PERFORMANCE_LIMITS_GET

This command allows the agent to ascertain the range of allowed performance levels. The returned
value reflects the currently set limits for the performance domain. These limits might have been set
implicitly by the platform, or by a call to PERFORMANCE_LIMIT_SET. Performance requests outside
the range result in OUT_OF_RANGE errors. In addition to the standard status codes described in
section 4.1.4, the command can return the error NOT_FOUND if the performance domain identified by
domain_id does not exist.

On success, the range return value provides the minimum and maximum allowed performance level.

System Control and Management Interface

Page 51 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

message_id: 0x6

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 range_max Maximum allowed performance level.

uint32 range_min Minimum allowed performance level.

4.5.2.8 PERFORMANCE_LEVEL_SET

This command allows the agent to set the performance level of a domain. This command can return
before the domain has transitioned to the required performance level. The platform simply has to
acknowledge that it has received the command. The agent can register for performance level
notifications to ascertain whether a performance transition has taken place. For further details, see
section 4.5.3.2.

In addition to the standard status codes describes in section 4.1.4, the command can return the
following errors:

• NOT_FOUND if the performance domain identified by domain_id does not exist.

• OUT_RANGE if the requested performance level is outside the currently allowed range.

• DENIED if the calling agent is not permitted to change the performance level for a domain, as
described by PERFORMANCE_DOMAIN_ATTRIBUTES.

message_id: 0x7

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

uint32
performance_level

Requested performance level.

Return values

System Control and Management Interface

Page 52 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Name Description

int32 status

SUCCESS

NOT_FOUND

OUT_OF_RANGE

DENIED

See section 4.1.4 for status code definitions.

4.5.2.9 PERFORMANCE_LEVEL_GET

On success, this command returns the current performance level of a domain. Note the performance
level value that is returned by this command might be stale by the time the command completes, as a
subsequent performance change might have been initiated in the meantime.

In addition to the standard status codes described in section 4.1.4, the command can return the
following errors:

NOT_FOUND if the performance domain identified by domain_id does not exist.

message_id: 0x8

protocol_id: 0x13

This command is mandatory.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32
performance_level

Current performance level of the domain.

4.5.2.10 PERFORMANCE_NOTIFY_LIMITS

This command allows the agent to request notifications from the platform for changes in the allowed
maximum and minimum performance levels. These notifications are sent using the
PERFORMANCE_LIMITS_CHANGED command which is described in section 4.5.3.1. In addition to
the standard status codes described in section 4.1.4, the command can return the following errors:

• NOT_FOUND if the performance domain identified by domain_id does not exist.

• DENIED if notifications are not supported for the indicated performance domain.

System Control and Management Interface

Page 53 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

If no domains support limit notifications, the command can be omitted.
PROTOCOL_MESSAGE_ATTRIBUTES, which is described in section 4.5.2.4, can be used to
determine whether this command is implemented.

On initial boot of an agent, by default, these notifications must be disabled from being sent to that
agent.

message_id: 0x9

protocol_id: 0x13

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain

uint32 notify_enable

Bits[31:1] Reserved, must be zero.

Bit[0] Notify enable:

 If this value is zero, the platform does not send
any PERFORMANCE_LIMITS_CHANGED
messages to the agent.

 If this value is set to one, the platform does send
PERFORMANCE_LIMITS_CHANGED
messages to the agent.

 See section 4.5.3.1 for more details about
PERFORMANCE_LIMITS_CHANGED
notifications.

Return values

Name Description

int32 status

DENIED

NOT_FOUND

INVALID_PARAMETERS

See section 4.1.4 for status code definitions.

4.5.2.11 PERFORMANCE_NOTIFY_LEVEL

This command allows the agent to request notifications from the platform when the performance level
for a domain changes in value. These notifications are sent using the
PERFORMANCE_LEVEL_CHANGED command which is described in section 4.5.3.2. In addition to the
standard status codes described in section 4.1.4, the command can return the following errors:

• NOT_FOUND if the performance domain identified by domain_id does not exist.

• NOT_SUPPORTED if notifications are not supported for the indicated performance domain.

System Control and Management Interface

Page 54 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

If no domains support level change notifications the command can be omitted.
PROTOCOL_MESSAGE_ATTRIBUTES, which is described in section 4.5.2.4, can be used to
determine whether this command is implemented.

On initial boot of an agent, by default, these notifications must be disabled from being sent to that
agent.

message_id: 0xA

protocol_id: 0x13

This command is optional.

Parameters

Name Description

uint32 domain_id Identifier for the performance domain

uint32 notify_enable

Bits[31:1] Reserved, must be zero.

Bit[0] Notify enable:

 If this value is zero, the platform does not send
any PERFORMANCE_LEVEL_CHANGED
messages to the agent.

 If this value is set to one, the platform does send
PERFORMANCE_LEVEL_CHANGED
messages to the agent.

 See section 4.5.3.2 for more details about the
PERFORMANCE_LEVEL_CHANGED
notifications.

Return values

Name Description

int32 status

NOT_SUPPORTED

NOT_FOUND

INVALID_PARAMETERS

See section 4.1.4 for status code definitions.

4.5.3 Notifications

4.5.3.1 PEFORMANCE_LIMITS_CHANGED

If an agent has registered for limit change notifications for the domain that is identified by domain_id,
the platform sends this notification to the agent when the performance limits for that domain change.

The platform is not required to guarantee sending a notification to an agent for every limits change. In
particular, if several changes take place in quick succession, the platform is allowed to only issue a
notification for the last change.

System Control and Management Interface

Page 55 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

message_id: 0x0

protocol_id: 0x13

This command is optional.

Parameters

Name Description

uint32 agent_id
Identifier for the agent that caused the performance limit
change.

uint32 domain_id
Identifier for the performance domain whose limit was
changed.

uint32 range_max Maximum allowed performance level.

uint32 range_min Minimum allowed performance level.

4.5.3.2 PERFORMANCE_LEVEL_CHANGED

If an agent has registered to receive performance level change notifications for the domain that is
identified by domain_id, the platform sends this notification to the agent when the performance level of
that domain changes.

The platform is not required to guarantee sending a notification to an agent for every level change
transition. In particular, if several performance changes happen in quick succession, the platform is
allowed to only issue a notification for the last transition.

The level values that are passed in notifications might not match the values that are requested by the
agent that is notified. The level that is finally selected by the platform might differ from the level that is
requested by an agent, due to thermal or power constraints.

message_id: 0x1

protocol_id: 0x13

This command is optional.

Parameters

Name Description

uint32 agent_id
Identifier for the agent that caused the performance
level change.

uint32 domain_id
Identifier for the performance domain whose level
was changed.

uint32 performance_level Current performance level of the domain.

4.5.4 Performance domain statistics shared memory region

Optionally, the platform can provide a statistics memory region that is associated with the performance
domain management protocol. Whether support is present is indicated by the

System Control and Management Interface

Page 56 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

PROTOCOL_ATTRIBUTES command, which is described in section 4.5.2.2. This command also
provides the address and size of the shared memory region. For a given performance domain, and for
each performance level in that domain, statistics in the shared memory region track the number of times
that the level has been used and the amount of time that the domain has been in that performance
level. The statistics must be updated regardless of the agent in the system that placed a domain into a
given performance level. After a system reset, suspend, or shutdown, all the statistics must be
initialized to zero when the system first starts up. Time measurements are in microseconds.

For APs, the shared memory must be accessible from the Non-secure world, and must be mapped as
non-cached normal memory or device memory. The format of the shared memory structure is described
in Table 13.

Table 13 Performance level statistics memory region

Field Byte Length Byte

Offset

Description

Signature 0x4 0x0 0x50455246 (‘PERF’).

Revision 0x2 0x4 For this revision, this value must be zero.

Attributes 0x2 0x6 For this revision, this value must be zero.

Number of
domains 0x2 0x8

Number of domains for which statistics are
collected.

Reserved 0x6 0xA Must be zero.

Performance
domain offset
array

0x4 ×

(Number of
domains)

0x10 For each performance domain, this array provides
a 4-byte offset, from the start of the shared
memory area, to the memory location of the
performance domain entry in the data section. The
entry format is described in Table 14.

A value of zero for the offset of a given
performance domain indicates that statistics are
not collected for that domain.

Performance
domain data
section

-- -- This area must start at an offset of 0x10 +

0x4 × (Number of performance domains), or

higher.

The performance domain data section contains entries for each power domain. The format for each
entry is described in Table 14.

Table 14 Performance domain entry

Field Byte

Length

Byte

Offset

Description

Number of
performance
levels

0x2 0x0

Number of performance level entries in the
performance levels array.

System Control and Management Interface

Page 57 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Current
performance level

0x2 0x2
Index into performance level array for current
performance level.

Reserved 0x4 0x4 Must be zero.

Time of last
change

0x8 0x8
Timestamp in microseconds since boot of the
last performance level transition.

Performance level
array

N × 0x18 0x10
Performance level array, where N is the number
of performance levels. Described in Table 15.

The format for each entry in the performance level array is described in Table 15.

Table 15 Performance level array entry

Field Byte

Length

Byte

Offset

Description

performance_level 0x4 0x0 Performance level.

reserved 0x4 0x4 Reserved, must be set to zero.

Usage count

0x8 0x8

Number of times this domain has used this
performance level. This value must be updated
when the domain transitions into the
performance level.

Residency

0x8 0x10

This value represents the amount of time
domain has been running at the performance
level, and is given in microseconds. This value
must be updated every time the domain
transitions to different performance level.

Accessing multi-word statistics can cause races between platform write accesses and the read
accesses by agents in the system. This problem and its solution are described in section 4.3.4.

4.6 Clock management protocol

This protocol is intended for management of clocks. It is used to enable or disable clocks, and to set
rates. The protocol provides commands to:

• Describe the protocol version.

• Discover implementation attributes.

• Describe a clock.

• Enable or disable a clock.

• Set the rate of the clock synchronously or asynchronously.

System Control and Management Interface

Page 58 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

4.6.1 Clock management protocol background

This protocol can be used for managing clock rates. It is not to be confused with the performance
management protocol, which is used to manage the speed of compute engines such as application
processors or GPUs. Examples of usage for the clock protocol might be setting rates for LCD clocks or
I2C buses.

The protocol does not cover discovery of clock dependencies, which must be described through
firmware tables instead.

Protocol commands take integer identifiers to describe which clock a given command applies to. The
identifiers are sequential and start from 0.

A given clock must be owned and exposed to a single agent.

4.6.2 Commands

4.6.2.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
return value must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x14

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 version
For this revision of the specification, this value must be
0x10000.

4.6.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

message_id: 0x1

protocol_id: 0x14

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:24] Reserved, must be zero.

Bits[23:16] Maximum number of pending asynchronous
clock rate changes supported by the platform.

Bits[15:0] Number of clocks.

System Control and Management Interface

Page 59 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

4.6.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol. In addition to the standard status codes described in section 4.1.4, the command can
return the error NOT_FOUND if the message identified by the message_id is not provided by the
implementation.

message_id: 0x2

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 attributes

Flags that are associated with a specific command in the
protocol.

For all commands in this protocol, this parameter has a value
of 0.

4.6.2.4 CLOCK _ATTRIBUTES

This command returns the attributes that are associated with a specific clock. In addition to the standard
status codes described in section 4.1.4, the command can return the error NOT_FOUND if the clock
identified by clock_id does not exist, or is not owned by the calling agent.

message_id: 0x3

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 clock_id Identifier for the clock device.

Return values

Name Description

System Control and Management Interface

Page 60 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:1] Reserved, must be zero.

Bits[0] Enabled/disabled

 If set to 1, the clock device is enabled.

 If set to 0, the clock device is disabled.

uint8 clock_name[16]
A NULL terminated ASCII string with the clock name, of up to
16 bytes.

4.6.2.5 CLOCK_DESCRIBE_RATES

This command allows the agent to ascertain the valid rates to which the clock can be set to. On
success, the command returns an array, which contains a number of rate entries. Clocks can support
many rates. In this case, individually describing each rate is too onerous, and the array contains only
the highest and the lowest rate, as well as the number of supported rates. In either case, the size of the
array is returned, which depends on the number of return values a given transport can support.
Therefore, it might not be possible to return the whole array with just one call. To solve this problem, the
interface allows multiple calls.

In addition to the standard status codes described in section 4.1.4, the command can return the error
NOT_FOUND if the clock identified by clock_id does not exist.

message_id: 0x4

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 clock_id Identifier for the clock device.

uint32 rate_index
Index to the first rate value to be described in the
return rate array.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 61 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 num_rates_flags

Bits[31:16] Number of remaining rates.

Bits[15:13] Reserved, must be zero.

Bit[12] Return format:

 If this bit is set to 1, the Rate Array is a
triplet that constitutes a segment of the
form:

▪ rates[0] is the lowest physical
rate that the clock can
synthesize in the segment.

▪ rates[1] is the highest physical
rate that the clock can
synthesize in the segment.

▪ rates[2] is the step size between
two successive physical rates
that the clock can synthesize
within the segment.

 If this bit is set to 0, each element of the
Rate Array represents a discrete physical
rate that the clock can synthesize.

Bits[11:0]: Number of rates that are returned by this
call.

{uint32, uint32} rates [N]

Rate Array:

If Bit 12 of the num_rates_flags field is set to 0, each
array entry is composed of two 32-bit words and has
the following format:

Lower word: Lower 32 bits of the physical rate in
Hertz.

Upper word: Upper 32 bits of the physical rate in
Hertz.

If Bit 12 of the num_rates_flags field is set to 1, then
each entry is a member of a segment {lowest rate,
highest rate, step size} as described above.

For an example of using this kind of API, see 4.5.2.5.

4.6.2.6 CLOCK_RATE_SET

This command allows the caller to set the clock rate of a clock synchronously or asynchronously.

In addition to the standard status codes described in section 4.1.4, the command can return the
following errors:

• NOT_FOUND if the clock identified by clock_id does not exist.

• INVALID_PARAMETERS if the requested rate is not supported by the clock.

System Control and Management Interface

Page 62 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

• BUSY if there are too many asynchronous clock rate changes pending.
PROTOCOL_ATTRIBUTES provides the maximum number of pending asynchronous clock rate
changes supported by the platform.

The command returns when the clock rate has been changed.

message_id: 0x5

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 flags

Bits[31:4] Reserved, must be zero.

Bit[3:2] Round up/down:

 If Bit 3 is set to 1, the platform rounds up/down
autonomously to choose a physical rate closest
to the requested rate, and Bit 2 is ignored.

 If Bit 3 is set to 0, then the platform rounds up if
Bit 2 is set to 1, and rounds down if Bit 2 is set
to 0.

Bit[1] Ignore delayed response:

 If async flag, bit 0, is set to 1 and this bit is set to
1, the platform does not send a
CLOCK_RATE_SET delayed response.

 If async flag, bit 0, is set to 1 and this bit is set to
0, the platform does send a
CLOCK_RATE_SET delayed response.

 If async flag, bit 0, is set to 0, then this bit field is
ignored by the platform.

Bit[0] Async flag:

 Set to 1 if clock rate is to be set asynchronously.
In this case the call is completed with
CLOCK_RATE_SET_COMPLETE message if
bit 1 is set to 0. For more details, see section
4.6.3.1. A SUCCESS return code in this case
indicates that the platform has successfully
queued this command.

 Set 0 to if the clock rate is to be set
synchronously. In this case, the call with return
the clock rate setting has been completed.

uint32 clock_id Identifier for the clock device.

uint32 rate[2] Requested clock rate as a 64-bit entity.

System Control and Management Interface

Page 63 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Return values

Name Description

int32 status

NOT_FOUND

INVALID_PARAMETERS

BUSY

See section 4.1.4 for status code definitions.

4.6.2.7 CLOCK_RATE_GET

This command allows the calling agent to request the current clock rate.

─── Note ────────────────

If the clock rate is set asynchronously, the rate value that is returned by this command might be stale by
the time the command completes.

───────────────────────

In addition to the standard status codes described in section 4.1.4, the command can return the error
NOT_FOUND if the clock identified by clock_id does not exist.

message_id: 0x6

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 clock_id Identifier for the clock device.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

uint32 rate[2] Clock rate as a 64-bit entity.

4.6.2.8 CLOCK_CONFIG_SET

This command allows the calling agent to configure a clock device.

In addition to the standard status codes described in section 4.1.4, the command can return the error
NOT_FOUND if the clock identified by clock_id does not exist.

System Control and Management Interface

Page 64 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

message_id: 0x7

protocol_id: 0x14

This command is mandatory.

Parameters

Name Description

uint32 clock_id Identifier for the clock device.

uint32 attributes

Bits[31:1] Reserved, must be zero.

Bit[0] Enable/Disable:

 If set to 1, the clock device is enabled.

 If set to 0, the clock device is disabled.

Return values

Name Description

int32 status
NOT_FOUND

See section 4.1.4 for status code definitions.

4.6.3 Delayed responses

4.6.3.1 CLOCK_RATE_SET_COMPLETE

If the agent has changed the clock rate asynchronously through CLOCK_RATE_SET, the platform
sends this delayed response to the agent when the clock rate changes.

message_id: 0x5

protocol_id: 0x14

This command is optional.

Parameters

Name Description

int32 status

SUCCESS if clock rate was set successfully.

Vendor-specific error.

See section 4.1.4 for status code definitions.

uint32 clock_id Identifier for the clock device.

uint32 rate[2] Value of the rate that the clock transitioned to.

System Control and Management Interface

Page 65 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

4.7 Sensor management protocol

This protocol provides functions to manage platform sensors, and provides the following commands:

• Describe the protocol version.

• Describe the attribute flags of the protocol.

• Discover sensors that are implemented and managed by the platform.

• Read a sensor synchronously or asynchronously as allowed by the platform.

• Obtain and program sensor attributes, if applicable.

• Receive notifications on specific changes to sensor data, for example when a sensor value
crosses a threshold.

• Specify a region of shared memory for conveying sensor values, if supported by the platform.

4.7.1 Sensor management protocol background

The protocol supports accessing sensors through one of the following mechanisms:

• Synchronous Access – This method is recommended for sensors whose data is immediately
available or is internally cached by the platform, and can be returned immediately to the
requesting agent. Examples include platform event counters, or sensor data samples that are
stored in internal memory within the platform.

• Asynchronous Access – This method is recommended for sensors whose data is not cached by
the platform or for sensors that are slow to read. An example of this could be an on-die thermal
sensor.

• Event Notification – The agent can register for receiving notifications on specific sensor values,
conditions, or states of interest.

• Shared Memory – In this scheme, the platform periodically updates the sensor value in an area
of memory that is shared between agents and the platform.

Agents can discover the access mechanisms that are supported by a particular sensor by examining
the attributes that are advertised for the sensor. The platform can support multiple access mechanisms.

4.7.2 Commands from Agents to Platform

4.7.2.1 PROTOCOL_VERSION

On success, this command returns the version of this protocol. For this version of the specification, the
return value must be 0x10000, which corresponds to version 1.0.

message_id: 0x0

protocol_id: 0x15

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 66 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 version
For this revision of the specification, this value must be
0x10000.

4.7.2.2 PROTOCOL_ATTRIBUTES

This command returns the implementation details associated with this protocol.

message_id: 0x1

protocol_id: 0x15

This command is mandatory.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

uint32 attributes

Bits[31:24] Reserved, must be zero.

Bits[23:16] Maximum number of outstanding
asynchronous commands that is
supported by the platform.

Bits[15:0] Number of sensors that is present and
managed by the platform.

uint32
sensor_reg_address_low

This value indicates the lower 32 bits of the physical
address where the sensor shared memory region is
located. The address must be in the memory map of
the calling agent. If the sensor_reg_len field is 0, then
this field is invalid and must be ignored by the agent.

uint32
sensor_reg_address_high

This value indicates the upper 32 bits of the physical
address where the shared memory region is located.
The address must be in the memory map of the
calling agent. If the sensor_reg_len field is 0, then
this field is invalid and must be ignored by the agent.

uint32 sensor_reg_len

This value indicates the length in bytes of the shared
memory region. A value of 0 in this field indicates that
the platform does not implement the sensor shared
memory.

The sensor shared memory region is described in section 4.7.5.

4.7.2.3 PROTOCOL_MESSAGE_ATTRIBUTES

On success, this command returns the implementation details associated with a specific message in
this protocol.

System Control and Management Interface

Page 67 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

If the message is not supported or implemented by the platform, then this command returns a
NOT_FOUND status code. This allows calling agents to comprehend which commands are supported
on a particular platform, and configure themselves accordingly.

message_id: 0x2

protocol_id: 0x15

This command is mandatory.

Parameters

Name Description

uint32 message_id message_id of the message.

Return values

Name Description

int32 status

NOT_FOUND, if the command associated with message_id
is not implemented or supported by the platform. Other
status codes according to section 4.1.4 might be returned for
general error or status reporting.

uint32 attributes

Attributes that are associated with the message that is
specified by message_id. Currently, this field returns the
value of 0.

4.7.2.4 SENSOR_ DESCRIPTION_GET

This command can be used for sensor discovery on the platform. On success, it returns an array of
Sensor Descriptors as described in 4.7.2.4.1.

message_id: 0x3

protocol_id: 0x15

This command is mandatory.

Parameters

Name Description

uint32 desc_index
Index of the first sensor descriptor to be read in
the sensor descriptor array.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

System Control and Management Interface

Page 68 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 num_sensor_flags

Bits[31:16] Number of remaining sensor
descriptors.

Bits[15:12] Reserved, must be zero.

Bits[11:0] Number of sensor descriptors that
are returned by this current call.

SENSOR_DESC desc[N]
An array of sensor descriptors, of format
described in 4.7.2.4.1.

4.7.2.4.1 Sensor Descriptor

The SENSOR_DESC structure describes the sensor properties, such as the unique identifier for the
sensor, its name, reading types and other characteristics.

uint32 sensor_id Identifier for the sensor.

uint32 sensor_attributes_low

Bits[31] Asynchronous sensor read support.

 If this flag is set to 1, then this sensor
can be read asynchronously through
the SENSOR_READING_GET
command, and its value is returned in
the SENSOR_READING_COMPLETE
delayed response.

 If this flag is set to 0, the sensor must
be only be read using a synchronous
call to SENSOR_READING_GET
command.

Bits[30:8] Reserved for future use.

Bits[7:0] Number of trip points supported.

System Control and Management Interface

Page 69 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 sensor_attributes_high

Bits[31:22] sensor_update_interval:

 Bits[31:27] sec – Seconds

 Bits[26:22] mult – two’s
complement format representing the
power-of-10 multiplier that is applied to
the Seconds field.

 The time duration between successive
updates to the sensor value. The
representation is in the [sec] x 10[mult]
format, in units of seconds. This field is
set to 0 if the sensor doesn’t require a
minimum update interval.

Bits[21:16] Reserved

Bits[15:11] The power-of-10 multiplier in two’s-
complement format that is applied to
the sensor unit specified by the
SensorType field.

Bits[10:8] Reserved

Bits[7:0] SensorType: The type of sensor and
the measurement system it
implements, as described in Table 16.

uint8 sensor_name[16]
A NULL terminated ASCII string with the sensor
name, of up to 16 bytes.

Table 16 Sensor Type Enumerations1:

Enum Sensor Unit
Description

Enum Sensor Unit
Description

Enum Sensor Unit
Description

0 None 30 Cubic Feet 60 Bits

1 Unspecified 31 Meters 61 Bytes

2 Degrees C 32 Cubic Centimeters 62 Words (data)

3 Degrees F 33 Cubic Meters 63 Doublewords

4 Degrees K 34 Liters 64 Quadwords

5 Volts 35 Fluid Ounces 65 Percentage

6 Amps 36 Radians 66 Pascals

7 Watts 37 Steradians 67 Counts

8 Joules 38 Revolutions 68 Grams

9 Coulombs 39 Cycles 69 Newton-meters

System Control and Management Interface

Page 70 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

10 VA 40 Gravities 70 Hits

11 Nits 41 Ounces 71 Misses

12 Lumens 42 Pounds 72 Retries

13 Lux 43 Foot-Pounds 73 Overruns/Overflows

14 Candelas 44 Ounce-Inches 74 Underruns

15 kPa 45 Gauss 75 Collisions

16 PSI 46 Gilberts 76 Packets

17 Newtons 47 Henries 77 Messages

18 CFM 48 Farads 78 Characters

19 RPM 49 Ohms 79 Errors

20 Hertz 50 Siemens 80 Corrected Errors

21 Seconds 51 Moles 81 Uncorrectable Errors

22 Minutes 52 Becquerels 82 Square Mils

23 Hours 53 PPM (parts/million) 83 Square Inches

24 Days 54 Decibels 84 Square Feet

25 Weeks 55 DbA 85 Square Centimeters

26 Mils 56 DbC 86 Square Meters

27 Inches 57 Grays - All others – reserved

28 Feet 58 Sieverts

29 Cubic Inches 59 Color Temperature
Degrees K

255 OEM Unit

1: This table is based on the Distributed Management Task Force (DMTF) specification number DSP 0249 (Platform
Level Data Model specification).

4.7.2.5 SENSOR_TRIP_POINT_NOTIFY

This command is used by the agent to globally control generation of notifications on cross-over events
for the trip-points that have been configured using the SENSOR_TRIP_POINT_CONFIG command.

message_id: 0x4

protocol_id: 0x15

This command is optional.

Parameters

System Control and Management Interface

Page 71 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Name Description

uint32 sensor_id Identifier for the sensor.

uint32 sensor_event_control

Bits[31:1] Reserved.

Bit[0] Globally controls generation of
notifications on crossing of configured
trip-points pertaining to the specified
sensor.

 If this bit is set to 1, notifications are sent
whenever the sensor value crosses any
of the trip-points that have been
configured using the
SENSOR_TRIP_POINT_CONFIG
command.

 If this bit is set to 0, no notifications are
sent for any of the trip-points.

Return values

Name Description

int32 status
INVALID_PARAMETERS

See section 4.1.4 for status code definitions.

4.7.2.6 SENSOR_TRIP_POINT_CONFIG

This command is used for selecting and configuring a trip-point of interest. Following the successful
completion of this command, the platform generates the SENSOR_TRIP_POINT_EVENT event
whenever the sensor value crosses the programmed trip point value, provided notifications have been
enabled for trip-points globally using the SENSOR_TRIP_POINT_NOTIFY command.

An agent can use this command for various use-cases. For example:

• The agent can invoke this command twice to program the upper and lower values of a
hysteresis band, respectively.

• For a counter-type sensor that is required to fire a notification on reaching a certain count, the
agent can issue this command to program the count value.

message_id: 0x5

protocol_id: 0x15

This command is mandatory if at least one of the implemented sensors in the platform

supports trip points.

Parameters

Name Description

uint32 sensor_id Identifier for the sensor.

System Control and Management Interface

Page 72 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 trip_point_ev_ctrl

Bits[31:12] Reserved.

Bits[11:4] trip_point_id: Identifier for the selected
trip point. This value should be equal to
or less than the total number of trip points
that are supported by this sensor as
advertised in its descriptor.

Bits[3:2] Reserved for future use.

Bits[1:0] Event control for the trip-point:

 If set to 0, disables event generation for
this trip-point (this is the default state)

 If set to 1, enables event generation
when this trip-point value is reached or
crossed in a positive direction

 If set to 2, enables event generation
when this trip-point value is reached or
crossed in a negative direction

 If set to 3, enables event generation
when this trip-point value is reached or
crossed in either direction.

uint32 trip_point_val_low
Lower 32 bits of the sensor value corresponding to
this trip-point. The default value is 0.

uint32 trip_point_val_high
Higher 32 bits of the sensor value corresponding to
this trip-point. The default value is 0.

Return values

Name Description

int32 status See section 4.1.4 for status code definitions.

4.7.2.7 SENSOR_READING_GET

This command requests the platform to provide the current value of the sensor that is represented by
sensor_id. For synchronous mode of access, the platform provides the sensor reading in the response
to this command itself. For asynchronous accesses, the platform returns the sensor value in the
SENSOR_READING_COMPLETE delayed response.

When the platform notices failure or fault conditions in the sensor or its associated logic or circuitry, it
returns the HARDWARE_ERROR status. Other errors pertain to the interface itself, and are
enumerated in 4.1.4.

Agents should assess the sensor attributes to determine the optimal mode of access for the sensor. A
slow sensor like a temperature sensor can be more optimally read asynchronously, while a shared
memory-based sensor can be read synchronously.

System Control and Management Interface

Page 73 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

message_id: 0x6

protocol_id: 0x15

This command is mandatory.

Parameters

Name Description

uint32 sensor_id The identifier for the sensor to be read

uint32 flags

Bits[31:1] Reserved

Bit[0] Async flag:

 Set to 1 if the sensor is to be read
asynchronously.

 Set to 0 to if the sensor is to be read
synchronously.

Return values

Name Description

int32 status

See section 4.1.4 for status code definitions. If this is an

asynchronous call, then the returned status code

pertains to this command itself, and any error that

occurs during the actual sensor read operation is

reported subsequently with the

SENSOR_READING_COMPLETE delayed response.

uint32 sensor_value_low
Lower 32 bits of the sensor value. This value is invalid if

an error status is returned.

uint32 sensor_value_high
Higher 32 bits of the sensor value. This value is invalid if

an error status is returned.

4.7.3 Delayed Responses from Platform to Agent

4.7.3.1 SENSOR_READING_COMPLETE

This response is the delayed response to an asynchronous SENSOR_READING_GET command
issued by an agent. When the platform determines that there are certain failure conditions in the sensor
itself, such as a fault in the sensor hardware or related circuitry or logic, it returns
HARDWARE_ERROR to report that condition to the caller. Other errors apply to the interface itself, and
are enumerated in 4.1.4.

System Control and Management Interface

Page 74 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

message_id: 0x6

protocol_id: 0x15

This response is mandatory and is generated if the caller used the asynchronous

method to read the sensor.

Return Values

Name Description

int32 status
An appropriate status code, as described in section
4.1.4.

uint32 sensor_id Identifier for the sensor.

uint32 sensor_value_low

Value that is read from the sensor.

Lower 32 bits of the sensor value. This value is invalid
if an error status is returned.

uint32 sensor_value_high

Value that is read from the sensor.

Lower 32 bits of the sensor value. This value is invalid
if an error status is returned.

4.7.4 Notifications

4.7.4.1 SENSOR_TRIP_POINT_EVENT

This notification is issued by the platform when a sensor crosses a specific trip point that the agent had
requested event notification for, by using the SENSOR_TRIP_POINT_CONFIG command.

The platform might read sensors periodically using polling, or program sensors to generate interrupts on
trip points, depending on implementation. If the sensor value changes such that it crosses several trip-
points between successive reads by the platform, then the platform might minimally send only one
notification to the agent to represent the multiple cross-over condition.

Message_id: 0x0

protocol_id: 0x15

This notification is optional.

Return Values

Name Description

uint32 agent_id

Refers to the agent that caused this event. For the
current version of the specification, this field is set to 0
to indicate that the platform is the generator of all
sensor events.

Uint32 sensor_id Identifier for the sensor that has tripped

System Control and Management Interface

Page 75 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

uint32 trip_point_desc

Bits[31:17] Reserved.

Bit[16] Direction.

 If set to 1, indicates that the trip point was
reached or crossed in the positive
direction.

 If set to 0, indicates that the trip point was
reached or crossed in the negative
direction.

Bits[15:8] Reserved for future use.

Bits[7:0] trip_point_id

 The identifier for the trip point that was
crossed or reached.

4.7.5 Sensor Values Shared Memory

Optionally, the platform might provide sensor values through the shared memory region that is
associated with the sensor management protocol. Whether support is present is indicated by the
PROTOCOL_ATTRIBUTES command, which is described in section 4.7.2.2. This command also
provides the address and the size of the shared memory region. The memory must be accessible from
the Non-secure world, and OSPM must map it as non-cached normal memory or device memory.

The format of the frame is described in Table 17.

Table 17 Sensor shared memory region

Field Byte Length Byte Offset Description

Signature 0x4 0x0 0x53454E53 (‘SENS’).

Revision 0x2 0x4 For this revision, this value must be zero.

Attributes 0x2 0x6 For this revision, this value must be zero.

Number of
sensors

0x2 0x8 Number of sensors.

Reserved 0x6 0xA Must be zero.

Sensor
domain offset
array

0x4 ×

Number of
sensors

0x10 For each sensor, this array provides a 4-
byte offset, from the start of the shared
memory area, to the memory location
where the sensor value is stored. A value
of 0 indicates that the sensor value is not
reported through shared memory. The
array is indexed by sensor_id.

Sensor
values data

-- 0x10 + 0x4

× (Number
Each sensor value is stored on a 64-bit
aligned boundary, with a number that might

System Control and Management Interface

Page 76 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

section of sensors) be up to 64 bits.

Accessing multi-word values might cause races between platform write accesses and the read
accesses by agents in the system. This problem and its solution are described in section 4.3.4.

System Control and Management Interface

Page 77 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

5 Transports

Transports describe how messages are exchanged between agents and the platform.

5.1 Mailbox transport

This form of transport relies on the use of shared memory between the platform and the agents.

The transport optionally supports interrupt based communication, where, on completion of the
processing of a message, the caller receives an interrupt. Polling for completion is also supported.

The transport can be used to provide an agent to platform, or a platform to agent channel. Each
channel in the transport includes:

• Mailbox memory area
This is an area of memory that is shared between the caller and the callee. At any point in time,
the shared memory is owned by the caller or the callee. The ownership is reflected by a
channel status word in the mailbox memory area. The channel is said to be free when the
memory area is owned by caller, and busy when it passed to callee. When a channel is free, the
caller can write a message and associated payload to this shared memory area. After this, the
caller updates the status, and relinquishes ownership of the shared memory by marking the
channel as busy. The callee can use the shared memory to pass return values that are
associated with the processing of the message. When the callee has completed processing the
message, it updates the status to indicate that the channel is now free. The layout of the
memory area is described in section 5.1.2.

• Doorbell
A mechanism that the caller can use to alert the callee of the presence of a message. Typically,
this mechanism is implemented as a register in caller, which, when written, raises an interrupt
on the callee.

• Completion interrupt
This transport supports polling or interrupt driven modes of communication. In interrupt mode,
when the callee completes processing a message, it raises an interrupt on the caller. Hardware
support for completion interrupts is optional.

System Control and Management Interface

Page 78 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

5.1.1 Message communications flow

Figure 3 Communications flow

A flow chart for sending a message from the caller to the callee using interrupt mode is shown on the
left of Figure 3.

The steps are as follows:

1. The caller must ensure that the channel is free.

2. The caller populates the mailbox with the message and its payload.

3. The caller marks the channel as busy by updating the status.

4. The caller rings the doorbell. This signals the callee that a pending message is in the mailbox.

5. The callee processes the command in mailbox.

6. Optionally, the callee updates the mailbox area with any return data that are associated with the
message processing.

7. The callee marks the channel as free by updating the status.

8. The callee issues a completion interrupt to the caller.

9. Optionally the caller processes the contents of the mailbox area.

A flow chart for sending a message using polling mode is shown on the right of Figure 3. The main
difference is that the caller has to poll for command completion by checking the status of the channel,
as there is no completion interrupt.

The caller must ensure the appropriate ordering of memory operations so that all updates to the
mailbox must be visible to the callee before ringing the doorbell. Equally, the callee must ensure that all
mailbox changes are visible to the caller before updating the status.

If the caller contains multiple processing elements that can share a transport channel, then appropriate
locking must be put in place to ensure that only one processing element can use the channel at any one
time. The channel must be locked until the message processing completes and the results are
processed by the caller.

Interrupt mode communication flow

5: Process command

callee

4: Ring doorbell

9: Process mailbox

6: Populate mailbox

8: Completion interrupt

caller

2: Populate mailbox

1: Wait for channel to be free

7: Mark channel as free

3: Mark channel as busy

Polled mode communication flow

callee

4a: Ring doorbell

caller

2: Populate mailbox

1: Wait for channel to be free

3: Mark channel as busy

8: Process mailbox

4b: Wait until channel

is free

5: Process command

6: Populate mailbox

7: Mark channel as free

System Control and Management Interface

Page 79 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

5.1.2 Mailbox memory

For a given channel, the layout of the memory that is shared between the agent and platform is
described in Table 18.

Table 18 Layout of the mailbox

Field Byte

Length

Byte

Offset

Description

Reserved 0x4 0x0 Reserved, must be zero.

Channel status 0x4 0x4 The field has the following format:

Bits[31:1] Reserved, must be zero.

Bit[1] Channel error

 This bit is set to one if the previous
message was not transmitted due to
a communications error. The caller
must clear it when it has ownership of
the channel.

Bit[0] Channel free:

 This bit is set to one if the channel is
free.

 This bit is cleared to zero if the
channel is busy.

Reserved 0x8 0x8 IMPLEMENTATION DEFINED field.

Mailbox flags 0x4 0x10 Mailbox flags are described in Table 19.

Length 0x4 0x14 Length in bytes of the Message header and
Payload areas (4+N).

Message header 0x4 0x18 Message header field as described in section 4.1,
Table 3.

Message
Payload

N 0x1C Array of 32-bit values that are used to hold any
parameters or return values.

The arguments are sent out in the same order
they are declared in a protocol command.

Return values are sent back in the same order as
they are declared in a protocol command.

If a message is not known to the callee, the
payload must contain NOT_SUPPORTED as the
first return value. Status codes are provided in
section 4.1.4.

System Control and Management Interface

Page 80 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

When interrupt driven communication is supported, the mailbox transport allows the caller to choose
between interrupt and polling driven communications. This can be done on any transfer, and is useful
when the caller wants to operate in a fire and forget fashion, without having to handle interrupts. To
make the choice, the mailbox flags are used. The format of the flags is described in Table 19.

Table 19 Mailbox flags

Field Description

Bits[31:1] Reserved, must be zero.

Bit[0] Interrupt communication enable:

Set to 1 if the command should complete via an
interrupt.

Set to 0 if the command should not result in an
interrupt assertion.

5.1.2.1 Mailbox transport firmware representation guidelines

An operating system on an agent needs a description of the mailbox transport and its properties before
using it. ARM recommends using firmware technologies such as FDT and ACPI for this purpose. This
section details the properties that are required to be defined for each channel.

Doorbell register

For agent to platform channels, a doorbell register is required to alert the platform that a message is
present in the mailbox area. Writing to it requires a read-modify-write sequence. Firmware tables can be
used to describe the properties of the register to an OSPM running on the AP. The properties that must
be described are shown in Table 20.

Table 20 Properties of the doorbell register

Field Description

Register address Physical address of the register that is written to,
to issue a command to the platform.

Preserve Mask Mask of bits that must be preserved when
modifying the doorbell register to issue a
command.

Modify Mask Mask of bits that must be set when modifying the
doorbell register to issue a command.

Channels can share a register address for the doorbell, but in this case must have unique preserve and
modify masks.

For platform to agent channels, a message interrupt must be described. This interrupt is raised by the
platform on notification or delayed response messages. Not describing this interrupt implies that that
platform messages have to be polled by agents.

System Control and Management Interface

Page 81 of 81 Copyright © 2017 ARM Limited or its affiliates. All rights reserved. ARM DEN 0056A
 Non-Confidential

Mailbox shared memory address and size

The physical address of the mailbox, and its size, must be described to the OSPM.

Completion interrupt

For agent-to-platform channels, where interrupt mode is supported, the properties of the completion
interrupt must be described by agent firmware. The properties of the completion interrupt to be
described are covered in Table 21.

Table 21 Properties of the completion interrupt

Field Description

Interrupt identifier

Identifier for the interrupt asserted by the
platform on command completion.

Interrupt
properties

Whether interrupt is level or edge triggered.

Register address If the interrupt is level sensitive, the physical
address of the interrupt clearing register that
must be written to, to clear the interrupt.

Preserve Mask If the interrupt is level sensitive, mask of bits that
must be preserved when accessing the register
to clear the interrupt.

Modify Mask If the interrupt is level sensitive, mask of bits that
must be set when accessing the register to clear
the interrupt.

If the interrupt is level-sensitive, it can be shared by more than one channel. In this case, the preserve-
and modify-masks must be unique for each channel.

	Release information
	Proprietary notice
	Confidentiality Status
	Product Status
	Web Address
	1 About this Document
	1.1 References
	1.2 Terms and abbreviations
	1.3 Feedback
	1.3.1 Feedback on this manual

	2 Introduction
	3 System Control and Management Interface structure
	4 Protocols
	4.1 Protocol structure
	4.1.1 Agents, messages, and channels
	4.1.2 Message format
	4.1.3 Protocol discovery
	4.1.4 SCMI status codes

	4.2 Base protocol
	4.2.1 Commands
	4.2.1.1 PROTOCOL_VERSION
	4.2.1.2 PROTOCOL_ATTRIBUTES
	4.2.1.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.2.1.4 BASE_DISCOVER_VENDOR
	4.2.1.5 BASE_DISCOVER_SUB_VENDOR
	4.2.1.6 BASE_DISCOVER_IMPLEMENTATION_VERSION
	4.2.1.7 BASE_DISCOVER_LIST_PROTOCOLS
	4.2.1.8 BASE_DISCOVER_AGENT
	4.2.1.9 BASE_NOTIFY_ERRORS

	4.2.2 Notifications
	4.2.2.1 BASE_ERROR_EVENT

	4.3 Power domain management protocol
	4.3.1 Power domain management protocol background
	4.3.2 Commands
	4.3.2.1 PROTOCOL_VERSION
	4.3.2.2 PROTOCOL_ATTRIBUTES
	4.3.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.3.2.4 POWER_DOMAIN_ATTRIBUTES
	4.3.2.5 POWER_STATE_SET
	4.3.2.6 POWER_STATE_GET
	4.3.2.7 POWER_STATE_NOTIFY

	4.3.3 Notifications
	4.3.3.1 POWER_STATE_CHANGED

	4.3.4 Power state statistics shared memory region

	4.4 System power management protocol
	4.4.1 System power management protocol background
	4.4.2 Commands
	4.4.2.1 PROTOCOL_VERSION
	4.4.2.2 PROTOCOL_ATTRIBUTES
	4.4.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.4.2.4 SYSTEM_POWER_STATE_SET
	4.4.2.5 SYSTEM_POWER_STATE_GET
	4.4.2.6 SYSTEM_POWER_STATE_NOTIFY

	4.4.3 Notifications
	4.4.3.1 SYSTEM_POWER_STATE_NOTIFIER

	4.5 Performance domain management protocol
	4.5.1 Performance domain management protocol background
	4.5.2 Commands
	4.5.2.1 PROTOCOL_VERSION
	4.5.2.2 PROTOCOL_ATTRIBUTES
	4.5.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.5.2.4 PERFORMANCE_DOMAIN_ATTRIBUTES
	4.5.2.5 PERFORMANCE_DESCRIBE_LEVELS
	4.5.2.6 PERFORMANCE_LIMITS_SET
	4.5.2.7 PERFORMANCE_LIMITS_GET
	4.5.2.8 PERFORMANCE_LEVEL_SET
	4.5.2.9 PERFORMANCE_LEVEL_GET
	4.5.2.10 PERFORMANCE_NOTIFY_LIMITS
	4.5.2.11 PERFORMANCE_NOTIFY_LEVEL

	4.5.3 Notifications
	4.5.3.1 PEFORMANCE_LIMITS_CHANGED
	4.5.3.2 PERFORMANCE_LEVEL_CHANGED

	4.5.4 Performance domain statistics shared memory region

	4.6 Clock management protocol
	4.6.1 Clock management protocol background
	4.6.2 Commands
	4.6.2.1 PROTOCOL_VERSION
	4.6.2.2 PROTOCOL_ATTRIBUTES
	4.6.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.6.2.4 CLOCK _ATTRIBUTES
	4.6.2.5 CLOCK_DESCRIBE_RATES
	4.6.2.6 CLOCK_RATE_SET
	4.6.2.7 CLOCK_RATE_GET
	4.6.2.8 CLOCK_CONFIG_SET

	4.6.3 Delayed responses
	4.6.3.1 CLOCK_RATE_SET_COMPLETE

	4.7 Sensor management protocol
	4.7.1 Sensor management protocol background
	4.7.2 Commands from Agents to Platform
	4.7.2.1 PROTOCOL_VERSION
	4.7.2.2 PROTOCOL_ATTRIBUTES
	4.7.2.3 PROTOCOL_MESSAGE_ATTRIBUTES
	4.7.2.4 SENSOR_ DESCRIPTION_GET
	4.7.2.4.1 Sensor Descriptor

	4.7.2.5 SENSOR_TRIP_POINT_NOTIFY
	4.7.2.6 SENSOR_TRIP_POINT_CONFIG
	4.7.2.7 SENSOR_READING_GET

	4.7.3 Delayed Responses from Platform to Agent
	4.7.3.1 SENSOR_READING_COMPLETE

	4.7.4 Notifications
	4.7.4.1 SENSOR_TRIP_POINT_EVENT

	4.7.5 Sensor Values Shared Memory

	5 Transports
	5.1 Mailbox transport
	5.1.1 Message communications flow
	5.1.2 Mailbox memory
	5.1.2.1 Mailbox transport firmware representation guidelines

