Arm® Architecture Reference Manual
Supplement

Reliability, Availability, and Serviceability (RAS), for Armv8-A

arm

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0587 D.a-00bet0

Release information

Date Version Changes
2020/Jul/22 D.a * Initial v8.6 Beta Release, with rewrite of the RAS supplement.
2019/Jul/01 C.b * Updated v8.4 Release.
2018/Oct/01 C.a ¢ Initial v8.4 EAC Release.
2017/Dec/01 B.a ¢ Updated EAC Release.
2017/Sep/01 B * EAC Release.
2017/Mar/01 A * First issue.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.

D.a-00bet0 Non-confidential

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this document
may be reproduced in any form by any means without the express prior written permission of Arm. No license, express
or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically
stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to
use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets,
or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference
to Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make
changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/
policies/trademarks.

Copyright © 2017-2020 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. iii
D.a-00bet0 Non-confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Contents

Arm® RAS Supplement

Preface

Chapter 1

Chapter 2

ARM DDI 0587
D.a-00bet0

Release information L ii
Non-Confidential Proprietary Notice iii
Documentstatus vii
Aboutthisbook viii
Usingthisbook ix
Conventions e e e e X
Typographical conventions X
Numbers X
Pseudocode descriptions X
Assembler syntax descriptionso X
Rules-based writing Xi
Identifiers Xi
Examples e e Xi
Additionalreading e xiii
Feedback xiv
Feedbackonthisbook Xiv

Introduction to RAS

1.1 Faults, errors, and failures L 16
1.2 General taxonomy oferrors o L 17
1.2.1 Errordetection. o 17
1.2.2 Errorpropagation 17
1.2.3 Infected and poisoned 18
1.2.4 Containable and uncontainable 18
1.3 Techniques for improving reliability, availability, and serviceability 19
1.3.1 Fault prevention and faultremoval 19
1.3.2 Errorhandlingandrecovery L. 19
1.3.3 Faulthandling 20
Armv8-A RAS Extension
2.1 PEerrorhandling 22
21.1 PE errordetection L 22
21.2 PE error propagation 23
21.3 Othererrors e 25
2.2 Generating errorexceptions oL 26
2.3 Taking errorexceptions 27
2.3.1 PE error state recording in the exception syndrome 29
232 PE error state classification 30
2.3.3 Multiple SErrorinterruptso 34
2.3.4 Target Exception level for External abort and SError interrupt
exceptions taken to AArch64 state 35
2.3.5 Target mode for External abort and SError interrupt exceptions taken
toAArch32state 35
2.4 Error synchronizationevent L. 36
241 ESB and Virtual SError interrupt exceptions 39
242 Extension for synchronization at exception entry and return 39
2.5 Virtual SErrorinterrupts 42
Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. iv

Non-confidential

Contents

2.6 Errorrecordsinthe PE o 43
2.6.1 Error record System registerview oL 43
Chapter 3 RAS System Architecture
3.1 Nodes e 46
3.1.1 Multiple errorrecordspernode, 47
3.1.2 Detecting and consuming errors L. 48
3.2 Standard errorrecord 52
3.2.1 Componenterrorstates. 52
3.2.2 Writingthe errorrecord 56
3.2.3 Errorsyndrome 60
3.24 Security and Virtualization Lo 61
3.25 Synchronization and error record accesses 62
3.2.6 Bridges to other architectures 62
3.2.7 Softwarefaults. 63
3.2.8 Other sources of errorandwarnings 64
3.3 Errorrecoveryinterrupt 65
3.4 Fault handling interrupt 66
3.5 In-band error response signaling (external aborts) 67
3.6 Critical errorinterrupt 68
3.7 Standard format Corrected errorcounter 69
3.8 Error recovery, fault handling, and critical error signaling 71
3.9 Errorrecoveryreset 73
3.10 Timestamp extension 74
3.11 Common Fault Injection Model Extension 75
3.111 Operation of the Common Fault Injection Model Extension 75
Chapter 4 RAS Extension and RAS System Architecture Registers
4.1 Memory-mapped view 78
411 Access requirements for memory-mapped views of RAS error records 79
4.2 Resetvalues 80
4.3 Error record registers, including memory mapped view 81
431 Registerindex 81
4.3.2 ERR<n>ADDR, Error Record Address Register 84
4.3.3 ERR<n>CTLR, Error Record Control Register 87
43.4 ERR<n>FR, Error Record Feature Register 95
4.3.5 ERR<n>MISCO, Error Record Miscellaneous Register0 103
4.3.6 ERR<n>MISC1, Error Record Miscellaneous Register1 109
4.3.7 ERR<n>MISC2, Error Record Miscellaneous Register2 111
4.3.8 ERR<n>MISC3, Error Record Miscellaneous Register3 113
4.3.9 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register . . 115
4.3.10 ERR<n>PFGCTL, Pseudo-fault Generation Control Register 117
4.3.11 ERR<n>PFGF, Pseudo-fault Generation Feature Register 122
4.3.12 ERR<n>STATUS, Error Record Primary Status Register. 127
4.3.13 ERRCIDRO, Component Identification Register0. 143
4.3.14 ERRCIDR1, Component Identification Register 1. 144
4.3.15 ERRCIDR2, Component Identification Register2. 145
4.3.16 ERRCIDR3, Component Identification Register3. 146
4.3.17 ERRCRICRO, Critical Error Interrupt Configuration Register0 147
4.3.18 ERRCRICRT1, Critical Error Interrupt Configuration Register 1 149
4.3.19 ERRCRICR2, Critical Error Interrupt Configuration Register2 151
4.3.20 ERRDEVAFF, Device Affinity Register 154
4.3.21 ERRDEVARCH, Device Architecture Register 158
4.3.22 ERRDEVID, Device Configuration Register 160
4.3.23 ERRERICRO, Error Recovery Interrupt Configuration Register 0 . . . 161
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. v

D.a-00bet0 Non-confidential

Contents

Contents
4.3.24 ERRERICR1, Error Recovery Interrupt Configuration Register 1 . . . 163
4.3.25 ERRERICR2, Error Recovery Interrupt Configuration Register2 . . . 165
4.3.26 ERRFHICRO, Fault Handling Interrupt Configuration Register0 168
4.3.27 ERRFHICR1, Fault Handling Interrupt Configuration Register 1 170
4.3.28 ERRFHICR2, Fault Handling Interrupt Configuration Register2 172
4.3.29 ERRGSR, Error Group Status Register 175
4.3.30 ERRIIDR, Implementation Identification Register 176
4.3.31 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <0-191>. . . . 178
4.3.32 ERRIRQCR<n>, Generic Error Interrupt Configuration Register. . . . 179
4.3.33 ERRIRQSR, Error Interrupt Status Register 180
4.3.34 ERRPIDRO, Peripheral Identification Register0 184
4.3.35 ERRPIDRI1, Peripheral Identification Register1 185
4.3.36 ERRPIDR2, Peripheral Identification Register2 186
4.3.37 ERRPIDRS, Peripheral Identification Register3 188
4.3.38 ERRPIDR4, Peripheral Identification Register4 190

Chapter 5 Appendix

5.1 Release notesforissueD.a 192
Glossary
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. Vi

D.a-00bet0 Non-confidential

Preface

Document status

Beta release.

The information contained in this manual is at Beta quality. Beta quality means that all major features of the
specification are described in the manual, some details might be missing.

In case of any apparent discrepancy or missing information, please contact Arm Limited.

vii

About this book

This manual describes the Armv8-A RAS Extension and RAS System Architecture.

This release of the Arm® RAS Supplement represents a major rewrite of the manual. The most significant
change is to use the rules-based writing approach. There are also some changes to the order and flow of the
manual, compared to previous releases.

Release notes for issue D.a summarizes the main changes and clarifications in the manual.

viii

Using this book

This manual is intended to be read in conjunction with [1].

iX

Conventions

Typographical conventions

The typographical conventions are:
italic
Introduces special terminology, and denotes citations.
bold
Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace
Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.
Red text

Indicates an open issue.
Blue text

Indicates a link. This can be

¢ A cross-reference to another location within the document
* A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font. The pseudocode language is described in the Arm Architecture
Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

http://developer.arm.com

Rules-based writing

Identifiers

Examples

U

This specification consists of a set of individual rules. Each rule is clearly identified by the letter R.

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader. An implementation which is compliant with the architecture must
conform to all of the rules in this specification.

Some architecture rules are accompanied by rationale statements which explain why the architecture was
specified as it was. Rationale statements are identified by the letter X.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter 1.

Implementation notes are identified by the letter U.
Software usage descriptions are identified by the letter S.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Rules, rationale statements, information statements, implementation notes and software usage statements are
collectively referred to as content items.

Each content item may have an associated identifier which is unique within the context of this specification.
When the document is prior to beta status:

» Content items are assigned numerical identifiers, in ascending order through the document (0001, 0002,
L)

* Identifiers are volatile: the identifier for a given content item may change between versions of the
document.

After the document reaches beta status:

» Content items are assigned random alphabetical identifiers (HJQS, PZWL, ...).
* Identifiers are preserved: a given content item has the same identifier across versions of the document.

Below are examples showing the appearance of each type of content item.

This is a rule statement.

This is a rule statement.

This is an information statement.
This is a rationale statement.

This is an implementation note.

X1

Preface
Rules-based writing

S This is a software usage description.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. Xii
D.a-00bet0 Non-confidential

Additional reading

This section lists publications by Arm and by third parties.
See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] Arm® Architecture Reference Manual for ARMvS-A architecture profile. (ARM DDI 0487) Arm Limited.

[2] Basic Concepts and Taxonomy of Dependable and Secure Computing. Algirdas AviZienis, Jean-Claude
Laprie, Brian Randell, and Carl Landwehr.

Xiii

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

* The title (Arm® RAS Supplement).

¢ The number (ARM DDI 0587 D.a-00bet0).

* The page numbers to which your comments apply.

* The rule identifiers to which your comments apply, if applicable.
* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

Xiv

Chapter 1
Introduction to RAS

T mapD Reliability, Availability, Serviceability (RAS) are three aspects of the dependability of a system:

* Reliability, the continuity of correct service.
* Availability, the readiness for correct service.
* Serviceability, the ability to undergo modifications and repairs.

T awaou RAS techniques reduce unplanned outages because:

* Transient errors can be detected and corrected before they cause application or system failure.
* Failing components can be identified and replaced.
* Failure can be predicted ahead-of-time to allow replacement during planned maintenance.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

15

Chapter 1. Introduction to RAS
1.1. Faults, errors, and failures

1.1 Faults, errors, and failures

Ryspay

R YRDDR

Ranepx

Correct service is delivered when the service implements the system function.

Correct service might include:

* Producing correct results.
* Producing results within the time allotted to the task.
* Not divulging secret or secure information.

For the purpose of describing the RAS Extension and RAS System Architecture, deviation from correct service
is defined using the following terms:

* A failure is the event of deviation from correct service. This includes data corruption, data loss, and
service loss.

* An error is the deviation from correct service. An incorrect value that has an error is corrupt.
* A fault is the cause of the error.
Errors that are present but not detected are latent errors or undetected errors.

In a system with no error detection, all errors are latent errors and are silently propagated by components until
they are either masked or cause failure.

The severity of a failure can range from minor to catastrophic:

* The harmful consequences of a minor failure are of a similar cost to the benefits provided by correct
service delivery.

¢ The harmful consequences of a catastrophic failure are orders of magnitude, or even incommensurably,
higher than the benefit provided by correct service delivery.

There are many sources of faults in a system, including both software and hardware faults:

* Hardware faults originate in, or affect, hardware.
» Software faults affect software, that is programs or data.

The RAS Extension and RAS System Architecture primarily address errors produced from hardware faults.
These fall into two main areas:

¢ Transient faults.
* Non-transient or persistent faults.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 16

D.a-00bet0

Non-confidential

Chapter 1. Introduction to RAS
1.2. General taxonomy of errors

1.2 General taxonomy of errors

1.2.1 Error detection

5
R HXWP

I WKPVR

When a component accesses memory or other state, an error might be detected in that memory or state.

The error might be corrected or deferred by the component, or signaled to another component as either a deferred
error or a detected error.

1.2.2 Error propagation

Rrrzpn A transaction occurs when a producer of the transaction passes a value or other signal to a consumer of the
transaction.

Ivy Transactions are part of the service provided by the producer for the consumer.

TrueoL In many protocols and service interface definitions, a high-level transaction consists of a sequence of operations,
for instance between a Requester and a Completer.

For the purposes of this manual, the most basic form of a unidirectional transfer between a producer and
consumer is considered as a transaction.

That is, each one of the sequence of operations is considered a separate transaction. For some operations, such
as a request, the Requester is producer and the Completer is the consumer. For other operations, such as a
response, the Completer is producer and the Requester is the consumer.

Rskzze An error is propagated by the producer of a transaction when the service interface is incorrect because of the
error. The error is propagated to the consumer.

An error is propagated by deviations from correct service, including when any of the following occurs that
would not have been permitted to occur had the fault not been activated:

Ry * A corrupt value is passed from producer to consumer.

Rzenxe * A transaction or other operation occurs that should not have occurred.

Rerzke * A transaction or other operation that should have occurred does not occur.

Ruzvnr * A loss of uniprocessor semantics or any other loss of coherency in a multiprocessor coherent system is

observed.

Rker * Changing the timing and/or order of transactions or other operations such that the timing and/or order of
those transactions or operations is incorrect. In this case the service interface defines acceptable timings
and/or orders for transactions and other operations.

The service interface for a transaction might include means to signal that the transaction is propagating:

Ryvry * A detected error.

Res * A deferred error.

Rex An error is silently propagated by the producer of a transaction if the consumer of the transaction cannot detect
the error and consumes an undetected error because of the transaction. This might be because of one of the
following:

* The error is present on the transaction, but was not detected by the producer. The error is silently
propagated by the producer.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 17

D.a-00bet0

Non-confidential

Chapter 1. Introduction to RAS
1.2. General taxonomy of errors

* The error is present on the transaction, but was not signaled to the consumer as an error. For example, a
corrupt value was passed in the transaction with no indication that it was corrupt. The error is silently
propagated by the producer.

Rrppys A latent, possibly detectable, error is silently propagated by the consumer of an otherwise correct transaction if
the transaction causes the error to become undetectable.

Txyvee For example, a partial write to a protection granule that removes poison, leaving the unchanged portion of the
location corrupt. To implement a partial write, the consumer logically reads the current value of the location,
modifies the value, and then writes the modified value back. These are internal transactions in the consumer that
silently propagate the error. In this example there was no error at the producer nor on the transaction.

Errors might be propagated by components in a system until one of the following occurs:

Tyzrpy * They are masked and do not affect the outcome of the system.

The error might be masked because a corrupt value is discarded or overwritten, or the error is detected and
removed.

Iyvoze » They affect the service interface of the system and possibly cause failure. If the error has been silently
propagated to the service interface then:

— This is a Silent Data Corruption (SDC).
— The rate of such failures, measured as the number of failures per billion device-hours of operation, is
called the SDC Failure-in-Time (FIT) rate.

Alternatively, the error might have been detected, causing the system to invoke error handling and recovery.
See Error handling and recovery.

1.2.3 Infected and poisoned

Riknnwe The state of a component becomes infected when the component consumes an uncorrected error that updates
the state.
Rrzesw A value is poisoned in the state of a component if it is marked as being in error, such that a subsequent access of

the state will detect the value is so marked and is treated as a detected error.

TypurK Poison is used to defer an error.

1.2.4 Containable and uncontainable

Rpxorp An undetected error is uncontained at the component that failed to detect it.
Rravro A silently propagated error is uncontained at the component that silently propagated it.
Reaonr A detected uncorrected error is uncontainable at the component if it might be uncontained at the component.

A detected uncorrected error is containable at the component if it is not uncontainable at the component. If
the component cannot determine whether a detected uncorrected error is uncontainable or containable at the
component, it treats it as uncontainable at the component.

I vroMR An error that is uncontainable at a component might be containable at the system level.

Note

Reporting an error as containable allows software to contain the error. It does not mean that hardware has
contained the error.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 18
D.a-00bet0 Non-confidential

Chapter 1. Introduction to RAS
1.3. Techniques for improving reliability, availability, and serviceability

1.3 Techniques for improving reliability, availability, and serviceability

Irpck

I

1.3.1 Fau

IeaaLc

Each device sets its own targets for reliability, availability, and serviceability, and uses different techniques to
achieve these targets, including:

* Fault prevention and fault removal.
* Error handling and recovery.
e Fault handling.

The level of reliability, availability, and serviceability in any implementation, and which parts of the system
include RAS, are IMPLEMENTATION DEFINED. The RAS Extension and RAS System Architecture do not
prescribe the level of reliability, availability, and serviceability in any implementation, or which parts of the
system include RAS.

It prevention and fault removal

Fault prevention and fault removal are two techniques for handling faults. Fault prevention and fault removal
mechanisms are IMPLEMENTATION DEFINED.

Fault prevention techniques are outside the scope of the architecture.

A fault that is removed is a corrected error and might be recorded and generate a fault handling interrupt, but it
is not propagated. This means that it is not consumed and does not cause service failure.

A common technique to detect and correct errors is the use of an Error Detection and Correction Code (EDAC),
more commonly referred to as simply an Error Correction Code (ECC). ECC schemes use mathematical codes
to detect and correct an error in a value in memory. The size of the value is the protection granule for the ECC
scheme.

The RAS Extension and RAS System Architecture do not require implementation any fault removal schemes,
including ECC.

1.3.2 Error handling and recovery

R}{L‘J_ VT

RyTxyy

Tpceyx

ARM DDI 0587
D.a-00bet0

A fault that is not removed gives rise to an uncorrected error.

Error recovery is the process by which software and hardware minimize the impact of an uncorrected error.

Error recovery methods include:

* Deferring an error from a fault. An error is deferred by hardware if hardware can make forward progress
without consuming the error. Deferring the error means:

— The fault might become masked later (fault removal). For example, because the corrupt value is
overwritten before it is consumed.

— If the deferred error is later consumed, then the error is reported at the point of consumption. For
example, if the deferred error is consumed by a Processing element (PE) then the consumer PE
generates an error exception. This can give better results in terms of error recovery in the case where
the original producer of the data is not known when the error was deferred. For example because a
latent error was detected.

A common technique to defer an error is to replace the corrupt value with a poisoned value, for example in
memory or in a transaction.

» Preventing further propagation of the error, that is containing the error. In particular, preventing silent
propagation of the error.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 19
Non-confidential

Chapter 1. Introduction to RAS
1.3. Techniques for improving reliability, availability, and serviceability

T,\LL‘LLTLJ

I TLDCY

» Reducing the severity of a failure by invoking a service failure mode:

— This is a Detected Uncorrected Error (DUE).
— The rate of such failures gives the DUE FIT rate.
— The type of service failure mode depends on what is acceptable to the service.

A software error recovery agent is typically invoked when hardware detects an error it cannot correct, defer, or
remove.

An error recovery agent also provides information to the operator through error logs to improve serviceability,
for example to help with the identification of a Field Replaceable Unit (FRU).

The RAS Extension and RAS System Architecture provide optional common programmers’ models to record
information about an error in an error record.

The RAS Extension describes the behavior of a PE when an error is signaled to it by the system, including
invoking a service failure mode by taking an error exception, and optional mechanisms to limit propagation of
an error.

The RAS Extension and RAS System Architecture do not require systems to implement error recovery
mechanisms, including poison, and do not require systems to limit the silent propagation of errors.

1.3.3 Fault handling

Tsurr

Tceepn

IRTN

T: QRSC
ARM DDI 0587
D.a-00bet0

Fault handling by software is the process by which software diagnoses and responds to faults to improve
availability.

Fault handling methods include:
* Predictive Failure Analysis (PFA), using information recorded by hardware to trigger pre-emptive action.

The RAS Extension and RAS System Architecture provide optional mechanisms to allow the reporting of errors
and warnings to a fault handling agent, and to record information about the fault in an error record. It is the
responsibility of the error recovery and fault handling processes to collate the error record data and write it to an
error log.

The detailed nature of the fault handling agent is outside the scope of this architecture. Fault handling and error
recovery might be independent agents.

See also:

e Standard error record

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 20
Non-confidential

Chapter 2
Armv8-A RAS Extension

Tinen The Reliability, Availability, Serviceability (RAS) Extension is identified as FEAT_RAS.

Ty The RAS Extension is a mandatory extension to the Armv8.2 architecture, and it is an optional extension to the
Armv8.0 and Armv8.1 architectures.

Is ID_AA64PFRO_EL1.RAS in AArch64 state, and ID_PFRO.RAS in AArch32 state, indicate whether the RAS
Extension is implemented.

Tip The RAS Extension extends the exception syndrome registers to include fields that allow the Processing element
(PE) to report a PE error state when an error exception is taken.

Ipwxkzs The RAS Extension adds the Error synchronization event and Error Synchronization Barrier instruction, ESB.

I rncHE The RAS Extension defines System registers that are specific to RAS, including to access optional error records
defined by the RAS System Architecture. The System register instructions are described in [1]. The format of
the error record registers is defined in Error record System register view.

Txpy The FEAT_IESB feature provides controls to insert an implicit Error synchronization event at exception entry
and exception return.

Ik, The FEAT _RASvIipl feature extends the RAS System registers to include support for RAS System Architecture
vl.1.

Tew The FEAT_DoubleFault feature provides EL3 controls to change the routing of synchronous External abort
exceptions and treat SError interrupts as nonmaskable. FEAT_DoubleFault is defined in [1].

Ryy The RAS Extension does not prescribe the level of reliability, availability, and serviceability in the PE. The RAS
features that the PE includes, for example to detect, correct, contain, or defer errors, are IMPLEMENTATION
DEFINED. The RAS Extension defines a framework for building RAS features in a PE.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 21

D.a-00bet0

Non-confidential

Chapter 2. Armv8-A RAS Extension
2.1. PE error handling

2.1 PE error handling

2.1.1 PE error detection

Tkryow When a PE accesses memory or other state, an error might be detected in that memory or state, and corrected,
deferred, or signaled to the PE as a detected error as an in-band error response.

Note

An error might also be signaled to a PE by means other than an in-band error response. See Rgyyv.

The response from memory or other state is defined by Detecting and consuming errors in the RAS System
Architecture:

Ipwwog * When an error is detected by a component on a read or a cache maintenance operation from the PE:

— If the error can be corrected, it is corrected and corrected data is returned.

— If the error cannot be corrected and can be deferred, it is deferred.

— Otherwise, if enabled at the component, the detected error is signaled to the PE as an in-band error
response.

The component might record the error and generate a fault handling interrupt and/or error recovery
interrupt.

Tpkvop * When an error is detected by a component consuming a write from the PE:

If the error can be corrected, it is corrected.

If the error cannot be corrected and can be deferred, it is deferred to the consumer. For example, by
poisoning the location being written.

If enabled at the consumer, the detected error is signaled to the PE as an in-band error response.

If enabled at the consumer, the consumer generates an error recovery interrupt.

IyryFr If the component implements the RAS System Architecture, its behavior is defined by RAS System Architecture,
and depends on the nature of the error and IMPLEMENTATION DEFINED properties of the component. In each
of these cases, the component might be a part of the processor, such as a cache, or might be outside of the
processor.

The component might also report the error to a RAS System Architecture node, which records the error and
might generate one or more of a fault handling interrupt, error recovery interrupt, or critical error interrupt
depending on the features and configuration of the node.

See also Other errors.

Note

An in-band error response is sometimes referred to as an External abort. To avoid confusion with the External
abort exception, this manual uses in-band error response to describe the response to the PE for a memory
access.

See In-band error response signaling (external aborts).

RoTREF The features that the system and PE include to detect, correct, or defer errors are IMPLEMENTATION DEFINED.
Ruvte The size of the protection granule for any implemented error detection mechanism in memory is

IMPLEMENTATION DEFINED.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 22
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.1. PE error handling

Lsgs6w A system might implement multiple error detection mechanisms with differing protection granule sizes.

Rengvmw The mechanism for clearing an error or poison from a memory protection granule is IMPLEMENTATION
DEFINED, and it is IMPLEMENTATION DEFINED whether any such mechanism exists.

Note

For some systems, a single-copy atomic write of at least the whole protection granule can reset the state of
the granule and clear any error or poison. In other systems, a DC ZVA operation might also clear the error.
However, the protection granule might be larger than the bCc zva block size and/or the largest single-copy
atomic access that the PE can perform.

Systems might require software to stop using the protection granule, for example by not using the physical
page containing the granule, until the system can be purged of errors, for example at a system reset. The
architecture does not set any limit on the size of a protection granule and it might be larger than a translation
granule.

Any mechanism for purging the system of errors is also IMPLEMENTATION DEFINED.

2.1.2 PE error propagation
Tyrxk The program-visible architectural state of the PE, referred to as the PE state, includes:

¢ General-purpose, SIMD&FP, and SVE registers.
* System registers.

* Special-purpose registers.

» PSTATE.

Rxmenw An error is consumed by the PE by any of the following:

* An instruction commits the corruption into the PE state.
* The error is on an instruction fetch and the corrupt instruction is committed for execution.
e The error is on a translation table walk for a committed load, store, or instruction fetch.

Tuvrkw For a PE, Error propagation applies to the propagation of detected errors by the PE between the PE state, and
any other PE state or memory.

Note

Memory includes structures that cache the contents of memory, such as an instruction cache, data cache, or
TLB.

An error is propagated by the PE by one or more of the following occuring that would not have been permitted
to occur had the fault not been activated:

Rporar » Consumption of the corrupt value by any instruction, propagating the error to the target(s) of the instruction.
This includes:

— A store of a corrupt value.
— A write of a corrupt value to a System register, Special-purpose register, or PSTATE. Infecting a
System register state might mean that the PE generates transactions that would not otherwise be

permitted.
Rakeck * Any operation occuring that should not have occurred, including:
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 23

D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.1. PE error handling

A load, translation table walk, or instruction fetch that would not have been permitted, including those
from hardware speculation or prefetching.

A store to an incorrect address or a store that would not have been made or not permitted.

A direct or indirect write to a Special-purpose or System register that would not have been made or
not permitted.

Assertion of any signal, such as an interrupt, that would not have been asserted.

Rrrxve ¢ Any operation not occurring that should have occurred.

Rpznnc * Causing the PE to take an imprecise exception, other than an error exception in response to the error itself.
See the section Definition of a precise exception in [1].

Remvp * The PE discarding data that it holds in a modified state.
Rpprxy * Any other loss of required uniprocessor semantics, ordering, or coherency.
Ryopws The error propagated by the PE is silently propagated by the PE only if all of the following are true:

* The propagation is not part of the required operation of the PE in taking an error exception generated by
the error.

* The propagation is not part of the required operation of the PE executing an ESB instruction that
synchronizes the error.

* The error is not signaled to the consumer as a detected error or deferred error.
* Any of the following are true:
— The corrupt value is held in other than the general-purpose, SIMD&FP, or SVE registers.

— The error is propagated by an instruction in program order before either taking an error exception
generated by the error or executing an ESB instruction that synchronizes the error, and is propagated
to outside of the general-purpose, SIMD&FP, or SVE registers.

— The error is propagated other than by an instruction that consumes the corrupt value as an input
operand but otherwise behaves correctly.

Note

This means that after taking the error exception generated by the error, or an ESB, propagating an error by, for
example, storing it to memory, is not considered as silent propagation of the error by the PE.

For example, the PE takes an error exception in response to a load that returns a corrupt value to a
general-purpose register. The error is not silently propagated to outside of the general-purpose registers
before the error exception is taken. However:

» Taking the error exception causes the ESR_ELx, ELR_ELx, and SPSR_ELXx registers to be updated.
This is part of the required operation of the PE.

» After taking the error exception, software stores the contents of the general-purpose register to memory,
and this is not signaled to memory as a deferred error. This happens in program order after the exception
is taken.

Neither of these actions are considered silent propagation of the error by the PE.

Rprrrg The features that a PE includes to prevent silent propagation of an error are IMPLEMENTATION DEFINED.

Twopts For example, an implementation might ensure that a corrupt value in a general-purpose or SIMD&FP register is
not silently propagated, by signaling a deferred error on any write of data to any memory location so that the
memory location is poisoned.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 24
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.1. PE error handling

2.1.3 Other errors

I KROMR

TH\T;' QZ

The RAS Extension deals mostly with errors detected by components outside of the PE, such as memory, and
consumed by the PE.

Other errors might be detected from within the processor itself. If these are not errors in the PE state they might
be treated like errors detected by another component.

For example:

* A processor cache detects an error in the cache state that cannot be corrected. The cache can be treated
as a component outside the PE. If the error is detected in dirty cache data being evicted from the cache
when the PE makes an access, it might be deferred by the cache writing poison in the evicted cache data.
If the PE is performing a partial write that does not completely overwrite the protection granule, it might
be deferred by the cache writing poison to the cache location, and/or evicting the cache line with poison.
Deferring the error means the error is not consumed by the PE. Otherwise, the cache component generates
the in-band error response to the PE.

* A processor detects a corrupt or poisoned value being returned from memory that is not being signaled as
an in-band error response and cannot be corrected or deferred. For example in response to an non-cacheable
read or a cache refill. The interface to memory can be treated as a component outside the PE. The memory
interface component generates the in-band error response to the PE.

In each of these cases, the component reports these errors to a RAS System Architecture node that implements
error records and records the errors, and might generate one or more of a fault handling interrupt, error recovery
interrupt, or critical error interrupt depending on the features and configuration of the node.

An example implementation might include error detection logic within the PE state itself. When the PE
detects an error in the PE state, the instruction that uses that state consumes the error, and the PE generates an
IMPLEMENTATION DEFINED SError interrupt exception. See Reyyyg.

In this case, the processor that implements the PE includes a RAS System Architecture node that implements
error records that record these errors.

An example implementation might support poisoning within the PE state. When the PE consumes a deferred
error, for example a poisoned value, from memory into the PE state, the PE state becomes poisoned. Subsequent
operations that read the poisoned value can continue to defer the error by poisoning the result of the operation.

However, if the PE attempts to execute an operation that reads the poisoned value and cannot defer the error
further, the PE generates an IMPLEMENTATION DEFINED SError interrupt exception. See Reyyy.

In this case, the processor that implements the PE includes a RAS System Architecture node that implements
error records that record these errors.

Components outside of the PE might detect errors that are not consumed by the PE. These components might
report such errors to a PE using error recovery interrupts.

For implementations that include the Statistical Profiling Extension, the Statistical Profiling Extension behaves
like a separate component.

Errors from software faults are outside the scope of the RAS Extension.

See also:

* RAS System Architecture
* Software faults

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 25

D.a-00bet0

Non-confidential

Chapter 2. Armv8-A RAS Extension
2.2. Generating error exceptions

2.2 Generating error exceptions

Ry

ARM DDI 0587
D.a-00bet0

An error exception is generated when a detected error is signaled to the PE as an in-band error response
to an architecturally-executed memory access or cache maintenance operation. This includes any explicit
data access, instruction fetch, translation table walk, or hardware update to the translation tables made by an
architecturally-executed instruction.

Error exception is a term used in this manual to describe a collection of exception types. See Taking error
exceptions for more information.

It is IMPLEMENTATION DEFINED whether an error exception can be generated for an error that is consumed by
hardware speculation or prefetching by a PE, but that is not committed to the architecturally visible state of the
PE.

It is IMPLEMENTATION DEFINED whether an error exception can be generated for a detected error that is
deferred.

It is IMPLEMENTATION DEFINED whether an error exception can be generated for a detected error that is
corrected.

An SError interrupt exception can also be generated for IMPLEMENTATION DEFINED causes.

For example, when an error is detected and neither corrected nor deferred, and signaled to the PE by means
other than an in-band error response, or when an error detected by the PE in the PE state or in the result of a
calculation.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 26
Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

2.3 Taking error exceptions
Rvxrys If FEAT_DoubleFault is implemented, an error exception is taken as a synchronous External abort exception for
all non-speculative:
¢ Instruction fetches.
* Translation table walks and hardware updates of translation tables on instruction fetches.

It is IMPLEMENTATION DEFINED whether an error exception is taken as a synchronous External abort exception
or as an asynchronous SError interrupt exception for each non-speculative:

* If FEAT_DoubleFault is not implemented, instruction fetch.
 Explicit access to memory made by an instruction.
¢ Cache maintenance operation.

* Translation table walk or hardware update of translation tables, other than for on an instruction fetch when
FEAT_DoubleFault is implemented.

» If FEAT_MTE is implemented, access to an Allocation Tag in memory made by an instruction.

All error exceptions other than those explicitly mentioned in this rule are taken as an asynchronous SError
interrupt exception.

Rurnac When an error exception is taken as an asynchronous SError interrupt exception, the exception is taken in finite
time.

Recxkn When any of the following exceptions are taken, the PE records the PE error state in the exception syndrome
register:

* A synchronous External abort taken to AArch64 state.
* An SError interrupt exception taken to either AArch32 or AArch64 state.

See PE error state classification.
Rryvyr When a synchronous External abort is taken to AArch32 state, the PE does not record the PE error state.

Taeeac The exception type and target execution state determines the set of PE error state values the PE can record. See
PE error state recording in the exception syndrome.

Tusvxs The recorded PE error state informs software whether it can recover execution and, if so, whether any action by
the recovery software to locate and repair the error is necessary first.

Inrpsu Software is only able to successfully recover execution and make progress from a restart address for the
exception by executing an Exception Return instruction to branch to the instruction at this restart address if all
of the following are true:

 The error has not been silently propagated by the PE.

* At the point when the Exception Return instruction is executed, the PE state and memory system state are
consistent with the PE having executed all of the instructions up to but not including the instruction at the
restart address, and none afterwards. That is, at least one of the following restart conditions is true:

— The error has been not architecturally consumed by the PE and infected the PE state.
— Executing the instruction at the restart address will not consume the error and will correct any corrupt
state by overwriting it with the correct value or values.

Rpckng On taking an error exception, the PE determines that software is able to recover execution at the point where the
exception is taken, with no additional action from software, if and only if all of the following are true:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 27
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

* The error has not been silently propagated by the PE.
* The restart conditions are met because all of the following are true:

— Either the error does not remain latent or executing the instruction at the restart address will not
consume the error and will correct any corrupt PE state.
— The restart address is the preferred return address for the exception.

* The PE has not elected to determine that software is not able to recover execution, and has not elected to
determine that software is able to recover execution if software takes action to locate and repair the error.

Ropany On taking an error exception, the PE determines that software is able to recover execution if software takes
action to locate and repair the error, to get the PE state and memory system state into this consistent state before
attempting recovery, if and only if all the following are true:

* The error has not been silently propagated by the PE.

* The restart conditions can be met because the restart address is the preferred return address for the
exception and at least one of the following is true:

— The error remains latent and executing the instruction at the restart address will access the corrupt
state. If the error is removed then executing the instruction at the restart address will correct any
corrupt PE state and/or corrupt memory state. For example, the instruction at the restart address is a
load that will consume the error and corrupts PE state.

— The error does not remain latent and the PE has elected to determine that software is able to recover
execution if software takes action to locate and repair the error.

— Executing the instruction at the restart address will not consume the error and the PE has elected to
determine that software is able to recover execution if software takes action to locate and repair the
error.

e The PE has not elected to determine that software is not able to recover execution.

Reaoun On taking an error exception, the PE determines that software is not able to recover execution if and only if one
or more of the following are true:

* The error has been silently propagated by the PE.

* The restart conditions cannot be met even if software takes action to locate and repair the error. This is
because at least one of the following is true:

— The error remains latent and executing the instruction at the restart address will consume the error
and corrupt PE state. Either the error cannot be removed or executing the instruction at the restart
address will not correct any corrupt PE state.

— The restart address is not the preferred return address for the exception.

¢ The PE has elected to determine that software is not able to recover execution.

Txmccr That the PE determines that software is able to recover execution if software takes action to locate and repair the
error does not mean that software can locate and repair. For example, the error in memory might be one which
cannot be located or cannot be repaired.

Note

Error recovery software might instead make the PE state and memory system state consistent with an
alternative execution of the program.

For example, if the error is located in a clean page of memory and the error exception is generated by a load
from the location infected with the error, then software might be able to repair the error by:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 28
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

* Reloading the page from a backing store. This makes the memory system state consistent with the
uncorrupted view. Executing the instruction at the restart address will load the uncorrupted value into
the PE state.

* Invalidating the clean page and marking it page as inaccessible. Executing the instruction at the restart
address will result in a Translation fault being generated when the program tries to access the page. The
target of the load will contain an UNKNOWN value, which is permitted by the architecture. The MMU
fault handler can then reload the page from the backing store, as it would for a page that has not been
previously accessed or has been paged out.

Either approach might result in the virtual address to physical address mapping for the page being changed
by software, meaning the memory system state is not consistent with the previously executed instructions.
However, the memory system state is consistent with a valid alternative view of the execution of the program
that allows software to recover execution.

Iruppy A PE might include additional IMPLEMENTATION DEFINED mechanisms to aid software locate and repair the
erTor.

If software has to use IMPLEMENTATION DEFINED mechanisms to locate and repair the error, then the PE reports
that it has determined that software is not able to recover execution. The PE might use IMPLEMENTATION
DEFINED additional syndrome registers to report that software is able to recover execution if software takes
action to locate and repair the error using the IMPLEMENTATION DEFINED mechanisms.

2.3.1 PE error state recording in the exception syndrome

Rupkym When an asynchronous SError interrupt exception is taken to AArch64 state, the PE records the PE error state
in the exception syndrome register as the applicable one of:

* An applicable one of the following, in ESR_ELX.AET, setting ESR_ELx.IDS to 0b0 and ESR_ELx.DFSC
to the applicable nonzero fault status code:
— Uncontainable (UC).
Unrecoverable state (UEU).
Recoverable state (UER).
Restartable state (UEO).
Corrected (CE).
* Uncategorized error, by setting ESR_ELX.ISS to all zeros.
* IMPLEMENTATION DEFINED syndrome, by setting ESR_ELx.IDS to 0b1.

Rrxans When a synchronous External abort exception is taken to AArch64 state, the PE records the PE error state in
ESR_ELX.SET as the applicable one of:

¢ Uncontainable (UC).
* Recoverable state (UER).
* Restartable state (UEO).

Other values for the PE error state are not supported by synchronous External abort exceptions taken to AArch64
state.

RpwksL When an asynchronous SError interrupt exception is taken to AArch32 state, the PE records the PE error state
in DFSR.AET or HSR.AET as appropriate, as the applicable one of:

¢ Uncontainable (UC).

¢ Unrecoverable state (UEU).
¢ Recoverable state (UER).

¢ Restartable state (UEO).

Other values for the PE error state are not supported by asynchronous SError interrupt exceptions taken to
AArch32 state.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 29
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

Tovvsm Table 2.1 summarizes the supported PE error state syndrome values for each type of error exception.

Table 2.1: Summary of error exception types and supported PE error state syndrome values

PE error state

External abort to SError interrupt External abort to SError interrupt
AArch64 state to AArch64 state AArch32 state to AArch32 state

Recorded in: ESR_ELx.SET ESR_ELx.AET No syndrome DFSR.AET
Uncategorized error No Yes (ISS==0) - No
IMPLEMENTATION DEFINED No Yes (IDS==1) - No
syndrome

Uncontainable (UC) Yes Yes - Yes
Unrecoverable state (UEU) No Yes - Yes
Recoverable state (UER) Yes Yes - Yes
Restartable state (UEO) Yes Yes - Yes
Deferred (DE) No No - No
Corrected (CE) No Yes - No

2.3.2 PE error state classification

Tccrwx The PE determines which PE error state to record based on the following criteria:

* The PE error state syndrome values supported by the type of error exception being taken. See PE error
state recording in the exception syndrome.

* The following implementation-specific properties and behaviors of the PE on taking the exception:

Whether the error has been silently propagated by the PE.

Whether the PE determines that software is able to recover execution at the point where the exception
is taken.

If the PE determines that software can recover execution, whether software needs locate and repair
the error before attempting to recover. If software does not locate and repair the error, then attempting
to recover execution might cause the error exception to be generated again.

If the PE determines that software cannot recover execution, whether the error is synchronized by
Error synchronization events.

* Whether the implementation elects to record the PE error state as another state. The PE only does this
when the criteria for the other, recorded state are met. The conditions under which the PE elects to record
the PE error state as another state are IMPLEMENTATION DEFINED.

The recorded PE error state is defined by the rules in this section.

Rokzis If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Uncontainable (UC):

* One or more of the following are true:

The error has been silently propagated by the PE.

The PE determines that software is not able to recover execution from the preferred return address of
the exception and the error is not synchronized by Error synchronization events.

The PE determines that software is not able to recover execution from the preferred return address
of the exception and the error exception is taken as a synchronous External abort to AArch64 state.
(That is, the type of error exception does not support reporting the PE error state as Unrecoverable
state (UEU).)

The implementation has elected to record the PE error state as Uncontainable (UC).

* The error exception is not taken as a synchronous External abort to AArch32 state.

ARM DDI 0587
D.a-00bet0

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 30
Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

* The implementation has not elected to record the PE error state as IMPLEMENTATION DEFINED syndrome
or Uncategorized error, or the type of error exception does not support reporting the PE error state as
IMPLEMENTATION DEFINED syndrome or Uncategorized error.

Roenyp If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Unrecoverable state (UEU):

 The error has not been silently propagated by the PE.
* The error exception is taken as an SError interrupt exception.
* One or more of the following are true:

— The PE determines that software is not able to recover execution from the preferred return address of
the exception and the error is synchronized by Error synchronization events.
— The implementation has elected to record the PE error state as Unrecoverable state (UEU).

* The implementation has not elected to record the PE error state as Uncontainable (UC), IMPLEMENTATION
DEFINED syndrome, or Uncategorized error.

Trgczp Error synchronization event defines synchronized by Error synchronization events.

Rannvr If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Recoverable state (UER):

* The error has not been silently propagated by the PE.
* The error exception is not taken as a synchronous External abort to AArch32 state.

* The PE determines that software is able to recover execution from the preferred return address of the
exception.

* One or more of the following are true:

— The PE determines that software must take action to locate and repair the error to successfully
recover execution. This might be because the exception was taken before the error was architecturally
consumed by the PE, at the point when the PE was not be able to make correct progress without either
consuming the error or otherwise making the state of the PE unrecoverable.

— The implementation has elected to record the PE error state as Recoverable state (UER).

* The implementation has not elected to record the PE error state as Unrecoverable state (UEU),
Uncontainable (UC), IMPLEMENTATION DEFINED syndrome, or Uncategorized error.

Rupver If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Restartable state (UEO):

* The error has not been silently propagated by the PE.
* The error exception is not taken as a synchronous External abort to AArch32 state.

* The PE determines that software can recover execution from the preferred return address of the exception
without the need for software to take action to locate and repair the error first.

* One or more of the following are true:

— The error is an uncorrected error. This includes a deferred error.

— The error is a corrected error and the error exception is not taken as an SError interrupt taken to
AArch64 state.

— The implementation has elected to record the PE error state as Restartable state (UEO).

e The implementation has not elected to record the PE error state as any of Recoverable state
(UER), Unrecoverable state (UEU), Uncontainable (UC), IMPLEMENTATION DEFINED syndrome, or
Uncategorized error.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 31
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

RLFX?’:

RI‘V YRP

I VKMZB

ARM DDI 0587
D.a-00bet0

If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Corrected (CE):

* The error has been corrected and not silently propagated by the PE.
* The error exception is taken as an SError interrupt taken to AArch64 state.

» Software can recover execution from the preferred return address of the exception. Because the error has
been corrected, software does not need to take action to locate and repair the error.

* The implementation has not elected to record the PE error state as any other type.

If and only if all the following are true, then on taking an error exception the PE error state is recorded as an
Uncategorized error:

* The error exception is taken as an asynchronous SError interrupt taken to AArch64 state.

* The implementation has elected to record the PE error state as an Uncategorized error.

If and only if all the following are true, then on taking an error exception the PE error state is recorded as an
IMPLEMENTATION DEFINED syndrome

* The error exception is taken as an asynchronous SError interrupt taken to AArch64 state.

» The implementation has elected to record the PE error state as an IMPLEMENTATION DEFINED syndrome.

The IMPLEMENTATION DEFINED syndrome type might provide additional IMPLEMENTATION DEFINED
syndrome recorded in the exception syndrome register. Software might be able to determine the state of
the PE from this syndrome, or other IMPLEMENTATION DEFINED syndrome registers.

Uncategorized error and IMPLEMENTATION DEFINED syndrome are defined for backwards compatibility with
previous versions of the architecture. Arm does not recommend use of these PE error state values in new
implementations that include other RAS features.

The PE error states are summarized by Figure 2.1. Figure 2.1 assumes the type of error exception supports the
resulting PE error state, never elects to record an error as a different PE error state when permitted, and does not
show Uncategorized error or IMPLEMENTATION DEFINED syndrome.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 32
Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

yes

. no
prc?é?gr:tlz 2 ——>» Error corrected? > Exception?

io

Error deferred? >» Exception?

- /

l ception taken
PE state .)
ybe recoverable? No exception es
x&s es
maybe Action required?
not
Y
Uncontainable Unrecoverable Recoverable Restartable Corrected
(UC) (UEU) (UER) (UEO) (CE)

Figure 2.1: PE error states

If the PE error state reports that software can recover execution, or that software isolation might be possible
because the error is synchronized by Error synchronization events, this does not necessarily mean that the error
can be recovered from because the error in the system might be one which does not allow software to recover
the operation. Rather, software might be able to recover if it can repair the error and continue.

For example, the component that originally detected the error and signaled it to the PE might record in a RAS
System Architecture node that the error is uncontainable at the component, meaning the system has to be shut
down to avoid catastrophic failure. The in-band error response to the PE is not required to signal the severity of
the error to the PE. The recorded PE error state refers only to the PE, not the system error state.

If the in-band error response can signal the severity of the error to the PE, the PE might use this information
to elect to report the PE error state as other than Recoverable state (UER). For example, if a processor cache
detects an uncontainable tag RAM error, the PE might report the PE error state as Uncontainable (UC), even
though the state of the PE itself is recoverable. However, this is not required, and software must not rely on this
behavior and should determine from the system whether the error is recoverable at the system level.

See also:
* PE error propagation
* Error synchronization event
Using the PE error state classification
When the PE error state is recorded as Uncontainable (UC):

¢ Software must assume that either:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 33
D.a-00bet0

Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

— The error has been silently propagated by the PE.
— Software is not able to recover execution from the preferred return address of the exception and the
error was not synchronized by Error synchronization events.

* If the error cannot be otherwise isolated to an application or VM, or both, the system must be shut down
by software to avoid catastrophic failure.

SHYWFL When the PE error state is recorded as Unrecoverable state (UEU):

» Software can assume the error has not been silently propagated by the PE.

» Software cannot safely recover execution from the preferred return address of the exception, even if it
takes action to locate and repair the error. The state of the affected software, or both, is unrecoverable.
However, if the software includes Error synchronization events, software can use the properties of the
Error synchronization event to determine which software is affected by the error.

* The affected software cannot continue and must be isolated by software.

S1sFyM When the PE error state is recorded as Recoverable state (UER):
* The uncorrected error might remain latent in the system.

* If the exception handler takes action to locate and repair the uncorrected error, it can safely recover
execution from the preferred return address of the exception. Otherwise on restart of the affected software
the PE might attempt to consume the error again, causing a further error exception. If software cannot
locate and repair the error, the affected software must be isolated by software.

Screzy When the PE error state is recorded as Restartable state (UEO):
e The error might remain latent in the system.

* Software might take action to locate and repair the error before it is consumed. However, the affected
software can be safely restarted by the exception handler without software taking any action to locate and
repair the error.

For example, the error was signaled when the PE speculatively accessed corrupt data.

SGrzos When the PE error state is recorded as IMPLEMENTATION DEFINED syndrome or Uncategorized error, if
software is not able to determine the actual state of the PE and memory, it should treat IMPLEMENTATION
DEFINED syndrome and Uncategorized error as Uncontainable (UC).

2.3.3 Multiple SError interrupts

Lcporw Multiple SError interrupt conditions might be pending together. The architecture does not define relative
priorities for asynchronous exceptions.

Rprxkoz If multiple SError interrupt conditions are pending, it is IMPLEMENTATION DEFINED whether the multiple
pending SError interrupt conditions are taken as a single SError interrupt exception.

LsBosc On taking an SError interrupt exception for more than one SError interrupt condition:

* If the exception is taken to AArch64 state and one or more pending SError interrupt conditions would
be reported as IMPLEMENTATION DEFINED syndrome, then the syndrome recorded in ESR_ELXx.ISS is
IMPLEMENTATION DEFINED.

¢ Otherwise, the recorded PE error state applies recorded by combined effect of the errors.

Ton Any pending SError interrupt conditions that are not taken with other SError interrupts as a single SError
interrupt exception remains pending after the SError interrupt exception is taken.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 34

D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

2.3.4 Target Exception level for External abort and SError interrupt exceptions taken to
AArch64 state

Inrzxz This section is included for completeness. It repeats the definitions from [1] and so is non-normative.

The default target Exception level for SError interrupt and synchronous External abort exceptions taken to
AArch64 state is:

e EL1, if taken from ELO or EL1.
e EL2, if taken from EL2.
e EL3, if taken from EL3.

However:

e If EL3 is implemented and SCR_EL3.EA is 0b1, all SError interrupt and synchronous external abort
exceptions are taken to EL3.

* Otherwise, if EL2 is implemented and enabled in the current Security state, then:

— If HCR_EL2.AMO is 0b1 or HCR_EL2.TGE is 0b1, all SError interrupts from ELO and EL1 are
taken to EL2.

— If HCR_EL2.TEA is 0b1 or HCR_EL2.TGE is 0b1, all synchronous External abort exceptions from
ELO and EL1 are taken to EL2.

2.3.5 Target mode for External abort and SError interrupt exceptions taken to AArch32 state

Tpmexm This section is included for completeness. It repeats the definitions from [1] and so is non-normative.

For SError interrupt and synchronous External abort exceptions taken to AArch32 state, the default target mode
is:

¢ Abort mode, if taken from ELO, EL1 or EL3, including from Secure Monitor mode.
* Hyp mode, if taken from EL2.

However:
 If EL3 is implemented and using AArch32 and SCR.EA is 0b1:

— All SError interrupt and synchronous external Data Abort exceptions are taken to Secure Monitor
mode, using vector offset 0x10.

— All synchronous external Prefetch Abort exceptions are taken to Secure Monitor mode, using vector
offset 0x0cC.

e Otherwise, if EL2 is implemented and using AArch32 and the PE is in Non-secure state:

— If HCR.AMO is 0b1 or HCR.TGE is 0b1, all SError interrupts from ELO and EL1 are taken to Hyp
mode, using vector offset 0x14.

— If HCR.TEA is 0b1 or HCR.TGE is 0b1, all synchronous External abort exceptions from ELO and
EL1 are taken to Hyp mode, using vector offset 0x14.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 35
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

2.4 Error synchronization event

Tvcroe The RAS Extension defines the Error synchronization event and the ESB instruction.

Reravn An Error synchronization event is generated by all of the following:
» Executing an ESB instruction.

* When FEAT_IESB is implemented, and one of the following is true, taking an exception to an Exception
level, ELx, using AArch64:

— The appropriate SCTLR_ELx.IESB bit is Ob1.
— FEAT_DoubleFault is implemented, the Exception level is EL3, and SCTLR_EL3.NMEA is 0b1.

In Debug state this also applies to executing a DCPSx instruction to ELx.

* When FEAT_IESB is implemented, and one of the following is true, executing an exception return
instruction at an Exception level, ELx, using AArch64:

— The appropriate SCTLR_ELx.IESB bit is 0b1.
— FEAT_DoubleFault is implemented, the Exception level is EL3, and SCR_EL3.NMEA is 0b1.

In Debug state this also applies to executing a DRET instruction at ELx.

Tpmevm In addition to generating an Error synchronization event, the ESB instruction might additionally record and then
clear a masked pending asynchronous SError interrupt exception.

Tywwrte For details of the operation and encoding of ESB, see [1].

Thozry The FEAT_IESB feature and SCTLR_ELx.IESB bits are described by [1]. See also Extension for
synchronization at exception entry and return.

Tnxv The FEAT_DoubleFault feature and SCR_EL3.NMEA bit are described by [1]. See also Extension for
synchronization at exception entry and return.

YZPBD An error is synchronized by Error synchronization events if and only if all the following are true for each Error
synchronization event:

* The error is generated by an instruction on the same PE as the Error synchronization event. This includes
any memory accesses, instruction fetch, translation table walk, or hardware update to the translation tables
made by the instruction.

* If the error exception for the error is taken in program order after the Error synchronization event completes,
and either physical SError interrupt exceptions are unmasked when the Error synchronization event occurs
or the error exception is taken synchronously, then all of the following are true:

— The instruction that generated the error is in program order after the Error synchronization event.
— On completion of the Error synchronization event, the PE state and memory system state are consistent
with the PE having executed all instructions in program order before the Error synchronization event.

« If the error exception for the error is taken asynchronously as an SError interrupt, physical SError interrupt
exceptions are masked when the Error synchronization event occurs, and the SError interrupt is not pending
when the Error synchronization event completes, then all of the following are true:

— The instruction that generated the error is in program order after the Error synchronization event.
— On completion of the Error synchronization event, the PE state and memory system state are consistent
with the PE having executed all instructions in program order before the Error synchronization event.

The SError interrupt is not pending when the Error synchronization event completes if a subsequent read
of ISR_EL1.A or ISR.A returns 0b0.

* If the error exception for the error is taken asynchronously as an SError interrupt, the Error synchronization

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 36
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

event is generated by an ESB instruction executed when physical SError interrupt exceptions are masked,
and the ESB instruction does not set DISR_EL1.A or DISR.A to 0b1, then all of the following are true:

— The instruction that generated the error is in program order after the ESB.
— On completion of the ESB, the PE state and memory system state are consistent with the PE having
executed all instructions in program order before the ESB.

Rurrmo Taken in program order after the Error synchronization event completes means:

 For an Error synchronization event generated by an ESB instruction, the exception is taken in program
order after the instruction.

 For an Error synchronization event generated by an exception return instruction when FEAT_IESB
implemented, the exception is taken in program order after the instruction.

* For an Error synchronization event generated by an exception entry when FEAT_IESB is implemented,
one of the following is true:

— The exception is taken in program order strictly after the first instruction of the exception handler at
the exception vector address.

— The exception is taken from the first instruction of the exception handler at the exception vector
address and the ESR_ELx.IESB syndrome bit is recorded as 0b0.

Tozsue The definition of synchronized by Error synchronization events means that if the error that is synchronized by
Error synchronization events is generated by an instruction in program order before the Error synchronization
event, then either the error exception is taken before the Error synchronization event, or on executing the Error
synchronization event the following apply:

* If physical SError interrupt exceptions are unmasked or the error exception is taken synchronously, the
Error synchronization event ensures that the error exception is not taken in program order after the Error
synchronization event. This allows isolation of the software affected by the error.

* If physical SError interrupt exceptions are masked and the error exception is taken asynchronously:

— If the Error synchronization event was generated by an ESB, the error is recorded in DISR_EL1 or
DISR. Software can use the PE error state recorded in DISR_EL1 or DISR to determine what recovery
is possible.

— Otherwise, the error exception is pending when the Error synchronization event completes.

The SError interrupt might have been pending before or made pending by the Error synchronization event.

The definition does not mean that if the error is generated by a instruction in program order after the Error
synchronization event, then the error exception will only be taken after the Error synchronization event. The
error exception might be taken before the Error synchronization event, if the PE speculated past the Error
synchronization event and speculatively executed the instruction that generated the error. This might cause
software to generate a false failure. Error synchronization events are not speculation barriers.

Isocre It is implementation-specific which physical errors are synchronized by Error synchronization events. However,
the criteria for the PE error state mean that if the PE reports the PE error state as one of the following, the error
must be either explicitly or implicitly synchronized by Error synchronization events:

* Unrecoverable state (UEU).
* Recoverable state (UER).
¢ Restartable state (UEO).

This is because synchronized by Error synchronization events is a criterion for Unrecoverable state (UEU), and
the criteria for Recoverable state (UER) and Restartable state (UEO) satisfy the definition of synchronized by
Error synchronization events.

For other physical errors:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 37
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

Lveryw

Ryprc

* An error that has been silently propagated by the PE must be reported as Uncontainable (UC) and is not
containable even if synchronized by Error synchronization events. Software must assume the error has
been silently propagated even if the error is synchronized by Error synchronization events.

* The following errors have not been consumed by the PE:

— A Deferred error.
— A Corrected error.
— An error exception from a read by hardware speculation that does not corrupt the state of the PE.

Software can recover execution from these errors regardless of whether the error is synchronized by Error
synchronization events.

* An implementation might have other IMPLEMENTATION DEFINED sources of SError interrupt, see Reyyv-
If an IMPLEMENTATION DEFINED SError interrupt is generated by a level-sensitive interrupt signal, it
cannot be synchronized by Error synchronization events.

An Error synchronization event might operate as follows:

(1) The PE ensures that any error synchronized by Error synchronization events and generated by an instruction
in program order before the Error synchronization event has caused a physical SError interrupt exception
to become pending.

(2) If a physical SError interrupt is pending for an error synchronized by Error synchronization events and
generated by an instruction in program order before the Error synchronization event, and physical SError
interrupt exceptions are not masked at the current Exception level, then the physical SError interrupt
exception is taken before completion of the Error synchronization event. The SError interrupt might have
been made pending by the Error synchronization event, or might have been pending before the Error
synchronization event.

The prioritization of asynchronous interrupts is IMPLEMENTATION DEFINED. This means the PE might take
another exception before an SError interrupt made pending by the Error synchronization event. In this case, the
SError interrupt remains pending.

Arm recommends the SError interrupt is prioritized over other exceptions.
If an SError interrupt for an error synchronized by Error synchronization events is pending after completing

the Error synchronization event generated by an ESB instruction, and physical SError interrupt exceptions are
masked at the current Exception level, the ESB instruction performs the following steps:

(1) The pending physical SError interrupt is recorded in DISR_EL1 or DISR. This includes the PE error state
that the pending error exception would record if taken.

(2) The DISR_ELI.A bit or DISR.A bit is set to 0b1.
(3) The pending state of the physical SError interrupt is cleared.

The SError interrupt might have been made pending by the Error synchronization event, or might have been
pending before the Error synchronization event.

The criteria for ESB recording the PE error state in DISR_EL1 or DISR are the same as for that for recording
the PE error state in ESR_ELx or DFSR when an SError interrupt exception taken to the current execution state.

If an SError interrupt is taken as part of an Error synchronization event generated by an ESB instruction, the
ESB instruction address is the preferred return address of the exception.

Note

See [1] for the definition of the preferred return address for an exception.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 38

D.a-00bet0

Non-confidential

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

Rsrups On executing an ESB instruction when SError interrupt exceptions are masked, any pending SError interrupt
generated by an error that is not synchronized by Error synchronization events:
* Remains pending after completion of the Error synchronization event.

* Does not update DISR_EL1 or DISR.

TcorxL The error recovery, fault handling, and critical error interrupts described by RAS System Architecture are
asynchronous interrupts, not errors, and so are not synchronized by Error synchronization events.

Ippexn If multiple SError interrupt conditions are pending, an Error synchronization event synchronizes all errors that
are synchronized by Error synchronization events.

SvraG Software must be aware that an SError interrupt taken at an Error synchronization event or recorded in the
DISR_ELI1 or DISR register by an ESB instruction might have been generated by hardware speculation of an
instruction in program order after the Error synchronization event.

2.4.1 ESB and Virtual SError interrupt exceptions

Rrrovr If all of the following are true, then an ESB instruction executed at ELO or EL1 also synchronizes a pending
virtual SError interrupt:

* EL2 is implemented and enabled in the current Security state.
* Any of the following are true:

— EL2 is using AArch64, HCR_EL2.AMO is set to 0b1, and HCR_EL2.TGE is set to 0b0.
— EL2 is using AArch32, HCR.AMO is set to 0b1, and HCR.TGE is set to 0b0.

In these cases, if a virtual SError interrupt is pending when the ESB instruction is executed:

* If the virtual SError interrupt is unmasked at the current Exception level, it is taken before the completion
of the ESB instruction.

* If the virtual SError interrupt is masked at the current Exception level:

— HCR_EL2.VSE or HCR.VA is cleared to 0b0.

— The virtual SError interrupt syndrome from VSESR_EL2 or VDFSR is recorded in VDISR_EL2 or
VDISR.

— VDISR_EL2.A or VDISR.A is set to 0b1 to indicate the SError interrupt was pending prior to the
execution of the ESB instruction.

Note

This happens in parallel with the Error synchronization event for physical SError interrupt exceptions.

2.4.2 Extension for synchronization at exception entry and return

Ipyzry The FEAT_IESB feature adds a control bit to each AArch64 SCTLR_ELx System register to insert an implicit
Error synchronization event at exception entry and exception return. For the register field descriptions, see [1].

Rppsar The rules in this section apply when FEAT _IESB is implemented.
TwpseL An implicit Error synchronization event has no effect on DISR_EL1 or VDISR_EL2.
Rkawns When FEAT_DoubleFault is implemented, and the Effective value of SCR_EL3.NMEA is 0bl,

SCTLR_EL3.IESB is ignored and its Effective value is 0b1.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 39
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

Synchronization on exception entry

Renzwy For each value of ELx in EL1, EL2, EL3, if all of the following are true, then each exception that is taken to

ELx generates an Error synchronization event:
e ELx is using AArch64.
¢ The Effective value of SCTLR_ELX.IESB is 0b1.
Rrprur For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing a DCPSx instruction
generates an Error synchronization event:
* The PE is in Debug state.
* ELx is using AArch64.
* The Effective value of SCTLR_ELx.IESB is 0b1.

Ruo If an SError interrupt exception is taken to the Exception level ELy as a result of the Error synchronization event

generated on exception entry by the FEAT_IESB mechanism, then all the following occur:
* The PE sets the ESR_ELy.IESB bit in the SError interrupt exception syndrome to 0b1.
* The preferred return address for the SError interrupt exception is the exception vector address for the
original exception.
Note
ELy might be the same Exception level as ELx.

Trwzav If SError interrupt exceptions are masked at ELx, any SError interrupt made pending by the Error synchronization
event stays pending.

U The prioritization of asynchronous interrupts is IMPLEMENTATION DEFINED. This means that an implementation
might choose to behave as if the SError interrupt was taken before the implicit Error synchronization event, if
the SError interrupt was not masked, taking the SError interrupt in place of the exception.

In this case, ESR_ELy.IESB is set to 0b0 and the reported PE error state correctly indicates, for instance,
whether software can recover execution from the preferred return address for the SError interrupt in ELR_ELy.
When FEAT_DoubleFault is implemented, Arm recommends that the implicit Error synchronization event is
inserted before taking an exception to EL3.

Synchronization on exception return

Rskrer For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing an exception return

instruction at ELx generates an Error synchronization event:
 The instruction does not generate any exception.
* ELx is using AArch64.
¢ The Effective value of SCTLR_ELX.IESB is 0b1.
Note
On an illegal return event the exception return instruction sets PSTATE.IL to 0b1, which causes the next
instruction to generate an Illegal State exception. The exception return instruction does not generate the
exception.
Reveon For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing an DRPS instruction at
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 40

D.a-00bet0

Non-confidential

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

ARM DDI 0587
D.a-00bet0

ELx generates an Error synchronization event:

* The PE is in Debug state and the instruction does not generate any exception.
* ELx is using AArch64.
* The Effective value of SCTLR_ELx.IESB is 0b1.

Any SError interrupt exception taken as part of the Error synchronization event terminates execution of the
instruction.

If an SError interrupt exception is taken to an Exception level, ELy, as a result of the Error synchronization
event generated on exception return by the FEAT_IESB mechanism, then all the following occur:

* The PE sets the ESR_ELy.IESB bit in the SError interrupt exception syndrome to an IMPLEMENTATION
DEFINED choice of 0b0 or 0b1.

* The preferred return address for the SError interrupt is the address of the ERET instruction.

If SError interrupt exceptions are masked at ELx, any SError interrupt made pending by the Error synchronization
event stays pending.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 41
Non-confidential

Chapter 2. Armv8-A RAS Extension
2.5. Virtual SError interrupts

2.5 Virtual SError interrupts

Trsscn When implemented, EL2 provides a virtual SError interrupt. The RAS Extension provides:

* Virtual syndrome registers, VSESR_EL2 and VDFSR, that allow a hypervisor to specify the ESR_EL1
or DFSR value reported to a guest Operating System on taking a virtual SError interrupt. See [1] for
descriptions of VSESR_EL2 and VDFSR.

* Support for ELO or EL1 to isolate a virtual SError interrupt as if it were a physical SError interrupt. See
ESB and Virtual SError interrupt exceptions.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 42
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.6. Error records in the PE

2.6 Error records in the PE

A component that records detected errors is called a node by the RAS System Architecture. Each node
implements one or more error records.

It is IMPLEMENTATION DEFINED whether the processor that implements a PE implements any nodes.
A PE implementing the RAS Extension might implement the System register interface to nodes.
The System register interface to nodes is not restricted to accessing only PE nodes.

When an error is recorded by a PE node, one or more of the following might be generated, according to the
configuration of the node:

* A fault handling interrupt.
* An error recovery interrupt.
* A critical error interrupt.

* An in-band error response.

See also:

* Error record System register view
e RAS System Architecture
* Nodes

2.6.1 Error record System register view

Is If the System register interface to a node is implemented, software accesses the error records of the node using
Error record System registers.

Rpy The number of error records that can be accessed using the System registers is IMPLEMENTATION DEFINED,
and might be zero. The ERRIDR_EL1 and ERRIDR registers indicate the highest numbered index of the error
records that can be accessed using System registers, plus one.

Tyweno The AArch64 Error record System registers are those registers with an ERX*_EL1 mnemonic. See Using
AArch64 System registers.

The AArch32 Error record System registers are those registers with an ERX* mnemonic. See Using AArch32
System registers.
These registers are defined in [1].

Iy The error record register contents are described by Error record registers, including memory mapped view.

Rzg If FEAT_RASvlpl is implemented, all error records accessible through System registers implement RAS
System Architecture v1.1.

SVBBI To access an error record, software:

(1) Sets the error selection register, ERRSELR_EL1.SEL or ERRSELR.SEL, to the index of the record being
accessed.
(2) Accesses the error record using the ERX*_EL1 or ERX* System registers.

Twkxss The error records accessed through the System registers might be accessible only to the PE associated with
those System registers, or they might be shared and therefore accessible to other PEs through either System
registers or as a memory-mapped component.

See also:
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 43
D.a-00bet0 Non-confidential

Chapter 2. Armv8-A RAS Extension
2.6. Error records in the PE

* Synchronization and error record accesses.
e Error record registers, including memory mapped view

Fields in VSESR_EL2, VDFSR, DISR(_EL1), and VDISR(_EL2)

ESR_ELx, HSR, DFSR, VSESR_EL2, VDFSR, DISR_ELI1, DISR, VDISR_EL2, and VDISR are error
syndrome registers that are written with either a syndrome by hardware on taking or deferring a physical SError
interrupt, or with a virtual syndrome value provided by software for a virtual SError interrupt, as applicable.

For a given implementation:
* If EsB never synchronizes any errors, then DISR_EL1.A and DISR.A might be RESO.

* The error syndrome registers are capable of storing any syndrome value that might be reported by hardware
on taking a physical error exception.

e If any of ESR_ELx[24:0], HSR[11:9], and DFSR[15:14,12] is not used and always set to zero by hardware
on taking a physical SError interrupt exception or synchronous External Abort exception, it can be RESO
in that syndrome register.

* A bit that is not used and always set to zero or always set to one by hardware on taking a physical SError
interrupt is permitted to be RESO or RES1 respectively in the corresponding other syndrome registers. See
Table 2.2.

In Table 2.2, the bit described in the left-hand column is permitted to be RESO or RES1 if the corresponding bit
is always set to zero or always set to one (respectively) on taking an SError interrupt in all of the registers listed
in the other columns marked Yes on that row.

Table 2.2: Permitted relaxations for bits in error syndrome registers

Bit that is permitted to be DFSR[z], x €
RESO or RES1 ESR_ELx[x], x € [24:0] HSR[z], z € [11:9] [15:14,12]

VSESR_EL2[x] Yes - Yes
VDISR_EL2[x] Yes - Yes
DISR_ELI1[z] Yes - -

VDFSR|[z] - - Yes
VDISR[x] - - Yes
DISR[z] - Yes Yes

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 44

D.a-00bet0

Non-confidential

Chapter 3
RAS System Architecture

Ty The Reliability, Availability, Serviceability (RAS) System Architecture provides a framework for building RAS
features in a system. It provides a reusable component architecture for components that can detect and record
errors, and signal them to a Processing element (PE).

Rpkape A node is a RAS System Architecture component that records an error detected or consumed by a system
component.

Iy A RAS System Architecture implementation includes one or more nodes. The RAS System Architecture does
not require that all components in a system implement the RAS System Architecture or appear as a node.

Trpvkr The RAS System Architecture does not prescribe the level of reliability, availability, and serviceability in the
system. The RAS features that the system includes, for example to detect, correct, contain, or defer errors, are
IMPLEMENTATION DEFINED.

Ip The RAS features and behavior of components that do not implement the RAS System Architecture are
IMPLEMENTATION DEFINED.

To Arm recommends that all errors are reported to a RAS System Architecture node to enable error recovery and
fault handling.

I This section describes the behavior of RAS System Architecture nodes and other components that implement
the RAS System Architecture.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 45
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.1. Nodes

3.1 Nodes

Rrpunp A component might implement one or more nodes.

The RAS System Architecture defines the following common features for a node:

Rxmrks Error detection and correction
The level of error correction and detection implemented at a component is IMPLEMENTATION DEFINED.

A node might include the control to disable error reporting and recording of detected errors, for example
while software initializes the component.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when
reporting and recording are disabled.

See Detecting and consuming errors.

Rrneyo Fault handling interrupt
Asynchronous reporting of all or some recorded errors by an interrupt, that is, Corrected errors, Deferred
errors, and Uncorrected errors. It is IMPLEMENTATION DEFINED whether a node provides a single control
for all errors, or a first control for Corrected errors and a second control for all other detected errors.

See Fault handling interrupt.

Corrected error counter
It is IMPLEMENTATION DEFINED whether a node implements a counter for counting Corrected errors.
Software might poll the error counter or initialize the counter with a threshold value and receive an
interrupt when the counter overflows. A counter overflows when incrementing the counter results in
unsigned integer overflow.

It is IMPLEMENTATION DEFINED which Corrected errors are counted.

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred errors and Uncorrected
errors are counted by the Corrected error counter.

See Standard format Corrected error counter.
Rurwcw Timestamps
It is IMPLEMENTATION DEFINED whether a node records a timestamp in each error record.

See Timestamp extension.

Rzmven In-band error response (external abort)
In-band signaling of detected Uncorrected errors to the consumer of the error. It is also referred to as an
external abort. Corrected errors and Deferred errors are not reported by such means.

See In-band error response signaling (external aborts).

Rvapzw Error recovery interrupt
Asynchronous (out-of-band) reporting of recorded Uncorrected errors by an interrupt. The interrupt can
be used for error recovery, fault handling, or both. Corrected errors are not reported by this means. It
is IMPLEMENTATION DEFINED whether the node provides the control to enable Deferred errors to be
reported in this way. If the control is not provided, Deferred errors are not reported by this means.

See Error recovery interrupt.

Rpanpg Critical Error interrupt
Critical error interrupts provide a mechanism for a node to report a critical error condition to a system
controller for error recovery.

See Critical error interrupt.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 46
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture

3.1. Nodes

R,\LL‘}H};

I WRWMK

RIH:“ 5J

Records
A node implements one or more standard error records. When an error is detected or consumed, syndrome
about the error is written to an error record.

See Standard error record.
A node might implement some or all of these features.

The first standard error record for a node contains:

* An identification register, ERR<n>FR, that describes the implemented features of the node.
* The ERR<n>CTLR register to enable or disable the features.

A node has a single ERR<n>FR and a single ERR<n>CTLR register.

If the node implements multiple error records, each error record has the same features and all error records share
the controls.

Note

If a component requires multiple sets of controls, the component implements multiple nodes.

For each node, it is IMPLEMENTATION DEFINED whether the fault and error reporting mechanisms apply to
both reads and writes, or whether the mechanisms can be individually controlled for reads and writes.

3.1.1 Multiple error records per node

Rrmrkr Each node contains at least one error record.
Lvrnp A node might implement multiple error records for one or more of the following purposes:
* To record different types of error in different error records.
* To record errors from different components, or different FRUs accessed by a component, in different error
records.
* To record multiple errors.
UcMkHE Using a single error record is efficient for the implementation.
However, consider an example node for an SoC memory controller component that records errors detected
within both:
* An internal buffer that acts as a queue for memory accesses.
* An external memory module, that is, an external Field Replaceable Unit (FRU).
In this node, using a single error record for errors from either source might lead to the following scenarios:
(I) + A Corrected error is detected in the internal buffer and recorded in the error record.
» Before software processes the error record, an Uncorrected error is detected in the external FRU.
(2) ¢ A Corrected error is detected in the external FRU and recorded in the error record.
» Before software processes the error record, an Uncorrected error is detected in the external FRU.
In both scenarios, the second error overwrites the syndrome for the first error, because Writing the error record
requires this. It is IMPLEMENTATION DEFINED what information, if any, is retained for the first error in the
IMPLEMENTATION DEFINED parts of the syndrome.
This means the two scenarios might be indistinguishable to software. In particular any indication of where the
Corrected error was detected in the syndrome for the first error might be overwritten by the second error. If this
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 47

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture

3.1. Nodes

T ey

is the case, software will need to treat the two scenarios identically, that is, as if there was a corrected internal
€error.

However, an internal error might be considered more significant than an external FRU error. For example,
because the external FRU is field-replaceable whereas the SoC is not. Implementing separate error records for
the internal buffer and external FRU would avoid this issue.

Implementations should therefore consider the impact such choices might have on the serviceability and
availability of the system.

If a single node implements multiple error records, then all of the following are true:

* The error records are indexed sequentially within a group of error records starting from the first error
record for the node.

¢ For each error record other than the first error record for the node, the following are true:

— The ERR<n>FR.ED field is 0b00.
— ERR<n>FR[63:2] are RESO.
— The ERR<n>CTLR register is RESO.

A group of error records consists of the error records of one or more nodes.

A group of error records might be sparsely populated. Locations relating to unimplemented error records are
RAZ/WI, meaning that they have an ERR<n>FR register that reads as zero.

See Nodes.

An example of a group of error records containing five error records owned by three nodes might be arranged as
shown in Figure 3.1:

Node: <0> <I> <4>

Record: <0> <1l> <2> <4>

Figure 3.1: A group containing five error records owned by three nodes

¢ Node <0> owns a single error record: <0>. ERROFR describes the features for this node, and ERROCTLR
contains the controls for this node.

¢ Node <1> owns two error records: <1> and <2>.

— ERRI1FR describes the features for this node, and ERR1ICTLR contains the controls for this node.
— ERR2FR.ED is 0000 and ERR2CTLR is not implemented.

e Error record <3> is not implemented. ERR3FR.ED is 0000 and ERR3CTLR, ERR3STATUS,
ERR3ADDR, and ERR3MISC<m> are not implemented.

* Node <4> owns a single error record: <4>. ERR4FR describes the features for this node, and ERR4CTLR
contains the controls for this node.

* If the group of error records is accessed using a memory-mapped view then ERRDEVID.NUM is 5.

* If the group of error records is accessed using System registers then ERRIDR_EL1.NUM is 5.

3.1.2 Detecting and consuming errors

ARM DDI 0587

D.a-00bet0

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 48
Non-confidential

Chapter 3. RAS System Architecture
3.1. Nodes

Rozupt A component detects an error when it detects that a deviation from correct service has occurred or will occur.
For example, including but not limited to when any of the following occurs that would not be permitted to occur
had the fault not been activated:

* A corrupt value has been or will be passed to a consumer.
* A transaction or other operation occurs or will occur that should not occur.
* A transaction or other operation that should occur does not occur or will not occur.

* A loss of uniprocessor semantics or any other loss of coherency in a multiprocessor coherent system is or
will be observed. See Isyzxy.

* The timing and/or order of transactions or other operations has been or will be changed.

* A latent error has become or will become undetectable. See Ioxprk-

Tsvzry Examples of a loss of uniprocessor semantics or other loss of coherency that might occur because of an error
include:

¢ A cache loses data that it holds in a modified state.
¢ A cache writes back unmodified data.

An example that should not occur is when a partial write to the protection granule of a cache location holding
poison occurs, and the cache later invalidates the line without writing back the poison value.

For example, if a cache fetches data from memory and receives poison, and subsequently, a partial write to
that location is insufficient to clean the location of the poison and the location remains poisoned, then the
cache should treat it as modified, even though it appears that the write did not modify the location. That is,
the cache should take ownership of the location and write-back poison when the location is evicted from the
cache. Otherwise if the original error was transient and later disappears from memory, the location reverts to the
unmodified value, silently propagating the error.

Toxprx An example of a latent error becoming undetectable includes when a poison value indicating a deferred error is
lost at the interface between domains. For example, because a poison value is passed to a component that does
not support poisoning.

An example of a latent error becoming undetectable that should not occur is when a poison value is lost by
a partial write to the protection granule. In this case, the partial write should leave the protection granule
containing poison.

Rirsmz A component consumes an error that is signaled to the component in response to a memory access, cache
maintenance operation, or other transaction initiated by the component as one of:

* An in-band error response.
* A deferred error.

Ruxppn When an error is detected or consumed by a component, the error is reported to one or more nodes.

It is IMPLEMENTATION DEFINED whether:

Ryyrx * A Requester that consumes a signaled detected error reports the consumed error.
Rrrosc * Errors are reported when a detected error is propagated between components.
Rupaep All corrected errors are reported.
Revemk * Errors detected on hardware speculation are reported.
Reepen It is IMPLEMENTATION DEFINED whether the node or nodes that an error is reported to are one or more of the
following:
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 49

D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.1. Nodes

* The same component that detected the error.

* The consumer of the transaction that consumes a detected error signaled by the producer of the transaction
which detected the error. Syndrome information might be passed with the signaled detected error to the
consumer.

* Another component that neither detected nor consumed the error. For example, a node whose purpose is
to record errors for other components. Such a node might comprise one record for each component for
which it is recording an error, or a number of shared records, where each record identifies the originating
component, or some other arrangement.

When an error is detected or consumed by a component:

Risums « If the error can be corrected:

— The error is corrected.

— Optionally, the detected error is reported to a node, the node records a Corrected error, and if
implemented and enabled, a fault handling interrupt is raised.

— If the error is detected on a read access by a consumer, corrected data is returned to the consumer.

Rimeve e If the error cannot be corrected and can be deferred:

The error is deferred. For example, the location being accessed is poisoned or poisoned data is
returned to the consumer.

The error is reported to a node and the node records a Deferred error.

If implemented and enabled, a fault handling interrupt is raised.

— If implemented and enabled, an error recovery interrupt is raised.

Note: An error cannot be deferred to a component that does not accept deferred errors.

Rrkene « If the error cannot be corrected and cannot be deferred:

The error is reported to a node and the node records an Uncorrected error.

If implemented and enabled, a fault handling interrupt is raised.

If implemented and enabled, an error recovery interrupt is raised.

If the error is detected on an access by a consumer, and if implemented and enabled, a in-band error
response is returned to the consumer.

If the component is unable to continue operation, it might enter a service failure mode.

Inoner The criteria by which a component determines when it can correct or defer an error are IMPLEMENTATION
DEFINED. For example, if the error is detected in response to an access by a consumer that is incapable of
receiving a deferred error response, then it is not possible to defer the error to the consumer.

RyreoP When an error is reported to a node, the node records syndrome information for the error in a standard error
record.
Tsnnzr Arm recommends that hardware records sufficient information to:

* Determine whether error recovery is possible, if the error was not corrected by hardware.

* Allow fault analysis to find trends in the faults. This information is IMPLEMENTATION DEFINED but might
include the location of the data.

¢ Allow identification of a FRU.

Tonury The node registers might also contain control registers for error detection, correction and reporting at the
component.
Tumv Corrected errors can be recorded by counting each corrected error. Counting might be done by either software

or hardware. The fault handling process compares the corrected error rate with a threshold value to determine
whether to take action.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 50
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture

3.1. Nodes
Tocnur Standard format Corrected error counter and corrected error counter describe an optional standard hardware
mechanism for counting errors.
Tceossk The details of any service failure mode are IMPLEMENTATION DEFINED. For example:

* A component that fetches data from memory and processes that data might halt processing and await
servicing by an application processor when it receives an in-band error response. This is a form of service
failure mode.

* When a PE takes an error exception and executes an error handler, this is also a form of service failure
mode.

The component might implement multiple functions, some of which can be in a service failure mode while
others continue to operate, or the service failure mode might affect multiple or all functions of the component.
See also:

» Standard error record

* Error recovery interrupt

* Fault handling interrupt

e In-band error response signaling (external aborts)

o Standard format Corrected error counter

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 51

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

3.2 Standard error record

Rercoa The RAS System Architecture defines a standard error record and a mechanism to access error records as
System registers or as a memory-mapped component.

Rxeerz The standard error record contains:

* A status register, ERR<n>STATUS, for common status fields, such as the type and coarse characterization
of the error.

* An optional address register, ERR<n>ADDR.

e IMPLEMENTATION DEFINED status registers, referred to as ERR<n>MISC<m>. Arm recommends these
are used for:

Identifying a FRU.

Locating the error within the FRU.

Optionally, a corrected error counter or counters for software to poll the rate of Corrected errors.
Optionally, a timestamp value for when the error was recorded.

Rmoprr If RAS System Architecture v1.0 is implemented, there are two ERR<n>MISC<m> for each error record:

* ERR<n>MISCO.
¢ ERR<n>MISCI.

Rocrve If RAS System Architecture v1.1 is implemented, there are 4 ERR<n>MISC<m> for each error record:

¢ ERR<n>MISCO.
¢ ERR<n>MISCI1.
¢ ERR<n>MISC2.
¢ ERR<n>MISC3.

Note

The RAS System Architecture permits the implementation of ERR<n>MISC2 and ERR<n>MISC3 in
implementations of the RAS System Architecture v1.0.

Rpxzpx An error record might include additional IMPLEMENTATION DEFINED controls and identification registers.
Ipvyze Error record System register view defines System registers for accessing a group of error records.
IpporL Memory-mapped view defines reusable formats for a memory-mapped views of error records. Use of reusable

formats by any component in the system is OPTIONAL.
IpnpzB The format of the error record registers is the same for both access mechanisms.

Rupsrz Error records are preserved over Error Recovery reset. This allows for a diagnosis after system failure.

3.2.1 Component error states

Rvwssx When a node records an error, the component error state is recorded in the error record.

Ripepy For a standard error record, the component error state types that can be recorded are:

¢ Corrected error (CE).
¢ Deferred error (DE).
e Uncorrected error.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 52
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

Rkrepr If and only if all of the following are true, then on recording an error, the component error state is recorded as
Corrected error (CE):
* The error was corrected.
* The error has not been silently propagated.
* The component has not entered as service failure mode and continues to operate.

* The implementation has not elected to record the component error state as Deferred error, or Uncorrected
error.

In normal circumstances, the error no longer infects the state of the component. However, in the case of a
persistent correctable fault, or other rare IMPLEMENTATION DEFINED circumstances, the error might remain
latent in the component.

Rxarme If and only if all of the following are true, then on recording an error, the component error state is recorded as
Deferred error (DE):

* At least one of the following are true:

— The error was not corrected, and was deferred.
— The error was corrected, and the implementation elected to record the component error state as
Deferred error.

* The error has not been silently propagated.
* The error might be latent in the system.

It is IMPLEMENTATION DEFINED whether the error continues to infect the state of the component or
whether it has been deferred to a consumer.

* The component has not entered as service failure mode and continues to operate.

* The implementation has not elected to record the component error state as Uncorrected error.

Note

A Deferred error might be recorded for an error that cannot be corrected. However, for the purposes of the
component error state taxonomy, Deferred error is classified separately from Uncorrected error.

Rkaroo If and only if all of the following are true, then on recording an error, the component error state is recorded as
Uncorrected error:

* At least one of of the following are true:

— The error was not corrected and not deferred.

— The error might have been silently propagated.

— The component has entered as service failure mode and does not continue to operate the function that
consumed the error.

— The error was either corrected or deferred, and the implementation elected to record the component
error state as Uncorrected error.

e The error is latent in the system.

Ryngsp An Uncorrected error is recorded as one of the following sub-types:

¢ Uncontainable error (UC).

¢ Unrecoverable error (UEU).

* Recoverable error or Signaled error (UER).
¢ Restartable error or Latent error (UEO).

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 53
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

Rpu100 If any of the following are true, then on recording a Uncorrected error, the component error state is recorded as
Uncontainable error (UC):
* The error might have been silently propagated by the component.
* The implementation has elected to record the error as Uncontainable error.

If the error cannot be isolated, the system must be shut down to avoid catastrophic failure.

Rervace If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Unrecoverable error (UEU):

* The error has not been silently propagated by the component.
« Either of the following are true:

— The component has halted operation (entered a service failure mode) of the function that consumed the
error. The component determines that software will not be able to recover operation of the function.

— The implementation has elected to record the error as Unrecoverable error.

* The implementation has not elected to record the error as Uncontainable error.

Renery If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Signaled error (UER):

* The error was produced at the component.
 The error has not been silently propagated by the component.
* The error has been or might have been consumed, and was not recorded as a Deferred error.

* The implementation has not elected to record the error as Unrecoverable error, or Uncontainable error.

Rrrrxz If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Latent error (UEO):

* The error was produced at the component.
* The error has not been propagated by the component, silently or otherwise.

e The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

That is, the error was detected but not consumed, and was not recorded as a Deferred error.

Note

The producer is usually unable to determine whether a consumer has architecturally consumed the error.
An error might be recorded as Latent error if it has definitely not been propagated to any consumer, and as
Signaled error otherwise.

Roryrp If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Recoverable error (UER):

* The error has not been silently propagated by the component.

* The component has halted operation (entered a service failure mode) of the function that consumed the
error.

* Either of the following is true:

— The component is reliant on consuming the corrupted data to continue operation of the function that

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 54
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

consumed the error. The component determines that software will be able to recover operation of the
function if it locates and repairs the error.

— The implementation has elected to record the error as Recoverable error.

* The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

Rerzra If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Restartable error (UEO):

* The error has not been silently propagated by the component.

* The component has halted operation (entered a service failure mode) of the function that consumed the
error.

* The component determines that it does not rely on the corrupted data, and so can recover operation even if
software does not locate and repair the error.

* The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

Lrvomm The component error state types are summarized by Figure 3.2. Figure 3.2 assumes the component supports the
resulting component error state and the implementation never elects to record an error as a different component
error state when permitted.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 55
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

yes

Silently 1o 9 Corrected
D ——— > Error corrected? —— > (CE)

io
yes Deferred

2 —>
Error deferred (DE)

}0
i Uncorrected

State recoverable?

maybe &es

Producer or consumer?

no fonsumcr roducer

. . Propagated?
9
el e (Signaled as error)
&S no €es &0
Y
Uncontainable Unrecoverable Recoverable Restartable
(U0 (UEU) or Signaled (UER) or Latent (UEO)

Figure 3.2: Component error state types

3.2.2 Writing the error record
Rupxxv When a new error is recorded, the node:
* Does one of the following:

— Overwrites the error record with the syndrome for the new error.
— Keeps the syndrome for the previous error.

* Modifies ERR<n>STATUS.{CE, DE, UE} to indicate the component error state. See Component error
states and priorities.

» Counts the error, if a corrected error counter is implemented and the error is of a type that the counter
counts.

Reexoo If counting a Deferred error or Uncorrected error causes the counter to overflow, then ERR<n>STATUS.OF is
set as it would be for a Corrected error that causes corrected error counter overflow. However, if the RAS System
Architecture requires that recording the Deferred error or Uncorrected error sets the ERR<n>STATUS.OF flag
to 0b1, then this flag is also set to 0b1 even if the error is counted and the corrected error counter does not
overflow.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 56
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

Component error states and priorities

Rpxcpz The highest priority recorded component error state type is recorded in the ERR<n>STATUS.{V, CE, DE, UE,
UET} fields, as shown in Table 3.1.

In Table 3.1, V, CE, DE, UE, UET refer to fields in ERR<n>STATUS.

Table 3.1: Encoding the highest priority component error state

Highest priority component error state

v CE DE UE UET type Mnemonic
0 UNKNOWN UNKNOWN UNKNOWN UNKNOWN None -
1 0b00 0 0 UNKNOWN None -
1 1= 0b00 0 0 UNKNOWN Corrected error CE
1 X 1 0 UNKNOWN Deferred error DE
1 X X 1 0b10 Uncorrected error: Latent error or UEO
Restartable error
1 X X 1 Obl1 Uncorrected error: Signaled error or UER
Recoverable error
1 X X 1 0b01 Uncorrected error: Unrecoverable error UEU
1 X X 1 0b00 Uncorrected error: Uncontainable error ucC
Tonrcy The component error state types implemented at a node are IMPLEMENTATION DEFINED. An implementation
might only include a simplified subset of these component error state types.
A node can always elect to record:
e UEO as any of UER, UEU, or UC.
* UER as either UEU or UC.
* UEU as UC.
Prioritizing errors, RAS System Architecture v1.0
Rzprxr When RAS System Architecture v1.0 is implemented, overwriting depends on the component error state type of
the previous highest priority error and on the component error state type of the newly recorded error, as shown
in Table 3.2.
In Table 3.2:
* Each row corresponds to the highest priority previous component error state type recorded in the error
record.
* Each column corresponds to the component error state type of the new detected error.
The row and column headings use the mnemonics from Table 3.1, and the following additional abbreviations
are used:
K Keep. Keep the previous error syndrome. It is IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF
is set to 0b1 or unchanged.
O Opverflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 0b1.
W Overwrite. Overwrite with the new error syndrome. It is IMPLEMENTATION DEFINED whether
ERR<n>STATUS.OF is set to 0b0 or unchanged.
CK Count and keep. Count the error if a corrected error counter is implemented, and keep the previous error
syndrome. If the counter overflows, or if no corrected error counter is implemented, it is IMPLEMENTATION
DEFINED whether ERR<n>STATUS.OF is set to 0b1 or unchanged.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 57

D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

CWK
Count and overwrite or keep. The behavior is IMPLEMENTATION DEFINED and described by the value of
ERR<g>FR.CEO, where <gq> is the index of the first error record owned by the node:

* 0: Count the error if a corrected error counter is implemented. Keep the previous error syndrome.

* 1: Count the error. If ERR<n>STATUS.OF == 1 before the error is counted, keep the previous
syndrome. Otherwise overwrite with the new error syndrome.

If counting the error causes unsigned overflow of the counter, or if no corrected error counter is
implemented, ERR<n>STATUS.OF is set to 0b1.

Cw
Count and overwrite. Count the error if a corrected error counter is implemented, and overwrite with
the new error syndrome. If a corrected error counter is implemented and counting the error causes
unsigned overflow of the counter, ERR<n>STATUS.OF is set to an UNKNOWN value. Otherwise, it is
IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF is set to 0b0 or unchanged.

WO
Overwrite and overflow. Overwrite with the new error syndrome. ERR<n>STATUS.OF is set to 0b1.

Table 3.2: RAS System Architecture v1.0 rules for overwriting error records

CE DE UEO UER UEU UC
- Cw W \4 W W W
CE CWK w W w W W
DE CK o W W W W
UEO CK K o WO WO WO
UER CK K o o WO WO
UEU CK K o o o WO
uC CK K o o o O

Prioritizing errors, RAS System Architecture v1.1

When RAS System Architecture v1.1 is implemented, overwriting depends on the component error state type of
the previous highest priority error and on the component error state type of the newly recorded error, as shown
in Table 3.3.

In Table 3.3:

* Each row corresponds to the highest priority previous component error state type recorded in the error
record.

* Each column corresponds to the component error state type of the new detected error.

The row and column headings use the mnemonics from Table 3.1, and the following additional abbreviations
are used:

W Overwrite. Overwrite with the new error syndrome. ERR<n>STATUS.OF is unchanged.
WO

Overwrite and overflow. Overwrite with the new error syndrome. ERR<n>STATUS.OF is set to 0b1.
O Overflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 0b1.

If no corrected error counter is implemented, then all of the following apply:

CW

Behaves the same as W.
CWO and CO

Behave the same as O.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 58

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

Otherwise, a corrected error counter is implemented, and all of the following apply:

CwW
Count and overwrite. Overwrite with the new error syndrome, and count the error. If counting the error
causes unsigned overflow of the counter, set ERR<n>STATUS.OF to 0b1.

CWO
Count, overwrite or keep, and overflow. The behavior is IMPLEMENTATION DEFINED and described by
the value of ERR<n>FR.CEO:

* 0: The behavior is the same as CO.

e 1: Count the error. If ERR<n>STATUS.OF == 1 before the error is counted, the behavior is the same
as CO. Otherwise, the behavior is the same as CW.

CO Count and overflow. Keep the previous error syndrome, and count the error. If counting the error causes
unsigned overflow of the counter, set ERR<n>STATUS.OF to 0b1.

Table 3.3: RAS System Architecture v1.1 rules for overwriting error records

CE DE UEO UER UEU uC
- CwW Y w Y Y \
CE CwoO WO WO wO WO WO
DE CcO o WO wO WO WO
UEO CcO o o wO WO WO
UER CcO o o o WO wO
UEU CcO o o o o WO
UC CcO o o o o o

Overwriting the error syndrome

Rrvere When the node records an error in an error record and the previous syndrome is overwritten with the new error
syndrome:

* Modifies ERR<n>STATUS.{V, CE, DE, UE} to indicate the new component error state, as described by
Table 3.1:

— Fields shown as x in Table 3.1 are unchanged.
— Other ERR<n>STATUS.{V, CE, DE, UE} fields are set to the value given in Table 3.1.

If the component error state is Corrected error, then the nonzero value written to ERR<n>STATUS.CE is
IMPLEMENTATION DEFINED and depends on the properties of the Corrected error recorded.

* If the new error is a type of Uncorrected error, ERR<n>STATUS.UET is set to indicate the component
error state sub-type. See Component error states and priorities.

* The ERR<n>STATUS.{ER, PN, IERR, SERR} syndrome fields are written with the syndrome for the new
error.

o If there is an address syndrome for the new error, ERR<n>STATUS.AV is set to 0b1 and the address is
written to ERR<n>ADDR. Otherwise ERR<n>STATUS.AV is set to 0b0 and ERR<n>ADDR becomes
UNKNOWN.

 If the RAS Timestamp Extension is implemented, a timestamp is recorded in ERR<n>MISC3 and
ERR<n>STATUS.MV is set to Ob1.

* If there is other miscellaneous syndrome for the new error, it is written to the ERR<n>MISC<m> registers
and ERR<n>STATUS.MYV is set to Ob1.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 59
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

* If there is no additional miscellaneous syndrome for the new error written to the ERR<n>MISC<m>
registers, then it is IMPLEMENTATION DEFINED whether ERR<n>STATUS.MV is set to 0b0 or unchanged.

— If software can determine from the ERR<n>MISC<m> contents that the syndrome is not related to
the highest priority error, the ERR<n>STATUS.MYV bit is unchanged.
— Otherwise the ERR<n>STATUS.MV bit is cleared to zero.

e ERR<n>STATUS.V is set to Ob1.
Sxryok After reading an ERR<n>STATUS register, software has to clear the valid bits in the register to allow new errors
to be recorded. During this period a new error might overwrite the syndrome for the previously read error. To

prevent this, a write, or part of a write is ignored by hardware if fields appear to have been updated. For more
information see ERR<n>STATUS.

Keeping the previous error syndrome
ReceeD When the previous error record is kept:
* Sets the applicable one of ERR<n>STATUS.{CE, DE, UE} to indicate the new component error state:

— If Uncorrected error, then ERR<n>STATUS.UE is set to 0b1.

— If Deferred error, then ERR<n>STATUS.UE is set to 0b1.

— If Corrected error, then the nonzero value written to ERR<n>STATUS.CE is IMPLEMENTATION
DEFINED and depends on the properties of the Corrected error recorded.

The remaining ERR<n>STATUS.{UE, DE, CE} fields are unchanged.

ERR<n>STATUS.UET is unchanged, even if the new error is a type of Uncorrected error.
* ERR<n>STATUS.{ER, PN, IERR, SERR}, ERR<n>ADDR, and ERR<n>STATUS.AV are unchanged.
* If the RAS Timestamp Extension is implemented, the timestamp is not recorded.

e It is IMPLEMENTATION DEFINED whether any of ERR<n>MISC<m> are updated. The contents
of ERR<n>MISC<m> are IMPLEMENTATION DEFINED. Therefore, it is possible that some of the
information about an otherwise discarded error is recorded in these registers. If data is written to any of
ERR<n>MISC<m>, then ERR<n>STATUS.MYV is set to 0b1.

Detecting multiple errors

If multiple errors are simultaneously reported to a node, it is IMPLEMENTATION DEFINED whether the node
behaves:

* As if all errors were recorded, in any order. In this case, the prioritization rules mean that the highest
priority error is recorded in the syndrome registers. However, the final value of the syndrome registers
might depend on the logical order in which the errors were recorded.

* As if the highest priority error was recorded and one or more of the lower priority errors were not recorded.

Rzgxmp If a corrected error counter is implemented, and multiple countable errors are detected simultaneously, it is
IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether all the errors are counted.

3.2.3 Error syndrome
Tyruwe This section provides additional information for some of the error syndrome fields defined in the standard error

record.

Corrected error field

Teruvex When the syndrome for a Corrected error is recorded, the node can indicate through the ERR<n>STATUS.CE
error type field one of the following:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 60
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

R:L C
TLT,}':I}]
Rpy
LseppT
Ig

* The component or node has determined that the error is transient, or likely to be so.
* The component or node has determined that the error is persistent, or likely to be so.
e The component or node does not support making such a determination or is unable to.

The mechanism by which a component or node determines whether a Corrected error is transient or persistent is
IMPLEMENTATION DEFINED.

Poison indicator

If supported by a node, when the syndrome for a Deferred error or Uncorrected error is recorded, the
ERR<n>STATUS.PN syndrome field is set to indicate that a poisoned value was detected.

When the node records an error and overwrites the previous error syndrome, if all of the following are true the
ERR<n>STATUS.PN syndrome field is set to 0b1, and is set to 0b0 otherwise:

* The component checks a value for an error and detects the value indicates a previously deferred error. For
example, the value is a poisoned value.

* The node does one of the following:
— Records the error as an Uncorrected error. For example, because the component does one or more of:

+ Enters a service failure mode.
Signals an in-band error response to the consumer of the data.
Propagates the value to a component that does not support poison. This is an Uncontainable error.

— If the component has deferred the error again, records the error as a Deferred error. See also Bridges
to other architectures.

When a component checks a value and detects an uncorrectable error, and defers the error by generating a
poisoned value, the node records this as a Deferred error with ERR<n>STATUS.PN set to 0b0.

Therefore when software examines the error records, a ERR<n>STATUS.PN value of 0b1 indicates that the
component was propagating a previously deferred error, and so the fault did not originate in that component. An
ERR<n>STATUS.PN value of 0b0 indicates that the fault originated at the component.

In some Error Detection Code (EDC) schemes, a poisoned value is encoded as a reserved value, one that would
not be generated by a detectable corruption of valid data. For example, a SECDED scheme where the poisoned
value has a Hamming distance greater than 2 bits from any valid value.

For such a scheme it is IMPLEMENTATION DEFINED whether the component can distinguish a corrupt data value
from the poison value. The component might accept and store a poisoned value when an error is deferred to it,
but treat it as any other uncorrectable error when it is accessed, meaning ERR<n>STATUS.PN is set to 0b0.

3.2.4 Security and Virtualization

Tno

Access to the Error System register view of error record registers can be controlled using Trap exceptions. See

[1].

If a PE implements System register access to error records for a component that processes Secure data, then
either:

» Software has to configure the Trap exception controls to prevent Non-secure access to the error records.
* The component provides reduced functionality to Non-secure state that does not affect operation in Secure
state, or does not provide visibility of Secure data, or both.

The definition of Secure data is implementation-specific and depends on the how the information encoded in the
data relates to the threat model for the system.

For example, in a typical system that supports both Secure and Non-secure memory, data stored in or related to

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 61

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

Ryvzmn

Secure memory is considered Secure data, and other data is considered Non-secure data.

If a memory-mapped component processes Secure data, then one of the following applies:

 The error records are visible only to Secure accesses.
 The error records have reduced visibility to Non-secure accesses, that does not affect operation in Secure
state, does not provide visibility of Secure data, or both.

If a memory-mapped component processes only Non-secure data, then it is IMPLEMENTATION DEFINED
whether:

¢ The error records are visible to both Non-secure and Secure accesses.
* It is configurable whether the error records are visible to Non-secure accesses.
* The error records are visible only to Secure accesses.

If the memory-mapped component includes registers to generate message signaled interrupts (MSIs) and the
component can be programmed by Non-secure accesses, the MSIs do not target Secure addresses.

3.2.5 Synchronization and error record accesses

R KYVJ

RNHZEG

RT”T"?‘TF

When a component reports an error to a node, the node updates the error record registers and might generate
one or more of the following:

* A fault handling interrupt.
* An error recovery interrupt.
* A critical error interrupt.

* An in-band error response.

Each of these might generate an exception at a PE.

If the PE reads the error record registers at the node, after taking an exception generated by such a signal from a
node, then the read returns the updated values. This applies for both:

* Error records accessed through memory-mapped registers, only if the memory-mapped registers are
mapped as a Device type that does not permit read speculation.

* Error records accessed through System registers, only if either the exception is a Context synchronization
event or a Context synchronization event occurs in program order after taking the exception and before
reading the System registers

When a component reports an error to node, the node updates the error record registers in finite time, and the
update is globally observed for all observers in the system in finite time.

Direct reads of the System registers, including error record System registers, can occur speculatively and
out-of-order relative to other instructions executed on the same PE.

Direct reads and writes of the error records through the ERX*_EL1 AArch64 System registers are indirect reads
of ERRSELR_ELI.

Direct reads and writes of the error records through the ERX* AArch32 System registers are indirect reads of
ERRSELR.

3.2.6 Bridges to other architectures

R WGCK

A bridge is a component that passes transactions between two domains.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 62

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture
3.2. Standard error record

IRReTeraY For example, between an SoC domain and a Peripheral Component Interconnect Express (PCle) domain.

Trkky As described in Error propagation, a high-level transaction might consist of a sequence of operations passed
between the domains by the bridge. For the purposes of this manual, the most basic form of a unidirectional
transfer between a producer and consumer is considered as a transaction. That is, each one of the sequence of
operations is a transaction.

Rzxpsx Other standards might define mechanisms for RAS error recording and handling in particular domains.

Lvouve In the case of PCle, the PCle domain might implement one or more of:
 Simple error recording. Errors are recorded in the PCle device status register.
* PCle advanced error reporting (AER). Errors are recorded in the AER logs.

* Vendor-specific error recording. Errors are recorded in Designated-Vendor-Specific Extended Capability
(DVSEC) logs.

In each case, errors detected in the PCle domain are recorded in the PCle domain and not in the SoC domain.

Uyrxwe For the purposes of tracking the origins of a detected error or a deferred error that has propagated between
domains, it may be useful to record when a transaction propagates a detected error or a deferred error to a
different domains.

Arm recommends that a bridge between domains, where the domains implement different error recording
mechanisms, uses a node to record when a transaction that is signaled as propagating either a detected error
or a deferred error crosses between the domains, recording the source and direction of the transaction in the
IMPLEMENTATION DEFINED syndrome for the error record. The direction is either inbound or outbound.

See also:

* Multiple error records per node

3.2.7 Software faults
Tssoxp Examples of software faults include:

* Access to memory or device register that is not present. This includes cases where Secure and Non-secure
memory are physically aliased.

* Access to a device that is not permitted at the device. For example, a Non-secure access to a Secure
register.

* Access to a device that is in an inaccessible state or other illegal access. For example, the device is powered
down, or the value written is not supported.

Teynoo Software fault handling is outside the scope of the RAS System Architecture. Arm makes the following
recommendations for accesses that constitute a software fault:

¢ Where another standard defines a rule or sets a convention for a device, that should be followed. For
example:

— For a PCle device, certain illegal accesses are RAO/WL.

— [1] requires that reserved accesses to a component, such as reads and writes of unallocated or
unimplemented registers and writes to read-only registers, behave as RAZ/WI.

— [1] requires that under certain conditions accesses to certain debug registers return an error response.

* Accesses to a memory location that is not present can return an in-band error response when all of the
following are true:

— The location is not present due to a configuration of the physical address map that is either static or

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 63
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture

3.2. Standard

error record

controlled by trusted software. For example, a configuration choice made by the designer, set during
initial system configuration, or reconfigured by trusted software.

It is not because a device has been unexpectedly removed or the address map has been otherwise
reconfigured. For example, when a user unplugs a device, or using software controls intended to be
available to untrusted software. The split between trusted and untrusted is implementation-specific,
but, for example untrusted would typically include unprivileged software and, in systems that supports
virtualization, guest operating systems. Untrusted might or might not include Non-secure hypervisors.

— Within the aligned page that contains the not-present location, all other locations are also not present
and have the same behavior. The size of this page is the largest supported translation granule size of
all PEs in the system.

That is, there is never any legitimate reason for software to access the page containing the location, and
trusted software should set up the translation tables to prevent accesses from occurring.

For all other cases, the access should do one of the following:

* Return zeros for a read and ignore writes. This is the recommended behavior for reads and writes of
unallocated or unimplemented registers, reads of write-only registers, and writes of read-only registers.

* Return all-ones for a read and ignore writes.

¢ Return an IMPLEMENTATION DEFINED value for a read and ignore writes.

If a device does not support a means to record the software fault, it should not return an in-band error response.
A device might implement a RAS System Architecture node and error records for recording software faults, for
improved debuggability of the fault.

When a device implements a node and error records for recording software faults, software faults can be
recorded as an error, and reported with an in-band error response and/or a fault handling interrupt, referred to as
a software fault interrupt. Arm recommends that this is configurable through ERR<n>CTLR, allowing software
to disable the feature. (For example, if an error exception might cause an unrecoverable software state.)

When the feature is disabled, accesses should behave as recommended above.

The following ERR<n>STATUS.SERR values can be used to record software faults.

SERR Description

13 Illegal address (software fault). For example, access to unpopulated memory.

14 Illegal access (software fault). For example, byte write to word register.

15 Illegal state (software fault). For example, device not ready.

25 Error recorded by PCle error logs. Indicates that the node has recorded an error in

a PClIe error log. This might be the PCle device status register, AER, DVSEC, or
other mechanisms defined by PCle.

3.2.8 Other sources of error and warnings

‘LH‘.‘.‘M’ c

ARM DDI 0587
D.a-00bet0

Other sources of error and warning are possible in a system. Within the RAS System Architecture these are
signaled to a PE using an error recovery interrupt or fault handling interrupt.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 64
Non-confidential

Chapter 3. RAS System Architecture
3.3. Error recovery interrupt

3.3 Erro

I JXHY

ARM DDI 0587
D.a-00bet0

r recovery interrupt

If an error recovery interrupt is implemented by a node, then the set of controls for enabling error recovery
interrupts is IMPLEMENTATION DEFINED. Software uses ERR<n>FR to determine what controls are
implemented.

For a node <n>, if an error recovery interrupt is implemented, then a control for enabling the error recovery
interrupt on Deferred errors, ERR<n>CTLR.DUI, might be implemented.

For a node <n>, if the ERR<n>CTLR.DUI control is implemented, then the error recovery interrupt is enabled
for Deferred errors when ERR<n>CTLR.DUI is 0b1, and disabled for Deferred errors when ERR<n>CTLR.DUI
is 0b0.

For a node <n>, if the ERR<n>CTLR.DUI control is not implemented, then the error recovery interrupt is
always disabled for Deferred errors.

For a node <n>, if an error recovery interrupt is implemented, then a control for enabling the error recovery
interrupt on Uncorrected errors, ERR<n>CTLR.UI, might be implemented.

For a node <n>, if the ERR<n>CTLR.UI control is implemented, then the error recovery interrupt is
enabled for Uncorrected errors when ERR<n>CTLR.UI is 0b1, and. disabled for Uncorrected errors when
ERR<n>CTLR.UI is 0b0.

For a node <n>, if the ERR<n>CTLR.UI control is not implemented, then the error recovery interrupt is always
enabled for Uncorrected errors.

For a node <n>, if an error recovery interrupt is not implemented, then the ERR<n>CTLR.{DUILUI} controls
are not implemented.

For each implemented control, it is further IMPLEMENTATION DEFINED whether there is a single control or
separate controls for reads and writes.

The error recovery interrupt is generated when the node records an error, even if the error syndrome is discarded
because the error record already records a higher priority error.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 65
Non-confidential

Chapter 3. RAS System Architecture
3.4. Fault handling interrupt

3.4 Fault handling interrupt

Rrspry

RXFI«IT”

R‘L ZDHM

Rpowyn

If a fault handling interrupt is implemented by a node, then the set of controls for enabling fault handling
interrupts is IMPLEMENTATION DEFINED. Software uses ERR<n>FR to determine what controls are
implemented.

For a node <n>, if fault handling interrupt is implemented, then the control for generating the fault handling
interrupt on corrected error events, ERR<n>CTLR.CFI, might be implemented.

For a node <n>, if the ERR<n>CTLR.CFI control is implemented, then the fault handling interrupt is enabled
for corrected error events when ERR<n>CTLR.CFI is 0b1 and disabled for corrected error events when
ERR<n>CTLR.CFI is 0b0.

For a node <n>, if the ERR<n>CTLR.CFI control is implemented, then the ERR<n>CTLR.FI control is
implemented, and the fault handling interrupt is enabled for Deferred errors and Uncorrected errors when
ERR<n>CTLR.Fl is 0b1 and disabled for Deferred errors and Uncorrected errors when ERR<n>CTLR.FI is
0bO0.

For a node <n>, if the ERR<n>CTLR.CFI control is not implemented, then the control for generating the fault
handling interrupt on all recorded errors, ERR<n>CTLR.FI, might be implemented.

For a node <n>, if the ERR<n>CTLR.FI control is implemented and the ERR<n>CTLR.CFI control is not
implemented, then the fault handling interrupt is enabled for corrected error events, Deferred errors, and
Uncorrected errors when ERR<n>CTLR.FI is 0b1 and disabled for corrected error events, Deferred errors, and
Uncorrected errors when ERR<n>CTLR.FI is 0b0.

For a node <n>, if the ERR<n>CTLR.FI control is not implemented, then the fault handling interrupt is always
enabled for all corrected error events, Deferred errors and Uncorrected errors.

For a node <n>, if a fault handling interrupt is not implemented, then the ERR<n>CTLR.{CFLFI} controls are
not implemented.

A Corrected error event is defined as follows:

* If the node implements a corrected error counter then all of the following are true:
— A corrected error event occurs when a counter overflows and sets a counter overflow flag to 0Ob1.

— It is UNPREDICTABLE whether a corrected error event occurs when a software write that sets the
counter overflow flag to 0b1.

— It is UNPREDICTABLE whether a corrected error event occurs when a counter overflows and the
overflow flag was previously set to 0b1.

* If the node does not implement Corrected error counters then a corrected error event occurs when the node
records an error as Corrected error.

For each implemented control, it is further IMPLEMENTATION DEFINED whether there is a single control or
separate controls for reads and writes.

The fault handling interrupt is generated when the node records an error, even if the error syndrome is discarded
because the error record already records a higher priority error.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 66

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture
3.5. In-band error response signaling (external aborts)

3.5 In-band error response signaling (external aborts)

Rornms For a node <n>, if support for in-band error response signaling, also referred to as external aborts, is implemented
by the node, then the control for enabling in-band error response signaling, ERR<n>CTLR.UE, might be
implemented. Software uses ERR<n>FR to determine what controls are implemented.

Reery For a node <n>, if the ERR<n>CTLR.UE control is implemented, then in-band error response signaling is
enabled for Uncorrected errors when ERR<n>CTLR.UE is 0b1, and in-band error response signaling is disabled
for Uncorrected errors when ERR<n>CTLR.UE is 0b0.

Rxpxue For a node <n>, if the ERR<n>CTLR.UE control is not implemented and support for in-band error response
signaling is implemented, then in-band error response signaling is always enabled for Uncorrected errors.

Rpmr For a node <n>, if support for in-band error response signaling is not implemented, then the ERR<n>CTLR.UE
control is not implemented.

Ryrmvpr, For the ERR<n>CTLR.UE control, it is further IMPLEMENTATION DEFINED whether there is a single control or
separate ERR<n>CTLR.{RUE, WUE} controls for reads and writes.

Ryryxp When the node records an Uncorrected error and signals an in-band error response, it sets ERR<n>STATUS.ER
to Obl.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 67

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture
3.6. Critical error interrupt

3.6 Critical error interrupt

Ri; HJIMS

RL‘,::LAE‘

Typrsr

Ryorpr

RL ZVMK

Support for critical error conditions and critical error interrupts at a node is IMPLEMENTATION DEFINED.
Software uses ERR<n>FR to determine what support is implemented.

Critical error interrupts provide a mechanism for a node to report a critical error condition to a system controller
for error recovery.

An example of a critical error is one where the node has entered a service failure mode which means that the
primary error recovery mechanisms cannot be used. For example, if a memory controller enters a failure mode
and stops servicing memory requests from application processors, and application processors host the primary
error recovery software, then the error has to be signaled to a secondary error controller that has its own private
resources in order to record the error.

For a node <n>, if the critical error interrupt is implemented, then the error recovery interrupt is implemented.

For a node <n>, if the critical error interrupt is implemented, then the critical error interrupt is enabled when
ERR<n>CTLR.CI is 0b1 and disabled when ERR<n>CTLR.CI is 0b0.

For a node <n>, if the critical error interrupt is implemented, then when a critical error condition is recorded the
node sets ERR<n>STATUS.CI to 0b1, regardless of whether the critical error interrupt is enabled or disabled.

ERR<n>STATUS.CI is set to 0b1 in addition to the other syndrome information for the error, which is handled
in the normal way.

For a node <n>, if the critical error interrupt is implemented and disabled, then when a critical error condition is
detected, the node records the critical error as an Uncontainable error.

Classifying the critical error condition as an Uncontainable error if the critical error interrupt is disabled has the
effect of causing the node to generate an error recovery interrupt.

For a node <n>, if the critical error interrupt is implemented and enabled, then it is IMPLEMENTATION DEFINED
how the error is classified at the node.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 68

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture

3.7. Standard

format Corrected error counter

3.7 Standard format Corrected error counter

R;T""‘J NX

R JMVKC

Rrzrxy

ARM DDI 0587
D.a-00bet0

The RAS System Architecture defines standard formats for a corrected error counter. Software uses ERR<n>FR
to determine whether any standard format corrected error counter is implemented by a node.

If a standard format corrected error counter is implemented by a node, then it is IMPLEMENTATION DEFINED
whether a single counter or a pair of counters is implemented.

For a node <n>, if a standard format corrected error counter is implemented, then the counter or counters are
recorded in ERR<n>MISCO.

If a pair of standard format Corrected error counters are implemented by a node, this provides:
* A first (repeat) error counter to count the first error and any subsequent error detected at the same location.

* A second (other) error counter to count errors detected in other locations.

If a pair of standard format Corrected error counters are implemented by a node, then an error record <n>
records a counted-fault location for the error, in one or more of:

e The ERR<n>ADDR register.

* The ERR<n>STATUS.IERR field.
* The ERR<n>STATUS.SERR field.
¢ The ERR<n>MISC<m> registers.

It is IMPLEMENTATION DEFINED which of these or parts thereof describe the counted-fault location.

Note

These registers might contain additional IMPLEMENTATION DEFINED fault location information that is not
considered part of the counted-fault location.

The counted-fault location recorded in error record <n> is either valid or invalid:

* If the counted-fault location or part of the counted-fault location is held the ERR<n>ADDR register then:

— This part is valid when ERR<n>STATUS.{V, AV} == {1, 1}.

— Itis IMPLEMENTATION DEFINED whether this part of the counted-fault location is treated as valid or
invalid when ERR<n>STATUS.{V, AV} == {1, 0}.

— Otherwise, this part is invalid.

* If the counted-fault location or part of the counted-fault location is held in the ERR<n>STATUS.IERR
field, this part is valid when ERR<n>STATUS.V == 0b1 and invalid otherwise.

* If the counted-fault location or part of the counted-fault location is held in the ERR<n>STATUS.SERR
field, this part is valid when ERR<n>STATUS.V == 0b1 and invalid otherwise.

* If the counted-fault location or part of the counted-fault location is held in the ERR<n>MISC<m> registers
then:

— This part is valid when ERR<n>STATUS.{V, MV} == {1, 1} and IMPLEMENTATION DEFINED parts
of the syndrome data indicate the registers contain a valid counted-fault location.

— Itis IMPLEMENTATION DEFINED whether this part of the counted-fault location is treated as valid or
invalid when ERR<n>STATUS.{V, MV} == {1, 0}.

— Otherwise, this part is invalid.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 69
Non-confidential

Chapter 3. RAS System Architecture
3.7. Standard format Corrected error counter

Ristyg * If the counted-fault location is held across multiple of these registers then the counted-fault location is
valid only if all parts are valid and invalid otherwise.

Note

¢ The counted-fault location is always invalid if ERR<n>STATUS.V is 0b0, that is, if no error has been
recorded by the error record since ERR<n>STATUS.V was last cleared to 0b0.

* The content of IMPLEMENTATION DEFINED syndrome is IMPLEMENTATION DEFINED. This permits,
but does not require, for example, the ERR<n>MISC<m> registers to contain additional valid flags
for other parts of the syndrome, or for some parts of ERR<n>MISC<m> to be be valid only for some
values of ERR<n>STATUS.{IERR,SERR}.

* For some implementations, ERR<n>ADDR is always written when an error is recorded, meaning
ERR<n>STATUS.{V, AV} == {1, 0} is never set by the hardware. Similarly, for some implementations,
ERR<n>STATUS.{V, MV} == {1, 0} is never set by the hardware. For these cases the implementation
might ignore the applicable one or ones of the AV and MV bits when determining whether the fault
counted-fault location is valid.

Raozz If a pair of standard format Corrected error counters are implemented by a node, then when a countable error is
recorded by error record <n>:

 The first (repeat) error counter counts an error if either of the following are true:

— The counted-fault location recorded in error record <n> is invalid.
— The error being counted is at the same location as the valid counted-fault location recorded in error
record <n>.

¢ The second (other) counter counts the error otherwise.

Teveew When the counted-fault location recorded in error record <n> is invalid, because this typically means
that ERR<n>STATUS.V is 0b0, the node typically overwrites the syndrome, meaning it captures the new
counted-fault location. Otherwise, because ERR<n>STATUS.V is 0b1 the node keeps the syndrome, meaning
the counted-fault location is unchanged.

Rrycry If a standard format corrected error counter is implemented by a node, then if counting an error causes unsigned
overflow of the corrected error counter:

* The counter overflow flag is set to Ob1.

¢ A corrected error event occurs.

Note

IMPLEMENTATION DEFINED forms of counters, including other sizes, other overflow models, and other
miscellaneous syndrome register locations, might be implemented.

See also:

» Writing the error record
* Fault handling interrupt

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 70
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.8. Error recovery, fault handling, and critical error signaling

3.8 Error recovery, fault handling, and critical error signaling

Error recovery, fault handling, and critical error interrupts are normally routed using an interrupt controller.

For an Arm Generic Interrupt Controller (GIC), if the error records of the node that generates the interrupts are
only accessible via the System registers of one or more PEs, Arm strongly recommends that the interrupt is a
Private Peripheral Interrupt (PPI) targeting that PE or one of those PEs.

It is IMPLEMENTATION DEFINED whether each error record has independent interrupt signals for error recovery,
fault handling, and critical error interrupts, or whether it shares any of these interrupts with other error records
and/or other nodes.

It is IMPLEMENTATION DEFINED whether interrupts are edge-triggered or level-sensitive.

If the fault handling interrupt is level-sensitive, it is asserted by the node for an error record <n> while any of
the following apply:

¢ Fault handling interrupts on all Deferred errors and Uncorrected errors are enabled, the ERR<n>STATUS.V
bit is 0b1, and either or both of the ERR<n>STATUS.{DE,UE} bits are 0b1.

¢ Fault handling interrupts on Corrected errors are enabled and either:

— The node implements a corrected error counter, ERR<n>STATUS.V is 0b1, and the counter overflow
flag is Ob1.

— The node does not implement a corrected error counter, ERR<n>STATUS.V is 0b1l, and
ERR<n>STATUS.CE is nonzero.

If the error recovery interrupt is level-sensitive, it is asserted by the node for an error record <n> while any of
the following apply:

* Error recovery interrupts on Uncorrected errors are enabled, ERR<n>STATUS.V is 0bl, and
ERR<n>STATUS.UE is 0b1.

e Error recovery interrupts on Deferred errors are enabled, ERR<n>STATUS.V is 0bl, and
ERR<n>STATUS.DE is 0b1.

If the critical error interrupt is level-sensitive, it is asserted by the node for an error record <n> while critical
error interrupts are enabled, ERR<n>STATUS.V is 0b1, and ERR<n>STATUS.CI is 0b1.

If the fault handling interrupt is edge-triggered, it is generated by the node for an error record when any of the
following occur:

* Fault handling interrupts on all Deferred errors and Uncorrected errors are enabled, and an error is recorded
in the error record as either Deferred error or Uncorrected error.

* Fault handling interrupts on Corrected errors are enabled and a corrected error event occurs for the error
record.

If the error recovery interrupt is edge-triggered, it is generated by the node for an error record when any of the
following occur:

* Error recovery interrupts on Uncorrected errors are enabled, and an error is recorded in the error record as
Uncorrected error.

* Error recovery interrupts on Deferred errors are enabled, and an error is recorded in the error record as
Deferred error.

If the critical error interrupt is edge-triggered, it is generated by the node for an error record <n> when critical
error interrupts are enabled, and the node records an error setting ERR<n>STATUS.CI to 0b1.

The critical error interrupt is generated even if the ERR<n>STATUS.CI was already 0b1.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 71

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture
3.8. Error recovery, fault handling, and critical error signaling

Tmyryr An enabled edge-triggered interrupt is generated even if the error syndrome is discarded because the error record
already records a higher priority error.

Rywmrp It is IMPLEMENTATION DEFINED whether an edge-triggered interrupt is generated by a write to a register that
enables an interrupt or otherwise creates the conditions for the interrupt in the other syndrome registers, as
defined for a level-sensitive interrupt.

Rezowv The standard error record reserves a set of register locations for programming Message Signaled Interrupts
(MSIs). In addition, a recommended layout for these registers is provided.

Rrzpww When an error is recorded, or an interrupt becomes enabled, the state of the interrupts is updated in finite time.

See also:

¢ ERRIRQCR<n>, ERRERICRO, ERRERICR1, ERRERICR2, ERRCRICRO, ERRCRICR1, ERRCRICR?2,
ERRFHICRO, ERRFHICR1, ERRFHICR2, and ERRIRQSR.

* Synchronization and error record accesses

* Error recovery interrupt

* Fault handling interrupt

 Critical error interrupt

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 72
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.9. Error recovery reset

3.9 Error recovery reset

Irg A system comprises multiple power and logical domains, each of which might implement one or more reset
signals.
The RAS System Architecture defines two classes of reset:

Rpkkyc * Cold reset is asserted to a component when it transitions from a powered off state to a powered on state.
Cold reset initializes the component to a known initial state. No state is preserved from the previous
powered off state.

Rux » Error Recovery reset is an optional reset that might be applied at any other time. System Error Recovery
reset initializes the component to a known state. Unlike Cold reset, any recorded error syndrome
information is preserved over a System Error Recovery reset.

Ripg The way in which these resets map to other resets is IMPLEMENTATION DEFINED.

Rz1zpR Any mechanisms for asserting resets are IMPLEMENTATION DEFINED.

Tur For a PE, the Error Recovery reset might be implemented by the architectural Warm reset. If Warm reset is

implemented, it preserves the error records in the PE.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 73

D.a-00bet0

Non-confidential

Chapter 3. RAS System Architecture
3.10. Timestamp extension

3.10 Timestamp extension

ARM DDI 0587
D.a-00bet0

The RAS Timestamp Extension is an optional part of RAS System Architecture v1.1.

The RAS Timestamp Extension provides a standard mechanism for timestamping error records.

For a given error record <n>, the timestamp value is recorded in ERR<n>MISC3.

For a given node <n>, the RAS Timestamp Extension is implemented if ERR<n>FR.TS != 0b00.

The timestamp uses either the system Generic Timer counter or an IMPLEMENTATION DEFINED timebase.
For a given node <n>, the value of ERR<n>FR.TS defines which timebase is used.

Other than when IMPLEMENTATION DEFINED conditions apply, the following are true:

* The timebase is encoded as a plain binary number.
* The timebase is monotonically increasing at a fixed rate compared to wallclock time.

The IMPLEMENTATION DEFINED conditions are to allow for the timebase to violate these conditions during
initial system configuration.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 74
Non-confidential

Chapter 3. RAS System Architecture
3.11. Common Fault Injection Model Extension

3.11 Common Fault Injection Model Extension

Revipn The Common Fault Injection Model Extension is an optional part of RAS System Architecture v1.1.

Trgwrx Other fault injection mechanisms are permitted. For example, if the Common Fault Injection Model Extension
is not implemented, the ERRIMPDEF<n> registers might be used for some other IMPLEMENTATION DEFINED
fault injection mechanism.

Rypsex The Common Fault Injection Model Extension can only be implemented for error records accessed through a
memory-mapped group of error records if ERRDEVARCH.REVISION >= 0b0001.

Rerezn The Common Fault Injection Model Extension fakes the detection of an error at a component.

Repyre A faked error detection results in the node signaling the appropriate ones of the fault handling interrupt, error
recovery interrupt, and in-band error response, according to the type of injected error.

Ixupvn The data is not corrupted by the Common Fault Injection Model Extension.

Rryrop The Common Fault Injection Model Extension supports generating a subset of the component error state types
supported by the node.

Tysons Arm recommends that the Common Fault Injection Model Extension supports all the component error state

types supported by the node.

Tovren For a given node <n>, the Common Fault Injection Model Extension is implemented if ERR<n>FR.INJ !=
0b0o0.

Izpzaw For a given node <n>, the Common Fault Injection Model Extension capabilities are discoverable using
ERR<n>PFGF.

Lzppur If a node is not capable of recording an component error state type, then it does not support injecting that

component error state type.

Reocec For a given node <n>, the Common Fault Injection Model Extension is disabled if ERR<n>CTLR.ED is writable
and 0b0.
Ty The Common Fault Injection Model Extension registers are:

* ERR<n>PFGF.
* ERR<n>PFGCTL.
* ERR<n>PFGCDN.

The Common Fault Injection Model Extension registers are not accessible from AArch32 state. However, when
accessed via ERXFR, AArch32 state can access the ERR<n>FR.INJ field described in this section.

Lorvup Additional constraints might apply if fault injection can affect the operation of Secure state. See Security and
Virtualization.

3.11.1 Operation of the Common Fault Injection Model Extension

The behaviors in this section apply for a given node if the node implements the Common Fault Injection Model

Extension.
Rypzsc When software writes 1 to ERR<n>PFGCTL.CDNEN:
e If ERR<n>PFGCDN.CDN is nonzero, then the internal Error Generation Counter is set to
ERR<n>PFGCDN.CDN.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 75

D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.11. Common Fault Injection Model Extension

¢ If ERR<n>PFGCDN.CDN is zero, the behavior is UNPREDICTABLE and is one of:

— The Error Generation Counter is unchanged.
— The Error Generation Counter is set to zero.
— The Error Generation Counter is set to zero and the component enters the fault injection state.

Txpwey The current value of the Error Generation Counter is not visible to software.

Rprz While ERR<n>PFGCTL.CDNEN == 1 and the Error Generation Counter is nonzero, the Error Generation
Counter decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate.

Ipmwzx The rate at which the component decrements the counter is defined by the component. For example, it might be
the native clock rate for the component, and this might not be the same as the PE clock rate. Software typically
discovers this rate from firmware.

Rppewms When the Error Generation Counter decrements to/past zero, the component enters a fault injection state.

Ryxxwr When the component is in the fault injection state, on the next access to the component, the component:

* Fakes detection of the component error state type(s) described by ERR<n>PFGCTL.

* Reports the injected error to the node, which records the injected error and signals the appropriate ones of
the fault handling interrupt, error recovery interrupt, and in-band error response, according to the type of
injected error.

* Leaves fault injection state.

Reaxer When an injected error is recorded, the node writes the ERR<n>STATUS.{V, UE, CE, DE, UET} fields
according to the component error state type described by ERR<n>PFGCTL.

Rrsxmr If ERR<n>PFGCTL defines multiple component error state types, or none, the behavior is UNPREDICTABLE
and is one of:

* No error is injected.
* An error is injected with an UNPREDICTABLE choice of component error state.

Rxromm It is IMPLEMENTATION DEFINED how the node updates the ERR<n>STATUS.{AV, ER, OF, MV, PN, CI, IERR,
SERR}, ERR<n>ADDR, and ERR<n>MISC<m> when recording an injected error. ERR<n>PFGF describes
the IMPLEMENTATION DEFINED options and the controls available in ERR<n>PFGCTL.

Lessowm For many fields, the implementation has the choice to either set the syndrome register or field according to the
access that triggers the injected error, or provide finer-grained control over the field, either by a control bit if
ERR<n>PFGCTL or by not updating the register or field when the injected error is recorded meaning software
can write the injected syndrome to the register or field ahead of injecting the error.

Ryvpwr For each of the ERR<n>STATUS.{CI, ER, PN} bits, the behavior is UNPREDICTABLE if all of the following are
true:

¢ ERR<n>PFGF defines that the value injected is controlled by the corresponding ERR<n>PFGCTL bit.
* The corresponding ERR<n>PFGCTL bit is 0b1.

* For the ER and PN bits, the definition of the ERR<n>STATUS field defines that the bit is not valid for the
component error state requested by ERR<n>PFGCTL. For the CI bit, the component error state requested
by ERR<n>PFGCTL is not one of an IMPLEMENTATION DEFINED set of permitted values for critical
error conditions.

The UNPREDICTABLE behavior is one of:

* No error is injected.
* An error is injected, but the component error state and syndrome bits do not match the requested error

type.
* The error is injected as requested, including setting the invalid bit or bits to the requested values.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 76
D.a-00bet0 Non-confidential

Chapter 3. RAS System Architecture
3.11. Common Fault Injection Model Extension

Tosivz This means that:

I‘\\{N

ARM DDI 0587
D.a-00bet0

e Itis IMPLEMENTATION DEFINED which component error states the CI value can be injected with.

* The PN value can be injected with a Uncorrected error or Deferred error and cannot be injected with a
Corrected error.

* The ER value can be injected with an Uncorrected error and cannot be injected with a Corrected error.

* Itis IMPLEMENTATION DEFINED whether the ER value can be injected with a Deferred error.

If a single node has multiple error records, then only the first error record has fault injection registers.

If a single node has multiple error records and any of ERR<n>PFGF.{SYN, AV, MV} for the first error
record of the node are non-zero, meaning the fault injection mechanism does not update all or some of the
ERR<n>MISC<m> or fields when the injected error is recorded, then the injected fault is recorded in the first
error record. Otherwise, the injected error might be recorded in any of the multiple error records.

Note

If a single node has multiple error records and any of ERR<n>PFGF.{SYN, AV, MV} for the first error
record of the node are zero then a node might define which error record is updated or implement an
IMPLEMENTATION DEFINED control to allow this to be specified.

If the node implements fault handling interrupt, error recovery interrupt, and critical error interrupt as
edge-triggered interrupts, then recording an injected error has the same behavior as recording a detected
error, for generating the edge-triggered interrupt. That is, the interrupt is generated if the interrupt is enabled for
the type of error being injected.

If the node implements fault handling interrupt, error recovery interrupt, and critical error interrupt as
level-sensitive interrupts, then the level of the interrupt request is a function of the values of the control
and status register fields. The behavior of the interrupt request does not depend on whether the control and
status registers were written by the node when detecting an error, or written by error injection.

If the Error Generation Counter is zero and ERR<n>PFGCTL.R == 1 then:

e If ERR<n>PFGCDN.CDN is nonzero, then the internal Error Generation Counter is set to
ERR<n>PFGCDN.CDN.

¢ If ERR<n>PFGCDN.CDN is zero, the behavior is UNPREDICTABLE and is one of:

— The Error Generation Counter is unchanged.
— The Error Generation Counter is set to zero.
— The Error Generation Counter is set to zero and the component reenters the fault injection state.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 77
Non-confidential

Chapter 4
RAS Extension and RAS System Architecture Registers

4.1 Memory-mapped view

RTI‘fT‘ff

R\/H‘H\"

RHV 4

Tcrixs

Error record registers, including memory mapped view defines the registers for memory-mapped error records.

It is IMPLEMENTATION DEFINED which components in the system, if any, implement memory-mapped error
records.

A memory-mapped component might implement several error records in a group, relating to one or more nodes.

The Reliability, Availability, Serviceability (RAS) System Architecture defines the following reusable formats
for memory-mapped error records:

* Memory-mapped error record group view describes a group of error records accessed via a standard 4KB
memory-mapped peripheral.

e Memory-mapped single error record view describes a format for a memory-mapped component that
implements a single error record. This might be implemented as part of the control registers for a
memory-mapped component. In this format, the first register, ERR<n>FR, is at an address aligned to a
multiple of 64 bytes.

In Memory-mapped error record group view, ERRDEVID indicates the highest numbered index of the error
records that can be accessed.

For a 4KB peripheral implementing Memory-mapped error record group view, up to 24 error records can be
accessed if the Common Fault Injection Model Extension is implemented, and up to 56 otherwise. Groups
containing more records can be defined by increasing the page size for a group. This is not described by current
versions of the RAS System Architecture. For more information, contact Arm.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 78

D.a-00bet0

Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.1. Memory-mapped view

Rycupk

YGW

R“V’T CNK

I‘\ﬂ YGE

Rorzru

In Memory-mapped error record group view, each error record occupies a set of locations at offsets from an
error record base. This error record base is a fixed multiple of the index of the error record from the group base.

Memory-mapped error record group view includes a group status register, ERRGSR.

The Common Fault Injection Model Extension is not supported in the Memory-mapped single error record
view format.

The error records in a memory-mapped component might be accessible only through that component, or might
be shared and accessible through any of:

» System registers by one or more PEs.

* Other memory-mapped components in the same physical address space, including aliases with the same
group of error records.

* Other memory-mapped components in other address spaces. For example, in both Non-secure and Secure
physical address spaces.

Arm recommends that each memory-mapped error record is accessible at most once in any given physical
address space.

4.1.1 Access requirements for memory-mapped views of RAS error records

The requirements for a memory-mapped view of RAS error records are:

Ror1 e Reads and writes of unallocated locations are reserved accesses.
Rpr * Reads and writes of locations for features that are not implemented are reserved accesses, including:
— OPTIONAL features that are not implemented.
— error records that are not implemented.
Ren * Reads of WO locations are reserved accesses.
Ry » Writes to RO locations are reserved accesses.
Rrzupm Reserved accesses are RAZ/WI. However, software must not rely on this property as the behavior of reserved
values might change in a future revision of the architecture. Software must treat reserved accesses as RESO.
Ryxant The memory access sizes that are supported by the memory-mapped component are as described for other
memory-mapped components in [1]. It is IMPLEMENTATION DEFINED whether a word-aligned 32-bit access to
either half of a doubleword-aligned 64-bit register is supported if there is no Processing element (PE) in the
system that supports AArch32.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 79

D.a-00bet0

Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.2. Reset values

4.2 Reset values

Tpovrg

ARM DDI 0587
D.a-00bet0

When the node records an error in an error record, depending on the type of error being recorded, it is
IMPLEMENTATION DEFINED whether some fields are set to a zero or unchanged.

In most cases, this is because one of the following applies, and it is IMPLEMENTATION DEFINED which:

* The node sets the field to zero on Cold reset, meaning the value is not required to be changed when the
first error is recorded

* The node sets the field to zero on recording the first error after Cold reset.

To allow for either implementation, software must clear these fields to zero after logging a recorded error and
performing a software reset of the error record.

For more information, see Accessibility in ERR<n>STATUS.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 80
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3 Error record registers, including memory mapped view

Txrooo This section describes the error record registers. The descriptions in this section apply whether the error record
is accessed:

* Through the indirection mechanism described in Error record System register view.

* As memory-mapped registers, as described in Memory-mapped view.

4.3.1 Register index

Using AArch32 System registers

Table 4.1: Using AArch32 System registers, System register map

Use To Access Access Description
ERXADDR ERR<n>ADDRJ[31:0] R/W Error Record Address Register
ERXADDR2 ERR<n>ADDR[63:32] R/W Error Record Address Register
ERXCTLR ERR<n>CTLR[31:0] R/W Error Record Control Register
ERXCTLR2 ERR<n>CTLR[63:32] R/W Error Record Control Register
ERXFR ERR<n>FR[31:0] RO Error Record Feature Register
ERXFR2 ERR<n>FR[63:32] RO Error Record Feature Register
ERXMISCO ERR<n>MISCO0[31:0] R/W Error Record Miscellaneous Register 0
ERXMISC1 ERR<n>MISCO0[63:32] R/W Error Record Miscellaneous Register 0
ERXMISC2 ERR<n>MISC1[31:0] R/W Error Record Miscellaneous Register 1
ERXMISC3 ERR<n>MISC1[63:32] R/W Error Record Miscellaneous Register 1
ERXMISC4 ERR<n>MISC2[31:0] R/W Error Record Miscellaneous Register 2
ERXMISC5 ERR<n>MISC2[63:32] R/W Error Record Miscellaneous Register 2
ERXMISC6 ERR<n>MISC3[31:0] R/W Error Record Miscellaneous Register 3
ERXMISC7 ERR<n>MISC3[63:32] R/W Error Record Miscellaneous Register 3
ERXSTATUS ERR<n>STATUS[31:0] R/W Error Record Primary Status Register
Using AArch64 System registers
Table 4.2: Using AArch64 System registers, System register map
Use To Access Access Description
ERXADDR_ELI1 ERR<n>ADDR R/W Error Record Address Register
ERXCTLR_EL1 ERR<n>CTLR R/W Error Record Control Register
ERXFR_ELI1 ERR<n>FR RO Error Record Feature Register
ERXMISCO_EL1 ERR<n>MISCO R/W Error Record Miscellaneous Register 0
ERXMISCI1_ELI ERR<n>MISCl1 R/W Error Record Miscellaneous Register 1
ERXMISC2_EL1 ERR<n>MISC2 R/W Error Record Miscellaneous Register 2
ERXMISC3_EL1 ERR<n>MISC3 R/W Error Record Miscellaneous Register 3
ERXPFGCDN _EL1 ERR<n>PFGCDN R/W Pseudo-fault Generation Countdown Register
ERXPFGCTL_EL1 ERR<n>PFGCTL R/W Pseudo-fault Generation Control Register
ERXPFGF_ELI1 ERR<n>PFGF RO Pseudo-fault Generation Feature Register
ERXSTATUS_EL1 ERR<n>STATUS R/W Error Record Primary Status Register
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 81

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Memory-mapped error record group view

Table 4.3: RAS, error record group, memory-mapped register map

Offset Access Size Register Description

0x000+64xn RO 64 ERR<n>FR Error Record Feature Register

0x008+64xn R/W 64 ERR<n>CTLR Error Record Control Register

0x010+64xn R/W 64 ERR<n>STATUS Error Record Primary Status Register
0x018+64xn R/W 64 ERR<n>ADDR Error Record Address Register

0x020+64xn R/W 64 ERR<n>MISCO Error Record Miscellaneous Register 0
0x028+64xn R/W 64 ERR<n>MISC1 Error Record Miscellaneous Register 1
0x030+64xn R/W 64 ERR<n>MISC2 Error Record Miscellaneous Register 2
0x038+64xn R/W 64 ERR<n>MISC3 Error Record Miscellaneous Register 3
0x800+64xn RO 64 ERR<n>PFGF Pseudo-fault Generation Feature Register
0x800+8xn R/W 64 ERRIMPDEF<n> IMPLEMENTATION DEFINED Register <n>
0x808+64xn R/W 64 ERR<n>PFGCTL Pseudo-fault Generation Control Register
0x810+64xn R/W 64 ERR<n>PFGCDN Pseudo-fault Generation Countdown Register
0xEO00 RO 64 ERRGSR Error Group Status Register

0xE10 RO 32 ERRIIDR Implementation Identification Register

0xE80 R/W 64 ERRFHICRO Fault Handling Interrupt Configuration Register 0
0xE80+8xn R/W 64 ERRIRQCR<n> Generic Error Interrupt Configuration Register
0xE88 R/W 32 ERRFHICR1 Fault Handling Interrupt Configuration Register 1
0xE8C R/W 32 ERRFHICR2 Fault Handling Interrupt Configuration Register 2
0xE90 R/W 64 ERRERICRO Error Recovery Interrupt Configuration Register O
0xE98 R/W 32 ERRERICR1 Error Recovery Interrupt Configuration Register 1
0xE9C R/W 32 ERRERICR2 Error Recovery Interrupt Configuration Register 2
OxEAQ R/W 64 ERRCRICRO Critical Error Interrupt Configuration Register 0
OxEAS8 R/W 32 ERRCRICRI1 Critical Error Interrupt Configuration Register 1
OxEAC R/W 32 ERRCRICR2 Critical Error Interrupt Configuration Register 2
OxEF8 R/W 64 ERRIRQSR Error Interrupt Status Register

OxFAS8 RO 64 ERRDEVAFF Device Affinity Register

OxFBC RO 32 ERRDEVARCH Device Architecture Register

0xFC8 RO 32 ERRDEVID Device Configuration Register

OxFDO RO 32 ERRPIDR4 Peripheral Identification Register 4

OxFEOQ RO 32 ERRPIDRO Peripheral Identification Register O

OxFE4 RO 32 ERRPIDRI1 Peripheral Identification Register 1

OxFES8 RO 32 ERRPIDR2 Peripheral Identification Register 2

OxFEC RO 32 ERRPIDR3 Peripheral Identification Register 3

OxFFO RO 32 ERRCIDRO Component Identification Register O

OxFF4 RO 32 ERRCIDR1 Component Identification Register 1

OxFF8 RO 32 ERRCIDR2 Component Identification Register 2

0xFFC RO 32 ERRCIDR3 Component Identification Register 3

Memory-mapped single error record view

ARM DDI 0587
D.a-00bet0

Table 4.4: RAS, single error record, memory-mapped register map

Description

Offset Access Size Register

0x000 RO 64 ERR<n>FR
0x008 R/W 64 ERR<n>CTLR
0x010 R/W 64 ERR<n>STATUS
0x018 R/W 64 ERR<n>ADDR

Error Record Feature Register
Error Record Control Register

Error Record Primary Syndrome Register

Error Record Address Register

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

82

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

ARM DDI 0587
D.a-00bet0

Offset

Access

Size Register

Description

0x020
0x028
0x030
0x038

R/W
R/W
R/W
R/W

64 ERR<n>MISCO
64 ERR<n>MISC1
64 ERR<n>MISC2
64 ERR<n>MISC3

Error Record Miscellaneous Register O
Error Record Miscellaneous Register 1
Error Record Miscellaneous Register 2
Error Record Miscellaneous Register 3

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

83

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.2 ERR<n>ADDR, Error Record Address Register

The ERR<n>ADDR characteristics are:

Purpose
If an address is associated with a detected error, then it is written to ERR<n>ADDR when the error

is recorded. It is IMPLEMENTATION DEFINED how the recorded address maps to the software-visible
physical address. Software might have to reconstruct the actual physical addresses using the identity of the

node and knowledge of the system.

Configurations
ERR<n>ADDR is present only if all of the following are true:

* Error record <n> is implemented.
¢ Error record <n> includes an address associated with an error.

ERR<n>ADDR is RESO otherwise.

ERR<qg>FR describes the features implemented by the node that owns error record <n>. <g> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,

then g = n.

Attributes
When accessed using a System register, ERR<n>ADDR is a 64-bit read/write register accessed using:

» MRC and MCR of ERXADDR for ERR<n>ADDR[31:0] when ERRSELR.SEL is set to 7.
¢ MRC and MCR of ERXADDR?2 for ERR<n>ADDR[63:32] when ERRSELR.SEL is set to n.
e MRS and MSR of ERXADDR_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>ADDR is a 64-bit read/write register located at
offset 0x018 + 64xn.

Field descriptions

The ERR<n>ADDR bit assignments are:

63 62 61 60,59 56,55 | | | | | 32
SI]AI RESO PADDR[55:32] g
NS VA
131 | | | | | | | 0
g PADDR([31:0]

Figure 4.1: ERR<n>ADDR

NS, bit [63]
Non-secure attribute. The possible values of this bit are:

0 ERR<n>ADDR.PADDR is a Secure address.
ERR<n>ADDR.PADDR is a Non-secure address.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

SI, bit [62]
Secure Incorrect. Indicates whether ERR<n>ADDR.NS is valid. The possible values of this bit are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 84
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0 ERR<n>ADDR.NS is correct. That is, it matches the programmers’ view of the
Non-secure attribute for this recorded location.
1 ERR<#n>ADDR.NS might not be correct, and might not match the programmers’ view

of the Non-secure attribute for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Al bit [61]

Address Incorrect. Indicates whether ERR<n>ADDR.PADDR is a valid physical address that is known to
match the programmers’ view of the physical address for the recorded location. The possible values of
this bit are:

0 ERR<n>ADDR.PADDR is a valid physical address. That is, it matches the
programmers’ view of the physical address for the recorded location.
1 ERR<n>ADDR.PADDR might not be a valid physical address, and might not match the

programmers’ view of the physical address for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

VA, bit [60]

Virtual Address. Indicates whether ERR<n>ADDR.PADDR field is a virtual address. The possible values
of this bit are:

0 ERR<n>ADDR.PADDR is not a virtual address.
ERR<n>ADDR.PADDR is a virtual address.

No context information is provided for the virtual address. When ERR<n>ADDR.VA == 0bl,
ERR<n>ADDR.{NS,SILAI} read as {0,1,1}.

Support for this bit is optional. If this bit is not implemented and ERR<n>ADDR.PADDR field is a virtual
address, then ERR<n>ADDR.{NS,SI,AI} read as {0,1,1}.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Bits [59:56]

Reserved. This field is RESO.

PADDR, bits [55:0]

ARM DDI 0587
D.a-00bet0

Physical Address. Address of the recorded location. If the physical address size implemented by this
component is smaller than the size of this field, then high-order bits are unimplemented and either RESO
or have a fixed read-only IMPLEMENTATION DEFINED value. Low-order address bits might also be
unimplemented and RESO, for example, if the physical address is always aligned to the size of a protection
granule.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 85
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Accessibility

ERR<n>ADDR ignores writes if all of the following are true:

* Any of the following are true:
— The RAS Common Fault Injection Model Extension is implemented by the node that owns this error
record and ERR<q>PFGF.AV == 0b0.
— The RAS Common Fault Injection Model Extension is not implemented by the node that owns this
error record.
* ERR<n>STATUS.AV == 0b1.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 86
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.3 ERR<n>CTLR, Error Record Control Register

The ERR<n>CTLR characteristics are:

Purpose
The error control register contains enable bits for the node that writes to this record:

* Enabling error detection and correction.
* Enabling the critical error, error recovery, and fault handling interrupts.
* Enabling in-band error response for Uncorrected errors.

For each bit, if the node does not support the feature, then the bit is RESO. The definition of each record is
IMPLEMENTATION DEFINED.

Configurations
ERR<n>CTLR is present only if all of the following are true:

* Error record <n> is implemented.
* Error record <n> is the first error record owned by a node.

ERR<n>CTLR is RESO otherwise.
ERR<n>FR describes the features implemented by the node.

Attributes
When accessed using a System register, ERR<n>CTLR is a 64-bit read/write register accessed using:

¢ MRC and MCR of ERXCTLR for ERR<n>CTLR[31:0] when ERRSELR.SEL is set to n.
¢ MRC and MCR of ERXCTLR2 for ERR<n>CTLR[63:32] when ERRSELR.SEL is set to n.
e MRS and MSR of ERXCTLR_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>CTLR is a 64-bit read/write register located at
offset 0x008 + 64xn.

Field descriptions

The ERR<n>CTLR bit assignments are:

63 ! ! ! ! ! ! ! 32
IMPLEMENTATION DEFINED g
31 | | | | 14 131241110 9 8,7 6 5 4,3 2 1 0O
g RESO cifo) Frjui
WDUI J \‘ UE ‘ \‘ ED
DUI IMP DEF
WCFI WUI
CFI WEFI
WUE

Figure 4.2: ERR<n>CTLR

Bits [63:32]
Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Bits [31:14,12]
Reserved. This field is RESO.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 87
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

CIL, bit [13]
Critical error interrupt enable.
When ERR<n>FR.CI == 0b10
When enabled, the critical error interrupt is generated for a critical error condition. The possible
values of this bit are:

0 Critical error interrupt not generated for critical errors. Critical errors are treated as
Uncontained errors.
1 Critical error interrupt generated for critical errors.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RESO.

WDUI, bit [11]
Error recovery interrupt for deferred errors on writes enable.

When ERR<n>FR.DUI == (0b11
When enabled, the error recovery interrupt is generated for detected Deferred errors on writes.

The possible values of this bit are:

Error recovery interrupt not generated for deferred errors on writes.
1 Error recovery interrupt generated for deferred errors on writes.

o

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RESO.

DUI, bit [10]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error

Recovery reset.

When ERR<n>FR.DUI == 0b10
Error recovery interrupt for deferred errors enable.

When ERR<n>FR.DUI == 0b10, this control applies to errors arising from both reads and writes.
When enabled, the error recovery interrupt is generated for all detected Deferred errors.

The possible values of this bit are:

0 Error recovery interrupt not generated for deferred errors.
1 Error recovery interrupt generated for deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

When ERR<n>FR.DUI == 0b11
Error recovery interrupt for deferred errors on reads enable.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 88
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When ERR<n>FR.DUI == 0b11, this bit is named RDUI.
When enabled, the error recovery interrupt is generated for detected Deferred errors on reads.

The possible values of this bit are:

0 Error recovery interrupt not generated for deferred errors on reads.
1 Error recovery interrupt generated for deferred errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

WCFT, bit [9]
Fault handling interrupt for Corrected errors on writes enable.

When ERR<n>FR.CFI == 0b11
‘When enabled:

* If the node implements Corrected error counters for writes, then the fault handling interrupt is
generated when a counter overflows and the overflow bit for the counter is set to 0b1. For more
information, see ERR<n>MISCO.

* Otherwise, the fault handling interrupt is also generated for detected Corrected errors onwrites.

The possible values of this bit are:

0 Fault handling interrupt not generated for Corrected errors on writes.
1 Fault handling interrupt generated for Corrected errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RESO.

CF], bit [8]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<r>FR.CFI == 0b10
Fault handling interrupt for Corrected errors enable.

When ERR<n>FR.CFI == 0b10, this control applies to errors arising from both reads and writes.
When enabled:

* If the node implements Corrected error counters, then the fault handling interrupt is generated
when a counter overflows and the overflow bit for the counter is set to 0b1. For more information,
see ERR<n>MISCO.

» Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0 Fault handling interrupt not generated for Corrected errors.
1 Fault handling interrupt generated for Corrected errors.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 89

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

When ERR<n>FR.CFI == 0b11
Fault handling interrupt for Corrected errors on reads enable.

When ERR<n>FR.CFI == 0b11, this bit is named RCFI.
‘When enabled:

¢ If the node implements Corrected error counters for reads, then the fault handling interrupt is
generated when a counter overflows and the overflow bit for the counter is set to 0b1. For more
information, see ERR<n>MISCO.

¢ Otherwise, the fault handling interrupt is also generated for detected Corrected errors onreads.

The possible values of this bit are:

0 Fault handling interrupt not generated for Corrected errors on reads.
1 Fault handling interrupt generated for Corrected errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

WUE, bit [7]
In-band Uncorrected error reporting on writes enable.

When ERR<n>FR.UE == 0b11
When enabled, responses to writes that detect an Uncorrected error that cannot be deferred are
signaled in-band as a detected Uncorrected error (External Abort).

The possible values of this bit are:

0 External Abort response for Uncorrected errors on writes disabled.
1 External Abort response for Uncorrected errors on writes enabled.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RESO.

WFI, bit [6]
Fault handling interrupt on writes enable.

When ERR<n>FR.FI == 0b11
When enabled:

* The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
* If the corresponding fault handling interrupt for Corrected errors control is not implemented:
— If the node implements Corrected error counters for writes, then the fault handling interrupt is
also generated when a counter overflows and the overflow bit for the counter is set to 0b1.
— Otherwise, the fault handling interrupt is also generated for detected Corrected errors on writes.

The possible values of this bit are:

0 Fault handling interrupt on writes disabled.
1 Fault handling interrupt on writes enabled.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 90

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RESO.

WUI, bit [5]
Uncorrected error recovery interrupt on writes enable.

When ERR<n>FR.UI == (0b11
When enabled, the error recovery interrupt is generated for detected Uncorrected errors on writes that
are not deferred.

The possible values of this bit are:

0 Error recovery interrupt on writes disabled.
1 Error recovery interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RESO.

UE, bit [4]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<n>FR.UE == 0b10
In-band Uncorrected error reporting enable.

When ERR<n>FR.UE == 0b10, this control applies to errors arising from both reads and writes.

When enabled, responses to transactions that detect an Uncorrected error that cannot be deferred are
signaled in-band as a detected Uncorrected error (External Abort).

The possible values of this bit are:

0 External Abort response for Uncorrected errors disabled.
1 External Abort response for Uncorrected errors enabled.

When ERR<n>FR.UE == (0b11
In-band Uncorrected error reporting on reads enable.

When ERR<n>FR.UE == 0b11, this bit is named RUE.

When enabled, responses to reads that detect an Uncorrected error that cannot be deferred are signaled
in-band as a detected Uncorrected error (External Abort).

The possible values of this bit are:

0 External Abort response for Uncorrected errors on reads disabled.
1 External Abort response for Uncorrected errors on reads enabled.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 91

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

FI, bit [3]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<n>FR.FI == 0b10
Fault handling interrupt enable.

When ERR<n>FR.FI == 0b10, this control applies to errors arising from both reads and writes.
When enabled:

* The fault handling interrupt is generated for all detected Deferred errors and Uncorrected errors.
« If the fault handling interrupt for Corrected errors control is not implemented:
— If the node implements Corrected error counters, then the fault handling interrupt is also
generated when a counter overflows and the overflow bit for the counter is set to 0b1.
— Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0 Fault handling interrupt disabled.
1 Fault handling interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

When ERR<n>FR.FI == 0b11
Fault handling interrupt on reads enable.

‘When ERR<n>FR.FI == 0b11, this bit is named RFI.
When enabled:

* The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
* If the corresponding fault handling interrupt for Corrected errors control is not implemented:
— If the node implements Corrected error counters for reads, then the fault handling interrupt is
also generated when a counter overflows and the overflow bit for the counter is set to 0b1.
— Otherwise, the fault handling interrupt is also generated for detected Corrected errors on reads.

The possible values of this bit are:

0 Fault handling interrupt on reads disabled.
1 Fault handling interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

UL, bit [2]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<n>FR.UI == 0b10
Uncorrected error recovery interrupt enable.

When ERR<n>FR.UI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all detected Uncorrected errors that are
not deferred.

The possible values of this bit are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 92
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

ARM DDI 0587
D.a-00bet0

0 Error recovery interrupt disabled.
1 Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

When ERR<n>FR.UI == 0b11

Bit [1]

Uncorrected error recovery interrupt on reads enable.
‘When ERR<n>FR.UI == 0b11, this bit is named RUI.

When enabled, the error recovery interrupt is generated for detected Uncorrected errors on reads that
are not deferred.

The possible values of this bit are:

0 Error recovery interrupt on reads disabled.
1 Error recovery interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

This bit reads as an IMPLEMENTATION DEFINED value and writes to this bit have IMPLEMENTATION
DEFINED behavior.

ED, bit [0]
Error reporting and logging enable.

When ERR<n>FR.ED == 0b10

When disabled, the node behaves as if error detection and correction are disabled, and no errors are
recorded or signaled by the node. Arm recommends that, when disabled, correct error detection and
correction codes are written for writes, unless disabled by an IMPLEMENTATION DEFINED control for
error injection. The possible values of this bit are:

0 Error reporting disabled.
1 Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when
reporting is disabled. That is, even with error reporting disabled, the node might continue to silently
correct errors. Uncorrectable errors might result in corrupt data being silently propagated by the node.

This bit resets to an IMPLEMENTATION DEFINED value on a Cold reset. This bit is preserved on an
Error Recovery reset.

Note:

If this node requires initialization after Cold reset to prevent signaling false errors, then
Arm recommends this bit is set to 0b0 on Cold reset, meaning errors are not reported from
Cold reset. This allows boot software to initialize a node without signaling errors. Software
can enable error reporting after the node is initialized. Otherwise, the Cold reset value is
IMPLEMENTATION DEFINED. If the Cold reset value is 0b1, the reset values of other controls
in this register are also IMPLEMENTATION DEFINED and should not be UNKNOWN.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 93
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Otherwise
Reserved. This bit is RESO.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

94

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.4 ERR<n>FR, Error Record Feature Register

The ERR<n>FR characteristics are:

Purpose
Defines whether <n> is the first record owned by a node:

o If <n> is the first error record owned by a node, then ERR<n>FR.ED != 0b00.
* If <n> is not the first error record owned by a node, then ERR<n>FR.ED == 0b00.

If <n> is the first record owned by the node, defines which of the common architecturally-defined features
are implemented by the node and, of the implemented features, which are software programmable.

Configurations
ERR<n>FR is present only if error record <n> is implemented. ERR<n>FR is RESO otherwise.

Attributes
When accessed using a System register, ERR<n>FR is a 64-bit read-only register accessed using:

e MRC of ERXFR for ERR<n>FR[31:0] when ERRSELR.SEL is set to n.
* MRC of ERXFR2 for ERR<n>FR[63:32] when ERRSELR.SEL is set to .
e MRS of ERXFR_EL1 when ERRSELR_ELI1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>FR is a 64-bit read-only register located at offset
0x000 + 64xn.

ERR<n>FR (ERR<n>FR.ED != 0b00)

The ERR<n>FR (ERR<n>FR.ED != 0b00) bit assignments are:

63 | 155 54 53 52,51 50 49 48,47]]] 32
CE IMPLEMENTATION DEFINED g
DE J \‘ uc
UEO UEU
UER
31 30 | 2625 24,23 22 21 2019 18 17 16,15 14 12111109 8,7 6 5 4,3 2 1 0
g RESO TS Cl INJ | CEO| DUI CEC CFl | UE Fl ul 1=00

FRX RP IMP DEF] ED

Figure 4.3: ERR<n>FR

Bits [63:55]
Reserved.

When ERR<n>FR.FRX == 0b1l
Reserved. This field is RESO.

Otherwise
Reserved for identifying IMPLEMENTATION DEFINED controls. This field reads as an
IMPLEMENTATION DEFINED value.

CE, bits [54:53]
Corrected Error recording.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 95
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When ERR<n>FR.FRX == (bl
Describes the types of Corrected Error the node can record. The defined values of this field are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

96

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b00 The node does not record any type of Corrected Error.
0b01 The node can record transient or persistent Corrected Errors (Corrected Errors that
are recorded as ERR<n>STATUS.CE == 0b01 and 0b11).
0b10 The node can record of a non-specific Corrected Error (a Corrected Error that is
recorded as ERR<n>STATUS.CE == 0b10).
Obl1 The node can record any type of Corrected Error.
Otherwise

Reserved for identifying IMPLEMENTATION DEFINED controls. This field reads as an
IMPLEMENTATION DEFINED value.

DE, bit [52]
Deferred Error recording.

When ERR<r>FR.FRX == (b1
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.
Otherwise

Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

UEO, bit [51]
Latent or Restartable Error recording.

When ERR<r>FR.FRX == (b1l
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.
Otherwise

Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

UER, bit [50]
Signaled or Recoverable Error recording.

When ERR<r>FR.FRX == (bl
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.
Otherwise

Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

UELU, bit [49]
Unrecoverable Error recording.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 97
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When ERR<n>FR.FRX == (bl
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.
Otherwise

Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

UC, bit [48]
Uncontainable Error recording.

When ERR<n>FR.FRX == (bl
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.
Otherwise

Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.
Bits [47:32]
Reserved for identifying IMPLEMENTATION DEFINED controls. This field reads as an IMPLEMENTATION
DEFINED value.
FRX, bit [31]
Feature Register extension.

When RAS System Architecture v1.1 is implemented
Defines whether ERR<n>FR[63:48] are architecturally defined. The defined values of this bit are:

0b0 ERR<n>FR[63:48] are IMPLEMENTATION DEFINED.
0b1l ERR<n>FR[63:48] are defined by the architecture.
Otherwise

Reserved. This bit is RESO.

Bits [30:26]
Reserved. This field is RESO.

TS, bits [25:24]
Timestamp Extension. Indicates whether, for each error record <m> owned by this node, ERR<m>MISC3
is used as the timestamp register, and, if it is, the timebase used by the timestamp. The defined values of

this field are:
0b00 The node does not support a timestamp register.
0b01 The node implements a timestamp register. The timestamp uses the same timebase as
the system Generic Timer.
Note:
For an error record which has an affinity to a PE, this is the same timer that
is visible through CNTPCT_ELDO at the highest Exception level on that PE.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 98

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0bl0 The node implements a timestamp register. The timebase for the timestamp is
IMPLEMENTATION DEFINED.

All other values are reserved.

CI, bits [23:22]
Critical error interrupt. Indicates whether the critical error interrupt and associated controls are
implemented. The defined values of this field are:

0b00 Does not support the critical error interrupt. ERR<n>CTLR.CI is RESO.
0b01 Critical error interrupt is supported and always enabled. ERR<n>CTLR.CI is RESO.
0b10 Critical error interrupt is supported and controllable using ERR<n>CTLR.CIL.

All other values are reserved.

INJ, bits [21:20]
Fault Injection Extension. Indicates whether the RAS Common Fault Injection Model Extension is
implemented. The defined values of this field are:

0b00 The node does not support the RAS Common Fault Injection Model Extension.
0b01 The node implements the RAS Common Fault Injection Model Extension. See
ERR<n>PFGF for more information.

All other values are reserved.

CEO, bits [19:18]
Corrected Error overwrite.

When ERR<n>FR.CEC != 0b000
Indicates the behavior when a second Corrected error is detected after a first Corrected error has been
recorded by an error record <m> owned by the node. The defined values of this field are:

0b00 Counts Corrected errors if a counter is implemented. Keeps the previous error
syndrome. If the counter overflows, or no counter is implemented, then
ERR<m>STATUS.OF is set to 0b1.

0b01 Counts Corrected errors. If ERR<m>STATUS.OF == 0b1 before the Corrected error
is counted, then keeps the previous syndrome. Otherwise the previous syndrome is
overwritten. If the counter overflows, then ERR<m>STATUS.OF is set to 0b1.

All other values are reserved.
See Writing the error record.

Otherwise
Reserved. This field is RESO.

DUI, bits [17:16]
Error recovery interrupt for deferred errors control.

When ERR<n>FR.UI != 0b00
Indicates whether the control for enabling error recovery interrupts on deferred errors are implemented.
The defined values of this field are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 99
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b00 Does not support the control for enabling error recovery interrupts on deferred errors.
ERR<n>CTLR.DUI is RESO.

0b10 Control for enabling error recovery interrupts on deferred errors is supported and
controllable using ERR<n>CTLR.DUL

Ob1l1l Control for enabling error recovery interrupts on deferred errors is supported and
controllable using ERR<n>CTLR.WDUI for writes and ERR<n>CTLR.RDUI for
reads.

All other values are reserved.

Otherwise
Reserved. This field is RESO.

RP, bit [15]
Repeat counter.

When ERR<n>FR.CEC != 0b000
Indicates whether the node implements the repeat Corrected error counter in ERR<m>MISCO for
each error record <m> owned by the node that implements the standard Corrected error counter. The
defined values of this bit are:

0 A single CE counter is implemented.
1 A first (repeat) counter and a second (other) counter are implemented. The repeat
counter is the same size as the primary error counter.

Otherwise
Reserved. This bit is RESO.

CEC, bits [14:12]
Corrected Error Counter. Indicates whether the node implements the standard Corrected error counter (CE
counter) mechanisms in ERR<m>MISCO for each error record <m> owned by the node that can record
countable errors. The defined values of this field are:

0b000 Does not implement the standard Corrected error counter model.
0b010 Implements an 8-bit Corrected error counter in ERR<m>MISCO0[39:32].
0b100 Implements a 16-bit Corrected error counter in ERR<m>MISCO0[47:32].

All other values are reserved.
Note:

Implementations might include other error counter models, or might include the standard model
and not indicate this in ERR<n>FR.

CFI, bits [11:10]
Fault handling interrupt for corrected errors.

When ERR<n>FR.FI != 0b00
Indicates whether the control for enabling fault handling interrupts on corrected errors are
implemented. The defined values of this field are:

0b00 Does not support the control for enabling fault handling interrupts on corrected
errors. ERR<n>CTLR.CFI is RESO.
0b10 Control for enabling fault handling interrupts on corrected errors is supported and

controllable using ERR<n>CTLR.CFIL.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 100
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0bl1l Control for enabling fault handling interrupts on corrected errors is supported and
controllable using ERR<n>CTLR.WCFI for writes and ERR<n>CTLR.RCFI for
reads.

All other values are reserved.

Otherwise
Reserved. This field is RESO.

UE, bits [9:8]
In-band uncorrected error reporting. Indicates whether the in-band uncorrected error reporting (External
Aborts) and associated controls are implemented. The defined values of this field are:

0b00 Does not support the in-band uncorrected error reporting (External Aborts).
ERR<n>CTLR.UE is RESO.

0b01 In-band uncorrected error reporting (External Aborts) is supported and always enabled.
ERR<n>CTLR.UE is RESO.

0b10 In-band uncorrected error reporting (External Aborts) is supported and controllable
using ERR<n>CTLR.UE.

0bl1l In-band uncorrected error reporting (External Aborts) is supported and controllable

using ERR<n>CTLR.WUE for writes and ERR<n>CTLR.RUE for reads.

FI, bits [7:6]
Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are
implemented. The defined values of this field are:

0b00 Does not support the fault handling interrupt. ERR<n>CTLR.FI is RESO.

0b01 Fault handling interrupt is supported and always enabled. ERR<n>CTLR.FI is RESO.
0b10 Fault handling interrupt is supported and controllable using ERR<n>CTLR.FI.

Obl1l Fault handling interrupt is supported and controllable using ERR<n>CTLR.WFI for

writes and ERR<n>CTLR.RFI for reads.

UL, bits [5:4]
Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and
associated controls are implemented. The defined values of this field are:

0b00 Does not support the error handling interrupt. ERR<n>CTLR.UI is RESO.

0b01 Error handling interrupt is supported and always enabled. ERR<n>CTLR.UI is RESO.
0bl10 Error handling interrupt is supported and controllable using ERR<n>CTLR.UI

Ob11 Error handling interrupt is supported and controllable using ERR<n>CTLR.WUI for

writes and ERR<n>CTLR.RUI for reads.

Bits [3:2]
This field reads as an IMPLEMENTATION DEFINED value.

ED, bits [1:0]
Error reporting and logging. Indicates whether error record <n> is the first record owned the node, and, if
so, whether it implements the controls for enabling and disabling error reporting and logging. The defined
values of this field are:

0b01 Error reporting and logging always enabled. ERR<n>CTLR.ED is RESO.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 101
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0bl0 Error reporting and logging is controllable using ERR<n>CTLR.ED.

All other values are reserved.

ERR<n>FR (ERR<n>FR.ED == 0b00)
The ERR<#n>FR (ERR<n>FR.ED == 0b00) bit assignments are:

63 | | | | | | | 32)

RESO g

131 | | | | | |] 210

g RESO 00

ED

Figure 4.4: ERR<n>FR

Bits [63:2]
Reserved. This field is RESO.

ED, bits [1:0]
Error reporting and logging. Indicates error record <n> is not the first record owned the node. The defined
values of this field are:

0b00 Error record <n> is not the first record owned by the node.

This field reads as 0b00.

Accessibility
None.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 102

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.5 ERR<n>MISCO, Error Record Miscellaneous Register 0

The ERR<n>MISCO characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

 Information to locate where the error was detected.

* If the error was detected within a FRU, the identity of the FRU.

* A Corrected error counter or counters.

* Other state information not present in the corresponding status and address registers.

If the node that owns error record <n> implements architecturally-defined error counters (ERR<q>FR.CEC
= 00000), and error record <n> can record countable errors, then ERR<n>MISCO implements the
architecturally-defined error counter or counters.

Configurations
ERR<n>MISCO is present only if error record <n> is implemented. ERR<n>MISCO is RESO otherwise.

ERR<g>FR describes the features implemented by the node that owns error record <n>. <g> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then g = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISCO, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.
Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>MISCO is a 64-bit read/write register accessed using:

e MRC and MCR of ERXMISCO for ERR<n>MISCO[31:0] when ERRSELR.SEL is set to n.
e MRS and MSR of ERXMISCO_EL1 when ERRSELR_EL1.SEL is set to n.
¢ MRC and MCR of ERXMISCI1 for ERR<n>MISCO0[63:32] when ERRSELR.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>MISCO is a 64-bit read/write register located at
offset 0x020 + 64xn.

ERR<n>MISCO (ERR<q>FR.CEC == 0b000)
The ERR<n>MISCO (ERR<¢>FR.CEC == 0b000) bit assignments are:

63 | | | | | | | 32)

IMPLEMENTATION DEFINED g

131 | | | | | | | 0

g IMPLEMENTATION DEFINED

Figure 4.5: ERR<n>MISCO

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 103
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Bits [63:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

ERR<n>MISCO (ERR<q>FR.CEC == 0b100 && ERR<gq>FR.RP =="0’)

The ERR<n>MISCO (ERR<¢>FR.CEC == 00100 && ERR<g>FR.RP == "0’) bit assignments are:

63 | | | 48147 46 | | | 32
IMPLEMENTATION DEFINED CEC g
OF
31 | | | | | | | 0
g IMPLEMENTATION DEFINED

Figure 4.6: ERR<n>MISCO

Bits [63:48,31:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

OF, bit [47]
Sticky overflow bit. Set to 1 when ERR<n>MISCO.CEC is incremented and wraps through zero. The
possible values of this bit are:

0 Counter has not overflowed.
Counter has overflowed.

=

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CEC, bits [46:32]
Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might
be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

ERR<n>MISCO (ERR<q>FR.CEC == 00010 && ERR<g>FR.RP =="0’)

The ERR<n>MISCO (ERR<¢g>FR.CEC == 0010 && ERR<g>FR.RP == "0’) bit assignments are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 104
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

63 | | | | | 40,39 38 | 32

IMPLEMENTATION DEFINED CEC g

OF

31 | | | | | | | 0

g IMPLEMENTATION DEFINED

Figure 4.7: ERR<n>MISCO

Bits [63:40,31:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

OF, bit [39]
Sticky overflow bit. Set to 1 when ERR<n>MISCO.CEC is incremented and wraps through zero. The
possible values of this bit are:

0 Counter has not overflowed.
Counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CEC, bits [38:32]
Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might
be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

ERR<n>MISCO (ERR<q>FR.CEC == 00100 && ERR<gq>FR.RP =="1’)

The ERR<n>MISCO (ERR<g>FR.CEC == 00100 && ERR<¢g>FR.RP == 1’) bit assignments are:

63 62 | | | 48,47 46 | | | 32
CECO CECR g
OFO OFR
31 | | | | | | | 0
g IMPLEMENTATION DEFINED

Figure 4.8: ERR<n>MISCO

OFO, bit [63]
Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through zero.
The possible values of this bit are:

0 Other counter has not overflowed.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 105
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

1 Other counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CECO, bits [62:48]
Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing
ERR<n>MISCO0.CECR.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

OFR, bit [47]
Sticky overflow bit, repeat. Set to 1 when ERR<n>MISCO.CECR is incremented and wraps through zero.
The possible values of this bit are:

(@]

Repeat counter has not overflowed.
1 Repeat counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CECR, bits [46:32]
Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome
for the error, and subsequently for each countable error that matches the recorded other syndrome.
Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE
whether Deferred and Uncorrected errors are countable errors.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Note:

For example, the other syndrome might include the set and way information for an error detected
in a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<#n>MISC<m>
fields on a first Corrected error. ERR<n>MISCO0.CECR is then incremented for each subsequent
Corrected Error in the same set and way.

Bits [31:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

ERR<n>MISCO0 (ERR<q>FR.CEC == 00010 && ERR<g>FR.RP =="1’)

The ERR<n>MISCO (ERR<¢g>FR.CEC == 0010 && ERR<g>FR.RP == "1") bit assignments are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 106
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

63 | | | 48147 46 | 40,39 38 | 32
IMPLEMENTATION DEFINED CECO CECR g
OFO OFR
31 | | | | | | | 0
g IMPLEMENTATION DEFINED

Figure 4.9: ERR<n>MISCO

Bits [63:48,31:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

OFO, bit [47]
Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through zero.
The possible values of this bit are:

0 Other counter has not overflowed.
Other counter has overflowed.

=

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CECO, bits [46:40]
Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing
ERR<n>MISCO0.CECR.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

OFR, bit [39]
Sticky overflow bit, repeat. Set to 1 when ERR<n>MISCO.CECR is incremented and wraps through zero.
The possible values of this bit are:

Repeat counter has not overflowed.
Repeat counter has overflowed.

[]

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CECR, bits [38:32]
Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome
for the error, and subsequently for each countable error that matches the recorded other syndrome.
Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE
whether Deferred and Uncorrected errors are countable errors.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 107
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Recovery reset.
Note:

For example, the other syndrome might include the set and way information for an error detected
in a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m>
fields on a first Corrected error. ERR<n>MISCO.CECR is then incremented for each subsequent
Corrected Error in the same set and way.

Accessibility

Reads from ERR<n>MISCO return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION
DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<g>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1.
See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

* Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
e When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded
error ignores writes.

Note:

These recommendations allow a counter to be reset in the presence of a persistent error, while
preventing specific information, such as that identifying a FRU, from being lost if an error is detected
while the previous error is being logged.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 108
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.6 ERR<n>MISC1, Error Record Miscellaneous Register 1

The ERR<n>MISCI1 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

 Information to locate where the error was detected.

* If the error was detected within a FRU, the identity of the FRU.

* A Corrected error counter or counters.

* Other state information not present in the corresponding status and address registers.

Configurations
ERR<n>MISCI1 is present only if error record <n> is implemented. ERR<n>MISC1 is RESO otherwise.

ERR<qg>FR describes the features implemented by the node that owns error record <n>. <g> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then g = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC1, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.
Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>MISCI is a 64-bit read/write register accessed using:

e MRS and MSR of ERXMISC1_EL1 when ERRSELR_EL1.SEL is set to n.
¢ MRC and MCR of ERXMISC2 for ERR<n>MISC1[31:0] when ERRSELR.SEL is set to n.
¢ MRC and MCR of ERXMISC3 for ERR<n>MISC1[63:32] when ERRSELR.SEL is set to n.

When accessed as a memory-mapped register, ERR<a>MISCI1 is a 64-bit read/write register located at
offset 0x028 + 64xn.

Field descriptions
The ERR<n>MISC1 bit assignments are:

63 | | | | | | | 32)

IMPLEMENTATION DEFINED g

131 I I I I I I I 0

g IMPLEMENTATION DEFINED

Figure 4.10: ERR<n>MISC1

Bits [63:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 109
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Accessibility

Reads from ERR<n>MISCI1 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION
DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<q>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS .MV == 0b1.
See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

* Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
* When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded
error ignores writes.

Note:

These recommendations allow a counter to be reset in the presence of a persistent error, while
preventing specific information, such as that identifying a FRU, from being lost if an error is detected
while the previous error is being logged.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 110
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.7 ERR<n>MISC2, Error Record Miscellaneous Register 2

The ERR<n>MISC2 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

 Information to locate where the error was detected.

* If the error was detected within a FRU, the identity of the FRU.

* A Corrected error counter or counters.

* Other state information not present in the corresponding status and address registers.

Configurations
ERR<n>MISC?2 is present if error record <n> is implemented. It is IMPLEMENTATION DEFINED whether
ERR<n>MISC?2 is present if RAS System Architecture v1.1 is not implemented. ERR<n>MISC2 is RESO
if not present.

ERR<qg>FR describes the features implemented by the node that owns error record <n>. <g> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then g = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC2, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommendeds that ERR<n>MISC2 does not
require zeroing to return the record to a quiescent state.

Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>MISC2 is a 64-bit read/write register accessed using:

e MRS and MSR of ERXMISC2_EL1 when ERRSELR_EL1.SEL is set to n.
¢ MRC and MCR of ERXMISC4 for ERR<n>MISC2[31:0] when ERRSELR.SEL is set to n.
e MRC and MCR of ERXMISCS5 for ERR<n>MISC2[63:32] when ERRSELR.SEL is set to 7.

When accessed as a memory-mapped register, ERR<n>MISC2 is a 64-bit read/write register located at
offset 0x030 + 64xn.

Field descriptions
The ERR<n>MISC2 bit assignments are:

63 | | | | | | | 32)

IMPLEMENTATION DEFINED g

131 | | | | | | | 0

g IMPLEMENTATION DEFINED

Figure 4.11: ERR<n>MISC2

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 111
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Bits [63:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

Accessibility

Reads from ERR<n>MISC2 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION
DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<q>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS .MV == 0b1.
See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

* Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
* When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded
error ignores writes.

Note:

These recommendations allow a counter to be reset in the presence of a persistent error, while
preventing specific information, such as that identifying a FRU, from being lost if an error is detected
while the previous error is being logged.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 112
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.8 ERR<n>MISC3, Error Record Miscellaneous Register 3

The ERR<n>MISC3 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

 Information to locate where the error was detected.

* If the error was detected within a FRU, the identity of the FRU.

* A Corrected error counter or counters.

* Other state information not present in the corresponding status and address registers.

If the node that owns error record n supports the RAS Timestamp Extension (ERR<q>FR.TS != 0b00), then
ERR<n>MISC3 contains the timestamp value for error record n when the error was detected. Otherwise
the contents of ERR<n>MISC3 are IMPLEMENTATION DEFINED.

Configurations
ERR<n>MISC3 is present if error record <n> is implemented. It is IMPLEMENTATION DEFINED whether
ERR<n>MISC3 is present if RAS System Architecture v1.1 is not implemented. ERR<n>MISC3 is RESO
if not present.

ERR<qg>FR describes the features implemented by the node that owns error record <n>. <g> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then g = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC3, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommendeds that ERR<n>MISC3 does not
require zeroing to return the record to a quiescent state.

Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>MISC3 is a 64-bit read/write register accessed using:

¢ MRS and MSR of ERXMISC3_EL1 when ERRSELR_EL1.SEL is set to n.
e MRC and MCR of ERXMISC6 for ERR<n>MISC3[31:0] when ERRSELR.SEL is set to n.
e MRC and MCR of ERXMISC7 for ERR<n>MISC3[63:32] when ERRSELR.SEL is set to 7.

When accessed as a memory-mapped register, ERR<n>MISC3 is a 64-bit read/write register located at
offset 0x038 + 64xn.

ERR<n>MISC3 (ERR<q>FR.TS != 0b00)

The ERR<n>MISC3 (ERR<¢>FR.TS != 0b00) bit assignments are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 113
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

63

| | | | | | | 32)

TS[63:32] g

131

| | | | | | | 0

ARM DDI 0587

D.a-00bet0

g TS[31:0]

Figure 4.12: ERR<n>MISC3

TS, bits [63:0]
Timestamp. Timestamp value recorded when the error was detected. Valid only if ERR<n>STATUS.V ==
Obl.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

See ERR<q>FR.TS.

ERR<n>MISC3 (ERR<q>FR.TS == 0b00)
The ERR<n>MISC3 (ERR<g>FR.TS == 0b00) bit assignments are:

63 | | | | | | | 32)

IMPLEMENTATION DEFINED g

131 | | | | | | | 0

g IMPLEMENTATION DEFINED

Figure 4.13: ERR<n>MISC3

Bits [63:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

Accessibility

Reads from ERR<n>MISC3 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION
DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<g>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1.
See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

* Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
* When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded
error ignores writes.

Note:

These recommendations allow a counter to be reset in the presence of a persistent error, while
preventing specific information, such as that identifying a FRU, from being lost if an error is detected
while the previous error is being logged.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 114

Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.9 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register

The ERR<n>PFGCDN characteristics are:

Purpose
Generates one of the errors enabled in the corresponding ERR<n>PFGCTL register.

Configurations
ERR<n>PFGCDN is present only if all of the following are true:

* Error record <n> is implemented.
* The node implements the RAS Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00).
* Error record <n> is the first error record owned by a node.

ERR<n>PFGCDN is RESO otherwise.
ERR<n>FR describes the features implemented by the node.

Attributes

When accessed using a System register, ERR<n>PFGCDN is a 64-bit read/write register accessed using
MRS and MSR of ERXPFGCDN_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>PFGCDN is a 64-bit read/write register located at
offset 0x810 + 64xn.

Field descriptions

The ERR<n>PFGCDN bit assignments are:

63 | | | | | | | 32

RESO g

31 | | | | | | | 0

g CDN

Figure 4.14: ERR<n>PFGCDN

Bits [63:32]
Reserved. This field is RESO.

CDN, bits [31:0]
Countdown value.

This field is copied to Error Generation Counter when either:

¢ Software writes ERR<n>PFGCTL.CDNEN with 1.
* The Error Generation Counter decrements to zero and ERR<n>PFGCTL.R == 0b1.

While ERR<n>PFGCTL.CDNEN == 0b1 and the Error Generation Counter is nonzero, the counter
decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate. When the counter reaches 0,
one of the errors enabled in the ERR<n>PFGCTL register is generated.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Note:

The current Error Generation Counter value is not visible to software.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 115
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 116
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.10 ERR<n>PFGCTL, Pseudo-fault Generation Control Register

The ERR<n>PFGCTL characteristics are:

Purpose
Enables controlled fault generation.

Configurations
ERR<n>PFGCTL is present only if all of the following are true:

* Error record <n> is implemented.

* The node implements the RAS Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00).
* Error record <n> is the first error record owned by a node.

ERR<n>PFGCTL is RESO otherwise.

ERR<n>FR describes the features implemented by the node.

Attributes

When accessed using a System register, ERR<n>PFGCTL is a 64-bit read/write register accessed using
MRS and MSR of ERXPFGCTL_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>PFGCTL is a 64-bit read/write register located at
offset 0x808 + 64xn.

Field descriptions

The ERR<n>PFGCTL bit assignments are:

63 ! ! ! ! ! ! ! 32
RESO g
313029 | | | 13121110 9 8,7 6 5 4,3 2 1 0
g R RESO cl| Ce
CDNEN MVJ { { ER DE J { OF
AV PN UEO uc

UER UEU

Figure 4.15: ERR<n>PFGCTL
Bits [63:32,29:13]
Reserved. This field is RESO.

CDNEN, bit [31]

Countdown Enable. Controls transfers from the value that is held in the ERR<n>PFGCDN into the Error
Generation Counter and enables this counter. The possible values of this bit are:

0 The Error Generation Counter is disabled.

1 The Error Generation Counter is enabled. On a write of 0b1 to this bit, the Error
Generation Counter is set to ERR<n>PFGCDN.CDN.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.
R, bit [30]

Restart. Controls whether, upon reaching zero, the Error Generation Counter restarts from the
ERR<n>PFGCDN value or stops. The possible values of this bit are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 117
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0 On reaching 0, the Error Generation Counter will stop.
On reaching 0, the Error Generation Counter is set to ERR<n>PFGCDN.CDN.

=

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

MYV, bit [12]
Miscellaneous syndrome. The value that is written to ERR<n>STATUS.MV when an injected error is
recorded. The possible values of this bit are:

ERR<n>STATUS.MYV is set to 0b0 when an injected error is recorded.
ERR<n>STATUS.MV is set to 0b1 when an injected error is recorded.

[]

This bit reads-as-one if the node always records some syndrome in ERR<n>MISC<m>, setting
ERR<n>STATUS.MV to 1, when an injected error is recorded. This bit is RESO if the node does not
support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

AV, bit [11]
Address syndrome. The value that is written to ERR<n>STATUS.AV when an injected error is recorded.
The possible values of this bit are:

0 ERR<n>STATUS.AV is set to 0b0 when an injected error is recorded.
1 ERR<n>STATUS.AV is set to 0b1 when an injected error is recorded.

This bit reads-as-one if the node always sets ERR<n>STATUS.AV to 0bl when an injected error is
recorded. This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

PN, bit [10]
Poison flag. The value that is written to ERR<n>STATUS.PN when an injected error is recorded. The
possible values of this bit are:

0 ERR<n>STATUS.PN is set to 0b0 when an injected error is recorded.
ERR<n>STATUS.PN is set to 0b1 when an injected error is recorded.

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

ER, bit [9]
Error Reported flag. The value that is written to ERR<n>STATUS.ER when an injected error is recorded.
The possible values of this bit are:

0 ERR<n>STATUS.ER is set to 0b0 when an injected error is recorded.
ERR<n>STATUS.ER is set to 0b1 when an injected error is recorded.

=

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 118
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CI, bit [8]
Critical Error flag. The value that is written to ERR<n>STATUS.CI when an injected error is recorded.
The possible values of this bit are:

0 ERR<n>STATUS.CI is set to 0b0 when an injected error is recorded.
1 ERR<n>STATUS.CI is set to 0b1 when an injected error is recorded.

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CE, bits [7:6]
Corrected Error generation enable. Controls the type of Corrected Error condition that might be generated.
The possible values of this field are:

0b00 No error of this type will be generated.

0b01 A non-specific Corrected Error, that is, a Corrected Error that is recorded as
ERR<n>STATUS.CE == 0b10, might be generated when the Error Generation Counter
decrements to zero.

0b10 A transient Corrected Error, that is, a Corrected Error that is recorded as
ERR<n>STATUS.CE == 0001, might be generated when the Error Generation Counter
decrements to zero.

0bl1l A persistent Corrected Error, that is, a Corrected Error that is recorded as
ERR<n>STATUS.CE == 0b11, might be generated when the Error Generation Counter
decrements to zero.

The set of permitted values for this field is defined by ERR<n>PFGF.CE.
This field is RESO if the node does not support this control.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

DE, bit [5]
Deferred Error generation enable. Controls whether this type of error condition might be generated. It
is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed. The possible
values of this bit are:

0 No error of this type will be generated.
1 An error of this type might be generated when the Error Generation Counter decrements
to zero.

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

UEO, bit [4]
Latent or Restartable Error generation enable. Controls whether this type of error condition might be
generated. It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 119
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The possible values of this bit are:

0 No error of this type will be generated.
1 An error of this type might be generated when the Error Generation Counter decrements
to zero.

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

UER, bit [3]
Signaled or Recoverable Error generation enable. Controls whether this type of error condition might be
generated. It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.
The possible values of this bit are:

0 No error of this type will be generated.
An error of this type might be generated when the Error Generation Counter decrements
to zero.

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

UELU, bit [2]
Unrecoverable Error generation enable. Controls whether this type of error condition might be generated.
It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed. The possible
values of this bit are:

0 No error of this type will be generated.
An error of this type might be generated when the Error Generation Counter decrements
to zero.

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

UC, bit [1]
Uncontainable Error generation enable. Controls whether this type of error condition might be generated.
It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed. The possible
values of this bit are:

o

No error of this type will be generated.
1 An error of this type might be generated when the Error Generation Counter decrements
to zero.

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

OF, bit [0]
Overflow flag. The value that is written to ERR<n>STATUS.OF when an injected error is recorded. The

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 120
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

possible values of this bit are:

0 ERR<n>STATUS.OF is set to 0b0 when an injected error is recorded.
1 ERR<n>STATUS.OF is set to 0b1 when an injected error is recorded.

This bit is RESO if the node does not support this control.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 121
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.11 ERR<n>PFGF, Pseudo-fault Generation Feature Register

The ERR<n>PFGF characteristics are:
Purpose

Defines which common architecturally-defined fault generation features are implemented.
Configurations
ERR<n>PFGF is present only if all of the following are true:
* Error record <n> is implemented.

* The node implements the RAS Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00).
* Error record <n> is the first error record owned by a node.

ERR<n>PFGF is RESO otherwise.

ERR<n>FR describes the features implemented by the node.
Attributes

When accessed using a System register, ERR<n>PFGF is a 64-bit read-only register accessed using MRS
of ERXPFGF_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>PFGF is a 64-bit read-only register located at offset
0x800 + 64xn.

Field descriptions

The ERR<n>PFGF bit assignments are:

63 | | | | | | | 32)
RESO g
131 30 29 28, | | | 13121110 9 8,7 6 5 4,3 2 1 0
g R RESO cl| Ce
RESO J SYN MVJ { { ER DE J { OF
AV PN UEO uc
UER UEU

Figure 4.16: ERR<n>PFGF

Bits [63:31,28:13]
Reserved. This field is RESO.

R, bit [30]
Restartable. Support for Error Generation Counter restart mode. The defined values of this bit are:
0 The node does not support this feature.
1 Feature controllable.

SYN, bit [29]

Syndrome. Fault syndrome injection. The defined values of this bit are:

When an injected error is recorded, the node sets ERR<n>STATUS.{IERR, SERR} to

IMPLEMENTATION DEFINED values. ERR<n>STATUS.{IERR, SERR} are UNKNOWN
when ERR<n>STATUS.V == 0b0.

ARM DDI 0587

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0

122
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

1 When an injected error is recorded, the node does not update the
ERR<n>STATUS.{IERR, SERR} fields. ERR<n>STATUS.{IERR, SERR} are writable
when ERR<n>STATUS.V == 0b0.

Note:

If ERR<n>PFGE.SYN == 0b1, software can write specific values into the ERR<n>STATUS.{IERR,
SERR} fields when setting up a fault injection event. The sets of values that can be written to
these fields is IMPLEMENTATION DEFINED.

MYV, bit [12]
Miscellaneous syndrome.

Additional syndrome injection. Defines whether software can control all or part of the syndrome recorded
in the ERR<n>MISC<m> registers when an injected error is recorded.

It is IMPLEMENTATION DEFINED which syndrome fields in ERR<n>MISC<m> this refers to, as some
fields might always be recorded by an error. For example, a Corrected Error counter.

The defined values of this bit are:

0 When an injected error is recorded, the node might record IMPLEMENTATION DEFINED
additional syndrome in ERR<n>MISC<m>. If any syndrome is recorded in
ERR<n>MISC<m>, then ERR<n>STATUS.MV is set to 0b1.

1 When an injected error is recorded, the node does not update all the syndrome fields in
the ERR<n>MISC<m> and does one of:

* The node does not update any fields in ERR<n>MISC<m> and sets
ERR<n>STATUS.MV to ERR<n>PFGCTL.MV.
* The node records some syndrome in ERR<n>MISC<m> and sets
ERR<n>STATUS.MV to 0b1l. ERR<n>PGFCTL.MV is RAO.
The syndrome fields that the node does not update are unchanged and are writable when
ERR<n>STATUS.MV == 0b0.

Note:

If ERR<n>PFGEMYV == 0b1, software can write specific values into the ERR<n>MISC<m>
registers when setting up a fault injection event. The values that can be written to these registers
are IMPLEMENTATION DEFINED.

AV, bit [11]
Address syndrome. Address syndrome injection. The defined values of this bit are:

0 When an injected error is recorded, the node either sets ERR<n>ADDR and
ERR<n>STATUS.AV for the access, or leaves these unchanged.

1 When an injected error is recorded, the node does not update ERR<n>ADDR and does
one of:

¢ Sets ERR<n>STATUS.AV to ERR<n>PFGCTL.AV.
¢ Sets ERR<n>STATUS.AV to 0b1. ERR<n>PFGCTL.AV is RAO.
ERR<n>ADDR is writable when ERR<n>STATUS.AV == 0b0.

Note:

If ERR<n>PFGF.AV == 0b1, software can write a specific value into ERR<n>ADDR when
setting up a fault injection event.

PN, bit [10]

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 123
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Poison flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.PN status
flag. The defined values of this bit are:

0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node
sets ERR<n>STATUS.PN to 0b1.
1 When an injected error is recorded, ERR<n>STATUS.PN is set to ERR<n>PFGCTL.PN.

This behavior replaces the architecture-defined rules for setting the PN bit.
This bit reads-as-zero if the node does not support this flag.

ER, bit [9]
Error Reported flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.ER
status flag. The defined values of this bit are:

0 When an injected error is recorded, the node sets ERR<n>STATUS.ER according to the
architecture-defined rules for setting the ER bit.
1 When an injected error is recorded, ERR<n>STATUS.ER is set to ERR<n>PFGCTL.ER.

This behavior replaces the architecture-defined rules for setting the ER bit.

This bit reads-as-zero if the node does not support this flag.

CI, bit [8]
Critical Error flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.CI
status flag. The defined values of this bit are:

0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node
sets ERR<n>STATUS.CI to 0b1.
1 When an injected error is recorded, ERR<n>STATUS.CI is set to ERR<n>PFGCTL.CI.

This behavior replaces the architecture-defined rules for setting the CI bit.
This bit reads-as-zero if the node does not support this flag.

CE, bits [7:6]
Corrected Error generation. Describes the types of Corrected Error that the fault generation feature of the
node can generate. The defined values of this field are:

0b00 The fault generation feature of the node cannot generate this type of error.

0b01 The fault generation feature of the node allows generation of a non-specific Corrected
Error, that is, a Corrected Error that is recorded as ERR<n>STATUS.CE == 0b10.

0bl1l The fault generation feature of the node allows generation of transient or persistent

Corrected Errors, that is, Corrected Errors that are recorded as ERR<n>STATUS.CE ==
0b01 and 0b11.

All other values are reserved.
If ERR<n>FR.FRX is 0b1 then ERR<n>FR.CE indicates whether the node supports this type of error.
This field reads-as-zeros if the node does not support this type of error.

DE, bit [5]
Deferred Error generation. Describes whether the fault generation feature of the node can generate this
type of error. The defined values of this bit are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 124
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0 The fault generation feature of the node cannot generate this type of error.
The fault generation feature of the node allows generation of this type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.DE indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

UEO, bit [4]
Latent or Restartable Error generation. Describes whether the fault generation feature of the node can
generate this type of error. The defined values of this bit are:

0 The fault generation feature of the node cannot generate this type of error.
1 The fault generation feature of the node allows generation of this type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UEO indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

UER, bit [3]
Signaled or Recoverable Error generation. Describes whether the fault generation feature of the node can
generate this type of error. The defined values of this bit are:

The fault generation feature of the node cannot generate this type of error.
1 The fault generation feature of the node allows generation of this type of error.

(@]

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UER indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

UEU, bit [2]
Unrecoverable Error generation. Describes whether the fault generation feature of the node can generate
this type of error. The defined values of this bit are:

The fault generation feature of the node cannot generate this type of error.
The fault generation feature of the node allows generation of this type of error.

[]

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UEU indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

UC, bit [1]
Uncontainable Error generation. Describes whether the fault generation feature of the node can generate
this type of error. The defined values of this bit are:

0 The fault generation feature of the node cannot generate this type of error.
1 The fault generation feature of the node allows generation of this type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UC indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

OF, bit [0]
Overflow flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.OF status
flag. The defined values of this bit are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 125
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0 When an injected error is recorded, the node sets ERR<n>STATUS.OF according to the
architecture-defined rules for setting the OF bit.
1 When an injected error is recorded, ERR<n>STATUS.OF is set to ERR<n>PFGCTL.OF.

This behavior replaces the architecture-defined rules for setting the OF bit.

This bit reads-as-zero if the node does not support this flag.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 126
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.12 ERR<n>STATUS, Error Record Primary Status Register

The ERR<n>STATUS characteristics are:

Purpose
Contains status information for error record <n>, including:

* Whether any error has been detected (valid).

* Whether any detected error was not corrected, and returned to a Requester.

* Whether any detected error was not corrected and deferred.

* Whether an error record has been discarded because additional errors have been detected before the
first error was handled by software (overflow).

* Whether any error has been reported.

* Whether the other error record registers contain valid information.

* Whether the error was reported because poison data was detected or because a corrupt value was
detected by an error detection code.

* A primary error code.

* An IMPLEMENTATION DEFINED extended error code.

Within this register:

* The {AV, V, MV} bits are valid bits that define whether error record <n> registers are valid.
* The {UE, OF, CE, DE, UET} bits encode the types of error or errors recorded.
* The {CI, ER, PN, IERR, SERR} fields are syndrome fields.

Configurations
ERR<n>STATUS is present only if error record <n> is implemented. ERR<n>STATUS is RESO otherwise.

ERR<qg>FR describes the features implemented by the node that owns error record <n>. <g> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then g = n.

For IMPLEMENTATION DEFINED fields in ERR<n>STATUS, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.
Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>STATUS is a 64-bit read/write register accessed using:

* MRC and MCR of ERXSTATUS for ERR<n>STATUS[31:0] when ERRSELR.SEL is set to .
e MRS and MSR of ERXSTATUS_EL1 when ERRSELR_ELI1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>STATUS is a 64-bit read/write register located at
offset 0x010 + 64xn.

ERR<n>STATUS (RAS System Architecture v1.1 is implemented)

The ERR<n>STATUS (RAS System Architecture v1.1 is implemented) bit assignments are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 127
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

63 ! ! ! ! ! ! ! 32
RESO g
31 30 29 28,27 26 25 24,23 22 21 20319 18 16,15 | 8,7 | 0
g \Y CE UET |CI] RESO IERR SERR
AV ‘ \‘ DE J \‘ PN
UE MV
ER OF
Figure 4.17: ERR<n>STATUS
Bits [63:32,18:16]
Reserved. This field is RESO.
AV, bit [31]
Address Valid.

When error record <n> includes an address associated with an error
The possible values of this bit are:

0 ERR<n>ADDR not valid.
1 ERR<n>ADDR contains an address associated with the highest priority error
recorded by this record.

This bit is read/write-one-to-clear.
This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

Otherwise
Reserved. This bit is RESO.

V, bit [30]
Status Register Valid. The possible values of this bit are:

ERR<n>STATUS not valid.
ERR<n>STATUS valid. At least one error has been recorded.

[]

This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

UE, bit [29]
Uncorrected Error. The possible values of this bit are:

0 No errors have been detected, or all detected errors have been either corrected or
deferred.
1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write Ob1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
This bit is read/write-one-to-clear.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 128
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

ER, bit [28]
Error Reported. The possible values of this bit are:

o

No in-band error (External Abort) reported.
1 An External Abort was signaled by the component to the Requester making the access
or other transaction. This can be because any of the following are true:
* The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits is implemented
and was set to 0b1 when an Uncorrected error was detected.
* The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits is not
implemented and the component always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if any of the following are true:

* ERR<n>STATUS.V == 0b0.
* ERR<n>STATUS.UE == 0b0 and this bit is never set to 0b1 by a Deferred error.
* ERR<n>STATUS.{UE,DE} == {0,0} and this bit can be set to 0b1 by a Deferred error.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Note:
An External Abort signaled by the component might be masked and not generate any exception.

OF, bit [27]
Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

* A Corrected error counter is implemented, an error is counted, and the counter overflows.

* ERR<n>STATUS.V was previously set to 0b1, a Corrected error counter is not implemented, and a
Corrected error is recorded.

* ERR<n>STATUS.V was previously set to 0b1, and a type of error other than a Corrected error is
recorded.

Otherwise, this bit is unchanged when an error is recorded.
If a Corrected error counter is implemented:

* A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN
value.

* A direct write to this bit that clears this bit to zero might indirectly set the counter overflow flag to an
UNKNOWN value.

The possible values of this bit are:

0 Since this bit was last cleared to zero, no error syndrome has been discarded and, if a
Corrected error counter is implemented, it has not overflowed.
1 Since this bit was last cleared to zero, at least one error syndrome has been discarded or,

if a Corrected error counter is implemented, it might have overflowed.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 129
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write Ob1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

MYV, bit [26]
Miscellaneous Registers Valid.

When error record <n> includes an additional information for an error
The possible values of this bit are:

0 ERR<n>MISC<m> not valid.
1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m> registers
contains additional information for an error recorded by this record.

This bit is read/write-one-to-clear.
This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

Note:

If the ERR<n>MISC<m> registers can contain additional information for a previously
recorded error, then the contents must be self-describing to software or a user. For example,
certain fields might relate only to Corrected errors, and other fields only to the most recent
error that was not discarded.

Otherwise
Reserved. This bit is RESO.

CE, bits [25:24]
Corrected Error. The possible values of this field are:

0b00 No errors were corrected.

0b01 At least one transient error was corrected.
0b10 At least one error was corrected.

0bl1l At least one persistent error was corrected.

The mechanism by which a component or node detects whether a correctable error is transient or persistent
is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to
0b10 when a corrected error is recorded.

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software
write ones to this field to clear this field to zero.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an
UNKNOWN value.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

DE, bit [23]
Deferred Error. The possible values of this bit are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 130
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

ARM DDI 0587
D.a-00bet0

0 No errors were deferred.
1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

PN, bit [22]

Poison. The possible values of this bit are:

0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for
example, by an error detection code (EDC), or Corrected error recorded.
1 Uncorrected error or Deferred error recorded because a poison value was detected.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write Ob1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if any of the following are true:

« ERR<n>STATUS.V == 0b0.
« ERR<n>STATUS.{DE,UE} == {0,0}.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected
error. The possible values of this field are:

0b00 Uncorrected error, Uncontainable error (UC).

0b01 Uncorrected error, Unrecoverable error (UEU).

0b10 Uncorrected error, Latent or Restartable error (UEO).
Obl1l Uncorrected error, Signaled or Recoverable error (UER).

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software
write ones to this field to clear this field to zero.

This field is not valid and reads UNKNOWN if any of the following are true:

* ERR<n>STATUS.V == 0b0.
* ERR<n>STATUS.UE == 0b0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an
UNKNOWN value.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 131
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Note:
Software might use the information in the error record registers to determine what recovery is
necessary.
CI, bit [19]
Critical Error. Indicates whether a critical error condition has been recorded. The possible values of this
bit are:
0 No critical error condition.
1 Critical error condition.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

IERR, bits [15:8]
IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR value.
Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note:

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:

* Any of the following are true:
— The RAS Common Fault Injection Model Extension is implemented by the node that owns this
error record and ERR<q>PFGF.SYN == 0b0.
— The RAS Common Fault Injection Model Extension is not implemented by the node that owns
this error record.
* ERR<n>STATUS.V == 0b0.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

SERR, bits [7:0]
Architecturally-defined primary error code. The primary error code might be used by a fault handling agent
to triage an error without requiring device-specific code. For example, to count and threshold corrected
errors in software, or generate a short log entry. The possible values of this field are:

0 No error.
1 IMPLEMENTATION DEFINED error.
2 Data value from (non-associative) internal memory. For example, ECC from on-chip

SRAM or buffer.

IMPLEMENTATION DEFINED pin. For example, nSEI pin.

Assertion failure. For example, consistency failure.

Error detected on internal data path. For example, parity on ALU result.

Data value from associative memory. For example, ECC error on cache data.
Address/control value from associative memory. For example, ECC error on cache tag.

~N o U1 bW

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 132
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

ARM DDI 0587
D.a-00bet0

8 Data value from a TLB. For example, ECC error on TLB data.

9 Address/control value from a TLB. For example, ECC error on TLB tag.

10 Data value from producer. For example, parity error on write data bus.

11 Address/control value from producer. For example, parity error on address bus.

12 Data value from (non-associative) external memory. For example, ECC error in
SDRAM.

13 Illegal address (software fault). For example, access to unpopulated memory.

14 Illegal access (software fault). For example, byte write to word register.

15 Illegal state (software fault). For example, device not ready.

16 Internal data register. For example, parity on a SIMD&FP register. For a PE, all
general-purpose, stack pointer, SIMD&FP, and SVE registers are data registers.

17 Internal control register. For example, Parity on a System register. For a PE, all

registers other than general-purpose, stack pointer, SIMD&FP, and SVE registers are
control registers.

18 Error response from Completer of access. For example, error response from cache
write-back.

19 External timeout. For example, timeout on interaction with another component.

20 Internal timeout. For example, timeout on interface within the component.

21 Deferred error from Completer not supported at Requester. For example, poisoned data
received from the Completer of an access by a Requester that cannot defer the error
further.

22 Deferred error from Requester not supported at Completer. For example, poisoned data
received from the Requester of an access by a Completer that cannot defer the error
further.

23 Deferred error from Completer passed through. For example, poisoned data received
from the Completer of an access and returned to the Requester.

24 Deferred error from Requester passed through. For example, poisoned data received
from the Requester of an access and deferred to the Completer.

25 Error recorded by PCle error logs. Indicates that the component has recorded an error

in a PCIe error log. This might be the PCle device status register, AER, DVSEC, or
other mechanisms defined by PCle.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note:

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:

* Any of the following are true:
— The RAS Common Fault Injection Model Extension is implemented by the node that owns this
error record and ERR<q>PFGF.SYN == 0b0.
— The RAS Common Fault Injection Model Extension is not implemented by the node that owns
this error record.
* ERR<n>STATUS.V == 0b0.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 133
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

ERR<n>STATUS (RAS System Architecture v1.0 is implemented)
The ERR<n>STATUS (RAS System Architecture v1.0 is implemented) bit assignments are:

63 ! ! ! ! ! ! ! 32

RESO g

31 30 29 28,27 26 25 24,23 22 21 20,19 16,15 | 8,7 | 0
g \% CE UET RESO IERR SERR

A‘stu Uz:DEJ &

Bits [63:32,19:16]
Reserved. This field is RESO.

AV, bit [31]
Address Valid.

Figure 4.18: ERR<n>STATUS

When error record <n> includes an address associated with an error
The possible values of this bit are:

0 ERR<n>ADDR not valid.
1 ERR<n>ADDR contains an address associated with the highest priority error
recorded by this record.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0100,0,0}, and the highest priority of
these is not being cleared to zero in the same write.

This bit is read/write-one-to-clear.
This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

Otherwise
Reserved. This bit is RESO.

V, bit [30]
Status Register Valid. The possible values of this bit are:

ERR<n>STATUS not valid.
ERR<n>STATUS valid. At least one error has been recorded.

[]

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0100,0,0}, and is not being cleared to 0b0
in the same write.

This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

UE, bit [29]
Uncorrected Error. The possible values of this bit are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 134
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0 No errors have been detected, or all detected errors have been either corrected or
deferred.
1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This bit ignores writes if
ERR<n>STATUS.OF == 0b1 and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

ER, bit [28]
Error Reported. The possible values of this bit are:

(@]

No in-band error (External Abort) reported.
An External Abort was signaled by the component to the Requester making the access
or other transaction. This can be because any of the following are true:
* The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits is implemented
and was set to Ob1 when an Uncorrected error was detected.
» The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits is not
implemented and the component always reports errors.

=

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

If this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero,
when any of:

* Clearing ERR<n>STATUS.V to 0b0.
* Clearing ERR<n>STATUS.UE to 0b0, if this bit is never set to 0b1 by a Deferred error.
* Clearing ERR<n>STATUS.{UE,DE} to {0,0}, if this bit can be set to 0b1 by a Deferred error.

This bit is not valid and reads UNKNOWN if any of the following are true:

* ERR<n>STATUS.V == 0b0.
* ERR<n>STATUS.UE == 0b0 and this bit is never set to 0b1 by a Deferred error.
* ERR<n>STATUS.{UE,DE} == {0,0} and this bit can be set to 0b1 by a Deferred error.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0000,0,0}, and the highest priority of these
is not being cleared to zero in the same write.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Note:
An External Abort signaled by the component might be masked and not generate any exception.

OF, bit [27]
Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

* An Uncorrected error is detected and ERR<n>STATUS.UE == 0b1.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 135
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

ARM DDI 0587
D.a-00bet0

¢ A Deferred error is detected, ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b1.

* A Corrected error is detected, no Corrected error counter is implemented, ERR<n>STATUS.UE ==
0b0, ERR<n>STATUS.DE == 00, and ERR<n>STATUS.CE != 0b00. ERR<n>STATUS.CE might
be updated for the new Corrected error.

* A Corrected error counter is implemented, ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE ==
0b0, and the counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is set to 0b1 when one of the following occurs:

e A Deferred error is detected and ERR<n>STATUS.UE == 0b1.

* A Corrected error is detected, no Corrected error counter is implemented, and either or both the
ERR<n>STATUS.UE or ERR<n>STATUS.DE bits are set to 0b1.

* A Corrected error counter is implemented, either or both the ERR<n>STATUS.UE or
ERR<n>STATUS.DE bits are set to 0b1, and the counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is cleared to 0b0 when one of the following occurs:

¢ An Uncorrected error is detected and ERR<n>STATUS.UE == 0b0.

¢ A Deferred error is detected, ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b0.

e A Corrected error is detected, ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0 and
ERR<n>STATUS.CE == 0b00.

The IMPLEMENTATION DEFINED clearing of this bit might also depend on the value of the other error
status bits.

If a Corrected error counter is implemented:

* A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN
value.

* A direct write to this bit that clears this bit to 0b0 might indirectly set the counter overflow flag to an
UNKNOWN value.

The possible values of this bit are:

0 If ERR<n>STATUS.UE == 0b1, then no error syndrome for an Uncorrected error has

been discarded.
If ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b1, then no error
syndrome for a Deferred error has been discarded.
If ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0, and a Corrected error
counter is implemented, then the counter has not overflowed.
If ERR<n>STATUS.UE == 000, ERR<n>STATUS.DE == 000, ERR<n>STATUS.CE
= 0b00, and no Corrected error counter is implemented, then no error syndrome for a
Corrected error has been discarded.
Note:

This bit might have been set to 0b1 when an error syndrome was discarded

and later cleared to 0b0 when a higher priority syndrome was recorded.

1 At least one error syndrome has been discarded or, if a Corrected error counter is
implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 136
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

MY, bit [26]
Miscellaneous Registers Valid.

When error record <n> includes an additional information for an error
The possible values of this bit are:

0 ERR<n>MISC<m> not valid.
1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m> registers
contains additional information for an error recorded by this record.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0100,0,0}, and the highest priority of
these is not being cleared to zero in the same write.

This bit is read/write-one-to-clear.
This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

Note:

If the ERR<n>MISC<m> registers can contain additional information for a previously
recorded error, then the contents must be self-describing to software or a user. For example,
certain fields might relate only to Corrected errors, and other fields only to the most recent
error that was not discarded.

Otherwise
Reserved. This bit is RESO.

CE, bits [25:24]
Corrected Error. The possible values of this field are:

0b00 No errors were corrected.

0b01 At least one transient error was corrected.
0b10 At least one error was corrected.

Obl1l At least one persistent error was corrected.

The mechanism by which a component or node detects whether a correctable error is transient or persistent
is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to
0b10 when a corrected error is recorded.

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software
write ones to this field to clear this field to zero.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This field ignores writes if
ERR<n>STATUS.OF == 0b1 and is not being cleared to 0b0 in the same write.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an
UNKNOWN value.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

DE, bit [23]
Deferred Error. The possible values of this bit are:

0 No errors were deferred.
1 At least one error was not corrected and deferred.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 137

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This bit ignores writes if
ERR<n>STATUS.OF == 0b1 and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

PN, bit [22]

Poison. The possible values of this bit are:

0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for
example, by an error detection code (EDC), or Corrected error recorded.
1 Uncorrected error or Deferred error recorded because a poison value was detected.

If this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero,
when any of:

* Clearing ERR<n>STATUS.V to 0b0.
* Clearing both ERR<n>STATUS.{DE, UE} to 0b0.

This bit is not valid and reads UNKNOWN if any of the following are true:

« ERR<#>STATUS.V == 0b0.
« ERR<n>STATUS.{DE,UE} == {0,0}.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0000,0,0}, and the highest priority of these
is not being cleared to zero in the same write.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

UET, bits [21:20]

ARM DDI 0587
D.a-00bet0

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected
error. The possible values of this field are:

0b00 Uncorrected error, Uncontainable error (UC).

0b01 Uncorrected error, Unrecoverable error (UEU).

0b10 Uncorrected error, Latent or Restartable error (UEO).
Obl1l Uncorrected error, Signaled or Recoverable error (UER).

If this field is nonzero, then Arm recommends that software write ones to this field to clear this field to
zero, when any of:

* Clearing ERR<n>STATUS.V to 0b0.
* Clearing ERR<n>STATUS.UE to 0b0.

This field is not valid and reads UNKNOWN if any of the following are true:

* ERR<n>STATUS.V == 0b0.
* ERR<n>STATUS.UE == 0b0.

This field ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0000,0,0}, and the highest priority of

these is not being cleared to zero in the same write.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 138
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an
UNKNOWN value.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Note:

Software might use the information in the error record registers to determine what recovery is
necessary.

IERR, bits [15:8]
IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR value.
Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note:

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:

* Any of the following are true:
— The RAS Common Fault Injection Model Extension is implemented by the node that owns this
error record and ERR<q>PFGF.SYN == 0b0.
— The RAS Common Fault Injection Model Extension is not implemented by the node that owns
this error record.
* ERR<n>STATUS.V == 0b0.

This field ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0000,0,0}, and the highest priority of
these is not being cleared to zero in the same write.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

SERR, bits [7:0]
Architecturally-defined primary error code. The primary error code might be used by a fault handling agent
to triage an error without requiring device-specific code. For example, to count and threshold corrected
errors in software, or generate a short log entry. The possible values of this field are:

0 No error.
1 IMPLEMENTATION DEFINED error.
2 Data value from (non-associative) internal memory. For example, ECC from on-chip

SRAM or buffer.

3 IMPLEMENTATION DEFINED pin. For example, nSEI pin.
4 Assertion failure. For example, consistency failure.
5 Error detected on internal data path. For example, parity on ALU result.
6 Data value from associative memory. For example, ECC error on cache data.
7 Address/control value from associative memory. For example, ECC error on cache tag.
8 Data value from a TLB. For example, ECC error on TLB data.
9 Address/control value from a TLB. For example, ECC error on TLB tag.
10 Data value from producer. For example, parity error on write data bus.
11 Address/control value from producer. For example, parity error on address bus.
12 Data value from (non-associative) external memory. For example, ECC error in
SDRAM.
13 Illegal address (software fault). For example, access to unpopulated memory.
14 Illegal access (software fault). For example, byte write to word register.
15 Illegal state (software fault). For example, device not ready.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 139

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

16 Internal data register. For example, parity on a SIMD&FP register. For a PE, all
general-purpose, stack pointer, SIMD&FP, and SVE registers are data registers.
17 Internal control register. For example, Parity on a System register. For a PE, all

registers other than general-purpose, stack pointer, SIMD&FP, and SVE registers are
control registers.

18 Error response from Completer of access. For example, error response from cache
write-back.

19 External timeout. For example, timeout on interaction with another component.

20 Internal timeout. For example, timeout on interface within the component.

21 Deferred error from Completer not supported at Requester. For example, poisoned data
received from the Completer of an access by a Requester that cannot defer the error
further.

22 Deferred error from Requester not supported at Completer. For example, poisoned data
received from the Requester of an access by a Completer that cannot defer the error
further.

23 Deferred error from Completer passed through. For example, poisoned data received
from the Completer of an access and returned to the Requester.

24 Deferred error from Requester passed through. For example, poisoned data received
from the Requester of an access and deferred to the Completer.

25 Error recorded by PCle error logs. Indicates that the component has recorded an error

in a PCle error log. This might be the PCle device status register, AER, DVSEC, or
other mechanisms defined by PCle.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note:

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:

* Any of the following are true:
— The RAS Common Fault Injection Model Extension is implemented by the node that owns this
error record and ERR<q>PFGF.SYN == 0b0.
— The RAS Common Fault Injection Model Extension is not implemented by the node that owns
this error record.
* ERR<n>STATUS.V == 0b0.

This field ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0000,0,0}, and the highest priority of
these is not being cleared to zero in the same write.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Accessibility

The {AV, V, UE, ER, OF, MV, CE, DE, PN, UET, CI} fields are write-one-to-clear, meaning writes of zero
are ignored, and a write of one or all-ones to the field clears the field to zero. The {IERR, SERR} fields
are read/write fields, although the set of implemented valid values is IMPLEMENTATION DEFINED. See also
ERR<n>PFGF.SYN.

After reading ERR<n>STATUS, software must clear the valid bits in the register to allow new errors to be
recorded. However, between reading the register and clearing the valid bits, a new error might have overwritten

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 140
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

the register. To prevent this error being lost by software, the register prevents updates to fields that might have
been updated by a new error.

When RAS System Architecture v1.0 is implemented:

» Writes to the {UE, DE, CE} fields are ignored if the OF bit is set and is not being cleared.

* Writes to the V bit are ignored if any of the {UE, DE, CE} fields are nonzero and are not being cleared.

* Writes to the { AV, MV} bits and {ER, PN, UET, IERR, SERR} syndrome fields are ignored if the highest
priority error status field is nonzero and not being cleared. The error status fields in priority order from
highest to lowest, are UE, DE, and CE.

When RAS System Architecture v1.1 is implemented, a write to the register is ignored if all of:

* Any of {V, UE, OF, CE, DE} fields are nonzero before the write.
* The write does not clear the nonzero {V, UE, OF, CE, DE} fields to zero by writing ones to the applicable
field or fields.

Some of the fields in ERR<#>STATUS are also defined as UNKNOWN where certain combinations of the {V,
DE, UE} status fields are zero. The rules for writes to ERR<n>STATUS allow a node to implement such a field
as a fixed read-only value.

For example, when RAS System Architecture v1.1 is implemented, a write to ERR<n>STATUS when
ERR<n>STATUS.V is 1 results in either ERR<n>STATUS.V field being cleared to zero, or ERR<n>STATUS.V
not changing. Since all fields in ERR<n>STATUS, other than { AV, V, MV}, usually read as UNKNOWN values
when ERR<n>STATUS.V is zero, this means those fields can be implemented as read-only if applicable.

To ensure correct and portable operation, when software is clearing the valid bits in the register to allow new
errors to be recorded, Arm recommends that software:

* Determine which fields to clear to zero by reading ERR<n>STATUS.
e Write ones to all the write-one-to-clear fields that are nonzero.

¢ Write zero to all the read/write fields.

¢ Write zero to all the write-one-to-clear fields that are zero.

Otherwise, these fields might not have the correct value when a new fault is recorded.
An exception is when the node supports writing to these fields as part of fault injection. See also

ERR<n>PFGF.SYN.

Pseudocode operation

// ERRSTATUS[] (assignment form)
//
// For a system register, n = UInt (ERRSELR_EL1.SEL)

ERRSTATUS[integer n] = bits(64) w

// Generate candidate value from the written value and the previous
// (physical register) value
c = w<63:32>: (_ERRSTATUS[n]<31:19> AND NOT (w<31:19>)) :Zeros (3) :w<15:0>;

if HaveRASSysArchvlpl () then
// RAS System Architecture vl1.1
// - ignore write if any of V/UE/DE/CE/OF is set
if !'IsZero(c.<V,UE,OQOF,CE,DE>) then
c = _ERRSTATUS[n];
else
// RAS System Architecture v1.0
// — do not clear UE/DE/CE if OF 1is set
if ¢c.OF == '1l' then c.<UE,DE,CE> = _ERRSTATUS[n] .<UE,DE,CE>;
// — do not clear V if any of UE/DE/CE is set

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 141

D.a-00bet0

Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

if !IsZero(c.<UE,DE,CE>) then c.V = _ERRSTATUS[n].V;
// — do not clear syndrome if not clearing highest priority error
if (c.UE != '0"' ||
(_ERRSTATUS[n] .UE == '0' && c.DE != '0") ||
(_ERRSTATUS [n] .<UE,DE> == '00' && c.CE != '00')) then
c.<AV,ER,MV,PN,CI,UET, IERR, SERR> = _ERRSTATUS.<AV,ER,MV,PN,CI,UET, IERR, SERR>;
_ERRSTATUS [n] = c;
return;
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 142

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.13 ERRCIDRO, Component Identification Register 0

The ERRCIDRO characteristics are:

Purpose

Provides discovery information about the component.

Configurations

It is IMPLEMENTATION DEFINED whether ERRCIDRO is present. ERRCIDRO is RESO if not present.

ERRCIDRO is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDRO is a 32-bit read-only memory-mapped register located at offset 0xFFO0.

Field descriptions

The ERRCIDRO bit assignments are:

31

7

| 0

RESO

00001101

Bits [31:8]

Reserved. This field is RESO.
PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

Accessibility

None.

ARM DDI 0587
D.a-00bet0

PRMBL_0

Figure 4.19: ERRCIDRO

This field reads as 0x0D.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

143

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.14 ERRCIDR1, Component Identification Register 1

The ERRCIDRI1 characteristics are:

Purpose

Provides discovery information about the component.

Configurations

It is IMPLEMENTATION DEFINED whether ERRCIDRI is present. ERRCIDRI1 is RESO if not present.

ERRCIDRI1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDRI is a 32-bit read-only memory-mapped register located at offset 0xFF4.

Field descriptions

The ERRCIDRI bit assignments are:

31 | | | | 7 413 0
RESO 11110000
L I L |]
CLASS PRMBL_1
Figure 4.20: ERRCIDR1
Bits [31:8]
Reserved. This field is RESO.
CLASS, bits [7:4]
Component class. The defined values of this field are:
OxF Generic peripheral with IMPLEMENTATION DEFINED register layout.

Other values are defined by the CoreSight Architecture.

This field reads as 0xF.

PRMBL._1, bits [3:0]
Component identification preamble, segment 1. This field reads as 0x0.

Accessibility

None.

ARM DDI 0587
D.a-00bet0

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

144

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.15 ERRCIDR2, Component Identification Register 2

The ERRCIDR?2 characteristics are:

Purpose

Provides discovery information about the component.

Configurations

It is IMPLEMENTATION DEFINED whether ERRCIDR? is present. ERRCIDR?2 is RESO if not present.

ERRCIDR?2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR? is a 32-bit read-only memory-mapped register located at offset 0xFF8.

Field descriptions

The ERRCIDR?2 bit assignments are:

31

7

| 0

RESO

000O0O0O1O0T1

Bits [31:8]

Reserved. This field is RESO.
PRMBL_2, bits [7:0]

Component identification preamble, segment 2.

Accessibility

None.

ARM DDI 0587
D.a-00bet0

PRMBL_2

Figure 4.21: ERRCIDR2

This field reads as 0x05.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

145

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.16 ERRCIDR3, Component Identification Register 3

The ERRCIDR3 characteristics are:

Purpose

Provides discovery information about the component.

Configurations

It is IMPLEMENTATION DEFINED whether ERRCIDR3 is present. ERRCIDR3 is RESO if not present.

ERRCIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR3 is a 32-bit read-only memory-mapped register located at offset 0xFFC.

Field descriptions

The ERRCIDR3 bit assignments are:

31

7

| 0

RESO

10110001

Bits [31:8]

Reserved. This field is RESO.
PRMBL_3, bits [7:0]

Component identification preamble, segment 3.

Accessibility

None.

ARM DDI 0587
D.a-00bet0

PRMBL_3

Figure 4.22: ERRCIDR3

This field reads as 0xB1.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

146

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.17 ERRCRICRO, Critical Error Interrupt Configuration Register 0

The ERRCRICRO characteristics are:

Purpose
Critical Error Interrupt configuration register.

Configurations
ERRCRICRO is present only if all of the following are true:

* Any of the following are true:

— The Ceritical Error Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRCRICRO is RESO otherwise.
ERRCRICRO is architecturally mapped to memory-mapped register ERRIRQCR4[63:0].
ERRCRICRO is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCRICRO is a 64-bit read/write memory-mapped register located at offset 0xEAQ.

Critical Error Interrupt is implemented, recommended layout
Configurations
Defined only if all of the following are true:

* The Critical Error Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Critical Error Interrupt is implemented, recommended layout bit assignments are:

63 | 56,55 | | | | | 32
RESO ADDR[53:30] g
131 | | | | | |] 210
g ADDR[29:0] RESO

Figure 4.23: ERRCRICRO Critical Error Interrupt is implemented, recommended layout

Bits [63:56,1:0]
Reserved. This field is RESO.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRCRICRO.ADDR << 2) is the address that the component writes

to when signaling the Critical Error Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented

high-order physical address bits are RESO.

This field resets to an architecturally UNKNOWN value on a reset.

IMPLEMENTATION DEFINED layout

Configurations

Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The IMPLEMENTATION DEFINED layout bit assignments are:

63 l l l l l l l 32)
IMPLEMENTATION DEFINED g
131 l l l l l l l 0
g IMPLEMENTATION DEFINED
Figure 4.24: ERRCRICRO IMPLEMENTATION DEFINED layout
Bits [63:0]

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 148
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.18 ERRCRICRA1, Critical Error Interrupt Configuration Register 1

The ERRCRICRI1 characteristics are:

Purpose
Critical Error Interrupt configuration register.

Configurations
ERRCRICRI is present only if all of the following are true:

* Any of the following are true:

— The Ceritical Error Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRCRICRI1 is RESO otherwise.
ERRCRICRI is architecturally mapped to memory-mapped register ERRIRQCRS[31:0].
ERRCRICRI is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCRICRI is a 32-bit read/write memory-mapped register located at offset 0xEAS.

Critical Error Interrupt is implemented, recommended layout
Configurations
Defined only if all of the following are true:

* The Critical Error Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Critical Error Interrupt is implemented, recommended layout bit assignments are:

31 | | | | | | | 0
DATA

Figure 4.25: ERRCRICR1 Critical Error Interrupt is implemented, recommended layout

DATA, bits [31:0]

Payload for the message signaled interrupt. This field resets to an architecturally UNKNOWN value on a

reset.

IMPLEMENTATION DEFINED layout

Configurations

Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 | | | | | | | 0

IMPLEMENTATION DEFINED

Figure 4.26: ERRCRICR1 IMPLEMENTATION DEFINED layout

Bits [31:0]

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION

DEFINED behavior.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 150
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.19 ERRCRICR2, Critical Error Interrupt Configuration Register 2

The ERRCRICR?2 characteristics are:

Purpose
Critical Error Interrupt control and configuration register.

Configurations
ERRCRICR?2 is present only if all of the following are true:

* Any of the following are true:

— The Ceritical Error Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRCRICR?2 is RESO otherwise.
ERRCRICR? is architecturally mapped to memory-mapped register ERRIRQCRS5[63:32].
ERRCRICR?2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCRICR? is a 32-bit read/write memory-mapped register located at offset 0xEAC.

Critical Error Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

* The Critical Error Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Critical Error Interrupt is implemented, recommended layout bit assignments are:

31 | | | | | 8,7 6 5 4,3 0

RESO SH MemAttr

IRQEN J { NSMSI
Figure 4.27: ERRCRICR2 Critical Error Interrupt is implemented, recommended layout

Bits [31:8]
Reserved. This field is RESO.

IRQEN, bit [7]
Message signaled interrupt enable.

When the component does not support disabling message signaled interrupts
Message signaled interrupts are always enabled.

This bit is RESO.

Otherwise
Enables generation of message signaled interrupts. The possible values of this bit are:

0b0 Disabled.
0bl Enabled.

This bit resets to 0b0 on a reset.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 151
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

NSMS], bit [6]
Security attribute. Defines the physical address space for message signaled interrupts.

When the component allows Non-secure writes to ERRCRICR2
The Security attribute used for message signaled interrupts is Non-secure.

This bit is RESO.

When the component does not support configuring the Security attribute for message signaled
interrupts
The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

This bit is RESO.

Otherwise
The possible values of this bit are:

0b0 Secure.
0b1l Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value on a reset.

SH, bits [5:4]
Shareability.

When the component does not support configuring the Shareability domain
The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RESO.

Otherwise
Defines the Shareability domain for message signaled interrupts. The possible values of this field are:

0b00 Not shared.
0b10 Outer Shareable.
0b1l1 Inner Shareable.

All other values are reserved.
This field is ignored when ERRCRICR2.MemAttr specifies any of the following memory types:

¢ Any Device memory type.
* Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated
as Outer Shareable.

This field resets to an architecturally UNKNOWN value on a reset.

MemAttr, bits [3:0]
Memory type.

When the component does not support configuring the memory type
The component does not support configuring the memory type, meaning the memory type used for
message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RESO.

Otherwise
Defines the memory type and attributes for message signaled interrupts. The possible values of this
field are:
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 152

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.
0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.

0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
O0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0bl111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.
This field resets to an architecturally UNKNOWN value on a reset.
Note:

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 | | | | | | | 0

IMPLEMENTATION DEFINED

Figure 4.28: ERRCRICR2 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 153

D.a-00bet0

Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.20 ERRDEVAFF, Device Affinity Register

The ERRDEVAFF characteristics are:

Purpose
For a group of error records that has affinity with a single PE or a group of PEs, ERRDEVAFF is a copy of
MPIDR_ELI1 or part of MPIDR_EL1:

* If the group of error records has affinity with a single PE, the affinity level is 0, ERRDEVAFF reads
the same value as MPIDR_EL1, and ERRDEVAFFE.F0OV reads-as-one to indicate affinity level 0.

* If the group of error records has affinity with a group of PEs, the affinity level is 1, 2, or 3, parts of
ERRDEVAFF reads the same value as parts of MPIDR_EL1, and the rest of ERRDEVAFF indicates
the level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following are true:

* All the PEs in the group have the same values in MPIDR_EL1.{Aff3,Aff2}, and these values are
equal to ERRDEVAFF.{ Aff3,Aff2}.

e ERRDEVAFF.Aff1 is nonzero and not 0x80, and ERRDEVAFFE.{AffO0,FOV} read-as-zero, to
indicate at least affinity level 1. The subset of PEs at level 1 that the group of error records has
affinity with is indicated by the least-significant set bit in ERRDEVAFF.Aff1. In this example, if
ERRDEVAFF.Aff1[2:0] is 0b100, then the group of error records has affinity with the up-to 8 PEs
that have MPIDR_EL1.Aff1[7:3] == ERRDEVAFF.Aff1[7:3].

If RAS System Architecture v1.1 is not implemented, ERRDEVAFF can only describe a group of error
records that is affine with a single PE or all the PEs at an affinity level.

Configurations
ERRDEVAFF is present only if the group of error records has affinity with a PE or cluster of PEs.
ERRDEVAFF is RESO otherwise.

ERRDEVAFF is implemented only as part of a memory-mapped group of error records.

Attributes
ERRDEVAFF is a 64-bit read-only memory-mapped register located at offset 0xFAS.

Field descriptions

The ERRDEVAFF bit assignments are:

63 | | | 40,39 | 32
RESO Aff3
313029 25 24,23] 16,15] 8,7] 0
g u RESO Aff2 Affl AffO
Fov MT
Figure 4.29: ERRDEVAFF
Bits [63:40,29:25]
Reserved. This field is RESO.
Aff3, bits [39:32]
PE affinity level 3. The MPIDR_EL1.Aff3 field, viewed from the highest Exception level of the associated
PE or PEs.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 154

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

FOV, bit [31]
Indicates that the ERRDEVAFFE.AffO field is valid. The defined values of this bit are:
0b0 ERRDEVAFF.AffO0 is not valid, and the PE affinity is above level 0 or a subset of level 0.
0bl ERRDEVAFF.Aff0 is valid, and the PE affinity is at level 0.
U, bit [30]
Uniprocessor.

When ERRDEVAFE.F(OV == (bl
The MPIDR_EL1.U bit, viewed from the highest Exception level of the associated PE.

Otherwise
Reserved. This bit is UNKNOWN.

MT, bit [24]
Multithreaded.

When ERRDEVAFF.FOV == (bl
The MPIDR_EL1.MT bit, viewed from the highest Exception level of the associated PE.

Otherwise
Reserved. This bit is UNKNOWN.

Aff2, bits [23:16]
PE affinity level 2.

When affine with a PE or PEs at affinity level 2 or below
The MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 2
Defines part of the MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

Obxxxxxxxl ERRDEVAFF.Aff2[7:1] is the value of MPIDR_EL1.Aff2[7:1], viewed from the
highest Exception level of the associated PEs.

Obxxxxxx10 ERRDEVAFF.Aff2[7:2] is the value of MPIDR_EL1.Aff2[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 ERRDEVAFF.Aff2[7:3] is the value of MPIDR_EL1.Aff2[7:3], viewed from the
highest Exception level of the associated PEs.

O0bxxxx1000 ERRDEVAFF.Aff2[7:4] is the value of MPIDR_EL1.Aff2[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff2[7:5] is the value of MPIDR_EL1.Aff2[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff2[7:6] is the value of MPIDR_EL1.Aff2[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff2[7] is the value of MPIDR_EL1.Aff2[7], viewed from the
highest Exception level of the associated PEs.

Otherwise
Indicates whether the PE affinity is at level 3. The defined values of this field are:

0x80 PE affinity is at level 3.

All other values are reserved.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 155
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Aff1, bits [15:8]
PE affinity level 1.

When affine with a PE or PEs at affinity level 1 or below
The MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 1
Defines part of the MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

Obxxxxxxxl ERRDEVAFF.Aff1[7:1] is the value of MPIDR_EL1.Aff1[7:1], viewed from the
highest Exception level of the associated PEs.

Obxxxxxx10 ERRDEVAFF.Aff1[7:2] is the value of MPIDR_EL1.Aff1[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 ERRDEVAFF.Aff1[7:3] is the value of MPIDR_EL1.Aff1[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff1[7:4] is the value of MPIDR_EL1.Aff1[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff1[7:5] is the value of MPIDR_EL1.Aff1[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff1[7:6] is the value of MPIDR_EL1.Aff1[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff1[7] is the value of MPIDR_EL1.Aff1[7], viewed from the
highest Exception level of the associated PEs.

Otherwise
Indicates whether the PE affinity is at level 2. The defined values of this field are:

0x00 PE affinity is above level 2 or a subset of level 2.
0x80 PE affinity is at level 2.
Aff0, bits [7:0]
PE affinity level 0.

When affine with a PE at affinity level 0
The MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated PE.

When affine with a sub-set of PEs at affinity level 0
Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

Obxxxxxxxl ERRDEVAFF.Aff0[7:1] is the value of MPIDR_EL1.Aff0[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff0[7:2] is the value of MPIDR_EL1.Aff0[7:2], viewed from the
highest Exception level of the associated PEs.

Obxxxxx100 ERRDEVAFF.Aff0[7:3] is the value of MPIDR_EL1.Aff0[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff0[7:4] is the value of MPIDR_EL1.Aff0[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff0[7:5] is the value of MPIDR_EL1.Aff0[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff0[7:6] is the value of MPIDR_EL1.Aff0[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.AffO[7] is the value of MPIDR_EL1.Aff0[7], viewed from the
highest Exception level of the associated PEs.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 156
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Otherwise
Indicates whether the PE affinity is at level 1. The defined values of this field are:

0x00 PE affinity is above level 1 or a subset of level 1.
0x80 PE affinity is at level 1.
Accessibility
None.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 157

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.21 ERRDEVARCH, Device Architecture Register

The ERRDEVARCH characteristics are:

Purpose
Provides discovery information for the component.

Configurations
ERRDEVARCH is implemented only as part of a memory-mapped group of error records.

Attributes
ERRDEVARCH is a 32-bit read-only memory-mapped register located at offset 0xFBC.

Field descriptions
The ERRDEVARCH bit assignments are:

31 | | 21 20,19 16,15 12)11 | | 0
0100011101 1|1]REVISON|JO O O OJ1 0 1 00 0 O0OO0OOOOTO

ARCHITECT PRESENT ARCHVER ARCHPART

Figure 4.30: ERRDEVARCH

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code. The defined values of this field are:

0x23B JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.
This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present. The defined values of this bit are:

0b0 Device Architecture information not present.
Obl Device Architecture information present.

This bit reads as 0b1.

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component. The defined values of this field are:

0b0000 RAS System Architecture v1.0.
0b0001 RAS System Architecture v1.1. As 060000 and also:
» Simplifies ERR<n>STATUS.
* Adds support for additional ERR<n>MISC<m> registers.
* Adds support for the optional RAS Timestamp Extension.
* Adds support for the optional RAS Common Fault Injection Model Extension.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 158
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

All other values are reserved.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component. The defined values of this field
are:

0b0000 RAS System Architecture v1.

All other values are reserved.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0000.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component. The defined values of this field are:

0xA00 RAS System Architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA00.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 159
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.22 ERRDEVID, Device Configuration Register

The ERRDEVID characteristics are:

Purpose

Provides discovery information for the component.

Configurations

ERRDEVID is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVID is a 32-bit read-only memory-mapped register located at offset 0xFC8.

Field descriptions

The ERRDEVID bit assignments are:

31]]]

16,15

RESO

IMPLEMENTATION DEFINED

Bits [31:16]
Reserved. This field is RESO.

NUM, bits [15:0]

NUM

Figure 4.31: ERRDEVID

Highest numbered index of the error records in this group, plus one. Each implemented record is owned
by a node. A node might own multiple records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral.
For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is
implemented, and up to 56 otherwise.

This field reads as an IMPLEMENTATION DEFINED value.

Accessibility
None.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.

D.a-00bet0

Non-confidential

160

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.23 ERRERICRO, Error Recovery Interrupt Configuration Register 0

The ERRERICRO characteristics are:

Purpose
Error Recovery Interrupt configuration register.

Configurations
ERRERICRO is present only if all of the following are true:

* Any of the following are true:

— The Error Recovery Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRERICRO is RESO otherwise.
ERRERICRO is architecturally mapped to memory-mapped register ERRIRQCR2[63:0].
ERRERICRO is implemented only as part of a memory-mapped group of error records.

Attributes
ERRERICRO is a 64-bit read/write memory-mapped register located at offset 0xE90.

Error Recovery Interrupt is implemented, recommended layout
Configurations
Defined only if all of the following are true:

* The Error Recovery Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Error Recovery Interrupt is implemented, recommended layout bit assignments are:

63 | 56,55 | | | | | 32
RESO ADDR[53:30] g
131 | | | | | |] 210
g ADDR[29:0] RESO

Figure 4.32: ERRERICRO Error Recovery Interrupt is implemented, recommended layout

Bits [63:56,1:0]
Reserved. This field is RESO.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRERICRO.ADDR << 2) is the address that the component writes

to when signaling the Error Recovery Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented

high-order physical address bits are RESO.

This field resets to an architecturally UNKNOWN value on a reset.

IMPLEMENTATION DEFINED layout

Configurations

Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The IMPLEMENTATION DEFINED layout bit assignments are:

63 l l l l l l l 32)
IMPLEMENTATION DEFINED g
131 l l l l l l l 0
g IMPLEMENTATION DEFINED
Figure 4.33: ERRERICRO IMPLEMENTATION DEFINED layout
Bits [63:0]

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 162
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.24 ERRERICR1, Error Recovery Interrupt Configuration Register 1

The ERRERICRI1 characteristics are:

Purpose
Error Recovery Interrupt configuration register.

Configurations
ERRERICRI is present only if all of the following are true:

* Any of the following are true:

— The Error Recovery Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRERICRI is RESO otherwise.
ERRERICRI1 is architecturally mapped to memory-mapped register ERRIRQCR3[31:0].
ERRERICRI1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRERICRI1 is a 32-bit read/write memory-mapped register located at offset 0xE98.

Error Recovery Interrupt is implemented, recommended layout
Configurations
Defined only if all of the following are true:

* The Error Recovery Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Error Recovery Interrupt is implemented, recommended layout bit assignments are:

31 | | | | | | | 0
DATA

Figure 4.34: ERRERICR1 Error Recovery Interrupt is implemented, recommended layout

DATA, bits [31:0]

Payload for the message signaled interrupt. This field resets to an architecturally UNKNOWN value on a

reset.

IMPLEMENTATION DEFINED layout

Configurations

Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 | | | | | | | 0

IMPLEMENTATION DEFINED

Figure 4.35: ERRERICR1 IMPLEMENTATION DEFINED layout

Bits [31:0]

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION

DEFINED behavior.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 164
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.25 ERRERICR2, Error Recovery Interrupt Configuration Register 2

The ERRERICR2 characteristics are:

Purpose
Error Recovery Interrupt control and configuration register.

Configurations
ERRERICR? is present only if all of the following are true:

* Any of the following are true:

— The Error Recovery Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRERICR? is RESO otherwise.

ERRERICR?2 is architecturally mapped to memory-mapped register ERRIRQCR3[63:32].

ERRERICR?2 is implemented only as part of a memory-mapped group of error records.
Attributes

ERRERICR? is a 32-bit read/write memory-mapped register located at offset 0xE9C.

Error Recovery Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

* The Error Recovery Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Error Recovery Interrupt is implemented, recommended layout bit assignments are:

31 | | | | | 8,7 6 5 4,3 0

RESO SH MemAttr

IRQEN J \‘ NSMSI

Figure 4.36: ERRERICR2 Error Recovery Interrupt is implemented, recommended layout

Bits [31:8]
Reserved. This field is RESO.

IRQEN, bit [7]
Message signaled interrupt enable.

When the component does not support disabling message signaled interrupts
Message signaled interrupts are always enabled.

This bit is RESO.

Otherwise
Enables generation of message signaled interrupts. The possible values of this bit are:

0b0 Disabled.
0bl Enabled.

This bit resets to 0b0 on a reset.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 165
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

NSMS], bit [6]
Security attribute. Defines the physical address space for message signaled interrupts.

When the component allows Non-secure writes to ERRERICR2
The Security attribute used for message signaled interrupts is Non-secure.

This bit is RESO.

When the component does not support configuring the Security attribute for message signaled
interrupts
The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

This bit is RESO.

Otherwise
The possible values of this bit are:

0b0 Secure.
0b1l Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value on a reset.

SH, bits [5:4]
Shareability.

When the component does not support configuring the Shareability domain
The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RESO.

Otherwise
Defines the Shareability domain for message signaled interrupts. The possible values of this field are:

0b00 Not shared.
0b10 Outer Shareable.
0b1l1 Inner Shareable.

All other values are reserved.
This field is ignored when ERRERICR2.MemAttr specifies any of the following memory types:

¢ Any Device memory type.
* Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated
as Outer Shareable.

This field resets to an architecturally UNKNOWN value on a reset.

MemAttr, bits [3:0]
Memory type.

When the component does not support configuring the memory type
The component does not support configuring the memory type, meaning the memory type used for
message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RESO.

Otherwise
Defines the memory type and attributes for message signaled interrupts. The possible values of this
field are:
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 166

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.
0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.

0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
O0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0bl111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.
This field resets to an architecturally UNKNOWN value on a reset.
Note:

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 | | | | | | | 0

IMPLEMENTATION DEFINED

Figure 4.37: ERRERICR2 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 167

D.a-00bet0

Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.26 ERRFHICRO, Fault Handling Interrupt Configuration Register 0

The ERRFHICRO characteristics are:

Purpose
Fault Handling Interrupt configuration register.

Configurations
ERRFHICRO is present only if all of the following are true:

* Any of the following are true:

— The Fault Handling Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRFHICRO is RESO otherwise.
ERRFHICRO is architecturally mapped to memory-mapped register ERRIRQCRO[63:0].
ERRFHICRO is implemented only as part of a memory-mapped group of error records.

Attributes
ERRFHICRO is a 64-bit read/write memory-mapped register located at offset 0xE80.

Fault Handling Interrupt is implemented, recommended layout
Configurations
Defined only if all of the following are true:

* The Fault Handling Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Fault Handling Interrupt is implemented, recommended layout bit assignments are:

63 | 56,55 | | | | | 32
RESO ADDR[53:30] g
131 | | | | | |] 210
g ADDR[29:0] RESO

Figure 4.38: ERRFHICRO Fault Handling Interrupt is implemented, recommended layout

Bits [63:56,1:0]
Reserved. This field is RESO.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRFHICRO.ADDR << 2) is the address that the component writes

to when signaling the Fault Handling Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented

high-order physical address bits are RESO.

This field resets to an architecturally UNKNOWN value on a reset.

IMPLEMENTATION DEFINED layout

Configurations

Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The IMPLEMENTATION DEFINED layout bit assignments are:

63 l l l l l l l 32)
IMPLEMENTATION DEFINED g
131 l l l l l l l 0
g IMPLEMENTATION DEFINED
Figure 4.39: ERRFHICRO IMPLEMENTATION DEFINED layout
Bits [63:0]

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 169
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.27 ERRFHICR1, Fault Handling Interrupt Configuration Register 1

The ERRFHICRI1 characteristics are:

Purpose
Fault Handling Interrupt configuration register.

Configurations
ERRFHICRI is present only if all of the following are true:

* Any of the following are true:

— The Fault Handling Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRFHICRI is RESO otherwise.
ERRFHICRI1 is architecturally mapped to memory-mapped register ERRIRQCR1[31:0].
ERRFHICRI1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRFHICRI1 is a 32-bit read/write memory-mapped register located at offset 0xE88.

Fault Handling Interrupt is implemented, recommended layout
Configurations
Defined only if all of the following are true:

* The Fault Handling Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Fault Handling Interrupt is implemented, recommended layout bit assignments are:

31 | | | | | | | 0
DATA

Figure 4.40: ERRFHICR1 Fault Handling Interrupt is implemented, recommended layout

DATA, bits [31:0]

Payload for the message signaled interrupt. This field resets to an architecturally UNKNOWN value on a

reset.

IMPLEMENTATION DEFINED layout

Configurations

Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 | | | | | | | 0

IMPLEMENTATION DEFINED

Figure 4.41: ERRFHICR1 IMPLEMENTATION DEFINED layout

Bits [31:0]

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION

DEFINED behavior.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved.
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 171
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.28 ERRFHICR2, Fault Handling Interrupt Configuration Register 2

The ERRFHICR2 characteristics are:

Purpose
Fault Handling Interrupt control and configuration register.

Configurations
ERRFHICR? is present only if all of the following are true:

* Any of the following are true:

— The Fault Handling Interrupt is implemented.

— The implementation does not use the recommended layout for the ERRIRQCR<n> registers.
* Interrupt configuration registers are implemented.

ERRFHICR? is RESO otherwise.

ERRFHICR?2 is architecturally mapped to memory-mapped register ERRIRQCR1[63:32].

ERRFHICR?2 is implemented only as part of a memory-mapped group of error records.
Attributes

ERRFHICR? is a 32-bit read/write memory-mapped register located at offset OxE8C.

Fault Handling Interrupt is implemented, recommended layout
Configurations
Defined only if all of the following are true:

* The Fault Handling Interrupt is implemented.
* The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Fault Handling Interrupt is implemented, recommended layout bit assignments are:

31 | | | | | 8,7 6 5 4,3 0

RESO SH MemAttr

IRQEN J \‘ NSMSI

Figure 4.42: ERRFHICR2 Fault Handling Interrupt is implemented, recommended layout

Bits [31:8]
Reserved. This field is RESO.

IRQEN, bit [7]
Message signaled interrupt enable.

When the component does not support disabling message signaled interrupts
Message signaled interrupts are always enabled.

This bit is RESO.

Otherwise
Enables generation of message signaled interrupts. The possible values of this bit are:

0b0 Disabled.
0bl Enabled.

This bit resets to 0b0 on a reset.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 172
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

NSMS], bit [6]
Security attribute. Defines the physical address space for message signaled interrupts.

When the component allows Non-secure writes to ERRFHICR2
The Security attribute used for message signaled interrupts is Non-secure.

This bit is RESO.

When the component does not support configuring the Security attribute for message signaled
interrupts
The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

This bit is RESO.

Otherwise
The possible values of this bit are:

0b0 Secure.
0b1l Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value on a reset.

SH, bits [5:4]
Shareability.

When the component does not support configuring the Shareability domain
The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RESO.

Otherwise
Defines the Shareability domain for message signaled interrupts. The possible values of this field are:

0b00 Not shared.
0b10 Outer Shareable.
0b1l1 Inner Shareable.

All other values are reserved.
This field is ignored when ERRFHICR2.MemAttr specifies any of the following memory types:

¢ Any Device memory type.
* Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated
as Outer Shareable.

This field resets to an architecturally UNKNOWN value on a reset.

MemAttr, bits [3:0]
Memory type.

When the component does not support configuring the memory type
The component does not support configuring the memory type, meaning the memory type used for
message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RESO.

Otherwise
Defines the memory type and attributes for message signaled interrupts. The possible values of this
field are:
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 173

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.
0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.

0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
O0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0bl111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.
This field resets to an architecturally UNKNOWN value on a reset.
Note:

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 | | | | | | | 0

IMPLEMENTATION DEFINED

Figure 4.43: ERRFHICR2 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 174

D.a-00bet0

Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.29 ERRGSR, Error Group Status Register

The ERRGSR characteristics are:

Purpose
Shows the status for the records in the group.

Configurations
ERRGSR is implemented only as part of a memory-mapped group of error records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral.
For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is
implemented, and up to 56 otherwise.

Attributes
ERRGSR is a 64-bit read-only memory-mapped register located at offset 0xE00.

Field descriptions
The ERRGSR bit assignments are:

63 | 5655 | | | | | 32
RESO S[55:32] g

131 | | | | | | | 0

Figure 4.44: ERRGSR

Bits [63:56]
Reserved. This field is RESO.

S[m], bit [m], for m = 0 to 55
The status for error record <m>. A read-only copy of ERR<m>STATUS.V.

When error record <m> is implemented, and error record <m> supports this type of reporting
The defined values of this bit are:

0 No error.
1 One or more errors.

If the Common Fault Injection Model is implemented, up-to 24 records can be implemented meaning
bits [55:24] are RESO.

Otherwise
Reserved. This bit is RESO.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 175
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.30 ERRIIDR, Implementation Identification Register

The ERRIIDR characteristics are:

Purpose
Defines the implementer of the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRIIDR is present. ERRIIDR is RESO if not present.

ERRIIDR is implemented only as part of a memory-mapped group of error records.

Attributes
ERRIIDR is a 32-bit read-only memory-mapped register located at offset 0xE10.

Field descriptions

The ERRIIDR bit assignments are:

31 | | 20,19 16,15 12,11 8,7 6 | 0
IMPLEMENTATION DEFINED IMP DEF IMP DEF IMP DEF |(0) IMP DEF
L 1 1 1 1 1 1] L]
ProductID Variant J Revision J Implementer[10:7] Implementer[6:0]

Figure 4.45: ERRIIDR

ProductID, bits [31:20]
Part number, bits [11:0]. The part number is selected by the designer of the component.

Matches the {ERRPIDR1.PART_1,ERRPIDRO.PART_0} fields, if ERRPIDRO and ERRPIDRI are also
present.

This field reads as an IMPLEMENTATION DEFINED value.

Variant, bits [19:16]
Component major revision.

ERRIIDR. Variant defines either a variant of the component defined by ERRIIDR.ProductID, or the major
revision of the component.

When defining a major revision, ERRIIDR.Variant and ERRIIDR.Revision together form the revision
number of the component, with ERRIIDR. Variant being the most significant part and ERRIIDR.Revision
the least significant part. When a component is changed, ERRIIDR.Variant or ERRIIDR.Revision
is increased to ensure that software can differentiate the different revisions of the component. If
ERRIIDR.Variant is increased then ERRIIDR.Revision should be set to 050000.

Matches the ERRPIDR2.REVISION field, if ERRPIDR?2 is also present.
This field reads as an IMPLEMENTATION DEFINED value.

Revision, bits [15:12]
Component minor revision.

When a component is changed:

* If ERRIIDR.Variant and ERRIIDR.Revision together form the revision number of the component
then:
— ERRIIDR.Variant or ERRIIDR.Revision is increased to ensure that software can differentiate the
different revisions of the component.
— If Variant is increased then Revision should be set to 0b0000.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 176
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

* Otherwise, ERRIIDR.Revision is increased to ensure that software can differentiate the different
revisions of the component.

Matches the ERRPIDR3.REVAND field, if ERRPIDR3 is also present.
This field reads as an IMPLEMENTATION DEFINED value.

Implementer, bits [11:8,6:0]
JEDEC-assigned JEP106 identification code. ERRIIDR[11:8] is the JEP106 bank identifier minus 1 and
ERRIIDR[6:0] is the JEP106 identification code for the designer of the component. The code identifies
the designer of the component, which might not be not the same as the implementer of the device
containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

ERRIIDR[11:8] matches ERRPIDR4.DES_2 and ERRIIDR[6:0] match the {ERRPIDR2.DES_1,ERRPIDR1.DES_0}
fields, if ERRPIDR{1,2,4} are also present.

This field reads as an IMPLEMENTATION DEFINED value.
Note:

For a component designed by Arm Limited, the JEP106 bank is 5, and the JEP106 identification
code is 0x3B, meaning ERRIIDR[11:0] has the value 0x43B.

Zero is not a valid JEP106 identification code, meaning a value of zero for ERRIIDR indicates
this register is not implemented.

Bit [7]
Reserved. This bit is RESO.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 177
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.31 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <0-191>

The ERRIMPDEF<0-191> characteristics are:

Purpose
IMPLEMENTATION DEFINED RAS extensions.

Configurations
ERRIMPDEF<#n> is present if all of the following are true:

* The RAS Common Fault Injection Model Extension is not implemented.
* ERRDEVID.NUM <= 32.

It is IMPLEMENTATION DEFINED whether ERRIMPDEF<#n> is present.
ERRIMPDEF<#n> is RESO if not present.

Attributes
ERRIMPDEF<#n> is a 64-bit read/write memory-mapped register located at offset 0x800 + 8xn.

Field descriptions
The ERRIMPDEF<0-191> bit assignments are:

63 | | | | | | | 32)

IMPLEMENTATION DEFINED g

131 ! ! ! ! ! ! ! 0

g IMPLEMENTATION DEFINED

Figure 4.46: ERRIMPDEF<n>

Bits [63:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 178
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.32 ERRIRQCR<n>, Generic Error Interrupt Configuration Register

The ERRIRQCR<0-15> characteristics are:

Purpose
The ERRIRQCR<n> registers are reserved for IMPLEMENTATION DEFINED interrupt configuration
registers.

The architecture provides a recommended layout for the ERRIRQCR<#n> registers. These registers are
named:

* ERRFHICRO, ERRFHICR1, and ERRFHICR?2 for the fault handling interrupt controls.
* ERRERICRO, ERRERICR1, and ERRERICR?2 for the error recovery interrupt controls.
* ERRCRICRO, ERRCRICRI1, and ERRCRICR?2 for the critical error interrupt controls.
» ERRIRQSR for the status register.

This section describes the generic, IMPLEMENTATION DEFINED, format.

Configurations
ERRIRQCR<#n> is present only if the interrupt configuration registers are implemented. ERRIRQCR<n>
is RESO otherwise.

ERRIRQCR<#> is implemented only as part of a memory-mapped group of error records.

Attributes
ERRIRQCR<n> is a 64-bit read/write memory-mapped register located at offset 0xE80 + 8xn.

Field descriptions
The ERRIRQCR<0-15> bit assignments are:

63 | | | | | | | 32)

IMPLEMENTATION DEFINED g

131 | | | | | | | 0

g IMPLEMENTATION DEFINED

Figure 4.47: ERRIRQCR<n>

Bits [63:0]
IMPLEMENTATION DEFINED controls. The content of these registers is IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 179
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.33 ERRIRQSR, Error Interrupt Status Register

The ERRIRQSR characteristics are:

Purpose
Interrupt status register.

Configurations
ERRIRQSR is present only if interrupt configuration registers are implemented. ERRIRQSR is RESO
otherwise.

ERRIRQSR is architecturally mapped to memory-mapped register ERRIRQCR15.

ERRIRQSR is implemented only as part of a memory-mapped group of error records.
Attributes

ERRIRQSR is a 64-bit read/write memory-mapped register located at offset OxEF 8.

Recommended layout

Configurations
Defined only if the implementation uses the recommended layout for the ERRIRQCR<n> registers.

The recommended layout bit assignments are:

63 ! ! ! ! ! ! ! 32)

131 | | | | |] 6 5 4,3 2 10

CRIERRJ \‘ FHI
CRI FHIERR

ERIERR ERI

Figure 4.48: ERRIRQSR recommended layout

Bits [63:6]
Reserved. This field is RESO.

CRIERR, bit [5]
Critical Error Interrupt error.

When the Critical Error Interrupt is implemented
The possible values of this bit are:

0b0 Critical Error Interrupt write has not returned an error since this bit was last cleared
to zero.

Obl Critical Error Interrupt write has returned an error since this bit was last cleared to
Zero.

This bit is read/write-one-to-clear.
This bit resets to an architecturally UNKNOWN value on a reset.

Otherwise
Reserved. This bit is RESO.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 180
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

CRI, bit [4]
Critical Error Interrupt write in progress.

When the Critical Error Interrupt is implemented
The defined values of this bit are:

0b0 Critical Error Interrupt write not in progress.
Obl Critical Error Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.
This bit is read-only.
Note:

This bit does not indicate whether an interrupt is active, but rather whether a write triggered
by the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual
ERR<n>STATUS registers.

Otherwise
Reserved. This bit is RESO.

ERIERR, bit [3]
Error Recovery Interrupt error.

When the Error Recovery Interrupt is implemented
The possible values of this bit are:

0b0 Error Recovery Interrupt write has not returned an error since this bit was last
cleared to zero.

Obl Error Recovery Interrupt write has returned an error since this bit was last cleared to
Zero.

This bit is read/write-one-to-clear.
This bit resets to an architecturally UNKNOWN value on a reset.

Otherwise
Reserved. This bit is RESO.

ERI, bit [2]
Error Recovery Interrupt write in progress.

When the Error Recovery Interrupt is implemented
The defined values of this bit are:

0b0 Error Recovery Interrupt write not in progress.
Ob1l Error Recovery Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.
This bit is read-only.
Note:

This bit does not indicate whether an interrupt is active, but rather whether a write triggered
by the interrupt is in progress.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 181
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

To determine whether an interrupt is active, software must examine the individual
ERR<n>STATUS registers.

Otherwise
Reserved. This bit is RESO.

FHIERR, bit [1]
Fault Handling Interrupt error.

When the Fault Handling Interrupt is implemented
The possible values of this bit are:

0b0 Fault Handling Interrupt write has not returned an error since this bit was last
cleared to zero.

Obl Fault Handling Interrupt write has returned an error since this bit was last cleared to
Zero.

This bit is read/write-one-to-clear.
This bit resets to an architecturally UNKNOWN value on a reset.

Otherwise
Reserved. This bit is RESO.

FHI, bit [0]
Fault Handling Interrupt write in progress.

When the Fault Handling Interrupt is implemented
The defined values of this bit are:

0b0 Fault Handling Interrupt write not in progress.
Ob1l Fault Handling Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.
This bit is read-only.
Note:

This bit does not indicate whether an interrupt is active, but rather whether a write triggered
by the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual
ERR<n>STATUS registers.

Otherwise

Reserved. This bit is RESO.

IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 182
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

63 | | | | | | | 32)

IMPLEMENTATION DEFINED g

131 | | | | | | | 0

g IMPLEMENTATION DEFINED

Figure 4.49: ERRIRQSR IMPLEMENTATION DEFINED layout
Bits [63:0]

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 183
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.34 ERRPIDRO, Peripheral Identification Register 0

The ERRPIDRO characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRPIDRO is present. ERRPIDRO is RESO if not present.

ERRPIDRO is implemented only as part of a memory-mapped group of error records.

Attributes
ERRPIDRO is a 32-bit read-only memory-mapped register located at offset 0xFEO.

Field descriptions
The ERRPIDRO bit assignments are:

31 ! ! ! ! ! 8,7 ! 0

RESO IMP DEF

PART_0
Figure 4.50: ERRPIDRO

Bits [31:8]
Reserved. This field is RESO.

PART_0, bits [7:0]
Part number, bits [7:0].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

 If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDRO.PART_0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

e If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDRI1.PART_1 and
ERRPIDRO.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision
of the component.

This field reads as an IMPLEMENTATION DEFINED value.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 184
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.35 ERRPIDR1, Peripheral Identification Register 1

The ERRPIDRI1 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRPIDRI1 is present. ERRPIDR1 is RESO if not present.

ERRPIDRI1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRPIDRI is a 32-bit read-only memory-mapped register located at offset 0xFEA4.

Field descriptions
The ERRPIDRI1 bit assignments are:

31 | | | | | 8,7 413 0

RESO IMP DEF IMP DEF

DES_0 PART 1
Figure 4.51: ERRPIDR1

Bits [31:8]
Reserved. This field is RESO.

DES_0, bits [7:4]
Designer, JEP106 identification code, bits [3:0]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together
form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in
the JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.
Note:
For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

PART_1, bits [3:0]
Part number, bits [11:8].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

 If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDRO.PART_0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

e If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDRI1.PART_1 and
ERRPIDRO.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision
of the component.

This field reads as an IMPLEMENTATION DEFINED value.
Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 185
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.36 ERRPIDR2, Peripheral Identification Register 2

The ERRPIDR2 characteristics are:

Purpose

Provides discovery information about the component.

Configurations

It is IMPLEMENTATION DEFINED whether ERRPIDR?2 is present. ERRPIDR?2 is RESO if not present.

ERRPIDR?2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR? is a 32-bit read-only memory-mapped register located at offset 0xFES.

The component uses a 12-bit part number

Configurations

Defined only if the component uses a 12-bit part number.

The the component uses a 12-bit part number bit assignments are:

31

| | | | | 8,7 4,3 2 0

RESO IMP DEF 1| MP DEF

REVISION DES_1
JEDEC

Figure 4.52: ERRPIDR2 the component uses a 12-bit part number

Bits [31:8]

Reserved. This field is RESO.

REVISION, bits [7:4]

Component major revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the
revision number of the component, with ERRPIDR2.REVISION being the most significant part and
ERRPIDR3.REVAND the least significant part. When a component is changed, ERRPIDR2.REVISION
or ERRPIDR3.REVAND are increased to ensure that software can differentiate the different revisions
of the component. If ERRPIDR2.REVISION is increased then ERRPIDR3.REVAND should be set to
0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used. This bit reads as 0b1.

DES_1, bits [2:0]

ARM DDI 0587
D.a-00bet0

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together
form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in
the JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.
Note:

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 186
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The component uses a 16-bit part number

Configurations
Defined only if the component uses a 16-bit part number.

The the component uses a 16-bit part number bit assignments are:

31 | | | | | 8,7 413 2 0

RESO IMP DEF 1] IMP DEF

PART 2 DES_1
JEDEC

Figure 4.53: ERRPIDR2 the component uses a 16-bit part number

Bits [31:8]
Reserved. This field is RESO.

PART _2, bits [7:4]
Part number, bits [15:12].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

* If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDRO.PART_0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

e If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDRI1.PART_1 and
ERRPIDRO.PART 0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision
of the component.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC-assigned JEP106 implementer code is used. This bit reads as 0b1.

DES_1, bits [2:0]
Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together
form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in
the JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.
Note:

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 187
D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.37 ERRPIDRS, Peripheral Identification Register 3

The ERRPIDR3 characteristics are:

Purpose

Provides discovery information about the component.

Configurations

It is IMPLEMENTATION DEFINED whether ERRPIDR3 is present. ERRPIDR3 is RESO if not present.

ERRPIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes

The

ERRPIDR3 is a 32-bit read-only memory-mapped register located at offset 0xFEC.

component uses a 12-bit part number

Configurations

Defined only if the component uses a 12-bit part number.

The the component uses a 12-bit part number bit assignments are:

31 | | | | | 8,7 413 0
RESO IMP DEF IMP DEF
L I L |
REVAND ~ CMOD
Figure 4.54: ERRPIDR3 the component uses a 12-bit part number
Bits [31:8]

Reserved. This field is RESO.

REVAND, bits [7:4]

Component minor revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the
revision number of the component, with ERRPIDR2.REVISION being the most significant part and
ERRPIDR3.REVAND the least significant part. When a component is changed, ERRPIDR2.REVISION
or ERRPIDR3.REVAND are increased to ensure that software can differentiate the different revisions
of the component. If ERRPIDR2.REVISION is increased then ERRPIDR3.REVAND should be set to
0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

ARM DDI 0587

D.a-00bet0

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.
For any two components with the same Unique Component Identifier:

* If the value of the CMOD fields of both components equals zero, the components are identical.

* If the CMOD fields of both components have the same non-zero value, it does not necessarily mean
that they have the same modifications.

o If the value of the CMOD field of either of the two components is non-zero, they might not be
identical, even though they have the same Unique Component Identifier.

This field reads as an IMPLEMENTATION DEFINED value.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 188
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The component uses a 16-bit part number

Configurations
Defined only if the component uses a 16-bit part number.

The the component uses a 16-bit part number bit assignments are:

31 | | | | | 8,7 413 0

RESO IMP DEF IMP DEF

REVISION CMOD

Figure 4.55: ERRPIDR3 the component uses a 16-bit part number

Bits [31:8]
Reserved. This field is RESO.

REVISION, bits [7:4]
Component revision. When a component is changed, ERRPIDR3.REVISION is increased to ensure that
software can differentiate the different revisions of the component.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.
For any two components with the same Unique Component Identifier:

* If the value of the CMOD fields of both components equals zero, the components are identical.

* If the CMOD fields of both components have the same non-zero value, it does not necessarily mean
that they have the same modifications.

* If the value of the CMOD field of either of the two components is non-zero, they might not be
identical, even though they have the same Unique Component Identifier.

This field reads as an IMPLEMENTATION DEFINED value.

Accessibility
None.
ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 189

D.a-00bet0 Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.38 ERRPIDRA4, Peripheral Identification Register 4

The ERRPIDR4 characteristics are:

Purpose

Provides discovery information about the component.

Configurations

It is IMPLEMENTATION DEFINED whether ERRPIDR4 is present. ERRPIDR4 is RESO if not present.

ERRPIDR4 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR4 is a 32-bit read-only memory-mapped register located at offset 0xFDO.

Field descriptions

The ERRPIDR4 bit assignments are:

31

| | | |] 8,7 4,3 0

RESO IMP DEF IMP DEF

SIZE DES_2

Figure 4.56: ERRPIDR4

Bits [31:8]

Reserved. This field is RESO.

SIZE, bits [7:4]

Size of the component.

The distance from the start of the address space used by this component to the end of the component
identification registers.

A value of 0b0000 means one of the following is true:

* The component uses a single 4KB block.
* The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies 2ERRPIPR4SIZE 4KB plocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly indicate
the size of the component. Arm recommends that software determine the size of the component from the
Unique Component Identifier fields, and other IMPLEMENTATION DEFINED registers in the component.

This field reads as an IMPLEMENTATION DEFINED value.

DES_2, bits [3:0]

ARM DDI 0587

D.a-00bet0

Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the designer
of the component, minus 1. The code identifies the designer of the component, which might not be not
the same as the implementer of the device containing the component. To obtain a number, or to see the
assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.
Note:

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this field has the
value 0x4.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 190
Non-confidential

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Accessibility

None.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 191
D.a-00bet0 Non-confidential

Chapter 5
Appendix

5.1 Release notes for issue D.a

This release of the Arm® RAS Supplement represents a major rewrite of the manual. The most significant
change is to use the rules-based writing approach. There are also some changes to the order and flow of the
manual, compared to previous releases, as well as errata fixes, clarifications, relaxations, and new features.

Section 1.2.2 Error propagation
This was previously section 1.3.2. If a consumer of a partial write to a protection granule removes poison
from the location, but the unchanged portion of the location is still corrupt, then the previously deferred
error is now an undetected error, meaning the error must be considered to be silently propagated by the
consumer.

Section 1.3.2 Error handling and recovery
This was previously section 1.2.2. Provide a definition for deferred error, and how this relates to poisoning.
The previous description had deferred defined as not taking action immediately. However, deferring an
error is taking action, so the definition is updated and extended with examples. Additionally, deferring an
error means that a software error recovery agent does not need to be invoked at that time.

Sections 2.1 PE error handling, 2.2 Generating error exceptions, 2.3 Taking error exceptions
Use of External abort is changed to either in-band error response or error exception as appropriate, for
consistency across this specification.

Section 2.1.2 PE error propagation
The exceptional case where an error propagated by the Processing element (PE) is uncontained by the PE
(previously in section 2.1.4) is merged into the definition of silently propagated by the PE. This removes a
source of confusion with the Uncontainable (UC) error state described later.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 192
D.a-00bet0 Non-confidential

Chapter 5. Appendix
5.1. Release notes for issue D.a

The exceptional case is also changed such that:
* Any action when a PE takes an error exception is not silent propagation of the error.

* The case relating to an Error synchronization event applies only for the ESB case. That is, an implicit
Error synchronization event when SError interrupts are masked does not contain the error.

» The propagation by an instruction is restricted to the consumption of the corrupt data, and not any
other form of propagation. For example, propagating the error by causing an imprecise exception is
not permitted by the relaxation. An example of a store of the corrupt data is given.

Section 2.3 Taking error exceptions
This is a new section, previously part of section 2.2. The requirement to take error exceptions on instruction
fetches as a synchronous abort is from FEAT_DoubleFault, not FEAT_RASvIpl as previously stated.
This also applies to error exceptions from translation table walks on instruction fetches.

Definitions for error exceptions on Allocation Tag accesses, when FEAT_MTE is implemented, and on
cache maintenance operations, are added.

Section 2.3 Taking error exceptions
The terminology for the PE error state on taking an error exception is updated, as follows:

e Uncontainable error becomes Uncontainable (UC).

e Unrecoverable error becomes Unrecoverable state (UEU).
* Recoverable error becomes Recoverable state (UER).

e Restartable error becomes Restartable state (UEO).

Corrected (CE), Uncategorized error, and IMPLEMENTATION DEFINED syndrome are also brought into
this taxonomy.

An issue with the previous definitions is corrected, where an error that meets most of the criteria for
Unrecoverable state (UEU) but is not synchronized by Error synchronization events was not covered by
any definition. Such errors are reported as Uncontainable (UC).

Section 2.3 Taking error exceptions
The definition of recover execution, used to define Recoverable state (UER), is relaxed to allow executing
the instruction at the return address will overwrite any corrupt state with the correct values.

Section 2.4 Error synchronization event
The definition of the Error synchronization event is corrected. In particular, the circular definition with
Unrecoverable state (UEU) is removed.

The definition of the event is also extended to cover the state of the PE and memory. That is, on completing
the Error synchronization event, if no error is pended by it, the PE and memory state are consistent with
the PE having executed instructions in program order before it, allowing that software to be recovered.

Section 2.4.2 Extension for synchronization at exception entry and return
An ERET instruction is not required to generate an Error synchronization event if it generates an exception.
This also applies to ERETAA and ERETAB.

Section 3 RAS System Architecture
Throughout this section, the distinction between the component that detects or consumes the error and the
node that records the error is made more consistent, as are the descriptions for components that might
consume an error, similar to how a PE does. For instance, in many places behaviors were defined only for
anode detecting an error. These are changed to either detecting or consuming or, where more applicable,
when the node records an error in its error record.

Section 3.2.1 Component error states
This was previously section 3.1.4.

The types of error is redefined as the component error state, and modified from the previous release. The
changes are similar to those in section 2.3 (see above). However, the terminology is unchanged.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 193
D.a-00bet0 Non-confidential

Chapter 5. Appendix
5.1. Release notes for issue D.a

The previous deprecation of use of Restartable error, Signaled error, Recoverable error, and Latent error is
removed. For many components, Uncontainable error and Recoverable error, or Uncontainable error and
Restartable error are the most applicable error types.

The linking of component error state to whether the error has been silently propagated is clarified as only
applying to propagation by the component that reported the error. For example, the component might
signal the error to the consumer (which propagates the error but not silenetly) only for the error to then be
silently propagated by the consumer. The producer is not responsible for recording this case as silently
propagated.

The definitions are also updated to change the node has halted operation to the component has entered
a service failure mode, as this term is used elsewhere. It is clarified that the node records an error as
Uncorrected error if the component enters a service failure mode.

Section 3.2.2 Writing the error record
Clarifications for the values written to ERR<n>STATUS.{UE,DE,CE} in Overwriting the error syndrome
and to ERR<n>STATUS.ER in Keeping the previous error syndrome are added.

Section 3.2.2 Writing the error record
In the section Detecting multiple errors, the IMPLEMENTATION DEFINED behavior for counting the errors is
relaxed to IMPLEMENTATION DEFINED and might be UNPREDICTABLE. For example, an implementation
might choose to document this case as UNPREDICTABLE because of complex timing paths.

Section 3.2.2 Writing the error record
In Overwriting the error syndrome when clearing ERR<n>STATUS.AV to 0b0, ERR<n>ADDR also
becomes UNKNOWN. This is a relaxation from the previous behavior.

Section 3.2.4 Error syndrome
This is a new section. This is added to provide more information on setting ERR<n>STATUS.PN.

Section 3.2.5 Synchronization and error record accesses
There is a finite time guarantee on accesses to error records.

Section 3.2.6 Bridges to other architectures
This is a new section. This is added to cover cases where, for example, PCle-AER defines how the errors
are recorded, not this specification.

Section 3.2.7 Software faults
This was previously section 3.1.5. The recommendation to generate a software fault interrupt is kept as an
option, but, based on user feedback, no longer recommended. Other options are described.

Section 3.7 Standard format Corrected error counter
The rules for which counter counts an error when a pair of counters is implemented are described in more
detail.

Section 3.11 Common Fault Injection Model Extension
Relaxed the requirement for a node to be able to inject all possible combinations of error type and syndrome
bits. There is also a relationship between the capabilities described in ERR<n>PFGF and those described
by ERR<n>FR.

Sections 3.11 Common Fault Injection Model Extension, 4.1 Memory-mapped view, 4.3.25
ERRIMPDEF<n>
If the Common Fault Injection Model Extension is not implemented and 24 or fewer error records are
implemented, then a space for IMPLEMENTATION DEFINED registers is defined as ERRIMPDEF<n>. The
ERRIMPDEF<n> registers might be used for IMPLEMENTATION DEFINED fault injection.

Section 4.1 Memory-mapped view
In the Memory-mapped single error record view, ERR<n>FR is at a 64-byte aligned address.

Sections 4.1 Memory-mapped view, 4.3.22 ERRDEVID, 4.3.23 ERRGSR
The number of error records that can be in a 4KB view is 56 if the Common Fault Injection Model
Extension is not implemented and 24 if the Common Fault Injection Model Extension is implemented.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 194
D.a-00bet0 Non-confidential

Chapter 5. Appendix
5.1. Release notes for issue D.a

ARM DDI 0587
D.a-00bet0

Section 4.2 Reset values
The statements about reset values are removed, as each register field description now contains the correct
information.

A further statement about the requirement to reset fields is added. Much of the behavior in particular of the
ERR<n>STATUS register fields depends on inductive steps from an initial value of the register. For this to
hold there has to be either a defined reset value or other IMPLEMENTATION DEFINED choices of behavior.

Sections 4.3.5 ERR<n>ADDR, 4.3.8 ERR<n>MISC0, 4.3.9 ERR<n>MISC1, 4.3.10 ERR<n>MISC2,
4.3.11 ERR<n>MISC3, 4.3.15 ERR<n>STATUS
Writes to ERR<n>ADDR and ERR<n>MISC<m> are permitted when allowed by the Common Fault
Injection Model Extension. Similarly for some fields in ERR<n>STATUS.

Section 4.3.5 ERR<n>ADDR
ERR<n>ADDR is optional if the error record does not include an address record. This was previously
stated in the description of the error record.

Section 4.3.7 ERR<n>FR
The ERR<n>FR.{CE,DE,UEO,UER,UEU,UC,FRX} fields are added. These optionally allow a node to
declare which error types it supports recording.

Section 4.3.15 ERR<n>STATUS
ERR<n>STATUS.SERR codes for Peripheral Component Interconnect Express (PCle) and bridges are
added.

Section 4.3.15 ERR<n>STATUS
The long name for ERR<n>STATUS.SERR is changed to error code. This was previously error type
which can cause confusion with other uses of this term in the manual.

Section 4.3.15 ERR<n>STATUS
The implemented set of valid values that the ERR<n>STATUS.{IERR,SERR} fields can take is
IMPLEMENTATION DEFINED. If any value not in this set is written to this register, then the value read back
from this field is UNKNOWN.

Sections 4.3.17 ERRCRICRO, 4.3.18 ERRCRICRI, 4.3.19 ERRCRICR2, 4.3.23 ERRERICRO, 4.3.24
ERRERICRYI, 4.3.25 ERRERICR2, 4.3.26 ERRFHICRAO, 4.3.27 ERRFHICR1, 4.3.28 ERRFHICR2
When the recommended layout is not used, the registers might be IMPLEMENTATION DEFINED.

ERRDEVAFF is extended with a format for specifying affinity with a subset of a group of PEs at an
affinity level.

Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 195
Non-confidential

Glossary

Asynchronous exception

Asynchronous exceptions are also known as interrupts. In the Armv8 architecture, an asynchronous exception is
one for which any of the following apply:

» The exception is not generated as a result of direct execution or attempted execution of the instruction
stream.

* The return address presented to the exception handler is not guaranteed to indicate the instruction that
caused the exception.

* The exception is imprecise.

Availability

Readiness for correct service.
Baseboard Management Controller

A PE dedicated to system control and monitoring.
BIST

Built-in self-test
Built-in self-test

A mechanism that permits a machine to test itself.
Catastrophic failure

A failure with harmful consequences that are orders of magnitude, or even incommensurably, higher than the
benefit provided by correct service delivery.

CE
Correctable or Corrected Error
Completer
An agent in a computing system that responds to and completes a memory transaction initiated by a Requester.
Contained or containable error
An error that is not uncontained or uncontainable.
Containment

Limiting or preventing the silent propagation of an error. Arm recommends that the scope to which an error is
contained is specified.

Correctable or Corrected Error
An error that is detected by hardware and that hardware can correct / has corrected.

DECTED

Double error correct, triple error detect EDAC. This can detect a single, double or triple bit error and correct a
single or double bit error in a protection granule.

Deferred error

An error that has not been silently propagated but does not require immediate action at the producer. The error
might have passed from the producer to a consumer.

196

Glossary

Detected error

An error that has been detected and signaled to a consumer.
Detected Uncorrected Error

A detected error that has not been be corrected and causes failure.
Device memory

Memory locations where an access to the location can cause side-effects, or where the value returned for a load
can vary depending on the number of loads performed. Typically, the Device memory attributes are used for
memory-mapped peripherals and similar locations.

Double fault

A second error that is detected when the PE is in the process of handling a first error condition.
DUE

Detected Uncorrected Error
DUE FIT rate

The FIT rate for failures from a DUE.

ECC
Error Correction Code
EDAC
Error Detection and Correction Code
EDC
Error Detection Code
Error

Deviation from correct service or a correct value.
Error Correction Code or Error Detection and Correction Code
A code capable of detecting and correcting a number of errors.
Error Detection Code
A code capable of detecting, but not correcting, errors.
Error log
Historical data recorded about errors, usually by software.
Error propagation
Passing an error from a producer to a consumer.
Error record
Data recorded about an error, usually by hardware.
Error synchronization event
One of:
» Executing an ESB instruction.
» Taking an exception to an Exception level using AArch64, FEAT IESB is implemented, and either:

— The appropriate SCTLR_ELx.IESB bit is 0b1.
— FEAT_DoubleFault is implemented, the Exception level is EL3, and SCTLR_EL3.NMEA is 0b1.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 197
D.a-00bet0 Non-confidential

Glossary

* Executing an Exception Return instruction at an Exception level using AArch64, FEAT IESB is
implemented, and either:

— The appropriate SCTLR_ELx.IESB bit is 0b1.
— FEAT_DoubleFault is implemented, the Exception level is EL3, and SCR_EL3.NMEA is 0b1.

Exception

An exception handles an event. For example, an exception could handle an external interrupt or an undefined
instruction.

External abort
Either:

* An in-band error that is generated as a response to a transaction. The name derives from the specific case
of an abort generated by a memory system that is external to a PE, but the concept can apply to other
interfaces.

* A type of exception in the Arm architecture, generated when consuming an in-band error response.

Fail-safe
A failure mode in which the PE and other system components switch to backup mechanisms that keep processing
instructions and data to allow either a safe shutdown or restart of the system, or to continue processing critical
functions, or both.

Fail-secure
A failure mode in which the PE and other system components fail but the system is secured to allow either a
safe shutdown or restart of the system, or to continue processing critical functions without exposing secret data,
or both.

Fail-signaled
A failure mode in which the PE signals to the system that it has failed. It might continue to process instructions,
but the system must ignore its output, or treat all outputs as detected errors.

Fail-silent
Failure mode in which the PE and all other system components (such as DMASs) stop processing instructions. A
watchdog process will detect the failure and restart the system with an Error Recovery reset.

Failure

The event of deviation from correct service.
Failure-in-Time

The number of expected failures per billion hours of operation.
Fault

The cause of an error.
Fault injection

The deliberate injection of faults into a system for testing.
Fault prevention

Designing a system to avoid faults.
Fault removal

Logic or other mechanisms for detecting faults and correcting or bypassing their effect.

Field Replaceable Unit

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 198
D.a-00bet0 Non-confidential

Glossary

A component or unit in a system that can be replaced without return to base.
FIT

Failure-in-Time
FRU

Field Replaceable Unit
General-purpose registers

The registers that the base instructions use for processing:

e In AArch32 state the general-purpose registers are RO-R14.
* In AArch64 state the general-purpose registers are RO-R30.

Generic Interrupt Controller
Arm system architecture interrupt controller for IRQ and FIQ interrupt exceptions.
GIC
Generic Interrupt Controller
Hardware fault
A fault that originates in, or affects, hardware.
Imprecise exception

An exception that is not precise.

Infected
Being in error.

Interrupt
In a PE context, an asynchronous exception. There are three interrupt exceptions: IRQ, FIQ and SError. IRQ
and FIQ are always precise. In a system architecture context, an asynchronous event sent to a PE or GIC for
processing as an interrupt exception.

Isolation

Limiting the impact of an error only to components that actually try to use corrupted data.
Latent error or latent fault

An error that is present in a system but not yet detected.
MBIST

Memory BIST
Minor failure

A failure with harmful consequences that are of a similar cost to the benefits that are provided by correct service
delivery.

MSI

Message Signaled Interrupt
Normal memory

Used for bulk memory operations. Hardware might speculatively read these locations.
PCle

Peripheral Component Interconnect Express

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 199
D.a-00bet0 Non-confidential

Glossary

PE
Processing element
Peripheral Component Interconnect Express (PCI Express or PCle)

A high-speed serial computer expansion bus standard maintained and developed by the PCI Special Interest
Group.

Persistent fault

A fault that is not transient.

PFA
Predictive Failure Analysis

Poisoned
State that has been marked as being in error so that subsequent consumption of the state will be treated as a
detected error.

PPI

Private Peripheral Interrupt
Precise exception

An exception where the exception handler receives the state of the PE and the state of the memory system
consistent with the PE having executed all of the instructions up to, but not including, the point in the instruction
stream where the exception was taken. The state of the PE and the state of the memory do not include instructions
that occurred after this point.

Predictive Failure Analysis
Mechanisms to analyze errors and predict future failures.
Processing element (PE)

The abstract machine defined in the Armv8 architecture, as documented in an Arm Architecture Reference
Manual. A PE implementation compliant with the Armv8 architecture conforms with the behaviors described in
the corresponding Arm Architecture Reference Manual.

Propagated
See Error propagation.
Protection granule

A quantum of memory for which an EDC or ECC provides detection or correction. For example, a 72/64
SECDED ECC scheme has a 64-bit protection granule.

RAS
Reliability, Availability, Serviceability
Recoverable error

A contained error that must be corrected to allow the correct operation of the system or smaller parts of the
system to continue.

Reliability
Continuity of correct service.
Requester
An agent in a computing system that initiates memory transactions.

Restartable error

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 200
D.a-00bet0 Non-confidential

Glossary

A contained error that does not immediately impact correct operation. Usually this means correct operation of
the system, but it can also be used in other contexts to describe correct operation of a smaller part.

SDC
Silent Data Corruption
SDC FIT rate
The FIT rate for failures because of SDC.

SDEC
Single device error correction EDAC. This can detect and correct multiple clustered errors in a protection
granule, such as the types of errors that might be seen if a protection granule is striped across multiple devices
and multiple errors come from a single device.

SECDED
Single error correct, double error detect EDAC. This can detect a single or double bit error and correct a single
bit error in a protection granule.

SED

Single error detect EDC. This can detect a single bit error in a protection granule.
SError Interrupt
An asynchronous interrupt in the Armv8 architecture.
Service failure mode
A mode entered to reduce the severity of an error.
Serviceability
The ability to undergo modifications and repairs.
Silent Data Corruption
An error that is not detected by hardware or software.
Silently propagated
An error that is passed from place to place without being signaled as a detected error.
Software fault
A fault that originates in and affects software.
Synchronous exception
In the Armv8 architecture, an exception for which all of the following apply:

» The exception is generated as a result of direct execution or attempted execution of an instruction.

 The return address presented to the exception handler is guaranteed to indicate the instruction that caused
the exception.

* The exception is precise.

Synchronous External Abort

A synchronous exception in the Armv8 architecture.
System Control Processor

A PE dedicated to system control and monitoring.
Transient fault

A fault that is not persistent.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 201
D.a-00bet0 Non-confidential

Glossary

Uncontained or uncontainable error

An error that has been, or might have been, silently propagated.
Undetected error or undetected fault

See Latent error or latent fault.
Unrecoverable error

A contained error that is not recoverable. Continued correct operation is generally not possible. Usually this
means correct operation of the system, but it can also be used in other contexts to describe correct operation of a
smaller part. Systems might use high-level recovery techniques to work around an unrecoverable yet contained
error in a component so that the system recovers from the error.

ARM DDI 0587 Copyright © 2017-2020 Arm Limited or its affiliates. All rights reserved. 202
D.a-00bet0 Non-confidential

	Release information
	Non-Confidential Proprietary Notice
	Contents
	Preface
	Document status
	About this book
	Using this book
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Rules-based writing
	Identifiers
	Examples

	Additional reading
	Feedback
	Feedback on this book

	1 Introduction to RAS
	1.1 Faults, errors, and failures
	1.2 General taxonomy of errors
	1.2.1 Error detection
	1.2.2 Error propagation
	1.2.3 Infected and poisoned
	1.2.4 Containable and uncontainable

	1.3 Techniques for improving reliability, availability, and serviceability
	1.3.1 Fault prevention and fault removal
	1.3.2 Error handling and recovery
	1.3.3 Fault handling

	2 Armv8-A RAS Extension
	2.1 PE error handling
	2.1.1 PE error detection
	2.1.2 PE error propagation
	2.1.3 Other errors

	2.2 Generating error exceptions
	2.3 Taking error exceptions
	2.3.1 PE error state recording in the exception syndrome
	2.3.2 PE error state classification
	Using the PE error state classification

	2.3.3 Multiple SError interrupts
	2.3.4 Target Exception level for External abort and SError interrupt exceptions taken to AArch64 state
	2.3.5 Target mode for External abort and SError interrupt exceptions taken to AArch32 state

	2.4 Error synchronization event
	2.4.1 ESB and Virtual SError interrupt exceptions
	2.4.2 Extension for synchronization at exception entry and return
	Synchronization on exception entry
	Synchronization on exception return

	2.5 Virtual SError interrupts
	2.6 Error records in the PE
	2.6.1 Error record System register view
	Fields in VSESR_EL2, VDFSR, DISR(_EL1), and VDISR(_EL2)

	3 RAS System Architecture
	3.1 Nodes
	3.1.1 Multiple error records per node
	3.1.2 Detecting and consuming errors

	3.2 Standard error record
	3.2.1 Component error states
	3.2.2 Writing the error record
	Component error states and priorities
	Prioritizing errors, RAS System Architecture v1.0
	Prioritizing errors, RAS System Architecture v1.1
	Overwriting the error syndrome
	Keeping the previous error syndrome
	Detecting multiple errors

	3.2.3 Error syndrome
	Corrected error field
	Poison indicator

	3.2.4 Security and Virtualization
	3.2.5 Synchronization and error record accesses
	3.2.6 Bridges to other architectures
	3.2.7 Software faults
	3.2.8 Other sources of error and warnings

	3.3 Error recovery interrupt
	3.4 Fault handling interrupt
	3.5 In-band error response signaling (external aborts)
	3.6 Critical error interrupt
	3.7 Standard format Corrected error counter
	3.8 Error recovery, fault handling, and critical error signaling
	3.9 Error recovery reset
	3.10 Timestamp extension
	3.11 Common Fault Injection Model Extension
	3.11.1 Operation of the Common Fault Injection Model Extension

	4 RAS Extension and RAS System Architecture Registers
	4.1 Memory-mapped view
	4.1.1 Access requirements for memory-mapped views of RAS error records

	4.2 Reset values
	4.3 Error record registers, including memory mapped view
	4.3.1 Register index
	Using AArch32 System registers
	Using AArch64 System registers
	Memory-mapped error record group view
	Memory-mapped single error record view

	4.3.2 ERR<n>ADDR, Error Record Address Register
	Field descriptions
	Accessibility

	4.3.3 ERR<n>CTLR, Error Record Control Register
	Field descriptions
	Accessibility

	4.3.4 ERR<n>FR, Error Record Feature Register
	ERR<n>FR (ERR<n>FR.ED != 0b00)
	ERR<n>FR (ERR<n>FR.ED == 0b00)
	Accessibility

	4.3.5 ERR<n>MISC0, Error Record Miscellaneous Register 0
	ERR<n>MISC0 (ERR<q>FR.CEC == 0b000)
	ERR<n>MISC0 (ERR<q>FR.CEC == 0b100 && ERR<q>FR.RP == '0')
	ERR<n>MISC0 (ERR<q>FR.CEC == 0b010 && ERR<q>FR.RP == '0')
	ERR<n>MISC0 (ERR<q>FR.CEC == 0b100 && ERR<q>FR.RP == '1')
	ERR<n>MISC0 (ERR<q>FR.CEC == 0b010 && ERR<q>FR.RP == '1')
	Accessibility

	4.3.6 ERR<n>MISC1, Error Record Miscellaneous Register 1
	Field descriptions
	Accessibility

	4.3.7 ERR<n>MISC2, Error Record Miscellaneous Register 2
	Field descriptions
	Accessibility

	4.3.8 ERR<n>MISC3, Error Record Miscellaneous Register 3
	ERR<n>MISC3 (ERR<q>FR.TS != 0b00)
	ERR<n>MISC3 (ERR<q>FR.TS == 0b00)
	Accessibility

	4.3.9 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register
	Field descriptions
	Accessibility

	4.3.10 ERR<n>PFGCTL, Pseudo-fault Generation Control Register
	Field descriptions
	Accessibility

	4.3.11 ERR<n>PFGF, Pseudo-fault Generation Feature Register
	Field descriptions
	Accessibility

	4.3.12 ERR<n>STATUS, Error Record Primary Status Register
	ERR<n>STATUS (RAS System Architecture v1.1 is implemented)
	ERR<n>STATUS (RAS System Architecture v1.0 is implemented)
	Accessibility
	Pseudocode operation

	4.3.13 ERRCIDR0, Component Identification Register 0
	Field descriptions
	Accessibility

	4.3.14 ERRCIDR1, Component Identification Register 1
	Field descriptions
	Accessibility

	4.3.15 ERRCIDR2, Component Identification Register 2
	Field descriptions
	Accessibility

	4.3.16 ERRCIDR3, Component Identification Register 3
	Field descriptions
	Accessibility

	4.3.17 ERRCRICR0, Critical Error Interrupt Configuration Register 0
	Critical Error Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.18 ERRCRICR1, Critical Error Interrupt Configuration Register 1
	Critical Error Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.19 ERRCRICR2, Critical Error Interrupt Configuration Register 2
	Critical Error Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.20 ERRDEVAFF, Device Affinity Register
	Field descriptions
	Accessibility

	4.3.21 ERRDEVARCH, Device Architecture Register
	Field descriptions
	Accessibility

	4.3.22 ERRDEVID, Device Configuration Register
	Field descriptions
	Accessibility

	4.3.23 ERRERICR0, Error Recovery Interrupt Configuration Register 0
	Error Recovery Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.24 ERRERICR1, Error Recovery Interrupt Configuration Register 1
	Error Recovery Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.25 ERRERICR2, Error Recovery Interrupt Configuration Register 2
	Error Recovery Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.26 ERRFHICR0, Fault Handling Interrupt Configuration Register 0
	Fault Handling Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.27 ERRFHICR1, Fault Handling Interrupt Configuration Register 1
	Fault Handling Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.28 ERRFHICR2, Fault Handling Interrupt Configuration Register 2
	Fault Handling Interrupt is implemented, recommended layout
	implementation defined layout
	Accessibility

	4.3.29 ERRGSR, Error Group Status Register
	Field descriptions
	Accessibility

	4.3.30 ERRIIDR, Implementation Identification Register
	Field descriptions
	Accessibility

	4.3.31 ERRIMPDEF<n>, implementation defined Register <0-191>
	Field descriptions
	Accessibility

	4.3.32 ERRIRQCR<n>, Generic Error Interrupt Configuration Register
	Field descriptions
	Accessibility

	4.3.33 ERRIRQSR, Error Interrupt Status Register
	Recommended layout
	implementation defined layout
	Accessibility

	4.3.34 ERRPIDR0, Peripheral Identification Register 0
	Field descriptions
	Accessibility

	4.3.35 ERRPIDR1, Peripheral Identification Register 1
	Field descriptions
	Accessibility

	4.3.36 ERRPIDR2, Peripheral Identification Register 2
	The component uses a 12-bit part number
	The component uses a 16-bit part number
	Accessibility

	4.3.37 ERRPIDR3, Peripheral Identification Register 3
	The component uses a 12-bit part number
	The component uses a 16-bit part number
	Accessibility

	4.3.38 ERRPIDR4, Peripheral Identification Register 4
	Field descriptions
	Accessibility

	5 Appendix
	5.1 Release notes for issue D.a

	Glossary

