
Arm® DynamIQ™ Shared Unit-AE
Revision: r1p1

Technical Reference Manual

Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved.
101322_0101_04_en

Arm® DynamIQ™ Shared Unit-AE
Technical Reference Manual
Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-00 25 October 2018 Confidential First development release for r0p0

0000-01 04 December 2018 Confidential First early access release for r0p0

0100-00 30 June 2019 Confidential First development release for r1p0

0100-01 31 October 2019 Confidential Second development release for r1p0

0100-02 31 January 2020 Confidential First early access release for r1p0

0101-03 30 April 2020 Confidential First early access release for r1p1

0101-04 29 September 2020 Non-Confidential Second early access release for r1p1

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

 Arm® DynamIQ™ Shared Unit-AE

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Copyright © 2018–2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

 Arm® DynamIQ™ Shared Unit-AE

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

https://developer.arm.com

Contents
Arm® DynamIQ™ Shared Unit-AE Technical
Reference Manual

Preface
About this book 12
Feedback .. 16

Part A Functional Description

Chapter A1 Introduction
A1.1 About the DSU-AE A1-20
A1.2 Features .. A1-22
A1.3 Split-Lock A1-23
A1.4 Implementation options A1-29
A1.5 Supported standards and specifications A1-34
A1.6 Test features .. A1-35
A1.7 Design tasks .. A1-36
A1.8 Product revisions A1-37

Chapter A2 Technical overview
A2.1 Components .. A2-40
A2.2 Interfaces A2-43
A2.3 RAS support .. A2-47
A2.4 Page-based hardware attributes A2-48
A2.5 L3 memory system variants A2-49

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Chapter A3 Clocks and resets
A3.1 Clocks A3-52
A3.2 Resets A3-54

Chapter A4 Power management
A4.1 About DSU-AE power management A4-58
A4.2 Power mode control A4-59
A4.3 Communication with the power controller A4-60
A4.4 L3 RAM power control A4-61
A4.5 Power modes A4-63
A4.6 Power operating requirements .. A4-69
A4.7 Wait For Interrupt and Wait For Event A4-71
A4.8 Clock, voltage, and power domains A4-72
A4.9 Cluster powerdown A4-74

Chapter A5 L3 cache
A5.1 About the L3 cache A5-78
A5.2 L3 cache allocation policy A5-79
A5.3 L3 cache partitioning A5-80
A5.4 Cache stashing A5-81
A5.5 L3 cache ECC and parity A5-82
A5.6 L3 cache data RAM latency A5-85
A5.7 Cache slices and portions A5-87

Chapter A6 ACE master interface
A6.1 About the ACE master interface .. A6-90
A6.2 ACE configurations A6-91
A6.3 ACE features A6-92
A6.4 ACE master interface attributes A6-93
A6.5 ACE channel properties A6-96
A6.6 ACE transactions A6-97
A6.7 Support for memory types A6-99
A6.8 Read response .. A6-100
A6.9 Write response .. A6-101
A6.10 Barriers .. A6-102
A6.11 AXI compatibility mode .. A6-103
A6.12 ACE privilege information .. A6-104

Chapter A7 CHI master interface
A7.1 About the CHI master interface A7-106
A7.2 CHI version A7-107
A7.3 CHI features .. A7-108
A7.4 CHI configurations A7-109
A7.5 Attributes of the CHI master interface A7-110
A7.6 CHI channel properties .. A7-112
A7.7 CHI transactions .. A7-113
A7.8 Use of DataSource .. A7-116

Chapter A8 ACP slave interface
A8.1 About the ACP A8-118

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

A8.2 ACP features A8-119
A8.3 ACP ACE5-Lite subset .. A8-120
A8.4 ACP transaction types A8-121
A8.5 ACP performance .. A8-123

Chapter A9 AXI master peripheral port
A9.1 About the peripheral port A9-126
A9.2 Transaction ID encoding A9-127

Part B Register Descriptions

Chapter B1 Control registers
B1.1 About the control registers B1-132
B1.2 AArch32 control register summary .. B1-133
B1.3 AArch64 control register summary .. B1-134
B1.4 CLUSTERACPSID, Cluster ACP Scheme ID Register B1-135
B1.5 CLUSTERACTLR, Cluster Auxiliary Control Register B1-137
B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control Register B1-138
B1.7 CLUSTERCFR, Cluster Configuration Register .. B1-141
B1.8 CLUSTERECTLR, Cluster Extended Control Register B1-145
B1.9 CLUSTERIDR, Cluster Main Revision ID Register B1-149
B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter Register .. B1-151
B1.11 CLUSTERL3MISS, Cluster L3 Miss Counter Register .. B1-153
B1.12 CLUSTERPARTCR, Cluster Partition Control Register B1-155
B1.13 CLUSTERPWRCTLR, Cluster Power Control Register B1-159
B1.14 CLUSTERPWRDN, Cluster Powerdown Register B1-161
B1.15 CLUSTERPWRSTAT, Cluster Power Status Register B1-163
B1.16 CLUSTERREVIDR, Cluster Revision ID Register B1-165
B1.17 CLUSTERSTASHSID, Cluster Stash Scheme ID Register B1-167
B1.18 CLUSTERTHREADSID, Cluster Thread Scheme ID Register B1-169
B1.19 CLUSTERTHREADSIDOVR, Cluster Thread Scheme ID Override Register B1-171

Chapter B2 Error system registers
B2.1 About the error system registers B2-174
B2.2 Error system register summary B2-175
B2.3 ERR1CTLR, Error Record Control Register .. B2-176
B2.4 ERR1FR, Error Record Feature Register B2-178
B2.5 ERR1MISC0, Error Record Miscellaneous Register 0 .. B2-180
B2.6 ERR1MISC1, Error Record Miscellaneous Register 1 .. B2-182
B2.7 ERR1PFGCDNR, Error Pseudo Fault Generation Count Down Register B2-183
B2.8 ERR1PFGCTLR, Error Pseudo Fault Generation Control Register B2-184
B2.9 ERR1PFGFR, Error Pseudo Fault Generation Feature Register B2-186
B2.10 ERR1STATUS, Error Record Primary Status Register B2-188

Chapter B3 PMU registers
B3.1 About the PMU registers B3-192
B3.2 AArch32 PMU register summary B3-193
B3.3 AArch64 PMU register summary B3-195
B3.4 CLUSTERPMCR, Cluster Performance Monitors Control Register B3-196
B3.5 CLUSTERPMCNTENSET, Cluster Count Enable Set Register B3-199

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

B3.6 CLUSTERPMCNTENCLR, Cluster Count Enable Clear Register B3-201
B3.7 CLUSTERPMOVSSET, Cluster Overflow Flag Status Set Register B3-203
B3.8 CLUSTERPMOVSCLR, Cluster Overflow Flag Status Clear Register B3-205
B3.9 CLUSTERPMSELR, Cluster Event Counter Selection Register B3-207
B3.10 CLUSTERPMINTENSET, Cluster Interrupt Enable Set Register B3-209
B3.11 CLUSTERPMINTENCLR, Cluster Interrupt Enable Clear Register B3-211
B3.12 CLUSTERPMCCNTR, Cluster Performance Monitors Cycle Counter B3-213
B3.13 CLUSTERPMXEVTYPER, Cluster Selected Event Type Register B3-215
B3.14 CLUSTERPMXEVCNTR, Cluster Selected Event Counter Register B3-217
B3.15 CLUSTERPMMDCR, Cluster Monitor Debug Configuration Register B3-219
B3.16 CLUSTERPMCEID0, Cluster Common Event Identification Register 0 B3-221
B3.17 CLUSTERPMCEID1, Cluster Common Event Identification Register 1 B3-223
B3.18 CLUSTERCLAIMSET, Cluster Claim Tag Set Register B3-225
B3.19 CLUSTERCLAIMCLR, Cluster Claim Tag Clear Register B3-227
B3.20 CLUSTERPMEVTYPER<n>, Cluster Event Type Register B3-229
B3.21 CLUSTERPMEVCNTR<n>, Cluster Event Counter Register B3-230

Part C Debug

Chapter C1 Debug
C1.1 About debug methods C1-234
C1.2 Terminology C1-235
C1.3 About the DebugBlock C1-236
C1.4 DebugBlock components .. C1-238
C1.5 About the Embedded Cross Trigger .. C1-239
C1.6 CTI triggers C1-241

Chapter C2 PMU
C2.1 About the PMU .. C2-244
C2.2 PMU functional description C2-245
C2.3 PMU events C2-246
C2.4 PMU interrupts .. C2-249

Chapter C3 Debug registers
C3.1 Debug memory map C3-252
C3.2 CTI register summary C3-260
C3.3 CTIPIDR0, CTI Peripheral Identification Register 0 .. C3-262
C3.4 CTIPIDR1, CTI Peripheral Identification Register 1 .. C3-263
C3.5 CTIPIDR2, CTI Peripheral Identification Register 2 .. C3-264
C3.6 CTIPIDR3, CTI Peripheral Identification Register 3 .. C3-265
C3.7 CTIPIDR4, CTI Peripheral Identification Register 4 .. C3-266
C3.8 CTIITCTRL, CTI Integration Mode Control Register C3-267
C3.9 CTIDEVAFF0, Cluster CTI Device Affinity register 0 C3-268
C3.10 CTIDEVID, CTI Device Identification Register .. C3-269
C3.11 External register access permissions C3-271

Chapter C4 ROM table
C4.1 About the ROM table C4-274
C4.2 ROM table register summary .. C4-275

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

Part D Appendices

Appendix A Compatible Core Versions
A.1 Compatible Core Versions Appx-A-280

Appendix B Signal descriptions
B.1 Signal naming convention .. Appx-B-282
B.2 Cluster signals Appx-B-283
B.3 DebugBlock signals Appx-B-319

Appendix C Revisions
C.1 Revisions Appx-C-326

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

Preface

This preface introduces the Arm® DynamIQ™ Shared Unit‑AE Technical Reference Manual.

It contains the following:
• About this book on page 12.
• Feedback on page 16.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

 About this book
This Technical Reference Manual is for the DynamIQ Shared Unit‑AE (DSU‑AE). It describes the
overall structure of the DSU‑AE including the power management, memory system, main interfaces, and
the DebugBlock. It also describes its Split‑Lock functionality and interface protection and provides
information on the programming registers and signals.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This manual is written for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the DSU‑AE.

 Using this book

This book is organized into the following chapters:

Part A Functional Description

Chapter A1 Introduction
This chapter introduces the DynamIQ Shared Unit‑AE (DSU‑AE) and its features.

Chapter A2 Technical overview
This chapter describes the structure of the DSU‑AE.

Chapter A3 Clocks and resets
This chapter describes the clocks and resets of the DSU‑AE.

Chapter A4 Power management
This chapter describes the power domains and the power modes in the DSU‑AE.

Chapter A5 L3 cache
This chapter describes the optional L3 cache.

Chapter A6 ACE master interface
This chapter describes the ACE master memory interface.

Chapter A7 CHI master interface
This chapter describes the AMBA 5 CHI master memory interface.

Chapter A8 ACP slave interface
This chapter describes the ACP slave interface.

Chapter A9 AXI master peripheral port
This chapter describes the AXI master peripheral port.

Part B Register Descriptions

Chapter B1 Control registers
This chapter describes the control registers for the DSU‑AE.

Chapter B2 Error system registers
This chapter describes the ERR1* error registers for the DSU‑AE.

Chapter B3 PMU registers
This chapter describes the PMU registers for the DSU‑AE.

 Preface
 Product revision status

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

Part C Debug

Chapter C1 Debug
This chapter describes the debug features of the DSU‑AE and the associated DebugBlock
component.

Chapter C2 PMU
This chapter describes the Performance Monitoring Unit (PMU).

Chapter C3 Debug registers
This chapter describes the debug registers for the DSU‑AE.

Chapter C4 ROM table
This chapter describes the CoreSight ROM Table component.

Part D Appendices

Appendix A Compatible Core Versions
This appendix provides the location of where to obtain information about the permissible
combinations of cores.

Appendix B Signal descriptions
This appendix describes the DSU‑AE signals.

Appendix C Revisions
This appendix describes the technical changes between released issues of this book.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

 Preface
 Using this book

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

13

Non-Confidential

https://developer.arm.com/support/arm-glossary

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

 Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

 Preface
 Additional reading

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

14

Non-Confidential

Arm publications
• AMBA® AXI and ACE Protocol Specification (IHI 0022).
• AMBA® APB Protocol Version 2.0 Specification (IHI 0024).
• AMBA® 4 ATB Protocol Specification (IHI 0032).
• AMBA® 5 CHI Architecture Specification (IHI 0050).
• AMBA® Low Power Interface Specification Arm® Q-Channel and P-Channel Interfaces (IHI

0068).
• Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile (DDI 0487).
• Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3

and version 4 (IHI 0069).
• Arm® CoreSight™ Architecture Specification v3.0 (IHI 0029).
• Arm® CoreSight™ DAP-Lite2 Technical Reference Manual (100572).
• Arm® CoreSight™ SoC‑400 Technical Reference Manual (DDI 0480).
• Arm® Embedded Trace Macrocell Architecture Specification ETMv4 (IHI 0064).
• Arm® CoreSight™ ELA-500 Embedded Logic Analyzer Technical Reference Manual

(100127).

The following confidential books are only available to licensees:
• Arm® DynamIQ™ Shared Unit‑AE Configuration and Sign-off Guide (101323).
• Arm® DynamIQ™ Shared Unit‑AE Integration Manual (101324).
• AMBA® Low Power Interface Specification Issue D Update Release 1.0 (ARM AES 0009).

Other publications
None.

 Preface
 Additional reading

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

15

Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm DynamIQ Shared Unit‑AE Technical Reference Manual.
• The number 101322_0101_04_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback on this product

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

16

Non-Confidential

mailto:errata@arm.com

Part A
Functional Description

Chapter A1
Introduction

This chapter introduces the DynamIQ Shared Unit‑AE (DSU‑AE) and its features.

It contains the following sections:
• A1.1 About the DSU‑AE on page A1-20.
• A1.2 Features on page A1-22.
• A1.3 Split‑Lock on page A1-23.
• A1.4 Implementation options on page A1-29.
• A1.5 Supported standards and specifications on page A1-34.
• A1.6 Test features on page A1-35.
• A1.7 Design tasks on page A1-36.
• A1.8 Product revisions on page A1-37.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-19

Non-Confidential

A1.1 About the DSU-AE
The DynamIQ Shared Unit‑AE (DSU‑AE) provides the L3 memory system, control logic, and external
interfaces to support a DynamIQ cluster.

The DynamIQ cluster microarchitecture integrates an even number of cores with the DSU‑AE to form a
cluster that is implemented in a specified configuration. The cores are selected and configured during
macrocell implementation.

The DSU‑AE implements Split‑Lock functionality, which provides various cluster execution modes. For
instance, you can use the Lock-mode for core and logic redundancy or Split-mode for separate core
execution. The Hybrid-mode is a mixed execution mode, where the cores execute independently, as in
Split-mode, while the DSU‑AE executes in lock-step, as in Lock-mode.

A cluster can be implemented in one of two configurations:

• A set of cores having the same microarchitecture.
• Two sets of cores, where each set has a different microarchitecture.

The following diagram shows a heterogeneous cluster that is composed of two sets of cores.

DynamIQ cluster

DynamIQ Shared Unit-AE

Primary logic

Asynchronous bridges

DebugBlockRedundant logic
L3 cache

Snoop filter

Comparators

LITTLE core[0]

L1 I L1 D

L2

LITTLE core[1]

L1 I L1 D

L2

big core[3]

L1 I L1 D

L2

big core[2]

L1 I L1 D

L2

Figure A1-1 DSU-AE heterogeneous cluster

Within the DSU‑AE, there is the L3 cache, the Snoop Control Unit (SCU), internal interfaces to the
cores, and external interfaces to the SoC.
• The shared L3 cache simplifies process migration between the cores.

 Note

Some cores can be configured without L2 caches. To these cores, the shared L3 cache appears as an
L2 cache. The term L3 cache is used throughout this document to describe the shared cache.

• The SCU maintains coherency between caches in the cores and L3 and includes a snoop filter to
optimize coherency maintenance operations.

• Internal interfaces to the cores are configured during macrocell implementation and are not directly
visible.

• External interfaces are connected to the SoC.

A1 Introduction
A1.1 About the DSU-AE

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-20

Non-Confidential

 Note

Throughout this document, the term core pair is used. A core pair is defined as a pair of primary and
redundant cores which, when running in Lock-mode, the cluster views architecturally as a single core.

Each core pair can be configured either to be run synchronously with the DSU‑AE, sharing the clock, or
asynchronously, with an independent clock.

Microarchitecture features and system control registers that are specific to the implemented cores are
described in separate Technical Reference Manuals (TRMs) delivered with the cores.

A DebugBlock is provided with the DSU‑AE that integrates an Embedded Cross Trigger with debugging
registers and supports debug over powerdown. The DebugBlock includes all functionality that is required
in the debug power domain.

A1 Introduction
A1.1 About the DSU-AE

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-21

Non-Confidential

A1.2 Features
The DSU‑AE includes the following features:

• AMBA ACE5 or AMBA 5 CHI main bus interface
• Optional 128-bit wide I/O-coherent Accelerator Coherency Port (ACP)
• Optional 64-bit wide device peripheral port
• Support for cores with 40-bit, 44-bit, or 48-bit physical addresses
• Armv8.2-A debug logic
• Reliability, Availability, and Serviceability (RAS) support
• Optional unified 16-way set-associative L3 cache
• 64-byte cache lines throughout
• Cache partitioning support
• Partial L3 cache powerdown support
• Cache protection in the form of Error Correcting Code (ECC) on L3 cache RAM instances
• Snoop Control Unit (SCU)
• L3 memory system can be clocked at a rate synchronous to the external system interconnect or at

integer multiples.
• Armv8.2-A architecture cores supported
• Support for two types of cores
• Support for the following Split‑Lock modes: Split-mode, Lock-mode, and Hybrid-mode
• Since Lock-mode supports core redundancy, the DSU‑AE can only implement an even number of

cores.
• When the DSU‑AE is configured to support only two Split‑Lock modes (Split-mode and Lock-

mode), then up to eight cores in total are supported. When all three Split‑Lock modes are configured,
then up to four cores in total are supported.

• In Lock-mode, core pairs can be clocked at different frequencies. In Split-mode or Hybrid-mode,
each individual core can be clocked at different frequencies.

• Interface protection is provided for all the external interfaces of the DSU‑AE cluster, except for the
trace interface.

A1 Introduction
A1.2 Features

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-22

Non-Confidential

A1.3 Split-Lock
The DynamIQ Shared Unit‑AE (DSU‑AE) provides a boot-time option for the cluster to execute in either
Split-mode, Lock-mode, or Hybrid-mode. These modes extend the functionality of a typical Dual-Core
Lock-Step (DCLS) system by changing its execution mode at reset. For instance, while some modes
enable more logical cores, others provide core redundancy. The potential of core redundancy requires an
even number of cores in the DSU‑AE cluster.

In Split-mode, cores execute independently. The DCLS-related comparators, timeout detectors, and
redundant DSU‑AE logic are clock gated and idle. Each core has its own independent clock. As a result,
each core can be powered down independently.

In Lock-mode, one of the cores in a core pair functions as a redundant copy of the primary function core.
A core pair is defined as a pair of cores that are viewed architecturally as a single core when executing in
Lock-mode. The same inputs drive both the primary logic and the redundant logic, and the redundant
core executes in lock-step with the primary function core. Therefore, both cores in a core pair must be of
identical configuration, with the same microarchitecture and the same configuration parameters.

Furthermore, in Lock-mode, the DSU‑AE cluster utilizes redundant logic to execute in lock-step with the
primary logic. For this reason, the entire cluster is executing as a DCLS system. The primary logic drives
the outputs to the system, although these outputs are compared with the redundant logic. Any divergence
is reported to the system. If a fault is detected, both of the cores are permitted to continue execution, but
the results are UNPREDICTABLE.

Hybrid-mode is a mixed execution mode where the cores execute independently, as in Split-mode, while
the DSU‑AE executes in lock-step, as in Lock-mode. Therefore, in Hybrid-mode, the DSU‑AE cluster
provides a partial DCLS solution, with the following benefits:
• Compared to Lock-mode, Hybrid-mode offers better cluster performance, since the cores execute

independently of each other.
• Compared to Split-mode, Hybrid-mode offers better cluster fault tolerance, since the DSU‑AE

executes in lock-step.

 Note

From a system or software perspective, there is no difference between the Split-mode and Hybrid-mode.

A1.3.1 Implementing Split-Lock

The DynamIQ Shared Unit‑AE (DSU‑AE) uses a specific Split‑Lock implementation to enable the
cluster to execute in either Split-mode, or Lock-mode, or the mixed execution Hybrid-mode. Use the
CEMODE input to select the required cluster execution mode at boot time.

All of the DSU‑AE logic, except the RAMs, is duplicated. The RAMs are shared between the two copies
of the logic. RAM sharing in this way saves significant area and improves the Failure In Time (FIT) rate.
The SECDED ECC protection scheme is always enabled for all functional DSU‑AE RAMs.

 Note

ECC protection is enabled for DSU‑AE functional RAMs, that is, the L3 tag and data RAMs, the snoop
filter, and the Long-Term Data Buffer (LTDB) RAM. The victim RAM is used for performance only and
does not have ECC protection.

The DSU‑AE uses a comparator with a registered output. In addition to the signals to be compared, the
comparator includes a force input, and an enable that controls whether the compare generates an error.
The force input can artificially force the comparator to generate an error result, to exercise the error
reporting logic. To help protect against failures in the comparator, there are redundant copies of each of
the comparators. A CPU bridge manages the asynchronous interface between the DSU‑AE and the
associated cores.

A1 Introduction
A1.3 Split-Lock

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-23

Non-Confidential

The following figure shows the DSU‑AE Lock-mode operation, that is, where CEMODE = 0b11.

Core0

cb_cpu

cb_sys

cb_cpu

cb_sys

cb_cpu

cb_sys

cb_cpu

cb_sys

DSU-AE
sclk

coreclk

LOGIC LOGICRAMs

Core0' Core1 Core1'

Figure A1-2 DSU-AE Lock-mode operation

The following figure shows the DSU‑AE Split-mode operation, that is, where CEMODE = 0b01.

Core0

cb_cpu

cb_sys

cb_cpu

cb_sys

cb_cpu

cb_sys

cb_cpu

cb_sys

DSU-AEsclk

coreclk

LOGIC LOGICRAMs

Core1 Core2 Core3

Figure A1-3 DSU-AE Split-mode operation

The following figure shows the DSU‑AE Hybrid-mode operation, that is, where CEMODE = 0b10.

Core0

cb_cpu

cb_sys

cb_cpu

cb_sys

cb_cpu

cb_sys

cb_cpu

cb_sys

DSU-AEsclk

coreclk

LOGIC LOGICRAMs

Core1 Core2 Core3

Figure A1-4 DSU-AE Hybrid-mode operation

Since the execution modes of the DSU‑AE require core pairs, only DSU configurations with an even
number of cores are supported. Also, all the core pairs must execute in the same mode because mixed-

A1 Introduction
A1.3 Split-Lock

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-24

Non-Confidential

mode execution between the core pairs is not supported. For instance, one core pair cannot execute in
Lock-mode, while another core pair executes in Split-mode.

For ease of reference, the number of observable cores in each of the DSU‑AE cluster execution modes
are defined as follows:

Number of observable cores in Split-mode = NS.

Number of observable cores in Lock-mode = NL.

Number of observable cores in Hybrid-mode = NH.

NS and NH (when supported) = 2 * NL.

For DSU‑AE configurations that do not require the Hybrid-mode, the DSU‑AE cluster supports from two
to eight cores, which means: NS= 2, 4, 6, or 8 corresponding to NL= 1, 2, 3, or 4. However, for DSU‑AE
configurations requiring the Hybrid-mode, the DSU‑AE cluster only supports from two to four cores,
which means NH = NS = 2 or 4, corresponding to NL= 1 or 2.

See the Arm® DynamIQ™ Shared Unit‑AE Configuration and Sign-off Guide for the number of cores that
the DSU‑AE supports.

In Lock-mode, half of the cores function as redundant copies of the other cores. For example, if NS is 4,
two cores are logically observable, as specified by NL. The other two cores are physically present but
function as redundant copies.

Although physically present, the external inputs and outputs that are associated with the redundant cores
are disabled and must not be used in Lock-mode. However, there are exceptions to this rule. See the
Arm® DynamIQ™ Shared Unit‑AE Configuration and Sign-off Guide for information about signals that
are present on each core.

In Split-mode, all external inputs and outputs associated to the NS physical cores are enabled, but
redundancy checking is not possible.

The DSU‑AE RAM memories are shared between the primary and redundant logic when the DSU‑AE is
executing in Lock-mode or Hybrid-mode.

The DynamIQ cluster has interfaces which include a CPU ID. The DSU‑AE controls the CPU IDs
assigned to each connected core, and alters the CPU ID of a core pair depending on the execution mode
of the DSU‑AE. CPU IDs are always mapped sequentially to cores seen by the system. When in Split-
mode or Hybrid-mode, every core in the cluster receives a unique CPU ID. In Lock-mode, only the
primary cores receive a unique CPU ID; one CPU ID is assigned per core pair.

The following table shows how CPU IDs are assigned for Split-mode, Hybrid-mode, and Lock-mode,
where k={0 ≤ K < NL}.

Table A1-1 Mode dependant CPU ID assignment

Feature Physical core number

2k 2k+1

Core pair number CP<k>

Core type Primary Redundant

Split-mode CPU ID CPU<2k> CPU<2k + 1>

Hybrid-mode CPU ID CPU<2k> CPU<2k + 1>

Lock-mode CPU ID CPU<k> CPU<k>'

A1 Introduction
A1.3 Split-Lock

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-25

Non-Confidential

 Note

For ease of reference, the redundant cores and processing elements are visually differentiated from the
other entries in the following tables, by using this formatting: CPU0'.

The following table shows an example of CPU ID assignments for a four core Cortex®‑A76AE-based
cluster. The Cortex‑A76AE core is a single threaded core.

Table A1-2 Example of CPU ID assignments for a 4 core cluster

Feature Physical core number

0 1 2 3

Core name Cortex‑A76AE

Core pair number CP0 CP1

Core type Primary Redundant Primary Redundant

Split-mode CPU ID CPU0 CPU1 CPU2 CPU3

Split-mode PE number PE0 PE1 PE2 PE3

Hybrid-mode CPU ID CPU0 CPU1 CPU2 CPU3

Hybrid-mode PE number PE0 PE1 PE2 PE3

Lock-mode CPU ID CPU0 CPU0' CPU1 CPU1'

Lock-mode PE number PE0 PE0' PE1 PE1'

The following table shows an example of CPU ID assignments for an eight core cluster using four
Cortex-A65AE cores and four Cortex‑A76AE cores. The Cortex-A65AE core is a dual threaded core.

Table A1-3 Example of CPU ID assignments for an 8 core cluster

Feature Physical core number

0 1 2 3 4 5 6 7

Core name Cortex-A65AE Cortex‑A76AE

Core pair number CP0 CP1 CP2 CP3

Core type Primary Redundant Primary Redundant Primary Redundant Primary Redundant

Split-mode CPU ID CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

Split-mode PE number PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11

Hybrid-mode CPU ID Cluster cannot support Hybrid-mode; NUM_CPUs > 4.

Hybrid-mode PE number Cluster cannot support Hybrid-mode; NUM_CPUs > 4.

Lock-mode CPU ID CPU0 CPU0' CPU1 CPU1' CPU2 CPU2' CPU3 CPU3'

Lock-mode PE number PE0 PE1 PE0' PE1' PE2 PE3 PE2' PE3' PE4 PE4' PE5 PE5'

Configurable temporal diversity

Temporal Diversity (TD) is a configurable delay, of clock-cycles, between the primary and redundant
logic.

A1 Introduction
A1.3 Split-Lock

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-26

Non-Confidential

 Note

TD only applies to Lock-mode and Hybrid-mode.

Decide on the required TD that you want to include in your design. This delay between the primary and
the redundant logic, can be implemented for one or both of the following reasons:

• Functional safety: this delay can increase the probability of fault detection, by ensuring that a
localized event with a short duration affects the primary and redundant logic differently.

• Physical implementation: this delay allows you to have more flexibility in placing these logic cells in
your floorplan.

The TD that is applied to the redundant logic is composed of the following two distinct delays, which are
separately configurable:

• A temporal delay of N cycles: this delay is applied to both the primary inputs and the shared RAM
outputs that feed the redundant logic.

• A capture delay of K cycles: this delay is applied to all the outputs from the redundant logic. This
delay is used to mitigate any timing concerns before the comparison to the primary logic.

This TD is also applied to the primary logic before it is compared to redundant logic as an alignment
delay. This alignment delay ensures the primary and redundant copies of the logic are correctly aligned
and are therefore compared in the correct clock cycle. This alignment delay is the sum of the temporal
delay and the capture delay that is applied to the redundant logic.

The following figure shows how these TD delays are implemented in Lock-mode and Hybrid-mode.

DSU-AE
redundant logic

DSU-AE
primary logic Alignment delay, N + K

==

Inputs

DCLS fault

Outputs

Temporal delay, N Capture delay, K

Figure A1-5 DSU-AE Lock-mode and Hybrid-mode TD delays

The DCLS_DELAYS configuration parameter, specifies the available TD delays as the following table
shows. DCLS_DELAYS values represent predefined pairs of the temporal delay (N) and capture delay (K),
which determines the associated alignment delay (N+K).

See A1.4 Implementation options on page A1-29 for more information about the DCLS_DELAYS
configuration option.

Table A1-4 Configuring TD

DCLS_DELAYS Temporal delay, N Capture delay, K Alignment delay, N + K

0, default value 2 cycles 1 cycle 3 cycles

1 3 cycles 1 cycle 4 cycles

2 3 cycles 2 cycles 5 cycles

3 4 cycles 2 cycles 6 cycles

A1 Introduction
A1.3 Split-Lock

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-27

Non-Confidential

 Note

The default value of DCLS_DELAYS is 0, for backward compatibility, which represents the fixed TD delays
that were applied in the previous release.

A1 Introduction
A1.3 Split-Lock

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-28

Non-Confidential

A1.4 Implementation options
The DynamIQ Shared Unit‑AE (DSU‑AE) can be implemented from a range of options. These options
are specified during macrocell implementation.

Table A1-5 Configuration parameters

Parameter name Permitted
values

Description

HYBRID_MODE TRUE,FALSE Adds the Hybrid-mode as an available execution mode, in addition to the legacy Split-
mode and Lock-mode.

TRUE Supports the Split-mode, Lock-mode and Hybrid-mode. This value is the
default.

FALSE Only supports the legacy Split-mode and Lock-mode. This value
excludes the Hybrid-mode, for backward compatibility.

 Restriction

The total number of cores in the DSU‑AE cluster must be either 2 or 4 when
HYBRID_MODE is set to TRUE.

For more information about the available execution modes, see A1.3 Split‑Lock
on page A1-23.

DCLS_DELAYS 0, 1, 2 or 3 Configures the Temporal Diversity (TD), by specifying both the temporal delay (N)
and the capture delay (K) available for your design, as follows:

0 N = 2; K = 1.

1 N = 3; K = 1.

2 N = 3; K = 2.

3 N = 4; K = 2.

 Note

The default value of DCLS_DELAYS is 0, for backward compatibility.

For more information about TD and the N and K delays, see Configurable temporal
diversity on page A1-26.

L3_PBHA TRUE,FALSE Store the Page-Based Hardware Attributes (PBHA) in the L3 cache.

TRUE PBHA bits are stored in the L3 cache and therefore are valid for L3
evictions to the master port.

FALSE PBHA bits are not stored in the L3 cache and therefore are only valid for
read transactions to the master port.

 Note

Not all cores provide PBHA bits. Only enable L3_PBHA when all cores support the
PBHA bits. For more information about the PBHA bits, see A2.4 Page-based
hardware attributes on page A2-48.

A1 Introduction
A1.4 Implementation options

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-29

Non-Confidential

Table A1-5 Configuration parameters (continued)

Parameter name Permitted
values

Description

NUM_BIG_CORES 0, 2, or 4 cores The total number of big cores in the cluster.

The number of big core pairs is half the number that is specified in this parameter.

The number of big cores that can be implemented depends on the number of LITTLE
cores implemented.

NUM_LITTLE_CORES 0, 2, 4, 6 or 8
cores

The total number of LITTLE cores in the cluster.

The number of LITTLE core pairs is half the number that is specified in this
parameter.

The number of LITTLE cores that can be implemented depends on the number of big
cores implemented.

BIG_CORE_TYPE - The type of big core you can implement depends on your license.

LITTLE_CORE_TYPE - The type of LITTLE core you can implement depends on your license.

MODULE - Name of the cluster top-level Verilog file. If you do not specify any top-level module
name, then a name is autogenerated based on the number and types of cores present.

MODULE_DEBUG_BLOCK - Name of the DebugBlock top-level Verilog file. If you do not specify any DebugBlock
module name, then a name is autogenerated based on the top-level module name.

ACE TRUE, FALSE Main memory interface.

TRUE Implement AMBA ACE5.

FALSE Implement AMBA 5 CHI.

MASTER_DATA_WIDTH 128, 256, or 512 Bus width for the main coherent master interface.

128 1 x 128-bit wide ACE or CHI

256 2 x 128-bit wide ACE, or 1x 256-bit wide CHI

512 2 x 256-bit wide CHI

PORTER_SAM TRUE, FALSE System Address Map (SAM). Only applicable if the CHI interface is implemented.

TRUE Include support for the CMN-600 interconnect SAM.

FALSE Do not include.

ACP TRUE, FALSE Accelerator Coherency Port (ACP)

TRUE Include ACP.

FALSE Do not include ACP.

PERIPH_PORT TRUE, FALSE Peripheral port

TRUE Include Peripheral port.

FALSE Do not include Peripheral port.

L3_CACHE TRUE, FALSE L3 cache present

TRUE Include L3 cache.

FALSE Do not include L3 cache.

A1 Introduction
A1.4 Implementation options

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-30

Non-Confidential

Table A1-5 Configuration parameters (continued)

Parameter name Permitted
values

Description

L3_CACHE_SIZE 512KB

1024KB

1536KB

2048KB

4096KB

L3 cache size
 Note

Software reports a cache size of: 2048KB when the 1536KB size is enabled. Since the
non-power-of-two cache size is implemented as a power-of-two size with a quarter of
the ways that are permanently powered down.

NUM_SLICES 1 or 2 Optional configuration for the number of L3 cache slices.

If this parameter is not provided, then the default number of slices is used, based on
the other configuration options.

This parameter can be used to override the default number of slices if all of the
following are true:
• The L3 cache size is configured as 512KB or 1024KB, or no L3 cache is

configured.
• There is only a single master port.

If a larger cache size or two master ports are configured, then only 2 slices are
supported.

For more information about cache slices, see A5.7 Cache slices and portions
on page A5-87.

L3_DATA_WR_LATENCY 1, 2, or 2p L3 cache data RAM input latency:
• 1 cycle latency.
• 2 cycles latency.
• 2p, 2 cycle latency with an extra 1 cycle delay, which limits writes to one every 3

cycles.

When L3_DATA_WR_LATENCY is set to 2p, the L3_DATA_RD_LATENCY must be set to
3.

L3_DATA_RD_LATENCY 2 or 3 L3 cache data RAM output latency:
• 2 cycles latency.
• 3 cycles latency.

 Note

L3_DATA_RD_LATENCY must be set to 3 when L3_DATA_WR_LATENCY is set to 2p.

L3_DATA_RD_SLICE TRUE, FALSE L3 cache data RAM output register slice

TRUE Include L3 data RAMs output register slice.

FALSE Do not include register slice.

A1 Introduction
A1.4 Implementation options

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-31

Non-Confidential

Table A1-5 Configuration parameters (continued)

Parameter name Permitted
values

Description

L3_DATA_STRETCH_CLK TRUE, FALSE Stretch the clock to the L3 data RAMs.

TRUE Stretch the clock so that the RAM clock pulse is HIGH for a whole SCLK
cycle.

FALSE Use only gating, so that the RAM clock pulse is HIGH for half an SCLK
cycle.

 Note

In either case, the L3 RAM will not be accessed on consecutive SCLK cycles. This
option has no performance impact.

CORE_REG_SLICE TRUE, FALSE For each core, include a register slice between the core and the Snoop Control Unit
(SCU).

For each core present, starting with core 0, set the value to TRUE or FALSE.

TRUE Include a register slice between the core and the SCU.

FALSE Do not include a register slice.

ASYNC_BRIDGE TRUE, FALSE For each core, include an asynchronous bridge for the main bus between the core and
the L3 coherent interface.

For each core present, starting with core 0, set the value to TRUE or FALSE.

TRUE Include an asynchronous bridge for the main bus between core and L3.

FALSE Do not include an asynchronous bridge.

 Note

This choice affects the internal interface that is used for instruction and data fetch,
evictions, and snoops. It does not affect the other interfaces such as debug, trace, and
GIC which are always asynchronous.

INTERLEAVE_ADDR_BIT 6, 7, 8, 9, 10, 11,
or 12

Controls which physical address bit is used to interleave requests between cache slices
and dual ACE or dual CHI masters. The default value is bit 6, which interleaves on
cache line boundaries. Other values can only be configured when dual ACE or dual
CHI interfaces are configured.

 Note

Interleaving on a larger granularity might help improve system performance on some
SoC designs. However, it can also reduce performance under some circumstances on
accesses that hit in the L3 cache, because the same interleave is used for both cache
slices and ACE master. Therefore if changing this parameter, Arm recommends
performing benchmarking in your system to determine if the overall performance is
acceptable.

CORE_SYNC_LEVELS 2 or 3 Number of synchronizer stages in all asynchronous inputs into the core.

SYNC_LEVELS 2 or 3 Number of synchronizer stages in all asynchronous inputs to the SCU and cluster
logic.

A1 Introduction
A1.4 Implementation options

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-32

Non-Confidential

Table A1-5 Configuration parameters (continued)

Parameter name Permitted
values

Description

LEGACY_V7_DEBUG_MAP TRUE, FALSE Legacy v7 debug memory map. Configure v7 or v8 Debug memory map.

TRUE v7 Debug memory map.

FALSE v8 Debug memory map.

ELA TRUE, FALSE Support for integrating the CoreSight ELA-500 Embedded Logic Analyzer.

TRUE Include one ELA-500 instance within the DSU‑AE.

FALSE Do not include the ELA-500 within the DSU‑AE.

 Note

If enabled, to create a unique ELA instance for the DSU‑AE, either:
• Use the -ela option with the generate script.
• Run the uniquify script that is supplied with the ELA.

For more information, see Configuring the execution testbench with the ELA-500 in
the Arm® DynamIQ™ Shared Unit‑AE Configuration and Sign-off Guide.

ELA_RAM_ADDR_SIZE 2-25 The number of index bits in the ELA-500 RAM. For more details, see the Arm®

DynamIQ™ Shared Unit‑AE Configuration and Sign-off Guide.

POP_RAM TRUE, FALSE Configure the RTL for Arm Processor Optimization Pack (POP) RAMs.

TRUE Configure the RTL for Arm POP RAMs.

FALSE Do not configure the RTL for Arm POP RAMs.

 Note

The RAM interface is different when POP_RAM is set to TRUE. Only set POP_RAM to
TRUE when using Arm POP RAMs.

A1.4.1 Cluster configurations

Describes the various types and numbers of cores that can be used to create a cluster.

The DSU‑AE cluster can be configured as:

• A homogenous cluster by using the same type of core.
• A heterogeneous cluster, where only one type of big core and one type of LITTLE core is combined

in a single cluster.

The cluster also requires that an even number of cores is used for each type of core. The maximum
number of these even cores depends on the HYBRID_MODE configuration parameter.
• If the HYBRID_MODE configuration parameter is set to TRUE (default), then the cluster supports a

maximum of four cores and a minimum of two cores.
• If the HYBRID_MODE configuration parameter is set to FALSE, then the cluster supports a maximum of

eight cores and a minimum of two cores.

For more information, see Combinations of cores in the Arm® DynamIQ™ Shared Unit‑AE Configuration
and Sign-off Guide.

A1 Introduction
A1.4 Implementation options

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-33

Non-Confidential

A1.5 Supported standards and specifications
The DynamIQ Shared Unit‑AE (DSU‑AE) complies with the Armv8.2 architecture.

Table A1-6 Compliance with standards and specifications

Architecture specification or standard Version

Arm architecture Armv8.2-A.

Advanced Microcontroller Bus Architecture (AMBA) • AMBA ACE5.
• AMBA 5 CHI (Issue B).

CoreSight v3.

Debug Armv8.2-A

Generic Interrupt Controller (GIC) architecture CPU
interface and Stream Protocol interface.

v4.0
 Note

The DSU‑AE uses Affinity Level-1 to distinguish between different cores,
which some interrupt controllers, such as GIC-500 do not support.

Performance Monitoring Unit (PMU) PMUv3.

A1 Introduction
A1.5 Supported standards and specifications

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-34

Non-Confidential

A1.6 Test features
The DSU‑AE provides interfaces for manufacturing test.

The following manufacturing test interfaces are supported:

DFT For logic testing.
MBIST For RAM testing.

A1 Introduction
A1.6 Test features

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-35

Non-Confidential

A1.7 Design tasks
The DynamIQ Shared Unit‑AE (DSU‑AE) is delivered as a synthesizable Register Transfer Level (RTL)
description in SystemVerilog HDL. Before you can use it, you must implement, integrate, and program
it.

A different party can perform each of the following tasks. Each task can include implementation and
integration choices that affect the behavior and features of the DSU‑AE and its associated cores.

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell. This task
includes integrating RAMs into the design.

Integration
The integrator connects the macrocell into an SoC. This task includes connecting it to a memory
system and peripherals.

Programming
The system programmer develops the software to configure and initialize the DSU‑AE and its
associated cores and tests the application software.

The operation of the final device depends on the following:

Build configuration
The implementer chooses the options that affect how the RTL source files are pre-processed.
These options usually include or exclude logic that affects one or more of the area, maximum
frequency, and features of the resulting macrocell.

Configuration inputs
The integrator configures some features of the DSU‑AE by tying inputs to specific values.
These configuration settings affect the start-up behavior before any software configuration is
made. They can also limit the options available to the software.

Software configuration
The programmer configures the DSU‑AE by programming particular values into registers. The
configuration choices affect the behavior of the DSU‑AE and its associated cores.

A1 Introduction
A1.7 Design tasks

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-36

Non-Confidential

A1.8 Product revisions
This section describes the differences in functionality between product revisions.

r0p0 First release.
r1p0 • Added the Hybrid mixed cluster execution mode.

• Configurable temporal diversity (TD), which specifies both the temporal delay (N) and the
capture delay (K) that can be configured by means of the DCLS_DELAYS configuration option.

• Interface protection for external interfaces.
• Added support for Page-Based Hardware Attributes (PBHA) bits provided by the processor

cores, and passed on or preserved by the DSU‑AE

r1p1 Maintenance release.

A1 Introduction
A1.8 Product revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A1-37

Non-Confidential

A1 Introduction
A1.8 Product revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. A1-38
Non-Confidential

Chapter A2
Technical overview

This chapter describes the structure of the DSU‑AE.

It contains the following sections:
• A2.1 Components on page A2-40.
• A2.2 Interfaces on page A2-43.
• A2.3 RAS support on page A2-47.
• A2.4 Page-based hardware attributes on page A2-48.
• A2.5 L3 memory system variants on page A2-49.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-39

Non-Confidential

A2.1 Components
A DynamIQ cluster system comprises of two top-level modules:

• A module which includes the cores and the DSU‑AE.
• The DebugBlock.

In this manual, the DynamIQ cluster is referred to as the cluster.

Separating the debug components from the cluster allows the debug components to be implemented in a
separate power domain, allowing debug over power down.

The following figure shows the major components in a DynamIQ cluster system.

DynamIQ microarchitecture cores

Core[0]

CPU bridge

L3 memory system

SCUL3 RAMs

Clock gating
control

Power state
control

Memory
interface
master

Peripheral
port master ACP slave

Debug APB
master

Debug APB
slave

DebugBlock

External Debug APBDebug APB
slave

CTM

Debug ROM

CTI

DSU
system
control

registers

Debug APB
master

Debug APB
slave

Power
management

Core[CN]

DSU-AE

DynamIQ cluster

CPU bridge

Comparators

Not
duplicated

Duplicated

KeySF RAM

Figure A2-1 DynamIQ cluster components

Throughout this book CN represents a set of cores, where CN has a value of the total number of cores -1.
The Arm architecture allows for cores to be single, or multithreaded. A Processing Element (PE)
performs a thread of execution. A single-threaded core has one PE and a multithreaded core has two or
more PEs. Where a reference to a core is made, the core can be a single, or multithreaded core. Signal
names that are associated with PEs use the abbreviation PE, where PE has a value of the total number of
PEs - 1.

DynamIQ™ cluster compatible cores

The macrocell implementer selects the core types, and optional features. The cores are described in their
respective TRMs. Because the cores are instantiated within the cluster, all interfacing between the cores
and the DSU‑AE is implemented automatically. All external signal inputs and outputs pass through the
DSU‑AE. The DSU‑AE buffers and resynchronizes many of these signals to allow the cores to be
clocked at different speeds. The memory interface of each core is internally connected to the DSU‑AE
L3 memory system. Where necessary, the DSU‑AE implements additional buffering to compensate for
different clock rates of the core and DSU‑AE L3. Each core implements clock and power control
interfaces. These interfaces are routed through the DSU‑AE to the respective core external power
controller.

A2 Technical overview
A2.1 Components

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-40

Non-Confidential

CPU bridges
The CPU bridges control buffering and synchronization between the cores and DSU‑AE.

 Note

The CPU bridge RTL is included with the DSU‑AE deliverables, but is instantiated in the hierarchy of
processor cores.

Snoop Control Unit

The Snoop Control Unit (SCU) maintains coherency between all the data caches in the cluster.

The SCU contains buffers that can handle direct cache-to-cache transfers between cores without having
to read or write data to the L3 cache. Cache line migration enables dirty cache lines to be moved between
cores. Also, there is no requirement to write back transferred cache line data to the L3 cache.

Clock and power management

The cluster supports power-saving modes that are controlled by an external power controller. The modes
are selected through power-mode requests on P-Channels, for each of the cores, and a separate P-
Channel for the DSU‑AE.

Clock gating is supported through Q-Channel requests from an external clock controller to the DSU‑AE.
The Q-Channels allow individual control of the SCLK, PCLK, ATCLK, and GICCLK clock inputs.

L3 memory interfaces

Main memory master
The main memory interface supports up to two ACE or CHI master interfaces.

Accelerator Coherency Port
The Accelerator Coherency Port (ACP) is an optional slave interface. The ACP provides direct
memory access to cacheable memory. The SCU maintains cache coherency by checking ACP
accesses for allocation in the core and L3 caches. The ACP implements a subset of the ACE-
Lite protocol.

Peripheral port
The peripheral port is an optional master interface and provides Device accesses to tightly
coupled accelerators. The port implements the AXI 4 master interface protocol.

L3 cache

The cache size is implemented as either 512KB, 1MB, 1.5MB, 2MB, or 4MB. The 1.5MB cache is 12-
way set associative. The 512KB, 1MB, 2MB, and 4MB caches are 16-way set associative. All caches
have a 64-byte line length, and include ECC protection on both data and tag RAMs.

DSU-AE system control registers
The DSU‑AE implements system control registers, which are common to all cores in the cluster. You can
access these registers from any core in the cluster. These registers provide:
• Control for power management of the cluster.
• L3 cache partitioning control.
• CHI QoS bus control and scheme ID assignment.
• Information about the hardware configuration of the DSU‑AE, including the specified Split‑Lock

cluster execution mode.
• L3 cache hit and miss count information.

Debug and trace components

Each core includes an Embedded Trace Macrocell (ETM) to allow program tracing while debugging.

Trigger events from the cores are combined and output to the Debug APB master. Trigger events to the
cores, and debug register accesses, are received on the Debug APB slave.

A2 Technical overview
A2.1 Components

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-41

Non-Confidential

DebugBlock
The debug components are divided between two architecturally defined logical power domains, the core
power domain, and the debug power domain:
• The core power domain comprises one or more physical power domains for the cores and DSU‑AE.
• The debug power domain includes the DebugBlock.

The separate power domains allow the cores and the cluster to be powered down while maintaining
essential state that is required to continue debugging. Separating the logical power domains into physical
domains is optional and might not be available in individual systems.

Cluster to DebugBlock APB
Trigger events from the cores are transferred to the DebugBlock as APB writes.

DebugBlock to cluster APB
Trigger events to the cores are transferred as APB writes to the DSU‑AE. Register accesses from
the system debug APB are transferred to the DSU‑AE.

System debug APB
The system debug APB slave interface connects to external CoreSight components, such as the
Debug Access Port (DAP).

CTI and CTM
The DebugBlock implements an Embedded Cross Trigger (ECT). A Cross Trigger Interface
(CTI) is allocated to each PE in the cluster, and an extra CTI is allocated to the cluster ELA
when present. The CTIs are interconnected through the Cross Trigger Matrix (CTM). A single
external channel interface is implemented to allow cross-triggering to be extended to the SoC.

Debug ROM
The ROM table contains a list of components in the system. Debuggers can use the ROM table
to determine which CoreSight components are implemented.

Power management and clock gating
The DebugBlock implements two Q-Channel interfaces, one for requests to gate the PCLK
clock, and a second for requests to control the debug power domain.

A2 Technical overview
A2.1 Components

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-42

Non-Confidential

A2.2 Interfaces
The external interfaces to connect to the SoC system.

DSU-AE interfaces

The following figure shows the major external interfaces of the DSU‑AE.

DSU-AE

DynamIQ microarchitecture core[CN:0]

Up to two ACE
 or up to two CHI

Memory interface
(master)

AXI4Peripheral Port
(master)

ACP (slave) ACE5-Lite

(COREx, CLUSTER)

Interrupts

Config

Timer

Clocks

Misc Debug

ATBxI-side D-side

L1 I
cache

L1 D
cache

L2 unified cache

Core
system
control

registers

MMU ETM

PMU

Resets

Debug

nVCPUMNTIRQ[PE:0]

Error signals

nPMUIRQ[PE:0]

nFAULTIRQ[CN+1:0]
nERRIRQ[CN+1:0]

Timer events

Misc ETM

Debug
authentication

(DBGEN, NIDEN, SPIDEN,
SPNIDEN)

DBGCONNECTED

APB (master)APB Cluster to DebugBlock

APB DebugBlock to Cluster APB (slave)

nCOMMIRQ[PE:0]
(SCLK, PCLK,

ATCLK, GICCLK)

Power state control
P-Channels

Clock state control
Q-Channels

WFE event signalling (EVENTI, EVENTO)

CNTVALUEB[63:0]
CNTCLKEN

TSVALUEB[63:0]

SYNCREQMx

nFIQ[PE:0]
nIRQ[PE:0]

nVFIQ[PE:0]
nVIRQ[PE:0]

DBGRSTREQ[PE:0]

GIC Stream IRI
GIC Stream ICC

GIC stream protocol
interface

Split/Hybrid/Lock
mode signalling

CEMODE
DCLS signals

Figure A2-2 DSU-AE interfaces

The following table describes the major external interfaces.

Table A2-1 DSU-AE interfaces

Purpose Protocol Notes

Split/Hybrid/Lock Not applicable Comprises of:
• Split/Hybrid/Lock mode-select inputs.
• Reporting outputs and control inputs applicable to Lock-mode.

Trace ATB Master ATB interfaces. Each core has an ATB interface to output ETM trace
information, see Appendix B.2.14 ATB Interface Signals on page Appx-B-316.

A2 Technical overview
A2.2 Interfaces

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-43

Non-Confidential

Table A2-1 DSU-AE interfaces (continued)

Purpose Protocol Notes

Memory ACE or CHI Master interface to main memory. You can configure the DSU‑AE with either 1 or 2
ACE, or 1 or 2 CHI interfaces. See A1.4 Implementation options on page A1-29.

Accelerator Coherency
Port (optional)

ACE5-Lite Slave interface allowing an external master to make coherent requests to cacheable
memory.

Peripheral port (optional) AXI Low-latency master interface to external Device memory.

Cluster to DebugBlock APB APB interface from the cluster (master) to the DebugBlock (slave), also referred to as
APBCD.

DebugBlock to cluster APB APB interface from the DebugBlock (master) to the cluster (slave), also referred to as
APBDC.

Power state control P-Channel P-Channels for DSU‑AE and core power management.

Clock state control Q-Channel Q-Channels for clock gating control.

WFE event signaling - Signals for Wait for Event (WFE) wake-up events.

Generic timer - Input for the generic time count value. The count value is distributed to all cores. Each
core outputs timer events.

GIC interfaces - Interrupts to individual cores. All cores share a single GIC Stream Protocol interface.

Design for Test (DFT) - Interface to allow access for Automatic Test Pattern Generation (ATPG) scan-path
testing.

Memory Built-In Self test
(MBIST)

Arm MBIST Internal interface that supports the manufacturing test of the L3 and SCU memories
embedded in the DSU‑AE. Each core has its own internal MBIST interface.

DebugBlock interfaces

The following figure shows the major external interfaces.

DebugBlock

APB (master)

APB Cluster to DebugBlock

Debug
authentication

(DBGEN, NIDEN,
SPIDEN, SPNIDEN)

External APB APB (slave)

APB DebugBlock to Cluster

APB (slave)

CTM CTI Channel I/F

CTI[PE:0] CTIIRQ[PE:0]
CTIIRQACK[PE:0]

Clock and
reset

PCLK
nPRESET

Power
management

PDBGCLK Q-Channel

PWR Q-Channel
DBGPWRUPREQ[PE:0]

Split/Hybrid/
Lock

CEMODE

Figure A2-3 DebugBlock interfaces

The following table describes the major external interfaces.

A2 Technical overview
A2.2 Interfaces

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-44

Non-Confidential

Table A2-2 DebugBlock interfaces

Purpose Protocol Notes

External debug APB Slave interface to external debug component, for example a Debug Access Port (DAP).
Allows access to Debug registers and resources.

Cluster to DebugBlock APB APB interface from the cluster (master) to the DebugBlock (slave), also referred to as
APBCD.

DebugBlock to cluster APB APB interface from the DebugBlock (master) to the cluster (slave), also referred to as
APBDC.

Cross-trigger channel
interface

CTI Allows cross-triggering to be extended to external SoC components.

Power management Q-Channel Enables communication to an external power controller, which controls clock gating and
powerdown.

This section contains the following subsection:
• A2.2.1 Interface protection on page A2-45.

A2.2.1 Interface protection

The DSU‑AE protects all the external interfaces to the cluster, except for the trace interface.

Each signal that interface protection affects, has an associated check signal. This check signal has the
identical signal name with "CHK" appended to the end of it. The values of this pair of signals (<signal>
and <signal>CHK) are constantly compared to ensure that they agree. An Interface Protection fault is
reported when they do not agree. The protection mechanism that is specific to the underlying architecture
of the relevant external interface determines the valid value of the associated check signal.

The following table describes the mechanisms, and their underlying architectures, that protect each of the
supported external interfaces of the DSU‑AE cluster.

Table A2-3 DSU-AE interfaces and their protection mechanisms

Interface Protection mechanism Description

ACE0, ACE1 Odd parity AMBA® AXI and ACE Protocol Specification (IHI 0022)

CHI0, CHI1 Odd parity AMBA® AXI and ACE Protocol Specification (IHI 0022)

ACP (ACE5-Lite) Odd parity AMBA® AXI and ACE Protocol Specification (IHI 0022)

Peripheral port (AXI4) Odd parity AMBA® AXI and ACE Protocol Specification (IHI 0022)

APB Slave (APBDC) Odd parity AMBA® AXI and ACE Protocol Specification (IHI 0022)

GIC (AXI4 Stream) Odd parity AMBA® AXI and ACE Protocol Specification (IHI 0022)

P/Q Channels LPI redundancy (inverse
polarity)

AMBA® Low Power Interface Specification Issue D Update Release 1.0
(ARM AES 0009)

Interrupts and events Duplicated with inverse
polarity

Duplicate signal that is provided as reference on inverse polarity.

Configuration Duplicated with inverse
polarity

Duplicate signal that is provided as reference on inverse polarity.

Clocks Duplicated with in-phase
clock-check

In-phase check clock that is provided on redundant clock tree. Primary
clock is sourced to the primary logic; while the check clock is sourced to
the corresponding redundant logic.

A2 Technical overview
A2.2 Interfaces

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-45

Non-Confidential

Table A2-3 DSU-AE interfaces and their protection mechanisms (continued)

Interface Protection mechanism Description

Resets Duplicated with in-phase
reset-check

In-phase check reset that is provided for all resets. Reset checker with
redundant checking provides stable resolved resets.

Distributed Time Interface Odd-Parity on Status field Status field of distributed scaled timer is protected by odd parity. The
DSU‑AE only protects the bits that are in-use in the DSU‑AE.

ATB, APB Master
(APBCD)

Not protected Not protected

A2 Technical overview
A2.2 Interfaces

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-46

Non-Confidential

A2.3 RAS support
The DSU‑AE supports Reliability, Availability, and Serviceability (RAS) features.

• Error record registers.
• ECC protection on RAMs.
• Error recovery and fault handling interrupt outputs.
• Data poisoning on a 64-bit granule is supported in the DSU‑AE.

A2 Technical overview
A2.3 RAS support

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-47

Non-Confidential

A2.4 Page-based hardware attributes
The Page-Based Hardware Attributes (PBHA) bits are provided by the processor cores, and passed on or
preserved by the DSU‑AE.

The PBHA bits are provided externally as part of the SRCATTR bus. PBHA affects the following:

RAM sizes
To generate accurate PBHA bits on L3 cache evictions, store the bits in the L3 cache, by setting
the L3_PBHA parameter. If this parameter is not set, the PBHA bits are only accurate for read
transactions. If this parameter is set, the width of all L3 tag RAM instances is increased by two
bits.

ACP
All requests from ACP are given a fixed PBHA value of 0b00.

Cache stash transactions on CHI
Cache stash transactions might be sent on the CHI interface. For these requests, the PBHA bits
being used must be sent along with the stash snoop transaction. The RXSNPFLIT[FwdTxnID]
field has two spare bits which are used for this functionality, FwdTxnID[7:6]. If the interconnect
does not support PBHA, then these bits are driven to 0b00 by default.

Transaction support
Transactions that do not have a physical address that is associated with them, for example DVM
messages, do not provide the PBHA bits. Evict transactions that do not provide any data, for use
in de-allocating a snoop filter, do not provide PBHA bits.

Mismatched aliases
If the same physical address is accessed through more than one virtual address mapping, and the
PBHA bits are different in the mappings, then the results are UNPREDICTABLE. The PBHA value
sent on the bus could be for either mapping.

 Note

Not all cores provide the PBHA bits. When used with a core that does not provide the PBHA bits, the
PBHA output of the DSU‑AE is not valid.

A2 Technical overview
A2.4 Page-based hardware attributes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-48

Non-Confidential

A2.5 L3 memory system variants
The L3 cache might not be implemented in your system. There are two possible variants.

Possible L3 memory system implementations are:

L3 cache present
This is the default implementation. It provides the most functionality and is suitable for general-
purpose workloads.

L3 cache not present

The L3 cache is not present, but snoop filter and SCU logic are present.

This variant allows multiple cores in the cluster, and manages the coherency between them. It
supports other implementation options such as ACP, peripheral port, and ACE or CHI master
ports. There is an area saving from not including the L3 cache RAMs, however performance of
typical workloads is reduced. Therefore Arm recommends that this variant is only used in
specialized use cases, or when there is a system cache present that can be utilized by the cores.

A2 Technical overview
A2.5 L3 memory system variants

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A2-49

Non-Confidential

A2 Technical overview
A2.5 L3 memory system variants

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. A2-50
Non-Confidential

Chapter A3
Clocks and resets

This chapter describes the clocks and resets of the DSU‑AE.

It contains the following sections:
• A3.1 Clocks on page A3-52.
• A3.2 Resets on page A3-54.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A3-51

Non-Confidential

A3.1 Clocks
The DSU‑AE requires clock signals for each of the cores, internal logic, and external interfaces.

The following table describes the clocks.

Table A3-1 DSU-AE clock signals

Signal Description

CORECLK[CN:0] The per-core clocks for all core logic including L1 and L2 caches.

SCLK The clock for the SCU and L3 memory system, including the ACE or CHI master interface. SCLK is also used
for any cores that are configured to run synchronously to the DSU‑AE.

PCLK The clock for the DebugBlock and DSU‑AE debug APB interfaces.
 Note

The DebugBlock and cluster both have PCLK inputs. You might choose to connect these inputs to the same
clock. Alternatively, you might choose to place an asynchronous bridge between the two clock inputs, in which
case they might be different clocks.

ATCLK The clock for the ATB trace buses output from the DSU‑AE.
 Note

All ATB buses output from the DSU‑AE share the same clock.

GICCLK The clock for the GIC AXI-stream interface between the DSU‑AE and an external GIC.

PERIPHCLK The clock for peripheral logic inside the DSU‑AE such as timers, and clock and power management logic.

All clocks can be driven fully asynchronously to each other. The DSU‑AE contains all the necessary
synchronizing logic for crossing between clock domains. There are no clock dividers and no latches in
the design. The entire design is rising edge triggered.

 Note

• You can configure some or all the cores to run synchronously with the L3 memory system. In this
case, the corresponding CORECLK signals are not present and the synchronous cores run with
SCLK.

• The DebugBlock can use a different clock from the DSU‑AE PCLK. In this case, the macrocell
implementer can add asynchronous bridges between the DSU‑AE and the DebugBlock.

Some external interfaces, such as the main ACE or CHI master interface, support a clock enable input to
allow the external logic to run at a lower, synchronous, frequency. While there is no functional
requirement for the clocks to have any relationship with each other, the DSU‑AE is designed with the
following expectations to achieve acceptable performance:
• CORECLK[CN:0] is dynamically scaled to match the performance requirements of each core.
• SCLK frequency affects the L3 hit latency and therefore it is important for achieving good

performance. For best performance, Arm recommends running SCLK as close to CORECLK[CN:0]
frequency as possible. However to reduce dynamic and leakage power, targeting a lower frequency
might be required. Running SCLK at least approximately 75% of the CORECLK[CN:0] frequency
might give an appropriate balance for many systems.

• SCLK can run at synchronous 1:1 or 2:1 frequencies with the external interconnect, avoiding the
need for an asynchronous bridge between them.

A3 Clocks and resets
A3.1 Clocks

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A3-52

Non-Confidential

• PCLK, ATCLK, and GICCLK can run at the same frequency as the relevant SoC components that
they connect to. This frequency would typically be approximately 25% of the maximum
CORECLK[CN:0] frequency.

• PERIPHCLK contains the architectural timers, and if reads to these registers take too long then
software performance can be impacted. Therefore, Arm recommends that PERIPHCLK is run at
least 25% of the maximum CORECLK[CN:0] frequency.

DCLS clock restrictions
When Dual-Core Lock-Step (DCLS) cluster execution modes (Lock-mode and Hybrid-mode) are used,
then the following additional clock restrictions apply:
• Due to DCLS timeout mechanisms, there is a constraint on the maximum clock ratio that is supported

between any two clocks. This maximum supported clock frequency ratio is 20:1. For more details,
see the table of the supported clock domain crossings below.

• The PERIPHCLK must have an equal or lower frequency than all other clocks.
• When the Q-Channel of a given clock domain is in the Q_STOPPED state, then the clock must be

either available or gated throughout this state. Because clock gating transitions within the
Q_STOPPED state might break lock-step.

• When the QACTIVE of given clock domain is asserted while the Q-Channel is in the Q_STOPPED
state, then the clock must be provided within a reasonable amount of time. We recommend a time
period of up to 32 clock cycles of the relevant clock. Externally clock gating the clock for longer than
this time period after a QACTIVE assertion can break lock-step.

Table A3-2 DSU-AE clock domain crossings

Launching clock Capturing clock Comments

SCLK PERIPHCLK

GICCLK PERIPHCLK

PCLK PERIPHCLK

ATCLK PERIPHCLK

PERIPHCLK SCLK

PERIPHCLK GICCLK

PERIPHCLK PCLK

PERIPHCLK ATCLK

SCLK CORECLK When ASYNC_BRIDGE is set to TRUE.

CORECLK SCLK

GICCLK CORECLK When ASYNC_BRIDGE is set to TRUE;
otherwise SCLK is the capturing clock.PERIPHCLK CORECLK

PCLK CORECLK

ATCLK CORECLK

CORECLK GICCLK When ASYNC_BRIDGE is set to TRUE;
otherwise SCLK is the launching clock.CORECLK PERIPHCLK

CORECLK PCLK

CORECLK ATCLK

A3 Clocks and resets
A3.1 Clocks

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A3-53

Non-Confidential

A3.2 Resets
The DSU‑AE requires reset signals for each of the cores, internal logic, and external interfaces.

Table A3-3 DSU-AE reset signals

Signal Description

nCORERESET[CN:0] The per-core Warm reset signal for all registers that can be reset in the CORECLK domain excluding
the Debug registers, ETM registers, breakpoint or watchpoint registers, and RAS registers.

nCORERESETCHK[CN:0] This signal should be asserted and deasserted with the nCORERESET[CN:0] reset signal.

nCPUPORESET[CN:0] The per-core primary Cold reset signal for all registers that can be reset in the CORECLK domain
including Debug registers, ETM registers, and RAS registers.

nCPUPORESETCHK[CN:0] This signal should be asserted and deasserted with the nCPUPORESET[CN:0] reset signal.

nPRESET A single cluster-wide reset signal for all registers that can be reset in the PCLK domain.

nPRESETCHK This signal should be asserted and deasserted with the nPRESET reset signal.

nSPORESET A single cluster-wide Cold reset signal for all registers that can be reset in the SCLK domain.

nSPORESETCHK This signal should be asserted and deasserted with the nSPORESET reset signal.

nSRESET A Warm reset signal for all registers that can be reset in the SCLK domain excluding RAS registers.

nSRESETCHK This signal should be asserted and deasserted with the nSRESET reset signal.

nATRESET A single cluster-wide reset signal for all registers that can be reset in the ATCLK domain.

nATRESETCHK This signal should be asserted and deasserted with the nATRESET reset signal.

nGICRESET A single cluster-wide reset signal for all registers that can be reset in the GICCLK domain.

nGICRESETCHK This signal should be asserted and deasserted with the nGICRESET reset signal.

nPERIPHRESET A single cluster-wide reset signal for most of the registers that can be reset in the PERIPHCLK
domain. Because, some of these registers are reset by other reset signals.

nPERIPHRESETCHK This signal should be asserted and deasserted with the nPERIPHRESET reset signal.

nMBISTRESET A single cluster-wide reset signal that acts on all registers that can be reset in the CORECLK and
SCLK domains, for entry and exit from MBIST mode.

nMBISTRESETCHK This signal should be asserted and deasserted with the nMBISTRESET reset signal.

 Note

If the n*RESET and n*RESETCHK signal pairs do not agree in value for longer than eight consecutive
clock cycles of their corresponding clock domain, then the corresponding bit in CLUSTERIFPFAULT
is asserted to indicate an InterFace Protection (IFP) fault.

The nMBISTRESET signal is intended for use by an external MBIST controller to avoid the need for it
to control the reset logic in the SoC.

All reset inputs can be asserted (HIGH to LOW) and deasserted (LOW to HIGH) asynchronously. Reset
synchronization logic inside the DSU‑AE ensures that reset deassertion is synchronous for all resettable
registers inside those reset domains. The respective clock does not need to be present for reset assertion,
but it must be present for reset deassertion to ensure reset synchronization.

A3 Clocks and resets
A3.2 Resets

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A3-54

Non-Confidential

CEMODE latching

You can change the CEMODE input when nPERIPHRESET is asserted. CEMODE is latched on
nPERIPHRESET de-assertion.

A3 Clocks and resets
A3.2 Resets

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A3-55

Non-Confidential

A3 Clocks and resets
A3.2 Resets

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. A3-56
Non-Confidential

Chapter A4
Power management

This chapter describes the power domains and the power modes in the DSU‑AE.

It contains the following sections:
• A4.1 About DSU-AE power management on page A4-58.
• A4.2 Power mode control on page A4-59.
• A4.3 Communication with the power controller on page A4-60.
• A4.4 L3 RAM power control on page A4-61.
• A4.5 Power modes on page A4-63.
• A4.6 Power operating requirements on page A4-69.
• A4.7 Wait For Interrupt and Wait For Event on page A4-71.
• A4.8 Clock, voltage, and power domains on page A4-72.
• A4.9 Cluster powerdown on page A4-74.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-57

Non-Confidential

A4.1 About DSU-AE power management
The DSU‑AE supports a range of low-power modes and cache RAM powerdown modes.

The DSU‑AE supports the following power modes:

On mode
On mode is the normal mode of operation where all the core and DSU‑AE functionality is
available. The DSU‑AE individually disables internal clocks, and inputs to unused functional
blocks. Only the logic that is in use consumes dynamic power.

Functional retention mode
Functional retention mode allows the L3 cache and snoop filter RAMs to be put temporarily into
a retention state while the L3 cache is not being accessed. The contents of the cache RAMs are
retained.

Memory retention mode

Memory retention mode allows the L3 cache RAMs to be held in retention while the rest of the
cluster is powered down. Keeping the RAMs in retention reduces the energy cost of writing
dirty lines back to memory and reduces the cluster response time on powerup. It is not possible
to snoop the cache in this mode. Therefore it is important that no other external coherent agents
are active (for example, cores external to the cluster, or other coherent devices). In practice, this
mode can only be used in a coherent system when the cluster is the only active agent.

Off mode

In Off mode, power is removed completely, and no state is retained. To avoid losing data, the
DSU‑AE cleans and invalidates the L3 cache before taking the cluster out of coherence.

The DSU‑AE supports clock, voltage, and power domains that can be controlled by external logic.

The cluster, along with power management software, gives operating requirement hints to an external
power controller. The power controller is responsible for:
• Coordinating power management with the rest of the SoC;
• Switching and isolating power and voltage domains; and
• Controlling clock gating cells.

A4 Power management
A4.1 About DSU-AE power management

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-58

Non-Confidential

A4.2 Power mode control
Power management control is distributed between power management software, the cluster, and an
external power controller.

The cluster supports a set of power operating requirements which act as hints to the external power
controller. The operating requirements indicate: the required cache capacity, the RAM retention mode,
and whether the cluster logic can be powered up or down. The power controller controls the logic clamps
and power switches required to put the RAMs and logic into low-power operation.

Software sets the operating requirements by writing to the following system registers:

Cluster Power Control Register (CLUSTERPWRCTLR_EL1)
To request partial L3 cache powerup or powerdown, and to enable RAM retention capabilities.

Cluster Powerdown Register (CLUSTERPWRDN_EL1)
To request the power mode that the cluster is to enter, after all cores have powered off. For
example, memory retention mode.

The operating requirements are signaled to the power controller through the cluster P-Channel interface.
The power controller responds to a change of operating requirements by sequencing the transition
between lower or higher power modes.

Power management algorithms can use Cluster L3 Hit Counter Register (CLUSTERL3HIT_EL1) and
Cluster L3 Miss Counter Register (CLUSTERL3MISS_EL1) system registers to determine when to
powerup or powerdown cache portions.

The status of the power settings is indicated in the Cluster Power Status Register
(CLUSTERPWRSTAT_EL1) system register.

The cluster receives power mode transition requests from the power controller and checks the validity of
each transition. If the transition is supported, the cluster accepts the request. If the transition is not
supported, the cluster denies the request. If the cluster accepts the request, the power controller can
switch power domains off as appropriate.

The cluster automatically performs any internal operations required by a mode transition, before
accepting the new mode. The internal actions performed by the cluster include: gating clocks, flushing
caches, and disabling coherency.

 Note

If L3 RAM retention is not implemented, CLUSTERPWRCTLR_EL1.L3 data RAM retention control
must be left in the reset state.

A4 Power management
A4.2 Power mode control

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-59

Non-Confidential

A4.3 Communication with the power controller
The cluster provides a P-Channel interface to allow the external power controller to set the operating
power mode of the cluster, in response to requests from the cluster.

The cluster indicates the operating requirements on the CLUSTERPACTIVE bus. The power controller
can then request a new power mode. The power controller indicates the requested mode on the
CLUSTERPSTATE bus and asserts the CLUSTERPREQ handshake signal.

When the cluster has performed all the actions that are required in preparation for the power mode
transition, the cluster accepts the request by asserting CLUSTERPACCEPT. If the request is not valid,
the cluster denies the request by asserting CLUSTERPDENY. Reasons for denying the request might
be, requesting an incorrect mode transition, or the requested mode is no longer appropriate because the
L3 operating mode has changed.

At reset, the cluster reads the initial mode set by the power controller on the CLUSTERPSTATE bus.
 Note

Arm recommends that CLUSTERPREQ is asserted at reset. If CLUSTERPREQ is not asserted at
reset, the power controller must wait for 72 PERIPHCLK cycles after reset is deasserted before it drives
CLUSTERPREQ HIGH.

A4 Power management
A4.3 Communication with the power controller

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-60

Non-Confidential

A4.4 L3 RAM power control
Power savings can be made by putting parts, or all, of the L3 control logic and L3 cache RAM into
retention modes, or powering down portions of the RAM.

A4.4.1 L3 cache partial powerdown

Sections of the L3 cache that are known as portions, can be independently powered down to reduce
RAM leakage power.

When all the L3 cache capacity is not required, then the L3 cache size can be reduced by powering down
one or more of these portions. For instance, for small memory footprint workloads.

The L3 cache RAMs are organized to allow separate control of groups of cache ways. Each group has
four cache ways. The L3 data RAMs are organized into two equal sized portions, where each portion
consists of two groups of cache ways. The L3 tag RAMs are organized into four equal sized portions,
with each portion corresponding to each group of cache ways.

Power control can be applied independently to each portion.

The operating cache capacity can be selected from: all, ¾, ½, ¼, and none.

The following table shows how the available operating cache capacities relate to the RAM power enables
for each portion.

Table A4-1 L3 Cache capacity and RAM power enables

Cache capacity Tag RAM Data RAM

0 1 2 3 0 1

None Off Off

¼ On Off On Off

½ On Off On Off

¾ On Off On

All on On On

This table shows that one portion of the tag RAM for the ¼ and ¾ cache capacities are always powered
down. Therefore, these cache capacities may not achieve the same power savings of the ½ and all L3
capacities, respectively.

The external power controller requests the required L3 cache capacity, through the cluster P-Channel, in
response to power management software setting the operating requirements.

 Note

Confirm with your implementer whether RAM powerdown is supported. If RAM powerdown is
supported, then ensure that the necessary logic clamps and power switches are implemented.

Memory transactions from the cores can still be processed when all of the portions are off, and while a
portion is being powered on or off.

For more information on L3 cache slices and portions, see A5.7 Cache slices and portions
on page A5-87.

A4.4.2 L3 RAM retention

The DSU‑AE supports the Functional retention and Memory retention power modes.

A4 Power management
A4.4 L3 RAM power control

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-61

Non-Confidential

Functional retention

Functional retention mode (SFONLY FUNC_RET, ¼FUNC_RET, ½FUNC_RET,
¾FUNC_RET, or FULL FUNC_RET mode) allows the L3 cache and snoop filter RAMs to be
put temporarily in to retention while the L3 cache is not being accessed.

When the L3 cache has not been accessed for a period of time, the DSU‑AE signals to the power
controller that the L3 cache RAM can be put into retention. While in functional retention mode,
core and snoop requests can still be received. On receiving a request, the DSU‑AE signals to the
power controller to take the RAMs out of retention. The core or snoop request is stalled until the
power controller signals to the DSU‑AE to enter an ON mode (SFONLY ON, ¼ON, ½ON,
¾ON, or FULL ON). When the request is completed, the DSU‑AE signals to the power
controller that the RAMs can be put back into retention.

The Cluster Power Control Register (CLUSTERPWRCTLR) system register determines the
duration of inactivity before the DSU‑AE requests the RAMs to be put into retention.

Memory retention

Memory retention mode (¼MEM_RET, ½MEM_RET, ¾MEM_RET, or FULL_MEM_RET
mode) allows the L3 cache to be put into retention. Memory retention mode also disables the
control logic in the DSU‑AE, and allows the snoop filter and Long-Term Data Buffer (LTDB)
RAMs to be powered off.

Memory retention mode can be entered when the DSU‑AE is idle and all cores are OFF. In this
mode, the L3 cache cannot process ACP or snoop requests.

Software can request the DSU‑AE to enter memory retention by setting the Memory retention
required bit in CLUSTERPWRDN_EL1 before that core is powered OFF. After all cores have
transitioned to the OFF power mode, and the DSU‑AE becomes idle, the DSU‑AE indicates
MEM_RET on its P-Channel CLUSTERPACTIVE signal.

Even if CLUSTERPACTIVE indicates MEM_RET, the DSU‑AE can still accept a P-Channel
request to transition to the OFF mode.

A4 Power management
A4.4 L3 RAM power control

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-62

Non-Confidential

A4.5 Power modes
The external power controller can request a new operating power mode in response to the operating
requirements indicated by the DSU‑AE.

A4.5.1 Power mode transitions

The DSU‑AE supports a set of power modes. The power controller can request the DSU‑AE to transition
between modes.

The following diagram shows the supported DSU‑AE power modes, and the permitted transitions
between them. The blue modes indicate the modes that the DSU‑AE can be initialized to at reset. See
A4.3 Communication with the power controller on page A4-60.

¼ ON ½ ON ¾ ON FULL ONSFONLY ON

OFF

¼ FUNC_RET ½ FUNC_RET ¾ FUNC_RET FULL
FUNC_RET

¼ MEM_RET ½ MEM_RET ¾ MEM_RET FULL MEM_RET

SFONLY
FUNC_RET

From any mode

FULL
DEBUG_RECOV

¼
DEBUG_RECOV

SFONLY
DEBUG_RECOV

½
DEBUG_RECOV

¾
DEBUG_RECOV

Figure A4-1 DSU-AE power mode transitions

The following diagram shows the supported DSU‑AE power modes when L3 is not implemented.

A4 Power management
A4.5 Power modes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-63

Non-Confidential

SFONLY ONOFF SFONLY
FUNC_RET

SFONLY
DEBUG_RECOV

Figure A4-2 DSU-AE power mode transitions, no L3

FULL ON

In this mode, all DSU‑AE logic, snoop filter, and L3 cache RAMs are powered up and fully operational.

The DSU‑AE can be initialized into the FULL_ON mode. In this case, it is treated as an implicit
transition from the OFF mode so the L3 cache and snoop filter are invalidated. When a transition to the
FULL ON mode is completed, the cache and snoop filter are accessible and coherent. The L3 cache does
not require any configuration from software.

SFONLY ON, ¼ON, ½ON, ¾ON

In these modes, the DSU‑AE logic and snoop filter RAMs are powered up but some of the L3 cache
RAMs remain powered down.

The DSU‑AE can be initialized into the SFONLY ON mode. In this case, it is treated as an implicit
transition from the OFF mode. When a transition to the SFONLY ON mode is completed, the snoop filter
is accessible and coherent without needing any configuration from software.

 Note

Transitions between the ON modes are only allowed in incremental steps. For example, a transition
directly from ½ON to FULL ON is not permitted. The CLUSTERPACTIVE outputs correspond to this,
so that CLUSTERPACTIVE does not indicate a required mode that cannot be directly reached from the
current mode.

SFONLY FUNC_RET, ¼FUNC_RET, ½FUNC_RET, ¾FUNC_RET, FULL FUNC_RET

In these modes, the DSU‑AE is powered up, the snoop filter and L3 cache RAMs are in retention,
meaning that the RAMs are inoperable but with state retained.

If a request from a core, or a snoop from the system, is required to be serviced:
• The DSU‑AE indicates that a transition to ON is required using CLUSTERPACTIVE.
• The request is stalled until the DSU‑AE enters one of the ON modes.

When the RAMs are in retention, the clock to the RAMs is automatically gated outside of the retained
domain.

A4 Power management
A4.5 Power modes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-64

Non-Confidential

¼MEM_RET, ½MEM_RET, ¾MEM_RET, FULL MEM_RET

In these modes, the DSU‑AE logic is powered down. The L3 cache RAMs are in retention and the snoop
filter RAMs are powered down.

All cores in the cluster must be in the OFF mode to allow entry into any one of these modes.

Because the cache contains data that is accessible from the rest of the system, these modes must only be
used if there are no other coherent agents in the system that are active and might need to access the data.

OFF

In this mode, all DSU‑AE logic, snoop filter, and L3 cache RAMs are powered down.

The DSU‑AE can be initialized to this mode on Cold reset.

Debug recovery mode

The Debug recovery mode can be used to assist debug of external watchdog-triggered reset events.

By default, the DSU‑AE invalidates the cache and snoop filter when there is a transition from OFF to an
ON mode. In Debug recovery mode, cache invalidation is disabled allowing the contents of the L3 cache
that were present before the reset to be observable after the reset. The contents of the L3 cache and snoop
filter are preserved and are not altered on the transition back to the ON mode.

To enter Debug recovery mode, the P-Channel is initialized to DEBUG_RECOV, and the DSU‑AE is
cycled through a reset.

To preserve the RAS state and cache contents, a transition to the Debug recovery mode can be made
from any of the current states. When in Debug recovery mode, a cluster-wide Warm reset must be
applied externally. The RAS and cache state are preserved when the core is transitioned to the ON mode.

 Note

• Debug recovery mode is strictly for debug purposes. It must not be used for functional purposes,
because correct operation of the cluster is not guaranteed when entering this mode. When executing
in Lock-mode, some warm resets might break lock-step execution and cause false DCLS faults to be
reported after reset de-assertion.

• Debug recovery mode can occur at any time with no guarantee of the state of the cluster. A P-
Channel request of this type is accepted immediately, therefore its effects on the core, cluster, or the
wider system are unpredictable, and a wider system reset might be required. In particular, if there
were outstanding memory system transactions at the time of the reset, then these transactions might
complete after the reset when the cluster is not expecting them and cause a system deadlock. If the
system sends a snoop to the cluster during this mode, then depending on the cluster state, the snoop
might get a response and disturb the contents of the caches, or it might not get a response and cause a
system deadlock.

• If the cluster is already in the middle of a power mode transition on the P-Channel, a clock gating
transition on the SCLK Q-Channel, or the cluster is in Warm reset, then it might not be possible to
enter DEBUG_RECOV without a Cold reset of the cluster.

• The SFONLY, ¼, ½, ¾ and FULL DEBUG_RECOV modes are all functionally equivalent. You can
transition to any of these modes from any other mode, and to transition to any ON mode from any
DEBUG_RECOV mode. However, you must choose the correct ON mode corresponding to the L3
cache portions that were in use before Debug recovery mode.

A4.5.2 Power mode transition behavior

When the power controller requests a transition between power modes, the DSU‑AE automatically
performs some actions before accepting the new mode.

Your SoC might implement additional actions. When transitioning from a lower power to higher power
mode, these additional actions are performed before the power controller requests a new mode. When

A4 Power management
A4.5 Power modes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-65

Non-Confidential

transitioning from a higher power to lower power mode, these actions are performed after the DSU‑AE
accepts the new mode.

The following table shows the permitted mode transitions and behavior that is associated with each
transition.

Table A4-2 Power mode transition behavior

Start mode End mode DSU-AE behavior Partner implemented behavior

OFF ON The L3 cache and snoop filter are initialized. The
cluster is brought into coherency with the rest of the
system.

Power applied, isolation disabled.

MEM_RET ON The cluster is brought into coherency with the rest of
the system.

The snoop filter RAMs are initialized.

Power applied, isolation disabled.

ON FUNC_RET Waits for all memory transactions to complete. The
clock to the retention domain is gated. L3 cache and
snoop filter RAMs are put into retention.

RAM clamps and isolation enabled.

FUNC_RET ON L3 cache and snoop filter RAMs are taken out of
retention.

RAM clamps and isolation disabled.

FULL ON ¾ON Decreasing available cache ways. Relevant ways in
L3 cache are cleaned and invalidated.

RAM clamps and isolation are
enabled for relevant ways.

¾ON ½ON

½ON ¼ON

¼ON SFONLY ON

SFONLY ON ¼ON Increasing available cache ways. Relevant ways in L3
cache are initialized.

RAM clamps and isolation are
disabled for relevant ways.

¼ON ½ON

½ON ¾ON

¾ON FULL ON

ON OFF Waits for all memory transactions to complete. L3
cache allocation is disabled. The L3 cache is cleaned
and invalidated. The cluster is removed from system
coherency.

DSU‑AE clamps and isolation to the
rest of the system are enabled.

ON MEM_RET Waits for all memory transactions to complete. The
cluster is removed from system coherency. This mode
is only useful when the cluster is the only master
active.

DSU‑AE clamps and isolation to the
rest of the system are enabled.

Any DEBUG_RECOV - -

DEBUG_RECOV ON The cluster is brought into coherency with the rest of
the system.

Reset is applied, clamps and isolation
are disabled.

 Note

As part of the powerdown sequence any core in lock-step in the DSU‑AE must disable and clear any
interrupt outputs from the core, such as the timer interrupts. Failing to clear these interrupt outputs can
lead to a false positive error report from the lock-step comparators.

A4 Power management
A4.5 Power modes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-66

Non-Confidential

A4.5.3 Interlocks between core and DSU P-Channels

To ensure that correct operation is maintained, and to allow a cluster powerdown to be abandoned, there
are interlocks between the core and DSU‑AE P-Channels:

• If a core P-Channel request is made while the DSU‑AE is not in an ON or FUNC_RET mode, the
core request stalls until the DSU‑AE has reached the appropriate mode.

 Note

If the DSU‑AE is in the MEM_RET or OFF mode, the power controller must transition the DSU‑AE
to the ON mode to avoid deadlock when signaling a core powerup request.

• If the DSU‑AE is requested to go to MEM_RET or OFF while not all cores are OFF, the request is
denied.

• If the DSU‑AE is in the process of transitioning from ON to OFF (particularly when flushing the L3
cache which can take a long time) and a core is requested to leave the OFF mode, the L3 cache flush
is abandoned and the DSU‑AE P-Channel request is denied.

A4.5.4 Power mode encoding

The power mode is encoded on the CLUSTERPSTATE P-Channel bus.

The following table shows the encoding of the power mode.

Table A4-3 Cluster power domain CLUSTERPSTATE values

Power mode CLUSTERPSTATE
Value

Logic Snoop
filter and
LTDB
RAMs

L3 Tag
ways 0-3,
L3 Data
portion 0,
and L3
victim
RAMs

L3 Tag
ways 4-7
RAMs

L3 Tag
ways 8-11
and L3
Data
portion 1
RAMs

L3 Tag
ways
12-15
RAMs

FULL_ON 0b1001000 Powered up Powered up Powered up Powered up Powered up Powered up

¾ ON 0b0111000 Powered
down

½ ON 0b0101000 Powered
down

¼ ON 0b0011000 Powered
down

SFONLY ON 0b0001000 Powered
down

FULL_FUNC_RET 0b1000111 Retention Retention Retention Retention Retention

¾ FUNC_RET 0b0110111 Powered
down

½ FUNC_RET 0b0100111 Powered
down

¼ FUNC_RET 0b0010111 Powered
down

SFONLY FUNC_RET 0b0000111 Powered
down

A4 Power management
A4.5 Power modes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-67

Non-Confidential

Table A4-3 Cluster power domain CLUSTERPSTATE values (continued)

Power mode CLUSTERPSTATE
Value

Logic Snoop
filter and
LTDB
RAMs

L3 Tag
ways 0-3,
L3 Data
portion 0,
and L3
victim
RAMs

L3 Tag
ways 4-7
RAMs

L3 Tag
ways 8-11
and L3
Data
portion 1
RAMs

L3 Tag
ways
12-15
RAMs

FULL_MEM_RET 0b1000010 Powered
down

Powered
down

Retention Retention Retention Retention

¾ MEM_RET 0b0110010 Powered
down

½ MEM_RET 0b0100010 Powered
down

¼ MEM_RET 0b0010010 Powered
down

OFF 0b0000000 Powered
down

FULL
DEBUG_RECOV

0b1001010 Powered up
or downa

Powered up
or retentiona

Powered up
or retentiona

Powered up
or retentiona

Powered up
or retentiona

Powered up
or retentiona

¾ DEBUG_RECOV 0b0111010 Powered
downa

½ DEBUG_RECOV 0b0101010 Powered
downa

¼ DEBUG_RECOV 0b0011010 Powered
downa

SFONLY
DEBUG_RECOV

0b0001010 Powered
downa

a In DEBUG_RECOV, the power mode does not need to accurately reflect the L3 portions that are powered up.

A4 Power management
A4.5 Power modes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-68

Non-Confidential

A4.6 Power operating requirements
The DSU‑AE power operating requirements are indicated to the power controller by asserting bits on the
CLUSTERPACTIVE bus.

The meaning of each bit is described in the following table.

Table A4-4 L3 power domain CLUSTERPACTIVE bit positions

CLUSTERPACTIVE bit Power operating
requirement

Description

[19] Cache ways 12-15 Indicates the required mode of the cache way RAMs.

0 Cache ways are not required and can be requested to power down.

1 Cache ways are required to be active.
[18] Cache ways 8-11

[17] Cache ways 4-7

[16] Cache ways 0-3

[8] On DSU‑AE logic and RAMs are required to be powered up.

[7] Functional retention DSU‑AE logic is active, RAMs can be put into retention.

[2] Memory retention DSU‑AE logic can be off, RAMs required to be retained.

[0] Off DSU‑AE logic and RAMs can be powered down.

The following table shows how the CLUSTERPACTIVE bit combinations are mapped to power modes.

Table A4-5 L3 memory system power domain requested modes

CLUSTERPACTIVE bit Requested mode

[19] [18] [17] [16] [8] [7] [2] [0]

Cache
ways 12-15

Cache
ways 8-11

Cache
ways 4-7

Cache
ways 0-3

On Functional
retention

Memory
retention

Off

1 X X X 1 X X X FULL_ON

0 1 X X 1 X X X ¾ ON

0 0 1 X 1 X X X ½ ON

0 0 0 1 1 X X X ¼ ON

0 0 0 0 1 X X X SFONLY ON

1 X X X 0 1 X X FULL_FUNC_RET

0 1 X X 0 1 X X ¾ FUNC_RET

0 0 1 X 0 1 X X ½ FUNC_RET

0 0 0 1 0 1 X X ¼ FUNC_RET

0 0 0 0 0 1 X X SFONLY FUNC_RET

1 X X X 0 0 1 X FULL_MEM_RET

0 1 X X 0 0 1 X ¾ MEM_RET

0 0 1 X 0 0 1 X ½ MEM_RET

0 0 0 1 0 0 1 X ¼ MEM_RET

X X X X 0 0 0 X OFF

A4 Power management
A4.6 Power operating requirements

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-69

Non-Confidential

 Note

The CLUSTERPACTIVE and COREPACTIVEx outputs are hints for the desired power mode. In
some cases it might not be possible for the cluster to transition directly from the current mode to the
requested mode. The power controller must be aware of the valid transitions and request transitions
through intermediate modes if a direct transition is not valid. For example, if the cluster is in
FUNC_RET and CLUSTERPACTIVE indicates MEM_RET, then the power controller must first
request a transition from FUNC_RET to ON, before requesting a transition from ON to MEM_RET.

A4.6.1 Power control for DFT

When DFT activities are being performed on the cluster, the P-Channel controls are not functional.

This means that if the cluster is in MBIST mode, or ATPG scan is in progress, then the
CLUSTERPACTIVE or COREPACTIVEx outputs can take any value and the P-Channel protocol will
not be followed. The SoC power control components must be aware of the DFT activities and must
ensure that the logic and RAMs are appropriately powered without using the P-Channel.

A4 Power management
A4.6 Power operating requirements

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-70

Non-Confidential

A4.7 Wait For Interrupt and Wait For Event
To reduce dynamic power, each core can request entry in to a low-power state using the Wait For
Interrupt (WFI) and Wait For Event (WFE) instructions.

In the low-power state, most of the clocks in a core are disabled while keeping the core powered up. This
state reduces the power that is drawn to the static leakage current, leaving a small clock power overhead
to enable the core to wake up.

In addition to the per-core WFI and WFE low-power states, the clock to (almost all) the SCU and L3
logic is automatically disabled when the cluster is sufficiently idle.

A WFI or WFE instruction completes when:

• All outstanding load instructions are completed.
• All store instructions are completed.
• All cache and TLB maintenance operations are completed.
• All bus traffic to the L3 is completed.

While a core is in the low-power state, the clocks in the core are temporarily enabled under the following
conditions:
• A snoop request from the L3 cache that the L1 data cache or L2 unified cache must service.
• A cache or TLB maintenance operation that the core L1 caches or TLB must service.
• An APB access to the debug or trace registers residing in the core power domain.
• An access request from the GIC distributor to the GIC CPU interface.

While the clocks in the core are temporarily enabled, the core remains in the WFI or WFE low-power
state.

WFE wake up event signaling
• A Send Event (SEV) instruction signals a WFE wake up event to other clusters by asserting the

EVENTOREQ output.
• The EVENTIREQ input indicates that another cluster or system component has signaled a WFE wake

up event.

System global exclusive monitor signaling

Any global exclusive monitor in the system must generate an event when it is cleared. This event must
be signaled to the cluster using the EVENTIREQ input.

A4 Power management
A4.7 Wait For Interrupt and Wait For Event

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-71

Non-Confidential

A4.8 Clock, voltage, and power domains
The DynamIQ cluster microarchitecture supports multiple clock, voltage, and power domains.

The number of domains that are implemented depends on the choices made by the SoC implementer.
There might be fewer in your SoC.

The following diagram shows the clock, voltage, and power domains supported by the DSU‑AE and
cores:
• Voltage domains are indicated by dashed outlines.
• Blocks that are in the same power domain have the same color.

CPU Bridge

core[0] voltage domain

PERIPHCLK
domain

GICCLK
domain

ATCLK
domain

PCLK
domain

SCLK domain
SCU and L3 cache

L3
cache
RAMs

Snoop
filter

RAMs

DebugBlock

P-Channels GIC AXI stream CHI or ACE ATBx

APB mux APB

core[1] voltage domain

CORECLK`[0] domain

core`[0]

CORECLK[0] domain

core[0]

CORECLK[1] domain

core[1]

CORECLK`[1] domain

core`[1]

DSU voltage domain

Figure A4-3 DSU-AE Clock, voltage, and power domains

Clock domains

Each core pair can be implemented in a separate clock domain. The DSU‑AE has multiple clock
domains.

The CPU Bridge contains all asynchronous bridges for crossing clock domains, and is split with one half
of each bridge in the core clock domain and the other half in the relevant cluster domain. Each core can
be implemented with or without an asynchronous bridge. If the asynchronous bridge is not implemented,
the core is in the SCLK clock domain.

The DebugBlock can be implemented in the PCLK domain. However, the DebugBlock might be
implemented in a different domain. In this case, asynchronous bridges must be implemented on the APB
interfaces between the DebugBlock and the cluster.

Each clock domain, except the PERIPHCLK domain and CORECLK domains, has an associated Q-
Channel, which allows the DSU‑AE to request the external clock controller to gate the clock on or off.

Voltage domains

Each core can be implemented in a separate voltage domain. The DSU‑AE has a single separate voltage
domain. This allows, for example, the DSU‑AE to be in the same voltage domain as the SoC
interconnect and other system components.

A4 Power management
A4.8 Clock, voltage, and power domains

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-72

Non-Confidential

Power domains

Each core can be implemented in one, or more, separate power domains.

Additional power domains that can be implemented include:
• L3 cache RAM portions.
• SCU.
• DebugBlock.

A4 Power management
A4.8 Clock, voltage, and power domains

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-73

Non-Confidential

A4.9 Cluster powerdown
The cluster is taken out of coherence with the interconnect automatically when it is powered down. No
software sequence is required.

After receiving the request to enter power off mode from the power controller, the DSU‑AE cleans and
invalidates the L3 cache, and communicates with the interconnect to disable snoops into the cluster. All
cores must be in the OFF mode before the cluster is powered down.

 Note

To support automated removal from coherency, the interconnect must support the SYSCOREQ and
SYSCOACK handshake protocol. If not, the SoC is responsible for programming the interconnect to
remove the cluster from coherency.

A4.9.1 Transitioning in and out of coherency

The DSU‑AE provides a hardware mechanism for taking the cluster in and out of coherence with the
system interconnect. The cluster enables coherency during powerup and disables it during powerdown.

The system interconnect can use the SYSCOREQ and SYSCOACK signals, to take the cluster in and
out of coherence. If the system interconnect supports these signals, they can be connected directly. If the
system interconnect does not support these signals, Arm recommends that they are connected to the
power controller. In this case, the power controller must take any actions necessary to make the
transition.

The following diagram shows the timing of SYSCOREQ and SYSCOACK.

t0 t1 t2 t3 t4

SYSCOREQ

SYSCOACK

Coherency
disabled

Coherency
connect

Coherency
enabled

Coherency
disconnect

Coherency
disabled

Figure A4-4 SYSCOREQ SYSCOACK four-phase coherency handshake

To enable coherency, the cluster always asserts SYSCOREQ during powerup. When the system
interconnect has enabled coherency, it asserts SYSCOACK and can then start sending snoop requests to
the cluster. The cluster accepts snoop requests whenever either signal is asserted.

The cluster disables coherency during powerdown. The cluster deasserts SYSCOREQ and waits for the
system interconnect to deassert SYSCOACK. The system interconnect must not deassert SYSCOACK
until it can guarantee that: there are no further snoop requests to be sent, and that all snoop requests it has
already sent have fully completed.

The signals must obey the following four-phase handshake rules:
• SYSCOREQ can only change when SYSCOACK is at the same level.
• SYSCOACK can only change when SYSCOREQ is at the opposite level.

Coherency signals naming convention

The DSU‑AE supports up to two CHI or ACE interfaces. Each set of coherency signals has a unique
suffix.

The coherency signals are named as follows:

A4 Power management
A4.9 Cluster powerdown

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-74

Non-Confidential

CHI master 0
SYSCOREQ and SYSCOACK.

CHI master 1
SYSCOREQM1 and SYSCOACKM1.

ACE master 0
SYSCOREQM0 and SYSCOACKM0.

ACE master 1
SYSCOREQM1 and SYSCOACKM1.

A4 Power management
A4.9 Cluster powerdown

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A4-75

Non-Confidential

A4 Power management
A4.9 Cluster powerdown

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. A4-76
Non-Confidential

Chapter A5
L3 cache

This chapter describes the optional L3 cache.

It contains the following sections:
• A5.1 About the L3 cache on page A5-78.
• A5.2 L3 cache allocation policy on page A5-79.
• A5.3 L3 cache partitioning on page A5-80.
• A5.4 Cache stashing on page A5-81.
• A5.5 L3 cache ECC and parity on page A5-82.
• A5.6 L3 cache data RAM latency on page A5-85.
• A5.7 Cache slices and portions on page A5-87.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-77

Non-Confidential

A5.1 About the L3 cache
All the cores in the cluster share the L3 cache.

The shared L3 cache of the DSU‑AE provides the following functionality:
• A dynamically optimized cache allocation policy.
• Groups of cache ways can be partitioned and assigned to individual processesb. Cache partitioning

ensures that processes do not dominate the use of the cache to disadvantage other processes.
• Support for stashing requests from the ACP and CHI interfaces. These stashing requests can also

target any of the L2 caches of cores within the cluster.
• Error Correcting Code (ECC) protection is provided on the L3 cache data and tag RAMs.
• The cache can be implemented with either one or two cache slices. Each cache slice consists of data,

tag, victim, and snoop filter RAMs and associated logic.

 Note

• On powerdown, the DSU‑AE automatically performs cache cleaning, eliminating the need for
software-controlled cache cleaning.

• The ACE master interface does not support cache stashing.

b A process is an instance of a computer program.

A5 L3 cache
A5.1 About the L3 cache

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-78

Non-Confidential

A5.2 L3 cache allocation policy
The L3 cache data allocation policy changes depending on the pattern of data usage.

Exclusive allocation is used when data is allocated in only one core. Inclusive allocation is used when
data is shared between cores.

For example, an initial request from core 0 allocates data in the L1 or L2 caches but not in the L3 cache.
When data is evicted from core 0, the evicted data is allocated in the L3 cache. The allocation policy of
this cache line is still exclusive. If core 0 refetches the line, it is allocated in the L1 or L2 caches of core 0
and removed from the L3 cache. The allocation policy of this cache line is still exclusive. If core 1
accesses this line for reading, it remains allocated in core 0 and is also allocated in both the core 1 and L3
caches. In this case, this line has an inclusive allocation, because it is being shared between cores.

A5 L3 cache
A5.2 L3 cache allocation policy

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-79

Non-Confidential

A5.3 L3 cache partitioning
The L3 cache supports a partitioning scheme that alters the victim selection policy to prevent a process
from utilizing the entire L3 cache to the disadvantage of other processes.

Cache partitioning is intended for specialized software where there are distinct classes of processes
running with different cache accessing patterns. For example, two processes A and B run on separate
cores in the same cluster and therefore share the L3 cache. If process A is more data-intensive than
process B, then process A can cause all the cache lines that process B allocates to be evicted. Evicting
these allocated cache lines can reduce the performance of process B.

L3 cache partitioning is achieved by partition scheme IDs and groups of cache ways, where:

• Each group contains four ways.
• Each group can either be assigned as private to one or more partition scheme IDs, or be left

unassigned.
• Each unassigned group can be shared between all eight partition scheme IDs.

Each core in the cluster must be assigned to at least one of the eight partition scheme IDs. L3 cache
accesses from a given core can allocate into:

• Any cache way that belongs to a group that is assigned as private to the partition scheme ID of this
core.

• Any cache way that belongs to an unassigned group that is shared by the entire cluster.

Up to four private L3 cache partitions can be created.
 Note

If some cache ways are powered down, the number of ways in each L3 cache partition are reduced. This
reduction in cache ways can result in insufficient ways being made available to cores, which may
degrade their performance. Therefore Arm recommends that caution is used when powering down cache
ways while using cache partitioning.

Partitioning setup example
The following example illustrates how the control registers can be programmed to partition the L3 cache
into these three separate partitions:
• One partition that the hypervisor owns and uses for ACP and stashes.
• Two partitions that the OS assigns to processes running on the cores.

1. Software, running at EL3, sets ACTLR_EL3[10] to 0b1 and ACTLR_EL3[11] to 0b1 to delegate
control of the partitioning to EL2.

2. The hypervisor, running at EL2, sets the CLUSTERPARTCR_EL1 to 0x00008601 to configure these
three L3 cache partitions:
• Scheme ID 0 (1/4 of the cache).
• Scheme ID 2 (1/2 of the cache).
• Scheme ID 3 (1/4 of the cache).

3. The hypervisor sets the CLUSTERACPSID_EL1 to 0x0 and the CLUSTERSTASHSID_EL1 to 0x0,
to make ACP requests and stashes use partition scheme ID 0.

4. The hypervisor sets the CLUSTERTHREADSIDOVR_EL1 to 0x00060002. This setting indicates
that:
• The upper two bits of the scheme ID are under the control of the hypervisor.
• The lowest bit of the scheme ID can be controlled by the OS.

5. The hypervisor sets ACTLR_EL2[10] to 0b1 to delegate control of the CLUSTERTHREADSID_EL1
register to EL1.

6. The OS, running at EL1, can set the CLUSTERTHREADSID_EL1 to 0x0 or 0x1 to select between
the two L3 cache partitions allocated to it. These would be mapped to scheme IDs 2 and 3 by the
CLUSTERTHREADSIDOVR_EL1 register. The OS can update this register on context switches to
select which partition each process has access to.

A5 L3 cache
A5.3 L3 cache partitioning

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-80

Non-Confidential

A5.4 Cache stashing
Cache stashing allows an external agent to request that a line is brought (or stashed) into a cache.

Cache stashing can either be performed over the ACP interface, or the CHI master interface. Stash
requests can target the L3 cache, or any of the L2 caches of cores within the cluster. The available
stashing bandwidth is likely to be higher when stashing to the L3 cache.

On the CHI interface, stash requests (snoops) into both the L2 and L3 caches are supported by default.
The field, StashLPIDValid, indicates the target of the stash, as follows:
• If the field is clear, then the stash is directed to the L3 cache.
• If this field is set, then the stash is directed to an L2 cache and the StashLPID field indicates which

core is targeted.

On the ACP, by default, accesses are implicit stash requests into the L3 cache. Signal
AWSTASHLPIDENS indicates a stash into L2. In this case, signal AWSTASHLPIDS[3:1] indicates
which core to target, and AWSTASHLPIDS[0] indicates the thread. The choice of thread has no effect
on the stash operation.

On the ACE master interface, cache stashing is not supported.

The cluster always attempts to allocate a stash request, unless it is heavily utilized and does not have any
free buffers. In this case, the cluster drops a stash request to avoid a potential system deadlock.

A5 L3 cache
A5.4 Cache stashing

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-81

Non-Confidential

A5.5 L3 cache ECC and parity
Error Correcting Code (ECC) and parity protection is supported on L3 cache RAM instances.

The ECC algorithm that is used is Single Error Correct, Double Error Detect (SECDED). It allows
detection and correction of any 1-bit error and detection of any 2-bit error in all protected RAMs.

L3 cache RAMs implement ECC, as follows:
• SECDED ECC on the L3 data RAMs, per 64-bit.
• SECDED ECC on the L3 tag RAMs, per entry.
• SECDED ECC on the snoop filter RAMs, per entry.

If an error has no functional effect and only results in a minor change in performance, then the affected
RAM is not protected. For example, victim selection RAMs are not protected with ECC or parity.

Error correction

When a correctable error is detected in the L3 cache data RAMs, the data is corrected inline before
returning to the requestor.

When a correctable error is detected in the L3 cache tag RAMs or the snoop filter RAMs the following
correction mechanism is used:
• The value is corrected and written back to the source address (Read-Correct-Write).
• The lookup is replayed.

The DSU‑AE includes hardware that provides limited support for hard error correction. A hard error is a
physical error in the RAM that prevents the correct value from being written. Hard errors can be
corrected, but might cause a degradation in performance when the locations with errors are accessed.

Uncorrectable errors and data poisoning

If an error is detected as having two bits in error in a RAM protected by ECC, then this error is not
correctable. In this case, the behavior depends on the type of RAM, as follows:

Data RAM or Long-Term Data Buffer RAM
When an uncorrectable error is detected in an L3 data RAM or Long-Term Data Buffer (LTDB)
RAM, the chunk of data with the error is marked as poisoned. This poison status is then
transferred with the data and stored:
• In the cache, if the data is allocated back into a cache.
• In the LTDB RAM, if the data is moved there.

The poison status is stored for every 64 bits of data.

If the interconnect supports poisoning, then the poison status is transferred with the data when
the line is evicted or snooped from the cluster. No abort is generated when a line is poisoned.
The abort is deferred until a load or instruction fetch consumes the poisoned data.

If the interconnect does not support poisoning and a poisoned cache line is evicted or snooped
from the cluster, then the DSU‑AE generates an interrupt, nERRIRQ, to notify software that
data has potentially been lost.

 Note

Software can indicate if the interconnect supports poisoning or not by setting the interconnect
data poisoning support bit in the Extended Control Register of the cluster. For details, see
B1.8 CLUSTERECTLR, Cluster Extended Control Register on page B1-145

A5 L3 cache
A5.5 L3 cache ECC and parity

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-82

Non-Confidential

Tag RAM
When an uncorrectable error is detected in an L3 tag RAM, then either the address or coherency
state of the line is unknown, so the data cannot be poisoned. In this case, the line is invalidated
and the DSU‑AE generates an interrupt, nERRIRQ, to notify software that data has potentially
been lost.

Snoop filter tag RAM
When an uncorrectable error is detected in a snoop filter tag RAM, either the address or
coherency state of the line is unknown, so the data cannot be poisoned. In this case, the snoop
filter entry is invalidated, but the line remains present in one or more of the cores. The DSU‑AE
generates an interrupt, nERRIRQ, to notify software that data has potentially been lost.

 Note

Arm recommends that a system reset is performed as soon as possible, in response to this
interrupt. Because the core caches and the snoop filter are inconsistent after this error, which can
lead to UNPREDICTABLE behavior. The effect of the error depends on the type of core, but it could
result in further data corruption, or deadlocks, making it impossible to cleanly recover from such
an error.

Error reporting

Any detected error is reported in the Error Record Primary Status Register (ERR<n>STATUS) and the
Error Record Miscellaneous Register 0 (ERR<n>MISC0). These detected errors include errors that are
successfully corrected and errors that cannot be corrected. If multiple errors occur on the same clock
cycle, then only one error is reported and the OF (overflow) bit of ERR<n>STATUS is set.

The ERRSELR_EL1 register provides the following two error records:

• Record 0 is private to the core and is updated on any error in the core RAMs including L1 caches,
TLB, and L2 cache.

• Record 1 is for the cluster, which is shared between all cores in the cluster, and records any error in
the L3 and snoop filter RAMs.

If enabled in the ERR<n>CTLR register, by setting one or more of the UI, FI, or CFI bits, all the
detected errors generate a fault handling interrupt on:

• The nFAULTIRQ[0] pin for L3 and snoop filter errors
• The nFAULTIRQ[n+1] pin for core n L1 and L2 errors

Errors that cannot be corrected, also cause an abort or error handling interrupt because they can result in
data corruption. The interrupt alerts software to this error so that it can either attempt to recover or restart
the system. Some errors can be deferred by poisoning the data. These errors do not cause an abort at the
time of the error, but only when the erroneous data is consumed.

The following describes the different types of errors that can occur and their effects:

• Uncorrectable errors in the L3 data RAMs when read by a core can cause a precise or imprecise Data
Abort or Prefetch Abort, depending on the implementation of the core.

• Uncorrectable errors in the L3 data RAMs in a line when this line is being evicted from a cache,
cause the data to be poisoned. The eviction might be because of a natural eviction, a linefill from a
higher level of cache, a cache maintenance operation, or a snoop. If the poisoned line is evicted from
the cluster for any reason and the interconnect does not support data poisoning, then the
nERRIRQ[0] pin is asserted.

• Uncorrectable errors in the L1 tag or dirty RAMs, or in the L2 tag RAMs, cause the nERRIRQ[n+1]
pin to be asserted for core<n>.

• Uncorrectable errors in the L3 tag RAMs or SCU snoop filter RAMs cause the nERRIRQ[0] pin to
be asserted.

A5 L3 cache
A5.5 L3 cache ECC and parity

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-83

Non-Confidential

 Note

Arm recommends that the nERRIRQ pins are connected to the interrupt controller, so that an interrupt
or system error is generated when the pin is asserted.

The fault and error interrupt pins can be cleared by writing to the ERR<n>STATUS registers.

When a dirty cache line with an error on the data RAMs is evicted from the cluster, the write on the
master interface still takes place. However, if the error is uncorrectable then:

• On ACE, the uncorrected data is written.
• On CHI, the uncorrected data is written but the data poison field indicates that there is a data error.

When a snoop hits on a line with an uncorrectable data error, the data is returned (if the snoop requires
the data) and:
• On ACE, the nERRIRQ[0] pin is asserted.

 Note

The snoop response does not indicate the error.

• On CHI, the snoop response indicates that either the data is poisoned, when the interconnect supports
poisoning, or that there is an error.

If a snoop hits on a tag that has an uncorrectable error, then it is treated as a snoop miss. Because the
error means that it is not known whether the cache line is valid.

If an ACP access reads a cache line with an uncorrectable error, then it returns an ACP response to
indicate a slave error.

Sometimes an error can be counted multiple times. For example, multiple accesses might read the
location with the error before the line is evicted.

Related references
Chapter B1 Control registers on page B1-131

A5 L3 cache
A5.5 L3 cache ECC and parity

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-84

Non-Confidential

A5.6 L3 cache data RAM latency
The L3 data RAM interface can be implemented with a configurable latency on the input and output
paths.

The following options are available:

• Either a 1-cycle (the default) or 2-cycles write latency on the input path to the L3 data RAMs.
• Either a 2-cycles (the default) or 3-cycles read latency on the output path from the L3 data RAMs.
• An optional register slice on the output of the L3 data RAMs.

On the input paths, the 2p write latency keeps the RAM input signals stable for an extra cycle, which
allows an extra cycle of hold timing on the RAM inputs. If a 2 or 2p write latency is requested on the
input paths, then the RAM clock enable is pipelined and a multicycle path is applied to all other RAM
input signals.

On the output paths, the 2‑cycles read latency and 3‑cycles read latency applies a multicycle path to all
RAM output signals. The output of the optional register slice is single cycle and must never have a
multicycle path applied.

The following diagram shows the L3 data RAM timing.

Configurable
Cycle

Configurable
Cycle

Configurable
Cycle

L3 Data RAM
Address

Enables

Data Input

Data Output

Clock
Enable

Clock
Gate

Only present if a write
latency of 2 or 2p is

configured
(clock enable is pipelined,

other signals are multicycle
pathed)

Only present if a read latency
of 3-cycles is configured

(all signals are multicycle
pathed)

CLK

Only present if an output
register slice is
configured
(outputs from register
slice are single cycle)

L3 Data
RAM

Interface

L3 Data
RAM

Interface

Figure A5-1 L3 cache data RAM latency

An increase in RAM latency increases the L3 hit latency, which reduces performance.
 Note

• Only use the 3‑cycles read latency option if the RAM cannot meet the timing requirement of the
2‑cycles latency. When the read latency is set to 3‑cycles, the decrease in lookup throughput to one
access every three core clock cycles is possibly more significant. Because when there are a series of
L3 data RAM accesses close together, then the memory system could begin to back up.

• Use the register slice if the wire routing delay from the RAM to the SCU logic cannot meet the
timing requirements.

The following table describes the impact on L3 data RAM performance with the different latency
configuration parameters.

A5 L3 cache
A5.6 L3 cache data RAM latency

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-85

Non-Confidential

Table A5-1 L3 data RAM performance with different latency configurations

L3_DATA_WR_LATENCY L3_DATA_RD_LATENCY L3_DATA_RD_SLICE L3 hit
latency
cycles

L3 lookup
bandwidth

L3 write
bandwidth

1 2 No 3 Access every
2‑cycles

Access every
2‑cycles

1 3 No 4 Access every
3‑cycles

Access every
2‑cycles

1 2 Yes 4 Access every
2‑cycles

Access every
2‑cycles

1 3 Yes 5 Access every
3‑cycles

Access every
2‑cycles

2 2 No 4 Access every
2‑cycles

Access every
2‑cycles

2 3 No 5 Access every
3‑cycles

Access every
2‑cycles

2 2 Yes 5 Access every
2‑cycles

Access every
2‑cycles

2 3 Yes 6 Access every
3‑cycles

Access every
2‑cycles

2p 3 No 5 Access every
3‑cycles

Access every
3‑cycles

2p 3 Yes 6 Access every
3‑cycles

Access every
3‑cycles

A5 L3 cache
A5.6 L3 cache data RAM latency

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-86

Non-Confidential

A5.7 Cache slices and portions
The DSU‑AE is implemented as either having one or two L3 cache slices. A cache slice consists of data,
tag, victim, and snoop filter RAMs and associated logic. A portion is a further subdivision of RAM in a
cache slice.

When two L3 cache slices are implemented, the overall cache is effectively divided in two. Each cache
slice has their own associated logic. But they are not independent because there is some shared logic
between them. For each cache slice, the data RAM is subdivided into two portions, while the tag RAM is
subdivided into four portions.

The following figure shows the differences between a single and a dual cache slice configuration.

Victim
RAM

Snoop
filter RAM

Snoop
filter RAM

Slice 0 Slice 1

Tag
RAM

Victim
RAM

Tag
RAM

L3 data RAM

Portion 0 Portion 1

L3 data RAM

Portion 0 Portion 1

DSU-AEDSU-AE

Tag RAM Victim RAM Snoop filter RAM

Single cache slice configuration Dual cache slice configuration

Portion 0 Portion 1

L3 data RAM

Figure A5-2 Comparison between a single and dual L3 cache slice configuration

Dividing the L3 cache into two slices provides the following advantages:
• Improving the physical floorplan when implementing the macrocell, particularly for larger cache

sizes.
• Increasing the bandwidth because the two slices can be accessed in parallel.

A5.7.1 Cache slice and master port selection

For a dual cache slice implementation, requests are sent to a particular slice depending on the address
and the memory attributes.

For a dual cache slice implementation, requests are sent to a particular slice depending on the following
address and the memory attributes:
• For Normal Non-cacheable requests, the behavior depends on CLUSTERECTLR[0]. See

B1.8 CLUSTERECTLR, Cluster Extended Control Register on page B1-145.
• For Cacheable requests, addresses are interleaved between slice 0 and slice 1, based on an address bit

set by the INTERLEAVE_ADDR_BIT configuration parameter.
• Device requests are always sent to slice 0.

In a configuration with dual master ports, the slices directly correspond to the master ports, so an access
sent to slice 0 uses master port 0.See A6.1.1 Dual ACE interfaces on page A6-90 for more information.

A5.7.2 Default number of L3 cache slices

The configuration parameters that determine the default number of L3 cache slices.

Two cache slices are implemented, by default, when any of the following configuration options are
chosen:

• More than four LITTLE cores are configured.
• If big cores are configured.
• The L3 cache size is greater than 1MB.

A5 L3 cache
A5.7 Cache slices and portions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-87

Non-Confidential

• A second ACE master port is configured.
• Either one or two 256-bit CHI master ports is configured.

A single slice is implemented, by default, for all other configurations.
 Note

When there is either no L3 cache or an L3 cache that is 512KB or 1MB in size and there is only a single
master port, then you can override the default number of L3 cache slices by using the NUM_SLICES
configuration parameter. For more information, see A1.4 Implementation options on page A1-29.

A5.7.3 Implementing a 1.5MB L3 cache

When selecting a non-power-of-two L3 cache size of 1.5MB, each cache slice is only implemented with
12 ways. Unlike the power-of-two 512KB, 1MB, 2MB, or 4MB L3 cache sizes that implement 16 ways.

For the 1.5MB L3 cache size:
• The L3 cache size that is reported to software is 2MB.
• The last ¼ of the tag, victim, and data RAMs are not implemented in each cache slice. Therefore,

partially powering down a 1.5MB L3 cache from Full to ¾ has no effect on the power consumption
of the DSU‑AE because these ways are not implemented.

The following diagram shows the differences between the 1.5MB and 2MB L3 cache implementation.

Snoop
filter RAM

L3 Slice 0
control

L3 Slice 1
control

Slice 0

L3 cache

Not implemented

Victim
RAM

Tag
RAM

Portion 0

L3 data RAM

Portion 1

Snoop
filter RAM

Slice 1

Victim
RAM

Tag
RAM

Portion 0

L3 data RAM

Portion 1

Figure A5-3 1.5MB L3 cache implementation

For more information on partially powering down the cache, see A4.4.1 L3 cache partial powerdown
on page A4-61.

A5 L3 cache
A5.7 Cache slices and portions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A5-88

Non-Confidential

Chapter A6
ACE master interface

This chapter describes the ACE master memory interface.

It contains the following sections:
• A6.1 About the ACE master interface on page A6-90.
• A6.2 ACE configurations on page A6-91.
• A6.3 ACE features on page A6-92.
• A6.4 ACE master interface attributes on page A6-93.
• A6.5 ACE channel properties on page A6-96.
• A6.6 ACE transactions on page A6-97.
• A6.7 Support for memory types on page A6-99.
• A6.8 Read response on page A6-100.
• A6.9 Write response on page A6-101.
• A6.10 Barriers on page A6-102.
• A6.11 AXI compatibility mode on page A6-103.
• A6.12 ACE privilege information on page A6-104.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-89

Non-Confidential

A6.1 About the ACE master interface
You can configure the DSU‑AE to use the ACE5 protocol for the master memory interface.

A6.1.1 Dual ACE interfaces

The DSU‑AE can be implemented with one or two ACE interfaces. Two interfaces give greater
bandwidth for memory transactions.

Transactions generated by the cluster are routed to either interface based on the transaction type, memory
type, and transaction address:

• All DVM transactions are routed to interface 0.
• All Device transactions are routed to interface 0.

For Cacheable transactions, the configuration parameter INTERLEAVE_ADDR_BIT controls which
transaction address bit is used to select the routing between interface 0 and interface 1. The default value
is to select bit 6 of the transaction address, which interleaves on cache line boundaries. If the selected
transaction address bit has a value 0, then interface 0 is used, otherwise interface 1 is used. For more
information on INTERLEAVE_ADDR_BIT and the impact on performance, see A1.4 Implementation options
on page A1-29.

For Normal Non-cacheable transactions, routing is dependent on the value of CLUSTERECTLR.Non-
cacheable behavior control, bit[0]:
• If CLUSTERECTLR[0] is set to 1, Normal Non-cacheable transactions are routed to both interface 0

and 1 in the same way as Cacheable transactions, using the same bit of the transaction address.
• If CLUSTERECTLR[0] is set to 0, Normal Non-cacheable transactions are routed to interface 0.

 Note

Setting CLUSTERECTLR.Non-cacheable behavior control has other implications for the system. See
B1.8 CLUSTERECTLR, Cluster Extended Control Register on page B1-145 for more details.

When the external memory system sends snoops, it must either:
• Send the snoop to both interfaces.
• Send the snoop only to the interface that is relevant for the address of that snoop. This behavior is

normal operation for an external memory system that contains a snoop filter. The snoop filter
indicates that the line is present in one of the two masters.

The second method is more efficient, and if two masters are implemented, Arm recommends that the
external memory system includes a snoop filter.

DVM messages

DVM messages can be received on both interfaces, however they are only required on interface 0, and
any DVM message sent to interface 1 is treated as a no-op. Therefore for best performance, Arm
recommends that, when possible, your interconnect is configured to avoid sending DVM messages to
interface 1.

A6 ACE master interface
A6.1 About the ACE master interface

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-90

Non-Confidential

A6.2 ACE configurations
The following table shows the supported ACE configurations.

Table A6-1 Supported ACE configurations

Signal Feature

ACE non-coherent ACE coherent

With no cache or
invisible system
cache

With visible
system cache

With no cache or
invisible system
cache

With visible
system cache

BROADCASTCACHEMAINT 0 1 0 1

BROADCASTOUTER 0 0 1 1

 Note

• ACE non-coherent mode, no system cache, can be used to connect to an AXI interconnect.
• A visible system cache requires cache maintenance transactions to ensure that a write is visible to all

observers.
• An invisible system cache is one that does not require cache maintenance transactions to ensure that a

write is visible to all observers. This is true even if those observers use different memory attributes.

The following table shows the key features in each of the supported ACE configurations.

Table A6-2 Supported features in the ACE configurations

Features DSU-AE Configuration

ACE non-coherent

No system cache

ACE non-coherent

System cache

ACE coherent

AXI3 or AXI4 interconnect compliance Yes No No

ACE interconnect compliance Yes Yes Yes

Barriers on AR and AW channels No No No

Cache maintenance requests on AR channel No Yes Yes

Snoops on AC channel No No Yes

Coherent requests on AR or AW channel No No Yes

DVM requests on AR channel No No Yes

A6 ACE master interface
A6.2 ACE configurations

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-91

Non-Confidential

A6.3 ACE features
AMBA defines a set of interface properties for the ACE interconnect. The following table shows which
of these properties the DSU‑AE supports, or requires the cluster interconnect and system to support.

Table A6-3 ACE interconnect properties for the DSU-AE

ACE property Supported by the DSU-AE Interconnect support required

Continuous_Cache_Line_Read_Data Not applicable Yes

Multi_Copy_Atomicity Yes Yes

Ordered_Write_Observation Not applicable No

WriteEvict_Transaction Yes if CLUSTERECTLR Cache
UniqueClean eviction control is
programmed to 1.

Yes if CLUSTERECTLR Cache
UniqueClean eviction control is
programmed to 1.

DVM_v8 Yes Yes if BROADCASTOUTER is HIGH.

Atomic_Transactions No No

DVM_v8.1 Yes Yes if BROADCASTOUTER is HIGH.

Cache_Stash_Transactions No No

DeAllocation_Transactions No No

Persistent_CMO No No

Poison No No

Data_Check No No

QoS_Accept No No

Trace_Signals No No

Loopback_Signals No No

Low_Power_Signals Yes Yes

Untranslated_Transactions No No

NSAccess_Identifiers No No

A6 ACE master interface
A6.3 ACE features

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-92

Non-Confidential

A6.4 ACE master interface attributes
This section describes the read and write issuing capabilities and ID encoding.

The following table lists the read and write issuing capabilities.

Table A6-4 ACE master interface attributes

Attribute Value Comments

Write issuing
capability

Configuration
dependent

The maximum number of writes is:
• 96, if two slices are present.
• 32, if one slice is present.

See A5.7 Cache slices and portions on page A5-87.

Device and Normal Non-cacheable transactions are limited to a total of 15 write transactions by
default. This value can be used by system components to size buffers when bridging to other
interface protocols, for example PCIe. Normal Non-cacheable transactions can be removed from
this limit by setting the CLUSTERECTLR.Noncacheable behavior control, bit[0] to 1. See
B1.8 CLUSTERECTLR, Cluster Extended Control Register on page B1-145.

Read issuing
capability

Configuration
dependent

The maximum number of reads is:
• 98, if two slices are present.
• 34, if one slice is present.

 Note

• Two-part Distributed Virtual Memory (DVM) messages use the same ID for both parts, and
therefore can have two outstanding transactions on the same ID.

• For Device and Normal Non-cacheable reads, the read issuing capability is limited by the
combined issuing capability. Because the combined issuing capability is always lower than the
read issuing capability.

Combined
issuing
capability

Configuration
dependent

The combined issuing capability is:

• 98, if two slices are present.
• 34, if one slice is present.

The Device combined issuing capability is limited to:

• 39, if two slices are present.
• 23, if one slice is present.

The Device and Normal Non-cacheable combined issuing capability is limited to:
• 78, if two slices are present and the CLUSTERECTLR.Noncacheable behavior control, bit[0]

is set to 1.
• 39, if two slices are present and the CLUSTERECTLR.Noncacheable behavior control, bit[0]

is set to 0.
• 23, if one slice is present.

Exclusive
access thread
capability

Number of
hardware
threads

Each hardware thread can have 1 exclusive access sequence in progress.

A6 ACE master interface
A6.4 ACE master interface attributes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-93

Non-Confidential

Table A6-4 ACE master interface attributes (continued)

Attribute Value Comments

Write ID
capability

Configuration
dependent

The maximum write ID capability is:
• 96, if two slices are present.
• 32, if one slice is present.

Only Device memory types with nGnRnE or nGnRE can have more than one outstanding
transaction with the same AXI ID. All other memory types use a unique AXI ID for every
outstanding transaction.

Write ID
width

8 The ID encodes the source of the memory transaction. See the Encodings for AWIDM0[7:0] table.

Read ID
capability

Configuration
dependent

The maximum read ID capability is:
• 98, if two slices are present.
• 34, if one slice is present.

Only Device memory types with nGnRnE or nGnRE can have more than one outstanding
transaction with the same AXI ID. All other memory types use a unique AXI ID for every
outstanding transaction.

Two part DVMs use the same ID for both parts, and therefore can have two outstanding
transactions on the same ID.

Read ID width 9 The ID encodes the source of the memory transaction. See the Encodings for ARIDM0[8:0] table.

 Note

These issuing capabilities that are described here are the maximum that is possible for the whole cluster.
These capabilities can be used to size interconnect capabilities when you want to achieve maximum
performance. However, you may not be able to achieve this maximum performance by using a single
core. Achieving maximum performance may require multiple cores generating heavy memory traffic
simultaneously. These capabilities vary by core type, for example big cores typically generate more
transactions than LITTLE cores. These capabilities also vary by memory type, with typically a
significantly lower limit for Device or Non-cacheable transactions than for Cacheable transactions.

The following table shows the encodings for AWIDM0[7:0], WIDM0[7:0]. When two ACE masters are
configured, the maximum number of reads and writes are unchanged. The reads and writes can be
distributed between the two masters, or all send to one of the masters, depending on the memory type
and address.

Table A6-5 Encodings for AWIDM0[7:0] and WIDM0[7:0]

Attribute Value Issuing capability per ID Comments

Write ID 0b000t0nnn 1 Core nnnc, thread td, system domain store exclusives (except for those
that are Device non-reorderable).

0b001t0nnn 15 Core nnnc thread td, non-reorderable Device writes.

0b1xxxxxxx e 1 All other types of write.

Other encodings - Not used

A6 ACE master interface
A6.4 ACE master interface attributes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-94

Non-Confidential

The following table shows the Encodings for ARIDM0[8:0].

Table A6-6 Encodings for ARIDM0[8:0]

Attribute Value Issuing capability per
ID

Comments

Read ID 0b0000t0nnn 1 Core nnnc, thread td, load exclusives (except for those that are Device
non-reorderable), and Cacheable Shareable store exclusives (sent as
exclusive CleanUnique transactions).

0b0001t0nnn 17 Core nnnc, thread td, non-reorderable Device reads.

0b001000000 1 DVM Sync

0b001000001 256 DVM Complete

0b01xxxxxxx e 1 All other types of read

0b1xxxxxxxx e

Other encodings - Not used

 Note

• These ID and transaction details are provided for information only. Arm strongly recommends that all
interconnects and peripherals are designed to support any type and number of transactions on any ID,
to ensure compatibility with future products.

• The nnn field in both Write and Read IDs reflects the physical core number in the Split‑Lock cluster
execution mode.

• The Device and Normal Non-cacheable transaction limits that are specified in Table A6-4 ACE
master interface attributes on page A6-93 apply.

For more information about the ACE and AXI signals that are described in this manual, see the AMBA®

AXI and ACE Protocol Specification.

Related references
A5.7 Cache slices and portions on page A5-87

c nnn is the physical core number 0b000-0b111 in binary.
d t is the hardware thread number and is 0 if the core does not support multiple hardware threads.
e x is a do not care value, can be 0 or 1.

A6 ACE master interface
A6.4 ACE master interface attributes

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-95

Non-Confidential

A6.5 ACE channel properties
The following table shows the properties of the ACE channels.

Table A6-7 ACE channel properties

Property Value Comment

Snoop
acceptance
capability

9 per master
interface

The SCU can accept and process a maximum of nine snoop requests from the system for each ACE
master interface. It counts requests from the request being accepted on the AC channel to the
response being accepted on the CR channel.

Snoop latency Hit When there is a hit in L3 cache, the best case for response and data is 10 SCLK cycles. When there
is a miss in the L3 cache but a hit in an L1 or L2 cache in a core, then the latency varies depending
on the type and configuration of the core.

 Note

Latencies can be higher if hazards occur or if there are not enough buffers to accept requests.

Miss Best case six SCLK cycles when the snoop filter and L3 cache tags indicate the miss.

DVM The cluster takes a minimum of six SCLK cycles to provide a response to DVM packets.

Snoop filter Supported The cluster provides support for an external snoop filter in an interconnect. It indicates when clean
lines are evicted from the cluster by sending Evict transactions on the write channel.

However there are some cases that can prevent an Evict transaction from being sent. Therefore you
must ensure that you build any external snoop filter to handle a capacity overflow. When exceeding
capacity, the snoop filter should send a back-invalidation to the cluster.

Examples of cases where evicts are not produced include:
• Linefills that take external aborts.
• Store exclusives that fail.
• Mis-matched aliases.

Supported
transactions

- All transactions described by the ACE protocols:
• Are accepted on the master interface from the system.
• Can be produced on the ACE master interface except:

— Barriers
— MakeInvalid
— ReadShared
— ReadOnceCleanInvalid
— ReadOnceMakeInvalid
— StashOnceShared
— StashOnceUnique
— StashTranslation
— WriteUniquePtl.f

— WriteUniqueFull.f

— WriteUniquePtlStash
— WriteUniqueFullStash

See the AMBA® AXI and ACE Protocol Specification for more information about the ACE channel.

f The AMBA ACE5 transaction types WriteUniqueFull and WriteUniquePtl were known in AMBA4 ACE as WriteLineUnique and WriteUnique, respectively.

A6 ACE master interface
A6.5 ACE channel properties

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-96

Non-Confidential

A6.6 ACE transactions
The DSU‑AE does not generate any FIXED bursts and a burst does not cross a cache line boundary.

The cache linefill fetch length is always 64 bytes.

The DSU‑AE generates only a subset of all possible ACE transactions on the master interface.

For WriteBack Cacheable transfers, the supported transfers are:

• WRAP 4 128-bit for read transfers (linefills).
• INCR 4 128-bit for write transfers (evictions).
• INCR 4 128-bit for read transfers (linefills).
• INCR 1 128-bit for read transfers if ACP is configured.

For Normal Non-cacheable or Device transactions:

• INCR N (N:2 or 4) 128-bit read transfers.
• INCR N (N:2 or 4) 128-bit write transfers.
• WRAP N (N:2 or 4) 128-bit read transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit read transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit write transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit exclusive read transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit exclusive write transfers.

The following points apply to ACE transactions:

• WRAP bursts are only 128-bit size.
• INCR burst, more than one transfer, are only 128-bit size.
• No transaction is marked as FIXED.
• Write transfers with none, some, or all byte strobes LOW can occur.

The following table shows the ACE transactions that can be generated and some typical operations that
might cause these transactions to be generated.

 Note

This table does not provide an exhaustive list of operations that generate each type of transaction,
because there are many possibilities.

Table A6-8 ACE transactions

Transaction Operation

ReadNoSnoop Non-cacheable loads or instruction fetches.

Linefills of non-shareable cache lines into L1, L2, or L3 caches.

ReadOnce Cacheable loads that are not allocating into the cache.

ReadClean Cache data linefills started by a load instruction.

Cache linefills started by an instruction fetch.

ReadNotSharedDirty Cache data linefills started by a load instruction.

Cache linefills started by an instruction fetch.

ReadUnique Data linefills started by a store instruction.

CleanUnique Store instructions that hit in the cache but the line is not in a unique coherence state.

Store instructions that are not allocating into the caches, for example when streaming writes.

A6 ACE master interface
A6.6 ACE transactions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-97

Non-Confidential

Table A6-8 ACE transactions (continued)

Transaction Operation

MakeUnique Store instructions of a full cache line of data, that miss in the caches.

CleanShared Cache maintenance instructions.

CleanSharedPersist Not used.

CleanInvalid Cache maintenance instructions.

DVM TLB and instruction cache maintenance instructions.

DVM Complete DVM Sync snoops received from the interconnect.

WriteNoSnoop Non-cacheable store instructions.

Evictions of non-shareable cache lines from L1, L2, and L3 caches.

WriteBack Evictions of dirty lines from the L1, L2, or L3 cache.

Streaming writes that are not allocating into the cache.

WriteClean Evictions of dirty lines from the L3 cache, when the line is still present in an L1 or L2 cache.

Some cache maintenance instructions.

WriteEvict Evictions of unique clean lines, when configured in the CLUSTERECTLR.

Evict Evictions of clean lines, when configured in the CLUSTERECTLR.

Barriers Not used.

MakeInvalid Not used.

ReadShared Not used.

ReadOnceCleanInvalid Not used.

ReadOnceMakeInvalid Not used.

StashOnceShared Not used.

StashOnceUnique Not used.

StashTranslation Not used.

WriteUniquePtl Not used.

WriteUniqueFullg Not used.

WriteUniquePtlStash Not used.

WriteUniqueFullStash Not used.

g The AMBA5 ACE transaction types WriteUniqueFull and WriteUniquePtl were known in AMBA4 ACE as WriteLineUnique and WriteUnique, respectively.

A6 ACE master interface
A6.6 ACE transactions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-98

Non-Confidential

A6.7 Support for memory types
The cores in the DynamIQ cluster simplify the coherency logic by downgrading some memory types.

Normal memory that is marked as both Inner Write-Back Cacheable and Outer Write-Back Cacheable is
cached in the core data caches and the L3 cache.

All other Normal memory types are treated as Non-cacheable and are sent on the master interface as
Normal Non-cacheable.

A6 ACE master interface
A6.7 Support for memory types

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-99

Non-Confidential

A6.8 Read response
The ACE master can delay accepting a read data channel transfer by holding RREADY LOW for an
indeterminate number of cycles.

RREADY can be deasserted LOW between read data channel transfers that form part of the same
transaction.

The ACE master asserts the read acknowledge signal RACK HIGH in the ACLK cycle following
acceptance of the last read data channel transfer for a transaction. RACK is asserted in AXI
compatibility mode in addition to ACE configurations.

 Note

• For interoperability of system components, Arm recommends that components interfacing with the
ACE master are fully ACE-compliant with no reliance on the subset of permitted RACK behavior
that is described for the DSU‑AE.

• If the interconnect does not perform hazarding between coherent and non-coherent requests, then,
after it has returned the first transfer of read data for a non-coherent read, it must return all the
remaining read transfers in the transaction.

The completion of the read transfers must not depend on either of the following:
— Snoop requests being sent to the core.
— The core needing to respond to a snoop request that could be to the same address.

A6 ACE master interface
A6.8 Read response

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-100

Non-Confidential

A6.9 Write response
The ACE master requires that the slave does not return a write response until it has received the write
address.

The ACE master always accepts write responses without delay by holding BREADY HIGH.

The ACE master asserts the write acknowledge signal WACK HIGH in the ACLK cycle following
acceptance of a write response. WACK is asserted in AXI compatibility mode in addition to ACE
configurations.

 Note

For interoperability reasons, Arm recommends that system components fully comply with the ACE
specification and do not rely on the DSU‑AE behavior described here.

A6 ACE master interface
A6.9 Write response

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-101

Non-Confidential

A6.10 Barriers
The DSU‑AE does not support sending barrier transactions to the interconnect. Barriers are always
terminated within the cluster.

You must ensure that your interconnect and any peripherals connected that are to it do not return a write
response for a transaction until that transaction would be considered complete by a later barrier. This
means that the write must be observable to all other masters in the system. Arm expects most peripherals
to meet this requirement.

A6 ACE master interface
A6.10 Barriers

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-102

Non-Confidential

A6.11 AXI compatibility mode
The DSU‑AE implements an AXI compatibility mode that enables you to use the DSU‑AE in a
standalone environment where the AMBA ACE5 interface is not required.

To enable this mode, you must ensure that the BROADCASTOUTER,
BROADCASTCACHEMAINT, and BROADCASTPERSIST input signals are set to LOW. You must
also tie ACVALIDMx, ACWAKEUPMx, CDREADYMx, and CRREADYMx input signals LOW.

The AXI3 protocol supports write interleaving which is not used by the DSU‑AE. To allow compatibility
with AXI3 components, the DSU‑AE provides WIDMx output signals, which can be connected to an
AXI3 device.

If using AXI4 and ACE components, you must leave the WIDMx output signals unconnected as these
signals do not exist in these protocols.

For single master implementations, WIDM0 is provided. For dual master implementations, WIDM0 and
WIDM1 are provided.

A6.11.1 Additional logic to support AXI compatibility

To support AXI compatibility, the DSU‑AE requires additional logic.

The DSU‑AE implements a handshake for system coherency using the SYSCOREQ* and
SYSCOACK* signals. In AXI compatibility mode, the DSU‑AE does not support coherency. However,
because this interface uses a handshake protocol, transitions on SYSCOREQ* request must be
responded to by a corresponding acknowledge on SYSCOACK*.

Arm recommends that you implement the following logic in your system:
• Add a single-bit register with the input connected to SYSCOREQ*.
• Connect the output of the register to SYSCOACK*.
• The register must be reset LOW, and clocked and reset using the clock and reset from your AXI

system.

For single ACE master implementations, SYSCOREQM0 and SYSCOACKM0 are provided. For dual
ACE master implementations, SYSCOREQM1 and SYSCOACKM1 are also provided.

A6 ACE master interface
A6.11 AXI compatibility mode

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-103

Non-Confidential

A6.12 ACE privilege information
ACE provides information about the privilege level of accesses on the ARPROTM[0] and
AWPROTM[0] signals. This information is not available from cores within the cluster. Therefore these
signals are always driven to HIGH indicating that the access could be a privileged access.

A6 ACE master interface
A6.12 ACE privilege information

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A6-104

Non-Confidential

Chapter A7
CHI master interface

This chapter describes the AMBA 5 CHI master memory interface.

It contains the following sections:
• A7.1 About the CHI master interface on page A7-106.
• A7.2 CHI version on page A7-107.
• A7.3 CHI features on page A7-108.
• A7.4 CHI configurations on page A7-109.
• A7.5 Attributes of the CHI master interface on page A7-110.
• A7.6 CHI channel properties on page A7-112.
• A7.7 CHI transactions on page A7-113.
• A7.8 Use of DataSource on page A7-116.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-105

Non-Confidential

A7.1 About the CHI master interface
You can configure the DSU‑AE to use the AMBA 5 CHI protocol for the master memory interface.

A7.1.1 Dual CHI interfaces

The DSU‑AE can be implemented with one or two CHI interfaces.

Transactions generated by the cluster are routed to either interface based on the transaction type, memory
type, and transaction address:

• All DVM transactions are routed to interface 0.
• All Device transactions are routed to interface 0.

For Cacheable transactions, the configuration parameter INTERLEAVE_ADDR_BIT controls which
transaction address bit is used to select the routing between interface 0 and interface 1. The default value
is to select bit 6 of the transaction address, which interleaves on cache line boundaries. If the selected
transaction address bit has a value 0, then interface 0 is used, otherwise interface 1 is used. For more
information on INTERLEAVE_ADDR_BIT and the impact on performance, see A1.4 Implementation options
on page A1-29.

For Normal Non-cacheable transactions, routing is dependent on the value of CLUSTERECTLR.Non-
cacheable behavior control, bit[0]:
• If CLUSTERECTLR[0] is set to 1, Normal Non-cacheable transactions are routed to both interface 0

and 1 in the same way as Cacheable transactions, using the same bit of the transaction address.
• If CLUSTERECTLR[0] is set to 0, Normal Non-cacheable transactions are routed to interface 0.

When the external memory system sends snoops, it must either:
• Send the snoop to both interfaces.
• Send the snoop only to the interface that is relevant for the address of that snoop. This behavior is

normal operation for an external memory system that contains a snoop filter. The snoop filter
indicates that the line is present in one of the two masters.

The second method is more efficient, and if two masters are implemented, Arm recommends that the
external memory system includes a snoop filter.

DVM messages

DVM messages can be received on both interfaces, however they are only required on interface 0, and
any DVM message sent to interface 1 is treated as a no-op. Therefore for best performance, Arm
recommends that, when possible, your interconnect is configured to avoid sending DVM messages to
interface 1.

System address map

If the DSU‑AE is configured with the integrated CMN-600 SAM and two CHI interfaces, the DSU‑AE
will only contain one SAM, and the node_id field in the CMN-600 por_rnsam_node_info register will
contain the node ID of CHI interface 0.

A7 CHI master interface
A7.1 About the CHI master interface

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-106

Non-Confidential

A7.2 CHI version
The DSU‑AE supports CHI Issue B.

A7 CHI master interface
A7.2 CHI version

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-107

Non-Confidential

A7.3 CHI features
AMBA defines a set of interface properties for the CHI interconnect. The following table shows which
of these properties the DSU‑AE supports, or requires the interconnect and system to support.

Table A7-1 CHI interconnect properties for the DSU-AE

CHI property Supported by the DSU-AE Interconnect support required

Atomic_Transactions Yes if BROADCASTATOMIC is HIGH. Yes if BROADCASTATOMIC is HIGH.

Cache_Stash_Transactions Yes Yes

Direct_Memory_Transfer Yes Optional. The DSU‑AE supports this
feature if it is implemented by the
interconnect.

Direct_Cache_Transfer Yes Optional. The DSU‑AE supports this
feature if it is implemented by the
interconnect.

Data_Poison Yes Yes

Data_Check No No

CCF_Wrap_Order Yes. The DSU‑AE always sends Data
packets in critical chunk first wrap order.

No

Req_Addr_Width 44. If a core with a 48-bit physical address
width is configured inside the cluster, this
is 48.

Not applicable

NodeID_Width 11 Not applicable

Data_Width User configurable: 128 bits or 256 bits. Not applicable

Barrier_Transactions No No. The DSU‑AE does not use these
transaction types.

Data return from SC state. Yes Not applicable

I/O de-allocation transactions (ROMI and
ROCI).

No No. The DSU‑AE does not use these
transaction types.

ReadNotSharedDirty transactions Yes Yes

CleanSharedPersist transactions Yes if BROADCASTPERSIST is HIGH. Yes if BROADCASTPERSIST is HIGH.

For more information on these features, see AMBA® 5 CHI Architecture Specification.

A7 CHI master interface
A7.3 CHI features

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-108

Non-Confidential

A7.4 CHI configurations
You can change the coherency configurations to suit your system configuration using the
BROADCASTCACHEMAINT and BROADCASTOUTER input signals.

The following table shows the permitted combinations of these signals and the supported configurations
in the DSU‑AE, with a CHI bus.

Table A7-2 Supported CHI configurations

Signal Feature

CHI non-coherent CHI coherent

With no cache or
invisible system cache

With visible
system cache

With invisible
system cache

With visible
system cache

BROADCASTCACHEMAINT 0 1 0 1

BROADCASTOUTER 0 0 1 1

 Note

• A visible system cache requires cache maintenance transactions to ensure that a write is visible to all
observers.

• An invisible system cache is one that does not require cache maintenance transactions to ensure that a
write is visible to all observers. This is true even if those observers use different memory attributes.

The following table shows the key features in each of the supported CHI configurations.

Table A7-3 Supported features in the CHI configurations

Features Configuration

CHI non-coherent CHI coherent

With no cache or invisible
system cache

With visible system
cache

Cache maintenance requests on TXREQ
channel

No Yes Yes

Snoops on RXSNP channel No No Yes

Coherent requests on TXREQ channel No No Yes

DVM requests on TXREQ channel No No Yes

A7 CHI master interface
A7.4 CHI configurations

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-109

Non-Confidential

A7.5 Attributes of the CHI master interface
The following table lists the possible values for the read and write issuing capabilities.

Table A7-4 Attributes of the CHI master memory interface

Attribute Value Comments

Write issuing capability Configuration
dependent

The maximum number of writes is:
• 96, if two slices are present.
• 32, if one slice is present.

Read issuing capability Configuration
dependent

The maximum number of reads is:
• 96, if two slices are present.
• 32, if one slice is present.

 Note

For Device and Normal Non-cacheable reads, the read issuing capability is limited
by the combined issuing capability. Because the combined issuing capability is
always lower than the read issuing capability.

Combined issuing capability Configuration
dependent

The combined issuing capability is:

• 96, if two slices are present.
• 32, if one slice is present.

The Device combined issuing capability is limited to:

• 39, if two slices are present.
• 23, if one slice is present.

The Device and Normal Non-cacheable combined issuing capability is limited to:
• 78, if two slices are present with one main master port.
• 78, if two slices are present with two main master ports and the

CLUSTERECTLR.Noncacheable behavior control, bit[0] is set to 1. See
B1.8 CLUSTERECTLR, Cluster Extended Control Register on page B1-145.

• 39, if two slices are present with two main master ports and the
CLUSTERECTLR.Noncacheable behavior control, bit[0] is set to 0.

• 23, if one slice is present.

Exclusive hardware access
thread capability

Number of
hardware threads.

Each hardware thread can have one exclusive access sequence in progress.

Transaction ID width 8 bits There is no fixed mapping between CHI transaction IDs and cores. Transaction
IDs can be used for either reads or writes.

 Note

The source of the transaction is encoded in the LPID field, see Table A7-6 CHI
LPID assignment on page A7-113.

A7 CHI master interface
A7.5 Attributes of the CHI master interface

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-110

Non-Confidential

Table A7-4 Attributes of the CHI master memory interface (continued)

Attribute Value Comments

Transaction ID capability Configuration
dependent

The ID capability is:
• 96, if two slices are present.
• 32, if one slice is present.

 Note

Unlike in an AMBA ACE5 configuration, there is never any ID reuse in CHI
implementations, regardless of the memory type.

NodeID widths 11 bits -

TXREQFLIT.RSVDC 0 bits -

TXDATFLIT.RSVDC 0 bits -

TXDATFLIT.DataCheck 0 bits -

 Note

These issuing capabilities that are described here are the maximum that is possible for the whole cluster.
These capabilities can be used to size interconnect capabilities when you want to achieve maximum
performance. However, you may not be able to achieve this maximum performance by using a single
core. Achieving maximum performance may require multiple cores generating heavy memory traffic
simultaneously. These capabilities vary by core type, for example big cores typically generate more
transactions than LITTLE cores. These capabilities also vary by memory type, with typically a
significantly lower limit for Device or Non-cacheable transactions than for Cacheable transactions.

Related references
A5.7 Cache slices and portions on page A5-87

A7 CHI master interface
A7.5 Attributes of the CHI master interface

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-111

Non-Confidential

A7.6 CHI channel properties
The following table shows the snoop capabilities and other CHI channel properties for the DSU‑AE.

Table A7-5 CHI channel properties

Property Value Comment

Snoop
acceptance
capability

Configuration
dependent

For dual 256-bit CHI masters, the SCU can accept and process a maximum of 11 snoop requests
from each master port.

For a single 256-bit CHI master, the SCU can accept and process a maximum of 14 snoop requests
from the system. For a 128-bit CHI master, the SCU can accept and process a maximum of 11
snoop requests.

DVM
acceptance
capability

4 The SCU can accept and process a maximum of four DVM transactions from the system. Each of
these four transactions can be a two part DVM message.

The interconnect must be configured to never send more than four DVM messages to the cluster,
otherwise the system might deadlock.

Snoop latency Hit When there is a hit in L3 cache, the best case for response and data is 10 SCLK cycles. When
there is a miss in the L3 cache but a hit in an L1 or L2 cache in a core, then the latency varies. This
latency variation depends on the type and configuration of that core.

Latencies can be higher if hazards occur or if there are not enough buffers to absorb requests.

Miss Best case for latency is six SCLK cycles when the snoop filter and L3 cache tags indicate the miss.

DVM The cluster takes a minimum of six SCLK cycles to provide a response to DVM packets.

Snoop filter Supported The cluster provides support for an external snoop filter in an interconnect. It indicates when clean
lines are evicted from the cluster by sending Evict transactions on the CHI write channel.

However there are some cases that can prevent an Evict transaction from being sent. Therefore you
must ensure that you build any external snoop filter to handle a capacity overflow. When
exceeding capacity, the snoop filter should send a back-invalidation to the cluster.

Examples of case where evicts are not produced include:
• Linefills that take external aborts.
• Store exclusives that fail.
• Mis-matched aliases.

Supported
transactions

- All transactions that are described by the CHI protocol:
• Are accepted on the CHI master interface from the system.
• Can be produced on the CHI master interface except:

— ReadShared.
— MakeInvalid.
— EOBarrier.
— ECBarrier.
— WriteCleanPtl.
— WriteUniquePtl.
— WriteBackPtl.
— WriteUniqueFullStash.
— WriteUniquePtlStash.
— ReadOnceCleanInvalid.
— ReadOnceMakeInvalid.

A7 CHI master interface
A7.6 CHI channel properties

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-112

Non-Confidential

A7.7 CHI transactions
CHI transactions are sent to a specific node in the interconnect that is based on the following criteria:

• Type of access.
• Address of the access.
• Settings of the System Address Map.

Addresses that map to an HN-F node can be marked as cacheable memory in the translation tables, and
can take part in the cache coherency protocol. Addresses that map to an HN-I or MN must be marked as
device or Non-cacheable memory.

CHI TXREQ transactions include the Logical Processor ID (LPID) field. This field uniquely identifies
the logical core that generated the request transaction. The following table shows CHI LPID assignment.

Table A7-6 CHI LPID assignment

LPID Description

0x0-0xF Bits [3:0] are encoded:

[0] Thread number.

[3:1] CPUID.

0x10-0x1D Reserved.

0x1E ACP request.

0x1F Cache copy back.

The following table shows the CHI transactions that can be generated and some typical operations that
might cause these transactions to be generated.

 Note

This table does not provide an exhaustive list of operations that generate each type of transaction,
because there are many possibilities.

Table A7-7 CHI transaction types

Transaction Operation

ReadNoSnp Non-cacheable loads or instruction fetches.

Linefills of Non-shareable cache lines into L1, L2, or L3 caches.

ReadOnce Cacheable loads that are not allocating into the cache.

ReadClean Cache data linefills started by a load instruction.

Cache linefills started by an instruction fetch.

ReadShared Not supported.

ReadNotSharedDirty Cache data linefills started by a load instruction.

Cache linefills started by an instruction fetch.

ReadUnique Cache data linefills started by a store instruction.

CleanUnique Store instructions that hit in the cache but the line is not in a unique coherence state.

MakeUnique Store instructions of a full cache line of data, that miss in the caches.

A7 CHI master interface
A7.7 CHI transactions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-113

Non-Confidential

Table A7-7 CHI transaction types (continued)

Transaction Operation

CleanShared Cache maintenance instructions.

CleanSharedPersist Cache maintenance instructions. The Data Cache Clean to the Point of Persistence (DC CVAP) cache
maintenance instruction only generates this transaction when the BROADCASTPERSIST input signal is
HIGH.

CleanInvalid Cache maintenance instructions.

MakeInvalid Not used.

DVMOp TLB and instruction cache maintenance instructions.

EOBarrier Not used.

ECBarrier Not used.

PrefetchTgt Hardware prefetch hint to the memory controller.

StashOnceShared Cache prefetch when there is no L3 cache present.

StashOnceUnique Cache prefetch when there is no L3 cache present.

WriteNoSnpPtl Non-cacheable store instructions.

WriteNoSnpFull Non-cacheable store instructions.

Evictions of Non-shareable cache lines.

WriteUniqueFull Cacheable writes of a full cache line, that are not allocating into L1, L2, or L3 caches, for example streaming
writes.

WriteUniquePtl Not used.

WriteBackFull Evictions of dirty lines from the L1, L2, or L3 caches.

WriteBackPtl Not used.

WriteCleanFull Evictions of dirty lines from the L3 cache, when the line is still present in an L1 or L2 cache.

Some cache maintenance instructions.

WriteCleanPtl Not used.

WriteEvictFull Evictions of unique clean lines, when configured in the CLUSTERECTLR.

Evict Evictions of clean lines, when configured in the CLUSTERECTLR.

AtomicStore Atomic instruction.

AtomicLoad Atomic instruction.

AtomicSwap Atomic instruction.

AtomicCompare Atomic instruction.

WriteUniqueFullStash Not used.

WriteUniquePtlStash Not used.

ReadOnceCleanInvalid Not used.

ReadOnceMakeInvalid Not used.

External memory accesses generate the following transactions in an implementation configured with a
CHI master interface.

A7 CHI master interface
A7.7 CHI transactions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-114

Non-Confidential

Table A7-8 CHI transaction usage

Attributes CHI transaction

Memory
type

Shareability SnpAttr Load Store Load exclusive Store
exclusive

Device Outer
Shareable

Non-
snoopable

ReadNoSnp WriteNoSnp ReadNoSnp and Excl
set to HIGH.

WriteNoSnp and
Excl set to
HIGH.

Normal, Inner
Non-
cacheable,
Outer Non-
cacheable

Non-shareable Non-
snoopable

ReadNoSnp WriteNoSnp ReadNoSnp and Excl
set to HIGH.

WriteNoSnp and
Excl set to
HIGH.Inner

Shareable

Outer
Shareable

Normal, Inner
Non-
cacheable,
Outer Write-
Back or Write-
Through, or
Normal, Inner
Write-
Through,
Outer Write-
Back, Write-
Through or
Non-
cacheable, or
Normal Inner
Write-Back
Outer Non-
cacheable or
Write-Through

Non-shareable Non-
snoopable

ReadNoSnp WriteNoSnp ReadNoSnp and Excl
set to HIGH.

WriteNoSnp and
Excl set to
HIGH.

Inner
Shareable

Outer
Shareable

Normal, Inner
Write-Back,
Outer Write-
Back

Non-shareable Non-
snoopable

ReadNoSnp WriteNoSnp when
the line is evicted
or if not allocating
into the cache.

ReadNoSnp WriteNoSnp
when the line is
evicted.

Inner
Shareable

Snoopable ReadNotSharedDirty
or ReadClean

ReadUnique,
CleanUnique, or
MakeUnique if
allocating into the
cache, then a
WriteBackFull
when the line is
evicted.

WriteUniqueFull l
if not allocating
into the cache.

ReadNotSharedDirty
or ReadClean, with
Excl set to HIGH.

CleanUnique
with Excl set to
HIGH if
required, then a
WriteBackFull
when the line is
evicted.

Outer
Shareable

Snoopable

A7 CHI master interface
A7.7 CHI transactions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-115

Non-Confidential

A7.8 Use of DataSource
Some CHI responses from the interconnect include a DataSource field indicating where the data was
supplied from. When making use of the DataSource field, we recommend providing this information as
accurately as possible using the encodings recommended in the table Permitted combinations of Write
and CMO for RN to HN requests provided in the AMBA® 5 CHI Architecture Specification.

The value of this field is used to calculate some PMU events, and can also be used by some cores to tune
the performance of their data prefetchers.

A7 CHI master interface
A7.8 Use of DataSource

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A7-116

Non-Confidential

Chapter A8
ACP slave interface

This chapter describes the ACP slave interface.

It contains the following sections:
• A8.1 About the ACP on page A8-118.
• A8.2 ACP features on page A8-119.
• A8.3 ACP ACE5-Lite subset on page A8-120.
• A8.4 ACP transaction types on page A8-121.
• A8.5 ACP performance on page A8-123.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A8-117

Non-Confidential

A8.1 About the ACP
The Accelerator Coherency Port (ACP) is an optional slave interface, conforming to a subset of the
ACE5-Lite specification.

The ACP slave interface allows an external master to access memory through the main memory interface
of the DSU‑AE. Only access to Cacheable memory is permitted.

The read and write data buses of the ACP are 128 bits. Accesses are optimized for cache line length.

To maintain cache coherency, accesses are checked in all cached locations in the cluster. That is, the L3
cache, and the data caches in each core.

By default, ACP write accesses are implicit stash requests to the L3 cache. Alternatively, implicit stash
requests can target the L2 cache of a selected core.

A8 ACP slave interface
A8.1 About the ACP

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A8-118

Non-Confidential

A8.2 ACP features
The ACP interface for the DSU‑AE supports the following properties.

Table A8-1 ACP interface properties for the DSU-AE

ACP property Supported by the DSU-AE

Port_Type Accelerator

Continuous_Cache_Line_Read_Data Yes

Multi_Copy_Atomicity Yes

Ordered_Write_Observation No

WriteEvict_Transaction No

DVM_v8 No

Atomic_Transactions No

DVM_v8.1 No

Cache_Stash_Transactions Yes

DeAllocation_Transactions No

Persistent_CMO No

Poison No

Data_Check No

QoS_Accept No

Trace_Signals No

Loopback_Signals No

Low_Power_Signals Yes

Untranslated_Transactions No

NSAccess_Identifiers No

A8 ACP slave interface
A8.2 ACP features

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A8-119

Non-Confidential

A8.3 ACP ACE5-Lite subset
The ACP conforms to a subset of the ACE5-Lite specification.

The ACP ACE5-Lite subset is described in AMBA® AXI and ACE Protocol Specification. The DSU‑AE
has the following additional restrictions:
• The values of ARCACHES and AWCACHES are restricted to:

— 0b0111.
— 0b1011.
— 0b1111.

• All transactions can be Secure or Non-secure.
• Exclusive accesses are not supported. ARLOCK and AWLOCK signals are not present.
• All requests can specify Outer Shareable and Non-shareable using the AWDOMAINS and

ARDOMAINS signals.
• Barriers are not supported. The BRESP response for any write transaction indicates global

observability for the transaction.
• ARSIZE and AWSIZE signals are not present. A value of 4 (16 bytes) is assumed.
• The values of ARLENS and AWLENS are restricted to:

0 One beat.
3 Four beats.

• ARBURST and AWBURST signals are not present. A value of 0b01 (INCR) is assumed.
• ARSNOOP signals are not present. A value of 0b0000 is assumed.
• ARQOS and AWQOS signals are not present.

A8 ACP slave interface
A8.3 ACP ACE5-Lite subset

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A8-120

Non-Confidential

A8.4 ACP transaction types
The ACP supports transaction types having the following transfer size and length combinations:

• 16-byte INCR read transaction:
— ARLENS is 0 (one beat).
— Address aligned to 16-byte boundary (ARADDRS[3:0] is 0b0000).

• 64-byte INCR read transaction:
— ARLENS is 3 (four beats).
— Address aligned to 64-byte boundary (ARADDRS[5:0] is 0b000000).

The ACP supports the following write transaction transfer size and length combinations:

• 16-byte INCR write transaction:
— WSTRBS, any combination of bytes, including no bytes, are valid.
— AWLENS is 0 (one beat).
— AWSNOOPS is WriteUniquePtl or WriteUniquePtlStash.
— Address aligned to 16-byte boundary (AWADDRS[3:0] is 0b0000).

• 64-byte INCR write transaction:
— WSTRBS, any combination of bytes, including no bytes, are valid.

 Note

When AWSNOOPS is WriteUniqueFull, all bytes must be valid.

— AWLENS is 3 (four beats).
— AWSNOOPS is WriteUniquePtl, WriteUniquePtlStash or WriteUniqueFull.
— Address aligned to 64-byte boundary (AWADDRS[5:0] is 0b000000).

 Note

• The AMBA5 ACE-Lite transaction types WriteUniqueFull and WriteUniquePtl were known in
AMBA4 ACE-Lite as WriteLineUnique and WriteUnique, respectively.

• The DSU‑AE treats WriteUniquePtlStash as a WriteUniquePtl and does not perform a stash operation
for this transaction type.

The ACP supports the following Cache Stash Transaction transfer size and length:

• 64-byte INCR write stash transaction:
— WSTRBS, all bytes are valid.
— AWLENS is 3 (four beats).
— AWSNOOPS is WriteUniqueFullStash.
— Address aligned to 64-byte boundary (AWADDRS[5:0] is 0b000000).

• Dataless 64-byte INCR write stash transaction:
— No W-Channel transfers.
— AWLENS is 3.
— AWSNOOPS is StashOnceShared or StashOnceUnique.
— Address aligned to 64-byte boundary (AWADDRS[5:0] is 0b000000).

Stash requests can target the L2 cache of a selected core by asserting signal AWSTASHLPIDENS and
indicating the selected core number on AWSTASHLPIDS[3:1]. The signal AWSTASHLPIDS[0] is
reserved for the thread number, but this does not affect the stash request.

 Note

Requests not meeting these restrictions cause a SLVERR response on RRESPS or BRESPS.

The following table lists the ACP supported transactions:

A8 ACP slave interface
A8.4 ACP transaction types

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A8-121

Non-Confidential

Table A8-2 ACP supported transactions

Transaction Notes

ReadOnce -

WriteUniqueFull -

WriteUniquePtl -

WriteUniquePtlStash Treated as a WriteUniquePtl. The DSU‑AE does not perform a stash.

WriteUniqueFullStash -

StashOnceUnique -

StashOnceShared -

A8 ACP slave interface
A8.4 ACP transaction types

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A8-122

Non-Confidential

A8.5 ACP performance
For optimum performance, use the following guidelines for ACP transactions.

The master must avoid sending more than one outstanding transaction on the same AXI ID, to prevent
the second transaction stalling the interface until the first has completed. If the master requires explicit
ordering between two transactions, Arm recommends that it waits for the response to the first transaction
before sending the second transaction.

Writes are higher performance when they use WriteUniqueFull or WriteUniqueFullStash transactions.

WriteUniquePtl or WriteUniquePtlStash transactions always incur a read-modify write sequence.

Some L3 resources are shared between the ACP interface and the cores. Therefore, heavy traffic on the
ACP interface might, in some cases, reduce the performance of the cores.

Write transactions use the Write-Allocate bit of the memory type (AWCACHES[3]) to decide whether to
allocate to the L3 cache, as follows:

If the stash request does not target a core (AWSTASHLPIDENS is LOW) and AWCACHES[3] is
HIGH, then the cache line is allocated to the L3 cache.

If the stash request does not target a core (AWSTASHLPIDENS is LOW) and AWCACHES[3] is
LOW, then the cache line is not allocated to the L3 cache and it will be written out on the master port
instead.

When the stash request does not target a core (AWSTASHLPIDENS is LOW), then the
WriteUniqueFullStash transaction performs the same operation as WriteUniqueFull.

Stash requests that target a core (AWSTASHLPIDENS is HIGH) always attempt to allocate to the core
L2 cache. In this case, it is recommended that AWCACHES[3] is HIGH. Since, if AWCACHES[3] is
LOW, then the line will not initially be allocated to the cache. Instead the line will be written out on the
master port before being fetched back into the core, which is inefficient.

The following table describes the ACP acceptance capabilities.

Table A8-3 ACP acceptance capabilities

Attribute Value Description

Write acceptance capability 33 The ACP can accept up to 33 write
transactions.

Read acceptance capability 33 The ACP can accept up to 33 read
transactions.

Combined acceptance capability 34 The ACP can accept up to 34 transactions.
There is no performance benefit above 32
outstanding transactions.

A8 ACP slave interface
A8.5 ACP performance

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A8-123

Non-Confidential

A8 ACP slave interface
A8.5 ACP performance

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. A8-124
Non-Confidential

Chapter A9
AXI master peripheral port

This chapter describes the AXI master peripheral port.

It contains the following sections:
• A9.1 About the peripheral port on page A9-126.
• A9.2 Transaction ID encoding on page A9-127.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A9-125

Non-Confidential

A9.1 About the peripheral port
The peripheral port supports Device accesses to tightly coupled accelerators.

The peripheral port can be used for low-latency access to peripherals local to the cluster. It has the same
latency as the main master port. However, the overall system latency to devices that are connected to the
main master port is greater because of the higher latency of the system interconnect.

The peripheral port is optionally implemented. It is a 64-bit AXI4 master interface.

The peripheral port supports access to only Device-nGRE, nGnRE, and nGnRnE memory types:
• All accesses must be aligned load or store instructions of 64 bits or less. Unaligned or larger accesses

are not supported and generate an external abort.
• Atomic instructions are not supported and generate an external abort.
• Load and store exclusive instructions are not supported. Store exclusive instructions will fail and the

result register will reflect this, but the memory location might be updated.

Accesses to the port using other memory types are unpredictable.

The peripheral port address range is defined by two configuration input buses. ASTARTMP[PA-1:20]
for the start of the address range and AENDMP[PA-1:20] for the end of the range, where PA is the
largest physical address width of any connected core. The address range is inclusive. These signals are
only captured at reset.

A9 AXI master peripheral port
A9.1 About the peripheral port

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A9-126

Non-Confidential

A9.2 Transaction ID encoding
The AXI interface has the following read and write issuing capabilities and ID encoding:

The following table describes the read and write issuing capabilities.

Table A9-1 AXI issuing capabilities

Attribute Value Comments

Write issuing capability 5 There can be up to 5 outstanding write transactions.

Read issuing capability There can be up to 5 outstanding read transactions.

Combined issuing capability 10 There can be up to 10 outstanding transactions.

Write ID capability 5 Each ID can have up to 5 outstanding write transactions.

Read ID capability Each ID can have up to 5 outstanding read transactions.

The following table lists the encoding for AXI transaction IDs.

Table A9-2 AXI transaction ID encoding

Attribute Value Comments

All IDs tnnn Thread th, core nnni

 Note

These ID and transaction details are provided for information only. Arm strongly recommends that all
interconnects and peripherals are designed to support any type and number of transactions on any ID, to
ensure compatibility with future products.

See the AMBA® AXI and ACE Protocol Specification for more information about the ACE and AXI
signals described in this manual.

h t is the hardware thread number and is 0 if the core does not support multiple hardware threads.
i nnn is the core number 0b000-0b111 in binary.

A9 AXI master peripheral port
A9.2 Transaction ID encoding

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

A9-127

Non-Confidential

A9 AXI master peripheral port
A9.2 Transaction ID encoding

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. A9-128
Non-Confidential

Part B
Register Descriptions

Chapter B1
Control registers

This chapter describes the control registers for the DSU‑AE.

It contains the following sections:
• B1.1 About the control registers on page B1-132.
• B1.2 AArch32 control register summary on page B1-133.
• B1.3 AArch64 control register summary on page B1-134.
• B1.4 CLUSTERACPSID, Cluster ACP Scheme ID Register on page B1-135.
• B1.5 CLUSTERACTLR, Cluster Auxiliary Control Register on page B1-137.
• B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control Register on page B1-138.
• B1.7 CLUSTERCFR, Cluster Configuration Register on page B1-141.
• B1.8 CLUSTERECTLR, Cluster Extended Control Register on page B1-145.
• B1.9 CLUSTERIDR, Cluster Main Revision ID Register on page B1-149.
• B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter Register on page B1-151.
• B1.11 CLUSTERL3MISS, Cluster L3 Miss Counter Register on page B1-153.
• B1.12 CLUSTERPARTCR, Cluster Partition Control Register on page B1-155.
• B1.13 CLUSTERPWRCTLR, Cluster Power Control Register on page B1-159.
• B1.14 CLUSTERPWRDN, Cluster Powerdown Register on page B1-161.
• B1.15 CLUSTERPWRSTAT, Cluster Power Status Register on page B1-163.
• B1.16 CLUSTERREVIDR, Cluster Revision ID Register on page B1-165.
• B1.17 CLUSTERSTASHSID, Cluster Stash Scheme ID Register on page B1-167.
• B1.18 CLUSTERTHREADSID, Cluster Thread Scheme ID Register on page B1-169.
• B1.19 CLUSTERTHREADSIDOVR, Cluster Thread Scheme ID Override Register on page B1-171.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-131

Non-Confidential

B1.1 About the control registers
The DSU‑AE contains system control registers in the SCU and L3 logic to control the functionality of
the cluster. Most of these registers are shared between all the cores in the cluster, but a few are private to
each core.

The chapter is presented as follows:

AArch32 control register summary
This section lists the AArch32 control registers by access encoding.

AArch64 control register summary
This section lists the AArch64 control registers by access encoding.

Register descriptions
The remainder of the chapter provides generic register descriptions, that apply to both AArch32
and AArch64 registers. They are listed in alphabetical order.

B1 Control registers
B1.1 About the control registers

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-132

Non-Confidential

B1.2 AArch32 control register summary
This section lists the AArch32 control registers implemented in the DSU‑AE, sorted by access encoding.

Table B1-1 DynamIQ Shared Unit-AE AArch32 control registers

Register mnemonic Copro CRn Opc1 CRm Opc2 Width Register name and description

CLUSTERCFR cp15 c15 0 c3 0 32 B1.7 CLUSTERCFR, Cluster Configuration Register
on page B1-141

CLUSTERIDR cp15 c15 0 c3 1 32 B1.9 CLUSTERIDR, Cluster Main Revision ID
Register on page B1-149

CLUSTERREVIDR cp15 c15 0 c3 2 32 B1.16 CLUSTERREVIDR, Cluster Revision ID
Register on page B1-165

CLUSTERACTLR cp15 c15 0 c3 3 32 B1.5 CLUSTERACTLR, Cluster Auxiliary Control
Register on page B1-137

CLUSTERECTLR cp15 c15 0 c3 4 32 B1.8 CLUSTERECTLR, Cluster Extended Control
Register on page B1-145

CLUSTERPWRCTLR cp15 c15 0 c3 5 32 B1.13 CLUSTERPWRCTLR, Cluster Power Control
Register on page B1-159

CLUSTERPWRDN cp15 c15 0 c3 6 32 B1.14 CLUSTERPWRDN, Cluster Powerdown
Register on page B1-161

CLUSTERPWRSTAT cp15 c15 0 c3 7 32 B1.15 CLUSTERPWRSTAT, Cluster Power Status
Register on page B1-163

CLUSTERTHREADSID cp15 c15 0 c4 0 32 B1.18 CLUSTERTHREADSID, Cluster Thread
Scheme ID Register on page B1-169

CLUSTERACPSID cp15 c15 0 c4 1 32 B1.4 CLUSTERACPSID, Cluster ACP Scheme ID
Register on page B1-135

CLUSTERSTASHSID cp15 c15 0 c4 2 32 B1.17 CLUSTERSTASHSID, Cluster Stash Scheme ID
Register on page B1-167

CLUSTERPARTCR cp15 c15 0 c4 3 32 B1.12 CLUSTERPARTCR, Cluster Partition Control
Register on page B1-155

CLUSTERBUSQOS cp15 c15 0 c4 4 32 B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control
Register on page B1-138

CLUSTERL3HIT cp15 c15 0 c4 5 32 B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter
Register on page B1-151

CLUSTERL3MISS cp15 c15 0 c4 6 32 B1.11 CLUSTERL3MISS, Cluster L3 Miss Counter
Register on page B1-153

CLUSTERTHREADSIDOVR cp15 c15 0 c4 7 32 B1.19 CLUSTERTHREADSIDOVR, Cluster Thread
Scheme ID Override Register on page B1-171

B1 Control registers
B1.2 AArch32 control register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-133

Non-Confidential

B1.3 AArch64 control register summary
This section lists the AArch64 control registers implemented in the DSU‑AE, sorted by access encoding.

Table B1-2 DynamIQ Shared Unit-AE AArch64 control registers

Register mnemonic Op0 CRn Op1 CRm Op2 Width Register name and description

CLUSTERCFR_EL1 3 c15 0 c3 0 32 B1.7 CLUSTERCFR, Cluster Configuration Register
on page B1-141

CLUSTERIDR_EL1 3 c15 0 c3 1 32 B1.9 CLUSTERIDR, Cluster Main Revision ID
Register on page B1-149

CLUSTERREVIDR_EL1 3 c15 0 c3 2 32 B1.16 CLUSTERREVIDR, Cluster Revision ID
Register on page B1-165

CLUSTERACTLR_EL1 3 c15 0 c3 3 32 B1.5 CLUSTERACTLR, Cluster Auxiliary Control
Register on page B1-137

CLUSTERECTLR_EL1 3 c15 0 c3 4 32 B1.8 CLUSTERECTLR, Cluster Extended Control
Register on page B1-145

CLUSTERPWRCTLR_EL1 3 c15 0 c3 5 32 B1.13 CLUSTERPWRCTLR, Cluster Power Control
Register on page B1-159

CLUSTERPWRDN_EL1 3 c15 0 c3 6 32 B1.14 CLUSTERPWRDN, Cluster Powerdown
Register on page B1-161

CLUSTERPWRSTAT_EL1 3 c15 0 c3 7 32 B1.15 CLUSTERPWRSTAT, Cluster Power Status
Register on page B1-163

CLUSTERTHREADSID_EL1 3 c15 0 c4 0 32 B1.18 CLUSTERTHREADSID, Cluster Thread
Scheme ID Register on page B1-169

CLUSTERACPSID_EL1 3 c15 0 c4 1 32 B1.4 CLUSTERACPSID, Cluster ACP Scheme ID
Register on page B1-135

CLUSTERSTASHSID_EL1 3 c15 0 c4 2 32 B1.17 CLUSTERSTASHSID, Cluster Stash Scheme
ID Register on page B1-167

CLUSTERPARTCR_EL1 3 c15 0 c4 3 32 B1.12 CLUSTERPARTCR, Cluster Partition Control
Register on page B1-155

CLUSTERBUSQOS_EL1 3 c15 0 c4 4 32 B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control
Register on page B1-138

CLUSTERL3HIT_EL1 3 c15 0 c4 5 32 B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter
Register on page B1-151

CLUSTERL3MISS_EL1 3 c15 0 c4 6 32 B1.11 CLUSTERL3MISS, Cluster L3 Miss Counter
Register on page B1-153

CLUSTERTHREADSIDOVR_EL1 3 c15 0 c4 7 32 B1.19 CLUSTERTHREADSIDOVR, Cluster Thread
Scheme ID Override Register on page B1-171

B1 Control registers
B1.3 AArch64 control register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-134

Non-Confidential

B1.4 CLUSTERACPSID, Cluster ACP Scheme ID Register
The CLUSTERACPSID register provides the scheme ID for ACP transactions.

This description applies to both the AArch32 (CLUSTERACPSID) and AArch64
(CLUSTERACPSID_EL1) registers.

Bit field descriptions

CLUSTERACPSID is a 32-bit register, and is part of SCU and L3 cache configuration registers.

RAZ

Scheme ID for ACP transactions

31 3 2 0

Figure B1-1 CLUSTERACPSID bit assignments

RAZ, [31:3]

Read-As-Zero.

Scheme ID for ACP transactions, [2:0]

These bits reset to 0b000.

Configurations

The AArch32 CLUSTERACPSID register is architecturally mapped to the AArch64
CLUSTERACPSID_EL1 register.

Usage Constraints

Accessing the CLUSTERACPSID

In AArch64 state (CLUSTERACPSID_EL1):

To read this register in AArch64 state (CLUSTERACPSID_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C4_1; Read CLUSTERACPSID_EL1 into Xt

To write this register in AArch64 state (CLUSTERACPSID_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C4_1, <Xt>; Write Xt into CLUSTERACPSID_EL1

In AArch32 state (CLUSTERACPSID):

To read this register in AArch32 state (CLUSTERACPSID) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c4, 1; Read CLUSTERACPSID into Rt

To write this register in AArch32 state (CLUSTERACPSID) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c4, 1; Write Rt into CLUSTERACPSID

Accessibility

This register is accessible in software as follows:

B1 Control registers
B1.4 CLUSTERACPSID, Cluster ACP Scheme ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-135

Non-Confidential

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERACPSID x x 0 - RW n/a RW

CLUSTERACPSID x 0 1 - RW RW RW

CLUSTERACPSID x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.SMEN is 1 and ACTLR_EL2.SMEN is 1, or
ACTLR_EL3.SMEN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-Access (EL2 or
EL3).

B1 Control registers
B1.4 CLUSTERACPSID, Cluster ACP Scheme ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-136

Non-Confidential

B1.5 CLUSTERACTLR, Cluster Auxiliary Control Register
The CLUSTERACTLR register is Reserved.

Traps and enables

This register is write accessible in EL1 if ACTLR_EL3.ACTLREN is 1 and ACTLR_EL2.ACTLREN is
1, or ACTLR_EL3.ACTLREN is 1 and SCR.NS is 0.

If write access not permitted, then trap to the lowest Exception level that denied access (EL2 or EL3).

B1 Control registers
B1.5 CLUSTERACTLR, Cluster Auxiliary Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-137

Non-Confidential

B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control Register
The CLUSTERBUSQOS provides control for the CHI Quality of Service (QoS) fields for different
scheme IDs.

This description applies to both the AArch32 (CLUSTERBUSQOS) and AArch64
(CLUSTERBUSQOS_EL1) registers.

Bit field descriptions

CLUSTERBUSQOS is a 32-bit register, and is part of SCU and L3 cache configuration registers.

31 16 15 12 11 8 7 4 3 0

CHI bus QoS field scheme ID 3
CHI bus QoS field scheme ID 2

CHI bus QoS field scheme ID 1
CHI bus QoS field scheme ID 0

20 1924 2328 27

CHI bus QoS field scheme ID 4
CHI bus QoS field scheme ID 5

CHI bus QoS field scheme ID 6
CHI bus QoS field scheme ID 7

Figure B1-2 CLUSTERBUSQOS bit assignments

CHI bus QoS field scheme ID 7, [31:28]

Value driven on the CHI bus QoS field for scheme ID 7.

These bits reset to 0xE.

CHI bus QoS field scheme ID 6, [27:24]

Value driven on the CHI bus QoS field for scheme ID 6.

These bits reset to 0xE.

CHI bus QoS field scheme ID 5, [23:20]

Value driven on the CHI bus QoS field for scheme ID 5.

These bits reset to 0xE.

CHI bus QoS field scheme ID 4, [19:16]

Value driven on the CHI bus QoS field for scheme ID 4.

These bits reset to 0xE.

CHI bus QoS field scheme ID 3, [15:12]

Value driven on the CHI bus QoS field for scheme ID 3.

These bits reset to 0xE.

CHI bus QoS field scheme ID 2, [11:8]

Value driven on the CHI bus QoS field for scheme ID 2.

These bits reset to 0xE.

B1 Control registers
B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-138

Non-Confidential

CHI bus QoS field scheme ID 1, [7:4]

Value driven on the CHI bus QoS field for scheme ID 1.

These bits reset to 0xE.

CHI bus QoS field scheme ID 0, [3:0]

Value driven on the CHI bus QoS field for scheme ID 0.

These bits reset to 0xE.

Configurations

The AArch32 CLUSTERBUSQOS register is architecturally mapped to the AArch64
CLUSTERBUSQOS_EL1 register.

Usage Constraints

Accessing the CLUSTERBUSQOS

In AArch64 state (CLUSTERBUSQOS_EL1):

To read this register in AArch64 state (CLUSTERBUSQOS_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C4_4; Read CLUSTERBUSQOS_EL1 into Xt

To write this register in AArch64 state (CLUSTERBUSQOS_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C4_4, <Xt>; Write Xt into CLUSTERBUSQOS_EL1

In AArch32 state (CLUSTERBUSQOS):

To read this register in AArch32 state (CLUSTERBUSQOS) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c4, 4; Read CLUSTERBUSQOS into Rt

To write this register in AArch32 state (CLUSTERBUSQOS) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c4, 4; Write Rt into CLUSTERBUSQOS

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERBUSQOS x x 0 - RW n/a RW

CLUSTERBUSQOS x 0 1 - RW RW RW

CLUSTERBUSQOS x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.SMEN is 1 and ACTLR_EL2.SMEN is 1, or
ACTLR_EL3.SMEN is 1 and SCR.NS is 0.

B1 Control registers
B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-139

Non-Confidential

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-Access (EL2 or
EL3).

B1 Control registers
B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-140

Non-Confidential

B1.7 CLUSTERCFR, Cluster Configuration Register
The CLUSTERCFR register contains details of the hardware configuration of the cluster. This register is
read-only write-ignores RO (WI), and is common to all execution threads.

This description applies to both the AArch32 (CLUSTERCFR) and AArch64 (CLUSTERCFR_EL1)
registers.

Bitfield descriptions

CLUSTERCFR is a 32-bit register, and is part of SCU and L3 cache configuration registers.

31 22 21 14 13 12 11 10 9 8 7 6 5 4 3 2 02324272830

Bus interface extended
Peripheral port present

ACP present
Bus interface

SCU-L3 ECC present
L3 data RAM register slice

L3 data RAM read latency
L3 data RAM write latency

L3 cache present
RAZ

Number of cores

Core register slice present

L3 data RAM write delay
RAZ

Number of PEs
Safety mode indicator

29

Figure B1-3 CLUSTERCFR bit assignments

Safety Mode indicator, [31:30]

The possible values are:

00 Reserved

01 Split-mode

10 Hybrid-mode

11 Lock-mode

RAZ, [29:28]

Read-As-Zero

Number of PEs, [27:24]

PE - 1, where PE is the number of processing elements in the cluster. Each core contains either
one or two PEs.

For example, if the cluster is configured with 2 dual threaded cores there would be 4 PEs in
Split-mode or Hybrid-mode and 2 PEs in Lock-mode.

L3 data RAM write delay, [23]

B1 Control registers
B1.7 CLUSTERCFR, Cluster Configuration Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-141

Non-Confidential

The possible values are:

0 Writes are not limited.

1 Writes are limited to one write every three cycles.

RAZ, [22]

Read-As-Zero

Core register slice present, [21:14]

Core register slice is present. Each bit represents a core, with bit[14] for core 0 up to bit[21] for
core 7:

0 No register slice is present.

1 Register slice is present.

Bus interface extended, [13]

See Bus interface (bits[10:9]).

Peripheral port present, [12]

Peripheral port is present:

0 No peripheral port is present.

1 Peripheral port is present.

ACP present, [11]

ACP interface is present:

0 No ACP interface is present.

1 ACP interface is present.

Bus interface, [10:9]

Bus interface configuration:

0b00 Single 128-bit ACE.

0b01 Dual 128-bit ACE.

0b10 Single 128-bit CHI.

0b11 If Bus interface extended (bit [13]) is 1, then Dual 256-bit CHI.

If Bus interface extended (bit [13]) is 0, then Single 256-bit CHI.

SCU-L3 ECC present, [8]

SCU-L3 is configured with ECC:

1 SCU-L3 is configured with ECC.

L3 data RAM register slice, [7]

L3 data RAM read register slice:

0 No register slice is present.

1 Register slice is present.

L3 data RAM read latency, [6]

B1 Control registers
B1.7 CLUSTERCFR, Cluster Configuration Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-142

Non-Confidential

L3 data RAM read latency:

0 Two-cycle output delay from the L3 data RAMs.

1 Three-cycle output delay from L3 data RAMs.

L3 data RAM write latency, [5]

L3 data RAM write latency:

0 One cycle input delay from the L3 data RAMs.

1 Two cycle input delay from the L3 data RAMs.

L3 cache present, [4]

L3 cache is present:

0 No L3 cache is present.

1 L3 cache is present.

RAZ, [3]

Read-As-Zero

Number of cores, [2:0]

Number of cores present in the cluster:

Table B1-3 Number of cores

Hybrid-mode Split-mode Lock-mode

2 cores [0-1], 0b001 2 cores [0-1], 0b001 1 core [0], 0b000

4 cores [0-3], 0b011 4 cores [0-3], 0b011 2 cores [0-1], 0b001

6 cores - NOT SUPPORTED in Hybrid-
mode!

6 cores [0-5], 0b101 3 cores [0-2], 0b010

8 cores - NOT SUPPORTED in Hybrid-
mode!

8 cores [0-7], 0b111 4 cores [0-3], 0b011

Configurations

The AArch32 CLUSTERCFR register is architecturally mapped to the AArch64
CLUSTERCFR_EL1 register.

Usage Constraints

Accessing the CLUSTERCFR

In AArch64 state (CLUSTERCFR_EL1):

To read this register in AArch64 state (CLUSTERCFR_EL1) into a general-purpose
register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C3_0; Read CLUSTERCFR_EL1 into Xt

To write this register in AArch64 state (CLUSTERCFR_EL1) from a general-purpose
register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C3_0, <Xt>; Write Xt into CLUSTERCFR_EL1

B1 Control registers
B1.7 CLUSTERCFR, Cluster Configuration Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-143

Non-Confidential

In AArch32 state (CLUSTERCFR):

To read this register in AArch32 state (CLUSTERCFR) into a general-purpose register,
use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c3, 0; Read CLUSTERCFR into Rt

To write this register in AArch32 state (CLUSTERCFR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c3, 0; Write Rt into CLUSTERCFR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERCFR x x 0 - RO/WI n/a RO/WI

CLUSTERCFR x 0 1 - RO/WI RO/WI RO/WI

CLUSTERCFR x 1 1 - n/a RO/WI RO/WI

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

There are no special traps and enables.

B1 Control registers
B1.7 CLUSTERCFR, Cluster Configuration Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-144

Non-Confidential

B1.8 CLUSTERECTLR, Cluster Extended Control Register
The CLUSTERECTLR register provides implementation-specific control of the microarchitecture. It
must only be written to as part of the initial system configuration setup following reset. This register is
RW, and is common to all execution threads.

This description applies to both the AArch32 (CLUSTERECTLR) and AArch64
(CLUSTERECTLR_EL1) registers.

Bit field descriptions

CLUSTERECTLR is a 32-bit register, and is part of SCU and L3 cache configuration registers.

RAZ

31 15 14

RAZ

13 11 10 8 7

RAZ

6 5 4 3 2

Cache UniqueClean eviction control
Prefetch matching delay

Disable interconnect Cacheable atomics
Interconnect data poisoning support

Clean Evict disable
Cache flush UniqueClean eviction control

1 0

RAZ
Non-cacheable behavior control

Figure B1-4 CLUSTERECTLR bit assignments

RAZ, [31:15]

Read-As-Zero

Cache UniqueClean eviction control, [14]

Enables sending WriteEvict transactions on the ACE or CHI master for UniqueClean evictions.
WriteEvict transactions update downstream caches that are outside the cluster. Enable
WriteEvict transactions only if there is an L4 or system cache, that is implemented in the
system. The possible values are:

0 Disables sending data with UniqueClean evictions.
1 Enables sending data with UniqueClean evictions.

For ACE, this bit resets to 0.

For CHI, this bit resets to 1.

RAZ, [13:11]

Read-As-Zero

Prefetch matching delay, [10:8]

Prefetch matching delay. Controls the amount of time a prefetch waits for a possible match with
a later read. Encoded as powers of 2, from 1-128.

These bits reset to 0x5.

Disable interconnect Cacheable atomics, [7]

Disable Cacheable atomics being sent to the interconnect. The possible values are:

0 If BROADCASTATOMIC is set HIGH, Cacheable atomics are sent to the
interconnect.

B1 Control registers
B1.8 CLUSTERECTLR, Cluster Extended Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-145

Non-Confidential

1 Cacheable atomics are handled inside the cluster.

This bit has no effect for ACE configurations.

This bit resets to 0.

RAZ, [6:5]

Read-As-Zero

Interconnect data poisoning support, [4]

Interconnect data poisoning support. This bit is RAZ for ACE configurations. The possible
values are:

0 Interconnect does not support data poisoning. Therefore nERRIRQ is asserted when
poisoned data is evicted from the cluster or returned to a snoop.

1 Interconnect supports data poisoning. Therefore no error recovery interrupt is
generated when poisoned data is evicted from the cluster or returned to a snoop.

For ACE, this bit resets to 0.

For CHI, this bit resets to 1.

Cache Evict disable, [3]

Disables sending of Evict transactions on the ACE or CHI master for clean cache lines that are
evicted from the cluster. Evict transactions are required only if the external interconnect contains
a snoop filter that requires notification when the cluster evicts the cache line. The possible
values are:

0 Enables sending Evict transactions.

1 Disables sending Evict transactions.

This bit resets to 0.

Cache flush UniqueClean eviction control, [2]

Disables the sending of WriteEvict requests on the ACE or CHI master when powering down
part or all of the L3 cache. The possible values are:

0 Evictions during L3 cache powerdown behave like normal evictions. This is the reset
value.

1 Disables sending data with UniqueClean evictions caused by powering down the L3
cache.

RAZ, [1]

Read-As-Zero

Non-cacheable behavior control, [0]

Enable Normal Non-cacheable writes to all master interfaces and, when ACE is configured, also
disable the limit on the number of Normal Non-cacheable writes. The possible values are:

0 All Normal Non-cacheable and Device transactions are sent to interface 0.

When ACE is configured, Device and Normal Non-cacheable writes are limited to 15
outstanding transactions.

B1 Control registers
B1.8 CLUSTERECTLR, Cluster Extended Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-146

Non-Confidential

1 If dual master interfaces are configured, Normal Non-cacheable transactions are
interleaved between master interfaces like Cacheable transactions. Device transactions
are still sent to interface 0.

When ACE is configured, only Device writes are limited to 15 outstanding
transactions. The limit is removed for Normal Non-cacheable transactions.

If this bit is set to 1, then further writes to this bit are ignored.
 Note

Setting this bit might have implications on the behavior of system components, for example a
CPE-425 Coherent PCIe Extension in an ACE system.

Configurations

The AArch32 CLUSTERECTLR register is architecturally mapped to the AArch64
CLUSTERECTLR_EL1 register.

Usage Constraints

Accessing the CLUSTERECTLR

In AArch64 state (CLUSTERECTLR_EL1):

To read this register in AArch64 state (CLUSTERECTLR_EL1) into a general-purpose
register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C3_4; Read CLUSTERECTLR_EL1 into Xt

To write this register in AArch64 state (CLUSTERECTLR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C3_4, <Xt>; Write Xt into CLUSTERECTLR_EL1

In AArch32 state (CLUSTERECTLR):

To read this register in AArch32 state (CLUSTERECTLR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c3, 4; Read CLUSTERECTLR into Rt

To write this register in AArch32 state (CLUSTERECTLR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c3, 4; Write Rt into CLUSTERECTLR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERECTLR x x 0 - RW n/a RW

CLUSTERECTLR x 0 1 - RW RW RW

CLUSTERECTLR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

B1 Control registers
B1.8 CLUSTERECTLR, Cluster Extended Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-147

Non-Confidential

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.ECTLREN is 1 and
ACTLR_EL2.ECTLREN is 1, or ACTLR_EL3.ECTLR_EN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B1 Control registers
B1.8 CLUSTERECTLR, Cluster Extended Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-148

Non-Confidential

B1.9 CLUSTERIDR, Cluster Main Revision ID Register
The CLUSTERIDR register contains the revision and patch level of the DSU‑AE. This register is read-
only write-ignores RO (WI), and is common to all execution threads.

This description applies to both the AArch32 (CLUSTERIDR) and AArch64 (CLUSTERIDR_EL1)
registers.

Bit field descriptions

CLUSTERIDR is a 32-bit register, and is part of SCU and L3 cache configuration registers.

RAZ Variant

Revision

31 8 7 4 3 0

Figure B1-5 CLUSTERIDR bit assignments

RAZ, [31:8]

Read-As-Zero.

Variant, [7:4]

Indicates the variant of the DSU‑AE. This is the major revision number m in the rm part of the
rmpn description of the product revision status. This value is:

0x1 r1

Revision, [3:0]

Indicates the minor revision number of the DSU‑AE. This is the minor revision number n in the
pn part of the rmpn description of the product revision status. This value is:

0x1 p1

Configurations

The AArch32 CLUSTERIDR register is architecturally mapped to the AArch64
CLUSTERIDR_EL1 register.

Usage Constraints

Accessing the CLUSTERIDR

In AArch64 state (CLUSTERIDR_EL1):

To read this register in AArch64 state (CLUSTERIDR_EL1) into a general-purpose
register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C3_1; Read CLUSTERIDR_EL1 into Xt

To write this register in AArch64 state (CLUSTERIDR_EL1) from a general-purpose
register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C3_1, <Xt>; Write Xt into CLUSTERIDR_EL1

B1 Control registers
B1.9 CLUSTERIDR, Cluster Main Revision ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-149

Non-Confidential

In AArch32 state (CLUSTERIDR):

To read this register in AArch32 state (CLUSTERIDR) into a general-purpose register,
use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c3, 1; Read CLUSTERIDR into Rt

To write this register in AArch32 state (CLUSTERIDR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c3, 1; Write Rt into CLUSTERIDR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERIDR x x 0 - RO/WI n/a RO/WI

CLUSTERIDR x 0 1 - RO/WI RO/WI RO/WI

CLUSTERIDR x 1 1 - n/a RO/WI RO/WI

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

There are no traps and enables that affect this register.

B1 Control registers
B1.9 CLUSTERIDR, Cluster Main Revision ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-150

Non-Confidential

B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter Register
The CLUSTERL3HIT register contains a count of the L3 cache hits. This register is intended for use in
algorithms for determining when to power up or power down portions. This register is RW, and is
common to all execution threads.

This description applies to both the AArch32 (CLUSTERL3HIT) and AArch64 (CLUSTERL3HIT_EL1)
registers.

If CLUSTERPMMDCR.SPME == 0, this counter does not trigger for secure transactions.

Bit field descriptions

CLUSTERL3HIT is a 32-bit register, and is part of SCU and L3 cache configuration registers.

L3 cache hit count

31 0

Figure B1-6 CLUSTERL3HIT bit assignments

L3 cache hit count, [31:0]

Count of number of L3 cache hits, for use in portion control calculations. The counter saturates
to its maximum value on overflow.

On a write, CLUSTERL3HIT gets set to the specified value.

These bits reset to 0x00000000.

Configurations

The AArch32 CLUSTERL3HIT register is architecturally mapped to the AArch64
CLUSTERL3HIT_EL1 register.

Usage Constraints

Accessing the CLUSTERL3HIT

In AArch64 state (CLUSTERL3HIT_EL1):

To read this register in AArch64 state (CLUSTERL3HIT_EL1) into a general-purpose
register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C4_5; Read CLUSTERL3HIT_EL1 into Xt

To write this register in AArch64 state (CLUSTERL3HIT_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C4_5, <Xt>; Write Xt into CLUSTERL3HIT_EL1

In AArch32 state (CLUSTERL3HIT):

To read this register in AArch32 state (CLUSTERL3HIT) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c4, 5; Read CLUSTERL3HIT into Rt

To write this register in AArch32 state (CLUSTERL3HIT) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c4, 5; Write Rt into CLUSTERL3HIT

Accessibility

This register is accessible in software as follows:

B1 Control registers
B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-151

Non-Confidential

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERL3HIT x x 0 - RW n/a RW

CLUSTERL3HIT x 0 1 - RW RW RW

CLUSTERL3HIT x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.PWREN is 1 and
ACTLR_EL2.PWREN is 1, or ACTLR_EL3.PWREN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B1 Control registers
B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-152

Non-Confidential

B1.11 CLUSTERL3MISS, Cluster L3 Miss Counter Register
The CLUSTERL3MISS register contains a count of the L3 cache misses. This register is intended for use
in algorithms for determining when to power up or power down portions. This register is RW, and is
common to all execution threads.

This description applies to both the AArch32 (CLUSTERL3MISS) and AArch64
(CLUSTERL3MISS_EL1) registers.

If CLUSTERPMMDCR.SPME == 0, this counter does not trigger for secure transactions.

Bit field descriptions

CLUSTERL3MISS is a 32-bit register, and is part of SCU and L3 cache configuration registers.

L3 cache miss count

31 0

Figure B1-7 CLUSTERL3MISS bit assignments

L3 cache miss count, [31:0]

Count of number of L3 cache misses, for use in portion control calculations. The counter
saturates to its maximum value on overflow.

On a write, CLUSTERL3MISS gets set to the specified value.

These bits reset to 0x00000000.

Configurations

The AArch32 CLUSTERL3MISS register is architecturally mapped to the AArch64
CLUSTERL3MISS_EL1 register.

Usage Constraints

Accessing the CLUSTERL3MISS

In AArch64 state (CLUSTERL3MISS_EL1):

To read this register in AArch64 state (CLUSTERL3MISS_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C4_6; Read CLUSTERL3MISS_EL1 into Xt

To write this register in AArch64 state (CLUSTERL3MISS_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C4_6, <Xt>; Write Xt into CLUSTERL3MISS_EL1

In AArch32 state (CLUSTERL3MISS):

To read this register in AArch32 state (CLUSTERL3MISS) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c4, 6; Read CLUSTERL3MISS into Rt

To write this register in AArch32 state (CLUSTERL3MISS) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c4, 6; Write Rt into CLUSTERL3MISS

Accessibility

This register is accessible in software as follows:

B1 Control registers
B1.11 CLUSTERL3MISS, Cluster L3 Miss Counter Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-153

Non-Confidential

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERL3MISS x x 0 - RW n/a RW

CLUSTERL3MISS x 0 1 - RW RW RW

CLUSTERL3MISS x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.PWREN is 1 and
ACTLR_EL2.PWREN is 1, or ACTLR_EL3.PWREN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B1 Control registers
B1.11 CLUSTERL3MISS, Cluster L3 Miss Counter Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-154

Non-Confidential

B1.12 CLUSTERPARTCR, Cluster Partition Control Register
The CLUSTERPARTCR register controls a group of ways to be marked as private to a scheme ID. This
register is RW.

This description applies to both the AArch32 (CLUSTERPARTCR) and AArch64
(CLUSTERPARTCR_EL1) registers.

Bit field descriptions

CLUSTERPARTCR is a 32-bit register, and is part of SCU and L3 cache configuration registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W3_ID3
W2_ID3

W1_ID3
W0_ID3

W3_ID2
W2_ID2

W1_ID2
W0_ID2

W3_ID1
W2_ID1

W1_ID1
W0_ID1

W3_ID0
W2_ID0

W1_ID0
W0_ID0

W0_ID4
W1_ID4

W2_ID4
W3_ID4

W0_ID5
W1_ID5

W2_ID5
W3_ID5

W0_ID6
W1_ID6

W2_ID6
W3_ID6

W0_ID7
W1_ID7

W2_ID7
W3_ID7

Figure B1-8 CLUSTERPARTCR bit assignments

Each bit, if set, indicates that a group of four ways is allocated as private to that scheme ID. If more than
one scheme ID assigns the same group of ways as private, then those ways are shared between the
scheme IDs that have assigned them as private. All ways not assigned to any scheme ID are treated as
shared between all scheme IDs. If a scheme ID does not have any private ways allocated, and there are
no remaining shared ways, then any use of the scheme ID will allocate to way group 0, as this is
considered a programming error.

Way group 3 is assigned as private to scheme ID 7, [31]

This bit resets to 0.

B1 Control registers
B1.12 CLUSTERPARTCR, Cluster Partition Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-155

Non-Confidential

Way group 2 is assigned as private to scheme ID 7, [30]

This bit resets to 0.

Way group 1 is assigned as private to scheme ID 7, [29]

This bit resets to 0.

Way group 0 is assigned as private to scheme ID 7, [28]

This bit resets to 0.

Way group 3 is assigned as private to scheme ID 6, [27]

This bit resets to 0.

Way group 2 is assigned as private to scheme ID 6, [26]

This bit resets to 0.

Way group 1 is assigned as private to scheme ID 6, [25]

This bit resets to 0.

Way group 0 is assigned as private to scheme ID 6, [24]

This bit resets to 0.

Way group 3 is assigned as private to scheme ID 5, [23]

This bit resets to 0.

Way group 2 is assigned as private to scheme ID 5, [22]

This bit resets to 0.

Way group 1 is assigned as private to scheme ID 5, [21]

This bit resets to 0.

Way group 0 is assigned as private to scheme ID 5, [20]

This bit resets to 0.

Way group 3 is assigned as private to scheme ID 4, [19]

This bit resets to 0.

Way group 2 is assigned as private to scheme ID 4, [18]

This bit resets to 0.

Way group 1 is assigned as private to scheme ID 4, [17]

This bit resets to 0.

Way group 0 is assigned as private to scheme ID 4, [16]

This bit resets to 0.

Way group 3 is assigned as private to scheme ID 3, [15]

This bit resets to 0.

Way group 2 is assigned as private to scheme ID 3, [14]

This bit resets to 0.

Way group 1 is assigned as private to scheme ID 3, [13]

This bit resets to 0.

B1 Control registers
B1.12 CLUSTERPARTCR, Cluster Partition Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-156

Non-Confidential

Way group 0 is assigned as private to scheme ID 3, [12]

This bit resets to 0.

Way group 3 is assigned as private to scheme ID 2, [11]

This bit resets to 0.

Way group 2 is assigned as private to scheme ID 2, [10]

This bit resets to 0.

Way group 1 is assigned as private to scheme ID 2, [9]

This bit resets to 0.

Way group 0 is assigned as private to scheme ID 2, [8]

This bit resets to 0.

Way group 3 is assigned as private to scheme ID 1, [7]

This bit resets to 0.

Way group 2 is assigned as private to scheme ID 1, [6]

This bit resets to 0.

Way group 1 is assigned as private to scheme ID 1, [5]

This bit resets to 0.

Way group 0 is assigned as private to scheme ID 1, [4]

This bit resets to 0.

Way group 3 is assigned as private to scheme ID 0, [3]

This bit resets to 0.

Way group 2 is assigned as private to scheme ID 0, [2]

This bit resets to 0.

Way group 1 is assigned as private to scheme ID 0, [1]

This bit resets to 0.

Way group 0 is assigned as private to scheme ID 0, [0]

This bit resets to 0.

Configurations

The AArch32 CLUSTERPARTCR register is architecturally mapped to the AArch64
CLUSTERPARTCR_EL1 register.

Usage Constraints

Accessing the CLUSTERPARTCR

In AArch64 state (CLUSTERPARTCR_EL1):

To read this register in AArch64 state (CLUSTERPARTCR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C4_3; Read CLUSTERPARTCR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPARTCR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C4_3, <Xt>; Write Xt into CLUSTERPARTCR_EL1

B1 Control registers
B1.12 CLUSTERPARTCR, Cluster Partition Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-157

Non-Confidential

In AArch32 state (CLUSTERPARTCR):

To read this register in AArch32 state (CLUSTERPARTCR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c4, 3; Read CLUSTERPARTCR into Rt

To write this register in AArch32 state (CLUSTERPARTCR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c4, 3; Write Rt into CLUSTERPARTCR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPARTCR x x 0 - RW n/a RW

CLUSTERPARTCR x 0 1 - RW RW RW

CLUSTERPARTCR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.SMEN is 1 and ACTLR_EL2.SMEN is 1, or
ACTLR_EL3.SMEN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-Access (EL2 or
EL3).

B1 Control registers
B1.12 CLUSTERPARTCR, Cluster Partition Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-158

Non-Confidential

B1.13 CLUSTERPWRCTLR, Cluster Power Control Register
The CLUSTERPWRCTLR register controls power features of the cluster. This register is RW, and is
common to all execution threads.

This description applies to both the AArch32 (CLUSTERPWRCTLR) and AArch64
(CLUSTERPWRCTLR_EL1) registers.

Bit field descriptions

CLUSTERPWRCTLR is a 32-bit register, and is part of SCU and L3 cache configuration registers.

RAZ

31 8 7 4 3 2 0

Cache portion power request
RAZ

Functional retention control

Figure B1-9 CLUSTERPWRCTLR bit assignments

RAZ, [31:8]

Read-As-Zero.

Cache portion power request, [7:4]

These bits are output on CLUSTERPACTIVE[19:16] to indicate to the power controller which
cache portions must be powered. This is an advisory status to the power controller, and does not
cause the P-Channel to deny any requests that are based on this status.

The reset values of these bits depend on the cluster P-Channel initialization state.

RAZ, [3]

Read-As-Zero.

Functional retention control, [2:0]

Duration of inactivity before the DSU‑AE uses CLUSTERPACTIVE to request functional
retention. The possible values of these bits are:

0b000 Disable the retention circuit. This is the default condition.
0b001 Two Architectural Timer ticks are required before retention entry.

0b010 Eight Architectural Timer ticks are required before retention entry.

0b011 32 Architectural Timer ticks are required before retention entry.

0b100 64 Architectural Timer ticks are required before retention entry.

0b101 128 Architectural Timer ticks are required before retention entry.

0b110 256 Architectural Timer ticks are required before retention entry.

0b111 512 Architectural Timer ticks are required before retention entry.

These bits reset to 0b000.

B1 Control registers
B1.13 CLUSTERPWRCTLR, Cluster Power Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-159

Non-Confidential

Configurations

The AArch32 CLUSTERPWRCTLR register is architecturally mapped to the AArch64
CLUSTERPWRCTLR_EL1 register.

Usage Constraints

Accessing the CLUSTERPWRCTLR

In AArch64 state (CLUSTERPWRCTLR_EL1):

To read this register in AArch64 state (CLUSTERPWRCTLR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C3_5; Read CLUSTERPWRCTLR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPWRCTLR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C3_5, <Xt>; Write Xt into CLUSTERPWRCTLR_EL1

In AArch32 state (CLUSTERPWRCTLR):

To read this register in AArch32 state (CLUSTERPWRCTLR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c3, 5; Read CLUSTERPWRCTLR into Rt

To write this register in AArch32 state (CLUSTERPWRCTLR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c3, 5; Write Rt into CLUSTERPWRCTLR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPWRCTLR x x 0 - RW n/a RW

CLUSTERPWRCTLR x 0 1 - RW RW RW

CLUSTERPWRCTLR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.PWREN is 1 and
ACTLR_EL2.PWREN is 1, or ACTLR_EL3.PWREN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B1 Control registers
B1.13 CLUSTERPWRCTLR, Cluster Power Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-160

Non-Confidential

B1.14 CLUSTERPWRDN, Cluster Powerdown Register
The CLUSTERPWRDN register controls powerdown requirements of the cluster. This register is RW,
and is banked for each thread of execution.

This description applies to both the AArch32 (CLUSTERPWRDN) and AArch64
(CLUSTERPWRDN_EL1) registers.

Bit field descriptions

CLUSTERPWRDN is a 32-bit register, and is part of SCU and L3 cache configuration registers.

RAZ

Memory retention required
Cluster power required

31 2 1 0

Figure B1-10 CLUSTERPWRDN bit assignments

RAZ, [31:2]

Read-As-Zero.

Memory retention required, [1]

The possible values are:

0 Indicates on CLUSTERPACTIVE that memory retention is not required when all
cores are powered down.

1 Indicates on CLUSTERPACTIVE that memory retention is required when all cores
are powered down.

This signal provides an advisory status to the power controller. It does not deny a P-Channel
request to powerdown the cluster.

This bit resets to 0.

Cluster power required, [0]

The possible values are:

0 Indicates on CLUSTERPACTIVE that cluster power is not required when all cores
are powered down.

1 Indicates on CLUSTERPACTIVE that cluster power is required even when all cores
are powered down.

This signal provides an advisory status to the power controller. It does not deny a P-Channel
request to powerdown the cluster.

This bit resets to 0.

Configurations

The AArch32 CLUSTERPWRDN register is architecturally mapped to the AArch64
CLUSTERPWRDN_EL1 register.

Usage Constraints

Accessing the CLUSTERPWRDN

B1 Control registers
B1.14 CLUSTERPWRDN, Cluster Powerdown Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-161

Non-Confidential

In AArch64 state (CLUSTERPWRDN_EL1):

To read this register in AArch64 state (CLUSTERPWRDN_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C3_6; Read CLUSTERPWRDN_EL1 into Xt

To write this register in AArch64 state (CLUSTERPWRDN_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C3_6, <Xt>; Write Xt into CLUSTERPWRDN_EL1

In AArch32 state (CLUSTERPWRDN):

To read this register in AArch32 state (CLUSTERPWRDN) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c3, 6; Read CLUSTERPWRDN into Rt

To write this register in AArch32 state (CLUSTERPWRDN) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c3, 6; Write Rt into CLUSTERPWRDN

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPWRDN x x 0 - RW n/a RW

CLUSTERPWRDN x 0 1 - RW RW RW

CLUSTERPWRDN x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.PWREN is 1 and
ACTLR_EL2.PWREN is 1, or ACTLR_EL3.PWREN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B1 Control registers
B1.14 CLUSTERPWRDN, Cluster Powerdown Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-162

Non-Confidential

B1.15 CLUSTERPWRSTAT, Cluster Power Status Register
The CLUSTERPWRSTAT register contains the status of the power features. This register is read-only
write-ignores RO (WI), and is common to all execution threads.

This description applies to both the AArch32 (CLUSTERPWRSTAT) and AArch64
(CLUSTERPWRSTAT_EL1) registers.

Bit field descriptions

CLUSTERPWRSTAT is a 32-bit register, and is part of SCU and L3 cache configuration registers.

RAZ RAZ

Cache portion power status
Retention when powered down

Disable cluster power down

31 8 7 4 3 2 1 0

Figure B1-11 CLUSTERPWRSTAT bit assignments

RAZ, [31:8]

Read-As-Zero.

Cache portion power status, [7:4]

These bits indicate which cache portions are currently powered up and available. These bits can
be used to determine when the state requested in bits [7:4] of the CLUSTERPWRCTLR has
taken effect. The possible values are:

0b1111 Ways 0-15 are powered up.
0b0111 Ways 0-11 are powered up.
0b0011 Ways 0-7 are powered up.
0b0001 Ways 0-3 are powered up.
0b0000 No ways are powered up.

The reset value for these bits depends on the P-Channel initialization state.

RAZ, [3:2]

Read-As-Zero.

Retention when powered down, [1]

Enabled memory retention when all cores are powered down. This bit is a combined version of
all banked bits for each execution thread from the CLUSTERPWRDN register. The possible
values are:

0 Disables memory retention when all cores are powered down.
1 Enables memory retention when all cores are powered down.

This bit resets to 0.

Disable cluster powerdown, [0]

Disabled cluster powerdown when all cores are powered down. This bit is a combined version
of all banked per-thread bits from the CLUSTERPWRDN register. The possible values are:

0 Enables cluster powerdown when all cores are powered down.
1 Disables cluster powerdown when all cores are powered down.

B1 Control registers
B1.15 CLUSTERPWRSTAT, Cluster Power Status Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-163

Non-Confidential

This bit resets to 0.

Configurations

The AArch32 CLUSTERPWRSTAT register is architecturally mapped to the AArch64
CLUSTERPWRSTAT_EL1 register.

Usage Constraints

Accessing the CLUSTERPWRSTAT

In AArch64 state (CLUSTERPWRSTAT_EL1):

To read this register in AArch64 state (CLUSTERPWRSTAT_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C3_7; Read CLUSTERPWRSTAT_EL1 into Xt

To write this register in AArch64 state (CLUSTERPWRSTAT_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C3_7, <Xt>; Write Xt into CLUSTERPWRSTAT_EL1

In AArch32 state (CLUSTERPWRSTAT):

To read this register in AArch32 state (CLUSTERPWRSTAT) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c3, 7; Read CLUSTERPWRSTAT into Rt

To write this register in AArch32 state (CLUSTERPWRSTAT) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c3, 7; Write Rt into CLUSTERPWRSTAT

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPWRSTAT x x 0 - RO/WI n/a RO/WI

CLUSTERPWRSTAT x 0 1 - RO/WI RO/WI RO/WI

CLUSTERPWRSTAT x 1 1 - n/a RO/WI RO/WI

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.PWREN is 1 and
ACTLR_EL2.PWREN is 1, or ACTLR_EL3.PWREN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B1 Control registers
B1.15 CLUSTERPWRSTAT, Cluster Power Status Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-164

Non-Confidential

B1.16 CLUSTERREVIDR, Cluster Revision ID Register
The CLUSTERREVIDR register enables the operating system to identify ECO patches that are applied
to the cluster level. This register is read-only write-ignores RO (WI), and is common to all execution
threads.

This description applies to both the AArch32 (CLUSTERREVIDR) and AArch64
(CLUSTERREVIDR_EL1) registers.

Bit field descriptions

CLUSTERREVIDR is a 32-bit register, and is part of SCU and L3 cache configuration registers.

ID number

31 0

Figure B1-12 CLUSTERREVIDR bit assignments

ID number, [31:0]

Implementation-specific revision information. The specific DSU‑AE implementation determines
the reset value.

0x00000000 Revision code is zero.

Configurations

The AArch32 CLUSTERREVIDR register is architecturally mapped to the AArch64
CLUSTERREVIDR_EL1 register.

Usage Constraints

Accessing the CLUSTERREVIDR

In AArch64 state (CLUSTERREVIDR_EL1):

To read this register in AArch64 state (CLUSTERREVIDR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C3_2; Read CLUSTERREVIDR_EL1 into Xt

To write this register in AArch64 state (CLUSTERREVIDR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C3_2, <Xt>; Write Xt into CLUSTERREVIDR_EL1

In AArch32 state (CLUSTERREVIDR):

To read this register in AArch32 state (CLUSTERREVIDR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c3, 2; Read CLUSTERREVIDR into Rt

To write this register in AArch32 state (CLUSTERREVIDR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c3, 2; Write Rt into CLUSTERREVIDR

B1 Control registers
B1.16 CLUSTERREVIDR, Cluster Revision ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-165

Non-Confidential

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERREVIDR x x 0 - RO/WI n/a RO/WI

CLUSTERREVIDR x 0 1 - RO/WI RO/WI RO/WI

CLUSTERREVIDR x 1 1 - n/a RO/WI RO/WI

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

There are no traps and enables affecting this register.

B1 Control registers
B1.16 CLUSTERREVIDR, Cluster Revision ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-166

Non-Confidential

B1.17 CLUSTERSTASHSID, Cluster Stash Scheme ID Register
The CLUSTERSTASHSID register provides the scheme ID for stash requests that are received from the
interconnect.

This description applies to both the AArch32 (CLUSTERSTASHID) and AArch64
(CLUSTERSTASHID_EL1) registers.

Bit field descriptions

CLUSTERSTASHSID is a 32-bit register, and is part of SCU and L3 cache configuration registers.

RAZ

Scheme ID for stash requests

31 2 03

Figure B1-13 CLUSTERSTASHSID bit assignments

RAZ, [31:3]

Read-As-Zero.

Scheme ID for stash requests, [2:0]

Scheme ID for stash requests that are received from the interconnect.

These bits reset to 0b000.

Configurations

The AArch32 CLUSTERSTASHSID is architecturally mapped to the AArch64
CLUSTERSTASHSID_EL1 register.

Usage Constraints

Accessing the CLUSTERSTASHSID

In AArch64 state (CLUSTERSTASHSID_EL1):

To read this register in AArch64 state (CLUSTERSTASHSID_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C4_2; Read CLUSTERSTASHSID_EL1 into Xt

To write this register in AArch64 state (CLUSTERSTASHSID_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C4_2, <Xt>; Write Xt into CLUSTERSTASHSID_EL1

In AArch32 state (CLUSTERSTASHSID):

To read this register in AArch32 state (CLUSTERSTASHSID) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c4, 2; Read CLUSTERSTASHSID into Rt

To write this register in AArch32 state (CLUSTERSTASHSID) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c4, 2; Write Rt into CLUSTERSTASHSID

Accessibility

This register is accessible in software as follows:

B1 Control registers
B1.17 CLUSTERSTASHSID, Cluster Stash Scheme ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-167

Non-Confidential

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERSTASHSID x x 0 - RW n/a RW

CLUSTERSTASHSID x 0 1 - RW RW RW

CLUSTERSTASHSID x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.SMEN is 1 and ACTLR_EL2.SMEN is 1, or
ACTLR_EL3.SMEN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-Access (EL2 or
EL3).

B1 Control registers
B1.17 CLUSTERSTASHSID, Cluster Stash Scheme ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-168

Non-Confidential

B1.18 CLUSTERTHREADSID, Cluster Thread Scheme ID Register
The CLUSTERTHREADSID register is banked for each thread of execution. The scheme ID of multi-
threaded cores is generated by a logical OR of the thread ID registers for that core.

This description applies to both the AArch32 (CLUSTERTHREADSID) and AArch64
(CLUSTERTHREADSID_EL1) registers.

Bit field descriptions

CLUSTERTHREADSID is a 32-bit register, and is part of SCU and L3 cache configuration registers.

RAZ

Scheme ID for current thread

31 2 03

Figure B1-14 CLUSTERTHREADSID bit assignments

RAZ, [31:3]

Read-As-Zero.

Scheme ID for current thread, [2:0]

Scheme ID for this thread.

These bits reset to 0b000.

Configurations

The AArch32 CLUSTERTHREADSID is architecturally mapped to the AArch64
CLUSTERTHREADSID_EL1 register.

Usage Constraints

Accessing the CLUSTERTHREADSID

In AArch64 state (CLUSTERTHREADSID_EL1):

To read this register in AArch64 state (CLUSTERTHREADSID_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C4_0; Read CLUSTERTHREADSID_EL1 into Xt

To write this register in AArch64 state (CLUSTERTHREADSID_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C4_0, <Xt>; Write Xt into CLUSTERTHREADSID_EL1

In AArch32 state (CLUSTERTHREADSID):

To read this register in AArch32 state (CLUSTERTHREADSID) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c4, 0; Read CLUSTERTHREADSID into Rt

To write this register in AArch32 state (CLUSTERTHREADSID) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c4, 0; Write Rt into CLUSTERTHREADSID

Accessibility

This register is accessible in software as follows:

B1 Control registers
B1.18 CLUSTERTHREADSID, Cluster Thread Scheme ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-169

Non-Confidential

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERTHREADSID x x 0 - RW n/a RW

CLUSTERTHREADSID x 0 1 - RW RW RW

CLUSTERTHREADSID x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.TSIDEN is 1 and ACTLR_EL2.TSIDEN is 1,
or ACTLR_EL3.TSIDEN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-Access (EL2 or
EL3).

B1 Control registers
B1.18 CLUSTERTHREADSID, Cluster Thread Scheme ID Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-170

Non-Confidential

B1.19 CLUSTERTHREADSIDOVR, Cluster Thread Scheme ID Override Register
More privileged software, for example a hypervisor, uses this CLUSTERTHREADSIDOVR register to
partition the scheme IDs. Therefore allowing the less privileged software to use only a subset of scheme
IDs. This register is RW.

This description applies to both the AArch32 (CLUSTERTHREADSIDOVR) and AArch64
(CLUSTERTHREADSIDOVR_EL1) registers.

Bit field descriptions

CLUSTERTHREADSIDOVR is a 32-bit register, and is part of SCU and L3 cache configuration
registers.

RAZ

31 19 18 16

RAZ

15 3 2 0

Scheme ID mask Scheme ID for this thread if masked

Figure B1-15 CLUSTERTHREADSIDOVR bit assignments

RAZ, [31:19]

Read-As-Zero.

Scheme ID mask, [18:16]

A bit set in the mask causes the matching bit to be taken from this register rather than from the
CLUSTERTHREADSID register.

These bits reset to 0b000.

RAZ, [15:3]

Read-As-Zero.

Scheme ID for this thread if masked, [2:0]

Scheme ID for this thread if masked.

These bits reset to 0b000.

Configurations

The AArch32 CLUSTERTHREADSIDOVR register is architecturally mapped to the AArch64
CLUSTERTHREADSIDOVR_EL1 register.

Usage Constraints

Accessing the CLUSTERTHREADSIDOVR

In AArch64 state (CLUSTERTHREADSIDOVR_EL1):

To read this register in AArch64 state (CLUSTERTHREADSIDOVR_EL1) into a
general-purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C4_7; Read CLUSTERTHREADSIDOVR_EL1 into Xt

To write this register in AArch64 state (CLUSTERTHREADSIDOVR_EL1) from a
general-purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C4_7, <Xt>; Write Xt into CLUSTERTHREADSIDOVR_EL1

B1 Control registers
B1.19 CLUSTERTHREADSIDOVR, Cluster Thread Scheme ID Override Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-171

Non-Confidential

In AArch32 state (CLUSTERTHREADSIDOVR):

To read this register in AArch32 state (CLUSTERTHREADSIDOVR) into a general-
purpose register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c4, 7; Read CLUSTERTHREADSIDOVR into Rt

To write this register in AArch32 state (CLUSTERTHREADSIDOVR) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c4, 7; Write Rt into CLUSTERTHREADSIDOVR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERTHREADSIDOVR x x 0 - RW n/a RW

CLUSTERTHREADSIDOVR x 0 1 - RW RW RW

CLUSTERTHREADSIDOVR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3.SMEN is 1 and ACTLR_EL2.SMEN is 1, or
ACTLR_EL3.SMEN is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-Access (EL2 or
EL3).

B1 Control registers
B1.19 CLUSTERTHREADSIDOVR, Cluster Thread Scheme ID Override Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B1-172

Non-Confidential

Chapter B2
Error system registers

This chapter describes the ERR1* error registers for the DSU‑AE.

It contains the following sections:
• B2.1 About the error system registers on page B2-174.
• B2.2 Error system register summary on page B2-175.
• B2.3 ERR1CTLR, Error Record Control Register on page B2-176.
• B2.4 ERR1FR, Error Record Feature Register on page B2-178.
• B2.5 ERR1MISC0, Error Record Miscellaneous Register 0 on page B2-180.
• B2.6 ERR1MISC1, Error Record Miscellaneous Register 1 on page B2-182.
• B2.7 ERR1PFGCDNR, Error Pseudo Fault Generation Count Down Register on page B2-183.
• B2.8 ERR1PFGCTLR, Error Pseudo Fault Generation Control Register on page B2-184.
• B2.9 ERR1PFGFR, Error Pseudo Fault Generation Feature Register on page B2-186.
• B2.10 ERR1STATUS, Error Record Primary Status Register on page B2-188.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-173

Non-Confidential

B2.1 About the error system registers
The error system registers are accessed by both the AArch32 ERX* error registers and the AArch64
ERX* error registers. The ERR1* registers are agnostic to the architectural state. For example, if
ERRSELR==1 and ERRSELR_EL1==1, then ERR1PFGF is accessed by both ERXPFGFR and
ERXPFGFR_EL1.

The chapter is presented as follows:

Error system register summary
This section identifies the ERR1* error registers and lists the corresponding ERX* registers that
can access them.

Register descriptions
The remainder of the chapter provides register descriptions. They are listed in alphabetical order.

 Note

The contents of the error system registers are preserved over a Warm reset.

See appropriate core Technical Reference Manual for more information about the ERX* registers.

B2 Error system registers
B2.1 About the error system registers

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-174

Non-Confidential

B2.2 Error system register summary
This section lists the DSU‑AE ERR1* error record registers that are accessed from the core AArch32 and
AArch64 ERX* error registers.

The ERR1* registers are agnostic to the architectural state. For example, if ERRSELR==1 and
ERRSELR_EL1==1, then ERR1PFGF is accessed by both ERXPFGFR and ERXPFGFR_EL1.

For a description of the ERX* error registers see the related core documentation.

The following table describes the architectural error record registers in the DSU‑AE.

Table B2-1 Architectural error system register summary

Register
mnemonic

Size Register name and description Access aliases from AArch32
and AArch64

ERR1CTLR 64 B2.3 ERR1CTLR, Error Record Control Register
on page B2-176

ERXCTLR, ERXCTLR2,
ERXCTLR_EL1

ERR1FR 64 B2.4 ERR1FR, Error Record Feature Register on page B2-178 ERXFR, ERXFR2, ERXFR_EL1

ERR1MISC0 64 B2.5 ERR1MISC0, Error Record Miscellaneous Register 0
on page B2-180

ERXMISC0, ERXMISC1,
ERXMISC0_EL1

ERR1MISC1 64 B2.6 ERR1MISC1, Error Record Miscellaneous Register 1
on page B2-182

ERXMISC2 accesses bits [31:0],
ERXMISC3 accesses bits [63:32],
ERXMISC1_EL1

ERR1STATUS 32 B2.10 ERR1STATUS, Error Record Primary Status Register
on page B2-188

ERXSTATUS, ERXSTATUS_EL1

The following table describes the error record registers that are IMPLEMENTATION DEFINED in the DSU‑AE.

Table B2-2 Implementation defined error system register summary

Register mnemonic Size Register name Access aliases from AArch32
and AArch64

ERR1PFGCDNR 32 B2.7 ERR1PFGCDNR, Error Pseudo Fault Generation Count
Down Register on page B2-183

ERXPFGCDNR,
ERXPFGCDNR_EL1

ERR1PFGCTLR 32 B2.8 ERR1PFGCTLR, Error Pseudo Fault Generation Control
Register on page B2-184

ERXPFGCTLR,
ERXPFGCTLR_EL1

ERR1PFGFR 32 B2.9 ERR1PFGFR, Error Pseudo Fault Generation Feature
Register on page B2-186

ERR1PFGFR, ERXPFGFR_EL1

B2 Error system registers
B2.2 Error system register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-175

Non-Confidential

B2.3 ERR1CTLR, Error Record Control Register
The ERR1CTLR register contains enable bits for the node that writes to this record:

• Enabling error detection and correction.
• Enabling an error recovery interrupt.
• Enabling a fault handling interrupt.
• Enabling error recovery reporting as a read or write error response.

Bit field descriptions

ERR1CTLR is a 64-bit register and is part of the RAS registers functional group.

63 08 7

RES0

12349

CFI FI
UI

ED

Figure B2-1 ERR1CTLR bit assignments

RES0, [63:9]

RES0 Reserved.

CFI, [8]

Fault handling interrupt for corrected errors enable.

The fault handling interrupt is generated when one of the standard CE counters on ERR1MISC0
overflows and the overflow bit is set. The possible values are:

0 Fault handling interrupt is not generated for corrected errors.
1 Fault handling interrupt is generated for corrected errors.

The interrupt is generated even if the error status is overwritten because the error record already
records a higher priority error. If the node does not support this control, this bit is RES0.

 Note

This condition applies to both reads and writes.

RES0, [7:4]

RES0 Reserved.

FI, [3]

Fault handling interrupt enable.

The fault handling interrupt is generated for all detected Deferred errors and Uncorrected errors.
The possible values are:

0 Fault handling interrupt disabled.
1 Fault handling interrupt enabled.

UI, [2]

B2 Error system registers
B2.3 ERR1CTLR, Error Record Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-176

Non-Confidential

Uncorrected error recovery interrupt enable. When enabled, the error recovery interrupt is
generated for all detected Uncorrected errors that are not deferred. The possible values are:

0 Error recovery interrupt is disabled.
1 Error recovery interrupt enabled.

 Note

Applies to both reads and writes.

RES0, [1]

RES0 Reserved.

ED, [0]

Error reporting and logging enable. When reporting is disabled, the DSU‑AE does not record or
signal errors, but continues to detect and correct errors. In Split-mode, error reporting is
controllable by this bit, and is defined by the following values:

0 Error reporting is disabled. In this state, uncorrectable errors might result in corrupt
data being silently propagated.

1 Error reporting is enabled.

Correct error detection and correction codes are written for writes even when reporting is
disabled.

In Lock-mode and Hybrid-mode, this bit is not controllable. Error reporting is always enabled
and this bit is RES0.

Configurations
ERR1CTLR resets to 0x0000000000000000.
This register is accessible from the following registers when ERRSELR.SEL==1:
• [31:0]: ERXCTLR.
• [63:32]: ERXCTLR2.
• ERXCTLR_EL1.

See the appropriate core Technical Reference Manual for information about these ERX*
registers.

B2 Error system registers
B2.3 ERR1CTLR, Error Record Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-177

Non-Confidential

B2.4 ERR1FR, Error Record Feature Register
The ERR1FR register defines which of the common architecturally defined features are implemented
and, of the implemented features, which are software programmable.

Bit field descriptions

ERR1FR is a 64-bit register, and is part of the Reliability, Availability, Serviceability (RAS) registers
functional group.

The register is Read Only.

RAZ/WI

63 20

CEO

19 18

DUI

17 16 15

CEC

14 12

CFI

11 10

UE

9 8

FI

7 6

UI

5 4

DE

3 2

ED

1 0

RP

Figure B2-2 ERR1FR bit assignments

RAZ/WI, [63:20]

Read-as-zero/Write ignore.

CEO, [19:18]

Corrected Error Overwrite. The value is:

0b00 Counts CE if a counter is implemented and keeps the previous error status. If the
counter overflows, or no counter is implemented, ERR0STATUS.OF is set to 1.

DUI, [17:16]

Error recovery interrupt for deferred errors. The value is:

0b00 The core or cluster does not support this feature.

RP, [15]

Repeat counter. The value is:

1 A first repeat counter and a second other counter are implemented. The repeat counter
is the same size as the primary error counter.

CEC, [14:12]
Corrected Error Counter. The value is:

0b010 The node implements an 8-bit standard CE counter in ERR0MISC0[39:32].

CFI, [11:10]
Fault handling interrupt for corrected errors. The value is:

0b10 The node implements a control for enabling fault handling interrupts on corrected
errors.

UE, [9:8]
In-band uncorrected error reporting. The value is:

0b01 The node implements in-band uncorrected error reporting, that is external aborts.

FI, [7:6]
Fault handling interrupt. The value is:

B2 Error system registers
B2.4 ERR1FR, Error Record Feature Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-178

Non-Confidential

0b10 The node implements a fault handling interrupt and implements controls for enabling
and disabling.

UI, [5:4]
Error recovery interrupt for uncorrected errors. The value is:

0b10 The node implements an error recovery interrupt and implements controls for enabling
and disabling.

DE, [3:2]
Defers Errors enable. The value is:

0b01 Defers Errors are always enabled.

ED, [1:0]

Error detection and correction.

In Split-mode the value is:

0b10 Error detection is controllable.

In Lock-mode and Hybrid-mode the value is:

0b01 Error detection is always enabled. ERR1CTLR.ED is RES0.

Configurations
This register is accessible from the following registers when ERRSELR.SEL==1:
• [31:0]: ERXFR.
• [63:32]: ERXFR2.
• ERXFR_EL1.

See the appropriate core Technical Reference Manual for information about these ERX*
registers.

B2 Error system registers
B2.4 ERR1FR, Error Record Feature Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-179

Non-Confidential

B2.5 ERR1MISC0, Error Record Miscellaneous Register 0
The ERR1MISC0 register is an error syndrome register. It contains information on the corrected error
count and information to identify where the error was detected. It also contains other state information
not present in the corresponding status and address error record registers.

Bit field descriptions

ERR1MISC0 is a 64-bit register, and is part of the Reliability, Availability, Serviceability (RAS) registers
functional group.

63 031

RES0

IND

13456181927324748 28

WAYCECR LVLINDX

383940

OFR

46

CECO

OFO

Figure B2-3 ERR1MISC0 bit assignments

RES0, [63:48]

RES0 Reserved.

OFO, [47]

Sticky overflow bit, other. The possible values are:

0 Other counter has not overflowed.
1 Other counter has overflowed.

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled
and either overflow bit is set to 1.

CECO, [46:40]

Corrected error count, other. Incremented for each Corrected error that does not match the
recorded syndrome.

OFR, [39]

Sticky overflow bit, repeat. The possible values are:

0 Repeat counter has not overflowed.
1 Repeat counter has overflowed.

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled
and either overflow bit is set to 1.

CECR, [38:32]

Corrected error count, repeat. Incremented for the first recorded error, which also records other
syndrome, and then again for each Corrected error that matches the recorded syndrome.

WAY, [31:28]
Indicates the way in the L3 tag RAM, L3 data RAM, or snoop filter RAM that contained the
error. If the error is in the Long-Term Data Buffer (LTDB) RAM, then this indicates the RAM
instance that contained the error.
• For the L3 tag RAM and L3 data RAM all four bits are used.
• For the snoop filter RAM, only bits[30:28] are used and bit[31] is set RES0.

B2 Error system registers
B2.5 ERR1MISC0, Error Record Miscellaneous Register 0

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-180

Non-Confidential

RES0, [27:19]

RES0 Reserved.

INDX, [18:6]

Indicates the index that contained the error.

Upper bits of the index are unused depending on the cache size.

RES0, [5:4]

RES0 Reserved.

LVL, [3:1]
Indicates the level that contained the error. The value is:

0b010 Level 3.

IND, [0]

Indicates the type of cache that contained the error. The value is:

0 L3 cache.

Configurations
ERR1MISC0 resets to 0x0000000000000000.
This register is accessible from the following registers when ERRSELR.SEL==1:
• [31:0]: ERXMISC0.
• [63:32]: ERXMISC1.
• ERXMISC0_EL1.

See the appropriate core Technical Reference Manual for information about these ERX*
registers.

B2 Error system registers
B2.5 ERR1MISC0, Error Record Miscellaneous Register 0

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-181

Non-Confidential

B2.6 ERR1MISC1, Error Record Miscellaneous Register 1
The ERR1MISC1 register is not used in the DSU‑AE and marked as RES0.

Configurations
ERR1MISC1 is accessible from the following registers when ERRSELR.SEL==1:
• [31:0]: ERXMISC2.
• [63:32]: ERXMISC3.
• ERXMISC1_EL1.

See the appropriate core Technical Reference Manual for information about these ERX* registers.

B2 Error system registers
B2.6 ERR1MISC1, Error Record Miscellaneous Register 1

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-182

Non-Confidential

B2.7 ERR1PFGCDNR, Error Pseudo Fault Generation Count Down Register
ERR1PFGCDNR is the DSU‑AE node register that generates one of the errors enabled in the
corresponding ERR1PFGCTL register.

Bit field descriptions

ERR1PFGCDNR is a 32-bit read/write register.

31 0

CDN

Figure B2-4 ERR1PFGCDNR bit assignments

CDN, [31:0]
Count Down value. The reset value of the Error Generation Counter is used for the countdown.

Configurations
ERR1PFGCDNR resets to 0x00000000.

There are no configuration options.

ERR1PFGCDNR is accessible from the following registers when ERRSELR.SEL==1:
• ERXPFGCDNR.
• ERXPFGCDNR_EL1.

See the appropriate core Technical Reference Manual for information about these ERX*
registers.

B2 Error system registers
B2.7 ERR1PFGCDNR, Error Pseudo Fault Generation Count Down Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-183

Non-Confidential

B2.8 ERR1PFGCTLR, Error Pseudo Fault Generation Control Register
The ERR1PFGCTLR register is the DSU‑AE node register that enables controlled fault generation.

Bit field descriptions

ERR1PFGCTLR is a 32-bit read/write register.

31 30 6 5 4 2 0

DE
R CE

7

UC

1

CDNEN

29

RES0

Figure B2-5 ERR1PFGCTLR bit assignments

CDNEN, [31]

Count down enable. This bit controls transfers from the value that is held in the
ERR1PFGCDNR into the Error Generation Counter and enables this counter to start counting
down. The possible values are:

0 The Error Generation Counter is disabled.

1 The value held in the ERR1PFGCDNR register is transferred into the Error Generation
Counter. The Error Generation Counter counts down.

R, [30]

Restartable bit. When it reaches 0, the Error Generation Counter restarts from the
ERR1PFGCDNR value or stops. The possible values are:

0 When it reaches 0, the counter stops.
1 When it reaches 0, the counter reloads the value that is stored in ERR1PFGCDNR and

starts counting down again.

RES0, [29:7]

RES0 Reserved.

CE, [6]

Corrected error generation enable. The possible values are:

0 No corrected error is generated.

1 A corrected error might be generated when the Error Generation Counter is triggered.

DE, [5]

Deferred Error generation enable. The possible values are:

0 No deferred error is generated.
1 A deferred error might be generated when the Error Generation Counter is triggered.

RES0, [4:2]

RES0 Reserved.

B2 Error system registers
B2.8 ERR1PFGCTLR, Error Pseudo Fault Generation Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-184

Non-Confidential

UC, [1]

Uncontainable error generation enable. The possible values are:

0 No uncontainable error is generated.

1 An uncontainable error might be generated when the Error Generation Counter is
triggered.

RES0, [0]

RES0 Reserved.

Configurations
ERR1PFGCTLR resets to 0x00000000.

There are no configuration notes.

ERR1PFGCTLR is accessible from the following registers when ERRSELR.SEL==1:
• ERXPFGCTLR.
• ERXPFGCTLR_EL1.

See the appropriate core Technical Reference Manual for information about these ERX*
registers.

B2 Error system registers
B2.8 ERR1PFGCTLR, Error Pseudo Fault Generation Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-185

Non-Confidential

B2.9 ERR1PFGFR, Error Pseudo Fault Generation Feature Register
The ERR1PFGFR register is the DSU‑AE node register that defines which fault generation features are
implemented.

Bit field descriptions

ERR1PFGFR is a 32-bit read-only register.

31 0

RES0

130 29 234567

R
PFG

CE
DE

UEO
UER
UEU

UC

Figure B2-6 ERR1PFGFR bit assignments

PFG, [31]

Pseudo Fault Generation. The possible values are:

0 The node does not support fault injection.
1 The node implements a fault injection mechanism.

R, [30]

Restartable bit. When it reaches zero, the Error Generation Counter restarts from the
ERR0PFGCDN value or stops. The possible values are:

0 The node does not support this feature.
1 This feature is controllable.

RES0, [29:7]

RES0 Reserved.

CE, [6]
Corrected Error generation. The possible values are:

0 The node does not support this feature.
1 This feature is controllable.

DE, [5]
Deferred Error generation. The possible values are:

0 The node does not support this feature.
1 This feature is controllable.

UEO, [4]
Latent or Restartable Error generation. The possible values are:

0 The node does not support this feature.
1 This feature is controllable.

UER, [3]

B2 Error system registers
B2.9 ERR1PFGFR, Error Pseudo Fault Generation Feature Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-186

Non-Confidential

Signaled or Recoverable Error generation. The possible values are:

0 The node does not support this feature.
1 This feature is controllable.

UEU, [2]
Unrecoverable Error generation. The possible values are:

0 The node does not support this feature.
1 This feature is controllable.

UC, [1]
Uncontainable Error generation. The possible values are:

0 The node does not support this feature.
1 This feature is controllable.

RES0, [0]

RES0 Reserved.

Configurations
ERR1PFGFR resets to 0xC0000062.

There are no configuration notes.

ERR1PFGFR is accessible from the following registers when ERRSELR.SEL==1:
• ERXPFGFR.
• ERXPFGFR_EL1.

See the appropriate core Technical Reference Manual for information about these ERX*
registers.

B2 Error system registers
B2.9 ERR1PFGFR, Error Pseudo Fault Generation Feature Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-187

Non-Confidential

B2.10 ERR1STATUS, Error Record Primary Status Register
The ERR1STATUS register contains the following information about the error record:

• Whether any error has been detected.
• Whether any detected error was not corrected and returned to a master.
• Whether any detected error was not corrected and deferred.
• Whether a second error of the same type was detected before software handled the first error.
• Whether any error has been reported.
• Whether the other error record registers contain valid information.

Bit field descriptions

ERR1STATUS is a 32-bit register.

SERRCE

31 30 0729

RES0

28 27 26 25 24 23 22 21 20 19 8

UET
PN
DE

AV
V

UE
ER
OF
MV

16 15

IERR

Figure B2-7 ERR1STATUS bit assignments

AV, [31]

Address Valid. The value is:

0 ERR1ADDR is not valid.

V, [30]

Status Register valid. The possible values are:

0 ERR1STATUS is not valid.
1 ERR1STATUS is valid. At least one error has been recorded.

UE, [29]
Uncorrected error. The possible values are:

0 No error that could not be corrected or deferred has been detected.

1 At least one error that could not be corrected or deferred has been detected. If error
recovery interrupts are enabled, then the interrupt signal is asserted until this bit is
cleared.

ER, [28]
Error reported. The value is:

0 No external abort has been reported.

OF, [27]
Overflow. The possible values are:

B2 Error system registers
B2.10 ERR1STATUS, Error Record Primary Status Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-188

Non-Confidential

0 • If UE == 1, then no error status for an Uncorrected error has been discarded.
• If UE == 0 and DE == 1, then no error status for a Deferred error has been

discarded.
• If UE == 0, DE == 0, and CE !== 0b00, then:

— If a Corrected error counter is implemented, it has not overflowed.
— If no Corrected error counter is implemented, no error status for a Corrected

error has been discarded.

1 More than one error has occurred and so details of the other error have been discarded.

MV, [26]
Miscellaneous Registers Valid. The possible values are:

0 ERR1MISC0 and ERR1MISC1 are not valid.

1 Indicates that ERR1MISC0 contains additional information about any error recorded
that is by this record.

CE, [25:24]
Corrected error. The possible values are:

0b00 No corrected errors are recorded.
0b10 At least one corrected error recorded.

DE, [23]
Deferred error. The possible values are:

0 No errors were deferred.
1 At least one error was not corrected and deferred by poisoning.

PN, [22]

Poison. The possible values are:

0 The DSU‑AE cannot distinguish a poisoned value from a corrupted value.

1 There is an uncorrected error due to data that was earlier poisoned.

UET, [21:20]
Uncorrected Error Type. The value is:

0b00 Uncontainable.

RES0, [19:16]

RES0 Reserved.

IERR, [15:8]
An IMPLEMENTATION DEFINED error code. The possible values are:

0x0 No error, or error on other RAMs.
0x2 Error on a L3 snoop filter RAM.

SERR, [7:0]
Primary error code. The possible values are:

0x0 No error.
0x2 ECC error from internal data buffer.
0x6 ECC error on cache data RAM.
0x7 ECC error on cache tag or dirty RAM.
0x12 Bus error.

B2 Error system registers
B2.10 ERR1STATUS, Error Record Primary Status Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-189

Non-Confidential

Configurations
ERR1STATUS resets to 0x00000000.

There are no configuration notes.

ERR1STATUS is accessible from the following registers when ERRSELR.SEL==1:
• ERXSTATUS.
• ERXSTATUS_EL1.

See the appropriate core Technical Reference Manual for information about these ERX*
registers.

B2 Error system registers
B2.10 ERR1STATUS, Error Record Primary Status Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B2-190

Non-Confidential

Chapter B3
PMU registers

This chapter describes the PMU registers for the DSU‑AE.

It contains the following sections:
• B3.1 About the PMU registers on page B3-192.
• B3.2 AArch32 PMU register summary on page B3-193.
• B3.3 AArch64 PMU register summary on page B3-195.
• B3.4 CLUSTERPMCR, Cluster Performance Monitors Control Register on page B3-196.
• B3.5 CLUSTERPMCNTENSET, Cluster Count Enable Set Register on page B3-199.
• B3.6 CLUSTERPMCNTENCLR, Cluster Count Enable Clear Register on page B3-201.
• B3.7 CLUSTERPMOVSSET, Cluster Overflow Flag Status Set Register on page B3-203.
• B3.8 CLUSTERPMOVSCLR, Cluster Overflow Flag Status Clear Register on page B3-205.
• B3.9 CLUSTERPMSELR, Cluster Event Counter Selection Register on page B3-207.
• B3.10 CLUSTERPMINTENSET, Cluster Interrupt Enable Set Register on page B3-209.
• B3.11 CLUSTERPMINTENCLR, Cluster Interrupt Enable Clear Register on page B3-211.
• B3.12 CLUSTERPMCCNTR, Cluster Performance Monitors Cycle Counter on page B3-213.
• B3.13 CLUSTERPMXEVTYPER, Cluster Selected Event Type Register on page B3-215.
• B3.14 CLUSTERPMXEVCNTR, Cluster Selected Event Counter Register on page B3-217.
• B3.15 CLUSTERPMMDCR, Cluster Monitor Debug Configuration Register on page B3-219.
• B3.16 CLUSTERPMCEID0, Cluster Common Event Identification Register 0 on page B3-221.
• B3.17 CLUSTERPMCEID1, Cluster Common Event Identification Register 1 on page B3-223.
• B3.18 CLUSTERCLAIMSET, Cluster Claim Tag Set Register on page B3-225.
• B3.19 CLUSTERCLAIMCLR, Cluster Claim Tag Clear Register on page B3-227.
• B3.20 CLUSTERPMEVTYPER<n>, Cluster Event Type Register on page B3-229.
• B3.21 CLUSTERPMEVCNTR<n>, Cluster Event Counter Register on page B3-230.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-191

Non-Confidential

B3.1 About the PMU registers
The chapter is presented as follows:

AArch32 PMU register summary
This section lists the AArch32 PMU registers by access encoding.

AArch64 PMU register summary
This section lists the AArch64 PMU registers by access encoding.

Register descriptions
The remainder of the chapter provides generic register descriptions, that apply to both AArch32
and AArch64 registers. They are listed in alphabetical order.

B3 PMU registers
B3.1 About the PMU registers

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-192

Non-Confidential

B3.2 AArch32 PMU register summary
This section lists the AArch32 PMU registers implemented in the DSU‑AE, sorted by access encoding.

Table B3-1 DSU-AE AArch32 32-bit PMU registers

Register mnemonic Copro CRn Opc1 CRm Opc2 Width Register name and description

CLUSTERPMCR cp15 c15 0 c5 0 32 See B3.4 CLUSTERPMCR, Cluster Performance
Monitors Control Register on page B3-196.

CLUSTERPMCNTENSET cp15 c15 0 c5 1 32 See B3.5 CLUSTERPMCNTENSET, Cluster
Count Enable Set Register on page B3-199.

CLUSTERPMCNTENCLR cp15 c15 0 c5 2 32 See B3.6 CLUSTERPMCNTENCLR, Cluster
Count Enable Clear Register on page B3-201.

CLUSTERPMOVSSET cp15 c15 0 c5 3 32 See B3.7 CLUSTERPMOVSSET, Cluster
Overflow Flag Status Set Register
on page B3-203.

CLUSTERPMOVSCLR cp15 c15 0 c5 4 32 See B3.8 CLUSTERPMOVSCLR, Cluster
Overflow Flag Status Clear Register
on page B3-205.

CLUSTERPMSELR cp15 c15 0 c5 5 32 See B3.9 CLUSTERPMSELR, Cluster Event
Counter Selection Register on page B3-207.

CLUSTERPMINTENSET cp15 c15 0 c5 6 32 See B3.10 CLUSTERPMINTENSET, Cluster
Interrupt Enable Set Register on page B3-209.

CLUSTERPMINTENCLR cp15 c15 0 c5 7 32 See B3.11 CLUSTERPMINTENCLR, Cluster
Interrupt Enable Clear Register on page B3-211.

CLUSTERPMCCNTR cp15 c15 0 c6 0 64-bit
register with
only bits
[31:0]
accessible.

See B3.12 CLUSTERPMCCNTR, Cluster
Performance Monitors Cycle Counter
on page B3-213.

CLUSTERPMXEVTYPER cp15 c15 0 c6 1 32 See B3.13 CLUSTERPMXEVTYPER, Cluster
Selected Event Type Register on page B3-215.

CLUSTERPMXEVCNTR cp15 c15 0 c6 2 32 See B3.14 CLUSTERPMXEVCNTR, Cluster
Selected Event Counter Register on page B3-217.

CLUSTERPMMDCR cp15 c15 6 c6 3 32 See B3.15 CLUSTERPMMDCR, Cluster Monitor
Debug Configuration Register on page B3-219.

CLUSTERPMCEID0 cp15 c15 0 c6 4 32 See B3.16 CLUSTERPMCEID0, Cluster Common
Event Identification Register 0 on page B3-221.

CLUSTERPMCEID1 cp15 c15 0 c6 5 32 See B3.17 CLUSTERPMCEID1, Cluster Common
Event Identification Register 1 on page B3-223.

CLUSTERCLAIMSET cp15 c15 0 c6 6 32 See B3.18 CLUSTERCLAIMSET, Cluster Claim
Tag Set Register on page B3-225.

CLUSTERCLAIMCLR cp15 c15 0 c6 7 32 See B3.19 CLUSTERCLAIMCLR, Cluster Claim
Tag Clear Register on page B3-227.

The following table describes the DSU‑AE AArch32 64-bit PMU register.

B3 PMU registers
B3.2 AArch32 PMU register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-193

Non-Confidential

Table B3-2 DSU-AE AArch32 64-bit PMU register

Register mnemonic Copro Opc1 CRm Width Register name and description

CLUSTERPMCCNTR cp15 15 c15 64 See B3.12 CLUSTERPMCCNTR, Cluster Performance Monitors Cycle
Counter on page B3-213.

B3 PMU registers
B3.2 AArch32 PMU register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-194

Non-Confidential

B3.3 AArch64 PMU register summary
This section lists the AArch64 PMU registers implemented in the DSU‑AE, sorted by access encoding.

Table B3-3 DynamIQ Shared Unit-AE AArch64 PMU registers

Register mnemonic Op0 CRn Op1 CRm Op2 Width Register name and description

CLUSTERPMCR_EL1 3 c15 0 c5 0 32 See B3.4 CLUSTERPMCR, Cluster Performance
Monitors Control Register on page B3-196.

CLUSTERPMCNTENSET_EL1 3 c15 0 c5 1 32 See B3.5 CLUSTERPMCNTENSET, Cluster Count
Enable Set Register on page B3-199.

CLUSTERPMCNTENCLR_EL1 3 c15 0 c5 2 32 See B3.6 CLUSTERPMCNTENCLR, Cluster Count
Enable Clear Register on page B3-201.

CLUSTERPMOVSSET_EL1 3 c15 0 c5 3 32 See B3.7 CLUSTERPMOVSSET, Cluster Overflow Flag
Status Set Register on page B3-203.

CLUSTERPMOVSCLR_EL1 3 c15 0 c5 4 32 See B3.8 CLUSTERPMOVSCLR, Cluster Overflow
Flag Status Clear Register on page B3-205.

CLUSTERPMSELR_EL1 3 c15 0 c5 5 32 See B3.9 CLUSTERPMSELR, Cluster Event Counter
Selection Register on page B3-207.

CLUSTERPMINTENSET_EL1 3 c15 0 c5 6 32 See B3.10 CLUSTERPMINTENSET, Cluster Interrupt
Enable Set Register on page B3-209.

CLUSTERPMINTENCLR_EL1 3 c15 0 c5 7 32 See B3.11 CLUSTERPMINTENCLR, Cluster Interrupt
Enable Clear Register on page B3-211.

CLUSTERPMCCNTR_EL1 3 c15 0 c6 0 64 See B3.12 CLUSTERPMCCNTR, Cluster Performance
Monitors Cycle Counter on page B3-213.

CLUSTERPMXEVTYPER_EL1 3 c15 0 c6 1 32 See B3.13 CLUSTERPMXEVTYPER, Cluster Selected
Event Type Register on page B3-215.

CLUSTERPMXEVCNTR_EL1 3 c15 0 c6 2 32 See B3.14 CLUSTERPMXEVCNTR, Cluster Selected
Event Counter Register on page B3-217.

CLUSTERPMMDCR_EL3 3 c15 6 c6 3 32 See B3.15 CLUSTERPMMDCR, Cluster Monitor
Debug Configuration Register on page B3-219.

CLUSTERPMCEID0_EL1 3 c15 0 c6 4 32 See B3.16 CLUSTERPMCEID0, Cluster Common Event
Identification Register 0 on page B3-221.

CLUSTERPMCEID1_EL1 3 c15 0 c6 5 32 See B3.17 CLUSTERPMCEID1, Cluster Common Event
Identification Register 1 on page B3-223.

CLUSTERCLAIMSET_EL1 3 c15 0 c6 6 32 See B3.18 CLUSTERCLAIMSET, Cluster Claim Tag Set
Register on page B3-225.

CLUSTERCLAIMCLR_EL1 3 c15 0 c6 7 32 See B3.19 CLUSTERCLAIMCLR, Cluster Claim Tag
Clear Register on page B3-227.

B3 PMU registers
B3.3 AArch64 PMU register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-195

Non-Confidential

B3.4 CLUSTERPMCR, Cluster Performance Monitors Control Register
The CLUSTERPMCR register provides details of the Performance Monitors implementation, the number
of counters that are implemented, and configurations and controls to the counters.

This description applies to both the AArch32 (CLUSTERPMCR) and AArch64 (CLUSTERPMCR_EL1)
registers.

Bit field descriptions

CLUSTERPMCR is a 32-bit register, and is part of the PMU registers.

IMP

31 24

IDCODE

23 16

N

15 11 10 7 6 5

X

4 3

C

2

P

1

E

0

RES1

RES0

Figure B3-1 CLUSTERPMCR bit assignments

IMP, [31:24]

Indicates the implementer code. This value is:

0x41 ASCII character 'A' - implementer is Arm Limited.

This field is read-only.

IDCODE, [23:16]

Identification code. This value is:

0x42 DSU‑AE

This field is read-only.

N, [15:11]

Identifies the number of event counters implemented. The value is:

0b00110 Six event counters are implemented together with the cycle counter
CLUSTERPMCCNTR.

RES0, [10:7]

RES0 Reserved.

RES1, [6]

RES1 Reserved.

RES0, [5]

RES0 Reserved.

X, [4]

RAZ/WI Read-As-Zero/Writes ignored.

RES0, [3]

RES0 Reserved.

B3 PMU registers
B3.4 CLUSTERPMCR, Cluster Performance Monitors Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-196

Non-Confidential

C, [2]

Clock counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset CLUSTERPMCCNTR to zero.

This bit is always RAZ.

P, [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset all event counters, not including CLUSTERPMCCNTR, to zero.

Resetting the event counters does not clear any overflow bits to 0.

This bit is always RAZ.

E, [0]

Counters enable. The possible values are:

0 All counters including CLUSTERPMCCNTR are disabled.

1 All counters are enabled by CLUSTERPMCNTENSET.

Configurations

The AArch32 CLUSTERPMCR register is architecturally mapped to the AArch64
CLUSTERPMCR_EL1 register.

Usage Constraints

Accessing the CLUSTERPMCR

In AArch64 state (CLUSTERPMCR_EL1):

To read this register in AArch64 state (CLUSTERPMCR_EL1) into a general-purpose
register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C5_0; Read CLUSTERPMCR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMCR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C5_0, <Xt>; Write Xt into CLUSTERPMCR_EL1

In AArch32 state (CLUSTERPMCR):

To read this register in AArch32 state (CLUSTERPMCR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c5, 0; Read CLUSTERPMCR into Rt

To write this register in AArch32 state (CLUSTERPMCR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c5, 0; Write Rt into CLUSTERPMCR

Accessibility

This register is accessible in software as follows:

B3 PMU registers
B3.4 CLUSTERPMCR, Cluster Performance Monitors Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-197

Non-Confidential

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMCR x x 0 - RW n/a RW

CLUSTERPMCR x 0 1 - RW RW RW

CLUSTERPMCR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0. If Write-Access is not possible, then Trap to the lowest
Exception level that denied Write-Access (EL2 or EL3).

B3 PMU registers
B3.4 CLUSTERPMCR, Cluster Performance Monitors Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-198

Non-Confidential

B3.5 CLUSTERPMCNTENSET, Cluster Count Enable Set Register
The CLUSTERPMCNTENSET register enables the Cycle Count Register, CLUSTERPMCCNTR, and
any implemented event counters CLUSTERPMEVCNTR<n>. Reading this register shows which
counters are enabled.

This description applies to both the AArch32 (CLUSTERPMCNTENSET) and AArch64
(CLUSTERPMCNTENSET_EL1) registers.

Bit field descriptions

CLUSTERPMCNTENSET is a 32-bit register, and is part of the PMU registers.

C

31

P<n>, bit[n]

30 0

Figure B3-2 CLUSTERPMCNTENSET bit assignments

C, [31]

CLUSTERPMCCNTR enable bit. Enables the cycle counter register. The possible values are:

0 When read, means that the cycle counter is disabled. When written, has no effect.
1 When read, means that the cycle counter is enabled. When written, enables the cycle

counter.

P<n>, bit [n], for n = 0-30

Event counter enable bit for CLUSTERPMEVCNTR<n>.

Bits [30:N] are RAZ/WI. N is the value in CLUSTERPMCR.N.

The possible values are:

0 When read, means that CLUSTERPMEVCNTR<n> is disabled. When written, has no
effect.

1 When read, means that CLUSTERPMEVCNTR<n> event counter is enabled. When
written, enables CLUSTERPMEVCNTR<n>.

Configurations

The AArch32 CLUSTERPMCNTENSET register is architecturally mapped to the AArch64
CLUSTERPMCNTENSET_EL1 register.

Usage Constraints

Accessing the CLUSTERPMCNTENSET

In AArch64 state (CLUSTERPMCNTENSET_EL1):

To read this register in AArch64 state (CLUSTERPMCNTENSET_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C5_1; Read CLUSTERPMCNTENSET_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMCNTENSET_EL1) from a
general-purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C5_1, <Xt>; Write Xt into CLUSTERPMCNTENSET_EL1

B3 PMU registers
B3.5 CLUSTERPMCNTENSET, Cluster Count Enable Set Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-199

Non-Confidential

In AArch32 state (CLUSTERPMCNTENSET):

To read this register in AArch32 state (CLUSTERPMCNTENSET) into a general-
purpose register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c5, 1; Read CLUSTERPMCNTENSET into Rt

To write this register in AArch32 state (CLUSTERPMCNTENSET) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c5, 1; Write Rt into CLUSTERPMCNTENSET

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMCNTENSET x x 0 - RW n/a RW

CLUSTERPMCNTENSET x 0 1 - RW RW RW

CLUSTERPMCNTENSET x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.5 CLUSTERPMCNTENSET, Cluster Count Enable Set Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-200

Non-Confidential

B3.6 CLUSTERPMCNTENCLR, Cluster Count Enable Clear Register
The CLUSTERPMCNTENCLR register disables the Cycle Count Register, CLUSTERPMCCNTR, and
any implemented event counters CLUSTERPMEVCNTR<n>. Reading this register shows which
counters are enabled. CLUSTERPMCNTENCLR is used along with CLUSTERPMCNTENSET register.

This description applies to both the AArch32 (CLUSTERPMCNTENCLR) and AArch64
(CLUSTERPMCNTENCLR_EL1) registers.

Bit field descriptions

CLUSTERPMCNTENCLR is a 32-bit register, and is part of the PMU registers.

C

31

P<n>, bit[n]

30 0

Figure B3-3 CLUSTERPMCNTENCLR bit assignments

C, [31]

CLUSTERPMCCNTR enable bit. Enables the cycle counter register. The possible values are:

0 When read, means that the cycle counter is disabled. When written, has no effect.
1 When read, means that the cycle counter is enabled. When written, disables the cycle

counter.

P<n>, bit [n], for n = 0-30

Event counter disable bit for CLUSTERPMEVCNTR<n>.

Bits [30:N] are RAZ/WI. N is the value in CLUSTERPMCR.N.

The possible values are:

0 When read, means that CLUSTERPMEVCNTR<n> is disabled. When written, has no
effect.

1 When read, means that CLUSTERPMEVCNTR<n> event counter is enabled. When
written, disables CLUSTERPMEVCNTR<n>.

Configurations

The AArch32 CLUSTERPMCNTENCLR register is architecturally mapped to the AArch64
CLUSTERPMCNTENCLR_EL1 register.

Usage Constraints

Accessing the CLUSTERPMCNTENCLR

In AArch64 state (CLUSTERPMCNTENCLR_EL1):

To read this register in AArch64 state (CLUSTERPMCNTENCLR_EL1) into a
general-purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C5_2; Read CLUSTERPMCNTENCLR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMCNTENCLR_EL1) from a
general-purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C5_2, <Xt>; Write Xt into CLUSTERPMCNTENCLR_EL1

B3 PMU registers
B3.6 CLUSTERPMCNTENCLR, Cluster Count Enable Clear Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-201

Non-Confidential

In AArch32 state (CLUSTERPMCNTENCLR):

To read this register in AArch32 state (CLUSTERPMCNTENCLR) into a general-
purpose register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c5, 2; Read CLUSTERPMCNTENCLR into Rt

To write this register in AArch32 state (CLUSTERPMCNTENCLR) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c5, 2; Write Rt into CLUSTERPMCNTENCLR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMCNTENCLR x x 0 - RW n/a RW

CLUSTERPMCNTENCLR x 0 1 - RW RW RW

CLUSTERPMCNTENCLR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.6 CLUSTERPMCNTENCLR, Cluster Count Enable Clear Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-202

Non-Confidential

B3.7 CLUSTERPMOVSSET, Cluster Overflow Flag Status Set Register
The CLUSTERPMOVSSET register sets the state of the overflow bit for the Cycle Count Register,
CLUSTERPMCCNTR, and each of the implemented event counters CLUSTERPMEVCNTR<n>.

This description applies to both the AArch32 (CLUSTERPMOVSSET) and AArch64
(CLUSTERPMOVSSET_EL1) registers.

Bit field descriptions

CLUSTERPMOVSSET is a 32-bit register, and is part of the PMU registers.

C

31

P<n>, bit[n]

30 0

Figure B3-4 CLUSTERPMOVSSET bit assignments

C, [31]

CLUSTERPMCCNTR overflow bit. The possible values are:

0 When read, means that the cycle counter has not overflowed. When written, has no
effect.

1 When read, means that the cycle counter has overflowed. When written, sets the
overflow bit to 1.

P<n>, bit [n], for n = 0-30

Event counter overflow set bit for CLUSTERPMEVCNTR<n>.

Bits [30:N] are RAZ/WI. N is the value in CLUSTERPMCR.N.

The possible values are:

0 When read, means that CLUSTERPMEVCNTR<n> has not overflowed. When
written, has no effect.

1 When read, means that CLUSTERPMEVCNTR<n> has overflowed. When written,
sets the CLUSTERPMEVCNTR<n> overflow bit to 1.

Configurations

The AArch32 CLUSTERPMOVSSET register is architecturally mapped to the AArch64
CLUSTERPMOVSSET_EL1 register.

Usage Constraints

Accessing the CLUSTERPMOVSSET

In AArch64 state (CLUSTERPMOVSSET_EL1):

To read this register in AArch64 state (CLUSTERPMOVSSET_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C5_3; Read CLUSTERPMOVSSET_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMOVSSET_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C5_3, <Xt>; Write Xt into CLUSTERPMOVSSET_EL1

B3 PMU registers
B3.7 CLUSTERPMOVSSET, Cluster Overflow Flag Status Set Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-203

Non-Confidential

In AArch32 state (CLUSTERPMOVSSET):

To read this register in AArch32 state (CLUSTERPMOVSSET) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c5, 3; Read CLUSTERPMOVSSET into Rt

To write this register in AArch32 state (CLUSTERPMOVSSET) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c5, 3; Write Rt into CLUSTERPMOVSSET

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMOVSSET x x 0 - RW n/a RW

CLUSTERPMOVSSET x 0 1 - RW RW RW

CLUSTERPMOVSSET x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.7 CLUSTERPMOVSSET, Cluster Overflow Flag Status Set Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-204

Non-Confidential

B3.8 CLUSTERPMOVSCLR, Cluster Overflow Flag Status Clear Register
The CLUSTERPMOVSCLR register contains the state of the overflow bit for the Cycle Counter
Register, CLUSTERPMCCNTR, and each of the implemented event counters
CLUSTERPMEVCNTR<n>. Writing to this register clears these bits.

This description applies to both the AArch32 (CLUSTERPMOVSCLR) and AArch64
(CLUSTERPMOVSCLR_EL1) registers.

Bit field descriptions

CLUSTERPMOVSCLR is a 32-bit register, and is part of the PMU registers.

C

31

P<n>, bit[n]

30 0

Figure B3-5 CLUSTERPMOVSCLR bit assignments

C, [31]

CLUSTERPMCCNTR overflow bit. The possible values are:

0 When read, means that the cycle counter has not overflowed. When written, has no
effect.

1 When read, means that the cycle counter has overflowed. When written, clears the
overflow bit to 0.

CLUSTERPMCR.LC controls whether an overflow is detected from CLUSTERPMCCNTR
[31] or from CLUSTERPMCCNTR.

P<n>, bit [n], for n = 0-30

Event counter overflow clear bit for CLUSTERPMEVCNTR<n>.

Bits [30:N] are RAZ/WI. N is the value in CLUSTERPMCR.N.

The possible values are:

0 When read, means that CLUSTERPMEVCNTR<n> has not overflowed. When
written, has no effect.

1 When read, means that CLUSTERPMEVCNTR<n> has overflowed. When written,
clears the CLUSTERPMEVCNTR<n> overflow bit to 0.

Configurations

The AArch32 CLUSTERPMOVSCLR register is architecturally mapped to the AArch64
CLUSTERPMOVSCLR_EL1 register.

Usage Constraints

Accessing the CLUSTERPMOVSCLR

In AArch64 state (CLUSTERPMOVSCLR_EL1):

To read this register in AArch64 state (CLUSTERPMOVSCLR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C5_4; Read CLUSTERPMOVSCLR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMOVSCLR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C5_4, <Xt>; Write Xt into CLUSTERPMOVSCLR_EL1

B3 PMU registers
B3.8 CLUSTERPMOVSCLR, Cluster Overflow Flag Status Clear Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-205

Non-Confidential

In AArch32 state (CLUSTERPMOVSCLR):

To read this register in AArch32 state (CLUSTERPMOVSCLR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c5, 4; Read CLUSTERPMOVSCLR into Rt

To write this register in AArch32 state (CLUSTERPMOVSCLR) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c5, 4; Write Rt into CLUSTERPMOVSCLR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMOVSCLR x x 0 - RW n/a RW

CLUSTERPMOVSCLR x 0 1 - RW RW RW

CLUSTERPMOVSCLR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.8 CLUSTERPMOVSCLR, Cluster Overflow Flag Status Clear Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-206

Non-Confidential

B3.9 CLUSTERPMSELR, Cluster Event Counter Selection Register
The CLUSTERPMSELR register selects the current event counter CLUSTERPMEVCNTR<n>.
CLUSTERPMSELR is used along with CLUSTERPMXEVTYPER to determine the value of a selected
event counter. It is also used along with CLUSTERPMXEVCNTR, to determine the value of a selected
event counter.

This description applies to both the AArch32 (CLUSTERPMSELR) and AArch64
(CLUSTERPMSELR_EL1) registers.

Bit field descriptions

CLUSTERPMSELR is a 32-bit register, and is part of the PMU registers.

31 5

SEL

4 0

RES0

Figure B3-6 CLUSTERPMSELR bit assignments

RES0, [31:5]

RES0 Reserved.

SEL, [4:0]

Selects event counter, CLUSTERPMEVCNTR<n>, where n is the value held in this field. This
value identifies which event counter is accessed when a subsequent access to
CLUSTERPMXEVTYPER or CLUSTERPMXEVCNTR occurs.

This field can take any value from 0b00000 to (CLUSTERPMCR.N - 1).

If this field is set to a value greater than or equal to the number of implemented counters, the
results of access to CLUSTERPMXEVTYPER or CLUSTERPMXEVCNTR are as if the
register is RAZ/WI.

Direct reads of this field return an UNKNOWN value.

Configurations

The AArch32 CLUSTERPMSELR register is architecturally mapped to the AArch64
CLUSTERPMSELR_EL1 register.

Usage Constraints

Accessing the CLUSTERPMSELR

In AArch64 state (CLUSTERPMSELR_EL1):

To read this register in AArch64 state (CLUSTERPMSELR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C5_5; Read CLUSTERPMSELR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMSELR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C5_5, <Xt>; Write Xt into CLUSTERPMSELR_EL1

B3 PMU registers
B3.9 CLUSTERPMSELR, Cluster Event Counter Selection Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-207

Non-Confidential

In AArch32 state (CLUSTERPMSELR):

To read this register in AArch32 state (CLUSTERPMSELR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c5, 5; Read CLUSTERPMSELR into Rt

To write this register in AArch32 state (CLUSTERPMSELR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c5, 5; Write Rt into CLUSTERPMSELR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMSELR x x 0 - RW n/a RW

CLUSTERPMSELR x 0 1 - RW RW RW

CLUSTERPMSELR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.9 CLUSTERPMSELR, Cluster Event Counter Selection Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-208

Non-Confidential

B3.10 CLUSTERPMINTENSET, Cluster Interrupt Enable Set Register
The CLUSTERPMINTENSET register enables the generation of interrupt requests on overflows from
the Cycle Count Register, CLUSTERPMCCNTR, and the event counters, CLUSTERPMEVCNTR<n>.
Reading the register shows which overflow interrupt requests are enabled.

This description applies to both the AArch32 (CLUSTERPMINTENSET) and AArch64
(CLUSTERPMINTENSET_EL1) registers.

Bit field descriptions

CLUSTERPMINTENSET is a 32-bit register, and is part of the PMU registers.

C

31

P<n>, bit[n]

30 0

Figure B3-7 CLUSTERPMINTENSET bit assignments

C, [31]

CLUSTERPMCCNTR overflow interrupt request enable bit. The possible values are:

0 When read, means that the cycle counter overflow interrupt request is disabled. When
written, has no effect.

1 When read, means that the cycle counter overflow interrupt request is enabled. When
written, enables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 0-30

Event counter overflow interrupt request enable bit for CLUSTERPMEVCNTR<n>.

Bits [30:N] are RAZ/WI. N is the value in CLUSTERPMCR.N.

The possible values are:

0 When read, means that CLUSTERPMEVCNTR<n> event counter interrupt request is
disabled. When written, has no effect.

1 When read, means that CLUSTERPMEVCNTR<n> event counter interrupt request is
enabled. When written, enables the CLUSTERPMEVCNTR<n> interrupt request.

Configurations

The AArch32 CLUSTERPMINTENSET register is architecturally mapped to the AArch64
CLUSTERPMINTENSET_EL1 register.

Usage Constraints

Accessing the CLUSTERPMINTENSET

In AArch64 state (CLUSTERPMINTENSET_EL1):

To read this register in AArch64 state (CLUSTERPMINTENSET_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C5_6; Read CLUSTERPMINTENSET_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMINTENSET_EL1) from a
general-purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C5_6, <Xt>; Write Xt into CLUSTERPMINTENSET_EL1

B3 PMU registers
B3.10 CLUSTERPMINTENSET, Cluster Interrupt Enable Set Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-209

Non-Confidential

In AArch32 state (CLUSTERPMINTENSET):

To read this register in AArch32 state (CLUSTERPMINTENSET) into a general-
purpose register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c5, 6; Read CLUSTERPMINTENSET into Rt

To write this register in AArch32 state (CLUSTERPMINTENSET) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c5, 6; Write Rt into CLUSTERPMINTENSET

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMINTENSET x x 0 - RW n/a RW

CLUSTERPMINTENSET x 0 1 - RW RW RW

CLUSTERPMINTENSET x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.10 CLUSTERPMINTENSET, Cluster Interrupt Enable Set Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-210

Non-Confidential

B3.11 CLUSTERPMINTENCLR, Cluster Interrupt Enable Clear Register
The CLUSTERPMINTENCLR register disables the generation of interrupt requests on overflows from
the Cycle Count Register, CLUSTERPMCCNTR, and the event counters, CLUSTERPMEVCNTR<n>.
Reading the register shows which overflow interrupt requests are enabled.

This description applies to both the AArch32 (CLUSTERPMINTENCLR) and AArch64
(CLUSTERPMINTENCLR_EL1) registers.

Bit field descriptions

CLUSTERPMINTENCLR is a 32-bit register, and is part of the PMU registers.

C

31

P<n>, bit[n]

30 0

Figure B3-8 CLUSTERPMINTENCLR bit assignments

C, [31]

CLUSTERPMCCNTR overflow interrupt request disable bit. The possible values are:

0 When read, means that the cycle counter overflow interrupt request is disabled. When
written, has no effect.

1 When read, means that the cycle counter overflow interrupt request is enabled. When
written, disables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 0-30

Event counter overflow interrupt request disable bit for CLUSTERPMEVCNTR<n>.

Bits [30:N] are RAZ/WI. N is the value in CLUSTERPMCR.N.

The possible values are:

0 When read, means that CLUSTERPMEVCNTR<n> event counter interrupt request is
disabled. When written, has no effect.

1 When read, means that CLUSTERPMEVCNTR<n> event counter interrupt request is
enabled. When written, disables the CLUSTERPMEVCNTR<n> interrupt request.

Configurations

The AArch32 CLUSTERPMINTENCLR register is architecturally mapped to the AArch64
CLUSTERPMINTENCLR_EL1 register.

Usage Constraints

Accessing the CLUSTERPMINTENCLR

In AArch64 state (CLUSTERPMINTENCLR_EL1):

To read this register in AArch64 state (CLUSTERPMINTENCLR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C5_7; Read CLUSTERPMINTENCLR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMINTENCLR_EL1) from a
general-purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C5_7, <Xt>; Write Xt into CLUSTERPMINTENCLR_EL1

B3 PMU registers
B3.11 CLUSTERPMINTENCLR, Cluster Interrupt Enable Clear Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-211

Non-Confidential

In AArch32 state (CLUSTERPMINTENCLR):

To read this register in AArch32 state (CLUSTERPMINTENCLR) into a general-
purpose register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c5, 7; Read CLUSTERPMINTENCLR into Rt

To write this register in AArch32 state (CLUSTERPMINTENCLR) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c5, 7; Write Rt into CLUSTERPMINTENCLR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMINTENCLR x x 0 - RW n/a RW

CLUSTERPMINTENCLR x 0 1 - RW RW RW

CLUSTERPMINTENCLR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.11 CLUSTERPMINTENCLR, Cluster Interrupt Enable Clear Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-212

Non-Confidential

B3.12 CLUSTERPMCCNTR, Cluster Performance Monitors Cycle Counter
The CLUSTERPMCCNTR register holds the value of the Cluster Cycle Counter, CLUSTERCCNT, that
counts cluster clock cycles.

This description applies to both the AArch32 (CLUSTERPMCCNTR) and AArch64
(CLUSTERPMCCNTR_EL1) registers.

Bit field descriptions

CLUSTERPMCCNTR is a 64-bit register, and is part of the PMU registers.

CLUSTERCCNT

63 0

Figure B3-9 CLUSTERPMCCNTR bit assignments

CLUSTERCCNT, [63:0]

Cluster cycle count. This field increments every cluster clock cycle.

Writing 1 to CLUSTERPMCR.C sets this field to 0.

Configurations

The AArch32 CLUSTERPMCCNTR register is architecturally mapped to the AArch64
CLUSTERPMCCNTR_EL1[63:0] register.

All counters are subject to any changes in clock frequency, including clock stopping caused by
entering quiescent states. This means that it is CONSTRAINED UNPREDICTABLE whether or
not CLUSTERPMCCNTR continues to increment when clocks are stopped.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register
reset to architecturally UNKNOWN values.

Usage Constraints

Accessing the CLUSTERPMCCNTR

In AArch64 state (CLUSTERPMCCNTR_EL1):

To read this register in AArch64 state (CLUSTERPMCCNTR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C6_0; Read CLUSTERPMCCNTR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMCCNTR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C6_0, <Xt>; Write Xt into CLUSTERPMCCNTR_EL1

In AArch32 state (CLUSTERPMCCNTR):

To read this register in AArch32 state (CLUSTERPMCCNTR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c6, 0; Read CLUSTERPMCCNTR into Rt

To write this register in AArch32 state (CLUSTERPMCCNTR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c6, 0; Write Rt into CLUSTERPMCCNTR

B3 PMU registers
B3.12 CLUSTERPMCCNTR, Cluster Performance Monitors Cycle Counter

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-213

Non-Confidential

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMCCNTR x x 0 - RW n/a RW

CLUSTERPMCCNTR x 0 1 - RW RW RW

CLUSTERPMCCNTR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.12 CLUSTERPMCCNTR, Cluster Performance Monitors Cycle Counter

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-214

Non-Confidential

B3.13 CLUSTERPMXEVTYPER, Cluster Selected Event Type Register
When CLUSTERPMSELR.SEL selects an event counter, CLUSTERPMXEVTYPER accesses a
CLUSTERPMEVTYPER<n> register.

This description applies to both the AArch32 (CLUSTERPMXEVTYPER) and AArch64
(CLUSTERPMXEVTYPER_EL1) registers.

Bit field descriptions

CLUSTERPMXEVTYPER is a 32-bit register, and is part of the PMU registers.

Event type register

31 0

Figure B3-10 CLUSTERPMXEVTYPER bit assignments

Bits, [31:0]

Event type register.

This register accesses CLUSTERPMEVTYPER<n> where n is the value in
CLUSTERPMSELR.SEL.

Configurations

The AArch32 CLUSTERPMXEVTYPER register is architecturally mapped to the AArch64
CLUSTERPMXEVTYPER_EL1 register.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register
reset to architecturally UNKNOWN values.

Usage Constraints

Accessing the CLUSTERPMXEVTYPER

In AArch64 state (CLUSTERPMXEVTYPER_EL1):

To read this register in AArch64 state (CLUSTERPMXEVTYPER_EL1) into a
general-purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C6_1; Read CLUSTERPMXEVTYPER_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMXEVTYPER_EL1) from a
general-purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C6_1, <Xt>; Write Xt into CLUSTERPMXEVTYPER_EL1

In AArch32 state (CLUSTERPMXEVTYPER):

To read this register in AArch32 state (CLUSTERPMXEVTYPER) into a general-
purpose register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c6, 1; Read CLUSTERPMXEVTYPER into Rt

To write this register in AArch32 state (CLUSTERPMXEVTYPER) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c6, 1; Write Rt into CLUSTERPMXEVTYPER

Accessibility

This register is accessible in software as follows:

B3 PMU registers
B3.13 CLUSTERPMXEVTYPER, Cluster Selected Event Type Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-215

Non-Confidential

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMXEVTYPER x x 0 - RW n/a RW

CLUSTERPMXEVTYPER x 0 1 - RW RW RW

CLUSTERPMXEVTYPER x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

Related references
B3.20 CLUSTERPMEVTYPER<n>, Cluster Event Type Register on page B3-229

B3 PMU registers
B3.13 CLUSTERPMXEVTYPER, Cluster Selected Event Type Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-216

Non-Confidential

B3.14 CLUSTERPMXEVCNTR, Cluster Selected Event Counter Register
The CLUSTERPMXEVCNTR register reads or writes the values of the selected event counter,
CLUSTERPMEVCNTR<n>. The register field CLUSTERPMSELR.SEL determines which event
counter is selected.

This description applies to both the AArch32 (CLUSTERPMXEVCNTR) and AArch64
(CLUSTERPMXEVCNTR_EL1) registers.

Bit field descriptions

CLUSTERPMXEVCNTR is a 32-bit register, and is part of the PMU registers.

CLUSTERPMEVCNTR<n>

31 0

Figure B3-11 CLUSTERPMXEVCNTR bit assignments

CLUSTERPMEVCNTR<n>, bits [31:0]

Value of the selected event counter, CLUSTERPMEVCNTR<n>, where n is the value stored in
CLUSTERPMSELR.SEL.

Configurations

The AArch32 CLUSTERPMXEVCNTR register is architecturally mapped to the AArch64
CLUSTERPMXEVCNTR_EL1 register.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register
reset to architecturally UNKNOWN values.

Usage Constraints

Accessing the CLUSTERPMXEVCNTR

In AArch64 state (CLUSTERPMXEVCNTR_EL1):

To read this register in AArch64 state (CLUSTERPMXEVCNTR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C6_2; Read CLUSTERPMXEVCNTR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMXEVCNTR_EL1) from a
general-purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C6_2, <Xt>; Write Xt into CLUSTERPMXEVCNTR_EL1

In AArch32 state (CLUSTERPMXEVCNTR):

To read this register in AArch32 state (CLUSTERPMXEVCNTR) into a general-
purpose register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c6, 2; Read CLUSTERPMXEVCNTR into Rt

To write this register in AArch32 state (CLUSTERPMXEVCNTR) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c6, 2; Write Rt into CLUSTERPMXEVCNTR

Accessibility

This register is accessible in software as follows:

B3 PMU registers
B3.14 CLUSTERPMXEVCNTR, Cluster Selected Event Counter Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-217

Non-Confidential

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMXEVCNTR x x 0 - RW n/a RW

CLUSTERPMXEVCNTR x 0 1 - RW RW RW

CLUSTERPMXEVCNTR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

Related references
B3.21 CLUSTERPMEVCNTR<n>, Cluster Event Counter Register on page B3-230

B3 PMU registers
B3.14 CLUSTERPMXEVCNTR, Cluster Selected Event Counter Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-218

Non-Confidential

B3.15 CLUSTERPMMDCR, Cluster Monitor Debug Configuration Register
The CLUSTERPMMDCR register defines which common architectural and common microarchitectural
feature events are implemented.

This description applies to both the AArch32 (CLUSTERPMMDCR) and AArch64
(CLUSTERPMMDCR_EL3) registers.

Bit field descriptions

CLUSTERPMMDCR is a 32-bit register, and is part of the PMU registers.

31 1 0

SPME

RES0

Figure B3-12 CLUSTERPMMDCR bit assignments

RES0, [31:1]

RES0 Reserved.

SPME, [0]

Secure Performance Monitors enables or disables the counting of Secure events. The possible
values are:

0 Counting of secure events prohibited.

1 Counting of secure events allowed.

This bit resets to zero.

Configurations

The AArch32 CLUSTERPMMDCR register is architecturally mapped to the AArch64
CLUSTERPMMDCR_EL3 register.

Usage Constraints

Accessing the CLUSTERPMMDCR

In AArch64 state (CLUSTERPMMDCR_EL1):

To read this register in AArch64 state (CLUSTERPMMDCR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C6_3; Read CLUSTERPMMDCR_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMMDCR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C6_3, <Xt>; Write Xt into CLUSTERPMMDCR_EL1

B3 PMU registers
B3.15 CLUSTERPMMDCR, Cluster Monitor Debug Configuration Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-219

Non-Confidential

In AArch32 state (CLUSTERPMMDCR):

To read this register in AArch32 state (CLUSTERPMMDCR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c6, 3; Read CLUSTERPMMDCR into Rt

To write this register in AArch32 state (CLUSTERPMMDCR) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c6, 3; Write Rt into CLUSTERPMMDCR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMMDCR x x 0 - - n/a RW

CLUSTERPMMDCR x 0 1 - - - RW

CLUSTERPMMDCR x 1 1 - n/a - RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is only accessible from EL3.

B3 PMU registers
B3.15 CLUSTERPMMDCR, Cluster Monitor Debug Configuration Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-220

Non-Confidential

B3.16 CLUSTERPMCEID0, Cluster Common Event Identification Register 0
The CLUSTERPMCEID0 register defines which common architectural and common microarchitectural
feature events are implemented. This register is read-only write-ignores RO (WI).

This description applies to both the AArch32 (CLUSTERPMCEID0) and AArch64
(CLUSTERPMCEID0_EL1) registers.

Bit field descriptions

ID[31:0]

31 08 716 15 12346111230 29 28 27 26 25 24 23 22 21 20 19 18 17 1314 910 5

Figure B3-13 CLUSTERPMCEID0 bit assignments

See the PMCEID0 register description in the accompanying core for more information.

CE[31:0], [31:0]

Common architectural and microarchitectural feature events that can be counted by the PMU
event counters.

The following table shows the CLUSTERPMCEID0 bit assignments with event implemented or
not implemented when the associated bit is set to 1 or 0. See the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile for more information about these events.

Table B3-4 PMU events

Bit Event number Event mnemonic Description

[30] 0x1E CHAIN Chain. For odd-numbered counters, counts when for each overflow of the preceding
even-numbered counter. For even-numbered counters, does not count:

1 This event is implemented.

[29] 0x1D BUS_CYCLES Bus cycle:

1 This event is implemented.

[26] 0x1A MEMORY_ERROR Local memory error:

1 This event is implemented.

[25] 0x19 BUS_ACCESS Bus access:

1 This event is implemented.

[17] 0x11 CPU_CYCLES Cycle:

1 This event is implemented.

Configurations

The AArch32 CLUSTERPMCEID0 register is architecturally mapped to the AArch64
CLUSTERPMCEID0_EL1 register.

Usage Constraints

Accessing the CLUSTERPMCEID0

B3 PMU registers
B3.16 CLUSTERPMCEID0, Cluster Common Event Identification Register 0

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-221

Non-Confidential

In AArch64 state (CLUSTERPMCEID0_EL1):

To read this register in AArch64 state (CLUSTERPMCEID0_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C6_4; Read CLUSTERPMCEID0_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMCEID0_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C6_4, <Xt>; Write Xt into CLUSTERPMCEID0_EL1

In AArch32 state (CLUSTERPMCEID0):

To read this register in AArch32 state (CLUSTERPMCEID0) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c6, 4; Read CLUSTERPMCEID0 into Rt

To write this register in AArch32 state (CLUSTERPMCEID0) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c6, 4; Write Rt into CLUSTERPMCEID0

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMCEID0 x x 0 - RO/WI n/a RO/WI

CLUSTERPMCEID0 x 0 1 - RO/WI RO/WI RO/WI

CLUSTERPMCEID0 x 1 1 - n/a RO/WI RO/WI

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

There are no traps or enables affecting this register.

B3 PMU registers
B3.16 CLUSTERPMCEID0, Cluster Common Event Identification Register 0

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-222

Non-Confidential

B3.17 CLUSTERPMCEID1, Cluster Common Event Identification Register 1
The CLUSTERPMCEID1 register defines which common architectural and common microarchitectural
feature events are implemented. This register is read-only write-ignores RO (WI).

This description applies to both the AArch32 (CLUSTERPMCEID1) and AArch64
(CLUSTERPMCEID1_EL1) registers.

Bit field descriptions

31 017 16

CE [48:32]

RES0

Figure B3-14 CLUSTERPMCEID1 bit assignments

See the PMCEID1 register description in the accompanying core for more information.

RES0, [31:17]

RES0 Reserved.

CE[48:32], [16:0]

Common architectural and microarchitectural feature events that can be counted by the PMU
event counters.

For each bit described in the following table, the event is implemented if the bit is set to 1, or
not implemented if the bit is set to 0.

Table B3-5 PMU common event

Bit Event number Event mnemonic Description

[12] 0x2C L3D_CACHE_WB Attributable Level 3 unified cache writeback.

1 This event is implemented.

[11] 0x2B L3D_CACHE Attributable Level 3 unified cache access.

1 This event is implemented.

[10] 0x2A L3D_CACHE_REFILL Attributable Level 3 unified cache refill.

1 This event is implemented.

[9] 0x29 L3D_CACHE_ALLOCATE Attributable Level 3 unified cache allocation without refill.

1 This event is implemented.

Configurations

The AArch32 CLUSTERPMCEID1 register is architecturally mapped to the AArch64
CLUSTERPMCEID1_EL1 register.

Usage Constraints

Accessing the CLUSTERPMCEID1

B3 PMU registers
B3.17 CLUSTERPMCEID1, Cluster Common Event Identification Register 1

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-223

Non-Confidential

In AArch64 state (CLUSTERPMCEID1_EL1):

To read this register in AArch64 state (CLUSTERPMCEID1_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C6_5; Read CLUSTERPMCEID1_EL1 into Xt

To write this register in AArch64 state (CLUSTERPMCEID1_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C6_5, <Xt>; Write Xt into CLUSTERPMCEID1_EL1

In AArch32 state (CLUSTERPMCEID1):

To read this register in AArch32 state (CLUSTERPMCEID1) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c6, 5; Read CLUSTERPMCEID1 into Rt

To write this register in AArch32 state (CLUSTERPMCEID1) from a general-purpose
register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c6, 5; Write Rt into CLUSTERPMCEID1

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERPMCEID1 x x 0 - RO/WI n/a RO/WI

CLUSTERPMCEID1 x 0 1 - RO/WI RO/WI RO/WI

CLUSTERPMCEID1 x 1 1 - n/a RO/WI RO/WI

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

There are no traps or enables affecting this register.

B3 PMU registers
B3.17 CLUSTERPMCEID1, Cluster Common Event Identification Register 1

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-224

Non-Confidential

B3.18 CLUSTERCLAIMSET, Cluster Claim Tag Set Register
The CLUSTERCLAIMSET register provides various bits that can be separately set to indicate whether
functionality is in use by a debug agent. All debug agents must implement a common protocol to use
these bits.

For examples on how these bits can be used, see the CLAIMSET register description in the Arm®

CoreSight™ Architecture Specification v3.0.

This description applies to both the AArch32 (CLUSTERCLAIMSET) and AArch64
(CLUSTERCLAIMSET_EL1) registers.

Bit field descriptions

CLUSTERCLAIMSET is a 32-bit register, and is part of the PMU registers.

RAZ/WI

31 4

SET

3 0

Figure B3-15 CLUSTERCLAIMSET bit assignments

RAZ/WI, [31:4]

Read-As-Zero, Writes Ignored.

SET, bits [3:0]

Each bit in this field is a SET bit. Permitted values of SET[n] are:

Write 0 No effect.
Write 1 Set the claim tag bit for bit[n].
Read 0 The claim tag that is represented by bit[n] is not implemented.
Read 1 The claim tag that is represented by bit[n] is implemented.

Configurations

The AArch32 CLUSTERCLAIMSET register is architecturally mapped to the AArch64
CLUSTERCLAIMSET_EL1 register.

Usage Constraints

Accessing the CLUSTERCLAIMSET

In AArch64 state (CLUSTERCLAIMSET_EL1):

To read this register in AArch64 state (CLUSTERCLAIMSET_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C6_6; Read CLUSTERCLAIMSET_EL1 into Xt

To write this register in AArch64 state (CLUSTERCLAIMSET_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C6_6, <Xt>; Write Xt into CLUSTERCLAIMSET_EL1

B3 PMU registers
B3.18 CLUSTERCLAIMSET, Cluster Claim Tag Set Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-225

Non-Confidential

In AArch32 state (CLUSTERCLAIMSET):

To read this register in AArch32 state (CLUSTERCLAIMSET) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c6, 6; Read CLUSTERCLAIMSET into Rt

To write this register in AArch32 state (CLUSTERCLAIMSET) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c6, 6; Write Rt into CLUSTERCLAIMSET

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERCLAIMSET x x 0 - RW n/a RW

CLUSTERCLAIMSET x 0 1 - RW RW RW

CLUSTERCLAIMSET x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.18 CLUSTERCLAIMSET, Cluster Claim Tag Set Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-226

Non-Confidential

B3.19 CLUSTERCLAIMCLR, Cluster Claim Tag Clear Register
The CLUSTERCLAIMCLR register provides various bits that can be separately cleared to indicate
whether functionality is in use by a debug agent. All debug agents must implement a common protocol to
use these bits.

For examples on how these bits can be used, see Arm® CoreSight™ Architecture Specification v3.0.

This description applies to both the AArch32 (CLUSTERCLAIMCLR) and AArch64
(CLUSTERCLAIMCLR_EL1) registers.

Bit field descriptions

CLUSTERCLAIMCLR is a 32-bit register, and is part of the PMU registers.

RAZ/WI

31 4

CLR

3 0

Figure B3-16 CLUSTERCLAIMCLR bit assignments

RAZ/WI, [31:4]

Read-As-Zero, Writes Ignored.

CLR, bits [3:0]

Each bit in this field is a SET bit. Permitted values of SET[n] are:

Write 0 No effect.
Write 1 Set the claim tag bit for bit[n].
Read 0 The claim tag that is represented by bit[n] is not implemented.
Read 1 The claim tag that is represented by bit[n] is implemented.

Configurations

The AArch32 CLUSTERCLAIMCLR register is architecturally mapped to the AArch64
CLUSTERCLAIMCLR_EL1 register.

Usage Constraints

Accessing the CLUSTERCLAIMCLR

In AArch64 state (CLUSTERCLAIMCLR_EL1):

To read this register in AArch64 state (CLUSTERCLAIMCLR_EL1) into a general-
purpose register, use the MRS instruction with the following syntax:

MRS <Xt>, S3_0_C15_C6_7; Read CLUSTERCLAIMCLR_EL1 into Xt

To write this register in AArch64 state (CLUSTERCLAIMCLR_EL1) from a general-
purpose register, use the MSR instruction with the following syntax:

MSR S3_0_C15_C6_7, <Xt>; Write Xt into CLUSTERCLAIMCLR_EL1

B3 PMU registers
B3.19 CLUSTERCLAIMCLR, Cluster Claim Tag Clear Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-227

Non-Confidential

In AArch32 state (CLUSTERCLAIMCLR):

To read this register in AArch32 state (CLUSTERCLAIMCLR) into a general-purpose
register, use the MRC (or MRC2) instruction with the following syntax:

MRC p15, 0, <Rt>, c15, c6, 7; Read CLUSTERCLAIMCLR into Rt

To write this register in AArch32 state (CLUSTERCLAIMCLR) from a general-
purpose register, use the MCR (or MCR2) instruction with the following syntax:

MCR p15, 0, <Rt>, c15, c6, 7; Write Rt into CLUSTERCLAIMCLR

Accessibility

This register is accessible in software as follows:

<systemreg> Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CLUSTERCLAIMCLR x x 0 - RW n/a RW

CLUSTERCLAIMCLR x 0 1 - RW RW RW

CLUSTERCLAIMCLR x 1 1 - n/a RW RW

'n/a' Not accessible. The PE cannot be executing at this Exception level, so this access is not
possible.

Traps and enables

This register is Write-Accessible in EL1 if ACTLR_EL3[12] is 1 and ACTLR_EL2[12] is 1, or
ACTLR_EL3[12] is 1 and SCR.NS is 0.

If Write-Access is not possible, then Trap to the lowest Exception level that denied Write-
Access (EL2 or EL3).

B3 PMU registers
B3.19 CLUSTERCLAIMCLR, Cluster Claim Tag Clear Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-228

Non-Confidential

B3.20 CLUSTERPMEVTYPER<n>, Cluster Event Type Register
The CLUSTERPMEVTYPER<n> register configures event counter n to count the specified event and its
associated security filtering.

Bit field descriptions

S

31 30 29 28 16

evtCount

15 0

NS

RES0

Figure B3-17 CLUSTERPMEVTYPER<n> bit assignments

S, [31]

Secure events filtering bit. Controls counting the events of Secure transactions. The possible
values are:

0 Count Secure events.
1 Do not count Secure events.

RES0, [30]

RES0 Reserved.

NS, [29]

Non-secure events filtering bit. Controls counting the events of Non-secure transactions. The
possible values are:

NS == S If the value of this bit equals the value of S,[31] bit then count Non-secure events.
NS != S If the value of this bit does not equal the value of S,[31] bit then do not count Non-

secure events.

RES0, [28:16]

RES0 Reserved.

evtCount, [15:0]

Event number. For the list of implemented events, see C2.3 PMU events on page C2-246.

If evtCount is programmed to an event that is not implemented, no events are counted.

Usage Constraints

Accessing the CLUSTERPMEVTYPER<n> register

This register is accessible using the CLUSTERPMXEVTYPER register. It is not directly
accessible as a system or CP15 register.

B3 PMU registers
B3.20 CLUSTERPMEVTYPER<n>, Cluster Event Type Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-229

Non-Confidential

B3.21 CLUSTERPMEVCNTR<n>, Cluster Event Counter Register
The CLUSTERPMEVCNTR<n> register holds the count for event counter n.

Bit field descriptions

Event counter n

31 0

Figure B3-18 CLUSTERPMEVCNTR<n> bit assignments

Bits, [31:0]

Event counter n. Value of event counter n, where n is the number of this register.

Usage Constraints

Accessing the CLUSTERPMEVCNTR<n> register

This register is accessible using the CLUSTERPMXEVTYPER register. It is not directly
accessible as a system or CP15 register.

B3 PMU registers
B3.21 CLUSTERPMEVCNTR<n>, Cluster Event Counter Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

B3-230

Non-Confidential

Part C
Debug

Chapter C1
Debug

This chapter describes the debug features of the DSU‑AE and the associated DebugBlock component.

It contains the following sections:
• C1.1 About debug methods on page C1-234.
• C1.2 Terminology on page C1-235.
• C1.3 About the DebugBlock on page C1-236.
• C1.4 DebugBlock components on page C1-238.
• C1.5 About the Embedded Cross Trigger on page C1-239.
• C1.6 CTI triggers on page C1-241.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-233

Non-Confidential

C1.1 About debug methods
The DSU‑AE along with its associated cores is part of a debug system that supports both self-hosted and
external debug.

The following figure shows a typical external debug system.

Debug host

Debug target

Protocol
converter

DynamIQ cluster

Debug unit

Figure C1-1 External debug system

Debug host
A computer, for example a personal computer, that is running a software debugger such as the
DS-5 Debugger. With the debug host, you can issue high-level commands, such as setting a
breakpoint at a certain location or examining the contents of a memory address.

Protocol converter
The debug host sends messages to the debug target using an interface such as Ethernet.
However, the debug target typically implements a different interface protocol. A device such as
DSTREAM is required to convert between the two protocols.

Debug target

The lowest level of the system implements system support for the protocol converter to access
the debug unit using the Advanced Peripheral Bus (APB) slave interface. An example of a
debug target is a development system with a test chip or a silicon part with a DSU‑AE.

Debug unit

Helps debugging software that is running on the core:

• DSU‑AE and external hardware based around the core.
• Operating systems.
• Application software.

With the debug unit, you can:
• Stop program execution.
• Examine and alter process and coprocessor state.
• Examine and alter memory and the state of the input or output peripherals.
• Restart the PE.

For self-hosted debug, the debug target runs additional debug monitor software that runs on the core in
the cluster. This way, it does not require expensive interface hardware to connect a second host computer.

C1 Debug
C1.1 About debug methods

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-234

Non-Confidential

C1.2 Terminology
The debug system supports both single and multi-threaded cores.

The Arm architecture allows for cores to be single, or multi-threaded. A Processing Element (PE)
performs a thread of execution. A single-threaded core has one PE and a multi-threaded core has two or
more PEs. Because the debugging system allows individual threads to be debugged, the term PE is used
throughout this chapter. Where a reference to a core is made, the core can be a single, or multi-threaded
core.

C1 Debug
C1.2 Terminology

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-235

Non-Confidential

C1.3 About the DebugBlock
The DebugBlock combines the functions, registers, and interfaces that are required for debug over
powerdown.

The DebugBlock is provided as a separate component to allow implementation in a separate power
domain from the cluster. Having a separate debug power domain allows the connection to a debugger be
maintained while the cores and cluster are powered down.

The following diagram shows how the DebugBlock is connected to the cluster.

Core power domainDebug power domain

DebugBlock

Cluster

DebugBlock to cluster

Cluster to DebugBlock

DC APB
master

CD APB
slave

APB
master

APB
slaveExternal Debug APB DAP APB

slave

Figure C1-2 Debug APB connections

The DebugBlock has three APB interfaces:

External Debug APB (DAP APB)

An APB slave interface, allowing communication with an external debugger, for example
through a CoreSight Debug Access Port(DAP).

All debug register read and write requests from an external debugger are received on this bus.

DebugBlock to cluster (DC APB)

An APB master interface that is connected to the cluster. It sends all debug register read and
write requests to the cluster.

CTI output trigger events are sent to the cluster as trigger requests on this bus.

Cluster to DebugBlock (CD APB)

An APB slave interface that is connected to the cluster. It receives CTI input trigger event
requests from the cluster.

Debug register reads and writes

The DebugBlock holds all the debug registers that are implemented in the Debug power domain.
Registers implemented in the Debug power domain are specified in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

Accesses through the DAP APB interface to Debug domain registers are handled internally by the
DebugBlock. Accesses through the DAP APB interface to Core power domain registers are passed on to
the cluster through the DC APB interface.

CTI trigger events

Trigger events are transferred between the DebugBlock and cluster through the CD APB and DC APB
interfaces.

C1 Debug
C1.3 About the DebugBlock

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-236

Non-Confidential

Input trigger events

Input trigger events are sent from the cluster to the CTIs through the CD APB as write
transactions.

Output trigger events

Output trigger events are sent from the CTIs to the cluster through the DC APB as write
transactions.

DebugBlock power states

The DebugBlock supports two power modes: ON and OFF. These power modes are controlled using the
power Q-Channel interface, which due to an erratum does not function correctly. Therefore, Arm
recommends that the DebugBlock power Q-Channel is not used and that PWRQREQn is tied HIGH. To
power down the DebugBlock, Arm recommends that the DebugBlock is put in reset before powering
down. This causes any transactions, on the external Debug APB interface, that have not completed to
complete with a SLVERR.

C1 Debug
C1.3 About the DebugBlock

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-237

Non-Confidential

C1.4 DebugBlock components
The components are:

ECT

CTI[PE-1:0]

APB
arbiter

Event triggers
[PE:0]

DAP slave
[PE:0]

CTITRIGIN

CTITRIGOUT

CTIIRQ[PE-1:0]
CTIIRQACK[PE-1:0]

Event
monitor

CTM CTI channel interface

External
debug APB

APB
ROM

Cluster to
DebugBlock

DebugBlock to
Cluster

CD APB
slave

DAP APB
slave

DC APB
master

Cluster
CTI

Figure C1-3 DebugBlock block diagram

 Note

The CTIs shown in the diagram includes both the CTIs attached to each of the PEs [0:PE-1] and the
cluster CTI. The cluster CTI is present only when the cluster ELA is present.

ECT

The DebugBlock implements the Embedded Cross Trigger (ECT).

APB ROM
The APB ROM table holds the address decoding for each debug component in the DebugBlock
and the cluster. The APB ROM table complies with the Arm® CoreSight™ Architecture
Specification v3.0. Both v7 and v8 debug address maps are supported.

Event monitor
The event monitor converts changes in CTI output triggers to APB write transactions.

Event triggers
The event triggers convert APB write transactions to CTI input triggers.

APB arbiter
The DC APB transfers both register accesses and CTI output trigger events. The APB arbiter
multiplexes the two sources of transactions.

DAP slave
The DAP slave holds copies of registers in the debug power domain.

C1 Debug
C1.4 DebugBlock components

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-238

Non-Confidential

C1.5 About the Embedded Cross Trigger
The Embedded Cross Trigger (ECT) allows debug events to be sent between PEs.

The ECT provides a Cross Trigger Interface (CTI) for each PE in the cluster. The CTIs are
interconnected through a Cross Trigger Matrix (CTM) to send debug and trace events between PEs.

The following diagram shows a conceptual view of the trigger event inputs and outputs between the PEs
and ECT.

Embedded Cross-Trigger (ECT)

PE1

CTI

PE0

CTI

Event
trigger
outputs

Event
trigger
inputs

PE2

CTI

PE3

CTI

Cross-Trigger Matrix (CTM)

Cross-trigger
channel interface

Debug
APB

Channel
outputs

Channel
inputs

Figure C1-4 Embedded Cross Trigger concept

The CTIs selectively send trigger events to the CTM on their respective channel outputs. The CTIs
receive trigger events from the CTM on their channel inputs.

Trigger events are transferred between CTIs over the channel interface. The CTM connects the channel
interface to the channel inputs and channel outputs of the CTIs.

External interfaces

The external cross-trigger channel interface, from the CTM, allows cross-triggering between SoC
external devices.

The Debug APB provides access to the CTI registers. This allows an external debugger to configure the
trigger event routing, and send events to PEs, for example, to put a PE into Debug state.

CTI registers
Registers in the CTI:
• Control the mapping of the input trigger events to channel outputs.
• Control the mapping of the channel inputs to output trigger events.
• Capture the state of input and output trigger events.
• Set, clear, or pulse output trigger events.

C1.5.1 Supported debug and trace trigger events

The CTIs each have nine input and output trigger events that are mapped onto the debug and trace events
in the PEs and ELAs.

The debug and trace trigger events from the CTI to the PE are:

C1 Debug
C1.5 About the Embedded Cross Trigger

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-239

Non-Confidential

Debug request trigger event
A trigger event sent from the CTI to the PE to force the PE into Debug state.

Restart request trigger event
A trigger event sent from the CTI to the PE to request the PE to exit Debug state.

Generic CTI interrupt trigger event
A trigger event sent from the CTI to the GIC.

ETM trace input trigger events
Four trigger events sent from the CTI to the ETM trace in the PE.

ELA input trigger events
Two trigger events sent from the CTI to the ELA attached to the PE.

The debug and trace events from the PE to the CTI are:

Cross-halt trigger event
A trigger event sent from the PE to the CTI when the PE enters Debug state.

Performance Monitors overflow trigger event
A trigger event sent from the PE to the CTI when a PMU counter overflows.

ETM trace output trigger events
Four trigger events sent from the ETM in the PE to the CTI.

ELA output trigger events
Two trigger events sent from the ELA (attached to the PE) to the CTI.

Profiling sample trigger event
A trigger event sent from the PE to the CTI when a profiling sample is written out.

The cluster CTI has two input and output trigger events that are mapped onto the trigger events in the
cluster ELA. The trigger events from the cluster CTI to the cluster ELA are:

Cluster ELA input trigger events
Two trigger events sent from the cluster CTI to the cluster ELA.

The trigger events from the cluster ELA to the cluster CTI are:

Cluster ELA output trigger events

Two trigger events from the cluster ELA to the cluster CTI

C1 Debug
C1.5 About the Embedded Cross Trigger

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-240

Non-Confidential

C1.6 CTI triggers
Events are mapped onto CTI input and output triggers. All PEs in the cluster have the same mapping.

PE CTI input trigger events

The following table shows how events are mapped onto PE CTI input triggers.

Table C1-1 Allocation of PE CTI trigger inputs

Trigger number Source Destination Type Event description

0 PE CTI Pulse Cross-halt trigger event

1 Performance Monitors Overflow trigger event

2 PE CTI Pulse Profiling sample trigger event

3 - - - Reserved

4-7 ETM CTI Pulse ETM Trace Output trigger events

8-9 ELA CTI ELA CTTRIGOUT[1:0] trigger events

PE CTI output trigger events

The following table shows how events are mapped onto PE CTI output triggers.

Table C1-2 Allocation of PE CTI trigger outputs

Trigger number Source Destination Type Event description

0 CTI PE Level Debug Request trigger event

1 Pulse Restart Request trigger event

2 CTI GIC Pulse Generic CTI Interrupt trigger event

3 - - - Reserved

4-7 CTI ETM Pulse Generic Trace External Input trigger events

8-9 CTI ELA Pulse ELA CTTRIGIN[1:0] trigger events

Allocation of cluster CTI trigger inputs

The following table shows how events are mapped onto the cluster CTI input triggers.

Table C1-3 Allocation of cluster CTI trigger inputs

Trigger number Source Destination Type Event description

0-7 - - - Reserved

8-9 Cluster ELA Cluster CTI Pulse Cluster ELA
CTTRIGOUT[1:0]

Allocation of cluster CTI trigger outputs

The following table shows how events are mapped onto the cluster CTI output triggers.

C1 Debug
C1.6 CTI triggers

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-241

Non-Confidential

Table C1-4 Allocation of cluster CTI trigger inputs

Trigger number Source Destination Type Event description

0-7 - - - Reserved

8-9 Cluster CTI Cluster ELA Pulse Cluster ELA
CTTRIGIN[1:0]

C1 Debug
C1.6 CTI triggers

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C1-242

Non-Confidential

Chapter C2
PMU

This chapter describes the Performance Monitoring Unit (PMU).

It contains the following sections:
• C2.1 About the PMU on page C2-244.
• C2.2 PMU functional description on page C2-245.
• C2.3 PMU events on page C2-246.
• C2.4 PMU interrupts on page C2-249.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C2-243

Non-Confidential

C2.1 About the PMU
The DSU‑AE includes performance monitors that enable you to gather various statistics on the operation
of the memory of the cluster during runtime. These provide useful information about the behavior of the
cluster that you can use when debugging or profiling code.

The PMU provides six counters. Each counter can count any of the events available in the cluster. The
absolute counts that are recorded might vary because of pipeline effects. This variance has negligible
effect except in cases where the counters are enabled for a very short time.

C2 PMU
C2.1 About the PMU

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C2-244

Non-Confidential

C2.2 PMU functional description
This section describes the functionality of the PMU.

The PMU includes the following interfaces and counters:

Event interface
Events from all other units from across the design are provided to the PMU.

System register
You can program the PMU registers using the System registers.

Counters
The PMU has 32-bit counters that increment when they are enabled, based on events, and a 64-
bit cycle counter.

PMU register interfaces
The DSU‑AE supports access to the performance monitor registers from the internal System
register interface.

Related references
Chapter B3 PMU registers on page B3-191

C2 PMU
C2.2 PMU functional description

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C2-245

Non-Confidential

C2.3 PMU events
The following table shows the events that are generated and the numbers that the PMU uses to reference
the events.

Table C2-1 PMU events

PMU event
number

Event mnemonic Event description

0x0011 CYCLES Cycle counter.

0x0019 BUS_ACCESS Bus access counter. Counts every beat of data that is transferred over the data
channels between the SCU and the interconnect.

This event counts the sum of BUS_ACCESS_RD and BUS_ACCESS_WR.

0x001A MEMORY_ERROR Local memory error counter. Counts every Correctable or Uncorrectable memory
error (ECC or parity) in the protected RAMs.

0x001D BUS_CYCLES ACE or CHI bus cycle counter.

0x001E CHAIN Odd performance counter chain mode.

0x0029 L3D_CACHE_ALLOCATE Level 3 unified cache allocation without refill counter. Counts every full cache line
write into the L3 cache which does not cause a linefill.

0x002A L3D_CACHE_REFILL Level 3 unified cache refill counter. Counts every cacheable read transaction issued
to the interconnect.

This event counts the sum of L3D_CACHE_REFILL_RD and
L3D_CACHE_REFILL_WR.

0x002B L3D_CACHE Level 3 unified cache access counter. Counts every cacheable read or write
transaction issued to the SCU.

This event counts the sum of L3D_CACHE_RD and L3D_CACHE_WR.

0x002C L3D_CACHE_WB Level 3 unified cache write-back counter. Counts every write-back from the L3
cache.

0x0060 BUS_ACCESS_RD Bus access, read counter. Counts every beat of data transferred over the read data
channel between the SCU and the interconnect.

0x0061 BUS_ACCESS_WR Bus access, write counter. Counts every beat of data transferred over the write data
channel between the SCU and the interconnect.

0x0062 BUS_ACCESS_SHARED Bus access, shared counter. Counts every beat of shared data transferred over the
data channels between the SCU and the interconnect.

0x0063 BUS_ACCESS_NOT_SHARED Bus access, not shared counter. Counts every beat of not shared data transferred over
the write data channel between the SCU and the interconnect.

0x0064 BUS_ACCESS_NORMAL Bus access, normal counter. Counts every beat of normal data transferred over the
write data channel between the SCU and the interconnect.

0x0065 BUS_ACCESS_PERIPH Bus access, periph counter. Counts every beat of device data transferred over the
write data channel between the SCU and the interconnect.

0x00A0 L3D_CACHE_RD Level 3 unified cache access, read counter. Counts every cacheable read transaction
that is issued to the SCU. Prefetches and stashes are not counted.

C2 PMU
C2.3 PMU events

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C2-246

Non-Confidential

Table C2-1 PMU events (continued)

PMU event
number

Event mnemonic Event description

0x00A1 L3D_CACHE_WR Level 3 unified cache access, write counter. Counts every cacheable write
transaction issued to the SCU.

0x00A2 L3D_CACHE_REFILL_RD Level 3 unified cache refill, read counter. Counts every cacheable read transaction
issued to the interconnect caused by a read transaction. Prefetches and stashes are
not counted.

0x00A3 L3D_CACHE_REFILL_WR Level 3 unified cache refill, write counter. Counts every cacheable read transaction
issued to the interconnect caused by a write transaction.

0x0119 ACP_ACCESS ACP access counter. Counts every beat of data transferred over the data channels
between the SCU and the accelerated coherency port.

This event counts the sum of ACP_ACCESS_RD and ACP_ACCESS_WR.

0x011D ACP_CYCLES ACP cycle counter.

0x0160 ACP_ACCESS_RD ACP access, read counter. Counts every beat of data transferred over the read data
channel between the SCU and the peripheral port.

0x0161 ACP_ACCESS_WR ACP access, write counter. Counts every beat of data transferred over the write data
channel between the SCU and the peripheral port.

0x0219 PP_ACCESS Peripheral port access counter. Counts every beat of data transferred over the data
channels between the SCU and the peripheral port.

This event counts the sum of PP_ACCESS_RD and PP_ACCESS_WR.

0x021D PP_CYCLES Peripheral port cycle counter.

0x0260 PP_ACCESS_RD Peripheral port access, read counter. Counts every beat of data transferred over the
read data channel between the SCU and the peripheral port.

0x0261 PP_ACCESS_WR Peripheral port access, write counter. Counts every beat of data transferred over the
write data channel between the SCU and the peripheral port.

0x00C0 SCU_SNP_ACCESS SNP access counter. Counts every external snoop request.

0x00C1 SCU_SNP_EVICT SNP evictions counter. Counts every invalidating external snoop request that causes
an L3 cache eviction.

0x00C2 SCU_SNP_NO_CPU_SNP SNP, no CPU snoop counter. Counts every external snoop request that completes
without needing to snoop a core.

0x0500 SCU_PFTCH_CPU_ACCESS Prefetch access, CPU counter. Counts every L3 prefetch transaction originating from
a core.

0x0501 SCU_PFTCH_CPU_MISS Prefetch data miss, CPU counter. Counts every L3 prefetch transaction originating
from a core where data was read in from outside the cluster.

0x0502 SCU_PFTCH_CPU_HIT Prefetch data hit, CPU counter. Counts every L3 prefetch transaction originating
from a core where the L3 prefetch hit in the cluster.

0x0503 SCU_PFTCH_CPU_MATCH Prefetch match, CPU counter. Counts every completed L3 prefetch transaction
originating from a core that is matched by a compatible read request. This includes
one caused by a L3 prefetch to the core, before the L3 prefetch times-out and is
allocated into the L3 cache.

C2 PMU
C2.3 PMU events

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C2-247

Non-Confidential

Table C2-1 PMU events (continued)

PMU event
number

Event mnemonic Event description

0x0504 SCU_PFTCH_CPU_KILL Prefetch terminate, CPU counter. Counts every killed L3 prefetch transaction
originating from a core that is terminated due to an incompatible match.

0x0510 SCU_STASH_ICN_ACCESS Stash access, ICN counter. Counts every stash transaction originating from the
interconnect.

0x0511 SCU_STASH_ICN_MISS Stash data miss, ICN counter. Counts every stash transaction originating from the
interconnect which utilizes a data pull, or is added to the stash queue and later issues
a read.

0x0512 SCU_STASH_ICN_HIT Stash data hit, ICN counter. Counts every non-invalidating stash transaction
originating from the interconnect which hits in the cluster.

0x0513 SCU_STASH_ICN_MATCH Stash match, ICN counter. Counts every completed stash transaction originating
from the interconnect which is matched by a compatible read request. This includes
one caused by a stash to the core, before the stash times out and is allocated into the
L3 cache.

0x0514 SCU_STASH_ICN_KILL Stash terminated, ICN counter. Counts every killed stash transaction originating
from the interconnect that is terminated due to an incompatible match.

0x00D0 SCU_HZD_ADDRESS Arbitration hazard, address counter. Counts every flush caused by an address hazard.

C2 PMU
C2.3 PMU events

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C2-248

Non-Confidential

C2.4 PMU interrupts
The DSU‑AE asserts the nCLUSTERPMUIRQ signal when the PMU generates an interrupt.

You can route this signal to an external interrupt controller for prioritization and masking. This is the
only mechanism that signals this interrupt to a core.

C2 PMU
C2.4 PMU interrupts

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C2-249

Non-Confidential

C2 PMU
C2.4 PMU interrupts

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. C2-250
Non-Confidential

Chapter C3
Debug registers

This chapter describes the debug registers for the DSU‑AE.

It contains the following sections:
• C3.1 Debug memory map on page C3-252.
• C3.2 CTI register summary on page C3-260.
• C3.3 CTIPIDR0, CTI Peripheral Identification Register 0 on page C3-262.
• C3.4 CTIPIDR1, CTI Peripheral Identification Register 1 on page C3-263.
• C3.5 CTIPIDR2, CTI Peripheral Identification Register 2 on page C3-264.
• C3.6 CTIPIDR3, CTI Peripheral Identification Register 3 on page C3-265.
• C3.7 CTIPIDR4, CTI Peripheral Identification Register 4 on page C3-266.
• C3.8 CTIITCTRL, CTI Integration Mode Control Register on page C3-267.
• C3.9 CTIDEVAFF0, Cluster CTI Device Affinity register 0 on page C3-268.
• C3.10 CTIDEVID, CTI Device Identification Register on page C3-269.
• C3.11 External register access permissions on page C3-271.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-251

Non-Confidential

C3.1 Debug memory map
The debug memory map holds the base addresses for each debug component that is connected to the
Debug APB.

Each component in the table requires 4KB, and uses the bottom 4KB of each 64KB region. The
remaining 60KB of each region is reserved.

In the tables, individual Processing Elements (PE) are identified. For a single-threaded core, the PE
number is the same as the core number. Only eight cores are supported.

The following table shows the address mapping for the DSU‑AE and the individual core debug APB
components when configured for v8 Debug memory map. If an address range is not mapped to a
component, it is indicated as reserved. For more information, see Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

 Note

The DSU‑AE does not implement the optional CoreSight device and ID registers that the Activity
Monitors architecture extension provides.

Table C3-1 Address mapping for APB components on 64KB pages

Address Component

0x000000 ROM table

0x010000 PE0 Debug

0x020000 PE0 CTI

0x030000 PE0 PMU

0x040000 PE0 ETM

0x050000-0x0BFFFF Reserved, RES0

0x0C0000 PE0 ELA

0x0D0000 Cluster ELA

0x0E0000 Cluster CTI

0x0F0000 PE0 Activity Monitor

0x100000-0x10FFFF Reserved, RES0

0x110000 PE1 Debug

0x120000 PE1 CTI

0x130000 PE1 PMU

0x140000 PE1 ETM

0x150000-0x1BFFFF Reserved, RES0

0x1C0000 PE1 ELA

0x1D0000-0x1EFFFF Reserved, RES0

0x1F0000 PE1 Activity Monitor

0x200000-0x20FFFF Reserved, RES0

0x210000 PE2 Debug

C3 Debug registers
C3.1 Debug memory map

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-252

Non-Confidential

Table C3-1 Address mapping for APB components on 64KB pages (continued)

Address Component

0x220000 PE2 CTI

0x230000 PE2 PMU

0x240000 PE2 ETM

0x250000-0x2BFFFF Reserved, RES0

0x2C0000 PE2 ELA

0x2D0000-0x2EFFFF Reserved, RES0

0x2F0000 PE2 Activity Monitor

0x300000-0x30FFFF Reserved, RES0

0x310000 PE3 Debug

0x320000 PE3 CTI

0x330000 PE3 PMU

0x340000 PE3 ETM

0x350000-0x3BFFFF Reserved, RES0

0x3C0000 PE3 ELA

0x3D0000-0x3EFFFF Reserved, RES0

0x3F0000 PE3 Activity Monitor

0x400000-0x40FFFF Reserved, RES0

0x410000 PE4 Debug

0x420000 PE4 CTI

0x430000 PE4 PMU

0x440000 PE4 ETM

0x450000-0x4BFFFF Reserved, RES0

0x4C0000 PE4 ELA

0x4D0000-0x4EFFFF Reserved, RES0

0x4F0000 PE4 Activity Monitor

0x500000-0x50FFFF Reserved, RES0

0x510000 PE5 Debug

0x520000 PE5 CTI

0x530000 PE5 PMU

0x540000 PE5 ETM

0x550000-0x5BFFFF Reserved, RES0

0x5C0000 PE5 ELA

0x5D0000-0x5EFFFF Reserved, RES0

0x5F0000 PE5 Activity Monitor

C3 Debug registers
C3.1 Debug memory map

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-253

Non-Confidential

Table C3-1 Address mapping for APB components on 64KB pages (continued)

Address Component

0x600000-0x60FFFF Reserved, RES0

0x610000 PE6 Debug

0x620000 PE6 CTI

0x630000 PE6 PMU

0x640000 PE6 ETM

0x650000-0x6BFFFF Reserved, RES0

0x6C0000 PE6 ELA

0x6D0000-0x6EFFFF Reserved, RES0

0x6F0000 PE6 Activity Monitor

0x700000-0x70FFFF Reserved, RES0

0x710000 PE7 Debug

0x720000 PE7 CTI

0x730000 PE7 PMU

0x740000 PE7 ETM

0x750000-0x7BFFFF Reserved, RES0

0x7C0000 PE7 ELA

0x7D0000-0x7EFFFF Reserved, RES0

0x7F0000 PE7 Activity Monitor

0x800000-0x80FFFF Reserved, RES0

0x810000 PE8 Debug

0x820000 PE8 CTI

0x830000 PE8 PMU

0x840000 PE8 ETM

0x850000-0x8BFFFF Reserved, RES0

0x8C0000 PE8 ELA

0x8D0000-0x8EFFFF Reserved, RES0

0x8F0000 PE8 Activity Monitor

0x900000-0x90FFFF Reserved, RES0

0x910000 PE9 Debug

0x920000 PE9 CTI

0x930000 PE9 PMU

0x940000 PE9 ETM

0x950000-0x9BFFFF Reserved, RES0

0x9C0000 PE9 ELA

C3 Debug registers
C3.1 Debug memory map

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-254

Non-Confidential

Table C3-1 Address mapping for APB components on 64KB pages (continued)

Address Component

0x9D0000-0x9EFFFF Reserved, RES0

0x9F0000 PE9 Activity Monitor

0xA00000-0xA0FFFF Reserved, RES0

0xA10000 PE10 Debug

0xA20000 PE10 CTI

0xA30000 PE10 PMU

0xA40000 PE10 ETM

0xA50000-0xABFFFF Reserved, RES0

0xAC0000 PE10 ELA

0xAD0000-0xAEFFFF Reserved, RES0

0xAF0000 PE10 Activity
Monitor

0xB00000-0xB0FFFF Reserved, RES0

0xB10000 PE11 Debug

0xB20000 PE11 CTI

0xB30000 PE11 PMU

0xB40000 PE11 ETM

0xB50000-0xBBFFFF Reserved, RES0

0xBC0000 PE11 ELA

0xBD0000-0xBEFFFF Reserved, RES0

0xBF0000 PE11 Activity
Monitor

0xC00000-0xC0FFFF Reserved, RES0

0xC10000 PE12 Debug

0xC20000 PE12 CTI

0xC30000 PE12 PMU

0xC40000 PE12 ETM

0xC50000-0xCBFFFF Reserved, RES0

0xCC0000 PE12 ELA

0xCD0000-0xCEFFFF Reserved, RES0

0xCF0000 PE12 Activity
Monitor

0xD00000-0xD0FFFF

0xD10000 PE13 Debug

0xD20000 PE13 CTI

C3 Debug registers
C3.1 Debug memory map

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-255

Non-Confidential

Table C3-1 Address mapping for APB components on 64KB pages (continued)

Address Component

0xD30000 PE13 PMU

0xD40000 PE13 ETM

0xD50000-0xDBFFFF Reserved, RES0

0xDC0000 PE13 ELA

0xDD0000-0xDEFFFF Reserved, RES0

0xDF0000 PE13 Activity
Monitor

0xE00000-0xE0FFFF Reserved, RES0

0xE10000 PE14 Debug

0xE20000 PE14 CTI

0xE30000 PE14 PMU

0xE40000 PE14 ETM

0xE50000-0xEBFFFF Reserved, RES0

0xEC0000 PE14 ELA

0xED0000-0xEEFFFF Reserved, RES0

0xEF0000 PE14 Activity
Monitor

0xF00000-0xF0FFFF Reserved, RES0

0xF10000 PE15 Debug

0xF20000 PE15 CTI

0xF30000 PE15 PMU

0xF40000 PE15 ETM

0xF50000-0xFBFFFF Reserved, RES0

0xFC0000 PE15 ELA

0xFD0000-0xFEFFFF Reserved, RES0

0xFF0000 PE15 Activity
Monitor

The following table shows the address mapping for the DSU‑AE and the individual core debug APB
components when configured for v7 Debug memory map. If an address range is not mapped to a
component, it is indicated as reserved.

Table C3-2 Address mapping for APB components on 4KB pages

Address Component

0x000000 ROM table

0x001000 Cluster ELA

0x002000 Cluster CTI

C3 Debug registers
C3.1 Debug memory map

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-256

Non-Confidential

Table C3-2 Address mapping for APB components on 4KB pages (continued)

Address Component

0x003000 - 0x3FFFF Reserved

0x004000 PE0 Debug

0x005000 PE1 Debug

0x006000 PE2 Debug

0x007000 PE3 Debug

0x008000 PE0 ELA

0x009000 PE1 ELA

0x00A000 PE2 ELA

0x00B000 PE3 ELA

0x00C000 PE0 PMU

0x00D000 PE1 PMU

0x00E000 PE2 PMU

0x00F000 PE3 PMU

0x010000-0x013FFF Reserved

0x014000 PE0 CTI

0x015000 PE1 CTI

0x016000 PE2 CTI

0x017000 PE3 CTI

0x018000 PE0 Activity Monitor

0x019000 PE1 Activity Monitor

0x01A000 PE2 Activity Monitor

0x01B000 PE3 Activity Monitor

0x01C000 PE0 ETM

0x01D000 PE1 ETM

0x01E000 PE2 ETM

0x01F000 PE3 ETM

0x020000-0x023FFF Reserved

0x024000 PE4 Debug

0x025000 PE5 Debug

0x026000 PE6 Debug

0x027000 PE7 Debug

0x028000 PE4 ELA

0x029000 PE5 ELA

0x02A000 PE6 ELA

0x02B000 PE7 ELA

C3 Debug registers
C3.1 Debug memory map

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-257

Non-Confidential

Table C3-2 Address mapping for APB components on 4KB pages (continued)

Address Component

0x02C000 PE4 PMU

0x02D000 PE5 PMU

0x02E000 PE6 PMU

0x02F000 PE7 PMU

0x030000-0x033FFF Reserved

0x034000 PE4 CTI

0x035000 PE5 CTI

0x036000 PE6 CTI

0x037000 PE7 CTI

0x038000 PE4 Activity Monitor

0x039000 PE5 Activity Monitor

0x03A000 PE6 Activity Monitor

0x03B000 PE7 Activity Monitor

0x03C000 PE4 ETM

0x03D000 PE5 ETM

0x03E000 PE6 ETM

0x03F000 PE7 ETM

0x040000-0x043FFF Reserved

0x044000 PE8 Debug

0x045000 PE9 Debug

0x046000 PE10 Debug

0x047000 PE11 Debug

0x048000 PE8 ELA

0x049000 PE9 ELA

0x04A000 PE10 ELA

0x04B000 PE11 ELA

0x04C000 PE8 PMU

0x04D000 PE9 PMU

0x04E000 PE10 PMU

0x04F000 PE11 PMU

0x050000-0x053FFF Reserved

0x054000 PE8 CTI

0x055000 PE9 CTI

0x056000 PE10 CTI

0x057000 PE11 CTI

C3 Debug registers
C3.1 Debug memory map

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-258

Non-Confidential

Table C3-2 Address mapping for APB components on 4KB pages (continued)

Address Component

0x058000 PE8 Activity Monitor

0x059000 PE9 Activity Monitor

0x05A000 PE10 Activity Monitor

0x05B000 PE11 Activity Monitor

0x05C000 PE8 ETM

0x05D000 PE9 ETM

0x05E000 PE10 ETM

0x05F000 PE11 ETM

0x060000-0x063FFF Reserved

0x064000 PE12 Debug

0x065000 PE13 Debug

0x066000 PE14 Debug

0x067000 PE15 Debug

0x068000 PE12 ELA

0x069000 PE13 ELA

0x06A000 PE14 ELA

0x06B000 PE15 ELA

0x06C000 PE12 PMU

0x06D000 PE13 PMU

0x06E000 PE14 PMU

0x06F000 PE15 PMU

0x070000-0x073FFF Reserved

0x074000 PE12 CTI

0x075000 PE13 CTI

0x076000 PE14 CTI

0x077000 PE15 CTI

0x078000 PE12 Activity Monitor

0x079000 PE13 Activity Monitor

0x07A000 PE14 Activity Monitor

0x07B000 PE15 Activity Monitor

0x07C000 PE12 ETM

0x07D000 PE13 ETM

0x07E000 PE14 ETM

0x07F000 PE15 ETM

C3 Debug registers
C3.1 Debug memory map

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-259

Non-Confidential

C3.2 CTI register summary
This section describes the CTI registers in the DSU‑AE. These registers are accessed through the
external debug interface.

The following table gives a summary of the CTI registers. For registers that are not described in this
chapter, see the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Table C3-3 CTI register summary

Offset CTI Description

0x000 CTICONTROL CTI Control register

0x004-0x00C - Reserved

0x010 CTIINTACK CTI Output Trigger Acknowledge Register

0x014 CTIAPPSET CTI Application Trigger Set Register

0x018 CTIAPPCLEAR CTI Application Trigger Clear Register

0x01C CTIAPPPULSE CTI Application Pulse Register

0x020 CTIINEN0 CTI Input Trigger to Output Channel Enable Registers

0x024 CTIINEN1

0x028 CTIINEN2

0x02C CTIINEN3

0x030 CTIINEN4

0x034 CTIINEN5

0x038 CTIINEN6

0x03C CTIINEN7

0x040 CTIINEN8

0x044 CTIINEN9

0x048-0x09C - Reserved

0x0A0 CTIOUTEN0 CTI Input Channel to Output Trigger Enable Registers

0x0A4 CTIOUTEN1

0x0A8 CTIOUTEN2

0x0AC CTIOUTEN3

0x0B0 CTIOUTEN4

0x0B4 CTIOUTEN5

0x0B8 CTIOUTEN6

0x0BC CTIOUTEN7

0x0C0 CTIOUTEN8

0x0C4 CTIOUTEN9

0x0C8-0x12C - Reserved

0x130 CTITRIGINSTATUS CTI Trigger In Status Register

C3 Debug registers
C3.2 CTI register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-260

Non-Confidential

Table C3-3 CTI register summary (continued)

Offset CTI Description

0x134 CTITRIGOUTSTATUS CTI Trigger Out Status Register

0x138 CTICHINSTATUS CTI Channel In Status Register

0x13C CTICHOUTSTATUS CTI Channel Out Status Register

0x140 CTIGATE CTI Channel Gate Enable Register

0x144-0xF97 - Reserved

0xFA0 CTICLAIMSET CTI Claim Tag Set Register

0xFA4 CTICLAIMCLR CTI Claim Tag Clear Register

0xFA8 CTIDEVAFF0 C3.9 CTIDEVAFF0, Cluster CTI Device Affinity register 0 on page C3-268 j

CTI Device Affinity Register 0k

0xFAC CTIDEVAFF1 CTI Device Affinity Register 1

0xFB0-0xFB4 - Reserved

0xFB8 CTIAUTHSTATUS CTI Authentication Status Register

0xFBC CTIDEVARCH CTI Device Architecture Register

0xFC0 CTIDEVID2 CTI Device Identification Register 2

0xFC4 CTIDEVID1 CTI Device Identification Register 1

0xFC8 CTIDEVID C3.10 CTIDEVID, CTI Device Identification Register on page C3-269

0xFCC CTIDEVTYPE CTI Device Type Register

0xFD0 CTIPIDR4 C3.7 CTIPIDR4, CTI Peripheral Identification Register 4 on page C3-266

0xFD4-0xFDC - Reserved

0xFE0 CTIPIDR0 C3.3 CTIPIDR0, CTI Peripheral Identification Register 0 on page C3-262

0xFE4 CTIPIDR1 C3.4 CTIPIDR1, CTI Peripheral Identification Register 1 on page C3-263

0xFE8 CTIPIDR2 C3.5 CTIPIDR2, CTI Peripheral Identification Register 2 on page C3-264

0xFEC CTIPIDR3 C3.6 CTIPIDR3, CTI Peripheral Identification Register 3 on page C3-265

0xFF0 CTICIDR0 CTI Component Identification Register 0

0xFF4 CTICIDR1 CTI Component Identification Register 1

0xFF8 CTICIDR2 CTI Component Identification Register 2

0xFFC CTICIDR3 CTI Component Identification Register 3

j The CTIDEVAFF0 register for the cluster has a different format.
k The CTIDEVAFF0 register for the PEs is described in Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

C3 Debug registers
C3.2 CTI register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-261

Non-Confidential

C3.3 CTIPIDR0, CTI Peripheral Identification Register 0
The CTIPIDR0 register provides information to identify a CTI component.

Bit field descriptions

CTIPIDR0 is a 32-bit register.

This register is Read Only.

31 8

Part_0

7 0

RES0

Figure C3-1 CTIPIDR0 bit assignments

RES0, [31:8]

RES0 Reserved.

Part_0, [7:0]

Least significant byte of the part number.

For the cluster, the value is:

0xE5 If v7 debug memory map is implemented.
0xE6 If v8 debug memory map is implemented.

For the PEs, the value is a copy of bits [11:4] of the Main ID Register (MIDR) of the
corresponding PE.

Configurations

The CTIPIDR0 is in the Debug power domain and is optional to implement in the external
register interface.

Usage Constraints

Accessing the CTIPIDR0

The CTIPIDR0 can be accessed through the external debug interface with offset 0xFE0.

Accessibility

The accessibility of the CTIPIDR0 by condition code is:

Default

RO

See C3.11 External register access permissions on page C3-271 for the condition codes.

C3 Debug registers
C3.3 CTIPIDR0, CTI Peripheral Identification Register 0

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-262

Non-Confidential

C3.4 CTIPIDR1, CTI Peripheral Identification Register 1
The CTIPIDR1 register provides information to identify a CTI component.

Bit field descriptions

CTIPIDR1 is a 32-bit register.

This register is Read Only.

31 8

DES_0

7 4

Part_1

3 0

RES0

Figure C3-2 CTIPIDR1 bit assignments

RES0, [31:8]

RES0 Reserved.

DES_0, [7:4]

This is the least significant nibble of JEP106 ID code.

0xB Arm Limited.

Part_1, [3:0]
Most significant nibble of the part number:
• For the cluster, the value is 0x4.
• For the PEs, the value is a copy of bits [15:12] of the MIDR of the corresponding PE.

Configurations

The CTIPIDR1 is in the Debug power domain and is optional to implement in the external
register interface.

Usage Constraints

Accessing the CTIPIDR1

The CTIPIDR1 can be accessed through the external debug interface with offset 0xFE4.

Accessibility

The accessibility of the CTIPIDR1 by condition code is:

Default

RO

See C3.11 External register access permissions on page C3-271 for the condition codes.

C3 Debug registers
C3.4 CTIPIDR1, CTI Peripheral Identification Register 1

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-263

Non-Confidential

C3.5 CTIPIDR2, CTI Peripheral Identification Register 2
The CTIPIDR2 register provides information to identify a CTI component.

Bit field descriptions

CTIPIDR2 is a 32-bit register.

This register is Read Only.

31 8

Revision

7 4 3

DES_1

2 0

JEDEC

RES0

Figure C3-3 CTIPIDR2 bit assignments

RES0, [31:8]

RES0 Reserved

Revision, [7:4]

0x2 r1p1

JEDEC, [3]

1 RES1. Indicates that a JEP106 identity code is used.

DES_1, [2:0]

0b011 Arm Limited. This is the most significant nibble of JEP106 ID code.

Configurations

The CTIPIDR2 is in the Debug power domain and is optional to implement in the external
register interface.

Usage Constraints

Accessing the CTIPIDR2

The CTIPIDR2 can be accessed through the external debug interface with offset 0xFE8.

Accessibility

The accessibility of the CTIPIDR2 by condition code is:

Default

RO

See C3.11 External register access permissions on page C3-271 for the condition codes.

C3 Debug registers
C3.5 CTIPIDR2, CTI Peripheral Identification Register 2

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-264

Non-Confidential

C3.6 CTIPIDR3, CTI Peripheral Identification Register 3
The CTIPIDR3 register provides information to identify a CTI component.

Bit field descriptions

CTIPIDR3 is a 32-bit register.

This register is Read Only.

31 8

REVAND

7 4

CMOD

3 0

RES0

Figure C3-4 CTIPIDR3 bit assignments

RES0, [31:8]

RES0 Reserved.

REVAND, [7:4]

0x0 Part minor revision.

CMOD, [3:0]

0x0 Customer modified.

Configurations

The CTIPIDR3 is in the Debug power domain and is optional to implement in the external
register interface.

Usage Constraints

Accessing the CTIPIDR3

The CTIPIDR3 can be accessed through the external debug interface with offset 0xFEC.

Accessibility

The accessibility of the CTIPIDR3 by condition code is:

Default

RO

See C3.11 External register access permissions on page C3-271 for the condition codes.

C3 Debug registers
C3.6 CTIPIDR3, CTI Peripheral Identification Register 3

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-265

Non-Confidential

C3.7 CTIPIDR4, CTI Peripheral Identification Register 4
The CTIPIDR4 register provides information to identify a CTI component.

Bit field descriptions

CTIPIDR4 is a 32-bit register.

This register is Read Only.

31 8

Size

7 4

DES_2

3 0

RES0

Figure C3-5 CTIPIDR4 bit assignments

RES0, [31:8]

RES0 Reserved.

Size, [7:4]

0x0 Size of the component. Log2 of the number of 4KB pages from the start of the
component to the end of the component ID registers.

DES_2, [3:0]

0x4 Arm Limited. This is the least significant nibble of the JEP106 continuation code.

Configurations

The CTIPIDR4 is in the Debug power domain and is optional to implement in the external
register interface.

Usage Constraints

Accessing the CTIPIDR4

The CTIPIDR4 can be accessed through the external debug interface with offset 0xFD0.

Accessibility

The accessibility of the CTIPIDR4 by condition code is:

Default

RO

See C3.11 External register access permissions on page C3-271 for the condition codes.

C3 Debug registers
C3.7 CTIPIDR4, CTI Peripheral Identification Register 4

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-266

Non-Confidential

C3.8 CTIITCTRL, CTI Integration Mode Control Register
The CTIITCTRL register shows that the DSU‑AE does not implement an integration mode.

Bit field descriptions

CTIPIDR4 is a 32-bit register.

This register is Read Only.

31 1 0

IME

RES0

Figure C3-6 CTIITCTRL bit assignments

RES0, [31:1]

RES0 Reserved.

IME, [0]

Integration mode enable. The value is:

0 Normal operation.

Configurations

The CTIITCTRL register is in the Debug power domain.

Usage Constraints

Accessing the CTIITCTRL

The CTIITCTRL register can be accessed through external debug interface with offset 0xF00.

Accessibility

The accessibility of the CTIITCTRL register by condition code is:

Default

RO

See C3.11 External register access permissions on page C3-271 for the condition codes.

C3 Debug registers
C3.8 CTIITCTRL, CTI Integration Mode Control Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-267

Non-Confidential

C3.9 CTIDEVAFF0, Cluster CTI Device Affinity register 0
The CTIDEVAFF0 register identifies that the CTI relates to the DSU‑AE cluster.

Bit field descriptions

CTIDEVAFF0 is a 32-bit register.

This register is Read Only.

31 24

Aff2

23 16 15 14 0

RES0

RES1

Figure C3-7 CTIDEVAFF0 bit assignments

RES0, [31:24]

RES0 Reserved.

Aff2, [23:16]

ClusterID Affinity Level-2 field.

The value is set by the CLUSTERIDAFF2[7:0] configuration input bus.

RES1, [15]

RES1 Reserved.

RES0, [14:0]

RES0 Reserved.

Configurations

The CTIDEVAFF0 is in the Debug power domain and is optional to implement in the external
register interface.

Usage Constraints

Accessing the CTIDEVAFF0

The CTIDEVAFF0 can be accessed through the external debug interface with offset 0xFA8.

Accessibility

The accessibility of the CTIDEVAFF0 by condition code is:

Default

RO

See C3.11 External register access permissions on page C3-271 for the condition codes.

C3 Debug registers
C3.9 CTIDEVAFF0, Cluster CTI Device Affinity register 0

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-268

Non-Confidential

C3.10 CTIDEVID, CTI Device Identification Register
The CTIDEVID register describes the CTI component to the debugger.

Bit field descriptions

CTIDEVID is a 32-bit register.

This register is Read Only.

31 26 25 24 23 22

NUMCHAN

21 16 15 14

NUMTRIG

13 8 7 5

EXTMAXNUM

4 0

INOUT

RES0

Figure C3-8 CTIDEVID bit assignments

RES0, [31:26]

RES0 Reserved.

INOUT, [25:24]

Input and output options. Indicates the presence of an input gate. This value is:

0b01 CTIGATE masks propagation of input events from external channels.

RES0, [23:22]

RES0 Reserved.

NUMCHAN, [21:16]

Number of channels implemented. This value is:

0b000100 Four channels implemented.

RES0, [15:14]

RES0 Reserved.

NUMTRIG, [13:8]

Number of triggers implemented. This value is:

0b001010 Ten triggers implemented.

RES0, [7:5]

RES0 Reserved.

EXTMAXNUM, [4:0]

Maximum number of external triggers implemented.This value is:

0b00000 No external triggers implemented.

Configurations
The CTIDEVID register is in the Debug power domain.

C3 Debug registers
C3.10 CTIDEVID, CTI Device Identification Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-269

Non-Confidential

Usage Constraints

Accessing the CTIDEVID

The CTIDEVID register can be accessed through the external debug interface with offset 0xFC8.

Accessibility

The accessibility of the CTIDEVID register by condition code is:

Default

RO

See C3.11 External register access permissions on page C3-271 for the condition codes.

C3 Debug registers
C3.10 CTIDEVID, CTI Device Identification Register

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-270

Non-Confidential

C3.11 External register access permissions
External access permission to the CTI registers is subject to the conditions at the time of the access. The
following table describes the response of the core to accesses through the external debug and memory-
mapped interfaces.

Table C3-4 External register conditions

Name Condition Description

Off EDPRSR.PU is 0 Core power domain is completely off, or in a low-power state where the core
power domain registers cannot be accessed.

DLK EDPRSR.DLK is 1 OS Double Lock is locked.

OSLK OSLSR_EL1.OSLK is 1 OS Lock is locked.

EDAD AllowExternalDebugAccess()==FALSE External debug access is disabled. When an error is returned because of an
EDAD condition code, and this is the highest priority error condition,
EDPRSR.SDAD is set to 1. Otherwise EDPRSR.SDAD is unchanged.

Default - None of the conditions apply, normal access.

The following table shows an example of external register condition codes for access to a CTI register.
To determine the access permission for the register, scan the columns from left to right. Stop at the first
column a condition is true, the entry gives the access permission of the register and scanning stops.

Table C3-5 External register condition code example

Off DLK OSLK EDAD Default

- - - - RO

C3 Debug registers
C3.11 External register access permissions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C3-271

Non-Confidential

C3 Debug registers
C3.11 External register access permissions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. C3-272
Non-Confidential

Chapter C4
ROM table

This chapter describes the CoreSight ROM Table component.

It contains the following sections:
• C4.1 About the ROM table on page C4-274.
• C4.2 ROM table register summary on page C4-275.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C4-273

Non-Confidential

C4.1 About the ROM table
The ROM table holds the locations of debug components.

The ROM table complies with the Arm® CoreSight™ Architecture Specification v3.0. This table contains a
list of components such as PE debug units, Cross Trigger Interfaces (CTIs), PE Performance Monitoring
Units (PMUs), and Embedded Trace Macrocells (ETMs). Debuggers can use the ROM table to determine
which components are implemented.

If a component is not included in your implementation, the corresponding ROM table entry indicates that
the component is not present.

C4 ROM table
C4.1 About the ROM table

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C4-274

Non-Confidential

C4.2 ROM table register summary
The specific implementation of your macrocell determines the contents of the ROM table.

The following table shows the offsets from the physical base address of the ROM table. The register
formats are described in the Arm® CoreSight™ Architecture Specification v3.0.

Table C4-1 ROM table registers

Offset Name Reset value Description

0x000-0x144 ROMENTRY0-81 -l ROM entries

0x148-0x9FC - 0x00000000 Reserved

0xA00 DBGPCR0 • 0x00000000 if Cluster ELA is not implemented.
• 0x00000001 if Cluster ELA is implemented.

Debug Power Control Registers

0xA04 DBGPCR1 • 0x00000000 if Core0 ELA is not implemented.
• 0x00000001 if Core0 ELA is implemented.

0xA08 DBGPCR2 • 0x00000000 if Core1 ELA is not implemented.
• 0x00000001 if Core1 ELA is implemented.

0xA0C DBGPCR3 • 0x00000000 if Core2 ELA is not implemented.
• 0x00000001 if Core2 ELA is implemented.

0xA10 DBGPCR4 • 0x00000000 if Core3 ELA is not implemented.
• 0x00000001 if Core3 ELA is implemented.

0xA14 DBGPCR5 • 0x00000000 if Core4 ELA is not implemented.
• 0x00000001 if Core4 ELA is implemented.

0xA18 DBGPCR6 • 0x00000000 if Core5 ELA is not implemented.
• 0x00000001 if Core5 ELA is implemented.

0xA1C DBGPCR7 • 0x00000000 if Core6 ELA is not implemented.
• 0x00000001 if Core6 ELA is implemented.

0xA20 DBGPCR8 • 0x00000000 if Core7 ELA is not implemented.
• 0x00000001 if Core7 ELA is implemented.

0xA24-0xA7C - 0x00000000 Reserved

0xA80 DBGPSR0 0x00000000 Debug Power Status Registers

0xA84 DBGPSR1 0x00000000

0xA88 DBGPSR2 0x00000000

0xA8C DBGPSR3 0x00000000

0xA90 DBGPSR4 0x00000000

0xA94 DBGPSR5 0x00000000

0xA98 DBGPSR6 0x00000000

0xA9C DBGPSR7 0x00000000

0xAA0 DBGPSR8 0x00000000

0xAA4-0xBFC - 0x00000000 Reserved

0xC00 PRIDR0 0x00000001 Power Reset Identification Register 0

C4 ROM table
C4.2 ROM table register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C4-275

Non-Confidential

Table C4-1 ROM table registers (continued)

Offset Name Reset value Description

0xC04-0xFB4 - 0x00000000 Reserved

0xFB8 AUTHSTATUS 0x00000008 Authentication Status Register

0xFBC DEVARCH 0x47700AF7 Device Architecture Register

0xFC0-0xFC4 - 0x00000000 Reserved

0xFC8 DEVID 0x00000020 Device ID Register

0xFCC DEVTYPE 0x00000000 Device Type Register

0xFD0 PIDR4 0x00000004 Peripheral Identification Register 4

0xFD4-0xFDC - 0x00000000 Reserved

0xFE0 PIDR0 0x000000E3 m Peripheral Identification Register 0

0x000000E4 n

0xFE4 PIDR1 0x000000B4 Peripheral Identification Register 1

0xFE8 PIDR2 0x0000002B Peripheral Identification Register 2

0xFEC PIDR3 0x00000000 Peripheral Identification Register 3

0xFF0 CIDR0 0x0000000D Component Identification Register 0

0xFF4 CIDR1 0x00000090 Component Identification Register 1

0xFF8 CIDR2 0x00000005 Component Identification Register 2

0xFFC CIDR3 0x000000B1 Component Identification Register 3

l The ROMENTRY entry values depend on the number and type of cores implemented.
m If v7 debug memory map is implemented.
n If v8 debug memory map is implemented.

C4 ROM table
C4.2 ROM table register summary

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

C4-276

Non-Confidential

Part D
Appendices

Appendix A
Compatible Core Versions

This appendix provides the location of where to obtain information about the permissible combinations
of cores.

It contains the following section:
• A.1 Compatible Core Versions on page Appx-A-280.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-279

Non-Confidential

A.1 Compatible Core Versions
For information on the number and type of permissible cores in the DSU‑AE, see the Arm® DynamIQ™

Shared Unit‑AE Configuration and Sign-off Guide.

 Note

The Arm® DynamIQ™ Shared Unit‑AE Configuration and Sign-off Guide is a confidential document only
available to licensees.

A Compatible Core Versions
A.1 Compatible Core Versions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-280

Non-Confidential

Appendix B
Signal descriptions

This appendix describes the DSU‑AE signals.

It contains the following sections:
• B.1 Signal naming convention on page Appx-B-282.
• B.2 Cluster signals on page Appx-B-283.
• B.3 DebugBlock signals on page Appx-B-319.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-281

Non-Confidential

B.1 Signal naming convention
Signals and buses are named using the following convention:

• Some signals or buses are per-core or per-thread. For single-threaded cores, there is a one-to-one
mapping between cores and threads.

• Signals that are specified with a width of [CN:0] (<signal>[CN:0]) have one bit per core, where CN
is the number of cores minus 1 (for example, CN =3 for a quad-core system).

• Signals that are named <signal>x have an instance of the signal per core, where x takes values from 0
to the number of cores minus 1.

• Signals that are specified with a width of [PE:0] (<signal>[PE:0]) have one bit per thread, where PE
is the total number of threads minus one (for example PE=5 for a cluster with two single-threaded
cores and two dual-threaded cores).

• Signals that are named <signal>y have an instance of the signal per thread, where y takes values from
0 to the total number of threads minus 1.

• Certain signals have a twin <signal>CHK signal that is used internally for interface protection.
• Certain signals that are associated with the new Hybrid-mode mode, for instance:

CLUSTERDCLSFAULTP[h+19:0], provide a variable width that is specified by h, where h =
number of cores when the HYBRID_MODE configuration parameter is TRUE; otherwise h = 0.

• All the Split‑Lock signals described in this book uses the following naming convention:
— Signals that are named with <signal>CP<cp> indicate the instance of the signal core pair, where

<cp> takes value from 0 to the total number of core pairs minus 1. For example, <signal>CP0
indicates that the signal is for the first core pair.

— Signals that are named with <signal><P/R> have the following instances of signal:
◦ <signal>P to indicate primary instance.
◦ <signal>R to indicate redundant instance.
◦ Signals that are named with <signal>[f] indicate the fault vector, where f is the index of the

fault vector.

The DSU‑AE supports cores that might have different PA widths. The PA width determines how
much physical memory the core can access and is a fixed value for each type of core. The DSU‑AE
supports cores with PA widths of 40 bits, 44 bits, or 48 bits.
There are signals with variable widths that depend on the PA size. In this case, the width is given as
[p:0]. If there are different cores in the cluster with different PA widths, then the PA width of the
cluster matches the largest PA width of the configured cores. The options are:
— For 40-bit PA, p=39.
— For 44-bit PA, p=43.
— For 48-bit PA, p=47.

The cluster configuration script outputs the maximum core PA width when the --verbose option is
used.

 Note

When signals have variable widths that depend on configuration, the width is given as [d:0]. The value of
d depends on the configuration. The following table describes the value of d for various configurations.

Table B-1 CHI signal widths

Interface d for CHI.B

128-bit 214

256-bit 360

B Signal descriptions
B.1 Signal naming convention

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-282

Non-Confidential

B.2 Cluster signals
This section describes the cluster signals and their connection information.

In Split-mode and Hybrid-mode, the signals support the maximum number of cores observable in the
cluster.

In Lock-mode:
• Only half of the total number of cores are observable. Therefore only half of the core-specific signals

are used.
• The inactive input signals described in B.2.2 Mode-dependent signals on page Appx-B-283 must be

deasserted by the SoC. Similarly, the DSU‑AE deasserts the mode-dependent output signals.

B.2.1 Cluster execution mode signal

This section describes the cluster execution mode signal.

Your system must select the required cluster execution mode at boot-time. The following modes can be
available to choose from: Split-mode, Lock-mode, and Hybrid-mode.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-2 Cluster execution mode signal

Signal Direction Description

CEMODE Input Selects the cluster execution mode at boot-time. The supported options are:

0b11 Lock-mode.

0b10 • If HYBRID_MODE=TRUE, then this option is Hybrid-mode.
• If HYBRID_MODE=FALSE, then this option is illegal.

0b01 Split-mode.

0b00 An illegal option.

 Note

For safety reasons, any illegal option is interpreted as being Lock-mode.

CEMODECHK Input The inverse polarity of CEMODE.

 Note

If the CEMODE and CEMODECHK signals do not agree, then an InterFace Protection (IFP) fault is
reported on bit 9 of CLUSTERIFPFAULT*.

B.2.2 Mode-dependent signals

This section describes the mode-dependent signals, because the current cluster execution mode
determines which bits or signals are active or inactive.

In general, signals connected to even cores are active, while the signals connected to odd cores need to
be inactive and the System-on-Chip (SoC) should not consume inactive outputs.

For instance, in Lock-mode, the bits or signals that are associated with the primary core remains active,
while the bits or signals that are associated with the redundant core are inactive. Therefore, in a core-
associated signal, only the least significant bit and even-numbered bits of the mode-dependent signals are
active in Lock-mode.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-283

Non-Confidential

The following diagram shows the active and inactive bits of an MP8/MP4LS example signal in Split-
mode, Lock-mode, and Hybrid-mode.

i/o_signal[odd]
CEMODE = 2'b11

i/o_signal[odd]_driven

input_signal[6,4,2,0]
actively driven by SoC in
Lock-mode
input_signal[7,5,3,1]
driven to deasserted
value by SoC

[7] : driven deasserted by SoC
 [6] : input_signal[6]
 [5] : driven deasserted by SoC
 [4] : input_signal[4]
 [3] : driven deasserted by SoC
 [2] : input_signal[2]
 [1] : driven deasserted by SoC
 [0] : input_signal[0]

[7] : driven deasserted by DSU-AE
 [6] : output_signal[6]
 [5] : driven deasserted by DSU-AE
 [4] : output_signal[4]
 [3] : driven deasserted by DSU-AE
 [2] : output_signal[2]
 [1] : driven deasserted by DSU-AE
 [0] : output_signal[0]

output_signal[6,4,2,0]
actively driven by DSU-
AE in Lock-mode
output_signal[7,5,3,1]
driven to deasserted
value by DSU-AE

output_signal[7:0]

7 6 45 3 2 1 0

input_signal[7:0]

Lock-mode

7 6 45 3 2 1 0

All inputs actively
driven by SoC in
Split-mode and
Hybrid-mode

[7] : input_signal[7]
 [6] : input_signal[6]
 [5] : input_signal[5]
 [4] : input_signal[4]
 [3] : input_signal[3]
 [2] : input_signal[2]
 [1] : input_signal[1]
 [0] : input_signal[0]

[7] : output_signal[7]
 [6] : output_signal[6]
 [5] : output_signal[5]
 [4] : output_signal[4]
 [3] : output_signal[3]
 [2] : output_signal[2]
 [1] : output_signal[1]
 [0] : output_signal[0]

7 6 45 3 2 1 0 7 6 45 3 2 1 0

input_signal[7:0] output_signal[7:0]

Split-mode and Hybrid-mode

All outputs actively
driven by DSU-AE in
Split-mode and
Hybrid-mode

deassert

Figure B-1 Example of mode-dependent cluster I/O

For more information about the interrupt and non-interrupt mode-dependant signals, see the Mode-
dependent signals section in the Arm® DynamIQ™ Shared Unit‑AE Integration Manual.

B.2.3 Clock and clock enable signals

This section describes the clock and clock enable signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-3 Clock signals

Signal Direction Description

CORECLK[CN:0] Input Clock for each core.
 Note

If a core is synchronous to the cluster, then the corresponding bit of this signal is not
present and the core uses SCLK instead. If all cores are synchronous to the cluster, then
this signal is not present.

CORECLKREFOUT[CN:0] Output Feedback of CORECLK[CN:0].

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-284

Non-Confidential

Table B-3 Clock signals (continued)

Signal Direction Description

SCLK Input Clock for the SCU/L3 and the AMBA interface.

SCLKCHK Input Redundant SCLK. This clock must be driven with the same frequency and phase as
SCLK.

SCLKREFOUT Output Feedback of SCLK.

PCLK Input Clock for the debug APB interface.

PCLKCHK Input Redundant PCLK. This clock must be driven with same frequency and phase as PCLK.

PCLKREFOUT Output Feedback of PCLK.

ATCLK Input Clock for the ATB trace interface.

ATCLKCHK Input Redundant ATCLK. This clock must be driven with same frequency and phase as
ATCLK.

ATCLKREFOUT Output Feedback of ATCLK.

GICCLK Input Clock for the GIC interface.

GICCLKCHK Input Redundant GICCLK. This clock must be driven with same frequency and phase as
GICCLK.

GICCLKREFOUT Output Feedback of GICCLK.

PERIPHCLK Input Clock for the timers, power management, and other miscellaneous logic.

PERIPHCLKCHK Input Redundant PERIPHCLK. This clock must be driven with same frequency and phase as
PERIPHCLK.

PERIPHCLKREFOUT Output Feedback of PERIPHCLK.

Table B-4 Clock enable signals

Signal Direction Description

ACLKENM Input ACE Master bus clock enable. This pin is only present when the DSU‑AE is configured with the
ACE interface.

ACLKENMCHK Input The inverse polarity of ACLKENM.

ACLKENMP Input AXI Master peripheral port clock enable. This pin is only present when the DSU‑AE is configured
with the peripheral port interface.

ACLKENCHKMP Input The inverse polarity of ACLKENMP.

ACLKENS Input AXI Slave bus clock enable. This pin is only present when the DSU‑AE is configured with the ACP
interface.

ACLKENCHKS Input The inverse polarity of ACLKENS.

CNTCLKEN Input Counter clock enable.

CNTCLKENCHK Input The inverse polarity of CNTCLKEN.

SCLKENM Input CHI Master bus clock enable. This pin is only present when the DSU‑AE is configured with the
CHI interface.

SCLKENMCHK Input The inverse polarity of SCLKENM.

TSCLKEN Input Timestamp clock enable.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-285

Non-Confidential

B.2.4 Reset signals

This section describes the reset signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-5 Reset signals

Signal Direction Description

nCPUPORESET[CN:0] Input Active-LOW core Cold reset.

nCPUPORESETCHK[CN:0] Input Active-LOW redundant core Cold reset.

nCORERESET[CN:0] Input Active-LOW core Warm reset, excluding Debug, RAS, and ETM.

nCORERESETCHK[CN:0] Input Active-LOW redundant core Warm reset, excluding Debug, RAS, and ETM.

nPRESET Input Active-LOW reset for all registers in the PCLK domain.

nPRESETCHK Input Active-LOW redundant reset for all registers in the PCLK domain.

nSPORESET Input Active-LOW Cold reset for all registers in the SCLK domain.

nSPORESETCHK Input Active-LOW redundant Cold reset for all registers in the SCLK domain.

nSRESET Input Active-LOW Warm reset for all registers in the SCLK domain, excluding RAS registers.

nSRESETCHK Input Active-LOW redundant Warm reset for all registers in the SCLK domain, excluding
RAS registers.

nATRESET Input Active-LOW reset for all registers in the ATCLK domain.

nATRESETCHK Input Active-LOW redundant reset for all registers in the ATCLK domain.

nGICRESET Input Active-LOW reset for all registers in the GICCLK domain.

nGICRESETCHK Input Active-LOW redundant reset for all registers in the GICCLK domain.

nPERIPHRESET Input Active-LOW reset for most of the registers in the PERIPHCLK domain.

nPERIPHRESETCHK Input Active-LOW redundant reset for most of the registers in the PERIPHCLK domain.

nMBISTRESET Input Active-LOW reset for all MBIST logic.

nMBISTRESETCHK Input Active-LOW redundant reset for all MBIST logic.

 Note

If the n*RESET and n*RESETCHK signal pairs do not agree in value for longer than eight consecutive
clock cycles of their corresponding clock domain, then the corresponding bit in CLUSTERIFPFAULT
is asserted to indicate an InterFace Protection (IFP) fault.

B.2.5 Configuration signals

This section describes the configuration signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-286

Non-Confidential

Table B-6 Configuration signals

Signal Direction Description

CFGEND[PE:0] Input Endianness configuration, controls the reset value of the SCTLR_EL3/SCTLR
EE bit. The options are:

0 EE bit is LOW.

1 EE bit is HIGH.

CFGENDCHK[ceil((PE+1)/8)-1:0]o Input Odd parity of CFGEND[PE:0]

CLUSTERIDAFF2[7:0] Input Value read in ClusterID Affinity Level-2 field, MPIDR bits[23:16].

CLUSTERIDAFF2CHK Input Odd parity of CLUSTERIDAFF2[7:0].

CLUSTERIDAFF3[7:0] Input Value read in ClusterID Affinity Level-3 field, MPIDR bits[39:32].

CLUSTERIDAFF3CHK Input Odd parity of CLUSTERIDAFF3[7:0].

CRYPTODISABLE Input Disables the Cryptographic Extensions.
 Note

If Cryptographic Extensions are not enabled, this signal is not present.

GICCDISABLE Input Globally disables the CPU interface logic and routes the external interrupt
signals directly to the cores.

CONFIGCHK Input Odd parity of {CRYPTODISABLE, GICCDISABLE,
BROADCASTCACHEMAINT, BROADCASTCACHEMAINTPOU,
BROADCASTPERSIST, BROADCASTOUTER, BROADCASTATOMIC}.
For details of the other signals, see B.2.13 Broadcast signals for the memory
interface on page Appx-B-304 and B.2.15 CHI interface signals
on page Appx-B-310.

RVBARADDRy[p:2] Input Reset Vector Base Address for executing in 64-bit state.

RVBARADDRCHK[ceil((p-1)/
8)-1:0]o

Input Odd parity of RVBARADDRy[p:2].

B.2.6 Fault signals

While the DSU‑AE natively provides fault reporting and control signals, this section also includes the
Reliability, Availability, and Serviceability (RAS) signals of the cores.

The DSU‑AE has the following fault reporting and control signals:
• Cluster IFP signals on page Appx-B-288.
• Cluster DCLS signals on page Appx-B-289.
• Core DCLS signals on page Appx-B-291.
• Core RAS reporting signals on page Appx-B-292.

 Note

• The DynamIQ Shared Unit‑AE provides:

o ceil is the mathematical ceiling function that rounds up to the nearest integer. In other words, ceil returns the smallest integer not less than its argument.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-287

Non-Confidential

— A cluster InterFace Protection (IFP) fault vector is provided for both the primary and redundant
IFP logic. The vectors are ported out of the cluster using the CLUSTERIFPFAULTP[9:0] and
CLUSTERIFPFAULTR[9:0] signals.

— A cluster Dual-Core Lock-Step (DCLS) fault vector is provided for both the primary and
redundant DCLS logic. The vectors are ported out of the cluster using the
CLUSTERDCLSFAULTP[h+19:0] and CLUSTERDCLSFAULTR[h+19:0] signals.

— A potential fault vector for every core pair. A core pair is defined as a pair of cores that are
viewed architecturally as a single core when executing in Lock-mode. The cluster uses the
COREDCLSFAULTCP<cp>P[7:0] and COREDCLSFAULTCP<cp>R[7:0] outputs to signal
faults that each core pair detects.

• In Lock-mode, there are several input signals that the SoC must deassert. Similarly, there are several
output signals that the DSU‑AE deasserts. For more information, see B.2.2 Mode-dependent signals
on page Appx-B-283.

• When the DSU‑AE is placed in a test mode, for example MBIST or scan, then the fault reporting
outputs of the functional safety logic are UNKNOWN and any functional safety errors can be ignored.

Cluster IFP signals

This section describes the InterFace Protection (IFP) fault reporting and control signals to and from the
cluster.

The DSU‑AE provides redundant input and output cluster IFP fault reporting and control signals.

Each bit in the cluster IFP fault reporting and control signals is associated with a specific potential fault
group. All the cluster IFP signals use the fault vector indexes [f] shown in the following table.

 Note

Some of these bits are configuration-dependent and if the corresponding configuration option is not built,
the output is tied LOW. For example, on a single CHI master configuration, bit[0], bit[1], and bit[3] are
tied LOW.

Table B-7 Cluster IFP I/O signal bit assignments

Bits Name

[9] MISC

[8] Clock Power Management (CPM)

[7] PERIPH PORT

[6] GIC

[5] APB

[4] ACP

[3] CHI MASTER1

[2] CHI MASTER0

[1] ACE MASTER1

[0] ACE MASTER0

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-288

Non-Confidential

Table B-8 Cluster IFP fault reporting and control signals

Signal Direction Description

CLUSTERIFPCMPEN<P/R>[9:0] Input Cluster interface protection compare enable signal. The
options for each fault vector index, f, are:

0 CLUSTERIFPFAULT<P/R>[f] is always 0.

1 CLUSTERIFPFAULT<P/R>[f] asserts when interface
protection fault occurs.

CLUSTERIFPFORCE<P/R>[9:0] Input Cluster interface protection force signal. The options for each
fault vector index, f, are:

0 The corresponding CLUSTERIFPFAULT bit is not
forced HIGH and operates as defined below.

This option is the functional mode.

1 The corresponding CLUSTERIFPFAULT bit is forced
HIGH when enabled.

This option is a test mode for the SoC logic that is driven
by CLUSTERIFPFAULT.

CLUSTERIFPFAULT<P/R>[9:0] Output Cluster interface protection fault reporting signal. The
options for each fault vector index, f, are:

0 No interface protection fault.

1 Interface protection fault.

 Note

When the DSU‑AE is placed in a test mode, for example
MBIST or scan, then the fault reporting outputs of the
functional safety logic are UNKNOWN and any functional
safety errors can be ignored.

Cluster DCLS signals

This section describes the Dual-Core Lock-Step (DCLS) fault reporting and control signals to and from
the cluster.

The DSU‑AE provides redundant input and output cluster DCLS fault reporting and control signals.

Each bit in the cluster DCLS fault reporting and control signals is associated with a specific potential
fault group. All the cluster DCLS signals use the fault vector indexes [f] shown in the following table.

 Note

Some of these bits are configuration-dependent and if the corresponding configuration option is not built,
the output is tied LOW. For example, on a single CHI master configuration, bit[0], bit[1], and bit[3] are
tied LOW.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-289

Non-Confidential

Table B-9 Cluster DCLS I/O signal bit assignments

Bits Name

[20:23] CBC0 - CBC3
 Note

These bits only exist when the HYBRID_MODE configuration parameter is TRUE.

[19] DBG

[18] GIC

[17] ATB

[16] EVENT

[15] Clock Power Management (CPM) PERIPHCLK

[14] CPM SCLK

[13] SLICE

[12] LTDB RAM

[11] VICTIM RAM

[10] DATA RAM

[9] Snoop Filter (SF) RAM

[8] TAG RAM

[7] PERIPH PORT

[6] ACP

[5] PUBLINK (CHI system address map)

[4] MISC

[3] CHI MASTER1

[2] CHI MASTER0

[1] ACE MASTER1

[0] ACE MASTER0

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-290

Non-Confidential

Table B-10 Cluster DCLS fault reporting and control signals

Signal Direction Description

CLUSTERDCLSCMPEN<P/R>[h+19:0] Input Cluster DCLS compare enable signal. The options for
each fault vector index, f, are:

0 CLUSTERDCLSFAULT<P/R>[f] is always 0.

1 CLUSTERDCLSFAULT<P/R>[f] asserts when
DCLS miscompare occurs.

CLUSTERDCLSFORCE<P/R>[h+19:0] Input Cluster DCLS force signal. The options for each fault
vector index, f, are:

0 The corresponding CLUSTERDCLSFAULT bit is
not forced HIGH and operates as defined below.

This option is the functional mode.

1 The corresponding CLUSTERDCLSFAULT bit is
forced HIGH when enabled.

This option is a test mode for the SoC logic that is
driven by CLUSTERDCLSFAULT.

CLUSTERDCLSFAULT<P/R>[h+19:0] Output Cluster DCLS fault reporting signal. The options for each
fault vector index, f, are:

0 No DCLS miscompare.

1 DCLS miscompare.

 Note

When the DSU‑AE is placed in a test mode, for example
MBIST or scan, then the fault reporting outputs of the
functional safety logic are UNKNOWN and any functional
safety errors can be ignored.

Core DCLS signals

This section describes the Dual-Core Lock-Step (DCLS) fault reporting and control signals to and from
the core pair.

The DSU‑AE provides fault reporting and control signals that are related to each primary and redundant
comparator in all core pairs.

Each bit in the core DCLS fault reporting and control signals is associated with a specific potential fault
group. All the core DCLS fault reporting and control signals use the fault vector indexes [f] shown in the
following table.

Table B-11 Core DCLS I/O signal bit assignments

Bits Name

[7] CORE MISC

[6] CORE System Register Interface (SRI)

[5] CORE EVENT

[4] CORE Time Stamp (TS)

[3] CORE APB

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-291

Non-Confidential

Table B-11 Core DCLS I/O signal bit assignments (continued)

Bits Name

[2] CORE ATB

[1] CORE GIC

[0] CORE CHI

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-12 Core DCLS fault reporting and control signals

Signal Direction Description

COREDCLSCMPENCP<cp><P/R>[7:0] Input Core DCLS compares enable signal. The options are:

0b0 COREDCLSFAULTCP<cp><P/R> is always 0.

0b1 COREDCLSFAULTCP<cp><P/R> asserts on DCLS
miscompare.

COREDCLSFORCECP<cp><P/R>[7:0] Input Core DCLS force signal. The options are:

0b0 COREDCLSFORCECP<cp><P/R>[7:0] is driven by

COREDCLSCMPENCP<cp>[f] &
COREDCLSFORCECP<cp><P/R>[f].

0b1 COREDCLSFAULTCP<cp><P/R> =1.

COREDCLSFAULTCP<cp><P/R>[7:0] Output Compare group fault outputs in Lock-mode. The options are:

0b0 No DCLS miscompare.

0b1 DCLS miscompare.

 Note

When the DSU‑AE is placed in a test mode, for example MBIST or
scan, then the fault reporting outputs of the functional safety logic are
UNKNOWN and any functional safety errors can be ignored.

Core RAS reporting signals

This section describes the Reliability, Availability, and Serviceability (RAS) reporting signals that the
core ports out to the DSU‑AE.

The core provides RAS information about the nature of a core-specific memory fault.
 Note

• RAS signals for a core pair <cp> include <P/R>, to denote the primary and redundant signal for the
corresponding core in the core pair. For more information about core pairs, see A1.1 About the
DSU‑AE on page A1-20.

• When COREERRVCP<cp><P/R> is LOW, all other core RAS reporting signal
(COREERR*CP<cp><P/R>) values are UNDEFINED.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-292

Non-Confidential

• For more information on the core ERR0MISC0, ERR0STATUS, and ERR0ADDR registers, see your
licensed core Technical Reference Manual.

• When the DSU‑AE is placed in a test mode, for example MBIST or scan, then the COREERR* fault
reporting outputs of the functional safety logic are UNKNOWN and any functional safety errors can be
ignored.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-13 Core RAS reporting signals

Signal Direction Description

COREERRMISCCP<cp><P/R>[47:0] Output For details on these signals, see your licensed core Technical Reference
Manual.

COREERRMISCCHKCP<cp><P/R>[5:0] Output Odd parity of COREERRMISCCP<cp><P/R> [47:0].

COREERRUECP<cp><P/R> Output For details on these signals, see your licensed core Technical Reference
Manual.

COREERRDECP<cp><P/R> Output

COREERRCECP<cp><P/R>[1 :0] Output

COREERROFCP<cp><P/R> Output

COREERRAVCP<cp><P/R> Output For details on this signal, see your licensed core Technical Reference
Manual.

 Note

Some cores might have a fixed value for ERR0STATUS.AV. Check your
licensed core Technical Reference Manual for more information.

COREERRCHKCP<cp><P/R> Output Odd parity of {COREERRUECP<cp><P/R>,
COREERRDECP<cp><P/R>, COREERRCECP<cp><P/R>[1 :0],
COREERROFCP<cp><P/R>, COREERRAVCP<cp><P/R>}.

COREERRVCP<cp><P/R> Output For details on these signals, see your licensed core Technical Reference
Manual.

COREERRVCHKCP<cp><P/R> Output Odd parity of COREERRVCP<cp><P/R>.

COREERRADDRCP<cp><P/R>[PA_W:0] Output For details on this signal, see your licensed core Technical Reference
Manual.

 Note

Some cores might not support a ERR0ADDR register. Check your
licensed core Technical Reference Manual for more information.

COREERRADDRCHKCP<cp><P/R>
[ceil((p+1)/8)-1:0]p

Output Odd parity of COREERRADDRCP<cp><P/R> [p:0].

B.2.7 GIC signals

This section describes the Generic Interrupt Controller (GIC) and AXI4 Stream Protocol signals.

p ceil is the mathematical ceiling function that rounds up to the nearest integer. In other words, ceil returns the smallest integer not less than its argument.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-293

Non-Confidential

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-14 GIC signals

Signal Direction Description

nFIQ[PE:0] Input Active-LOW, level-sensitive fast interrupt request.

nFIQCHK[PE:0] Input The inverse polarity of nFIQ[PE:0].

nIRQ[PE:0] Input Active-LOW, level-sensitive interrupt request.

nIRQCHK[PE:0] Input The inverse polarity of nIRQ[PE:0].

nVFIQ[PE:0] Input Active-LOW, level-sensitive virtual fast interrupt request.

nVFIQCHK[PE:0] Input The inverse polarity of nVFIQ[PE:0].

nVIRQ[PE:0] Input Active-LOW, level-sensitive virtual interrupt request.

nVIRQCHK[PE:0] Input The inverse polarity of nVIRQ[PE:0].

nVCPUMNTIRQ[PE:0] Output Active-LOW, level-sensitive virtual CPU interface maintenance interrupt PPI output.

nVCPUMNTIRQCHK[PE:0] Input The inverse polarity of nVCPUMNTIRQ[PE:0].

Table B-15 AXI4 Stream Protocol signals

Signal Direction Description

IRITVALID Input Distributor to GIC CPU Interface messages. TVALID indicates that the master is driving a valid
transfer.

IRITVALIDCHK Input The odd polarity of IRITVALID.

IRITREADY Output Distributor to GIC CPU Interface messages. TREADY indicates that the slave can accept a
transfer in the current cycle.

IRITREADYCHK Output The odd polarity of IRITREADY.

IRITDATA[15:0] Input Distributor to GIC CPU Interface messages. TDATA is the primary payload that is used to
provide the data that is passing across the interface.

IRITDATACHK[1:0] Input The odd parity check signals for the GIC CPU interface to distributor data (IRITDATA) at a
ratio of 8:1.

IRITLAST Input Distributor to GIC CPU Interface messages. TLAST indicates the boundary of a packet.

IRITLASTCHK Input The inverse polarity check signal for the distributor to GIC CPU interface last signal
(IRITLAST).

IRITDEST[3:0] Input Distributor to GIC CPU Interface messages. TDEST provides routing information for the data
stream. Depending on the cluster configuration, not all bits of this bus are used. Tie any unused
upper bits LOW.

IRITDESTCHK Input The odd parity check signals for the distributor to GIC CPU interface DEST (IRITDEST).

IRITWAKEUP Input AXI4 stream protocol activity indicator.

IRITWAKEUPCHK Input The odd parity check signal for the AXI4 stream protocol activity indicator (IRITWAKEUP).

ICCTVALID Output GIC CPU Interface to distributor messages. TVALID indicates that the master is driving a valid
transfer.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-294

Non-Confidential

Table B-15 AXI4 Stream Protocol signals (continued)

Signal Direction Description

ICCTVALIDCHK Output The odd parity of the GIC CPU interface to distributor valid indicator signal (ICCTVALID).

ICCTREADY Input GIC CPU Interface to distributor messages. TREADY indicates that the slave can accept a
transfer in the current cycle.

ICCTREADYCHK Input The odd parity of ICCTREADY.

ICCTDATA[15:0] Output GIC CPU Interface to distributor messages. TDATA is the primary payload that is used to
provide the data that is passing across the interface.

ICCTDATACHK[1:0] Output The odd parity check signals for the GIC CPU interface to distributor data (ICCTDATA) at a
ratio of 8:1.

ICCTLAST Output GIC CPU Interface to distributor messages. TLAST indicates the boundary of a packet.

ICCTLASTCHK Output The inverse polarity check signal for the GIC CPU interface to the distributor last signal
(ICCTLAST).

ICCTID[3:0] Output GIC CPU Interface to distributor. TID is the data stream identifier that indicates different
streams of data.

ICCTIDCHK Output The odd parity check signals for the GIC CPU interface to distributor data (ICCTID).

ICCTWAKEUP Output AXI4 Stream Protocol activity indicator.

ICCTWAKEUPCHK Output The odd parity check signal for the AXI4 stream protocol activity indicator (ICCTWAKEUP).

B.2.8 Generic Timer signals

This section describes the Generic Timer signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-16 Generic Timer signals

Signal Direction Description

nCNTHPIRQ[PE:0] Output Active-LOW, level-sensitive Hypervisor physical timer event.

nCNTHPIRQCHK[PE:0] Output The inverse polarity of nCNTHPIRQ[PE:0].

nCNTPNSIRQ[PE:0] Output Active-LOW, level-sensitive Non-secure physical timer event.

nCNTPNSIRQCHK[PE:0] Output The inverse polarity of nCNTPNSIRQ[PE:0].

nCNTPSIRQ[PE:0] Output Active-LOW, level-sensitive Secure physical timer event.

nCNTPSIRQCHK[PE:0] Output The inverse polarity of nCNTPSIRQ[PE:0].

nCNTVIRQ[PE:0] Output Active-LOW, level-sensitive virtual timer event.

nCNTVIRQCHK[PE:0] Output The inverse polarity of nCNTVIRQ[PE:0].

nCNTHVIRQ[PE:0] Output Active-LOW, level-sensitive Hypervisor virtual timer event.

nCNTHVIRQCHK[PE:0] Output The inverse polarity of nCNTHVIRQ[PE:0].

CNTVALUEB[63:0] Input Counter value in binary encoding.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-295

Non-Confidential

Table B-16 Generic Timer signals (continued)

Signal Direction Description

CNTSTATUS[1:0] Input This signal is part of the CNTVALUEB interface protection mechanism. It defines the
interaction between the external copy of CNTVALUEB and the internal one, with the
following encoding:

0b00 CNTVALUEB is uninitialized.

0b01 Illegal.

0b10 CNTVALUEB is valid, presenting a new count value.

0b11 CNTVALUEB is valid and is an increment of previous value.

For more information on using this CNTVALUEB interface protection mechanism, see the
Initializing CNTVALUEB safety mechanism section in the Arm® DynamIQ™ Shared
Unit‑AE Integration Manual.

CNTSTATUSCHK Input This signal is an odd-parity check signal for CNTSTATUS.

B.2.9 Power management signals

This section describes the power management and clock gating signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-17 Power management signals

Signal Direction Description

EVENTIREQ Input Event input request for wake-up from WFE state. It must remain asserted until
EVENTIACK is asserted, and must not be re-asserted until EVENTIACK is LOW.

 Note

Any global exclusive monitor in the system must generate an event when it is
cleared. This event must be signaled to the cluster using the EVENTIREQ input.

EVENTIREQCHK Input The inverse polarity of EVENTIREQ.

EVENTIACK Output Event input request acknowledge. It is not asserted until EVENTIREQ is HIGH, and
then remains asserted until after EVENTIREQ goes LOW.

EVENTIACKCHK Output The inverse polarity of EVENTIACK.

EVENTOREQ Output Event output request for wake-up, triggered by SEV instruction. It is only asserted
when EVENTOACK is LOW, and then remains HIGH until after EVENTOACK
goes HIGH.

EVENTOREQCHK Output The inverse polarity of EVENTOREQ.

EVENTOACK Input Event output request acknowledge. It must not be asserted until EVENTOREQ is
HIGH, and then must remain asserted until after EVENTOREQ goes LOW.

EVENTOACKCHK Input The inverse polarity of EVENTOACK.

CLUSTERPACTIVE[19:0] Output Indicates if the cluster is active in various power states.

CLUSTERPACTIVECHK[19:0] Output The inverse polarity of CLUSTERPACTIVE[19:0].

CLUSTERPREQ Input Indicates that the power controller wants the cluster to move to a new power state.

CLUSTERPREQCHK Input The inverse polarity of CLUSTERPREQ.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-296

Non-Confidential

Table B-17 Power management signals (continued)

Signal Direction Description

CLUSTERPSTATE[6:0] Input Power state that the power controller requires the cluster to move to.

CLUSTERPSTATECHK Input Odd parity of CLUSTERPSTATE[6:0].

CLUSTERPDENY Output Indicates that the cluster denies the power controller request.

CLUSTERPDENYCHK Output The inverse polarity of CLUSTERPDENY.

CLUSTERPACCEPT Output Indicates that the cluster accepts the power controller request.

CLUSTERPACCEPTCHK Output The inverse polarity of CLUSTERPACCEPT.

COREPACTIVEx[17:0] Output Indicates if the referenced core is active in various power states.

COREPACTIVECHKx[17:0] Output The inverse polarity of COREPACTIVEx[17:0].

COREPREQx Input Indicates that the power controller wants the referenced core to move to a new power
state.

COREPREQCHKx Input The inverse polarity of COREPREQx.

COREPSTATEx[5:0] Input Power state that the power controller requires the core to move to.

COREPSTATECHKx Input Odd parity of COREPSTATEx[5:0].

COREPDENYx Output Indicates that the referenced core denies the power controller request.

COREPDENYCHKx Output The inverse polarity of COREPDENYx.

COREPACCEPTx Output Indicates that the referenced core accepts the power controller request.

COREPACCEPTCHKx Output The inverse polarity of COREPACCEPTx.

MPMMEN[PE:0] Input Maximum Power Mitigation Mechanism (MPMM) enable signal. The options are:

0 MPMM disabled.

1 MPMM enabled.

See the associated core Technical Reference Manual for details of the MPMM
behavior if supported on your core.

 Note

This signal is only present for cores that support MPMM. For example, if there are
two single-threaded cores, and only core 1 supports MPMM, then only one bit of this
signal is present. If none of the cores support MPMM, then this signal is not present.

MPMMENCHK[PE:0] Input The inverse polarity of MPMMEN[PE:0].

MPMMSTATEx[1:0] Input MPMM state signal. If MPMM is enabled, selects which MPMM configuration to
apply.

If MPMM is supported on your core, see the associated core Technical Reference
Manual for details of the MPMM configuration selection.

 Note

This signal is only present for cores that support MPMM configuration selection that
is based on input pins. Not all cores that support MPMM support this feature.

MPMMSTATECHKx Input Odd parity of MPMMSTATEx[1:0].

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-297

Non-Confidential

Table B-18 Clock gating signals

Signal Direction Description

SCLKQACTIVE Output Indicates that the cluster requires SCLK to be active.

SCLKQACTIVECHK Output The inverse polarity of SCLKQACTIVE.

SCLKQREQn Input Active-LOW signal that indicates that the clock controller wants the gate the clock.

SCLKQREQCHK Input The inverse polarity of SCLKQREQn.

SCLKQACCEPTn Output Active-LOW signal that indicates that the cluster accepts the clock controller request.

SCLKQACCEPTCHK Output The inverse polarity of SCLKQACCEPTn.

SCLKQDENY Output Indicates that the cluster denies the clock controller request.

SCLKQDENYCHK Output The inverse polarity of SCLKQDENY.

PCLKQACTIVE Output Indicates that the cluster requires PCLK to be active.

PCLKQACTIVECHK Output The inverse polarity of PCLKQACTIVE.

PCLKQREQn Input Active-LOW signals that indicate that the clock controller wants the gate the clock.

PCLKQREQCHK Input The inverse polarity of PCLKQREQn.

PCLKQACCEPTn Output Active-LOW signal that indicates that the cluster accepts the clock controller request.

PCLKQACCEPTCHK Output The inverse polarity of PCLKQACCEPTn.

PCLKQDENY Output Indicates that the cluster denies the clock controller request.

PCLKQDENYCHK Output The inverse polarity of PCLKQDENY.

ATCLKQACTIVE Output Indicates that the cluster requires ATCLK to be active.

ATCLKQACTIVECHK Output The inverse polarity of ATCLKQACTIVE.

ATCLKQREQn Input Active-LOW signal that indicates that the clock controller wants to gate the clock.

ATCLKQREQCHK Input The inverse polarity of ATCLKQREQn.

ATCLKQACCEPTn Output Active-LOW signal that indicates that the cluster accepts the clock controller request.

ATCLKQACCEPTCHK Output The inverse polarity of ATCLKQACCEPTn.

ATCLKQDENY Output Active-LOW signal that indicates that the cluster denies the clock controller request.

ATCLKQDENYCHK Output The inverse polarity of ATCLKQDENY.

GICCLKQACTIVE Output Indicates that the cluster requires GICCLK to be active.

GICCLKQACTIVECHK Output The inverse polarity of GICCLKQACTIVE.

GICCLKQREQn Input Active-LOW signal that indicates that the clock controller wants the gate the clock.

GICCLKQREQCHK Input The inverse polarity of GICCLKQREQn.

GICCLKQACCEPTn Output Active-LOW signal that indicates that the cluster accepts the clock controller request.

GICCLKQACCEPTCHK Output The inverse polarity of GICCLKQACCEPTn.

GICCLKQDENY Output Indicates that the cluster denies the clock controller request.

GICCLKQDENYCHK Output The inverse polarity of GICCLKQDENY.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-298

Non-Confidential

 Note

Take note of the additional clock restrictions that apply when Dual-Core Lock-Step (DCLS) cluster
execution modes are used, like Lock-mode and Hybrid-mode. For more details about all the clock
restrictions, see A3.1 Clocks on page A3-52.

B.2.10 Error signals

This section describes the error signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-19 Error signals

Signal Direction Description

nFAULTIRQ[CN+1:1] Output Active-LOW, level-sensitive fault indicator for a detected 1-bit or 2-bit ECC or Parity
error in the RAMs.

Bits [CN+1:1] are for the L1 and L2 RAMs in each core. The bits are output from the
PERIPHCLK domain.

nFAULTIRQCHK[CN+1:1] Output The inverse polarity of nFAULTIRQ[CN+1:1].

nFAULTIRQ[0] Output Active-LOW, level-sensitive fault indicator for a detected 1-bit or 2-bit ECC or Parity
error in the RAMs.

Bit [0] is for L3 or snoop filter RAMs. It is output from the SCLK domain.

nFAULTIRQCHK[0] Output The inverse polarity of nFAULTIRQ[0].

nERRIRQ[CN+1:1] Output Active-LOW, level-sensitive error indicator for an ECC error that causes potential data
corruption or loss of coherency.

Bits [CN+1:1] are for the L1 and L2 RAMs in each core. The bits are output from the
PERIPHCLK domain.

nERRIRQCHK[CN+1:1] Output The inverse polarity of nERRIRQ[CN+1:1].

nERRIRQ[0] Output Active-LOW, level-sensitive error indicator for an ECC error that causes potential data
corruption or loss of coherency.

Bit [0] is for L3 or snoop filter RAMs or ACE or CHI write transactions with a write
response condition. It is output from the SCLK domain.

nERRIRQCHK[0] Output The inverse polarity of nERRIRQ[0].

B.2.11 ACP interface signals

This section describes the Accelerator Coherency Port (ACP) interface signals.

This interface exists only if the DSU‑AE is configured to have the ACP interface.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-20 ACP wakeup signal

Signal Direction Description

AWAKEUPS Input ACP Slave activity indicator.

AWAKEUPCHKS Input The inverse polarity of AWAKEUPS.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-299

Non-Confidential

Table B-21 ACP write address channel signals

Signal Direction Description

AWREADYS Output Write address ready.

AWREADYCHKS Output The inverse polarity of AWREADYS.

AWVALIDS Input Write address valid.

AWVALIDCHKS Input The inverse polarity of AWVALIDS.

AWIDS[7:0] Input Write address ID.

AWIDCHKS Input Odd parity of AWIDS[7:0].

AWADDRS[p:0] Input Write address.

AWADDRCHKS[ceil((p+1)/8)-1:0]q Input Odd parity of AWADDRS[p:0].

AWLENS[7:0] Input Write burst length.

AWLENCHKS Input Odd parity of AWLENS[7:0].

AWPROTS[2:0] Input Write protection type.

AWCTLCHK0S Input Odd parity of AWPROTS[2:0].

AWCACHES[3:0] Input Write cache type.

AWCTLCHK1S Input Odd parity of AWCACHES[3:0].

AWDOMAINS[1:0] Input Write attributes.

AWSNOOPS[3:0] Input Write request type.

AWCTLCHKS2 Input Odd parity of {AWDOMAINS[1:0], AWSNOOPS[3:0]}.

AWSTASHLPIDS[3:0] Input Write stash target core.

AWSTASHLPIDENS Input Write stash target enable.

AWSTASHLPIDCHKS Input Odd parity of {AWSTASHLPIDS[3:0], AWSTASHLPIDENS}.

Table B-22 ACP write data channel signals

Signal Direction Description

WREADYS Output Write data ready.

WREADYCHKS Output The inverse polarity of WREADYS.

WVALIDS Input Write data valid.

WVALIDCHKS Input The inverse polarity of WVALIDS.

WDATAS[127:0] Input Write data.

WDATACHKS[15:0] Input Odd parity of WDATAS[127:0].

WSTRBS[15:0] Input Write byte-lane strobes.

WSTRBCHKS[1:0] Input Odd parity of WSTRBS[15:0].

WLASTS Input Write data last transfer indication.

WLASTCHKS Input The inverse polarity of WLASTS.

q ceil is the mathematical ceiling function that rounds up to the nearest integer. In other words, ceil returns the smallest integer not less than its argument.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-300

Non-Confidential

Table B-23 ACP write response channel signals

Signal Direction Description

BREADYS Input Write response ready.

BREADYCHKS Input The inverse polarity of BREADYS.

BVALIDS Output Write response valid.

BVALIDCHKS Output The inverse polarity of BVALIDS.

BIDS[7:0] Output Write response ID.

BIDCHKS Output Odd parity of BIDS[7:0].

BRESPS[1:0] Output Write response.

BRESPCHKS Output Odd parity of BRESPS[1:0].

Table B-24 ACP read address channel signals

Signal Direction Description

ARREADYS Output Read address ready.

ARREADYCHKS Output The inverse polarity of ARREADYS.

ARVALIDS Input Read address valid.

ARVALIDCHKS Input The inverse polarity of ARVALIDS.

ARIDS[7:0] Input Read address ID.

ARIDCHKS Input Odd parity of ARIDS[7:0].

ARADDRS[p:0] Input Read address.

ARADDRCHKS[ceil((p+1)/8)-1:0]q Input Odd parity of ARADDRS[p:0].

ARLENS[7:0] Input Read burst length.

ARLENCHKS Input Odd parity of ARLENS[7:0].

ARPROTS[2:0] Input Read protection type.

ARCTLCHKS0 Input Odd parity of ARPROTS[2:0].

ARCACHES[3:0] Input Read cache type.

ARCTLCHKS1 Input Odd parity of ARCACHES[3:0].

ARDOMAINS[1:0] Input Read attributes.

ARCTLCHKS2 Input Odd parity of ARDOMAINS[1:0].

Table B-25 ACP read data channel signals

Signal Direction Description

RREADYS Input Read data ready.

RREADYCHKS Input The inverse polarity of RREADYS.

RVALIDS Output Read data valid.

RVALIDCHKS Output The inverse polarity of RVALIDS.

RIDS[7:0] Output Read data ID.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-301

Non-Confidential

Table B-25 ACP read data channel signals (continued)

Signal Direction Description

RIDCHKS Output Odd parity of RIDS[7:0].

RDATAS[127:0] Output Read data.

RDATACHKS[15:0] Output Odd parity of RDATAS[127:0].

RRESPS[1:0] Output Read data response.

RRESPCHKS Output Odd parity of RRESPS[1:0].

RLASTS Output Read data last transfer indication.

RLASTCHKS Output The inverse polarity of RLASTS.

B.2.12 Peripheral port interface signals

This section describes the peripheral port interface signals.

This interface exists only if the DSU‑AE is configured to have a peripheral port interface.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-26 Peripheral port wakeup signals

Signal Direction Description

AWAKEUPMP Output AXI activity indicator.

AWAKEUPCHKMP Output The inverse polarity of AWAKEUPMP.

Table B-27 Peripheral port configuration signals

Signal Direction Description

ASTARTMP[p:20] Input Start address for peripheral port address range.

ASTARTCHKMP[ceil((p-19)/8)-1:0]r Input Odd parity of ASTARTMP[p:20].

AENDMP[p:20] Input End address for peripheral port address range.

AENDCHKMP[ceil((p-19)/8)-1:0]r Input Odd parity of AENDMP[p:20].

Table B-28 Peripheral port write address channel signals

Signal Direction Description

AWREADYMP Input Write address ready.

AWREADYCHKMP Input The inverse polarity of AWREADYMP.

AWVALIDMP Output Write address valid.

AWVALIDCHKMP Output The inverse polarity of AWVALIDMP.

AWIDMP[3:0] Output Write address ID.

AWIDCHKMP Output Odd parity of AWIDMP[3:0].

AWADDRMP[p:0] Output Write address.

r ceil is the mathematical ceiling function that rounds up to the nearest integer. In other words, ceil returns the smallest integer not less than its argument.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-302

Non-Confidential

Table B-28 Peripheral port write address channel signals (continued)

Signal Direction Description

AWADDRCHKMP[ceil((p+1)/8)-1:0]r Output Odd parity of AWADDRMP[p:0].

AWSIZEMP[2:0] Output Write attributes.

AWPROTMP[2:0] Output Write size.

AWCTLCHK0MP Output Odd parity of {AWSIZEMP[2:0], AWPROTMP[2:0]}.

AWCACHEMP[3:0] Output Write cache type.

AWCTLCHK1MP Output Odd parity of AWCACHEMP[3:0].

AWDOMAINMP[1:0] Output Write protection type.

AWCTLCHK2MP Output Odd parity of AWDOMAINMP[1:0].

Table B-29 Peripheral port write data channel signals

Signal Direction Description

WREADYMP Input Write data ready.

WREADYCHKMP Input The inverse polarity of WREADYMP.

WVALIDMP Output Write data valid.

WVALIDCHKMP Output The inverse polarity of WVALIDMP.

WDATAMP[63:0] Output Write data.

WDATACHKMP[7:0] Output Odd parity of WDATAMP[63:0].

WSTRBMP[7:0] Output Write byte-lane strobes.

WSTRBCHKMP Output Odd parity of WSTRBMP[7:0].

WLASTMP Output Write data last transfer indication.

WLASTCHKMP Output The inverse polarity of WLASTMP.

Table B-30 Peripheral port write response channel signals

Signal Direction Description

BREADYMP Output Write response ready.

BREADYCHKMP Output The inverse polarity of BREADYMP.

BVALIDMP Input Write response valid.

BVALIDCHKMP Input The inverse polarity of BVALIDMP.

BIDMP[3:0] Input Write response ID.

BIDCHKMP Input Odd parity of BIDMP[3:0].

BRESPMP[1:0] Input Write response.

BRESPCHKMP Input Odd parity of BRESPMP[1:0].

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-303

Non-Confidential

Table B-31 Peripheral port read address channel signals

Signal Direction Description

ARREADYMP Input Read address ready.

ARREADYCHKMP Input The inverse polarity of ARREADYMP.

ARVALIDMP Output Read address valid.

ARVALIDCHKMP Output The inverse polarity of ARVALIDMP.

ARIDMP[3:0] Output Read address ID.

ARIDCHKMP Output Odd parity of ARIDMP[3:0].

ARADDRMP[p:0] Output Read address.

ARADDRCHKMP[ceil((p+1)/8)-1:0]r Output Odd parity of ARADDRMP[p:0].

ARSIZEMP[2:0] Output Read size.

ARPROTMP[2:0] Output Read protection type.

ARCTLCHK0MP Output Odd parity of {ARSIZEMP[2:0], ARPROTMP[2:0]}.

ARCACHEMP[3:0] Output Read cache type.

ARCTLCHK1MP Output Odd parity of ARCACHEMP[3:0].

ARDOMAINMP[1:0] Output Read attributes.

ARCTLCHK2MP Output Odd parity of ARDOMAINMP[1:0].

Table B-32 Peripheral port read data channel signals

Signal Direction Description

RREADYMP Output Read data ready.

RREADYCHKMP Output The inverse polarity of RREADYMP.

RVALIDMP Input Read data valid.

RVALIDCHKMP Input The inverse polarity of RVALIDMP.

RIDMP[3:0] Input Read data ID.

RIDCHKMP Input Odd parity of RIDMP[3:0].

RDATAMP[63:0] Input Read data.

RDATACHKMP[7:0] Input Odd parity of RDATAMP[63:0].

RRESPMP[1:0] Input Read data response.

RRESPCHKMP Input Odd parity of RRESPMP[1:0].

B.2.13 Broadcast signals for the memory interface

This section describes the broadcast signals for the memory interface.

These signals are common to the memory interface, irrespective of whether the ACE or CHI protocol is
used.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-304

Non-Confidential

Table B-33 Broadcast signals for the memory interface

Signal Direction Description

BROADCASTCACHEMAINT Input Enable broadcasting of cache maintenance operations to downstream caches. The
options are:

0 Cache maintenance operations are not broadcast to downstream caches.

1 Cache maintenance operations are broadcast to downstream caches.

BROADCASTCACHEMAINTPOU Input Enable broadcasting of cache maintenance operations to the point of unification.
The options are:

0 Cache maintenance operations DCCMVAU and DC CVAU are not broadcast
to other clusters. This is more efficient if all other clusters are Arm Cortex
processors.

1 Cache maintenance operations DCCMVAU and DC CVAU are broadcast to
other clusters.

BROADCASTPERSIST Input Enable broadcasting of cache clean to the point of persistence operations. The
options are:

0 DC CVAP instructions are treated the same as DC CVAC.

1 DC CVAP instructions are sent as a clean to the point of persistence
transaction externally.

BROADCASTOUTER Input Enable broadcasting of Outer Shareable transactions. The options are:

0 Outer Shareable transactions are not broadcast externally.

1 Outer Shareable transactions are broadcast externally.

 Note

Within the cluster, Inner Shareable and Outer Shareable memory are treated
identically. Therefore, this signal also controls the broadcast of Inner Shareable
transactions.

CONFIGCHK Input Odd parity of {CRYPTODISABLE, GICCDISABLE,
BROADCASTCACHEMAINT, BROADCASTCACHEMAINTPOU,
BROADCASTPERSIST, BROADCASTOUTER, BROADCASTATOMIC}.
For details of the other signals, see B.2.5 Configuration signals
on page Appx-B-286 and B.2.15 CHI interface signals on page Appx-B-310.

B.2.14 ACE interface signals

This section describes the ACE interface signals.

This interface exists only if the DSU‑AE is configured to have the ACE master interface.
 Note

• The AMBA® AXI and ACE Protocol Specification (IHI 0022) dictates the protection mechanisms that
the *CHKM* signals use to provide InterFace Protection (IFP) for this external interface.

• The following tables show the signals that are present when one ACE interface is implemented,
because the signals have a suffix of M0. If a second ACE interface is implemented, another set of
ACE signals is present, suffixed by M1.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-305

Non-Confidential

Table B-34 ACE write address channel signals

Signal Direction Description

AWREADYM0 Input Write address ready.

AWREADYCHKM0 Input The inverse polarity of AWREADYM0.

AWVALIDM0 Output Write address valid.

AWVALIDCHKM0 Output The inverse polarity of AWVALIDM0.

AWIDM0[7:0] Output Write address ID.

AWIDCHKM0 Output Odd parity of AWIDM0[7:0].

AWADDRM0[q:0] s Output Write address.

AWADDRCHKM0[ceil((q+1)/8)-1:0]t Output Odd parity of AWADDRM0[q:0].

AWLENM0[7:0] Output Write burst length.

AWLENCHKM0 Output Odd parity of AWLENM0[7:0].

AWSIZEM0[2:0] Output Write burst size.

AWBURSTM0[1:0] Output Write burst type.

AWPROTM0[2:0] Output Write protection type.

AWLOCKM0 Output Write lock type.

AWCTLCHK0M0 Output Odd parity of {AWSIZEM0[2:0], AWBURSTM0[1:0], AWPROTM0[2:0],
AWLOCKM0}.

AWCACHEM0[3:0] Output Write cache type.

AWCTLCHK1M0 Output Odd parity of AWCACHEM0[3:0].

AWDOMAINM0[1:0] Output Write shareability domain type.

AWSNOOPM0[2:0] Output Write snoop request type.

AWUNIQUEM0 Output For WriteBack, WriteClean and WriteBackUC transactions. Indicates that the
write is Unique (0b1) or shared (0b0).

AWCTLCHK2M0 Output Odd parity of {AWDOMAINM0[1:0], AWSNOOPM0[2:0],
AWUNIQUEM0}.

Table B-35 ACE write data channel signals

Signal Direction Description

WREADYM0 Input Write data ready.

WREADYCHKM0 Input The inverse polarity of WREADYM0.

WVALIDM0 Output Write data valid.

WVALIDCHKM0 Output The inverse polarity of WVALIDM0.

WIDM0[7:0] Output Write data ID. Only used when connecting to an AXI3 interconnect.

WIDCHKM0 Output Odd parity of WIDM0[7:0].

WDATAM0[127:0] Output Write data.

s The value of q is 43 when p is 39. For any other value of p, q is the same as p.
t ceil is the mathematical ceiling function that rounds up to the nearest integer. In other words, ceil returns the smallest integer not less than its argument.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-306

Non-Confidential

Table B-35 ACE write data channel signals (continued)

Signal Direction Description

WDATACHKM0[15:0] Output Odd parity of WDATAM0[127:0].

WSTRBM0[15:0] Output Write byte-lane strobes.

WSTRBCHKM0[1:0] Output Odd parity of WSTRBM0[15:0].

WLASTM0 Output Write data last transfer indication.

WLASTCHKM0 Output The inverse polarity of WLASTM0.

Table B-36 ACE write data response channel signals

Signal Direction Description

BREADYM0 Output Write response valid.

BREADYCHKM0 Output The inverse polarity of BREADYM0.

BVALIDM0 Input Write response valid.

BVALIDCHKM0 Input The inverse polarity of BVALIDM0.

BIDM0[7:0] Input Write response ID.

BIDCHKM0 Input Odd parity of BIDM0[7:0].

BRESPM0[1:0] Input Write response.

BRESPCHKM0 Input Odd parity of BRESPM0[1:0].

Table B-37 ACE read address channel signals

Signal Direction Description

ARREADYM0 Input Read address ready.

ARREADYCHKM0 Input The inverse polarity of ARREADYM0.

ARVALIDM0 Output Read address valid.

ARVALIDCHKM0 Output The inverse polarity of ARVALIDM0.

ARIDM0[8:0] Output Read address ID.

ARIDCHKM0[1:0] Output Odd parity of ARIDM0[8:0].

ARADDRM0[q:0] s Output Read address.

ARADDRCHKM0[ceil((q+1)/8)-1:0]t Output Odd parity of ARADDRM0[q:0].

ARLENM0[7:0] Output Read burst length.

ARLENCHKM0 Output Odd parity of ARLENM0[7:0].

ARSIZEM0[2:0] Output Read burst size.

ARBURSTM0[1:0] Output Read burst type.

ARPROTM0[2:0] Output Read protection type.

ARLOCKM0 Output Read lock type.

ARCTLCHK0M0 Output Odd parity of {ARSIZEM0[2:0], ARBURSTM0[1:0], ARPROTM0[2:0],
ARLOCKM0}.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-307

Non-Confidential

Table B-37 ACE read address channel signals (continued)

Signal Direction Description

ARCACHEM0[3:0] Output Read cache type.

ARCTLCHK1M0 Output Odd parity of ARCACHEM0[3:0].

ARDOMAINM0[1:0] Output Read shareability domain type.

ARSNOOPM0[3:0] Output Read snoop request type.

ARCTLCHK2M0 Output Odd parity of {ARDOMAINM0[1:0], ARSNOOPM0[3:0]}.

ARVMIDEXTM0[3:0] Output Additional VMID bits for DVM messages.

ARCTLCHK3M0 Output Odd parity of ARVMIDEXTM0[3:0].

Table B-38 ACE read data channel signals

Signal Direction Description

RREADYM0 Output Read data ready.

RREADYCHKM0 Output The inverse polarity of RREADYM0.

RVALIDM0 Input Read data valid.

RVALIDCHKM0 Input The inverse polarity of RVALIDM0.

RIDM0[8:0] Input Read data ID.

RIDCHKM0[1:0] Input Odd parity of RIDM0[8:0].

RDATAM0[127:0] Input Read data.

RDATACHKM0[15:0] Input Odd parity of RDATAM0[127:0].

RRESPM0[3:0] Input Read data response.

RRESPCHKM0 Input Odd parity of RRESPM0[3:0].

RLASTM0 Input Read data last transfer indication.

RLASTCHKM0 Input The inverse polarity of RLASTM0.

Table B-39 ACE coherency address channel signals

Signal Direction Description

ACREADYM0 Output Master ready to accept snoop address.

ACREADYCHKM0 Output The inverse polarity of ACREADYM0.

ACVALIDM0 Input Snoop address valid.

ACVALIDCHKM0 Input The inverse polarity of ACVALIDM0.

ACADDRM0[q:0] s Input Snoop address.

ACADDRCHKM0[ceil((q+1)/8)-1:0]t Input Odd parity of ACADDRM0[q:0].

ACVMIDEXTM0[3:0] Input Additional VMID bits for DVM messages.

ACVMIDEXTCHKM0 Input Odd parity of ACVMIDEXTM0[3:0].

ACSNOOPM0[3:0] Input Snoop request type.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-308

Non-Confidential

Table B-39 ACE coherency address channel signals (continued)

Signal Direction Description

ACPROTM0[2:0] Input Snoop protection type.

ACCTLCHKM0 Input Odd parity of {ACSNOOPM0[3:0], ACPROTM0[2:0]}.

Table B-40 ACE coherency response channel signals

Signal Direction Description

CRREADYM0 Input Slave ready to accept snoop response.

CRREADYCHKM0 Input The inverse polarity of CRREADYM0.

CRVALIDM0 Output Snoop response valid.

CRVALIDCHKM0 Output The inverse polarity of CRVALIDM0.

CRRESPM0[4:0] Output Snoop response.

CRRESPCHKM0 Output Odd parity of CRRESPM0[4:0].

Table B-41 ACE coherency data channel handshake signals

Signal Direction Description

CDREADYM0 Input Slave ready to accept snoop data.

CDREADYCHKM0 Input The inverse polarity of CDREADYM0.

CDVALIDM0 Output Snoop data valid.

CDVALIDCHKM0 Output The inverse polarity of CDVALIDM0.

CDDATAM0[127:0] Output Snoop data.

CDDATACHKM0[15:0] Output Odd parity of CDDATAM0[127:0].

CDLASTM0 Output Snoop data last transfer.

CDLASTCHKM0 Output The inverse polarity of CDLASTM0.

Table B-42 ACE read and write acknowledge signals

Signal Direction Description

RACKM0 Output Read acknowledge.

RACKCHKM0 Output The inverse polarity of RACKM0.

WACKM0 Output Write acknowledge.

WACKCHKM0 Output The inverse polarity of WACKM0.

Table B-43 ACE low-power wakeup signals

Signal Direction Description

AWAKEUPM0 Output ACE pending activity indicator.

AWAKEUPCHKM0 Output The inverse polarity of AWAKEUPM0.

ACWAKEUPM0 Input ACE snoop activity indicator.

ACWAKEUPCHKM0 Input The inverse polarity of ACWAKEUPM0.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-309

Non-Confidential

Table B-44 ACE coherency signals

Signal Direction Description

SYSCOREQM0 Output The cluster requests to be part of the coherency domain and can safely receive snoops.

SYSCOREQCHKM0 Output The inverse polarity of SYSCOREQM0.

SYSCOACKM0 Input The system might send snoops to the cluster.

SYSCOACKCHKM0 Input The inverse polarity of SYSCOACKM0.

Table B-45 ACE source attributes bus signals

Signal Direction Description

RDSRCATTRM0[11:0] Output Provides information about the transactions.

RDSRCATTRCHKM0[1:0] Output Odd parity of RDSRCATTRM0[11:0].

WRSRCATTRM0[11:0] Output Provides information about the transactions.

WRSRCATTRCHKM0[1:0] Output Odd parity of WRSRCATTRM0[11:0].

B.2.15 CHI interface signals

This section describes the CHI interface signals.

This interface exists only if the DSU‑AE is configured to have the CHI master interface.
 Note

The AMBA® AXI and ACE Protocol Specification (IHI 0022) dictates the protection mechanisms that the
*CHK signals use to provide InterFace Protection (IFP) for this external interface.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Common signals for single or dual CHI interfaces

The following signal is present in both single or dual CHI configurations.

Table B-46 CHI common configuration signal

Signal Direction Description

BROADCASTATOMICu. Input Enable broadcasting of atomic transactions. The options are:

0 Atomic transactions are not sent externally.

1 Atomic transactions are sent externally.

CONFIGCHK Input Odd parity of {CRYPTODISABLE, GICCDISABLE, BROADCASTCACHEMAINT,
BROADCASTCACHEMAINTPOU, BROADCASTPERSIST, BROADCASTOUTER,
BROADCASTATOMIC}. For details of the other signals, see B.2.5 Configuration signals
on page Appx-B-286 and B.2.13 Broadcast signals for the memory interface
on page Appx-B-304.

Per-interface signals for single or dual CHI interfaces

The following tables show the signals present for either a single CHI interface, or the signals for CHI
interface 0 in a dual CHI implementation. If a second CHI interface is implemented, an additional set of

u This signal is sampled on reset like the other broadcast signals listed in B.2.13 Broadcast signals for the memory interface on page Appx-B-304

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-310

Non-Confidential

CHI signals is present suffixed by M1. For example, in a dual CHI configuration, the signals for the
DSU‑AE cluster CHI Node Identifiers for the two CHI interfaces are NODEID[10:0] and
NODEIDM1[10:0].

Table B-47 CHI configuration signals

Signal Direction Description

NODEID[10:0] Input DSU‑AE cluster CHI Node Identifier.

NODEIDCHK[10:0] Input The inverse polarity of NODEID[10:0].

Table B-48 CHI activity signals

Signal Direction Description

RXSACTIVE Input Receive pending activity indicator.

RXSACTIVECHK Input The inverse polarity of RXSACTIVE.

TXSACTIVE Output Transmit pending activity indicator.

TXSACTIVECHK Output The inverse polarity of TXSACTIVE.

RXLINKACTIVEREQ Input Receive link active request.

RXLINKACTIVEREQCHK Input The inverse polarity of RXLINKACTIVEREQ.

RXLINKACTIVEACK Output Receive link active acknowledge.

RXLINKACTIVEACKCHK Output The inverse polarity of RXLINKACTIVEACK.

TXLINKACTIVEREQ Output Transmit link active request.

TXLINKACTIVEREQCHK Output The inverse polarity of TXLINKACTIVEREQ.

TXLINKACTIVEACK Input Transmit link active acknowledge.

TXLINKACTIVEACKCHK Input The inverse polarity of TXLINKACTIVEACK.

Table B-49 CHI transmit request virtual channel signals

Signal Direction Description

TXREQFLITPEND Output Transmit Request Flit pending.

TXREQFLITPENDCHK Output The inverse polarity of TXREQFLITPEND.

TXREQFLITV Output Transmit Request Flit valid.

TXREQFLITVCHK Output The inverse polarity of TXREQFLITV.

TXREQFLIT[85+p:0] Output Transmit Request Flit payload.

TXREQFLITCHK[ceil((85+p+1)/8)-1:0]v Output Odd parity of TXREQFLIT[85+p:0].

TXREQLCRDV Input Transmit Request link-layer credit valid.

TXREQLCRDVCHK Input The inverse polarity of TXREQLCRDV.

v ceil is the mathematical ceiling function that rounds up to the nearest integer. In other words, ceil returns the smallest integer not less than its argument.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-311

Non-Confidential

Table B-50 CHI transmit response virtual channel signals

Signal Direction Description

TXRSPFLITPEND Output Transmit response flit pending.

TXRSPFLITPENDCHK Output The inverse polarity of TXRSPFLITPEND.

TXRSPFLITV Output Transmit response flit valid.

TXRSPFLITVCHK Output The inverse polarity of TXRSPFLITV.

TXRSPFLIT[58:0] Output Transmit response flit.

TXRSPFLITCHK[7:0] Output Odd parity of TXRSPFLIT[58:0].

TXRSPLCRDV Input Transmit response link-layer credit valid.

TXRSPLCRDVCHK Input The inverse polarity of TXRSPLCRDV.

Table B-51 CHI transmit data virtual channel signals

Signal Direction Description

TXDATFLITPEND Output Transmit Data Flit pending.

TXDATFLITPENDCHK Output The inverse polarity of TXDATFLITPEND.

TXDATFLITV Output Transmit Data Flit valid.

TXDATFLITVCHK Output The inverse polarity of TXDATFLITV.

TXDATFLIT[d:0] Output Transmit Data Flit.

TXDATFLITCHK[ceil((d+1)/8)-1:0]v Output Odd parity of TXDATFLIT[d:0].

TXDATLCRDV Input Transmit Data link-layer credit valid.

TXDATLCRDVCHK Input The inverse polarity of TXDATLCRDV.

Table B-52 CHI receive snoop virtual channel signals

Signal Direction Description

RXSNPFLITPEND Input Receive Snoop Flit pending.

RXSNPFLITPENDCHK Input The inverse polarity of RXSNPFLITPEND.

RXSNPFLITV Input Receive Snoop Flit valid.

RXSNPFLITVCHK Input The inverse polarity of RXSNPFLITV.

RXSNPFLIT[48+p:0] Input Receive Snoop Flit.

RXSNPFLITCHK[ceil((49+p)/8)-1:0]v Input Odd parity of RXSNPFLIT[48+p:0].

RXSNPLCRDV Output Receive Snoop link-layer credit valid.

RXSNPLCRDVCHK Output The inverse polarity of RXSNPLCRDV.

Table B-53 CHI receive response virtual channel signals

Signal Direction Description

RXRSPFLITPEND Input Receive Response Flit pending.

RXRSPFLITPENDCHK Input The inverse polarity of RXRSPFLITPEND.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-312

Non-Confidential

Table B-53 CHI receive response virtual channel signals (continued)

Signal Direction Description

RXRSPFLITV Input Receive Response Flit valid.

RXRSPFLITVCHK Input The inverse polarity of RXRSPFLITV.

RXRSPFLIT[58:0] Input Receive Response Flit.

RXRSPFLITCHK[7:0] Input Odd parity of RXRSPFLIT[58:0].

RXRSPLCRDV Output Receive Response link-layer credit valid.

RXRSPLCRDVCHK Output The inverse polarity of RXRSPLCRDV.

Table B-54 CHI receive data virtual channel signals

Signal Direction Description

RXDATFLITPEND Input Receive Data Flit pending.

RXDATFLITPENDCHK Input The inverse polarity of RXDATFLITPEND.

RXDATFLITV Input Receive Data Flit valid.

RXDATFLITVCHK Input The inverse polarity of RXDATFLITV.

RXDATFLIT[d:0] Input Receive Data Flit.

RXDATFLITCHK[ceil((d+1)/8)-1:0]v Input Odd parity of RXDATFLIT[d:0].

RXDATLCRDV Output Receive Data link-layer credit valid.

RXDATLCRDVCHK Output The inverse polarity of RXDATLCRDV.

Table B-55 CHI coherency signals

Signal Direction Description

SYSCOREQ Output The cluster requests to be part of the coherency domain and can safely receive snoops.

SYSCOREQCHK Output The inverse polarity of SYSCOREQ.

SYSCOACK Input The system might send snoops to the cluster.

SYSCOACKCHK Input The inverse polarity of SYSCOACK.

Table B-56 CHI source attributes bus signals

Signal Direction Description

REQSRCATTR[6:0] Output Provides information about the transactions.

REQSRCATTRCHK Output Odd parity of REQSRCATTR[6:0].

System address map signals

This interface exists only if the DSU‑AE is configured to have the CHI interface and the CMN-600 SAM
option is enabled. In a dual CHI configuration, there is only one set of system address map signals.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-313

Non-Confidential

Table B-57 CHI system address map signals

Signal Direction Description

RXPUBCFGACTIVE Input SAM configuration pending activity indicator.

RXPUBFLITPEND Input Receive Data Flit pending.

RXPUBFLITV Input Receive Data Flit valid.

RXPUBFLIT[34:0] Input Receive Data Flit.

RXPUBLCRDV_RP1 Output Receive Data link-layer credit valid.

RXPUBLINKACTIVEREQ Input Receive link active request.

RXPUBLINKACTIVEACK Output Receive link active acknowledge.

RXPUBLINKFLIT Input Receive link-layer flit.

TXPUBFLITPEND Output Transmit Data Flit pending.

TXPUBFLITV Output Transmit Data Flit valid.

TXPUBFLIT[34:0] Output Transmit Data Flit.

TXPUBLCRDV_RP1 Input Transmit Data link-layer credit valid.

TXPUBLINKACTIVEREQ Output Transmit link active request.

TXPUBLINKACTIVEACK Input Transmit link active acknowledge.

TXPUBLINKFLIT Output Transmit link-layer flit.

Table B-58 CHI system address map configuration signals

Signal Direction Description

RNSAM_CFGM_DESTID[15:0] Input CMN-600 CFG master destination ID.

RNSAM_CFGS_NODEID[15:0] Input Source ID for the cluster CFG slave.

RNSAM_DEFAULT_TGTID[10:0] Input Default target ID of the boot node.

RNSAM_DN_TGTID[10:0] Input Target ID for the DN that handles DVMs.

RNSAM_PGMED_RDY Input Reset value of the Programmed Ready bit.

B.2.16 DebugBlock APB interface signals

This section describes for the APB interface signals and the miscellaneous debug signals.

The APB interface between the DebugBlock and the cluster consists of a pair of APB interfaces, one in
each direction. The signals on the cluster interface should be connected to the equivalently named signals
on the DebugBlock.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-59 Signals between the cluster APB master and DebugBlock APB slave

Signal Direction Description

PSELCD Output APB bus access.

PADDRCD[8:2] Output APB address.

PENABLECD Output Cluster to DebugBlock APB transfer complete flag.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-314

Non-Confidential

Table B-59 Signals between the cluster APB master and DebugBlock APB slave (continued)

Signal Direction Description

PWDATACD[8:0] Output APB write data.

PWAKEUPCD Output APB activity indicator.

PREADYCD Input APB slave ready, used to extend a transfer.

PREADYCHKCD Input The inverse polarity of PREADYCD.

PSLVERRCD Input APB slave transfer error.

PSLVERRCHKCD Input The inverse polarity of PSLVERRCD.

Table B-60 Signals between the DebugBlock APB master and cluster APB slave

Signal Direction Description

PSELDC Input DebugBlock to cluster bus access.

PSELCHKDC Input The inverse polarity of PSELDC.

PADDRDC[19:2] Input APB address.

PADDRCHKDC[2:0] Input Odd parity of PADDRDC[19:2].

PENABLEDC Input APB transfer complete flag.

PENABLECHKDC Input The inverse polarity of PENABLEDC.

PWRITEDC Input APB read/write indicator. When asserted, indicates a write.

PCTRLCHKDC Input Odd parity of PWRITEDC.

PWDATADC[31:0] Input APB write data.

PWDATACHKDC[3:0] Input Odd parity of PWDATADC[31:0].

PWAKEUPDC Input APB activity indicator.

PWAKEUPCHKDC Input The inverse polarity of PWAKEUPDC.

PREADYDC Output APB slave ready, used to extend a transfer.

PRDATADC[31:0] Output APB read data.

PSLVERRDC Output APB slave transfer error.

Table B-61 Miscellaneous debug signals

Signal Direction Description

nCOMMIRQ[PE:0] Output Active-LOW, level-sensitive comms channel receive or transmit interrupt request.

nCOMMIRQCHK[PE:0] Output The inverse polarity of nCOMMIRQ[PE:0].

DBGEN Input Invasive debug enable.

DBGENCHK Input The inverse polarity of DBGEN.

NIDEN Input Non-invasive debug enable.

NIDENCHK Input The inverse polarity of NIDEN.

SPIDEN Input Secure privilege invasive debug enable.

SPIDENCHK Input The inverse polarity of SPIDEN.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-315

Non-Confidential

Table B-61 Miscellaneous debug signals (continued)

Signal Direction Description

SPNIDEN Input Secure privilege non-invasive debug enable.

SPNIDENCHK Input The inverse polarity of SPNIDEN.

DBGRSTREQ[PE:0] Output Debug reset request.

DBGRSTREQCHK[PE:0] Output The inverse polarity of DBGRSTREQ[PE:0].

DBGCONNECTED Input A debugger is connected and so the DebugBlock should be accessed on boot.

DBGCONNECTEDCHK Input The inverse polarity of DBGCONNECTED.

 Note

You can connect the DebugBlock signals directly to the cluster or you can put other standard APB
components between the two, such as register slices or asynchronous bridges.

B.2.17 ATB interface signals

This section describes the ATB interface signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-62 ATB interface signals

Signal Direction Description

ATREADYMx Input ATB device ready.

AFVALIDMx Input FIFO flush request.

ATDATAMx[31:0] Output Data.

ATVALIDMx Output Data valid.

ATBYTESMx[1:0] Output Data size.

AFREADYMx Output FIFO flush finished

ATIDMx[6:0] Output Trace source ID.

ATWAKEUPMx Output ATB activity indicator.

SYNCREQMx Input Synchronization request.

B.2.18 Timestamp signal

This section describes the timestamp signal.

The TSVALUEB input provides the incrementing count value that is required for generating the trace
timestamp for each core. The DSU‑AE includes an interpolator on the TSVALUEB input for each of the
cores.

The naming convention of this signal is explained in B.1 Signal naming convention
on page Appx-B-282.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-316

Non-Confidential

Table B-63 Timestamp signal

Signal Direction Description

TSVALUEB[63:0] Input Timestamp in binary encoding.

B.2.19 PMU interface signals

This section describes the Performance Monitoring Unit (PMU) interface signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-64 PMU interface signals

Signal Direction Description

COREINSTRRET[PE:0] Output Indicates that a core has retired at least one instruction recently. This signal is output from
the PERIPHCLK domain.

COREINSTRRUN[PE:0] Output Indicates that a core is in a running state (powered up and not in WFI or WFE low-power
states). This signal is output from the PERIPHCLK domain.

COREINSTRCHK[PE:0] Output Odd parity of {COREINSTRRET[PE:0], COREINSTRRUN[PE:0]}.

nCLUSTERPMUIRQ Output Active-LOW, level-sensitive Cluster PMU interrupt request. This signal is output from the
SCLK domain.

nCLUSTERPMUIRQCHK Output The inverse polarity of nCLUSTERPMUIRQ.

nPMBIRQ[PE:0] Output Active-LOW, level-sensitive SPE interrupt request. This signal only exists for cores that
support the architectural Statistical Profiling Extension (SPE). This signal is output from
the PERIPHCLK domain.

nPMBIRQCHK[PE:0] Output The inverse polarity of nPMBIRQ[PE:0].

nPMUIRQ[PE:0] Output Active-LOW, level-sensitive PMU interrupt request.

nPMUIRQCHK[PE:0] Output The inverse polarity of nPMUIRQ[PE:0].

PMUSNAPSHOTREQ Input Request for a snapshot of the PMU counters. When asserted, this signal must remain
HIGH until PMUSNAPSHOTACK is asserted. It must not be reasserted until
PMUSNAPSHOTACK is deasserted.

PMUSNAPSHOTREQCHK Input The inverse polarity of PMUSNAPSHOTREQ.

PMUSNAPSHOTACK Output Acknowledge a snapshot request. This signal forms a four-phase handshake with
PMUSNAPSHOTREQ.

PMUSNAPSHOTACKCHK Output The inverse polarity of PMUSNAPSHOTACK.

B.2.20 ELA signal

This section describes the ELA signal.

This signal is present only if ELA-500 support is configured.

The naming convention of this signal is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-65 ELA signal

Signal Direction Description

STOPCLOCK Output ELA request for the system to stop the clocks. This signal is generated from multiple clock domains and
must be synchronized in the system before use.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-317

Non-Confidential

B.2.21 DFT interface signals

This section describes the DFT interface signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-66 DFT interface signals

Signal Direction Description

DFTCGEN Input Forces on the clock gates during scan shift.

DFTCGENCHK Input Redundant DFTCGEN

DFTRSTDISABLE[1:0] Input Disables internal synchronized reset during scan shift.

DFTRSTDISABLECHK[1:0] Input Redundant DFTRSTDISABLE[1:0].

DFTRAMHOLD Input Disables the RAM chip select during scan shift.

DFTRAMHOLDCHK Input Redundant DFTRAMHOLD.

DFTMCPHOLD Input Disables Multicycle Paths on RAM interfaces.

DFTMCPHOLDCHK Input Redundant DFTMCPHOLD.

DFTCORECLKDISABLE[CN:0] Input Disables specific CORECLK signals from toggling during scan, to reduce
test power if only part of the design is being scanned.

DFTCORECLKDISABLECHK [CN:0] Input Redundant DFTCORECLKDISABLE[CN:0].

DFTCLKSELEN Input Forces the clock multiplexer inside the DSU‑AE to select the clock as defined
by DFTCLKSEL.

DFTCLKSELENCHK Input Redundant DFTCLKSELEN.

DFTCLKSEL Input This control allows the ATPG tool to control clocks and create test vectors.

DFTCLKSELCHK Input Redundant DFTCLKSEL.

DFTSCLKBYPASS Input Bypasses clock stretching logic on L3 data RAMs.
 Note

This signal is only present when the L3_DATA_STRETCH_CLK configuration
option is enabled. See A1.4 Implementation options on page A1-29.

DFTSCLKBYPASSCHK Input Redundant DFTSCLKBYPASS.

B.2.22 MBIST interface signals

This section describes the MBIST interface signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-67 MBIST interface signals

Signal Direction Description

MBISTREQ Input MBIST test request.

MBISTREQCHK Input Redundant MBISTREQ.

nMBISTRESET Input Resets paths that are required for MBIST transactions.

nMBISTRESETCHK Input Redundant nMBISTRESET.

B Signal descriptions
B.2 Cluster signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-318

Non-Confidential

B.3 DebugBlock signals
This section shows the DebugBlock signals.

This section contains the following subsections:
• B.3.1 Clock signal on page Appx-B-319.
• B.3.2 Reset signal on page Appx-B-319.
• B.3.3 Power and clock gate control signals on page Appx-B-319.
• B.3.4 Configuration signals on page Appx-B-320.
• B.3.5 Debug signals on page Appx-B-320.
• B.3.6 CTI interface signals on page Appx-B-322.
• B.3.7 DFT signals on page Appx-B-323.

B.3.1 Clock signal

The following table describes the clock signal to use for the DebugBlock.

All clocks are fully asynchronous to each other.

Table B-68 Clock signal

Signal Direction Description

PCLK Input Clock for the DebugBlock and APB interface.

B.3.2 Reset signal

This section describes the reset signal when using the DebugBlock.

The naming convention of this signal is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-69 Reset signal

Signal Direction Description

nPRESET Input Reset for all registers in the DebugBlock.

B.3.3 Power and clock gate control signals

This section describes the power and clock gate control signals when using the DebugBlock.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-70 Power and clock gate signals

Signal Direction Description

PWRQACTIVE Output Indicates that the DebugBlock requires power.

PWRQREQn Input Active-LOW signal that indicates that the power controller wants to power down the
DebugBlock.

PWRQACCEPTn Output Active-LOW signal that indicates that the DebugBlock accepts the power controller request. It
causes all future APB accesses to the DebugBlock to receive a PSLVERR response.

PWRQDENY Output Indicates that the DebugBlock denies the power controller request because of an ongoing
transaction.

PDBGCLKQACTIVE Output Indicates that the DebugBlock requires PCLK to be active.

B Signal descriptions
B.3 DebugBlock signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-319

Non-Confidential

Table B-70 Power and clock gate signals (continued)

Signal Direction Description

PDBGCLKQREQn Input Active-LOW signal that indicates that the clock controller wants to gate the clock.

PDBGCLKQACCEPTn Output Active-LOW signal that indicates that the DebugBlock accepts the clock controller request.

PDBGCLKQDENY Output Indicates that the DebugBlock denies the clock controller request.

B.3.4 Configuration signals

This section describes the configuration signals when using the DebugBlock.

All of these configuration pins are sampled only on reset.
 Note

The following signals must be tied to the same values as the corresponding cluster signals.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-71 Connection information for the configuration signals

Signal Direction Description

CLUSTERIDAFF2[7:0] Input Value that is read in ClusterID Affinity Level-2 field, MPIDR bits[23:16].

CLUSTERIDAFF3[7:0] Input Value that is read in ClusterID Affinity Level-3 field, MPIDR bits[39:32].

GICCDISABLE Input Globally disables the CPU interface logic and routes the external signals directly to the core.

ELADISABLE Input Disables the ELA logic inside the DSU‑AE and cores.
 Note

If ELA support is not enabled, this signal is not present. The ELA is intended only for silicon
debug of sampled devices.

CEMODE Input Selects the cluster execution mode at boot-time. The supported options are:

0b11 Lock-mode.

0b10 • If HYBRID_MODE=TRUE, then this option is Hybrid-mode.
• If HYBRID_MODE=FALSE, then this option is illegal.

0b01 Split-mode.

0b00 An illegal option.

 Note

For safety reasons, any illegal option is interpreted as being Lock-mode.

CEMODECHK Input Odd parity of CEMODE.

B.3.5 Debug signals

This section describes the debug signals when using the DebugBlock.

The interface between the DebugBlock and the cluster consists of a pair of APB interfaces, one in each
direction. Connect the signals on the cluster interface to the equivalently named signals on the
DebugBlock.

B Signal descriptions
B.3 DebugBlock signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-320

Non-Confidential

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-72 External debug APB interface signals

Signal Direction Description

PSELDBG Input APB select.

PADDRDBG[23:2] Input APB address.

PADDRDBG31 Input APB address bit[31].

Controls the ETM OS Lock mechanism.
 Note

Software lock is not supported.

PENABLEDBG Input APB enable.

PWRITEDBG Input APB read/write indicator. When asserted, indicates a write.

PWDATADBG[31:0] Input APB write data.

PWAKEUPDBG Input APB activity indicator.

PRDATADBG[31:0] Output APB read data.

PREADYDBG Output APB slave ready, used to extend a transfer.

PSLVERRDBG Output APB slave transfer error.

Table B-73 Debug authentication signals

Signal Direction Description

DBGEN Input Invasive debug enable.

NIDEN Input Non-invasive debug enable.

SPIDEN Input Secure privilege invasive debug enable.

SPNIDEN Input Secure privilege non-invasive debug enable.

DBGPWRUPREQ[PE:0] Output Request to power up a PE for debug.

CLUSTERDBGPWRUPREQ Output Request power to the cluster domain. Supports the powerup of Cluster-level ELA from
the external debugger.

Table B-74 Signals between the cluster APB master and the DebugBlock APB slave

Signal Direction Description

PSELCD Input APB select

PADDRCD[8:2] Input APB address

PENABLECD Input APB enable

PWDATACD[8:0] Input APB write data

PWAKEUPCD Input APB activity indicator

PREADYCD Output APB slave ready, used to extend a transfer

PREADYCHKCD Output The inverse polarity of PREADYCD.

B Signal descriptions
B.3 DebugBlock signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-321

Non-Confidential

Table B-74 Signals between the cluster APB master and the DebugBlock APB slave (continued)

Signal Direction Description

PSLVERRCD Output APB slave transfer error

PSLVERRCHKCD Output The inverse polarity of PSLVERRCD.

Table B-75 Signals between the DebugBlock APB master and the cluster APB slave

Signal Direction Description

PSELDC Output APB select

PSELCHKDC Output The inverse polarity of PSELDC.

PADDRDC[19:2] Output APB address

PADDRCHKDC[19:2] Output Odd parity of PADDRDC[19:2].

PENABLEDC Output APB enable

PENABLECHKDC Output The inverse polarity of PENABLEDC.

PWRITEDC Output APB read/write indicator. When asserted, indicates a write.

PCTRLCHKDC Output Odd parity of PWRITEDC.

PWDATADC[31:0] Output APB read data

PWDATACHKDC[31:0] Output Odd parity of PWDATADC[31:0].

PWAKEUPDC Output APB activity indicator

PWAKEUPCHKDC Output The inverse polarity of PWAKEUPDC.

PREADYDC Input APB slave ready, used to extend a transfer

PRDATADC[31:0] Input APB write data

PSLVERRDC Input APB slave transfer error

B.3.6 CTI interface signals

This section describes the CTI interface signals when using the DebugBlock.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-76 CTI interface signals

Signal Direction Description

CTICHIN[3:0] Input Channel In.

CTICHOUTACK[3:0] Input Channel Out acknowledge.

CTICHOUT[3:0] Output Channel Out.

CTICHINACK[3:0] Output Channel In acknowledge.

CTIIRQ[PE:0] Output Active-HIGH, edge-sensitive CTI interrupt.

CTIIRQACK[PE:0] Input CTI interrupt acknowledge.

CISBYPASS Input Channel interface sync bypass.

CIHSBYPASS[3:0] Input Channel interface H/S bypass.

B Signal descriptions
B.3 DebugBlock signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-322

Non-Confidential

B.3.7 DFT signals

This section describes the DFT signals when using the DebugBlock.

The naming convention of these signals is explained in B.1 Signal naming convention
on page Appx-B-282.

Table B-77 DFT interface signals

Signal Direction Description

DFTCGEN Input Forces on the clock gates during scan shift.

DFTRSTDISABLE[1:0] Input Disables internal synchronized reset during scan shift.

B Signal descriptions
B.3 DebugBlock signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-323

Non-Confidential

B Signal descriptions
B.3 DebugBlock signals

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved. Appx-B-324
Non-Confidential

Appendix C
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• C.1 Revisions on page Appx-C-326.

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-325

Non-Confidential

C.1 Revisions
This section describes the technical changes between released issues of this document.

Table C-1 Issue 0000-00

Change Location Affects

First release - -

Table C-2 Differences between issue 0000-00 and issue 0000-01

Change Location Affects

Changed the term and its expansion from DSU-SL to DSU-
AE.

Whole document r0p0

Various typographical improvements. Whole document r0p0

Changed the Split and Lock mode figures. A1.3.1 Implementing Split‑Lock on page A1-23 r0p0

Added the POP_RAM configuration parameter. A1.4 Implementation options on page A1-29 r0p0

Added the GIC architecture to the list of supported standards
and specifications.

A1.5 Supported standards and specifications on page A1-34 r0p0

Added a note below the ACE master interface attributes table. A6.4 ACE master interface attributes on page A6-93 r0p0

Added the Support for memory types topic. A6.7 Support for memory types on page A6-99 r0p0

Added a note below the Attributes of the CHI master memory
interface table.

A7.5 Attributes of the CHI master interface on page A7-110 r0p0

Added the Use of DataSource topic. A7.8 Use of DataSource on page A7-116 r0p0

Improved the description of the ACP performance topic. A8.5 ACP performance on page A8-123 r0p0

Renaming of various signals. Appendix B Signal descriptions r0p0

Table C-3 Differences between issue 0000-01 and issue 0100-00

Change Location Affects

Added the Hybrid mode to this description. A1.1 About the DSU‑AE on page A1-20 r1p0

Added the new features to this list. A1.2 Features on page A1-22 r1p0

Renamed and updated this section to include
and describe Hybrid mode.

A1.3 Split‑Lock on page A1-23 r1p0

Renamed and updated this section to include
and describe how all the 3 cluster execution
modes are implemented.

A1.3.1 Implementing Split‑Lock on page A1-23 r1p0

Added the new configuration parameters. A1.4 Implementation options on page A1-29 r1p0

C Revisions
C.1 Revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-326

Non-Confidential

Table C-3 Differences between issue 0000-01 and issue 0100-00 (continued)

Change Location Affects

Updated this description and specified how
the new Hybrid mode affects the total
number of supported cores.

A1.4.1 Cluster configurations on page A1-33 r1p0

Added Hybrid mode and other interface
changes.

A2.2 Interfaces on page A2-43 r1p0

Added this Interface protection section to
describe this feature.

A2.2.1 Interface protection on page A2-45 r1p0

Added this PBHA section to describe this
feature.

A2.4 Page-based hardware attributes on page A2-48 r1p0

Changed ReadShared description of the CHI
transaction types table from Not used to Not
supported.

A7.7 CHI transactions on page A7-113 r1p0

Updated this register. B1.7 CLUSTERCFR, Cluster Configuration Register on page B1-141 r1p0

Added read/write access examples for the
AArch64 state to the 'Usage constraints'
section of these Control registers.

B1.4 CLUSTERACPSID, Cluster ACP Scheme ID Register on page B1-135,
B1.6 CLUSTERBUSQOS, Cluster Bus QoS Control Register
on page B1-138, B1.7 CLUSTERCFR, Cluster Configuration Register
on page B1-141, B1.8 CLUSTERECTLR, Cluster Extended Control Register
on page B1-145, B1.9 CLUSTERIDR, Cluster Main Revision ID Register
on page B1-149, B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter Register
on page B1-151, B1.11 CLUSTERL3MISS, Cluster L3 Miss Counter Register
on page B1-153, B1.12 CLUSTERPARTCR, Cluster Partition Control
Register on page B1-155, B1.13 CLUSTERPWRCTLR, Cluster Power
Control Register on page B1-159, B1.14 CLUSTERPWRDN, Cluster
Powerdown Register on page B1-161, B1.15 CLUSTERPWRSTAT, Cluster
Power Status Register on page B1-163, B1.16 CLUSTERREVIDR, Cluster
Revision ID Register on page B1-165, B1.17 CLUSTERSTASHSID, Cluster
Stash Scheme ID Register on page B1-167, B1.18 CLUSTERTHREADSID,
Cluster Thread Scheme ID Register on page B1-169, and
B1.19 CLUSTERTHREADSIDOVR, Cluster Thread Scheme ID Override
Register on page B1-171

r1p0

Updated this register. B2.3 ERR1CTLR, Error Record Control Register on page B2-176 r1p0

Updated this register. B2.4 ERR1FR, Error Record Feature Register on page B2-178 r1p0

Table C-4 Differences between issue 0100-00 and issue 0100-01

Change Location Affects

Replaced SL_SAFETY_<P/R> with its
replacement signal of CEMODE.

A3.2 Resets on page A3-54 r1p0 and
later
revisions

Removed the AA64nAA32, CFGTE, and
VINITHI signals from these topics. These
signals enable the AArch32 state that the cores
compatible with the DSU‑AE do not support.

A3.2 Resets on page A3-54, B.2.2 Mode-dependent signals
on page Appx-B-283, and B.2.5 Configuration signals
on page Appx-B-286

r1p0 and
later
revisions

C Revisions
C.1 Revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-327

Non-Confidential

Table C-4 Differences between issue 0100-00 and issue 0100-01 (continued)

Change Location Affects

Added read/write access examples to the 'Usage
constraints' section of these Control registers.

B1.4 CLUSTERACPSID, Cluster ACP Scheme ID Register
on page B1-135, B1.6 CLUSTERBUSQOS, Cluster Bus QoS
Control Register on page B1-138, B1.7 CLUSTERCFR, Cluster
Configuration Register on page B1-141, B1.8 CLUSTERECTLR,
Cluster Extended Control Register on page B1-145,
B1.9 CLUSTERIDR, Cluster Main Revision ID Register
on page B1-149, B1.10 CLUSTERL3HIT, Cluster L3 Hit Counter
Register on page B1-151, B1.11 CLUSTERL3MISS, Cluster L3
Miss Counter Register on page B1-153, B1.12 CLUSTERPARTCR,
Cluster Partition Control Register on page B1-155,
B1.13 CLUSTERPWRCTLR, Cluster Power Control Register
on page B1-159, B1.14 CLUSTERPWRDN, Cluster Powerdown
Register on page B1-161, B1.15 CLUSTERPWRSTAT, Cluster
Power Status Register on page B1-163, B1.16 CLUSTERREVIDR,
Cluster Revision ID Register on page B1-165,
B1.17 CLUSTERSTASHSID, Cluster Stash Scheme ID Register
on page B1-167, B1.18 CLUSTERTHREADSID, Cluster Thread
Scheme ID Register on page B1-169, and
B1.19 CLUSTERTHREADSIDOVR, Cluster Thread Scheme ID
Override Register on page B1-171

r1p0 and
later
revisions

Added read/write access examples to the 'Usage
constraints' section of these PMU registers.

B3.4 CLUSTERPMCR, Cluster Performance Monitors Control
Register on page B3-196, B3.5 CLUSTERPMCNTENSET, Cluster
Count Enable Set Register on page B3-199,
B3.6 CLUSTERPMCNTENCLR, Cluster Count Enable Clear
Register on page B3-201, B3.7 CLUSTERPMOVSSET, Cluster
Overflow Flag Status Set Register on page B3-203,
B3.8 CLUSTERPMOVSCLR, Cluster Overflow Flag Status Clear
Register on page B3-205, B3.9 CLUSTERPMSELR, Cluster Event
Counter Selection Register on page B3-207,
B3.10 CLUSTERPMINTENSET, Cluster Interrupt Enable Set
Register on page B3-209, B3.11 CLUSTERPMINTENCLR, Cluster
Interrupt Enable Clear Register on page B3-211,
B3.12 CLUSTERPMCCNTR, Cluster Performance Monitors Cycle
Counter on page B3-213, B3.13 CLUSTERPMXEVTYPER, Cluster
Selected Event Type Register on page B3-215,
B3.14 CLUSTERPMXEVCNTR, Cluster Selected Event Counter
Register on page B3-217, B3.15 CLUSTERPMMDCR, Cluster
Monitor Debug Configuration Register on page B3-219,
B3.16 CLUSTERPMCEID0, Cluster Common Event Identification
Register 0 on page B3-221, B3.17 CLUSTERPMCEID1, Cluster
Common Event Identification Register 1 on page B3-223,
B3.18 CLUSTERCLAIMSET, Cluster Claim Tag Set Register
on page B3-225, and B3.19 CLUSTERCLAIMCLR, Cluster Claim
Tag Clear Register on page B3-227

r1p0 and
later
revisions

Renamed CLUSTERPMCCLAIMCLR to
CLUSTERCLAIMCLR and
CLUSTERPMCCLAIMSET to
CLUSTERCLAIMSET in these topics.

B3.2 AArch32 PMU register summary on page B3-193, and
B3.3 AArch64 PMU register summary on page B3-195

r1p0 and
later
revisions

C Revisions
C.1 Revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-328

Non-Confidential

Table C-4 Differences between issue 0100-00 and issue 0100-01 (continued)

Change Location Affects

Corrected the PCLK, ATCLK, and GICCLK
frequency requirement.

A3.1 Clocks on page A3-52 r1p0 and
later
revisions

Clarified the description of the ACP
performance.

A8.5 ACP performance on page A8-123 r1p0 and
later
revisions

Fixed the broken link of the NUM_SLICES
configuration parameter to refer to the correct
cross reference.

A1.4 Implementation options on page A1-29 r1p0 and
later
revisions

Removed the mode-specific Debug memory map
topics since these topics are no longer mode
dependant and replaced them with a single topic
instead.

C3.1 Debug memory map on page C3-252 r1p0 and
later
revisions

Removed the mode-specific note from the ROM
table register summary topic that no longer
applies.

C4.2 ROM table register summary on page C4-275 r1p0 and
later
revisions

Implemented the new naming conventions for
Split‑Lock, Lock-mode, Split-mode, and Hybrid-
mode.

Whole document r1p0 and
later
revisions

Added the interface protection signals to these
cluster signals.

B.2.1 Cluster execution mode signal on page Appx-B-283,
B.2.3 Clock and clock enable signals on page Appx-B-284,
B.2.4 Reset signals on page Appx-B-286, B.2.5 Configuration
signals on page Appx-B-286, B.2.7 GIC signals
on page Appx-B-293, and B.2.8 Generic Timer signals
on page Appx-B-295

r1p0 and
later
revisions

Added a separate topic describing the
configurable temporal diversity.

Configurable temporal diversity on page A1-26 r1p0 and
later
revisions

General reorganization, topic renaming, and
minor editing of these topics in the DSU‑AE
signal section.

B.2 Cluster signals on page Appx-B-283, B.2.1 Cluster execution
mode signal on page Appx-B-283, B.2.2 Mode-dependent signals
on page Appx-B-283, B.2.6 Fault signals on page Appx-B-287,
Cluster DCLS signals on page Appx-B-289, and Core DCLS
signals on page Appx-B-291

r1p0 and
later
revisions

Added the cluster InterFace Protection (IFP) fault
reporting and control signals topic.

Cluster IFP signals on page Appx-B-288 r1p0 and
later
revisions

Added the DCLS clock restrictions to the clock-
related signals.

A3.1 Clocks on page A3-52 r1p0 and
later
revisions

Updated the specification documentation
references for the interface protection topic and
Additional reading section.

A2.2.1 Interface protection on page A2-45 r1p0 and
later
revisions

C Revisions
C.1 Revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-329

Non-Confidential

Table C-4 Differences between issue 0100-00 and issue 0100-01 (continued)

Change Location Affects

Updated the registers and related values to reflect
the latest revision.

B1.9 CLUSTERIDR, Cluster Main Revision ID Register
on page B1-149, C3.5 CTIPIDR2, CTI Peripheral Identification
Register 2 on page C3-264, and C4.2 ROM table register summary
on page C4-275

r1p0

Updated the descriptions of the PMU events
(0x0500 - 0x0504) that refer to L3 prefetch
counters to specify the L3 prefetch and not stash
as they did previously.

C2.3 PMU events on page C2-246 All revisions

Removed all references to the L3 data cache and
replaced them the more accurate designation of
L3 unified cache.

A4.7 Wait For Interrupt and Wait For Event on page A4-71 and
B3.17 CLUSTERPMCEID1, Cluster Common Event Identification
Register 1 on page B3-223

All revisions

Added more specific connection information for
interrupt signals.

B.2.7 GIC signals on page Appx-B-293, B.2.8 Generic Timer
signals on page Appx-B-295, B.2.10 Error signals
on page Appx-B-299, B.2.16 DebugBlock APB interface signals
on page Appx-B-314, B.2.19 PMU interface signals
on page Appx-B-317, and B.3.6 CTI interface signals
on page Appx-B-322

All revisions

Describe how an interpolator is included on the
TSVALUEB input signal.

B.2.18 Timestamp signal on page Appx-B-316 All revisions

Amended the L3 cache section. A5.1 About the L3 cache on page A5-78, A5.3 L3 cache
partitioning on page A5-80, A5.4 Cache stashing on page A5-81,
A5.5 L3 cache ECC and parity on page A5-82, A5.6 L3 cache data
RAM latency on page A5-85, A5.7 Cache slices and portions
on page A5-87, A5.7.1 Cache slice and master port selection
on page A5-87, A5.7.2 Default number of L3 cache slices
on page A5-87, and A5.7.3 Implementing a 1.5MB L3 cache
on page A5-88

All revisions

Ensured the power modes use a consistent use of
the same case.

A4.5.1 Power mode transitions on page A4-63 All revisions

Amended the DebugBlock power states
description to describe a workaround due to an
erratum.

C1.3 About the DebugBlock on page C1-236 All revisions

Table C-5 Differences between issue 0100-01 and issue 0100-02

Change Location Affects

Various typographical improvements. Whole document r1p0 and later
revisions

Changed the order of the IFP fault reporting
and control signals in both this topic and the
bookmap.

B.2.6 Fault signals on page Appx-B-287 r1p0 and later
revisions

Improved the description of the CEMODE
signal.

B.2.1 Cluster execution mode signal on page Appx-B-283 r1p0 and later
revisions

C Revisions
C.1 Revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-330

Non-Confidential

Table C-5 Differences between issue 0100-01 and issue 0100-02 (continued)

Change Location Affects

Added the interface protection signals to
these cluster signals.

B.2.9 Power management signals on page Appx-B-296,
B.2.10 Error signals on page Appx-B-299, B.2.11 ACP interface
signals on page Appx-B-299, B.2.12 Peripheral port interface
signals on page Appx-B-302, B.2.14 ACE interface signals
on page Appx-B-305, B.2.15 CHI interface signals
on page Appx-B-310, B.2.16 DebugBlock APB interface signals
on page Appx-B-314, B.2.19 PMU interface signals
on page Appx-B-317, and B.2.22 MBIST interface signals
on page Appx-B-318

r1p0 and later
revisions

Added the interface protection signals to
these DebugBlock signals.

B.3.4 Configuration signals on page Appx-B-320 and
B.3.5 Debug signals on page Appx-B-320

r1p0 and later
revisions

Changed the default HYBRID_MODE
parameter value to TRUE.

A1.4 Implementation options on page A1-29 r1p0 and later
revisions

Updated this description to both align to
and refer to the similar section in the CSG.

A1.4.1 Cluster configurations on page A1-33 r1p0 and later
revisions

Added the *RESETCHK signals. A3.2 Resets on page A3-54 r1p0 and later
revisions

Added a note to the introductory text. C3.1 Debug memory map on page C3-252 r1p0 and later
revisions

Updated the heterogeneous cluster diagram. A1.1 About the DSU‑AE on page A1-20 r1p0 and later
revisions

Corrected the Components figure to
indicate that the L3 cache RAMs and snoop
filter RAM are not duplicated.

A2.1 Components on page A2-40 All revisions

Table C-6 Differences between issue 0100-02 and issue 0101-03

Change Location Affects

Updated the revised revision-related
values.

B1.9 CLUSTERIDR, Cluster Main Revision ID Register
on page B1-149, C3.5 CTIPIDR2, CTI Peripheral Identification
Register 2 on page C3-264, C4.2 ROM table register summary
on page C4-275, and A1.8 Product revisions on page A1-37

r1p1

Added another DCLS clock restriction. A3.1 Clocks on page A3-52 r1p1 and later
revisions

Amended the note to specify the
revised reset delay.

A4.3 Communication with the power controller on page A4-60 r1p1 and later
revisions

Amended the Non-Interrupt and
Interrupt mode-dependent signals
tables.

B.2.2 Mode-dependent signals on page Appx-B-283 r1p1 and later
revisions

Added a note to ignore functional
safety errors when the DSU‑AE is
placed in a test mode.

B.2.6 Fault signals on page Appx-B-287, Cluster IFP signals
on page Appx-B-288, Cluster DCLS signals on page Appx-B-289, Core
DCLS signals on page Appx-B-291, and Core RAS reporting signals
on page Appx-B-292

r1p1 and later
revisions

C Revisions
C.1 Revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-331

Non-Confidential

Table C-6 Differences between issue 0100-02 and issue 0101-03 (continued)

Change Location Affects

Clarified the Device and Normal Non-
cacheable transaction limits for ACE
and CHI.

A6.4 ACE master interface attributes on page A6-93 and
A7.5 Attributes of the CHI master interface on page A7-110

r0p0 and later
revisions

Updated the interfaces diagram to
specify up to two CHI interfaces.

A2.2 Interfaces on page A2-43 r0p0 and later
revisions

Table C-7 Differences between issue 0101-03 and issue 0101-04

Change Location Affects

Amended a note. Configurable temporal diversity on page A1-26 r1p0 and later revisions

Added a note to prevent false positive error
reporting.

A4.5.2 Power mode transition behavior on page A4-65 r1p1 and later revisions

Amended the CEMODECHK description. B.2.1 Cluster execution mode signal
on page Appx-B-283

r1p0 and later revisions

Amendments made to the description and tables
are referenced from the IM.

B.2.2 Mode-dependent signals on page Appx-B-283 r1p0 and later revisions

Amended the ACLKENCHKS signal name. B.2.3 Clock and clock enable signals
on page Appx-B-284

r1p0 and later revisions

Amended the ICCTREADYCHK direction. B.2.7 GIC signals on page Appx-B-293 r1p0 and later revisions

Amended the CNTSTATUS[1:0] description. B.2.8 Generic Timer signals on page Appx-B-295 r1p0 and later revisions

C Revisions
C.1 Revisions

101322_0101_04_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-332

Non-Confidential

	Arm® DynamIQ™ Shared Unit‑AE Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	Part A : Functional Description
	A1 : Introduction
	A1.1 : About the DSU‑AE
	A1.2 : Features
	A1.3 : Split‑Lock
	A1.3.1 : Implementing Split‑Lock
	Configurable temporal diversity

	A1.4 : Implementation options
	A1.4.1 : Cluster configurations

	A1.5 : Supported standards and specifications
	A1.6 : Test features
	A1.7 : Design tasks
	A1.8 : Product revisions

	A2 : Technical overview
	A2.1 : Components
	A2.2 : Interfaces
	A2.2.1 : Interface protection

	A2.3 : RAS support
	A2.4 : Page-based hardware attributes
	A2.5 : L3 memory system variants

	A3 : Clocks and resets
	A3.1 : Clocks
	A3.2 : Resets

	A4 : Power management
	A4.1 : About DSU-AE power management
	A4.2 : Power mode control
	A4.3 : Communication with the power controller
	A4.4 : L3 RAM power control
	A4.4.1 : L3 cache partial powerdown
	A4.4.2 : L3 RAM retention

	A4.5 : Power modes
	A4.5.1 : Power mode transitions
	A4.5.2 : Power mode transition behavior
	A4.5.3 : Interlocks between core and DSU P-Channels
	A4.5.4 : Power mode encoding

	A4.6 : Power operating requirements
	A4.6.1 : Power control for DFT

	A4.7 : Wait For Interrupt and Wait For Event
	A4.8 : Clock, voltage, and power domains
	A4.9 : Cluster powerdown
	A4.9.1 : Transitioning in and out of coherency
	Coherency signals naming convention

	A5 : L3 cache
	A5.1 : About the L3 cache
	A5.2 : L3 cache allocation policy
	A5.3 : L3 cache partitioning
	A5.4 : Cache stashing
	A5.5 : L3 cache ECC and parity
	A5.6 : L3 cache data RAM latency
	A5.7 : Cache slices and portions
	A5.7.1 : Cache slice and master port selection
	A5.7.2 : Default number of L3 cache slices
	A5.7.3 : Implementing a 1.5MB L3 cache

	A6 : ACE master interface
	A6.1 : About the ACE master interface
	A6.1.1 : Dual ACE interfaces

	A6.2 : ACE configurations
	A6.3 : ACE features
	A6.4 : ACE master interface attributes
	A6.5 : ACE channel properties
	A6.6 : ACE transactions
	A6.7 : Support for memory types
	A6.8 : Read response
	A6.9 : Write response
	A6.10 : Barriers
	A6.11 : AXI compatibility mode
	A6.11.1 : Additional logic to support AXI compatibility

	A6.12 : ACE privilege information

	A7 : CHI master interface
	A7.1 : About the CHI master interface
	A7.1.1 : Dual CHI interfaces

	A7.2 : CHI version
	A7.3 : CHI features
	A7.4 : CHI configurations
	A7.5 : Attributes of the CHI master interface
	A7.6 : CHI channel properties
	A7.7 : CHI transactions
	A7.8 : Use of DataSource

	A8 : ACP slave interface
	A8.1 : About the ACP
	A8.2 : ACP features
	A8.3 : ACP ACE5-Lite subset
	A8.4 : ACP transaction types
	A8.5 : ACP performance

	A9 : AXI master peripheral port
	A9.1 : About the peripheral port
	A9.2 : Transaction ID encoding

	Part B : Register Descriptions
	B1 : Control registers
	B1.1 : About the control registers
	B1.2 : AArch32 control register summary
	B1.3 : AArch64 control register summary
	B1.4 : CLUSTERACPSID, Cluster ACP Scheme ID Register
	B1.5 : CLUSTERACTLR, Cluster Auxiliary Control Register
	B1.6 : CLUSTERBUSQOS, Cluster Bus QoS Control Register
	B1.7 : CLUSTERCFR, Cluster Configuration Register
	B1.8 : CLUSTERECTLR, Cluster Extended Control Register
	B1.9 : CLUSTERIDR, Cluster Main Revision ID Register
	B1.10 : CLUSTERL3HIT, Cluster L3 Hit Counter Register
	B1.11 : CLUSTERL3MISS, Cluster L3 Miss Counter Register
	B1.12 : CLUSTERPARTCR, Cluster Partition Control Register
	B1.13 : CLUSTERPWRCTLR, Cluster Power Control Register
	B1.14 : CLUSTERPWRDN, Cluster Powerdown Register
	B1.15 : CLUSTERPWRSTAT, Cluster Power Status Register
	B1.16 : CLUSTERREVIDR, Cluster Revision ID Register
	B1.17 : CLUSTERSTASHSID, Cluster Stash Scheme ID Register
	B1.18 : CLUSTERTHREADSID, Cluster Thread Scheme ID Register
	B1.19 : CLUSTERTHREADSIDOVR, Cluster Thread Scheme ID Override Register

	B2 : Error system registers
	B2.1 : About the error system registers
	B2.2 : Error system register summary
	B2.3 : ERR1CTLR, Error Record Control Register
	B2.4 : ERR1FR, Error Record Feature Register
	B2.5 : ERR1MISC0, Error Record Miscellaneous Register 0
	B2.6 : ERR1MISC1, Error Record Miscellaneous Register 1
	B2.7 : ERR1PFGCDNR, Error Pseudo Fault Generation Count Down Register
	B2.8 : ERR1PFGCTLR, Error Pseudo Fault Generation Control Register
	B2.9 : ERR1PFGFR, Error Pseudo Fault Generation Feature Register
	B2.10 : ERR1STATUS, Error Record Primary Status Register

	B3 : PMU registers
	B3.1 : About the PMU registers
	B3.2 : AArch32 PMU register summary
	B3.3 : AArch64 PMU register summary
	B3.4 : CLUSTERPMCR, Cluster Performance Monitors Control Register
	B3.5 : CLUSTERPMCNTENSET, Cluster Count Enable Set Register
	B3.6 : CLUSTERPMCNTENCLR, Cluster Count Enable Clear Register
	B3.7 : CLUSTERPMOVSSET, Cluster Overflow Flag Status Set Register
	B3.8 : CLUSTERPMOVSCLR, Cluster Overflow Flag Status Clear Register
	B3.9 : CLUSTERPMSELR, Cluster Event Counter Selection Register
	B3.10 : CLUSTERPMINTENSET, Cluster Interrupt Enable Set Register
	B3.11 : CLUSTERPMINTENCLR, Cluster Interrupt Enable Clear Register
	B3.12 : CLUSTERPMCCNTR, Cluster Performance Monitors Cycle Counter
	B3.13 : CLUSTERPMXEVTYPER, Cluster Selected Event Type Register
	B3.14 : CLUSTERPMXEVCNTR, Cluster Selected Event Counter Register
	B3.15 : CLUSTERPMMDCR, Cluster Monitor Debug Configuration Register
	B3.16 : CLUSTERPMCEID0, Cluster Common Event Identification Register 0
	B3.17 : CLUSTERPMCEID1, Cluster Common Event Identification Register 1
	B3.18 : CLUSTERCLAIMSET, Cluster Claim Tag Set Register
	B3.19 : CLUSTERCLAIMCLR, Cluster Claim Tag Clear Register
	B3.20 : CLUSTERPMEVTYPER<n>, Cluster Event Type Register
	B3.21 : CLUSTERPMEVCNTR<n>, Cluster Event Counter Register

	Part C : Debug
	C1 : Debug
	C1.1 : About debug methods
	C1.2 : Terminology
	C1.3 : About the DebugBlock
	C1.4 : DebugBlock components
	C1.5 : About the Embedded Cross Trigger
	C1.5.1 : Supported debug and trace trigger events

	C1.6 : CTI triggers

	C2 : PMU
	C2.1 : About the PMU
	C2.2 : PMU functional description
	C2.3 : PMU events
	C2.4 : PMU interrupts

	C3 : Debug registers
	C3.1 : Debug memory map
	C3.2 : CTI register summary
	C3.3 : CTIPIDR0, CTI Peripheral Identification Register 0
	C3.4 : CTIPIDR1, CTI Peripheral Identification Register 1
	C3.5 : CTIPIDR2, CTI Peripheral Identification Register 2
	C3.6 : CTIPIDR3, CTI Peripheral Identification Register 3
	C3.7 : CTIPIDR4, CTI Peripheral Identification Register 4
	C3.8 : CTIITCTRL, CTI Integration Mode Control Register
	C3.9 : CTIDEVAFF0, Cluster CTI Device Affinity register 0
	C3.10 : CTIDEVID, CTI Device Identification Register
	C3.11 : External register access permissions

	C4 : ROM table
	C4.1 : About the ROM table
	C4.2 : ROM table register summary

	Part D : Appendices
	A : Compatible Core Versions
	A.1 : Compatible Core Versions

	B : Signal descriptions
	B.1 : Signal naming convention
	B.2 : Cluster signals
	B.2.1 : Cluster execution mode signal
	B.2.2 : Mode-dependent signals
	B.2.3 : Clock and clock enable signals
	B.2.4 : Reset signals
	B.2.5 : Configuration signals
	B.2.6 : Fault signals
	Cluster IFP signals
	Cluster DCLS signals
	Core DCLS signals
	Core RAS reporting signals

	B.2.7 : GIC signals
	B.2.8 : Generic Timer signals
	B.2.9 : Power management signals
	B.2.10 : Error signals
	B.2.11 : ACP interface signals
	B.2.12 : Peripheral port interface signals
	B.2.13 : Broadcast signals for the memory interface
	B.2.14 : ACE interface signals
	B.2.15 : CHI interface signals
	System address map signals

	B.2.16 : DebugBlock APB interface signals
	B.2.17 : ATB interface signals
	B.2.18 : Timestamp signal
	B.2.19 : PMU interface signals
	B.2.20 : ELA signal
	B.2.21 : DFT interface signals
	B.2.22 : MBIST interface signals

	B.3 : DebugBlock signals
	B.3.1 : Clock signal
	B.3.2 : Reset signal
	B.3.3 : Power and clock gate control signals
	B.3.4 : Configuration signals
	B.3.5 : Debug signals
	B.3.6 : CTI interface signals
	B.3.7 : DFT signals

	C : Revisions
	C.1 : Revisions

