
ARM® Compiler
Version 6.6

armlink User Guide

Copyright © 2014-2016 ARM Limited or its affiliates. All rights reserved.
ARM DUI0803G

Vasee Vinayagamoorthy (vvinayag@arm.com)
Review PDF

ARM® Compiler
armlink User Guide
Copyright © 2014-2016 ARM Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential ARM Compiler v6.00 Release

B 15 December 2014 Non-Confidential ARM Compiler v6.01 Release

C 30 June 2015 Non-Confidential ARM Compiler v6.02 Release

D 18 November 2015 Non-Confidential ARM Compiler v6.3 Release

E 24 February 2016 Non-Confidential ARM Compiler v6.4 Release

F 29 June 2016 Non-Confidential ARM Compiler v6.5 Release

G 04 November 2016 Non-Confidential ARM Compiler v6.6 Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2014-2016, ARM Limited or its affiliates. All rights reserved.

 ARM® Compiler

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 ARM® Compiler

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com

Contents
ARM® Compiler armlink User Guide

Preface
About this book 14

Chapter 1 Overview of the Linker
1.1 About the linker .. 1-17
1.2 Linker command-line syntax .. 1-20
1.3 What the linker does when constructing an executable image 1-21
1.4 Support level definitions 1-22

Chapter 2 Linking Models Supported by armlink
2.1 Overview of linking models .. 2-26
2.2 Bare-metal linking model 2-27
2.3 Partial linking model 2-29
2.4 Base Platform Application Binary Interface (BPABI) linking model 2-30
2.5 Base Platform linking model .. 2-31

Chapter 3 Image Structure and Generation
3.1 The structure of an ARM ELF image 3-34
3.2 Simple images 3-42
3.3 Section placement with the linker .. 3-49
3.4 Linker support for creating demand-paged files 3-53
3.5 Linker reordering of execution regions containing T32 code 3-54
3.6 Linker-generated veneers .. 3-55
3.7 Command-line options used to control the generation of C++ exception tables 3-59

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.8 Weak references and definitions 3-60
3.9 How the linker performs library searching, selection, and scanning 3-62
3.10 How the linker searches for the ARM standard libraries 3-63
3.11 Specifying user libraries when linking .. 3-64
3.12 How the linker resolves references 3-65
3.13 The strict family of linker options 3-66

Chapter 4 Linker Optimization Features
4.1 Elimination of common debug sections 4-68
4.2 Elimination of common groups or sections .. 4-69
4.3 Elimination of unused sections .. 4-70
4.4 Optimization with RW data compression 4-71
4.5 Function inlining with the linker .. 4-74
4.6 Factors that influence function inlining 4-75
4.7 About branches that optimize to a NOP 4-77
4.8 Linker reordering of tail calling sections 4-78
4.9 Restrictions on reordering of tail calling sections 4-79
4.10 Linker merging of comment sections 4-80
4.11 Merging identical constants 4-81

Chapter 5 Getting Image Details
5.1 Options for getting information about linker-generated files 5-84
5.2 Identifying the source of some link errors .. 5-85
5.3 Example of using the --info linker option 5-86
5.4 How to find where a symbol is placed when linking 5-88

Chapter 6 Accessing and Managing Symbols with armlink
6.1 About mapping symbols 6-90
6.2 Linker-defined symbols .. 6-91
6.3 Region-related symbols 6-92
6.4 Section-related symbols 6-97
6.5 Access symbols in another image 6-99
6.6 Edit the symbol tables with a steering file .. 6-102
6.7 Use of $Super$$ and $Sub$$ to patch symbol definitions 6-105

Chapter 7 Scatter-loading Features
7.1 The scatter-loading mechanism 7-107
7.2 Root region and the initial entry point 7-113
7.3 Example of how to explicitly place a named section with scatter-loading 7-127
7.4 Placing unassigned sections 7-129
7.5 Placing veneers with a scatter file 7-140
7.6 Placement of CMSE veneer sections for a Secure image 7-141
7.7 Reserving an empty block of memory 7-143
7.8 Placing ARM® C and C++ library code 7-145
7.9 Aligning regions to page boundaries 7-148
7.10 Aligning execution regions and input sections 7-150
7.11 Preprocessing a scatter file 7-151
7.12 Example of using expression evaluation in a scatter file to avoid padding 7-152
7.13 Equivalent scatter-loading descriptions for simple images 7-153
7.14 How the linker resolves multiple matches when processing scatter files 7-160
7.15 How the linker resolves path names when processing scatter files 7-162

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

5

Non-Confidential

7.16 Scatter file to ELF mapping 7-163

Chapter 8 Scatter File Syntax
8.1 BNF notation used in scatter-loading description syntax 8-166
8.2 Syntax of a scatter file 8-167
8.3 Load region descriptions 8-168
8.4 Execution region descriptions .. 8-174
8.5 Input section descriptions .. 8-181
8.6 Expression evaluation in scatter files 8-185

Chapter 9 BPABI Shared Libraries and Executables
9.1 About the Base Platform Application Binary Interface (BPABI) 9-194
9.2 Platforms supported by the BPABI 9-195
9.3 Features common to all BPABI models 9-196
9.4 Bare metal and DLL-like memory models 9-199
9.5 Symbol versioning 9-204

Chapter 10 Features of the Base Platform Linking Model
10.1 Restrictions on the use of scatter files with the Base Platform model 10-208
10.2 Scatter files for the Base Platform linking model 10-210
10.3 Placement of PLT sequences with the Base Platform model 10-212

Chapter 11 Linker Command-line Options
11.1 --any_contingency 11-217
11.2 --any_placement=algorithm 11-218
11.3 --any_sort_order=order .. 11-220
11.4 --api, --no_api 11-221
11.5 --autoat, --no_autoat .. 11-222
11.6 --bare_metal_pie .. 11-223
11.7 --base_platform .. 11-224
11.8 --bestdebug, --no_bestdebug 11-226
11.9 --blx_arm_thumb, --no_blx_arm_thumb 11-227
11.10 --blx_thumb_arm, --no_blx_thumb_arm 11-228
11.11 --bpabi .. 11-229
11.12 --branchnop, --no_branchnop .. 11-230
11.13 --callgraph, --no_callgraph 11-231
11.14 --callgraph_file=filename .. 11-233
11.15 --callgraph_output=fmt 11-234
11.16 --callgraph_subset=symbol[,symbol,...] 11-235
11.17 --cgfile=type 11-236
11.18 --cgsymbol=type 11-237
11.19 --cgundefined=type .. 11-238
11.20 --comment_section, --no_comment_section .. 11-239
11.21 --compress_debug, --no_compress_debug 11-240
11.22 --cppinit, --no_cppinit 11-241
11.23 --cpu=list .. 11-242
11.24 --cpu=name .. 11-243
11.25 --crosser_veneershare, --no_crosser_veneershare 11-245
11.26 --datacompressor=opt .. 11-246
11.27 --debug, --no_debug .. 11-247
11.28 --diag_error=tag[,tag,…] 11-248

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6

Non-Confidential

11.29 --diag_remark=tag[,tag,…] 11-249
11.30 --diag_style=arm|ide|gnu 11-250
11.31 --diag_suppress=tag[,tag,…] 11-251
11.32 --diag_warning=tag[,tag,…] 11-252
11.33 --dll 11-253
11.34 --dynamic_linker=name 11-254
11.35 --eager_load_debug, --no_eager_load_debug .. 11-255
11.36 --eh_frame_hdr .. 11-256
11.37 --edit=file_list .. 11-257
11.38 --emit_debug_overlay_relocs 11-258
11.39 --emit_debug_overlay_section 11-259
11.40 --emit_non_debug_relocs .. 11-260
11.41 --emit_relocs .. 11-261
11.42 --entry=location .. 11-262
11.43 --errors=filename 11-263
11.44 --exceptions, --no_exceptions .. 11-264
11.45 --export_all, --no_export_all 11-265
11.46 --export_dynamic, --no_export_dynamic 11-266
11.47 --filtercomment, --no_filtercomment 11-267
11.48 --fini=symbol 11-268
11.49 --first=section_id 11-269
11.50 --force_explicit_attr 11-270
11.51 --force_so_throw, --no_force_so_throw 11-271
11.52 --fpic 11-272
11.53 --fpu=list 11-273
11.54 --fpu=name 11-274
11.55 --got=type 11-275
11.56 --gnu_linker_defined_syms .. 11-276
11.57 --help .. 11-277
11.58 --import_cmse_lib_in=filename .. 11-278
11.59 --import_cmse_lib_out=filename .. 11-279
11.60 --info=topic[,topic,…] .. 11-280
11.61 --info_lib_prefix=opt 11-283
11.62 --init=symbol 11-284
11.63 --inline, --no_inline 11-285
11.64 --inlineveneer, --no_inlineveneer 11-286
11.65 input-file-list .. 11-287
11.66 --keep=section_id 11-288
11.67 --keep_intermediate 11-290
11.68 --largeregions, --no_largeregions 11-291
11.69 --last=section_id 11-292
11.70 --legacyalign, --no_legacyalign .. 11-293
11.71 --libpath=pathlist 11-294
11.72 --library=name .. 11-295
11.73 --library_type=lib .. 11-296
11.74 --list=filename 11-297
11.75 --list_mapping_symbols, --no_list_mapping_symbols 11-298
11.76 --load_addr_map_info, --no_load_addr_map_info 11-299
11.77 --locals, --no_locals .. 11-300
11.78 --lto, --no_lto 11-301

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7

Non-Confidential

11.79 --lto_keep_all_symbols, --no_lto_keep_all_symbols 11-303
11.80 --lto_intermediate_filename 11-304
11.81 --lto_level 11-305
11.82 --lto_relocation_model 11-307
11.83 --mangled, --unmangled 11-308
11.84 --map, --no_map .. 11-309
11.85 --match=crossmangled 11-310
11.86 --max_er_extension=size 11-311
11.87 --max_veneer_passes=value 11-312
11.88 --max_visibility=type 11-313
11.89 --merge, --no_merge .. 11-314
11.90 --merge_litpools, --no_merge_litpools 11-315
11.91 --muldefweak, --no_muldefweak .. 11-316
11.92 -o filename, --output=filename 11-317
11.93 --output_float_abi=option 11-318
11.94 --overlay_veneers .. 11-319
11.95 --override_visibility 11-320
11.96 -Omax .. 11-321
11.97 --pad=num 11-322
11.98 --paged 11-323
11.99 --pagesize=pagesize .. 11-324
11.100 --partial 11-325
11.101 --pie .. 11-326
11.102 --piveneer, --no_piveneer 11-327
11.103 --pltgot=type 11-328
11.104 --pltgot_opts=mode .. 11-329
11.105 --predefine="string" .. 11-330
11.106 --preinit, --no_preinit 11-331
11.107 --privacy 11-332
11.108 --ref_cpp_init, --no_ref_cpp_init 11-333
11.109 --ref_pre_init, --no_ref_pre_init .. 11-334
11.110 --reloc 11-335
11.111 --remarks 11-336
11.112 --remove, --no_remove .. 11-337
11.113 --ro_base=address 11-338
11.114 --ropi 11-339
11.115 --rosplit 11-340
11.116 --rw_base=address .. 11-341
11.117 --rwpi .. 11-342
11.118 --scanlib, --no_scanlib .. 11-343
11.119 --scatter=filename .. 11-344
11.120 --section_index_display=type 11-346
11.121 --show_cmdline .. 11-347
11.122 --show_full_path 11-348
11.123 --show_parent_lib 11-349
11.124 --show_sec_idx .. 11-350
11.125 --sort=algorithm .. 11-351
11.126 --split .. 11-353
11.127 --startup=symbol, --no_startup 11-354
11.128 --stdlib .. 11-355

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8

Non-Confidential

11.129 --strict 11-356
11.130 --strict_enum_size, --no_strict_enum_size .. 11-357
11.131 --strict_flags, --no_strict_flags .. 11-358
11.132 --strict_ph, --no_strict_ph 11-359
11.133 --strict_relocations, --no_strict_relocations .. 11-360
11.134 --strict_symbols, --no_strict_symbols 11-361
11.135 --strict_visibility, --no_strict_visibility 11-362
11.136 --strict_wchar_size, --no_strict_wchar_size 11-363
11.137 --symbols, --no_symbols .. 11-364
11.138 --symdefs=filename 11-365
11.139 --symver_script=filename 11-366
11.140 --symver_soname .. 11-367
11.141 --tailreorder, --no_tailreorder .. 11-368
11.142 --tiebreaker=option 11-369
11.143 --unaligned_access, --no_unaligned_access 11-370
11.144 --undefined=symbol 11-371
11.145 --undefined_and_export=symbol 11-372
11.146 --unresolved=symbol 11-373
11.147 --use_definition_visibility .. 11-374
11.148 --userlibpath=pathlist 11-375
11.149 --veneerinject, --no_veneerinject 11-376
11.150 --veneer_inject_type=type 11-377
11.151 --veneer_pool_size=size .. 11-378
11.152 --veneershare, --no_veneershare .. 11-379
11.153 --verbose .. 11-380
11.154 --version_number 11-381
11.155 --via=filename .. 11-382
11.156 --vsn 11-383
11.157 --xo_base=address .. 11-384
11.158 --xref, --no_xref .. 11-385
11.159 --xrefdbg, --no_xrefdbg .. 11-386
11.160 --xref{from|to}=object(section) 11-387
11.161 --zi_base=address 11-388

Chapter 12 Linker Steering File Command Reference
12.1 EXPORT steering file command .. 12-390
12.2 HIDE steering file command .. 12-391
12.3 IMPORT steering file command 12-392
12.4 RENAME steering file command 12-393
12.5 REQUIRE steering file command .. 12-394
12.6 RESOLVE steering file command .. 12-395
12.7 SHOW steering file command 12-397

Chapter 13 Via File Syntax
13.1 Overview of via files 13-399
13.2 Via file syntax rules .. 13-400

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9

Non-Confidential

List of Figures
ARM® Compiler armlink User Guide

Figure 1-1 Integration boundaries in ARM Compiler 6. ... 1-23
Figure 3-1 Relationship between sections, regions, and segments .. 3-35
Figure 3-2 Load and execution memory maps for an image without an XO section 3-37
Figure 3-3 Load and execution memory maps for an image with an XO section 3-37
Figure 3-4 Simple Type 1 image ... 3-43
Figure 3-5 Simple Type 2 image ... 3-45
Figure 3-6 Simple Type 3 image ... 3-47
Figure 7-1 Simple scatter-loaded memory map .. 7-110
Figure 7-2 Complex memory map ... 7-111
Figure 7-3 Memory map for fixed execution regions ... 7-115
Figure 7-4 .ANY contingency .. 7-137
Figure 7-5 Reserving a region for the stack .. 7-144
Figure 8-1 Components of a scatter file .. 8-167
Figure 8-2 Components of a load region description .. 8-168
Figure 8-3 Components of an execution region description ... 8-174
Figure 8-4 Components of an input section description .. 8-181
Figure 9-1 BPABI tool flow .. 9-194

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

10

Non-Confidential

List of Tables
ARM® Compiler armlink User Guide

Table 3-1 Comparing load and execution views .. 3-37
Table 3-2 Comparison of scatter file and equivalent command-line options ... 3-38
Table 4-1 Inlining small functions ... 4-75
Table 6-1 Image$$ execution region symbols .. 6-92
Table 6-2 Load$$ execution region symbols .. 6-93
Table 6-3 Load$$LR$$ load region symbols .. 6-95
Table 6-4 Image symbols ... 6-97
Table 6-5 Section-related symbols ... 6-98
Table 6-6 Steering file command summary ... 6-102
Table 7-1 Input section properties for placement of .ANY sections ... 7-132
Table 7-2 Input section properties for placement of sections with next_fit .. 7-134
Table 7-3 Input section properties for sections_a.o ... 7-135
Table 7-4 Input section properties for sections_b.o ... 7-135
Table 7-5 Sort order for descending_size algorithm .. 7-136
Table 7-6 Sort order for cmdline algorithm .. 7-136
Table 8-1 BNF notation ... 8-166
Table 8-2 Execution address related functions ... 8-187
Table 8-3 Load address related functions .. 8-188
Table 9-1 Symbol visibility ... 9-197
Table 9-2 Turning on BPABI support ... 9-200
Table 11-1 Supported ARM architectures .. 11-243
Table 11-2 Data compressor algorithms .. 11-246
Table 11-3 GNU equivalent of input sections ... 11-276

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11

Non-Confidential

Table 11-4 Link time optimization dependencies ... 11-301

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12

Non-Confidential

Preface

This preface introduces the ARM® Compiler armlink User Guide .

It contains the following:
• About this book on page 14.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

13

Non-Confidential

 About this book
ARM® Compiler armlink User Guide provides user information for the ARM linker, armlink. It
describes the basic linker functionality, image structure, BPABI support, how to access image symbols,
and how to use scatter files.

 Using this book

This book is organized into the following chapters:

Chapter 1 Overview of the Linker
Gives an overview of the ARM linker, armlink.

Chapter 2 Linking Models Supported by armlink
Describes the linking models supported by the ARM linker, armlink.

Chapter 3 Image Structure and Generation
Describes the image structure and the functionality available in the ARM linker, armlink, to
generate images.

Chapter 4 Linker Optimization Features
Describes the optimization features available in the ARM linker, armlink.

Chapter 5 Getting Image Details
Describes how to get image details from the ARM linker, armlink.

Chapter 6 Accessing and Managing Symbols with armlink
Describes how to access and manage symbols with the ARM linker, armlink.

Chapter 7 Scatter-loading Features
Describes the scatter-loading features and how you use scatter files with the ARM linker,
armlink, to create complex images.

Chapter 8 Scatter File Syntax
Describes the format of scatter files.

Chapter 9 BPABI Shared Libraries and Executables
Describes how the ARM linker, armlink, supports the Base Platform Application Binary
Interface (BPABI) shared libraries and executables.

Chapter 10 Features of the Base Platform Linking Model
Describes features of the Base Platform linking model supported by the ARM linker, armlink.

Chapter 11 Linker Command-line Options
Describes the command-line options supported by the ARM linker, armlink.

Chapter 12 Linker Steering File Command Reference
Describes the steering file commands supported by the ARM linker, armlink.

Chapter 13 Via File Syntax
Describes the syntax of via files accepted by armlink.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

 Preface
 About this book

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

14

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title ARM® Compiler armlink User Guide .
• The number ARM DUI0803G.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

15

Non-Confidential

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Overview of the Linker

Gives an overview of the ARM linker, armlink.

It contains the following sections:
• 1.1 About the linker on page 1-17.
• 1.2 Linker command-line syntax on page 1-20.
• 1.3 What the linker does when constructing an executable image on page 1-21.
• 1.4 Support level definitions on page 1-22.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.1 About the linker
The linker combines the contents of one or more object files with selected parts of one or more object
libraries to produce executable images, partially linked object files, or shared object files.

This section contains the following subsections:
• 1.1.1 Summary of the linker features on page 1-17.
• 1.1.2 What the linker can accept as input on page 1-18.
• 1.1.3 What the linker outputs on page 1-18.

1.1.1 Summary of the linker features

The linker has many features for linking input files to generate various types of output files.

The linker can:
• Link A32 and T32 code, or A64 code.
• Generate interworking veneers to switch between A32 and T32 states when required.
• Generate range extension veneers, where required, to extend the range of branch instructions.
• Automatically select the appropriate standard C or C++ library variants to link with, based on the

build attributes of the objects it is linking.
• Enable you to specify the locations of code and data within the system memory map, using either a

command-line option or a scatter file.
• Perform RW data compression to minimize ROM size.
• Eliminate unused sections to reduce the size of your output image.
• Control the generation of debug information in the output file.
• Generate a static callgraph and list the stack usage.
• Control the contents of the symbol table in output images.
• Show the sizes of code and data in the output.
• Build images suitable for all states of the ARMv8-M Security Extensions.

 Note

Be aware of the following:
• Generated code might be different between two ARM® Compiler releases.
• For a feature release, there might be significant code generation differences.

 Note

The command-line option descriptions and related information in the individual ARM Compiler tools
documents describe all the features that ARM Compiler supports. Any features not documented are not
supported and are used at your own risk. You are responsible for making sure that any generated code
using community features on page 1-22 is operating correctly.

Related concepts
3.4 Linker support for creating demand-paged files on page 3-53.
7.6 Placement of CMSE veneer sections for a Secure image on page 7-141.

Related references
Chapter 2 Linking Models Supported by armlink on page 2-25.
Chapter 3 Image Structure and Generation on page 3-33.
Chapter 4 Linker Optimization Features on page 4-67.
Chapter 5 Getting Image Details on page 5-83.
Chapter 6 Accessing and Managing Symbols with armlink on page 6-89.
Chapter 7 Scatter-loading Features on page 7-106.

1 Overview of the Linker
1.1 About the linker

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

Chapter 9 BPABI Shared Libraries and Executables on page 9-193.
Chapter 10 Features of the Base Platform Linking Model on page 10-207.

Related information
Base Platform ABI for the ARM Architecture.

1.1.2 What the linker can accept as input

armlink can accept one or more object files from toolchains that support ARM ELF.

Object files must be formatted as ARM ELF. This format is described in:
• ELF for the ARM Architecture (ARM IHI 0044).
• ELF for the ARM 64-bit Architecture (AArch64) (ARM IHI 0056).

Optionally, the following files can be used as input to armlink:
• One or more libraries created by the librarian, armar.
• A symbol definitions file.
• A scatter file.
• A steering file.
• A Secure code import library when building a Non-secure image that needs to call a Secure image.
• A Secure code import library when building a Secure image that has to use the entry addresses in a

previously generated import library.

Related concepts
6.5 Access symbols in another image on page 6-99.

Related references
Chapter 7 Scatter-loading Features on page 7-106.
Chapter 12 Linker Steering File Command Reference on page 12-389.
Chapter 8 Scatter File Syntax on page 8-165.
11.58 --import_cmse_lib_in=filename on page 11-278.

Related information
About the ARM librarian.
Building Secure and Non-secure Images Using ARMv8-M Security Extensions.
ELF for the ARM Architecture (ARM IHI 0044).
ELF for the ARM 64-bit Architecture (AArch64) (ARM IHI 0056).

1.1.3 What the linker outputs

armlink can create executable images and object files.

Output from armlink can be:
• An ELF executable image.
• A partially linked ELF object that can be used as input in a subsequent link step.
• A Secure code import library that is required by developers building a Non-secure image that needs

to call a Secure image.

 Note

You can also use fromelf to convert an ELF executable image to other file formats, or to display,
process, and protect the content of an ELF executable image.

Related concepts
2.3 Partial linking model on page 2-29.

1 Overview of the Linker
1.1 About the linker

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0806-/pge1362133736382.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1446115999905.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056-/index.html

3.3 Section placement with the linker on page 3-49.
3.1 The structure of an ARM ELF image on page 3-34.

Related references
11.59 --import_cmse_lib_out=filename on page 11-279.

Related information
Building Secure and Non-secure Images Using ARMv8-M Security Extensions.
Overview of the fromelf image converter.

1 Overview of the Linker
1.1 About the linker

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773d/pge1446115999905.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128870564.html

1.2 Linker command-line syntax
The armlink command can accept many input files together with options that determine how to process
the files.

The command for invoking the linker is:

armlink options input-file-list

where:

options
Linker command-line options.

input-file-list
A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Related references
11.65 input-file-list on page 11-287.
Chapter 11 Linker Command-line Options on page 11-213.

1 Overview of the Linker
1.2 Linker command-line syntax

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.3 What the linker does when constructing an executable image
armlink performs many operations, depending on the content of the input files and the command-line
options you specify.

When you use the linker to construct an executable image, it:
• Resolves symbolic references between the input object files.
• Extracts object modules from libraries to satisfy otherwise unsatisfied symbolic references.
• Removes unused sections.
• Eliminates duplicate common groups and common code, data, and debug sections.
• Sorts input sections according to their attributes and names, and merges sections with similar

attributes and names into contiguous chunks.
• Organizes object fragments into memory regions according to the grouping and placement

information provided.
• Assigns addresses to relocatable values.
• Generates an executable image.

Related concepts
4.1 Elimination of common debug sections on page 4-68.
4.3 Elimination of unused sections on page 4-70.
3.1 The structure of an ARM ELF image on page 3-34.

1 Overview of the Linker
1.3 What the linker does when constructing an executable image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

1.4 Support level definitions
This describes the levels of support for various ARM Compiler 6 features.

ARM Compiler 6 is built on Clang and LLVM technology and as such, has more functionality than the
set of product features described in the documentation. The following definitions clarify the levels of
support and guarantees on functionality that are expected from these features.

ARM welcomes feedback regarding the use of all ARM Compiler 6 features, and endeavors to support
users to a level that is appropriate for that feature. You can contact support at http://www.arm.com/
support.

Identification in the documentation

All features that are documented in the ARM Compiler 6 documentation are product features, except
where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested, and is
expected to be stable across feature and update releases.
• ARM endeavors to give advance notice of significant functionality changes to product features.
• If you have a support and maintenance contract, ARM provides full support for use of all product

features.
• ARM welcomes feedback on product features.
• Any issues with product features that ARM encounters or is made aware of are considered for fixing

in future versions of ARM Compiler.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to be
regarded as suitable for use in production environments.
Beta product features are indicated with [BETA].
• ARM endeavors to document known limitations on beta product features.
• Beta product features are expected to eventually become product features in a future release

of ARM Compiler 6.
• ARM encourages the use of beta product features, and welcomes feedback on them.
• Any issues with beta product features that ARM encounters or is made aware of are

considered for fixing in future versions of ARM Compiler.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.
Alpha product features are indicated with [ALPHA].
• ARM endeavors to document known limitations of alpha product features.
• ARM encourages the use of alpha product features, and welcomes feedback on them.
• Any issues with alpha product features that ARM encounters or is made aware of are

considered for fixing in future versions of ARM Compiler.

Community features

ARM Compiler 6 is built on LLVM technology and preserves the functionality of that technology where
possible. This means that there are additional features available in ARM Compiler that are not listed in
the documentation. These additional features are known as community features. For information on these
community features, see the documentation for the Clang/LLVM project.

1 Overview of the Linker
1.4 Support level definitions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

http://www.arm.com/support
http://www.arm.com/support
http://clang.llvm.org/docs/UsersManual.html

Where community features are referenced in the documentation, they are indicated with
[COMMUNITY].
• ARM makes no claims about the quality level or the degree of functionality of these features, except

when explicitly stated in this documentation.
• Functionality might change significantly between feature releases.
• ARM makes no guarantees that community features are going to remain functional across update

releases, although changes are expected to be unlikely.

Some community features might become product features in the future, but ARM provides no roadmap
for this. ARM is interested in understanding your use of these features, and welcomes feedback on them.
ARM supports customers using these features on a best-effort basis, unless the features are unsupported.
ARM accepts defect reports on these features, but does not guarantee that these issues are going to be
fixed in future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:
• The following figure shows the structure of the ARM Compiler 6 toolchain:

armasm

armclang

ARM C library

ARM C++ library

armlink

LLVM Project
clang

AssemblyAssembly Source codeSource code AssemblyAssembly

Source code
headers

Source code
headers

ObjectsObjects ObjectsObjects ObjectsObjects

Scatter/Steering/
Symdefs file

Scatter/Steering/
Symdefs file

ImageImage

LLVM Project
libc++

Figure 1-1 Integration boundaries in ARM Compiler 6.

The dashed boxes are toolchain components, and any interaction between these components is an
integration boundary. Community features that span an integration boundary might have significant
limitations in functionality. The exception to this is if the interaction is codified in one of the
standards supported by ARM Compiler 6. See Application Binary Interface (ABI) for the ARM®

1 Overview of the Linker
1.4 Support level definitions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-23

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

Architecture. Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD, might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long
time in other toolchains, are likely to be mature. The functionality of new features, such as support
for new language features, is likely to be less mature and therefore more likely to have limited
functionality.

Unsupported features

With both the product and community feature categories, specific features and use-cases are known not
to function correctly, or are not intended for use with ARM Compiler 6.

Limitations of product features are stated in the documentation. ARM cannot provide an exhaustive list
of unsupported features or use-cases for community features. The known limitations on community
features are listed in Community features on page 1-22.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
• The Clang option -stdlib=libstdc++ is not supported.
• C++ static initialization of local variables is not thread-safe when linked against the standard C++

libraries. For thread-safety, you must provide your own implementation of thread-safe functions as
described in Standard C++ library implementation definition.

 Note

This restriction does not apply to the [ALPHA]-supported multi-threaded C++ libraries. Contact the
ARM Support team for more details.

• Use of C11 library features is unsupported.
• Any community feature that exclusively pertains to non-ARM architectures is not supported by ARM

Compiler 6.
• Compilation for targets that implement architectures older that ARMv7 or ARMv6-M is not

supported.

1 Overview of the Linker
1.4 Support level definitions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

1-24

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.emea.arm.com/help/topic/com.arm.doc.dui0808-/pge1431942002578.html

Chapter 2
Linking Models Supported by armlink

Describes the linking models supported by the ARM linker, armlink.

It contains the following sections:
• 2.1 Overview of linking models on page 2-26.
• 2.2 Bare-metal linking model on page 2-27.
• 2.3 Partial linking model on page 2-29.
• 2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-30.
• 2.5 Base Platform linking model on page 2-31.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

2.1 Overview of linking models
A linking model is a group of command-line options and memory maps that control the behavior of the
linker.

The linking models supported by armlink are:

Bare-metal
This model does not target any specific platform. It enables you to create an image with your
own custom operating system, memory map, and, application code if required. Some limited
dynamic linking support is available. You can specify additional options depending on whether
or not a scatter file is in use.

Bare-metal Position Independent Executables (PIE)
This model produces a bare-metal Position Independent Executable (PIE). This is an executable
that does not need to be executed at a specific address but can be executed at any suitably
aligned address. All objects and libraries linked into the image must be compiled to be position
independent.

 Note

Bare-metal PIE support is deprecated in this release.

Partial linking
This model produces a relocatable ELF object suitable for input to the linker in a subsequent
link step. The partial object can be used as input to another link step. The linker performs
limited processing of input objects to produce a single output object.

BPABI
This model supports the DLL-like Base Platform Application Binary Interface (BPABI). It is
intended to produce applications and DLLs that can run on a platform OS that varies in
complexity. The memory model is restricted according to the Base Platform ABI for the ARM
Architecture (IHI 0037 C).

 Note

Not supported for AArch64 state.

Base Platform
This is an extension to the BPABI model to support scatter-loading.

 Note

Not supported for AArch64 state.

You can combine related options in each model to tighten control over the output.

Related concepts
2.2 Bare-metal linking model on page 2-27.
2.3 Partial linking model on page 2-29.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-30.
2.5 Base Platform linking model on page 2-31.

Related references
Chapter 9 BPABI Shared Libraries and Executables on page 9-193.

Related information
Base Platform ABI for the ARM Architecture.

2 Linking Models Supported by armlink
2.1 Overview of linking models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

2.2 Bare-metal linking model
Focuses on the conventional embedded market where the whole program, possibly including a Real-Time
Operating System (RTOS), is linked in one pass.

The linker can make very few assumptions about the memory map of a bare-metal system. Therefore,
you must use the scatter-loading mechanism if you want more precise control. Scatter-loading allows
different regions in an image memory map to be placed at addresses other than at their natural address.
Such an image is a relocatable image, and the linker must adjust program addresses and resolve
references to external symbols.

By default, the linker attempts to resolve all the relocations statically. However, it is also possible to
create a position-independent or relocatable image. Such an image can be executed from different
addresses and have its relocations resolved at load or run-time. You can use a dynamic model to create
relocatable images. A position-independent image does not require a dynamic model.

With the bare-metal model, you can:

• Identify the regions that can be relocated or are position-independent using a scatter file or command-
line options.

• Identify the symbols that can be imported and exported using a steering file.

You can use --scatter=file with this model.

You can use the following options when scatter-loading is not used:
• --reloc (not supported in AArch64 state).
• --ro_base=address.
• --ropi.
• --rosplit.
• --rw_base=address.
• --rwpi.
• --split.
• --xo_base=address.
• --zi_base.

 Note

--xo_base cannot be used with --ropi or --rwpi.

Related concepts
3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-30.
10.2 Scatter files for the Base Platform linking model on page 10-210.

Related references
11.157 --xo_base=address on page 11-384.
11.37 --edit=file_list on page 11-257.
11.110 --reloc on page 11-335.
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.
11.119 --scatter=filename on page 11-344.
11.126 --split on page 11-353.

2 Linking Models Supported by armlink
2.2 Bare-metal linking model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

11.161 --zi_base=address on page 11-388.
Chapter 12 Linker Steering File Command Reference on page 12-389.

2 Linking Models Supported by armlink
2.2 Bare-metal linking model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

2.3 Partial linking model
Produces a single output file that can be used as input to a subsequent link step.

Partial linking:

• Eliminates duplicate copies of debug sections.
• Merges the symbol tables into one.
• Leaves unresolved references unresolved.
• Merges common data (COMDAT) groups.
• Generates a single object file that can be used as input to a subsequent link step.

If the linker finds multiple entry points in the input files it generates an error because the single output
file can have only one entry point.

To link with this model, use the --partial command-line option.
 Note

If you use partial linking, you cannot refer to the original objects by name in a scatter file. Therefore, you
might have to update your scatter file.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related references
6.6.3 Steering file format on page 6-103.
Chapter 12 Linker Steering File Command Reference on page 12-389.
11.37 --edit=file_list on page 11-257.
11.100 --partial on page 11-325.

2 Linking Models Supported by armlink
2.3 Partial linking model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

2.4 Base Platform Application Binary Interface (BPABI) linking model
The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to generate
their own platform-specific image formats.

The BPABI model produces as much dynamic information as possible without focusing on any specific
platform.

 Note

BPABI is not supported for AArch64 state.

To link with this model, use the --bpabi command-line option. Other linker command-line options
supported by this model are:

• --dll.
• --force_so_throw, --no_force_so_throw.
• --pltgot=type.
• --ro_base=address.
• --rosplit.
• --rw_base=address.
• --rwpi.

Be aware of the following:
• You cannot use scatter-loading. However, the Base Platform linking model supports scatter-loading.
• The model by default assumes that shared objects cannot throw a C++ exception

(--no_force_so_throw).
• The default value of the --pltgot option is direct.
• You must use symbol versioning to ensure that all the required symbols are available at load time.

Related concepts
2.2 Bare-metal linking model on page 2-27.
9.5 Symbol versioning on page 9-204.

Related references
11.11 --bpabi on page 11-229.
11.33 --dll on page 11-253.
11.51 --force_so_throw, --no_force_so_throw on page 11-271.
11.103 --pltgot=type on page 11-328.
11.113 --ro_base=address on page 11-338.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.

Related information
Base Platform ABI for the ARM Architecture.

2 Linking Models Supported by armlink
2.4 Base Platform Application Binary Interface (BPABI) linking model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

2.5 Base Platform linking model
Enables you to create dynamically linkable images that do not have the memory map enforced by the
Base Platform Application Binary Interface (BPABI) linking model.

The Base Platform linking model enables you to:

• Create images with a memory map described in a scatter file.
• Have dynamic relocations so the images can be dynamically linked. The dynamic relocations can also

target within the same image.

 Note

Base Platform is not supported for AArch64 state.

 Note

The BPABI specification places constraints on the memory model that can be violated using scatter-
loading. However, because Base Platform is a superset of BPABI, it is possible to create a BPABI
conformant image with Base Platform.

To link with the Base Platform model, use the --base_platform command-line option.

If you specify this option, the linker acts as if you specified --bpabi, with the following exceptions:

• Scatter-loading is available with --scatter. If you do not specify --scatter, then the standard
BPABI memory model scatter file is used.

• The following options are available:
— --dll.
— --force_so_throw, --no_force_so_throw.
— --pltgot=type.
— --rosplit.

• The default value of the --pltgot option is different to that for --bpabi:
— For --base_platform, the default is --pltgot=none.
— For --bpabi the default is --pltgot=direct.

• Each load region containing code might require a Procedure Linkage Table (PLT) section to indirect
calls from the load region to functions where the address is not known at static link time. The PLT
section for a load region LR must be placed in LR and be accessible at all times to code within LR.

If you do not use a scatter file, the linker can ensure that the PLT section is placed correctly, and
contains entries for calls only to imported symbols. If you specify a scatter file, the linker might not
be able to find a suitable location to place the PLT.

To ensure calls between relocated load regions use a PLT entry:
— Use the --pltgot=direct option to turn on PLT generation.
— Use the --pltgot_opts=crosslr option to add entries in the PLT for calls from and to RELOC

load regions. The linker generates a PLT for each load region so that calls do not have to be
extended to reach a distant PLT.

Be aware of the following:
• The model by default assumes that shared objects cannot throw a C++ exception

(--no_force_so_throw).
• You must use symbol versioning to ensure that all the required symbols are available at load time.
• There are restrictions on the type of scatter files you can use.

Related concepts
10.1 Restrictions on the use of scatter files with the Base Platform model on page 10-208.
10.2 Scatter files for the Base Platform linking model on page 10-210.

2 Linking Models Supported by armlink
2.5 Base Platform linking model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-30.
3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
9.5 Symbol versioning on page 9-204.

Related references
11.7 --base_platform on page 11-224.
11.33 --dll on page 11-253.
11.104 --pltgot_opts=mode on page 11-329.
11.115 --rosplit on page 11-340.
11.119 --scatter=filename on page 11-344.
11.103 --pltgot=type on page 11-328.

2 Linking Models Supported by armlink
2.5 Base Platform linking model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

Chapter 3
Image Structure and Generation

Describes the image structure and the functionality available in the ARM linker, armlink, to generate
images.

It contains the following sections:
• 3.1 The structure of an ARM ELF image on page 3-34.
• 3.2 Simple images on page 3-42.
• 3.3 Section placement with the linker on page 3-49.
• 3.4 Linker support for creating demand-paged files on page 3-53.
• 3.5 Linker reordering of execution regions containing T32 code on page 3-54.
• 3.6 Linker-generated veneers on page 3-55.
• 3.7 Command-line options used to control the generation of C++ exception tables on page 3-59.
• 3.8 Weak references and definitions on page 3-60.
• 3.9 How the linker performs library searching, selection, and scanning on page 3-62.
• 3.10 How the linker searches for the ARM standard libraries on page 3-63.
• 3.11 Specifying user libraries when linking on page 3-64.
• 3.12 How the linker resolves references on page 3-65.
• 3.13 The strict family of linker options on page 3-66.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-33

Non-Confidential

3.1 The structure of an ARM ELF image
An ARM ELF image contains sections, regions, and segments, and each link stage has a different view
of the image.

The structure of an image is defined by the:
• Number of its constituent regions and output sections.
• Positions in memory of these regions and sections when the image is loaded.
• Positions in memory of these regions and sections when the image executes.

This section contains the following subsections:
• 3.1.1 Views of the image at each link stage on page 3-34.
• 3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
• 3.1.3 Load view and execution view of an image on page 3-36.
• 3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
• 3.1.5 Image entry points on page 3-39.
• 3.1.6 Restrictions on image structure on page 3-41.

3.1.1 Views of the image at each link stage

Each link stage has a different view of the image.

The image views are:

ELF object file view (linker input)
The ELF object file view comprises input sections. The ELF object file can be:
• A relocatable file that holds code and data suitable for linking with other object files to

create an executable or a shared object file.
• A shared object file that holds code and data.

Linker view
The linker has two views for the address space of a program that become distinct in the presence
of overlaid, position-independent, and relocatable program fragments (code or data):
• The load address of a program fragment is the target address that the linker expects an

external agent such as a program loader, dynamic linker, or debugger to copy the fragment
from the ELF file. This might not be the address at which the fragment executes.

• The execution address of a program fragment is the target address where the linker expects
the fragment to reside whenever it participates in the execution of the program.

If a fragment is position-independent or relocatable, its execution address can vary during
execution.

ELF image file view (linker output)
The ELF image file view comprises program segments and output sections:
• A load region corresponds to a program segment.
• An execution region contains one or more of the following output sections:

— RO section.
— RW section.
— XO section.
— ZI section.

One or more execution regions make up a load region.

 Note

With armlink, the maximum size of a program segment is 2GB.

When describing a memory view:
• The term root region means a region that has the same load and execution addresses.
• Load regions are equivalent to ELF segments.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

The following figure shows the relationship between the views at each link stage:

Linker view ELF object file view

Load Region 1

Section Header Table
(optional)

ELF Header

Load Region 2

Section Header Table

ELF Header

Program Header Table Program Header Table
(optional)

Input Section 1.1.1

Input Section 1.2.1

Input Section 1.3.1

Input Section 1.1.2

...

...

Execution Region 1

Execution Region 2

Input Section 1.3.2

Input Section n

Input Section 2.1.1

...

Input Section 2.1.2

...

Input Section 2.1.3

...

ELF image file view

Segment 1 (Load Region 1)

Section Header Table
(optional)

ELF Header

Segment 2 (Load Region 2)

Program Header Table

...

Output sections 1.1

Output section 2.1

Output sections 1.2

Output sections 1.3

Figure 3-1 Relationship between sections, regions, and segments

3.1.2 Input sections, output sections, regions, and program segments

An object or image file is constructed from a hierarchy of input sections, output sections, regions, and
program segments.

Input section
An input section is an individual section from an input object file. It contains code, initialized
data, or describes a fragment of memory that is not initialized or that must be set to zero before
the image can execute. These properties are represented by attributes such as RO, RW, XO, and
ZI. These attributes are used by armlink to group input sections into bigger building blocks
called output sections and regions.

Output section
An output section is a group of input sections that have the same RO, RW, XO, or ZI attribute,
and that are placed contiguously in memory by the linker. An output section has the same
attributes as its constituent input sections. Within an output section, the input sections are sorted
according to the section placement rules.

Region
A region contains up to three output sections depending on the contents and the number of
sections with different attributes. By default, the output sections in a region are sorted according
to their attributes:
• If no XO output sections are present, then the RO output section is placed first, followed by

the RW output section, and finally the ZI output section.
• If all code in the execution region is execute-only, then an XO output section is placed first,

followed by the RW output section, and finally the ZI output section.

A region typically maps onto a physical memory device, such as ROM, RAM, or peripheral.
You can change the order of output sections using scatter-loading.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

Program segment
A program segment corresponds to a load region and contains execution regions. Program
segments hold information such as text and data.

 Note

With armlink, the maximum size of a program segment is 2GB.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Considerations when execute-only sections are present
Be aware of the following when execute-only (XO) sections are present:
• You can mix XO and non-XO sections in the same execution region. In this case, the XO section

loses its XO property and results in the output of a RO section.
• If an input file has one or more XO sections then the linker generates a separate XO execution region

if the XO and RO sections are in distinct regions. In the final image, the XO execution region
immediately precedes the RO execution region, unless otherwise specified by a scatter file or the
--xo_base option.
The linker automatically fabricates a separate ER_XO execution region for XO sections when all the
following are true:
— You do not specify the --xo_base option or a scatter file.
— The input files contain at least one XO section.

Related concepts
3.1.1 Views of the image at each link stage on page 3-34.
3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
3.3 Section placement with the linker on page 3-49.

3.1.3 Load view and execution view of an image

Image regions are placed in the system memory map at load time. The location of the regions in memory
might change during execution.

Before you can execute the image, you might have to move some of its regions to their execution
addresses and create the ZI output sections. For example, initialized RW data might have to be copied
from its load address in ROM to its execution address in RAM.

The memory map of an image has the following distinct views:

Load view
Describes each image region and section in terms of the address where it is located when the
image is loaded into memory, that is, the location before image execution starts.

Execution view
Describes each image region and section in terms of the address where it is located during image
execution.

The following figure shows these views for an image without an execute-only (XO) section:

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

RW section

RO section RO section
0x00000

Execution viewLoad view

RW section

ROM

ZI section

0x08000

0x0FFFF

0x0A000

0x06000

RAM

Memory initialized
to zero

Figure 3-2 Load and execution memory maps for an image without an XO section

The following figure shows load and execution views for an image with an XO section:

RW section

RO section

XO section
0x00000

Execution viewLoad view

RW section

ROM

ZI section

0x08000

0x0FFFF

0x0A000

0x06000

RAM

Memory initialized
to zero

XO section

RO section

XOM

Figure 3-3 Load and execution memory maps for an image with an XO section

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

The following table compares the load and execution views:

Table 3-1 Comparing load and execution views

Load Description Execution Description

Load
address

The address where a section or region is loaded into
memory before the image containing it starts executing.
The load address of a section or a non-root region can
differ from its execution address.

Execution
address

The address where a section or region is
located while the image containing it is
being executed.

Load region A load region describes the layout of a contiguous chunk
of memory in load address space.

Execution region An execution region describes the layout
of a contiguous chunk of memory in
execution address space.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

Related concepts
3.1.1 Views of the image at each link stage on page 3-34.
3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
3.3 Section placement with the linker on page 3-49.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

3.1.4 Methods of specifying an image memory map with the linker

An image can consist of any number of regions and output sections. Regions can have different load and
execution addresses.

When constructing the memory map of an image, armlink must have information about:

• How input sections are grouped into output sections and regions.
• Where regions are to be located in the memory maps.

Depending on the complexity of the memory maps of the image, there are two ways to pass this
information to armlink:

Command-line options for simple memory map descriptions
You can use the following options for simple cases where an image has only one or two load
regions and up to three execution regions:
• --first.
• --last.
• --ro_base.
• --rw_base.
• --split.
• --rosplit.
• --xo_base.
• --zi_base.

These options provide a simplified notation that gives the same settings as a scatter-loading
description for a simple image. However, no limit checking for regions is available when using
these options.

Scatter file for complex memory map descriptions
A scatter file is a textual description of the memory layout and code and data placement. It is
used for more complex cases where you require complete control over the grouping and
placement of image components. To use a scatter file, specify --scatter=filename at the
command-line.

 Note

You cannot use --scatter with the other memory map related command-line options.

Table 3-2 Comparison of scatter file and equivalent command-line options

Scatter file Equivalent command-line options

LR1 0x0000 0x20000
{

 ER_RO 0x0 0x2000
 {

--ro_base=0x0

 init.o (INIT, +FIRST)
 *(+RO)
 }

--first=init.o(init)

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

Table 3-2 Comparison of scatter file and equivalent command-line options (continued)

Scatter file Equivalent command-line options

 ER_RW 0x400000
 {
 *(+RW)
 }

--rw_base=0x400000

 ER_ZI 0x405000
 {
 *(+ZI)
 }
}

--zi_base=0x405000

LR_XO 0x8000 0x4000
{

 ER_XO 0x8000
 {
 *(XO)
 }
}

--xo_base=0x8000

 Note

If XO sections are present, a separate load and execution region is created only when you specify
--xo_base. If you do not specify --xo_base, then the ER_XO region is placed in the LR1 region at the
address specified by --ro_base. The ER_RO region is then placed immediately after the ER_XO region.

Related concepts
3.1.3 Load view and execution view of an image on page 3-36.
3.2 Simple images on page 3-42.
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

Related references
11.49 --first=section_id on page 11-269.
11.69 --last=section_id on page 11-292.
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.
11.119 --scatter=filename on page 11-344.
11.126 --split on page 11-353.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.

3.1.5 Image entry points

An entry point in an image is the location that is loaded into the PC. It is the location where program
execution starts. Although there can be more than one entry point in an image, you can specify only one
when linking.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

Not every ELF file has to have an entry point. Multiple entry points in a single ELF file are not
permitted.

 Note

For embedded Cortex-M programs, the program starts at whatever value is loaded into the PC from the
Reset vector. Typically, the Reset vector points to the CMSIS Reset_Handler function.

Types of entry point

There are two distinct types of entry point:

Initial entry point
The initial entry point for an image is a single value that is stored in the ELF header file. For
programs loaded into RAM by an operating system or boot loader, the loader starts the image
execution by transferring control to the initial entry point in the image.

An image can have only one initial entry point. The initial entry point can be, but is not required
to be, one of the entry points set by the ENTRY directive.

Entry points set by the ENTRY directive
You can select one of many possible entry points for an image. An image can have only one
entry point.

You create entry points in objects with the ENTRY directive in an assembler file. In embedded
systems, typical use of this directive is to mark code that is entered through the processor
exception vectors, such as RESET, IRQ, and FIQ.

The directive marks the output code section with an ENTRY keyword that instructs the linker not
to remove the section when it performs unused section elimination.

For C and C++ programs, the __main() function in the C library is also an entry point.

If an embedded image is to be used by a loader, it must have a single initial entry point specified
in the header. Use the --entry command-line option to select the entry point.

The initial entry point for an image

There can be only one initial entry point for an image, otherwise linker warning L6305W is output.

The initial entry point must meet the following conditions:

• The image entry point must always lie within an execution region.
• The execution region must not overlay another execution region, and must be a root execution region.

That is, where the load address is the same as the execution address.

If you do not use the --entry option to specify the initial entry point, then:

• If the input objects contain only one entry point set by the ENTRY directive, the linker uses that entry
point as the initial entry point for the image.

• The linker generates an image that does not contain an initial entry point when either:
— More than one entry point is specified using the ENTRY directive.
— No entry point is specified using the ENTRY directive.

For embedded applications with ROM at zero use --entry 0x0, or optionally 0xFFFF0000 for
processors that are using high vectors.

 Note

High vectors are not supported in AArch64 state.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

 Note

Some processors, such as Cortex-M7, can boot from a different address in some configurations.

Related concepts
7.2 Root region and the initial entry point on page 7-113.

Related references
11.42 --entry=location on page 11-262.

Related information
ENTRY.
List of the armlink error and warning messages .

3.1.6 Restrictions on image structure

When an instruction accesses a memory address on an AArch64 target, the data must be within 4GB of
the program counter.

For example, consider the following scatter file:

LOAD_REGION 0x0000000000 0x200000
{
 ROOT_REGION +0
 {
 *(Init, +FIRST)
 * (+RO)
 * (+RW, +ZI)
 }
 STACKHEAP 0x1FFFF0 EMPTY -0x18000
 {
 }
}

LOAD_REGION2 0x4000000000 0x200000
{
 ROOT_REGION2 +0
 {
 *(high_mem)
 }
}

LOAD_REGION2 is 16GB away from LOAD_REGION, so data in high_mem is not accessible from code in
LOAD_REGION. This results in a relocation out of range error at link time.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290008613.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0807-/dom1365073159742.html

3.2 Simple images
A simple image consists of a number of input sections of type RO, RW, XO, and ZI. The linker collates
the input sections to form the RO, RW, XO, and ZI output sections.

This section contains the following subsections:
• 3.2.1 Types of simple image on page 3-42.
• 3.2.2 Type 1 image structure, one load region and contiguous execution regions on page 3-43.
• 3.2.3 Type 2 image structure, one load region and non-contiguous execution regions on page 3-44.
• 3.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions

on page 3-46.

3.2.1 Types of simple image

The types of simple image the linker can create depends on how the output sections are arranged within
load and execution regions.

The types are:

Type 1
One region in load view, four contiguous regions in execution view. Use the --ro_base option
to create this type of image.

Any XO sections are placed in an ER_XO region at the address specified by --ro_base, with
the ER_RO region immediately following the ER_XO region.

Type 2
One region in load view, four non-contiguous regions in execution view. Use the --ro_base and
--rw_base options to create this type of image.

Type 3
Two regions in load view, four non-contiguous regions in execution view. Use the --ro_base,
--rw_base, and --split options to create this type of image.

For all the simple image types when --xo_base is not specified:
• If any XO sections are present, the first execution region contains the XO output section. The address

specified by --ro_base is used as the base address of this output section.
• The second execution region contains the RO output section. This output section immediately follows

an XO output.
• The third execution region contains the RW output section, if present.
• The fourth execution region contains the ZI output section, if present.

These execution regions are referred to as, XO, RO, RW, and ZI execution regions.

When you specify --xo_base, then XO sections are placed in a separate load and execution region.

However, you can also use the --rosplit option for a Type 3 image. This option splits the default load
region into two RO output sections, one for code and one for data.

You can also use the --zi_base command-line option to specify the base address of a ZI execution
region for Type 1 and Type 2 images. This option is ignored if you also use the --split command-line
option that is required for Type 3 images.

You can also create simple images with scatter files.

Related concepts
7.13 Equivalent scatter-loading descriptions for simple images on page 7-153.
3.2.2 Type 1 image structure, one load region and contiguous execution regions on page 3-43.
3.2.3 Type 2 image structure, one load region and non-contiguous execution regions on page 3-44.
3.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions
on page 3-46.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

Related references
11.113 --ro_base=address on page 11-338.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.119 --scatter=filename on page 11-344.
11.126 --split on page 11-353.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.

3.2.2 Type 1 image structure, one load region and contiguous execution regions

A Type 1 image consists of a single load region in the load view and three default execution regions,
ER_RO, ER_RW, ER_ZI. These are placed contiguously in the memory map. An additional ER_XO
execution region is created only if any input section is execute-only.

This approach is suitable for systems that load programs into RAM, for example, an OS bootloader or a
desktop system. The following figure shows the load and execution view for a Type 1 image without
execute-only (XO) code:

RO output section

RW output section

RO output section

RW execution
region

Single
load
region

ZI output section

Execution viewLoad view

0x8000

RAM

RW output section

0x0000

--ro-base value

ZI execution
region

RO execution
region

Figure 3-4 Simple Type 1 image

Use the following command for images of this type:

armlink --cpu=8-A.32 --ro_base 0x8000

 Note

0x8000 is the default address, so you do not have to specify --ro_base for the example.

Load view

The single load region consists of the RO and RW output sections, placed consecutively. The RO and
RW execution regions are both root regions. The ZI output section does not exist at load time. It is
created before execution, using the output section description in the image file.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

Execution view

The three execution regions containing the RO, RW, and ZI output sections are arranged contiguously.
The execution addresses of the RO and RW regions are the same as their load addresses, so nothing has
to be moved from its load address to its execution address. However, the ZI execution region that
contains the ZI output section is created at run-time.

Use armlink option --ro_base address to specify the load and execution address of the region
containing the RO output. The default address is 0x8000.

Use the --zi_base command-line option to specify the base address of a ZI execution region.

Load view for images containing execute-only regions

For images that contain XO sections, the XO output section is placed at the address that is specified by
--ro_base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

Execution view for images containing execute-only regions
For images that contain XO sections, the XO execution region is placed at the address that is specified by
--ro_base. The RO, RW, and ZI execution regions are placed contiguously and immediately after the
XO execution region.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.

Related references
11.113 --ro_base=address on page 11-338.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.

3.2.3 Type 2 image structure, one load region and non-contiguous execution regions

A Type 2 image consists of a single load region, and three execution regions in execution view. The RW
execution region is not contiguous with the RO execution region.

This approach is used, for example, for ROM-based embedded systems, where RW data is copied from
ROM to RAM at startup. The following figure shows the load and execution view for a Type 2 image
without execute-only (XO) code:

3 Image Structure and Generation
3.2 Simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

RO output section

RW output section

RW output section

RO output section

RW execution
region

Single
load
region

ZI output section

Execution viewLoad view

RAM

ROM

0x0000
--ro-base value

--rw-base value0xA000

Copy/
decompress

ZI execution
region

RO execution
region

Figure 3-5 Simple Type 2 image

Use the following command for images of this type:

armlink --cpu=8-A.32 --ro_base 0x0 --rw_base 0xA000

Load view

In the load view, the single load region consists of the RO and RW output sections placed consecutively,
for example, in ROM. Here, the RO region is a root region, and the RW region is non-root. The ZI output
section does not exist at load time. It is created at runtime.

Execution view

In the execution view, the first execution region contains the RO output section and the second execution
region contains the RW and ZI output sections.

The execution address of the region containing the RO output section is the same as its load address, so
the RO output section does not have to be moved. That is, it is a root region.

The execution address of the region containing the RW output section is different from its load address,
so the RW output section is moved from its load address (from the single load region) to its execution
address (into the second execution region). The ZI execution region, and its output section, is placed
contiguously with the RW execution region.

Use armlink options --ro_base address to specify the load and execution address for the RO output
section, and --rw_base address to specify the execution address of the RW output section. If you do
not use the --ro_base option to specify the address, the default value of 0x8000 is used by armlink. For
an embedded system, 0x0 is typical for the --ro_base value. If you do not use the --rw_base option to
specify the address, the default is to place RW directly above RO (as in a Type 1 image).

Use the --zi_base command-line option to specify the base address of a ZI execution region.
 Note

The execution region for the RW and ZI output sections cannot overlap any of the load regions.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

Load view for images containing execute-only regions

For images that contain XO sections, the XO output section is placed at the address specified by
--ro_base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

Execution view for images containing execute-only regions

For images that contain XO sections, the XO execution region is placed at the address specified by
--ro_base. The RO execution region is placed contiguously and immediately after the XO execution
region.

If you use --xo_base address, then the XO execution region is placed in a separate load region at the
specified address.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.
3.2.2 Type 1 image structure, one load region and contiguous execution regions on page 3-43.

Related references
11.113 --ro_base=address on page 11-338.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.

3.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions

A Type 3 image is similar to a Type 2 image except that the single load region is split into multiple root
load regions.

The following figure shows the load and execution view for a Type 3 image without execute-only (XO)
code:

3 Image Structure and Generation
3.2 Simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

RW output section

RO output section
First
load
region

Load view

RAM

--ro-base
value

--rw-base
value

RW output section

RO output section

ZI execution
region

0x8000

ZI output section

Execution view

0x0000

0xE000
RW execution
region

RO execution
region

Second
load
region

Figure 3-6 Simple Type 3 image

Use the following command for images of this type:

armlink --cpu=8-A.32 --split --ro_base 0x8000 --rw_base 0xE000

Load view

In the load view, the first load region consists of the RO output section, and the second load region
consists of the RW output section. The ZI output section does not exist at load time. It is created before
execution, using the description of the output section contained in the image file.

Execution view

In the execution view, the first execution region contains the RO output section, the second execution
region contains the RW output section, and the third execution region contains the ZI output section.

The execution address of the RO region is the same as its load address, so the contents of the RO output
section do not have to be moved or copied from their load address to their execution address.

The execution address of the RW region is also the same as its load address, so the contents of the RW
output section are not moved from their load address to their execution address. However, the ZI output
section is created at run-time and is placed contiguously with the RW region.

Specify the load and execution address using the following linker options:

--ro_base address
Instructs armlink to set the load and execution address of the region containing the RO section
at a four-byte aligned address, for example, the address of the first location in ROM. If you do
not use the --ro_base option to specify the address, the default value of 0x8000 is used by
armlink.

--rw_base address
Instructs armlink to set the execution address of the region containing the RW output section at
a four-byte aligned address. If this option is used with --split, this specifies both the load and
execution addresses of the RW region, for example, a root region.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

--split
Splits the default single load region, that contains both the RO and RW output sections, into two
root load regions:
• One containing the RO output section.
• One containing the RW output section.

You can then place them separately using --ro_base and --rw_base.

Load view for images containing XO sections

For images that contain XO sections, the XO output section is placed at the address specified by
--ro_base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

If you use --split, then the one load region contains the XO and RO output sections, and the other
contains the RW output section.

Execution view for images containing XO sections

For images that contain XO sections, the XO execution region is placed at the address specified by
--ro_base. The RO execution region is placed contiguously and immediately after the XO execution
region.

If you specify --split, then the XO and RO execution regions are placed in the first load region, and the
RW and ZI execution regions are placed in the second load region.

If you specify --xo_base address, then the XO execution region is placed at the specified address in a
separate load region from the RO execution region.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.
3.2.3 Type 2 image structure, one load region and non-contiguous execution regions on page 3-44.

Related references
11.113 --ro_base=address on page 11-338.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.
11.126 --split on page 11-353.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

3.3 Section placement with the linker
The linker places input sections in a specific order by default, but you can specify an alternative sorting
order if required.

This section contains the following subsections:
• 3.3.1 Default section placement on page 3-49.
• 3.3.2 Section placement with the FIRST and LAST attributes on page 3-51.
• 3.3.3 Section alignment with the linker on page 3-51.

3.3.1 Default section placement

By default, the linker places input sections in a specific order within an execution region.

The sections are placed in the following order:

1. By attribute as follows:
a. Read-only code.
b. Read-only data.
c. Read-write code.
d. Read-write data.
e. Zero-initialized data.

2. By input section name if they have the same attributes. Names are considered to be case-sensitive and
are compared in alphabetical order using the ASCII collation sequence for characters.

3. By a tie-breaker if they have the same attributes and section names. By default, it is the order that
armlink processes the section. You can override the tie-breaker and sorting by input section name
with the FIRST or LAST input section attribute.

 Note

The sorting order is unaffected by ordering of section selectors within execution regions.

These rules mean that the positions of input sections with identical attributes and names included from
libraries depend on the order the linker processes objects. This can be difficult to predict when many
libraries are present on the command line. The --tiebreaker=cmdline option uses a more predictable
order based on the order the section appears on the command line.

The base address of each input section is determined by the sorting order defined by the linker, and is
correctly aligned within the output section that contains it.

The linker produces one output section for each attribute present in the execution region:

• One execute-only (XO) section if the execution region contains only XO sections.
• One RO section if the execution region contains read-only code or data.
• One RW section if the execution region contains read-write code or data.
• One ZI section if the execution region contains zero-initialized data.

 Note

If an attempt is made to place data in an XO only execution region, then the linker generates an error.

XO sections lose the XO property if mixed with RO code in the same Execution region.

The XO and RO output sections can be protected at run-time on systems that have memory management
hardware. RO and XO sections can be placed in ROM or Flash.

3 Image Structure and Generation
3.3 Section placement with the linker

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

Alternative sorting orders are available with the --sort=algorithm command-line option. The linker
might change the algorithm to minimize the amount of veneers generated if no algorithm is chosen.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Example

The following scatter file shows how the linker places sections:

LoadRegion 0x8000
{
 ExecRegion1 0x0000 0x4000
 {
 *(sections)
 *(moresections)
 }
 ExecRegion2 0x4000 0x2000
 {
 *(evenmoresections)
 }
}

The order of execution regions within the load region is not altered by the linker.

Handling unassigned sections

The linker might not be able to place some input sections in any execution region.

When the linker is unable to place some input sections it generates an error message. This might occur
because your current scatter file does not permit all possible module select patterns and input section
selectors.

How you fix this depends on the importance of placing these sections correctly:
• If the sections must be placed at specific locations, then modify your scatter file to include specific

module selectors and input section selectors as required.
• If the placement of the unassigned sections is not important, you can use one or more .ANY module

selectors with optional input section selectors.

Related concepts
7.2.3 Methods of placing functions and data at specific addresses on page 7-116.
7.3 Example of how to explicitly place a named section with scatter-loading on page 7-127.
3.1 The structure of an ARM ELF image on page 3-34.
3.6 Linker-generated veneers on page 3-55.
3.3.3 Section alignment with the linker on page 3-51.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.3.2 Section placement with the FIRST and LAST attributes on page 3-51.
3.5 Linker reordering of execution regions containing T32 code on page 3-54.

Related tasks
7.4 Placing unassigned sections on page 7-129.

Related references
8.5.2 Syntax of an input section description on page 8-181.
11.125 --sort=algorithm on page 11-351.
8.5.2 Syntax of an input section description on page 8-181.

3 Image Structure and Generation
3.3 Section placement with the linker

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

3.3.2 Section placement with the FIRST and LAST attributes

You can make sure that a section is placed either first or last in its execution region. For example, you
might want to make sure the section containing the vector table is placed first in the image.

To do this, use one of the following methods:
• If you are not using scatter-loading, use the --first and --last linker command-line options to

place input sections.
• If you are using scatter-loading, use the attributes FIRST and LAST in the scatter file to mark the first

and last input sections in an execution region if the placement order is important.
 Caution

FIRST and LAST must not violate the basic attribute sorting order. For example, FIRST RW is placed
after any read-only code or read-only data.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.
7.1 The scatter-loading mechanism on page 7-107.

Related references
8.5.2 Syntax of an input section description on page 8-181.
11.49 --first=section_id on page 11-269.
11.69 --last=section_id on page 11-292.

3.3.3 Section alignment with the linker

The linker ensures each input section starts at an address that is a multiple of the input section alignment.

When input sections have been ordered and before the base addresses are fixed, armlink inserts padding,
if required, to force each input section to start at an address that is a multiple of the input section
alignment.

armlink supports strict conformance with the ELF specification with the default option --
no_legacyalign. The linker faults the base address of a region if it is not aligned so padding might be
inserted to ensure compliance. With --no_legacyalign, the region alignment is the maximum
alignment of any input section contained by the region.

If you use the option --legacyalign, the linker permits ELF program headers and output sections to be
aligned on a four-byte boundary regardless of the maximum alignment of the input sections. This enables
armlink to minimize the amount of padding that it inserts into the image.

If you are using scatter-loading, you can increase the alignment of a load region or execution region with
the ALIGN attribute. For example, you can change an execution region that is normally four-byte aligned
to be eight-byte aligned. However, you cannot reduce the natural alignment. For example, you cannot
force two-byte alignment on a region that is normally four-byte aligned.

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

Related references
8.3.3 Load region attributes on page 8-170.

3 Image Structure and Generation
3.3 Section placement with the linker

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

11.70 --legacyalign, --no_legacyalign on page 11-293.
8.4.3 Execution region attributes on page 8-176.

3 Image Structure and Generation
3.3 Section placement with the linker

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

3.4 Linker support for creating demand-paged files
The linker provides features for you to create files that are memory mapped.

In operating systems that support virtual memory, an ELF file can be loaded by mapping the ELF files
into the address space of the process loading the file. When a virtual address in a page that is mapped to
the file is accessed, the operating system loads that page from disk. ELF files that are to be used this way
must conform to a certain format.

Use the --paged command-line option to enable demand paging mode. This helps produce ELF files that
can be demand paged efficiently.

The basic constraints for a demand-paged ELF file are:

• There is no difference between the load and execution address for any output section.
• All PT_LOAD Program Headers have a minimum alignment, pt_align, of the page size for the

operating system.
• All PT_LOAD Program Headers have a file offset, pt_offset, that is congruent to the virtual

address (pt_addr) modulo pt_align.

When you specify --paged:
• The linker automatically generates the Program Headers from the execution region base addresses.

The usual situation where one load region generates one Program Header no longer applies.
• The operating system page size is controlled by the --pagesize command-line option.
• The linker attempts to place the ELF Header and Program Header in the first PT_LOAD program

header, if space is available.

Example

This is an example of a demand paged scatter file:

LR1 GetPageSize() + SizeOfHeaders()
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW +GetPageSize()
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}

Related concepts
7.1 The scatter-loading mechanism on page 7-107.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

Related references
11.119 --scatter=filename on page 11-344.
8.6.7 GetPageSize() function on page 8-190.
11.98 --paged on page 11-323.
11.99 --pagesize=pagesize on page 11-324.
8.6.8 SizeOfHeaders() function on page 8-191.

3 Image Structure and Generation
3.4 Linker support for creating demand-paged files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

3.5 Linker reordering of execution regions containing T32 code
The linker reorders execution regions containing T32 code only if the size of the T32 code exceeds the
branch range.

If the code size of an execution region exceeds the maximum branch range of a T32 instruction, then
armlink reorders the input sections using a different sorting algorithm. This sorting algorithm attempts
to minimize the amount of veneers generated.

The T32 branch instructions that can be veneered are always encoded as a pair of 16-bit instructions.
Processors that support Thumb-2 technology have a range of 16MB. Processors that do not support
Thumb-2 technology have a range of 4MB.

To disable section reordering, use the --no_largeregions command-line option.

Related concepts
3.6 Linker-generated veneers on page 3-55.

Related references
11.68 --largeregions, --no_largeregions on page 11-291.

3 Image Structure and Generation
3.5 Linker reordering of execution regions containing T32 code

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

3.6 Linker-generated veneers
Veneers are small sections of code generated by the linker and inserted into your program.

This section contains the following subsections:
• 3.6.1 What is a veneer? on page 3-55.
• 3.6.2 Veneer sharing on page 3-55.
• 3.6.3 Veneer types on page 3-56.
• 3.6.4 Generation of position independent to absolute veneers on page 3-57.
• 3.6.5 Reuse of veneers when scatter-loading on page 3-57.
• 3.6.6 Generation of secure gateway veneers on page 3-58.

3.6.1 What is a veneer?

A veneer extends the range of a branch by becoming the intermediate target of the branch instruction.

The range of a BL instruction depends on the architecture:

• For AArch32 state, the range is 32MB for A32 instructions, 16MB for 32-bit T32 instructions, and
4MB for 16-bit T32 instructions. A veneer extends the range of the branch by becoming the
intermediate target of the branch instruction. The veneer then sets the PC to the destination address.

This enables the veneer to branch anywhere in the 4GB address space. If the veneer is inserted
between A32 and T32 code, the veneer also handles instruction set state change.

• For AArch64 state, the range is 128MB. A veneer extends the range of the branch by becoming the
intermediate target of the branch instruction. The veneer then loads the destination address and
branches to it.
This enables the veneer to branch anywhere in the 16EB address space.

 Note

There are no state-change veneers in AArch64 state.

The linker can generate the following veneer types depending on what is required:

• Inline veneers.
• Short branch veneers.
• Long branch veneers.

armlink creates one input section called Veneer$$Code for each veneer. A veneer is generated only if no
other existing veneer can satisfy the requirements. If two input sections contain a long branch to the same
destination, only one veneer is generated that is shared by both branch instructions. A veneer is only
shared in this way if it can be reached by both sections.

 Note

If execute-only (XO) sections are present, only XO-compliant veneer code is created in XO regions.

Related concepts
3.6.2 Veneer sharing on page 3-55.
3.6.3 Veneer types on page 3-56.
3.6.4 Generation of position independent to absolute veneers on page 3-57.
3.6.5 Reuse of veneers when scatter-loading on page 3-57.

3.6.2 Veneer sharing

If multiple objects result in the same veneer being created, the linker creates a single instance of that
veneer. The veneer is then shared by those objects.

3 Image Structure and Generation
3.6 Linker-generated veneers

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

You can use the command-line option --no_veneershare to specify that veneers are not shared. This
assigns ownership of the created veneer section to the object that created the veneer and so enables you
to select veneers from a particular object in a scatter file, for example:

LR 0x8000
{
 ER_ROOT +0
 {
 object1.o(Veneer$$Code)
 }
}

Be aware that veneer sharing makes it impossible to assign an owning object. Using --no_veneershare
provides a more consistent image layout. However, this comes at the cost of a significant increase in
code size, because of the extra veneers generated by the linker.

Related concepts
3.6.1 What is a veneer? on page 3-55.
7.1 The scatter-loading mechanism on page 7-107.

Related references
Chapter 8 Scatter File Syntax on page 8-165.
11.152 --veneershare, --no_veneershare on page 11-379.

3.6.3 Veneer types

Veneers have different capabilities and use different code pieces.

The linker selects the most appropriate, smallest, and fastest depending on the branching requirements:

• Inline veneer:
— Performs only a state change.
— The veneer must be inserted just before the target section to be in range.
— An A32-T32 interworking veneer has a range of 256 bytes so the function entry point must appear

within 256 bytes of the veneer.
— A T32-A32 interworking veneer has a range of zero bytes so the function entry point must appear

immediately after the veneer.
— An inline veneer is always position-independent.

• Short branch veneer:
— An interworking T32 to A32 short branch veneer has a range of 32MB, the range for an A32

instruction. An A64 short branch veneer has a range of 128MB.
— A short branch veneer is always position-independent.
— A Range Extension T32 to T32 short branch veneer for processors that support Thumb-2

technology.
• Long branch veneer:

— Can branch anywhere in the address space.
— All long branch veneers are also interworking veneers.
— There are different long branch veneers for absolute or position-independent code.

When you are using veneers be aware of the following:

• The inline veneer limitations mean that you cannot move inline veneers out of an execution region
using a scatter file. Use the command-line option --no_inlineveneer to prevent the generation of
inline veneers.

• All veneers cannot be collected into one input section because the resulting veneer input section
might not be within range of other input sections. If the sections are not within addressing range, long
branching is not possible.

• The linker generates position-independent variants of the veneers automatically. However, because
such veneers are larger than non position-independent variants, the linker only does this where
necessary, that is, where the source and destination execution regions are both position-independent
and are rigidly related.

3 Image Structure and Generation
3.6 Linker-generated veneers

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

Veneers are generated to optimize code size. armlink, therefore, chooses the variant in the order of
preference:
1. Inline veneer.
2. Short branch veneer.
3. Long veneer.

Related concepts
3.6.1 What is a veneer? on page 3-55.

Related references
11.87 --max_veneer_passes=value on page 11-312.
11.64 --inlineveneer, --no_inlineveneer on page 11-286.

3.6.4 Generation of position independent to absolute veneers

Calling from position independent code to absolute code requires a veneer.

The normal call instruction encodes the address of the target as an offset from the calling address. When
calling from position independent (PI) code to absolute code the offset cannot be calculated at link time,
so the linker must insert a long-branch veneer.

The generation of PI to absolute veneers can be controlled using the --piveneer option, that is set by
default. When this option is turned off using --no_piveneer, the linker generates an error when a call
from PI code to absolute code is detected.

 Note

Not supported for AArch64 state.

Related concepts
3.6.1 What is a veneer? on page 3-55.

Related references
11.87 --max_veneer_passes=value on page 11-312.
11.102 --piveneer, --no_piveneer on page 11-327.

3.6.5 Reuse of veneers when scatter-loading

The linker reuses veneers whenever possible, but there are some limitations on the reuse of veneers in
protected load regions and overlaid execution regions.

A scatter file enables you to create regions that share the same area of RAM:
• If you use the PROTECTED attribute for a load region it prevents:

— Overlapping of load regions.
— Veneer sharing.
— String sharing with the --merge option.

• If you use the AUTO_OVERLAY attribute for a region, no other execution region can reuse a veneer
placed in an overlay execution region.

• If you use the OVERLAY attribute for a region, no other execution region can reuse a veneer placed in
an overlay execution region.

If it is not possible to reuse a veneer, new veneers are created instead. Unless you have instructed the
linker to place veneers somewhere specific using scatter-loading, a veneer is usually placed in the
execution region that contains the call requiring the veneer. However, in some situations the linker has to
place the veneer in an adjacent execution region, either to maximize sharing opportunities or for a short
branch veneer to reach its target.

Related concepts
3.6.1 What is a veneer? on page 3-55.

3 Image Structure and Generation
3.6 Linker-generated veneers

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-57

Non-Confidential

8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.

Related references
8.3.3 Load region attributes on page 8-170.

3.6.6 Generation of secure gateway veneers

armlink can generate secure gateway veneers for symbols that are present in a Secure image. It can also
output symbols to a specified output import library, when necessary.

armlink generates a secure gateway veneer when it finds in the Secure image an entry function that has
both symbols __acle_se_<entry> and <entry> pointing to the same offset in the same section.

The secure gateway veneer is a sequence of two instructions:

<entry>:
 SG
 B.W __acle_se_<entry>

The original symbol <entry> is changed to point to the SG instruction of the secure gateway veneer.

You can specify an input import library and output import library with the following command-line
options:
• --import_cmse_lib_in=filename.
• --import_cmse_lib_out=filename.

Placement of secure gateway veneers is controlled by an input import library and by a scatter file
selection. The linker can also output addresses of secure gateways to an output import library.

Example

The following example shows the generation of a secure gateway veneer:

Input code:

 .text
entry:
__acle_se_entry:
 [entry's code]
 BXNS lr

Output code produced by armlink:

 .text
__acle_se_entry:
 [entry's code]
 BXNS lr

 .section Veneer$$CMSE, "ax"
entry:
 SG
 B.W __acle_se_entry

Related concepts
7.6 Placement of CMSE veneer sections for a Secure image on page 7-141.

Related references
11.58 --import_cmse_lib_in=filename on page 11-278.
11.59 --import_cmse_lib_out=filename on page 11-279.

Related information
Building Secure and Non-secure Images Using ARMv8-M Security Extensions.

3 Image Structure and Generation
3.6 Linker-generated veneers

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1446115999905.html

3.7 Command-line options used to control the generation of C++ exception
tables

You can control the generation of C++ exception tables using command-line options.

By default, or if the option --exceptions is specified, the image can contain exception tables. Exception
tables are discarded silently if no code throws an exception. However, if the option --no_exceptions is
specified, the linker generates an error if any exceptions tables are present after unused sections have
been eliminated.

You can use the --no_exceptions option to ensure that your code is exceptions free. The linker
generates an error message to highlight that exceptions have been found and does not produce a final
image.

However, you can use the --no_exceptions option with the --diag_warning option to downgrade the
error message to a warning. The linker produces a final image but also generates a message to warn you
that exceptions have been found.

Related references
11.32 --diag_warning=tag[,tag,…] on page 11-252.
11.44 --exceptions, --no_exceptions on page 11-264.

Related information
-fno-exceptions compiler option.

3 Image Structure and Generation
3.7 Command-line options used to control the generation of C++ exception tables

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1418137380191.html

3.8 Weak references and definitions
Weak references and definitions provide additional flexibility in the way the linker includes various
functions and variables in a build.

Weak references and definitions are typically used in connection with library functions.

Weak references
If the linker cannot resolve normal, non-weak, references to symbols from the content loaded so
far, it attempts to do so by finding the symbol in a library:
• If it is unable to find such a reference, the linker reports an error.
• If such a reference is resolved, a section that is reachable from an entry point by at least one

non-weak reference is marked as used. This ensures the section is not removed by the linker
as an unused section. Each non-weak reference must be resolved by exactly one definition. If
there are multiple definitions, the linker reports an error.

Symbols can be given weak binding by the compiler and assembler.

The linker does not load an object from a library to resolve a weak reference. It is able to resolve
the weak reference only if the definition is included in the image for other reasons. The weak
reference does not cause the linker to mark the section containing the definition as used, so it
might be removed by the linker as unused. The definition might already exist in the image for
several reasons:

• The symbol has a non-weak reference from somewhere else in the code.
• The symbol definition exists in the same ELF section as a symbol definition that is included

for any of these reasons.
• The symbol definition is in a section that has been specified using --keep, or contains an

ENTRY point.
• The symbol definition is in an object file included in the link and the --no_remove option is

used. The object file is not referenced from a library unless that object file within the library
is explicitly included on the linker command-line.

In summary, a weak reference is resolved if the definition is already included in the image, but it
does not determine if that definition is included.

An unresolved weak function call is replaced with either:
• A no-operation instruction, NOP.
• A branch with link instruction, BL, to the following instruction. That is, the function call just

does not happen.

Weak definitions
You can mark a function or variable definition as weak in a source file. A weak symbol
definition is then present in the created object file.

You can use a weak definition to resolve any reference to that symbol in the same way as a
normal definition. However, if another non-weak definition of that symbol exists in the build,
the linker uses that definition instead of the weak definition, and does not produce an error due
to multiply-defined symbols.

Example of a weak reference

A library contains a function foo(), that is called in some builds of an application but not in others. If it
is used, init_foo() must be called first. You can use weak references to automate the call to
init_foo().

The library can define init_foo() and foo() in the same ELF section. The application initialization
code must call init_foo() weakly. If the application includes foo() for any reason, it also includes
init_foo() and this is called from the initialization code. In any builds that do not include foo(), the
call to init_foo() is removed by the linker.

3 Image Structure and Generation
3.8 Weak references and definitions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential

Typically, the code for multiple functions defined within a single source file is placed into a single ELF
section by the compiler. However, certain build options might alter this behavior, so you must use them
with caution if your build is relying on the grouping of files into ELF sections. The compiler command-
line option -ffunction-sections results in each function being placed in its own section. In this
example, compiling the library with this option results in foo() and init_foo() being placed in
separate sections. Therefore init_foo() is not automatically included in the build due to a call to foo().

In this example, there is no need to rebuild the initialization code between builds that include foo() and
do not include foo(). There is also no possibility of accidentally building an application with a version
of the initialization code that does not call init_foo(), and other parts of the application that call foo().

An example of foo.c source code that is typically built into a library is:

void init_foo()
{
 // Some initialization code
}
void foo()
{
 // A function that is included in some builds
 // and requires init_foo() to be called first.
}

An example of init.c is:

__attribute__((weak)) void init_foo(void);
int main(void)
{
 init_foo();
 // Rest of code that may make calls to foo() directly or indirectly.
}

An example of a weak reference generated by the assembler is:

init.s:
 main:
 ...
 bl init_foo
 // Rest of code

 .weak init_foo

Example of a weak definition

You can provide a simple or dummy implementation of a function as a weak definition. This enables you
to build software with defined behavior without having to provide a full implementation of the function.
It also enables you to provide a full implementation for some builds if required.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-62.
3.12 How the linker resolves references on page 3-65.

Related references
11.66 --keep=section_id on page 11-288.
11.112 --remove, --no_remove on page 11-337.

Related information
EXPORT or GLOBAL.
IMPORT and EXTERN.
NOP.
B.
ENTRY.
EXPORT or GLOBAL.

3 Image Structure and Generation
3.8 Weak references and definitions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290009343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290016692.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425898111637.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425889934568.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290008613.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290009343.html

3.9 How the linker performs library searching, selection, and scanning
The linker always searches user libraries before the ARM libraries.

If you specify the --no_scanlib command-line option, the linker does not search for the default ARM
libraries and uses only those libraries that are specified in the input file list to resolve references.

The linker creates an internal list of libraries as follows:

1. Any libraries explicitly specified in the input file list are added to the list.
2. The user-specified search path is examined to identify ARM standard libraries to satisfy requests

embedded in the input objects.

The best-suited library variants are chosen from the searched directories and their subdirectories.
Libraries supplied by ARM have multiple variants that are named according to the attributes of their
members.

Be aware of the following differences between the way the linker adds object files to the image and the
way it adds libraries to the image:
• Each object file in the input list is added to the output image unconditionally, whether or not anything

refers to it. At least one object must be specified.
• A member from a library is included in the output only if:

— An object file or an already-included library member makes a non-weak reference to it.
— The linker is explicitly instructed to add it.

 Note

If a library member is explicitly requested in the input file list, the member is loaded even if it does
not resolve any current references. In this case, an explicitly requested member is treated as if it is an
ordinary object.

Unresolved references to weak symbols do not cause library members to be loaded.

Related concepts
3.10 How the linker searches for the ARM standard libraries on page 3-63.

Related references
11.66 --keep=section_id on page 11-288.
11.112 --remove, --no_remove on page 11-337.
11.118 --scanlib, --no_scanlib on page 11-343.

3 Image Structure and Generation
3.9 How the linker performs library searching, selection, and scanning

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential

3.10 How the linker searches for the ARM standard libraries
The linker searches for the ARM standard libraries using information specified on the command-line, or
by examining environment variables.

By default, the linker searches for the ARM standard libraries in ../lib, relative to the location of the
armlink executable. Use the --libpath command-line option to specify a different location.

The --libpath command-line option

Use the --libpath command-line option with a comma-separated list of parent directories. This list
must end with the parent directory of the ARM library directories armlib, cpplib, and libcxx.

The sequential nature of the search ensures that armlink chooses the library that appears earlier in the
list if two or more libraries define the same symbol.

Library search order
The linker searches for libraries in the following order:
1. At the location specified with the command-line option --libpath.
2. In ../lib, relative to the location of the armlink executable.

How the linker selects ARM library variants

The ARM Compiler toolchain includes a number of variants of each of the libraries, that are built using
different build options. For example, architecture versions, endianness, and instruction set. The variant of
the ARM library is coded into the library name. The linker must select the best-suited variant from each
of the directories identified during the library search.

The linker accumulates the attributes of each input object and then selects the library variant best suited
to those attributes. If more than one of the selected libraries are equally suited, the linker retains the first
library selected and rejects all others.

The --no_scanlib option prevents the linker from searching the directories for the ARM standard
libraries.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-62.

Related references
11.71 --libpath=pathlist on page 11-294.

Related information
C and C++ library naming conventions.
The C and C++ libraries.
Toolchain environment variables.

3 Image Structure and Generation
3.10 How the linker searches for the ARM standard libraries

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1358938936497.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1359122846404.html
http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/chr1374139991387.html

3.11 Specifying user libraries when linking
You can specify your own libraries when linking.

To specify user libraries, either:

• Include them with path information explicitly in the input file list.
• Add the --userlibpath option to the armlink command line with a comma-separated list of

directories, and then specify the names of the libraries as input files.

You can use the --library=name option to specify static libraries, libname.a.

If you do not specify a full path name to a library on the command line, the linker tries to locate the
library in the directories specified by the --userlibpath option. For example, if the directory /mylib
contains my_lib.a and other_lib.a, add /mylib/my_lib.a to the input file list with the command:

armlink --userlibpath /mylib my_lib.a *.o

If you add a particular member from a library this does not add the library to the list of searchable
libraries used by the linker. To load a specific member and add the library to the list of searchable
libraries include the library filename on its own as well as specifying library(member). For example,
to load strcmp.o and place mystring.lib on the searchable library list add the following to the input
file list:

mystring.lib(strcmp.o) mystring.lib

 Note

Any search paths used for the ARM standard libraries specified by the linker command-line option
--libpath are not searched for user libraries.

Related concepts
3.10 How the linker searches for the ARM standard libraries on page 3-63.

Related references
11.71 --libpath=pathlist on page 11-294.
11.148 --userlibpath=pathlist on page 11-375.

Related information
The C and C++ libraries.
Toolchain environment variables.

3 Image Structure and Generation
3.11 Specifying user libraries when linking

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1359122846404.html
http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/chr1374139991387.html

3.12 How the linker resolves references
When the linker has constructed the list of libraries, it repeatedly scans each library in the list to resolve
references.

armlink maintains two separate lists of files. The lists are scanned in the following order to resolve all
dependencies:

1. The list of user files and libraries that have been loaded.
2. List of ARM standard libraries found in a directory relative to the armlink executable, or the

directories specified by --libpath.
Each list is scanned using the following process:
1. Scan each of the libraries to load the required members:

a. For each currently unsatisfied non-weak reference, search sequentially through the list of libraries
for a matching definition. The first definition found is marked for processing in step 1.b.

The sequential nature of the search ensures that the linker chooses the library that appears earlier
in the list if two or more libraries define the same symbol. This enables you to override function
definitions from other libraries, for example, the ARM C libraries, by adding your libraries to the
input file list. However you must be careful to consistently override all the symbols in a library
member. If you do not, you risk the objects from both libraries being loaded when there is a
reference to an overridden symbol and a reference to a symbol that was not overridden. This
results in a multiple symbol definition error L6200E for each overridden symbol.

b. Load the library members marked in step 1.a. As each member is loaded it might satisfy some
unresolved references, possibly including weak ones. Loading a library member might also create
new unresolved weak and non-weak references.

c. Repeat these stages until all non-weak references are either resolved or cannot be resolved by any
library.

2. If any non-weak reference remains unsatisfied at the end of the scanning operation, generate an error
message.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-62.
3.10 How the linker searches for the ARM standard libraries on page 3-63.

Related tasks
3.11 Specifying user libraries when linking on page 3-64.

Related references
11.71 --libpath=pathlist on page 11-294.

Related information
Toolchain environment variables.
List of the armlink error and warning messages.

3 Image Structure and Generation
3.12 How the linker resolves references

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/chr1374139991387.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0807-/dom1365073159742.html

3.13 The strict family of linker options
The linker provides options to overcome the limitations of the standard linker checks.

The strict options are not directly related to error severity. Usually, you add a strict option because the
standard linker checks are not precise enough or are potentially noisy with legacy objects.

The strict options are:
• --strict.
• --[no_]strict_enum_size.
• --[no_]strict_flags.
• --[no_]strict_ph.
• --[no_]strict_relocations.
• --[no_]strict_symbols.
• --[no_]strict_visibility.
• --[no_]strict_wchar_size.

Related references
11.129 --strict on page 11-356.
11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
11.133 --strict_relocations, --no_strict_relocations on page 11-360.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.
11.135 --strict_visibility, --no_strict_visibility on page 11-362.
11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.

3 Image Structure and Generation
3.13 The strict family of linker options

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential

Chapter 4
Linker Optimization Features

Describes the optimization features available in the ARM linker, armlink.

It contains the following sections:
• 4.1 Elimination of common debug sections on page 4-68.
• 4.2 Elimination of common groups or sections on page 4-69.
• 4.3 Elimination of unused sections on page 4-70.
• 4.4 Optimization with RW data compression on page 4-71.
• 4.5 Function inlining with the linker on page 4-74.
• 4.6 Factors that influence function inlining on page 4-75.
• 4.7 About branches that optimize to a NOP on page 4-77.
• 4.8 Linker reordering of tail calling sections on page 4-78.
• 4.9 Restrictions on reordering of tail calling sections on page 4-79.
• 4.10 Linker merging of comment sections on page 4-80.
• 4.11 Merging identical constants on page 4-81.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-67

Non-Confidential

4.1 Elimination of common debug sections
The linker can detect multiple copies of a debug section, and discard the additional copies.

In DWARF 3 and later, common debug sections are placed in common groups. armlink discards all but
one copy of each group with the same signature.

Related concepts
4.2 Elimination of common groups or sections on page 4-69.
4.3 Elimination of unused sections on page 4-70.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

Related information
--debug assembler option.
The DWARF Debugging Standard web site.

4 Linker Optimization Features
4.1 Elimination of common debug sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-68

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361289822713.html
http://www.dwarfstd.org/

4.2 Elimination of common groups or sections
The linker can detect multiple copies of groups and sections, and discard the additional copies.

The ARM compiler generates complete objects for linking. Therefore:

• If there are inline functions in C and C++ sources, each object contains the out-of-line copies of the
inline functions that the object requires.

• If templates are used in C++ sources, each object contains the template functions that the object
requires.

When these functions are declared in a common header file, the functions might be defined many times
in separate objects that are subsequently linked together. To eliminate duplicates, the compiler compiles
these functions into separate instances of common code sections or groups.

It is possible that the separate instances of common code sections, or groups, are not identical. Some of
the copies, for example, might be found in a library that has been built with different, but compatible,
build options, different optimization, or debug options.

If the copies are not identical, armlink retains the best available variant of each common code section, or
group, based on the attributes of the input objects. armlink discards the rest.

If the copies are identical, armlink retains the first section or group located.

You control this optimization with the following linker options:
• Use the --bestdebug option to use the largest common data (COMDAT) group (likely to give the

best debug view).
• Use the --no_bestdebug option to use the smallest COMDAT group (likely to give the smallest code

size). This is the default.

The image changes if you compile all files containing a COMDAT group A with -g, even if you use
--no_bestdebug.

Related concepts
4.1 Elimination of common debug sections on page 4-68.
4.3 Elimination of unused sections on page 4-70.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

Related references
11.8 --bestdebug, --no_bestdebug on page 11-226.

4 Linker Optimization Features
4.2 Elimination of common groups or sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-69

Non-Confidential

4.3 Elimination of unused sections
Elimination of unused sections is the most significant optimization on image size that is performed by
the linker.

Unused section elimination:

• Removes unreachable code and data from the final image.
• Is suppressed in cases that might result in the removal of all sections.

To control this optimization use the --remove, --no_remove, --first, --last, and --keep linker
options.

Unused section elimination requires an entry point. Therefore, if there is no entry point specified for an
image, use the --entry linker option to specify an entry point and permit unused section elimination to
work, if it is enabled.

Use the --info unused linker option to instruct the linker to generate a list of the unused sections that it
eliminates.

An input section is retained in the final image when:
• It contains an entry point.
• It is referred to, directly or indirectly, by a non-weak reference from an input section containing an

entry point.
• It is specified as the first or last input section by the --first or --last option (or a scatter-loading

equivalent).
• It is marked as unremovable by the --keep option.

 Note

Compilers usually collect functions and data together and emit one section for each category. The linker
can only eliminate a section if it is entirely unused.

You can also use the -ffunction-sections compiler command-line option to instruct the compiler to
generate one ELF section for each function in the source file.

Related concepts
4.1 Elimination of common debug sections on page 4-68.
4.2 Elimination of common groups or sections on page 4-69.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.8 Weak references and definitions on page 3-60.

Related references
11.112 --remove, --no_remove on page 11-337.
11.42 --entry=location on page 11-262.
11.49 --first=section_id on page 11-269.
11.66 --keep=section_id on page 11-288.
11.69 --last=section_id on page 11-292.
11.60 --info=topic[,topic,…] on page 11-280.

4 Linker Optimization Features
4.3 Elimination of unused sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-70

Non-Confidential

4.4 Optimization with RW data compression
RW data areas typically contain a large number of repeated values, such as zeros, that makes them
suitable for compression.

RW data compression is enabled by default to minimize ROM size.

The linker compresses the data. This data is then decompressed on the target at run time.

The ARM libraries contain some decompression algorithms and the linker chooses the optimal one to
add to your image to decompress the data areas when the image is executed. You can override the
algorithm chosen by the linker.

 Note

Not supported for AArch64 state.

This section contains the following subsections:
• 4.4.1 How the linker chooses a compressor on page 4-71.
• 4.4.2 Options available to override the compression algorithm used by the linker on page 4-71.
• 4.4.3 How compression is applied on page 4-72.
• 4.4.4 Considerations when working with RW data compression on page 4-72.

4.4.1 How the linker chooses a compressor

armlink gathers information about the content of data sections before choosing the most appropriate
compression algorithm to generate the smallest image.

If compression is appropriate, armlink can only use one data compressor for all the compressible data
sections in the image. Different compression algorithms might be tried on these sections to produce the
best overall size. Compression is applied automatically if:

Compressed data size + Size of decompressor < Uncompressed data size

When a compressor has been chosen, armlink adds the decompressor to the code area of your image. If
the final image does not contain any compressed data, no decompressor is added.

Related concepts
4.4.2 Options available to override the compression algorithm used by the linker on page 4-71.
4.4 Optimization with RW data compression on page 4-71.
4.4.3 How compression is applied on page 4-72.
4.4.4 Considerations when working with RW data compression on page 4-72.

4.4.2 Options available to override the compression algorithm used by the linker

The linker has options to disable compression or to specify a compression algorithm to be used.

You can override the compression algorithm used by the linker by either:

• Using the --datacompressor off option to turn off compression.
• Specifying a compression algorithm.

To specify a compression algorithm, use the number of the required compressor on the linker command
line, for example:

armlink --datacompressor 2 …

Use the command-line option --datacompressor list to get a list of compression algorithms available
in the linker:

armlink --datacompressor list…
Num Compression algorithm
==
0 Run-length encoding

4 Linker Optimization Features
4.4 Optimization with RW data compression

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-71

Non-Confidential

1 Run-length encoding, with LZ77 on small-repeats
2 Complex LZ77 compression

When choosing a compression algorithm be aware that:

• Compressor 0 performs well on data with large areas of zero-bytes but few nonzero bytes.
• Compressor 1 performs well on data where the nonzero bytes are repeating.
• Compressor 2 performs well on data that contains repeated values.

The linker prefers compressor 0 or 1 where the data contains mostly zero-bytes (>75%). Compressor 2 is
chosen where the data contains few zero-bytes (<10%). If the image is made up only of A32 code, then
A32 decompressors are used automatically. If the image contains any T32 code, T32 decompressors are
used. If there is no clear preference, all compressors are tested to produce the best overall size.

 Note

It is not possible to add your own compressors into the linker. The algorithms that are available, and how
the linker chooses to use them, might change in the future.

Related concepts
4.4 Optimization with RW data compression on page 4-71.
4.4.3 How compression is applied on page 4-72.
4.4.1 How the linker chooses a compressor on page 4-71.
4.4.4 Considerations when working with RW data compression on page 4-72.

Related references
11.26 --datacompressor=opt on page 11-246.

4.4.3 How compression is applied

The linker applies compression depending on the compression type specified, and might apply additional
compression on repeated phrases.

Run-length compression encodes data as non-repeated bytes and repeated zero-bytes. Non-repeated bytes
are output unchanged, followed by a count of zero-bytes.

Lempel-Ziv 1977 (LZ77) compression keeps track of the last n bytes of data seen. When a phrase is
encountered that has already been seen, it outputs a pair of values corresponding to:
• The position of the phrase in the previously-seen buffer of data.
• The length of the phrase.

Related concepts
4.4 Optimization with RW data compression on page 4-71.
4.4.2 Options available to override the compression algorithm used by the linker on page 4-71.
4.4.1 How the linker chooses a compressor on page 4-71.
4.4.4 Considerations when working with RW data compression on page 4-72.

Related references
11.26 --datacompressor=opt on page 11-246.

4.4.4 Considerations when working with RW data compression

There are some considerations to be aware of when working with RW data compression.

When working with RW data compression:
• Use the linker option --map to see where compression has been applied to regions in your code.
• The linker in RealView Compiler Tools (RVCT) v4.0 and later turns off RW compression if there is a

reference from a compressed region to a linker-defined symbol that uses a load address.
• If you are using an ARM processor with on-chip cache, enable the cache after decompression to

avoid code coherency problems.

4 Linker Optimization Features
4.4 Optimization with RW data compression

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

Compressed data sections are automatically decompressed at run time, providing __main is executed,
using code from the ARM libraries. This code must be placed in a root region. This is best done using
InRoot$$Sections in a scatter file.

If you are using a scatter file, you can specify that a load or execution region is not to be compressed by
adding the NOCOMPRESS attribute.

Related concepts
4.4 Optimization with RW data compression on page 4-71.
4.4.1 How the linker chooses a compressor on page 4-71.
4.4.2 Options available to override the compression algorithm used by the linker on page 4-71.
4.4.3 How compression is applied on page 4-72.

Related references
6.3.3 Load$$ execution region symbols on page 6-93.
Chapter 7 Scatter-loading Features on page 7-106.
11.84 --map, --no_map on page 11-309.
Chapter 8 Scatter File Syntax on page 8-165.

4 Linker Optimization Features
4.4 Optimization with RW data compression

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

4.5 Function inlining with the linker
The linker inlines functions depending on what options you specify and the content of the input files.

The linker can inline small functions in place of a branch instruction to that function. For the linker to be
able to do this, the function (without the return instruction) must fit in the four bytes of the branch
instruction.

Use the --inline and --no_inline command-line options to control branch inlining. However,
--no_inline only turns off inlining for user-supplied objects. The linker still inlines functions from the
ARM C Library by default.

If branch inlining optimization is enabled, the linker scans each function call in the image and then
inlines as appropriate. When the linker finds a suitable function to inline, it replaces the function call
with the instruction from the function that is being called.

The linker applies branch inlining optimization before any unused sections are eliminated so that inlined
sections can also be removed if they are no longer called.

 Note

• For ARMv7-A, the linker can inline two 16-bit encoded Thumb instructions in place of the 32-bit
encoded Thumb BL instruction.

• For ARMv8-A and ARMv8-M, the linker can inline two 16-bit T32 instructions in place of the 32-bit
T32 BL instruction.

Use the --info=inline command-line option to list all the inlined functions.
 Note

The linker does not inline small functions in AArch64 state.

Related concepts
4.6 Factors that influence function inlining on page 4-75.
4.3 Elimination of unused sections on page 4-70.

Related references
11.60 --info=topic[,topic,…] on page 11-280.
11.63 --inline, --no_inline on page 11-285.

4 Linker Optimization Features
4.5 Function inlining with the linker

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

4.6 Factors that influence function inlining
There are a number of factors that influence the linker inlines functions.

The following factors influence the way functions are inlined:
• The linker handles only the simplest cases and does not inline any instructions that read or write to

the PC because this depends on the location of the function.
• If your image contains both A32 and T32 code, functions that are called from the opposite state must

be built for interworking. The linker can inline functions containing up to two 16-bit T32 instructions.
However, an A32 calling function can only inline functions containing either a single 16-bit encoded
T32 instruction or a 32-bit encoded T32 instruction.

• The action that the linker takes depends on the size of the function being called. The following table
shows the state of both the calling function and the function being called:

Table 4-1 Inlining small functions

Calling function state Called function state Called function size

A32 A32 4 to 8 bytes

A32 T32 2 to 6 bytes

T32 T32 2 to 6 bytes

The linker can inline in different states if there is an equivalent instruction available. For example, if
a T32 instruction is adds r0, r0 then the linker can inline the equivalent A32 instruction. It is not
possible to inline from A32 to T32 because there is less chance of T32 equivalent to an A32
instruction.

• For a function to be inlined, the last instruction of the function must be either:

MOV pc, lr

or

BX lr

A function that consists only of a return sequence can be inlined as a NOP.
• A conditional A32 instruction can only be inlined if either:

— The condition on the BL matches the condition on the instruction being inlined. For example, BLEQ
can only inline an instruction with a matching condition like ADDEQ.

— The BL instruction or the instruction to be inlined is unconditional. An unconditional A32 BL can
inline any conditional or unconditional instruction that satisfies all the other criteria. An
instruction that cannot be conditionally executed cannot be inlined if the BL instruction is
conditional.

• A BL that is the last instruction of a T32 If-Then (IT) block cannot inline a 16-bit encoded T32
instruction or a 32-bit MRS, MSR, or CPS instruction. This is because the IT block changes the behavior
of the instructions within its scope so inlining the instruction changes the behavior of the program.

Related concepts
4.7 About branches that optimize to a NOP on page 4-77.

Related information
Conditional instructions.
ADD.
B.
CPS.
IT.
MOV.

4 Linker Optimization Features
4.6 Factors that influence function inlining

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731159197.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425889841927.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425889934568.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425890075641.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425890218120.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425890440026.html

MRS (PSR to general-purpose register).
MSR (general-purpose register to PSR).

4 Linker Optimization Features
4.6 Factors that influence function inlining

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425890628161.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425890666223.html

4.7 About branches that optimize to a NOP
Although the linker can replace branches with a NOP, there might be some situations where you want to
stop this happening.

By default, the linker replaces any branch with a relocation that resolves to the next instruction with a
NOP instruction. This optimization can also be applied if the linker reorders tail calling sections.

However, there are cases where you might want to disable the option, for example, when performing
verification or pipeline flushes.

To control this optimization, use the --branchnop and --no_branchnop command-line options.
 Note

Not supported for AArch64 state.

Related concepts
4.8 Linker reordering of tail calling sections on page 4-78.

Related references
11.12 --branchnop, --no_branchnop on page 11-230.

4 Linker Optimization Features
4.7 About branches that optimize to a NOP

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

4.8 Linker reordering of tail calling sections
There are some situations when you might want the linker to reorder tail calling sections.

A tail calling section is a section that contains a branch instruction at the end of the section. If the branch
instruction has a relocation that targets a function at the start of another section, the linker can place the
tail calling section immediately before the called section. The linker can then optimize the branch
instruction at the end of the tail calling section to a NOP instruction.

To take advantage of this behavior, use the command-line option --tailreorder to move tail calling
sections immediately before their target.

Use the --info=tailreorder command-line option to display information about any tail call
optimizations performed by the linker.

 Note

The linker does not reorder tail calling functions in AArch64 state.

Related concepts
4.7 About branches that optimize to a NOP on page 4-77.
4.9 Restrictions on reordering of tail calling sections on page 4-79.
3.6.3 Veneer types on page 3-56.

Related references
11.60 --info=topic[,topic,…] on page 11-280.
11.141 --tailreorder, --no_tailreorder on page 11-368.

4 Linker Optimization Features
4.8 Linker reordering of tail calling sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

4.9 Restrictions on reordering of tail calling sections
There are some restrictions on the reordering of tail calling sections.

The linker:
• Can only move one tail calling section for each tail call target. If there are multiple tail calls to a

single section, the tail calling section with an identical section name is moved before the target. If no
section name is found in the tail calling section that has a matching name, then the linker moves the
first section it encounters.

• Cannot move a tail calling section out of its execution region.
• Does not move tail calling sections before inline veneers.

Related concepts
4.8 Linker reordering of tail calling sections on page 4-78.

4 Linker Optimization Features
4.9 Restrictions on reordering of tail calling sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

4.10 Linker merging of comment sections
If input files have any comment sections that are identical, then the linker can merge them.

If input object files have any .comment sections that are identical, then the linker merges them to produce
the smallest .comment section while retaining all useful information.

The linker associates each input .comment section with the filename of the corresponding input object. If
it merges identical .comment sections, then all the filenames that contain the common section are listed
before the section contents, for example:

file1.o
file2.o
.comment section contents.

The linker merges these sections by default. To prevent the merging of identical .comment sections, use
the --no_filtercomment command-line option.

 Note

armlink does not preprocess comment sections from armclang. If you do not want to retain the
information in a .comment section, then use the fromelf command with the --strip=comment option to
strip this section from the image.

Related references
11.20 --comment_section, --no_comment_section on page 11-239.
11.47 --filtercomment, --no_filtercomment on page 11-267.

Related information
--strip (fromelf option).

4 Linker Optimization Features
4.10 Linker merging of comment sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128923577.html

4.11 Merging identical constants
The linker can attempt to merge identical constants in objects targeted at AArch32 state. The objects
must be produced with ARM Compiler 6. If you compile with the armclang -ffunction-sections
option, the merge is more efficient. This option is the default.

The following procedure is an example that shows the merging feature.

Procedure
1. Create a C source file, litpool.c, containing the following code:

int f1() {
 return 0xdeadbeef;
}
int f2() {
 return 0xdeadbeef;
}

2. Compile the source with -S to create an assembly file:
armclang -c -S -target arm-arm-none-eabi -mcpu=cortex-m0 -ffunction-sections
litpool.c -o litpool.s

 Note

-ffunction-sections is the default.

Because 0xdeadbeef is a difficult constant to create using instructions, a literal pool is created, for
example:

...
f1:
 .fnstart
@ BB#0:
 ldr r0, __arm_cp.0_0
 bx lr
 .p2align 2
@ BB#1:
__arm_cp.0_0:
 .long 3735928559 @ 0xdeadbeef
...
 .fnend

...
 .code 16 @ @f2
 .thumb_func
f2:
 .fnstart
@ BB#0:
 ldr r0, __arm_cp.1_0
 bx lr
 .p2align 2
@ BB#1:
__arm_cp.1_0:
 .long 3735928559 @ 0xdeadbeef
...
 .fnend
...

 Note

There is one copy of the constant for each function, because armclang cannot share these constants
between both functions.

3. Compile the source to create an object:
armclang -c -target arm-arm-none-eabi -mcpu=cortex-m0 litpool.c -o litpool.o

4. Link the object file using the --merge_litpools option:
armlink --cpu=Cortex-M0 --merge_litpools litpool.o -o litpool.axf

4 Linker Optimization Features
4.11 Merging identical constants

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

 Note

--merge_litpools is the default.

5. Run fromelf to view the image structure:
fromelf -c -d -s -t -v -z litpool.axf

The following example shows the result of the merge:

...
 f1
 0x00008000: 4801 .H LDR r0,[pc,#4] ; [0x8008] = 0xdeadbeef
 0x00008002: 4770 pG BX lr
 f2
 0x00008004: 4800 .H LDR r0,[pc,#0] ; [0x8008] = 0xdeadbeef
 0x00008006: 4770 pG BX lr
 $d.4
 __arm_cp.1_0
 0x00008008: deadbeef DCD 3735928559
...

Related references
11.90 --merge_litpools, --no_merge_litpools on page 11-315.

Related information
-ffunction-sections, -fno-function-sections (armclang option).

4 Linker Optimization Features
4.11 Merging identical constants

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/sam1445342406709.html

Chapter 5
Getting Image Details

Describes how to get image details from the ARM linker, armlink.

It contains the following sections:
• 5.1 Options for getting information about linker-generated files on page 5-84.
• 5.2 Identifying the source of some link errors on page 5-85.
• 5.3 Example of using the --info linker option on page 5-86.
• 5.4 How to find where a symbol is placed when linking on page 5-88.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

5-83

Non-Confidential

5.1 Options for getting information about linker-generated files
The linker provides options for getting information about the files it generates.

You can use following options to get information about how your file is generated by the linker, and
about the properties of the files:

--info
Displays information about various topics.

--map
Displays the image memory map, and contains the address and the size of each load region,
execution region, and input section in the image, including linker-generated input sections. It
also shows how RW data compression is applied.

--show_cmdline
Outputs the command-line used by the linker.

--symbols
Displays a list of each local and global symbol used in the link step, and its value.

--verbose
Displays detailed information about the link operation, including the objects that are included
and the libraries that contain them.

--xref
Displays a list of all cross-references between input sections.

--xrefdbg
Displays a list of all cross-references between input debug sections.

The information can be written to a file using the --list=filename option.

Related concepts
3.3.3 Section alignment with the linker on page 3-51.
4.4 Optimization with RW data compression on page 4-71.

Related tasks
5.2 Identifying the source of some link errors on page 5-85.
5.3 Example of using the --info linker option on page 5-86.

Related references
11.60 --info=topic[,topic,…] on page 11-280.
11.74 --list=filename on page 11-297.
11.84 --map, --no_map on page 11-309.
11.121 --show_cmdline on page 11-347.
11.137 --symbols, --no_symbols on page 11-364.
11.153 --verbose on page 11-380.
11.158 --xref, --no_xref on page 11-385.
11.159 --xrefdbg, --no_xrefdbg on page 11-386.

5 Getting Image Details
5.1 Options for getting information about linker-generated files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

5-84

Non-Confidential

5.2 Identifying the source of some link errors
The linker provides options to help you identify the source of some link errors.

To identify the source of some link errors, use --info inputs. For example, you can search the output
to locate undefined references from library objects or multiply defined symbols caused by retargeting
some library functions and not others. Search backwards from the end of this output to find and resolve
link errors.

You can also use the --verbose option to output similar text with additional information on the linker
operations.

Related references
5.1 Options for getting information about linker-generated files on page 5-84.
11.60 --info=topic[,topic,…] on page 11-280.
11.153 --verbose on page 11-380.

5 Getting Image Details
5.2 Identifying the source of some link errors

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

5-85

Non-Confidential

5.3 Example of using the --info linker option
This is an example of the output generated by the --info option

To display the component sizes when linking enter:

armlink --info sizes …

Here, sizes gives a list of the Code and data sizes for each input object and library member in the
image. Using this option implies --info sizes,totals.

The following example shows the output in tabular format with the totals separated out for easy reading:

Code (inc. data) RO Data RW Data ZI Data Debug
3712 1580 19 44 10200 7436 Object Totals
0 0 16 0 0 0 (incl. Generated)
0 0 3 0 0 0 (incl. Padding)
21376 648 805 4 300 10216 Library Totals
0 0 6 0 0 0 (incl. Padding)
===
Code (inc. data) RO Data RW Data ZI Data Debug
25088 2228 824 48 10500 17652 Grand Totals
25088 2228 824 48 10500 17652 ELF Image Totals
25088 2228 824 48 0 0 ROM Totals
===
Total RO Size (Code + RO Data) 25912 (25.30kB)
Total RW Size (RW Data + ZI Data) 10548 (10.30kB)
Total ROM Size (Code + RO Data + RW Data) 25960 (25.35kB)

In this example:

Code (inc. data)
Shows how many bytes are occupied by code. In this image, there are 3712 bytes of code. This
includes 1580 bytes of inline data (inc. data), for example, literal pools, and short strings.

RO Data
Shows how many bytes are occupied by RO data. This is in addition to the inline data included
in the Code (inc. data) column.

RW Data
Shows how many bytes are occupied by RW data.

ZI Data
Shows how many bytes are occupied by ZI data.

Debug
Shows how many bytes are occupied by debug data, for example, debug input sections and the
symbol and string table.

Object Totals
Shows how many bytes are occupied by objects linked together to generate the image.

(incl. Generated)
armlink might generate image contents, for example, interworking veneers, and input sections
such as region tables. If the Object Totals row includes this type of data, it is shown in this
row.

In the example, there are 19 bytes of RO data in total, of which 16 bytes is linker-generated RO
data.

Library Totals
Shows how many bytes are occupied by library members that have been extracted and added to
the image as individual objects.

(incl. Padding)
armlink inserts padding, if required, to force section alignment. If the Object Totals row
includes this type of data, it is shown in the associated (incl. Padding) row. Similarly, if the
Library Totals row includes this type of data, it is shown in its associated row.

In the example, there are 19 bytes of RO data in the object total, of which 3 bytes is linker-
generated padding, and 805 bytes of RO data in the library total, with 6 bytes of padding.

5 Getting Image Details
5.3 Example of using the --info linker option

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

5-86

Non-Confidential

Grand Totals
Shows the true size of the image. In the example, there are 10200 bytes of ZI data (in Object
Totals) and 300 of ZI data (in Library Totals) giving a total of 10500 bytes.

ELF Image Totals
If you are using RW data compression (the default) to optimize ROM size, the size of the final
image changes and this is reflected in the output from --info. Compare the number of bytes
under Grand Totals and ELF Image Totals to see the effect of compression.

In the example, RW data compression is not enabled. If data is compressed, the RW value
changes.

ROM Totals
Shows the minimum size of ROM required to contain the image. This does not include ZI data
and debug information which is not stored in the ROM.

Related references
5.1 Options for getting information about linker-generated files on page 5-84.
11.60 --info=topic[,topic,…] on page 11-280.

5 Getting Image Details
5.3 Example of using the --info linker option

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

5-87

Non-Confidential

5.4 How to find where a symbol is placed when linking
To find where a symbol is placed when linking you must find the section that defines the symbol, and
ensure that the linker has not removed the section.

You can do this with the --keep="section_id" and --symbols options. For example, if
object(section) is the section containing the symbol, enter:

armlink --cpu=8-A.32 --keep="object(section)" --symbols s.o --output=s.axf

 Note

You can also run fromelf -s on the resultant image.

As an example, do the following:

Procedure
1. Create the file s.c containing the following source code:

long long array[10] __attribute__ ((section ("ARRAY")));

int main(void)
{
 return sizeof(array);
}

2. Compile the source:
armclang --target=arm-arm-none-eabi -march=armv8-a -c s.c -o s.o

3. Link the object s.o, keeping the ARRAY symbol and displaying the symbols:
armlink --cpu=8-A.32 --keep="s.o(ARRAY)" --map --symbols s.o --output=s.axf

4. Locate the ARRAY symbol in the output, for example:

...
Execution Region ER_RW (Base: 0x000083a8, Size: 0x00000028, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x000083a8 0x00000028 Data RW 4 ARRAY s.o

...
Execution Region ER_RW (Base: 0x00008360, Size: 0x00000050, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00008360 0x00000050 Data RW 3 ARRAY s.o

This shows that the array is placed in execution region ER_RW.

Related references
11.66 --keep=section_id on page 11-288.
11.84 --map, --no_map on page 11-309.
11.92 -o filename, --output=filename on page 11-317.

Related information
Using fromelf to find where a symbol is placed in an executable ELF image.
-c compiler option.
-march compiler option.
-o compiler option.
--target compiler option.

5 Getting Image Details
5.4 How to find where a symbol is placed when linking

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

5-88

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128883892.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664602614.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1411547793198.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664841316.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664654486.html

Chapter 6
Accessing and Managing Symbols with armlink

Describes how to access and manage symbols with the ARM linker, armlink.

It contains the following sections:
• 6.1 About mapping symbols on page 6-90.
• 6.2 Linker-defined symbols on page 6-91.
• 6.3 Region-related symbols on page 6-92.
• 6.4 Section-related symbols on page 6-97.
• 6.5 Access symbols in another image on page 6-99.
• 6.6 Edit the symbol tables with a steering file on page 6-102.
• 6.7 Use of $Super$$ and $Sub$$ to patch symbol definitions on page 6-105.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-89

Non-Confidential

6.1 About mapping symbols
Mapping symbols are generated by the compiler and assembler to identify various inline transitions.

For ARMv7-A, inline transitions can be between:

• Code and data at literal pool boundaries.
• ARM code and Thumb code, such as ARM/Thumb interworking veneers.

For ARMv8-A, inline transitions can be between:
• Code and data at literal pool boundaries.
• A32 code and T32 code, such as A32/T32 interworking veneers.

For ARMv6-M, ARMv7-M, and ARMv8-M, inline transitions can be between code and data at literal
pool boundaries.

The mapping symbols available for each architecture are:

Symbol Description Architecture

$a Start of a sequence of ARM/A32
instructions.

All

$t Start of a sequence of Thumb/T32
instructions.

All

$t.x Start of a sequence of ThumbEE
instructions.

ARMv7-A

$d Start of a sequence of data items, such as a
literal pool.

All

$x Start of A64 code. ARMv8-A

armlink generates the $d.realdata mapping symbol to communicate to fromelf that the data is from a
non-executable section. Therefore, the code and data sizes output by fromelf -z are the same as the
output from armlink --info sizes, for example:

 Code (inc. data) RO Data
 x y z

In this example, the y is marked with $d, and RO Data is marked with $d.realdata.
 Note

Symbols beginning with the characters $v are mapping symbols related to VFP and might be output
when building for a target with VFP. Avoid using symbols beginning with $v in your source code.

Be aware that modifying an executable image with the fromelf --elf --strip=localsymbols
command removes all mapping symbols from the image.

Related references
11.75 --list_mapping_symbols, --no_list_mapping_symbols on page 11-298.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.

Related information
Symbol naming rules.
--strip=option[,option,…] fromelf option.
--text fromelf option.
ELF for the ARM Architecture.

6 Accessing and Managing Symbols with armlink
6.1 About mapping symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-90

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731172471.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128923577.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128925577.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

6.2 Linker-defined symbols
The linker defines some symbols that are reserved by ARM, and that you can access if required.

Symbols that contain the character sequence $$, and all other external names containing the sequence $$,
are names reserved by ARM.

You can import these symbolic addresses and use them as relocatable addresses by your assembly
language programs, or refer to them as extern symbols from your C or C++ source code.

Be aware that:
• Linker-defined symbols are only generated when your code references them.
• If execute-only (XO) sections are present, linker-defined symbols are defined with the following

constraints:
— XO linker defined symbols cannot be defined with respect to an empty region or a region that has

no XO sections.
— XO linker defined symbols cannot be defined with respect to a region that contains only RO

sections.
— RO linker defined symbols cannot be defined with respect to a region that contains only XO

sections.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Related concepts
6.3.7 Methods of importing linker-defined symbols in C and C++ on page 6-95.
6.3.8 Methods of importing linker-defined symbols in ARM® assembly language on page 6-96.

6 Accessing and Managing Symbols with armlink
6.2 Linker-defined symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-91

Non-Confidential

6.3 Region-related symbols
The linker generates various types of region-related symbols that you can access if required.

This section contains the following subsections:
• 6.3.1 Types of region-related symbols on page 6-92.
• 6.3.2 Image$$ execution region symbols on page 6-92.
• 6.3.3 Load$$ execution region symbols on page 6-93.
• 6.3.4 Load$$LR$$ load region symbols on page 6-94.
• 6.3.5 Region name values when not scatter-loading on page 6-95.
• 6.3.6 Linker defined symbols and scatter files on page 6-95.
• 6.3.7 Methods of importing linker-defined symbols in C and C++ on page 6-95.
• 6.3.8 Methods of importing linker-defined symbols in ARM® assembly language on page 6-96.

6.3.1 Types of region-related symbols

The linker generates the different types of region-related symbols for each region in the image.

The types are:
• Image$$ and Load$$ for each execution region.
• Load$$LR$$ for each load region.

If you are using a scatter file these symbols are generated for each region in the scatter file.

If you are not using scatter-loading, the symbols are generated for the default region names. That is, the
region names are fixed and the same types of symbol are supplied.

Related concepts
6.3.5 Region name values when not scatter-loading on page 6-95.

Related references
6.3.2 Image$$ execution region symbols on page 6-92.
6.3.3 Load$$ execution region symbols on page 6-93.
6.3.4 Load$$LR$$ load region symbols on page 6-94.

6.3.2 Image$$ execution region symbols

The linker generates Image$$ symbols for every execution region present in the image.

The following table shows the symbols that the linker generates for every execution region present in the
image. All the symbols refer to execution addresses after the C library is initialized.

Table 6-1 Image$$ execution region symbols

Symbol Description

Image$$region_name$$Base Execution address of the region.

Image$$region_name$$Length Execution region length in bytes excluding ZI length.

Image$$region_name$$Limit Address of the byte beyond the end of the non-ZI part of the
execution region.

Image$$region_name$$RO$$Base Execution address of the RO output section in this region.

Image$$region_name$$RO$$Length Length of the RO output section in bytes.

Image$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section in
the execution region.

Image$$region_name$$RW$$Base Execution address of the RW output section in this region.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-92

Non-Confidential

Table 6-1 Image$$ execution region symbols (continued)

Symbol Description

Image$$region_name$$RW$$Length Length of the RW output section in bytes.

Image$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output section in
the execution region.

Image$$region_name$$XO$$Base Execution address of the XO output section in this region.

Image$$region_name$$XO$$Length Length of the XO output section in bytes.

Image$$region_name$$XO$$Limit Address of the byte beyond the end of the XO output section in
the execution region.

Image$$region_name$$ZI$$Base Execution address of the ZI output section in this region.

Image$$region_name$$ZI$$Length Length of the ZI output section in bytes.

Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output section in the
execution region.

Related concepts
6.3.1 Types of region-related symbols on page 6-92.

6.3.3 Load$$ execution region symbols

The linker generates Load$$ symbols for every execution region present in the image.

 Note

Load$$region_name symbols apply only to execution regions. Load$$LR$$load_region_name symbols
apply only to load regions.

The following table shows the symbols that the linker generates for every execution region present in the
image. All the symbols refer to load addresses after the C library is initialized.

Table 6-2 Load$$ execution region symbols

Symbol Description

Load$$region_name$$Base Load address of the region.

Load$$region_name$$Length Region length in bytes.

Load$$region_name$$Limit Address of the byte beyond the end of the execution region.

Load$$region_name$$RO$$Base Address of the RO output section in this execution region.

Load$$region_name$$RO$$Length Length of the RO output section in bytes.

Load$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section in the execution region.

Load$$region_name$$RW$$Base Address of the RW output section in this execution region.

Load$$region_name$$RW$$Length Length of the RW output section in bytes.

Load$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output section in the execution region.

Load$$region_name$$XO$$Base Address of the XO output section in this execution region.

Load$$region_name$$XO$$Length Length of the XO output section in bytes.

Load$$region_name$$XO$$Limit Address of the byte beyond the end of the XO output section in the execution region.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-93

Non-Confidential

Table 6-2 Load$$ execution region symbols (continued)

Symbol Description

Load$$region_name$$ZI$$Base Load address of the ZI output section in this execution region.

Load$$region_name$$ZI$$Length Load length of the ZI output section in bytes.

The Load Length of ZI is zero unless region_name has the ZEROPAD scatter-loading
keyword set.

Load$$region_name$$ZI$$Limit Load address of the byte beyond the end of the ZI output section in the execution region.

All symbols in this table refer to load addresses before the C library is initialized. Be aware of the
following:
• The symbols are absolute because section-relative symbols can only have execution addresses.
• The symbols take into account RW compression.
• References to linker-defined symbols from RW compressed execution regions must be to symbols

that are resolvable before RW compression is applied.
• If the linker detects a relocation from an RW-compressed region to a linker-defined symbol that

depends on RW compression, then the linker disables compression for that region.
• Any zero bytes written to the file are visible. Therefore, the Limit and Length values must take into

account the zero bytes written into the file.

Related concepts
6.3.1 Types of region-related symbols on page 6-92.
6.3.7 Methods of importing linker-defined symbols in C and C++ on page 6-95.
6.3.8 Methods of importing linker-defined symbols in ARM® assembly language on page 6-96.
6.3.5 Region name values when not scatter-loading on page 6-95.
4.4 Optimization with RW data compression on page 4-71.

Related references
6.3.2 Image$$ execution region symbols on page 6-92.
6.3.4 Load$$LR$$ load region symbols on page 6-94.
8.4.3 Execution region attributes on page 8-176.

6.3.4 Load$$LR$$ load region symbols

The linker generates Load$$LR$$ symbols for every load region present in the image.

A Load$$LR$$ load region can contain many execution regions, so there are no separate $$RO and $$RW
components.

 Note

Load$$LR$$load_region_name symbols apply only to load regions. Load$$region_name symbols apply
only to execution regions.

The following table shows the symbols that the linker generates for every load region present in the
image.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-94

Non-Confidential

Table 6-3 Load$$LR$$ load region symbols

Symbol Description

Load$$LR$$load_region_name$$Base Address of the load region.

Load$$LR$$load_region_name$$Length Length of the load region.

Load$$LR$$load_region_name$$Limit Address of the byte beyond the end of the load region.

Related concepts
6.3.1 Types of region-related symbols on page 6-92.
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.

6.3.5 Region name values when not scatter-loading

When scatter-loading is not used when linking, the linker uses default region name values.

If you are not using scatter-loading, the linker uses region name values of:

• ER_XO, for an execute-only execution region, if present.
• ER_RO, for the read-only execution region.
• ER_RW, for the read-write execution region.
• ER_ZI, for the zero-initialized execution region.

You can insert these names into the following symbols to obtain the required address:
• Image$$ execution region symbols.
• Load$$ execution region symbols.

For example, Load$$ER_RO$$Base.

Related concepts
6.3.1 Types of region-related symbols on page 6-92.
6.4 Section-related symbols on page 6-97.

Related references
6.3.2 Image$$ execution region symbols on page 6-92.
6.3.3 Load$$ execution region symbols on page 6-93.

6.3.6 Linker defined symbols and scatter files

When you are using scatter-loading, the names from a scatter file are used in the linker defined symbols.

The scatter file:
• Names all the load and execution regions in the image, and provides their load and execution

addresses.
• Defines both stack and heap. The linker also generates special stack and heap symbols.

Related references
Chapter 7 Scatter-loading Features on page 7-106.
11.119 --scatter=filename on page 11-344.

6.3.7 Methods of importing linker-defined symbols in C and C++

You can import linker-defined symbols into your C or C++ source code. They are external symbols and
you must take the address of them.

The only case where the & operator is not required is when the array declaration is used, for example
extern char symbol_name[];.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-95

Non-Confidential

The following examples show how to obtain the correct value:

Importing a linker-defined symbol

extern int Image$$ER_ZI$$Limit;
heap_base = (uintptr_t)&Image$$ER_ZI$$Limit;

Importing symbols that define a ZI output section

extern int Image$$ER_ZI$$Length;
extern char Image$$ER_ZI$$Base[];
memset(Image$$ER_ZI$$Base, 0, (size_t)&Image$$ER_ZI$$Length);

Related references
6.3.2 Image$$ execution region symbols on page 6-92.

6.3.8 Methods of importing linker-defined symbols in ARM® assembly language

You can import linker-defined symbols into your ARM assembly code.

To import linker-defined symbols into your assembly language source code, use the .global directive.

32-bit applications

Create a 32-bit data word to hold the value of the symbol, for example:

 .global Image$$ER_ZI$$Limit
 …
.zi_limit:
 .word Image$$ER_ZI$$Limit

To load the value into a register, such as r1, use the LDR instruction:

 LDR r1, .zi_limit

The LDR instruction must be able to reach the 32-bit data word. The accessible memory range varies
between A64, A32, and T32, and the architecture you are using.

64-bit applications

Create a 64-bit data word to hold the value of the symbol, for example:

 .global Image$$ER_ZI$$Limit
 …
.zi_limit:
 .quad Image$$ER_ZI$$Limit

To load the value into a register, such as x1, use the LDR instruction:

 LDR x1, .zi_limit

The LDR instruction must be able to reach the 64-bit data word.

Related references
6.3.2 Image$$ execution region symbols on page 6-92.

Related information
A32 and T32 Instructions.
IMPORT and EXTERN.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-96

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1424433198954.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290016692.html

6.4 Section-related symbols
Section-related symbols are symbols generated by the linker when it creates an image without scatter-
loading.

This section contains the following subsections:
• 6.4.1 Types of section-related symbols on page 6-97.
• 6.4.2 Image symbols on page 6-97.
• 6.4.3 Input section symbols on page 6-98.

6.4.1 Types of section-related symbols

The linker generates different types of section-related symbols for output and input sections.

The types of symbols are:
• Image symbols, if you do not use scatter-loading to create a simple image. A simple image has up to

four output sections (XO, RO, RW, and ZI) that produce the corresponding execution regions.
• Input section symbols, for every input section present in the image.

The linker sorts sections within an execution region first by attribute RO, RW, or ZI, then by name. So,
for example, all .text sections are placed in one contiguous block. A contiguous block of sections with
the same attribute and name is known as a consolidated section.

Related references
6.4.2 Image symbols on page 6-97.
6.4.3 Input section symbols on page 6-98.

6.4.2 Image symbols

Image symbols are generated by the linker when you do not use scatter-loading to create a simple image.

The following table shows the image symbols:

Table 6-4 Image symbols

Symbol Section type Description

Image$$RO$$Base Output Address of the start of the RO output section.

Image$$RO$$Limit Output Address of the first byte beyond the end of the RO output section.

Image$$RW$$Base Output Address of the start of the RW output section.

Image$$RW$$Limit Output Address of the byte beyond the end of the ZI output section. (The choice of the end of the ZI
region rather than the end of the RW region is to maintain compatibility with legacy code.)

Image$$ZI$$Base Output Address of the start of the ZI output section.

Image$$ZI$$Limit Output Address of the byte beyond the end of the ZI output section.

 Note

• ARM recommends that you use region-related symbols in preference to section-related symbols.
• The ZI output sections of an image are not created statically, but are automatically created

dynamically at runtime.
• There are no load address symbols for RO, RW, and ZI output sections.

If you are using a scatter file, the image symbols are undefined. If your code accesses any of these
symbols, you must treat them as a weak reference.

6 Accessing and Managing Symbols with armlink
6.4 Section-related symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-97

Non-Confidential

The standard implementation of __user_setup_stackheap() uses the value in Image$$ZI$$Limit.
Therefore, if you are using a scatter file you must manually place the stack and heap. You can do this
either:
• In a scatter file using one of the following methods:

— Define separate stack and heap regions called ARM_LIB_STACK and ARM_LIB_HEAP.
— Define a combined region containing both stack and heap called ARM_LIB_STACKHEAP.

• By re-implementing __user_setup_stackheap() to set the heap and stack boundaries.

Related concepts
3.2 Simple images on page 3-42.
3.8 Weak references and definitions on page 3-60.

Related tasks
7.1.4 Placing the stack and heap with a scatter file on page 7-108.

Related references
7.1.3 Linker-defined symbols that are not defined when scatter-loading on page 7-108.

Related information
__user_setup_stackheap().

6.4.3 Input section symbols

Input section symbols are generated by the linker for every input section present in the image.

The following table shows the input section symbols:

Table 6-5 Section-related symbols

Symbol Section type Description

SectionName$$Base Input Address of the start of the consolidated section called SectionName.

SectionName$$Length Input Length of the consolidated section called SectionName (in bytes).

SectionName$$Limit Input Address of the byte beyond the end of the consolidated section called SectionName.

If your code refers to the input-section symbols, it is assumed that you expect all the input sections in the
image with the same name to be placed contiguously in the image memory map.

If your scatter file places input sections non-contiguously, the linker issues an error. This is because the
use of the base and limit symbols over non-contiguous memory is ambiguous.

Related concepts
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

Related references
Chapter 7 Scatter-loading Features on page 7-106.

6 Accessing and Managing Symbols with armlink
6.4 Section-related symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-98

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1359122863069.html

6.5 Access symbols in another image
Use a symbol definitions (symdefs) file if you want one image to know the global symbol values of
another image.

This section contains the following subsections:
• 6.5.1 Creating a symdefs file on page 6-99.
• 6.5.2 Outputting a subset of the global symbols on page 6-99.
• 6.5.3 Reading a symdefs file on page 6-100.
• 6.5.4 Symdefs file format on page 6-100.

6.5.1 Creating a symdefs file

You can specify a symdefs file on the linker command-line.

You can use a symdefs file, for example, if you have one image that always resides in ROM and multiple
images that are loaded into RAM. The images loaded into RAM can access global functions and data
from the image located in ROM.

Use the armlink option --symdefs=filename to generate a symdefs file.

The linker produces a symdefs file during a successful final link stage. It is not produced for partial
linking or for unsuccessful final linking.

 Note

If filename does not exist, the linker creates the file and adds entries for all the global symbols to that
file. If filename exists, the linker uses the existing contents of filename to select the symbols that are
output when it rewrites the file. This means that only the existing symbols in the filename are updated,
and no new symbols (if any) are added at all. If you do not want this behavior, ensure that any existing
symdefs file is deleted before the link step.

Related tasks
6.5.2 Outputting a subset of the global symbols on page 6-99.
6.5.3 Reading a symdefs file on page 6-100.

Related references
6.5.4 Symdefs file format on page 6-100.
11.138 --symdefs=filename on page 11-365.

6.5.2 Outputting a subset of the global symbols

You can use a symdefs file to output a subset of the global symbols to another application.

By default, all global symbols are written to the symdefs file. When a symdefs file exists, the linker uses
its contents to restrict the output to a subset of the global symbols.

This example uses an application image1 containing symbols that you want to expose to another
application using a symdefs file.

Procedure
1. Specify --symdefs=filename when you are doing a final link for image1. The linker creates a

symdefs file filename.
2. Open filename in a text editor, remove any symbol entries you do not want in the final list, and save

the file.
3. Specify --symdefs=filename when you are doing a final link for image1.

You can edit filename at any time to add comments and link image1 again. For example, to update
the symbol definitions to create image1 after one or more objects have changed.

6 Accessing and Managing Symbols with armlink
6.5 Access symbols in another image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-99

Non-Confidential

You can use the symdefs file to link additional applications.

Related concepts
6.5 Access symbols in another image on page 6-99.

Related tasks
6.5.1 Creating a symdefs file on page 6-99.

Related references
6.5.4 Symdefs file format on page 6-100.
11.138 --symdefs=filename on page 11-365.

6.5.3 Reading a symdefs file

A symdefs file can be considered as an object file with symbol information but no code or data.

To read a symdefs file, add it to your file list as you do for any object file. The linker reads the file and
adds the symbols and their values to the output symbol table. The added symbols have ABSOLUTE and
GLOBAL attributes.

If a partial link is being performed, the symbols are added to the output object symbol table. If a full link
is being performed, the symbols are added to the image symbol table.

The linker generates error messages for invalid rows in the file. A row is invalid if:

• Any of the columns are missing.
• Any of the columns have invalid values.

The symbols extracted from a symdefs file are treated in exactly the same way as symbols extracted from
an object symbol table. The same restrictions apply regarding multiple symbol definitions.

 Note

The same function name or symbol name cannot be defined in both A32 code and in T32 code.

Related references
6.5.4 Symdefs file format on page 6-100.

6.5.4 Symdefs file format

A symdefs file defines symbols and their values.

The file consists of:

Identification line
The identification line in a symdefs file comprises:
• An identifying string, #<SYMDEFS>#, which must be the first 11 characters in the file for the

linker to recognize it as a symdefs file.
• Linker version information, in the format:

ARM Linker, vvvvbbb:
• Date and time of the most recent update of the symdefs file, in the format:

Last Updated: day month date hh:mm:ss year

For example, for version 6.3, build 169:

#<SYMDEFS># ARM Linker, 6030169: Last Updated: Thu Jun 4 12:49:45 2015

The version and update information are not part of the identifying string.

6 Accessing and Managing Symbols with armlink
6.5 Access symbols in another image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-100

Non-Confidential

Comments
You can insert comments manually with a text editor. Comments have the following properties:
• The first line must start with the special identifying comment #<SYMDEFS>#. This comment

is inserted by the linker when the file is produced and must not be manually deleted.
• Any line where the first non-whitespace character is a semicolon (;) or hash (#) is a

comment.
• A semicolon (;) or hash (#) after the first non-whitespace character does not start a

comment.
• Blank lines are ignored and can be inserted to improve readability.

Symbol information
The symbol information is provided on a single line, and comprises:

Symbol value
The linker writes the absolute address of the symbol in fixed hexadecimal format, for
example, 0x00008000. If you edit the file, you can use either hexadecimal or decimal
formats for the address value.

Type flag
A single letter to show symbol type:

X
A64 code (AArch64 only)

A
A32 code (AArch32 only)

T
T32 code (AArch32 only)

D
Data

N
Number.

Symbol name
The symbol name.

Example

This example shows a typical symdefs file format:

#<SYMDEFS># ARM Linker, 6030169: Last Updated: Date
;value type name, this is an added comment
0x00008000 A __main
0x00008004 A __scatterload
0x000080E0 T main
0x0000814D T _main_arg
0x0000814D T __argv_alloc
0x00008199 T __rt_get_argv
…
 # This is also a comment, blank lines are ignored
…
0x0000A4FC D __stdin
0x0000A540 D __stdout
0x0000A584 D __stderr
0xFFFFFFFD N __SIG_IGN

Related tasks
6.5.3 Reading a symdefs file on page 6-100.
6.5.1 Creating a symdefs file on page 6-99.

6 Accessing and Managing Symbols with armlink
6.5 Access symbols in another image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-101

Non-Confidential

6.6 Edit the symbol tables with a steering file
A steering file is a text file that contains a set of commands to edit the symbol tables of output objects
and the dynamic sections of images.

This section contains the following subsections:
• 6.6.1 Specifying steering files on the linker command-line on page 6-102.
• 6.6.2 Steering file command summary on page 6-102.
• 6.6.3 Steering file format on page 6-103.
• 6.6.4 Hide and rename global symbols with a steering file on page 6-104.

6.6.1 Specifying steering files on the linker command-line

You can specify one or more steering files on the linker command-line.

Use the option --edit file-list to specify one or more steering files on the linker command-line.

When you specify more than one steering file, you can use either of the following command-line
formats:

armlink --edit file1 --edit file2 --edit file3

armlink --edit file1,file2,file3

Do not include spaces between the comma and the filenames when using a comma-separated list.

Related references
6.6.2 Steering file command summary on page 6-102.
6.6.3 Steering file format on page 6-103.

6.6.2 Steering file command summary

Steering file commands enable you to manage symbols in the symbol table, control the copying of
symbols from the static symbol table to the dynamic symbol table, and store information about the
libraries that a link unit depends on.

For example, you can use steering files to protect intellectual property, or avoid namespace clashes.

The steering file commands are:

Table 6-6 Steering file command summary

Command Description

EXPORT Specifies that a symbol can be accessed by other shared objects or executables.

HIDE Makes defined global symbols in the symbol table anonymous.

IMPORT Specifies that a symbol is defined in a shared object at runtime.

RENAME Renames defined and undefined global symbol names.

REQUIRE Creates a DT_NEEDED tag in the dynamic array. DT_NEEDED tags specify dependencies to other shared objects used by
the application, for example, a shared library.

RESOLVE Matches specific undefined references to a defined global symbol.

SHOW Makes global symbols visible. This command is useful if you want to make a specific symbol visible that is hidden using
a HIDE command with a wildcard.

6 Accessing and Managing Symbols with armlink
6.6 Edit the symbol tables with a steering file

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-102

Non-Confidential

 Note

The steering file commands control only global symbols. Local symbols are not affected by any of these
commands.

Related tasks
6.6.1 Specifying steering files on the linker command-line on page 6-102.

Related references
6.6.3 Steering file format on page 6-103.
11.37 --edit=file_list on page 11-257.
12.1 EXPORT steering file command on page 12-390.
12.2 HIDE steering file command on page 12-391.
12.3 IMPORT steering file command on page 12-392.
12.4 RENAME steering file command on page 12-393.
12.5 REQUIRE steering file command on page 12-394.
12.6 RESOLVE steering file command on page 12-395.
12.7 SHOW steering file command on page 12-397.

6.6.3 Steering file format

Each command in a steering file must be on a separate line.

A steering file has the following format:

• Lines with a semicolon (;) or hash (#) character as the first non-whitespace character are interpreted
as comments. A comment is treated as a blank line.

• Blank lines are ignored.
• Each non-blank, non-comment line is either a command, or part of a command that is split over

consecutive non-blank lines.
• Command lines that end with a comma (,) as the last non-whitespace character are continued on the

next non-blank line.

Each command line consists of a command, followed by one or more comma-separated operand groups.
Each operand group comprises either one or two operands, depending on the command. The command is
applied to each operand group in the command. The following rules apply:
• Commands are case-insensitive, but are conventionally shown in uppercase.
• Operands are case-sensitive because they must be matched against case-sensitive symbol names. You

can use wildcard characters in operands.

Commands are applied to global symbols only. Other symbols, such as local symbols, are not affected.

The following example shows a sample steering file:

; Import my_func1 as func1
IMPORT my_func1 AS func1
Rename a very long function name to a shorter name
RENAME a_very_long_function_name AS,
 short_func_name

Related tasks
6.6.1 Specifying steering files on the linker command-line on page 6-102.

Related references
6.6.2 Steering file command summary on page 6-102.
12.1 EXPORT steering file command on page 12-390.
12.2 HIDE steering file command on page 12-391.
12.3 IMPORT steering file command on page 12-392.

6 Accessing and Managing Symbols with armlink
6.6 Edit the symbol tables with a steering file

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-103

Non-Confidential

12.4 RENAME steering file command on page 12-393.
12.5 REQUIRE steering file command on page 12-394.
12.6 RESOLVE steering file command on page 12-395.
12.7 SHOW steering file command on page 12-397.

6.6.4 Hide and rename global symbols with a steering file

You can use a steering file to hide and rename global symbol names in output files.

Use the HIDE and RENAME commands as required.

For example, you can use steering files to protect intellectual property, or avoid namespace clashes.

Example of renaming a symbol:

RENAME steering command example

RENAME func1 AS my_func1

Example of hiding symbols:

HIDE steering command example

; Hides all global symbols with the ‘internal’ prefix
HIDE internal*

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related tasks
6.6.1 Specifying steering files on the linker command-line on page 6-102.

Related references
6.6.2 Steering file command summary on page 6-102.
6.5.4 Symdefs file format on page 6-100.
12.2 HIDE steering file command on page 12-391.
12.4 RENAME steering file command on page 12-393.
11.37 --edit=file_list on page 11-257.

6 Accessing and Managing Symbols with armlink
6.6 Edit the symbol tables with a steering file

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-104

Non-Confidential

6.7 Use of $Super$$ and $Sub$$ to patch symbol definitions
There are special patterns you can use for situations where an existing symbol cannot be modified.

An existing symbol cannot be modified, for example, if it is located in an external library or in ROM
code. In such cases you can use the $Super$$ and $Sub$$ patterns to patch an existing symbol.

To patch the definition of the function foo(), $Sub$$foo and the original definition of foo() must be a
global or weak definition:

$Super$$foo
Identifies the original unpatched function foo(). Use this to call the original function directly.

$Sub$$foo
Identifies the new function that is called instead of the original function foo(). Use this to add
processing before or after the original function.

 Note

The $Sub$$ and $Super$$ mechanism only works at static link time, $Super$$ references cannot be
imported or exported into the dynamic symbol table.

Example

The following example shows how to use $Super$$ and $Sub$$ to insert a call to the function
ExtraFunc() before the call to the legacy function foo().

extern void ExtraFunc(void);
extern void $Super$$foo(void);

/* this function is called instead of the original foo() */
void $Sub$$foo(void)
{
 ExtraFunc(); /* does some extra setup work */
 $Super$$foo(); /* calls the original foo() function */
 /* To avoid calling the original foo() function
 * omit the $Super$$foo(); function call.
 */
}

Related information
ELF for the ARM Architecture.

6 Accessing and Managing Symbols with armlink
6.7 Use of $Super$$ and $Sub$$ to patch symbol definitions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

6-105

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

Chapter 7
Scatter-loading Features

Describes the scatter-loading features and how you use scatter files with the ARM linker, armlink, to
create complex images.

It contains the following sections:
• 7.1 The scatter-loading mechanism on page 7-107.
• 7.2 Root region and the initial entry point on page 7-113.
• 7.3 Example of how to explicitly place a named section with scatter-loading on page 7-127.
• 7.4 Placing unassigned sections on page 7-129.
• 7.5 Placing veneers with a scatter file on page 7-140.
• 7.6 Placement of CMSE veneer sections for a Secure image on page 7-141.
• 7.7 Reserving an empty block of memory on page 7-143.
• 7.8 Placing ARM® C and C++ library code on page 7-145.
• 7.9 Aligning regions to page boundaries on page 7-148.
• 7.10 Aligning execution regions and input sections on page 7-150.
• 7.11 Preprocessing a scatter file on page 7-151.
• 7.12 Example of using expression evaluation in a scatter file to avoid padding on page 7-152.
• 7.13 Equivalent scatter-loading descriptions for simple images on page 7-153.
• 7.14 How the linker resolves multiple matches when processing scatter files on page 7-160.
• 7.15 How the linker resolves path names when processing scatter files on page 7-162.
• 7.16 Scatter file to ELF mapping on page 7-163.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-106

Non-Confidential

7.1 The scatter-loading mechanism
The scatter-loading mechanism enables you to specify the memory map of an image to the linker using a
description in a text file.

This section contains the following subsections:
• 7.1.1 Overview of scatter-loading on page 7-107.
• 7.1.2 When to use scatter-loading on page 7-107.
• 7.1.3 Linker-defined symbols that are not defined when scatter-loading on page 7-108.
• 7.1.4 Placing the stack and heap with a scatter file on page 7-108.
• 7.1.5 Scatter-loading command-line options on page 7-109.
• 7.1.6 Scatter-loading images with a simple memory map on page 7-110.
• 7.1.7 Scatter-loading images with a complex memory map on page 7-111.

7.1.1 Overview of scatter-loading

Scatter-loading gives you complete control over the grouping and placement of image components.

You can use scatter-loading to create simple images, but it is generally only used for images that have a
complex memory map. That is, where multiple memory regions are scattered in the memory map at load
and execution time.

An image memory map is made up of regions and output sections. Every region in the memory map can
have a different load and execution address.

To construct the memory map of an image, the linker must have:
• Grouping information that describes how input sections are grouped into output sections and regions.
• Placement information that describes the addresses where regions are to be located in the memory

maps.

When the linker creates an image using a scatter file, it creates some region-related symbols. The linker
creates these special symbols only if your code references them.

Related concepts
7.1.2 When to use scatter-loading on page 7-107.
7.16 Scatter file to ELF mapping on page 7-163.
3.1 The structure of an ARM ELF image on page 3-34.

Related references
6.3 Region-related symbols on page 6-92.

7.1.2 When to use scatter-loading

Scatter-loading is usually required for implementing embedded systems because these use ROM, RAM,
and memory-mapped peripherals.

Situations where scatter-loading is either required or very useful:

Complex memory maps
Code and data that must be placed into many distinct areas of memory require detailed
instructions on where to place the sections in the memory space.

Different types of memory
Many systems contain a variety of physical memory devices such as flash, ROM, SDRAM, and
fast SRAM. A scatter-loading description can match the code and data with the most appropriate
type of memory. For example, interrupt code might be placed into fast SRAM to improve
interrupt response time but infrequently-used configuration information might be placed into
slower flash memory.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-107

Non-Confidential

Memory-mapped peripherals
The scatter-loading description can place a data section at a precise address in the memory map
so that memory mapped peripherals can be accessed.

Functions at a constant location
A function can be placed at the same location in memory even though the surrounding
application has been modified and recompiled. This is useful for jump table implementation.

Using symbols to identify the heap and stack
Symbols can be defined for the heap and stack location when the application is linked.

Related concepts
7.1.1 Overview of scatter-loading on page 7-107.

7.1.3 Linker-defined symbols that are not defined when scatter-loading

When scatter-loading an image, some linker-defined symbols are undefined.

The following symbols are undefined when a scatter file is used:
• Image$$RO$$Base.
• Image$$RO$$Limit.
• Image$$RW$$Base.
• Image$$RW$$Limit.
• Image$$XO$$Base.
• Image$$XO$$Limit.
• Image$$ZI$$Base.
• Image$$ZI$$Limit.

If you use a scatter file but do not use the special region names for stack and heap, or do not re-
implement __user_setup_stackheap(), an error message is generated.

Related concepts
6.2 Linker-defined symbols on page 6-91.

Related tasks
7.1.4 Placing the stack and heap with a scatter file on page 7-108.

7.1.4 Placing the stack and heap with a scatter file

The ARM C library provides multiple implementations of the function __user_setup_stackheap(),
and can select the correct one for you automatically from information that is given in a scatter file.

 Note

• If you re-implement __user_setup_stackheap() then your version does not get invoked when stack
and heap are defined in a scatter file.

• You might have to update your startup code to use the correct initial stack pointer. Some processors,
such as Cortex®-M3, require that you place the initial stack pointer in the vector table. See Stack and
heap configuration in AN179 - Cortex®-M3 Embedded Software Development for more details.

Procedure
1. Define two special execution regions in your scatter file that is named ARM_LIB_HEAP and

ARM_LIB_STACK.
2. Assign the EMPTY attribute to both regions.

Because the stack and heap are in separate regions, the library selects the non-default implementation
of __user_setup_stackheap() that uses the value of the symbols:
• Image$$ARM_LIB_STACK$$ZI$$Base.
• Image$$ARM_LIB_STACK$$ZI$$Limit.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-108

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0179-/CHDEGGBA.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0179-/CHDEGGBA.html

• Image$$ARM_LIB_HEAP$$ZI$$Base.
• Image$$ARM_LIB_HEAP$$ZI$$Limit.

You can specify only one ARM_LIB_STACK or ARM_LIB_HEAP region, and you must allocate a size.

LOAD_FLASH …
{
 …
 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
 …
}

3. Alternatively, define a single execution region that is named ARM_LIB_STACKHEAP to use a combined
stack and heap region. Assign the EMPTY attribute to the region.
Because the stack and heap are in the same region, __user_setup_stackheap() uses the value of the
symbols Image$$ARM_LIB_STACKHEAP$$ZI$$Base and Image$$ARM_LIB_STACKHEAP$$ZI$$Limit.

Related references
6.3 Region-related symbols on page 6-92.

Related information
__user_setup_stackheap().

7.1.5 Scatter-loading command-line options

The command-line options to the linker give some control over the placement of data and code, but
complete control of placement requires more detailed instructions than can be entered on the command
line.

Complex memory maps

Placement of code and data in complex memory maps must be specified in a scatter file. You specify the
scatter file with the option:

--scatter=scatter_file

This instructs the linker to construct the image memory map as described in scatter_file.

You can use --scatter with the --base_platform linking model.

Simple memory maps
For simple memory maps, you can place code and data with with the following memory map related
command-line options:
• --bpabi.
• --dll.
• --partial.
• --ro_base.
• --rw_base.
• --ropi.
• --rwpi.
• --rosplit.
• --split.
• --reloc.
• --xo_base
• --zi_base.

 Note

Apart from --dll, you cannot use --scatter with these options.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-109

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1359122863069.html

Related concepts
2.5 Base Platform linking model on page 2-31.
7.1 The scatter-loading mechanism on page 7-107.
7.1.2 When to use scatter-loading on page 7-107.
7.13 Equivalent scatter-loading descriptions for simple images on page 7-153.

Related references
11.7 --base_platform on page 11-224.
11.11 --bpabi on page 11-229.
11.33 --dll on page 11-253.
11.100 --partial on page 11-325.
11.110 --reloc on page 11-335.
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.
11.119 --scatter=filename on page 11-344.
11.126 --split on page 11-353.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.
Chapter 8 Scatter File Syntax on page 8-165.

7.1.6 Scatter-loading images with a simple memory map

For images with a simple memory map, you can specify the memory map using only linker command-
line options, or with a scatter file.

The following figure shows a simple memory map:

0x0000

0x8000

RO section

RW section

RO section

Execution viewLoad view 0x16000

SRAM

ROM

RW section

ZI sectionZero fill

0x10000

Copy / decompress

Figure 7-1 Simple scatter-loaded memory map

The following example shows the corresponding scatter-loading description that loads the segments from
the object file into memory:

LOAD_ROM 0x0000 0x8000 ; Name of load region (LOAD_ROM),
 ; Start address for load region (0x0000),
 ; Maximum size of load region (0x8000)
{
 EXEC_ROM 0x0000 0x8000 ; Name of first exec region (EXEC_ROM),
 ; Start address for exec region (0x0000),
 ; Maximum size of first exec region (0x8000)
 {
 * (+RO) ; Place all code and RO data into
 ; this exec region

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-110

Non-Confidential

 }
 SRAM 0x10000 0x6000 ; Name of second exec region (SRAM),
 ; Start address of second exec region (0x10000),
 ; Maximum size of second exec region (0x6000)
 {
 * (+RW, +ZI) ; Place all RW and ZI data into
 ; this exec region
 }
}

The maximum size specifications for the regions are optional. However, if you include them, they enable
the linker to check that a region does not overflow its boundary.

Apart from the limit checking, you can achieve the same result with the following linker command-line:

armlink --ro_base 0x0 --rw_base 0x10000

Related concepts
7.16 Scatter file to ELF mapping on page 7-163.
7.1 The scatter-loading mechanism on page 7-107.
7.1.2 When to use scatter-loading on page 7-107.

Related references
11.113 --ro_base=address on page 11-338.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.

7.1.7 Scatter-loading images with a complex memory map

For images with a complex memory map, you cannot specify the memory map using only linker
command-line options. Such images require the use of a scatter file.

The following figure shows a complex memory map:

0x00000

0x08000

RO section#2

RO section#1

ZI section#2

RW section#2

RW section#1

RO section#2

RW section#2

0x18000

ZI section#1

RW section#1

RO section#1

Execution viewLoad view 0x20000

DRAM

SRAM

ROM2

Zero fill

0x0000

0x4000

0x10000

ROM1

Figure 7-2 Complex memory map

The following example shows the corresponding scatter-loading description that loads the segments from
the program1.o and program2.o files into memory:

LOAD_ROM_1 0x0000 ; Start address for first load region (0x0000)
{
 EXEC_ROM_1 0x0000 ; Start address for first exec region (0x0000)

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-111

Non-Confidential

 {
 program1.o (+RO) ; Place all code and RO data from
 ; program1.o into this exec region
 }
 DRAM 0x18000 0x8000 ; Start address for this exec region (0x18000),
 ; Maximum size of this exec region (0x8000)
 {
 program1.o (+RW, +ZI) ; Place all RW and ZI data from
 ; program1.o into this exec region
 }
}
LOAD_ROM_2 0x4000 ; Start address for second load region (0x4000)
{
 EXEC_ROM_2 0x4000
 {
 program2.o (+RO) ; Place all code and RO data from
 ; program2.o into this exec region
 }
 SRAM 0x8000 0x8000
 {
 program2.o (+RW, +ZI) ; Place all RW and ZI data from
 ; program2.o into this exec region
 }
}

 Caution

The scatter-loading description in this example specifies the location for code and data for program1.o
and program2.o only. If you link an additional module, for example, program3.o, and use this
description file, the location of the code and data for program3.o is not specified.

Unless you want to be very rigorous in the placement of code and data, ARM recommends that you use
the * or .ANY specifier to place leftover code and data.

Related concepts
7.1 The scatter-loading mechanism on page 7-107.
7.2.1 Effect of the ABSOLUTE attribute on a root region on page 7-113.
7.2.2 Effect of the FIXED attribute on a root region on page 7-115.
8.6.10 Scatter files containing relative base address load regions and a ZI execution region
on page 8-192.
7.16 Scatter file to ELF mapping on page 7-163.
7.1.2 When to use scatter-loading on page 7-107.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-112

Non-Confidential

7.2 Root region and the initial entry point
The initial entry point of the image must be in a root region.

If the initial entry point is not in a root region, the link fails and the linker gives an error message.

Example

Root region with the same load and execution address.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; all RO sections (must include section with
 ; initial entry point)
 }
 … ; rest of scatter-loading description
}

This section contains the following subsections:
• 7.2.1 Effect of the ABSOLUTE attribute on a root region on page 7-113.
• 7.2.2 Effect of the FIXED attribute on a root region on page 7-115.
• 7.2.3 Methods of placing functions and data at specific addresses on page 7-116.
• 7.2.4 Placing functions and data in a named section on page 7-121.
• 7.2.5 Placing __at sections at a specific address on page 7-122.
• 7.2.6 Restrictions on placing __at sections on page 7-123.
• 7.2.7 Automatically placing __at sections on page 7-123.
• 7.2.8 Manually placing __at sections on page 7-125.
• 7.2.9 Placing a key in flash memory with an __at section on page 7-125.

7.2.1 Effect of the ABSOLUTE attribute on a root region

You can use the ABSOLUTE attribute to specify a root region. This attribute is the default for an execution
region.

To specify a root region, use ABSOLUTE as the attribute for the execution region. You can either specify
the attribute explicitly or permit it to default, and use the same address for the first execution region and
the enclosing load region.

To make the execution region address the same as the load region address, either:
• Specify the same numeric value for both the base address for the execution region and the base

address for the load region.
• Specify a +0 offset for the first execution region in the load region.

If you specify an offset of zero (+0) for all subsequent execution regions in the load region, then all
execution regions not following an execution region containing ZI are also root regions.

Example

The following example shows an implicitly defined root region:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ABSOLUTE ; load address = execution address
 {
 * (+RO) ; all RO sections (must include the section
 ; containing the initial entry point)
 }
 … ; rest of scatter-loading description
}

Related concepts
7.2 Root region and the initial entry point on page 7-113.
7.2.2 Effect of the FIXED attribute on a root region on page 7-115.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-113

Non-Confidential

8.3 Load region descriptions on page 8-168.
8.4 Execution region descriptions on page 8-174.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.

Related references
8.3.3 Load region attributes on page 8-170.
8.4.3 Execution region attributes on page 8-176.

Related information
ENTRY directive.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-114

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290008613.html

7.2.2 Effect of the FIXED attribute on a root region

You can use the FIXED attribute for an execution region in a scatter file to create root regions that load
and execute at fixed addresses.

Use the FIXED execution region attribute to ensure that the load address and execution address of a
specific region are the same.

You can use the FIXED attribute to place any execution region at a specific address in ROM.

For example, the following memory map shows fixed execution regions:

*(RO)

Execution viewLoad view

init.o

0x4000

0x80000
init.o

*(RO)

Empty

Single
load
region

Filled with zeroes or the value defined using
the --pad option

(FIXED)

(movable)

Figure 7-3 Memory map for fixed execution regions

The following example shows the corresponding scatter-loading description:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; RO sections other than those in init.o
 }
 ER_INIT 0x080000 FIXED ; load address and execution address of this
 ; execution region are fixed at 0x80000
 {
 init.o(+RO) ; all RO sections from init.o
 }
 … ; rest of scatter-loading description
}

You can use this to place a function or a block of data, such as a constant table or a checksum, at a fixed
address in ROM so that it can be accessed easily through pointers.

If you specify, for example, that some initialization code is to be placed at start of ROM and a checksum
at the end of ROM, some of the memory contents might be unused. Use the * or .ANY module selector to
flood fill the region between the end of the initialization block and the start of the data block.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-115

Non-Confidential

To make your code easier to maintain and debug, it is suggested that you use the minimum amount of
placement specifications in scatter files and leave the detailed placement of functions and data to the
linker.

 Note

There are some situations where using FIXED and a single load region are not appropriate. Other
techniques for specifying fixed locations are:
• If your loader can handle multiple load regions, place the RO code or data in its own load region.
• If you do not require the function or data to be at a fixed location in ROM, use ABSOLUTE instead of

FIXED. The loader then copies the data from the load region to the specified address in RAM.
ABSOLUTE is the default attribute.

• To place a data structure at the location of memory-mapped I/O, use two load regions and specify
UNINIT. UNINIT ensures that the memory locations are not initialized to zero.

Example showing the misuse of the FIXED attribute

The following example shows common cases where the FIXED execution region attribute is misused:

LR1 0x8000
{
 ER_LOW +0 0x1000
 {
 *(+RO)
 }
; At this point the next available Load and Execution address is 0x8000 + size of
; contents of ER_LOW. The maximum size is limited to 0x1000 so the next available Load
; and Execution address is at most 0x9000
 ER_HIGH 0xF0000000 FIXED
 {
 *(+RW,+ZI)
 }
; The required execution address and load address is 0xF0000000. The linker inserts
; 0xF0000000 - (0x8000 + size of(ER_LOW)) bytes of padding so that load address matches
; execution address
}
; The other common misuse of FIXED is to give a lower execution address than the next
; available load address.
LR_HIGH 0x100000000
{
 ER_LOW 0x1000 FIXED
 {
 *(+RO)
 }
; The next available load address in LR_HIGH is 0x10000000. The required Execution
; address is 0x1000. Because the next available load address in LR_HIGH must increase
; monotonically the linker cannot give ER_LOW a Load Address lower than 0x10000000
}

Related concepts
8.4 Execution region descriptions on page 8-174.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.

Related references
8.3.3 Load region attributes on page 8-170.
8.4.3 Execution region attributes on page 8-176.

7.2.3 Methods of placing functions and data at specific addresses

There are various methods available to place functions and data at specific addresses.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-116

Non-Confidential

Placing functions and data at specific addresses

To place a single function or data item at a fixed address, you must enable the linker to process the
function or data separately from the rest of the input files.

Where they are required, the compiler normally produces RO, RW, and ZI sections from a single source
file. These sections contain all the code and data from the source file.

 Note

For images targeted at ARMv7-M or ARMv8-M, the compiler might generateexecute-only (XO)
sections.

Typically, you create a scatter file that defines an execution region at the required address with a section
description that selects only one section.

To place a function or variable at a specific address, it must be placed in its own section. There are
several ways to do this:
• Place the function or data item in its own source file.
• Use __attribute__((section("name"))) to place functions and variables in a specially named

section, .ARM.__at_address, where address is the address to place the function or variable. For
example, __attribute__((section(".ARM.__at_0x4000"))).

These specially named sections are called __at sections.
• Use the .section directive from assembly language. In assembly code, the smallest locatable unit is

a .section.
• Use the -ffunction-sections compiler option to generate one ELF section for each function in the

source file.

This option results in a small increase in code size for some functions because it reduces the potential
for sharing addresses, data, and string literals between functions. However, this can help to reduce the
final image size overall by enabling the linker to remove unused functions when you specify
armlink --remove.

Related concepts
7.3 Example of how to explicitly place a named section with scatter-loading on page 7-127.
7.2.6 Restrictions on placing __at sections on page 7-123.

Related tasks
7.2.5 Placing __at sections at a specific address on page 7-122.

Related references
11.5 --autoat, --no_autoat on page 11-222.
11.84 --map, --no_map on page 11-309.
11.119 --scatter=filename on page 11-344.
11.92 -o filename, --output=filename on page 11-317.

Related information
AREA directive.

Example of how to place a variable at a specific address without scatter-loading

This example shows how to modify your source code to place code and data at specific addresses, and
does not require a scatter file.

To place code and data at specific addresses without a scatter file:
1. Create the source file main.c containing the following code:

#include <stdio.h>

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-117

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290002714.html

extern int sqr(int n1);
const int gValue __attribute__((section(".ARM.__at_0x5000"))) = 3; // Place at 0x5000
int main(void)
{
 int squared;
 squared=sqr(gValue);
 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --map function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((section(".ARM.__AT_0x5000"))) specifies that the global variable
gValue is to be placed at the absolute address 0x5000. gValue is placed in the execution region
ER$$.ARM.__AT_0x5000 and load region LR$$.ARM.__AT_0x5000.

The memory map shows:

… Load Region LR$$.ARM.__AT_0x5000 (Base: 0x00005000, Size: 0x00000004, Max: 0x00000004,
ABSOLUTE)

 Execution Region ER$$.ARM.__AT_0x5000 (Base: 0x00005000, Size: 0x00000004, Max:
0x00000004, ABSOLUTE, UNINIT)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00005000 0x00000004 Data RO 18 .ARM.__AT_0x5000 main.o

Related references
11.5 --autoat, --no_autoat on page 11-222.
11.84 --map, --no_map on page 11-309.
11.92 -o filename, --output=filename on page 11-317.

Example of how to place a variable in a named section with scatter-loading

This example shows how to modify your source code to place code and data in a specific section using a
scatter file.

To modify your source code to place code and data in a specific section using a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqr(int n1);
int gSquared __attribute__((section("foo"))); // Place in section foo
int main(void)
{
 gSquared=sqr(3);
 printf("Value squared is: %d\n", gSquared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0000 0x20000
{
 ER1 0x0 0x2000

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-118

Non-Confidential

 {
 *(+RO) ; rest of code and read-only data
 }
 ER2 0x8000 0x2000
 {
 main.o
 }
 ER3 0x10000 0x2000
 {
 function.o
 *(foo) ; Place gSquared in ER3
 }
 ; RW and ZI data to be placed at 0x200000
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --map --scatter=scatter.scat function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((section("foo"))) specifies that the global variable gSquared is to
be placed in a section called foo. The scatter file specifies that the section foo is to be placed in the ER3
execution region.

The memory map shows:

 Load Region LR1 (Base: 0x00000000, Size: 0x00001570, Max: 0x00020000, ABSOLUTE)
…
 Execution Region ER3 (Base: 0x00010000, Size: 0x00000010, Max: 0x00002000, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00010000 0x0000000c Code RO 3 .text function.o
 0x0001000c 0x00000004 Data RW 15 foo main.o
…

 Note

If you omit *(foo) from the scatter file, the section is placed in the region of the same type. That is RAM
in this example.

Related references
11.5 --autoat, --no_autoat on page 11-222.
11.84 --map, --no_map on page 11-309.
11.92 -o filename, --output=filename on page 11-317.
11.119 --scatter=filename on page 11-344.

Example of how to place a variable at a specific address with scatter-loading

This example shows how to modify your source code to place code and data at a specific address using a
scatter file.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-119

Non-Confidential

To modify your source code to place code and data at a specific address using a scatter file:
1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqr(int n1);
// Place at address 0x10000
const int gValue __attribute__((section(".ARM.__at_0x10000"))) = 3;
int main(void)
{
 int squared;
 squared=sqr(gValue);
 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0
{
 ER1 0x0
 {
 *(+RO) ; rest of code and read-only data
 }
 ER2 +0
 {
 function.o
 *(.ARM.__at_0x10000) ; Place gValue at 0x10000
 }
 ; RW and ZI data to be placed at 0x200000
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --no_autoat --scatter=scatter.scat --map function.o main.o -o squared.axf

The --map option displays the memory map of the image.

The memory map shows that the variable is placed in the ER2 execution region at address 0x10000:

… Execution Region ER2 (Base: 0x00002a54, Size: 0x0000d5b0, Max: 0xffffffff, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00002a54 0x0000001c Code RO 4 .text.sqr function.o
 0x00002a70 0x0000d590 PAD
 0x00010000 0x00000004 Data RO 9 .ARM.__at_0x10000 main.o

In this example, the size of ER1 is unknown. Therefore, gValue might be placed in ER1 or ER2. To make
sure that gValue is placed in ER2, you must include the corresponding selector in ER2 and link with the
--no_autoat command-line option. If you omit --no_autoat, gValue is to placed in a separate load
region LR$$.ARM.__at_0x10000 that contains the execution region ER$$.ARM.__at_0x10000.

Related references
11.5 --autoat, --no_autoat on page 11-222.
11.84 --map, --no_map on page 11-309.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-120

Non-Confidential

11.92 -o filename, --output=filename on page 11-317.
11.119 --scatter=filename on page 11-344.

7.2.4 Placing functions and data in a named section

You can place functions and data by separating them into their own objects without having to use
toolchain-specific pragmas or attributes. Alternatively, you can specify a name of a section using the
function or variable attribute, __attribute__((section("name"))).

You can use __attribute__((section("name"))) to place a function or variable in a separate ELF
section. You can then use a scatter file to place the named sections at specific locations.

To modify your source code to place functions and data in a specific section using a scatter file:

Procedure
1. Create a C source file file.c to specify a section name foo for a variable, for example:

#include "stdio.h"

int variable __attribute__((section("foo"))) = 10;

int main(void)
{
 printf("%d\n",variable);
 return 0;
}

2. Create a scatter file to place the named section, scatter.scat, for example:

LR_1 0x0
{
 ER_RO 0x0 0x4000
 {
 *(+RO)
 }
 ER_RW 0x4000 0x2000
 {
 *(+RW)
 }
 ER_ZI 0x6000 0x2000
 {
 *(+ZI)
 }

 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
}

FLASH 0x24000000 0x4000000
{
 ; rest of code

 ADDER 0x08000000
 {
 file.o (foo) ; select section foo from file.o
 }

}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

 Note

If you omit file.o (foo) from the scatter file, the linker places the section in the region of the same
type. That is, ER_RW in this example.

3. Compile and link the C source:

armclang --target=arm-arm-eabi-none -march=armv8-a file.c -g -c -o file.o
armlink --cpu=8-A.32 --scatter=scatter.scat --map file.o --output=file.axf

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-121

Non-Confidential

The --map option displays the memory map of the image.
In this example, __attribute__((section("foo"))) specifies that the linker is to place the global
variable variable in a section called foo. The scatter file specifies that the linker is to place the
section foo in the ADDER execution region of the FLASH execution region. The following example
shows the output from --map:

… Load Region FLASH (Base: 0x24000000, Size: 0x00000004, Max: 0x04000000, ABSOLUTE)
 Execution Region ADDER (Base: 0x08000000, Size: 0x00000004, Max: 0xffffffff, ABSOLUTE)
 Base Addr Size Type Attr Idx E Section Name Object
 0x08000000 0x00000004 Data RW 5 foo file.o
…

 Note

• If scatter-loading is not used, the linker places the section in the default ER_RW execution region of
the LR_1 load region.

• If you have a scatter file that does not include the foo selector, then the linker places the section in
the defined RW execution region.

You can also place a function at a specific address using .ARM.__at_address as the section name.
For example, to place the function sqr at 0x20000, specify:

int sqr(int n1) __attribute__((section(".ARM.__at_0x20000")));

int sqr(int n1)
{
 return n1*n1;
}

For more information, see Placing functions and data at specific addresses on page 7-117.

Related concepts
7.2.6 Restrictions on placing __at sections on page 7-123.

Related tasks
7.2.5 Placing __at sections at a specific address on page 7-122.

Related references
11.5 --autoat, --no_autoat on page 11-222.
11.119 --scatter=filename on page 11-344.

7.2.5 Placing __at sections at a specific address

You can give a section a special name that encodes the address where it must be placed.

To place a section at a specific address, use the function or variable attribute
__attribute__((section("name"))) with the special name .ARM.__at_address.

address is the required address of the section. The compiler normalizes this address to eight
hexadecimal digits. You can specify the address in hexadecimal or decimal. Sections in the form
of .ARM.__at_address are referred to by the abbreviation __at.

The following example shows how to assign a variable to a specific address in C or C++ code:

// place variable1 in a section called .ARM.__at_0x8000
int variable1 __attribute__((section(".ARM.__at_0x8000"))) = 10;

 Note

The name of the section is only significant if you are trying to match the section by name in a scatter file.
Without overlays, the linker automatically assigns __at sections when you use the --autoat command-
line option. This option is the default. If you are using overlays, then you cannot use --autoat to place
__at sections.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-122

Non-Confidential

Related concepts
7.2.6 Restrictions on placing __at sections on page 7-123.
7.2.6 Restrictions on placing __at sections on page 7-123.

Related tasks
Placing functions and data at specific addresses on page 7-117.
7.2.4 Placing functions and data in a named section on page 7-121.
7.2.7 Automatically placing __at sections on page 7-123.
7.2.8 Manually placing __at sections on page 7-125.
7.2.9 Placing a key in flash memory with an __at section on page 7-125.

Related references
11.5 --autoat, --no_autoat on page 11-222.

7.2.6 Restrictions on placing __at sections

There are restrictions when placing __at sections at specific addresses.

The following restrictions apply:
• __at section address ranges must not overlap, unless the overlapping sections are placed in different

overlay regions.
• __at sections are not permitted in position independent execution regions.
• You must not reference the linker-defined symbols $$Base, $$Limit and $$Length of an __at

section.
• __at sections must not be used in Base Platform Application Binary Interface (BPABI) executables

and BPABI dynamically linked libraries (DLLs).
• __at sections must have an address that is a multiple of their alignment.
• __at sections ignore any +FIRST or +LAST ordering constraints.

Related tasks
7.2.5 Placing __at sections at a specific address on page 7-122.

Related information
Base Platform ABI for the ARM Architecture.

7.2.7 Automatically placing __at sections

The linker automatically places __at sections, but you can override this feature.

The automatic placement of __at sections is enabled by default. Use the linker command-line option,
--no_autoat to disable this feature.

 Note

You cannot use __at section placement with position independent execution regions.

When linking with the --autoat option, the linker does not place __at sections with scatter-loading
selectors. Instead, the linker places the __at section in a compatible region. If no compatible region is
found, the linker creates a load and execution region for the __at section.

All linker --autoat created execution regions have the UNINIT scatter-loading attribute. If you require a
ZI __at section to be zero-initialized, then it must be placed within a compatible region. A linker
--autoat created execution region must have a base address that is at least 4 byte-aligned. If any region
is incorrectly aligned, the linker produces an error message.

A compatible region is one where:
• The __at address lies within the execution region base and limit, where limit is the base address +

maximum size of execution region. If no maximum size is set, the linker sets the limit for placing

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-123

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

__at sections as the current size of the execution region without __at sections plus a constant. The
default value of this constant is 10240 bytes, but you can change the value using the
--max_er_extension command-line option.

• The execution region meets at least one of the following conditions:
— It has a selector that matches the __at section by the standard scatter-loading rules.
— It has at least one section of the same type (RO or RW) as the __at section.
— It does not have the EMPTY attribute.

 Note

The linker considers an __at section with type RW compatible with RO.

The following example shows the sections .ARM.__at_0x0000 type RO, .ARM.__at_0x4000 type RW,
and .ARM.__at_0x8000 type RW:

// place the RO variable in a section called .ARM.__at_0x0000
const int foo __attribute__((section(".ARM.__at_0x0000"))) = 10;

// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000"))) = 100;

// place "variable" in a section called .ARM.__at_0x00008000
int variable __attribute__((section(".ARM.__at_0x00008000")));

The following scatter file shows how automatically to place these __at sections:

LR1 0x0
{
 ER_RO 0x0 0x4000
 {
 *(+RO) ; .ARM.__at_0x0000 lies within the bounds of ER_RO
 }
 ER_RW 0x4000 0x2000
 {
 *(+RW) ; .ARM.__at_0x4000 lies within the bounds of ER_RW
 }
 ER_ZI 0x6000 0x2000
 {
 *(+ZI)
 }
}
; The linker creates a load and execution region for the __at section
; .ARM.__at_0x8000 because it lies outside all candidate regions.

Related concepts
8.4 Execution region descriptions on page 8-174.
7.2.6 Restrictions on placing __at sections on page 7-123.

Related tasks
7.2.5 Placing __at sections at a specific address on page 7-122.
7.2.8 Manually placing __at sections on page 7-125.
7.2.9 Placing a key in flash memory with an __at section on page 7-125.
7.2.4 Placing functions and data in a named section on page 7-121.

Related references
11.5 --autoat, --no_autoat on page 11-222.
11.113 --ro_base=address on page 11-338.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.
8.4.3 Execution region attributes on page 8-176.
11.86 --max_er_extension=size on page 11-311.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-124

Non-Confidential

Related information
__attribute__((section("name"))) variable attribute.

7.2.8 Manually placing __at sections

You can have direct control over the placement of __at sections, if required.

You can use the standard section placement rules to place __at sections when using the --no_autoat
command-line option.

 Note

You cannot use __at section placement with position independent execution regions.

The following example shows the placement of read-only sections .ARM.__at_0x2000 and the read-
write section .ARM.__at_0x4000. Load and execution regions are not created automatically in manual
mode. An error is produced if an __at section cannot be placed in an execution region.

The following example shows the placement of the variables in C or C++ code:

// place the RO variable in a section called .ARM.__at_0x2000
const int foo __attribute__((section(".ARM.__at_0x2000"))) = 100;
// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000")));

The following scatter file shows how to manually place __at sections:

LR1 0x0
{
 ER_RO 0x0 0x2000
 {
 *(+RO) ; .ARM.__at_0x0000 is selected by +RO
 }
 ER_RO2 0x2000
 {
 *(.ARM.__at_0x02000) ; .ARM.__at_0x2000 is selected by the section named
 ; .ARM.__at_0x2000
 }
 ER2 0x4000
 {
 *(+RW, +ZI) ; .ARM.__at_0x4000 is selected by +RW
 }
}

Related concepts
8.4 Execution region descriptions on page 8-174.
7.2.6 Restrictions on placing __at sections on page 7-123.

Related tasks
7.2.5 Placing __at sections at a specific address on page 7-122.
7.2.7 Automatically placing __at sections on page 7-123.
7.2.9 Placing a key in flash memory with an __at section on page 7-125.
7.2.4 Placing functions and data in a named section on page 7-121.

Related references
11.5 --autoat, --no_autoat on page 11-222.
8.4.3 Execution region attributes on page 8-176.

7.2.9 Placing a key in flash memory with an __at section

Some flash devices require a key to be written to an address to activate certain features. An __at section
provides a simple method of writing a value to a specific address.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-125

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1384939928221.html

Placing the flash key variable in C or C++ code
Assuming a device has flash memory from 0x8000 to 0x10000 and a key is required in address
0x8000. To do this with an __at section, you must declare a variable so that the compiler can
generate a section called .ARM.__at_0x8000.

// place flash_key in a section called .ARM.__at_0x8000
long flash_key __attribute__((section(".ARM.__at_0x8000")));

Manually placing a flash execution region
The following example shows how to manually place a flash execution region with a scatter file:

ER_FLASH 0x8000 0x2000
{
 *(+RW)
 *(.ARM.__at_0x8000) ; key
}

Use the linker command-line option --no_autoat to enable manual placement.

Automatically placing a flash execution region
The following example shows how to automatically place a flash execution region with a scatter
file. Use the linker command-line option --autoat to enable automatic placement.

LR1 0x0
{
 ER_FLASH 0x8000 0x2000
 {
 *(+RO) ; other code and read-only data, the
 ; __at section is automatically selected
 }
 ER2 0x4000
 {
 *(+RW +ZI) ; Any other RW and ZI variables
 }
}

Related concepts
8.4 Execution region descriptions on page 8-174.
3.3.2 Section placement with the FIRST and LAST attributes on page 3-51.

Related tasks
7.2.5 Placing __at sections at a specific address on page 7-122.
7.2.7 Automatically placing __at sections on page 7-123.
7.2.8 Manually placing __at sections on page 7-125.

Related references
11.5 --autoat, --no_autoat on page 11-222.

Related concepts
7.2.1 Effect of the ABSOLUTE attribute on a root region on page 7-113.
7.2.2 Effect of the FIXED attribute on a root region on page 7-115.
3.1 The structure of an ARM ELF image on page 3-34.

Related tasks
7.8 Placing ARM® C and C++ library code on page 7-145.

7 Scatter-loading Features
7.2 Root region and the initial entry point

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-126

Non-Confidential

7.3 Example of how to explicitly place a named section with scatter-loading
This example shows how to place a named section explicitly using scatter-loading.

Consider the following source files:

init.c

int foo() __attribute__((section("INIT")));
int foo() {
 return 1;
}

int bar() {
 return 2;
}

data.c

const long padding=123;
int z=5;

The following scatter file shows how to place a named section explicitly:

LR1 0x0 0x10000
{
 ; Root Region, containing init code
 ER1 0x0 0x2000
 {
 init.o (INIT, +FIRST) ; place init code at exactly 0x0
 *(+RO) ; rest of code and read-only data
 }
 ; RW & ZI data to be placed at 0x400000
 RAM_RW 0x400000 (0x1FF00-0x2000)
 {
 *(+RW)
 }
 RAM_ZI +0
 {
 *(+ZI)
 }
 ; execution region at 0x1FF00
 ; maximum space available for table is 0xFF
 DATABLOCK 0x1FF00 0xFF
 {
 data.o(+RO-DATA) ; place RO data between 0x1FF00 and 0x1FFFF
 }
}

In this example, the scatter-loading description places:
• The initialization code is placed in the INIT section in the init.o file. This example shows that the

code from the INIT section is placed first, at address 0x0, followed by the remainder of the RO code
and all of the RO data except for the RO data in the object data.o.

• All global RW variables in RAM at 0x400000.
• A table of RO-DATA from data.o at address 0x1FF00.

The resulting image memory map is as follows:

Memory Map of the image

 Image entry point : Not specified.

 Load Region LR1 (Base: 0x00000000, Size: 0x00000018, Max: 0x00010000, ABSOLUTE)

 Execution Region ER1 (Base: 0x00000000, Size: 0x00000010, Max: 0x00002000, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000000 0x00000008 Code RO 4 INIT init.o
 0x00000008 0x00000008 Code RO 1 .text init.o
 0x00000010 0x00000000 Code RO 16 .text data.o

 Execution Region DATABLOCK (Base: 0x0001ff00, Size: 0x00000004, Max: 0x000000ff,
ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

7 Scatter-loading Features
7.3 Example of how to explicitly place a named section with scatter-loading

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-127

Non-Confidential

 0x0001ff00 0x00000004 Data RO 19 .rodata data.o

 Execution Region RAM_RW (Base: 0x00400000, Size: 0x00000004, Max: 0x0001df00, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00400000 0x00000000 Data RW 2 .data init.o
 0x00400000 0x00000004 Data RW 17 .data data.o

 Execution Region RAM_ZI (Base: 0x00400004, Size: 0x00000000, Max: 0xffffffff, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00400004 0x00000000 Zero RW 3 .bss init.o
 0x00400004 0x00000000 Zero RW 18 .bss data.o

Related concepts
7.2.2 Effect of the FIXED attribute on a root region on page 7-115.
8.3 Load region descriptions on page 8-168.
8.4 Execution region descriptions on page 8-174.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.

Related references
8.3.3 Load region attributes on page 8-170.
8.4.3 Execution region attributes on page 8-176.

Related information
ENTRY.

7 Scatter-loading Features
7.3 Example of how to explicitly place a named section with scatter-loading

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-128

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290008613.html

7.4 Placing unassigned sections
The linker attempts to place input sections into specific execution regions. For any input sections that
cannot be resolved, and where the placement of those sections is not important, you can specify where
the linker is to place them.

This section contains the following subsections:
• 7.4.1 Default rules for placing unassigned sections on page 7-129.
• 7.4.2 Command-line options for controlling the placement of unassigned sections on page 7-130.
• 7.4.3 Prioritizing the placement of unassigned sections on page 7-130.
• 7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-131.
• 7.4.5 Examples of using placement algorithms for .ANY sections on page 7-132.
• 7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority

on page 7-134.
• 7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-135.
• 7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.

7.4.1 Default rules for placing unassigned sections

The linker has default rules for placing sections when using multiple .ANY selectors.

When more than one .ANY selector is present in a scatter file, the linker sorts sections in descending size
order. It then takes the unassigned section with the largest size and assigns the section to the most
specific .ANY execution region that has enough free space. For example, .ANY(.text) is judged to be
more specific than .ANY(+RO).

If several execution regions are equally specific, then the section is assigned to the execution region with
the most available remaining space.

For example:
• You might have two equally specific execution regions where one has a size limit of 0x2000 and the

other has no limit. In this case, all the sections are assigned to the second unbounded .ANY region.
• You might have two equally specific execution regions where one has a size limit of 0x2000 and the

other has a size limit of 0x3000. In this case, the first sections to be placed are assigned to the
second .ANY region of size limit 0x3000. This assignment continues until the remaining size of the
second .ANY region is reduced to 0x2000. From this point, sections are assigned alternately between
both .ANY execution regions.

You can specify a maximum amount of space to use for unassigned sections with the execution region
attribute ANY_SIZE.

Related concepts
7.14 How the linker resolves multiple matches when processing scatter files on page 7-160.
7.14 How the linker resolves multiple matches when processing scatter files on page 7-160.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.

Related tasks
7.4 Placing unassigned sections on page 7-129.

Related references
11.2 --any_placement=algorithm on page 11-218.
11.1 --any_contingency on page 11-217.
8.5.2 Syntax of an input section description on page 8-181.
11.60 --info=topic[,topic,…] on page 11-280.

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-129

Non-Confidential

7.4.2 Command-line options for controlling the placement of unassigned sections

You can modify how the linker places unassigned input sections when using multiple .ANY selectors by
using a different placement algorithm or a different sort order.

The following command-line options are available:
• --any_placement=algorithm, where algorithm is one of first_fit, worst_fit, best_fit, or

next_fit.
• --any_sort_order=order, where order is one of cmdline or descending_size.

Use first_fit when you want to fill regions in order.

Use best_fit when you want to fill regions to their maximum.

Use worst_fit when you want to fill regions evenly. With equal sized regions and sections worst_fit
fills regions cyclically.

Use next_fit when you need a more deterministic fill pattern.

If the linker attempts to fill a region to its limit, as it does with first_fit and best_fit, it might
overfill the region. This is because linker-generated content such as padding and veneers are not known
until sections have been assigned to .ANY selectors. If this occurs you might see the following error:

Error: L6220E: Execution region regionname size (size bytes) exceeds limit (limit
bytes).

The --any_contingency option prevents the linker from filling the region up to its maximum. It
reserves a portion of the region's size for linker-generated content and fills this contingency area only if
no other regions have space. It is enabled by default for the first_fit and best_fit algorithms,
because they are most likely to exhibit this behavior.

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-132.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-134.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-135.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.

Related references
11.3 --any_sort_order=order on page 11-220.
11.84 --map, --no_map on page 11-309.
11.120 --section_index_display=type on page 11-346.
11.142 --tiebreaker=option on page 11-369.
11.2 --any_placement=algorithm on page 11-218.
11.1 --any_contingency on page 11-217.

7.4.3 Prioritizing the placement of unassigned sections

You can give a priority ordering when placing unassigned sections with multiple .ANY module selectors.

To prioritize the order of multiple .ANY sections use the .ANYnum selector, where num is a positive integer
starting at zero.

The highest priority is given to the selector with the highest integer.

The following example shows how to use .ANYnum:

lr1 0x8000 1024
{
 er1 +0 512
 {
 .ANY1(+RO) ; evenly distributed with er3
 }
 er2 +0 256

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-130

Non-Confidential

 {
 .ANY2(+RO) ; Highest priority, so filled first
 }
 er3 +0 256
 {
 .ANY1(+RO) ; evenly distributed with er1
 }
}

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-132.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-134.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-135.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.
7.14 How the linker resolves multiple matches when processing scatter files on page 7-160.

Related references
11.3 --any_sort_order=order on page 11-220.
11.84 --map, --no_map on page 11-309.
11.120 --section_index_display=type on page 11-346.
11.142 --tiebreaker=option on page 11-369.

7.4.4 Specify the maximum region size permitted for placing unassigned sections

You can specify the maximum size in a region that armlink can fill with unassigned sections.

Use the execution region attribute ANY_SIZE max_size to specify the maximum size in a region that
armlink can fill with unassigned sections.

Be aware of the following restrictions when using this keyword:

• max_size must be less than or equal to the region size.
• If you use ANY_SIZE on a region without a .ANY selector, it is ignored by armlink.

When ANY_SIZE is present, armlink does not attempt to calculate contingency and strictly follows
the .ANY priorities.

When ANY_SIZE is not present for an execution region containing a .ANY selector, and you specify the
--any_contingency command-line option, then armlink attempts to adjust the contingency for that
execution region. The aims are to:
• Never overflow a .ANY region.
• Make sure there is a contingency reserved space left in the given execution region. This space is

reserved for veneers and section padding.

If you specify --any_contingency on the command line, it is ignored for regions that have ANY_SIZE
specified. It is used as normal for regions that do not have ANY_SIZE specified.

Example

The following example shows how to use ANY_SIZE:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 ANY_SIZE 0xF00 0x1000
 {
 .ANY
 }
 ER_2 0x0 ANY_SIZE 0xFB0 0x1000
 {
 .ANY
 }
 ER_3 0x0 ANY_SIZE 0x1000 0x1000
 {
 .ANY

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-131

Non-Confidential

 }
}

In this example:
• ER_1 has 0x100 reserved for linker-generated content.
• ER_2 has 0x50 reserved for linker-generated content. That is about the same as the automatic

contingency of --any_contingency.
• ER_3 has no reserved space. Therefore, 100% of the region is filled, with no contingency for veneers.

Omitting the ANY_SIZE parameter causes 98% of the region to be filled, with a two percent
contingency for veneers.

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-132.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-134.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-135.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.

Related references
11.3 --any_sort_order=order on page 11-220.
11.84 --map, --no_map on page 11-309.
11.1 --any_contingency on page 11-217.

7.4.5 Examples of using placement algorithms for .ANY sections

These examples show the operation of the placement algorithms for RO-CODE sections in sections.o.

The input section properties and ordering are shown in the following table:

Table 7-1 Input section properties for placement of .ANY sections

Name Size

sec1 0x4

sec2 0x4

sec3 0x4

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x10
 {
 .ANY
 }
 ER_2 0x200 0x10
 {
 .ANY
 }
}

 Note

These examples have --any_contingency disabled.

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-132

Non-Confidential

Example for first_fit, next_fit, and best_fit

This example shows the situation where several sections of equal size are assigned to two regions with
one selector. The selectors are equally specific, equivalent to .ANY(+R0) and have no priority.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x00000010, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000004 Code RO 1 sec1 sections.o
 0x00000104 0x00000004 Code RO 2 sec2 sections.o
 0x00000108 0x00000004 Code RO 3 sec3 sections.o
 0x0000010c 0x00000004 Code RO 4 sec4 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x00000008, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000004 Code RO 5 sec5 sections.o
 0x00000204 0x00000004 Code RO 6 sec6 sections.o

In this example:
• For first_fit the linker first assigns all the sections it can to ER_1, then moves on to ER_2 because

that is the next available region.
• For next_fit the linker does the same as first_fit. However, when ER_1 is full it is marked as

FULL and is not considered again. In this example, ER_1 is completely full. ER_2 is then considered.
• For best_fit the linker assigns sec1 to ER_1. It then has two regions of equal priority and

specificity, but ER_1 has less space remaining. Therefore, the linker assigns sec2 to ER_1, and
continues assigning sections until ER_1 is full.

Example for worst_fit

This example shows the image memory map when using the worst_fit algorithm.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000004 Code RO 1 sec1 sections.o
 0x00000104 0x00000004 Code RO 3 sec3 sections.o
 0x00000108 0x00000004 Code RO 5 sec5 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000004 Code RO 2 sec2 sections.o
 0x00000204 0x00000004 Code RO 4 sec4 sections.o
 0x00000208 0x00000004 Code RO 6 sec6 sections.o

The linker first assigns sec1 to ER_1. It then has two equally specific and priority regions. It assigns sec2
to the one with the most free space, ER_2 in this example. The regions now have the same amount of
space remaining, so the linker assigns sec3 to the first one that appears in the scatter file, that is ER_1.

 Note

The behavior of worst_fit is the default behavior in this version of the linker, and it is the only
algorithm available in earlier linker versions.

Related concepts
7.4.2 Command-line options for controlling the placement of unassigned sections on page 7-130.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-134.
7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-131.

Related tasks
7.4.3 Prioritizing the placement of unassigned sections on page 7-130.

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-133

Non-Confidential

Related references
11.119 --scatter=filename on page 11-344.

7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority

This example shows the operation of the next_fit placement algorithm for RO-CODE sections in
sections.o.

The input section properties and ordering are shown in the following table:

Table 7-2 Input section properties for placement of sections with next_fit

Name Size

sec1 0x14

sec2 0x14

sec3 0x10

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x20
 {
 .ANY1(+RO-CODE)
 }
 ER_2 0x200 0x20
 {
 .ANY2(+RO)
 }
 ER_3 0x300 0x20
 {
 .ANY3(+RO)
 }
}

 Note

This example has --any_contingency disabled.

The next_fit algorithm is different to the others in that it never revisits a region that is considered to be
full. This example also shows the interaction between priority and specificity of selectors - this is the
same for all the algorithms.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000014 Code RO 1 sec1 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x0000001c, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000010 Code RO 3 sec3 sections.o
 0x00000210 0x00000004 Code RO 4 sec4 sections.o
 0x00000214 0x00000004 Code RO 5 sec5 sections.o
 0x00000218 0x00000004 Code RO 6 sec6 sections.o

 Execution Region ER_3 (Base: 0x00000300, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-134

Non-Confidential

 0x00000300 0x00000014 Code RO 2 sec2 sections.o

In this example:
• The linker places sec1 in ER_1 because ER_1 has the most specific selector. ER_1 now has 0x6 bytes

remaining.
• The linker then tries to place sec2 in ER_1, because it has the most specific selector, but there is not

enough space. Therefore, ER_1 is marked as full and is not considered in subsequent placement steps.
The linker chooses ER_3 for sec2 because it has higher priority than ER_2.

• The linker then tries to place sec3 in ER_3. It does not fit, so ER_3 is marked as full and the linker
places sec3 in ER_2.

• The linker now processes sec4. This is 0x4 bytes so it can fit in either ER_1 or ER_3. Because both of
these sections have previously been marked as full, they are not considered. The linker places all
remaining sections in ER_2.

• If another section sec7 of size 0x8 exists, and is processed after sec6 the example fails to link. The
algorithm does not attempt to place the section in ER_1 or ER_3 because they have previously been
marked as full.

Related concepts
7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-131.
7.4.2 Command-line options for controlling the placement of unassigned sections on page 7-130.
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-132.
7.14 How the linker resolves multiple matches when processing scatter files on page 7-160.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.

Related tasks
7.4.3 Prioritizing the placement of unassigned sections on page 7-130.

Related references
11.119 --scatter=filename on page 11-344.

7.4.7 Examples of using sorting algorithms for .ANY sections

These examples show the operation of the sorting algorithms for RO-CODE sections in sections_a.o and
sections_b.o.

The input section properties and ordering are shown in the following tables:

Table 7-3 Input section properties for sections_a.o

Name Size

seca_1 0x4

seca_2 0x4

seca_3 0x10

seca_4 0x14

Table 7-4 Input section properties for sections_b.o

Name Size

secb_1 0x4

secb_2 0x4

secb_3 0x10

secb_4 0x14

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-135

Non-Confidential

Descending size example

The following linker command-line options are used for this example:

--any_sort_order=descending_size sections_a.o sections_b.o --scatter scatter.txt

The order that the sections are processed by the .ANY assignment algorithm is:

Table 7-5 Sort order for descending_size algorithm

Name Size

seca_4 0x14

secb_4 0x14

seca_3 0x10

secb_3 0x10

seca_1 0x4

seca_2 0x4

secb_1 0x4

secb_2 0x4

With --any_sort_order=descending_size, sections of the same size use the creation index as a
tiebreak.

Command-line example

The following linker command-line options are used for this example:

--any_sort_order=cmdline sections_a.o sections_b.o --scatter scatter.txt

The order that the sections are processed by the .ANY assignment algorithm is:

Table 7-6 Sort order for cmdline algorithm

Name Size

seca_1 0x4

seca_2 0x4

seca_3 0x10

seca_4 0x14

secb_1 0x4

secb_2 0x4

secb_3 0x10

secb_4 0x14

That is, the input sections are sorted by command-line index.

Related concepts
7.4.2 Command-line options for controlling the placement of unassigned sections on page 7-130.
7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-131.

Related tasks
7.4.3 Prioritizing the placement of unassigned sections on page 7-130.

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-136

Non-Confidential

Related references
11.3 --any_sort_order=order on page 11-220.
11.119 --scatter=filename on page 11-344.

7.4.8 Behavior when .ANY sections overflow because of linker-generated content

Because linker-generated content might cause .ANY sections to overflow, a contingency algorithm is
included in the linker.

The linker does not know the address of a section until it is assigned to a region. Therefore, when
filling .ANY regions, the linker cannot calculate the contingency space and cannot determine if calling
functions require veneers. The linker provides a contingency algorithm that gives a worst-case estimate
for padding and an additional two percent for veneers. To enable this algorithm use the
--any_contingency command-line option.

The following diagram represents the notional image layout during .ANY placement:

.ANY
sections

Prospective padding

Base

limit

98%

2%

Image
content

Free
space

Execution region

Figure 7-4 .ANY contingency

The downward arrows for prospective padding show that the prospective padding continues to grow as
more sections are added to the .ANY selector.

Prospective padding is dealt with before the two percent veneer contingency.

When the prospective padding is cleared the priority is set to zero. When the two percent is cleared the
priority is decremented again.

You can also use the ANY_SIZE keyword on an execution region to specify the maximum amount of
space in the region to set aside for .ANY section assignments.

You can use the armlink command-line option --info=any to get extra information on where the linker
has placed sections. This can be useful when trying to debug problems.

Example
1. Create the following foo.c program:

#include "stdio.h"

int array[10] __attribute__ ((section ("ARRAY")));

struct S {
 char A[8];

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-137

Non-Confidential

 char B[4];
};
struct S s;

struct S* get()
{
 return &s;
}

int sqr(int n1);
int gSquared __attribute__((section(".ARM.__at_0x5000"))); // Place at 0x5000

int sqr(int n1)
{
 return n1*n1;
}

int main(void) {
 int i;
 for (i=0; i<10; i++) {
 array[i]=i*i;
 printf("%d\n", array[i]);
 }
 gSquared=sqr(i);
 printf("%d squared is: %d\n", i, gSquared);

 return sizeof(array);
}

2. Create the following scatter.scat file:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 0x1000
 {
 .ANY
 }
 ER_2 (ImageLimit(ER_1)) 0x1500
 {
 .ANY
 }
 ER_3 (ImageLimit(ER_2)) 0x500
 {
 .ANY
 }
 ER_4 (ImageLimit(ER_3)) 0x1000
 {
 *(+RW,+ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

3. Compile and link the program as follows:

armclang -c --target=arm-arm-none-eabi -mcpu=cortex-m4 -o foo.o foo.c
armlink --cpu=cortex-m4 --any_contingency --scatter=scatter.scat --info=any -o foo.axf
foo.o

The following shows an example of the information generated:

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section
Name Object
ER_2 Assignment: Worst fit 144
0x0000041a .text c_wu.l(_printf_fp_dec.o)
ER_2 Assignment: Worst fit 261 0x00000338 CL$
$btod_div_common c_wu.l(btod.o)
ER_1 Assignment: Worst fit 146
0x000002fc .text c_wu.l(_printf_fp_hex.o)
ER_2 Assignment: Worst fit 260 0x00000244 CL$
$btod_mult_common c_wu.l(btod.o)
...
ER_1 Assignment: Worst fit 3

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-138

Non-Confidential

0x00000090 .text foo.o
...
ER_3 Assignment: Worst fit 100 0x0000000a .ARM.Collect$
$_printf_percent$$00000007 c_wu.l(_printf_ll.o)
ER_3 Info: .ANY limit reached - -
- -
ER_1 Assignment: Highest priority 423
0x0000000a .text c_wu.l(defsig_exit.o)
...
.ANY contingency summary
Exec Region Contingency Type
ER_1 161 Auto
ER_2 180 Auto
ER_3 73 Auto

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section
Name Object
ER_2 Info: .ANY limit reached - -
- -
ER_1 Info: .ANY limit reached - -
- -
ER_3 Info: .ANY limit reached - -
- -
ER_2 Assignment: Worst fit 533 0x00000034 !!!
scatter c_wu.l(__scatter.o)
ER_2 Assignment: Worst fit 535 0x0000001c !!
handler_zi c_wu.l(__scatter_zi.o)

Related concepts
7.4.2 Command-line options for controlling the placement of unassigned sections on page 7-130.
7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-131.

Related tasks
7.4.3 Prioritizing the placement of unassigned sections on page 7-130.

Related references
11.1 --any_contingency on page 11-217.
11.60 --info=topic[,topic,…] on page 11-280.
8.5.2 Syntax of an input section description on page 8-181.
8.4.3 Execution region attributes on page 8-176.

7 Scatter-loading Features
7.4 Placing unassigned sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-139

Non-Confidential

7.5 Placing veneers with a scatter file
You can place veneers at a specific location with a linker-generated symbol.

Veneers allow switching between A32 and T32 code or allow a longer program jump than can be
specified in a single instruction.

Procedure
1. To place veneers at a specific location include the linker-generated symbol Veneer$$Code in a scatter

file. At most, one execution region in the scatter file can have the *(Veneer$$Code) section selector.
If it is safe to do so, the linker places veneer input sections into the region identified by the
*(Veneer$$Code) section selector. It might not be possible for a veneer input section to be assigned
to the region because of address range problems or execution region size limitations. If the veneer
cannot be added to the specified region, it is added to the execution region containing the relocated
input section that generated the veneer.

 Note

Instances of *(IWV$$Code) in scatter files from earlier versions of ARM tools are automatically
translated into *(Veneer$$Code). Use *(Veneer$$Code) in new descriptions.

*(Veneer$$Code) is ignored when the amount of code in an execution region exceeds 4MB of 16-bit
T32 code, 16MB of 32-bit T32 code, and 32MB of A32 code.

 Note

There are no state-change veneers in A64.

Related concepts
3.6 Linker-generated veneers on page 3-55.

7 Scatter-loading Features
7.5 Placing veneers with a scatter file

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-140

Non-Confidential

7.6 Placement of CMSE veneer sections for a Secure image
armlink automatically generates all CMSE veneer sections for a Secure image.

The linker:
• Creates __at sections that are called Veneer$$CMSE_AT_address for secure gateway veneers that you

specify in a user-defined input import library.
• Produces one normal section Veneer$$CMSE to hold all other secure gateway veneers.

Placement of secure gateway veneers generated from input import libraries

The following example shows the placement of secure gateway veneers for functions entry1 and entry2
that are specified in the input import library:

...

** Section #4 'ER$$Veneer$$CMSE_AT_0x00004000' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR +
SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f004b85a ..Z. B.W __acle_se_entry1 ; 0x80bc
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f004b868 ..h. B.W __acle_se_entry2 ; 0x80e0

...

The same rules and options that apply to normal __at sections apply to __at sections created for secure
gateway veneers. The same rules and options also apply to the automatic placement of these sections
when you specify --autoat.

Placement of secure gateway veneers that are not specified in the input import library

Secure gateway veneers that do not have their addresses specified in an input import library get
generated in the Veneer$$CMSE input section. You must place this section as required. If you create a
simple image, that is without using a scatter file, the sections get placed in the ER_XO execution region,
and the respective ER_XO output section.

The following example shows the placement of secure gateway veneers for functions entry3 and entry4
that are not specified in the input import library:

...

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00008000

 $t
 entry3
 0x00008000: e97fe97f SG
 0x00008004: f000b87e ..~. B.W __acle_se_entry3 ; 0x8104
 entry4
 0x00008008: e97fe97f SG
 0x0000800c: f000b894 B.W __acle_se_entry4 ; 0x8138

...

Placement of secure gateway veneers with a scatter file

To make sure all the secure gateway veneers are in a single section, you must place them using a scatter
file.

Secure gateway veneers that are not specified in the input import library are new veneers. New veneers
get generated in the Veneer$$CMSE input section. You can place this section in the scatter file as required.
Veneers that are already present in the input import library are placed at the address that is specified in
this library. This placement is done by creating Veneer$$CMSE_AT_address sections for them. These

7 Scatter-loading Features
7.6 Placement of CMSE veneer sections for a Secure image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-141

Non-Confidential

sections use the same facility that is used by other AT sections. Therefore, if you use --no_autoat, you
can place these sections either by using the --autoat mechanism or by manually placing them using a
scatter file.

For a Non-secure callable region of size 0x1000 bytes with a base address of 0x4000 a suitable example
of a scatter file load and execution region to match the veneers is:

LOAD_NSCR 0x4000 0x1000
{
 EXEC_NSCR 0x4000 0x1000
 {
 *(Veneer$$CMSE)
 }
}

The secure gateway veneers are placed as follows:

...

** Section #7 'EXEC_NSCR' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 64 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG
 0x00004004: f7fcb850 ..P. B __acle_se_entry1 ; 0xa8
 entry2
 0x00004008: e97fe97f SG
 0x0000400c: f7fcb85e ..^. B __acle_se_entry2 ; 0xcc

...

 entry3
 0x00004020: e97fe97f SG
 0x00004024: f7fcb864 ..d. B __acle_se_entry3 ; 0xf0
 entry4
 0x00004028: e97fe97f SG
 0x0000402c: f7fcb87a ..z. B __acle_se_entry4 ; 0x124

...

Related concepts
3.6.6 Generation of secure gateway veneers on page 3-58.
7.2.6 Restrictions on placing __at sections on page 7-123.

Related tasks
7.2.5 Placing __at sections at a specific address on page 7-122.
7.2.7 Automatically placing __at sections on page 7-123.
7.2.8 Manually placing __at sections on page 7-125.

7 Scatter-loading Features
7.6 Placement of CMSE veneer sections for a Secure image

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-142

Non-Confidential

7.7 Reserving an empty block of memory
You can reserve an empty block of memory with a scatter file, such as the area used for the stack.

This section contains the following subsections:
• 7.7.1 Characteristics of a reserved empty block of memory on page 7-143.
• 7.7.2 Example of reserving an empty block of memory on page 7-143.

7.7.1 Characteristics of a reserved empty block of memory

An empty block of memory that is reserved with a scatter-loading description has certain characteristics.

The block of memory does not form part of the load region, but is assigned for use at execution time.
Because it is created as a dummy ZI region, the linker uses the following symbols to access it:
• Image$$region_name$$ZI$$Base.
• Image$$region_name$$ZI$$Limit.
• Image$$region_name$$ZI$$Length.

If the length is given as a negative value, the address is taken to be the end address of the region. This
address must be an absolute address and not a relative one.

7.7.2 Example of reserving an empty block of memory

This example shows how to reserve and empty block of memory for stack and heap using a scatter-
loading description. It also shows the related symbols that the linker generates.

In the following example, the execution region definition STACK 0x800000 EMPTY –0x10000 defines a
region that is called STACK. The region starts at address 0x7F0000 and ends at address 0x800000:

LR_1 0x80000 ; load region starts at 0x80000
{
 STACK 0x800000 EMPTY -0x10000 ; region ends at 0x800000 because of the
 ; negative length. The start of the region
 ; is calculated using the length.
 {
 ; Empty region for placing the stack
 }

 HEAP +0 EMPTY 0x10000 ; region starts at the end of previous
 ; region. End of region calculated using
 ; positive length
 {
 ; Empty region for placing the heap
 }
 … ; rest of scatter-loading description
}

 Note

The dummy ZI region that is created for an EMPTY execution region is not initialized to zero at runtime.

If the address is in relative (+offset) form and the length is negative, the linker generates an error.

The following figure shows a diagrammatic representation for this example.

7 Scatter-loading Features
7.7 Reserving an empty block of memory

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-143

Non-Confidential

Heap

Stack

0x810000

0x800000

0x7F0000

Base Limit

Base

Limit

Figure 7-5 Reserving a region for the stack

In this example, the linker generates the symbols:

Image$$STACK$$ZI$$Base = 0x7f0000
Image$$STACK$$ZI$$Limit = 0x800000
Image$$STACK$$ZI$$Length = 0x10000
Image$$HEAP$$ZI$$Base = 0x800000
Image$$HEAP$$ZI$$Limit = 0x810000
Image$$HEAP$$ZI$$Length = 0x10000

 Note

The EMPTY attribute applies only to an execution region. The linker generates a warning and ignores an
EMPTY attribute that is used in a load region definition.

The linker checks that the address space used for the EMPTY region does not coincide with any other
execution region.

Related concepts
8.4 Execution region descriptions on page 8-174.

Related references
6.3.2 Image$$ execution region symbols on page 6-92.
8.4.3 Execution region attributes on page 8-176.

7 Scatter-loading Features
7.7 Reserving an empty block of memory

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-144

Non-Confidential

7.8 Placing ARM® C and C++ library code
You can place code from the ARM standard C and C++ libraries using a scatter file.

This section contains the following subsections:
• 7.8.1 Placing code in a root region on page 7-145.
• 7.8.2 Placing ARM® C library code on page 7-145.
• 7.8.3 Placing ARM® C++ library code on page 7-146.

7.8.1 Placing code in a root region

Some code must always be placed in a root region. You do this in a similar way to placing a named
section.

To places all sections that must be in a root region, use the section selector InRoot$$Sections. For
example :

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region at 0x0
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and *Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

Related concepts
7.2.1 Effect of the ABSOLUTE attribute on a root region on page 7-113.
7.2.2 Effect of the FIXED attribute on a root region on page 7-115.
7.2 Root region and the initial entry point on page 7-113.

Related tasks
7.8.2 Placing ARM® C library code on page 7-145.
7.8.3 Placing ARM® C++ library code on page 7-146.

7.8.2 Placing ARM® C library code

You can place C library code using a scatter file.

To place C library code, specify the library path and library name as the module selector. You can use
wildcard characters if required. For example:

LR1 0x0
{
 ROM1 0
 {
 * (InRoot$$Sections)
 * (+RO)
 }
 ROM2 0x1000
 {
 armlib/c_ (+RO) ; all ARM-supplied C library functions
 }

 RAM1 0x3000
 {
 armlib (+RO) ; all other ARM-supplied library code
 ; for example, floating-point libraries
 }
 RAM2 0x4000
 {
 * (+RW, +ZI)
 }
}

7 Scatter-loading Features
7.8 Placing ARM® C and C++ library code

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-145

Non-Confidential

The name armlib indicates the ARM C library files that are located in the directory
install_directory\lib\armlib.

Related tasks
7.8.1 Placing code in a root region on page 7-145.
7.8.3 Placing ARM® C++ library code on page 7-146.

Related information
C and C++ library naming conventions.

7.8.3 Placing ARM® C++ library code

You can place C++ library code using a scatter file.

To place C++ library code, specify the library path and library name as the module selector. You can use
wildcard characters if required.

Procedure
1. Create the following C++ program, foo.cpp:

#include <iostream>

using namespace std;

extern "C" int foo ()
{
 cout << "Hello" << endl;
 return 1;
}

2. To place the C++ library code, define the following scatter file, scatter.scat:

LR 0x8000
{
 ER1 +0
 {
 armlib(+RO)
 }
 ER2 +0
 {
 libcxx(+RO)
 }
 ER3 +0
 {
 *(+RO)

 ; All .ARM.exidx* sections must be coalesced into a single contiguous
 ; .ARM.exidx section because the unwinder references linker-generated
 ; Base and Limit symbols for this section.
 *(0x70000001) ; SHT_ARM_EXIDX sections

 ; All .init_array sections must be coalesced into a single contiguous
 ; .init_array section because the initialization code references
 ; linker-generated Base and Limit for this section.
 *(.init_array)
 }
 ER4 +0
 {
 *(+RW,+ZI)
 }
}

The name *armlib* matches install_directory\lib\armlib, indicating the ARM C library files
that are located in the armlib directory.

The name *libcxx* matches install_directory\lib\libcxx, indicating the C++ library files that
are located in the libcxx directory.

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c foo.cpp
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --scatter=scatter.scat --map main.o foo.o -o foo.axf

7 Scatter-loading Features
7.8 Placing ARM® C and C++ library code

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-146

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1358938936497.html

The --map option displays the memory map of the image.

Related tasks
7.8.1 Placing code in a root region on page 7-145.
7.8.2 Placing ARM® C library code on page 7-145.

Related information
C and C++ library naming conventions.

7 Scatter-loading Features
7.8 Placing ARM® C and C++ library code

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-147

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1358938936497.html

7.9 Aligning regions to page boundaries
You can produce an ELF file with each execution region starting at a page boundary.

The linker provides the following built-in functions to help create load and execution regions on page
boundaries:

• AlignExpr, to specify an address expression.
• GetPageSize, to obtain the page size for use in AlignExpr. If you use GetPageSize, you must also

use the --paged linker command-line option.
• SizeOfHeaders(), to return the size of the ELF header and Program Header table.

 Note

• Alignment on an execution region causes both the load address and execution address to be aligned.
• The default page size is 0x8000. To change the page size, specify the --pagesize linker command-

line option.

To produce an ELF file with each execution region starting on a new page, and with code starting on the
next page boundary after the header information:

LR1 0x0 + SizeOfHeaders()
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW AlignExpr(+0, GetPageSize())
 {
 *(+RW)
 }
 ER_ZI AlignExpr(+0, GetPageSize())
 {
 *(+ZI)
 }
}

If you set up your ELF file in this way, then you can memory-map it onto an operating system in such a
way that:
• RO and RW data can be given different memory protections, because they are placed in separate

pages.
• The load address everything expects to run at is related to its offset in the ELF file by specifying

SizeOfHeaders() for the first load region.

Related concepts
3.4 Linker support for creating demand-paged files on page 3-53.
8.6 Expression evaluation in scatter files on page 8-185.
7.12 Example of using expression evaluation in a scatter file to avoid padding on page 7-152.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

Related tasks
7.10 Aligning execution regions and input sections on page 7-150.

Related references
8.6.6 AlignExpr(expr, align) function on page 8-189.
8.6.7 GetPageSize() function on page 8-190.
11.99 --pagesize=pagesize on page 11-324.
8.3.3 Load region attributes on page 8-170.

7 Scatter-loading Features
7.9 Aligning regions to page boundaries

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-148

Non-Confidential

8.4.3 Execution region attributes on page 8-176.
11.98 --paged on page 11-323.

7 Scatter-loading Features
7.9 Aligning regions to page boundaries

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-149

Non-Confidential

7.10 Aligning execution regions and input sections
There are situations when you want to align code and data sections. How you deal with them depends on
whether you have access to the source code.

Aligning when it is convenient for you to modify the source and recompile
When it is convenient for you to modify the original source code, you can align at compile time
with the __align(n) keyword, for example.

Aligning when it is not convenient for you to modify the source and recompile
It might not be convenient for you to modify the source code for various reasons. For example,
your build process might link the same object file into several images with different alignment
requirements.

When it is not convenient for you to modify the source code, then you must use the following
alignment specifiers in a scatter file:

ALIGNALL
Increases the section alignment of all the sections in an execution region, for example:

ER_DATA … ALIGNALL 8
{
 … ;selectors
}

OVERALIGN
Increases the alignment of a specific section, for example:

ER_DATA …
{
 *.o(.bar, OVERALIGN 8)
 … ;selectors
}

Related concepts
8.5 Input section descriptions on page 8-181.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

Related references
8.4.3 Execution region attributes on page 8-176.

7 Scatter-loading Features
7.10 Aligning execution regions and input sections

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-150

Non-Confidential

7.11 Preprocessing a scatter file
You can pass a scatter file through a C preprocessor. This permits access to all the features of the C
preprocessor.

This section contains the following subsections:
• 7.11.1 Default behavior for armclang -E in a scatter file on page 7-151.
• 7.11.2 Using other preprocessors in a scatter file on page 7-151.

7.11.1 Default behavior for armclang -E in a scatter file

armlink behaves in the same way as armclang when invoking other ARM tools.

armlink searches for the armclang binary in the following order:
1. The same location as armlink.
2. The PATH locations.

armclang is invoked with the option -Iscatter_file_path so that any relative #includes work. The
linker only adds this option if the full name of the preprocessor tool given is armclang or armclang.exe.
This means that if an absolute path or a relative path is given, the linker does not give the -
Iscatter_file_path option to the preprocessor. This also happens with the --cpu option.

On Windows, .exe suffixes are handled, so armclang.exe is considered the same as armclang.
Executable names are case insensitive, so ARMCLANG is considered the same as armclang. The portable
way to write scatter file preprocessing lines is to use correct capitalization, and omit the .exe suffix.

7.11.2 Using other preprocessors in a scatter file

You must ensure that the preprocessing command line is appropriate for execution on the host system.

This means:
• The string must be correctly quoted for the host system. The portable way to do this is to use double-

quotes.
• Single quotes and escaped characters are not supported and might not function correctly.
• The use of a double-quote character in a path name is not supported and might not work.

These rules also apply to any strings passed with the --predefine option.

All preprocessor executables must accept the -o file option to mean output to file and accept the input
as a filename argument on the command line. These options are automatically added to the user
command line by armlink. Any options to redirect preprocessing output in the user-specified command
line are not supported.

Related concepts
8.6 Expression evaluation in scatter files on page 8-185.

Related references
11.105 --predefine="string" on page 11-330.
11.119 --scatter=filename on page 11-344.

7 Scatter-loading Features
7.11 Preprocessing a scatter file

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-151

Non-Confidential

7.12 Example of using expression evaluation in a scatter file to avoid padding
This example shows how to use expression evaluation in a scatter file to avoid padding.

Using certain scatter-loading attributes in a scatter file can result in a large amount of padding in the
image.

To remove the padding caused by the ALIGN, ALIGNALL, and FIXED attributes, use expression evaluation
to specify the start address of a load region and execution region. The built-in function AlignExpr is
available to help you specify address expressions.

Example

The following scatter file produces an image with padding:

LR1 0x4000
{
 ER1 +0 ALIGN 0x8000
 {
 …
 }
}

In this example, the ALIGN keyword causes ER1 to be aligned to a 0x8000 boundary in both the load and
the execution view. To align in the load view, the linker must insert 0x4000 bytes of padding.

The following scatter file produces an image without padding:

LR1 0x4000
{
 ER1 AlignExpr(+0, 0x8000)
 {
 …
 }
}

Using AlignExpr the result of +0 is aligned to a 0x8000 boundary. This creates an execution region with
a load address of 0x4000 but an Execution Address of 0x8000.

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

Related references
8.6.6 AlignExpr(expr, align) function on page 8-189.
8.4.3 Execution region attributes on page 8-176.

7 Scatter-loading Features
7.12 Example of using expression evaluation in a scatter file to avoid padding

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-152

Non-Confidential

7.13 Equivalent scatter-loading descriptions for simple images
Although you can use command-line options to scatter-load simple images, you can also use a scatter
file.

This section contains the following subsections:
• 7.13.1 Command-line options for creating simple images on page 7-153.
• 7.13.2 Type 1 image, one load region and contiguous execution regions on page 7-153.
• 7.13.3 Type 2 image, one load region and non-contiguous execution regions on page 7-155.
• 7.13.4 Type 3 image, multiple load regions and non-contiguous execution regions on page 7-157.

7.13.1 Command-line options for creating simple images

The command-line options --reloc, --ro_base, --rw_base, --ropi, --rwpi, --split, and --xo_base
create the simple image types.

The simple image types are:

• Type 1 image, one load region and contiguous execution regions.
• Type 2 image, one load region and non-contiguous execution regions.
• Type 3 image, two load regions and non-contiguous execution regions.

You can create the same image types by using the --scatter command-line option and a file containing
one of the corresponding scatter-loading descriptions.

 Note

The option --reloc is not supported for AArch64 state.

Related concepts
7.13.2 Type 1 image, one load region and contiguous execution regions on page 7-153.
8.3 Load region descriptions on page 8-168.
7.13.3 Type 2 image, one load region and non-contiguous execution regions on page 7-155.
7.13.4 Type 3 image, multiple load regions and non-contiguous execution regions on page 7-157.

Related references
11.110 --reloc on page 11-335.
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.
11.119 --scatter=filename on page 11-344.
11.126 --split on page 11-353.
11.157 --xo_base=address on page 11-384.
8.3.3 Load region attributes on page 8-170.

7.13.2 Type 1 image, one load region and contiguous execution regions

A Type 1 image consists of a single load region in the load view and up to four execution regions in the
execution view. The execution regions are placed contiguously in the memory map.

By default, the ER_RO, ER_RW, and ER_ZI execution regions are present. If an image contains any
execute-only (XO) sections, then an ER_XO execution region is also present.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-153

Non-Confidential

--ro_base address specifies the load and execution address of the region containing the RO output
section. The following example shows the scatter-loading description equivalent to using
--ro_base 0x040000:

LR_1 0x040000 ; Define the load region name as LR_1, the region starts at 0x040000.
{
 ER_RO +0 ; First execution region is called ER_RO, region starts at end of
 ; previous region. Because there is no previous region, the
 ; address is 0x040000.
 {
 * (+RO) ; All RO sections go into this region, they are placed
 ; consecutively.
 }
 ER_RW +0 ; Second execution region is called ER_RW, the region starts at the
 ; end of the previous region.
 ; The address is 0x040000 + size of ER_RO region.
 {
 * (+RW) ; All RW sections go into this region, they are placed
 ; consecutively.
 }
 ER_ZI +0 ; Last execution region is called ER_ZI, the region starts at the
 ; end of the previous region at 0x040000 + the size of the ER_RO
 ; regions + the size of the ER_RW regions.
 {
 * (+ZI) ; All ZI sections are placed consecutively here.
 }
}

In this example:

• This description creates an image with one load region called LR_1 that has a load address of
0x040000.

• The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the RO, RW,
and ZI output sections respectively. RO and RW are root regions. ZI is created dynamically at
runtime. The execution address of ER_RO is 0x040000. All three execution regions are placed
contiguously in the memory map by using the +offset form of the base designator for the execution
region description. This enables an execution region to be placed immediately following the end of
the preceding execution region.

Use the --reloc option to make relocatable images. Used on its own, --reloc makes an image similar
to simple type 1, but the single load region has the RELOC attribute.

 Note

The --reloc option and RELOC attribute are not supported for AArch64 state.

ROPI example variant (AArch32 only)

In this variant, the execution regions are placed contiguously in the memory map. However, --ropi
marks the load and execution regions containing the RO output section as position-independent.

The following example shows the scatter-loading description equivalent to using
--ro_base 0x010000 --ropi:

LR_1 0x010000 PI ; The first load region is at 0x010000.
{
 ER_RO +0 ; The PI attribute is inherited from parent.
 ; The default execution address is 0x010000, but the code
 ; can be moved.
 {
 * (+RO) ; All the RO sections go here.
 }
 ER_RW +0 ABSOLUTE ; PI attribute is overridden by ABSOLUTE.
 {
 * (+RW) ; The RW sections are placed next. They cannot be moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 * (+ZI) ; All the ZI sections are placed consecutively here.
 }
}

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-154

Non-Confidential

ER_RO, the RO execution region, inherits the PI attribute from the load region LR_1. The next execution
region, ER_RW, is marked as ABSOLUTE and uses the +offset form of base designator. This prevents
ER_RW from inheriting the PI attribute from ER_RO. Also, because the ER_ZI region has an offset of +0, it
inherits the ABSOLUTE attribute from the ER_RW region.

 Note

If an image contains execute-only sections, ROPI is not supported. If you use --ropi to link such an
image, armlink gives an error.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Related concepts
7.13.1 Command-line options for creating simple images on page 7-153.
8.3 Load region descriptions on page 8-168.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.

Related references
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
8.3.3 Load region attributes on page 8-170.
11.110 --reloc on page 11-335.

7.13.3 Type 2 image, one load region and non-contiguous execution regions

A Type 2 image consists of a single load region in the load view and three execution regions in the
execution view. It is similar to images of Type 1 except that the RW execution region is not contiguous
with the RO execution region.

--ro_base=address specifies the load and execution address of the region containing the RO output
section. --rw_base=address specifies the execution address for the RW execution region.

For images that contain execute-only (XO) sections, the XO execution region is placed at the address
specified by --ro_base. The RO execution region is placed contiguously and immediately after the XO
execution region.

If you use --xo_base address, then the XO execution region is placed in a separate load region at the
specified address.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Example for single load region and multiple execution regions

The following example shows the scatter-loading description equivalent to using
--ro_base=0x010000 --rw_base=0x040000:

LR_1 0x010000 ; Defines the load region name as LR_1
{
 ER_RO +0 ; The first execution region is called ER_RO and starts at end
 ; of previous region. Because there is no previous region, the
 ; address is 0x010000.
 {
 * (+RO) ; All RO sections are placed consecutively into this region.
 }
 ER_RW 0x040000 ; Second execution region is called ER_RW and starts at 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-155

Non-Confidential

 }
 ER_ZI +0 ; The last execution region is called ER_ZI.
 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively here.
 }
}

In this example:
• This description creates an image with one load region, named LR_1, with a load address of

0x010000.
• The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the RO, RW,

and ZI output sections respectively. The RO region is a root region. The execution address of ER_RO
is 0x010000.

• The ER_RW execution region is not contiguous with ER_RO. Its execution address is 0x040000.
• The ER_ZI execution region is placed immediately following the end of the preceding execution

region, ER_RW.

RWPI example variant (AArch32 only)

This is similar to images of Type 2 with --rw_base where the RW execution region is separate from the
RO execution region. However, --rwpi marks the execution regions containing the RW output section as
position-independent.

The following example shows the scatter-loading description equivalent to using
--ro_base=0x010000 --rw_base=0x018000 --rwpi:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; Default ABSOLUTE attribute is inherited from parent.
 ; The execution address is 0x010000. The code and RO data
 ; cannot be moved.
 {
 * (+RO) ; All the RO sections go here.
 }
 ER_RW 0x018000 PI ; PI attribute overrides ABSOLUTE
 {
 * (+RW) ; The RW sections are placed at 0x018000 and they can be
 ; moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 * (+ZI) ; All the ZI sections are placed consecutively here.
 }
}

ER_RO, the RO execution region, inherits the ABSOLUTE attribute from the load region LR_1. The next
execution region, ER_RW, is marked as PI. Also, because the ER_ZI region has an offset of +0, it inherits
the PI attribute from the ER_RW region.

Similar scatter-loading descriptions can also be written to correspond to the usage of other combinations
of --ropi and --rwpi with Type 2 and Type 3 images.

Related concepts
8.3 Load region descriptions on page 8-168.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.

Related references
11.113 --ro_base=address on page 11-338.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.
8.3.3 Load region attributes on page 8-170.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-156

Non-Confidential

7.13.4 Type 3 image, multiple load regions and non-contiguous execution regions

A Type 3 image consists of multiple load regions in load view and multiple execution regions in
execution view. They are similar to images of Type 2 except that the single load region in Type 2 is now
split into multiple load regions.

You can relocate and split load regions using the following linker options:
--reloc

The combination --reloc --split makes an image similar to simple Type 3, but the two load
regions now have the RELOC attribute.

--ro_base=address1
Specifies the load and execution address of the region containing the RO output section.

--rw_base=address2
Specifies the load and execution address for the region containing the RW output section.

--xo_base=address3
Specifies the load and execution address for the region containing the execute-only (XO) output
section, if present.

--split
Splits the default single load region that contains the RO and RW output sections into two load
regions. One load region contains the RO output section and one contains the RW output
section.

 Note

For images containing XO sections, and if --xo_base is not used, an XO execution region is placed at
the address specified by --ro_base. The RO execution region is placed immediately after the XO
region.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

Example for multiple load regions

The following example shows the scatter-loading description equivalent to using --ro_base=0x010000
--rw_base=0x040000 --split:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; The address is 0x010000.
 {
 * (+RO)
 }
}
LR_2 0x040000 ; The second load region is at 0x040000.
{
 ER_RW +0 ; The address is 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively into this region.
 }
}

In this example:
• This description creates an image with two load regions, named LR_1 and LR_2, that have load

addresses 0x010000 and 0x040000.
• The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain the RO, RW,

and ZI output sections respectively. The execution address of ER_RO is 0x010000.
• The ER_RW execution region is not contiguous with ER_RO, because its execution address is 0x040000.
• The ER_ZI execution region is placed immediately after ER_RW.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-157

Non-Confidential

Example for multiple load regions with an XO region

The following example shows the scatter-loading description equivalent to using --ro_base=0x010000
--rw_base=0x040000 --split when an object file has XO sections:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_XO +0 ; The address is 0x010000.
 {
 * (+XO)
 }
 ER_RO +0 ; The address is 0x010000 + size of ER_XO region.
 {
 * (+RO)
 }
}
LR_2 0x040000 ; The second load region is at 0x040000.
{
 ER_RW +0 ; The address is 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively into this region.
 }
}

In this example:
• This description creates an image with two load regions, named LR_1 and LR_2, that have load

addresses 0x010000 and 0x040000.
• The image has four execution regions, named ER_XO, ER_RO, ER_RW and ER_ZI, that contain the XO,

RO, RW, and ZI output sections respectively. The execution address of ER_XO is placed at the address
specified by --ro_base, 0x010000. ER_RO is placed immediately after ER_XO.

• The ER_RW execution region is not contiguous with ER_RO, because its execution address is 0x040000.
• The ER_ZI execution region is placed immediately after ER_RW.

 Note

If you also specify --xo_base, then the ER_XO execution region is placed in a load region separate from
the ER_RO execution region, at the specified address.

Relocatable load regions example variant

This Type 3 image also consists of two load regions in load view and three execution regions in
execution view. However, --reloc specifies that the two load regions now have the RELOC attribute.

The following example shows the scatter-loading description equivalent to using --ro_base 0x010000
--rw_base 0x040000 --reloc --split:

LR_1 0x010000 RELOC
{
 ER_RO + 0
 {
 * (+RO)
 }
}
LR2 0x040000 RELOC
{
 ER_RW + 0
 {
 * (+RW)
 }
 ER_ZI +0
 {
 * (+ZI)
 }
}

Related concepts
8.3 Load region descriptions on page 8-168.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-158

Non-Confidential

8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.

Related references
11.110 --reloc on page 11-335.
11.113 --ro_base=address on page 11-338.
11.116 --rw_base=address on page 11-341.
11.126 --split on page 11-353.
11.157 --xo_base=address on page 11-384.
8.3.3 Load region attributes on page 8-170.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-159

Non-Confidential

7.14 How the linker resolves multiple matches when processing scatter files
An input section must be unique. In the case of multiple matches, the linker attempts to assign the input
section to a region based on the attributes of the input section description.

The linker assignment of the input section is based on a module_select_pattern and
input_section_selector pair that is the most specific. However, if a unique match cannot be found,
the linker faults the scatter-loading description.

The following variables describe how the linker matches multiple input sections:

• m1 and m2 represent module selector patterns.
• s1 and s2 represent input section selectors.

For example, if input section A matches m1,s1 for execution region R1, and A matches m2,s2 for
execution region R2, the linker:

• Assigns A to R1 if m1,s1 is more specific than m2,s2.
• Assigns A to R2 if m2,s2 is more specific than m1,s1.
• Diagnoses the scatter-loading description as faulty if m1,s1 is not more specific than m2,s2 and

m2,s2 is not more specific than m1,s1.

armlink uses the following strategy to determine the most specific module_select_pattern,
input_section_selector pair:

Resolving the priority of two module_selector, section_selector pairs m1, s1 and m2, s2
The strategy starts with two module_select_pattern, input_section_selector pairs.
m1,s1 is more specific than m2,s2 only if any of the following are true:
1. s1 is either a literal input section name, that is it contains no pattern characters, or a section

type and s2 matches input section attributes.
2. m1 is more specific than m2.
3. s1 is more specific than s2.

The conditions are tested in order so condition 1 takes precedence over condition 2 and 3, and
condition 2 takes precedence over condition 3.

Resolving the priority of two module selectors m1 and m2 in isolation
For the module selector patterns, m1 is more specific than m2 if the text string m1 matches pattern
m2 and the text string m2 does not match pattern m1.

Resolving the priority of two section selectors s1 and s2 in isolation
For the input section selectors:
• If one of s1 or s2 matches the input section name or type and the other matches the input

section attributes, s1 and s2 are unordered and the description is diagnosed as faulty.
• If both s1 and s2 match the input section name or type, the following relationships

determine whether s1 is more specific than s2:
— Section type is more specific than section name.
— If both s1 and s2 match input section type, s1 and s2 are unordered and the description is

diagnosed as faulty.
— If s1 and s2 are both patterns matching section names, the same definition as for module

selector patterns is used.
• If both s1 and s2 match input section attributes, the following relationships determine

whether s1 is more specific than s2s:
— ENTRY is more specific than RO-CODE, RO-DATA, RW-CODE, or RW-DATA.
— RO-CODE is more specific than RO.
— RO-DATA is more specific than RO.
— RW-CODE is more specific than RW.
— RW-DATA is more specific than RW.
— There are no other members of the (s1 more specific than s2) relationship between

section attributes.

7 Scatter-loading Features
7.14 How the linker resolves multiple matches when processing scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-160

Non-Confidential

This matching strategy has the following consequences:
• Descriptions do not depend on the order they are written in the file.
• Generally, the more specific the description of an object, the more specific the description of the input

sections it contains.
• The input_section_selectors are not examined unless:

— Object selection is inconclusive.
— One selector specifies a literal input section name or a section type and the other selects by

attribute. In this case, the explicit input section name or type is more specific than any attribute.
This is true even if the object selector associated with the input section name is less specific than
that of the attribute.

The .ANY module selector is available to assign any sections that cannot be resolved from the scatter-
loading description.

Example

The following example shows multiple execution regions and pattern matching:

LR_1 0x040000
{
 ER_ROM 0x040000 ; The startup exec region address is the same
 { ; as the load address.
 application.o (+ENTRY) ; The section containing the entry point from
 } ; the object is placed here.
 ER_RAM1 0x048000
 {
 application.o (+RO-CODE) ; Other RO code from the object goes here
 }
 ER_RAM2 0x050000
 {
 application.o (+RO-DATA) ; The RO data goes here
 }
 ER_RAM3 0x060000
 {
 application.o (+RW) ; RW code and data go here
 }
 ER_RAM4 +0 ; Follows on from end of ER_R3
 {
 *.o (+RO, +RW, +ZI) ; Everything except for application.o goes here
 }
}

Related concepts
8.5 Input section descriptions on page 8-181.

Related tasks
7.4 Placing unassigned sections on page 7-129.

Related references
8.2 Syntax of a scatter file on page 8-167.
8.5.2 Syntax of an input section description on page 8-181.

7 Scatter-loading Features
7.14 How the linker resolves multiple matches when processing scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-161

Non-Confidential

7.15 How the linker resolves path names when processing scatter files
The linker matches wildcard patterns in scatter files against any combination of forward slashes and
backslashes it finds in path names.

This might be useful where the paths are taken from environment variables or multiple sources, or where
you want to use the same scatter file to build on Windows or Unix platforms.

 Note

Use forward slashes in path names to ensure they are understood on Windows and Unix platforms.

Related references
8.2 Syntax of a scatter file on page 8-167.

7 Scatter-loading Features
7.15 How the linker resolves path names when processing scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-162

Non-Confidential

7.16 Scatter file to ELF mapping
Shows how scatter file components map onto ELF.

ELF executable files contain segments:
• A load region is represented by an ELF program segment with type PT_LOAD.
• An execution region is represented by one or more of the following ELF sections:

— XO.
— RO.
— RW.
— ZI.

 Note

If XO and RO are mixed within an execution region, that execution region is treated as RO.

For example, you might have a scatter file similar to the following:

LOAD 0x8000
{
 EXEC_ROM +0
 {
 *(+RO)
 }
 RAM +0
 {
 *(+RW,+ZI)
 }
 HEAP +0x100 EMPTY 0x100
 {
 }
 STACK +0 EMPTY 0x400
 {
 }
}

This scatter file creates a single program segment with type PT_LOAD for the load region with address
0x8000.

A single output section with type SHT_PROGBITS is created to represent the contents of EXEC_ROM.
Two output sections are created to represent RAM. The first has a type SHT_PROGBITS and contains
the initialized read/write data. The second has a type of SHT_NOBITS and describes the zero-initialized
data.

The heap and stack are described in the ELF file by SHT_NOBITS sections.

Enter the following fromelf command to see the scatter-loaded sections in the image:

fromelf --text -v my_image.axf

To display the symbol table, enter the command:

fromelf --text -s -v my_image.axf

The following is an example of the fromelf output showing the LOAD, EXEC_ROM, RAM, HEAP, and STACK
sections:

…==
** Program header #0
 Type : PT_LOAD (1)
 File Offset : 52 (0x34)
 Virtual Addr : 0x00008000
 Physical Addr : 0x00008000
 Size in file : 764 bytes (0x2fc)
 Size in memory: 2140 bytes (0x85c)
 Flags : PF_X + PF_W + PF_R + PF_ARM_ENTRY (0x80000007)
 Alignment : 4
==
** Section #1
 Name : EXEC_ROM

7 Scatter-loading Features
7.16 Scatter file to ELF mapping

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-163

Non-Confidential

…
 Addr : 0x00008000
 File Offset : 52 (0x34)
 Size : 740 bytes (0x2e4)
…
====================================
** Section #2
 Name : RAM
…
 Addr : 0x000082e4
 File Offset : 792 (0x318)
 Size : 20 bytes (0x14)
…
====================================
** Section #3
 Name : RAM
…
 Addr : 0x000082f8
 File Offset : 812 (0x32c)
 Size : 96 bytes (0x60)
…
====================================
** Section #4
 Name : HEAP
…
 Addr : 0x00008458
 File Offset : 812 (0x32c)
 Size : 256 bytes (0x100)
…
====================================
** Section #5
 Name : STACK
…
 Addr : 0x00008558
 File Offset : 812 (0x32c)
 Size : 1024 bytes (0x400)
…

Related concepts
7.1.1 Overview of scatter-loading on page 7-107.
7.1.6 Scatter-loading images with a simple memory map on page 7-110.

7 Scatter-loading Features
7.16 Scatter file to ELF mapping

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

7-164

Non-Confidential

Chapter 8
Scatter File Syntax

Describes the format of scatter files.

It contains the following sections:
• 8.1 BNF notation used in scatter-loading description syntax on page 8-166.
• 8.2 Syntax of a scatter file on page 8-167.
• 8.3 Load region descriptions on page 8-168.
• 8.4 Execution region descriptions on page 8-174.
• 8.5 Input section descriptions on page 8-181.
• 8.6 Expression evaluation in scatter files on page 8-185.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-165

Non-Confidential

8.1 BNF notation used in scatter-loading description syntax
Scatter-loading description syntax uses standard BNF notation.

The following table summarizes the Backus-Naur Form (BNF) symbols that are used for describing the
syntax of scatter-loading descriptions.

Table 8-1 BNF notation

Symbol Description

" Quotation marks indicate that a character that is normally part of the BNF syntax is used as a literal character in the
definition. The definition B"+"C, for example, can only be replaced by the pattern B+C. The definition B+C can be replaced
by, for example, patterns BC, BBC, or BBBC.

A ::= B Defines A as B. For example, A::= B"+" | C means that A is equivalent to either B+ or C. The ::= notation defines a
higher level construct in terms of its components. Each component might also have a ::= definition that defines it in terms
of even simpler components. For example, A::= B and B::= C | D means that the definition A is equivalent to the
patterns C or D.

[A] Optional element A. For example, A::= B[C]D means that the definition A can be expanded into either BD or BCD.

A+ Element A can have one or more occurrences. For example, A::= B+ means that the definition A can be expanded into B,
BB, or BBB.

A* Element A can have zero or more occurrences.

A | B Either element A or B can occur, but not both.

(A B) Element A and B are grouped together. This is particularly useful when the | operator is used or when a complex pattern is
repeated. For example, A::=(B C)+ (D | E) means that the definition A can be expanded into any of BCD, BCE, BCBCD,
BCBCE, BCBCBCD, or BCBCBCE.

Related references
8.2 Syntax of a scatter file on page 8-167.

8 Scatter File Syntax
8.1 BNF notation used in scatter-loading description syntax

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-166

Non-Confidential

8.2 Syntax of a scatter file
A scatter file contains one or more load regions. Each load region can contain one or more execution
regions.

The following figure shows the components and organization of a typical scatter file:

Load region description

Execution region description

Input section description

Module selector pattern Input section attributes

Load region description

Execution region description

Input section description

Execution region description

Input section description

Execution region description

Input section description

LOAD_ROM_1 0x0000
{

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

DRAM 0x18000 0x8000
{

program1.o (+RW,+ZI)
}

}

LOAD_ROM_2 0x4000
{

EXEC_ROM_2 0x4000
{

program2.o (+RO)
}

SRAM 0x8000 0x8000
{

program2.o (+RW,+ZI)
}

}

Scatter description

Figure 8-1 Components of a scatter file

Related concepts
8.3 Load region descriptions on page 8-168.
8.4 Execution region descriptions on page 8-174.

Related references
Chapter 7 Scatter-loading Features on page 7-106.

8 Scatter File Syntax
8.2 Syntax of a scatter file

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-167

Non-Confidential

8.3 Load region descriptions
A load region description specifies the region of memory where its child execution regions are to be
placed.

This section contains the following subsections:
• 8.3.1 Components of a load region description on page 8-168.
• 8.3.2 Syntax of a load region description on page 8-169.
• 8.3.3 Load region attributes on page 8-170.
• 8.3.4 Inheritance rules for load region address attributes on page 8-171.
• 8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
• 8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.

8.3.1 Components of a load region description

The components of a load region description allow you to uniquely identify a load region and to control
what parts of an ELF file are placed in that region.

A load region description has the following components:
• A name (used by the linker to identify different load regions).
• A base address (the start address for the code and data in the load view).
• Attributes that specify the properties of the load region.
• An optional maximum size specification.
• One or more execution regions.

The following figure shows an example of a typical load region description:

A load region description contains
one or more execution region
descriptions

LOAD_ROM_1 0x0000
{

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

DRAM 0x18000 0x8000
{

program1.o (+RW,+ZI)
}

}

Load region description

Figure 8-2 Components of a load region description

Related concepts
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.
8.6 Expression evaluation in scatter files on page 8-185.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-168

Non-Confidential

Related references
8.3.2 Syntax of a load region description on page 8-169.
8.3.3 Load region attributes on page 8-170.
Chapter 7 Scatter-loading Features on page 7-106.

8.3.2 Syntax of a load region description

A load region can contain one or more execution region descriptions.

The syntax of a load region description, in Backus-Naur Form (BNF), is:

load_region_description ::=
 load_region_name (base_address | ("+" offset)) [attribute_list] [max_size]
 "{"
 execution_region_description+
 "}"

where:
load_region_name

Names the load region. You can use a quoted name. The name is case-sensitive only if you use
any region-related linker-defined symbols.

base_address
Specifies the address where objects in the region are to be linked. base_address must satisfy
the alignment constraints of the load region.

+offset
Describes a base address that is offset bytes beyond the end of the preceding load region. The
value of offset must be zero modulo four. If this is the first load region, then +offset means
that the base address begins offset bytes from zero.

If you use +offset, then the load region might inherit certain attributes from a previous load
region.

attribute_list
The attributes that specify the properties of the load region contents.

max_size
Specifies the maximum size of the load region. This is the size of the load region before any
decompression or zero initialization take place. If the optional max_size value is specified,
armlink generates an error if the region has more than max_size bytes allocated to it.

execution_region_description
Specifies the execution region name, address, and contents.

 Note

The BNF definitions contain additional line returns and spaces to improve readability. They are not
required in scatter-loading descriptions and are ignored if present in a scatter file.

Related concepts
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.6 Expression evaluation in scatter files on page 8-185.

Related references
8.3.1 Components of a load region description on page 8-168.
8.3.3 Load region attributes on page 8-170.
8.1 BNF notation used in scatter-loading description syntax on page 8-166.
8.2 Syntax of a scatter file on page 8-167.
6.3 Region-related symbols on page 6-92.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-169

Non-Confidential

8.3.3 Load region attributes

A load region has attributes that allow you to control where parts of your image are loaded in the target
memory.

The load region attributes are:

ABSOLUTE
The content is placed at a fixed address that does not change after linking. The load address of
the region is specified by the base designator. This is the default, unless you use PI or RELOC.

ALIGN alignment
Increase the alignment constraint for the load region from 4 to alignment. alignment must be a
positive power of 2. If the load region has a base_address then this must be alignment
aligned. If the load region has a +offset then the linker aligns the calculated base address of the
region to an alignment boundary.

This can also affect the offset in the ELF file. For example, the following causes the data for FOO
to be written out at 4k offset into the ELF file:

FOO +4 ALIGN 4096

NOCOMPRESS
RW data compression is enabled by default. The NOCOMPRESS keyword enables you to specify
that the contents of a load region must not be compressed in the final image.

OVERLAY
The OVERLAY keyword enables you to have multiple load regions at the same address. ARM
tools do not provide an overlay mechanism. To use multiple load regions at the same address,
you must provide your own overlay manager.

The content is placed at a fixed address that does not change after linking. The content might
overlap with other regions designated as OVERLAY regions.

PI
This region is position independent. The content does not depend on any fixed address and
might be moved after linking without any extra processing.

 Note

PI is not supported for AArch64 state.

 Note

This attribute is not supported if an image contains execute-only sections.

PROTECTED
The PROTECTED keyword prevents:
• Overlapping of load regions.
• Veneer sharing.
• String sharing with the --merge option.

RELOC
This region is relocatable. The content depends on fixed addresses. Relocation information is
output to enable the content to be moved to another location by another tool.

 Note

RELOC is not supported for AArch64 state.

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-170

Non-Confidential

3.3.3 Section alignment with the linker on page 3-51.
3.6.5 Reuse of veneers when scatter-loading on page 3-57.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
3.6.2 Veneer sharing on page 3-55.
3.6.4 Generation of position independent to absolute veneers on page 3-57.
4.4 Optimization with RW data compression on page 4-71.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

Related references
11.89 --merge, --no_merge on page 11-314.
8.3.1 Components of a load region description on page 8-168.
8.3.2 Syntax of a load region description on page 8-169.

8.3.4 Inheritance rules for load region address attributes

A load region can inherit the attributes of a previous load region.

For a load region to inherit the attributes of a previous load region, specify a +offset base address for
that region. A load region cannot inherit attributes if:

• You explicitly set the attribute of that load region.
• The load region immediately before has the OVERLAY attribute.

You can explicitly set a load region with the ABSOLUTE, PI, RELOC, or OVERLAY address attributes.

The following inheritance rules apply when no address attribute is specified:
• The OVERLAY attribute cannot be inherited. A region with the OVERLAY attribute cannot inherit.
• A base address load or execution region always defaults to ABSOLUTE.
• A +offset load region inherits the address attribute from the previous load region or ABSOLUTE if no

previous load region exists.

Example

This example shows the inheritance rules for setting the address attributes of load regions:

LR1 0x8000 PI
{
 …
}
LR2 +0 ; LR2 inherits PI from LR1
{
 …
}
LR3 0x1000 ; LR3 does not inherit because it has no relative base
 address, gets default of ABSOLUTE
{
 …
}
LR4 +0 ; LR4 inherits ABSOLUTE from LR3
{
 …
}
LR5 +0 RELOC ; LR5 does not inherit because it explicitly sets RELOC
{
 …
}
LR6 +0 OVERLAY ; LR6 does not inherit, an OVERLAY cannot inherit
{
 …
}
LR7 +0 ; LR7 cannot inherit OVERLAY, gets default of ABSOLUTE
{

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-171

Non-Confidential

 …
}

Related concepts
8.4.4 Inheritance rules for execution region address attributes on page 8-179.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.

Related references
8.3.1 Components of a load region description on page 8-168.
8.4.1 Components of an execution region description on page 8-174.
8.3.2 Syntax of a load region description on page 8-169.

8.3.5 Inheritance rules for the RELOC address attribute

You can explicitly set the RELOC attribute for a load region. However, an execution region can only
inherit the RELOC attribute from the parent load region.

Example

This example shows the inheritance rules for setting the address attributes with RELOC:

LR1 0x8000 RELOC
{
 ER1 +0 ; inherits RELOC from LR1
 {
 …
 }
 ER2 +0 ; inherits RELOC from ER1
 {
 …
 }
 ER3 +0 RELOC ; Error cannot explicitly set RELOC on an execution region
 {
 …
 }
}

Related concepts
10.1 Restrictions on the use of scatter files with the Base Platform model on page 10-208.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
2.5 Base Platform linking model on page 2-31.

Related references
8.3.1 Components of a load region description on page 8-168.
8.3.2 Syntax of a load region description on page 8-169.
8.4.1 Components of an execution region description on page 8-174.

8.3.6 Considerations when using a relative address +offset for a load region

There are some considerations to be aware of when using a relative address for a load region.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-172

Non-Confidential

When using +offset to specify a load region base address:
• If the +offset load region LR2 follows a load region LR1 containing ZI data, then LR2 overlaps the

ZI data. To fix this, use the ImageLimit() function to specify the base address of LR2.
• A +offset load region LR2 inherits the attributes of the load region LR1 immediately before it,

unless:
— LR1 has the OVERLAY attribute.
— LR2 has an explicit attribute set.

If a load region is unable to inherit an attribute, then it gets the attribute ABSOLUTE.
• A gap might exist in a ROM image between a +offset load region and a preceding region when the

preceding region has RW data compression applied. This is because the linker calculates the +offset
based on the uncompressed size of the preceding region. However, this gap disappears when the RW
data is decompressed at load time.

Related concepts
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.6.3 Execution address built-in functions for use in scatter files on page 8-186.

Related references
8.2 Syntax of a scatter file on page 8-167.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-173

Non-Confidential

8.4 Execution region descriptions
An execution region description specifies the region of memory where parts of your image are to be
placed at run-time.

This section contains the following subsections:
• 8.4.1 Components of an execution region description on page 8-174.
• 8.4.2 Syntax of an execution region description on page 8-174.
• 8.4.3 Execution region attributes on page 8-176.
• 8.4.4 Inheritance rules for execution region address attributes on page 8-179.
• 8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.

8.4.1 Components of an execution region description

The components of an execution region description allow you to uniquely identify each execution region
and its position in the parent load region, and to control what parts of an ELF file are placed in that
execution region.

An execution region description has the following components:
• A name (used by the linker to identify different execution regions).
• A base address (either absolute or relative).
• Attributes that specify the properties of the execution region.
• An optional maximum size specification.
• One or more input section descriptions (the modules placed into this execution region).

The following figure shows the components of a typical execution region description:

An execution region description contains
one or more input section descriptions

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

Execution region description

Figure 8-3 Components of an execution region description

Related concepts
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.
8.6 Expression evaluation in scatter files on page 8-185.
8.5 Input section descriptions on page 8-181.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

Related references
8.4.2 Syntax of an execution region description on page 8-174.
8.4.3 Execution region attributes on page 8-176.
Chapter 7 Scatter-loading Features on page 7-106.
8.3.3 Load region attributes on page 8-170.

8.4.2 Syntax of an execution region description

An execution region specifies where the input sections are to be placed in target memory at run-time.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-174

Non-Confidential

The syntax of an execution region description, in Backus-Naur Form (BNF), is:

execution_region_description ::=
 exec_region_name (base_address | "+" offset) [attribute_list] [max_size | length]
 "{"
 input_section_description*
 "}"

where:
exec_region_name

Names the execution region. You can use a quoted name. The name is case-sensitive only if you
use any region-related linker-defined symbols.

base_address
Specifies the address where objects in the region are to be linked. base_address must be word-
aligned.

 Note

Using ALIGN on an execution region causes both the load address and execution address to be
aligned.

+offset
Describes a base address that is offset bytes beyond the end of the preceding execution region.
The value of offset must be zero modulo four.

If this is the first execution region in the load region then +offset means that the base address
begins offset bytes after the base of the containing load region.

If you use +offset, then the execution region might inherit certain attributes from the parent
load region, or from a previous execution region within the same load region.

attribute_list
The attributes that specify the properties of the execution region contents.

max_size
For an execution region marked EMPTY or FILL the max_size value is interpreted as the length
of the region. Otherwise the max_size value is interpreted as the maximum size of the execution
region.

[–]length
Can only be used with EMPTY to represent a stack that grows down in memory. If the length is
given as a negative value, the base_address is taken to be the end address of the region.

input_section_description
Specifies the content of the input sections.

 Note

The BNF definitions contain additional line returns and spaces to improve readability. They are not
required in scatter-loading descriptions and are ignored if present in a scatter file.

Related concepts
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.
8.6 Expression evaluation in scatter files on page 8-185.
2.5 Base Platform linking model on page 2-31.
10.1 Restrictions on the use of scatter files with the Base Platform model on page 10-208.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.5 Input section descriptions on page 8-181.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-175

Non-Confidential

Related references
8.4.1 Components of an execution region description on page 8-174.
8.4.3 Execution region attributes on page 8-176.
Chapter 7 Scatter-loading Features on page 7-106.
6.3 Region-related symbols on page 6-92.
8.4.3 Execution region attributes on page 8-176.

8.4.3 Execution region attributes

An execution region has attributes that allow you to control where parts of your image are loaded in the
target memory at runtime.

The execution region attributes are:

ABSOLUTE
The content is placed at a fixed address that does not change after linking. A base designator
specifies the execution address of the region.

ALIGN alignment
Increase the alignment constraint for the execution region from 4 to alignment. alignment
must be a positive power of 2. If the execution region has a base_address, then the address
must be alignment aligned. If the execution region has a +offset, then the linker aligns the
calculated base address of the region to an alignment boundary.

 Note

ALIGN on an execution region causes both the load address and execution address to be aligned.
This alignment can result in padding being added to the ELF file. To align only the execution
address, use the AlignExpr expression on the base address.

ALIGNALL value
Increases the alignment of sections within the execution region.

The value must be a positive power of 2 and must be greater than or equal to 4.

ANY_SIZE max_size
Specifies the maximum size within the execution region that armlink can fill with unassigned
sections. You can use a simple expression to specify the max_size. That is, you cannot use
functions such as ImageLimit().

 Note

Specifying ANY_SIZE overrides any effects that --any_contingency has on the region.

Be aware of the following restrictions when using this keyword:
• max_size must be less than or equal to the region size.
• You can use ANY_SIZE on a region without a .ANY selector but armlink ignores it.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-176

Non-Confidential

AUTO_OVERLAY
Use to indicate regions of memory where armlink assigns the overlay sections for loading into
at runtime. Overlay sections are those named .ARM.overlayN in the input object.

The execution region must not have any section selectors.

The addresses that you give for the execution regions are the addresses that armlink expects the
overlaid code to be loaded at when running. The load region containing the execution regions is
where armlink places the overlay contents.

By default, the overlay manager loads overlays by copying them into RAM from some other
memory that is not suitable for direct execution. For example, very slow Flash or memory from
which instruction fetches are not enabled. You can keep your unloaded overlays in peripheral
storage that is not mapped into the address space of the processor. To keep such overlays in
peripheral storage, you must extract the data manually from the linked image.

armlink allocates every overlay to one of the AUTO_OVERLAY execution regions, and has to be
loaded into only that region to run correctly.

You must use the --overlay_veneers command-line option when linking with a scatter file
containing the AUTO_OVERLAY attribute.

 Note

With the AUTO_OVERLAY attribute, armlink decides how your code sections get allocated to
overlay regions. With the OVERLAY attribute, you must manually arrange the allocation of the
code sections.

EMPTY [–]length
Reserves an empty block of memory of a given size in the execution region, typically used by a
heap or stack. No section can be placed in a region with the EMPTY attribute.

length represents a stack that grows down in memory. If the length is given as a negative value,
the base_address is taken to be the end address of the region.

FILL value
Creates a linker generated region containing a value. If you specify FILL, you must give a
value, for example: FILL 0xFFFFFFFF. The FILL attribute replaces the following combination:
EMPTY ZEROPAD PADVALUE.

In certain situations, such as a simulation, filling a region with a value is preferable to spending
a long time in a zeroing loop.

FIXED
Fixed address. The linker attempts to make the execution address equal the load address. If it
succeeds, then the region is a root region. If it does not succeed, then the linker produces an
error.

 Note

The linker inserts padding with this attribute.

NOCOMPRESS
RW data compression is enabled by default. The NOCOMPRESS keyword enables you to specify
that RW data in an execution region must not be compressed in the final image.

OVERLAY
Use for sections with overlaying address ranges. If consecutive execution regions have the same
+offset, then they are given the same base address.

The content is placed at a fixed address that does not change after linking. The content might
overlap with other regions designated as OVERLAY regions.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-177

Non-Confidential

PADVALUE value
Defines the value to use for padding. If you specify PADVALUE, you must give a value, for
example:

EXEC 0x10000 PADVALUE 0xFFFFFFFF EMPTY ZEROPAD 0x2000

This example creates a region of size 0x2000 full of 0xFFFFFFFF.

PADVALUE must be a word in size. PADVALUE attributes on load regions are ignored.

PI
This region contains only position independent sections. The content does not depend on any
fixed address and might be moved after linking without any extra processing.

 Note

PI is not supported for AArch64 state.

 Note

This attribute is not supported if an image contains execute-only sections.

SORTTYPE algorithm
Specifies the sorting algorithm for the execution region, for example:

ER1 +0 SORTTYPE CallTree

 Note

This attribute overrides any sorting algorithm that you specify with the --sort command-line
option.

UNINIT
Use to create execution regions containing uninitialized data or memory-mapped I/O.

 Note

ARM Compiler does not support systems with ECC or parity protection where the memory is
not initialized.

ZEROPAD
Zero-initialized sections are written in the ELF file as a block of zeros and, therefore, do not
have to be zero-filled at runtime.

This attribute sets the load length of a ZI output section to Image$$region_name$$ZI$$Length.

Only root execution regions can be zero-initialized using the ZEROPAD attribute. Using the
ZEROPAD attribute with a non-root execution region generates a warning and the attribute is
ignored.

In certain situations, such as a simulation, filling a region with a value is preferable to spending
a long time in a zeroing loop.

Related concepts
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.
3.3.3 Section alignment with the linker on page 3-51.
7.12 Example of using expression evaluation in a scatter file to avoid padding on page 7-152.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.
8.6 Expression evaluation in scatter files on page 8-185.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-178

Non-Confidential

4.4 Optimization with RW data compression on page 4-71.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.
7.10 Aligning execution regions and input sections on page 7-150.

Related references
8.4.2 Syntax of an execution region description on page 8-174.
6.3.3 Load$$ execution region symbols on page 6-93.
8.6.6 AlignExpr(expr, align) function on page 8-189.
8.1 BNF notation used in scatter-loading description syntax on page 8-166.
11.1 --any_contingency on page 11-217.
6.3.2 Image$$ execution region symbols on page 6-92.
8.5.2 Syntax of an input section description on page 8-181.
11.94 --overlay_veneers on page 11-319.
11.125 --sort=algorithm on page 11-351.

Related information
Overlay support in ARM Compiler.

8.4.4 Inheritance rules for execution region address attributes

An execution region can inherit the attributes of a previous execution region.

For an execution region to inherit the attributes of a previous execution region, specify a +offset base
address for that region. The first +offset execution region can inherit the attributes of the parent load
region. An execution region cannot inherit attributes if:

• You explicitly set the attribute of that execution region.
• The previous execution region has the AUTO_OVERLAY or OVERLAY attribute.

You can explicitly set an execution region with the ABSOLUTE, AUTO_OVERLAY, PI, or OVERLAY attributes.
However, an execution region can only inherit the RELOC attribute from the parent load region.

The following inheritance rules apply when no address attribute is specified:
• The OVERLAY attribute cannot be inherited. A region with the OVERLAY attribute cannot inherit.
• A base address load or execution region always defaults to ABSOLUTE.
• A +offset execution region inherits the address attribute from the previous execution region or

parent load region if no previous execution region exists.

Example

This example shows the inheritance rules for setting the address attributes of execution regions:

LR1 0x8000 PI
{
 ER1 +0 ; ER1 inherits PI from LR1
 {
 …
 }
 ER2 +0 ; ER2 inherits PI from ER1
 {
 …
 }
 ER3 0x10000 ; ER3 does not inherit because it has no relative base
 address and gets the default of ABSOLUTE
 {
 …
 }
 ER4 +0 ; ER4 inherits ABSOLUTE from ER3
 {
 …
 }

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-179

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1465894716925.html

 ER5 +0 PI ; ER5 does not inherit, it explicitly sets PI
 {
 …
 }
 ER6 +0 OVERLAY ; ER6 does not inherit, an OVERLAY cannot inherit
 {
 …
 }
 ER7 +0 ; ER7 cannot inherit OVERLAY, gets the default of ABSOLUTE
 {
 …
 }
}

Related concepts
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.

Related references
8.3.1 Components of a load region description on page 8-168.
8.4.1 Components of an execution region description on page 8-174.
8.4.2 Syntax of an execution region description on page 8-174.

8.4.5 Considerations when using a relative address +offset for execution regions

There are some considerations to be aware of when using a relative address for execution regions.

When using +offset to specify an execution region base address:
• The first execution region inherits the attributes of the parent load region, unless an attribute is

explicitly set on that execution region.
• A +offset execution region ER2 inherits the attributes of the execution region ER1 immediately

before it, unless:
— ER1 has the OVERLAY attribute.
— ER2 has an explicit attribute set.

If an execution region is unable to inherit an attribute, then it gets the attribute ABSOLUTE.
• If the parent load region has the RELOC attribute, then all execution regions within that load region

must have a +offset base address.

Related concepts
8.4.4 Inheritance rules for execution region address attributes on page 8-179.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.

Related references
8.2 Syntax of a scatter file on page 8-167.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-180

Non-Confidential

8.5 Input section descriptions
An input section description is a pattern that identifies input sections.

This section contains the following subsections:
• 8.5.1 Components of an input section description on page 8-181.
• 8.5.2 Syntax of an input section description on page 8-181.
• 8.5.3 Examples of module and input section specifications on page 8-184.

8.5.1 Components of an input section description

The components of an input section description allow you to identify the parts of an ELF file that are to
be placed in an execution region.

An input section description identifies input sections by:

• Module name (object filename, library member name, or library filename). The module name can use
wildcard characters.

• Input section name, type, or attributes such as READ-ONLY, or CODE. You can use wildcard characters
for the input section name.

• Symbol name.

The following figure shows the components of a typical input section description.

program2.o (+RO)

Input section selectorModule select pattern

Input section description

Figure 8-4 Components of an input section description

 Note

Ordering in an execution region does not affect the ordering of sections in the output image.

Input section descriptions when linking partially-linked objects

You cannot specify partially-linked objects in an input section description, only the combined object file.

For example, if you link the partially linked objects obj1.o, obj2.o, and obj3.o together to produce
obj_all.o, the component object names are discarded in the resulting object. Therefore, you cannot
refer to one of the objects by name, for example, obj1.o. You can refer only to the combined object
obj_all.o.

Related references
8.5.2 Syntax of an input section description on page 8-181.
8.2 Syntax of a scatter file on page 8-167.
11.100 --partial on page 11-325.

8.5.2 Syntax of an input section description

An input section description specifies what input sections are loaded into the parent execution region.

The syntax of an input section description, in Backus-Naur Form (BNF), is:

input_section_description ::=
 module_select_pattern ["(" input_section_selector (","
input_section_selector)* ")"]
 input_section_selector ::= "+" input_section_attr
 | input_section_pattern

8 Scatter File Syntax
8.5 Input section descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-181

Non-Confidential

 | input_section_type
 | input_symbol_pattern
 | section_properties

Where:

module_select_pattern
A pattern that is constructed from literal text. An input section matches a module selector
pattern when module_select_pattern matches one of the following:
• The name of the object file containing the section.
• The name of the library member (without leading path name).
• The full name of the library (including path name) the section is extracted from. If the names

contain spaces, use wild characters to simplify searching. For example, use *libname.lib to
match C:\lib dir\libname.lib.

The wildcard character * matches zero or more characters and ? matches any single character.

Matching is not case-sensitive, even on hosts with case-sensitive file naming.

Use *.o to match all objects. Use * to match all object files and libraries.

You can use quoted filenames, for example "file one.o".

You cannot have two * selectors in a scatter file. You can, however, use two modified selectors,
for example *A and *B, and you can use a .ANY selector together with a * module selector. The *
module selector has higher precedence than .ANY. If the portion of the file containing the *
selector is removed, the .ANY selector then becomes active.

input_section_attr
An attribute selector that is matched against the input section attributes. Each
input_section_attr follows a +.

The selectors are not case-sensitive. The following selectors are recognized:

• RO-CODE.
• RO-DATA.
• RO, selects both RO-CODE and RO-DATA.
• RW-DATA.
• RW-CODE.
• RW, selects both RW-CODE and RW-DATA.
• XO.
• ZI.
• ENTRY, that is, a section containing an ENTRY point.

The following synonyms are recognized:

• CODE for RO-CODE.
• CONST for RO-DATA.
• TEXT for RO.
• DATA for RW.
• BSS for ZI.

The following pseudo-attributes are recognized:

• FIRST.
• LAST.

8 Scatter File Syntax
8.5 Input section descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-182

Non-Confidential

Use FIRST and LAST to mark the first and last sections in an execution region if the placement
order is important. For example, if a specific input section must be first in the region and an
input section containing a checksum must be last.

 Caution

FIRST and LAST must not violate the basic attribute sorting order. For example, FIRST RW is
placed after any read-only code or read-only data.

There can be only one FIRST or one LAST attribute for an execution region, and it must follow a
single input_section_selector. For example:

*(section, +FIRST)
This pattern is correct.

*(+FIRST, section)
This pattern is incorrect and produces an error message.

input_section_pattern
A pattern that is matched, without case sensitivity, against the input section name. It is
constructed from literal text. The wildcard character * matches 0 or more characters, and ?
matches any single character. You can use a quoted input section name.

 Note

If you use more than one input_section_pattern, ensure that there are no duplicate patterns
in different execution regions to avoid ambiguity errors.

input_section_type
A number that is compared against the input section type. The number can be decimal or
hexadecimal.

input_symbol_pattern
You can select the input section by the global symbol name that the section defines. The global
name enables you to choose individual sections with the same name from partially linked
objects.

The :gdef: prefix distinguishes a global symbol pattern from a section pattern. For example,
use :gdef:mysym to select the section that defines mysym. The following example shows a
scatter file in which ExecReg1 contains the section that defines global symbol mysym1, and the
section that contains global symbol mysym2:

LoadRegion 0x8000
{
 ExecReg1 +0
 {
 *(:gdef:mysym1)
 *(:gdef:mysym2)
 }
 ; rest of scatter-loading description
}

You can use a quoted global symbol pattern. The :gdef: prefix can be inside or outside the
quotes.

 Note

If you use more than one input_symbol_pattern, ensure that there are no duplicate patterns in
different execution regions to avoid ambiguity errors.

section_properties
A section property can be +FIRST, +LAST, and OVERALIGN value.

The value for OVERALIGN must be a positive power of 2 and must be greater than or equal to 4.

8 Scatter File Syntax
8.5 Input section descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-183

Non-Confidential

 Note

• The order of input section descriptors is not significant.
• Only input sections that match both module_select_pattern and at least one input_section_attr

or input_section_pattern are included in the execution region.

If you omit (+ input_section_attr) and (input_section_pattern), the default is +RO.
• Do not rely on input section names that the compiler generates, or that are used by ARM library code.

If, for example, different compiler options are used, the input section names can change between
compilations. In addition, section naming conventions that are used by the compiler are not
guaranteed to remain constant between releases.

• The BNF definitions contain extra line returns and spaces to improve readability. If present in a
scatter file, they are not required in scatter-loading descriptions and are ignored.

Related concepts
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.
8.5.3 Examples of module and input section specifications on page 8-184.
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-132.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-134.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-135.

Related tasks
7.10 Aligning execution regions and input sections on page 7-150.
7.4 Placing unassigned sections on page 7-129.

Related references
8.5.1 Components of an input section description on page 8-181.
8.1 BNF notation used in scatter-loading description syntax on page 8-166.
8.2 Syntax of a scatter file on page 8-167.

8.5.3 Examples of module and input section specifications

Examples of module_select_pattern specifications and input_section_selector specifications.

Examples of module_select_pattern specifications are:

• * matches any module or library.
• *.o matches any object module.
• math.o matches the math.o module.
• *armlib* matches all C libraries supplied by ARM.
• "file 1.o" matches the file file 1.o.
• *math.lib matches any library path ending with math.lib, for example, C:\apps\lib\math

\satmath.lib.

Examples of input_section_selector specifications are:
• +RO is an input section attribute that matches all RO code and all RO data.
• +RW,+ZI is an input section attribute that matches all RW code, all RW data, and all ZI data.
• BLOCK_42 is an input section pattern that matches sections named BLOCK_42. There can be multiple

ELF sections with the same BLOCK_42 name that possess different attributes, for example
+RO-CODE,+RW.

Related references
8.5.1 Components of an input section description on page 8-181.
8.5.2 Syntax of an input section description on page 8-181.

8 Scatter File Syntax
8.5 Input section descriptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-184

Non-Confidential

8.6 Expression evaluation in scatter files
Scatter files frequently contain numeric constants. These can be specific values, or the result of an
expression.

This section contains the following subsections:
• 8.6.1 Expression usage in scatter files on page 8-185.
• 8.6.2 Expression rules in scatter files on page 8-186.
• 8.6.3 Execution address built-in functions for use in scatter files on page 8-186.
• 8.6.4 ScatterAssert function and load address related functions on page 8-188.
• 8.6.5 Symbol related function in a scatter file on page 8-189.
• 8.6.6 AlignExpr(expr, align) function on page 8-189.
• 8.6.7 GetPageSize() function on page 8-190.
• 8.6.8 SizeOfHeaders() function on page 8-191.
• 8.6.9 Example of aligning a base address in execution space but still tightly packed in load space

on page 8-191.
• 8.6.10 Scatter files containing relative base address load regions and a ZI execution region

on page 8-192.

8.6.1 Expression usage in scatter files

You can use expressions for various load and execution region attributes.

Expressions can be used in the following places:
• Load and execution region base_address.
• Load and execution region +offset.
• Load and execution region max_size.
• Parameter for the ALIGN, FILL or PADVALUE keywords.
• Parameter for the ScatterAssert function.

Example of specifying the maximum size in terms of an expression
LR1 0x8000 (2 * 1024)
{
 ER1 +0 (1 * 1024)
 {
 *(+RO)
 }
 ER2 +0 (1 * 1024)
 {
 *(+RW,+ZI)
 }
}

Related concepts
8.6.2 Expression rules in scatter files on page 8-186.
8.6.3 Execution address built-in functions for use in scatter files on page 8-186.
8.6.4 ScatterAssert function and load address related functions on page 8-188.
8.6.5 Symbol related function in a scatter file on page 8-189.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

Related references
8.2 Syntax of a scatter file on page 8-167.
8.3.2 Syntax of a load region description on page 8-169.
8.4.2 Syntax of an execution region description on page 8-174.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-185

Non-Confidential

8.6.2 Expression rules in scatter files

Expressions follow the C-Precedence rules.

Expressions are made up of the following:
• Decimal or hexadecimal numbers.
• Arithmetic operators: +, -, /, *, ~, OR, and AND

The OR and AND operators map to the C operators | and & respectively.
• Logical operators: LOR, LAND, and !

The LOR and LAND operators map to the C operators || and && respectively.
• Relational operators: <, <=, >, >=, and ==

Zero is returned when the expression evaluates to false and nonzero is returned when true.
• Conditional operator: Expression ? Expression1 : Expression2

This matches the C conditional operator. If Expression evaluates to nonzero then Expression1 is
evaluated otherwise Expression2 is evaluated.

 Note

When using a conditional operator in a +offset context on an execution region or load region
description, the final expression is considered relative only if both Expression1 and Expression2,
are considered relative. For example:

er1 0x8000
{
 …
}
er2 ((ImageLimit(er1) < 0x9000) ? +0 : +0x1000) ; er2 has a relative address
{
 …
}
er3 ((ImageLimit(er2) < 0x10000) ? 0x0 : +0) ; er3 has an absolute address
{
 …
}

• Functions that return numbers.

All operators match their C counterparts in meaning and precedence.

Expressions are not case-sensitive and you can use parentheses for clarity.

Related concepts
8.6.1 Expression usage in scatter files on page 8-185.
8.6.3 Execution address built-in functions for use in scatter files on page 8-186.
8.6.4 ScatterAssert function and load address related functions on page 8-188.
8.6.5 Symbol related function in a scatter file on page 8-189.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

Related references
8.2 Syntax of a scatter file on page 8-167.
8.3.2 Syntax of a load region description on page 8-169.
8.4.2 Syntax of an execution region description on page 8-174.

8.6.3 Execution address built-in functions for use in scatter files

Built-in functions are provided for use in scatter files to calculate execution addresses.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-186

Non-Confidential

The execution address related functions can only be used when specifying a base_address, +offset
value, or max_size. They map to combinations of the linker defined symbols shown in the following
table.

Table 8-2 Execution address related functions

Function Linker defined symbol value

ImageBase(region_name) Image$$region_name$$Base

ImageLength(region_name) Image$$region_name$$Length + Image$$region_name$$ZI$$Length

ImageLimit(region_name) Image$$region_name$$Base + Image$$region_name$$Length + Image$$region_name
$$ZI$$Length

The parameter region_name can be either a load or an execution region name. Forward references are
not permitted. The region_name can only refer to load or execution regions that have already been
defined.

 Note

You cannot use these functions when using the .ANY selector pattern. This is because a .ANY region uses
the maximum size when assigning sections. The maximum size might not be available at that point,
because the size of all regions is not known until after the .ANY assignment.

The following example shows how to use ImageLimit(region_name) to place one execution region
immediately after another:

LR1 0x8000
{
 ER1 0x100000
 {
 *(+RO)
 }
}
LR2 0x100000
{
 ER2 (ImageLimit(ER1)) ; Place ER2 after ER1 has finished
 {
 *(+RW +ZI)
 }
}

Using +offset with expressions

A +offset value for an execution region is defined in terms of the previous region. You can use this as
an input to other expressions such as AlignExpr. For example:

LR1 0x4000
{
 ER1 AlignExpr(+0, 0x8000)
 {
 …
 }
}

By using AlignExpr, the result of +0 is aligned to a 0x8000 boundary. This creates an execution region
with a load address of 0x4000 but an execution address of 0x8000.

Related concepts
8.6.1 Expression usage in scatter files on page 8-185.
8.6.2 Expression rules in scatter files on page 8-186.
8.6.4 ScatterAssert function and load address related functions on page 8-188.
8.6.5 Symbol related function in a scatter file on page 8-189.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-187

Non-Confidential

8.3.6 Considerations when using a relative address +offset for a load region on page 8-172.
8.6.10 Scatter files containing relative base address load regions and a ZI execution region
on page 8-192.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-180.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

Related references
8.2 Syntax of a scatter file on page 8-167.
8.3.2 Syntax of a load region description on page 8-169.
8.4.2 Syntax of an execution region description on page 8-174.
8.6.6 AlignExpr(expr, align) function on page 8-189.
6.3.2 Image$$ execution region symbols on page 6-92.

8.6.4 ScatterAssert function and load address related functions

The ScatterAssert function allows you to perform more complex size checks than those permitted by
the max_size attribute.

The ScatterAssert(expression) function can be used at the top level, or within a load region. It is
evaluated after the link has completed and gives an error message if expression evaluates to false.

The load address related functions can only be used within the ScatterAssert function. They map to the
three linker defined symbol values:

Table 8-3 Load address related functions

Function Linker defined symbol value

LoadBase(region_name) Load$$region_name$$Base

LoadLength(region_name) Load$$region_name$$Length

LoadLimit(region_name) Load$$region_name$$Limit

The parameter region_name can be either a load or an execution region name. Forward references are
not permitted. The region_name can only refer to load or execution regions that have already been
defined.

The following example shows how to use the ScatterAssert function to write more complex size
checks than those permitted by the max_size attribute of the region:

LR1 0x8000
{
 ER0 +0
 {
 *(+RO)
 }
 ER1 +0
 {
 file1.o(+RW)
 }
 ER2 +0
 {
 file2.o(+RW)
 }
 ScatterAssert((LoadLength(ER1) + LoadLength(ER2)) < 0x1000)
 ; LoadLength is compressed size
 ScatterAssert((ImageLength(ER1) + ImageLength(ER2)) < 0x2000)
 ; ImageLength is uncompressed size
}
ScatterAssert(ImageLength(LR1) < 0x3000)
 ; Check uncompressed size of load region LR1

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-188

Non-Confidential

Related concepts
8.6.1 Expression usage in scatter files on page 8-185.
8.6.2 Expression rules in scatter files on page 8-186.
8.6.3 Execution address built-in functions for use in scatter files on page 8-186.
8.6.5 Symbol related function in a scatter file on page 8-189.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

Related references
8.2 Syntax of a scatter file on page 8-167.
8.3.2 Syntax of a load region description on page 8-169.
8.4.2 Syntax of an execution region description on page 8-174.
6.3.3 Load$$ execution region symbols on page 6-93.

8.6.5 Symbol related function in a scatter file

The symbol related function defined allows you to assign different values depending on whether or not
a global symbol is defined.

The symbol related function, defined(global_symbol_name) returns zero if global_symbol_name is
not defined and nonzero if it is defined.

Example

The following scatter file shows an example of conditionalizing a base address based on the presence of
the symbol version1:

LR1 0x8000
{
 ER1 (defined(version1) ? 0x8000 : 0x10000) ; Base address is 0x8000
 ; if version1 is defined
 ; 0x10000 if not
 {
 *(+RO)
 }
 ER2 +0
 {
 *(+RW +ZI)
 }
}

Related concepts
8.6.1 Expression usage in scatter files on page 8-185.
8.6.2 Expression rules in scatter files on page 8-186.
8.6.3 Execution address built-in functions for use in scatter files on page 8-186.
8.6.4 ScatterAssert function and load address related functions on page 8-188.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

Related references
8.2 Syntax of a scatter file on page 8-167.
8.3.2 Syntax of a load region description on page 8-169.
8.4.2 Syntax of an execution region description on page 8-174.

8.6.6 AlignExpr(expr, align) function

Aligns an address expression to a specified boundary.

This function returns:

(expr + (align-1)) & ~(align-1))

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-189

Non-Confidential

Where:
• expr is a valid address expression.
• align is the alignment, and must be a positive power of 2.

It increases expr until:

expr ≡ 0 (mod align)

Example

This example aligns the address of ER2 on an 8-byte boundary:

ER +0
{
 …
}
ER2 AlignExpr(+0x8000,8)
{
 …
}

Relationship with the ALIGN keyword

The following relationship exists between ALIGN and AlignExpr:

ALIGN keyword
Load and execution regions already have an ALIGN keyword:
• For load regions the ALIGN keyword aligns the base of the load region in load space and in

the file to the specified alignment.
• For execution regions the ALIGN keyword aligns the base of the execution region in

execution and load space to the specified alignment.

AlignExpr
Aligns the expression it operates on, but has no effect on the properties of the load or execution
region.

Related references
8.4.3 Execution region attributes on page 8-176.

8.6.7 GetPageSize() function

Returns the page size when an image is demand paged, and is useful when used with the AlignExpr
function.

When you link with the --paged command-line option, returns the value of the internal page size that
armlink uses in its alignment calculations. Otherwise, it returns zero.

By default the internal page size is set to 8000, but you can change it with the --pagesize command-line
option.

Example

This example aligns the base address of ER to a Page Boundary:

ER AlignExpr(+0, GetPageSize())
{
 …
}

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-190

Non-Confidential

Related references
11.99 --pagesize=pagesize on page 11-324.
8.6.6 AlignExpr(expr, align) function on page 8-189.

8.6.8 SizeOfHeaders() function

Returns the size of ELF header plus the estimated size of the Program Header table.

This is useful when writing demand paged images to start code and data immediately after the ELF
header and Program Header table.

Example

This example sets the base of LR1 to start immediately after the ELF header and Program Headers:

LR1 SizeOfHeaders()
{
 …
}

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-191.
3.4 Linker support for creating demand-paged files on page 3-53.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

8.6.9 Example of aligning a base address in execution space but still tightly packed in load space

This example shows how to use a combination of preprocessor macros and expressions to copy tightly
packed execution regions to execution addresses in a page-boundary.

Using the ALIGN scatter-loading keyword aligns the load addresses of ER2 and ER3 as well as the
execution addresses

Aligning a base address in execution space but still tightly packed in load space

#! armclang -E#define START_ADDRESS 0x100000
#define PAGE_ALIGNMENT 0x100000

LR1 0x8000
{
 ER0 +0
 {
 *(InRoot$$Sections)
 }
 ER1 START_ADDRESS
 {
 file1.o(*)
 }
 ER2 AlignExpr(ImageLimit(ER1), PAGE_ALIGNMENT)
 {
 file2.o(*)
 }
 ER3 AlignExpr(ImageLimit(ER2), PAGE_ALIGNMENT)
 {
 file3.o(*)
 }
}

Related references
8.3.3 Load region attributes on page 8-170.
8.4.3 Execution region attributes on page 8-176.
8.6.7 GetPageSize() function on page 8-190.
8.6.8 SizeOfHeaders() function on page 8-191.
8.3.2 Syntax of a load region description on page 8-169.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-191

Non-Confidential

8.4.2 Syntax of an execution region description on page 8-174.
8.6.6 AlignExpr(expr, align) function on page 8-189.

8.6.10 Scatter files containing relative base address load regions and a ZI execution region

You might want to place zero-initialized (ZI) data in one load region, and use a relative base address for
the next load region.

To place ZI data in load region LR1, and use a relative base address for the next load region LR2, for
example:

LR1 0x8000
{
 er_progbits +0
 {
 *(+RO,+RW) ; Takes space in the Load Region
 }
 er_zi +0
 {
 *(+ZI) ; Takes no space in the Load Region
 }
}
LR2 +0 ; Load Region follows immediately from LR1
{
 er_moreprogbits +0
 {
 file1.o(+RO) ; Takes space in the Load Region
 }
}

Because the linker does not adjust the base address of LR2 to account for ZI data, the execution region
er_zi overlaps the execution region er_moreprogbits. This generates an error when linking.

To correct this, use the ImageLimit() function with the name of the ZI execution region to calculate the
base address of LR2. For example:

LR1 0x8000
{
 er_progbits +0
 {
 *(+RO,+RW) ; Takes space in the Load Region
 }
 er_zi +0
 {
 *(+ZI) ; Takes no space in the Load Region
 }
}
LR2 ImageLimit(er_zi) ; Set the address of LR2 to limit of er_zi
{
 er_moreprogbits +0
 {
 file1.o(+RO) ; Takes space in the Load Region
 }
}

Related concepts
8.6 Expression evaluation in scatter files on page 8-185.
8.6.1 Expression usage in scatter files on page 8-185.
8.6.2 Expression rules in scatter files on page 8-186.
8.6.3 Execution address built-in functions for use in scatter files on page 8-186.

Related references
8.2 Syntax of a scatter file on page 8-167.
8.3.2 Syntax of a load region description on page 8-169.
8.4.2 Syntax of an execution region description on page 8-174.
6.3.2 Image$$ execution region symbols on page 6-92.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

8-192

Non-Confidential

Chapter 9
BPABI Shared Libraries and Executables

Describes how the ARM linker, armlink, supports the Base Platform Application Binary Interface
(BPABI) shared libraries and executables.

It contains the following sections:
• 9.1 About the Base Platform Application Binary Interface (BPABI) on page 9-194.
• 9.2 Platforms supported by the BPABI on page 9-195.
• 9.3 Features common to all BPABI models on page 9-196.
• 9.4 Bare metal and DLL-like memory models on page 9-199.
• 9.5 Symbol versioning on page 9-204.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-193

Non-Confidential

9.1 About the Base Platform Application Binary Interface (BPABI)
The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to generate
their own platform-specific image formats.

Many embedded systems use an operating system (OS) to manage the resources on a device. In many
cases this is a large, single executable with a Real-Time Operating System (RTOS) that tightly integrates
with the applications.

To run an application or use a shared library on a platform OS, you must conform to the Application
Binary Interface (ABI) for the platform and also the ABI for the ARM architecture. This can involve
substantial changes to the linker output, for example, a custom file format. To support such a wide
variety of platforms, the ABI for the ARM architecture provides the BPABI.

The BPABI provides a base standard from which a platform ABI can be derived. The linker produces a
BPABI conforming ELF image or shared library. A platform specific tool called a post-linker translates
this ELF output file into a platform-specific file format. Post linker tools are provided by the platform OS
vendor. The following figure shows the BPABI tool flow.

.c bin/exe.axf.o

Tool: compiler linker postlinker

Language ABI BPABI Platform
binary

Format:

Figure 9-1 BPABI tool flow

Related concepts
9.2 Platforms supported by the BPABI on page 9-195.

Related information
Base Platform ABI for the ARM Architecture.
AN242 Dynamic Linking with the ARM Compiler toolchain.

9 BPABI Shared Libraries and Executables
9.1 About the Base Platform Application Binary Interface (BPABI)

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-194

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0242-/index.html

9.2 Platforms supported by the BPABI
The Base Platform Application Binary Interface (BPABI) defines three platform models based on the
type of shared library.

The platform models are:

Bare metal
The bare metal model is designed for an offline dynamic loader or a simple module loader.
References between modules are resolved by the loader directly without any additional support
structures.

DLL-like
The dynamically linked library (DLL) like model sacrifices transparency between the dynamic
and static library in return for better load and run-time efficiency.

 Note

The DLL-like model is not supported for AArch64 state.

Linker support for the BPABI
The ARM linker supports all three BPABI models enabling you to link a collection of objects and
libraries into a:
• Bare metal executable image.
• BPABI DLL shared object.
• BPABI executable file.

Related concepts
9.1 About the Base Platform Application Binary Interface (BPABI) on page 9-194.

Related references
11.33 --dll on page 11-253.

9 BPABI Shared Libraries and Executables
9.2 Platforms supported by the BPABI

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-195

Non-Confidential

9.3 Features common to all BPABI models
Some features are common to all BPABI models.

The linker enables you to build Base Platform Application Binary Interface (BPABI) shared libraries and
to link objects against shared libraries. The following features are common to all BPABI models:
• Symbol importing.
• Symbol exporting.
• Versioning.
• Visibility of symbols.

This section contains the following subsections:
• 9.3.1 About importing and exporting symbols for BPABI models on page 9-196.
• 9.3.2 Symbol visibility for BPABI models on page 9-196.
• 9.3.3 Automatic import and export for BPABI models on page 9-197.
• 9.3.4 Manual import and export for BPABI models on page 9-197.
• 9.3.5 Symbol versioning for BPABI models on page 9-198.
• 9.3.6 RW compression for BPABI models on page 9-198.

9.3.1 About importing and exporting symbols for BPABI models

How symbols are imported and exported depends on the platform model.

In traditional linking, all symbols must be defined at link time for linking into a single executable file
containing all the required code and data. In platforms that support dynamic linking, symbol binding can
be delayed to load-time or in some cases, run-time. Therefore, the application can be split into a number
of modules, where a module is either an executable or a shared library. Any symbols that are defined in
modules other than the current module are placed in the dynamic symbol table. Any functions that are
suitable for dynamically linking to at load or runtime are also listed in the dynamic symbol table.

There are two ways to control the contents of the dynamic symbol table:
• Automatic rules that infer the contents from the ELF symbol visibility property.
• Manual directives that are present in a steering file.

Related concepts
9.3.3 Automatic import and export for BPABI models on page 9-197.
9.3.1 About importing and exporting symbols for BPABI models on page 9-196.
9.3.2 Symbol visibility for BPABI models on page 9-196.
9.3.4 Manual import and export for BPABI models on page 9-197.
9.3.5 Symbol versioning for BPABI models on page 9-198.
9.3.6 RW compression for BPABI models on page 9-198.
9.5.3 The symbol versioning script file on page 9-205.

Related references
9.4.3 Linker command-line options for bare metal and DLL-like models on page 9-200.

9.3.2 Symbol visibility for BPABI models

For Base Platform Application Binary Interface (BPABI) models, each symbol has a visibility property
that can be controlled by compiler switches, a steering file, or attributes in the source code.

If a symbol is a reference, the visibility controls the definitions that the linker can use to define the
symbol.

If a symbol is a definition, the visibility controls whether the symbol can be made visible outside the
current module.

The visibility options defined by the ELF specification are:

9 BPABI Shared Libraries and Executables
9.3 Features common to all BPABI models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-196

Non-Confidential

Table 9-1 Symbol visibility

Visibility Reference Definition

STV_DEFAULT Symbol can be bound to a definition in
a shared object.

Symbol can be made visible outside the module. It can be
preempted by the dynamic linker by a definition from another
module.

STV_PROTECTED Symbol must be resolved within the
module.

Symbol can be made visible outside the module. It cannot be
preempted at run-time by a definition from another module.

STV_HIDDEN
STV_INTERNAL

Symbol must be resolved within the
module.

Symbol is not visible outside the module.

Symbol preemption can happen in dynamically linked library (DLL) like implementations of the BPABI.
The platform owner defines how this works. See the documentation for your specific platform for more
information.

Related concepts
4.4 Optimization with RW data compression on page 4-71.
9.5.3 The symbol versioning script file on page 9-205.

Related references
9.4.3 Linker command-line options for bare metal and DLL-like models on page 9-200.
11.88 --max_visibility=type on page 11-313.
11.95 --override_visibility on page 11-320.
12.1 EXPORT steering file command on page 12-390.
12.3 IMPORT steering file command on page 12-392.
12.5 REQUIRE steering file command on page 12-394.
11.147 --use_definition_visibility on page 11-374.

Related information
EXPORT or GLOBAL.

9.3.3 Automatic import and export for BPABI models

The linker can automatically import and export symbols for BPABI models.

This behavior depends on a combination of the symbol visibility in the input object file, if the output is
an executable or a shared library. This depends on what type of linking model is being used.

Related concepts
9.3 Features common to all BPABI models on page 9-196.
9.5 Symbol versioning on page 9-204.

Related references
9.4.3 Linker command-line options for bare metal and DLL-like models on page 9-200.

9.3.4 Manual import and export for BPABI models

You can directly control the import and export of symbols with a linker steering file.

You can use linker steering files to:

• Manually control dynamic import and export.
• Override the automatic rules.

9 BPABI Shared Libraries and Executables
9.3 Features common to all BPABI models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-197

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290009343.html

The steering file commands available to control the dynamic symbol table contents are:
• EXPORT.
• IMPORT.
• REQUIRE.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related references
12.1 EXPORT steering file command on page 12-390.
12.3 IMPORT steering file command on page 12-392.
12.5 REQUIRE steering file command on page 12-394.

9.3.5 Symbol versioning for BPABI models

Symbol versioning provides a way to tightly control the interface of a shared library.

When a symbol is imported from a shared library that has versioned symbols, armlink binds to the most
recent (default) version of the symbol. At load or run-time when the platform OS resolves the symbol
version, it always resolves to the version selected by armlink, even if there is a more recent version
available. This process is automatic.

When a symbol is exported from an executable or a shared library, it can be given a version. armlink
supports explicit symbol versioning where you use a script to precisely define the versions.

Related concepts
9.5 Symbol versioning on page 9-204.

9.3.6 RW compression for BPABI models

The decompressor for compressed RW data is tightly integrated into the start-up code in the ARM C
library.

When running an application on a platform OS, this functionality must be provided by the platform or
platform libraries. Therefore, RW compression is turned off when linking a Base Platform Application
Binary Interface (BPABI) file because there is no decompressor. It is not possible to turn compression
back on again.

Related concepts
4.4 Optimization with RW data compression on page 4-71.

9 BPABI Shared Libraries and Executables
9.3 Features common to all BPABI models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-198

Non-Confidential

9.4 Bare metal and DLL-like memory models
If you are developing applications or DLLs for a specific platform OS that are based around the BPABI,
there are some features that you must be aware of.

You must use the following information in conjunction with the platform documentation:

• BPABI standard memory model.
• Mandatory symbol versioning in the BPABI DLL-like model.
• Automatic dynamic symbol table rules in the BPABI DLL-like model.
• Addressing modes in the BPABI DLL-like model.
• C++ initialization in the BPABI DLL-like model.

If you are implementing a platform OS, you must use this information in conjunction with the BPABI
specification.

 Note

The DLL-like model is not supported for AArch64 state.

This section contains the following subsections:
• 9.4.1 BPABI standard memory model on page 9-199.
• 9.4.2 Customization of the BPABI standard memory model on page 9-200.
• 9.4.3 Linker command-line options for bare metal and DLL-like models on page 9-200.
• 9.4.4 Mandatory symbol versioning in the BPABI DLL-like model on page 9-201.
• 9.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model on page 9-202.
• 9.4.6 Addressing modes in the BPABI DLL-like model on page 9-203.
• 9.4.7 C++ initialization in the BPABI DLL-like model on page 9-203.

9.4.1 BPABI standard memory model

Base Platform Application Binary Interface (BPABI) files have a standard memory model that is
described in the BPABI specification.

When you use the --bpabi command-line option, the linker automatically applies the standard memory
model and ignores any scatter file that you specify on the command-line. This is equivalent to the
following image layout:

LR_1 <read-only base address>
{
 ER_RO +0
 {
 *(+RO)
 }
}
LR_2 <read-write base address>
{
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}

The BPABI model is also referred to as the bare metal and DLL-like memory model.
 Note

The DLL-like model is not supported for AArch64 state.

Related concepts
9.4.2 Customization of the BPABI standard memory model on page 9-200.

9 BPABI Shared Libraries and Executables
9.4 Bare metal and DLL-like memory models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-199

Non-Confidential

9.4.2 Customization of the BPABI standard memory model

You can customize the BPABI standard memory model with the memory map related command-line
options.

 Note

If you specify the option --ropi, LR_1 is marked as position-independent. Likewise, if you specify the
option --rwpi, LR_2 is marked as position-independent.

 Note

In most cases, you must specify the --ro_base and --rw_base switches, because the default values,
0x8000 and 0 respectively, might not be suitable for your platform. These addresses do not have to
reflect the addresses to which the image is relocated at run time.

If you require a more complicated memory layout, use the Base Platform linking model,
--base_platform.

Related concepts
2.5 Base Platform linking model on page 2-31.

Related references
11.11 --bpabi on page 11-229.
11.7 --base_platform on page 11-224.
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.
11.157 --xo_base=address on page 11-384.

9.4.3 Linker command-line options for bare metal and DLL-like models

There are linker command-line options available for building bare metal executables and dynamically
linked library (DLL) like models for a platform OS.

The command-line options are:

Table 9-2 Turning on BPABI support

Command-line options Description

--base_platform To use scatter-loading with Base Platform Application Binary Interface (BPABI).

--bpabi To produce a BPABI executable.

--bpabi --dll To produce a BPABI DLL.

 Note

The DLL-like model is not supported for AArch64 state.

Additional linker command-line options for the BPABI DLL-like model

There are additional linker command-line options available for the BPABI DLL-like model.

9 BPABI Shared Libraries and Executables
9.4 Bare metal and DLL-like memory models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-200

Non-Confidential

The additional command-line options are:
• --export_all, --no_export_all.
• --pltgot=type.
• --pltgot_opts=mode.
• --ro_base=address.
• --ropi.
• --rosplit.
• --rw_base=address.
• --rwpi.
• --symver_script=filename.
• --symver_soname.

Related concepts
9.4.1 BPABI standard memory model on page 9-199.
9.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model on page 9-202.
9.4.6 Addressing modes in the BPABI DLL-like model on page 9-203.
9.4.4 Mandatory symbol versioning in the BPABI DLL-like model on page 9-201.

Related references
9.4.3 Linker command-line options for bare metal and DLL-like models on page 9-200.
11.7 --base_platform on page 11-224.
11.11 --bpabi on page 11-229.
11.33 --dll on page 11-253.
11.45 --export_all, --no_export_all on page 11-265.
11.103 --pltgot=type on page 11-328.
11.104 --pltgot_opts=mode on page 11-329.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.
11.139 --symver_script=filename on page 11-366.
11.140 --symver_soname on page 11-367.
Chapter 11 Linker Command-line Options on page 11-213.

Related information
Base Platform ABI for the ARM Architecture.

9.4.4 Mandatory symbol versioning in the BPABI DLL-like model

The Base Platform Application Binary Interface (BPABI) DLL-like model requires static binding to
ensure a symbol can be searched for at run-time.

This is because a post-linker might translate the symbolic information in a BPABI DLL to an import or
export table that is indexed by an ordinal. In which case, it is not possible to search for a symbol at run-
time.

Static binding is enforced in the BPABI with the use of symbol versioning. The command-line option
--symver_soname is on by default for BPABI files, this means that all exported symbols are given a
version based on the name of the DLL.

 Note

The DLL-like model is not supported for AArch64 state.

9 BPABI Shared Libraries and Executables
9.4 Bare metal and DLL-like memory models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-201

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

Related concepts
9.5 Symbol versioning on page 9-204.

Related references
11.139 --symver_script=filename on page 11-366.
11.140 --symver_soname on page 11-367.

9.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model

There are rules that apply to dynamic symbol tables for the Base Platform Application Binary Interface
(BPABI) DLL-like model.

The following rules apply:

Executable
An undefined symbol reference is an undefined symbol error.

Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to the dynamic
symbol table.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are not exported to the dynamic
symbol table unless --export_all or --export_dynamic is set.

DLL
An undefined symbol reference is an undefined symbol error.
Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to the dynamic
symbol table.

 Note

STV_HIDDEN or STV_INTERNAL global symbols that are required for relocation can be placed in
the dynamic symbol table, however the linker changes them into local symbols to prevent them
from being accessed from outside the shared library.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are always exported to the
dynamic symbol table.

 Note

The DLL-like model is not supported for AArch64 state.

You can manually export and import symbols using the EXPORT and IMPORT steering file commands. Use
the --edit command-line option to specify a steering file command.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related references
6.6.2 Steering file command summary on page 6-102.
6.6.3 Steering file format on page 6-103.
11.37 --edit=file_list on page 11-257.
11.45 --export_all, --no_export_all on page 11-265.
11.46 --export_dynamic, --no_export_dynamic on page 11-266.
12.1 EXPORT steering file command on page 12-390.
12.3 IMPORT steering file command on page 12-392.

9 BPABI Shared Libraries and Executables
9.4 Bare metal and DLL-like memory models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-202

Non-Confidential

9.4.6 Addressing modes in the BPABI DLL-like model

The main difference between the bare metal and Base Platform Application Binary Interface (BPABI)
DLL-like models is the addressing mode used when accessing imported and own-program code and data.

There are four options available that correspond to categories in the BPABI specification:

• None.
• Direct references.
• Indirect references.
• Relative static base address references.

You can control the selection of the required addressing mode with the following command-line options:
• --pltgot.
• --pltgot_opts.

 Note

The DLL-like model is not supported for AArch64 state.

Related references
11.103 --pltgot=type on page 11-328.
11.104 --pltgot_opts=mode on page 11-329.

9.4.7 C++ initialization in the BPABI DLL-like model

A dynamically linked library (DLL) supports the initialization of static constructors with a table that
contains references to initializer functions that perform the initialization.

The table is stored in an ELF section with a special section type of SHT_INIT_ARRAY. For each of these
initializers there is a relocation of type R_ARM_TARGET1 to a function that performs the initialization.

The ELF Application Binary Interface (ABI) specification describes R_ARM_TARGET1 as either a relative
form, or an absolute form.

The ARM C libraries use the relative form. For example, if the linker detects a definition of the ARM C
library __cpp_initialize__aeabi, it uses the relative form of R_ARM_TARGET1 otherwise it uses the
absolute form.

 Note

The DLL-like model is not supported for AArch64 state.

Related concepts
9.4.1 BPABI standard memory model on page 9-199.
9.4.4 Mandatory symbol versioning in the BPABI DLL-like model on page 9-201.
9.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model on page 9-202.
9.4.6 Addressing modes in the BPABI DLL-like model on page 9-203.

Related references
9.4.3 Linker command-line options for bare metal and DLL-like models on page 9-200.

Related information
Initialization of the execution environment and execution of the application.
C++ initialization, construction and destruction.

9 BPABI Shared Libraries and Executables
9.4 Bare metal and DLL-like memory models

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-203

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1358938922456.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1358938922706.html

9.5 Symbol versioning
Symbol versioning records extra information about symbols imported from, and exported by, a dynamic
shared object.

A dynamic loader uses this extra information to ensure that all the symbols required by an image are
available at load time.

This section contains the following subsections:
• 9.5.1 Overview of symbol versioning on page 9-204.
• 9.5.2 Embedded symbols on page 9-204.
• 9.5.3 The symbol versioning script file on page 9-205.
• 9.5.4 Example of creating versioned symbols on page 9-206.
• 9.5.5 Linker options for enabling implicit symbol versioning on page 9-206.

9.5.1 Overview of symbol versioning

Symbol versioning enables shared object creators to produce new versions of symbols for use by all new
clients, while maintaining compatibility with clients linked against old versions of the shared object.

Version
Symbol versioning adds the concept of a version to the dynamic symbol table. A version is a name that
symbols are associated with. When a dynamic loader tries to resolve a symbol reference associated with
a version name, it can only match against a symbol definition with the same version name.

 Note

A version might be associated with previous version names to show the revision history of the shared
object.

Default version

While a shared object might have multiple versions of the same symbol, a client of the shared object can
only bind against the latest version.

This is called the default version of the symbol.

Creation of versioned symbols

By default, the linker does not create versioned symbols for a non Base Platform Application Binary
Interface (BPABI) shared object.

Related concepts
9.5.3 The symbol versioning script file on page 9-205.

Related information
--symbolversions, --no_symbolversions fromelf option.

9.5.2 Embedded symbols

You can add specially-named symbols to input objects that cause the linker to create symbol versions.

These symbols are of the form:
• name@version for a non-default version of a symbol.
• name@@version for a default version of a symbol.

You must define these symbols, at the address of the function or data, as that you want to export. The
symbol name is divided into two parts, a symbol name name and a version definition version. The name
is added to the dynamic symbol table and becomes part of the interface to the shared object. Version
creates a version called ver if it does not already exist and associates name with the version called ver.

9 BPABI Shared Libraries and Executables
9.5 Symbol versioning

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-204

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128924452.html

The following example places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object symbol
table:

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The linker reads these symbols and creates version definitions ver1 and ver2. The symbol foo is
associated with a non-default version of ver1, and with a default version of ver2. The symbol bar is
associated with a default version of ver1.

There is no way to create associations between versions with this method.

Related information
Writing A32/T32 Assembly Language.

9.5.3 The symbol versioning script file

You can embed the commands to produce symbol versions in a script file.

You specify a symbol versioning script file with the command-line option --symver_script=file.
Using this option automatically enables symbol versioning.

The script file supports the same syntax as the GNU ld linker.

Using a script file enables you to associate a version with an earlier version.

You can provide a steering file in addition to the embedded symbol method. If you choose to do this then
your script file must match your embedded symbols and use the Backus-Naur Form (BNF) notation:

version_definition ::=
 version_name "{" symbol_association* "}" [depend_version] ";"

symbol_association ::=
 "local:" | "global:" | symbol_name ";"

Where:

• version_name is a string containing the name of the version.
• depend_version is a string containing the name of a version that this version_name depends on.

This version must have already been defined in the script file.
• "local:" indicates that all subsequent symbol_names in this version definition are local to the shared

object and are not versioned.
• "global:" indicates that all subsequent symbol_names belong to this version definition.

There is an implicit "global:" at the start of every version definition.
• symbol_name is the name of a global symbol in the static symbol table.

Version names have no specific meaning, but they are significant in that they make it into the output. In
the output, they are a part of the version specification of the library and a part of the version requirements
of a program that links against such a library. The following example shows the use of version names:

VERSION_1
{
 ...
};
VERSION_2
{
 ...
} VERSION_1;

 Note

If you use a script file then the version definitions and symbols associated with them must match. The
linker warns you if it detects any mismatch.

9 BPABI Shared Libraries and Executables
9.5 Symbol versioning

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-205

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1424433168801.html

Related concepts
9.5.1 Overview of symbol versioning on page 9-204.
9.5.5 Linker options for enabling implicit symbol versioning on page 9-206.
9.5.4 Example of creating versioned symbols on page 9-206.

Related references
11.139 --symver_script=filename on page 11-366.

9.5.4 Example of creating versioned symbols

This example shows how to create versioned symbols in code and with a script file.

The following example places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object symbol
table:

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The corresponding script file includes the addition of dependency information so that ver2 depends on
ver1 is:

ver1
{
 global:
 foo; bar;
 local:
 *;
};
ver2
{
 global:
 foo;
} ver1;

Related concepts
9.5 Symbol versioning on page 9-204.
9.5.5 Linker options for enabling implicit symbol versioning on page 9-206.

Related references
11.139 --symver_script=filename on page 11-366.

9.5.5 Linker options for enabling implicit symbol versioning

If you have to version your symbols to force static binding, but you do not care about the version number
that they are given, you can use implicit symbol versioning.

Use the command-line option --symver_soname to turn on implicit symbol versioning.

Where a symbol has no defined version, the linker uses the SONAME of the file being linked.

This option can be combined with embedded symbols or a script file. armlink adds the SONAME { *; };
definition to its internal representation of a symbol versioning script.

Related concepts
9.5.3 The symbol versioning script file on page 9-205.
9.5 Symbol versioning on page 9-204.
9.5.2 Embedded symbols on page 9-204.

Related references
11.140 --symver_soname on page 11-367.

9 BPABI Shared Libraries and Executables
9.5 Symbol versioning

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

9-206

Non-Confidential

Chapter 10
Features of the Base Platform Linking Model

Describes features of the Base Platform linking model supported by the ARM linker, armlink.

 Note

The Base Platform linking model is not supported for AArch64 state.

It contains the following sections:
• 10.1 Restrictions on the use of scatter files with the Base Platform model on page 10-208.
• 10.2 Scatter files for the Base Platform linking model on page 10-210.
• 10.3 Placement of PLT sequences with the Base Platform model on page 10-212.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

10-207

Non-Confidential

10.1 Restrictions on the use of scatter files with the Base Platform model
The Base Platform model supports scatter files, with some restrictions.

Although there are no restrictions on the keywords you can use in a scatter file, there are restrictions on
the types of scatter files you can use:
• A load region marked with the RELOC attribute must contain only execution regions with a relative

base address of +offset. The following examples show valid and invalid scatter files using the RELOC
attribute and +offset relative base address:

Valid scatter file example using

This is valid. All execution regions have +offset addresses.
LR1 0x8000 RELOC
{
 ER_RELATIVE +0
 {
 *(+RO)
 }
}

Invalid scatter file example using

This is not valid. One execution region has an absolute base address.
LR1 0x8000 RELOC
{
 ER_RELATIVE +0
 {
 *(+RO)
 }
 ER_ABSOLUTE 0x1000
 {
 *(+RW)
 }
}

• Any load region that requires a PLT section must contain at least one execution region containing
code, that is not marked OVERLAY. This execution region holds the PLT section. An OVERLAY region
cannot be used as the PLT must remain in memory at all times. The following examples show valid
and invalid scatter files that define execution regions requiring a PLT section:

Valid scatter file example for a load region that requires a PLT section

This is valid. ER_1 contains code and is not OVERLAY.
LR_NEEDING_PLT 0x8000
{
 ER_1 +0
 {
 *(+RO)
 }
}

Invalid scatter file example for a load region that requires a PLT section

This is not valid. All execution regions containing code are marked OVERLAY.
LR_NEEDING_PLT 0x8000
{
 ER_1 +0 OVERLAY
 {
 *(+RO)
 }
 ER_2 +0
 {
 *(+RW)
 }
}

• If a load region requires a PLT section, then the PLT section must be placed within the load region.
By default, if a load region requires a PLT section, the linker places the PLT section in the first
execution region containing code. You can override this choice with a scatter-loading selector.

If there is more than one load region containing code, the PLT section for a load region with name
name is .plt_name. If there is only one load region containing code, the PLT section is called .plt.

The following examples show valid and invalid scatter files that place a PLT section:

10 Features of the Base Platform Linking Model
10.1 Restrictions on the use of scatter files with the Base Platform model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

10-208

Non-Confidential

Valid scatter file example for placing a PLT section

#This is valid. The PLT section for LR1 is placed in LR1.
LR1 0x8000
{
 ER1 +0
 {
 *(+RO)
 }
 ER2 +0
 {
 *(.plt_LR1)
 }
}
LR2 0x10000
{
 ER1 +0
 {
 *(other_code)
 }
}

Invalid scatter file example for placing a PLT section

#This is not valid. The PLT section of LR1 has been placed in LR2.
LR1 0x8000
{
 ER1 +0
 {
 *(+RO)
 }
}
LR2 0x10000
{
 ER1 +0
 {
 *(.plt_LR1)
 }
}

Related concepts
2.5 Base Platform linking model on page 2-31.
10.3 Placement of PLT sequences with the Base Platform model on page 10-212.
8.3.4 Inheritance rules for load region address attributes on page 8-171.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.
8.4.4 Inheritance rules for execution region address attributes on page 8-179.

Related references
8.3.3 Load region attributes on page 8-170.
8.4.3 Execution region attributes on page 8-176.

10 Features of the Base Platform Linking Model
10.1 Restrictions on the use of scatter files with the Base Platform model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

10-209

Non-Confidential

10.2 Scatter files for the Base Platform linking model
Scatter files containing relocatable and non-relocatable load regions for the Base Platform linking model.

Standard BPABI scatter file with relocatable load regions

If you do not specify a scatter file when linking for the Base Platform linking model, the linker uses a
default scatter file defined for the standard Base Platform Application Binary Interface (BPABI) memory
model. This scatter file defines the following relocatable load regions:

LR1 0x8000 RELOC
{
 ER_RO +0
 {
 *(+RO)
 }
}
LR2 0x0 RELOC
{
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}

This example conforms to the BPABI, because it has the same two-region format as the BPABI
specification.

Scatter file with some load regions that are not relocatable

This example shows two load regions LR1 and LR2 that are not relocatable.

LR1 0x8000
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}
LR2 0x10000
{
 ER_KNOWN_ADDRESS +0
 {
 *(fixedsection)
 }
}
LR3 0x20000 RELOC
{
 ER_RELOCATABLE +0
 {
 *(floatingsection)
 }
}

The linker does not have to generate dynamic relocations between LR1 and LR2 because they have fixed
addresses. However, the RELOC load region LR3 might be widely separated from load regions LR1 and
LR2 in the address space. Therefore, dynamic relocations are required between LR1 and LR3, and LR2
and LR3.

Use the options --pltgot=direct --pltgot_opts=crosslr to ensure a PLT is generated for each load
region.

10 Features of the Base Platform Linking Model
10.2 Scatter files for the Base Platform linking model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

10-210

Non-Confidential

Related concepts
2.2 Bare-metal linking model on page 2-27.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-30.
10.1 Restrictions on the use of scatter files with the Base Platform model on page 10-208.

Related references
8.3.3 Load region attributes on page 8-170.

10 Features of the Base Platform Linking Model
10.2 Scatter files for the Base Platform linking model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

10-211

Non-Confidential

10.3 Placement of PLT sequences with the Base Platform model
The linker supports Procedure Linkage Table (PLT) generation for multiple load regions containing code
when linking in Base Platform mode.

To turn on PLT generation when in Base Platform mode (--base_platform) use --pltgot=option that
generates PLT sequences. You can use the option --pltgot_opts=crosslr to add entries in the PLT for
calls from and to RELOC load-regions. PLT generation for multiple Load Regions is only supported for
--pltgot=direct.

The --pltgot_opts=crosslr option is useful when you have multiple load regions that might be moved
relative to each other when the image is dynamically loaded. The linker generates a PLT for each load
region so that calls do not have to be extended to reach a distant PLT.

Placement of linker generated PLT sections:

• When there is only one load region there is one PLT. The linker creates a section called .plt with an
object anon$$obj.o.

• When there are multiple load regions, a PLT section is created for each load region that requires one.
By default, the linker places the PLT section in the first execution region containing code. You can
override this by specifying the exact PLT section name in the scatter file.

For example, a load region with name LR_NAME the PLT section is called .plt_LR_NAME with an
object of anon$$obj.o. To precisely name this PLT section in a scatter file, use the selector:

anon$$obj.o(.plt_LR_NAME)

Be aware of the following:
• The linker gives an error message if the PLT for load region LR_NAME is moved out of load region

LR_NAME.
• The linker gives an error message if load region LR_NAME contains a mixture of RELOC and non-RELOC

execution regions. This is because it cannot guarantee that the RELOC execution regions are able to
reach the PLT at run-time.

• --pltgot=indirect and --pltgot=sbrel are not supported for multiple load regions.

Related concepts
2.5 Base Platform linking model on page 2-31.

Related references
11.7 --base_platform on page 11-224.
11.103 --pltgot=type on page 11-328.
11.104 --pltgot_opts=mode on page 11-329.

10 Features of the Base Platform Linking Model
10.3 Placement of PLT sequences with the Base Platform model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

10-212

Non-Confidential

Chapter 11
Linker Command-line Options

Describes the command-line options supported by the ARM linker, armlink.

It contains the following sections:
• 11.1 --any_contingency on page 11-217.
• 11.2 --any_placement=algorithm on page 11-218.
• 11.3 --any_sort_order=order on page 11-220.
• 11.4 --api, --no_api on page 11-221.
• 11.5 --autoat, --no_autoat on page 11-222.
• 11.6 --bare_metal_pie on page 11-223.
• 11.7 --base_platform on page 11-224.
• 11.8 --bestdebug, --no_bestdebug on page 11-226.
• 11.9 --blx_arm_thumb, --no_blx_arm_thumb on page 11-227.
• 11.10 --blx_thumb_arm, --no_blx_thumb_arm on page 11-228.
• 11.11 --bpabi on page 11-229.
• 11.12 --branchnop, --no_branchnop on page 11-230.
• 11.13 --callgraph, --no_callgraph on page 11-231.
• 11.14 --callgraph_file=filename on page 11-233.
• 11.15 --callgraph_output=fmt on page 11-234.
• 11.16 --callgraph_subset=symbol[,symbol,...] on page 11-235.
• 11.17 --cgfile=type on page 11-236.
• 11.18 --cgsymbol=type on page 11-237.
• 11.19 --cgundefined=type on page 11-238.
• 11.20 --comment_section, --no_comment_section on page 11-239.
• 11.21 --compress_debug, --no_compress_debug on page 11-240.
• 11.22 --cppinit, --no_cppinit on page 11-241.
• 11.23 --cpu=list on page 11-242.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-213

Non-Confidential

• 11.24 --cpu=name on page 11-243.
• 11.25 --crosser_veneershare, --no_crosser_veneershare on page 11-245.
• 11.26 --datacompressor=opt on page 11-246.
• 11.27 --debug, --no_debug on page 11-247.
• 11.28 --diag_error=tag[,tag,…] on page 11-248.
• 11.29 --diag_remark=tag[,tag,…] on page 11-249.
• 11.30 --diag_style=arm|ide|gnu on page 11-250.
• 11.31 --diag_suppress=tag[,tag,…] on page 11-251.
• 11.32 --diag_warning=tag[,tag,…] on page 11-252.
• 11.33 --dll on page 11-253.
• 11.34 --dynamic_linker=name on page 11-254.
• 11.35 --eager_load_debug, --no_eager_load_debug on page 11-255.
• 11.36 --eh_frame_hdr on page 11-256.
• 11.37 --edit=file_list on page 11-257.
• 11.38 --emit_debug_overlay_relocs on page 11-258.
• 11.39 --emit_debug_overlay_section on page 11-259.
• 11.40 --emit_non_debug_relocs on page 11-260.
• 11.41 --emit_relocs on page 11-261.
• 11.42 --entry=location on page 11-262.
• 11.43 --errors=filename on page 11-263.
• 11.44 --exceptions, --no_exceptions on page 11-264.
• 11.45 --export_all, --no_export_all on page 11-265.
• 11.46 --export_dynamic, --no_export_dynamic on page 11-266.
• 11.47 --filtercomment, --no_filtercomment on page 11-267.
• 11.48 --fini=symbol on page 11-268.
• 11.49 --first=section_id on page 11-269.
• 11.50 --force_explicit_attr on page 11-270.
• 11.51 --force_so_throw, --no_force_so_throw on page 11-271.
• 11.52 --fpic on page 11-272.
• 11.53 --fpu=list on page 11-273.
• 11.54 --fpu=name on page 11-274.
• 11.55 --got=type on page 11-275.
• 11.56 --gnu_linker_defined_syms on page 11-276.
• 11.57 --help on page 11-277.
• 11.58 --import_cmse_lib_in=filename on page 11-278.
• 11.59 --import_cmse_lib_out=filename on page 11-279.
• 11.60 --info=topic[,topic,…] on page 11-280.
• 11.61 --info_lib_prefix=opt on page 11-283.
• 11.62 --init=symbol on page 11-284.
• 11.63 --inline, --no_inline on page 11-285.
• 11.64 --inlineveneer, --no_inlineveneer on page 11-286.
• 11.65 input-file-list on page 11-287.
• 11.66 --keep=section_id on page 11-288.
• 11.67 --keep_intermediate on page 11-290.
• 11.68 --largeregions, --no_largeregions on page 11-291.
• 11.69 --last=section_id on page 11-292.
• 11.70 --legacyalign, --no_legacyalign on page 11-293.
• 11.71 --libpath=pathlist on page 11-294.
• 11.72 --library=name on page 11-295.
• 11.73 --library_type=lib on page 11-296.
• 11.74 --list=filename on page 11-297.
• 11.75 --list_mapping_symbols, --no_list_mapping_symbols on page 11-298.
• 11.76 --load_addr_map_info, --no_load_addr_map_info on page 11-299.
• 11.77 --locals, --no_locals on page 11-300.
• 11.78 --lto, --no_lto on page 11-301.
• 11.79 --lto_keep_all_symbols, --no_lto_keep_all_symbols on page 11-303.

11 Linker Command-line Options

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-214

Non-Confidential

• 11.80 --lto_intermediate_filename on page 11-304.
• 11.81 --lto_level on page 11-305.
• 11.82 --lto_relocation_model on page 11-307.
• 11.83 --mangled, --unmangled on page 11-308.
• 11.84 --map, --no_map on page 11-309.
• 11.85 --match=crossmangled on page 11-310.
• 11.86 --max_er_extension=size on page 11-311.
• 11.87 --max_veneer_passes=value on page 11-312.
• 11.88 --max_visibility=type on page 11-313.
• 11.89 --merge, --no_merge on page 11-314.
• 11.90 --merge_litpools, --no_merge_litpools on page 11-315.
• 11.91 --muldefweak, --no_muldefweak on page 11-316.
• 11.92 -o filename, --output=filename on page 11-317.
• 11.93 --output_float_abi=option on page 11-318.
• 11.94 --overlay_veneers on page 11-319.
• 11.95 --override_visibility on page 11-320.
• 11.96 -Omax on page 11-321.
• 11.97 --pad=num on page 11-322.
• 11.98 --paged on page 11-323.
• 11.99 --pagesize=pagesize on page 11-324.
• 11.100 --partial on page 11-325.
• 11.101 --pie on page 11-326.
• 11.102 --piveneer, --no_piveneer on page 11-327.
• 11.103 --pltgot=type on page 11-328.
• 11.104 --pltgot_opts=mode on page 11-329.
• 11.105 --predefine="string" on page 11-330.
• 11.106 --preinit, --no_preinit on page 11-331.
• 11.107 --privacy on page 11-332.
• 11.108 --ref_cpp_init, --no_ref_cpp_init on page 11-333.
• 11.109 --ref_pre_init, --no_ref_pre_init on page 11-334.
• 11.110 --reloc on page 11-335.
• 11.111 --remarks on page 11-336.
• 11.112 --remove, --no_remove on page 11-337.
• 11.113 --ro_base=address on page 11-338.
• 11.114 --ropi on page 11-339.
• 11.115 --rosplit on page 11-340.
• 11.116 --rw_base=address on page 11-341.
• 11.117 --rwpi on page 11-342.
• 11.118 --scanlib, --no_scanlib on page 11-343.
• 11.119 --scatter=filename on page 11-344.
• 11.120 --section_index_display=type on page 11-346.
• 11.121 --show_cmdline on page 11-347.
• 11.122 --show_full_path on page 11-348.
• 11.123 --show_parent_lib on page 11-349.
• 11.124 --show_sec_idx on page 11-350.
• 11.125 --sort=algorithm on page 11-351.
• 11.126 --split on page 11-353.
• 11.127 --startup=symbol, --no_startup on page 11-354.
• 11.128 --stdlib on page 11-355.
• 11.129 --strict on page 11-356.
• 11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
• 11.131 --strict_flags, --no_strict_flags on page 11-358.
• 11.132 --strict_ph, --no_strict_ph on page 11-359.
• 11.133 --strict_relocations, --no_strict_relocations on page 11-360.
• 11.134 --strict_symbols, --no_strict_symbols on page 11-361.
• 11.135 --strict_visibility, --no_strict_visibility on page 11-362.

11 Linker Command-line Options

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-215

Non-Confidential

• 11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.
• 11.137 --symbols, --no_symbols on page 11-364.
• 11.138 --symdefs=filename on page 11-365.
• 11.139 --symver_script=filename on page 11-366.
• 11.140 --symver_soname on page 11-367.
• 11.141 --tailreorder, --no_tailreorder on page 11-368.
• 11.142 --tiebreaker=option on page 11-369.
• 11.143 --unaligned_access, --no_unaligned_access on page 11-370.
• 11.144 --undefined=symbol on page 11-371.
• 11.145 --undefined_and_export=symbol on page 11-372.
• 11.146 --unresolved=symbol on page 11-373.
• 11.147 --use_definition_visibility on page 11-374.
• 11.148 --userlibpath=pathlist on page 11-375.
• 11.149 --veneerinject, --no_veneerinject on page 11-376.
• 11.150 --veneer_inject_type=type on page 11-377.
• 11.151 --veneer_pool_size=size on page 11-378.
• 11.152 --veneershare, --no_veneershare on page 11-379.
• 11.153 --verbose on page 11-380.
• 11.154 --version_number on page 11-381.
• 11.155 --via=filename on page 11-382.
• 11.156 --vsn on page 11-383.
• 11.157 --xo_base=address on page 11-384.
• 11.158 --xref, --no_xref on page 11-385.
• 11.159 --xrefdbg, --no_xrefdbg on page 11-386.
• 11.160 --xref{from|to}=object(section) on page 11-387.
• 11.161 --zi_base=address on page 11-388.

11 Linker Command-line Options

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-216

Non-Confidential

11.1 --any_contingency
Permits extra space in any execution regions containing .ANY sections for linker-generated content such
as veneers and alignment padding.

Usage

Two percent of the extra space in such execution regions is reserved for veneers.

When a region is about to overflow because of potential padding, armlink lowers the priority of
the .ANY selector.

This option is off by default. That is, armlink does not attempt to calculate padding and strictly follows
the .ANY priorities.

Use this option with the --scatter option.

Related concepts
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.

Related tasks
7.4 Placing unassigned sections on page 7-129.

Related references
11.60 --info=topic[,topic,…] on page 11-280.
11.3 --any_sort_order=order on page 11-220.
11.119 --scatter=filename on page 11-344.
8.5.2 Syntax of an input section description on page 8-181.
11.2 --any_placement=algorithm on page 11-218.

11 Linker Command-line Options
11.1 --any_contingency

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-217

Non-Confidential

11.2 --any_placement=algorithm
Controls the placement of sections that are placed using the .ANY module selector.

Syntax

--any_placement=algorithm

where algorithm is one of the following:

best_fit
Place the section in the execution region that currently has the least free space but is also
sufficient to contain the section.

first_fit
Place the section in the first execution region that has sufficient space. The execution regions are
examined in the order they are defined in the scatter file.

next_fit
Place the section using the following rules:
• Place in the current execution region if there is sufficient free space.
• Place in the next execution region only if there is insufficient space in the current region.
• Never place a section in a previous execution region.

worst_fit
Place the section in the execution region that currently has the most free space.

Use this option with the --scatter option.

Usage

The placement algorithms interact with scatter files and --any_contingency as follows:

Interaction with normal scatter-loading rules
Scatter-loading with or without .ANY assigns a section to the most specific selector. All
algorithms continue to assign to the most specific selector in preference to .ANY priority or size
considerations.

Interaction with .ANY priority
Priority is considered after assignment to the most specific selector in all algorithms.

worst_fit and best_fit consider priority before their individual placement criteria. For
example, you might have .ANY1 and .ANY2 selectors, with the .ANY1 region having the most free
space. When using worst_fit the section is assigned to .ANY2 because it has higher priority.
Only if the priorities are equal does the algorithm come into play.

first_fit considers the most specific selector first, then priority. It does not introduce any
more placement rules.

next_fit also does not introduce any more placement rules. If a region is marked full during
next_fit, that region cannot be considered again regardless of priority.

Interaction with --any_contingency
The priority of a .ANY selector is reduced to 0 if the region might overflow because of linker-
generated content. This is enabled and disabled independently of the sorting and placement
algorithms.

armlink calculates a worst-case contingency for each section.

For worst_fit, best_fit, and first_fit, when a region is about to overflow because of the
contingency, armlink lowers the priority of the related .ANY selector.

For next_fit, when a possible overflow is detected, armlink marks that section as FULL and
does not consider it again. This stays consistent with the rule that when a section is full it can
never be revisited.

11 Linker Command-line Options
11.2 --any_placement=algorithm

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-218

Non-Confidential

Default

The default option is worst_fit.

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-132.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-134.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.

Related tasks
7.4 Placing unassigned sections on page 7-129.

Related references
11.3 --any_sort_order=order on page 11-220.
11.60 --info=topic[,topic,…] on page 11-280.
11.119 --scatter=filename on page 11-344.
11.1 --any_contingency on page 11-217.
8.5.2 Syntax of an input section description on page 8-181.

11 Linker Command-line Options
11.2 --any_placement=algorithm

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-219

Non-Confidential

11.3 --any_sort_order=order
Controls the sort order of input sections that are placed using the .ANY module selector.

Syntax

--any_sort_order=order

where order is one of the following:

descending_size
Sort input sections in descending size order.

cmdline
The order that the section appears on the linker command-line. The command-line order is
defined as File.Object.Section where:
• Section is the section index, sh_idx, of the Section in the Object.
• Object is the order that Object appears in the File.
• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

By default, sections that have the same properties are resolved using the creation index. The
--tiebreaker command-line option does not have any effect in the context of --any_sort_order.

Use this option with the --scatter option.

Usage

The sorting governs the order that sections are processed during .ANY assignment. Normal scatter-
loading rules, for example RO before RW, are obeyed after the sections are assigned to regions.

Default

The default option is --any_sort_order=descending_size.

Related concepts
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-135.

Related tasks
7.4 Placing unassigned sections on page 7-129.

Related references
11.60 --info=topic[,topic,…] on page 11-280.
11.119 --scatter=filename on page 11-344.
11.1 --any_contingency on page 11-217.

11 Linker Command-line Options
11.3 --any_sort_order=order

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-220

Non-Confidential

11.4 --api, --no_api
Enables and disables API section sorting. API sections are the sections that are called the most within a
region.

Usage

In large region mode the API sections are extracted from the region and then inserted closest to the
hotspots of the calling sections. This minimises the number of veneers generated.

Default

The default is --no_api. The linker automatically switches to --api if at least one execution region
contains more code than the smallest inter-section branch. The smallest inter-section branch depends on
the code in the region and the target processor:

128MB
Execution region contains only A64 instructions.

32MB
Execution region contains only A32 instructions.

16MB
Execution region contains 32-bit T32 instructions.

4MB
Execution region contains only 16-bit T32 instructions.

Related concepts
3.6 Linker-generated veneers on page 3-55.

Related references
11.68 --largeregions, --no_largeregions on page 11-291.

11 Linker Command-line Options
11.4 --api, --no_api

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-221

Non-Confidential

11.5 --autoat, --no_autoat
Controls the automatic assignment of __at sections to execution regions.

__at sections are sections that must be placed at a specific address.

Usage

If enabled, the linker automatically selects an execution region for each __at section. If a suitable
execution region does not exist, the linker creates a load region and an execution region to contain the
__at section.

If disabled, the standard scatter-loading section selection rules apply.

Default

The default is --autoat.

Restrictions

You cannot use __at section placement with position independent execution regions.

If you use __at sections with overlays, you cannot use --autoat to place those sections. You must
specify the names of __at sections in a scatter file manually, and specify the --no_autoat option.

Related tasks
7.2.5 Placing __at sections at a specific address on page 7-122.
7.2.7 Automatically placing __at sections on page 7-123.
7.2.8 Manually placing __at sections on page 7-125.

Related references
8.2 Syntax of a scatter file on page 8-167.

11 Linker Command-line Options
11.5 --autoat, --no_autoat

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-222

Non-Confidential

11.6 --bare_metal_pie
Specifies the bare-metal Position Independent Executable (PIE) linking model.

 Note

Not supported for AArch64 state.

 Note

Bare-metal PIE support is deprecated in this release.

Default
The following default settings are automatically specified:
• --fpic.
• --pie.
• --ref_pre_init.

Related references
11.52 --fpic on page 11-272.
11.101 --pie on page 11-326.
11.109 --ref_pre_init, --no_ref_pre_init on page 11-334.

11 Linker Command-line Options
11.6 --bare_metal_pie

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-223

Non-Confidential

11.7 --base_platform
Specifies the Base Platform linking model. It is a superset of the Base Platform Application Binary
Interface (BPABI) model, --bpabi option.

 Note

Not supported for AArch64 state.

Usage

When you specify --base_platform, the linker also acts as if you specified --bpabi with the following
exceptions:

• The full choice of memory models is available, including scatter-loading:
— --dll.
— --force_so_throw, --no_force_so_throw.
— --pltgot=type.
— --rosplit.

 Note

If you do not specify a scatter file with --scatter, then the standard BPABI memory model scatter
file is used.

• The default value of the --pltgot option is different to that for --bpabi:
— For --base_platform, the default is --pltgot=none.
— For --bpabi the default is --pltgot=direct.

• If you specify --pltgot_opts=crosslr then calls to and from a load region marked RELOC go by
way of the Procedure Linkage Table (PLT).

To place unresolved weak references in the dynamic symbol table, use the IMPORT steering file
command.

 Note

If you are linking with --base_platform, and the parent load region has the RELOC attribute, then all
execution regions within that load region must have a +offset base address.

Related concepts
10.2 Scatter files for the Base Platform linking model on page 10-210.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-30.
2.5 Base Platform linking model on page 2-31.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-172.

Related references
11.11 --bpabi on page 11-229.
11.103 --pltgot=type on page 11-328.
11.104 --pltgot_opts=mode on page 11-329.
11.119 --scatter=filename on page 11-344.
11.112 --remove, --no_remove on page 11-337.
11.33 --dll on page 11-253.
11.51 --force_so_throw, --no_force_so_throw on page 11-271.
11.113 --ro_base=address on page 11-338.
11.115 --rosplit on page 11-340.

11 Linker Command-line Options
11.7 --base_platform

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-224

Non-Confidential

11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.

11 Linker Command-line Options
11.7 --base_platform

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-225

Non-Confidential

11.8 --bestdebug, --no_bestdebug
Selects between linking for smallest code and data size or for best debug illusion.

Usage

Input objects might contain common data (COMDAT) groups, but these might not be identical across all
input objects because of differences such as objects compiled with different optimization levels.

Use --bestdebug to select COMDAT groups with the best debug view. Be aware that the code and data
of the final image might not be the same when building with or without debug.

Default

The default is --no_bestdebug. The smallest COMDAT groups are selected when linking, at the
expense of a possibly slightly poorer debug illusion.

Example

For two objects compiled with different optimization levels:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -O2 file1.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c -O0 file2.c
armlink --bestdebug file1.o file2.o -o image.axf

Related concepts
4.1 Elimination of common debug sections on page 4-68.
4.2 Elimination of common groups or sections on page 4-69.
4.3 Elimination of unused sections on page 4-70.

Related references
11.92 -o filename, --output=filename on page 11-317.

11 Linker Command-line Options
11.8 --bestdebug, --no_bestdebug

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-226

Non-Confidential

11.9 --blx_arm_thumb, --no_blx_arm_thumb
Enables the linker to use the BLX instruction for A32 to T32 state changes.

Usage

If the linker cannot use BLX it must use an A32 to T32 interworking veneer to perform the state change.

This option is on by default. It has no effect if the target architecture does not support BLX or when
linking for AArch64 state.

Related concepts
3.6.3 Veneer types on page 3-56.

Related references
11.10 --blx_thumb_arm, --no_blx_thumb_arm on page 11-228.

11 Linker Command-line Options
11.9 --blx_arm_thumb, --no_blx_arm_thumb

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-227

Non-Confidential

11.10 --blx_thumb_arm, --no_blx_thumb_arm
Enables the linker to use the BLX instruction for T32 to A32 state changes.

Usage

If the linker cannot use BLX it must use a T32 to A32 interworking veneer to perform the state change.

This option is on by default. It has no effect if the target architecture does not support BLX or when
linking for AArch64 state.

Related concepts
3.6.3 Veneer types on page 3-56.

Related references
11.9 --blx_arm_thumb, --no_blx_arm_thumb on page 11-227.

11 Linker Command-line Options
11.10 --blx_thumb_arm, --no_blx_thumb_arm

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-228

Non-Confidential

11.11 --bpabi
Creates a Base Platform Application Binary Interface (BPABI) ELF file for passing to a platform-
specific post-linker.

 Note

Not supported for AArch64 state.

Usage
The BPABI model defines a standard-memory model that enables interoperability of BPABI-compliant
files across toolchains. When you specify this option:
• Procedure Linkage Table (PLT) and Global Offset Table (GOT) generation is supported.
• The default value of the --pltgot option is direct.
• A dynamically linked library (DLL) placed on the command-line can define symbols.

Restrictions

The BPAPI model does not support scatter-loading. However, scatter-loading is supported in the Base
Platform model.

Weak references in the dynamic symbol table are permitted only if the symbol is defined by a DLL
placed on the command-line. You cannot place an unresolved weak reference in the dynamic symbol
table with the IMPORT steering file command.

Related concepts
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-30.
2.5 Base Platform linking model on page 2-31.

Related references
11.7 --base_platform on page 11-224.
11.112 --remove, --no_remove on page 11-337.
11.33 --dll on page 11-253.
11.103 --pltgot=type on page 11-328.
Chapter 9 BPABI Shared Libraries and Executables on page 9-193.

11 Linker Command-line Options
11.11 --bpabi

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-229

Non-Confidential

11.12 --branchnop, --no_branchnop
Enables or disables the replacement of any branch with a relocation that resolves to the next instruction
with a NOP.

 Note

Not supported for AArch64 state.

Usage

The default behavior is to replace any branch with a relocation that resolves to the next instruction with a
NOP. However, there are cases where you might want to use --no_branchnop to disable this behavior.
For example, when performing verification or pipeline flushes.

Default

The default is --branchnop.

Related concepts
4.7 About branches that optimize to a NOP on page 4-77.

Related references
11.63 --inline, --no_inline on page 11-285.
11.141 --tailreorder, --no_tailreorder on page 11-368.

11 Linker Command-line Options
11.12 --branchnop, --no_branchnop

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-230

Non-Confidential

11.13 --callgraph, --no_callgraph
Creates a file containing a static callgraph of functions.

The callgraph gives definition and reference information for all functions in the image.
 Note

If you use the --partial option to create a partially linked object, then no callgraph file is created.

Usage

The callgraph file:

• Is saved in the same directory as the generated image.
• Has the name of the linked image with the extension, if any, replaced by the callgraph output

extension, either .htm or .txt. Use the --callgraph_file=filename option to specify a different
callgraph filename.

• Has a default output format of HTML. Use the --callgraph_output=fmt option to control the
output format.

 Note

If the linker is to calculate the function stack usage, any functions defined in the assembler files must
have the appropriate:
• .cfi_startproc and .cfi_endproc directives.
• .cfi_sections .debug_frame directive.

The linker lists the following for each function func:

• Instruction set state for which the function is compiled (A32, T32, or A64).
• Set of functions that call func.
• Set of functions that are called by func.
• Number of times the address of func is used in the image.

In addition, the callgraph identifies functions that are:

• Called through interworking veneers.
• Defined outside the image.
• Permitted to remain undefined (weak references).
• Called through a Procedure Linkage Table (PLT).
• Not called but still exist in the image.

The static callgraph also gives information about stack usage. It lists the:
• Size of the stack frame used by each function.
• Maximum size of the stack used by the function over any call sequence, that is, over any acyclic

chain of function calls.

If there is a cycle, or if the linker detects a function with no stack size information in the call chain,
+ Unknown is added to the stack usage. A reason is added to indicate why stack usage is unknown.

The linker reports missing stack frame information if there is no debug frame information for the
function.

For indirect functions, the linker cannot reliably determine which function made the indirect call. This
might affect how the maximum stack usage is calculated for a call chain. The linker lists all function
pointers used in the image.

Use frame directives in assembly language code to describe how your code uses the stack. These
directives ensure that debug frame information is present for debuggers to perform stack unwinding or
profiling.

11 Linker Command-line Options
11.13 --callgraph, --no_callgraph

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-231

Non-Confidential

Default

The default is --no_callgraph.

Related references
11.14 --callgraph_file=filename on page 11-233.
11.15 --callgraph_output=fmt on page 11-234.
11.16 --callgraph_subset=symbol[,symbol,...] on page 11-235.
11.17 --cgfile=type on page 11-236.
11.18 --cgsymbol=type on page 11-237.
11.19 --cgundefined=type on page 11-238.
8.2 Syntax of a scatter file on page 8-167.

11 Linker Command-line Options
11.13 --callgraph, --no_callgraph

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-232

Non-Confidential

11.14 --callgraph_file=filename
Controls the output filename of the callgraph.

Syntax

--callgraph_file=filename

where filename is the callgraph filename.

The default filename is the name of the linked image with the extension, if any, replaced by the callgraph
output extension, either .htm or .txt.

Related references
11.13 --callgraph, --no_callgraph on page 11-231.
11.15 --callgraph_output=fmt on page 11-234.
11.16 --callgraph_subset=symbol[,symbol,...] on page 11-235.
11.17 --cgfile=type on page 11-236.
11.18 --cgsymbol=type on page 11-237.
11.19 --cgundefined=type on page 11-238.
11.92 -o filename, --output=filename on page 11-317.

11 Linker Command-line Options
11.14 --callgraph_file=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-233

Non-Confidential

11.15 --callgraph_output=fmt
Controls the output format of the callgraph.

Syntax

--callgraph_output=fmt

Where fmt can be one of the following:

html
Outputs the callgraph in HTML format.

text
Outputs the callgraph in plain text format.

Default

The default is --callgraph_output=html.

Related references
11.13 --callgraph, --no_callgraph on page 11-231.
11.14 --callgraph_file=filename on page 11-233.
11.16 --callgraph_subset=symbol[,symbol,...] on page 11-235.
11.17 --cgfile=type on page 11-236.
11.18 --cgsymbol=type on page 11-237.
11.19 --cgundefined=type on page 11-238.

11 Linker Command-line Options
11.15 --callgraph_output=fmt

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-234

Non-Confidential

11.16 --callgraph_subset=symbol[,symbol,...]
Creates a file containing a static callgraph for one or more specified symbols.

Syntax
--callgraph_subset=symbol[,symbol,…]

where symbol is a comma-separated list of symbols.

Usage
The callgraph file:
• Is saved in the same directory as the generated image.
• Has the name of the linked image with the extension, if any, replaced by the callgraph output

extension, either .htm or .txt. Use the --callgraph_file=filename option to specify a different
callgraph filename.

• Has a default output format of HTML. Use the --callgraph_output=fmt option to control the
output format.

Related references
11.13 --callgraph, --no_callgraph on page 11-231.
11.14 --callgraph_file=filename on page 11-233.
11.15 --callgraph_output=fmt on page 11-234.
11.17 --cgfile=type on page 11-236.
11.18 --cgsymbol=type on page 11-237.
11.19 --cgundefined=type on page 11-238.

11 Linker Command-line Options
11.16 --callgraph_subset=symbol[,symbol,...]

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-235

Non-Confidential

11.17 --cgfile=type
Controls the type of files to use for obtaining the symbols to be included in the callgraph.

Syntax

--cgfile=type

where type can be one of the following:

all
Includes symbols from all files.

user
Includes only symbols from user defined objects and libraries.

system
Includes only symbols from system libraries.

Default

The default is --cgfile=all.

Related references
11.13 --callgraph, --no_callgraph on page 11-231.
11.14 --callgraph_file=filename on page 11-233.
11.15 --callgraph_output=fmt on page 11-234.
11.16 --callgraph_subset=symbol[,symbol,...] on page 11-235.
11.18 --cgsymbol=type on page 11-237.
11.19 --cgundefined=type on page 11-238.

11 Linker Command-line Options
11.17 --cgfile=type

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-236

Non-Confidential

11.18 --cgsymbol=type
Controls what symbols are included in the callgraph.

Syntax

--cgsymbol=type

Where type can be one of the following:

all
Includes both local and global symbols.

locals
Includes only local symbols.

globals
Includes only global symbols.

Default

The default is --cgsymbol=all.

Related references
11.13 --callgraph, --no_callgraph on page 11-231.
11.14 --callgraph_file=filename on page 11-233.
11.15 --callgraph_output=fmt on page 11-234.
11.16 --callgraph_subset=symbol[,symbol,...] on page 11-235.
11.17 --cgfile=type on page 11-236.
11.19 --cgundefined=type on page 11-238.

11 Linker Command-line Options
11.18 --cgsymbol=type

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-237

Non-Confidential

11.19 --cgundefined=type
Controls what undefined references are included in the callgraph.

Syntax

--cgundefined=type

Where type can be one of the following:

all
Includes both function entries and calls to undefined weak references.

entries
Includes function entries for undefined weak references.

calls
Includes calls to undefined weak references.

none
Omits all undefined weak references from the output.

Default

The default is --cgundefined=all.

Related references
11.13 --callgraph, --no_callgraph on page 11-231.
11.14 --callgraph_file=filename on page 11-233.
11.15 --callgraph_output=fmt on page 11-234.
11.16 --callgraph_subset=symbol[,symbol,...] on page 11-235.
11.17 --cgfile=type on page 11-236.
11.18 --cgsymbol=type on page 11-237.

11 Linker Command-line Options
11.19 --cgundefined=type

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-238

Non-Confidential

11.20 --comment_section, --no_comment_section
Controls the inclusion of a comment section .comment in the final image.

Usage
Use --no_comment_section to remove the .comment section, to help reduce the image size.

 Note

You can also use the --filtercomment option to merge comments.

Default

The default is --comment_section.

Related concepts
4.10 Linker merging of comment sections on page 4-80.

Related references
11.47 --filtercomment, --no_filtercomment on page 11-267.

11 Linker Command-line Options
11.20 --comment_section, --no_comment_section

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-239

Non-Confidential

11.21 --compress_debug, --no_compress_debug
Causes the linker to compress .debug_* sections, if it is sensible to do so.

 Note

Deprecated in this release.

 Note

Not supported for AArch64 state.

Usage

This removes some redundancy and reduces debug table size. Using --compress_debug can
significantly increase the time required to link an image. Debug compression can only be performed on
DWARF3 debug data, not DWARF2.

This option does not work on DWARF 4. Therefore, you must compile with the armclang option -
gdwarf3, because DWARF 4 is the default for armclang.

Default

The default is --no_compress_debug.

Related information
The DWARF Debugging Standard.

11 Linker Command-line Options
11.21 --compress_debug, --no_compress_debug

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-240

Non-Confidential

http://dwarfstd.org/

11.22 --cppinit, --no_cppinit
Enables the linker to use alternative C++ libraries with a different initialization symbol if required.

Syntax

--cppinit=symbol

Where symbol is the initialization symbol to use.

Usage

If you do not specify --cppinit=symbol then the default symbol __cpp_initialize__aeabi_ is
assumed.

--no_cppinit does not take a symbol argument.

Effect

The linker adds a non-weak reference to symbol if any static constructor or destructor sections are
detected.

For --cppinit=__cpp_initialize__aeabi_ in AArch32 state, the linker processes
R_ARM_TARGET1 relocations as R_ARM_REL32, because this is required by the
__cpp_initialize__aeabi_ function. In all other cases R_ARM_TARGET1 relocations are processed
as R_ARM_ABS32.

 Note

There is no equivalent of R_ARM_TARGET1 in AARCH64 state.

--no_cppinit means do not add a reference.

Related references
11.108 --ref_cpp_init, --no_ref_cpp_init on page 11-333.

11 Linker Command-line Options
11.22 --cppinit, --no_cppinit

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-241

Non-Confidential

11.23 --cpu=list
Lists the architecture and processor names that are supported by the --cpu=name option.

Syntax

--cpu=list

Related references
11.24 --cpu=name on page 11-243.
11.53 --fpu=list on page 11-273.
11.54 --fpu=name on page 11-274.

11 Linker Command-line Options
11.23 --cpu=list

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-242

Non-Confidential

11.24 --cpu=name
Enables code generation for the selected ARM processor or architecture.

If you do not include the --cpu option, armlink derives an architecture from the combination of the
input objects.

If you include --cpu=name, armlink:
• Faults any input object that is not compatible with the cpu.
• For library selection, acts as if at least one input object is compiled with --cpu=name.

Syntax

--cpu=name

Where name is the name of a processor or architecture:

Processor and architecture names are not case-sensitive.

Wildcard characters are not accepted.

The following table shows the supported architectures. For a complete list of the supported architecture
and processor names, specify the --cpu=list option.

Table 11-1 Supported ARM architectures

Architecture name Description

6-M ARMv6 microcontroller profile.

6S-M ARMv6 microcontroller profile with OS extensions.

7-A ARMv7 application profile.

7-A.security ARMv7-A architecture profile with Security Extensions and includes the SMC instruction (formerly SMI).

7-R ARMv7 real-time profile.

7-M ARMv7 microcontroller profile.

7E-M ARMv7-M architecture profile with DSP extension.

8-A.32 ARMv8-A architecture profile, AArch32 state.

8-A.32.crypto ARMv8-A architecture profile, AArch32 state with cryptographic instructions.

8-A.64 ARMv8-A architecture profile, AArch64 state.

8-A.64.crypto ARMv8-A architecture profile, AArch64 state with cryptographic instructions.

8.1-A.32 ARMv8.1, for ARMv8-A architecture profile, AArch32 state.

8.1-A.32.crypto ARMv8.1, for ARMv8-A architecture profile, AArch32 state with cryptographic instructions.

8.1-A.64 ARMv8.1, for ARMv8-A architecture profile, AArch64 state.

8.1-A.64.crypto ARMv8.1, for ARMv8-A architecture profile, AArch64 state with cryptographic instructions.

8.2-A.32 ARMv8.2, for ARMv8-A architecture profile, AArch32 state.

8.2-A.32.crypto ARMv8.2, for ARMv8-A architecture profile, AArch32 state with cryptographic instructions.

8.2-A.64 ARMv8.2, for ARMv8-A architecture profile, AArch64 state.

8.2-A.64.crypto ARMv8.2, for ARMv8-A architecture profile, AArch64 state with cryptographic instructions.

8.3-A.32 ARMv8.3, for ARMv8-A architecture profile, AArch32 state.

8.3-A.32.crypto ARMv8.3, for ARMv8-A architecture profile, AArch32 state with cryptographic instructions.

8.3-A.64 ARMv8.3, for ARMv8-A architecture profile, AArch64 state.

11 Linker Command-line Options
11.24 --cpu=name

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-243

Non-Confidential

Table 11-1 Supported ARM architectures (continued)

Architecture name Description

8.3-A.64.crypto ARMv8.3, for ARMv8-A architecture profile, AArch64 state with cryptographic instructions.

8-R ARMv8-R architecture profile.

8-M.Base ARMv8-M baseline architecture profile. Derived from the ARMv6-M architecture.

8-M.Main ARMv8-M mainline architecture profile. Derived from the ARMv7-M architecture.

8-M.Main.dsp ARMv8-M mainline architecture profile with DSP extension.

 Note

• The full list of supported architectures and processors depends on your license.

Usage

If you omit --cpu, the linker auto-detects the processor or architecture from the input object files.

Specify --cpu=list to list the supported processor and architecture names that you can use with
--cpu=name.

The link phase fails if any of the component object files rely on features that are incompatible with the
specified processor. The linker also uses this option to optimize the choice of system libraries and any
veneers that have to be generated when building the final image.

Restrictions

You cannot specify both a processor and an architecture on the same command-line.

Related references
11.23 --cpu=list on page 11-242.
11.53 --fpu=list on page 11-273.
11.54 --fpu=name on page 11-274.

11 Linker Command-line Options
11.24 --cpu=name

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-244

Non-Confidential

11.25 --crosser_veneershare, --no_crosser_veneershare
Enables or disables veneer sharing across execution regions.

Usage

The default is --crosser_veneershare, and enables veneer sharing across execution regions.

--no_crosser_veneershare prohibits veneer sharing across execution regions.

Related references
11.152 --veneershare, --no_veneershare on page 11-379.

11 Linker Command-line Options
11.25 --crosser_veneershare, --no_crosser_veneershare

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-245

Non-Confidential

11.26 --datacompressor=opt
Enables you to specify one of the supplied algorithms for RW data compression.

 Note

Not supported for AArch64 state.

Syntax

--datacompressor=opt

Where opt is one of the following:

on
Enables RW data compression to minimize ROM size.

off
Disables RW data compression.

list
Lists the data compressors available to the linker.

id
A data compression algorithm:

Table 11-2 Data compressor algorithms

id Compression algorithm

0 run-length encoding

1 run-length encoding, with LZ77 on small-repeats

2 complex LZ77 compression

Specifying a compressor adds a decompressor to the code area. If the final image does not have
compressed data, the decompressor is not added.

Usage

If you do not specify a data compression algorithm, the linker chooses the most appropriate one for you
automatically. In general, it is not necessary to override this choice.

Default

The default is --datacompressor=on.

Related concepts
4.4.3 How compression is applied on page 4-72.
4.4.4 Considerations when working with RW data compression on page 4-72.
4.4.1 How the linker chooses a compressor on page 4-71.

11 Linker Command-line Options
11.26 --datacompressor=opt

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-246

Non-Confidential

11.27 --debug, --no_debug
Controls the generation of debug information in the output file.

Usage

Debug information includes debug input sections and the symbol/string table.

Use --no_debug to exclude debug information from the output file. The resulting ELF image is smaller,
but you cannot debug it at source level. The linker discards any debug input section it finds in the input
objects and library members, and does not include the symbol and string table in the image. This only
affects the image size as loaded into the debugger. It has no effect on the size of any resulting binary
image that is downloaded to the target.

If you are using --partial the linker creates a partially-linked object without any debug data.
 Note

Do not use --no_debug if a fromelf--fieldoffsets step is required. If your image is produced without
debug information, fromelf cannot:
• Translate the image into other file formats.
• Produce a meaningful disassembly listing.

Default

The default is --debug.

Related information
--fieldoffsets fromelf option.

11 Linker Command-line Options
11.27 --debug, --no_debug

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-247

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128901922.html

11.28 --diag_error=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Error severity.

Syntax

--diag_error=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to error severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• warning, to treat all warnings as errors.

Related references
11.29 --diag_remark=tag[,tag,…] on page 11-249.
11.30 --diag_style=arm|ide|gnu on page 11-250.
11.31 --diag_suppress=tag[,tag,…] on page 11-251.
11.32 --diag_warning=tag[,tag,…] on page 11-252.
11.129 --strict on page 11-356.

11 Linker Command-line Options
11.28 --diag_error=tag[,tag,…]

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-248

Non-Confidential

11.29 --diag_remark=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Remark severity.

 Note

Remarks are not displayed by default. Use the --remarks option to display these messages.

Syntax

--diag_remark=tag[,tag,…]

Where tag is a comma-separated list of diagnostic message numbers. This is the four-digit number,
nnnn, with the tool letter prefix, but without the letter suffix indicating the severity.

Related references
11.28 --diag_error=tag[,tag,…] on page 11-248.
11.30 --diag_style=arm|ide|gnu on page 11-250.
11.31 --diag_suppress=tag[,tag,…] on page 11-251.
11.32 --diag_warning=tag[,tag,…] on page 11-252.
11.111 --remarks on page 11-336.
11.129 --strict on page 11-356.

11 Linker Command-line Options
11.29 --diag_remark=tag[,tag,…]

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-249

Non-Confidential

11.30 --diag_style=arm|ide|gnu
Specifies the display style for diagnostic messages.

Syntax

--diag_style=string

Where string is one of:

arm
Display messages using the ARM compiler style.

ide
Include the line number and character count for any line that is in error. These values are
displayed in parentheses.

gnu
Display messages in the format used by gcc.

Default

The default is --diag_style=arm.

Usage

--diag_style=gnu matches the format reported by the GNU Compiler, gcc.

--diag_style=ide matches the format reported by Microsoft Visual Studio.

Related references
11.28 --diag_error=tag[,tag,…] on page 11-248.
11.29 --diag_remark=tag[,tag,…] on page 11-249.
11.31 --diag_suppress=tag[,tag,…] on page 11-251.
11.32 --diag_warning=tag[,tag,…] on page 11-252.
11.111 --remarks on page 11-336.
11.129 --strict on page 11-356.

11 Linker Command-line Options
11.30 --diag_style=arm|ide|gnu

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-250

Non-Confidential

11.31 --diag_suppress=tag[,tag,…]
Suppresses diagnostic messages that have a specific tag.

Syntax

--diag_suppress=tag[,tag,…]
Where tag can be:
• A diagnostic message number to be suppressed. This is the four-digit number, nnnn, with the tool

letter prefix, but without the letter suffix indicating the severity.
• error, to suppress all errors that can be downgraded.
• warning, to suppress all warnings.

Example

To suppress the warning messages that have numbers L6314W and L6305W, use the following command:

armlink --diag_suppress=L6314,L6305 …

Related references
11.28 --diag_error=tag[,tag,…] on page 11-248.
11.29 --diag_remark=tag[,tag,…] on page 11-249.
11.30 --diag_style=arm|ide|gnu on page 11-250.
11.32 --diag_warning=tag[,tag,…] on page 11-252.
11.129 --strict on page 11-356.
11.111 --remarks on page 11-336.

11 Linker Command-line Options
11.31 --diag_suppress=tag[,tag,…]

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-251

Non-Confidential

11.32 --diag_warning=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Warning severity.

Syntax

--diag_warning=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to warning severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• error, to set all errors that can be downgraded to warnings.

Related references
11.28 --diag_error=tag[,tag,…] on page 11-248.
11.29 --diag_remark=tag[,tag,…] on page 11-249.
11.30 --diag_style=arm|ide|gnu on page 11-250.
11.31 --diag_suppress=tag[,tag,…] on page 11-251.
11.111 --remarks on page 11-336.

11 Linker Command-line Options
11.32 --diag_warning=tag[,tag,…]

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-252

Non-Confidential

11.33 --dll
Creates a Base Platform Application Binary Interface (BPABI) dynamically linked library (DLL).

 Note

Not supported for AArch64 state.

Usage

The DLL is marked as a shared object in the ELF file header.

You must use --bpabi with --dll to produce a BPABI-compliant DLL.

You can also use --dll with --base_platform.
 Note

By default, this option disables unused section elimination. Use the --remove option to re-enable unused
sections when building a DLL.

Related references
11.112 --remove, --no_remove on page 11-337.
11.11 --bpabi on page 11-229.
Chapter 9 BPABI Shared Libraries and Executables on page 9-193.

11 Linker Command-line Options
11.33 --dll

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-253

Non-Confidential

11.34 --dynamic_linker=name
Specifies the dynamic linker to use to load and relocate the file at runtime.

 Note

Not supported for AArch64 state.

Syntax

--dynamic_linker=name

--dynamiclinker=name

Where name is the name of the dynamic linker to store in the executable.

Usage

When you link with shared objects, the dynamic linker to use is stored in the executable. This option
specifies a particular dynamic linker to use when the file is executed.

Related references
11.48 --fini=symbol on page 11-268.
11.62 --init=symbol on page 11-284.
11.72 --library=name on page 11-295.
Chapter 9 BPABI Shared Libraries and Executables on page 9-193.

11 Linker Command-line Options
11.34 --dynamic_linker=name

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-254

Non-Confidential

11.35 --eager_load_debug, --no_eager_load_debug
Manages how armlink loads debug section data.

Usage

The --no_eager_load_debug option causes the linker to remove debug section data from memory after
object loading. This lowers the peak memory usage of the linker at the expense of some linker
performance, because much of the debug data has to be loaded again when the final image is written.

Using --no_eager_load_debug option does not affect the debug data that is written into the ELF file.

The default is --eager_load_debug.
 Note

If you use some command-line options, such as --map, the resulting image or object built without debug
information might differ by a small number of bytes. This is because the .comment section contains the
linker command line used, where the options have differed from the default. Therefore
--no_eager_load_debug images are a little larger and contain Program Header and possibly a section
header a small number of bytes later. Use --no_comment_section to eliminate this difference.

Related references
11.20 --comment_section, --no_comment_section on page 11-239.

11 Linker Command-line Options
11.35 --eager_load_debug, --no_eager_load_debug

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-255

Non-Confidential

11.36 --eh_frame_hdr
When an AArch64 image contains C++ exceptions, merges all .eh_frame sections into one .eh_frame
section and then creates the .eh_frame_hdr section.

Usage

The .eh_frame_hdr section contains a binary search table of pointers to the .eh_frame records. During
the merge armlink removes any orphaned records.

Only .eh_frame sections defined by the Linux Standard Base specification are supported.
The .eh_frame_hdr section is created according to the Linux Standard Base specification. If armlink
finds an unexpected .eh_frame section, it stops merging, does not create the .eh_frame_hdr section,
and generates corresponding warnings.

Default

The default is --eh_frame_hdr.

Restrictions

Valid only for AArch64 images.

Related information
Linux Foundation.

11 Linker Command-line Options
11.36 --eh_frame_hdr

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-256

Non-Confidential

http://www.linuxfoundation.org/

11.37 --edit=file_list
Enables you to specify steering files containing commands to edit the symbol tables in the output binary.

Syntax

--edit=file_list

Where file_list can be more than one steering file separated by a comma. Do not include a space after
the comma.

Usage
You can specify commands in a steering file to:
• Hide global symbols. Use this option to hide specific global symbols in object files. The hidden

symbols are not publicly visible.
• Rename global symbols. Use this option to resolve symbol naming conflicts.

Examples
--edit=file1 --edit=file2 --edit=file3

--edit=file1,file2,file3

Related concepts
6.6.4 Hide and rename global symbols with a steering file on page 6-104.

Related references
6.6.2 Steering file command summary on page 6-102.
Chapter 12 Linker Steering File Command Reference on page 12-389.

11 Linker Command-line Options
11.37 --edit=file_list

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-257

Non-Confidential

11.38 --emit_debug_overlay_relocs
Outputs only relocations of debug sections with respect to overlaid program sections to aid an overlay-
aware debugger.

 Note

Not supported for AArch64 state.

Related references
11.39 --emit_debug_overlay_section on page 11-259.
11.41 --emit_relocs on page 11-261.
11.40 --emit_non_debug_relocs on page 11-260.

Related information
Manual overlay support.
ABI for the ARM Architecture: Support for Debugging Overlaid Programs.

11 Linker Command-line Options
11.38 --emit_debug_overlay_relocs

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-258

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1466073392915.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

11.39 --emit_debug_overlay_section
Emits a special debug overlay section during static linking.

 Note

Not supported for AArch64 state.

Usage

In a relocatable file, a debug section refers to a location in a program section by way of a relocated
location. A reference from a debug section to a location in a program section has the following format:

<debug_section_index, debug_section_offset>, <program_section_index,
program_section_offset>

During static linking the pair of program values is reduced to single value, the execution address. This is
ambiguous in the presence of overlaid sections.

To resolve this ambiguity, use this option to output a .ARM.debug_overlay section of type
SHT_ARM_DEBUG_OVERLAY = SHT_LOUSER + 4 containing a table of entries as follows:

debug_section_offset, debug_section_index, program_section_index

Related references
11.38 --emit_debug_overlay_relocs on page 11-258.
11.41 --emit_relocs on page 11-261.

Related information
Automatic overlay support.
Manual overlay support.
ABI for the ARM Architecture: Support for Debugging Overlaid Programs.

11 Linker Command-line Options
11.39 --emit_debug_overlay_section

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-259

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1466073357552.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1466073392915.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

11.40 --emit_non_debug_relocs
Retains only relocations from non-debug sections in an executable file.

 Note

Not supported for AArch64 state.

Related references
11.41 --emit_relocs on page 11-261.

11 Linker Command-line Options
11.40 --emit_non_debug_relocs

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-260

Non-Confidential

11.41 --emit_relocs
Retains all relocations in the executable file. This results in larger executable files.

 Note

Not supported for AArch64 state.

Usage

This is equivalent to the GNU ld --emit-relocs option.

Related references
11.38 --emit_debug_overlay_relocs on page 11-258.
11.40 --emit_non_debug_relocs on page 11-260.

Related information
ABI for the ARM Architecture: Support for Debugging Overlaid Programs.

11 Linker Command-line Options
11.41 --emit_relocs

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-261

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

11.42 --entry=location
Specifies the unique initial entry point of the image. Although an image can have multiple entry points,
only one can be the initial entry point.

Syntax

--entry=location
Where location is one of the following:
entry_address

A numerical value, for example: --entry=0x0
symbol

Specifies an image entry point as the address of symbol, for example: --entry=reset_handler
offset+object(section)

Specifies an image entry point as an offset inside a section within a particular object, for
example:--entry=8+startup.o(startupseg)
There must be no spaces within the argument to --entry. The input section and object names
are matched without case-sensitivity. You can use the following simplified notation:
• object(section), if offset is zero.
• object, if there is only one input section. armlink generates an error message if there is

more than one code input section in object.

 Note

If the entry address of your image is in T32 state, then the least significant bit of the address must be set
to 1. The linker does this automatically if you specify a symbol. For example, if the entry code starts at
address 0x8000 in T32 state you must use --entry=0x8001.

Usage
The image can contain multiple entry points. Multiple entry points might be specified with the ENTRY
directive in assembler source files. In such cases, a unique initial entry point must be specified for an
image, otherwise the error L6305E is generated. The initial entry point specified with the --entry option
is stored in the executable file header for use by the loader. There can be only one occurrence of this
option on the command line. A debugger typically uses this entry address to initialize the Program
Counter (PC) when an image is loaded. The initial entry point must meet the following conditions:
• The image entry point must lie within an execution region.
• The execution region must be non-overlay, and must be a root execution region (load address ==

execution address).

Related references
11.127 --startup=symbol, --no_startup on page 11-354.

Related information
ENTRY directive.

11 Linker Command-line Options
11.42 --entry=location

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-262

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290008613.html

11.43 --errors=filename
Redirects the diagnostics from the standard error stream to a specified file.

Syntax

--errors=filename

Usage

The specified file is created at the start of the link stage. If a file of the same name already exists, it is
overwritten.

If filename is specified without path information, the file is created in the current directory.

Related references
11.28 --diag_error=tag[,tag,…] on page 11-248.
11.29 --diag_remark=tag[,tag,…] on page 11-249.
11.30 --diag_style=arm|ide|gnu on page 11-250.
11.31 --diag_suppress=tag[,tag,…] on page 11-251.
11.32 --diag_warning=tag[,tag,…] on page 11-252.
11.111 --remarks on page 11-336.

11 Linker Command-line Options
11.43 --errors=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-263

Non-Confidential

11.44 --exceptions, --no_exceptions
Controls the generation of exception tables in the final image.

Usage

Using --no_exceptions generates an error message if any exceptions sections are present in the image
after unused sections have been eliminated. Use this option to ensure that your code is exceptions free.

Default

The default is --exceptions.

11 Linker Command-line Options
11.44 --exceptions, --no_exceptions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-264

Non-Confidential

11.45 --export_all, --no_export_all
Controls the export of all global, non-hidden symbols to the dynamic symbols table.

Usage

Use --export_all to dynamically export all global, non-hidden symbols from the executable or DLL to
the dynamic symbol table. Use --no_export_all to prevent the exporting of symbols to the dynamic
symbol table.

--export_all always exports non-hidden symbols into the dynamic symbol table. The dynamic symbol
table is created if necessary.

You cannot use --export_all to produce a statically linked image because it always exports non-hidden
symbols, forcing the creation of a dynamic segment.

For more precise control over the exporting of symbols, use one or more steering files.

Default

The default is --export_all for building shared libraries and dynamically linked libraries (DLLs).

The default is --no_export_all for building applications.

Related references
11.46 --export_dynamic, --no_export_dynamic on page 11-266.

11 Linker Command-line Options
11.45 --export_all, --no_export_all

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-265

Non-Confidential

11.46 --export_dynamic, --no_export_dynamic
Controls the export of dynamic symbols to the dynamic symbols table.

 Note

Not supported for AArch64 state.

Usage

If an executable has dynamic symbols, then --export_dynamic exports all externally visible symbols.

--export_dynamic exports non-hidden symbols into the dynamic symbol table only if a dynamic
symbol table already exists.

You can use --export_dynamic to produce a statically linked image if there are no imports or exports.

Default

--no_export_dynamic is the default.

Related references
11.45 --export_all, --no_export_all on page 11-265.

11 Linker Command-line Options
11.46 --export_dynamic, --no_export_dynamic

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-266

Non-Confidential

11.47 --filtercomment, --no_filtercomment
Controls whether or not the linker modifies the .comment section to assist merging.

Usage

The linker always removes identical comments. The --filtercomment permits the linker to preprocess
the .comment section and remove some information that prevents merging.

Use --no_filtercomment to prevent the linker from modifying the .comment section.
 Note

armlink does not preprocess comment sections from armclang.

Default

The default is --filtercomment.

Related concepts
4.10 Linker merging of comment sections on page 4-80.

Related references
11.20 --comment_section, --no_comment_section on page 11-239.

11 Linker Command-line Options
11.47 --filtercomment, --no_filtercomment

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-267

Non-Confidential

11.48 --fini=symbol
Specifies the symbol name to use to define the entry point for finalization code.

Syntax

--fini=symbol

Where symbol is the symbol name to use for the entry point to the finalization code.

Usage

The dynamic linker executes this code when it unloads the executable file or shared object.

Related references
11.34 --dynamic_linker=name on page 11-254.
11.62 --init=symbol on page 11-284.
11.72 --library=name on page 11-295.

11 Linker Command-line Options
11.48 --fini=symbol

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-268

Non-Confidential

11.49 --first=section_id
Places the selected input section first in its execution region. This can, for example, place the section
containing the vector table first in the image.

Syntax

--first=section_id

Where section_id is one of the following:

symbol
Selects the section that defines symbol. For example: --first=reset.

You must not specify a symbol that has more than one definition, because only one section can
be placed first.

object(section)
Selects section from object. There must be no space between object and the following open
parenthesis. For example: --first=init.o(init).

object
Selects the single input section in object. For example: --first=init.o.

If you use this short form and there is more than one input section in object, armlink generates
an error message.

Usage

The --first option cannot be used with --scatter. Instead, use the +FIRST attribute in a scatter file.

Related concepts
3.3.2 Section placement with the FIRST and LAST attributes on page 3-51.
3.3 Section placement with the linker on page 3-49.

Related references
11.69 --last=section_id on page 11-292.
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.49 --first=section_id

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-269

Non-Confidential

11.50 --force_explicit_attr
Causes the linker to retry the CPU mapping using build attributes constructed when an architecture is
specified with --cpu.

Usage

The --cpu option checks the FPU attributes if the CPU chosen has a built-in FPU.

The error message L6463U: Input Objects contain <archtype> instructions but could not
find valid target for <archtype> architecture based on object attributes. Suggest
using --cpu option to select a specific cpu. is given in the following situations:
• The ELF file contains instructions from architecture archtype yet the build attributes claim that

archtype is not supported.
• The build attributes are inconsistent enough that the linker cannot map them to an existing CPU.

If setting the --cpu option still fails, use --force_explicit_attr to cause the linker to retry the CPU
mapping using build attributes constructed from --cpu=archtype. This might help if the error is being
given solely because of inconsistent build attributes.

Related references
11.24 --cpu=name on page 11-243.
11.54 --fpu=name on page 11-274.

11 Linker Command-line Options
11.50 --force_explicit_attr

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-270

Non-Confidential

11.51 --force_so_throw, --no_force_so_throw
Controls the assumption made by the linker that an input shared object might throw an exception.

 Note

Not supported for AArch64 state.

Usage

By default, exception tables are discarded if no code throws an exception.

Use --force_so_throw to specify that all shared objects might throw an exception and so force the
linker to keep the exception tables, regardless of whether the image can throw an exception or not.

Default

The default is --no_force_so_throw.

11 Linker Command-line Options
11.51 --force_so_throw, --no_force_so_throw

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-271

Non-Confidential

11.52 --fpic
Enables you to link Position-Independent Code (PIC), that is, code that has been compiled using the -
fbare-metal-pie or -fpic compiler command-line options.

The --fpic option is implicitly specified when the --bare_metal_pie option is used.
 Note

Bare-metal PIE support is deprecated in this release.

Related references
11.6 --bare_metal_pie on page 11-223.

11 Linker Command-line Options
11.52 --fpic

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-272

Non-Confidential

11.53 --fpu=list
Lists the FPU architectures that are supported by the --fpu=name option.

Deprecated options are not listed.

Related references
11.23 --cpu=list on page 11-242.
11.24 --cpu=name on page 11-243.
11.54 --fpu=name on page 11-274.

11 Linker Command-line Options
11.53 --fpu=list

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-273

Non-Confidential

11.54 --fpu=name
Specifies the target FPU architecture.

Syntax

--fpu=name

Where name is the name of the target FPU architecture. Specify --fpu=list to list the supported FPU
architecture names that you can use with --fpu=name.

The default floating-point architecture depends on the target architecture.
 Note

Software floating-point linkage is not supported for AArch64 state.

Usage

If you specify this option, it overrides any implicit FPU option that appears on the command line, for
example, where you use the --cpu option.

The linker uses this option to optimize the choice of system libraries. The default is to select an FPU that
is compatible with all of the component object files.

The linker fails if any of the component object files rely on features that are incompatible with the
selected FPU architecture.

Restrictions

NEON support is disabled for SoftVFP.

Default

The default target FPU architecture is derived from use of the --cpu option.

If the processor you specify with --cpu has a VFP coprocessor, the default target FPU architecture is the
VFP architecture for that processor.

Related references
11.23 --cpu=list on page 11-242.
11.24 --cpu=name on page 11-243.
11.53 --fpu=list on page 11-273.

11 Linker Command-line Options
11.54 --fpu=name

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-274

Non-Confidential

11.55 --got=type
Generates Global Offset Tables (GOTs) to resolve GOT relocations in bare metal images. armlink
statically resolves the GOT relocations.

Syntax

--got=type

Where type is one of the following:

none
Disables GOT generation.

local
Creates a local offset table for each execution region.

 Note

Not supported for AArch32 state.

global
Creates a single offset table for the whole image.

Default

The default for AArch32 state is none.

The default for AArch64 state is local.

11 Linker Command-line Options
11.55 --got=type

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-275

Non-Confidential

11.56 --gnu_linker_defined_syms
Enables support for the GNU equivalent of input section symbols.

 Note

Deprecated in this release.

Usage
If you want GNU-style behavior when treating the ARM symbols SectionName$$Base and
SectionName$$Limit, then specify --gnu_linker_defined_syms.

Table 11-3 GNU equivalent of input sections

GNU symbol ARM symbol Description

__start_SectionName SectionName$$Base Address of the start of the consolidated section called SectionName.

__stop_SectionName SectionName$$Limit Address of the byte beyond the end of the consolidated section called
SectionName

 Note

• A reference to SectionName by a GNU input section symbol is sufficient for armlink to prevent the
section from being removed as unused.

• A reference by an ARM input section symbol is not sufficient to prevent the section from being
removed as unused.

11 Linker Command-line Options
11.56 --gnu_linker_defined_syms

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-276

Non-Confidential

11.57 --help
Displays a summary of the main command-line options.

Default

This is the default if you specify armlink without any options or source files.

Related references
11.154 --version_number on page 11-381.
11.156 --vsn on page 11-383.
11.121 --show_cmdline on page 11-347.

11 Linker Command-line Options
11.57 --help

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-277

Non-Confidential

11.58 --import_cmse_lib_in=filename
Reads an existing import library and creates gateway veneers with the same address as given in the
import library. This option is useful when producing a new version of a Secure image where the
addresses in the output import library must not change. It is optional for a Secure image.

Syntax

--import_cmse_lib_in=filename

Where filename is the name of the import library file.

Usage

The input import library is an object file that contains only a symbol table. Each symbol specifies an
absolute address of a secure gateway veneer for an entry function of the same name as the symbol.

armlink places secure gateway veneers generated from an existing import library using the __at feature.
New secure gateway veneers must be placed using a scatter file.

Related concepts
3.6.6 Generation of secure gateway veneers on page 3-58.

Related references
11.59 --import_cmse_lib_out=filename on page 11-279.

Related information
Building Secure and Non-secure Images Using ARMv8-M Security Extensions.

11 Linker Command-line Options
11.58 --import_cmse_lib_in=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-278

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1446115999905.html

11.59 --import_cmse_lib_out=filename
Outputs the secure code import library to the location specified. This option is required for a Secure
image.

Syntax

--import_cmse_lib_out=filename

Where filename is the name of the import library file.

The output import library is an object file that contains only a symbol table. Each symbol specifies an
absolute address of a secure gateway for an entry function of the same name as the symbol. Secure
gateways include both secure gateway veneers generated by armlink and any other secure gateways for
entry functions found in the image.

Related concepts
3.6.6 Generation of secure gateway veneers on page 3-58.

Related references
11.58 --import_cmse_lib_in=filename on page 11-278.

Related information
Building Secure and Non-secure Images Using ARMv8-M Security Extensions.

11 Linker Command-line Options
11.59 --import_cmse_lib_out=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-279

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1446115999905.html

11.60 --info=topic[,topic,…]
Prints information about specific topics. You can write the output to a text file using --list=file.

Syntax

--info=topic[,topic,…]

Where topic is a comma-separated list from the following topic keywords:

any
For unassigned sections that are placed using the .ANY module selector, lists:
• The sort order.
• The placement algorithm.
• The sections that are assigned to each execution region in the order that the placement

algorithm assigns them.
• Information about the contingency space and policy that is used for each region.

This keyword also displays additional information when you use the execution region attribute
ANY_SIZE in a scatter file.

architecture
Summarizes the image architecture by listing the processor, FPU, and byte order.

common
Lists all common sections that are eliminated from the image. Using this option implies
--info=common,totals.

compression
Gives extra information about the RW compression process.

debug
Lists all rejected input debug sections that are eliminated from the image as a result of using
--remove. Using this option implies --info=debug,totals.

exceptions
Gives information on exception table generation and optimization.

inline
If you also specify --inline, lists all functions that the linker inlines, and the total number
inlined.

inputs
Lists the input symbols, objects, and libraries.

libraries
Lists the full path name of every library the link stage automatically selects.

You can use this option with --info_lib_prefix to display information about a specific
library.

merge
Lists the const strings that the linker merges. Each item lists the merged result, the strings being
merged, and the associated object files.

pltgot
Lists the PLT entries that are built for the executable or DLL.

sizes
Lists the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for each input
object and library member in the image. Using this option implies --info=sizes,totals.

stack
Lists the stack usage of all functions.

summarysizes
Summarizes the code and data sizes of the image.

summarystack
Summarizes the stack usage of all global symbols.

11 Linker Command-line Options
11.60 --info=topic[,topic,…]

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-280

Non-Confidential

tailreorder
Lists all the tail calling sections that are moved above their targets, as a result of using
--tailreorder.

totals
Lists the totals of the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for
input objects and libraries.

unused
Lists all unused sections that are eliminated from the user code as a result of using --remove. It
does not list any unused sections that are loaded from the ARM C libraries.

unusedsymbols
Lists all symbols that unused section elimination removes.

veneers
Lists the linker-generated veneers.

veneercallers
Lists the linker-generated veneers with additional information about the callers to each veneer.
Use with --verbose to list each call individually.

veneerpools
Displays information on how the linker has placed veneer pools.

visibility
Lists the symbol visibility information. You can use this option with either --info=inputs or
--verbose to enhance the output.

weakrefs
Lists all symbols that are the target of weak references, and whether they were defined.

Usage

The output from --info=sizes,totals always includes the padding values in the totals for input
objects and libraries.

If you are using RW data compression (the default), or if you have specified a compressor using the
--datacompressor=id option, the output from --info=sizes,totals includes an entry under Grand
Totals to reflect the true size of the image.

 Note

Spaces are not permitted between topic keywords in the list. For example, you can enter
--info=sizes,totals but not --info=sizes, totals.

Related concepts
4.3 Elimination of unused sections on page 4-70.
4.4.4 Considerations when working with RW data compression on page 4-72.
4.4 Optimization with RW data compression on page 4-71.
4.4.1 How the linker chooses a compressor on page 4-71.
4.4.3 How compression is applied on page 4-72.

Related tasks
7.4 Placing unassigned sections on page 7-129.

Related references
11.1 --any_contingency on page 11-217.
11.3 --any_sort_order=order on page 11-220.
11.61 --info_lib_prefix=opt on page 11-283.
11.89 --merge, --no_merge on page 11-314.
11.150 --veneer_inject_type=type on page 11-377.
5.1 Options for getting information about linker-generated files on page 5-84.

11 Linker Command-line Options
11.60 --info=topic[,topic,…]

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-281

Non-Confidential

11.26 --datacompressor=opt on page 11-246.
11.89 --merge, --no_merge on page 11-314.
11.63 --inline, --no_inline on page 11-285.
11.112 --remove, --no_remove on page 11-337.
11.67 --keep_intermediate on page 11-290.
11.141 --tailreorder, --no_tailreorder on page 11-368.
8.4.3 Execution region attributes on page 8-176.

11 Linker Command-line Options
11.60 --info=topic[,topic,…]

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-282

Non-Confidential

11.61 --info_lib_prefix=opt
Specifies a filter for the --info=libraries option. The linker only displays the libraries that have the
same prefix as the filter.

Syntax

--info=libraries --info_lib_prefix=opt

Where opt is the prefix of the required library.

Examples
• Displaying a list of libraries without the filter:

armlink --info=libraries test.o

Produces a list of libraries, for example:

install_directory\lib\armlib\c_4.l
install_directory\lib\armlib\fz_4s.l
install_directory\lib\armlib\h_4.l
install_directory\lib\armlib\m_4s.l
install_directory\lib\armlib\vfpsupport.l

• Displaying a list of libraries with the filter:

armlink --info=libraries --info_lib_prefix=c test.o

Produces a list of libraries with the specified prefix, for example:

install_directory\lib\armlib\c_4.l

Related references
11.60 --info=topic[,topic,…] on page 11-280.

11 Linker Command-line Options
11.61 --info_lib_prefix=opt

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-283

Non-Confidential

11.62 --init=symbol
Specifies a symbol name to use for the initialization code. A dynamic linker executes this code when it
loads the executable file or shared object.

Syntax

--init=symbol

Where symbol is the symbol name you want to use to define the location of the initialization code.

Related references
11.34 --dynamic_linker=name on page 11-254.
11.48 --fini=symbol on page 11-268.
11.72 --library=name on page 11-295.

11 Linker Command-line Options
11.62 --init=symbol

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-284

Non-Confidential

11.63 --inline, --no_inline
Enables or disables branch inlining to optimize small function calls in your image.

 Note

Not supported for AArch64 state.

Default
The default is --no_inline.

 Note

This branch optimization is off by default because enabling it changes the image such that debug
information might be incorrect. If enabled, the linker makes no attempt to correct the debug information.

--no_inline turns off inlining for user-supplied objects only. The linker still inlines functions from the
ARM C Library by default.

Related concepts
4.5 Function inlining with the linker on page 4-74.

Related references
11.12 --branchnop, --no_branchnop on page 11-230.
11.141 --tailreorder, --no_tailreorder on page 11-368.

11 Linker Command-line Options
11.63 --inline, --no_inline

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-285

Non-Confidential

11.64 --inlineveneer, --no_inlineveneer
Enables or disables the generation of inline veneers to give greater control over how the linker places
sections.

Default

The default is --inlineveneer.

Related concepts
3.6.3 Veneer types on page 3-56.
3.6 Linker-generated veneers on page 3-55.
3.6.2 Veneer sharing on page 3-55.
3.6.4 Generation of position independent to absolute veneers on page 3-57.
3.6.5 Reuse of veneers when scatter-loading on page 3-57.

Related references
11.102 --piveneer, --no_piveneer on page 11-327.
11.152 --veneershare, --no_veneershare on page 11-379.

11 Linker Command-line Options
11.64 --inlineveneer, --no_inlineveneer

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-286

Non-Confidential

11.65 input-file-list
A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Usage

The linker sorts through the input file list in order. If the linker is unable to resolve input file problems
then a diagnostic message is produced.

The symdefs files can be included in the list to provide global symbol addresses for previously generated
image files.

You can use libraries in the input file list in the following ways:

• Specify a library to be added to the list of libraries that the linker uses to extract members if they
resolve any non weak unresolved references. For example, specify mystring.lib in the input file
list.

 Note

Members from the libraries in this list are added to the image only when they resolve an unresolved
non weak reference.

• Specify particular members to be extracted from a library and added to the image as individual
objects. Members are selected from a comma separated list of patterns that can include wild
characters. Spaces are permitted but if you use them you must enclose the whole input file list in
quotes.

The following shows an example of an input file list both with and without spaces:

mystring.lib(strcmp.o,std*.o)

“mystring.lib(strcmp.o, std*.o)”

The linker automatically searches the appropriate C and C++ libraries to select the best standard
functions for your image. You can use --no_scanlib to prevent automatic searching of the standard
system libraries.

The linker processes the input file list in the following order:
1. Objects are added to the image unconditionally.
2. Members selected from libraries using patterns are added to the image unconditionally, as if they are

objects. For example, to add all a*.o objects and stdio.o from mystring.lib use the following:

"mystring.lib(stdio.o, a*.o)"

3. Library files listed on the command-line are searched for any unresolved non-weak references. The
standard C or C++ libraries are added to the list of libraries that the linker later uses to resolve any
remaining references.

Related concepts
6.5 Access symbols in another image on page 6-99.
3.9 How the linker performs library searching, selection, and scanning on page 3-62.

Related references
11.118 --scanlib, --no_scanlib on page 11-343.
11.128 --stdlib on page 11-355.

11 Linker Command-line Options
11.65 input-file-list

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-287

Non-Confidential

11.66 --keep=section_id
Specifies input sections that must not be removed by unused section elimination.

Syntax

--keep=section_id

Where section_id is one of the following:

symbol
Specifies that an input section defining symbol is to be retained during unused section
elimination. If multiple definitions of symbol exist, armlink generates an error message.

For example, you might use --keep=int_handler.

To keep all sections that define a symbol ending in _handler, use --keep=*_handler.

object(section)
Specifies that section from object is to be retained during unused section elimination. If a
single instance of section is generated, you can omit section, for example, file.o().
Otherwise, you must specify section.

For example, to keep the vect section from the vectors.o object use:
--keep=vectors.o(vect)

To keep all sections from the vectors.o object where the first three characters of the name of
the sections are vec, use: --keep=vectors.o(vec*)

object
Specifies that the single input section from object is to be retained during unused section
elimination. If you use this short form and there is more than one input section in object, the
linker generates an error message.

For example, you might use --keep=dspdata.o.

To keep the single input section from each of the objects that has a name starting with dsp, use
--keep=dsp*.o.

Usage
All forms of the section_id argument can contain the * and ? wild characters. Matching is case-
insensitive, even on hosts with case-sensitive file naming. For example:
• --keep foo.o(Premier*) causes the entire match for Premier* to be case-insensitive.
• --keep foo.o(Premier) causes a case-insensitive match for the string Premier.

 Note

The only case where a case-sensitive match is made is for --keep=symbol when symbol does not contain
any wildcard characters.

Use *.o to match all object files. Use * to match all object files and libraries.

You can specify multiple --keep options on the command line.

Matching a symbol that has the same name as an object
If you name a symbol with the same name as an object, then --keep=symbol_id searches for a symbol
that matches symbol_id:
• If a symbol is found, it matches the symbol.
• If no symbol is found, it matches the object.

You can force --keep to match an object with --keep=symbol_id(). Therefore, to keep both the symbol
and the object, specify --keep foo.o --keep foo.o().

11 Linker Command-line Options
11.66 --keep=section_id

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-288

Non-Confidential

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-62.
3.1 The structure of an ARM ELF image on page 3-34.

11 Linker Command-line Options
11.66 --keep=section_id

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-289

Non-Confidential

11.67 --keep_intermediate
Specifies whether the linker preserves the ELF intermediate object file produced by the link time
optimizer.

Syntax

--keep_intermediate=option

Where option is:

lto
Preserve an intermediate ELF object file produced by the link time optimizer.

Default

By default, armlink does not preserve the intermediate object file produced by the link time optimizer.

Related references
11.78 --lto, --no_lto on page 11-301.

Related information
Optimizing across modules with link time optimization.

11 Linker Command-line Options
11.67 --keep_intermediate

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-290

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1413367986635.html

11.68 --largeregions, --no_largeregions
Controls the sorting order of sections in large execution regions to minimize the distance between
sections that call each other.

Usage

If the execution region contains more code than the range of a branch instruction then the linker switches
to large region mode. In this mode the linker sorts according to the approximated average call depth of
each section in ascending order. The linker might also distribute veneers amongst the code sections to
minimize the number of veneers.

 Note

Large region mode can result in large changes to the layout of an image even when small changes are
made to the input.

To disable large region mode and revert to lexical order, use --no_largeregions. Section placement is
then predictable and image comparisons are more predictable. The linker automatically switches on
--veneerinject if it is needed for a branch to reach the veneer.

Large region support enables:
• Average call depth sorting, --sort=AvgCallDepth.
• API sorting, --api.
• Veneer injection, --veneerinject.

The following command lines are equivalent:

armlink --largeregions --no_api --no_veneerinject --sort=Lexical
armlink --no_largeregions

Default

The default is --no_largeregions. The linker automatically switches to --largeregions if at least one
execution region contains more code than the smallest inter-section branch. The smallest inter-section
branch depends on the code in the region and the target processor:

128MB
Execution region contains only A64 instructions.

32MB
Execution region contains only A32 instructions.

16MB
Execution region contains T32 instructions, 32-bit T32 instructions are supported.

4MB
Execution region contains T32 instructions, no 32-bit T32 instructions are supported.

Related concepts
3.6 Linker-generated veneers on page 3-55.
3.6.2 Veneer sharing on page 3-55.
3.6.3 Veneer types on page 3-56.
3.6.4 Generation of position independent to absolute veneers on page 3-57.

Related references
11.4 --api, --no_api on page 11-221.
11.125 --sort=algorithm on page 11-351.
11.150 --veneer_inject_type=type on page 11-377.
11.149 --veneerinject, --no_veneerinject on page 11-376.

11 Linker Command-line Options
11.68 --largeregions, --no_largeregions

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-291

Non-Confidential

11.69 --last=section_id
Places the selected input section last in its execution region.

Syntax

--last=section_id

Where section_id is one of the following:

symbol
Selects the section that defines symbol. You must not specify a symbol that has more than one
definition because only a single section can be placed last. For example: --last=checksum.

object(section)
Selects the section from object. There must be no space between object and the following
open parenthesis. For example: --last=checksum.o(check).

object
Selects the single input section from object. For example: --last=checksum.o.

If you use this short form and there is more than one input section in object, armlink generates
an error message.

Usage

The --last option cannot be used with --scatter. Instead, use the +LAST attribute in a scatter file.

Example

This option can force an input section that contains a checksum to be placed last in the RW section.

Related concepts
3.3.2 Section placement with the FIRST and LAST attributes on page 3-51.
3.3 Section placement with the linker on page 3-49.

Related references
11.49 --first=section_id on page 11-269.
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.69 --last=section_id

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-292

Non-Confidential

11.70 --legacyalign, --no_legacyalign
Controls how padding is inserted into the image.

 Note

Deprecated in this release.

Usage

Using --legacyalign, the linker assumes execution regions and load regions to be four-byte aligned.
This option enables the linker to minimize the amount of padding that it inserts into the image.

The --no_legacyalign option instructs the linker to insert padding to force natural alignment of
execution regions. Natural alignment is the highest known alignment for that region.

Use --no_legacyalign to ensure strict conformance with the ELF specification.

You can also use expression evaluation in a scatter file to avoid padding.

Default

The default is --no_legacyalign,

Related concepts
3.3 Section placement with the linker on page 3-49.
7.12 Example of using expression evaluation in a scatter file to avoid padding on page 7-152.

Related references
8.3.3 Load region attributes on page 8-170.
8.4.3 Execution region attributes on page 8-176.

11 Linker Command-line Options
11.70 --legacyalign, --no_legacyalign

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-293

Non-Confidential

11.71 --libpath=pathlist
Specifies a list of paths that the linker uses to search for the ARM standard C and C++ libraries.

Syntax

--libpath=pathlist
Where pathlist is a comma-separated list of paths that the linker only uses to search for required ARM
libraries. Do not include spaces between the comma and the path name when specifying multiple path
names, for example, path1,path2,path3,…,pathn.

 Note

This option does not affect searches for user libraries. Use --userlibpath instead for user libraries.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-62.

Related references
11.148 --userlibpath=pathlist on page 11-375.

Related information
Toolchain environment variables.

11 Linker Command-line Options
11.71 --libpath=pathlist

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-294

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/chr1374139991387.html

11.72 --library=name
Enables the linker to search a static library without you having specifying the full library filename on the
command-line.

Syntax

--library=name

Links with the static library, libname.a.

Usage

The order that references are resolved to libraries is the order that you specify the libraries on the
command line.

Example

The following example shows how to search for libfoo.a before libbar.a:

--library=foo --library=bar

Related references
11.52 --fpic on page 11-272.

11 Linker Command-line Options
11.72 --library=name

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-295

Non-Confidential

11.73 --library_type=lib
Selects the library to be used at link time.

Syntax

--library_type=lib

Where lib can be one of:

standardlib
Specifies that the full ARM Compiler runtime libraries are selected at link time. This is the
default.

microlib
Specifies that the C micro-library (microlib) is selected at link time.

 Note

microlib is not supported for AArch64 state.

Usage

Use this option when use of the libraries require more specialized optimizations.

Default

If you do not specify --library_type at link time and no object file specifies a preference, then the
linker assumes --library_type=standardlib.

Related information
Building an application with microlib.

11 Linker Command-line Options
11.73 --library_type=lib

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-296

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1358938939195.html

11.74 --list=filename
Redirects diagnostic output to a file.

Syntax

--list=filename

Where filename is the file to use to save the diagnostic output. filename can include a path

Usage

Redirects the diagnostics output by the --info, --map, --symbols, --verbose, --xref, --xreffrom,
and --xrefto options to file.

The specified file is created when diagnostics are output. If a file of the same name already exists, it is
overwritten. However, if diagnostics are not output, a file is not created. In this case, the contents of any
existing file with the same name remain unchanged.

If filename is specified without a path, it is created in the output directory, that is, the directory where
the output image is being written.

Related references
11.84 --map, --no_map on page 11-309.
11.153 --verbose on page 11-380.
11.158 --xref, --no_xref on page 11-385.
11.159 --xrefdbg, --no_xrefdbg on page 11-386.
11.160 --xref{from|to}=object(section) on page 11-387.
11.60 --info=topic[,topic,…] on page 11-280.
11.137 --symbols, --no_symbols on page 11-364.

11 Linker Command-line Options
11.74 --list=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-297

Non-Confidential

11.75 --list_mapping_symbols, --no_list_mapping_symbols
Enables or disables the addition of mapping symbols in the output produced by --symbols.

The mapping symbols $a, $t, $t.x, $d, and $x flag transitions between A32 code, T32 code, ThumbEE
code (ARMv7-A), data, and A64 code.

Default

The default is --no_list_mapping_symbols.

Related concepts
6.1 About mapping symbols on page 6-90.

Related references
11.137 --symbols, --no_symbols on page 11-364.

Related information
ELF for the ARM Architecture.

11 Linker Command-line Options
11.75 --list_mapping_symbols, --no_list_mapping_symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-298

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

11.76 --load_addr_map_info, --no_load_addr_map_info
Includes the load addresses for execution regions and the input sections within them in the map file.

Usage

If an input section is compressed, then the load address has no meaning and COMPRESSED is displayed
instead.

For sections that do not have a load address, such as ZI data, the load address is blank

Default

The default is --no_load_addr_map_info.

Restrictions

You must use --map with this option.

Example

The following example shows the format of the map file output:

 Base Addr Load Addr Size Type Attr Idx E Section Name
Object
 0x00008000 0x00008000 0x00000008 Code RO 25 * !!!main
__main.o(c_4.l)
 0x00010000 COMPRESSED 0x00001000 Data RW 2 dataA
data.o
 0x00003000 - 0x00000004 Zero RW 2 .bss
test.o

Related references
11.84 --map, --no_map on page 11-309.

11 Linker Command-line Options
11.76 --load_addr_map_info, --no_load_addr_map_info

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-299

Non-Confidential

11.77 --locals, --no_locals
Adds local symbols or removes local symbols depending on whether an image or partial object is being
output.

Usage

The --locals option adds local symbols in the output symbol table.

The effect of the --no_locals option is different for images and object files.

When producing an executable image --no_locals removes local symbols from the output symbol
table.

For object files built with the --partial option, the --no_locals option:
• Keeps mapping symbols and build attributes in the symbol table.
• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these symbols, the
names are removed. These are marked as [Anonymous Symbol] in the fromelf --text output.

--no_locals is a useful optimization if you want to reduce the size of the output symbol table in the
final image.

Default

The default is --locals.

Related references
11.107 --privacy on page 11-332.

Related information
--privacy fromelf option.
--strip=option[,option,…] fromelf option.

11 Linker Command-line Options
11.77 --locals, --no_locals

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-300

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128916140.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128923577.html

11.78 --lto, --no_lto
Enables link time optimization.

 Caution

Link Time Optimization performs aggressive optimizations. Sometimes this can result in large chunks of
code being removed.

 Note

When you specify the -flto option, armclang produces ELF files that contain bitcode in a .llvmbc
section.

With the --no_lto option, armlink gives an error message if it encounters any .llvmbc sections.

Default

The default is --no_lto.

Dependencies

Link time optimization requires the dependent library libLTO.

Table 11-4 Link time optimization dependencies

Dependency Windows filename Linux filename

libLTO LTO.dll libLTO.so

By default, the dependent library libLTO is present in the same directory as armlink.

The search order for these dependencies is as follows.

LTO.dll:

1. The same directory as the armlink executable.
2. The directories in the current directory search path.
libLTO.so:
1. The same directory as the armlink executable.
2. The directories in the LD_LIBRARY_PATH environment variable.
3. The cache file /etc/ld.so.cache.
4. The directories /lib and /usr/lib.

These directories might have the suffix 64 on some 64-bit Linux systems. For example, on 64-bit Red
Hat Enterprise Linux the directories are /lib64 and /usr/lib64.

 Note

The armclang executables and the libLTO library must come from the same ARM Compiler 6
installation. Any use of libLTO other than that supplied with ARM Compiler 6 is unsupported.

 Note

Link Time Optimization does not honor the armclang -mexecute-only option. If you use the armclang
-flto or -Omax options, then the compiler cannot generate execute-only code.

Related references
11.60 --info=topic[,topic,…] on page 11-280.

11 Linker Command-line Options
11.78 --lto, --no_lto

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-301

Non-Confidential

11.67 --keep_intermediate on page 11-290.
11.79 --lto_keep_all_symbols, --no_lto_keep_all_symbols on page 11-303.
11.80 --lto_intermediate_filename on page 11-304.
11.82 --lto_relocation_model on page 11-307.
11.81 --lto_level on page 11-305.
11.96 -Omax on page 11-321.

Related information
-flto.
Optimizing across modules with link time optimization.

11 Linker Command-line Options
11.78 --lto, --no_lto

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-302

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1413472574438.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1413367986635.html

11.79 --lto_keep_all_symbols, --no_lto_keep_all_symbols
Specifies whether link time optimization removes unreferenced global symbols.

Using --lto_keep_all_symbols affects all symbols and largely reduces the usefulness of link time
optimization. If you need to keep only a specific unreferenced symbol, then use the --keep option
instead.

Default

The default is --no_lto_keep_all_symbols.

Related references
11.66 --keep=section_id on page 11-288.
11.78 --lto, --no_lto on page 11-301.

Related information
Optimizing across modules with link time optimization.

11 Linker Command-line Options
11.79 --lto_keep_all_symbols, --no_lto_keep_all_symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-303

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1413367986635.html

11.80 --lto_intermediate_filename
Specifies the name of the ELF object file produced by the link time optimizer.

Syntax

--lto_intermediate_filename=filename

Where filename is the filename the link time optimizer uses for the ELF object file it produces.

Usage
The purpose of the --lto_intermediate_filename option is so that the intermediate file produced by
the link time optimizer can be named in other inputs to the linker, such as scatter loading files.

 Note

The --lto_intermediate_filename option does not cause the linker to keep the intermediate object
file. Use the --keep-intermediate=lto option to keep the intermediate file.

Default

The default is a temporary filename.

Related references
11.67 --keep_intermediate on page 11-290.
11.78 --lto, --no_lto on page 11-301.

Related information
Optimizing across modules with link time optimization.

11 Linker Command-line Options
11.80 --lto_intermediate_filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-304

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1413367986635.html

11.81 --lto_level
Sets the optimization level for the link time optimization feature.

Syntax

--lto_level=Olevel

Where level is one of the following:

0
Minimum optimization for the performance of the compiled binary. Turns off most
optimizations. When debugging is enabled, this option gives the best possible debug view
because the structure of the generated code directly corresponds to the source code.

1
Restricted optimization. When debugging is enabled, this option gives a generally satisfactory
debug view with good code density.

2
High optimization. When debugging is enabled, the debug view might be less satisfactory
because the mapping of object code to source code is not always clear. The linker might perform
optimizations that cannot be described by debug information. This is the default optimization
level.

3
Very high optimization. When debugging is enabled, this option typically gives a poor debug
view. ARM recommends debugging at lower optimization levels.

fast
Enables all the optimizations from level 3 including those performed with the -ffast-math
armclang option. This level also performs other aggressive optimizations that might violate
strict compliance with language standards.

max
Maximum optimization. Specifically targets performance optimization. Enables all the
optimizations from level fast, together with other aggressive optimizations.

 Caution

This option is not guaranteed to be fully standards-compliant for all code cases.

 Note

• Code-size, build-time, and the debug view can each be adversely affected when using this
option.

• ARM cannot guarantee that the best performance optimization is achieved in all code cases.

s
Performs optimizations to reduce code size, balancing code size against code speed.

z
Performs optimizations to minimize image size.

Default

If you do not specify Olevel, the linker assumes O2.

Related references
11.78 --lto, --no_lto on page 11-301.
11.96 -Omax on page 11-321.

11 Linker Command-line Options
11.81 --lto_level

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-305

Non-Confidential

Related information
-O.
Optimizing across modules with link time optimization.

11 Linker Command-line Options
11.81 --lto_level

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-306

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664854780.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1413367986635.html

11.82 --lto_relocation_model
Specifies whether the link time optimizer produces absolute or position independent code.

Syntax

--lto_relocation_model=model

Where model is one of the following:

static
The link time optimizer produces absolute code.

pic
The link time optimizer produces code that uses GOT relative position independent code.
The --lto_relocation_model=pic option requires the armlink --bare_metal_pie option.

 Note

Bare-metal PIE support is deprecated in this release.

Default

The default is --lto_relocation_model=static.

Related references
11.6 --bare_metal_pie on page 11-223.
11.78 --lto, --no_lto on page 11-301.

Related information
Optimizing across modules with link time optimization.

11 Linker Command-line Options
11.82 --lto_relocation_model

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-307

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1413367986635.html

11.83 --mangled, --unmangled
Instructs the linker to display mangled or unmangled C++ symbol names in diagnostic messages, and in
listings produced by the --xref, --xreffrom, --xrefto, and --symbols options.

Usage

If --unmangled is selected, C++ symbol names are displayed as they appear in your source code.

If --mangled is selected, C++ symbol names are displayed as they appear in the object symbol tables.

Default

The default is --unmangled.

Related references
11.85 --match=crossmangled on page 11-310.
11.137 --symbols, --no_symbols on page 11-364.
11.158 --xref, --no_xref on page 11-385.
11.159 --xrefdbg, --no_xrefdbg on page 11-386.
11.160 --xref{from|to}=object(section) on page 11-387.

11 Linker Command-line Options
11.83 --mangled, --unmangled

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-308

Non-Confidential

11.84 --map, --no_map
Enables or disables the printing of a memory map.

Usage

The map contains the address and the size of each load region, execution region, and input section in the
image, including linker-generated input sections. This can be output to a text file using
--list=filename.

Default

The default is --no_map.

Related references
11.76 --load_addr_map_info, --no_load_addr_map_info on page 11-299.
11.74 --list=filename on page 11-297.
11.120 --section_index_display=type on page 11-346.

11 Linker Command-line Options
11.84 --map, --no_map

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-309

Non-Confidential

11.85 --match=crossmangled
Instructs the linker to match the combinations of mangled and unmangled symbol references and
definitions.

 Note

Deprecated in this release.

Usage

Matches:

• A reference to an unmangled symbol with the mangled definition.
• A reference to a mangled symbol with the unmangled definition.

Libraries and matching combinations operate as follows:
• If the library members define a mangled definition, and there is an unresolved unmangled reference,

the member is loaded to satisfy it.
• If the library members define an unmangled definition, and there is an unresolved mangled reference,

the member is loaded to satisfy it.

 Note

This option has no effect if used with partial linking. The partial object contains all the unresolved
references to unmangled symbols, even if the mangled definition exists. Matching is done only in the
final link step.

Related references
11.83 --mangled, --unmangled on page 11-308.

11 Linker Command-line Options
11.85 --match=crossmangled

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-310

Non-Confidential

11.86 --max_er_extension=size
Specifies a constant value to add to the size of an execution region when no maximum size is specified
for that region. The value is used only when placing __at sections.

Syntax

--max_er_extension=size

Where size is the constant value in bytes to use when calculating the size of the execution region.

Default

The default size is 10240 bytes.

Related tasks
7.2.7 Automatically placing __at sections on page 7-123.

11 Linker Command-line Options
11.86 --max_er_extension=size

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-311

Non-Confidential

11.87 --max_veneer_passes=value
Specifies a limit to the number of veneer generation passes the linker attempts to make when certain
conditions are met.

Syntax

--max_veneer_passes=value

Where value is the maximum number of veneer passes the linker is to attempt. The minimum value you
can specify is one.

Usage
The linker applies this limit when both the following conditions are met:
• A section that is sufficiently large has a relocation that requires a veneer.
• The linker cannot place the veneer close enough to the call site.

The linker attempts to diagnose the failure if the maximum number of veneer generation passes you
specify is exceeded, and displays a warning message. You can downgrade this warning message using
--diag_remark.

Default

The default number of passes is 10.

Related references
11.29 --diag_remark=tag[,tag,…] on page 11-249.
11.32 --diag_warning=tag[,tag,…] on page 11-252.

11 Linker Command-line Options
11.87 --max_veneer_passes=value

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-312

Non-Confidential

11.88 --max_visibility=type
Controls the visibility of all symbol definitions.

Syntax

--max_visibility=type

Where type can be one of:

default
Default visibility.

protected
Protected visibility.

Usage

Use --max_visibility=protected to limit the visibility of all symbol definitions. Global symbol
definitions that normally have default visibility, are given protected visibility when this option is
specified.

Default

The default is --max_visibility=default.

Related references
11.95 --override_visibility on page 11-320.

11 Linker Command-line Options
11.88 --max_visibility=type

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-313

Non-Confidential

11.89 --merge, --no_merge
Enables or disables the merging of const strings that are placed in shareable sections by the compiler.

Usage

Using --merge can reduce the size of the image if there are similarities between const strings.

Use --info=merge to see a listing of the merged const strings.

By default, merging happens between different load and execution regions. Therefore, code from one
execution or load region might use a string stored in different region. If you do not want this behavior,
then do one of the following:
• Use the PROTECTED load region attribute if you are using scatter-loading.
• Globally disable merging with --no_merge.

Default

The default is --merge.

Related references
11.60 --info=topic[,topic,…] on page 11-280.
8.3.3 Load region attributes on page 8-170.

11 Linker Command-line Options
11.89 --merge, --no_merge

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-314

Non-Confidential

11.90 --merge_litpools, --no_merge_litpools
Attempts to merge identical constants in objects targeted at AArch32 state. The objects must be produced
with ARM Compiler 6.

Default

--merge_litpools is the default.

Related tasks
4.11 Merging identical constants on page 4-81.

11 Linker Command-line Options
11.90 --merge_litpools, --no_merge_litpools

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-315

Non-Confidential

11.91 --muldefweak, --no_muldefweak
Enables or disables multiple weak definitions of a symbol.

Usage

If enabled, the linker chooses the first definition that it encounters and discards all the other duplicate
definitions. If disabled, the linker generates an error message for all multiply defined weak symbols.

Default

The default is --muldefweak.

11 Linker Command-line Options
11.91 --muldefweak, --no_muldefweak

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-316

Non-Confidential

11.92 -o filename, --output=filename
Specifies the name of the output file. The file can be either a partially-linked object or an executable
image, depending on the command-line options used.

Syntax

--output=filename

-o filename

Where filename is the name of the output file, and can include a path.

Usage

If --output=filename is not specified, the linker uses the following default filenames:

__image.axf
If the output is an executable image.

__object.o
If the output is a partially-linked object.

If filename is specified without path information, it is created in the current working directory. If path
information is specified, then that directory becomes the default output directory.

Related references
11.14 --callgraph_file=filename on page 11-233.
11.100 --partial on page 11-325.

11 Linker Command-line Options
11.92 -o filename, --output=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-317

Non-Confidential

11.93 --output_float_abi=option
Specifies the floating-point procedure call standard to advertise in the ELF header of the executable.

 Note

Not supported for AArch64 state.

Syntax

--output_float_abi=option

where option is one of the following:

auto
Checks the object files to determine whether the hard float or soft float bit in the ELF header
flag is set.

hard
The executable file is built to conform to the hardware floating-point procedure-call standard.

soft
Conforms to the software floating-point procedure-call standard.

Usage
When the option is set to auto:
• For multiple object files:

— If all the object files specify the same value for the flag, then the executable conforms to the
relevant standard.

— If some files have the hard float and soft float bits in the ELF header flag set to different values
from other files, this option is ignored and the hard float and soft float bits in the executable are
unspecified.

• If a file has the build attribute Tag_ABI_VFP_args set to 2, then the hard float and soft float bits in the
ELF header flag in the executable are set to zero.

• If a file has the build attribute Tag_ABI_VFP_args set to 3, then armlink ignores this option.

You can use fromelf --text on the image to see whether hard or soft float is set in the ELF header flag.

Default

The default option is auto.

Related information
--decode_build_attributes.
--text.
ELF for the ARM Architecture.
Run-time ABI for the ARM Architecture.

11 Linker Command-line Options
11.93 --output_float_abi=option

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-318

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128892751.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128925577.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0043-/index.html

11.94 --overlay_veneers
When using the automatic overlay mechanism, causes armlink to redirect calls between overlays to a
veneer. The veneer allows an overlay manager to unload and load the correct overlays.

 Note

You must use this option if your scatter file includes execution regions with AUTO_OVERLAY attribute
assigned to them.

Usage
armlink creates a veneer for a function call when any of the following are true:
• The calling function is in non-overlaid code and the called function is in an overlay.
• The calling function is in an overlay and the called function is in a different overlay.
• The calling function is in an overlay and the called function is in non-overlaid code.

In the last of these cases, an overlay does not have to be loaded immediately, but the overlay manager
typically has to adjust the return address. It does this adjustment so that it can arrange to check on
function return that the overlay of the caller is reloaded before returning to it.

Veneers are not created when calls between two functions are in the same overlay. If the calling function
is running, then the called function is guaranteed to be loaded already, because each overlay is atomic.
This situation is also guaranteed when the called function returns.

A relocation might refer to a function in an overlay and not modify a branch instruction. For example,
the relocations R_ARM_ABS32 or R_ARM_REL32 do not modify a branch instruction. In this
situation, armlink redirects the relocation to point at a veneer for the function regardless of where the
relocation is. This redirection is done in case the address of the function is passed into another overlay as
an argument.

Related references
8.4.3 Execution region attributes on page 8-176.

Related information
Automatic overlay support.

11 Linker Command-line Options
11.94 --overlay_veneers

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-319

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/pge1466073357552.html

11.95 --override_visibility
Enables EXPORT and IMPORT directives in a steering file to override the visibility of a symbol.

Usage
By default:
• Only symbol definitions with STV_DEFAULT or STV_PROTECTED visibility can be exported.
• Only symbol references with STV_DEFAULT visibility can be imported.

When you specify --override_visibility, any global symbol definition can be exported and any
global symbol reference can be imported.

Related references
11.145 --undefined_and_export=symbol on page 11-372.
12.1 EXPORT steering file command on page 12-390.
12.3 IMPORT steering file command on page 12-392.

11 Linker Command-line Options
11.95 --override_visibility

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-320

Non-Confidential

11.96 -Omax
Enables maximum link time optimization.

-Omax automatically enables the --lto and --lto_level=Omax options.

If you have object files that have been compiled with the armclang -Omax option, then you can link them
using the armlink -Omax option to produce an image with maximum link time optimization.

Related references
11.81 --lto_level on page 11-305.
11.78 --lto, --no_lto on page 11-301.

Related information
-O.
Optimizing across modules with link time optimization.

11 Linker Command-line Options
11.96 -Omax

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-321

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664854780.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1413367986635.html

11.97 --pad=num
Enables you to set a value for padding bytes. The linker assigns this value to all padding bytes inserted in
load or execution regions.

Syntax

--pad=num

Where num is an integer, which can be given in hexadecimal format.

For example, setting num to 0xFF might help to speed up ROM programming time. If num is greater than
0xFF, then the padding byte is cast to a char, that is (char)num.

Usage
Padding is only inserted:
• Within load regions. No padding is present between load regions.
• Between fixed execution regions (in addition to forcing alignment). Padding is not inserted up to the

maximum length of a load region unless it has a fixed execution region at the top.
• Between sections to ensure that they conform to alignment constraints.

Related concepts
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.

11 Linker Command-line Options
11.97 --pad=num

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-322

Non-Confidential

11.98 --paged
Enables Demand Paging mode to help produce ELF files that can be demand paged efficiently.

Usage

A default page size of 0x8000 bytes is used. You can change this with the --pagesize command-line
option.

Default

Related concepts
3.4 Linker support for creating demand-paged files on page 3-53.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

Related references
11.99 --pagesize=pagesize on page 11-324.

11 Linker Command-line Options
11.98 --paged

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-323

Non-Confidential

11.99 --pagesize=pagesize
Allows you to change the page size used when demand paging.

Syntax

--pagesize=pagesize

Where pagesize is the page size in bytes.

Default

The default value is 0x8000.

Related concepts
3.4 Linker support for creating demand-paged files on page 3-53.

Related tasks
7.9 Aligning regions to page boundaries on page 7-148.

Related references
11.98 --paged on page 11-323.

11 Linker Command-line Options
11.99 --pagesize=pagesize

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-324

Non-Confidential

11.100 --partial
Creates a partially-linked object that can be used in a subsequent link step.

Restrictions

You cannot use --partial with --scatter.

Related concepts
2.3 Partial linking model on page 2-29.

11 Linker Command-line Options
11.100 --partial

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-325

Non-Confidential

11.101 --pie
Species the Position Independent Executable (PIE) linking model.

 Note

Bare-metal PIE support is deprecated in this release.

 Note

You must use this option with the --fpic and --ref_pre_init options.

Related references
11.52 --fpic on page 11-272.
11.6 --bare_metal_pie on page 11-223.
11.109 --ref_pre_init, --no_ref_pre_init on page 11-334.

11 Linker Command-line Options
11.101 --pie

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-326

Non-Confidential

11.102 --piveneer, --no_piveneer
Enables or disables the generation of a veneer for a call from position independent (PI) code to absolute
code.

Usage
When using --no_piveneer, an error message is produced if the linker detects a call from PI code to
absolute code.

 Note

Not supported for AArch64 state.

Default

The default is --piveneer.

Related concepts
3.6.4 Generation of position independent to absolute veneers on page 3-57.
3.6 Linker-generated veneers on page 3-55.
3.6.2 Veneer sharing on page 3-55.
3.6.3 Veneer types on page 3-56.
3.6.5 Reuse of veneers when scatter-loading on page 3-57.

Related references
11.64 --inlineveneer, --no_inlineveneer on page 11-286.
11.152 --veneershare, --no_veneershare on page 11-379.

11 Linker Command-line Options
11.102 --piveneer, --no_piveneer

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-327

Non-Confidential

11.103 --pltgot=type
Specifies the type of Procedure Linkage Table (PLT) and Global Offset Table (GOT) to use,
corresponding to the different addressing modes of the Base Platform Application Binary Interface
(BPABI).

 Note

This option is supported only when using --base_platform or --bpabi.

 Note

Not supported for AArch64 state.

Syntax

--pltgot=type

Where type is one of the following:

none
References to imported symbols are added as dynamic relocations for processing by a platform
specific post-linker.

direct
References to imported symbols are resolved to read-only pointers to the imported symbols.
These are direct pointer references.

Use this type to turn on PLT generation when using --base_platform.

indirect
The linker creates a GOT and possibly a PLT entry for the imported symbol. The reference
refers to PLT or GOT entry.

This type is not supported if you have multiple load regions.

sbrel
Same referencing as indirect, except that GOT entries are stored as offsets from the static base
address for the segment held in R9 at runtime.

This type is not supported if you have multiple load regions.

Default

When the --bpabi or --dll options are used, the default is --pltgot=direct.

When the --base_platform option is used, the default is --pltgot=none.

Related concepts
2.5 Base Platform linking model on page 2-31.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-30.

Related references
11.7 --base_platform on page 11-224.
11.11 --bpabi on page 11-229.
11.104 --pltgot_opts=mode on page 11-329.
11.33 --dll on page 11-253.

11 Linker Command-line Options
11.103 --pltgot=type

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-328

Non-Confidential

11.104 --pltgot_opts=mode
Controls the generation of Procedure Linkage Table (PLT) entries for weak references and function calls
to relocatable targets within the same file.

 Note

Not supported for AArch64 state.

Syntax

--pltgot_opts=mode[,mode,...]

Where mode is one of the following:

crosslr
Calls to and from a load region marked RELOC go by way of the PLT.

nocrosslr
Calls to and from a load region marked RELOC do not generate PLT entries.

noweakrefs
Generates a NOP for a function call, or zero for data. No PLT entry is generated. Weak references
to imported symbols remain unresolved.

weakrefs
Weak references produce a PLT entry. These references must be resolved at a later link stage.

Default

The default is --pltgot_opts=nocrosslr,noweakrefs.

Related references
11.7 --base_platform on page 11-224.
11.103 --pltgot=type on page 11-328.

11 Linker Command-line Options
11.104 --pltgot_opts=mode

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-329

Non-Confidential

11.105 --predefine="string"
Enables commands to be passed to the preprocessor when preprocessing a scatter file.

You specify a preprocessor on the first line of the scatter file.

Syntax

--predefine="string"

You can use more than one --predefine option on the command-line.

You can also use the synonym --pd="string".

Restrictions

Use this option with --scatter.

Example scatter file before preprocessing

The following example shows the scatter file contents before preprocessing.

#! armclang -E
lr1 BASE
{
 er1 BASE
 {
 *(+RO)
 }
 er2 BASE2
 {
 *(+RW+ZI)
 }
}

Use armlink with the command-line options:

--predefine="-DBASE=0x8000" --predefine="-DBASE2=0x1000000" --scatter=filename

This passes the command-line options: -DBASE=0x8000 -DBASE2=0x1000000 to the compiler to
preprocess the scatter file.

Example scatter file after preprocessing

The following example shows how the scatter file looks after preprocessing:

lr1 0x8000
{
 er1 0x8000
 {
 *(+RO)
 }
 er2 0x1000000
 {
 *(+RW+ZI)
 }
}

Related tasks
7.11 Preprocessing a scatter file on page 7-151.

Related references
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.105 --predefine="string"

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-330

Non-Confidential

11.106 --preinit, --no_preinit
Enables the linker to use a different image pre-initialization routine if required.

Syntax
--preinit=symbol

If --preinit=symbol is not specified then the default symbol __arm_preinit_ is assumed.

--no_preinit does not take a symbol argument.

Effect

The linker adds a non-weak reference to symbol if a .preinit_array section is detected.

For --preinit=__arm_preinit_ or --cppinit=__cpp_initialize_aeabi_, the linker processes
R_ARM_TARGET1 relocations as R_ARM_REL32, because this is required by the __arm_preinit and
__cpp_initialize_aeabi_ functions. In all other cases R_ARM_TARGET1 relocations are processes
as R_ARM_ABS32.

Related references
11.52 --fpic on page 11-272.
11.109 --ref_pre_init, --no_ref_pre_init on page 11-334.
11.6 --bare_metal_pie on page 11-223.

11 Linker Command-line Options
11.106 --preinit, --no_preinit

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-331

Non-Confidential

11.107 --privacy
Modifies parts of an image to help protect your code.

Usage

The effect of this option is different for images and object files.

When producing an executable image it removes local symbols from the output symbol table.

For object files built with the --partial option, this option:
• Changes section names to a default value, for example, changes code section names to .text.
• Keeps mapping symbols and build attributes in the symbol table.
• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these symbols, the
names are removed. These are marked as [Anonymous Symbol] in the fromelf --text output.

 Note

To help protect your code in images and objects that are delivered to third parties, use the
fromelf --privacy command.

Related references
11.77 --locals, --no_locals on page 11-300.
11.100 --partial on page 11-325.

Related information
--privacy fromelf option.
--strip=option[,option,…] fromelf option.
Options to protect code in object files with fromelf.

11 Linker Command-line Options
11.107 --privacy

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-332

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128916140.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128923577.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128882517.html

11.108 --ref_cpp_init, --no_ref_cpp_init
Enables or disables the adding of a reference to the C++ static object initialization routine in the ARM
libraries.

Usage

The default reference added is __cpp_initialize__aeabi_. To change this you can use --cppinit.

Use --no_ref_cpp_init if you are not going to use the ARM libraries.

Default

The default is --ref_cpp_init.

Related references
11.22 --cppinit, --no_cppinit on page 11-241.

Related information
C++ initialization, construction and destruction.

11 Linker Command-line Options
11.108 --ref_cpp_init, --no_ref_cpp_init

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-333

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/chr1358938922706.html

11.109 --ref_pre_init, --no_ref_pre_init
Allows the linker to add or not add references to the image pre-initialization routine in the ARM
libraries. The default reference added is __arm_preinit_. To change this you can use --preinit.

Default

The default is –-no_ref_pre_init.

Related references
11.52 --fpic on page 11-272.
11.106 --preinit, --no_preinit on page 11-331.
11.6 --bare_metal_pie on page 11-223.

11 Linker Command-line Options
11.109 --ref_pre_init, --no_ref_pre_init

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-334

Non-Confidential

11.110 --reloc
Creates a single relocatable load region with contiguous execution regions.

 Note

Not supported for AArch64 state.

Usage

Only use this option for legacy systems with the type of relocatable ELF images that conform to the ELF
for the ARM Architecture specification. The generated image might not be compliant with the ELF for
the ARM Architecture specification.

When relocated MOVT and MOVW instructions are encountered in an image being linked with --reloc,
armlink produces the following additional dynamic tags:

DT_RELA
The address of a relocation table.

DT_RELASZ
The total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT
The size, in bytes, of the DT_RELA relocation entry.

Restrictions

You cannot use --reloc with --scatter.

You cannot use this option with --xo_base.

Related concepts
7.13.2 Type 1 image, one load region and contiguous execution regions on page 7-153.
3.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions on page 3-46.

Related information
Base Platform ABI for the ARM Architecture.
ELF for the ARM Architecture.

11 Linker Command-line Options
11.110 --reloc

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-335

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

11.111 --remarks
Enables the display of remark messages, including any messages redesignated to remark severity using
--diag_remark.

 Note

The linker does not issue remarks by default.

Related references
11.29 --diag_remark=tag[,tag,…] on page 11-249.
11.43 --errors=filename on page 11-263.

11 Linker Command-line Options
11.111 --remarks

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-336

Non-Confidential

11.112 --remove, --no_remove
Enables or disables the removal of unused input sections from the image.

Usage

An input section is considered used if it contains an entry point, or if it is referred to from a used section.

By default, unused section elimination is disabled when building dynamically linked libraries (DLLs) or
shared objects, Use --remove to re-enable unused section elimination.

Use --no_remove when debugging to retain all input sections in the final image even if they are unused.

Use --remove with the --keep option to retain specific sections in a normal build.

Default

The default is --remove.

The default is --no_remove only if you specify --base_platform or --bpabi with --dll.

Related concepts
4.3 Elimination of unused sections on page 4-70.
3.9 How the linker performs library searching, selection, and scanning on page 3-62.
4.1 Elimination of common debug sections on page 4-68.
4.2 Elimination of common groups or sections on page 4-69.

Related references
11.7 --base_platform on page 11-224.
11.11 --bpabi on page 11-229.
11.33 --dll on page 11-253.
11.66 --keep=section_id on page 11-288.

11 Linker Command-line Options
11.112 --remove, --no_remove

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-337

Non-Confidential

11.113 --ro_base=address
Sets both the load and execution addresses of the region containing the RO output section at a specified
address.

Syntax

--ro_base=address

Where address must be word-aligned.

Usage

If execute-only (XO) sections are present, and you specify --ro_base without --xo_base, then an
ER_XO execution region is created at the address specified by --ro_base. The ER_RO execution region
immediately follows the ER_XO region.

Default

If this option is not specified, and no scatter file is specified, the default is --ro_base=0x8000. If XO
sections are present, then this is the default value used to place the ER_XO region.

Restrictions
You cannot use --ro_base with:
• --scatter.

Related references
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.113 --ro_base=address

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-338

Non-Confidential

11.114 --ropi
Makes the load and execution region containing the RO output section position-independent.

 Note

Not supported for AArch64 state.

Usage
If this option is not used, the region is marked as absolute. Usually each read-only input section must be
Read-Only Position-Independent (ROPI). If this option is selected, the linker:
• Checks that relocations between sections are valid.
• Ensures that any code generated by the linker itself, such as interworking veneers, is ROPI.

 Note

The linker gives a downgradable error if --ropi is used without --rwpi or --rw_base.

Restrictions
You cannot use --ropi:
• With --fpic, --scatter, or --xo_base.
• When an object file contains execute-only sections.

Related references
11.113 --ro_base=address on page 11-338.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.114 --ropi

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-339

Non-Confidential

11.115 --rosplit
Splits the default RO load region into two RO output sections.

The RO load region is split into the RO output sections:
• RO-CODE.
• RO-DATA.

Restrictions
You cannot use --rosplit with:
• --scatter.

Related references
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.115 --rosplit

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-340

Non-Confidential

11.116 --rw_base=address
Sets the execution addresses of the region containing the RW output section at a specified address.

Syntax

--rw_base=address
Where address must be word-aligned.

 Note

This option does not affect the placement of execute-only sections.

Restrictions
You cannot use --rw_base with:
• --scatter.

Related references
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.116 --rw_base=address

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-341

Non-Confidential

11.117 --rwpi
Makes the load and execution region containing the RW and ZI output section position-independent.

 Note

Not supported for AArch64 state.

Usage

If this option is not used the region is marked as absolute. This option requires a value for --rw_base. If
--rw_base is not specified, --rw_base=0 is assumed. Usually each writable input section must be Read-
Write Position-Independent (RWPI).

If this option is selected, the linker:
• Checks that the PI attribute is set on input sections to any read-write execution regions.
• Checks that relocations between sections are valid.
• Generates entries relative to the static base in the table Region$$Table.

This is used when regions are copied, decompressed, or initialized.

Restrictions
You cannot use --rwpi:
• With --fpic --scatter, or --xo_base.
• When an object file contains execute-only sections.

Related references
11.126 --split on page 11-353.
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.117 --rwpi

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-342

Non-Confidential

11.118 --scanlib, --no_scanlib
Enables or disables scanning of the ARM libraries to resolve references.

Use --no_scanlib if you want to link your own libraries.

Default

The default is --scanlib.

Related references
11.128 --stdlib on page 11-355.

11 Linker Command-line Options
11.118 --scanlib, --no_scanlib

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-343

Non-Confidential

11.119 --scatter=filename
Creates an image memory map using the scatter-loading description that is contained in the specified file.

The description provides grouping and placement details of the various regions and sections in the
image.

Syntax

--scatter=filename

Where filename is the name of a scatter file.

Usage

To modify the placement of any unassigned input sections when .ANY selectors are present, use the
following command-line options with --scatter:

• --any_contingency.
• --any_placement.
• --any_sort_order.

You cannot use the --scatter option with:
• --bpabi.
• --first.
• --last.
• --partial.
• --reloc.
• --ro_base.
• --ropi.
• --rosplit.
• --rw_base.
• --rwpi.
• --split.
• --xo_base.
• --zi_base.

You can use --dll when specified with --base_platform.

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-132.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-137.

Related tasks
7.11 Preprocessing a scatter file on page 7-151.

Related references
11.1 --any_contingency on page 11-217.
11.3 --any_sort_order=order on page 11-220.
11.7 --base_platform on page 11-224.
11.49 --first=section_id on page 11-269.
11.69 --last=section_id on page 11-292.
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.117 --rwpi on page 11-342.

11 Linker Command-line Options
11.119 --scatter=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-344

Non-Confidential

11.126 --split on page 11-353.
11.157 --xo_base=address on page 11-384.
11.161 --zi_base=address on page 11-388.
11.11 --bpabi on page 11-229.
11.33 --dll on page 11-253.
11.100 --partial on page 11-325.
11.110 --reloc on page 11-335.
Chapter 7 Scatter-loading Features on page 7-106.

11 Linker Command-line Options
11.119 --scatter=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-345

Non-Confidential

11.120 --section_index_display=type
Changes the display of the index column when printing memory map output.

Syntax

--section_index_display=type

Where type is one of the following:

cmdline
Alters the display of the map file to show the order that a section appears on the command-line.
The command-line order is defined as File.Object.Section where:
• Section is the section index, sh_idx, of the Section in the Object.
• Object is the order that Object appears in the File.
• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

internal
The index value represents the order in which the linker creates the section.

input
The index value represents the section index of the section in the original input file. This is
useful when you want to find the exact section in an input object.

Usage

Use this option with --map.

Default

The default is --section_index_display=internal.

Related references
11.84 --map, --no_map on page 11-309.
11.142 --tiebreaker=option on page 11-369.

11 Linker Command-line Options
11.120 --section_index_display=type

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-346

Non-Confidential

11.121 --show_cmdline
Outputs the command line used by the linker.

Usage
Shows the command line after processing by the linker, and can be useful to check:
• The command line a build system is using.
• How the linker is interpreting the supplied command line, for example, the ordering of command-line

options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard error stream (stderr).

Related references
11.57 --help on page 11-277.
11.155 --via=filename on page 11-382.

11 Linker Command-line Options
11.121 --show_cmdline

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-347

Non-Confidential

11.122 --show_full_path
Displays the full path name of an object in any diagnostic messages.

Usage

If the file representing object obj has full path name path/to/obj then the linker displays path/to/obj
instead of obj in any diagnostic message.

Related references
11.123 --show_parent_lib on page 11-349.
11.124 --show_sec_idx on page 11-350.

11 Linker Command-line Options
11.122 --show_full_path

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-348

Non-Confidential

11.123 --show_parent_lib
Displays the library name containing an object in any diagnostic messages.

Usage

If an object obj comes from library lib, then this option displays lib(obj) instead of obj in any
diagnostic messages.

Related references
11.122 --show_full_path on page 11-348.
11.124 --show_sec_idx on page 11-350.

11 Linker Command-line Options
11.123 --show_parent_lib

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-349

Non-Confidential

11.124 --show_sec_idx
Displays the section index, sh_idx, of section in the originating object.

Example

If section sec has section index 3 then it is displayed as sec:3 in all diagnostic messages.

Related references
11.122 --show_full_path on page 11-348.
11.123 --show_parent_lib on page 11-349.

11 Linker Command-line Options
11.124 --show_sec_idx

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-350

Non-Confidential

11.125 --sort=algorithm
Specifies the sorting algorithm used by the linker to determine the order of sections in an output image.

Syntax

--sort=algorithm

where algorithm is one of the following:

Alignment
Sorts input sections by ascending order of alignment value.

AlignmentLexical
Sorts input sections by ascending order of alignment value, then sorts lexically.

AvgCallDepth
Sorts all T32 code before A32 code and then sorts according to the approximated average call
depth of each section in ascending order.
Use this algorithm to minimize the number of long branch veneers.

 Note

The approximation of the average call depth depends on the order of input sections. Therefore,
this sorting algorithm is more dependent on the order of input sections than using, say,
RunningDepth.

BreadthFirstCallTree
This is similar to the CallTree algorithm except that it uses a breadth-first traversal when
flattening the Call Tree into a list.

CallTree
The linker flattens the call tree into a list containing the read-only code sections from all
execution regions that have CallTree sorting enabled.
Sections in this list are copied back into their execution regions, followed by all the non read-
only code sections, sorted lexically. Doing this ensures that sections calling each other are
placed close together.

 Note

This sorting algorithm is less dependent on the order of input sections than using either
RunningDepth or AvgCallDepth.

Lexical
Sorts according to the name of the section and then by input order if the names are the same.

LexicalAlignment
Sorts input sections lexically, then according to the name of the section, and then by input order
if the names are the same.

LexicalState
Sorts T32 code before A32 code, then sorts lexically.

List
Provides a list of the available sorting algorithms. The linker terminates after displaying the list.

ObjectCode
Sorts code sections by tiebreaker. All other sections are sorted lexically. This is most useful
when used with --tiebreaker=cmdline because it attempts to group all the sections from the
same object together in the memory map.

RunningDepth
Sorts all T32 code before A32 code and then sorts according to the running depth of the section
in ascending order. The running depth of a section S is the average call depth of all the sections
that call S, weighted by the number of times that they call S.

Use this algorithm to minimize the number of long branch veneers.

11 Linker Command-line Options
11.125 --sort=algorithm

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-351

Non-Confidential

Usage

The sorting algorithms conform to the standard rules, placing input sections in ascending order by
attributes.

You can also specify sort algorithms in a scatter file for individual execution regions. Use the SORTTYPE
keyword to do this.

 Note

The SORTTYPE execution region attribute overrides any sorting algorithm that you specify with this
option.

Default

The default algorithm is --sort=Lexical. In large region mode, the default algorithm is
--sort=AvgCallDepth.

Related concepts
3.3 Section placement with the linker on page 3-49.
8.4 Execution region descriptions on page 8-174.

Related references
11.142 --tiebreaker=option on page 11-369.
11.68 --largeregions, --no_largeregions on page 11-291.
8.4.3 Execution region attributes on page 8-176.

11 Linker Command-line Options
11.125 --sort=algorithm

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-352

Non-Confidential

11.126 --split
Splits the default load region, that contains the RO and RW output sections, into separate load regions.

Usage
The default load region is split into the following load regions:
• One region containing the RO output section. The default load address is 0x8000, but you can specify

a different address with the --ro_base option.
• One region containing the RW and ZI output sections. The default load address is 0x0, but you can

specify a different address with the --rw_base option.

Both regions are root regions.

Considerations when execute-only sections are present

For images containing execute-only (XO) sections, an XO execution region is placed at the address
specified by --ro_base. The RO execution region is placed immediately after the XO region.

If you specify --xo_base address, then the XO execution region is placed at the specified address in a
separate load region from the RO execution region.

Restrictions

You cannot use --split with --scatter.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.

Related references
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.126 --split

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-353

Non-Confidential

11.127 --startup=symbol, --no_startup
Enables the linker to use alternative C libraries with a different startup symbol if required.

Syntax

--startup=symbol

By default, symbol is set to __main.

--no_startup does not take a symbol argument.

Usage
The linker includes the C library startup code if there is a reference to a symbol that is defined by the C
library startup code. This symbol reference is called the startup symbol. It is automatically created by the
linker when it sees a definition of main(). The --startup option enables you to change this symbol
reference.
• If the linker finds a definition of main() and does not find a definition of symbol, then it generates an

error.
• If the linker finds a definition of main() and a definition of symbol, but no entry point is specified,

then it generates a warning.

--no_startup does not add a reference.

Default

The default is --startup=__main.

Related references
11.42 --entry=location on page 11-262.

11 Linker Command-line Options
11.127 --startup=symbol, --no_startup

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-354

Non-Confidential

11.128 --stdlib
Specifies the C++ library to use.

Syntax

--stdlib=library_option

ARM Compiler 6 only supports --stdlib=libc++.

Usage

C++ objects compiled with armclang and linked with armlink use libc++ by default.

11 Linker Command-line Options
11.128 --stdlib

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-355

Non-Confidential

11.129 --strict
Instructs the linker to perform additional conformance checks, such as reporting conditions that might
result in failures.

Usage
--strict causes the linker to check for taking the address of:
• A non-interworking location from a non-interworking location in a different state.
• A RW location from a location that uses the static base register R9.
• A STKCKD function in an image that contains USESV7 functions.
• A ~STKCKD function in an image that contains STKCKD functions.

 Note

STKCKD functions reserve register r10 for Stack Checking, ~STKCKD functions use register r10 as
variable register v7 and USESV7 functions use register r10 as v7. See the Procedure Call Standard for
the ARM Architecture (AAPCS) for more information about v7.

An example of a condition that might result in failure is taking the address of an interworking function
from a non-interworking function.

Related concepts
3.13 The strict family of linker options on page 3-66.

Related references
11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
11.131 --strict_flags, --no_strict_flags on page 11-358.
11.132 --strict_ph, --no_strict_ph on page 11-359.
11.133 --strict_relocations, --no_strict_relocations on page 11-360.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.
11.135 --strict_visibility, --no_strict_visibility on page 11-362.
11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.
11.31 --diag_suppress=tag[,tag,…] on page 11-251.
11.32 --diag_warning=tag[,tag,…] on page 11-252.
11.28 --diag_error=tag[,tag,…] on page 11-248.
11.43 --errors=filename on page 11-263.

Related information
Procedure Call Standard for the ARM Architecture (AAPCS).

11 Linker Command-line Options
11.129 --strict

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-356

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html

11.130 --strict_enum_size, --no_strict_enum_size
Checks whether or not the enum size is consistent across all inputs.

 Note

Deprecated in this release.

Usage

Use --strict_enum_size to force the linker to display an error message if the enum size is not
consistent across all inputs. This is the default.

Use --no_strict_enum_size for compatibility with objects built using RVCT v3.1 and earlier.

Related references
11.129 --strict on page 11-356.
11.131 --strict_flags, --no_strict_flags on page 11-358.
11.132 --strict_ph, --no_strict_ph on page 11-359.
11.133 --strict_relocations, --no_strict_relocations on page 11-360.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.
11.135 --strict_visibility, --no_strict_visibility on page 11-362.
11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.

11 Linker Command-line Options
11.130 --strict_enum_size, --no_strict_enum_size

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-357

Non-Confidential

11.131 --strict_flags, --no_strict_flags
Prevent or allow the generation of the EF_ARM_HASENTRY flag.

Usage

The option --strict_flags prevents the EF_ARM_HASENTRY flag from being generated.

Default

The default is --no_strict_flags.

Related concepts
3.13 The strict family of linker options on page 3-66.

Related references
11.129 --strict on page 11-356.
11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
11.132 --strict_ph, --no_strict_ph on page 11-359.
11.133 --strict_relocations, --no_strict_relocations on page 11-360.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.
11.135 --strict_visibility, --no_strict_visibility on page 11-362.
11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.

Related information
ARM ELF Specification (SWS ESPC 0003 B-02).

11 Linker Command-line Options
11.131 --strict_flags, --no_strict_flags

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-358

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.espc0003/index.html

11.132 --strict_ph, --no_strict_ph
Enables or disables the sorting of the Program Header Table entries.

Usage

The linker writes the contents of load regions into the output ELF file in the order that load regions are
written in the scatter file. Each load region is represented by one ELF program segment. In RVCT v2.2
the Program Header table entries describing the program segments are given the same order as the
program segments in the ELF file. To be more compliant with the ELF specification, in RVCT v3.0 and
later the Program Header table entries are sorted in ascending virtual address order.

Use the --no_strict_ph command-line option to switch off the sorting of the Program Header table
entries.

Default

The default is --strict_ph.

Related concepts
3.13 The strict family of linker options on page 3-66.

Related references
11.129 --strict on page 11-356.
11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
11.131 --strict_flags, --no_strict_flags on page 11-358.
11.133 --strict_relocations, --no_strict_relocations on page 11-360.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.
11.135 --strict_visibility, --no_strict_visibility on page 11-362.
11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.

11 Linker Command-line Options
11.132 --strict_ph, --no_strict_ph

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-359

Non-Confidential

11.133 --strict_relocations, --no_strict_relocations
Enables you to ensure Application Binary Interface (ABI) compliance of legacy or third party objects.

Usage

This option checks that branch relocation applies to a branch instruction bit-pattern. The linker generates
an error if there is a mismatch.

Use --strict_relocations to instruct the linker to report instances of obsolete and deprecated
relocations.

Relocation errors and warnings are most likely to occur if you are linking object files built with previous
versions of the ARM tools.

Default

The default is --no_strict_relocations.

Related concepts
3.13 The strict family of linker options on page 3-66.

Related references
11.129 --strict on page 11-356.
11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
11.131 --strict_flags, --no_strict_flags on page 11-358.
11.132 --strict_ph, --no_strict_ph on page 11-359.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.
11.135 --strict_visibility, --no_strict_visibility on page 11-362.
11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.

11 Linker Command-line Options
11.133 --strict_relocations, --no_strict_relocations

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-360

Non-Confidential

11.134 --strict_symbols, --no_strict_symbols
Checks whether or not a mapping symbol type matches an ABI symbol type.

Usage

The option --strict_symbols checks that the mapping symbol type matches ABI symbol type. The
linker displays a warning if the types do not match.

A mismatch can occur only if you have hand-coded your own assembler.

Default

The default is --no_strict_symbols.

Example

In the following assembler code the symbol sym has type STT_FUNC and is A32 (ARM):

 .section mycode,"x"
 .word sym + 4
 .code 32
 .type sym, "function"
sym:
 mov r0, r0
 .code 16
 mov r0, r0
 .end

The difference in behavior is the meaning of .word sym + 4:

• In pre-ABI linkers the state of the symbol is the state of the mapping symbol at that location. In this
example, the state is T32 (Thumb).

• In ABI linkers the type of the symbol is the state of the location of symbol plus the offset.

Related concepts
3.13 The strict family of linker options on page 3-66.
6.1 About mapping symbols on page 6-90.

Related references
11.129 --strict on page 11-356.
11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
11.131 --strict_flags, --no_strict_flags on page 11-358.
11.132 --strict_ph, --no_strict_ph on page 11-359.
11.133 --strict_relocations, --no_strict_relocations on page 11-360.
11.135 --strict_visibility, --no_strict_visibility on page 11-362.
11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.

11 Linker Command-line Options
11.134 --strict_symbols, --no_strict_symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-361

Non-Confidential

11.135 --strict_visibility, --no_strict_visibility
Prevents or allows a hidden visibility reference to match against a shared object.

Usage

A linker is not permitted to match a symbol reference with STT_HIDDEN visibility to a dynamic shared
object. Some older linkers might permit this.

Use --no_strict_visibility to permit a hidden visibility reference to match against a shared object.

Default

The default is --strict_visibility.

Related concepts
3.13 The strict family of linker options on page 3-66.

Related references
11.129 --strict on page 11-356.
11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
11.131 --strict_flags, --no_strict_flags on page 11-358.
11.132 --strict_ph, --no_strict_ph on page 11-359.
11.133 --strict_relocations, --no_strict_relocations on page 11-360.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.
11.136 --strict_wchar_size, --no_strict_wchar_size on page 11-363.

11 Linker Command-line Options
11.135 --strict_visibility, --no_strict_visibility

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-362

Non-Confidential

11.136 --strict_wchar_size, --no_strict_wchar_size
Checks whether or not the wide character size is consistent across all inputs.

 Note

Deprecated in this release.

Usage

The option --strict_wchar_size causes the linker to display an error message if the wide character
size is not consistent across all inputs. This is the default.

Use --no_strict_wchar_size for compatibility with objects built using RVCT v3.1 and earlier.

Related concepts
3.13 The strict family of linker options on page 3-66.

Related references
11.129 --strict on page 11-356.
11.130 --strict_enum_size, --no_strict_enum_size on page 11-357.
11.131 --strict_flags, --no_strict_flags on page 11-358.
11.132 --strict_ph, --no_strict_ph on page 11-359.
11.133 --strict_relocations, --no_strict_relocations on page 11-360.
11.134 --strict_symbols, --no_strict_symbols on page 11-361.
11.135 --strict_visibility, --no_strict_visibility on page 11-362.

11 Linker Command-line Options
11.136 --strict_wchar_size, --no_strict_wchar_size

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-363

Non-Confidential

11.137 --symbols, --no_symbols
Enables or disables the listing of each local and global symbol used in the link step, and its value.

 Note

This does not include mapping symbols output to stdout. Use --list_mapping_symbols to include
mapping symbols in the output.

Default

The default is --no_symbols.

Related references
11.75 --list_mapping_symbols, --no_list_mapping_symbols on page 11-298.

11 Linker Command-line Options
11.137 --symbols, --no_symbols

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-364

Non-Confidential

11.138 --symdefs=filename
Creates a file containing the global symbol definitions from the output image.

Syntax

--symdefs=filename

where filename is the name of the text file to contain the global symbol definitions.

Default
By default, all global symbols are written to the symdefs file. If a symdefs file called filename already
exists, the linker restricts its output to the symbols already listed in this file.

 Note

If you do not want this behavior, be sure to delete any existing symdefs file before the link step.

Usage

If filename is specified without path information, the linker searches for it in the directory where the
output image is being written. If it is not found, it is created in that directory.

You can use the symbol definitions file as input when linking another image.

Related concepts
6.5 Access symbols in another image on page 6-99.

11 Linker Command-line Options
11.138 --symdefs=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-365

Non-Confidential

11.139 --symver_script=filename
Enables implicit symbol versioning.

Syntax

--symver_script=filename

where filename is a symbol version script.

11 Linker Command-line Options
11.139 --symver_script=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-366

Non-Confidential

11.140 --symver_soname
Enables implicit symbol versioning to force static binding.

 Note

Not supported for AArch64 state.

Usage

Where a symbol has no defined version, the linker uses the shared object name (SONAME) contained in the
file being linked.

Default

This is the default if you are generating a Base Platform Application Binary Interface (BPABI)
compatible executable file but where you do not specify a version script with the option
--symver_script.

Related concepts
9.5 Symbol versioning on page 9-204.

Related information
Base Platform ABI for the ARM Architecture.

11 Linker Command-line Options
11.140 --symver_soname

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-367

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

11.141 --tailreorder, --no_tailreorder
Moves tail calling sections immediately before their target, if possible, to optimize the branch instruction
at the end of a section.

 Note

Not supported for AArch64 state.

Usage

A tail calling section is a section that contains a branch instruction at the end of the section. The branch
must have a relocation that targets a function at the start of a section.

Default

The default is --no_tailreorder.

Restrictions
The linker:
• Can only move one tail calling section for each tail call target. If there are multiple tail calls to a

single section, the tail calling section with an identical section name is moved before the target. If no
section name is found in the tail calling section that has a matching name, then the linker moves the
first section it encounters.

• Cannot move a tail calling section out of its execution region.
• Does not move tail calling sections before inline veneers.

Related concepts
4.8 Linker reordering of tail calling sections on page 4-78.
4.7 About branches that optimize to a NOP on page 4-77.

Related references
11.12 --branchnop, --no_branchnop on page 11-230.

11 Linker Command-line Options
11.141 --tailreorder, --no_tailreorder

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-368

Non-Confidential

11.142 --tiebreaker=option
A tiebreaker is used when a sorting algorithm requires a total ordering of sections. It is used by the linker
to resolve the order when the sorting criteria results in more than one input section with equal properties.

Syntax

--tiebreaker=option

where option is one of:

creation
The order that the linker creates sections in its internal section data structure.

When the linker creates an input section for each ELF section in the input objects, it increments
a global counter. The value of this counter is stored in the section as the creation index.

The creation index of a section is unique apart from the special case of inline veneers.

cmdline
The order that the section appears on the linker command-line. The command-line order is
defined as File.Object.Section where:
• Section is the section index, sh_idx, of the Section in the Object.
• Object is the order that Object appears in the File.
• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

This option is useful if you are doing a binary difference between the results of different links,
link1 and link2. If link2 has only small changes from link1, then you might want the differences
in one source file to be localized. In general, creation index works well for objects, but because
of the multiple pass selection of members from libraries, a small difference such as calling a
new function can result in a different order of objects and therefore a different tiebreak. The
command-line index is more stable across builds.

Use this option with the --scatter option.

Default

The default option is creation.

Related references
11.125 --sort=algorithm on page 11-351.
11.84 --map, --no_map on page 11-309.
11.3 --any_sort_order=order on page 11-220.

11 Linker Command-line Options
11.142 --tiebreaker=option

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-369

Non-Confidential

11.143 --unaligned_access, --no_unaligned_access
Enable or disable unaligned accesses to data on ARM architecture-based processors.

Usage
When using --no_unaligned_access, the linker:
• Does not select objects from the ARM C library that allow unaligned accesses.
• Gives an error message if any input object allows unaligned accesses.

 Note

This error message can be downgraded.

Default

The default is --unaligned_access.

11 Linker Command-line Options
11.143 --unaligned_access, --no_unaligned_access

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-370

Non-Confidential

11.144 --undefined=symbol
Prevents the removal of a specified symbol if it is undefined.

Syntax

--undefined=symbol

Usage
Causes the linker to:
1. Create a symbol reference to the specified symbol name.
2. Issue an implicit --keep=symbol to prevent any sections brought in to define that symbol from being

removed.

Related references
11.145 --undefined_and_export=symbol on page 11-372.
11.66 --keep=section_id on page 11-288.

11 Linker Command-line Options
11.144 --undefined=symbol

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-371

Non-Confidential

11.145 --undefined_and_export=symbol
Prevents the removal of a specified symbol if it is undefined, and pushes the symbol into the dynamic
symbol table.

Syntax

--undefined_and_export=symbol

Usage
Causes the linker to:
1. Create a symbol reference to the specified symbol name.
2. Issue an implicit --keep=symbol to prevent any sections brought in to define that symbol from being

removed.
3. Add an implicit EXPORT symbol to push the specified symbol into the dynamic symbol table.

Considerations
Be aware of the following when using this option:
• It does not change the visibility of a symbol unless you specify the --override_visibility option.
• A warning is issued if the visibility of the specified symbol is not high enough.
• A warning is issued if the visibility of the specified symbol is overridden because you also specified

the --override_visibility option.
• Hidden symbols are not exported unless you specify the --override_visibility option.

Related references
11.95 --override_visibility on page 11-320.
11.144 --undefined=symbol on page 11-371.
11.66 --keep=section_id on page 11-288.
12.1 EXPORT steering file command on page 12-390.

11 Linker Command-line Options
11.145 --undefined_and_export=symbol

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-372

Non-Confidential

11.146 --unresolved=symbol
Takes each reference to an undefined symbol and matches it to the global definition of the specified
symbol.

Syntax

--unresolved=symbol

symbol must be both defined and global, otherwise it appears in the list of undefined symbols and the
link step fails.

Usage

This option is particularly useful during top-down development, because it enables you to test a partially-
implemented system by matching each reference to a missing function to a dummy function.

Related references
11.144 --undefined=symbol on page 11-371.
11.145 --undefined_and_export=symbol on page 11-372.

11 Linker Command-line Options
11.146 --unresolved=symbol

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-373

Non-Confidential

11.147 --use_definition_visibility
Enables the linker to use the visibility of the definition in preference to the visibility of a reference when
combining symbols.

Usage

When the linker combines global symbols the visibility of the symbol is set with the strictest visibility of
the symbols being combined. Therefore, a symbol reference with STV_HIDDEN visibility combined with a
definition with STV_DEFAULT visibility results in a definition with STV_HIDDEN visibility.

For example, a symbol reference with STV_HIDDEN visibility combined with a definition with
STV_DEFAULT visibility results in a definition with STV_DEFAULT visibility.

This can be useful when you want a reference to not match a Shared Library, but you want to export the
definition.

 Note

This option is not ELF-compliant and is disabled by default. To create ELF-compliant images, you must
use symbol references with the appropriate visibility.

11 Linker Command-line Options
11.147 --use_definition_visibility

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-374

Non-Confidential

11.148 --userlibpath=pathlist
Specifies a list of paths that the linker is to use to search for user libraries.

Syntax

--userlibpath=pathlist

Where pathlist is a comma-separated list of paths that the linker is to use to search for the required
libraries. Do not include spaces between the comma and the path name when specifying multiple path
names, for example, path1,path2,path3,…,pathn.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-62.

Related references
11.71 --libpath=pathlist on page 11-294.

11 Linker Command-line Options
11.148 --userlibpath=pathlist

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-375

Non-Confidential

11.149 --veneerinject, --no_veneerinject
Enables or disables the placement of veneers outside of the sorting order for the Execution Region.

Usage

Use --veneerinject to allow the linker to place veneers outside of the sorting order for the Execution
Region. This option is a subset of the --largeregions command. Use --veneerinject if you want to
allow the veneer placement behavior described, but do not want to implicitly set the --api and
--sort=AvgCallDepth.

Use --no_veneerinject to allow the linker use the sorting order for the Execution Region.

Use --veneer_inject_type to control the strategy the linker uses to place injected veneers.

The following command-line options allow stable veneer placement with large Execution Regions:

--veneerinject --veneer_inject_type=pool --sort=lexical

Default
The default is --no_veneerinject. The linker automatically switches to large region mode if it is
required to successfully link the image. If large region mode is turned off with --no_largeregions then
only --veneerinject is turned on if it is required to successfully link the image.

 Note

--veneerinject is the default for large region mode.

Related references
11.68 --largeregions, --no_largeregions on page 11-291.
11.150 --veneer_inject_type=type on page 11-377.
11.4 --api, --no_api on page 11-221.
11.125 --sort=algorithm on page 11-351.

11 Linker Command-line Options
11.149 --veneerinject, --no_veneerinject

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-376

Non-Confidential

11.150 --veneer_inject_type=type
Controls the veneer layout when --largeregions mode is on.

Syntax

--veneer_inject_type=type

Where type is one of:

individual
The linker places veneers to ensure they can be reached by the largest amount of sections that
use the veneer. Veneer reuse between execution regions is permitted. This type minimizes the
number of veneers that are required but disrupts the structure of the image the most.

pool
The linker:
1. Collects veneers from a contiguous range of the execution region.
2. Places all the veneers generated from that range into a pool.
3. Places that pool at the end of the range.
A large execution region might have more than one range and therefore more than one pool.
Although this type has much less impact on the structure of image, it has fewer opportunities for
reuse. This is because a range of code cannot reuse a veneer in another pool. The linker
calculates the range based on the presence of branch instructions that the linker predicts might
require veneers. A branch is predicted to require a veneer when either:
• A state change is required.
• The distance from source to target plus a contingency greater than the branch range.

You can set the size of the contingency with the --veneer_pool_size=size option. By default
the contingency size is set to 102400 bytes. The --info=veneerpools option provides
information on how the linker has placed veneer pools.

Restrictions

You must use --largeregions with this option.

Related references
11.60 --info=topic[,topic,…] on page 11-280.
11.149 --veneerinject, --no_veneerinject on page 11-376.
11.151 --veneer_pool_size=size on page 11-378.
11.68 --largeregions, --no_largeregions on page 11-291.

11 Linker Command-line Options
11.150 --veneer_inject_type=type

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-377

Non-Confidential

11.151 --veneer_pool_size=size
Sets the contingency size for the veneer pool in an execution region.

Syntax

--veneer_pool_size=pool

where pool is the size in bytes.

Default

The default size is 102400 bytes.

Related references
11.150 --veneer_inject_type=type on page 11-377.

11 Linker Command-line Options
11.151 --veneer_pool_size=size

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-378

Non-Confidential

11.152 --veneershare, --no_veneershare
Enables or disables veneer sharing. Veneer sharing can cause a significant decrease in image size.

Default

The default is --veneershare.

Related concepts
3.6.2 Veneer sharing on page 3-55.
3.6 Linker-generated veneers on page 3-55.
3.6.3 Veneer types on page 3-56.
3.6.4 Generation of position independent to absolute veneers on page 3-57.

Related references
11.64 --inlineveneer, --no_inlineveneer on page 11-286.
11.102 --piveneer, --no_piveneer on page 11-327.
11.25 --crosser_veneershare, --no_crosser_veneershare on page 11-245.

11 Linker Command-line Options
11.152 --veneershare, --no_veneershare

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-379

Non-Confidential

11.153 --verbose
Prints detailed information about the link operation, including the objects that are included and the
libraries from which they are taken.

Usage

This output is particular useful for tracing undefined symbols reference or multiply defined symbols.
Because this output is typically quite long, you might want to use this command with the
--list=filename command to redirect the information to filename.

Use --verbose to output diagnostics to stdout.

Related references
11.74 --list=filename on page 11-297.
11.91 --muldefweak, --no_muldefweak on page 11-316.
11.146 --unresolved=symbol on page 11-373.

11 Linker Command-line Options
11.153 --verbose

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-380

Non-Confidential

11.154 --version_number
Displays the version of armlink you are using.

Usage
The linker displays the version number in the format Mmmuuxx, where:
• M is the major version number, 6.
• mm is the minor version number.
• uu is the update number.
• xx is reserved for ARM internal use. You can ignore this for the purposes of checking whether the

current release is a specific version or within a range of versions.

Related references
11.57 --help on page 11-277.
11.156 --vsn on page 11-383.

11 Linker Command-line Options
11.154 --version_number

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-381

Non-Confidential

11.155 --via=filename
Reads an additional list of input filenames and linker options from filename.

Syntax

--via=filename

Where filename is the name of a via file containing options to be included on the command line.

Usage

You can enter multiple --via options on the linker command line. The --via options can also be
included within a via file.

Related references
13.2 Via file syntax rules on page 13-400.

11 Linker Command-line Options
11.155 --via=filename

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-382

Non-Confidential

11.156 --vsn
Displays the version information and the license details.

 Note

--vsn is intended to report the version information for manual inspection. The Component line indicates
the release of ARM Compiler you are using. If you need to access the version in other tools or scripts, for
example in build scripts, use the output from --version_number.

Example

> armlink --vsn
Product: ARM Compiler N.n
Component: ARM Compiler N.n
Tool: armlink [tool_id]
license_type
Software supplied by: ARM Limited

Related references
11.57 --help on page 11-277.
11.154 --version_number on page 11-381.

11 Linker Command-line Options
11.156 --vsn

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-383

Non-Confidential

11.157 --xo_base=address
Specifies the base address of an execute-only (XO) execution region.

Syntax

--xo_base=address

Where address must be word-aligned.

Usage
When you specify --xo_base:
• XO sections are placed in a separate load and execution region, at the address specified.
• No ER_XO region is created when no XO sections are present.

Restrictions

You can use --xo_base only with the bare-metal linking model.

 Note

XO memory is supported only for ARMv7-M and ARMv8-M architectures.

You cannot use --xo_base with:
• --reloc.
• --ropi.
• --rwpi.
• --scatter.

Related concepts
2.2 Bare-metal linking model on page 2-27.

Related references
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.161 --zi_base=address on page 11-388.
11.119 --scatter=filename on page 11-344.

11 Linker Command-line Options
11.157 --xo_base=address

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-384

Non-Confidential

11.158 --xref, --no_xref
Lists to stdout all cross-references between input sections.

Default

The default is --no_xref.

Related references
11.159 --xrefdbg, --no_xrefdbg on page 11-386.
11.160 --xref{from|to}=object(section) on page 11-387.
11.74 --list=filename on page 11-297.

11 Linker Command-line Options
11.158 --xref, --no_xref

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-385

Non-Confidential

11.159 --xrefdbg, --no_xrefdbg
Lists to stdout all cross-references between input debug sections.

Default

The default is --no_xrefdbg.

Related references
11.158 --xref, --no_xref on page 11-385.
11.160 --xref{from|to}=object(section) on page 11-387.
11.74 --list=filename on page 11-297.

11 Linker Command-line Options
11.159 --xrefdbg, --no_xrefdbg

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-386

Non-Confidential

11.160 --xref{from|to}=object(section)
Lists to stdout cross-references from and to input sections.

Syntax

--xref{from|to}=object(section)

Usage
This option lists to stdout cross-references:
• From input section in object to other input sections.
• To input section in object from other input sections.

This is a useful subset of the listing produced by the --xref linker option if you are interested in
references from or to a specific input section. You can have multiple occurrences of this option to list
references from or to more than one input section.

Related references
11.158 --xref, --no_xref on page 11-385.
11.159 --xrefdbg, --no_xrefdbg on page 11-386.
11.74 --list=filename on page 11-297.

11 Linker Command-line Options
11.160 --xref{from|to}=object(section)

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-387

Non-Confidential

11.161 --zi_base=address
Specifies the base address of an ER_ZI execution region.

Syntax

--zi_base=address
Where address must be word-aligned.

 Note

This option does not affect the placement of execute-only sections.

Restrictions
The linker ignores --zi_base if one of the following options is also specified:
• --bpabi.
• --base_platform.
• --reloc.
• --rwpi.
• --split.

You cannot use --zi_base with --scatter.

Related references
11.113 --ro_base=address on page 11-338.
11.114 --ropi on page 11-339.
11.115 --rosplit on page 11-340.
11.116 --rw_base=address on page 11-341.
11.157 --xo_base=address on page 11-384.
11.119 --scatter=filename on page 11-344.
11.11 --bpabi on page 11-229.

11 Linker Command-line Options
11.161 --zi_base=address

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

11-388

Non-Confidential

Chapter 12
Linker Steering File Command Reference

Describes the steering file commands supported by the ARM linker, armlink.

It contains the following sections:
• 12.1 EXPORT steering file command on page 12-390.
• 12.2 HIDE steering file command on page 12-391.
• 12.3 IMPORT steering file command on page 12-392.
• 12.4 RENAME steering file command on page 12-393.
• 12.5 REQUIRE steering file command on page 12-394.
• 12.6 RESOLVE steering file command on page 12-395.
• 12.7 SHOW steering file command on page 12-397.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-389

Non-Confidential

12.1 EXPORT steering file command
Specifies that a symbol can be accessed by other shared objects or executables.

 Note

A symbol can be exported only if the definition has STV_DEFAULT or STV_PROTECTED visibility. You must
use the --override_visibility command-line option to enable the linker to override symbol visibility
to STV_DEFAULT.

Syntax

EXPORT pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern
is a string, optionally including wildcard characters (either * or ?), that matches zero or more
defined global symbols. If pattern does not match any defined global symbol, the linker
ignores the command. The operand can match only defined global symbols.

If the symbol is not defined, the linker issues:

Warning: L6331W: No eligible global symbol matches pattern symbol

replacement_pattern
is a string, optionally including wildcard characters (either * or ?), to which the defined global
symbol is to be renamed. Wild characters must have a corresponding wildcard in pattern. The
characters matched by the replacement_pattern wildcard are substituted for the pattern
wildcard.

For example:

EXPORT my_func AS func1

renames and exports the defined symbol my_func as func1.

Usage

You cannot export a symbol to a name that already exists. Only one wildcard character (either * or ?) is
permitted in EXPORT.

The defined global symbol is included in the dynamic symbol table (as replacement_pattern if given,
otherwise as pattern), if a dynamic symbol table is present.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related references
12.3 IMPORT steering file command on page 12-392.
11.95 --override_visibility on page 11-320.

12 Linker Steering File Command Reference
12.1 EXPORT steering file command

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-390

Non-Confidential

12.2 HIDE steering file command
Makes defined global symbols in the symbol table anonymous.

Syntax

HIDE pattern[,pattern]

where:

pattern
is a string, optionally including wildcard characters, that matches zero or more defined global
symbols. If pattern does not match any defined global symbol, the linker ignores the
command. You cannot hide undefined symbols.

Usage

You can use HIDE and SHOW to make certain global symbols anonymous in an output image or partially
linked object. Hiding symbols in an object file or library can be useful as a means of protecting
intellectual property, as shown in the following example:

; steer.txt
; Hides all global symbols
HIDE *
; Shows all symbols beginning with ’os_’
SHOW os_*

This example produces a partially linked object with all global symbols hidden, except those beginning
with os_.

Link this example with the command:

armlink --partial input_object.o --edit steer.txt -o partial_object.o

You can link the resulting partial object with other objects, provided they do not contain references to the
hidden symbols. When symbols are hidden in the output object, SHOW commands in subsequent link steps
have no effect on them. The hidden references are removed from the output symbol table.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related references
12.7 SHOW steering file command on page 12-397.
11.37 --edit=file_list on page 11-257.
11.100 --partial on page 11-325.

12 Linker Steering File Command Reference
12.2 HIDE steering file command

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-391

Non-Confidential

12.3 IMPORT steering file command
Specifies that a symbol is defined in a shared object at runtime.

 Note

A symbol can be imported only if the reference has STV_DEFAULT visibility. You must use the
--override_visibility command-line option to enable the linker to override symbol visibility to
STV_DEFAULT.

Syntax

IMPORT pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern
is a string, optionally including wildcard characters (either * or ?), that matches zero or more
undefined global symbols. If pattern does not match any undefined global symbol, the linker
ignores the command. The operand can match only undefined global symbols.

replacement_pattern
is a string, optionally including wildcard characters (either * or ?), to which the symbol is to be
renamed. Wild characters must have a corresponding wildcard in pattern. The characters
matched by the pattern wildcard are substituted for the replacement_pattern wildcard.

For example:

IMPORT my_func AS func

imports and renames the undefined symbol my_func as func.

Usage

You cannot import a symbol that has been defined in the current shared object or executable. Only one
wildcard character (either * or ?) is permitted in IMPORT.

The undefined symbol is included in the dynamic symbol table (as replacement_pattern if given,
otherwise as pattern), if a dynamic symbol table is present.

 Note

The IMPORT command only affects undefined global symbols. Symbols that have been resolved by a
shared library are implicitly imported into the dynamic symbol table. The linker ignores any IMPORT
directive that targets an implicitly imported symbol.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related references
11.95 --override_visibility on page 11-320.
12.1 EXPORT steering file command on page 12-390.

12 Linker Steering File Command Reference
12.3 IMPORT steering file command

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-392

Non-Confidential

12.4 RENAME steering file command
Renames defined and undefined global symbol names.

Syntax

RENAME pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern
is a string, optionally including wildcard characters (either * or ?), that matches zero or more
global symbols. If pattern does not match any global symbol, the linker ignores the command.
The operand can match both defined and undefined symbols.

replacement_pattern
is a string, optionally including wildcard characters (either * or ?), to which the symbol is to be
renamed. Wildcard characters must have a corresponding wildcard in pattern. The characters
matched by the pattern wildcard are substituted for the replacement_pattern wildcard.

For example, for a symbol named func1:

RENAME f* AS my_f*

renames func1 to my_func1.

Usage

You cannot rename a symbol to a global symbol name that already exists, even if the target symbol name
is being renamed itself.

You cannot rename a symbol to the same name as another symbol. For example, you cannot do the
following:

RENAME foo1 AS bar
RENAME foo2 AS bar

Error: L6281E: Cannot rename both foo2 and foo1 to bar.

Renames only take effect at the end of the link step. Therefore, renaming a symbol does not remove its
original name. For example, given an image containing the symbols func1 and func2, you cannot do the
following:

RENAME func1 AS func2
RENAME func2 AS func3

Error: L6282E: Cannot rename func1 to func2 as a global symbol of that name exists

Only one wildcard character (either * or ?) is permitted in RENAME.

Example

Given an image containing the symbols func1, func2, and func3, you might have a steering file
containing the following commands:

; invalid, func2 already exists
RENAME func1 AS func2

; valid
RENAME func3 AS b2

; invalid, func3 still exists because the link step is not yet complete
RENAME func2 AS func3

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

12 Linker Steering File Command Reference
12.4 RENAME steering file command

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-393

Non-Confidential

12.5 REQUIRE steering file command
Creates a DT_NEEDED tag in the dynamic array.

DT_NEEDED tags specify dependencies to other shared objects used by the application, for example, a
shared library.

Syntax

REQUIRE pattern[,pattern]

where:

pattern
is a string representing a filename. No wild characters are permitted.

Usage
The linker inserts a DT_NEEDED tag with the value of pattern into the dynamic array. This tells the
dynamic loader that the file it is currently loading requires pattern to be loaded.

 Note

DT_NEEDED tags inserted as a result of a REQUIRE command are added after DT_NEEDED tags generated
from shared objects or dynamically linked libraries (DLLs) placed on the command line.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

12 Linker Steering File Command Reference
12.5 REQUIRE steering file command

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-394

Non-Confidential

12.6 RESOLVE steering file command
Matches specific undefined references to a defined global symbol.

Syntax

RESOLVE pattern AS defined_pattern

where:

pattern
is a string, optionally including wildcard characters (either * or ?), that matches zero or more
undefined global symbols. If pattern does not match any undefined global symbol, the linker
ignores the command. The operand can match only undefined global symbols.

defined_pattern
is a string, optionally including wildcard characters, that matches zero or more defined global
symbols. If defined_pattern does not match any defined global symbol, the linker ignores the
command. You cannot match an undefined reference to an undefined symbol.

Usage

RESOLVE is an extension of the existing armlink --unresolved command-line option. The difference is
that --unresolved enables all undefined references to match one single definition, whereas RESOLVE
enables more specific matching of references to symbols.

The undefined references are removed from the output symbol table.

RESOLVE works when performing partial-linking and when linking normally.

Example

You might have two files file1.c and file2.c, as shown in the following example:

file1.c
extern int foo;
extern void MP3_Init(void);
extern void MP3_Play(void);
int main(void)
{
 int x = foo + 1;
 MP3_Init();
 MP3_Play();
 return x;
}

file2.c:
int foobar;
void MyMP3_Init()
{
}
void MyMP3_Play()
{
}

Create a steering file, ed.txt, containing the line:

RESOLVE MP3* AS MyMP3*.

Enter the following command:

armlink file1.o file2.o --edit ed.txt --unresolved foobar

12 Linker Steering File Command Reference
12.6 RESOLVE steering file command

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-395

Non-Confidential

This command has the following effects:
• The references from file1.o (foo, MP3_Init() and MP3_Play()) are matched to the definitions in

file2.o (foobar, MyMP3_Init() and MyMP3_Play() respectively), as specified by the steering file
ed.txt.

• The RESOLVE command in ed.txt matches the MP3 functions and the --unresolved option matches
any other remaining references, in this case, foo to foobar.

• The output symbol table, whether it is an image or a partial object, does not contain the symbols foo,
MP3_Init or MP3_Play.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related references
11.37 --edit=file_list on page 11-257.
11.146 --unresolved=symbol on page 11-373.

12 Linker Steering File Command Reference
12.6 RESOLVE steering file command

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-396

Non-Confidential

12.7 SHOW steering file command
Makes global symbols visible.

The SHOW command is useful if you want to make a specific symbol visible that is hidden using a HIDE
command with a wildcard.

Syntax

SHOW pattern[,pattern]

where:

pattern
is a string, optionally including wildcard characters, that matches zero or more global symbols.
If pattern does not match any global symbol, the linker ignores the command.

Usage

The usage of SHOW is closely related to that of HIDE.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-102.

Related references
12.2 HIDE steering file command on page 12-391.

12 Linker Steering File Command Reference
12.7 SHOW steering file command

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

12-397

Non-Confidential

Chapter 13
Via File Syntax

Describes the syntax of via files accepted by armlink.

It contains the following sections:
• 13.1 Overview of via files on page 13-399.
• 13.2 Via file syntax rules on page 13-400.

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

13-398

Non-Confidential

13.1 Overview of via files
Via files are plain text files that allow you to specify linker command-line arguments and options.

Typically, you use a via file to overcome the command-line length limitations. However, you might want
to create multiple via files that:
• Group similar arguments and options together.
• Contain different sets of arguments and options to be used in different scenarios.

 Note

In general, you can use a via file to specify any command-line option to a tool, including --via. This
means that you can call multiple nested via files from within a via file.

Via file evaluation
When the linker is invoked it:
1. Replaces the first specified --via via_file argument with the sequence of argument words

extracted from the via file, including recursively processing any nested --via commands in the via
file.

2. Processes any subsequent --via via_file arguments in the same way, in the order they are
presented.

That is, via files are processed in the order you specify them, and each via file is processed completely
including processing nested via files before processing the next via file.

Related references
13.2 Via file syntax rules on page 13-400.
11.155 --via=filename on page 11-382.

13 Via File Syntax
13.1 Overview of via files

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

13-399

Non-Confidential

13.2 Via file syntax rules
Via files must conform to some syntax rules.

• A via file is a text file containing a sequence of words. Each word in the text file is converted into an
argument string and passed to the tool.

• Words are separated by whitespace, or the end of a line, except in delimited strings, for example:

--paged --pagesize=0x4000 (two words)

--paged--pagesize=0x4000 (one word)
• The end of a line is treated as whitespace, for example:

--paged
--pagesize=0x4000

This is equivalent to:

--paged --pagesize=0x4000
• Strings enclosed in quotation marks ("), or apostrophes (') are treated as a single word. Within a

quoted word, an apostrophe is treated as an ordinary character. Within an apostrophe delimited word,
a quotation mark is treated as an ordinary character.

Use quotation marks to delimit filenames or path names that contain spaces, for example:

--errors C:\My Project\errors.txt (three words)

--errors "C:\My Project\errors.txt" (two words)

Use apostrophes to delimit words that contain quotes, for example:

-DNAME='"ARM Compiler"' (one word)
• Characters enclosed in parentheses are treated as a single word, for example:

--option(x, y, z) (one word)

--option (x, y, z) (two words)
• Within quoted or apostrophe delimited strings, you can use a backslash (\) character to escape the

quote, apostrophe, and backslash characters.
• A word that occurs immediately next to a delimited word is treated as a single word, for example:

--errors"C:\Project\errors.txt"

This is treated as the single word:

--errorsC:\Project\errors.txt
• Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace character are

comment lines. A semicolon or hash character that appears anywhere else in a line is not treated as
the start of a comment, for example:

-o objectname.axf ;this is not a comment

A comment ends at the end of a line, or at the end of the file. There are no multi-line comments, and
there are no part-line comments.

Related concepts
13.1 Overview of via files on page 13-399.

Related references
11.155 --via=filename on page 11-382.

13 Via File Syntax
13.2 Via file syntax rules

ARM DUI0803G Copyright © 2014-2016 ARM Limited or its affiliates. All rights
reserved.

13-400

Non-Confidential

	ARM® Compiler armlink User Guide
	Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Overview of the Linker
	1.1 : About the linker
	1.1.1 : Summary of the linker features
	1.1.2 : What the linker can accept as input
	1.1.3 : What the linker outputs

	1.2 : Linker command-line syntax
	1.3 : What the linker does when constructing an executable image
	1.4 : Support level definitions

	2 : Linking Models Supported by armlink
	2.1 : Overview of linking models
	2.2 : Bare-metal linking model
	2.3 : Partial linking model
	2.4 : Base Platform Application Binary Interface (BPABI) linking model
	2.5 : Base Platform linking model

	3 : Image Structure and Generation
	3.1 : The structure of an ARM ELF image
	3.1.1 : Views of the image at each link stage
	3.1.2 : Input sections, output sections, regions, and program segments
	3.1.3 : Load view and execution view of an image
	3.1.4 : Methods of specifying an image memory map with the linker
	3.1.5 : Image entry points
	The initial entry point for an image

	3.1.6 : Restrictions on image structure

	3.2 : Simple images
	3.2.1 : Types of simple image
	3.2.2 : Type 1 image structure, one load region and contiguous execution regions
	3.2.3 : Type 2 image structure, one load region and non-contiguous execution regions
	3.2.4 : Type 3 image structure, multiple load regions and non-contiguous execution regions

	3.3 : Section placement with the linker
	3.3.1 : Default section placement
	Handling unassigned sections

	3.3.2 : Section placement with the FIRST and LAST attributes
	3.3.3 : Section alignment with the linker

	3.4 : Linker support for creating demand-paged files
	3.5 : Linker reordering of execution regions containing T32 code
	3.6 : Linker-generated veneers
	3.6.1 : What is a veneer?
	3.6.2 : Veneer sharing
	3.6.3 : Veneer types
	3.6.4 : Generation of position independent to absolute veneers
	3.6.5 : Reuse of veneers when scatter-loading
	3.6.6 : Generation of secure gateway veneers

	3.7 : Command-line options used to control the generation of C++ exception tables
	3.8 : Weak references and definitions
	3.9 : How the linker performs library searching, selection, and scanning
	3.10 : How the linker searches for the ARM standard libraries
	3.11 : Specifying user libraries when linking
	3.12 : How the linker resolves references
	3.13 : The strict family of linker options

	4 : Linker Optimization Features
	4.1 : Elimination of common debug sections
	4.2 : Elimination of common groups or sections
	4.3 : Elimination of unused sections
	4.4 : Optimization with RW data compression
	4.4.1 : How the linker chooses a compressor
	4.4.2 : Options available to override the compression algorithm used by the linker
	4.4.3 : How compression is applied
	4.4.4 : Considerations when working with RW data compression

	4.5 : Function inlining with the linker
	4.6 : Factors that influence function inlining
	4.7 : About branches that optimize to a NOP
	4.8 : Linker reordering of tail calling sections
	4.9 : Restrictions on reordering of tail calling sections
	4.10 : Linker merging of comment sections
	4.11 : Merging identical constants

	5 : Getting Image Details
	5.1 : Options for getting information about linker-generated files
	5.2 : Identifying the source of some link errors
	5.3 : Example of using the --info linker option
	5.4 : How to find where a symbol is placed when linking

	6 : Accessing and Managing Symbols with armlink
	6.1 : About mapping symbols
	6.2 : Linker-defined symbols
	6.3 : Region-related symbols
	6.3.1 : Types of region-related symbols
	6.3.2 : Image$$ execution region symbols
	6.3.3 : Load$$ execution region symbols
	6.3.4 : Load$$LR$$ load region symbols
	6.3.5 : Region name values when not scatter-loading
	6.3.6 : Linker defined symbols and scatter files
	6.3.7 : Methods of importing linker-defined symbols in C and C++
	6.3.8 : Methods of importing linker-defined symbols in ARM® assembly language

	6.4 : Section-related symbols
	6.4.1 : Types of section-related symbols
	6.4.2 : Image symbols
	6.4.3 : Input section symbols

	6.5 : Access symbols in another image
	6.5.1 : Creating a symdefs file
	6.5.2 : Outputting a subset of the global symbols
	6.5.3 : Reading a symdefs file
	6.5.4 : Symdefs file format

	6.6 : Edit the symbol tables with a steering file
	6.6.1 : Specifying steering files on the linker command-line
	6.6.2 : Steering file command summary
	6.6.3 : Steering file format
	6.6.4 : Hide and rename global symbols with a steering file

	6.7 : Use of $Super$$ and $Sub$$ to patch symbol definitions

	7 : Scatter-loading Features
	7.1 : The scatter-loading mechanism
	7.1.1 : Overview of scatter-loading
	7.1.2 : When to use scatter-loading
	7.1.3 : Linker-defined symbols that are not defined when scatter-loading
	7.1.4 : Placing the stack and heap with a scatter file
	7.1.5 : Scatter-loading command-line options
	7.1.6 : Scatter-loading images with a simple memory map
	7.1.7 : Scatter-loading images with a complex memory map

	7.2 : Root region and the initial entry point
	7.2.1 : Effect of the ABSOLUTE attribute on a root region
	7.2.2 : Effect of the FIXED attribute on a root region
	7.2.3 : Methods of placing functions and data at specific addresses
	Placing functions and data at specific addresses
	Example of how to place a variable at a specific address without scatter-loading
	Example of how to place a variable in a named section with scatter-loading
	Example of how to place a variable at a specific address with scatter-loading

	7.2.4 : Placing functions and data in a named section
	7.2.5 : Placing __at sections at a specific address
	7.2.6 : Restrictions on placing __at sections
	7.2.7 : Automatically placing __at sections
	7.2.8 : Manually placing __at sections
	7.2.9 : Placing a key in flash memory with an __at section

	7.3 : Example of how to explicitly place a named section with scatter-loading
	7.4 : Placing unassigned sections
	7.4.1 : Default rules for placing unassigned sections
	7.4.2 : Command-line options for controlling the placement of unassigned sections
	7.4.3 : Prioritizing the placement of unassigned sections
	7.4.4 : Specify the maximum region size permitted for placing unassigned sections
	7.4.5 : Examples of using placement algorithms for .ANY sections
	7.4.6 : Example of next_fit algorithm showing behavior of full regions, selectors, and priority
	7.4.7 : Examples of using sorting algorithms for .ANY sections
	7.4.8 : Behavior when .ANY sections overflow because of linker-generated content

	7.5 : Placing veneers with a scatter file
	7.6 : Placement of CMSE veneer sections for a Secure image
	7.7 : Reserving an empty block of memory
	7.7.1 : Characteristics of a reserved empty block of memory
	7.7.2 : Example of reserving an empty block of memory

	7.8 : Placing ARM® C and C++ library code
	7.8.1 : Placing code in a root region
	7.8.2 : Placing ARM® C library code
	7.8.3 : Placing ARM® C++ library code

	7.9 : Aligning regions to page boundaries
	7.10 : Aligning execution regions and input sections
	7.11 : Preprocessing a scatter file
	7.11.1 : Default behavior for armclang -E in a scatter file
	7.11.2 : Using other preprocessors in a scatter file

	7.12 : Example of using expression evaluation in a scatter file to avoid padding
	7.13 : Equivalent scatter-loading descriptions for simple images
	7.13.1 : Command-line options for creating simple images
	7.13.2 : Type 1 image, one load region and contiguous execution regions
	7.13.3 : Type 2 image, one load region and non-contiguous execution regions
	7.13.4 : Type 3 image, multiple load regions and non-contiguous execution regions

	7.14 : How the linker resolves multiple matches when processing scatter files
	7.15 : How the linker resolves path names when processing scatter files
	7.16 : Scatter file to ELF mapping

	8 : Scatter File Syntax
	8.1 : BNF notation used in scatter-loading description syntax
	8.2 : Syntax of a scatter file
	8.3 : Load region descriptions
	8.3.1 : Components of a load region description
	8.3.2 : Syntax of a load region description
	8.3.3 : Load region attributes
	8.3.4 : Inheritance rules for load region address attributes
	8.3.5 : Inheritance rules for the RELOC address attribute
	8.3.6 : Considerations when using a relative address +offset for a load region

	8.4 : Execution region descriptions
	8.4.1 : Components of an execution region description
	8.4.2 : Syntax of an execution region description
	8.4.3 : Execution region attributes
	8.4.4 : Inheritance rules for execution region address attributes
	8.4.5 : Considerations when using a relative address +offset for execution regions

	8.5 : Input section descriptions
	8.5.1 : Components of an input section description
	8.5.2 : Syntax of an input section description
	8.5.3 : Examples of module and input section specifications

	8.6 : Expression evaluation in scatter files
	8.6.1 : Expression usage in scatter files
	8.6.2 : Expression rules in scatter files
	8.6.3 : Execution address built-in functions for use in scatter files
	8.6.4 : ScatterAssert function and load address related functions
	8.6.5 : Symbol related function in a scatter file
	8.6.6 : AlignExpr(expr, align) function
	8.6.7 : GetPageSize() function
	8.6.8 : SizeOfHeaders() function
	8.6.9 : Example of aligning a base address in execution space but still tightly packed in load space
	8.6.10 : Scatter files containing relative base address load regions and a ZI execution region

	9 : BPABI Shared Libraries and Executables
	9.1 : About the Base Platform Application Binary Interface (BPABI)
	9.2 : Platforms supported by the BPABI
	9.3 : Features common to all BPABI models
	9.3.1 : About importing and exporting symbols for BPABI models
	9.3.2 : Symbol visibility for BPABI models
	9.3.3 : Automatic import and export for BPABI models
	9.3.4 : Manual import and export for BPABI models
	9.3.5 : Symbol versioning for BPABI models
	9.3.6 : RW compression for BPABI models

	9.4 : Bare metal and DLL-like memory models
	9.4.1 : BPABI standard memory model
	9.4.2 : Customization of the BPABI standard memory model
	9.4.3 : Linker command-line options for bare metal and DLL-like models
	9.4.4 : Mandatory symbol versioning in the BPABI DLL-like model
	9.4.5 : Automatic dynamic symbol table rules in the BPABI DLL-like model
	9.4.6 : Addressing modes in the BPABI DLL-like model
	9.4.7 : C++ initialization in the BPABI DLL-like model

	9.5 : Symbol versioning
	9.5.1 : Overview of symbol versioning
	9.5.2 : Embedded symbols
	9.5.3 : The symbol versioning script file
	9.5.4 : Example of creating versioned symbols
	9.5.5 : Linker options for enabling implicit symbol versioning

	10 : Features of the Base Platform Linking Model
	10.1 : Restrictions on the use of scatter files with the Base Platform model
	10.2 : Scatter files for the Base Platform linking model
	10.3 : Placement of PLT sequences with the Base Platform model

	11 : Linker Command-line Options
	11.1 : --any_contingency
	11.2 : --any_placement=algorithm
	11.3 : --any_sort_order=order
	11.4 : --api, --no_api
	11.5 : --autoat, --no_autoat
	11.6 : --bare_metal_pie
	11.7 : --base_platform
	11.8 : --bestdebug, --no_bestdebug
	11.9 : --blx_arm_thumb, --no_blx_arm_thumb
	11.10 : --blx_thumb_arm, --no_blx_thumb_arm
	11.11 : --bpabi
	11.12 : --branchnop, --no_branchnop
	11.13 : --callgraph, --no_callgraph
	11.14 : --callgraph_file=filename
	11.15 : --callgraph_output=fmt
	11.16 : --callgraph_subset=symbol[,symbol,...]
	11.17 : --cgfile=type
	11.18 : --cgsymbol=type
	11.19 : --cgundefined=type
	11.20 : --comment_section, --no_comment_section
	11.21 : --compress_debug, --no_compress_debug
	11.22 : --cppinit, --no_cppinit
	11.23 : --cpu=list
	11.24 : --cpu=name
	11.25 : --crosser_veneershare, --no_crosser_veneershare
	11.26 : --datacompressor=opt
	11.27 : --debug, --no_debug
	11.28 : --diag_error=tag[,tag,…]
	11.29 : --diag_remark=tag[,tag,…]
	11.30 : --diag_style=arm|ide|gnu
	11.31 : --diag_suppress=tag[,tag,…]
	11.32 : --diag_warning=tag[,tag,…]
	11.33 : --dll
	11.34 : --dynamic_linker=name
	11.35 : --eager_load_debug, --no_eager_load_debug
	11.36 : --eh_frame_hdr
	11.37 : --edit=file_list
	11.38 : --emit_debug_overlay_relocs
	11.39 : --emit_debug_overlay_section
	11.40 : --emit_non_debug_relocs
	11.41 : --emit_relocs
	11.42 : --entry=location
	11.43 : --errors=filename
	11.44 : --exceptions, --no_exceptions
	11.45 : --export_all, --no_export_all
	11.46 : --export_dynamic, --no_export_dynamic
	11.47 : --filtercomment, --no_filtercomment
	11.48 : --fini=symbol
	11.49 : --first=section_id
	11.50 : --force_explicit_attr
	11.51 : --force_so_throw, --no_force_so_throw
	11.52 : --fpic
	11.53 : --fpu=list
	11.54 : --fpu=name
	11.55 : --got=type
	11.56 : --gnu_linker_defined_syms
	11.57 : --help
	11.58 : --import_cmse_lib_in=filename
	11.59 : --import_cmse_lib_out=filename
	11.60 : --info=topic[,topic,…]
	11.61 : --info_lib_prefix=opt
	11.62 : --init=symbol
	11.63 : --inline, --no_inline
	11.64 : --inlineveneer, --no_inlineveneer
	11.65 : input-file-list
	11.66 : --keep=section_id
	11.67 : --keep_intermediate
	11.68 : --largeregions, --no_largeregions
	11.69 : --last=section_id
	11.70 : --legacyalign, --no_legacyalign
	11.71 : --libpath=pathlist
	11.72 : --library=name
	11.73 : --library_type=lib
	11.74 : --list=filename
	11.75 : --list_mapping_symbols, --no_list_mapping_symbols
	11.76 : --load_addr_map_info, --no_load_addr_map_info
	11.77 : --locals, --no_locals
	11.78 : --lto, --no_lto
	11.79 : --lto_keep_all_symbols, --no_lto_keep_all_symbols
	11.80 : --lto_intermediate_filename
	11.81 : --lto_level
	11.82 : --lto_relocation_model
	11.83 : --mangled, --unmangled
	11.84 : --map, --no_map
	11.85 : --match=crossmangled
	11.86 : --max_er_extension=size
	11.87 : --max_veneer_passes=value
	11.88 : --max_visibility=type
	11.89 : --merge, --no_merge
	11.90 : --merge_litpools, --no_merge_litpools
	11.91 : --muldefweak, --no_muldefweak
	11.92 : -o filename, --output=filename
	11.93 : --output_float_abi=option
	11.94 : --overlay_veneers
	11.95 : --override_visibility
	11.96 : -Omax
	11.97 : --pad=num
	11.98 : --paged
	11.99 : --pagesize=pagesize
	11.100 : --partial
	11.101 : --pie
	11.102 : --piveneer, --no_piveneer
	11.103 : --pltgot=type
	11.104 : --pltgot_opts=mode
	11.105 : --predefine="string"
	11.106 : --preinit, --no_preinit
	11.107 : --privacy
	11.108 : --ref_cpp_init, --no_ref_cpp_init
	11.109 : --ref_pre_init, --no_ref_pre_init
	11.110 : --reloc
	11.111 : --remarks
	11.112 : --remove, --no_remove
	11.113 : --ro_base=address
	11.114 : --ropi
	11.115 : --rosplit
	11.116 : --rw_base=address
	11.117 : --rwpi
	11.118 : --scanlib, --no_scanlib
	11.119 : --scatter=filename
	11.120 : --section_index_display=type
	11.121 : --show_cmdline
	11.122 : --show_full_path
	11.123 : --show_parent_lib
	11.124 : --show_sec_idx
	11.125 : --sort=algorithm
	11.126 : --split
	11.127 : --startup=symbol, --no_startup
	11.128 : --stdlib
	11.129 : --strict
	11.130 : --strict_enum_size, --no_strict_enum_size
	11.131 : --strict_flags, --no_strict_flags
	11.132 : --strict_ph, --no_strict_ph
	11.133 : --strict_relocations, --no_strict_relocations
	11.134 : --strict_symbols, --no_strict_symbols
	11.135 : --strict_visibility, --no_strict_visibility
	11.136 : --strict_wchar_size, --no_strict_wchar_size
	11.137 : --symbols, --no_symbols
	11.138 : --symdefs=filename
	11.139 : --symver_script=filename
	11.140 : --symver_soname
	11.141 : --tailreorder, --no_tailreorder
	11.142 : --tiebreaker=option
	11.143 : --unaligned_access, --no_unaligned_access
	11.144 : --undefined=symbol
	11.145 : --undefined_and_export=symbol
	11.146 : --unresolved=symbol
	11.147 : --use_definition_visibility
	11.148 : --userlibpath=pathlist
	11.149 : --veneerinject, --no_veneerinject
	11.150 : --veneer_inject_type=type
	11.151 : --veneer_pool_size=size
	11.152 : --veneershare, --no_veneershare
	11.153 : --verbose
	11.154 : --version_number
	11.155 : --via=filename
	11.156 : --vsn
	11.157 : --xo_base=address
	11.158 : --xref, --no_xref
	11.159 : --xrefdbg, --no_xrefdbg
	11.160 : --xref{from|to}=object(section)
	11.161 : --zi_base=address

	12 : Linker Steering File Command Reference
	12.1 : EXPORT steering file command
	12.2 : HIDE steering file command
	12.3 : IMPORT steering file command
	12.4 : RENAME steering file command
	12.5 : REQUIRE steering file command
	12.6 : RESOLVE steering file command
	12.7 : SHOW steering file command

	13 : Via File Syntax
	13.1 : Overview of via files
	13.2 : Via file syntax rules

