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Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of
the information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.
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permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WAR-
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POSSIBILITY OF SUCH DAMAGES.
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assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to
any partnership relationship with any other company. Arm may make changes to this document at any time
and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
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this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
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mentioned in this document may be the trademarks of their respective owners. Please follow Arm’s trademark
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1 About this document

1.1 Terms and abbreviations

Term Meaning

ARE Affinity Routing Enable (GICv3 [1]).
Arm ARM Arm Architecture Reference Manual; see [2] and [3].
Base Server System A system compliant with the Server Base System Architecture.
CTI Cross Trigger Interface, see [3].
ETB Embedded Trace Buffer. A component used to capture trace into dedicated

memory. See [4].
ETF Embedded Trace FIFO. A superset of the ETB with the additional ability to use

the dedicated memory as an inline FIFO. See [4].
ETR Embedded Trace Router. A component used to capture trace into system

memory. See [4] and [5].
GIC Generic Interrupt Controller.
I/O Coherent A device is I/O Coherent with the PE caches if its transactions snoop the PE

caches for cacheable regions of memory. The PE does not snoop the device’s
cache.

LPI Locality-specific Peripheral Interrupt (GICv3 [1]).
PE Processing Element, as defined in the Arm ARM. Typically a single hardware

thread of a PE.
PMU Performance Monitor Unit.
PPI Private Peripheral Interrupt.
Program A Program is a software entity and all software invoked by that software entity at

the same Exception level or lower. For example, each of these is considered a
Program:

• A single application.
• A single operating system and all applications invoked by that operating

system.
• A hypervisor and all operating systems invoked by that hypervisor.

SBBR Server Base Boot Requirements [6].
SBSA Server Base System Architecture.
SGI Software Generated Interrupt.
SPI Shared Peripheral Interrupt.
SRE System Register interface Enable (GICv3 [1]).
STM System Trace Macrocell, see [7].
System A System is the combination of hardware, firmware, and software that are

needed to run a Program. This typically includes all of the PEs, memory, and
peripherals. Furthermore, a System might not be limited to a single chip, should
multiple chips be used to run a Program.

System firmware data System description data structures such as ACPI or FDT.
Trace unit A logical component which generates a trace stream from a PE.
VM Virtual Machine.

1.2 References

This section lists publications by Arm and by third parties.
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See Arm Infocenter (http://infocenter.arm.com) for access to Arm documentation.

[1] ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version
4.0. (ARM IHI 0069) Arm Ltd.

[2] ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition. (ARM DDI 0406) Arm Ltd.

[3] ARM® Architecture Reference Manual ARMv8, for the ARMv8-A architecture profile. (ARM DDI 0487)
Arm Ltd.

[4] CoreSight Trace Memory Controller Technical Reference Manual. (ARM DDI 0416) Arm Ltd.

[5] ARM® Embedded Trace Router Architecture Specification. (ARM IHI 0081) Arm Ltd.

[6] Server Base Boot Requirements, System Software on ARM® Platforms. (ARM DEN 0044) Arm Ltd.

[7] ARM® System Trace Macrocell Programmers Model Architecture. (ARM IHI 0054) Arm Ltd.

[8] Server Base System Architecture. (ARM DEN 0029) Arm Ltd.

[9] ARM® Embedded Trace Macrocell Architecture Specification ETMv4. (ARM IHI 0064) Arm Ltd.

[10] ARM® Debug and Trace Configuration and Usage Models. (ARM DEN 0034) Arm Ltd.

[11] ARM® CoreSight System-on-Chip SoC-600 Technical Reference Manual. (100806) Arm Ltd.

[12] ARM® CoreSight Architecture Specification. (ARM IHI 0029) Arm Ltd.

1.3 Rules-based writing

This specification consists of a set of individual rules. Each rule is clearly identified by the letter R.

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists,
individual rules are grouped into sections and subsections to provide the proper context. Where appropriate,
these sections contain a short introduction to aid the reader. An implementation which is compliant with the
architecture must conform to all of the rules in this specification.

Some architecture rules are accompanied by rationale statements which explain why the architecture was
specified as it was. Rationale statements are identified by the letter X.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter I.

Implementation notes are identified by the letter U.

Software usage descriptions are identified by the letter S.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that
an implementation is compliant.

Rules, rationale statements, information statements, implementation notes and software usage statements
are collectively referred to as content items.

1.3.1 Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . . ).
• Identifiers are preserved: a given content item has the same identifier across versions of the document.
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1.3.2 Examples

Below are examples showing the appearance of each type of content item.

R This is a rule statement.

RX001 This is a rule statement.

I This is an information statement.

X This is a rationale statement.

U This is an implementation note.

S This is a software usage description.

1.4 Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title (CoreSight Base System Architecture).
• The document ID and version (ARM-DEN-0068 1.0).
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
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2 Background

Arm processors are used in a wide variety of system-on-chip products in many diverse markets. Each
market has unique constraints, which means that it is impossible to design a single product that meets all
the requirements of every context. The Arm architecture profiles, Application, Real-time, and Microcontroller
segment the solutions produced by Arm and align with the varying functional requirements of different target
markets. This means that there are substantial differences in the products of the profiles.

The wide-ranging use of these products also means that there is great diversity within an architectural profile,
for example, where cost-sensitive markets require hardware changes to reduce silicon area usage. In these
cases, it might be cheaper to develop a software solution than it is to accommodate the hardware resource.

In other markets, such as those which require an open platform with complex software, the opposite is true.
The savings gained from removing a hardware feature are outweighed by the cost of developing software to
support the variants. Furthermore, uncertainty about whether new features are widely deployed can be a
substantial impediment to the adoption of those features.

The Arm Application profile, for example, must balance these two competing business pressures. It offers a
wide range of features, such as Advanced SIMD and floating point support, and TrustZone system security
technology, to tackle an increasing range of problems, whilst also offering the flexibility to reduce silicon space
by the removal of hardware features in cost-sensitive contexts. Arm processors are built into a large variety of
systems. Aspects of this system functionality are crucial to the fundamental function of system software.

Variability in PE features and certain key aspects of the system impact on the cost of software system
development and the associated quality risks.

Base System Architecture specifications are part of Arm’s strategy of addressing this variability.
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3 Introduction

3.1 Goals

This document specifies a hardware architecture for a system designed around one or more Armv8-A PEs,
where debug functionality running on an Operating System can rely on the hardware resources. It addresses
PE features and key aspects of system architecture.

The primary goal is to ensure sufficient system architecture to enable a suitably-built driver and debug
software framework to run on all hardware compliant with this specification. It is anticipated that a machine-
readable description of the hardware configuration is needed to ensure that the driver and debug software are
appropriately configured for the specific system.

Arm does not mandate compliance to this specification, but anticipates that OEMs and software providers will
require compliance to maximize out-of-box software compatibility and reliability.

This specification is a companion to the Server Base System Architecture [8], which also defines requirements
for PE and system features.

3.2 Levels of functionality

This specification introduces the idea of levels of functionality, where each level provides a specified set of
capabilities that software can rely on.

An implementation is consistent with a level of the CoreSight Base System Architecture if it implements all of
the functionality of a given level, with performance appropriate for that particular level. This means that all of
the functionality of a level can be exploited by software without unexpectedly poor performance.

While the levels are numbered, the numbering scheme does not always mean that software written for
a particular level will work on hardware designed for any lower-numbered or higher-numbered level. For
example, some higher-numbered levels restrict the options provided at lower-numbered levels. As such,
software written only for the higher level might not work with hardware compliant with a lower-numbered level.

3.3 Self-hosted debug capabilities

A suitably-built debug software framework running on hardware compliant with one or more levels of this
specification should be able to provide debug functionality consistent with the levels implemented. These
capabilities include, but are not limited to:

• Tracing of PE program flow, providing detailed history of program execution. PE trace has multiple uses,
including:

– Post-mortem analysis.
– Reverse debugging.
– Performance analysis.

• Performance monitoring, providing detailed information about the performance and timing characteristics
of programs running on a PE.

Self-hosted debug capabilities do not require an external debugger to be connected, and do not require
external debug capabilities to be enabled.
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3.4 External debug capabilities

This document does not specify any capabilities for external debug. It is anticipated that external debug
scenarios might use the same hardware functions as self-hosted debug scenarios. However, both external
debug software and self-hosted debug software must accommodate the possibility that hardware functions
might not be available because they are being used by another debug agent. To provide external debug
functions, a system might include functionality or components in addition to those specified, which might
require initialization or programming to provide the self-hosted debug capabilities.

This document does not specify any mechanism for software agents to arbitrate over the use of hardware
functions.

Page 11 of 29 Copyright © 2016-2018 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ARM-DEN-0068
1.0



CoreSight Base System Architecture

4 PE Trace

4.1 Introduction

IJGQVY PE trace provides a detailed history of program flow, and is useful for both debugging and performance
analysis. The objective of PE trace is to provide a debug software framework such as gdb, Linux perf, or
WinDbg, with a history of executed instructions, branches, or function calls.

IWCXDS This specification details the following sets of requirements:

• The trace information in the generated trace and the observation capabilities of the trace functionality in
each PE, see Trace Generation (TG) in Section 4.2.

• The methods of capturing the generated trace, see Trace Capture (TC) in Section 4.3.

4.2 Trace Generation (TG)

INLFZN The levels of Trace Generation (TG) provide the ability to generate a program trace and to set trace filtering
trigger conditions.

4.2.1 TG Level 0

ILYPCY TG Level 0 provides basic program flow tracing capability for all PEs in the system, with tracing provided from
all PEs concurrently.

RZKTTX In a system with multiple PEs, each PE that is to be used in the same operating system or hypervisor must be
compliant with at least the same TG level.

RBGFBV Each PE in the system must be provided with a trace unit compliant with the ETMv4 architecture, see [9].

RFYSHB The trace unit must support the following ETMv4 features:

• Cycle counting with a cycle counter that is at least 12-bits in size.
• Branch broadcasting.
• Context ID tracing.
• Virtual context identifier tracing, if the PE implements EL2.
• At least one address comparator pair.
• At least one Context ID comparator.
• At least one Virtual context identifier comparator, if the PE implements EL2.
• At least one single-shot comparator control.
• At least one event in the trace.
• At least one external input.
• At least two counters.
• The sequencer state machine.
• At least four resource selection pairs.
• Global timestamping with a size of 64-bits.
• The Virtual context identifier options, if the PE implements the Virtualization Host Extensions.

RXZTDG Every trace unit must implement at least one of memory-mapped access or system-instruction access to the
trace unit.

RDBDPJ If memory-mapped access to the trace unit is implemented, access to the address space occupied by the
trace unit must be possible without any system-specific software other than that required to provide power to
the trace unit.
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ITMJFX If a system provides control over the power to the trace unit, Arm recommends this control provides the means
to conserve power when the trace unit is not used, including when transitioning between states where trace is
used and not used.

IYRZQS Arm recommends that industry standard system firmware data, such as ACPI or FDT, is used to describe
the system. Where power control is required, standard power interfaces accessible by the Non-secure world
should be used, such as ASL code in ACPI.

RCLQFT If the trace unit implements the CoreSight authentication interface, system firmware must ensure that Non-
invasive debug is enabled before any Hypervisor or Operating System are started. If the PE implements EL3,
only Non-secure debug is required to be enabled. If the PE does not implement EL3, all Non-invasive debug
is required to be enabled. For more details on the authentication interface see [10].

RNPCTH For each event implemented in the trace unit, the event must drive a generic trace external output event which
in turn drives a trigger input event to the Cross Trigger Interface (CTI) implemented in the PE. See [3] for more
details on the CTI and connectivity.

RHJKLK For up to the first four external inputs implemented in the trace unit, the input must be driven by a trigger
output event in the Cross Trigger Interface (CTI) implemented in the PE. See [3] for more details on the CTI
and connectivity.

RRYBNG All trace units must share the same timestamp source, which is one of the following:

• A dedicated CoreSight timestamp counter.
• The system counter in accordance with the Generic Timer in the Arm architecture.

RVNYCM The timestamp source must either be able to be programmed to start by the debug software framework, or
must be running before the debug software framework is started.

IMTQMS Arm recommends that the timestamp source is running before the debug software framework is started.

RCXTGB The trace units for all PEs must be able to be enabled concurrently, and generate trace concurrently.

ICJJQG Arm recommends that the following PMU events are provided as external inputs to the trace unit:

• All PMU events required by the Arm architecture.
• All implemented Common architectural events.

For PMU events where more than one occurrence of the event can occur simultaneously, Arm recommends
that a single external input is provided for the event, and this external input is asserted once per cycle on
which any occurrence of the event occurs.

4.2.2 TG Level 1

ISTMNC The Armv8-A Self Hosted Trace Extension [3] provides fine-grained control over when trace is permitted to
be generated. The Armv8-A Self Hosted Trace Extension, when combined with the CoreSight Base System
Architecture, provides greater control over when trace is generated and how trace is captured, while requiring
less intervention from software running at higher levels of privilege.

IJBNBR TG Level 1 extends TG Level 0 to provide additional constraints regarding the generation of trace.

RGNQFT All TG Level 0 rules apply at TG Level 1, except where a TG Level 1 rule contradicts a TG Level 0 rule,
whereby the TG Level 1 rule takes precedence.

RDQKSW Each PE must implement the Armv8.4 Self-hosted Trace Extension [3].
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RZNYLS Each trace unit must implement at least version 4.4 of the ETMv4 architecture [9].

RTXDFQ Each trace unit must implement the same version of the ETMv4 architecture.

RSMPQQ Each trace unit must implement the system-instruction interface for access to the trace unit registers.

RTRMXZ The global timestamp source for each trace unit must be the same time source as the Generic Timers in the
PE. The Armv8-A Self Hosted Trace Extension provides a mechanism to choose between the physical view of
this time value or the virtual view.

4.3 Trace Capture (TC)

IGFRSF The method of capturing PE trace defines the usage models for analyzing the generated trace. This
specification defines capture methods providing a minimum of tracing of a single Program, up to tracing
all active Programs concurrently. Each Trace Capture (TC) level provides a minimum set of trace capture
requirements, but does not preclude other mechanisms from also being implemented in addition to the
minimum requirements.

4.3.1 TC Level 0

ITGPYP TC Level 0 provides a capture method to ensure trace from all PEs can be captured, although this method
only provides low context-switch and analysis overhead for a single Program. Trace from all PEs is captured
in a central buffer of either dedicated memory or shared system memory. However to support trace from more
than one concurrent Program usually involves significant software overhead to virtualize the buffer for each
Program.

RJKKQN Each trace unit must comply with TG Level 0.

RYBQQS One or more trace buffers must be provided in the system.

RXTVKH The trace from each trace unit must be able to be captured by one or more trace buffers.

RLWWRX The trace for all PEs must be able to be captured concurrently, with the trace for each PE captured in at least
one of the trace buffers.

RKMMJL Each trace buffer must be based on one of the following:

• Dedicated memory, based on a configuration of a CoreSight Embedded Trace Buffer (ETB).
• Shared system memory, based on a configuration of the CoreSight Embedded Trace Router (ETR), as

defined in [4].
• Shared system memory, based on a configuration of the Embedded Trace Router (ETR) Architecture, as

defined in [5].

RYTNCB The trace buffer must support the Circular Buffer mode of operation.

RDVSXH Where the trace buffer is based on shared system memory, the trace buffer must be able to be located in any
normal memory accessible by the lowest 40 bits of physical address space.

Note

The requirement to support the trace buffer in the memory accessible by the lowest 40 bits of physical
address space is due to the CoreSight Embedded Trace Router [4] only supporting up to 40 bits of address
space. TC Level 2 increases this requirement to support all of normal memory, by requiring an Embedded
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Trace Router which can access all of normal memory.

RJDLNQ Where the trace buffer is based on shared system memory and supports a size greater than the smallest
translation granule of the PEs, a page scattering mechanism must be provided to support the trace buffer
being partitioned into separate physical pages each of which is no larger than the smallest translation granule
of the system.

RXTXXM Where a page scattering mechanism is required, this must be based on one of the following:

• The scatter-gather mechanism integrated into a CoreSight ETR.
• A System Memory Management Unit (SMMU) based on at least SMMUv1.
• The translation service provided by a CoreSight Address Translation Unit [11].

RXLYJT If the PE implements EL2, the page scattering mechanism must support 2 stages of translation using one of
the following methods:

• Both stages are implemented using the CoreSight ETR scatter-gather mechanism. The ETR can provide
both stages in a single step.

• Both stages are implemented using the CoreSight Address Translation Unit [11]. The CoreSight Address
Translation Unit can provide both stages in a single step.

• Both stages are implemented using an SMMU.
• Stage 1 is implemented using either the CoreSight ETR scatter-gather mechanism or the CoreSight

Address Translation Unit, and stage 2 is implemented using an SMMU.

RCLLYB Where any part of the page scattering mechanism is implemented using an SMMU, the SMMU infrastructure
must support independent streams for each trace buffer.

RRTZNK Where the trace buffer is based on shared system memory, the trace buffer must also support storage of trace
into a contiguous physically-address buffer without a page scattering mechanism.

RJPHVZ Where the trace buffer is based on shared system memory and the PE supports both Secure and Non-secure
memory, the trace buffer must be able to be located in Non-secure memory, and it is IMPLEMENTATION

DEFINED whether the trace buffer is able to be located in Secure memory.

RVGQXF Where a trace buffer can capture trace from multiple trace units, the trace buffer must support packing all of
the trace streams in the trace buffer using one of the following:

• The CoreSight formatting protocol, see [12].

RKKGTS Any trace buffer control component, page scattering mechanism, and any components that need to be
programmed to ensure trace can reach the shared system memory must be accessible without the need for
any system specific software other than that required to provide power to the component.

IYRZQS Arm recommends that industry standard system firmware data, such as ACPI or FDT, is used to describe
the system. Where power control is required, standard power interfaces accessible by the Non-secure world
should be used, such as ASL code in ACPI.

RMHFCN Any trace buffer control component, page scattering mechanism, and any components that need to be
programmed to ensure trace can reach the trace buffer must be accessible directly in the Physical address
space of every PE. In systems where each PE can access both Secure and Non-secure memory, these
components must be located in the Non-secure Physical address space.

INGFDQ If a system provides control over the power to the trace buffer control components, page scattering mechanism,
or any components that need to be programmed to ensure trace can reach the trace buffer memory, Arm
recommends this control provides the means to conserve power when trace is not used, including when
transitioning between states where trace is used and not used.
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RKGDGX For all components that are involved in ensuring trace reaches the trace buffer, if the component implements
the CoreSight authentication interface, system firmware must ensure the authentication interface is set to
a condition which ensures trace will reach the trace buffer, before any Hypervisor or Operating System
are started. If the PE implements EL3, only Non-secure debug is required to be enabled. If the PE does
not implement EL3, debug must be enabled for the implemented security state. For more details on the
authentication interface see [10].

RBNFFR Only the following programmable components must be involved in ensuring the trace reaches the trace buffer:

• CoreSight ATB Funnel.
• CoreSight ATB Replicator.
• CoreSight Trace Memory Controller, configured as an Embedded Trace FIFO (ETF).

IYKDQP Other non-programmable components are permitted to be involved in ensuring the trace reaches the trace
buffer, for example any bridging required to cross clock domains or power domains. Such components must
not require programming by the debug software framework.

RMHKBV For at least one of the events implemented in the trace unit, when this event occurs, any trace buffer which
captures trace from this trace unit must be able to detect the event has occurred, and must be able to use this
event to stop trace capture. One of the following mechanisms must be used:

• Use of the trigger trace source ID value 0x7D as defined in [12], and use of the ATB Trigger Enable
function in the trace unit.

• Use of a dedicated mechanism when Event 0 occurs in the trace unit.

RSJHVC If the system uses the trace source ID value 0x7D, the trace buffer must support one of the following:

• Ignoring the trigger trace source ID other than for the purposes of using the event to control trace capture.
The CoreSight ETR does not obey this rule.

• Packing of the trace streams such that the trigger source ID and its payload are embedded in the data
stored in the trace buffer. The CoreSight ETR supports this operation.

RQRDDL Each trace buffer must be able to generate an interrupt to indicate when any of the following occur:

• In Circular Buffer mode, when the top of the trace buffer is reached.
• The trace buffer has reached a pre-programmed watermark fill level.

RGFPLT Where a trace buffer can capture the trace from exactly one trace unit, the trace buffer interrupt must be at
least one of a PPI, SPI or LPI.

RVNPCS Where a trace buffer can capture the trace from more than one trace unit, the trace buffer interrupt must be at
least one of an SPI or LPI.

IRDFGQ Arm recommends that the trace buffer interrupt is available as an SPI or LPI, to allow a PE other than the PEs
being traced to service the trace buffer interrupt.

RCGZDD The trace buffer control component, page scattering mechanism, and any components that need to be
programmed to ensure the trace can reach the trace buffer from the trace unit must not be reset on a Warm
reset of the PE. See [3] for more details on Warm resets.

ISMFPY Arm recommends that the infrastructure for capturing trace in a trace buffer has sufficient bandwidth for
common scenarios, while avoiding trace unit overflow scenarios. Common scenarios for tracing include:

• Continuous tracing of one PE, without cycle counts or branch broadcasting, with minimal impact on PE
or system performance.

• Continuous tracing of all PEs concurrently, without cycle counts or branch broadcasting.
• Continuous tracing of one PE, with cycle counting and branch broadcasting enabled.
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4.3.2 TC Level 1

ITYPNM TC Level 1 extends TC Level 0 to add an independent trace buffer for each trace unit, based on shared
system memory. This capture method ensures trace can be captured from all concurrent Programs with lower
context-switch and analysis overhead than TC Level 0, and also normally permits much larger trace buffer
sizes due to the re-use of shared system memory.

These rules ensure each trace unit, trace buffer, and the path from trace unit to trace buffer can be completely
controlled by a single software entity without need for excessive trapping in a virtualized system.

RSWRXP All TC Level 0 rules apply at TC Level 1, except where a TC Level 1 rule contradicts a TC Level 0 rule,
whereby the TC Level 1 rule takes precedence.

RVCQHQ Each trace unit must have a separate logical trace buffer based on shared system memory, based on one of
the following:

• Shared system memory, based on a configuration of the CoreSight Embedded Trace Router (ETR), as
defined in [4].

• Shared system memory, based on a configuration of the Embedded Trace Router (ETR) Architecture, as
defined in [5].

RNLXRL Each trace buffer dedicated for a particular trace unit must only allow trace from that trace unit to be captured.

RGLQGC The path from each trace unit to its trace buffer must not rely on any programmable components that also
control the path for a different trace unit to its trace buffer.

RPKTJS Only the following programmable components must be involved in ensuring the trace reaches the trace buffer:

• CoreSight ATB Replicator.
• CoreSight Trace Memory Controller, configured as an Embedded Trace FIFO (ETF).

RKJRTJ The registers to control each trace buffer must be located in separate 64KB pages.

RPLBLV Any components which control the path of trace from the trace unit to the trace buffer and the page scattering
mechanism must be located in separate 64KB pages from components which control the path of trace from a
different trace unit.

RGSDRB Where the CoreSight Address Translation Unit is used for stage 2 translations, each CoreSight Address
Translation Unit must be located in a separate 64KB page from all other trace control components.

IZXMDS Where the CoreSight Address Translation Unit is used, Arm recommends the CoreSight Address Translation
Unit is located in a separate 64KB page from all other trace control components.

RZFFFP The trace buffer interrupt described in TC Level 0 must be at least one of a PPI, SPI or LPI.

IZYCKM Arm recommends that the trace buffer interrupt is available as an SPI or LPI, to allow a PE other than the PE
being traced to service the trace buffer interrupt.

4.3.3 TC Level 2

IHVGCJ The Armv8-A Self Hosted Trace Extension [3] provides fine-grained control over when trace is permitted to
be generated. The Armv8-A Self Hosted Trace Extension, when combined with the CoreSight Base System
Architecture, provides greater control over when trace is generated and how trace is captured, while requiring
less intervention from software running at higher levels of privilege.

IGRNGF TC Level 2 extends TC Level 1 to provide system memory capture of the trace and additional controls over
the ability for other debug agents to access and control the captured trace.
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RNYWVD All TC Level 1 rules apply at TC Level 2, except where a TC Level 2 rule contradicts a TC Level 1 rule,
whereby the TC Level 2 rule takes precedence.

RPNBWT Each trace unit must have a separate logical trace buffer based on shared system memory, and the trace
buffer must be based on the Embedded Trace Router architecture [5].

RKPQHG The trace buffer must be able to be located anywhere in normal memory accessible by the PE.

RMFJCK The trace buffer based on the ETR architecture [5] must be configured as follows:

• Circular Buffer mode is implemented.
• The Address width is large enough to address all of normal memory accessible by the PE.
• One of the following interrupt interrupt strategies:

– Wired Interrupt controls are implemented.
– Message-signaled interrupt controls are implemented.
– No interrupt controls.

• Scatter mode is not implemented.
• All other configuration options are IMPLEMENTATION DEFINED.

ITBLTM Arm recommends that the trace buffer based on the ETR architecture implements one of:

• Wired Interrupt controls.
• Message-signaled interrupt controls.

Note

If no interrupt controls are implemented, the trace buffer still generates an interrupt in accordance with the
rules in this specification.

RFCGQR The page scattering mechanism used by each trace buffer must be based on the same mechanism with the
same capabilities.

ILFBLJ While each trace buffer has the same mechanism for page scattering, this does not mean each trace buffer
must be scattered using exactly the same implementation of the page scattering mechanism. For example,
each trace buffer might use an SMMU for page scattering, but each trace buffer does not need to use the
same SMMU. Conversely, each trace buffer might use the same SMMU for page scattering and each trace
buffer uses a separate stream within that SMMU.

IKYBYM Arm recommends that DEVARCH is implemented in the ETR.
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5 PE Debug Capabilities

5.1 Introduction

IJSRPL The Armv8-A architecture provides various debug functions for stepping through execution and performance
monitoring. This specification describes the minimum subset of those functions required for compliance. This
specification uses some rules defined in [8], however it applies these rules to any PE or system claiming
compliance with this specification.

5.2 Specification

5.2.1 PE Level 1

IBYFDF PE Level 1 has the same requirements as SBSA Level 1 for the debug breakpoints, watchpoints, and PMU.
SBSA Level 0 compliance is not included in this specification.

RRLNVJ The PMU overflow signal from each PE must be wired to a unique PPI or SPI interrupt with no intervening
logic.

RFKGPZ Each PE must implement a minimum of six programmable PMU counters.

RHJJND Each PE must implement a minimum of four synchronous watchpoints.

RQGXCN Each PE must implement a minimum of six breakpoints, two of which must be able to match virtual address,
Context ID or VMID.

5.2.2 PE Level 2

IHJDRJ PE Level 2 has the same requirements as SBSA Level 2 or higher for the debug breakpoints, watchpoints,
and PMU.

RNQLWR PE Level 2 incorporates all PE Level 1 requirements.

RYDSFP The PMU overflow signal from each PE must be wired to PPI interrupt ID 23 with no intervening logic.
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6 System Trace Macrocell

6.1 Introduction

ITYQRP Arm defines a System Trace Macrocell (STM) Architecture [7] which enables tracing of instrumented software
and system activity. The STM is used to generate trace for use either by external debuggers or self-hosted
debuggers.

ILXRYX Providing an STM implementation in a system provides a memory-mapped programmers model for software
instrumentation libraries to target consistently across SoCs.

6.2 Trace Generation (STG)

6.2.1 STG Level 1

IMWDGD STG Level 1 provides a central STM unit for use by instrumentation software running on all PEs in a system.

RDWRCS The system must provide an STM unit compliant with the STMv1.1 architecture as defined in [7].

RHJLRB The STM unit must implement the following options:

• STPv2 trace protocol.
• Absolute timestamping.
• At least one stimulus port master.
• Each master must implement at least 16384 Extended stimulus ports.
• A 64-bit fundamental data size.
• Invariant timing and guaranteed transaction types.
• The following Configuration Register options:

– STMTSFREQR is read-write.
– STMTSSTIMR is implemented.
– STMSYNCR is implemented.
– STMSPER is implemented.
– STMSPTER is implemented.
– Trigger control implements both multi-shot and single-shot.
– STMSPOVERRIDER is implemented.
– STMSPMOVERRIDER is implemented.
– STMSPSCR is implemented.
– STMSPMSCR is implemented.
– STMTCSR.SYNCEN is always 0b1.

• Data compression on stimulus ports is either programmable or not implemented.

RJWLHW If any PE implements EL3, the STM unit must implement at least one stimulus port master which is only
accessible by Secure software.

RKDGSQ For systems with more than one PE, the system must use stimulus port masters according to one of the
following:

• All PEs must be able to use the same stimulus port master.
• Each PE must be able to use a separate stimulus port master.
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6.3 Trace Capture (STC)

6.3.1 STC Level 1

IZVVZQ STC Level 1 provides self-hosted capture of the trace from an STM.

RXYYJM A trace buffer must be provided in the system to capture trace from the STM.

RBNHXW The trace buffer must be based on one of the following:

• Dedicated memory, based on a configuration of a CoreSight Embedded Trace Buffer (ETB).
• Shared system memory, based on a configuration of the CoreSight Embedded Trace Router (ETR), as

defined in [4].
• Shared system memory, based on a configuration of the Embedded Trace Router (ETR) Architecture, as

defined in [5].

RGFNCW The trace buffer must support the Circular Buffer mode of operation.

RKFFNJ Where the trace buffer is based on shared system memory, the trace buffer must be able to be located in any
normal memory accessible by the lowest 40 bits of physical address space.

Note

The requirement to support the trace buffer in the memory accessible by the lowest 40 bits of physical
address space is due to the CoreSight Embedded Trace Router [4] only supporting up to 40 bits of address
space. TC Level 2 increases this requirement to support all of normal memory, by requiring an Embedded
Trace Router which can access all of normal memory.

RDWLKD Where the trace buffer is based on shared system memory and supports a size greater than the smallest
translation granule of the PEs, a page scattering mechanism must be provided to support the trace buffer
being partitioned into separate physical pages each of which is no larger than the smallest translation granule
of the system.

RRVZRY Where a page scattering mechanism is required, this must be based on one of the following:

• The scatter-gather mechanism integrated into a CoreSight ETR.
• A System Memory Management Unit (SMMU) based on at least SMMUv1.
• The translation service provided by a CoreSight Address Translation Unit [11].

RPSXCL If the PEs in the system implement EL2, the page scattering mechanism must support two stages of translation
using one of the following methods:

• Both stages are implemented using the CoreSight ETR scatter-gather mechanism. The ETR can provide
both stages in a single step.

• Both stages are implemented using the CoreSight Address Translation Unit [11]. The CoreSight Address
Translation Unit can provide both stages in a single step.

• Both stages are implemented using an SMMU.
• Stage 1 is implemented using either the CoreSight ETR scatter-gather mechanism or the CoreSight

Address Translation Unit, and stage 2 is implemented using an SMMU.

RNMSPB Where any part of the page scattering mechanism is implemented using an SMMU, the SMMU infrastructure
must support independent streams for each trace buffer.

RMBWMF Where the trace buffer is based on shared system memory, the trace buffer must also support storage of trace
into a contiguous physically-addressed buffer without a page scattering mechanism.
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RCKVMH Where the trace buffer is based on shared system memory and the PE supports both Secure and Non-secure
memory, the trace buffer must be able to be located in Non-secure memory, and it is IMPLEMENTATION

DEFINED whether the trace buffer is able to be located in Secure memory.

RNCMWX Where a trace buffer can capture trace from multiple trace sources, the trace buffer must support packing all
of the trace streams in the trace buffer using one of the following:

• The CoreSight formatting protocol, see [12].

RFBKSC Any trace buffer control component, page scattering mechanism, and any components that need to be
programmed to ensure trace can reach the shared system memory must be accessible without the need for
any system specific software other than that required to provide power to the component.

RDMNCD Any trace buffer control component, page scattering mechanism, and any components that need to be
programmed to ensure trace can reach the trace buffer must be accessible directly in the Physical address
space of every PE. In systems where each PE can access both Secure and Non-secure memory, these
components must be located in the Non-secure Physical address space.

IVGQLY If a system provides control over the power to the trace buffer control components, page scattering mechanism,
or any components that need to be programmed to ensure trace can reach the trace buffer memory, Arm
recommends this control provides the means to conserve power when trace is not used, including when
transitioning between states where trace is used and not used.

IYRZQS Arm recommends that industry standard system firmware data, such as ACPI or FDT, is used to describe
the system. Where power control is required, standard power interfaces accessible by the Non-secure world
should be used, such as ASL code in ACPI.

RGCWXF For all components that are involved in ensuring trace reaches the trace buffer, if the component implements
the CoreSight authentication interface, system firmware must ensure the authentication interface is set to
a condition which ensures trace will reach the trace buffer, before any Hypervisor or Operating System
are started. If the PE implements EL3, only Non-secure debug is required to be enabled. If the PE does
not implement EL3, debug must be enabled for the implemented security state. For more details on the
authentication interface see [10].

RQHCLH Only the following programmable components must be involved in ensuring the trace reaches the trace buffer:

• CoreSight ATB Funnel.
• CoreSight ATB Replicator.
• CoreSight Trace Memory Controller, configured as an Embedded Trace FIFO (ETF).

RHMBKH For an STM with a dedicated output trigger signal, when this trigger signal is asserted, any trace buffer which
captures trace from this STM must be able to detect the event has occurred, and must be able to use this
event to stop trace capture. One of the following mechanisms must be used:

• Use of the trigger trace source ID value 0x7D as defined in [12], and use of the ATB Trigger Enable
function in the STM.

• Use of a dedicated mechanism when a trigger occurs in the STM.

RHWRTB If the system uses the trace source ID value 0x7D, the trace buffer must support one of the following:

• Ignoring the trigger trace source ID other than for the purposes of using the event to control trace capture.
The CoreSight ETR does not obey this rule.

• Packing of the trace streams such that the trigger source ID and its payload are embedded in the data
stored in the trace buffer. The CoreSight ETR supports this operation.

RNWXNF Each trace buffer must be able to generate an interrupt to indicate when any of the following occur:

• In Circular Buffer mode, when the top of the trace buffer is reached.
• The trace buffer has reached a pre-programmed watermark fill level.
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RNSYGM The trace buffer interrupt must be at least one of an SPI or LPI.

RPFKGY The trace buffer control component, page scattering mechanism, and any components that need to be
programmed to ensure the trace can reach the trace buffer from the STM must not be reset on a Warm reset
of the PEs. See [3] for more details on Warm resets.

6.3.2 STC Level 2

IYMJFG STC Level 2 extends STC Level 1 to require an independent trace buffer for the STM, based on shared system
memory. This capture method ensures the PE trace and STM trace are captured independently, ensuring
trace buffers for PE tracing can be independently managed. STC Level 2 is intended to be used in conjunction
with TC Level 1.

RXZPWB All STC Level 1 rules apply at STC Level 2, except where a STC Level 2 rule contradicts a STC Level 1 rule,
whereby the STC Level 2 rule takes precedence.

RQVGZJ The STM must have a separate logical trace buffer based on shared system memory, based on one of the
following:

• Shared system memory, based on a configuration of the CoreSight Embedded Trace Router (ETR), as
defined in [4].

• Shared system memory, based on a configuration of the Embedded Trace Router (ETR) Architecture, as
defined in [5].

RGXCBK The trace buffer must be able to be located anywhere in normal memory accessible by the PE.

RQQRXP The trace buffer for the STM must not allow trace from any PE trace unit to be captured.

RKVXWW The path from the STM to its trace buffer must not rely on any programmable components that also control
the path for a different trace unit to its trace buffer.

RVPWWW The registers to control each trace buffer must be located in separate 64KB pages.

RBDZYC Any components which control the path of trace from the STM to the trace buffer and the page scattering
mechanism must be located in separate 64KB pages from components which control the path of trace from a
different trace unit.

RCBZTM Where the CoreSight Address Translation Unit is used for stage 2 translations, each CoreSight Address
Translation Unit must be located in a separate 64KB page from all other trace control components.

IGTFXB Where the CoreSight Address Translation Unit is used, Arm recommends the CoreSight Address Translation
Unit is located in a separate 64KB page from all other trace control components.
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7 Permitted Level Combinations

7.1 Level Combinations

IBTFNK To prevent an excessive cross-product of possible system configurations, this specification permits only a
subset of combinations of the levels described.

RPHZSJ A system must be compliant with one or more of the combinations of levels shown in Table 3.

Table 3: Permitted Level Combinations

Combination TG Level TC Level STG Level STC Level

A 0 0 1 1
B 0 1 1 2
C 1 2 1 2

RHRSTJ STG and STC Levels are optional, but when implemented for a particular combination must be compliant with
the levels described.
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8 Example Systems Using Arm CoreSight IP

8.1 TC Level 0 examples

8.1.1 Example 1

Example 1 provides a single CoreSight ETB for capturing trace from all trace units.

Table 4: Example 1 compliance

Compliance Level

Trace Generation (TG) 0
Trace Capture (TC) 0

Trace
Funnel

SRAM

ETB

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

Figure 1: Example 1, with a shared ETB

8.1.2 Example 2

Example 2 provides a single CoreSight ETR for capturing trace from all trace units. The ETR implements the
scatter-gather mechanism. An optional SMMU can be provided for Stage 2 translations.

Table 5: Example 2 compliance

Compliance Level

Trace Generation (TG) 0
Trace Capture (TC) 0
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Trace
Funnel ETR

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

To shared
system memory

SMMU
Stream

Figure 2: Example 2, with a shared ETR

8.1.3 Example 3

Example 3 provides multiple CoreSight ETFs, where each ETF is able to capture trace from a subset of all
trace units. A CoreSight ETF is a superset of a CoreSight ETB with the additional functionality of using the
dedicated memory as an inline FIFO. A single CoreSight ETR is also provided for capturing trace from all
trace units. The ETR implements the scatter-gather mechanism. An optional SMMU can be provided for
Stage 2 translations.

Table 6: Example 3 compliance

Compliance Level

Trace Generation (TG) 0
Trace Capture (TC) 0

Trace
Funnel

SRAM

ETF

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

Trace
Funnel

SRAM

ETF

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

Trace
Funnel ETR

To shared
system memory

SMMU
Stream

Figure 3: Example 3, with ETFs and a shared ETR
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8.2 TC Level 1 examples

8.2.1 Example 4

Example 4 provides an ETR for each PE, allowing trace from each trace unit to be captured independently.

For each of the zones in the example, the components in the zone do not overlap the same 64KB page as
any component in another zone. The ETR implements the scatter-gather mechanism. An optional SMMU can
be provided for Stage 2 translations, however this might be a shared SMMU.

Table 7: Example 4 compliance

Compliance Level

Trace Generation (TG) 0
Trace Capture (TC) 1

PE
Trace
Unit

Zone 0

ETR
To shared
system memory

SMMU
Stream

PE
Trace
Unit

Zone 1

ETR
To shared
system memory

SMMU
Stream

PE
Trace
Unit

Zone 2

ETR
To shared
system memory

SMMU
Stream

PE
Trace
Unit

Zone 3

ETR
To shared
system memory

SMMU
Stream

Figure 4: Example 4, with an ETR for each PE

8.2.2 Example 5

Example 5 provides both an ETF and ETR for each PE, allowing trace from each trace unit to be captured
independently. This system provides capture in shared system memory while using the dedicated memory of
the ETF as an inline buffer.

For each of the zones in the example, the components in the zone do not overlap the same 64KB page as
any component in another zone. The ETR implements the scatter-gather mechanism. An optional SMMU can
be provided for Stage 2 translations, however this might be a shared SMMU.

Table 8: Example 5 compliance

Compliance Level

Trace Generation (TG) 0
Trace Capture (TC) 1
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Figure 5: Example 5, with an ETF and ETR for each PE

8.2.3 Example 6

Example 6 provides an ETR for each PE allowing trace from each trace unit to be captured independently.
This is similar to Example 4, but with the addition of a shared CoreSight Trace Port Interface Unit (TPIU) for
capture by an external debugger. From a compliance perspective, Example 6 adds the replicator component
for each trace unit which must obey the TC Level 1 rules for the components on the path to the ETR.

For each of the zones in the example, the components in the zone do not overlap the same 64KB page as
any component in another zone. The ETR implements the scatter-gather mechanism. An optional SMMU can
be provided for Stage 2 translations, however this might be a shared SMMU.

Table 9: Example 6 compliance

Compliance Level

Trace Generation (TG) 0
Trace Capture (TC) 1
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Figure 6: Example 6, with an ETR for each PE, plus a shared TPIU for external capture

8.3 Partial or non-compliance examples

8.3.1 Example N1

Example N1 provides a separate ETR for each PE. When using a CoreSight ATB trace funnel and replicator,
the trace might be able to be sent to any ETR and therefore this example is not compliant with TC Level 1 and
is only compliant with TC Level 0.

Trace
Funnel

ETRPE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

PE
Trace
Unit

Replicator

ETR

ETR

ETR

Figure 7: Example N1
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