
PrimeCell® µDMA Controller (PL230)
Revision: r0p0

Technical Reference Manual
Copyright © 2007 ARM Limited. All rights reserved.
ARM DDI 0417A

PrimeCell µDMA Controller (PL230)
Technical Reference Manual

Copyright © 2007 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or tra1demarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

19 March 2007 A Non-Confidential First release for r0p0
ii Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Contents
PrimeCell µDMA Controller (PL230) Technical
Reference Manual

Preface
About this manual .. x
Feedback ... xiv

Chapter 1 Introduction
1.1 About the µDMAC ... 1-2
1.2 Terminology .. 1-4

Chapter 2 Functional Overview
2.1 Functional description ... 2-2
2.2 Functional operation ... 2-5

Chapter 3 Programmer’s Model
3.1 About the programmer’s model ... 3-2
3.2 Register descriptions .. 3-3

Chapter 4 Programmer’s Model for Test
4.1 Register descriptions .. 4-2
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. iii

Contents
Appendix A Signal Descriptions
A.1 Clock and reset signals .. A-2
A.2 AHB-Lite master interface signals .. A-3
A.3 APB interface signals ... A-5
A.4 DMA control signals .. A-6
A.5 Interrupt signal .. A-7

Glossary
iv Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

List of Tables
PrimeCell µDMA Controller (PL230) Technical
Reference Manual

Change history .. ii
Table 2-1 HTRANS signaling .. 2-5
Table 2-2 HSIZE signaling .. 2-6
Table 2-3 Protection signaling ... 2-7
Table 2-4 Address increments .. 2-7
Table 2-5 Rules when channels and enabled and requests are not masked 2-9
Table 2-6 Rules for disabled channels .. 2-11
Table 2-7 AHB bus transfer arbitration interval ... 2-19
Table 2-8 DMA channel priority ... 2-20
Table 2-9 DMA cycle types ... 2-21
Table 2-10 channel_cfg for a primary data structure, in memory scatter-gather mode 2-27
Table 2-11 channel_cfg for a primary data structure, in peripheral scatter-gather mode 2-32
Table 2-12 Address bit settings for the channel control data structure 2-37
Table 2-13 Permitted base addresses .. 2-40
Table 2-14 src_data_end_ptr bit assignments .. 2-40
Table 2-15 dst_data_end_ptr bit assignments .. 2-41
Table 2-16 channel_cfg bit assignments ... 2-42
Table 2-17 DMA cycle of six words using a word increment ... 2-48
Table 2-18 DMA cycle of 12 bytes using a halfword increment .. 2-49
Table 3-1 Register summary ... 3-3
Table 3-2 dma_status Register bit assignments ... 3-5
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. v

List of Tables
Table 3-3 dma_cfg Register bit assignments .. 3-7
Table 3-4 ctrl_base_ptr Register bit assignments ... 3-9
Table 3-5 alt_ctrl_base_ptr Register bit assignments ... 3-9
Table 3-6 dma_waitonreq_status Register bit assignments ... 3-10
Table 3-7 chnl_sw_request Register bit assignments .. 3-11
Table 3-8 chnl_useburst_set Register bit assignments .. 3-12
Table 3-9 chnl_useburst_clr Register bit assignments ... 3-14
Table 3-10 chnl_req_mask_set Register bit assignments .. 3-15
Table 3-11 chnl_req_mask_clr Register bit assignments ... 3-16
Table 3-12 chnl_enable_set Register bit assignments ... 3-17
Table 3-13 chnl_enable_clr Register bit assignments .. 3-18
Table 3-14 chnl_pri_alt_set Register bit assignments .. 3-20
Table 3-15 chnl_pri_alt_clr Register bit assignments ... 3-22
Table 3-16 chnl_priority_set Register bit assignments ... 3-23
Table 3-17 chnl_priority_clr Register bit assignments .. 3-24
Table 3-18 err_clr Register bit assignments ... 3-25
Table 3-19 periph_id_[3:0] Register bit assignments .. 3-26
Table 3-20 periph_id_0 Register bit assignments ... 3-27
Table 3-21 periph_id_1 Register bit assignments ... 3-28
Table 3-22 periph_id_2 Register bit assignments ... 3-29
Table 3-23 periph_id_3 Register bit assignments ... 3-29
Table 3-24 periph_id_4 Register bit assignments ... 3-30
Table 3-25 pcell_id_[3:0] Register bit assignments .. 3-31
Table 3-26 pcell_id_0 Register bit assignments ... 3-32
Table 3-27 pcell_id_1 Register bit assignments ... 3-32
Table 3-28 pcell_id_2 Register bit assignments ... 3-33
Table 3-29 pcell_id_3 Register bit assignments ... 3-33
Table 4-1 Test register summary .. 4-2
Table 4-2 integration_cfg Register bit assignments .. 4-3
Table 4-3 dma_stall_status Register bit assignments .. 4-4
Table 4-4 dma_req_status Register bit assignments .. 4-5
Table 4-5 dma_sreq_status Register bit assignments .. 4-6
Table 4-6 dma_done_set Register bit assignments .. 4-7
Table 4-7 dma_done_clr Register bit assignments ... 4-8
Table 4-8 dma_active_set Register bit assignments .. 4-9
Table 4-9 dma_active_clr Register bit assignments ... 4-10
Table 4-10 err_set Register bit assignments .. 4-11
Table A-1 Clock and reset signals ... A-2
Table A-2 Steady state signals .. A-3
Table A-3 paddr[] bus ... A-5
Table A-4 pclken signal ... A-5
Table A-5 DMA control signals .. A-6
Table A-6 Interrupt signal .. A-7
vi Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

List of Figures
PrimeCell µDMA Controller (PL230) Technical
Reference Manual

Key to timing diagram conventions ... xii
Figure 2-1 Block diagram ... 2-2
Figure 2-2 APB slave interface ... 2-2
Figure 2-3 AHB-Lite master interface ... 2-3
Figure 2-4 DMA control .. 2-4
Figure 2-5 Example system .. 2-4
Figure 2-6 DMA signaling when peripherals use pulse requests ... 2-12
Figure 2-7 DMA signaling when peripherals use level requests ... 2-13
Figure 2-8 dma_done signaling .. 2-15
Figure 2-9 DMA signaling when peripherals use dma_waitonreq .. 2-16
Figure 2-10 DMA signaling when peripherals use dma_waitonreq and dma_sreq 2-17
Figure 2-11 Polling flowchart .. 2-21
Figure 2-12 Ping-pong example ... 2-24
Figure 2-13 Memory scatter-gather example ... 2-29
Figure 2-14 Peripheral scatter-gather example .. 2-33
Figure 2-15 Memory map for 32 channels, including the alternate data structure 2-36
Figure 2-16 Memory map for three DMA channels, including the alternate data structure 2-39
Figure 2-17 channel_cfg bit assignments ... 2-41
Figure 3-1 dma_status Register bit assignments ... 3-5
Figure 3-2 dma_cfg Register bit assignments .. 3-7
Figure 3-3 ctrl_base_ptr Register bit assignments ... 3-8
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. vii

List of Figures
Figure 3-4 alt_ctrl_base_ptr Register bit assignments ... 3-9
Figure 3-5 dma_waitonreq_status Register bit assignments ... 3-10
Figure 3-6 chnl_sw_request Register bit assignments .. 3-11
Figure 3-7 chnl_useburst_set Register bit assignments .. 3-12
Figure 3-8 chnl_useburst_clr Register bit assignments ... 3-14
Figure 3-9 chnl_req_mask_set Register bit assignments .. 3-15
Figure 3-10 chnl_req_mask_clr Register bit assignments ... 3-16
Figure 3-11 chnl_enable_set Register bit assignments ... 3-17
Figure 3-12 chnl_enable_clr Register bit assignments .. 3-18
Figure 3-13 chnl_pri_alt_set Register bit assignments .. 3-19
Figure 3-14 chnl_pri_alt_clr Register bit assignments ... 3-21
Figure 3-15 chnl_priority_set Register bit assignments ... 3-23
Figure 3-16 chnl_priority_clr Register bit assignments .. 3-24
Figure 3-17 err_clr Register bit assignments ... 3-25
Figure 3-18 periph_id_[3:0] Register bit assignments .. 3-26
Figure 3-19 periph_id_0 Register bit assignments ... 3-27
Figure 3-20 periph_id_1 Register bit assignments ... 3-28
Figure 3-21 periph_id_2 Register bit assignments ... 3-28
Figure 3-22 periph_id_3 Register bit assignments ... 3-29
Figure 3-23 periph_id_4 Register bit assignments ... 3-30
Figure 3-24 pcell_id_[3:0] Register bit assignments .. 3-31
Figure 3-25 pcell_id_0 Register bit assignments ... 3-32
Figure 3-26 pcell_id_1 Register bit assignments ... 3-32
Figure 3-27 pcell_id_2 Register bit assignments ... 3-33
Figure 3-28 pcell_id_3 Register bit assignments ... 3-33
Figure 4-1 integration_cfg Register bit assignments .. 4-3
Figure 4-2 dma_stall_status Register bit assignments .. 4-4
Figure 4-3 dma_req_status Register bit assignments .. 4-5
Figure 4-4 dma_sreq_status Register bit assignments .. 4-6
Figure 4-5 dma_done_set Register bit assignments .. 4-7
Figure 4-6 dma_done_clr Register bit assignments ... 4-8
Figure 4-7 dma_active_set Register bit assignments .. 4-9
Figure 4-8 dma_active_clr Register bit assignments ... 4-10
Figure 4-9 err_set Register bit assignments .. 4-11
viii Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Preface

This preface introduces the PrimeCell µDMA Controller (PL230) Technical Reference
Manual. It contains the following sections:

• About this manual on page x

• Feedback on page xiv.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. ix

Preface
About this manual

This is the Technical Reference Manual (TRM) for the PrimeCell µDMA Controller
(PL230).

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written for system designers, system integrators, and verification
engineers who are designing a System-on-Chip (SoC) device that includes the µDMA
Controller (µDMAC). The manual describes the external functionality of the µDMAC.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for a high-level view of the controller and a description
of its features.

Chapter 2 Functional Overview

Read this chapter for a description of the major components of the
controller and how they operate.

Chapter 3 Programmer’s Model

Read this chapter for a description of the registers.

Chapter 4 Programmer’s Model for Test

Read this chapter for a description of the test registers.

Appendix A Signal Descriptions

Read this appendix for a description of the input and output signals.

Glossary Read the Glossary for definitions of terms used in this manual.
x Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Preface
Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams on page xii

• Signals on page xii

• Numbering on page xiii.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

< and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. xi

Preface
Timing diagrams

The figure named Key to timing diagram conventions explains the components used in
timing diagrams. Variations, when they occur, have clear labels. You must not assume
any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means HIGH for
active-HIGH signals and LOW for active-LOW signals.

Lower-case n Denotes an active-LOW signal.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.
xii Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Preface
Numbering

The numbering convention is:

<size in bits>'<base><number>

This is a Verilog® method of abbreviating constant numbers. For
example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Further reading

This section lists publications by ARM, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the Frequently Asked
Questions list.

ARM publications

This manual contains information that is specific to the µDMAC. See the following
documents for other relevant information:

• PrimeCell µDMA Controller (PL230) Implementation Guide (ARM DII 0181)

• PrimeCell µDMA Controller (PL230) Integration Manual (ARM DII 0182)

• PrimeCell µDMA Controller (PL230) Configuration Guide

• AMBA® 3 AHB-Lite Protocol v1.0 Specification (ARM IHI 0033)

• AMBA Specification (Rev 2.0) (ARM IHI 0011).

Other publications

This section lists relevant documents published by third parties:

• JEDEC Solid State Technology Association, JEP106, Standard Manufacturer’s
Identification Code, obtainable at http://www.jedec.org.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. xiii

Preface
Feedback

ARM welcomes feedback on the µDMAC and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments on this manual, send email to errata@arm.com giving:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
xiv Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Chapter 1
Introduction

This chapter introduces the µDMAC. It contains the following sections:

• About the µDMAC on page 1-2

• Terminology on page 1-4.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the µDMAC

The µDMAC is an Advanced Microcontroller Bus Architecture (AMBA) compliant
System-on-Chip (SoC) peripheral that is developed, tested, and licensed by ARM.

It is a very low gate count DMA controller that is compatible with the AMBA AHB-Lite
protocol.

1.1.1 Features of the controller

The principal features are that:

• it is compatible with AHB-Lite for the DMA transfers

• it is compatible with APB for programming the registers

• it has a single AHB-Lite master for transferring data using a 32-bit address bus
and 32-bit data bus

• it has a configurable number of DMA channels

• each DMA channel has dedicated handshake signals

• each DMA channel has a programmable priority level

• each priority level arbitrates using a fixed priority that is determined by the DMA
channel number

• it supports multiple transfer types:

— memory-to-memory

— memory-to-peripheral

— peripheral-to-memory

• it supports multiple DMA cycle types

• it supports multiple DMA transfer data widths

• each DMA channel can access a primary, and alternate, channel control data
structure

• all the channel control data is stored in system memory in little-endian format

• it performs all DMA transfers using the SINGLE AHB-Lite burst type

• the destination data width is equal to the source data width

• the number of transfers in a single DMA cycle can be programmed from 1 to 1024

• the transfer address increment can be greater than the data width
1-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Introduction
• it has a single output to indicate when an ERROR condition occurs on the AHB
bus.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 1-3

Introduction
1.2 Terminology

This manual uses the following terminology:

Alternate The alternate channel control data structure. You must configure the
register that Channel primary-alternate set on page 3-19 describes, to
enable the controller to use this data structure.

C Identifies a specific DMA channel number. For example:

C=1 DMA channel 1.

C=23 DMA channel 23.

Channel You can configure the controller to contain up to 32 channels. Each
channel contains independent and dedicated handshakes that can trigger
a DMA transfer.

Channel control data

A data structure located in your system memory. You must program this
data structure, so that the controller can perform the DMA transfers that
you require. The controller must be able to access the location in system
memory.

Note
 Where this document mentions data structure it is referring to a channel

control data structure.

DMA cycle All the DMA transfers that the controller must perform, to transfer the N
data packets.

DMA transfer

The action of transferring a single byte, halfword, or word.

N The total number of DMA transfers that the controller performs for a
channel.

PL230_DMA_CHNLS

The number of DMA channels that the controller contains. You must use
the tools provided, to configure this configuration option before you
integrate the controller in a SoC design.
1-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Introduction
Ping-pong For a given channel, the controller receives an initial request and then it
performs a DMA cycle using the primary, or alternate, data structure.
After it completes this DMA cycle, it starts a DMA cycle using the other
data structure. The controller signals the completion of each DMA cycle
to enable the host processor to reconfigure the inactive data structure. The
controller continues to switch from primary to alternate to primary…
until it reads a data structure that is invalid, or completes without
switching to the opposite data structure.

Primary The primary channel control data structure. The controller uses this data
structure when the corresponding bit in the chnl_pri_alt_set Register is 0.

R R is raised to the power of 2 and sets the number of DMA transfers that
can occur before the controller rearbitrates. The number of DMA
transfers are programmable from 1 to 1024, in binary steps from 20 to 210.

Scatter-gather

For a given channel, the controller receives a request from a peripheral
and then performs four DMA transfers using the primary data structure,
which configures the alternate data structure. It then immediately starts a
DMA cycle using the alternate data structure. After this cycle completes,
if the peripheral provides another request, the controller performs another
four transfers using the primary data structure, which reprograms the
alternate data structure. It then immediately starts a DMA cycle using the
alternate data structure.

The controller continues to switch from primary to alternate to primary…
until either it reads an invalid data structure, or the host processor
configures the alternate data structure for a basic cycle. The controller
asserts dma_done[] when the scatter-gather transaction completes using
a basic cycle.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 1-5

Introduction
1-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Chapter 2
Functional Overview

This chapter describes the major functional blocks of the µDMAC. It contains the
following sections:

• Functional description on page 2-2

• Functional operation on page 2-5.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-1

Functional Overview
2.1 Functional description

Figure 2-1 shows a simplified block diagram of the controller.

Figure 2-1 Block diagram

The controller contains the following main functional blocks:

• APB block

• AHB block on page 2-3

• DMA control block on page 2-3.

2.1.1 APB block

The APB block contains the registers that enable you to configure the controller by
using the APB slave interface. It has 4KB of memory allocated to it and Chapter 3
Programmer’s Model and Chapter 4 Programmer’s Model for Test describe the
registers.

Figure 2-2 shows the APB external connections.

Figure 2-2 APB slave interface
2-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
2.1.2 AHB block

The controller contains a single AHB-Lite master that enables it to transfer data from a
source AHB slave to a destination AHB slave using a 32-bit data bus.

The controller is compliant to the AMBA 3 AHB-Lite protocol. For detailed
information about the AHB-Lite interface, see the AMBA 3 AHB-Lite Protocol v1.0
Specification.

Figure 2-3 shows the AHB-Lite master external connections.

Figure 2-3 AHB-Lite master interface

2.1.3 DMA control block

This block contains the control logic that provides the following features:

• arbitrates the incoming requests

• indicates which channel is active

• indicates when a channel is complete

• indicates when an ERROR has occurred on the AHB-Lite interface

• enables slow peripherals to stall the completion of a DMA cycle

• waits for a request to clear before completing a DMA cycle

• performs multiple or single DMA transfers for each request

• perform the following types of DMA transfers:

— memory-to-memory

— memory-to-peripheral

— peripheral-to-memory.

Note
 Peripheral-to-peripheral transactions are not supported because each channel

only provides a single DMA request interface.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-3

Functional Overview
Figure 2-4 shows the DMA control external connections.

Figure 2-4 DMA control

2.1.4 Example system configuration

Figure 2-5 shows an example system containing the controller.

Figure 2-5 Example system
2-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
2.2 Functional operation

The following sections describe the operational functionality of the controller:

• APB slave interface

• AHB master interface

• DMA control on page 2-8

• Channel control data structure on page 2-35.

2.2.1 APB slave interface

The APB slave interface connects the controller to the APB and provides a host
controller with access to the registers.

The APB slave interface supports the following features:

• read and write word accesses

• 32-bit data bus interface.

The controller implements the AMBA 2.0 APB protocol because the APB slave
interface does not support wait states or error responses. For detailed information about
the APB interface, see the AMBA Specification (Rev 2.0).

2.2.2 AHB master interface

The following sections describe the features of this interface:

• Transfer types

• Transfer data width on page 2-6

• Protection control on page 2-6

• Address increments on page 2-7.

Transfer types

The controller does not support burst transfers and therefore it ties the HBURST signals
LOW. The controller performs SINGLE AHB-Lite bus transfers using the HTRANS
signaling combinations that Table 2-1 lists.

Table 2-1 HTRANS signaling

HTRANS[1] HTRANS[0]a

a. This signal is tied LOW.

Description

0 0 IDLE transfer

1 0 NONSEQ transfer
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-5

Functional Overview
The absence of burst transfers has minimal effect on system performance because burst
transfers are more effective in single-layer AHB systems, where a device has to request
the bus, or access off-chip memory. The µDMAC is intended to be used in multi-layer
AHB-Lite systems that include on-chip memory.

Transfer data width

The controller supports data transfer sizes of 8, 16, or 32 bits. Table 2-2 lists the
supported HSIZE signaling combinations.

The controller always uses 32-bit data transfers when it accesses a channel control data
structure. You must set the source data transfer size to be identical to the destination data
transfer size.

Protection control

The controller enables you to configure the AHB-Lite protection control signals,
HPROT[3:1]. You can set these signals to indicate the following protection states:

• cacheable

• bufferable

• privileged.

Table 2-2 HSIZE signaling

HSIZE[2]a

a. This signal is tied LOW.

HSIZE[1] HSIZE[0] Data width size (bits)

0 0 0 8

0 0 1 16

0 1 0 32

0 1 1 -b

b. The controller does not provide this combination of HSIZE signaling.
2-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Table 2-3 lists the HPROT signal encoding.

For each DMA cycle, you can configure the source transfer and destination transfer to
use different protection control settings. See Control data configuration on page 2-41
for information about how to configure protection control for these accesses.

You can also configure separate protection control settings when you access the channel
control data structure. See DMA configuration on page 3-7 for information about how
to configure protection control for these accesses.

Address increments

The controller enables you to configure the address increments that it uses when it reads
the source data or when it writes the destination data. The increments available depend
on the size of data packet being transferred. Table 2-4 lists the possible combinations.

Table 2-3 Protection signaling

HPROT[3]
Cacheable

HPROT[2]
Bufferable

HPROT[1]
Privileged

HPROT[0]
Data/Opcode

Description

- - - 1a

a. The controller ties HPROT[0] HIGH, to indicate a data access.

Data access

- - 0 - User access

- - 1 - Privileged access

- 0 - - Non-bufferable

- 1 - - Bufferable

0 - - - Non-cacheable

1 - - - Cacheable

Table 2-4 Address increments

Packet data width (bits) Size of address increment

8 byte, halfword, or word

16 halfword or word

32 word
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-7

Functional Overview
The minimum address increment must always be equal in size to the width of the data
packet. The maximum address increment that the controller permits is one word.

To change the address increment, see Control data configuration on page 2-41. This
provides you with information about which bits to configure in the channel control data
structure.

Note
 If you require the source or destination address to remain constant, for example, when
accessing a FIFO then you can configure the controller to use a fixed address. See
Control data configuration on page 2-41.

2.2.3 DMA control

This section describes:

• Handshake rules

• DMA signaling on page 2-11

• DMA arbitration rate on page 2-18

• Priority on page 2-19

• DMA cycle types on page 2-21

• Error signaling on page 2-35.

Handshake rules

The controller uses the DMA handshake rules that Table 2-5 on page 2-9 lists, when the
following conditions apply:

• You enable a channel. That is, the chnl_enable_set [C] and master_enable bits are
set to 1.

• You do not mask the dma_req[C] and dma_sreq[C] request inputs. That is, the
chnl_req_mask_set [C] bit is 0.

• The controller is not operating in test mode. That is, the int_test_en bit is 0, see
Integration configuration on page 4-3.
2-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Table 2-5 Rules when channels and enabled and requests are not masked

Rule Description

1 When dma_active[C] is LOW, then setting dma_req[C] or dma_sreq[C] HIGH for one or more hclk cycles,
contiguous or non-contiguous, starts a transfer for channel C.

2 The controller only permits a single dma_active[] to be HIGH.

3 The controller sets dma_active[C] HIGH, when it starts a transfer for channel C.

4 For DMA cycle types other than peripheral scatter-gather, dma_active[C] remains HIGH until the controller
completes the lesser number of transfers, that either 2R or n_minus_1a specifies.

In peripheral scatter-gather mode, dma_active[C] remains HIGH during each primary-alternate pair of DMA
transfers. That is, the controller performs 2R transfers using the primary data structure, and then without
arbitrating, it performs the lesser number of transfers, that either 2R or n_minus_1a specifies, using the alternate
data structure. After completing the latter DMA transfer, dma_active[C] goes LOW.

5 The controller sets dma_active[C] LOW, for at least one hclk cycle, before it sets dma_active[C] or
dma_active[] HIGH.

6 For channels that are enabled, the controller only permits a single dma_done[] to be HIGH.

7 If dma_req[C] is HIGH when dma_active[C] or dma_stall are HIGH then the controller only detects a request
if dma_req[C] was low for the previous clock cycle.

8 If you set the cycle_ctrl bits for a channel to 3’b100, 3’b101, 3’b110, or 3’b111 then dma_done[C] is never set
HIGH.

9 When all transfers for a channel are complete, and the cycle_ctrla bits enable the assertion of dma_done[], then
at the falling edge of dma_active[]:

• if dma_stall is LOW, the controller sets dma_done[] HIGH for a duration of one hclk cycle

• if dma_stall is HIGH, it stalls the controller. After dma_stall goes LOW then the controller sets
dma_done[] HIGH for a duration of one hclk cycle.

10 The status of dma_waitonreq[C] must only change when channel C is disabled.

11 When dma_waitonreq[C] is HIGH then dma_active[C] does not go LOW until:

• the controller completes 2R or n_minus_1a transfers

• dma_req[C] is LOW

• dma_sreq[C] is LOW.

12 If, on the hclk cycle immediately prior to it setting dma_active[C] LOW, you set dma_stall HIGH, then:

• the controller sets dma_active[C] LOW on the next hclk cycle

• channel C does not complete until you set dma_stall LOW.

13 The controller ignores dma_sreq[C] when dma_waitonreq[C] is LOW.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-9

Functional Overview
14 The controller ignores dma_sreq[C] when the chnl_useburst_set [C] bit is a 1b.

15 For DMA cycle types other than peripheral scatter-gather, on completion of 2R transfers, the controller sets the
read value of the chnl_useburst_set [C] bit to 0, if the number of remaining transfers is less than 2R.

In peripheral scatter-gather mode, the controller only sets the read value of the chnl_useburst_set [C] bit to 0, if
the number of transfers remaining in the alternate data structure is less than 2R.

16 For DMA cycle types other than peripheral scatter-gather, when dma_sreq[C] and dma_waitonreq[C] are
HIGH, and dma_req[C] is LOW, on the hclk cycle before dma_active[C] goes HIGH, then the controller
performs a single DMA transfer.

In peripheral scatter-gather mode, when dma_sreq[C] and dma_waitonreq[C] are HIGH, and dma_req[C] is
LOW, on the hclk cycle before dma_active[C] goes HIGH, then the controller performs 2R transfers using the
primary data structure, and then without arbitrating, it performs a single DMA transfer using the alternate data
structure.

17 For DMA cycle types other than peripheral scatter-gather, when dma_req[C] and dma_sreq[C] are HIGH, on
the hclk cycle before dma_active[C] goes HIGH, then the dma_req[C] request takes precedence and the
controller performs 2R, or n_minus_1a, transfers.

In peripheral scatter-gather mode, when dma_req[C] and dma_sreq[C] are HIGH, on the hclk cycle before
dma_active[C] goes HIGH, then the dma_req[C] request takes precedence and the controller performs 2R
transfers using the primary data structure, and then without arbitrating, it performs the lesser number of transfers,
that either 2R or n_minus_1a specifies, using the alternate data structure.

18 When the chnl_req_mask_set [C] bit is a 1, the controller ignores requests on dma_req[C] and dma_sreq[C].

a. The channel_cfg memory location contains these bits. See Table 2-16 on page 2-42.
b. You must take care in setting this bit. When n_minus_1 is less than 2R then the controller does not clear the chnl_useburst_set

and therefore requests on dma_sreq[C] are masked. If the peripheral does not set dma_req[C] HIGH then the controller never
performs the outstanding transfers. See Channel useburst set on page 3-12.

Table 2-5 Rules when channels and enabled and requests are not masked (continued)

Rule Description
2-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
When you disable a channel, the controller uses the DMA handshake rules that
Table 2-6 lists.

DMA signaling

The following sections provide examples of the functional operation of the controller
using the rules that Handshake rules on page 2-8 describe:

• Pulse request

• Level request on page 2-13

• Done signaling on page 2-14

• Wait on request signaling on page 2-16.

Note
 For all DMA signaling shown in Figure 2-6 on page 2-12 to Figure 2-10 on page 2-17
inclusive, the following conditions apply:

• hready is HIGH

• the AHB slave always provides an OKAY response.

Pulse request

Figure 2-6 on page 2-12 shows the DMA request timing when a peripheral uses pulse
signaling.

Table 2-6 Rules for disabled channels

Rule Description

19 When dma_req[C] is HIGH, the controller sets dma_done[C] HIGH. This enables the controller to alert the host
processor to a request, even when the channel is disabled.

20 When dma_sreq[C] is HIGH, the controller sets dma_done[C] HIGH provided that dma_waitonreq[C] is
HIGH and the chnl_useburst_set [C] bit is a 0. This enables the controller to alert the host controller to a request,
when the channel is disabled.

21 dma_active[C] is always LOW.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-11

Functional Overview
Figure 2-6 DMA signaling when peripherals use pulse requests

In Figure 2-6:

T1 The controller detects a request on channel C (see rule1) provided that
chnl_req_mask_set [C] is 0 (see rule18).

T4 The controller asserts dma_active[C] (see rule2 and rule3) and starts the
DMA transfer for channel C.

T4-T7 The controller reads the data structure, where:

rc Reads channel configuration, channel_cfg.

rsp Reads source data end pointer, src_data_end_ptr.

rdp Reads destination data end pointer, dst_data_end_ptr.

T7 With dma_active[C] HIGH and provided that chnl_req_mask_set [C] is
0 (see rule18), the controller detects a request on channel C that was not
present on the previous clock cycle (see rule7). The controller includes
this request during the next arbitration process.

T7-T9 The controller performs the DMA transfer for channel C, where:

RD Reads data.

WD Writes data.

T9-T10 The controller writes the channel_cfg, where:

wc Writes channel configuration, channel_cfg.

T10 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule4).

T10-T11 The controller holds dma_active[C] LOW for at least one hclk cycle (see
rule5).

T11 If channel C is the highest priority request then the controller asserts
dma_active[C] because of the request at T7 (see rule2 and rule3).
2-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
T12 With dma_active[C] HIGH and provided that chnl_req_mask_set [C] is
0 (see rule18), the controller detects a request on channel C that was not
present on the previous clock cycle (see rule7). The controller includes
this request during the next arbitration process.

T14 The controller ignores the request on channel C because of the pending
request at T12.

T17 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule4).

T17-T18 The controller holds dma_active[C] LOW for at least one hclk cycle (see
rule5).

T18 If channel C is the highest priority request then the controller asserts
dma_active[C] because of the request at T12 (see rule2 and rule3).

Level request

Figure 2-7 shows the DMA request timing when a peripheral uses level signaling.

Figure 2-7 DMA signaling when peripherals use level requests

In Figure 2-7:

T1 The controller detects a request on channel C (see rule1) provided that
chnl_req_mask_set [C] is 0 (see rule18).

T4 The controller asserts dma_active[C] (see rule2 and rule3) and starts the
DMA transfer for channel C.

T4-T7 The controller reads the data structure, where:

rc Reads channel configuration, channel_cfg.

rsp Reads source data end pointer, src_data_end_ptr.

rdp Reads destination data end pointer, dst_data_end_ptr.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-13

Functional Overview
T7-T9 The controller performs the DMA transfer for channel C, where:

RD Reads data.

WD Writes data.

T9-T10 The controller writes the channel_cfg, where:

wc Writes channel configuration, channel_cfg.

T10 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule4).

The controller detects a request on channel C (see rule1) provided that
chnl_req_mask_set [C] is 0 (see rule18).

T10-T11 The controller holds dma_active[C] LOW for at least one hclk cycle (see
rule5).

T11 If channel C is the highest priority request then the controller asserts
dma_active[C] and starts the second DMA transfer for channel C.

T11-T14 The controller reads the data structure.

T14-T16 The controller performs the DMA transfer for channel C.

T15-T16 The peripheral acknowledges that the transfer has started and deasserts
dma_req[C].

T16-T17 The controller writes the channel_cfg.

T17 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule4).

When using level request signaling, if a peripheral does not require additional DMA
transfers but is too slow to remove the request, then it must assert dma_stall. Asserting
dma_stall prevents the controller from completing the current transfer (see rule 7).

Done signaling

Figure 2-8 on page 2-15 shows the dma_done[] signaling under the following different
conditions:

• dma_stall and dma_waitonreq[] are LOW

• dma_stall is HIGH

• dma_waitonreq[] is HIGH.
2-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Figure 2-8 dma_done signaling

In Figure 2-8, from T0 to T2:

T1 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule4).

T1-T2 The controller completes the DMA cycle and if the cycle_ctrl [2] bit is 0
then it asserts dma_done[C] for one hclk cycle (see rule8 and rule9). For
all other enabled channels, dma_done[] is LOW (see rule6).

In Figure 2-8, from T10 to T15:

T11 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule4).

Note
 The controller does not assert dma_done[C] because dma_stall was

HIGH on the previous hclk cycle (see rule9 and rule12).

T12-T13 The peripheral deasserts dma_stall.

T14-T15 The controller completes the DMA cycle and if the cycle_ctrl [2] bit is 0
then it asserts dma_done[C] for one hclk cycle (see rule8 and rule9). For
all other enabled channels, dma_done[] is LOW (see rule6).

In Figure 2-8, from T20 to T25:

T20 The controller has performed the DMA transfers but because
dma_waitonreq[C] is HIGH, it must wait for dma_req[C] to go LOW
before it can deassert dma_active[C] (see rule11) and assert
dma_done[C] (see rule9).

T21-T22 The peripheral deasserts dma_req[C].
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-15

Functional Overview
T24 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule4).

T24-T25 The controller completes the DMA cycle and if the cycle_ctrl [2] bit is 0
then it asserts dma_done[C] for one hclk cycle (see rule8 and rule9). For
all other enabled channels, dma_done[] is LOW (see rule6).

Wait on request signaling

The following figures show examples of using wait on request signaling to perform a
2R transfer and a single transfer:

• DMA signaling when peripherals use dma_waitonreq

• DMA signaling when peripherals use dma_waitonreq and dma_sreq on
page 2-17.

Figure 2-9 DMA signaling when peripherals use dma_waitonreq

In Figure 2-9:

T0-T16 The peripheral must hold the status of dma_waitonreq[C] constant (see
rule10).

T0-T1 The controller detects a request on channel C (see rule1) provided that
chnl_req_mask_set [C] is 0 (see rule18).

T3-T4 The peripheral holds dma_req[] and dma_sreq[] HIGH. The controller
ignores the dma_sreq[] request and responds to the dma_req[] request
(see rule16 and rule17).

T4 The controller asserts dma_active[C] (see rule2 and rule3) and starts the
DMA transfer for channel C.
2-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
T4-T7 The controller reads the data structure, where:

rc Reads channel configuration, channel_cfg.

rsp Reads source data end pointer, src_data_end_ptr.

rdp Reads destination data end pointer, dst_data_end_ptr.

T7-T9 The controller performs a DMA transfer for channel C, where:

RD Reads data.

WD Writes data.

T9-T11 The controller reads the two end pointer addresses, rsp and rdp.

T11-T13 The controller performs a DMA transfer for channel C. In this example,
R=1 and hence the controller performs 21=2 DMA transfers.

T13-T14 The peripheral deasserts dma_req[C] and dma_sreq[C].

T15-T16 The controller writes the channel_cfg, where:

wc Writes channel configuration, channel_cfg.

T16 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule11).

The controller sets the read value of the chnl_useburst_set [C] bit to 0, if
the number of remaining transfers is less than 2R (see rule15).

Figure 2-10 shows the DMA signaling when dma_waitonreq[] is HIGH and the
controller performs a single DMA transfer.

Figure 2-10 DMA signaling when peripherals use dma_waitonreq and dma_sreq
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-17

Functional Overview
In Figure 2-10 on page 2-17:

T0-T13 The peripheral must hold the status of dma_waitonreq[C] constant (see
rule10).

T0-T1 The controller detects a request on channel C (see rule1) provided that
chnl_useburst_set [C] is 0 (see rule13 and rule14).

T3-T4 The controller responds to the dma_sreq[] request (see rule16).

T4 The controller asserts dma_active[C] (see rule2 and rule3) and starts the
DMA transfer for channel C.

T4-T7 The controller reads the data structure, where:

rc Reads channel configuration, channel_cfg.

rsp Reads source data end pointer, src_data_end_ptr.

rdp Reads destination data end pointer, dst_data_end_ptr.

T7-T9 The controller performs a DMA transfer for channel C, where:

RD Reads data.

WD Writes data.

This is a request in response to dma_sreq[] so R=0 and hence the
controller performs 20=1 DMA transfer.

T10-T11 The peripheral deasserts dma_sreq[C].

T12-T13 The controller writes the channel_cfg, where:

wc Writes channel configuration, channel_cfg.

T13 The controller deasserts dma_active[C] to indicate that the DMA
transfer has completed (see rule11).

DMA arbitration rate

You can configure when the controller arbitrates during a DMA transfer. This enables
you to reduce the latency to service a higher priority channel.

The controller provides four bits that configure how many AHB bus transfers occur
before it rearbitrates. These bits are known as the R_power bits because the value you
enter, R, is raised to the power of two and this determines the arbitration rate. For
example, if R=4 then the arbitration rate is 24, that is, the controller arbitrates every 16
DMA transfers.
2-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Table 2-7 lists the arbitration rates.

Note
 You must take care not to assign a low-priority channel with a large R_power because
this prevents the controller from servicing high-priority requests, until it rearbitrates.

When N > 2R and is not an integer multiple of 2R then the controller always performs
sequences of 2R transfers until N < 2R remain to be transferred. The controller performs
the remaining N transfers at the end of the DMA cycle.

You store the value of the R_power bits in the channel control data structure. See
Control data configuration on page 2-41 for more information about the location of the
R_power bits in the data structure.

Priority

When the controller arbitrates, it determines the next channel to service by using the
following information:

• the channel number

• the priority level, default or high, that is assigned to the channel.

Table 2-7 AHB bus transfer arbitration interval

R_power Arbitrate after x DMA transfers

b0000 x=1

b0001 x=2

b0010 x=4

b0011 x=8

b0100 x=16

b0101 x=32

b0110 x=64

b0111 x=128

b1000 x=256

b1001 x=512

b1010-b1111 x=1024
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-19

Functional Overview
You can configure each channel to use either the default priority level or a high priority
level by setting the chnl_priority_set Register. See Channel priority set on page 3-23.

Channel number zero has the highest priority and as the channel number increases, the
priority of a channel decreases. Table 2-8 lists the DMA channel priority levels in
descending order of priority.

After a DMA transfer completes, the controller polls all the DMA channels that are
available. Figure 2-11 on page 2-21 shows the process it uses to determine which DMA
transfer to perform next.

Table 2-8 DMA channel priority

Channel
number

Priority level
setting

Descending order of
channel priority

0 High Highest-priority DMA channel

1 High -

2 High -

- High -

- High -

- High -

30 High -

31 High -

0 Default -

1 Default -

2 Default -

- Default -

- Default -

- Default -

30 Default -

31 Default Lowest-priority DMA channel
2-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Figure 2-11 Polling flowchart

DMA cycle types

The cycle_ctrl bits control how the controller performs a DMA cycle. You can set the
cycle_ctrl bits as Table 2-9 lists.

Table 2-9 DMA cycle types

cycle_ctrl Description

b000 Channel control data structure is invalid

b001 Basic DMA transfer

b010 Auto-request

b011 Ping-pong

b100 Memory scatter-gather using the primary data structure
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-21

Functional Overview
Note
 The cycle_ctrl bits are located in the channel_cfg memory location that Control data
configuration on page 2-41 describes.

For all cycle types, the controller arbitrates after 2R DMA transfers. If you set a
low-priority channel with a large 2R value then it prevents all other channels from
performing a DMA transfer, until the low-priority DMA transfer completes. Therefore,
you must take care when setting the R_power, that you do not significantly increase the
latency for high-priority channels.

The following sections describe the cycle types:

• Invalid

• Basic

• Auto-request on page 2-23

• Ping-pong on page 2-23

• Memory scatter-gather on page 2-27

• Peripheral scatter-gather on page 2-31.

Invalid

After the controller completes a DMA cycle it sets the cycle type to invalid, to prevent
it from repeating the same DMA cycle.

Basic

In this mode, you configure the controller to use either the primary, or alternate, data
structure. After you enable the channel, and the controller receives a request then the
flow for this DMA cycle is:

1. The controller performs 2R transfers. If the number of transfers remaining is zero
the flow continues at step 3.

b101 Memory scatter-gather using the alternate data structure

b110 Peripheral scatter-gather using the primary data structure

b111 Peripheral scatter-gather using the alternate data structure

Table 2-9 DMA cycle types (continued)

cycle_ctrl Description
2-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
2. The controller arbitrates:

• if a higher-priority channel is requesting service then the controller services
that channel

• if the peripheral or software signals a request to the controller then it
continues at step 1.

3. The controller sets dma_done[C] HIGH for one hclk cycle. This indicates to the
host processor that the DMA cycle is complete.

Auto-request

When the controller operates in this mode, it is only necessary for it to receive a single
request to enable it to complete the entire DMA cycle. This enables a large data transfer
to occur, without significantly increasing the latency for servicing higher priority
requests, or requiring multiple requests from the processor or peripheral.

You can configure the controller to use the primary, or alternate, data structure. After
you enable the channel, and the controller receives a request for this channel, then the
flow for this DMA cycle is:

1. The controller performs 2R transfers for channel C. If the number of transfers
remaining is zero the flow continues at step 3.

2. The controller arbitrates. When channel C has the highest priority then the DMA
cycle continues at step 1.

3. The controller sets dma_done[C] HIGH for one hclk cycle. This indicates to the
host processor that the DMA cycle is complete.

Ping-pong

In ping-pong mode, the controller performs a DMA cycle using one of the data
structures and it then performs a DMA cycle using the other data structure. The
controller continues to switch from primary to alternate to primary… until it reads a
data structure that is invalid, or until the host processor disables the channel.

Figure 2-12 on page 2-24 shows an example of a ping-pong DMA transaction.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-23

Functional Overview
Figure 2-12 Ping-pong example
2-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
In Figure 2-12 on page 2-24:

Task A 1. The host processor configures the primary data structure for task A.

2. The host processor configures the alternate data structure for task
B. This enables the controller to immediately switch to task B after
task A completes, provided that a higher priority channel does not
require servicing.

3. The controller receives a request and performs four DMA transfers.

4. The controller arbitrates. After the controller receives a request for
this channel, the flow continues if the channel has the highest
priority.

5. The controller performs the remaining two DMA transfers.

6. The controller sets dma_done[C] HIGH for one hclk cycle and
enters the arbitration process.

After task A completes, the host processor can configure the primary data structure for
task C. This enables the controller to immediately switch to task C after task B
completes, provided that a higher priority channel does not require servicing.

After the controller receives a new request for the channel and it has the highest priority
then task B commences:

Task B 7. The controller performs four DMA transfers.

8. The controller arbitrates. After the controller receives a request for
this channel, the flow continues if the channel has the highest
priority.

9. The controller performs four DMA transfers.

10. The controller arbitrates. After the controller receives a request for
this channel, the flow continues if the channel has the highest
priority.

11. The controller performs the remaining four DMA transfers.

12. The controller sets dma_done[C] HIGH for one hclk cycle and
enters the arbitration process.

After task B completes, the host processor can configure the alternate data structure for
task D.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-25

Functional Overview
After the controller receives a new request for the channel and it has the highest priority
then task C commences:

Task C 13. The controller performs two DMA transfers.

14. The controller sets dma_done[C] HIGH for one hclk cycle and
enters the arbitration process.

After task C completes, the host processor can configure the primary data structure for
task E.

After the controller receives a new request for the channel and it has the highest priority
then task D commences:

Task D 15. The controller performs four DMA transfers.

16. The controller arbitrates. After the controller receives a request for
this channel, the flow continues if the channel has the highest
priority.

17. The controller performs the remaining DMA transfer.

18. The controller sets dma_done[C] HIGH for one hclk cycle and
enters the arbitration process.

After the controller receives a new request for the channel and it has the highest priority
then task E commences:

Task E 19. The controller performs four DMA transfers.

20. The controller arbitrates. After the controller receives a request for
this channel, the flow continues if the channel has the highest
priority.

21. The controller performs the remaining three DMA transfers.

22. The controller sets dma_done[C] HIGH for one hclk cycle and
enters the arbitration process.

If the controller receives a new request for the channel and it has the highest priority
then it attempts to start the next task. However, because the host processor has not
configured the alternate data structure, and on completion of task D the controller set
the cycle_ctrl bits to b000, then the ping-pong DMA transaction completes.

Note
 You can also terminate the ping-pong DMA cycle in Figure 2-12 on page 2-24, if you
configure task E to be a basic DMA cycle by setting the cycle_ctrl field to 3’b001.
2-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Memory scatter-gather

In memory scatter-gather mode the controller receives an initial request and then
performs four DMA transfers using the primary data structure. After this transfer
completes, it starts a DMA cycle using the alternate data structure. After this cycle
completes, the controller performs another four DMA transfers using the primary data
structure. The controller continues to switch from primary to alternate to primary…
until either:

• the host processor configures the alternate data structure for a basic cycle

• it reads an invalid data structure.

Note
 After the controller completes the N primary transfers it invalidates the primary

data structure by setting the cycle_ctrl field to b000.

The controller only asserts dma_done[C] when the scatter-gather transaction
completes using a basic cycle.

In scatter-gather mode, the controller uses the primary data structure to program the
alternate data structure. Table 2-10 lists the fields of the channel_cfg memory location
for the primary data structure, that you must program with constant values and those
that can be user defined.

Table 2-10 channel_cfg for a primary data structure, in memory scatter-gather mode

Bit Field Value Description

Constant-value fields:

[31:30} dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[3] next_useburst 0 For a memory scatter-gather DMA cycle, this bit must be set to zero

[2:0] cycle_ctrl b100 Configures the controller to perform a memory scatter-gather DMA cycle

User defined values:
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-27

Functional Overview
See Control data configuration on page 2-41 for more information.

Figure 2-13 on page 2-29 shows a memory scatter-gather example.

[23:21] dst_prot_ctrl - Configures the state of HPROT when the controller writes the destination data

[20:18] src_prot_ctrl - Configures the state of HPROT when the controller reads the source data

[13:4] n_minus_1 Na Configures the controller to perform N DMA transfers, where N is a multiple of four

a. Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

Table 2-10 channel_cfg for a primary data structure, in memory scatter-gather mode (continued)

Bit Field Value Description
2-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Figure 2-13 Memory scatter-gather example
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-29

Functional Overview
In Figure 2-13 on page 2-29:

Initialization 1. The host processor configures the primary data structure to operate
in memory scatter-gather mode by setting cycle_ctrl to b100.
Because a data structure for a single channel consists of four words
then you must set 2R to 4. In this example, there are four tasks and
therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and
D to the memory locations that the primary src_data_end_ptr
specifies.

3. The host processor enables the channel.

The memory scatter-gather transaction commences when the controller receives a
request on dma_req[] or a manual request from the host processor. The transaction
continues as follows:

Primary, copy A

1. After receiving a request, the controller performs four DMA
transfers. These transfers write the alternate data structure for task
A.

2. The controller generates an auto-request for the channel and then
arbitrates.

Task A 3. The controller performs task A. After it completes the task, it
generates an auto-request for the channel and then arbitrates.

Primary, copy B

4. The controller performs four DMA transfers. These transfers write
the alternate data structure for task B.

5. The controller generates an auto-request for the channel and then
arbitrates.

Task B 6. The controller performs task B. After it completes the task, it
generates an auto-request for the channel and then arbitrates.

Primary, copy C

7. The controller performs four DMA transfers. These transfers write
the alternate data structure for task C.

8. The controller generates an auto-request for the channel and then
arbitrates.

Task C 9. The controller performs task C. After it completes the task, it
generates an auto-request for the channel and then arbitrates.
2-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Primary, copy D

10. The controller performs four DMA transfers. These transfers write
the alternate data structure for task D.

11. The controller sets the cycle_ctrl bits of the primary data structure
to b000, to indicate that this data structure is now invalid.

12. The controller generates an auto-request for the channel and then
arbitrates.

Task D 13. The controller performs task D using a basic cycle.

14. The controller sets dma_done[C] HIGH for one hclk cycle and
enters the arbitration process.

Peripheral scatter-gather

In peripheral scatter-gather mode the controller receives an initial request from a
peripheral and then it performs four DMA transfers using the primary data structure. It
then immediately starts a DMA cycle using the alternate data structure, without
rearbitrating or dma_active[C] going LOW.

Note
 These are the only circumstances, where the controller does not enter the arbitration
process after completing a transfer using the primary data structure.

After this cycle completes, the controller rearbitrates and if the controller receives a
request from the peripheral that has the highest priority then it performs another four
DMA transfers using the primary data structure. It then immediately starts a DMA cycle
using the alternate data structure, without re-arbitrating or dma_active[C] going LOW.
The controller continues to switch from primary to alternate to primary… until either:

• the host processor configures the alternate data structure for a basic cycle

• it reads an invalid data structure.

Note
 After the controller completes the N primary transfers it invalidates the primary

data structure by setting the cycle_ctrl field to b000.

The controller asserts dma_done[C] when the scatter-gather transaction completes
using a basic cycle.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-31

Functional Overview
In scatter-gather mode, the controller uses the primary data structure to program the
alternate data structure. Table 2-11 lists the fields of the channel_cfg memory location
for the primary data structure, that you must program with constant values and those
that can be user defined.

See Control data configuration on page 2-41 for more information.

Figure 2-14 on page 2-33 shows a peripheral scatter-gather example.

Table 2-11 channel_cfg for a primary data structure, in peripheral scatter-gather mode

Bit Field Value Description

Constant-value fields:

[31:30} dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[2:0] cycle_ctrl b110 Configures the controller to perform a peripheral scatter-gather DMA cycle

User defined values:

[23:21] dst_prot_ctrl - Configures the state of HPROT when the controller writes the destination data

[20:18] src_prot_ctrl - Configures the state of HPROT when the controller reads the source data

[13:4] n_minus_1 Na Configures the controller to perform N DMA transfers, where N is a multiple of four

[3] next_useburst - When set to 1, the controller sets the chnl_useburst_set [C] bit to 1 after the
alternate transfer completes

a. Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.
2-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Figure 2-14 Peripheral scatter-gather example
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-33

Functional Overview
In Figure 2-14 on page 2-33:

Initialization 1. The host processor configures the primary data structure to operate
in peripheral scatter-gather mode by setting cycle_ctrl to b110.
Because a data structure for a single channel consists of four words
then you must set 2R to 4. In this example, there are four tasks and
therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and
D to the memory locations that the primary src_data_end_ptr
specifies.

3. The host processor enables the channel.

The peripheral scatter-gather transaction commences when the controller receives a
request on dma_req[]. The transaction continues as follows:

Primary, copy A

1. After receiving a request, the controller performs four DMA
transfers. These transfers write the alternate data structure for task
A.

Task A 2. The controller performs task A.

3. After the controller completes the task it enters the arbitration
process.

After the peripheral issues a new request and it has the highest priority then the process
continues with:

Primary, copy B

4. The controller performs four DMA transfers. These transfers write
the alternate data structure for task B.

Task B 5. The controller performs task B. To enable the controller to
complete the task, the peripheral must issue a further three
requests.

6. After the controller completes the task it enters the arbitration
process.

After the peripheral issues a new request and it has the highest priority then the process
continues with:

Primary, copy C

7. The controller performs four DMA transfers. These transfers write
the alternate data structure for task C.
2-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Task C 8. The controller performs task C.

9. After the controller completes the task it enters the arbitration
process.

After the peripheral issues a new request and it has the highest priority then the process
continues with:

Primary, copy D

10. The controller performs four DMA transfers. These transfers write
the alternate data structure for task D.

11. The controller sets the cycle_ctrl bits of the primary data structure
to b000, to indicate that this data structure is now invalid.

Task D 12. The controller performs task D using a basic cycle.

13. The controller sets dma_done[C] HIGH for one hclk cycle and
enters the arbitration process.

Error signaling

If the controller detects an ERROR response on the AHB-Lite master interface, it:

• disables the channel that corresponds to the ERROR

• sets dma_err HIGH.

After the host processor detects that dma_err is HIGH, it must check which channel
was active when the ERROR occurred. It can do this by:

1. Reading the chnl_enable_set Register to create a list of disabled channels.

When a channel asserts dma_done[] then the controller disables the channel. The
program running on the host processor must always keep a record of which channels
have recently asserted their dma_done[] outputs.

2. It must compare the disabled channels list from step 1, with the record of the
channels that have recently set their dma_done[] outputs. The channel with no
record of dma_done[C] being set is the channel that the ERROR occurred on.

2.2.4 Channel control data structure

You must provide an area of system memory to contain the channel control data
structure. This system memory must:

• provide a contiguous area of system memory that the controller and host
processor can access
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-35

Functional Overview
• have a base address that is an integer multiple of the total size of the channel
control data structure.

Figure 2-15 shows the memory that the controller requires for the channel control data
structure, when it uses all 32 channels and the optional alternate data structure.

Figure 2-15 Memory map for 32 channels, including the alternate data structure
2-36 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
The example structure in Figure 2-15 on page 2-36 uses 1KB of system memory. In this
example, the controller uses the lower 10 address bits to enable it to access all of the
elements in the structure and therefore the base address must be at 0xXXXXX000,
0xXXXXX400, 0xXXXXX800, or 0xXXXXXC00.

You can configure the base address for the primary data structure by writing the
appropriate value in the ctrl_base_ptr Register. See Channel control data base pointer
on page 3-8.

The amount of system memory you require depends on:

• the number of DMA channels you configure the controller to use

• if you configure a DMA channel to use the alternate data structure. See Channel
primary-alternate set on page 3-19.

Table 2-12 lists the address bits that the controller uses when it accesses the elements of
the channel control data structure, depending on the number of channels that the
controller contains.

Where:

A Selects one of the channel control data structures:

A = 0 Selects the primary data structure.

A = 1 Selects the alternate data structure.

C[x:0] Selects the DMA channel.

Table 2-12 Address bit settings for the channel control data structure

Address bits

Number of DMA
channels implemented

[9] [8] [7] [6] [5] [4] [3:0]

1 A

0x0,

0x4,

or

0x8

2 A C[0]

3-4 A C[1] C[0]

5-8 A C[2] C[1] C[0]

9-16 A C[3] C[2] C[1] C[0]

17-32 A C[4] C[3] C[2] C[1] C[0]
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-37

Functional Overview
Address[3:0] Selects one of the control elements:

0x0 Selects the source data end pointer.

0x4 Selects the destination data end pointer.

0x8 Selects the control data configuration.

0xC The controller does not access this address location. If
required, you can enable the host processor to use this
memory location as system memory.

Note
 It is not necessary for you to calculate the base address of the alternate data structure
because the alt_ctrl_base_ptr Register provides this information. See Channel alternate
control data base pointer on page 3-9.

Figure 2-16 on page 2-39 shows an example implementation where the controller uses
three DMA channels and the alternate data structure.
2-38 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Figure 2-16 Memory map for three DMA channels, including the alternate data structure

The example structure in Figure 2-16 uses 128 bytes of system memory. In this
example, the controller uses the lower six address bits to enable it to access all of the
elements in the structure and therefore the base address must be at 0xXXXXXX00 or
0xXXXXXX80.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-39

Functional Overview
Table 2-13 on page 2-41 lists the permitted base address values that you can assign for
the primary data structure, depending on the number of channels that the controller
contains.

The controller uses the system memory to enable it to access two pointers and the
control information that it requires for each channel. The following subsections
describe these 32-bit memory locations and how the controller calculates the DMA
transfer address:

• Source data end pointer

• Destination data end pointer on page 2-41

• Control data configuration on page 2-41

• Address calculation on page 2-47.

Source data end pointer

The src_data_end_ptr memory location contains a pointer to the end address of the
source data. Table 2-14 lists the bit assignments for this memory location.

Table 2-13 Permitted base addresses

Number of
DMA channels

Permitted base addressesa for the primary data structure

1 0xXXXXXX00, 0xXXXXXX20, 0xXXXXXX40, 0xXXXXXX60, 0xXXXXXX80, 0xXXXXXXA0, 0xXXXXXXC0, 0xXXXXXXE0

2 0xXXXXXX00, 0xXXXXXX40, 0xXXXXXX80, 0xXXXXXXC0

3-4 0xXXXXXX00, 0xXXXXXX80

5-8 0xXXXXX000, 0xXXXXX100, 0xXXXXX200, 0xXXXXX300, 0xXXXXX400, 0xXXXXX500, 0xXXXXX600, 0xXXXXX700,

0xXXXXX800, 0xXXXXX900, 0xXXXXXA00, 0xXXXXXB00, 0xXXXXXC00, 0xXXXXXD00, 0xXXXXXE00, 0xXXXXXF00

9-16 0xXXXXX000, 0xXXXXX200, 0xXXXXX400, 0xXXXXX600, 0xXXXXX800, 0xXXXXXA00, 0xXXXXXC00, 0xXXXXXE00

17-32 0xXXXXX000, 0xXXXXX400, 0xXXXXX800, 0xXXXXXC00

a. Where X is a hexadecimal.

Table 2-14 src_data_end_ptr bit assignments

Bit Name Description

[31:0] src_data_end_ptr Pointer to the end address of the source data
2-40 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Before the controller can perform a DMA transfer, you must program this memory
location with the end address of the source data. The controller reads this memory
location when it starts a 2R DMA transfer.

Note
 The controller does not write to this memory location.

Destination data end pointer

The dst_data_end_ptr memory location contains a pointer to the end address of the
destination data. Table 2-15 lists the bit assignments for this memory location.

Before the controller can perform a DMA transfer, you must program this memory
location with the end address of the destination data. The controller reads this memory
location when it starts a 2R DMA transfer.

Note
 The controller does not write to this memory location.

Control data configuration

For each DMA transfer, the channel_cfg memory location provides the control
information for the controller. Figure 2-17 shows the bit assignments for this memory
location.

Figure 2-17 channel_cfg bit assignments

Table 2-15 dst_data_end_ptr bit assignments

Bit Name Description

[31:0] dst_data_end_ptr Pointer to the end address of the destination data
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-41

Functional Overview
Table 2-16 lists the bit assignments for this memory location.

Table 2-16 channel_cfg bit assignments

Bit Name Description

[31:30] dst_inc Destination address increment.

The address increment depends on the source data width as follows:

Source data width = byte
b00 = byte.

b01 = halfword.

b10 = word.

b11 = no increment. Address remains set to the value that the dst_data_end_ptr
memory location contains.

Source data width = halfword

b00 = reserved.

b01 = halfword.

b10 = word.

b11 = no increment. Address remains set to the value that the dst_data_end_ptr
memory location contains.

Source data width = word

b00 = reserved.

b01 = reserved.

b10 = word.

b11 = no increment. Address remains set to the value that the dst_data_end_ptr
memory location contains.

[29:28] dst_size Destination data size.

Note
 You must set dst_size to contain the same value that src_size contains.
2-42 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
[27:26] src_inc Set the bits to control the source address increment. The address increment depends on the
source data width as follows:

Source data width = byte
b00 = byte.

b01 = halfword.

b10 = word.

b11 = no increment. Address remains set to the value that the src_data_end_ptr
memory location contains.

Source data width = halfword

b00 = reserved.

b01 = halfword.

b10 = word.

b11 = no increment. Address remains set to the value that the src_data_end_ptr
memory location contains.

Source data width = word

b00 = reserved.

b01 = reserved.

b10 = word.

b11 = no increment. Address remains set to the value that the src_data_end_ptr
memory location contains.

[25:24] src_size Set the bits to match the size of the source data:

b00 = byte

b01 = halfword

b10 = word

b11 = reserved.

[23:21] dst_prot_ctrl Set the bits to control the state of HPROT[3:1] when the controller writes the destination data.

Bit [23] Controls the state of HPROT[3] as follows:

0 = HPROT[3] is LOW and the access is non-cacheable.

1 = HPROT[3] is HIGH and the access is cacheable.

Bit [22] Controls the state of HPROT[2] as follows:

0 = HPROT[2] is LOW and the access is non-bufferable.

1 = HPROT[2] is HIGH and the access is bufferable.

Bit [21] Controls the state of HPROT[1] as follows:

0 = HPROT[1] is LOW and the access is non-privileged.

1 = HPROT[1] is HIGH and the access is privileged.

Table 2-16 channel_cfg bit assignments (continued)

Bit Name Description
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-43

Functional Overview
[20:18] src_prot_ctrl Set the bits to control the state of HPROT[3:1] when the controller reads the source data.

Bit [20] Controls the state of HPROT[3] as follows:

0 = HPROT[3] is LOW and the access is non-cacheable.

1 = HPROT[3] is HIGH and the access is cacheable.

Bit [19] Controls the state of HPROT[2] as follows:

0 = HPROT[2] is LOW and the access is non-bufferable.

1 = HPROT[2] is HIGH and the access is bufferable.

Bit [18] Controls the state of HPROT[1] as follows:

0 = HPROT[1] is LOW and the access is non-privileged.

1 = HPROT[1] is HIGH and the access is privileged.

[17:14] R_power Set these bits to control how many DMA transfers can occur before the controller rearbitrates.
The possible arbitration rate settings are:

b0000 Arbitrates after each DMA transfer.

b0001 Arbitrates after 2 DMA transfers.

b0010 Arbitrates after 4 DMA transfers.

b0011 Arbitrates after 8 DMA transfers.

b0100 Arbitrates after 16 DMA transfers.

b0101 Arbitrates after 32 DMA transfers.

b0110 Arbitrates after 64 DMA transfers.

b0111 Arbitrates after 128 DMA transfers.

b1000 Arbitrates after 256 DMA transfers.

b1001 Arbitrates after 512 DMA transfers.

b1010-b1111 Arbitrates after 1024 DMA transfers. This means that no arbitration occurs
during the DMA transfer because the maximum transfer size is 1024.

Table 2-16 channel_cfg bit assignments (continued)

Bit Name Description
2-44 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
[13:4] n_minus_1 Prior to the DMA cycle commencing, these bits represent the total number of DMA transfers
that the DMA cycle contains. You must set these bits according to the size of DMA cycle that
you require.

The 10-bit value indicates the number of DMA transfers, minus one. The possible values are:

b000000000 = 1 DMA transfer

b000000001 = 2 DMA transfers

b000000010 = 3 DMA transfers

b000000011 = 4 DMA transfers

b000000100 = 5 DMA transfers

.

.

.

b111111111 = 1024 DMA transfers.

The controller updates this field immediately prior to it entering the arbitration process. This
enables the controller to store the number of outstanding DMA transfers that are necessary to
complete the DMA cycle.

[3] next_useburst Controls if the chnl_useburst_set [C] bit is set to a 1, when the controller is performing a
peripheral scatter-gather and is completing a DMA cycle that uses the alternate data structure.

Note
 Immediately prior to completion of the DMA cycle that the alternate data structure specifies,
the controller sets the chnl_useburst_set [C] bit to 0 if the number of remaining transfers is less
than 2R. The setting of the next_useburst bit controls if the controller performs an additional
modification of the chnl_useburst_set [C] bit.

In peripheral scatter-gather DMA cycle then after the DMA cycle that uses the alternate data
structure completes, either:

0 = the controller does not change the value of the chnl_useburst_set [C] bit. If the
chnl_useburst_set [C] bit is 0 then for all the remaining DMA cycles in the peripheral
scatter-gather transaction, the controller responds to requests on dma_req[] and dma_sreq[],
when it performs a DMA cycle that uses an alternate data structure.

1 = the controller sets the chnl_useburst_set [C] bit to a 1. Therefore, for the remaining DMA
cycles in the peripheral scatter-gather transaction, the controller only responds to requests on
dma_req[], when it performs a DMA cycle that uses an alternate data structure.

Table 2-16 channel_cfg bit assignments (continued)

Bit Name Description
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-45

Functional Overview
At the start of a DMA cycle, or 2R DMA transfer, the controller fetches the channel_cfg
from system memory. After it performs 2R, or N, transfers it stores the updated
channel_cfg in system memory.

The controller does not support a dst_size value that is different to the src_size value. If
it detects a mismatch in these values, it uses the src_size value for source and destination
and when it next updates the n_minus_1 field, it also sets the dst_size field to the same
as the src_size field.

After the controller completes the N transfers it sets the cycle_ctrl field to b000, to
indicate that the channel_cfg data is invalid. This prevents it from repeating the same
DMA transfer.

[2:0] cycle_ctrl The operating mode of the DMA cycle. The modes are:

b000 Stop. Indicates that the data structure is invalid.

b001 Basic. The controller must receive a new request, prior to it entering the
arbitration process, to enable the DMA cycle to complete.

b010 Auto-request. The controller automatically inserts a request for the
appropriate channel during the arbitration process. This means that the initial
request is sufficient to enable the DMA cycle to complete.

b011 Ping-pong. The controller performs a DMA cycle using one of the data
structures. After the DMA cycle completes, it performs a DMA cycle using the
other data structure. After the DMA cycle completes and provided that the
host processor has updated the original data structure, it performs a DMA
cycle using the original data structure. The controller continues to perform
DMA cycles until it either reads an invalid data structure or the host processor
changes the cycle_ctrl bits to b001 or b010. See Ping-pong on page 2-23.

b100 Memory scatter/gather. See Memory scatter-gather on page 2-27.

When the controller operates in memory scatter-gather mode, you must only
use this value in the primary data structure.

b101 Memory scatter/gather. See Memory scatter-gather on page 2-27.

When the controller operates in memory scatter-gather mode, you must only
use this value in the alternate data structure.

b110 Peripheral scatter/gather. See Peripheral scatter-gather on page 2-31.

When the controller operates in peripheral scatter-gather mode, you must only
use this value in the primary data structure.

b111 Peripheral scatter/gather. See Peripheral scatter-gather on page 2-31.

When the controller operates in peripheral scatter-gather mode, you must only
use this value in the alternate data structure.

Table 2-16 channel_cfg bit assignments (continued)

Bit Name Description
2-46 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Address calculation

To calculate the source address of a DMA transfer, the controller performs a left shift
operation on the n_minus_1 value by a shift amount that src_inc specifies, and then
subtracts the resulting value from the source data end pointer. Similarly, to calculate the
destination address of a DMA transfer, it performs a left shift operation on the
n_minus_1 value by a shift amount that dst_inc specifies, and then subtracts the
resulting value from the destination end pointer.

Depending on the value of src_inc and dst_inc, the source address and destination
address can be calculated using the equations:

src_inc=b00 and dst_inc=b00
• source address = src_data_end_ptr - n_minus_1

• destination address = dst_data_end_ptr - n_minus_1.

src_inc=b01 and dst_inc=b01
• source address = src_data_end_ptr - (n_minus_1 << 1)

• destination address = dst_data_end_ptr - (n_minus_1 << 1).

src_inc=b10 and dst_inc=b10
• source address = src_data_end_ptr - (n_minus_1 << 2)

• destination address = dst_data_end_ptr - (n_minus_1 << 2).

src_inc=b11 and dst_inc=b11
• source address = src_data_end_ptr

• destination address = dst_data_end_ptr.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-47

Functional Overview
Table 2-17 lists the destination addresses for a DMA cycle of six words.

Table 2-17 DMA cycle of six words using a word increment

Initial values of channel_cfg, prior to the DMA cycle

src_size=b10, dst_inc=b10, n_minus_1=b101, cycle_ctrl=1

DMA transfers

End Pointer Count Differencea

a. This value is the result of count being shifted left by the value of dst_inc.

Address

0x2AC 5 0x14 0x298

0x2AC 4 0x10 0x29C

0x2AC 3 0xC 0x2A0

0x2AC 2 0x8 0x2A4

0x2AC 1 0x4 0x2A8

0x2AC 0 0x0 0x2AC

Final values of channel_cfg, after the DMA cycle

src_size=b10, dst_inc=b10, n_minus_1=0, cycle_ctrl=0
2-48 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Functional Overview
Table 2-18 lists the destination addresses for a DMA transfer of 12 bytes using a
halfword increment.

Table 2-18 DMA cycle of 12 bytes using a halfword increment

Initial values of channel_cfg, prior to the DMA cycle

src_size=b00, dst_inc=b01, n_minus_1=b1011, cycle_ctrl=1, R_power=b11

DMA transfers

End Pointer Count Differencea

a. This value is the result of count being shifted left by the value of dst_inc.

Address

0x5E7 11 0x16 0x5D1

0x5E7 10 0x14 0x5D3

0x5E7 9 0x12 0x5D5

0x5E7 8 0x10 0x5D7

0x5E7 7 0xE 0x5D9

0x5E7 6 0xC 0x5DB

0x5E7 5 0xA 0x5DD

0x5E7 4 0x8 0x5DF

Values of channel_cfg after 2R DMA transfers

src_size=b00, dst_inc=b01, n_minus_1=b011, cycle_ctrl=1, R_power=b11

DMA transfers

End Pointer Count Difference Address

0x5E7 3 0x6 0x5E1

0x5E7 2 0x4 0x5E3

0x5E7 1 0x2 0x5E5

0x5E7 0 0x0 0x5E7

Final values of channel_cfg, after the DMA cycle

src_size=b00, dst_inc=b01, n_minus_1=0, cycle_ctrl=0b, R_power=b11

b. After the controller completes the DMA cycle it invalidates the channel_cfg
memory location by clearing the cycle_ctrl field.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 2-49

Functional Overview
2-50 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Chapter 3
Programmer’s Model

This chapter describes the µDMAC registers and provides information for programming
the controller. It contains the following sections:

• About the programmer’s model on page 3-2

• Register descriptions on page 3-3.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-1

Programmer’s Model
3.1 About the programmer’s model

The following applies to the registers that the controller provides:

• The base address of the controller is not fixed and can be different for any
particular system implementation. However, the offset of any particular register
from the base address is fixed.

• You must not access reserved or unused address locations because this can result
in unpredictable behavior of the controller.

• You must write reserved or unused bits of registers as zero, and ignore them on
read unless otherwise stated in the relevant text.

• A system or power-on reset resets all register bits to a logic 0 unless otherwise
stated in the relevant text.

• All registers support read/write accesses unless otherwise stated in the relevant
text. A write updates the contents of a register and a read returns the contents of
the register.
3-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2 Register descriptions

This section describes the registers with the exception of the test registers that Chapter 4
Programmer’s Model for Test describes. Table 3-1 lists the registers in base offset order.

Table 3-1 Register summary

Name
Base
offset

Type
Reset
value

Description

dma_status 0x000 RO 0x-0nn0000a DMA status on page 3-5

dma_cfg 0x004 WO - DMA configuration on page 3-7

ctrl_base_ptr 0x008 R/W 0x00000000 Channel control data base pointer on page 3-8

alt_ctrl_base_ptr 0x00C RO 0x000000nnb Channel alternate control data base pointer on page 3-9

dma_waitonreq_status 0x010 RO 0x00000000 Channel wait on request status on page 3-10

chnl_sw_request 0x014 WO - Channel software request on page 3-11

chnl_useburst_set 0x018 R/W 0x00000000 Channel useburst set on page 3-12

chnl_useburst_clr 0x01C WO - Channel useburst clear on page 3-14

chnl_req_mask_set 0x020 R/W 0x00000000 Channel request mask set on page 3-15

chnl_req_mask_clr 0x024 WO - Channel request mask clear on page 3-16

chnl_enable_set 0x028 R/W 0x00000000 Channel enable set on page 3-17

chnl_enable_clr 0x02C WO - Channel enable clear on page 3-18

chnl_pri_alt_set 0x030 R/W 0x00000000 Channel primary-alternate set on page 3-19

chnl_pri_alt_clr 0x034 WO - Channel primary-alternate clear on page 3-21

chnl_priority_set 0x038 R/W 0x00000000 Channel priority set on page 3-23

chnl_priority_clr 0x03C WO - Channel priority clear on page 3-24

- 0x040-0x48 - - Reserved

err_clr 0x04C R/W 0x00000000 Bus error clear on page 3-25

- 0x050-0xDFC - - Reserved

Test registers

- 0xE00-0xE48 - - See Chapter 4 Programmer’s Model for Test
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-3

Programmer’s Model
- 0xE4C-0xFCC - - Reserved

Identification registers

periph_id_4 0xFD0 RO 0x04 Peripheral identification 4 on page 3-30

- 0xFD4-0xFDC - - Reserved

periph_id_0 0xFE0 RO 0x30 Peripheral identification 0 on page 3-27

periph_id_1 0xFE4 RO 0xB2 Peripheral identification 1 on page 3-27

periph_id_2 0xFE8 RO 0x-Bc Peripheral identification 2 on page 3-28

periph_id_3 0xFEC RO 0x00 Peripheral identification 3 on page 3-29

pcell_id_0 0xFF0 RO 0x0D PrimeCell identification 0 on page 3-31

pcell_id_1 0xFF4 RO 0xF0 PrimeCell identification 1 on page 3-32

pcell_id_2 0xFF8 RO 0x05 PrimeCell identification 2 on page 3-32

pcell_id_3 0xFFC RO 0xB1 PrimeCell identification 3 on page 3-33

a. The reset value depends on the number of DMA channels that you configure the controller to use and if it includes the
integration test logic.

b. The reset value depends on the number of DMA channels that you configure the controller to use.
c. This value depends on the revision status of the controller.

Table 3-1 Register summary (continued)

Name
Base
offset

Type
Reset
value

Description
3-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.1 DMA status

The read-only dma_status Register returns the status of the controller. You cannot read
this register when the controller is in the reset state. Figure 3-1 shows the bit
assignments for this register.

Figure 3-1 dma_status Register bit assignments

Table 3-2 lists the bit assignments for this register.

Table 3-2 dma_status Register bit assignments

Bit Name Description

[31:28] test_status To reduce the gate count you can configure the controller, to exclude the integration test logic.
Read as:

0x0 = controller does not include the integration test logic

0x1 = controller includes the integration test logic

0x2-0xF = undefined.

[27:21] - Undefined.

[20:16] chnls_minus1 Number of available DMA channels minus one. For example:

b00000 = controller configured to use 1 DMA channel

b00001 = controller configured to use 2 DMA channels

b00010 = controller configured to use 3 DMA channels

.

.

.

b11111 = controller configured to use 32 DMA channels.

[15:8] - Undefined.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-5

Programmer’s Model
[7:4] state Current state of the control state machine. State can be one of the following:

b0000 = idle

b0001 = reading channel controller data

b0010 = reading source data end pointer

b0011 = reading destination data end pointer

b0100 = reading source data

b0101 = writing destination data

b0110 = waiting for DMA request to clear

b0111 = writing channel controller data

b1000 = stalled

b1001 = done

b1010 = peripheral scatter-gather transition

b1011-b1111 = undefined.

[3:1] - Undefined.

[0] master_enable Enable status of the controller:

0 = controller is disabled

1 = controller is enabled.

Table 3-2 dma_status Register bit assignments (continued)

Bit Name Description
3-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.2 DMA configuration

The write-only dma_cfg Register controls the configuration of the controller. Figure 3-2
shows the bit assignments for this register.

Figure 3-2 dma_cfg Register bit assignments

Table 3-3 lists the bit assignments for this register.

Table 3-3 dma_cfg Register bit assignments

Bit Name Description

[31:8] - Undefined. Write as zero.

[7:5] chnl_prot_ctrl Sets the AHB-Lite protection by controlling the HPROT[3:1] signal levels as follows:

Bit [7] Controls HPROT[3] to indicate if a cacheable access is occurring.

Bit [6] Controls HPROT[2] to indicate if a bufferable access is occurring.

Bit [5] Controls HPROT[1] to indicate if a privileged access is occurring.

Note
 When bit [n] = 1 then the corresponding HPROT is HIGH.

When bit [n] = 0 then the corresponding HPROT is LOW.

[4:1] - Undefined. Write as zero.

[0] master_enable Enable for the controller:

0 = disables the controller

1 = enables the controller.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-7

Programmer’s Model
3.2.3 Channel control data base pointer

The ctrl_base_ptr Register is a read/write register. You must configure this register so
that the base pointer points to a location in your system memory.

Note
 The controller provides no internal memory for storing the channel control data
structure.

The amount of system memory that you must assign to the controller depends on the
number of DMA channels and whether you configure it to use the alternate data
structure. Therefore, the base pointer address requires a variable number of bits that
depend on the system implementation.

You cannot read this register when the controller is in the reset state. Figure 3-3 shows
the possible bit assignments for this register, depending on the number of DMA
channels that you configure the controller to contain.

Figure 3-3 ctrl_base_ptr Register bit assignments
3-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
Table 3-4 lists the bit assignments for this register.

Where PL230_DMA_CHNL_BITS is defined as the minimum number of bits required to
represent the number of DMA channels, minus one. The values that
PL230_DMA_CHNL_BITS can be assigned are:

0 When the controller contains 1 DMA channel.

1 When the controller contains 2 DMA channels.

2 When the controller contains 3 or 4 DMA channels.

3 When the controller contains 5 to 8 DMA channels.

4 When the controller contains 9 to 16 DMA channels.

5 When the controller contains 17 to 32 DMA channels.

3.2.4 Channel alternate control data base pointer

The read-only alt_ctrl_base_ptr Register returns the base address of the alternate data
structure. You cannot read this register when the controller is in the reset state.
Figure 3-4 shows the bit assignments for this register.

Figure 3-4 alt_ctrl_base_ptr Register bit assignments

This register removes the necessity for application software to calculate the base
address of the alternate data structure. Table 3-5 lists the bit assignments for this
register.

Table 3-4 ctrl_base_ptr Register bit assignments

Bit Name Description

[31:PL230_DMA_CHNL_BITS +5] ctrl_base_ptr Pointer to the base address of the primary data structure.

See Channel control data structure on page 2-35 for information about
the data structure.

[PL230_DMA_CHNL_BITS+4:0] - Undefined. Write as zero.

Table 3-5 alt_ctrl_base_ptr Register bit assignments

Bit Name Description

[31:0] alt_ctrl_base_ptr Base address of the alternate data structure
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-9

Programmer’s Model
3.2.5 Channel wait on request status

The read-only dma_waitonreq_status Register returns the status of dma_waitonreq[].
You cannot read this register when the controller is in the reset state. Figure 3-5 shows
the bit assignments for this register.

Figure 3-5 dma_waitonreq_status Register bit assignments

Table 3-6 lists the bit assignments for this register.

Table 3-6 dma_waitonreq_status Register bit assignments

Bit Name Description

[31:0] dma_waitonreq_status Channel wait on request status.

Read as:

Bit [C] = 0 dma_waitonreq[C] is LOW.

Bit [C] = 1 dma_waitonreq[C] is HIGH.
3-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.6 Channel software request

The write-only chnl_sw_request Register enables you to generate a software DMA
request. Figure 3-6 shows the bit assignments for this register.

Figure 3-6 chnl_sw_request Register bit assignments

Table 3-7 lists the bit assignments for this register.

Table 3-7 chnl_sw_request Register bit assignments

Bit Name Description

[31:0] chnl_sw_request Set the appropriate bit to generate a software DMA request on the corresponding DMA
channel.

Write as:

Bit [C] = 0 Does not create a DMA request for channel C.

Bit [C] = 1 Creates a DMA request for channel C.

Writing to a bit where a DMA channel is not implemented does not create a DMA request
for that channel.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-11

Programmer’s Model
3.2.7 Channel useburst set

The read/write chnl_useburst_set Register disables the single request dma_sreq[] input
from generating requests, and therefore only the request, dma_req[], generates
requests. Reading the register returns the useburst status. Figure 3-7 shows the bit
assignments for this register.

Figure 3-7 chnl_useburst_set Register bit assignments

Table 3-8 lists the bit assignments for this register.

Table 3-8 chnl_useburst_set Register bit assignments

Bit Name Description

[31:0] chnl_useburst_set Returns the useburst status, or disables dma_sreq[C] from generating DMA requests.

Read as:

Bit [C] = 0 DMA channel C responds to requests that it receives on dma_req[C] or
dma_sreq[C]. The controller performs 2R, or single, bus transfers.

Bit [C] = 1 DMA channel C does not respond to requests that it receives on
dma_sreq[C]. The controller only responds to dma_req[C] requests and
performs 2R transfers.

Write as:

Bit [C] = 0 No effect. Use the chnl_useburst_clr Register to set bit [C] to 0.

Bit [C] = 1 Disables dma_sreq[C] from generating DMA requests. The controller
performs 2R transfers.

Writing to a bit where a DMA channel is not implemented has no effect.
3-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
After the penultimate 2R transfer completes, if the number of remaining transfers, N, is
less than 2R then the controller resets the chnl_useburst_set bit to 0. This enables you to
complete the remaining transfers using dma_req[] or dma_sreq[].

Note
 If you program channel_cfg with a value of N less than 2R then you must not set the
corresponding chnl_useburst_set bit, if the peripheral does not assert dma_req[].

In peripheral scatter-gather mode, if the next_useburst bit is set in channel_cfg then the
controller sets the chnl_useburst_set [C] bit to a 1, when it completes the DMA cycle
that uses the alternate data structure.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-13

Programmer’s Model
3.2.8 Channel useburst clear

The write-only chnl_useburst_clr Register enables dma_sreq[] to generate requests.
Figure 3-8 shows the bit assignments for this register.

Figure 3-8 chnl_useburst_clr Register bit assignments

Table 3-9 lists the bit assignments for this register.

Table 3-9 chnl_useburst_clr Register bit assignments

Bit Name Description

[31:0] chnl_useburst_clr Set the appropriate bit to enable dma_sreq[] to generate requests.

Write as:

Bit [C] = 0 No effect. Use the chnl_useburst_set Register to disable dma_sreq[] from
generating requests.

Bit [C] = 1 Enables dma_sreq[C] to generate DMA requests.

Writing to a bit where a DMA channel is not implemented has no effect.
3-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.9 Channel request mask set

The read/write chnl_req_mask_set Register disables a HIGH on dma_req[], or
dma_sreq[], from generating a request. Reading the register returns the request mask
status for dma_req[] and dma_sreq[]. Figure 3-9 shows the bit assignments for this
register.

Figure 3-9 chnl_req_mask_set Register bit assignments

Table 3-10 lists the bit assignments for this register.

Table 3-10 chnl_req_mask_set Register bit assignments

Bit Name Description

[31:0] chnl_req_mask_set Returns the request mask status of dma_req[] and dma_sreq[], or disables the
corresponding channel from generating DMA requests.

Read as:

Bit [C] = 0 External requests are enabled for channel C.

Bit [C] = 1 External requests are disabled for channel C.

Write as:

Bit [C] = 0 No effect. Use the chnl_req_mask_clr Register to enable DMA requests.

Bit [C] = 1 Disables dma_req[C] and dma_sreq[C] from generating DMA requests.

Writing to a bit where a DMA channel is not implemented has no effect.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-15

Programmer’s Model
3.2.10 Channel request mask clear

The write-only chnl_req_mask_clr Register enables a HIGH on dma_req[], or
dma_sreq[], to generate a request. Figure 3-10 shows the bit assignments for this
register.

Figure 3-10 chnl_req_mask_clr Register bit assignments

Table 3-11 lists the bit assignments for this register.

Table 3-11 chnl_req_mask_clr Register bit assignments

Bit Name Description

[31:0] chnl_req_mask_clr Set the appropriate bit to enable DMA requests for the channel corresponding to
dma_req[] and dma_sreq[].
Write as:

Bit [C] = 0 No effect. Use the chnl_req_mask_set Register to disable dma_req[] and
dma_sreq[] from generating requests.

Bit [C] = 1 Enables dma_req[C] or dma_sreq[C] to generate DMA requests.

Writing to a bit where a DMA channel is not implemented has no effect.
3-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.11 Channel enable set

The read/write chnl_enable_set Register enables you to enable a DMA channel.
Reading the register returns the enable status of the channels. Figure 3-11 shows the bit
assignments for this register.

Figure 3-11 chnl_enable_set Register bit assignments

Table 3-12 lists the bit assignments for this register.

Table 3-12 chnl_enable_set Register bit assignments

Bit Name Description

[31:0] chnl_enable_set Returns the enable status of the channels, or enables the corresponding channels.

Read as:

Bit [C] = 0 Channel C is disabled.

Bit [C] = 1 Channel C is enabled.

Write as:

Bit [C] = 0 No effect. Use the chnl_enable_clr Register to disable a channel.

Bit [C] = 1 Enables channel C.

Writing to a bit where a DMA channel is not implemented has no effect.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-17

Programmer’s Model
3.2.12 Channel enable clear

The write-only chnl_enable_clr Register enables you to disable a DMA channel.
Figure 3-12 shows the bit assignments for this register.

Figure 3-12 chnl_enable_clr Register bit assignments

Table 3-13 lists the bit assignments for this register.

Table 3-13 chnl_enable_clr Register bit assignments

Bit Name Description

[31:0] chnl_enable_clr Set the appropriate bit to disable the corresponding DMA channel.

Write as:

Bit [C] = 0 No effect. Use the chnl_enable_set Register to enable DMA channels.

Bit [C] = 1 Disables channel C.

Writing to a bit where a DMA channel is not implemented has no effect.

Note
 The controller disables a channel, by setting the appropriate bit, when either:

• it completes the DMA cycle

• it reads a channel_cfg memory location which has cycle_ctrl = b000

• an ERROR occurs on the AHB-Lite bus.
3-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.13 Channel primary-alternate set

The read/write chnl_pri_alt_set Register enables you to configure a DMA channel to
use the alternate data structure. Reading the register returns the status of which data
structure is in use for the corresponding DMA channel. Figure 3-13 shows the bit
assignments for this register.

Figure 3-13 chnl_pri_alt_set Register bit assignments

Table 3-14 on page 3-20 lists the bit assignments for this register.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-19

Programmer’s Model
Table 3-14 chnl_pri_alt_set Register bit assignments

Bit Name Description

[31:0] chnl_pri_alt_set Returns the channel control data structure status, or selects the alternate data structure for the
corresponding DMA channel. Read as:

Bit [C] = 0 DMA channel C is using the primary data structure.

Bit [C] = 1 DMA channel C is using the alternate data structure.

Write as:

Bit [C] = 0 No effect. Use the chnl_pri_alt_clr Register to set bit [C] to 0.

Bit [C] = 1 Selects the alternate data structure for channel C.

Writing to a bit where a DMA channel is not implemented has no effect.

Note
 The controller toggles the value of the chnl_pri_alt_set [C] bit after it completes:

• the four transfers that the primary data structure specifies for a memory scatter-gather,
or peripheral scatter-gather, DMA cycle

• all the transfers that the primary data structure specifies for a ping-pong DMA cycle

• all the transfers that the alternate data structure specifies for the following DMA cycle
types:

— ping-pong

— memory scatter-gather

— peripheral scatter-gather.
3-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.14 Channel primary-alternate clear

The write-only chnl_pri_alt_clr Register enables you to configure a DMA channel to
use the primary data structure. Figure 3-14 shows the bit assignments for this register.

Figure 3-14 chnl_pri_alt_clr Register bit assignments

Table 3-15 on page 3-22 lists the bit assignments for this register.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-21

Programmer’s Model
Table 3-15 chnl_pri_alt_clr Register bit assignments

Bit Name Description

[31:0] chnl_pri_alt_clr Set the appropriate bit to select the primary data structure for the corresponding DMA
channel.

Write as:

Bit [C] = 0 No effect. Use the chnl_pri_alt_set Register to select the alternate data
structure.

Bit [C] = 1 Selects the primary data structure for channel C.

Writing to a bit where a DMA channel is not implemented has no effect.

Note
 The controller toggles the value of the chnl_pri_alt_clr [C] bit after it completes:

• the four transfers that the primary data structure specifies for a memory scatter-gather,
or peripheral scatter-gather, DMA cycle

• all the transfers that the primary data structure specifies for a ping-pong DMA cycle

• all the transfers that the alternate data structure specifies for the following DMA cycle
types:

— ping-pong

— memory scatter-gather

— peripheral scatter-gather.
3-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.15 Channel priority set

The read/write chnl_priority_set Register enables you to configure a DMA channel to
use the high priority level. Reading the register returns the status of the channel priority
mask. Figure 3-15 shows the bit assignments for this register.

Figure 3-15 chnl_priority_set Register bit assignments

Table 3-16 lists the bit assignments for this register.

Table 3-16 chnl_priority_set Register bit assignments

Bit Name Description

[31:0] chnl_priority_set Returns the channel priority mask status, or sets the channel priority to high.

Read as:

Bit [C] = 0 DMA channel C is using the default priority level.

Bit [C] = 1 DMA channel C is using a high priority level.

Write as:

Bit [C] = 0 No effect. Use the chnl_priority_clr Register to set channel C to the default
priority level.

Bit [C] = 1 Channel C uses the high priority level.

Writing to a bit where a DMA channel is not implemented has no effect.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-23

Programmer’s Model
3.2.16 Channel priority clear

The write-only chnl_priority_clr Register enables you to configure a DMA channel to
use the default priority level. Figure 3-16 shows the bit assignments for this register.

Figure 3-16 chnl_priority_clr Register bit assignments

Table 3-17 lists the bit assignments for this register.

Table 3-17 chnl_priority_clr Register bit assignments

Bit Name Description

[31:0] chnl_priority_clr Set the appropriate bit to select the default priority level for the specified DMA channel.

Write as:

Bit [C] = 0 No effect. Use the chnl_priority_set Register to set channel C to the high
priority level.

Bit [C] = 1 Channel C uses the default priority level.

Writing to a bit where a DMA channel is not implemented has no effect.
3-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
3.2.17 Bus error clear

The read/write err_clr Register returns the status of dma_err, and enables you to set
dma_err LOW. Figure 3-17 shows the bit assignments for this register.

Figure 3-17 err_clr Register bit assignments

Table 3-18 lists the bit assignments for this register.

Table 3-18 err_clr Register bit assignments

Bit Name Description

[31:1] - Undefined. Write as zero.

[0] err_clr Returns the status of dma_err, or sets the signal LOW.

Read as:

0 = dma_err is LOW

1 = dma_err is HIGH.

Write as:

0 = No effect, status of dma_err is unchanged.

1 = Sets dma_err LOW.

For test purposes, use the err_set register to set dma_err HIGH. See Bus error set on page 4-11.

Note
 If you deassert dma_err at the same time as an ERROR occurs on the AHB-Lite bus, then the ERROR
condition takes precedence and dma_err remains asserted.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-25

Programmer’s Model
3.2.18 Peripheral Identification Registers

The peripheral identification registers are located at the following addresses:

0xFE0 periph_id_0 Register.

0xFE4 periph_id_1 Register.

0xFE8 periph_id_2 Register.

0xFEC periph_id_3 Register.

0xFD0 periph_id_4 Register.

Each register is read-only and provides eight bits of data. You can consider the
periph_id_[3:0] Registers conceptually as a single 32-bit register. Figure 3-18 shows the
bit assignments for these registers.

Figure 3-18 periph_id_[3:0] Register bit assignments

Table 3-19 lists the register bit assignments that the conceptual register provides.

Table 3-19 periph_id_[3:0] Register bit assignments

Bits Name Description

[31:28] Reserved Reserved for future use. Reads are undefined.

[27:24] mod_number Identifies data that is relevant to the ARM partner.

[23:20] revision Identifies the revision number of the peripheral. The revision number starts from 0 and is
revision-dependent.
3-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
The following sections describe the Peripheral Identification Registers:

• Peripheral identification 0

• Peripheral identification 1

• Peripheral identification 2 on page 3-28

• Peripheral identification 3 on page 3-29

• Peripheral identification 4 on page 3-30.

Peripheral identification 0

The read-only periph_id_0 Register is hard-coded, and therefore the fields in the
register control the reset value. Figure 3-19 shows the bit assignments for this register.

Figure 3-19 periph_id_0 Register bit assignments

Table 3-20 lists the bit assignments for this register.

Peripheral identification 1

The read-only periph_id_1 Register is hard-coded, and therefore the fields in the
register control the reset value. Figure 3-20 on page 3-28 shows the bit assignments for
this register.

[19] jedec_used Identifies if the controller uses the JEP106 manufacturer’s identity code.

[18:12] JEP106[6:0] Identifies the designer. This is set to 0x41, to indicate that ARM designed the peripheral.

[11:0] part_number Identifies the peripheral.

Table 3-19 periph_id_[3:0] Register bit assignments (continued)

Bits Name Description

Table 3-20 periph_id_0 Register bit assignments

Bit Name Description

[31:8] - Undefined

[7:0] part_number_0 These bits read back as 0x30
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-27

Programmer’s Model
Figure 3-20 periph_id_1 Register bit assignments

Table 3-21 lists the bit assignments for this register.

Peripheral identification 2

The read-only periph_id_2 Register is hard-coded, and therefore the fields in the
register control the reset value. Figure 3-21 shows the bit assignments for this register.

Figure 3-21 periph_id_2 Register bit assignments

Table 3-21 periph_id_1 Register bit assignments

Bit Name Description

[31:8] - Undefined.

[7:4] jep106_id_3_0 JEP106 identity code [3:0]. See the JEP106, Standard Manufacturer’s Identification Code.

These bits read back as 0xB because ARM is the designer of the peripheral.

[3:0] part_number_1 These bits read back as 0x2.
3-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
Table 3-22 lists the bit assignments for this register.

Peripheral identification 3

The read-only periph_id_3 Register is hard-coded, and therefore the fields in the
register control the reset value. Figure 3-22 shows the bit assignments for this register.

Figure 3-22 periph_id_3 Register bit assignments

Table 3-23 lists the bit assignments for this register.

Table 3-22 periph_id_2 Register bit assignments

Bit Name Description

[31:8] - Undefined.

[7:4] revision The revision status of the controller.

For revision r0p0, these bits read back as 0x0.

[3] jedec_used This indicates that the controller uses a manufacturer’s identity code that was allocated by
JEDEC according to JEP106.

These bits always read back as 0x1.

[2:0] jep106_id_6_4 JEP106 identity code [6:4]. See the JEP106, Standard Manufacturer’s Identification Code.

These bits read back as 0x3 because ARM is the designer of this peripheral.

Table 3-23 periph_id_3 Register bit assignments

Bit Name Description

[31:8] - Undefined.

[7:4] Reserved Reserved for future use. Reads are undefined.

[3:0] mod_number The customer must update this field if they modify the RTL of the controller.

ARM set this to 0x0.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-29

Programmer’s Model
Peripheral identification 4

The read-only periph_id_4 Register is hard-coded, and therefore the fields in the
register control the reset value. Figure 3-23 shows the bit assignments for this register.

Figure 3-23 periph_id_4 Register bit assignments

Table 3-24 lists the bit assignments for this register.

3.2.19 PrimeCell identification Registers

The PrimeCell ID value is a 32-bit value and to ensure that it is accessible in all systems,
the 32 bits are implemented as four 8-bit registers. In each register, only the least
significant eight bits contain the data. The PrimeCell identification registers are located
at the following addresses:

0xFF0 pcell_id_0 Register.

0xFF4 pcell_id_1 Register.

0xFF8 pcell_id_2 Register.

0xFFC pcell_id_3 Register.

You can consider the registers conceptually as a single 32-bit register that contains a
32-bit PrimeCell ID value. You can use the register for automatic BIOS configuration.
The pcell_id_[3:0] Register is set to 0xB105F00D. Figure 3-24 on page 3-31 shows the bit
assignments for these registers.

Table 3-24 periph_id_4 Register bit assignments

Bit Name Description

[31:8] - Undefined.

[7:4] block_count The number of 4KB address blocks you require, to access the registers, expressed in powers
of 2.

These bits read back as 0x0.

[3:0] jep106_c_code The JEP106 continuation code value represents how many 0x7F continuation characters occur
in the manufacturer’s identity code. See JEP106, Standard Manufacturer’s Identification
Code.

These bits read back as 0x4.
3-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
Figure 3-24 pcell_id_[3:0] Register bit assignments

Table 3-25 lists the register bit assignments that the conceptual register provides.

The following subsections describe the PrimeCell Identification Registers:

• PrimeCell identification 0

• PrimeCell identification 1 on page 3-32

• PrimeCell identification 2 on page 3-32

• PrimeCell identification 3 on page 3-33.

PrimeCell identification 0

The read-only pcell_id_0 Register is hard-coded, and therefore the fields in the register
control the reset value. Figure 3-25 on page 3-32 shows the bit assignments for this
register.

Table 3-25 pcell_id_[3:0] Register bit assignments

Bits Name Description

[31:24] pcell_id_3 These bits read back as 0xB1

[23:16] pcell_id_2 These bits read back as 0x05

[15:8] pcell_id_1 These bits read back as 0xF0

[7:0] pcell_id_0 These bits read back as 0x0D
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-31

Programmer’s Model
Figure 3-25 pcell_id_0 Register bit assignments

Table 3-26 lists the bit assignments for this register.

PrimeCell identification 1

The read-only pcell_id_1 Register is hard-coded, and therefore the fields in the register
control the reset value. Figure 3-26 shows the bit assignments for this register.

Figure 3-26 pcell_id_1 Register bit assignments

Table 3-27 lists the bit assignments for this register.

PrimeCell identification 2

The read-only pcell_id_2 Register is hard-coded, and therefore the fields in the register
control the reset value. Figure 3-27 on page 3-33 shows the bit assignments for this
register.

Table 3-26 pcell_id_0 Register bit assignments

Bit Name Description

[31:8] - Undefined

[7:0] pcell_id_0 These bits read back as 0x0D

Table 3-27 pcell_id_1 Register bit assignments

Bit Name Description

[31:8] - Undefined

[7:0] pcell_id_1 These bits read back as 0xF0
3-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model
Figure 3-27 pcell_id_2 Register bit assignments

Table 3-28 lists the bit assignments for this register.

PrimeCell identification 3

The read-only pcell_id_3 Register is hard-coded, and therefore the fields in the register
control the reset value. Figure 3-28 shows the bit assignments for this register.

Figure 3-28 pcell_id_3 Register bit assignments

Table 3-29 lists the bit assignments for this register.

Table 3-28 pcell_id_2 Register bit assignments

Bit Name Description

[31:8] - Undefined

[7:0] pcell_id_2 These bits read back as 0x05

Table 3-29 pcell_id_3 Register bit assignments

Bit Name Description

[31:8] - Undefined

[7:0] pcell_id_3 These bits read back as 0xB1
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 3-33

Programmer’s Model
3-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Chapter 4
Programmer’s Model for Test

This chapter describes the additional logic for functional verification and production
testing. It contains the following section:

• Register descriptions on page 4-2.

Note
 To enable you to access the test registers then you must configure the controller to
include the integration test logic. See the PrimeCell µDMA Controller (PL230)
Configuration Guide for information about how to include the integration test logic.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 4-1

Programmer’s Model for Test
4.1 Register descriptions

This section describes the test registers. All register addresses in the controller are fixed
relative to its base address. Table 4-1 lists the test registers in base offset order.

Table 4-1 Test register summary

Name
Base
offset

Type
Reset
value

Description

integration_cfg 0xE00 RW 0x0 Integration configuration on page 4-3

- 0xE04 - - Reserved

stall_status 0xE08 RO 0x0 DMA stall status on page 4-4

- 0xE0C - - Reserved

dma_req_status 0xE10 RO 0x00000000 DMA request status on page 4-5

- 0xE14 - - Reserved

dma_sreq_status 0xE18 RO 0x00000000 DMA single request status on page 4-6

- 0xE1C - - Reserved

dma_done_set 0xE20 RW 0x00000000 DMA done set on page 4-7

dma_done_clr 0xE24 WO - DMA done clear on page 4-8

dma_active_set 0xE28 RW 0x00000000 DMA active set on page 4-9

dma_active_clr 0xE2C WO - DMA active clear on page 4-10

- 0xE30-0xE44 - - Reserved

err_set 0xE48 WO - Bus error set on page 4-11
4-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model for Test
4.1.1 Integration configuration

The read/write integration_cfg Register selects which logic controls the dma_active[],
dma_done[], and dma_err outputs. You cannot read this register when the controller
is in the reset state. Figure 4-1 shows the bit assignments for this register.

Figure 4-1 integration_cfg Register bit assignments

Table 4-2 lists the bit assignments for this register.

Table 4-2 integration_cfg Register bit assignments

Bit Name Description

[31:1] - Undefined. Write as zero.

[0] int_test_en Enables the integration test logic:

0 = disables the integration test logic.

1 = integration test logic controls the status of:

• dma_active[]
• dma_done[]

• dma_err.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 4-3

Programmer’s Model for Test
4.1.2 DMA stall status

The read-only dma_stall_status Register returns the status of dma_stall, irrespective of
the status of the int_test_en bit. You cannot read this register when the controller is in
the reset state. Figure 4-2 shows the bit assignments for this register.

Figure 4-2 dma_stall_status Register bit assignments

Table 4-3 lists the bit assignments for this register.

Table 4-3 dma_stall_status Register bit assignments

Bit Name Description

[31:1] - Undefined.

[0] dma_stall_status Returns the status of dma_stall.
Read as:

0 = dma_stall is LOW

1 = dma_stall is HIGH.
4-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model for Test
4.1.3 DMA request status

The read-only dma_req_status Register returns the status of dma_req[], irrespective of
the status of the int_test_en bit. You cannot read this register when the controller is in
the reset state. Figure 4-3 shows the bit assignments for this register.

Figure 4-3 dma_req_status Register bit assignments

Table 4-4 lists the bit assignments for this register.

Table 4-4 dma_req_status Register bit assignments

Bit Name Description

[31:0] dma_req_status Returns the status of the DMA request signals, dma_req[].

Read as:

Bit [C] = 0 dma_req[C] is LOW.

Bit [C] = 1 dma_req[C] is HIGH.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 4-5

Programmer’s Model for Test
4.1.4 DMA single request status

The read-only dma_sreq_status Register returns the status of dma_sreq[], irrespective
of the status of the int_test_en bit. You cannot read this register when the controller is
in the reset state. Figure 4-4 shows the bit assignments for this register.

Figure 4-4 dma_sreq_status Register bit assignments

Table 4-5 lists the bit assignments for this register.

Table 4-5 dma_sreq_status Register bit assignments

Bit Name Description

[31:0] dma_sreq_status Returns the status of the DMA single request signals, dma_sreq[].

Read as:

Bit [C] = 0 dma_sreq[C] is LOW.

Bit [C] = 1 dma_sreq[C] is HIGH.
4-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model for Test
4.1.5 DMA done set

The read/write dma_done_set Register enables you to assert the dma_done[] signals.
Reading the register returns the status of dma_done[]. Figure 4-5 shows the bit
assignments for this register.

Figure 4-5 dma_done_set Register bit assignments

Table 4-6 lists the bit assignments for this register.

Table 4-6 dma_done_set Register bit assignments

Bit Name Description

[31:0] dma_done_set Returns the status of dma_done[], or sets the signal HIGH.

Reads, when int_test_en = 1a:

Bit [C] = 0 dma_done[C] is LOW.

Bit [C] = 1 dma_done[C] is HIGH.

Write as:

Bit [C] = 0 No effect. Use the dma_done_clr Register to set dma_done[C] LOW.

Bit [C] = 1 Sets dma_done[C] HIGH, if int_test_en = 1b.

Writing to a bit where a DMA channel is not implemented has no effect.

a. When int_test_en = 0, reads might not return the correct status of dma_done[C].
b. When int_test_en = 0, writes have no effect on the status of dma_done[C].
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 4-7

Programmer’s Model for Test
4.1.6 DMA done clear

The write-only dma_done_clr Register enables you to deassert the dma_done[] signals.
Figure 4-6 shows the bit assignments for this register.

Figure 4-6 dma_done_clr Register bit assignments

Table 4-7 lists the bit assignments for this register.

Table 4-7 dma_done_clr Register bit assignments

Bit Name Description

[31:0] dma_done_clr Enables you to set the dma_done[] signals LOW.

Write as:

Bit [C] = 0 No effect. Use the dma_done_set Register to set dma_done[C] HIGH.

Bit [C] = 1 Sets dma_done[C] LOW, if int_test_en = 1a.

Writing to a bit where a DMA channel is not implemented has no effect.

a. When int_test_en = 0, writes have no effect on the status of dma_done[C].
4-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model for Test
4.1.7 DMA active set

The read/write dma_active_set Register enables you to assert the dma_active[] signals.
Reading the register returns the status of dma_active[]. Figure 4-7 shows the bit
assignments for this register.

Figure 4-7 dma_active_set Register bit assignments

Table 4-8 lists the bit assignments for this register.

Table 4-8 dma_active_set Register bit assignments

Bit Name Description

[31:0] dma_active_set Returns the status of dma_active[], or sets the signal HIGH.

Reads, when int_test_en = 1a:

Bit [C] = 0 dma_active[C] is LOW.

Bit [C] = 1 dma_active[C] is HIGH.

Write as:

Bit [C] = 0 No effect. Use the dma_active_clr Register to set dma_active[C] LOW.

Bit [C] = 1 Sets dma_active[C] HIGH, if int_test_en = 1b.

Writing to a bit where a DMA channel is not implemented has no effect.

a. When int_test_en = 0, reads might not return the correct status of dma_active[C].
b. When int_test_en = 0, writes have no effect on the status of dma_active[C].
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 4-9

Programmer’s Model for Test
4.1.8 DMA active clear

The write-only dma_active_clr Register enables you to deassert the dma_active[]
signals. Figure 4-8 shows the bit assignments for this register.

Figure 4-8 dma_active_clr Register bit assignments

Table 4-9 lists the bit assignments for this register.

Table 4-9 dma_active_clr Register bit assignments

Bit Name Description

[31:0] dma_active_clr Enables you to set the dma_active[] signals LOW.

Write as:

Bit [C] = 0 No effect. Use the dma_active_set Register to set dma_active[C] HIGH.

Bit [C] = 1 Sets dma_active[C] LOW, if int_test_en = 1a.

Writing to a bit where a DMA channel is not implemented has no effect.

a. When int_test_en = 0, writes have no effect on the status of dma_active[C].
4-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Programmer’s Model for Test
4.1.9 Bus error set

The write-only err_set Register enables you to assert dma_err. Figure 4-9 shows the bit
assignments for this register.

Figure 4-9 err_set Register bit assignments

Table 4-10 lists the bit assignments for this register.

Table 4-10 err_set Register bit assignments

Bit Name Description

[31:1] - Undefined. Write as zero.

[0] err_set Sets dma_err HIGH.

Write as:

0 = no effect. Use the err_clr Register to set dma_err LOW. See Bus error clear on page 3-25.

1 = sets dma_err HIGH, if int_test_en = 1a.

a. When int_test_en = 0, writes have no effect on the status of dma_err.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. 4-11

Programmer’s Model for Test
4-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Appendix A
Signal Descriptions

This appendix describes the signals that the µDMAC uses. It contains the following
sections:

• Clock and reset signals on page A-2

• AHB-Lite master interface signals on page A-3

• APB interface signals on page A-5

• DMA control signals on page A-6

• Interrupt signal on page A-7.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 Clock and reset signals

Table A-1 lists the clock and reset signals.

Table A-1 Clock and reset signals

Signal Type Source Description

hclk Input Clock source Clock for the AHB domain.

hresetn Input Reset source Reset for the AHB domain. This signal is active LOW.
A-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Signal Descriptions
A.2 AHB-Lite master interface signals

The controller has the following AHB-Lite master signals:

• haddr[31:0]
• hburst[2:0]
• hmastlock
• hprot[3:0]
• hrdata[31:0]
• hready
• hresp
• hsize[2:0]
• htrans[1:0]
• hwdata[31:0]
• hwrite.

See the AMBA 3 AHB-Lite Protocol v1.0 Specification for a description of these signals.

Note
 The controller ties some of these signals to a LOW, as Signals tied to a steady state
describes.

A.2.1 Signals tied to a steady state

The controller does not implement all of the functionality that the AMBA 3 AHB-Lite
Protocol v1.0 Specification describes and therefore some signals are tied to a steady
state. Table A-2 lists these signals and the functionality that they provide.

Table A-2 Steady state signals

Signal Type Destination Description

hburst[2:0] Output AHB bus The controller does not support burst transfers, therefore these signals are tied
LOW, to indicate a SINGLE transfer.

hmastlock Output AHB bus The controller does not support locked transfers and therefore this signal is tied
LOW.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. A-3

Signal Descriptions
hprot[0] Output AHB bus The controller always signals a data access using this protection signal and
therefore this signal is tied HIGH.

hsize[2] Output AHB bus The controller does not support data bus widths greater than 32 bits and
therefore this signal is tied LOW.

htrans[1] Output AHB bus The controller does not support BUSY or SEQ transfers and therefore this
signal is tied LOW.

Table A-2 Steady state signals (continued)

Signal Type Destination Description
A-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Signal Descriptions
A.3 APB interface signals

The controller uses the following APB signals:

• paddr[11:0]
• penable
• prdata[31:0]
• psel
• pwdata[31:0]
• pwrite.

See the AMBA Specification (Rev 2.0) for a description of these signals.

paddr[11:0] deviates from the functionality described in the AMBA Specification
(Rev 2.0). Table A-3 lists the functionality.

The controller also provides an additional signal, pclken. This signal is not included in
the AMBA Specification (Rev 2.0). Table A-4 lists this signal and the functionality that
it provides.

Table A-3 paddr[] bus

Signal Type Source Description

paddr[11:0] Input APB

master

The controller only supports single-word 32-bit accesses. The controller does not use
the paddr[1:0] signals and it therefore interprets any byte or half-word access, as a
word access.

Table A-4 pclken signal

Signal Type Source Description

pclken Input Clock

generator

Clock enable signal that enables the APB interface to operate at either:

• the hclk frequency

• a divided hclk frequency that is an integer multiple of hclk.

Note
 If pclken is not used then it must be tied HIGH. This results in the APB interface

being clocked directly by hclk.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. A-5

Signal Descriptions
A.4 DMA control signals

Table A-5 lists the DMA control signals.

Where n = PL230_DMA_CHNLS-1.

Note
 PL230_DMA_CHNLS is a configuration option. See the PrimeCell µDMA Controller (PL230)
Configuration Guide for information about how to configure this option.

Table A-5 DMA control signals

Signal Type
Source/
destination

Description

dma_active[n:0] Output Peripheral When HIGH, it indicates that the controller is servicing the
corresponding DMA channel. Only one dma_active[] signal can be
active at any one time.

dma_done[n:0] Output Interrupt

controller

Pulses HIGH, for a single AHB clock period, on completion of the
corresponding DMA cycle. For enabled channels, only one
dma_done[] signal can be active at any one time.

When you disable a channel then:

dma_done[C] = dma_req[C] OR (dma_sreq[C]a AND dma_waitonreq[C])

dma_req[n:0] Input Peripheral Request. When HIGH, it indicates that the peripheral is requesting
the controller to service the corresponding DMA channel. The
controller services the request by performing the DMA cycle using
2R DMA transfers.

dma_sreq[n:0] Input Peripheral Single request. When HIGH, it indicates that the peripheral is
requesting the controller to service the corresponding DMA channel.
The controller services the request by performing the DMA cycle
using single DMA transfers.

dma_stall Input Peripheral When HIGH, it indicates that a peripheral is requesting the controller
to stall the current DMA transfer.

dma_waitonreq[n:0] Input Peripheral When HIGH, it prevents dma_active[] from deasserting until
dma_req[] and dma_sreq[] are LOW.

a. The corresponding chnl_useburst_set [C] bit must be 0. See Table 2-6 on page 2-11.
A-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Signal Descriptions
A.5 Interrupt signal

Table A-6 lists the interrupt signal.

Table A-6 Interrupt signal

Signal Type Destination Description

dma_err Output Interrupt controller When HIGH, it indicates that an ERROR has occurred on the AHB bus.
When an ERROR occurs, the controller disables the active DMA
channel by writing to the appropriate bit in the chnl_enable_set Register.

To clear the interrupt, you must use the Bus error clear on page 3-25 to
set dma_err LOW.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. A-7

Signal Descriptions
A-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Glossary

This glossary describes some of the terms used in technical documents from ARM.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only
supports a subset of the functionality provided by the AMBA AXI protocol. The full
AMBA AHB protocol specification includes a number of features that are not
commonly required for master and slave IP developments and ARM recommends only
a subset of the protocol is usually used. This subset is defined as the AMBA AHB-Lite
protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA
is the ARM open standard for on-chip buses. It is an on-chip bus specification that
details a strategy for the interconnection and management of functional blocks that
make up a System-on-Chip (SoC). It aids in the development of embedded processors
with one or more CPUs or signal processors and multiple peripherals. AMBA
complements a reusable design methodology by defining a common backbone for SoC
modules.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports.
Connection to the main system bus is through a system-to-peripheral bus bridge that
helps to reduce system power consumption.

AHB See Advanced High-performance Bus.

AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all of the basic
functions required by the majority of AMBA AHB slave and master designs,
particularly when used with a multi-layer AMBA interconnect. In most cases, the extra
facilities provided by a full AMBA AHB interface are implemented more efficiently by
using an AMBA AXI protocol interface.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the
data size is said to be aligned. Aligned words and halfwords have addresses that are
divisible by four and two respectively. The terms word-aligned and halfword-aligned
therefore stipulate addresses that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are
stored at increasing addresses in memory.

See also Little-endian and Endianness.

Byte An 8-bit data item.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

DMA See Direct Memory Access.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data
word are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian.

Halfword A 16-bit data item.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored
at increasing addresses in memory.

See also Big-endian and Endianness.
Glossary-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

Glossary
Memory bank One of two or more parallel divisions of interleaved memory, usually one word wide,
that enable reads and writes of multiple words at a time, rather than single words. All
memory banks are addressed simultaneously and a bank enable or chip select signal
determines which of the banks is accessed for each transfer. Accesses to sequential
word addresses cause accesses to sequential banks. This enables the delays associated
with accessing a bank to occur during the access to its adjacent bank, speeding up
memory transfers.

Microprocessor See Processor.

Multi-layer An interconnect scheme similar to a cross-bar switch. Each master on the interconnect
has a direct link to each slave, The link is not shared with other masters. This enables
each master to process transfers in parallel with other masters. Contention only occurs
in a multi-layer interconnect at a payload destination, typically the slave.

Multi-master AHB Typically a shared, not multi-layer, AHB interconnect scheme. More than one master
connects to a single AMBA AHB link. In this case, the bus is implemented with a set of
full AMBA AHB master interfaces. Masters that use the AMBA AHB-Lite protocol
must connect through a wrapper to supply full AMBA AHB master signals to support
multi-master operation.

Processor A processor is the circuitry in a computer system required to process data using the
computer instructions. It is an abbreviation of microprocessor. A clock source, power
supplies, and main memory are also required to create a minimum complete working
computer system.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as 0 and read as 0.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines
the data size is said to be unaligned. For example, a word stored at an address that is not
divisible by four.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

Word A 32-bit data item.
ARM DDI 0417A Copyright © 2007 ARM Limited. All rights reserved. Glossary-3

Glossary
Glossary-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0417A

	PrimeCell ?DMA Controller (PL230) Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Typographical
	Timing diagrams
	Signals
	Numbering

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on this product
	Feedback on this manual

	Introduction
	1.1 About the µDMAC
	1.1.1 Features of the controller

	1.2 Terminology

	Functional Overview
	2.1 Functional description
	2.1.1 APB block
	2.1.2 AHB block
	2.1.3 DMA control block
	2.1.4 Example system configuration

	2.2 Functional operation
	2.2.1 APB slave interface
	2.2.2 AHB master interface
	Transfer types
	Transfer data width
	Protection control
	Address increments

	2.2.3 DMA control
	Handshake rules
	DMA signaling
	DMA arbitration rate
	Priority
	DMA cycle types
	Error signaling

	2.2.4 Channel control data structure
	Source data end pointer
	Destination data end pointer
	Control data configuration
	Address calculation

	Programmer’s Model
	3.1 About the programmer’s model
	3.2 Register descriptions
	3.2.1 DMA status
	3.2.2 DMA configuration
	3.2.3 Channel control data base pointer
	3.2.4 Channel alternate control data base pointer
	3.2.5 Channel wait on request status
	3.2.6 Channel software request
	3.2.7 Channel useburst set
	3.2.8 Channel useburst clear
	3.2.9 Channel request mask set
	3.2.10 Channel request mask clear
	3.2.11 Channel enable set
	3.2.12 Channel enable clear
	3.2.13 Channel primary-alternate set
	3.2.14 Channel primary-alternate clear
	3.2.15 Channel priority set
	3.2.16 Channel priority clear
	3.2.17 Bus error clear
	3.2.18 Peripheral Identification Registers
	Peripheral identification 0
	Peripheral identification 1
	Peripheral identification 2
	Peripheral identification 3
	Peripheral identification 4

	3.2.19 PrimeCell identification Registers
	PrimeCell identification 0
	PrimeCell identification 1
	PrimeCell identification 2
	PrimeCell identification 3

	Programmer’s Model for Test
	4.1 Register descriptions
	4.1.1 Integration configuration
	4.1.2 DMA stall status
	4.1.3 DMA request status
	4.1.4 DMA single request status
	4.1.5 DMA done set
	4.1.6 DMA done clear
	4.1.7 DMA active set
	4.1.8 DMA active clear
	4.1.9 Bus error set

	Signal Descriptions
	A.1 Clock and reset signals
	A.2 AHB-Lite master interface signals
	A.2.1 Signals tied to a steady state

	A.3 APB interface signals
	A.4 DMA control signals
	A.5 Interrupt signal

	Glossary

