
Porting the ARM Webserver
Version 1.6

Programmer’s Guide
Copyright © 1999-2001 ARM Limited. All rights reserved.
ARM DUI 0075D

Porting the ARM Webserver
Programmer’s Guide

Copyright © 1999-2001 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, PrimeCell, Angel, ARMulator, EmbeddedICE, ModelGen, MultiICE, ARM7TDMI,
ARM7TDMI-S, ARM9TDMI, TDMI, and STRONG are trademarks of ARM Limited.

Portions of source code are provided under the copyright of the respective owners, and are acknowledged in
the appropriate source files:

Copyright © 1998-1999 InterNiche Technologies Inc.

Copyright © 1984, 1985, 1986 by the Massachusetts Institute of Technology.

Copyright © 1982, 1985, 1986 by the Regents of the University of California. All Rights Reserved.
Redistribution and use in source and binary forms are permitted provided that the above copyright notice and
this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other
materials related to such distribution and use acknowledge that the software was developed by the University
of California, Berkeley. The name of the University may not be used to endorse or promote products derived
from this software without specific prior written permission.

Copyright © 1988, 1989 by Carnegie Mellon University. All Rights Reserved. Permission to use, copy,
modify, and distribute this software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of CMU not be used in advertising
or publicity pertaining to distribution of the software without specific, written prior permission.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole or any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with prior written permission of the copyright holder.
The product described in this document is subject to continuous development and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,

Change history

Date Issue Change

Jan 1999 A First release

Feb 1999 B Second release, minor changes

Sept 2000 C Third release

June 2001 D Fourth release
ii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded. This document is intended only to assist the reader in the use of the product.
ARM Ltd shall not be liable for any loss or damage arising from the use of any information in this document,
or any error or omission in such information, or any incorrect use of the product.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. iii

iv Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Contents
Programmer’s Guide

Preface
About this book .. viii
Feedback ... x

Chapter 1 Introduction
1.1 About the ARM Webserver ... 1-2
1.2 Demonstration program .. 1-3

Chapter 2 About the ARM Webserver
2.1 Server architecture .. 2-2
2.2 Embedded data and executable files in the Virtual File System 2-7
2.3 Users, authentication, and security ... 2-9
2.4 System requirements .. 2-11

Chapter 3 Porting Step-by-Step
3.1 Setting up your source tree ... 3-2
3.2 Start with HTML sources ... 3-5
3.3 HTML Compiler ... 3-6
3.4 Provide the system routines .. 3-7
3.5 Initialization routine ... 3-10
3.6 User and password lookup routine .. 3-11
3.7 SSI routines .. 3-13
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. v

3.8 CGI routines ... 3-18

Chapter 4 Using the HTML Compiler
4.1 About the HTML Compiler .. 4-2
4.2 Usage ... 4-3
4.3 Sample input file ... 4-5

Appendix A Building the Demonstration Program
A.1 Requirements ... A-2
A.2 Installation procedure ... A-3
A.3 Building using ADS for Windows .. A-4
A.4 Building using ADS from the command line ... A-6

Glossary
vi Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Preface

This preface introduces the ARM Webserver porting procedure. It contains the
following sections:

• About this book on page viii

• Feedback on page x.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. vii

Preface
About this book

This guide is provided with the ARM Webserver protocol software.

It is assumed that the ARM Webserver porting sources are available as a reference. It is
also assumed that the reader has access to programmer guides for C and ARM assembly
language.

Intended audience

This document has been written for experienced embedded systems programmers, with
a general understanding of what an embedded webserver does.

Organization

This book is organized into the following chapters:

Chapter 1 Introduction

This chapter introduces the ARM Webserver software.

Chapter 2 About the ARM Webserver

This chapter provides an architectural overview of the ARM
Webserver, and discusses the Virtual File System (VFS), security
issues, and system requirements.

Chapter 3 Porting Step-by-Step

This chapter outlines what you need to do, step-by-step, to get the
server working in your embedded system.

Chapter 4 Using the HTML Compiler

This chapter describes how to use the HTML Compiler, a software
program which takes the files for your web pages, and compiles
them into C structures which become VFS files in your embedded
server.

Appendix A Building the Demonstration Program

This appendix details the requirements, installation procedure,
and steps required to build the demonstration program.
viii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Preface
Typographical conventions

The following typographical conventions are used in this document:

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate.

italic Highlights special terminology, denotes internal cross-references,
and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or
option name.

typewriter italic

Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

typewriter bold Denotes language keywords when used outside example code.

Further reading

The following documents are referenced in this guide or provide reference material.

ARM publications

Refer to the following ARM publications for more information:

• The documentation set for the ARM Developer Suite (ADS).

• Porting TCP/IP Programmer’s Guide (ARM DUI 0144).

• ARM Network Protocols Command-line Interface Reference Guide
(ARM DDI 0145)

Other publications

The following publications may also provide useful background reading:

• Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, 2nd
Edition, 1988, Prentice-Hall (ISBN 0-13-110370-8).

• RFC 1945, Berners-Lee, T., Fielding, R. and Frystyk, H., Hypertext Transfer
Protocol—HTTP/1.0, May 1996.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. ix

Preface
Feedback

ARM Limited welcomes feedback on the ARM Webserver and documentation.

Feedback on the ARM Webserver software

If you have any problems with the ARM Webserver and you have a valid support
contract, please contact your supplier. To help us provide a rapid and useful response,
please submit error reports in the form specified in the support agreement, giving:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type, and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
x Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Chapter 1
Introduction

This chapter introduces the ARM Webserver porting procedure. It contains the
following section:

• About the ARM Webserver on page 1-2

• Demonstration program on page 1-3.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM Webserver

The information in this manual enables you to port the ARM Webserver to an embedded
system. By the end of the porting procedure, your system will be able to serve Hypertext
Markup Language (HTML) features, for example:

• text files

• forms

• graphics

• Java Applets.

Some HTML knowledge is needed, but everything you need to know about Hypertext
Transfer Protocol (HTTP) to port the server is in this document. If you have no previous
experience with HTML, it is suggested that you learn the basics of HTML programming
and write a few practice web pages.

1.1.1 Terms

In this document, the following terms are used:

Server When used without other qualification, refers to the ARM Webserver
code as ported to an embedded system.

System Refers to your embedded system.

Sockets Refers to the Transmission Control Protocol/Internet Protocol (TCP/IP)
Application Program Interface (API) developed for UNIX at the
University of California, Berkeley.

End user Refers to the person who ultimately uses your product.

You Indicates the user or engineer who is porting the server.

Conventions used throughout the document, such as the use of bold or italic font, are
explained in Typographical conventions on page ix in the Preface.
1-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Introduction
1.2 Demonstration program

The ARM Webserver is provided with a sample port. This links the server code to a
TCP/IP stack to build a sample webserver. Currently, the demonstration program is
shipped for an ARM Integrator Board, using the ARM TCP/IP stack. The ARM
Integrator Board and TCP/IP can be purchased from ARM (see the ARM website at
http:\\www.arm.com).

The demonstration program compiles with the ARM Developer Suite (ADS), version
1.0.1. It includes a sample set of HTML pages that demonstrate the basic features of
webservers.

Embedded-systems engineers are encouraged to experiment with these examples before
starting the actual port. The example Virtual File System (VFS) is layered on the debug
file system on the host, so you can:

• create HTML files on disk

• edit them there until the look and feel is right

• compile them into the VFS.

The ARM ADS includes source level debuggers, so you can implement and perform
actual executions of sample Common Gateway Interface (CGI) routines.

The ARM Webserver was designed with the restrictions of embedded systems taken
into account. Like most embedded systems code, it is written in the C programming
language, conforms to the ANSI standard, and is compatible with C++. It has debugging
ifdefs and macros to cooperate with source level debuggers and In-Circuit Emulators
(ICE) when debugging. The memory and sockets APIs were selected based on their
widespread use in the embedded systems industry, but are used in such a way that they
can easily be mapped to less standard environments. The HTML Compiler is designed
to be invoked from within a standard makefile, and can have HTML files as
dependencies. All the HTML files are designed to be placed in a single directory and
compiled into a single library that can be easily linked. The entire mapping of typedefs,
local macros, including system header files, and so on, is done in a single include file,
webport.h, which is included by all the C source files.

If you are already familiar with the server code and want to start porting immediately,
see Chapter 3 Porting Step-by-Step. Otherwise, it is recommended that you browse
through the next chapter to get an idea of what facilities are available on your server,
and how to make the best use of them.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-3

Introduction
1-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Chapter 2
About the ARM Webserver

This chapter provides an architectural overview of the ARM Webserver, and discusses
the VFS, security issues, and system requirements. It contains the following sections:

• Server architecture on page 2-2

• Embedded data and executable files in the Virtual File System on page 2-7

• Users, authentication, and security on page 2-9

• System requirements on page 2-11.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-1

About the ARM Webserver
2.1 Server architecture

The ARM Webserver was specifically designed for use in an embedded system, unlike
most UNIX servers. UNIX servers tend to optimize speed at the expense of size and
complexity, whereas ARM favors simplicity and minimal code size. Here are some
examples of where ARM has taken a divergent approach.

Memory requirements

A primary consideration of every aspect of the design is to minimize the
amount of firmware storage, static RAM, and dynamic RAM required.

Multitasking

Since many embedded systems have limited multitasking and command
shell capabilities, handling a connection by UNIX-like fork() and exec()
functions may not be practical. The ARM server handles multiple
connections by way of a linked list of dynamic memory structures
(usually one per connection) with state information. A single regular
timer tick loops through the list and gives each connection CPU time to
do some work. This work usually involves sending more data into a
socket.

File system Many embedded systems have no hard disk or file system capabilities.
Even when they do, it is not always the best place to keep the HTML data.
Therefore, this server has a lightweight, read-only VFS which, in
cooperation with the HTML Compiler, handles keeping HTML data in
ROM or RAM, and supports compression and decompression. For
information on the HTML Compiler, see Chapter 4 Using the HTML
Compiler.

Name/value pair support

Most embedded systems that implement a webserver encounter a
problem when they need to iterate pages (that is, when they need several
pages that are all nearly identical, but numbered differently). An example
is the page describing port statistics, used in the demonstration program
for the eight-port Ethernet hub. On a conventional webserver, you would
have to maintain eight separate pages for the eight ports, for example,
portstat1.html, portstat2.html, and so on. A clickable bitmap, whereby
you could get statistics by clicking on a port, would have links to the eight
different pages.

The name/value support allows you to maintain a single page and to code
your links with the port number (or whatever data you want to pass) as
standard form name/value pairs. In the example above, a single page
named portstat.html could be linked to by coding portstat?port=1,
2-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

About the ARM Webserver
portstat?port=2, and so on. This saves space and makes your code
cleaner and more maintainable. Refer to the demonstration program for
examples.

The major components of the server are the HTTP engine, the VFS, and the CGI.
Figure 2-1 shows how they fit together, and they are described in more detail in this
section. The gray shaded boxes represent the modules provided as part of the ARM
Webserver.

Figure 2-1 Server components

������
��	
�

�����������	��	��
��
��������

�������������
�����������

��� ���

����� �!���

"������#��
$������	#%

��	��	�������#��
	##���
�����$%&����	�$%&�	��������

��������
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-3

About the ARM Webserver
2.1.1 HTTP engine

The HTTP engine code performs the following tasks:

• parses incoming HTTP requests from a newly connected socket, and builds
outgoing HTTP headers for replies

• builds and frees the httpd objects (the per-connection dynamic data structures)

• handles server-side includes (SSIs) embedded in HTML files

• diverts HTTP POST and GET form replies to CGI code

• keeps clickable bitmap .map file information encoded in small tables, and resolves
HTTP requests based on clicked bitmaps.

The HTTP code creates an httpd structure (defined in httpd.h) and adds it to a master
list for each new connection. A single regular timer tick loops through the list and gives
each connection CPU time to do some work, which usually involves sending more data
to the end user. The maximum amount of data to allow on a single tick can be set in
webport.h by setting the value of the macro HTTPMAXSEND.

The bulk of the HTTP code is in httpsrv.c, which you should not need to change.

2.1.2 Virtual File System

The VFS contains all the file input/output routines called by the HTTP and CGI
modules. It performs the following functions:

• Scans all file requests to see if they are for an embedded VFS file or not. If not,
the request can be forwarded to another file system.

• Handles decompression of compressed files during read operations.

• Contains flags indicating special files, such as CGI or SSI functions.

A single C #define is all that is required to remove either the entire VFS or the support
for a native file system. However, even if all the HTML files the server will ever use can
be made available in a native file system, there are other reasons to use the VFS:

• fast, direct embedded CGI handling

• file compression

• the security of having the file data in ROM.

Note
 You can mix the two systems, that is, VFS files can have hyperlinks to native files, and
native files can have hyper-links to VFS files.
2-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

About the ARM Webserver
2.1.3 Common Gateway Interface

In most embedded systems, the main purpose of CGI routines is to use data from HTML
forms to configure the system. The CGI on the server is optimized for this purpose.

In general terms, CGI is an HTTP feature that allows the end user to execute a
predefined program on the server. Usually, the end user initiates this by getting an
HTML page that contains a form from the server. The form specifies a file the browser
should reference when it sends back filled-in form data. When the end user has filled in
the form, the browser sends a GET or POST request for the file referenced in the form, with
the form data appended to the file name as a string of encoded text.

On a conventional UNIX webserver, the server then executes a process (indicated by the
file name in the form), and passes it the form data. The process executes a C program
or Perl script that processes the form data and returns HTML text to be sent back to the
browser.

The ARM Webserver assumes that there is no command shell capability. The file
indicated by the GET or POST reply to a form is looked up in the VFS. If the programmer
and HTML form author are cooperating, this file will be a CGI file, having a pointer to
a CGI routine to execute instead of file data. You, as part of the porting effort, supply
the CGI routine. All the form reply data items are parsed from the HTTP header and
stored in a C structure, struct formdata in httpd.h, which is passed to the CGI routine.

The CGI routine is also passed a pointer to the httpd structure, from which it can get the
transaction’s socket. This routine can do whatever you want with the passed data, and
return any HTML text you want. It can also send HTML data into the socket, and it can
close the socket. On a system with multitasking, the CGI routine can block, and the
logic in the ARM Webserver will not be affected. It can loop indefinitely, sending
occasional updates to the browser. On a port to a UNIX-like system, this CGI routine
could execute a shell script, allowing any standard CGI script or program to be used
with the server.

The exact semantics of the CGI routine are designed to take advantage of generic form
reply HTML text that you can modify and embed with the HTML Compiler. See CGI
routines on page 3-18 for details.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-5

About the ARM Webserver
2.1.4 System interfaces

System interfaces are the APIs that make system resources available to the server. These
interfaces can be divided into two categories:

• memory access (malloc() and free())

• network access (sockets).

On systems with native file systems, the file input/output calls are also found in the
network access category. On many embedded systems, all the required APIs already
exist, and you only need to include the system header files (for example, memory.h and
sockets.h) in webport.h.

On systems where the existing memory and/or TCP/IP APIs do not match those used
by the server, the porting engineer will have to write a glue layer that implements the
expected functionality of each of the server’s required routines. A list of these routines
and their exact semantics is given in Provide the system routines on page 3-7.
2-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

About the ARM Webserver
2.2 Embedded data and executable files in the Virtual File System

This section is designed to expand on the overview of the VFS (see Virtual File System
on page 2-4). It explains, in detail, the aspects of the VFS you may want to modify:

• File compression

• Layering VFS on a pre-existing file system on page 2-8.

2.2.1 File compression

HTML files are, by default, compressed by the HTML Compiler before their data is
encoded into C files. This simple compression is based on frequently occurring text in
the HTML files and is called tag compression (as opposed to generic compression
applied to HTML files) since it is based on HTML tags and patterns. Tag compression
is useful because it is:

• designed to decompress quickly

• implemented with very little code

• extendable.

The resulting compressed data can easily undergo further compression using standard
techniques.

Tag compression works by taking a list of text patterns which are expected to occur in
the HTML files, and replacing these patterns in the HTML files with 1-byte codes. The
text patterns are often HTML tags, on which the term tag compression is based. The
1-byte codes are simply a 7-bit index into an array of tag text strings. The high bit is
always set so the decompression logic can identify the tags in the compressed HTML
stream.

The HTML decompression code can be omitted by removing the following define from
your build:

#define HTML_COMPRESSION 1

If this is done, you should ensure that the HTML Compiler command lines also have
the tag compression feature disabled.

You can optimize tag compression by inserting frequently used strings from your own
HTML pages into the tags table. The list of tags is in the file htcmptab.h. Since this file
contains actual C data, it should not be included in more than one C source file. Also,
since it is included in the HTML Compiler, the HTML Compiler must be recompiled
with the same htcmptab.h file with which the server is compiled.

Note
 Because only seven bits of index are available, the table is limited to 128 entries.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-7

About the ARM Webserver
2.2.2 Layering VFS on a pre-existing file system

The ARM Webserver can use either the VFS or a native file system. It can also use both.
In the server sources, all the file system calls are made to the VFS routines listed below.
These routines are coded to search the VFS for the passed file names or pointers first,
and default to a native file system if the file is not found in the VFS.

The VFS can be excluded from the server by adding to webport.h the line:

#define HT_NOVFS 1 /* ifdef out the VFS */

This redefines the VFS routines (see Table 2-1) to map directly to the standard routines.

Support for a native file system is enabled by the define:

#define HT_LOCALFS /* TRUE if there is a local file system */

Conversely, omitting this define from your build will remove native file system support.
If this feature is enabled, the ARM Webserver will expect your embedded system to
support the standard file input/output routines listed in Table 2-1.

Normally, you will never have to worry about the interface to the VFS, but if you decide
to modify it, you will notice that the VFS calls are similar in function to standard C
library calls. Setting the HT_NOVFS #define above actually defines macros that map the
VFS calls directly to the library calls. The only difference is that a VFILE pointer (to a
VFS structure) is used instead of a system FILE pointer. Table 2-1 lists the VFS calls and
their standard equivalents.

Table 2-1 VFS calls and their standard equivalents

VFS Standard

vfopen() fopen();

vfread() fread();

vfseek() fseek();

vfclose() fclose();

vgetc() getc();
2-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

About the ARM Webserver
2.3 Users, authentication, and security

The default security mechanism supported by the server is the standard HTTP Basic,
uuencoded (a simple encryption algorithm) user and password mechanism. When the
end user attempts to access a secured page (usually a form that can configure sensitive
aspects of the device), the browser prompts for the entry of a user name and password.
The correct information must be entered before the server will provide the secured page.

Internally, the following happens:

1. The browser makes a conventional page request for the secured page.

2. The browser receives a reply from the server indicating that authorization is
required.

3. The browser queries the end user for the password information.

4. The password information is uuencoded.

5. The browser requests the page again with an authentication field and the
uuencoded password information appended to the HTTP request header.

6. The server uudecodes (decrypts) the password information.

7. If the user name and password are deemed valid, the server provides the page.

2.3.1 Background information

Many embedded systems were not originally designed to have lists of user names and
passwords. They assumed that anyone who could physically access the device was
allowed to reconfigure it, change paper trays, set IP addresses, and so on. Conversely,
HTTP and webservers evolved on UNIX machines, where users with passwords are file
owners. To password-protect an HTML page on a device without user lists requires the
addition of a user and password facility.

Many manufacturers of these devices have already faced a similar problem when they
added Simple Network Management Protocol (SNMP) agents to their products. SNMP
GET and SET operations require community strings which are fundamentally similar to
passwords. One approach used by manufacturers of such SNMP enabled products,
when supporting webserver management, is to accept any user name as valid, as long
as the password matches an SNMP SET community string.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-9

About the ARM Webserver
2.3.2 Higher levels of security

While these mechanisms are secure enough for most real-world applications, they do
not provide the level of security offered by public and private key encryption systems.
For example, an intruder with a packet monitor and a uudecoding program could
monitor a legitimate user entering a password, decode the password, and later use it to
access sensitive pages on the embedded device.

Recently, a more sophisticated authentication scheme, MD5, or Digest authentication,
has been standardized. If MD5 authentication is required, you must #define HT_MD5AUTH
in the webport.h file. The type of authentication to be used is set on a per-page basis in
the input file for the HTML compiler (see Command lines on page 4-3 for more
information).

2.3.3 Requirements for embedded applications

For typical embedded applications, the system requirements are fairly straightforward.
You must:

• indicate which files are protected

• provide a mechanism for checking password information.

The implementation details of this process are discussed in User and password lookup
routine on page 3-11.
2-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

About the ARM Webserver
2.4 System requirements

The ability to run TCP/IP is the main system requirement for porting the ARM
Webserver. If your system runs TCP/IP, then it almost certainly has the requisite
hardware and system software for a webserver. Here is a brief list of specific
requirements, each of which is further explained in this section:

• TCP/IP and sockets

• Static memory on page 2-12

• Dynamic memory on page 2-13

• Clock tick on page 2-14.

2.4.1 TCP/IP and sockets

Browsers communicate with the ARM Webserver by way of TCP/IP, and the most
common API for TCP/IP in embedded systems is sockets. The webserver code assumes
that your embedded system already has TCP/IP. If it does not, ARM can provide TCP/IP
as a separate product. The code also assumes that the embedded system has some kind
of API to access the TCP/IP connection services. If your API is socket-oriented, the
code in the ARM Webserver package maps directly to your socket API, removing the
bulk of your porting work.

If your API is not socket-oriented, you need to provide the ability to perform a TCP/IP
LISTEN to accept incoming connections, and to read and write to TCP/IP connections.
Details of this procedure are provided in Initialization routine on page 3-10.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-11

About the ARM Webserver
2.4.2 Static memory

As with all embedded system code, the ARM Webserver takes up both code and data
space. On embedded systems, the code is usually stored in ROM, and can be moved to
RAM at boot time. The exact amount of code space required will vary, depending on:

• which webserver features you enable through #define

• your compiler

• your processor.

Table 2-2 and Table 2-3 show the sizes (from the linker) of the major modules in the
Widget demonstration compilation (see Appendix A Building the Demonstration
Program).

Note
 These figures are subject to change without notice.

Table 2-2 ARM Webserver basic requirements in bytes

Webserver file
Thumb Code and

read-only data
Read-write

data
Zero-init

data
Thumb

ROM
RAM

httpcgi.o 1332 4 16 1336 20

httpsrv.o 3616 252 0 3868 252

htmllib.o 68 0 0 68 0

httpport.o 3196 4 232 3200 236

vfsfiles.o 3616 252 0 3868 252

vfsutil.o 532 100 0 632 100

Totals 12360 612 248 12972 860

Table 2-3 VFS basic requirements in bytes

VFS file
Thumb Code and

read-only data
Read-write

data
Zero-init

data
Thumb

ROM
RAM

formdata.o 244 0 0 244 0

gifdata.o 13788 0 0 13788 0

htmldata.o 6244 0 0 6244 0

Totals 20276 0 0 20276 0
2-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

About the ARM Webserver
Conditions of the above sizes are:

• VFS enabled

• native file system disabled

• tag compression enabled

• authentication disabled

• debug code disabled

• default buffer sizes

• ARM ADS 1.0.1 compiler with space optimizations

• memory requirements exclude C runtime libraries, board support and
application-specific code.

Embedded HTML and graphics data is generated from the .html, .gif, and other source
files provided with the demonstration program.

With most server installations, the VFS uses more memory that the webserver itself. All
the HTML and graphics data is embedded there. The size of all the .html and .gif files,
and the VFS structure overhead in the demonstration program is 20276 bytes.

2.4.3 Dynamic memory

Every time an HTML connection is established, the ARM Webserver will need to
allocate memory to build the structures used to manage the connection, and buffer the
connection data. The exact amount will vary, depending on:

• the buffer sizes set in webport.h

• whether or not the connection requires file I/O

• whether the connection accesses a file with an SSI.

In general, about 4KB of space per connection should be assumed. Most of this is used
for data buffers, and can be cut considerably by reducing the buffer size defines.

In addition to the per-connection requirement, you should be aware of the number of
simultaneous connections that are likely to occur. This depends on a variety of factors,
listed here in order of importance:

• the number of browsers using the server at once

• the design of the browser software

• the TCP/IP stack in use by the browser

• the content of the current HTML page (graphics, frames, and forms).
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-13

About the ARM Webserver
In general, you should allow for one connection for each browser in use, and add one
more for each graphic, frame, or form in the current HTML page. In embedded systems
that only use the ARM Webserver for system monitoring and configuration, it might be
practical to:

• Limit access to one browser at a time. This can be enforced based on the IP
address in the TCP/IP listen and accept port code.

• Put no more than one form or graphic in each HTML page.

Doing both of these would allow the server to run with only two connections.

Dynamic memory is allocated by calls to a routine called npalloc(), and released by
calls to npfree(). You must provide both of these routines. Specifications for these are
found in Provide the system routines on page 3-7.

2.4.4 Clock tick

Not all HTTP requests can be completely resolved by the initial call to the function
http_connection(). For example, a GET on a file larger than the TCP/IP window size may
block, because large files might not fit into the available socket buffers. Therefore, the
server needs to periodically get some CPU cycles to perform individual blocks of work,
each block involving the transfer of a smaller, manageable part of the overall file. The
final block of work involves cleaning up when the request has been completed.
2-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Chapter 3
Porting Step-by-Step

This chapter outlines what you need to do, step-by-step, to get the server working in
your embedded system. It contains the following sections:

• Setting up your source tree on page 3-2

• Start with HTML sources on page 3-5

• HTML Compiler on page 3-6

• Provide the system routines on page 3-7

• Initialization routine on page 3-10

• User and password lookup routine on page 3-11

• SSI routines on page 3-13

• CGI routines on page 3-18.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-1

Porting Step-by-Step
3.1 Setting up your source tree

The source files for the ARM Webserver software and the HTML Compiler share some
include files. Two of these include files, webport.h and htcmptab.h, will probably be
modified during the course of the porting process, so you must take care to ensure that
the webserver sources and the HTML Compiler sources are using the same files:

• Source and include files

• Port files on page 3-4

• HTML compression tags table on page 3-4

• HTML compiler output on page 3-4.

3.1.1 Source and include files

The source and include files are listed in the following sections.

Note
 Do not change these files directly. Changing them makes it harder for ARM to provide
technical support, and might make them incompatible with future server upgrades.

Source files

The source files are:

webserve\httpsrv.c The main HTTP code.

webserve\httpcgi.c The CGI (forms) handling logic.

webserve\htauth.c The authentication and authorization code sources.

webserve\htmllib.c Assorted support routines used by the webserver.

webserve\htusrcgi.c

Stub routines that can be expanded to implement CGI and SSI
functionality if VFS is not in use (not required if VFS is used).

webserve\formdata.c

Generic form return HTML data.

vfs\vfsfiles.c The main VFS sources.

vfs\vfsutil.c Assorted support routines used by the VFS.

vfs\vfssync.c Synchronize VFS with a backing store such as FLASH memory.
3-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
Include files

The main include files for the above sources should not need to be changed either. These
are:

webserve\httpd.h

The main webserver declarations.

webserve\cgi.h

The CGI declarations.

webserve\htmllib.h

Declarations for support routines.

webserve\htusrcgi.h

Declarations for routines in htusrcgi.c.

vfs\vfsfiles.h

The VFS declarations.

vfs\vfsport.h

Declarations required to port the VFS to other platforms.

HTML compiler source

The last source file that should remain unchanged is the source for the HTML Compiler.
It is a single large .c file that calls only standard C library routines. Although it is
compiled as an application for the development system and is not linked to the actual
ARM Webserver system, it shares include files with the server code, and must therefore
be maintained in parallel.

htmlcomp\htmlcomp.c

HTML Compiler source code.

Note
 It is especially important to rebuild the HTML compiler if the htcmptab.h is modified.
This file is described in Port files on page 3-4.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-3

Porting Step-by-Step
3.1.2 Port files

Port files are the files that you are expected to provide or modify from those provided
in the demonstration program. These files are:

your_project\webport.h

Port definitions file. Included by all ARM Webserver C files.

your_project\httpport.c

Provides the webserver with access to, for example, sockets and timers.
This also contains CGI and SSI routines that your port requires.

your_project\htmlusrd.h

Is included by the htmldata.c file produced by the HMTL compiler. It is
provided to allow you to add code to the file containing VFS file
structures. The default content of this file is a definition of the function
vfs_setup(), used to initialize the webserver VFS and to return a pointer
to the VFS data structure.

3.1.3 HTML compression tags table

You can edit the HTML compression tags table but, if you do, both the HTML Compiler
and the ARM Webserver files must be rebuilt.

your_project\htcmptab.h

Compression tags table.

3.1.4 HTML compiler output

The HTML Compiler creates .c and .h files with default names. The names might be
changed by modifying the HTML Compiler input file, but they are included here for
completeness:

your_project\htmldata.c

Default filename for VFS data, SSI, and CGI stubs.

your_project\htmldata.h

Declarations and prototypes for htmldata.c.
3-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
3.2 Start with HTML sources

The first thing your webserver needs is something to serve. You must have at least one
HTML page to determine whether your webserver is operational. If some or all the
pages are to go in the VFS, you should first set up your makefiles and HTML compiling
in an organized manner.

You can start with one or more pages. They can be created using any HTML authoring
tool, or built manually with a simple text editor. If you want to begin coding right away
and do not have your own pages, you can use pages from the demonstration program
(see Demonstration program on page 1-3). HTML links do not have to be resolvable for
you to prototype a server, but any graphics files your pages reference should be
included.

3.2.1 Index.htm

Generally, you can choose the names of your pages (although it is recommended that
HTML pages end in .htm or .html). The home or main page, however, should be named
index.htm. Traditionally, this is the name of the page that is at the root of the system of
links in a webserver. Whenever you connect to the root of a new webserver (for
example, by typing in a URL like www.company.com), the page you first see is probably
named index.htm or index.html. If you already have a set of HTML pages, it is likely
that one of them is named index.htm.

The reason for naming the root page index.htm is that the server assigns this name by
default if no file name is specified in the request from the browser. If using the ARM
Webserver primarily for configuration and status monitoring, the end user will probably
access your device by typing the IP address or host name in the URL window of a
browser, for example:

http://192.9.200.99/

The browser then sends a GET request for a file, but the filename will be /. When this
happens, the server is returns the index.htm file.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-5

Porting Step-by-Step
3.3 HTML Compiler

If you plan to use the VFS, the next step is to compile the HTML files into the data
structures and strings that will be the actual VFS files. If you are working solely on a
native file system, you should skip this step.

3.3.1 Building the HTML Compiler

The first step is to get the HTML Compiler working on your development system. The
compiler source is a single C source file, with a few standard includes, and a few
includes from the ARM Webserver package. It can be built either by using the supplied
makefile, or by building the htmlcomp.mcp file with ADS 1.0.1.

3.3.2 Running the HTML Compiler

The exact use of the HTML Compiler is detailed in Chapter 4 Using the HTML
Compiler. To build an initial prototype webserver with only a few pages, you can use
the compiler’s default settings. To run the compiler:

1. Create an input file with the names of your HTML files. This is a simple text file
with one file name per line. You can create it with any plain text editor, such as
vi, Notepad, or ADS 1.0.1. You must also include the names of any .gif, .jpeg,
.map, or Java bytecode files you want in your VFS. Any kind of file can be
included here. If the HTML Compiler does not understand the type (as indicated
by the file extension), it will simply encode a binary image of the file.

2. Run the HTML Compiler. Use the -i option to give it the name of your input file.
If your input file name is htmllist.vfs, for example, the correct syntax would be:

armsd -armul -exec htmlcomp.axf -i htmllist.vfs

The HTML Compiler, in this case, will create a file named htmldata.c, which
includes the VFS file data and structures for your input files. This file will be
linked into your embedded image by the initialization routines described in
Provide the system routines on page 3-7. If the file is too big (for example, it may
slow the compiler or exceed the maximum file size for your editor), refer to Usage
on page 4-3 for information on the -o option that can be used to provide multiple,
smaller files.
3-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
3.4 Provide the system routines

At this stage in the port procedure, you must provide the glue routines to initialize the
ARM Webserver, and give it access to the networking and memory resources. The
sections below describe the routines needed, and provide examples and suggestions:

• Dynamic memory

• TCP/IP and sockets

• String library on page 3-8

• Timer tick routine on page 3-8.

In all cases, examples are available in the demonstration program.

3.4.1 Dynamic memory

All the dynamic memory on the ARM Webserver is allocated by calls to npalloc(), and
released by calls to npfree(). The syntax for these is exactly the same as the standard C
library calls malloc() and free(), with the exception that the memory returned by
npalloc() is assumed to be pre-initialized to all zeros. In this respect, npalloc() is like
calloc().

If your embedded system already supports standard calloc() and free() calls, you need
only add the following lines to webport.h:

#define npalloc(size) calloc(1,size)

#define npfree(ptr) free(ptr)

If your system does not support calloc() and free(), you will need to implement them.
A description of how these functions work and sample code is available in The C
Programming Language by Kernighan and Ritchie.

3.4.2 TCP/IP and sockets

The only socket calls made directly from the HTTP engine are recv(), send(), close(),
and errno(). These are coded as sys_recv(), sys_send(), sys_closesocket(), and
sys_errno() in the C sources. Because the calling semantics of the sys_ commands are
identical to the originals, the defines in webport.h map directly to the ARM TCP/IP
sockets interface, as shown in Example 3-1 on page 3-8.

Caution
 All sockets for the ARM Webserver must be opened in nonblocking mode, as the logic
around the sys_recv() call assumes that it returns immediately whether data is ready or
not. The ARM Webserver code assumes that sys_recv() returns an error if no data is
available, and that in this situation, sys_errno() returns the value SYS_EWOULDBLOCK.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-7

Porting Step-by-Step
Example 3-1

#include “sockets.h”
/* required includes will vary from system to system */

#define sys_recv(sock, buf, len, flags) t_recv(sock, buf, len, flags)
#define sys_send(sock, buf, len, flags) t_send(sock, buf, len, flags)
#define sys_closesocket(sock) t_socketclose(sock)
#define sys_errno(sock) t_errno(sock)
#define SYS_EWOULDBLOCK EWOULDBLOCK

3.4.3 String library

The ARM Webserver expects the C compiler library to provide the routines it uses for
string manipulation. Most of these are standard routines defined in ANSI C:

• sprintf()

• strcat()

• strchr()

• strcmp()

• strcpy()

• stricmp()

• stristr()

• strncmp()

• strnicmp()

• strstr().

All these functions, except stricmp(), stristr(), and strnicmp(), are already available
in the standard runtime libraries. These functions are available in the misclib\strilib.c
file.

3.4.4 Timer tick routine

The timer tick routine is a function that needs to be called periodically to perform
further work on HTTP connections that could not previously complete. This can happen
when a large HTML file is sent on a TCP/IP connection with limited resources. The
whole file cannot be sent at once because the networking layer does not have enough
buffer space to store it while the network moves it.

The ARM Webserver does a reasonable amount of work each time it assumes control,
then returns to the system. In these cases, the httpd structure (and its submembers) will
be left filled in with state data. This allows the work to resume when the timer tick
routine is next called.
3-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
Both web performance and system efficiency must be considered when determining the
frequency with which the timer should be called. For embedded systems that use the
web pages for status monitoring and configuration, ten times per second is suggested.

The timer tick routine to be called is http_loop(). It is called with no parameters. It
returns the number of connections that had work pending. The demonstration program
ignores this return. However, in a system where CPU cycles are a critical resource, this
could be used to reduce the calling frequency when little work is pending (that is,
http_loop() == 0), and increase it when several connections are pending.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-9

Porting Step-by-Step
3.5 Initialization routine

The ARM Webserver code itself needs no internal setup. The C compiler will initialize
all the internal lists and structures to the appropriate values. However, there are one or
two initialization activities that must occur on the target system before it will invoke the
webserver:

• the initiation of a socket listen for webserver operation

• optionally, the initialization of a user-extended VFS files system.

In the demonstration program, these activities are both addressed in a single function,
the initialization routine http_init(), which can be found in the httpport.c file.

To set up the TCP/IP listen, you only need to copy the code from the demonstration
program http_init() function into your own file.

A mechanism is needed to sense when an incoming TCP/IP connection is accepted, and
tell the webserver. In the example port, a simple polling routine checks the TCP/IP
listen every clock tick to see if a connection has formed. If it has, the socket is passed
to the webserver by way of http_connection(). The syntax for this call is:

void http_connection(long sock);

The webserver logic will call sys_closesocket() to close the socket when it is no longer
needed.

In a more sophisticated system (that is, one with UNIX-like signals) the overhead of
polling can usually be avoided by signaling when the TCP/IP connection is ready, and
then calling the http_connection() function. Refer to your system documentation for
details.
3-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
3.6 User and password lookup routine

Embedded systems in business environments usually have some configurable features
that must be accessible to authorized users only. For example, not every employee
should be able to change the IP address of a networked printer. HTTP supports this type
of protection, using the UNIX-like user and password principle. Any HTML page can
be flagged as part of a protected realm (a list of pages). Accessing pages in a realm
requires the user to enter a valid user name and password at the browser. On an
embedded system, the form to set the IP address would usually have this type of
protection.

The following steps take place when a user first tries to access a protected form:

1. The browser performs a standard HTTP GET request on the HTML page
containing the form.

2. The server realizes that the page is protected, and scans the HTTP header for an
appropriate authorization field, which should contain an encoded user name and
password.

3. If this field is missing, which is usually the case on the first request, the server
sends an HTTP error 402 (authorization failure) back to the browser.

4. The browser displays a popup window to the user, asking for the name and
password.

5. The user enters this information, and the browser resends the HTTP GET request,
this time with the authorization field.

6. The server decodes and checks the name and password, and, if everything checks
out, returns the protected HTML page.

To use this facility on the ARM Webserver, you must do two things:

• flag the protected files, so the webserver knows when to require authorization

• provide a routine to verify user names and passwords.

Files can be flagged as protected by adding either the -a or -5 option to their entry in the
HTML Compiler input file. The routine to verify user names can perform any type of
verification you desire. The syntax for the routine is shown in Example 3-1 on
page 3-12.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-11

Porting Step-by-Step
Example 3-1

/* user authorization routine */

int
user_ok(char *user, /* decoded name of user from browser’s HTTP header*/
 char *password, /* decoded password from browser */
 struct vfs_file *vfp) /* protected file’s entry */
{
....

The user name and password are passed in plain text because they have already been
decoded. If organized realms are desired, the user code is responsible for initializing and
maintaining them. The vfs_file structure has a name member to assist with this.

Note
 The name of this routine must be user_ok(), and it must be provided if any files are
flagged as protected.

For most embedded systems, a single user name and password for system privileges is
stored in Non-Volatile Random Access Memory (NVRAM). Checking the passed
parameters against these and returning nonzero (if access is permitted) or zero is usually
sufficient.
3-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
3.7 SSI routines

There are two types of SSI commands supported by the ARM Webserver:

• #include commands

• #exec commands.

They are described in the following sections:

• Including other files within a page

• Dynamic page content

• SSI exec routine on page 3-14

• html_exec on page 3-14

• SSI include routines on page 3-16

• Displaying C variables using #include on page 3-17.

3.7.1 Including other files within a page

If your web pages all have the same header and trailer components, they can be stored
more efficiently by separating out the common text areas into individual files, such as
header.htm and trailer.htm. This allows you to keep just one copy of the standard
header and trailer, and include them in each of your web pages with a command similar
to:

<!--#include file="header.htm"-->
<P>This is the body of the webpage</P>
<!--#include file="trailer.htm"-->

When the ARM Webserver sends this document to the browser, it will replace the entire
HTML comment (<!-- to -->) with the contents of the corresponding file.

In addition to offering a significant space saving, this also allows you to easily change
the look of your web pages by simply editing the header page. For example, you can
change the background color or text font in the header page, and this affects the
appearance of all pages of your system.

3.7.2 Dynamic page content

You may also want to have dynamic data within your web page, and there are multiple
ways of achieving this. You can either use the CGI functionality of the webserver to
generate the entire page dynamically (see CGI routines on page 3-18), or you can use
the #exec or #include SSI commands.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-13

Porting Step-by-Step
3.7.3 SSI exec routine

The SSI exec feature is useful when you want to include some information that may
change in a web page. An example of this is the port status page in the demonstration
program (see Demonstration program on page 1-3). The port status can change each
time it is read. Simply typing the numbers into an HTML file does not work. Current
information must be inserted into the HTML file as it is read. This is why SSI exec is
used.

The syntax of SSI exec in an HTML file is:

<!--#exec cmd_argument="text_string"-->

When a webserver with SSI support encounters this tag in the file, it passes the string in
quotes to the system for execution. The execution is expected to result in some HTML
text that can be inserted in the data stream to replace the text of the SSI tag.

3.7.4 html_exec

The SSI exec functions on the ARM Webserver are all directed to a single user-supplied
function, html_exec().

Syntax

int html_exec(struct httpd *hp, char *args)

where:

hp Is a pointer to the ARM Webserver state structure for the current
connection.

args Points to the string specified as the cmd_argument in the SSI exec tag.

Return value

Returns one of the following:

0 The command was understood by the command parser. This does not
necessarily mean the command succeeded. It only means that no internal
parse error occurred.

nonzero The command was not understood. This means there is a definite
problem, and a server error code is returned to the browser.
3-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
Usage

Usually html_exec() uses sys_send() to insert the data, as shown in Example 3-1

Example 3-1

/*
* html_exec() - execute a command from an HTML file on the
* local system
*
* This example parses just one HTML SSI command, ’portstat’,
* which is used to fill in checkboxes within a FORM page. If
* the current status for a port is ’PORT_OK’, the corresponding
* checkbox within the form will be checked.
*/
int html_exec(struct httpd *hp, char *args)
{

int port;

/* check this is a ’portstat’ command */
if(strncmp(args, "portstat", 8) != 0)
{

/* programmer error! */
dtrap();
return -1;

}

/* extract port number */
port = atoi(nextarg(args));

/* check port number is in valid range */
if(port < 1 || port > 8)
{

/* programmer error! */
dtrap();
return -1;

}

/* if this port is enabled, send ’CHECKED’ string */
if(portstat[port-1] == PORT_OK)

sys_send(hp->sock, "CHECKED", 7, 0);

return 0;
}

The html_exec() routine is expected to parse the string passed as args, and to insert some
text into the socket given by hp->sock.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-15

Porting Step-by-Step
3.7.5 SSI include routines

The ARM Webserver supports another method of using SSI to return dynamic data. The
syntax in HTML is identical to standard SSI includes:

<!--#include file="ipaddr"-->

In this case, however, the named file ipaddr is a special VFS executable file. It has no
data, just a pointer to a user-supplied routine to be called whenever it is invoked. The
routine, similar to html_exec() above, should just send some text to the socket and
return. In Example 3-2, the routine formats the current IP address of the system into text
and uses sys_send() to write it to the socket.

Example 3-2

/*
* ht_ipaddr() - SSI dynamic include routine
*
* Returns 0 if everything was OK. Otherwise, returns a non-zero error.
*
* This example converts the primary interface’s IP address to a text string
* and sends it to the browser.
*/
int ht_ipaddr(const struct vfs_file *vfp, /* pointer to vfs file */

struct httpd *hp, /* HTTP connection */
char *args) /* args, text separated */

/* by spaces */
{

char * cp = print_ipad(nvparms.ifs[0].ipaddr);
/* format IP address */

sys_send(hp->sock, cp, strlen(cp), 0); /* send to socket */

return 0;
}

The advantage of this approach over using html_exec() is that the VFS executable file
and the C code routine stub can be generated by the HTML Compiler. For compiler
usage details, see Chapter 4 Using the HTML Compiler.

The name of the C function for your SSI will vary depending on the parameters given
to the HTML Compiler. In this case, the function name is ht_ipaddr(), which is the
function for the ipaddr example in the demonstration program.
3-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
Syntax

int ht_ipaddr(struct vfs_file *vfp, struct httpd *hp, char *args)

where:

vfp Is the VFS file entry for the included file (in this case, "ipaddr"). This
might not be needed, but is sometimes useful.

hp Is the connection on which the files are being sent out.

This is required because hp->sock is the socket ID to be used with
sys_send().

args Is the text in quotes in the SSI tag, as in "ipaddr" (see SSI include routines
on page 3-16). In more complex applications, this string can be used to
pass parameters.

For example, a multihomed host can use "ipaddr iface1" and "ipaddr
iface2" to return the IP addresses of different interfaces. All calls still go
to the routine indicated by the VFS entry for ipaddr, and the routine can
use the args parameter to determine the interface whose IP address was
being requested.

3.7.6 Displaying C variables using #include

A common task for webservers that manage embedded devices is the displaying of
dynamic data. In the demonstration program, examples of this are the various counters
displayed in the hub status page, such as the number of frames sent, number of errors,
and so on. These values can change every time the page is redisplayed. Therefore, you
must have access to the value maintained in the device software, format it into HTML,
and insert it into the web page.

One technique for accomplishing this is described in SSI include routines on page 3-16.
If the values you want to insert into your web pages correspond directly to C variables
within your program, you can use cvar files within the VFS, which is an easier
technique. This allows the HTML Compiler to generate the necessary code to handle
formatting of data and sending it to the browser. See Usage on page 4-3 for details on
how to make the HTML Compiler generate cvar SSIs.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-17

Porting Step-by-Step
3.8 CGI routines

As explained in Common Gateway Interface on page 2-5, the CGI capabilities of a
conventional webserver are usually oriented toward executing a separate process and
returning the results. Because many embedded systems have limited multi-process
capabilities, but good C code capabilities, the ARM Webserver CGI is oriented toward
calling a C function. This C function can perform a variety of tasks (within system
limits), but the calling interface is designed with the assumption that it will be
processing the results of an HTML form:

• CGI routine inputs

• CGI routine return values on page 3-19

• Using the HTML Compiler to automatically generate CGI functions on
page 3-21.

3.8.1 CGI routine inputs

Example 3-3 shows the semantics of the CGI calls:

Example 3-3

int setip_cgi(struct httpd *hp, /* connection on which GET or POST came in */
 struct httpform *form, /* a list of name-value pairs */
 char **filetext /* optional text or file to return to the */

/* Web browser */
)

The input to these routines is fairly simple, assuming you are familiar with HTML
forms. Before you attempt to code a CGI routine, you should be familiar with the use
of name/value pairs from a form. The CGI routine is passed a form structure that
contains all the information from the filled in form. The structure is defined as follows:

/* a form reply name-value pair */
struct name_val {

char *name;
char *value;

};

struct httpform {
char *action; /* the VFS file name */
int nv_ct; /* number of entries in name_val table */
struct name_val nameval[1];

/* the first of an array of name-value */
 /* entries */

};
3-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
There are actually two structures here:

• The first contains a single name/value pair. The memory for the strings is obtained
by npalloc() before the CGI routine is called, and is freed by way of npfree()
after the CGI routine returns, so the CGI routine should copy any data it will need
later.

• The second structure is primarily a list of name/value pairs. The first member is a
pointer to the file name, which can be useful if you want to write a CGI routine
that is invoked by more than one form. The next member is the number of
name/value structures that follow. The rest of the structure is an array of the
name/value structures. Although this array is declared (in the structure definition)
to contain only one element, the actual structure passed to your CGI routine has
been dynamically allocated by npalloc(), and the nameval[] array contains nv_ct
entries.

The name/value structures are filled in the order they were received from the browser.
Experience shows this has always been the order in which they appeared in the form.
However, the HTTP specifications allows them to be in any order. You should check the
names before parsing the values.

The CGI routine may block while it is parsing data, but caution should be taken so that
calls to http_loop() do not cease. This would stop your webserver from servicing other
blocked connections until the CGI routine returns. The ARM Webserver logic keeps a
flag in the httpd structure, which lets it know that the connection is blocked in a CGI
routine, so it will not call the CGI routine recursively for the same connection and
overflow your stack.

3.8.2 CGI routine return values

The CGI routine return values (a bitmask and a string) are complex. Once the browser
has sent a form to the server, it is expecting an HTML page in response. This form reply
page can be anything from a simple thanks for filling in our form type of message, to
the most complex page in the system. The ARM Webserver provides a simple generic
form response page that you can use without having to write any code or include any
additional HTML pages. This allows you to have many forms and still keep memory
usage down. However, some CGI routines may need more control over the content of
their form replies than the generic reply page provides. These have the options of
building and sending their own HTML text replies, or passing the name of a reply file
back to the webserver code.

The return value is a bitmask of the following bit values:

FP_OK /* form processing was OK if set, else system error */
FP_FILE /* filetext points to a file reply */
FP_TEXT /* filetext points to an error or status text */
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-19

Porting Step-by-Step
FP_ERRHD /* insert an error header line in the reply page */
FP_OKHD /* insert an “OK” header line in the reply page */
FP_DONE /* CGI routine did everything */

The hp parameter is passed to the CGI function so it can use hp->sock to write its own
form reply. In this case, it should return the predefined value FP_DONE. This overrides all
the other return bit values and causes the ARM Webserver to simply close the
connection and free resources.

If FP_DONE is not the sole bit returned, then FP_OK should be set. This bit indicates that the
CGI routine did not experience any catastrophic failure. If this bit is not set, an HTTP
server error packet is returned, and the end user at the browser will not know exactly
what has gone wrong. The FP_OK bit does not imply that the form data was correct or
parsable. Bad form data is indicated by returning the FP_ERRHD bit (see below).

Another way to ensure that the CGI routine controls its reply is to modify it to set the
passed filetext parameter to a file name, set the FP_FILE bit in the return value, and
return. The ARM Webserver will send the named file to the browser as a reply.

Most forms do not require such detail. Generally, the webserver CGI routines will return
a bit mask consisting of:

• FP_OK

• possibly FP_TEXT

• either FP_ERRHD or FP_OKHD.

If FP_ERRHD is set, a generic form error reply page is prepared. If FP_OKHD is set, a generic
form OK page is prepared. If neither is set, a very plain form reply page is prepared,
which implies neither error nor success. If FP_TEXT is set, then filetext is assumed to
point to a string that is inserted in the reply page. This text can be inserted regardless of
the state of FP_ERRHD and FP_OKHD.
3-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Porting Step-by-Step
3.8.3 Using the HTML Compiler to automatically generate CGI functions

The previous sections describe, in some detail, how CGI functions are called, and the
values they are expected to return. In practice, CGI functions are mostly used for
parsing the values that the end user has entered into a form. Therefore, the HTML
Compiler has extra functionality that makes this process much easier.

The HTML Compiler can be instructed to generate local variable declarations and
function calls from within the CGI routine to parse values from the form. You still have
to add some code to the CGI function to perform range checking, and to actually use the
values obtained, but the overall workload is greatly reduced. Refer to Usage on page 4-3
for more details.

It is recommended that you refer to the CGI routines in the demonstration program (see
Demonstration program on page 1-3), and experiment with your own CGI routines.
Clear form replies can be produced without writing a lot of code or HTML pages.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-21

Porting Step-by-Step
3-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Chapter 4
Using the HTML Compiler

This chapter describes how to use the HTML Compiler. This is a program that takes
your web pages and compiles them into C structures which become VFS files in your
embedded server. It contains the following sections:

• About the HTML Compiler on page 4-2

• Usage on page 4-3

• Sample input file on page 4-5.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-1

Using the HTML Compiler
4.1 About the HTML Compiler

The HTML Compiler is a program that creates C structures from your web page files.
These C structures, in turn, become VFS files in your embedded server. The web page
files can be any file you would normally put on a webserver. Files of extension .html
(or .htm) and .gif are most common, but the compiler can accept any binary or text file.

In addition to simply encoding binary files into C tables, the HTML Compiler supports
some optional features that are useful in building even a modest webserver. These
include:

• tag compression of HTML files

• setting authorization flags on files

• creating the routine stubs and prototypes for CGI and SSI executable files.

For details on how to build the HTML Compiler, see Building the HTML Compiler on
page 3-6.
4-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Using the HTML Compiler
4.2 Usage

The HTML Compiler is designed to be invoked from a Makefile as part of an automated
code building system. This allows your web page files to be listed as dependencies for
your firmware image. The invoking syntax from a DOS or UNIX command line is:

armsd -armul -exec htmlcomp.axf -i htmllist.vfs [-options]

The input file, htmllist.vfs in this case, is a text file containing a list of files that
become part of the VFS of the embedded ARM Webserver. The format is one file name
per line, possibly followed by options for that file compilation.

The runtime options in the command line can change default values for each of the
optional features of the HTML Compiler. Runtime options can also:

• rename output C code files

• change VFS file names

• create multiple output files.

Many runtime options can be set on the command line which invokes the HTML
Compiler. Some can also be set on a line in the input file. When set on the command
line, an option applies to all files in the input file. An option set in the input file affects
only the web page file named on that line.

4.2.1 Command lines

The following are the options that can be used on the command line, along with a brief
description of what each one does, and what the defaults are:

-a Require Basic (uuencoded) authentication on GETs.

-5 Require Digest (MD5) authentication on GETs.

-c Omit HTML file tag compression. Default is to compress.

-h filename Rename generated include file. Default is htmldata.h

-f Omit vfs_files array. Default is to create it.

-m Omit map files structure. Default is to create it.

-n vfsname Change name of vfs_files array. Default is vfs_files[].

-o outfile Rename output file to something other than htmldata.c.

-v Toggle verbose mode. Default is ON.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-3

Using the HTML Compiler
4.2.2 Input lines

As well as -o, -a, -5, -c, and -m, the following options can also appear on lines in the
.vfs compiler input file:

-s Generates an SSI executable function stub.

-x Generates a CGI function stub.

-cvar Generates an SSI C variable entry.

Note
 When used this way, these options apply only to the file named on that line.
4-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Using the HTML Compiler
4.3 Sample input file

This section shows part of the input file from the demonstration program. After
Example 4-1, several of the options are explained in more detail, in the sections:

• The -a option on page 4-6

• The -o option on page 4-6

• The -s option on page 4-6

• Embedding C variables in a web page (-cvar option) on page 4-6

• The -x, -form and -endform options on page 4-8

• The setip.cgi option on page 4-8

• Generating stub routines on page 4-10.

4.3.1 Code sample

Example 4-1 shows part of the input file from the demonstration program.

Example 4-1

btnmap.map
hlpmask.htm
setip.htm -a
index.htm
body.htm
inworks.htm
helphlp.htm
hlpipadd.htm
statmenu.htm
ptstats.htm
helpbtn.gif -o gifdata.c
nplogot.gif -o gifdata.c
hub4907.gif -o gifdata.c
ipmask -s ht_ipmask
defgw -s ht_defgw
ipaddr -cvar ip_addr nvparms.ifs[0].ipaddr HT_IP_ADDRESS
setip.cgi -x setip_cgi
-form

bool VJcompress
int ppp_trace
u_long ppp_tmo
unshort ppp_keep

-endform
setport.cgi -x setport_cgi
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-5

Using the HTML Compiler
4.3.2 The -a option

The third line of the code sample illustrates the -a option:

setip.htm -a

When the ARM Webserver is used, the setip.htm file requires Basic authentication.
Replacing the -a with -5 forces the use of Digest authentication, as described in Users,
authentication, and security on page 2-9.

4.3.3 The -o option

The three .gif file lines illustrate the -o option:

helpbtn.gif -o gifdata.c
nplogot.gif -o gifdata.c
hub4907.gif -o gifdata.c

This specifies where to send the C data output from the compiler. In this case, the binary
data for the three files is placed in the file gifdata.c, rather than the default file
htmldata.c.

4.3.4 The -s option

The files with -s options generate C code stubs for SSI routines:

ipmask -s ht_ipmask
defgw -s ht_defgw

Any real file with these names is ignored. The tags following the -s are the names that
are given to the SSI stub routines. See SSI include routines on page 3-16 for more
information about SSI #include routines.

4.3.5 Embedding C variables in a web page (-cvar option)

The file with the -cvar option illustrates how to embed C variables in a web page:

ipaddr -cvar ip_addr nvparms.ifs[0].ipaddr HT_IP_ADDRESS

If a web page contains a line such as:

<!--#include "ipaddr"-->

the ARM Webserver sends the contents of the variable nvparms.ifs[0].ipaddr,
formatted as a dotted-quad IP address, to the browser.
4-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Using the HTML Compiler
The cvar example above, used to send the IP address of the primary network interface,
contains five fields that direct the code generation. The fields in the above example are:

ipaddr The name of the SSI file created in the VFS.

-cvar The option that causes the HTML Compiler to generate full mapping of
a C variable to the HTML output.

ip_addr The C variable type to use. The valid variable types are:

short A signed 16-bit value (%d).

unshort An unsigned 16-bit value (%u).

u_short An unsigned 16-bit value (%u).

long A signed 32-bit value (%ld).

int A signed 32-bit value (%d).

u_long An unsigned 32-bit value (%lu).

unsigned An unsigned 32-bit value (%u).

char* A null-terminated string (%s).

ip_addr A dotted quad IP address.

bool A Boolean value. If nonzero, the output is the literal
string CHECKED for use in checkboxes. Produces no
output if the value is zero.

nvparms.ifs[0].ipaddr

The name of the C language variable you want to appear in the HTML
output. The variable is cast to the type below, so you must make sure they
are compatible.

HT_IP_ADDRESS

A name for a #define that is generated in the HTML Compiler output files
to identify this variable. This string must be unique, and must not clash
with any other #define in the system.

The C code generated in the default output file to handle cvar values is a single routine
named ht_ssi_cvar(). It is inside an undefined #ifdef section. You must copy it to a
local per-port file (for example, httpport.c) to compile it. In this way, any changes you
make to ht_ssi_cvar() are not lost when you re-run the compiler.

The generated code uses formatting and display routines defined in the file htmllib.c.
Both the generated code and htmllib.c are quite compact, allowing a lot of dynamic
content to be added with very little time and space. See Displaying C variables using
#include on page 3-17 for more information about SSI #include variables.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-7

Using the HTML Compiler
4.3.6 The -x, -form and -endform options

The -x option is similar to -s, except it generates a CGI routine stub instead of an SSI
routine stub:

setip.cgi -x setip_cgi

When used on its own, the -x option simply produces an empty CGI routine stub, as
described in CGI routines on page 3-18. You must then finish the routine to provide the
necessary functionality. However, if your CGI function is going to be parsing the results
of a form GET or POST response (which is usually the case), the HTML Compiler can do
most of the parsing work for you. To do this, the -x option is supplemented by two
further directives:

• -form

• -endform.

These are placed as a pair around a series of data lines following a -x line in the
htmllist.vfs input file:

-form
bool VJcompress
int ppp_trace
u_long ppp_tmo
unshort ppp_keep

-endform

Any number of lines can appear between the pair, each defining and naming a local C
variable to be declared and set from the passed form data. Each data line has two fields:

C type A list of usable C types is the same as for the -cvar option, defined above.

Name A name is used for both the C variable and the HTML name/value pair
name, so it must be of legal syntax for both.

4.3.7 The setip.cgi option

The setip.cgi entry from Example 4-1 on page 4-5 generates a VFS file named
setip.cgi and maps it to a code routine named setip_cgi():

setip.cgi -x setip_cgi

When the end user submits a form with an action of setip.cgi, the ARM Webserver
code parses the name/value pairs from the form into a table and passes them to the
generated routine setip_cgi().

The HTML Compiler automatically generates the following code inside the setip_cgi()
routine, as shown in Example 4-2 on page 4-9.
4-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Using the HTML Compiler
Example 4-2

/* setip_cgi() CGI routine */
/* Returns bitmask (see section <Undefined Cross-Reference>) */
{
int
setip_cgi(struct httpd *hp, /* http connection */

struct httpform *form, /* filled in form data from browser */
char ** filetext /* filename or text for return */

{
int err; /* numeric parse errors */
int VJcompress; /* to be set from form */
int ppp_trace; /* to be set from form */
u_long ppp_tmo; /* to be set from form */
unshort ppp_keep; /* to be set from form */

/* Auto-generated code: */

VJcompress = get_form_bool(form, "VJcompress");
err = get_form_int(form, "ppp_trace", (int*)&ppp_trace);
if(err)
{

*filetext = "bad ppp_trace";
return (FP_OK|FP_TEXT|FP_ERRHD);

}
err = get_form_long(form, "ppp_tmo", (long*)&ppp_tmo);
if(err)
{

*filetext = "bad ppp_tmo";
return (FP_OK|FP_TEXT|FP_ERRHD);

}
err = get_form_short(form, "ppp_keep", (short*)&ppp_keep);
if(err)
{

*filetext = "bad ppp_keep";
return (FP_OK|FP_TEXT|FP_ERRHD);

}
return (FP_OK|FP_OKHD); /* OK return, no text */

}

At this point, you must add code to perform range checking on the values in the local
variables created by the HTML Compiler, and to use the values (for example, setting
new operating parameters for the TCP/IP stack or recording user preferences).

As with the -cvar option, you must move the generated code out of your output file, and
you must link in httplib.c in to provide the required routines.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-9

Using the HTML Compiler
4.3.8 Generating stub routines

Generating the VFS file entries and function stubs for the code which is executed by SSI
and CGI commands is a time-consuming task, with great potential for error. Therefore,
the HTML Compiler does it for you. The last eleven lines of Example 4-1 on page 4-5
illustrate this.

The first of these eleven lines, the ipmask file, is an SSI entry that, when included in an
SSI command such as:

 <!--#include file="ipmask"-->

inserts the currently-set IP mask into the HTML document.

To perform this, a file named ipmask must exist in the VFS, and this VFS entry must
have a pointer to a routine that sends the current IP mask to the data stream. By adding
the -s option to the ipmask input file line, the HTML Compiler is informed that ipmask
is an SSI executable file, rather than a data file. The compiler then:

• generates the function prototype

• generates a stub of the routine named on the input file line

• makes a VFS entry with a pointer to the SSI routine.

The generated function prototype is placed in the include file output from the compiler
(htmldata.h by default). The actual routine stubs are placed in the default output C code
file (htmldata.c by default), in a section which is #ifdefed out.

Note
 You must copy the stub routines into a port-dependent file and edit them there.
Otherwise, they are overwritten the next time you run the compiler.

In the demonstration program, these routines have been moved to httpport.c.

The CGI routines and cvar formatting are handled in a manner similar to the SSI
routines. Prototypes are placed in the default output include file, and routine stubs are
generated in the same #ifdefed out section of the default output C file. The function
parameters for CGI and SSI routines are different, so be careful not to confuse the two
options in the input file.
4-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Appendix A
Building the Demonstration Program

This appendix details the requirements, installation procedure, and steps required to
build the demonstration program. Instructions are provided for using both ADS for
Windows and ADS for command-line environments.

This chapter contains the following sections:

• Requirements on page A-2

• Installation procedure on page A-3

• Building using ADS for Windows on page A-4

• Building using ADS from the command line on page A-6.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. A-1

Building the Demonstration Program
A.1 Requirements

The following products are required to build the demonstration program:

• ARM TCP/IP software (AS301)

• ARM Webserver (AS303)

• ARM Integrator/AP, fitted with a suitable core module, for example,
Integrator/CM7TDMI, with Ethernet Kit

• ARM Ethernet kit for Integrator/AP

• ARM Developer Suite, 1.0.1

• ARM Multi-ICE version 1.4.

Note
 The Integrator/AP must have a system controller FPGA that is Rev A, Version 53 or
newer.

The Integrator/CM7TDMI must have an FGPA that is Rev A, Version 60, or newer.

A.1.1 FPGA product information

You can find out information on the FPGA release used on your Integrator/AP or core
module using the ARM bootPROM firmware on the Integrator:

1. From the boot monitor prompt, type x to enter board-specific command mode:

> x

2. Display the hardware configuration information by typing dh at the prompt:

> dh

Upgrade information

If you need to upgrade your integrator/AP and Integrator/CM7TDMI FPGAs, please
contact support@arm.com.
A-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Building the Demonstration Program
A.2 Installation procedure

The following steps give an overview of the installation procedure:

1. Check that you can use ADS to compile and run programs on the ARM Integrator
board.

2. Install the ARM TCP/IP software by following the detailed instructions in the
Porting TCP/IP Programmer’s Guide. This is provided with the ARM TCP/IP
software.

3. Unpack the ARM Webserver software into the same directory you used for the
ARM TCP/IP sources. You should now have a directory structure similar to the
following:

Note
 There might be other directories for PPP and other ARM networking protocols that you
have purchased.

��
�

'''

(�)#
�)�

	�)�()�

����

����!�	���

*�������

*��!��

)��
#��

�
�

�+��

���
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. A-3

Building the Demonstration Program
A.3 Building using ADS for Windows

This section details the steps necessary to build the HTML Compiler and the widget
demonstration application using ADS in a Windows environment.

A.3.1 Build the HTML Compiler

1. Copy the htmlcomp.mcp and htmlcomp.bat files from the htmlcomp directory into the
project directory:

C:\...> cd widget
C:\...\widget> copy ..\htmlcomp\htmlcomp.mcp
C:\...\widget> copy ..\htmlcomp\htmlcomp.bat

2. Select Open from the CodeWarrior File menu, and open htlmcomp.mcp from the
widget directory.

3. Select Make from the Project menu.

The HTML Compiler should compile and link without errors or warnings.

A.3.2 Compile the sample HTML files

1. At the command line, run htmlcomp.bat in the widget directory:

C:\...\widget> htmlcomp.bat

This invokes armsd to run the HTML compiler. You should see output similar to
that shown in Example A-1 on page A-5.

A.3.3 Build the Widget application

1. Select Open from the CodeWarrior File menu, and open widget.mcp from the
widget directory.

2. Select the appropriate target (for example, EtherSuperloop) from the drop-down
list in the widget.mcp project window in CodeWarrior.

3. Select Make from the Project menu.

Widget compiles and links without errors or warnings.
A-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Building the Demonstration Program
Example A-1 Sample htmlcomp output

------------ Starting section 'GIF images'
Building "C" vfile data array for helpbtn.gif 1197 bytes {12399, 5713}
Building "C" vfile data array for nplogot.gif 1781 bytes {14180, 7494}
Building "C" vfile data array for hub4907.gif 6864 bytes {21044,14358}
Building "C" vfile data array for btnmap.gif 3943 bytes {24987,18301}
------------ Section file size: 13785

------------ Starting section 'server-side include (SSI) routines'
------------ Section file size: 0

------------ Starting section 'CGI routines'
------------ Section file size: 0

Building MAP structure from btnmap.map

Total file size: 24987 (compressed to 18301)

Program terminated normally at PC = 0x0000f520 (_sys_exit + 0x10)
+0010 0x0000f520: 0xef123456 V4.. : swi 0x123456
Quitting
Press any key to continue . . .

A.3.4 Run the Widget application

1. Edit the ether.nv file and set valid IP addressing options (see the Porting TCP/IP
Programmer’s Guide).

2. Ensure that the MultiIce server has been started and configured.

3. Select Run from the CodeWarrior Project menu.

4. Use your preferred web browser with a URL like http://10.0.2.9/, where the
address used is the one that you specified in the ether.nv file.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. A-5

Building the Demonstration Program
A.4 Building using ADS from the command line

To build the HTML Compiler and the Widget application using ADS in a command-line
environment (such as Solaris or a Windows Command prompt), you must do the
following:

1. Change to the project directory, widget.

2. Run one of the following:

make -s For Solaris.

nmake /s For a Windows Command prompt.

The Widget project should build without errors or warnings.

3. Edit the ether.nv file and set valid IP addressing options (see the Porting TCP/IP
Programmer’s Guide).

4. Run the widget.axf file on the ARM integrator board.

5. Use your preferred web browser with a URL like http://10.0.2.9/, where the
address used is the one that you specified in the ether.nv file.
A-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Glossary

ADS ARM Developer Suite.

API Applications Program Interface.

BSD Berkeley System Distribution.

CGI Common Gateway Interface.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

ICE In-Circuit emulator.

MD5 Message Digest 5.

NVRAM Non-Volatile Random Access Memory.

SSI Server-Side Include.

TCP/IP Transmission Control Protocol/Internet Protocol.

URL Uniform Resource Locator.

VFS Virtual File System.
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-1

Glossary
Glossary-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
ADS, see ARM Developer Suite
ARM Developer Suite 1--3

compiler 2--13
Authorization 4--2

user and password 3--11

B
Basic authentication 4--3, 4--6
Buffer sizes 2--13

C
calloc() 3--7
CGI

commands 4--10
routines 2--5, 3--19, 4--10

CGI (Common Gateway Interface)
2--5

cgi.h 3--3
Clock tick 2--14
close() 3--7
Compression

HTML files 2--7
CPU cycles 3--9
cvar files 3--17, 4--7, 4--10
C++ (programming language) 1--3

D
Demonstration program 1--3, 2--2,

3--14, A--1
building A--4, A--6
input file 4--5
installation A--3
module sizes in 2--12
requirements A--2
routines 3--7, 3--9, 3--10, 3--21,

4--10
Digest (MD5) authentication 2--10,

4--3, 4--6

Dynamic data 3--17
Dynamic memory 2--13

E
Encryption 2--10
-endform (directive) 4--8
errno() 3--7
ether.nv A--5, A--6
exec commands (#exec) 3--13
Executable files (in VFS) 3--16
exec() 2--2

F
File compression 2--7
File system 2--2
filetext (parameter) 3--20
fork() 2--2
-form (directive) 4--8
Forms 2--13
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-1

Index
FP_DONE 3--20
FP_ERRHD 3--20
FP_FILE 3--19
FP_OK 3--19
FP_OKHD 3--20
FP_TEXT 3--19
Frames 2--13
free() 3--7

G
GET (HTTP method) 2--4, 2--5, 4--8
Glue routines 3--7
Graphics 2--13

H
header.htm 3--13
Home page 3--5
htauth.c 3--2
htcmptab.h 2--7, 3--2, 3--4
htfiles.c 3--2, 3--3
htfiles.h 3--3
HTML Compiler 3--2, 3--6, 4--2

building 3--6
running 3--6, 4--3

HTML form data
and CGI 2--5

htmlcomp.c 3--3
htmldata.c 3--4, 4--3, 4--6
htmldata.h 3--4, 4--3, 4--10
htmllib.c 4--7
htmllist.vfs 3--6
html_exec() 3--14
httpcgi.c 3--2
httpd.h 2--4, 3--3
httpform 3--18
HTTPMAXSEND 2--4
httpport.c 3--4, 3--10
httpsrv.c 2--4, 3--2
http_connection() 2--14, 3--10
http_init() 3--10
http_loop() 3--9, 3--19
ht_ipaddr() 3--16
HT_LOCALFS 2--8
HT_MD5AUTH 2--10
HT_NOVFS 2--8

ht_ssi_cvar() 4--7

I
In-Circuit Emulators (ICE) 1--3
include commands (#include) 3--13
index.htm 3--5
Initialization routine 3--10
Input file (for HTML Compiler) 4--5
Installation procedure (demonstration

program) A--3
ipmask 4--10
Iterated pages 2--2

L
listen (TCP/IP function) 3--10

M
malloc() 3--7
MD5 authentication 2--10, 4--3
Memory requirements 2--2
Multitasking 2--2

N
Name/value pairs 2--2
name_val 3--18
Native file system 2--4
Non-Volatile Random Access Memory

(NVRAM) 3--12
npalloc() 2--14, 3--7, 3--19
npfree() 2--14, 3--7, 3--19

P
Password 3--11

user 2--9
Perl script 2--5
POST (HTTP method) 2--4, 2--5, 4--8

R
Realm

HTTP authentication 3--11
recv() 3--7
Requirements (demonstration program)

A--2
Runtime options 4--3

S
send() 3--7
SET community (SNMP) 2--9
setip_cgi() 3--18, 4--8
SNMP

communities 2--9
Sockets 2--11
Source files (list) 3--2
SSI routines

exec 3--14
include 3--16, 4--10

SSI stubs
generating with the HTML Compiler

4--6
strilib.c 3--8
String library (list of routines) 3--8
System efficiency 3--9
System interfaces 2--6
System requirements 2--11
sys_closesocket() 3--7, 3--10
sys_errno() 3--7
SYS_EWOULDBLOCK 3--8
sys_recv() 3--7
sys_send() 3--7

T
Tag compression

HTML file compression 2--7, 4--2
TCP/IP 2--11
Timer tick routine 3--8

U
User (names, for authentication) 2--9,

3--11
Index-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

Index
User, password lookup routine 3--11
user_ok() 3--12
uuencoding 2--9

V
vfclose() 2--8
VFILE pointer to VFS open file struct

2--8
vfopen() 2--8
vfread() 2--8
VFS

see Virtual File System 1--3
vfseek() 2--8
vfs_file (structure) 3--12
vgetc() 2--8
Virtual File System 1--3, 2--4

compiling HTML files 3--6, 4--2,
4--10

embedded data 2--7
executable files 2--7, 3--16
layering on pre-existing system 2--8
source files 3--2, 3--3

W
Web performance 3--9
webport.h 1--3, 2--4, 2--10, 3--2, 3--4
webserve (directory) A--3
widget (directory) A--3

Symbols
#exec commands 3--13
#include commands 3--13
ARM DUI 0075D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-3

Index
Index-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0075D

	Contents
	Preface
	About this book
	Intended audience
	Organization
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM Webserver software
	Feedback on this book

	Introduction
	1.1 About the ARM Webserver
	1.1.1 Terms

	1.2 Demonstration program

	About the ARM Webserver
	2.1 Server architecture
	2.1.1 HTTP engine
	2.1.2 Virtual File System
	2.1.3 Common Gateway Interface
	2.1.4 System interfaces

	2.2 Embedded data and executable files in the Virtual File System
	2.2.1 File compression
	2.2.2 Layering VFS on a pre-existing file system

	2.3 Users, authentication, and security
	2.3.1 Background information
	2.3.2 Higher levels of security
	2.3.3 Requirements for embedded applications

	2.4 System requirements
	2.4.1 TCP/IP and sockets
	2.4.2 Static memory
	2.4.3 Dynamic memory
	2.4.4 Clock tick

	Porting Step-by-Step
	3.1 Setting up your source tree
	3.1.1 Source and include files
	3.1.2 Port files
	3.1.3 HTML compression tags table
	3.1.4 HTML compiler output

	3.2 Start with HTML sources
	3.2.1 Index.htm

	3.3 HTML Compiler
	3.3.1 Building the HTML Compiler
	3.3.2 Running the HTML Compiler

	3.4 Provide the system routines
	3.4.1 Dynamic memory
	3.4.2 TCP/IP and sockets
	3.4.3 String library
	3.4.4 Timer tick routine

	3.5 Initialization routine
	3.6 User and password lookup routine
	3.7 SSI routines
	3.7.1 Including other files within a page
	3.7.2 Dynamic page content
	3.7.3 SSI exec routine
	3.7.4 html_exec
	3.7.5 SSI include routines
	3.7.6 Displaying C variables using #include

	3.8 CGI routines
	3.8.1 CGI routine inputs
	3.8.2 CGI routine return values
	3.8.3 Using the HTML Compiler to automatically generate CGI functions

	Using the HTML Compiler
	4.1 About the HTML Compiler
	4.2 Usage
	4.2.1 Command lines
	4.2.2 Input lines

	4.3 Sample input file
	4.3.1 Code sample
	4.3.2 The -a option
	4.3.3 The -o option
	4.3.4 The -s option
	4.3.5 Embedding C variables in a web page (-cvar option)
	4.3.6 The -x, -form and -endform options
	4.3.7 The setip.cgi option
	4.3.8 Generating stub routines

	Building the Demonstration Program
	A.1 Requirements
	A.1.1 FPGA product information

	A.2 Installation procedure
	A.3 Building using ADS for Windows
	A.3.1 Build the HTML Compiler
	A.3.2 Compile the sample HTML files
	A.3.3 Build the Widget application
	A.3.4 Run the Widget application

	A.4 Building using ADS from the command line

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	Symbols

