
SMC CALLING CONVENTION
System Software on ARM® Platforms

Document number: ARM DEN 0028A

Copyright ARM Limited 2013

Page 1 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention
System Software on ARM Platforms
Copyright © 2013 ARM Limited. All rights reserved.

Release information
The Release History table lists the releases of this document.

Table 1-1 Release history

Date Issue Confidentiality Change

June 2013 A Non-Confidential First release

Non-Confidential Proprietary Notice
This document is protected by copyright and the practice or implementation of the information herein may
be protected by one or more patents or pending applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document.
This document is Non-Confidential but any disclosure by you is subject to you providing the recipient the
conditions set out in this notice and procuring the acceptance by the recipient of the conditions set out in
this notice.
Your access to the information in this document is conditional upon your acceptance that you will not use,
permit or procure others to use the information for the purposes of determining whether implementations
infringe your rights or the rights of any third parties.
Unless otherwise stated in the terms of the Agreement, this document is provided “as is”. ARM makes no
representations or warranties, either express or implied, included but not limited to, warranties of
merchantability, fitness for a particular purpose, or non-infringement, that the content of this document is
suitable for any particular purpose or that any practice or implementation of the contents of the document
will not infringe any third party patents, copyrights, trade secrets, or other rights. Further, ARM makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and
content of such third party patents, copyrights, trade secrets, or other rights.
This document may include technical inaccuracies or typographical errors.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT LOSS, LOST REVENUE, LOST
PROFITS OR DATA, SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Words and logos marked with ® or TM are registered trademarks or trademarks, respectively, of ARM
Limited. Other brands and names mentioned herein may be the trademarks of their respective owners.
Unless otherwise stated in the terms of the Agreement, you will not use or permit others to use any
trademark of ARM Limited.
This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to
assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws.
In this document, where the term ARM is used to refer to the company it means “ARM or any of its
subsidiaries as appropriate”.
Copyright © 2013 ARM Limited.
110 Fulbourn Road, Cambridge, England CB1 9NJ. All rights reserved.

Page 2 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

Page 3 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

1 ABOUT THIS DOCUMENT 4
1.1 Introduction 4
1.2 References 4
1.3 Terms and abbreviations 5

2 SMC CALLING CONVENTIONS 6
2.1 SMC Function Identifiers 7
2.2 SMC32 Argument passing 8
2.3 SMC64 Argument passing 8
2.4 SIMD and Floating-point registers 8
2.5 SMC immediate value 9
2.6 Hypervisor Client ID 9
2.7 Trusted OS Session ID (optional) 9

3 AARCH64 SMC CALLING CONVENTIONS 10
3.1 Register use in AArch64 SMC calls 10

4 ARCH32 SMC CALLING CONVENTION 11
4.1 Register use in AArch32 SMC calls 11

5 SMC STANDARD RESULTS 12
5.1 Unknown SMC Function Identifiers 12
5.2 Unique Identification (UID) format 12
5.3 Revision information format 13

6 SMC IDENTIFIER RANGES 14
6.1 Allocation of Values 14

SMC Calling Convention

1 ABOUT THIS DOCUMENT

1.1 Introduction
This document defines a common calling mechanism for use with the Secure Monitor Call (SMC)
instruction in both the ARMv7 and ARMv8 architectures.

The SMC instruction is used to generate a synchronous exception that is handled by Secure Monitor
code running in EL3. The arguments are passed in registers and then used to select which Secure
function to execute. These calls may then be passed on to a Trusted OS in S-EL1.

This specification aims to ease integration and reduce fragmentation between software layers, such as
Operating Systems, Hypervisors, Trusted OS, Secure Monitor and System Firmware.

Note: This document is defined with respect to the ARMv8 Exception levels, EL0 to EL3.
The relationship between these and the 32-bit ARMv7 Exception levels is described in [2].

1.2 References
This document refers to the following documents.

Ref Doc No Author(s) Title

[1] ARM DDI 0406 ARM ARM® Architecture Reference Manual
ARMv7-A and ARMv7-R edition

[2] ARM DDI 0487 ARM ARM® Architecture Reference Manual, ARMv8,
for ARMv8-A architecture profile
Note: Document under development, release
expected Q3-2013

[3] ARM IHI 0042 ARM Procedure Call Standard for the ARM 32-bit
Architecture

[4] ARM IHI 0055 ARM Procedure Call Standard for the ARM 64-bit
Architecture

[5] ARM DEN 022 ARM Power State Coordination Interface

[6] http://tools.ietf.org/html/rfc4122 IETF RFC 4122 - A Universally Unique IDentifier
(UUID) URN Namespace

Page 4 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

http://tools.ietf.org/html/rfc4122

SMC Calling Convention

1.3 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

AArch32 state The ARM 32-bit execution state that uses 32-bit general purpose registers, and a
32-bit program counter (PC), stack pointer (SP), and link register (LR). AArch32
execution state provides a choice of two instruction sets, A32 and T32, previously
called the ARM and Thumb instruction sets.

AArch64 state The ARM 64-bit execution state that uses 64-bit general purpose registers, and a
64-bit program counter (PC), stack pointer (SP), and exception link registers (ELR).
AArch64 execution state provides a single instruction set, A64.

EL0 The lowest exception level. The exception level used to execute user applications,
in Non-secure state.

EL1 Privileged exception level. The exception level used to execute operating systems,
in Non-secure state.

EL2 Hypervisor exception level. The exception level used to execute hypervisor code.
EL2 is always in Non-secure state.

EL3 Secure Monitor exception level. The exception level used to execute Secure
Monitor code, which handles the transitions between Non-secure and Secure
states. EL3 is always in Secure state.

Non-secure state The ARM execution state that restricts access to only the Non-secure system
resources such as: memory, peripherals and system registers.

OEM Original Equipment Manufacturer. In this document the final device manufacturer.

S-EL0 The Secure EL0 Exception level, the Exception level used to execute trusted
application code in Secure state.

S-EL1 The Secure EL1 Exception level, the Exception level used to execute Trusted OS
code in Secure state.

Secure Monitor The Secure Monitor is software that executes at the EL3 Exception level. It receives
and handles Secure Monitor exceptions, and provides transitions between Secure
state and Non-secure state.

Secure state The ARM execution state that enables access to the Secure and Non-secure
systems resources, such as: memory, peripherals and system registers.

SiP Silicon Partner. In this document, the silicon manufacturer.

SMC Secure Monitor Call. An ARM assembler instruction that causes an exception that is
taken synchronously into EL3.

SMC32 32-bit SMC calling convention

SMC64 64-bit SMC calling convention

SMC Function
Identifier

A 32-bit integer which identifies which function is being invoked by this SMC call.
Passed in R0 or W0 into every SMC call.

Trusted OS The secure operating system running in the Secure EL1 Exception level. It supports
the execution of trusted applications in Secure EL0.

Page 5 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

2 SMC CALLING CONVENTIONS
In the ARM architecture, synchronous control is transferred between the normal Non-secure state to
Secure state through System Monitor Call exceptions [1][2]. SMC exceptions are generated by the SMC
instruction [1][2] and handled by the Secure Monitor. The operation of the Secure Monitor is determined
by the parameters passed in through registers.

Two types of calls are defined:
• Fast Calls used to execute atomic Secure operations.
• Standard Calls used to start pre-emptible Secure operations.

The additional asynchronous infrastructure required for pre-emptible Standard Calls is outside of the
scope of this specification.

Two calling conventions for the SMC instruction are defined:
• SMC32: A wholly 32-bit interface which can be used by either 32-bit or 64-bit client code and which

passes up to six 32-bit arguments
• SMC64: A 64-bit interface which can be used only by 64-bit client code and which passes up to six

64-bit arguments

The SMC Function Identifier is defined.
It is passed into every SMC call in register R0 or W0 and it determines:
• The call type in use.
• The calling convention is in use.
• The secure function to be invoked.

Page 6 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

2.1 SMC Function Identifiers
An SMC Function Identifier is a 32-bit integer value which indicates which function is being requested by
the caller. It is always passed as the first argument to every SMC call in R0 or W0.

Specified bits within the 32-bit value have defined meanings as shown in table Table 2-1.

Table 2-1 Bit usage within the SMC Function Identifier

Bit Numbers Bit Mask Description

31 0x80000000 If set to 0 then this is Standard call (pre-emptible)

If set to 1 then this is a Fast Call (atomic)

30 0x40000000 If set to 0 then this is the SMC32 calling convention.

If set to 1 then this is the SMC64 calling convention.

29:24 0x3F000000

Owning
Entity

Number

Bit Mask Description

0 0x00000000 ARM Architecture Calls

1 0x01000000 CPU Service Calls

2 0x02000000 SIP Service Calls

3 0x03000000 OEM Service Calls

4 0x04000000 Standard Service Calls

5-47 0x05000000 – 0x2F000000 Reserved for future use

48-49 0x30000000 – 0x31000000 Trusted Application Calls

50-63 0x32000000 – 0x3F000000 Trusted OS Calls

These ranges are further defined in section 6.

23:16 0x00FF0000 Must be zero (MBZ), for all Fast Calls, when bit[31] == 1.

All other values reserved for future use

Note: Some ARMv7 legacy Trusted OS Fast Call implementations have
all bits set to 1.

15:0 0x0000FFFF Function number within the range call type defined by bits[29:24].

Page 7 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

2.2 SMC32 Argument passing
When the SMC32 convention is used, the SMC instructions take up to seven 32-bit arguments in
registers and can return up to four 32-bit values in registers.

When an SMC32 call is made from AArch32:
• Arguments are passed in registers R0-R6.
• Results are returned in R0-R3.
• Registers R4-R14 are callee-saved and must be preserved over the SMC call.

When an SMC32 call is made from AArch64:
• Arguments are passed in registers W0-W6.
• Results are returned in W0-W3.
• Registers X18-X30 and stack pointers SP_EL0 and SP_ELx are callee-saved and must be

preserved over the SMC call.

Note: Unused result and scratch registers can leak information after an SMC call. An implementation
can mitigate this risk by either preserving the register state over the call, or returning a constant
value, such as zero, in each register.

Note: SMC32 calls from AArch32 and AArch64 use the same physical registers for arguments and
results, since registers W0-W7 in AArch64 are equivalent to R0-R7 in AArch32.

2.3 SMC64 Argument passing
When the SMC64 convention is used, the SMC instructions take up to seven 64-bit arguments in
registers and can return up to four 64-bit values in registers.

When an SMC64 call is made from AArch64:

• Arguments are passed in registers X0-X6.

• Results are returned in X0-X3.

• Registers X18-X30 and stack pointers SP_EL0 and SP_ELx are callee-saved and must be
preserved over the SMC call.

This calling convention cannot be used by code executing AArch32 state.

• Any SMC64 calls from AArch32 state will receive the Unknown SMC Function Identifier result, see
section 5.1.

Note: Unused result and scratch registers can leak information after an SMC call. An implementation
can mitigate this risk by either preserving the register state over the call, or returning a constant
value, such as zero, in each register.

2.4 SIMD and Floating-point registers
SIMD and floating-point registers must not be used to pass arguments to or receive results from any SMC
call.

All SIMD and floating-point registers are callee-saved and must be preserved over all SMC calls.

Page 8 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

2.5 SMC immediate value
The SMC instruction encodes an immediate value as defined by the ARM architecture [1][2]. The size of
this and mechanism to access the immediate value differ between the ARM instruction sets. Additionally,
it is time consuming for 32-bit Secure Monitor code to access this immediate value. Consequently:
• An SMC immediate value of Zero must be used.
• All other SMC immediate values are reserved.

2.6 Hypervisor Client ID
If an implementation includes a hypervisor or similar supervisory software executing at EL2 then it may be
necessary to identify which client operating system the SMC call originated from.

• A 32-bit hypervisor client ID parameter is defined for SMC calls.

• In AArch32, the hypervisor client ID is passed in the R7 register.

• In AArch64, the hypervisor client ID is passed in the W7 register.

• The hypervisor client ID of 0x00000000 is designated for SMC calls from the hypervisor itself.

The hypervisor client ID is expected to be created within the hypervisor and used to register, reference
and de-register client operating systems to a Trusted OS. Is not expected to correspond to the VMIDs
used by the MMU.

All SMC calls generated by software executing at EL1 should be trapped by the hypervisor. Identification
information should be inserted into R7 or W7 before forwarding any SMC call on to the Secure Monitor.

2.7 Trusted OS Session ID (optional)
To support multiple sessions with in the Trusted OS, it may be necessary to identify multiple instances of
the same SMC call.

• An optional 32-bit Session ID is defined for SMC calls.

• In AArch32, the Session ID is passed in the R6 register.

• In AArch64, the Session ID is passed in the W6 register.

It is expected that the Session ID is provided by the Trusted OS, and is used by its clients in subsequent
calls.

Page 9 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

3 AARCH64 SMC CALLING CONVENTIONS
This specification defines two common calling mechanisms for use with the SMC instruction from the
AArch64 state, known as SMC32 and SMC64.

For ARM AArch64 systems all Trusted OS and Secure Monitor implementations must conform to this
specification.

3.1 Register use in AArch64 SMC calls
The same architectural registers, R0-R7, are used for the two AArch64 calling conventions, SMC32 and
SMC64.

The working size of the register is identified by its name:

 Xn All 64-bits used.

 Wn Lower 32-bits used, upper 32-bits are zero.

Table 3-1 Register Usage in AArch64 SMC32 and SMC64 calls

Register Name Role during SMC call

SMC32 SMC64 Calling values Modified Return state

SP_ELx ELx Stack Pointer No

Unchanged,

Registers are
saved/restored

SP_EL0 EL0 Stack Pointer No

X30 The Link Register No

X29 The Frame Pointer No

X19…X28 Callee-saved registers No

X18 The Platform Register No

X17 The second intra-procedure-call scratch register. Yes

Unpredictable,

Scratch
registers

X16 The first intra-procedure-call scratch register. Yes

X9…X15 Temporary registers Yes

X8 Indirect result location register Yes

W7 W7 Hypervisor Client ID register Yes

W6 X6

(or W6)

Parameter register

Optional Session ID register

Yes

W4…W5 X4…X5 Parameter registers Yes

W1…W3 X1…X3 Parameter registers Yes SMC Result
registers W0 X0 SMC Function ID Yes

For more information see [4] Procedure Call Standard for the ARM 64-bit Architecture

Page 10 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

4 ARCH32 SMC CALLING CONVENTION
This specification defines a common calling mechanism for use with the SMC instruction from the
AArch32 state, also known as SMC32.

Note: ARM recognizes that a number of vendors already use a proprietary calling convention and won’t

be able to meet all of the following requirements.

4.1 Register use in AArch32 SMC calls
Table 4-1 Register usage in AArch32 SMC Calls

Register

SMC32
Role during SMC call

Calling values Modified Return state

R15 The Program Counter Yes Next instruction

R14 The Link Register No

Unchanged,

Registers are saved/restored

R13 The Stack Pointer No

R12 The Intra-Procedure-call scratch
register

No

R11 Variable-register 8 No

R10 Variable-register 7 No

R9 Platform register. No

R8 Variable-register 5 No

R7 Hypervisor Client ID register No

R6 Parameter register 6

Optional Session ID

No

R5 Parameter register 5 No

R4 Parameter register 4 No

R3 Parameter register 3 Yes

SMC results registers
R2 Parameter register 2 Yes

R1 Parameter register 1 Yes

R0 SMC Function Identifier Yes

For more information see [3] Procedure Call Standard for the ARM 32-bit Architecture.

Page 11 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

5 SMC STANDARD RESULTS

5.1 Unknown SMC Function Identifiers
The Unknown SMC Function Identifier is a 32-bit value of 0xFFFFFFFF returned in R0. The same return
value is used by SMC32 and SMC64 calls.

An implementation must return this value when it receives an:

• SMC call with an unknown function identifier

• SMC call for a removed function identifier

• SMC64 call from AArch32 state

Note: The Unknown SMC Function Identifier should not be used to discover the presence, or lack of, an
SMC Function. SMC Function Identifiers should be determined from the UID and Revision
information.

5.2 Unique Identification (UID) format
This value identifies the owner of a particular sub-range of the API, and therefore who controls the actions
of SMCs in that sub-range.
The UID is a UUID as defined by RFC 4122 [6]. These UUIDs must be generated by any method defined
by RFC 4122 [6], and are 16 bytes strings.
UIDs are returned as a single128-bit value using the SMC32 calling convention. This is mapped to
argument registers as shown in Table 5-1.

Table 5-1: UUID register mapping

Register Value

AArch32 AArch64

R0 W0 Bytes 0…3 with byte 0 in the low order bits

R1 W1 Bytes 4…7 with byte 4 in the low order bits

R2 W2 Bytes 8…11 with byte 8 in the low order bits

R3 W3 Bytes 12…15 with byte 12 in the low order bits

UIDs with the first 32-bits set to 0xFFFFFFFF (i.e. the value of R0 or W0) should be avoided since they
are indistinguishable from Unknown SMC Function Identifiers (see section 0).

Page 12 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

5.3 Revision information format
The revision information for a sub-range is defined by a 32-bit major version and a 32-bit minor version.

Different major revision values indicate possibly incompatible SMC APIs, for the affected SMC range.

For two revisions, A and B, for which the major revision values are identical, if the minor revision value of
revision B is greater than the minor revision value of revision A, then every SMC in the affected range that
works in revision A must also work, with a compatible effect, in revision B.

When returned by a call, the major version is returned in R0 or W0 and the minor version is returned in
R1 or W1. Such an SMC must use the SMC32 calling convention.

The rules for interface updates are:

• An SMC function identifier once issued must never be re-used.

• Additional SMC calls must take a new unused SMC identifier.

• Calls to removed SMC identifiers must return the Unknown SMC Function Identifier value.

• Incompatible argument changes cannot be made to an existing SMC call, a new call is required.

• Major revision number must be incremented when:

o Any SMC call is removed.

• Minor revision number must be incremented when:

o Any SMC call is added.

o Backwards compatible changes are made to existing function arguments

Page 13 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

6 SMC IDENTIFIER RANGES

6.1 Allocation of Values
The following tables show the recommended allocation of SMC identifier value ranges for different entities
and purposes. The owner of a range is the entity who is responsible for that function in a specific SoC.
The same entity can be responsible for multiple sub-ranges.

Table 6-1: SMC Identifier Sub-range ownership

SMC Function Identifier SMC sub-range ownership Notes

0x00000000-0x0100FFFF Reserved for existing APIs This region is already in use by ARMv7
devices on the field.

0x02000000-0x7FFFFFFF Trusted OS Trusted OS Standard Calls

0x80000000-0x8000FFFF SMC32: ARM Architecture Calls

0x81000000-0x8100FFFF SMC32: CPU Service Calls

0x82000000-0x8200FFFF SMC32: SiP Service Calls

0x83000000-0x8300FFFF SMC32: OEM Service Calls

0x84000000-0x8400FFFF SMC32: Standard Service Calls

0x85000000-0xAF00FFFF Reserved for future expansion

0xB0000000-0xB100FFFF SMC32: Trusted Application Calls

0xB2000000-0xBF00FFFF SMC32: Trusted OS Calls

0xC0000000-0xC000FFFF SMC64: ARM Architecture Calls

0xC1000000-0xC100FFFF SMC64: CPU Service Calls

0xC2000000-0xC200FFFF SMC64: SiP Service Calls

0xC3000000-0xC300FFFF SMC64: OEM Service Calls

0xC4000000-0xC400FFFF SMC64: Standard Service Calls

0xC5000000-0xEF00FFFF Reserved for future expansion

0xF0000000-0xF100FFFF SMC64: Trusted Application Calls

0xF2000000-0xFF00FFFF SMC64: Trusted OS Calls

All Function Identifier ranges not listed in this table are reserved.

Page 14 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

Table 6-2: Trusted OS SMC range

SMC Function Identifier

Reserved use and sub-range
ownership

Notes

 Owner: Trusted OS

0x02000000-0x1FFFFFFF General Trusted OS Trusted OS dependent SMC usage.
Typically this channel is used to
create an asynchronous API to
Trusted Services.

0x20000000-0x7FFFFFFF Reserved for future expansion

These values are used in a Trusted OS specific way to implement the Standard Call functionality.
Note: Trusted OS identification and revision details can be discovered through the Trusted OS Fast Call

identification and revision interface – see Table 6-10.

Table 6-3: ARM Architecture Call range

SMC Function Identifier Reserved use and sub-range
ownership

Notes

 Owner: ARM Service Calls

0x8000000-0x8000FEFF SMC32: ARM Service Calls

0x8000FF00 SMC32: ARM Architecture Call
Count

This call returns a 32-bit count of the
available Service Calls.
A return value of zero means no
services are available.

0x8000FF01

SMC32: ARM Architecture Call UID Each implementation of ARM
Architecture Calls must provide a
unique Identifier (UID).

0x8000FF02 Reserved

0x8000FF03

SMC32: ARM Architecture Call
Revision details

Each variant of a UID implementation
must provide revision details.

0x8000FF04-0x8000FFFF Reserved for future expansion

0xC0000000-0xC000FFFF SMC64: ARM Architecture Calls

The ARM Architecture Calls provide interfaces to generic services for the ARM Architecture.

Page 15 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

Table 6-4: CPU Service Calls range

SMC Function Identifier Reserved use and sub-range
ownership

Notes

 Owner: CPU Service Calls

0x81000000-0x8100FEFF SMC32: CPU Service Calls

0x8100FF00 SMC32: CPU Service Call Count This call returns a 32-bit count of the
available Service Calls.
A return value of zero means no
services are available.

0x8100FF01 SMC32: CPU Service Call UID Each Implementation of CPU Service
Calls must provide a unique Identifier.

0x8100FF02 Reserved

0x8100FF03

SMC32:
CPU Service Call Revision details

Each update may provide revision
details. The structure of this data is
CPU dependent.

0x8100FF04-0x8100FFFF Reserved for future expansion

0xC100FF00-0xC100FFFF SMC64: CPU Service Calls

The CPU Service Calls provide interfaces to CPU implementation-specific services for this platform. Such
as access to errata work-arounds.

Table 6-5: SiP Service Calls range

SMC Function Identifier Reserved use and sub-range
ownership

Notes

 Owner: SiP Service Calls

0x82000000-0x8200FEFF SMC32: SiP Service Calls

0x8200FF00 SMC32: SiP Service Call Count This call returns a 32-bit count of the
available Service Calls.
A return value of zero means no
services are available.

0x8200FF01 SMC32: SiP Service Call UID Each Implementation of SiP Service
Calls must provide a unique Identifier.

0x8200FF02 Reserved

0x8200FF03

SMC32:
SiP Service Call Revision details

Each update can provide revision
details. The structure of this data is
SiP dependent.

0x8200FF04-0x8200FFFF Reserved for future expansion

0xC200FF00-0xC200FFFF SMC64: SiP Service Calls

The SiP Service Calls provide interfaces to SoC implementation specific services on this platform.
For example, Secure platform initialization, configuration and some power control.

Page 16 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

Table 6-6: OEM Service Call range

SMC Function Identifier Reserved use and sub-range
ownership

Notes

 Owner: OEM Service Calls

0x83000000-0x8300FEFF SMC32: OEM Service Calls

0x8300FF00 SMC32: OEM Service Call Count This call returns a 32-bit count of the
available Service Calls.
A return value of zero means no
services are available.

0x8300FF01

SMC32: OEM Service Call UID Each Implementation of OEM Service
Calls must provide a unique Identifier.
Typically it is expected that there is
one UID per OEM.

0x8300FF02 Reserved

0x8300FF03

SMC32:
OEM Service Call Revision details

Each update can provide revision
details. The structure of this data is
OEM dependent.

0x8300FF04-0x8300FFFF Reserved for future expansion

0xC300FF00-0xC300FFFF SMC64: OEM Service Calls

The OEM Service Calls provide interfaces to OEM-specific services on this platform.

Page 17 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

Table 6-7: Standard Service Call range

SMC Function Identifier Reserved use and sub-
range ownership

Notes

 Owner: Standard Service
Calls

0x84000000-0x8400001F PSCI SMC32 bit Calls

A range of SMC calls. See [5] for details of
functions and arguments.

0x84000020-0x8400FEFF SMC32:
Standard Service Calls

Service calls defined by ARM standards.
The arguments are defined by the relevant
ARM standard.

0x8400FF00 SMC32:
Standard Service Call Count

This call returns a 32-bit count of the
available Service Calls.
A return value of zero means no services
are available.

0x8400FF01

SMC32:
Standard Service Call UID

Each Implementation of Standard Service
Calls must provide a unique Identifier (UID).

0x8400FF02 Reserved

0x8400FF03

SMC32: Standard Service Call
Revision details

This SMC returns the revision information
for the Standard service calls.

0x8400FF04-0x8400FFFF Reserved for future expansion

0xC4000000-0xC400001F PSCI SMC64 bit Calls A range of SMC calls. See [5] for details of
functions and arguments.

0xC4000004-0xC400FEFF SMC64:
Standard Service Calls

Service calls defined by ARM standards.
The arguments are defined by the relevant
ARM standard.

0xC4FFFF00-0xC4FFFFFF Reserved for future expansion

ARM intends to define a set of standard Service Calls for the management of the overall system. By
standardizing such calls the job of implementing Operating Systems on ARM will be made easier.

The first of these standards is the Power State Coordination Interface [5].

Note: Standard Service identifiers need to be understood by a Hypervisor when it traps SMC calls
because it must know which SMC calls are for power control and similar operations so that it can
emulate these calls for its clients.

Page 18 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

SMC Calling Convention

Page 19 of 19 Copyright © 2013 ARM Limited. All rights reserved. ARM DEN 0028A (0.9.0)
 Non-Confidential

 Table 6-8: Reserved for future expansion

SMC Function Identifier Reserved use and sub-range
ownership

Notes

 Reserved for future expansion

0x85000000-0xEF00FFFF Reserved for future expansion

Table 6-9: Trusted Application Call range

SMC Function Identifier Reserved use and sub-range
ownership

Notes

 Owner: Trusted Application Calls

0xB0000000-0xB100FFFF SMC32: Trusted Application Calls

0xF0000000-0xF100FFFF SMC64: Trusted Application Calls

Note: It is the responsibility of a Trusted OS to identify and describe services provided by Trusted
Applications

Table 6-10: Trusted OS Call range

SMC Function Identifier Reserved use and sub-range
ownership

Notes

 Owner: Trusted OS calls

0xB2000000-0xBF00FEFF SMC32: Trusted OS Calls

0xBF00FF00 SMC32: Trusted OS Calls Count This call returns a 32-bit count of the
available Service Calls.
A return value of zero means no
services are available.

0xBF00FF01

SMC32: Trusted OS Calls UID Each Implementation of a Trusted OS
Call must provide a unique Identifier.
A return value of 0 indicates that no
Trusted OS is present.

0xBF00FF02 Reserved

0xBF00FF03

SMC32:
Trusted OS Call Revision details

Each update can provide revision
details. The structure of this data is
OEM-dependent.

0xBF00FF04-0xBF00FFFF Reserved for future expansion

0xF2000000-0xFF00FFFF SMC64: Trusted OS calls

	1 ABOUT THIS DOCUMENT
	1.1 Introduction
	1.2 References
	1.3 Terms and abbreviations

	2 SMC CALLING CONVENTIONS
	2.1 SMC Function Identifiers
	2.2 SMC32 Argument passing
	2.3 SMC64 Argument passing
	2.4 SIMD and Floating-point registers
	2.5 SMC immediate value
	2.6 Hypervisor Client ID
	2.7 Trusted OS Session ID (optional)

	3 AARCH64 SMC CALLING CONVENTIONS
	3.1 Register use in AArch64 SMC calls

	4 ARCH32 SMC CALLING CONVENTION
	4.1 Register use in AArch32 SMC calls

	5 SMC STANDARD RESULTS
	5.1 Unknown SMC Function Identifiers
	5.2 Unique Identification (UID) format
	5.3 Revision information format

	6 SMC IDENTIFIER RANGES
	6.1 Allocation of Values

