
AS950 ARM Applications Library
Version 1.1

 Programmer’s Guide
Copyright © 1998-2001 ARM Limited. All rights reserved.
ARM DUI 0081B

AS950 ARM Applications Library
 Programmer’s Guide

Copyright © 1998-2001 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

Oct. 98 A First release

Oct. 01 B Second release
ii Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Contents
AS950 ARM Applications Library Programmer’s
Guide

Preface
About this book .. vi
Feedback ... x

Chapter 1 Introduction
1.1 About the ARM Applications Library ... 1-2
1.2 Registers in macro arguments .. 1-7
1.3 Building and running a demonstration .. 1-8

Chapter 2 Adaptive Differential Pulse Code Modulation
2.1 Overview ... 2-2
2.2 ADPCMState data structure .. 2-7
2.3 Functions .. 2-8

Chapter 3 G.711—A-law, µ-law, PCM Conversions
3.1 Overview ... 3-2
3.2 Functions .. 3-3

Chapter 4 Fast Fourier Transform and Windowing
4.1 Overview ... 4-2
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. iii

Contents
4.2 Complex data structure .. 4-9
4.3 Functions .. 4-10

Chapter 5 Two-Dimensional Discrete Cosine Transform
5.1 Overview ... 5-2
5.2 SCALETABLE data structure ... 5-7
5.3 Functions .. 5-9
5.4 Supplementary macros ... 5-13

Chapter 6 Huffman and Bit Coding/Decoding
6.1 Overview ... 6-2
6.2 BitStreamState data structure .. 6-6
6.3 Functions .. 6-10

Chapter 7 Filters
7.1 Files .. 7-2
7.2 Finite impulse response .. 7-3
7.3 Infinite impulse response .. 7-5
7.4 Least mean square ... 7-9

Chapter 8 IS-54 Convolutional Encoder
8.1 Overview ... 8-2
8.2 Macro and function ... 8-3

Chapter 9 Multi-tone Multi-frequency Generation/Detection
9.1 Overview ... 9-2
9.2 ToneState data structure .. 9-4
9.3 Functions .. 9-5

Chapter 10 Bit Manipulation
10.1 Files .. 10-2
10.2 Macros .. 10-3

Chapter 11 Mathematics
11.1 Overview ... 11-2
11.2 Integer multiplication ... 11-3
11.3 Integer division ... 11-8
11.4 Fixed-point division ... 11-24
11.5 Integer square and cube root ... 11-28
11.6 Trigonometric functions .. 11-31
11.7 General macros .. 11-34
iv Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Preface

This preface introduces the AS950 ARM Applications Library Programmer’s Guide. It
contains the following sections:

• About this book on page vi

• Feedback on page x.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. v

Preface
About this book

This guide is provided with the ARM Applications Library. It is assumed that the ARM
Applications Library sources are available as a reference. It is also assumed that the
reader has access to programmer guides for C and ARM assembly language.

Intended audience

This book is written for all developers who want to to evaluate, develop, and optimize
software applications for the ARM RISC processor family. It assumes you are an
experienced software developer, and that you are familiar with using ADS.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM Applications Library.

Chapter 2 Adaptive Differential Pulse Code Modulation

Read this chapter for details on implementation, and for function
descriptions for adaptive differential pulse code modulation (ADPCM).

Chapter 3 G.711—A-law, µ-law, PCM Conversions

Read this chapter for details on implementation, and for function
descriptions for the G.711 standard for A-law and µ-law conversion of
pulse code modulation (PCM) signals.

Chapter 4 Fast Fourier Transform and Windowing

Read this chapter for details on implementation, and for function
descriptions for the fast Fourier transform (FFT), and implementations of
Hamming and Hanning windows that can be used with the FFT.

Chapter 5 Two-Dimensional Discrete Cosine Transform

Read this chapter for details on implementation, and for function and
macro descriptions for two-dimensional (2D) discrete cosine transform
(DCT).

Chapter 6 Huffman and Bit Coding/Decoding

Read this chapter for details on implementation, and for function
descriptions of a Huffman coder/decoder that uses a general bit codec
based on lookup tables.
vi Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Preface
Chapter 7 Filters

Read this chapter for details on implementation, and for function and
macro descriptions for finite impulse response (FIR), infinite impulse
response (IIR), and least mean square (LMS) filters.

Chapter 8 IS-54 Convolutional Encoder

Read this chapter for details on implementation, and for function and
macro descriptions for the convolutional encoder from the IS-54 standard
for digital mobile telephones in the United States of America.

Chapter 9 Multi-tone Multi-frequency Generation/Detection

Read this chapter for details on implementation, and for function
descriptions for the multi-tone multi-frequency (MTMF) detector and
generator.

Chapter 10 Bit Manipulation

Read this chapter for details on macro descriptions for performing
common bit manipulation routines.

Chapter 11 Mathematics

Read this chapter for details on macro descriptions for performing
common mathematical functions.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. vii

Preface
Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code and ARM
processor signal names.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This book contains information that is specific to the version of the Applications
Library supplied with the ARM Developer Suite (ADS). Refer to the books in the ADS
document suite for information on other components of ADS.

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)
viii Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Preface
• the ARM datasheet or technical reference manual for your hardware device.

Other publications

For information that may be useful when using the ARM Applications Library, refer to:

• General Aspects of Digital Transmission Systems; Terminal Equipments, Volume
III, Recommendations G.700-G.795, International Telegraph and Telephone
Consultative Committee (ISBN 92-61-033415)

• Y.Arai, T.Agui, and M.Nakajima. A Fast DCT-SQ Scheme for Images. Trans. of
the IEICE. E 71(11):1095 (Nov. 1988)

• Mark Nelson, The Data Compression Book (ISBN 1-55851-214-4)

• Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language
(ISBN 0-13-110370-8)
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. ix

Preface
Feedback

ARM Limited welcomes feedback on both the ARM Applications Library, and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with the ARM Developer Suite, please contact your supplier.
To help your supplier provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
x Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 1
Introduction

This chapter introduces the AS950 ARM Applications Library. It contains the following
sections:

• About the ARM Applications Library on page 1-2

• Registers in macro arguments on page 1-7

• Building and running a demonstration on page 1-8.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM Applications Library

The ARM Applications Library Version 1.1 is a suite of optimized ARM assembly
language and C source code for commonly used digital signal processing (DSP),
mathematical, and bit manipulation functions. It has been designed to help you to
evaluate, develop, and optimize software applications for the ARM RISC processor
family. The library should be used in conjunction with the ARM Developer Suite (ADS).

The following is provided with each of the code modules:

• comprehensive documentation

• example and test applications in two subdirectories:

— src contains C routines and source files

— tstfiles contains test data files (for example, a bitmap image for DCT)

• supporting utilities needed to build the examples using ADS.

A general C utility library, util_lib, is also provided to demonstrate each of the main
components. You are free to incorporate any of the source code contained in the library
into any products, subject to the terms of the license agreement.

The following sections briefly describe each of the code components, and give
examples of potential applications.

1.1.1 Noncompliant adaptive differential pulse code modulation

Adaptive differential pulse code modulation (ADPCM) is a compression and
decompression algorithm that uses adaptive quantizers and adaptive predictors to
compress sound data, typically speech. The implemented encoder takes 16-bit pulse
code modulation (PCM) data to produce a representation using 4-bit ADPCM values.

The ADPCM implementation is not compliant with the G.726 standard or any other
ADPCM standard. Therefore, it cannot be used to interface to other ADPCM
compressors/decompressors. It does not include error correction, so it is not suitable for
transmission over an imperfect link. However, the implementation is suitable for
reducing audio storage overheads.

See Chapter 2 Adaptive Differential Pulse Code Modulation.
1-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Introduction
1.1.2 G.711

G.711 is a recommendation defined by the International Telegraph and Telephone
Consultative Committee (CCITT) (now the Telecommunication Standardization Sector
of the International Telecommunication Union (ITU-T)).

Analog signals are digitized using pulse code modulation (PCM) and are then
compressed from linear 16-bit PCM values to 8-bit A-law or µ-law values using
logarithmic compression. Conversely, 8-bit A-law or µ-law values can be decompressed
to linear 16-bit PCM values.

This compression is recommended for encoding voice-frequency signals because
logarithmic compression only loses information that the human ear cannot hear.

Applications include telecommunications (cordless phones), multimedia (lower audio
storage overheads), and inter-chip connections (reduces bus width to 8-bits).

See Chapter 3 G.711—A-law, µ-law, PCM Conversions.

1.1.3 Fast Fourier transform and windowing

The fast Fourier transform (FFT) is one of the main digital signal processing (DSP)
algorithms. FFTs convert one-dimensional (1D) data, typically sound, between the time
domain and the 1D frequency domain.

Windowing selects segments of data (pre-weighting of the data) for subsequent
frequency domain analysis using the FFT. Both Hamming and Hanning windows are
provided.

FFT can be used for:

spectral analysis
Identifying the magnitude of each frequency within a signal (the spectral
components).

digital filtering
Applying FFT, removing a range of frequency components using a
filtering technique and reconstructing the signal using the inverse FFT.
Windowing can be used to prevent clicks at frame boundaries.

calculation of correlations
Increasing the speed of a traditional finite impulse response (FIR) filter
that requires the calculation of large correlations.

calculation of convolutions
Common calculations in the construction of filters.

See Chapter 4 Fast Fourier Transform and Windowing.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-3

Introduction
1.1.4 Discrete cosine transform

The discrete cosine transform (DCT) converts a two-dimensional (2D) graphics image
between the spatial domain and the 2D frequency domain.

The DCT is implemented using an 8x8 block and does not directly lead to compression.
However, the DCT does produce frequency data that is suitable for use in graphics
compression algorithms such as JPEG or MPEG.

See Chapter 5 Two-Dimensional Discrete Cosine Transform.

1.1.5 Huffman encoding/decoding

Huffman encoding/decoding exploits the fact that discrete amplitudes of a signal do not
occur with equal probability. Huffman encoding creates variable length codes that are
an integral number of bits. Symbols with higher probabilities have fewer bits in their
codes. The codes can be uniquely decoded, despite being of different lengths, because
each is created with a unique prefix.

Most compression algorithms use some form of Huffman encoding/decoding where
performance is more important than compression rate. Applications include JPEG, font
compression, and dictionary compression.

See Chapter 6 Huffman and Bit Coding/Decoding.

1.1.6 Filtering

Digital filters can be used to remove data from a sound signal, such as noise and
unwanted frequencies, by attenuating or reducing certain bands of frequencies and
allowing the others to pass. Digital filters are often classed into one of four types:

• low-pass

• high-pass

• band-pass

• band-stop.

A low-pass filter allows frequencies below a certain value to pass through as-is while
attenuating frequencies above that point. Conversely, a high-pass filter lets frequencies
above a certain value pass through as-is while attenuating frequencies below that point.
For example, a low-pass filter may be used to remove high frequency noise from a
speech signal.

A band-pass filter allows a selected frequency band in a signal to pass through as-is and
reduces all frequencies outside of this band. This has the effect of emphasizing the
selected band. For example, band-pass filters might be used in a graphic equalizer.
1-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Introduction
A band-stop filter reduces a selected frequency band in a signal and allows all
frequencies outside this band to pass through unaffected. For example, it can be used to
remove a 50Hz mains hum from a signal.

Three filters are provided:

• finite impulse response (FIR)

• infinite impulse response (IIR)

• least mean square (LMS).

The type of filter to be used, such as a low-pass or band-stop, is identified by the
coefficients (weight values) that are used with the filter.

The FIR filter is a nonrecursive linear filter (no feedback) and performs a moving and
weighted average on the input data. Finite refers to the fact that an input pulse results in
energy at only a finite number of samples after which the output returns to zero. FIR
filters are suitable for telecommunications use, such as distinguishing between the
channels used in a V.22bis modem link.

The IIR filter is a recursive linear filter that employs feedback to allow sharper
frequency responses to be obtained for fewer filter coefficients. Infinite refers to the fact
that the output from a unit pulse input exhibits non-zero outputs for an arbitrarily long
time.

The LMS filter is an adaptive FIR digital filter that is self-learning and adapts the
impulse response of the FIR filter to a desired signal.

The IIR and LMS filters are suitable for echo cancellation and line equalization,
compensating for errors introduced by transmission over a channel.

See Chapter 7 Filters.

1.1.7 IS-54 convolutional encoder

IS-54 is the Telecommunications Industry Association/Electronic Industries
Association (TIA/EIA) interim standard for the Cellular System Dual-Mode Mobile
Station-Base Station Compatibility Standard. This is the digital mobile telephone
standard used in the United States of America.

The convolutional encoder is used to code 89 bits of data at a time:

• 77 class 1 bits from the IS-54 speech coder

• seven bits of cyclic redundancy check

• five bits of tail.

This algorithm also demonstrates how to optimally interleave two 16-bit words to
generate a 32-bit word. See Chapter 8 IS-54 Convolutional Encoder.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-5

Introduction
1.1.8 Multi-tone multi-frequency and Goertzel algorithm

The multi-tone multi-frequency algorithm is used in detecting and generating tones
such as dual-tone multi-frequency (DTMF), multi-frequency, busy, and dial tones.

DTMF transmission and reception is resistant to line noise and distortion, and is
performed in applications such as answering machines, modems, telephones and PBXs.
E1 applications (the European equivalent to T1) and US telephone frame equipment are
applications that perform multi-frequency tone detection and generation functions.
Busy and dial tone generation and detection capabilities are required by various
telephony applications.

See Chapter 9 Multi-tone Multi-frequency Generation/Detection.

1.1.9 Bit manipulation

The bit manipulation routines perform a number of operations on words on a per-bit
basis. The routines include bit and byte reversal over a word, binary coded decimal
addition, finding the least and most significant bits set in a word, and population count
over a set of words (determining the number of bits set).

See Chapter 10 Bit Manipulation.

1.1.10 Mathematics

The mathematics functions provide optimal algorithms to perform common
mathematical tasks using differing precision and fixed-point input data. These
algorithms are suitable for high-precision work such as encryption or vector
manipulation (three-dimensional graphics).

The mathematics component also contains routines to perform addition of absolute
values, c = a + abs(b), and signed-saturated addition of two 32-bit integers.

See Chapter 11 Mathematics.
1-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Introduction
1.2 Registers in macro arguments

In the ARM Assembler macro definitions, arguments are prefixed with a dollar sign ($).
Except where otherwise noted, these arguments represent variable names for registers
that must be substituted for actual registers when creating an instantiation of the macro.

1.2.1 Example

In the following example, an ARM assembly language macro example_macro could be
defined in a file examplem.h:

 MACRO
 example_macro $c, $a, $b
 ADD $c, $a, $b
 MEND

The macro arguments $a and $b represent the two input registers, and $c is the output
register

The macro file can be included in an assembly language source file using the INCLUDE
directive. The following example shows how the macro might be instantiated:

 INCLUDE examplem.h
example_macro_start
 example_macro R0, R0, R1
 MOV pc, lr

The macro adds the values of the input registers r0 and r1, and stores the result in r0.

Refer to the ADS Developer Guide in the ADS documentation for information on
register usage conventions and the ARM Procedure Call Standard (APCS).
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-7

Introduction
1.3 Building and running a demonstration

This section describes how to build and run the Applications Library using ADS. For
more information on using ADS, refer to the ADS documentation.

1.3.1 Variants

Each component of the Applications Library has a UNIX makefile and two
CodeWarrior IDE .mcp project files, which are:

• the core, library components file

• the executable version of the core, library components file.

These files provide options for building different variants of the components. You can
build variants for:

• little-endian and big-endian ARM versions

• little-endian and big-endian Thumb versions.

The variations are identified by the following variant names:

ArmBigDebug ARM, big-endian, debug information

ArmBigRelease ARM, big-endian, no debug information

ArmLittleDebug ARM, little-endian, debug information

ArmLittleRelease ARM, little-endian, no debug information

ThumbBigDebug Thumb, big-endian, debug information

ThumbBigRelease Thumb, big-endian, no debug information

ThumbLittleDebug Thumb, little-endian, debug information

ThumbLittleRelease

Thumb, little-endian, no debug information.

1.3.2 Linker output

The output produced when building a variant is the default format defined by the version
of the toolkit used to perform the build. To build a different output, add the appropriate
command-line argument to the linker configuration. For information on the output
formats supported by the linker and how to change the output produced by the linker,
see the ADS Linker and Utilities Guide in the ADS documentation.
1-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Introduction
1.3.3 Building and running

This section describes how to build and run an Applications Library component. To
compile components of the Applications Library on Windows with the supplied
projects, ADS is required. Refer to CodeWarrior IDE Guide in the ADS documentation
for details on building using project files.

1. Double click on the executable .mcp file located in the appropriate component
folder, not the library .mcp file (identified by lib appended to the component
name).

2. Build one of the variants of the project.

3. Run the binary under the Windows debugger, ensuring the byte-sex for the
debugger is that of the selected variant.

1.3.4 Execution considerations

Each component allows you to enter values at run-time for options on testing and
demonstrating the functionality. If you are prompted for an input data file, suitable test
files can be found in the tstfiles folder for the appropriate component.

When running C-based test versions, some of the demonstrations (such as Discrete
Cosine Transform and Fast Fourier Transform) require considerable time to complete if
running under the ARMulator. For these cases, it is advisable to download the
executable to an ARM Integrator, or other hardware, and run the test there. The ARM
Integrator can be purchased from ARM. See http://www.arm.com.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-9

Introduction
1-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 2
Adaptive Differential Pulse Code Modulation

This chapter describes an implementation of adaptive differential pulse code
modulation (ADPCM). It contains the following sections:

• Overview on page 2-2

• ADPCMState data structure on page 2-7

• Functions on page 2-8.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-1

Adaptive Differential Pulse Code Modulation
2.1 Overview

This section provides general information on ADPCM encoding and decoding.

2.1.1 Implementation

This section describes the formulas that have been used in the implementation for the
encoding and decoding ADPCM.

This implementation of ADPCM is noncompliant with G.726 or any other standard,
including the earlier G.721 and G.723 standards. The ARM implementation is suitable
only for use where bit errors cannot occur, such as in computer systems. If bit errors are
introduced into the process, they propagate through the coder. Therefore, this
implementation is not suitable for compression before transmission across channels that
can add bit errors.

The encoder for the ADPCM has been implemented to take 16-bit PCM input values
and produce a 4-bit compressed ADPCM output value for each input value. Conversely,
the ADPCM decoder has been implemented to take 4-bit compressed ADPCM input
values that were generated by the encoder and produce the corresponding 16-bit PCM
output value for each input value.

The decoder is discussed before the encoder because the encoder makes use of the
decoder.
2-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Adaptive Differential Pulse Code Modulation
Decoding ADPCM

For each ADPCM value yi, where 0 ≤ i < Ν, the corresponding PCM output, xi, is given
by:

where:

x–1 = 0

index0 = 0

indexTable and StepSize are defined as follows:

��������������	���
������ �

� ����� ��

�
��� ���
�������
����������������� ��

�
�
� ��

�
�������������

��������
����

�

��
�

�	

�� �
�

�
�

�
�

�

�

�

� 	

	

 �

 �

�

���������

� �� ����

� ����

� �

� �

� � � � �

� � � � 	

����

����

�

�

	

�

	��
����
	��
����

�

����
����

������
�������
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-3

Adaptive Differential Pulse Code Modulation
Saturation is also incorporated into the algorithm so that:

xi cannot exceed the range –215 ≤ xi ≤ 215 –1

indexi cannot exceed the range 0 ≤ indexi ≤ 88.

�

���

���������������������������������������

�����������������������������������

�������������������������������������

���������������������������

������������������������

���������������������

����������������
����������������

	

����	��������
2-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Adaptive Differential Pulse Code Modulation
Encoding ADPCM

For each value xi, where 0 ≤ i < N, the corresponding ADPCM output, yi, is given by:

where:

y–1 = 0

index0 = 0

indexTable and stepSize are defined as given in Decoding ADPCM on page 2-3.

Saturation is also incorporated into the algorithm so that:

deltai when initially calculated, before the addition of 8 for negative values, cannot
exceed the range 0 ≤ deltai ≤ 7

indexi cannot exceed the range 0 ≤ indexi ≤ 88.

	
�������
�� � ����������� �� � �� � ��

 ����� ������	� �
���� ��

����
�������
��

�����
�

�
�

� �
��������	
�������

����
���� �������
��

���� ����������
� �

�
�

� ��
�
�

	

 ��
��� �
��� �
������� ����� � �� � ��

� ����� ��
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-5

Adaptive Differential Pulse Code Modulation
2.1.2 Files

The files in Table 2-1 are provided in the implementation.

Table 2-1 ADPCM files

Filename Archive name Code type Functionality

adpcms.s arm_adpm ARM assembly language ADPCM coding and decoding

adpcms.h arm_adpm C header ADPCM function prototypes

adpstruc.h arm_adpm C header ADPCM structure definition
2-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Adaptive Differential Pulse Code Modulation
2.2 ADPCMState data structure

This structure is used to maintain step-size and prediction values internally during the
ADPCM operations and between routine calls.

The ADPCM encode and decode routines are passed a pointer to this structure.

2.2.1 Definition

typedef struct ADPCMState ADPCMState ;
typedef ADPCMState *ADPCMStatePtr ;

struct ADPCMState {
 int stepIndex ;
 int prediction ;
} ;

2.2.2 Description

The ADPCM routines operate over a set of data values where the current output value
is directly related to the previous output value. Because of this, each call to one of the
routines requires some history of the previous values. This history is defined by the
step-size and the prediction for the next input value, and is maintained in the ADPCMState
structure between routine calls.

2.2.3 Usage

When starting a new coding or decoding sequence, before you pass the structure to the
ADPCM routines, you must initialize the stepIndex and prediction entries to zero.
Between the routine calls for the sequence of input values, you must maintain the
structure with the values that are updated during the operation of the routine.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-7

Adaptive Differential Pulse Code Modulation
2.3 Functions

This section describes the ADPCM routines. The functions are:

• Encode 16-bit pulse code modulation (PCM) to 4-bit ADPCM (adpcm_encode)

• Decode 4-bit ADPCM to 16-bit PCM (adpcm_decode on page 2-9).

2.3.1 adpcm_encode

You can call this function repeatedly to encode a set of 16-bit PCM inputs to a set of
corresponding 4-bit compressed ADPCM samples.

Syntax

int adpcm_encode(int pcmSample, ADPCMStatePtr encodeStatePtr)

where:

pcmSample is the current 16-bit PCM data value to be encoded. This value
must be a 16-bit quantity, even though it is passed in a 32-bit
integer word.

encodeStatePtr is a pointer to the ADPCMState structure required during the
encoding operation.

When this function returns, encodeStatePtr points to an updated
ADPCMState structure that contains the values required during the
next call to adpcm_encode(). The structure must be maintained
as-is between calls.

Return Value

The 4-bit compressed ADPCM encoding of the given 16-bit PCM input data value.

Usage

For each set of PCM data values to be encoded, the entries in the ADPCMState structure
must be zero-initialized before the first call to adpcm_encode(). The ADPCMState structure
must then be passed to each subsequent function call with the values returned from the
previous function call.
2-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Adaptive Differential Pulse Code Modulation
2.3.2 adpcm_decode

You can call this function repeatedly to decode a set of 4-bit compressed ADPCM
inputs to a set of corresponding uncompressed 16-bit PCM samples.

Syntax

int adpcm_decode(int adpcmSample, ADPCMStatePtr decodeStatePtr)

where:

adpcmSample is the current 4-bit compressed ADPCM data value to be decoded.
This value must be a 4-bit quantity, even though it is passed in a
32-bit integer word.

decodeStatePtr is a pointer to the ADPCMState structure required during the
decoding operation.

When this function returns, decodeStatePtr points to an updated
ADPCMState structure that contains the values required during the
next call to adpcm_decode(). The structure must be maintained
as-is between calls.

Return Value

The 16-bit uncompressed PCM decoding of the given 4-bit ADPCM input data value.

Usage

Because the ADPCM implementation is specific, the values in adpcmSample must be
values that have been returned from adpcm_encode(). Data from another ADPCM
encoder may not be in the correct format.

For each set of ADPCM data values to be decoded, the entries in the ADPCMState
structure must be zero-initialized before the first call to adpcm_decode(). The ADPCMState
structure must then be passed to each subsequent function call with the values returned
from the previous function call.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-9

Adaptive Differential Pulse Code Modulation
2-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 3
G.711—A-law, µ-law, PCM Conversions

This chapter describes an implementation of the International Telecommunications
Union (ITU) G.711 standard for A-law and µ-law conversion of pulse code modulation
(PCM) signals. It contains the following sections:

• Overview on page 3-2

• Functions on page 3-3.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-1

G.711—A-law, µ-law, PCM Conversions
3.1 Overview

This section provides general information on G.711.

3.1.1 Implementation

The implementation is based on the G.711 standard from the ITU. The G.711 standard
is defined in General Aspects of Digital Transmission Systems; Terminal Equipments,
Volume III, Recommendations G.700-G.795.

3.1.2 Files

The files in Table 3-1 are provided with the implementation. The G.711 standard is
implemented as a set of ARM assembly language macros in g711m.h.

Table 3-1 G711 files

File name Archive name Code type Functionality

g711m.h arm_g711 ARM assembly language PCM, A-law, and µ-law conversions

g711uats.s arm_g711 ARM assembly language A-law to and from µ-law conversion lookup tables,
G711_u2a_lookup and G711_a2u_lookup

g711s.s arm_g711 ARM assembly language G.711 macro initializations with C-based code
wrapping

g711s.h arm_g711 C header G.711 function prototypes
3-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

G.711—A-law, µ-law, PCM Conversions
3.2 Functions

This section describes the G.711 macros. The macros are:

• 16-bit linear PCM to 8-bit A-law conversion (G711_linear2alaw_macro)

• 8-bit A-law to 16-bit linear PCM conversion (G711_alaw2linear_macro on
page 3-4)

• 16-bit linear PCM to 8-bit µ-law conversion (G711_linear2ulaw_macro on
page 3-5)

• 8-bit µ-law to 16-bit linear PCM conversion (G711_ulaw2linear_macro on
page 3-6)

• 8-bit A-law to 8-bit µ-law conversion (G711_alaw2ulaw_macro on page 3-7)

• 8-bit µ-law to 8-bit A-law conversion (G711_ulaw2alaw_macro on page 3-9).

3.2.1 G711_linear2alaw_macro

This macro converts a 16-bit linear PCM value to an 8-bit compressed A-law value.

Syntax

MACRO G711_linear2alaw_macro $pcm, $alaw, $t1, $t2, $msk

where:

$pcm is a register that holds the 16-bit linear PCM value to be converted.
This value must be no more than a 16-bit quantity with the least
significant bit first, even though it is in a 32-bit register. The value
can be less than 16 bits, but each sample must occupy two bytes
and must be shifted up, leaving zeros in the bottom unused bits, so
that dynamic range is not lost.

$alaw is a register that holds the 8-bit compressed A-law result.

$t1, $t2, $msk are temporary registers required during the conversion. On output,
any value is undefined.

Register differentiation

$pcm, $t1, $t2 and $msk must be distinct registers.

$alaw, $t1 and $t2 must be distinct registers.

$pcm and $alaw need not be distinct registers.

$alaw and $msk need not be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-3

G.711—A-law, µ-law, PCM Conversions
3.2.2 G711_alaw2linear_macro

This macro converts an 8-bit compressed A-law value to a 16-bit linear PCM value.

Syntax

MACRO G711_alaw2linear_macro $alaw, $pcm, $t1, $t2

where:

$alaw is a register that holds the 8-bit compressed A-law value to be converted.
This value must be an 8-bit quantity with the least significant bit first,
even though it is in a 32-bit register.

$pcm is a register that holds the 16-bit linear PCM result.

$t1, $t2 are temporary registers required during the conversion. On output, any
value is undefined.

Register differentiation

$alaw, $t1 and $t2 must be distinct registers.

$pcm, $t1 and $t2 must be distinct registers.

$alaw and $pcm need not be distinct registers.
3-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

G.711—A-law, µ-law, PCM Conversions
3.2.3 G711_linear2ulaw_macro

This macro converts a 16-bit linear PCM value to an 8-bit compressed µ-law value.

Syntax

MACRO G711_linear2ulaw_macro $pcm, $ulaw, $msk, $t1, $t2

where:

$pcm is a register that holds the 16-bit linear PCM value to be converted.
This value must be no more than a 16-bit quantity with the least
significant bit first, even though it is in a 32-bit register. The value
can be less than 16 bits, but each sample must occupy two bytes
and must be shifted up, leaving zeros in the bottom unused bits, so
that dynamic range is not lost.

$ulaw is a register that holds the 8-bit compressed µ-law result.

$msk, $t1, $t2 are temporary registers required during the conversion. On output,
any value is undefined.

Register differentiation

$pcm, $t1, $t2 and $msk must be distinct registers.

$ulaw, $t1 and $t2 must be distinct registers.

$pcm and $ulaw need not be distinct registers.

$ulaw and $msk need not be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-5

G.711—A-law, µ-law, PCM Conversions
3.2.4 G711_ulaw2linear_macro

This macro converts an 8-bit compressed µ-law value to a 16-bit linear PCM value.

Syntax

MACRO G711_ulaw2linear_macro $ulaw, $pcm, $seg

where:

$ulaw is a register that holds the 8-bit compressed µ-law value to be converted.
This value must be an 8-bit quantity with the least significant bit first,
even though it is in a 32-bit register.

$pcm is a register that holds the 16-bit linear PCM result.

$seg is a temporary register required during the conversion. On output, any
value is undefined.

Register differentiation

$ulaw and $seg must be distinct registers.

$pcm and $seg must be distinct registers.

$ulaw and $pcm need not be distinct registers.
3-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

G.711—A-law, µ-law, PCM Conversions
3.2.5 G711_alaw2ulaw_macro

This macro converts an 8-bit compressed A-law value to an 8-bit compressed µ-law
value.

Syntax

MACRO G711_alaw2ulaw_macro $alaw, $ulaw, $tmp, $table, $hastable

where:

$alaw is a register that holds the 8-bit compressed A-law value to be converted.
This value must be an 8-bit quantity with the least significant bit first,
even though it is in a 32-bit register.

$ulaw is a register that holds the 8-bit compressed µ-law result.

$tmp is a temporary register required during the conversion. On output, any
value is undefined.

$table is a register that holds the address of the G711_a2u_lookup table, either
supplied on input or initialized by the macro. If the macro is to be used
repeatedly, $table can be initialized the first time the macro is used and
passed as a parameter with each subsequent usage.

$hastable is an optional parameter that can contain any value. If $hastable is
present, $table must contain the address of the G711_a2u_lookup table. If
$hastable is not present, $table is initialized by the macro.

Usage

The macro requires the address of the G711_a2u_lookup table (defined in g711uats.s) for
the conversion. This address is held in the register identified by $table, and can either
be:

• supplied to the macro, in which case $hastable must be supplied

• initialized by the macro, in which case $hastable must not be supplied.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-7

G.711—A-law, µ-law, PCM Conversions
Register differentiation

$alaw, $tmp and $table must be distinct registers.

$ulaw and $tmp must be distinct registers.

$ulaw and $table need not be distinct registers. However, the address of the lookup table
is overwritten if the same register is used for both parameters.

$alaw and $ulaw need not be distinct registers.
3-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

G.711—A-law, µ-law, PCM Conversions
3.2.6 G711_ulaw2alaw_macro

This macro converts an 8-bit compressed µ-law value to an 8-bit compressed A-law
value.

Syntax

MACRO G711_ulaw2alaw_macro $ulaw, $alaw, $tmp, $table, $hastable

where:

$ulaw is a register that holds the 8-bit compressed µ-law value to be converted.
This value must be an 8-bit quantity with the least significant bit first,
even though it is given in a 32-bit register.

$alaw is a register that holds the 8-bit compressed A-law result.

$tmp is a temporary register required during the conversion. On output, any
value is undefined.

$table is a register that holds the address of the G711_u2a_lookup table, either
supplied on input or initialized by the macro. If the macro is to be used
repeatedly, $table can be initialized the first time the macro is used and
passed as a parameter with each subsequent usage.

$hastable is an optional parameter that can contain any value. If $hastable is
present, $table must contain the address of the G711_u2a_lookup table. If
$hastable is not present, $table is initialized by the macro.

Usage

The macro requires the address of the G711_u2a_lookup table (defined in g711uats.s) for
the conversion. This address is held in the register identified by $table, and can either
be:

• supplied to the macro, in which case $hastable must be supplied

• initialized by the macro, in which case $hastable must not be supplied.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-9

G.711—A-law, µ-law, PCM Conversions
Register differentiation

$ulaw, $tmp and $table must be distinct registers.

$alaw and $tmp must be distinct registers.

$alaw and $table need not be distinct registers. However, the address of the lookup table
is overwritten if the same register is used for both parameters.

$ulaw and $alaw need not be distinct registers.
3-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 4
Fast Fourier Transform and Windowing

This chapter describes an implementation of the fast Fourier transform (FFT) and
implementations of Hamming and Hanning windows that can be used with the FFT. It
contains the following sections:

• Overview on page 4-2

• Complex data structure on page 4-9

• Functions on page 4-10.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-1

Fast Fourier Transform and Windowing
4.1 Overview

This section provides general information on:

• the implementation of forward FFT and inverse FFT

• the flags relating to FFT optimization and conditional assembly

• Hamming and Hanning windows

• the files provided with the FFT implementation.

4.1.1 Implementation

This section describes the formulas used in the implementation of the forward and
inverse FFTs, and the settings that can be adjusted for the implementation. A Radix2
algorithm is used. It also describes the formulas for the windowing techniques.

Forward FFT

The forward FFT, given by:

performs the calculation specified by the formula:

where ω = 2π / Ν and the 1 / N scaling that multiplies the summation prevents overflow
within the algorithm.

Using the complex identity eiθ = cosθ + i sinθ, the transform can be written as:

Evaluating the sum directly requires of the order of N2 multiplications. However, this
can be reduced to the order of N log N by rearranging the terms in the following way:

Separate out the even-numbered and odd-numbered elements:

	
� ��� ��

� �� � � � � � � �� �

�

� �
�

� �
�

�

��

�

��� ���� �

� � � �� �

�
 � �
�

� �

�

�

��

�
�

4-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Fast Fourier Transform and Windowing
Take out a factor of e-ikω:

Inspection shows that if:

and:

then:

The problem has been reduced to calculating two FFTs of size N / 2 and performing N
complex multiplications.

Note
 The bottom bit of k determines whether x[k] is in the FFT calculation for Y or for Z.

By repeating this process for Y and Z, and recursing the FFT algorithm, the next
subsection is derived. This process is known as decimation in time.

Inverse FFT

The inverse FFT, given by:

performs the calculation specified by the formula:

� � � � � � � �� �

�
 � �
 ��
� �
 �

� � �
�

�
�
�

�

�
�
�

� � �

�

�

�

�

���

 �

 �

 �

 �
� �

� � � � � �� �

�
 � � �
 ��
� �� �
�

� � �
�

�
�
�

�

�
�
�

� � �

�

�

�

�

���

 �

 �

 �
� � �

	
! ��� �
 � �
 � � � � � �
� �� � � ��

" ��� � � � � � � � � �� � � � �� �� �	
�

	
� � � �

 � � �	
 � �"� �!��

 ��"��!��

��

��

������

����

�

�

�

	

	

� #��� �	
�
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-3

Fast Fourier Transform and Windowing
where ω = 2π / Ν and the 1 / N scaling that multiplies the summation prevents overflow
within the algorithm.

This can be simplified as given in the case of the forward FFT above.

Table lookup

The cosine and sine values used in the forward and inverse FFT algorithms only depend
on the value of N. If the value of N is fixed, the cosine and sine values required are a set
of constants and a lookup table can be created. In addition, the lookup table has
symmetries so that only the values between 0 and π / 4 radians need calculating, and all
other cosine and sine values can be determined from these values.

Therefore, the FFT is implemented using a cosine and sine lookup table that must be
generated and included before assembling the FFT functions. The generation of the
lookup table is handled by a separate set of files contained in the arm_fft\arm_tgen
directory. When the archive files are compiled and executed, a table is generated in
ffttabls.h. The directory location for the file and the maximum number of points in the
FFT, N, are specified at runtime.

The directory path should locate the directory for ffts.s from that of the executable
creating the table, so that the header file is included when assembling ffts.s.

For example, given the following structure:

apps_lib\arm_fft\fft.mcp
apps_lib\arm_fft\src\ffts.s
apps_lib\arm_fft\variants\[variations]\fft.axf
apps_lib\arm_fft\fft_tgen\fft_tgen.mcp
apps_lib\arm_fft\fft_tgen\variants\[variations]\fft_tgen.axf

the ffttabls.h table must be in the apps_lib\fft\src\ directory, which must be
identified when executing fft_tgen.axf. (The variations can be found in Variants on
page 1-8.)

If fft_tgen.axf is executed in apps_lib\fft\fft_tgen\variants\[variations], the
directory location for the table is ..\..\..\src because the creation process must
change directory by going back through the \fft_tgen\variants\[variations]
directories to apps_lib\fft\ and then forward into the src directory.

However, if ..\fft_tgen\variants\[variations]\fft_tgen.axf is executing in
apps_lib\fft\src, the directory path for the table is empty because the directory
structure has been incorporated into the execution of fft_tgen.axf.

� � � � � � � �� ���
��
�
�

��

������� �

�� �
�

�

4-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Fast Fourier Transform and Windowing
The number of points in the FFT must be given as the maximum number of points that
the FFT can perform with each call, and therefore, the maximum number of inputs to,
and outputs from, the FFT. The number of points in the FFT must be a power of two and
should be set with consideration to speed and memory.

The more points in the FFT, the larger the lookup table, and hence the data size, and the
slower the FFT functions perform due to cache misses. However, the more points in the
FFT and the greater the number of possible input values that can be given to each call
of the FFT, the greater the number of possible outputs that can be generated. The fewer
the points in the FFT and the smaller the table and data size, the quicker the FFT
performs, but with fewer inputs that can be processed with each FFT call.

The number of points in the FFT given here only determines the maximum number of
possible inputs to the FFT functions, and not the number of inputs that must be passed
to each call of the FFT.

If the directory path and/or the number of points are not given at runtime, their default
values are used. The default directory path is the directory of the executable creating the
table and the default maximum number of points in the FFT is 1024.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-5

Fast Fourier Transform and Windowing
4.1.2 FFT optimization and conditional assembly

The following flags are defined in ffts.s and relate to FFT optimization and conditional
assembly.

OPTIMISE

This flag determines which algorithm the FFT uses. There are two separate algorithms,
one optimized for size and one optimized for speed.

If the smaller but slower algorithm is required, the flag must be set to 0 (false). If the
larger but highly optimized algorithm is required, this flag must be set to 1 (true). On
average, the unoptimized algorithm takes approximately 1.5 times as long as the
optimized version for large FFTs and twice as long for smaller FFTs.

Given that the FFT is an N-point function, the code size for the optimized algorithm is
(1592 + N) / 2 bytes, including the lookup table. The read/write data size is 64 bytes,
not including the input and output buffers. The unoptimized algorithm has a smaller
code size of (548 + N) / 2 bytes but the same read/write data size of 64 bytes.

FORWARD, INVERSE

The same function is used to perform a forward and inverse FFT. The direction of the
FFT is determined by the FORWARD or INVERSE flags. To reduce code size, support for
either the forward or inverse FFT can be enabled or disabled independently by setting
the appropriate flags.

• To enable the forward FFT, set the FORWARD flag to 1. To disable the forward FFT,
set it to 0.

• To enable the inverse FFT, set the INVERSE flag to 1. To disable the forward FFT,
set it to 0.

If either or both flags are disabled and the FFT function is called with the direction set
to an operation that is disabled, the result is undetermined.
4-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Fast Fourier Transform and Windowing
INPLACE, OUTPLACE

The addresses for the input and output buffers are given as arguments to the FFT
functions. The FFT is in-place if the input buffer and output buffer reference the same
block of memory. Conversely, if the input and output buffers reference different blocks
of memory, the FFT is out-of-place.

• To permit in-place buffers, set the INPLACE flag to 1. When INPLACE is set to 0,
in-place buffers are not supported.

• To permit out-of-place buffers, set the OUTPLACE flag to 1. When OUTPLACE is set to
0, out-of-place buffers are not supported.

The results are undetermined if:

• the buffers are in-place when only out-of-place buffers are allowed

• the buffers are out-of-place and only in-place buffers are allowed

• neither in-place nor out-of-place buffers are allowed.

REALFFTS

The ffts.s file defines a REALFFT() function that can be used when the inputs to the FFT
are real values.

• If this function is not required, set the REALFFTS flag to 0 (false), so that the
function is not defined.

• Otherwise, set the flag to 1 (true) to define and export the function.

4.1.3 Hamming and Hanning windows

The Hamming and Hanning Windows are defined by the formula:

where:

� � � � � �� � �
 �
�

�
 � � �

��
�
��

�
�
�

�
�
��

� �

�
���

�

���

��
�
�
�

�
��������������
��������������
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-7

Fast Fourier Transform and Windowing
4.1.4 Files

The files in Table 4-1 are provided with the implementation.

Table 4-1 FFT files

Filename Archive name Code type Functionality

ffts.s arm_fft ARM assembly language FFT real coding, and imaginary coding and
decoding

ffttabls.h arm_fft ARM assembly language FFT point lookup table for FFT calculation

fftstruc.h arm_fft C header Complex structure definition

ffts.h arm_fft C header FFT function prototypes

windowsc.c arm_fft C GenerateWindow(), Hamming() and Hanning()
windowing functions

windowsc.h arm_fft C header Window function prototypes and constant
definitions

ffttgenc.c arm_fft\arm_tgen C Code for creation of the FFT point lookup
table file ffttabls.h

ffttgenc.h arm_fft\arm_tgen C header Constant definitions for creation of the FFT
point lookup table
4-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Fast Fourier Transform and Windowing
4.2 Complex data structure

This section describes the Complex data structure required by the FFT functions. This
structure is used to pass or retrieve complex data values to or from the FFT routines.

4.2.1 Definition

typedef struct Complex Complex ;

struct Complex {
 int r ;
 int i ;
} ;

4.2.2 Description

The FFT routines operate over complex data values. Each complex number consists of
a 32-bit integer containing the real part, followed by a 32-bit integer containing the
imaginary part. The Complex structure is used to maintain each data value with a real and
imaginary part, and is eight bytes long.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-9

Fast Fourier Transform and Windowing
4.3 Functions

This section describes the FFT and windowing routines. The functions are:

• Forward or inverse FFT on complex values (FFT)

• Forward FFT on real values (REALFFT on page 4-12)

• Generating coefficients for Hamming or Hanning window
(GenerateWindow on page 4-14)

• Perform Hamming window (HammingWindow on page 4-15)

• Perform Hanning window (HanningWindow on page 4-16).

4.3.1 FFT

This function calculates the forward or inverse FFT for a given set of complex data
values and outputs a set of complex transform coefficients to an output data buffer.

Syntax

int FFT(Complex *in, Complex *out, int logN, int direction)

where:

in is a pointer to the starting address of the input data consisting of N
complex values. The buffer is 8N bytes long.

To prevent overflow within the algorithm, the real and imaginary parts of
the complex input data values referenced by in must be sign extended
16-bit quantities and must be between –32768 and +32767.

out is an initialized pointer to the starting address of the output data buffer
which must reference at least as many Complex data items as in references
input data points. The out parameter must also be at least 8N bytes long.

When the function returns, out contains a pointer to the starting address
of the buffer that holds the N outputs.

logN is an integer that defines the base-2 logarithm of the number of complex
data input values, N, that are referenced by in. N defines the number of
points in the FFT.

direction is a flag that indicates the direction of the FFT:

1 the forward FFT is to be performed.

0 the inverse FFT is to be performed (the data is to be inverted
to its original state).
4-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Fast Fourier Transform and Windowing
Return Value

0 the FFT was successful and out points to the buffer containing valid FFT
transform coefficients.

1 the FFT was unsuccessful because the trigonometry table is not large
enough for the given size of N. The values in the output data buffer
pointed to by out are unspecified.

Usage

The number of data inputs that are referenced by in and the number of outputs that are
returned by the FFT function can be determined from the value given by logN. The value
defined by logN must be the power to which 2 is raised to give the number of inputs.
That is, logN is the base-2 logarithmic value of N, and is equivalent to the highest bit that
is set in N, such that N = (1 << logN).

N must be a power of 2. The largest value of N that can be passed to the FFT depends
on the size of the trigonometry table that was used when the FFT was assembled. For
the optimized version of the FFT, the smallest value of N that can be used is 16, such
that logN is at least 4.

Notes

The output data is scaled by a factor of 1 ⁄ N to reduce the possibility of overflow during
the FFT algorithm.

The input and output buffers can be in-place or out-of-place. However, if memory is
slow on the host system, the FFT calculations are slightly faster when performed
in-place.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-11

Fast Fourier Transform and Windowing
4.3.2 REALFFT

This function calculates the forward FFT for a given set of real data values.

Syntax

int REALFFT(int *in, Complex *out, int logN)

where:

in is a pointer to the starting address of the input data consisting of 2N real
values. The buffer is 8N bytes long.

To prevent overflow within the algorithm, the real input data values
referenced by in must be sign extended 16-bit quantities and must be
between –32768 and +32767.

out is an initialized pointer to the starting address of the output data buffer,
which must reference at least as many Complex data items as half the
number of real input data points referenced by in. Therefore, out must be
at least 8N bytes long.

When the function returns, out contains a pointer to the starting address
of the buffer that holds the N outputs.

logN is an integer that defines the base-2 logarithm of the number of real input
data values referenced by in, divided by two. Therefore, logN defines half
the number of points in the FFT and the number of outputs that are
returned by REALFFT().

Return Value

0 the FFT was successful and out points to the buffer containing valid FFT
transform coefficients.

1 the FFT was unsuccessful because the trigonometry table is not large
enough for the given size of N. The values in the output data buffer
pointed to by out are unspecified.

Usage

If the values to be fast Fourier transformed are real values (complex numbers with a
zero-value imaginary part), REALFFT() can be used instead of FFT() to perform the
forward FFT and almost double the speed of the transform.
4-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Fast Fourier Transform and Windowing
The FFT of 2N real values is calculated using an N-point complex FFT. Therefore, the
size of the input buffer referenced by in must be at least 2N and filled with the real parts
of:

After performing the real FFT, the output buffer referenced by out contains the first half
of the FFT transform coefficients, N complex values given by:

The second half can be calculated by symmetry because:

X[2N-k]

is the complex conjugate of:

X[k]

in the real case.

The number of data inputs that are referenced by in and the number of outputs that are
returned by the FFT function can be determined from the value given by logN. The value
defined by logN must be the power to which 2 is raised to give the number of outputs
and, therefore, half the number of inputs. In other words, logN is the base-2 logarithmic
value of N and is equivalent to the highest bit that is set in N, such that N = (1 << logN)
and the number of inputs is given as 2N.

N must be a power of 2. The largest value of N that can be passed to the FFT depends on
the size of the trigonometry table that was used when the FFT was assembled. In other
words, for each N the trigonometry table must be at least of size 2N. For the optimized
version of the FFT, the smallest value of N that can be used is 16, such that logN is at
least 4, and therefore the minimum number of points in the real FFT is 32.

Notes

The input and output buffers are both 8N bytes and can be in-place or out-of-place.
However, if memory is slow on the host system, the FFT calculations are slightly faster
when performed in-place.

�
 � � �
 �� �� �

�
 � � � �� �� �
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-13

Fast Fourier Transform and Windowing
4.3.3 GenerateWindow

This function generates an array of coefficients that describe either a Hamming or
Hanning window to be performed on data that is to be passed to the FFT. The array can
then be multiplied by the input data pre-FFT to perform the window.

Syntax

int *GenerateWindow(int windowCoefficient, int nDataPoints)

where:

windowCoefficient

is the fixed-point coefficient value, α, with the fixed-point between bits
13 and 14. This value determines whether the generated window
coefficients are Hamming or Hanning window coefficients. The
windowCoefficient parameter must be either 0x1d70 for a Hamming
Window or 0x2000 for a Hanning Window.

nDataPoints

is the number of points in the Hamming or Hanning Window. This is
usually the number of data points to be input to the FFT.

Return Value

An array of nDataPoints sign-extended, fixed-point windowing coefficients, with the
fixed-point between bits 13 and 14, or NULL if an error occurred.

Usage

The GenerateWindow() function should be used if the required window is to be performed
on several sets of input data. Otherwise, HammingWindow() or HanningWindow() should be
used.
4-14 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Fast Fourier Transform and Windowing
4.3.4 HammingWindow

This function multiplies the input data to be passed to the FFT by the Hamming Window
coefficients.

Syntax

void HammingWindow(int outputs[], int inputs[], int nDataPoints)

where:

outputs is an initialized array that must reference at least nDataPoints
entries.

When the function returns, outputs is an array that contains
nDataPoints data values, which are the result of multiplying the
input data values by the Hamming Window.

inputs is an array of nDataPoints data values to be multiplied by the
Hamming Window. The values must be no more than 16-bit
quantities. Otherwise, the multiplication by the Hamming
Window overflows.

nDataPoints is the number of data points in inputs and the number of entries in
outputs, after performing the Hamming Window.

Usage

The input data array and the output data array can be in-place. That is, the result of the
multiplication by the Hamming Window can be returned in the same memory as the
input data so that the input data is overwritten.

The HammingWindow() function should be used if the window is to be performed on the
given set of input data only. If the window is to be applied to several sets of data values,
each with the same number of data points, GenerateWindow() should be used instead to
obtain the Hamming Window coefficients, and the multiplication should be carried out
separately.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-15

Fast Fourier Transform and Windowing
4.3.5 HanningWindow

This function multiplies the input data to be passed to the FFT by the Hanning Window
coefficients.

Syntax

void HanningWindow(int outputs[], int inputs[], int nDataPoints)

where:

outputs is an initialized array that must reference at least nDataPoints
entries.

When the function returns, outputs is an array that contains
nDataPoints data values, which are the result of multiplying the
input data values by the Hanning Window.

inputs is an array of nDataPoints data values to be multiplied by the
Hanning Window. The values must be no more than 16-bit
quantities. Otherwise, the multiplication by the Hanning Window
overflows.

nDataPoints is the number of data points in inputs and the number of entries in
outputs, after performing the Hanning Window.

Usage

The input data array and the output data array can be in-place. That is, the result of the
multiplication by the Hanning Window can be returned in the same memory as the input
data so that the input data is overwritten.

The HanningWindow() function should be used if the window is to be performed on the
given set of input data only. If the window is to be applied to several sets of data values,
each with the same number of data points, GenerateWindow() should be used instead to
obtain the Hanning Window coefficients, and the multiplication should be carried out
separately.
4-16 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 5
Two-Dimensional Discrete Cosine Transform

This chapter describes an ARM implementation of a two-dimensional (2D) discrete
cosine transform (DCT). This chapter contains the following sections:

• Overview on page 5-2

• SCALETABLE data structure on page 5-7

• Functions on page 5-9

• Supplementary macros on page 5-13.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-1

Two-Dimensional Discrete Cosine Transform
5.1 Overview

This section provides general information on the 2D DCT.

5.1.1 ARM architecture requirements

The file dcts.s defines the FASTMUL flag. This flag determines whether the DCT
algorithms use the ARM multiply instruction, or addition and shifting to achieve the
multiplication.

On older processors, where addition and shifting is a faster process than the multiply
instruction, FASTMUL should be set to 0 (false). On newer processors, where
multiplication is fast, FASTMUL should be set to 1 (true).

Table 5-1 contains a list of ARM processors and the recommended settings of the
FASTMUL flag.

Table 5-1 FASTMUL flag settings

Processor FASTMUL

ARM7 0

ARM7TDMI 0 or 1

ARM9TDMI 1

SA-110 1
5-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
5.1.2 Implementation

The 2D DCT is implemented in a block form as a one-dimensional (1D) 8-element DCT
horizontally on every row, followed by a 1D 8-element DCT vertically on every column.

1D 8-element forward DCT

The 1D 8-element forward DCT takes eight inputs and produces eight outputs. It can be
described by the formula:

where:

and:

The 1D DCT implementation devised by Arai, Agui and Nakajima is the most efficient
method known to date. Their method can be split into five stages:

Stage 1:

	
 � �� $	
 �

� $
�	
 � � �	
� $ ��	
� �
 $ �	

	

�
�
�

��
�

�

��

�
�

��

�

�

$

$
$�

� $ ��	
 �
��
������$
� ��	
����

 �!
! �!

 �! �! �!

 �!
! �!

 �! �! �!

 �! �! �!
 �!
!
!

 �! �! �!

 �!
!
!

��%

��%

��%

��%

��%
��%

��%

��%

��

��

��

��

��
��

��

��
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-3

Two-Dimensional Discrete Cosine Transform
Stage 2:

Stage 3:

 �! �!
 �! �! �!
 �! �! �!
 �! �! �!

! �!
!

! �! �!

 �!
! �!
 �!
!
!

%�
%%�
%%�
%%�

%%�
%%�

%%�
%%�

�
��
��
��

��
��

��
��

��&��%

��&��%

���&�

���&�%

���&�%

����&�

�%

��%

�%

�%

��

��

��

�

�
��
�

�

�
�

�
�
��

�
�

�
�
����

�

�
��
�

�

�
�

�
�
��

�
�

�
�
����

�
�

�
�
����

�

���

�

�

 �! �!
 �! �!

�

 �!

	
�

���
	

��� �! �!

	
�

���
	

��� �! �!

	
�

��� �! �!!

 �! �!

�

 �!
!!
!

 �! �!

!
!

��

��

�

5-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
Stage 4:

Stage 5:

1D 8-element reverse DCT

The reverse DCT algorithm is calculated by reversing each step of the above algorithm.
For example:

from stage 4 are reversed as:

The result is a reverse DCT that is almost lossless while only using 16-bit arithmetic.

 �! �! �!

 �! �! �!

 �! �! �!

 �! �! �!

! �! �!

! �!
!

 �!
! �!
 �!
!
!

%%�

%%�

%%�

%%�

%%�

%%�

%%�

%%�

��

��

��

��

��

��

��

��

	
 	

	
 	

��

��
���

��

�
�

�
�
�

�

�

$
$

$�
$�

�
�

�

�! �! �!
 �! �! �!

%%�
%%�

��
��

 �! �!

 �!

 �! �!

 �!

��
%

��
%

�
�

�
�

ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-5

Two-Dimensional Discrete Cosine Transform
2D 8x8 element DCT

The 2D 8x8 element forward DCT takes as input a 2D 8x8 array f(i,j) and produces as
output a new 8x8 array T(u,v) described by the formula:

where C and c are as defined in 1D 8-element forward DCT on page 5-3.

The formula is separable. That is, the 2D transform can be calculated by performing a
1D transform on each of the eight rows and eight columns of the matrix. The order in
which the rows and columns are transformed does not affect the final result. The
algorithm implemented here calculates the 2D DCT in this way.

5.1.3 Files

The files in Table 5-2 are provided with the implementation.

� �

��
� �

	
 	
 	
 	
 	
 	
'(��$�'��(�$�($� """"
� �

�

Table 5-2 2D/DCT files

Filename Archive name Code type Functionality

dcts.s arm_dct ARM assembly language 2D DCT coding and decoding

dcts.h arm_dct C macros, C header DCT setup macros, function prototypes and
coding/decoding tables

dcttgenc.c arm_dct\dct_tgen C Coding and decoding table generation

dcttgenc.h arm_dct\dct_tgen C header Coding and decoding table constant
declarations
5-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
5.2 SCALETABLE data structure

The SCALETABLE data type is used to store scaling table and re-ordering information
required during the DCT operations.

5.2.1 Definition

typedef unsigned int SCALETABLE[64] ;

5.2.2 Description

The following sections describe how arrays of type SCALETABLE are used by the 2D DCT
code for forward and reverse transforms:

• Forward 2D DCT

• Reverse 2D DCT on page 5-8.

Forward 2D DCT

The first part of the forward 2D DCT code applies stages 1 to 4 of the 1D DCT
algorithm (as described in 1D 8-element forward DCT on page 5-3) to all rows and
columns of the input data. In the application of stage 4, the data is not reordered, and so
columns and rows remain permuted in the order 0, 4, 2, 6, 5, 3, 1, 7, as defined in stage 4.

The second part of the forward 2D DCT code scales the data as described in stage 5 of
1D 8-element forward DCT on page 5-3 and carries out the permutation remaining from
stage 4, to produce the final result. To do this, it uses the FDCTScales array. This array is
of type SCALETABLE. It contains 64 entries, each entry consisting of a 32-bit word that
contains the permutation reorder information in the top eight bits, and the scaling
coefficients in the bottom 24 bits. The table is defined in the file dcts.h.

The FDCTScales table is derived from the AANScales matrix defined in dcttgenc.h.
AANScales defines the scalings required by stage 5 of 1D 8-element forward DCT on
page 5-3 and is calculated by the formula:

where:

 t(j) is defined in the same way as t(i).

�� �����!�"�' �����!� �!'
��

� �

��

�
�

�

��
�
�

�
�
�

�
�

��
��

���

�
 !

��

�
�� �
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-7

Two-Dimensional Discrete Cosine Transform
the multiplication by 214 shifts the decimal values produced by 14 bits to give integer
values with precision.

The maximum shift possible to give the greatest precision in the resulting integer values
is 14 bits. This value ensures that the multiplications do not overflow the 16 bits
allocated for each value. For example:

The complete constant value AANScales matrix is given as:

Reverse 2D DCT

The reverse 2D DCT algorithm is split into the following two parts:

• Part one scales and permutes the data array using the RDCTScales table, of type
SCALETABLE. This part is performed by the PRERDCT macro.

• Part two inverts stages 1 to 4 of 1D 8-element forward DCT on page 5-3 on each
row and column of the matrix. This part is performed by the rdct_fast() function.

The RDCTScales table is generated from the AANScales matrix.

Details on the calculation of FDCTScales and RDCTScales from AANScales is not included
in this text. The source file dcttgenc.c generates the tables.

��	�
��
�

���
	

����
��	 �"
! �
�
�

�
�
��

�
�

�
�
���

��
�� �����

�� ������

�

�

!

"

#
#
#
#
#
#
#
#
#
#
#

���	�

�
�
��
� �
�� ���	� �
	�� 		�� ��

�
� ���
�
�

��

�
� ��	�� �

 �
�

��
�
�

��
���

��
� ��	� ���	� �
�

�
��
��

���

��� �
�� ����� �
�
� ����
���	�

�
�
��
� �
�� ���	� �
	�� 		�� ��

�
	�� ��	�� ��	� ����� �
	�� �
��� ��� ���

		�� �

 ���	� �
�
� 		�� ��� ��
���

��

 �
�
 �
� ���� ��

 ���

��� �
��
5-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
5.3 Functions

This section describes the DCT functions. Both functions require special variable
initialization and custom data types to be used. A set of macros that can be used to
perform the initialization are described in Supplementary macros on page 5-13.

The DCT functions are:

• Forward 2D DCT on 8x8 blocks (fdct_fast)

• Reverse 2D DCT on 8x8 blocks (rdct_fast on page 5-11).

5.3.1 fdct_fast

This function performs the forward DCT on pairs of interleaved blocks, with one block
of a pair stored in the low 16 bits of the integers and the other block of the pair in the
high 16 bits.

Syntax

void fdct_fast(int *dctBlock, int nBlocks, SCALETABLE *sTable[])

where:

dctBlock is a 256 byte-aligned pointer to the start of a sequence of 8x8 integer
block pairs that hold the data that is to be transformed using the forward
DCT. Adding multiples of 256 bytes to the starting address of dctBlock
accesses additional pairs. The address of the pointer must have the low
eight bits set to zero.

For each block of a block pair, the respective 16 bits of each integer must
contain an unsigned 8-bit value in the range from 0-255 shifted up by one
bit to provide fixed-point precision.

When this function returns, dctBlock holds the output data.

nBlocks is the number of blocks that are defined in dctBlock, both on input and
output. This parameter must be the total number of blocks that contain
data and not the number of block pairs.

sTable is an array of pointers to the SCALETABLE information. This information is
used to perform the scaling and re-ordering of the calculated DCT values
before returning from the function call, so that a map from an input value
to its respective output value is possible.

For every block pair being transformed by the forward DCT, a pointer to
a SCALETABLE is required that contains the information used to perform the
scaling and re-ordering. There must be at least (nBlocks + 1) / 2 array
entries, each a pointer to a SCALETABLE.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-9

Two-Dimensional Discrete Cosine Transform
Usage

The dctBlock pointer must address enough memory to hold all block pairs plus enough
memory for an additional block pair that is used as scratch space during calculations.
Each block pair requires 256 bytes (64 integers of four bytes each).

This function can operate over an odd number of blocks, but during calculations nBlocks
is rounded up to the nearest multiple of two. If an odd number of blocks is used, the last
block must still be given in a block pair, with the top 16 bits of each integer in the block
zeroed so that it does not contain any data.

For example, to perform six forward DCTs at a time, requiring three block pairs for the
data and an extra block pair for scratch space (1KB of workspace), the dctBlock
parameter can be viewed as shown in Figure 5-1.

Figure 5-1 dctBlock parameter

See also

For information on setting up sTable see CREATEFDCTSTABLEARRAY on page 5-13.

For information on initializing dctBlock see CREATEDCTBLOCK on page 5-15.

For information on adding data to dctBlock see PREFDCT on page 5-16. For
information on retrieving data from dctblock see POSTFDCT on page 5-17.

����	����	�
������	�	��
	��
��	��������

����	����	�
������	�	��
	��
��	��������

����	����	�
������	�	��
	��
��	��������

����	����	�
��������	������
��	��������

�	����� ���	����� ���	����� ���	����� � !

���"����	������
	��������	�

����	��#	�	����	$���

#����	����	�������	��	�	����	����	�������%

�� �� �

����	��	���� �#	��	����

����	
���	���&�

"�&'����

����	
���	���&�
����"�&'����

5-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
5.3.2 rdct_fast

This function performs the reverse DCT on pairs of interleaved blocks, with one block
of a pair stored in the low 16 bits of the integers, and the other block of the pair in the
high 16 bits. The data in the blocks is data that has been output from a forward DCT
algorithm, such as fdct_fast().

Syntax

void rdct_fast(int *dctBlock, int nBlocks)

where:

dctBlock is a 256 byte-aligned pointer to the start of a sequence of 8x8 integer
block pairs that hold the data that is to be transformed using the reverse
DCT. Adding multiples of 256 bytes to the starting address of dctBlock
accesses additional pairs. The address of the pointer must have the low
eight bits set to zero.

The data to be transformed using the reverse DCT must start in the block
pair referenced by dctBlock + 256. The first block pair referenced by
dctBlock must not contain data because it is used as scratch space during
the reverse DCT calculations.

When this function returns, dctBlock holds the output data. This output
data is the original data that was passed to a forward DCT and starts with
the first block referenced by dctBlock and not dctBlock + 256.

nBlocks is the number of blocks that are defined in dctBlock, both on input and
output. This parameter must be the total number of blocks that contain
data and not the number of block pairs.

Usage

The dctBlock pointer must address enough memory to hold all block pairs plus enough
memory for an additional block pair that is used as scratch space during calculations.
Each block pair requires 256 bytes (64 integers of four bytes each).

This function can operate over an odd number of blocks, but during calculations nBlocks
is rounded up to the nearest multiple of two. If an odd number of blocks is used, the last
block must still be given in a block pair, with the top 16 bits of each integer in the block
zeroed so that it does not contain any data.

For example, to perform six reverse DCTs at a time, requiring three block pairs for the
data and an extra block pair for scratch space (1KB of workspace), the dctBlock
parameter can be viewed as shown in Figure 5-1 on page 5-10.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-11

Two-Dimensional Discrete Cosine Transform
Limitations on input values

Only data that was generated by a forward DCT, such as fdct_fast(), should be passed
to the reverse DCT operation. However, output data from a forward DCT requires
re-ordering and shifting before it can be placed into dctBlock and passed through to the
reverse DCT procedure.

Each value must be shifted up by three bits to allow for a fixed-point precision. The
re-ordering is the reverse operation to that which was performed in a call to fdct_fast(),
which sorted the data into a form suitable for output. The reverse operation is performed
externally to the reverse DCT call because the values produced by the forward DCT are
normally entropy encoded and the operation of re-ordering required is normally
absorbed into the entropy decoding before passing the data to the reverse DCT. If the
re-ordering is not absorbed into an entropy decoding algorithm, it must be performed
separately before the data is passed to the reverse DCT.

See also

For information on initializing dctBlock, see CREATEDCTBLOCK on page 5-15.

For information on adding data to dctBlock see PRERDCT on page 5-18. For retrieving
data from dctblock see POSTRDCT on page 5-20.
5-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
5.4 Supplementary macros

This section describes macros that can be used to initialize variables and prepare data
for the DCT function calls.

For information on the DCT functions, see Functions on page 5-9.

The supplementary macros are:

• Create an array of pointers to SCALETABLE data (CREATEFDCTSTABLEARRAY)

• Create a 256-byte aligned pointer to 8x8 block pairs (CREATEDCTBLOCK on
page 5-15)

• Add data to an array for fdct_fast()(PREFDCT on page 5-16)

• Extract data processed by fdct_fast()(POSTFDCT on page 5-17)

• Add data to an array for rdct_fast()(PRERDCT on page 5-18)

• Extract data processed by rdct_fast()(POSTRDCT on page 5-20).

5.4.1 CREATEFDCTSTABLEARRAY

This macro creates an array of pointers to SCALETABLE data from the number of blocks to
be passed through to each call of the forward DCT (not the number of block pairs). The
array is the third parameter required by fdct_fast().

Syntax

CREATEFDCTSTABLEARRAY(FDCTSTABLEARRAYPTRS, NUMBERBLOCKS)

where:

FDCTSTABLEARRAYPTRS

is an uninitialized pointer to a pointer to SCALETABLE data. This parameter
should not reference memory because it is initialized by the macro to
reference the memory that is allocated by the macro.

On output, FDCTSTABLEARRAYPTRS contains an array of (NUMBERBLOCKS + 1) /
2 pointers to SCALETABLE data. Each array entry contains a pointer to the
FDCTScales table.

NUMBERBLOCKS

is the number of blocks to be passed through to each forward DCT call.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-13

Two-Dimensional Discrete Cosine Transform
Usage

The macro allocates enough memory for (NUMBERBLOCKS + 1) / 2 entries in the array, that
is, one entry for each block pair that is passed to the forward DCT. Each pointer in the
array references the FDCTScales table. The table is required to scale and re-order the data
in the blocks during the forward DCT call.

FDCTSTABLEARRAYPTRS can be passed as the third parameter to each call of fdct_fast().
The memory referenced by FDCTSTABLEARRAYPTRS should be freed when it is no longer
required.
5-14 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
5.4.2 CREATEDCTBLOCK

This macro creates a 256-byte aligned pointer to a start of a sequence of 8x8 integer
block pairs that can be passed to either the forward or reverse DCT. Enough space is
allocated to hold the data for each block, in addition to the space required by the DCT
operations.

Syntax

CREATEDCTBLOCK(DCTBLOCKPTR, DCTBLOCK, NUMBERBLOCKS)

where:

DCTBLOCKPTR is an unallocated pointer to an integer. This parameter should not
reference memory because it is initialized by the macro to
reference memory allocated by the macro.

On output, DCTBLOCKPTR contains a pointer to sufficient memory to
hold (NUMBERBLOCKS + 1) / 2 + 2 block pairs. Each block pair is 256
bytes (64 integers of four bytes each).

Memory for two additional block pairs is allocated:

• one to be used as scratch space during the DCT calls

• one to allow for the adjustment of the address pointed to by
DCTBLOCKPTR to create a 256-byte aligned pointer referenced
by DCTBLOCK.

DCTBLOCKPTR references the original memory address returned by
the call to initialize the memory, and can be used to free the
memory when it is no longer required.

DCTBLOCK is an unallocated pointer to an integer. This parameter should not
reference any memory because it is initialized by the macro to
reference memory allocated by the macro.

On output, DCTBLOCK contains a 256-byte aligned pointer to enough
memory to hold (NUMBERBLOCKS + 1) / 2 + 1 block pairs. Each block
pair is 256 bytes (64 integers of four bytes each). This is the
256-byte aligned version of DCTBLOCKPTR with the low eight bits of
the starting address for the pointer set to zero.

This pointer can be passed to either the forward or reverse DCT.

DCTBLOCK cannot be used to free the memory when it is no longer
required, because it does not reference all the memory that was
allocated during the macro execution.

NUMBERBLOCKS is the number of blocks of data required, to be referenced by
DCTBLOCK when allocated.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-15

Two-Dimensional Discrete Cosine Transform
5.4.3 PREFDCT

This macro adds the current integer value of the data to be forward DCT’d in the correct
position and format to a data array to be passed to fdct_fast().

Syntax

PREFDCT(DCTBLOCK, INTVALUE, X, Y, BCOUNTER)

where:

DCTBLOCK is a pointer to the start of a sequence of 8x8 integer block pairs.

On output, DCTBLOCK contains a pointer to the start of a sequence of 8x8
integer block pairs that hold the data to be passed to fdct_fast(),
including INTVALUE stored in block BCOUNTER at position (X,Y).

INTVALUE is the current integer value to be added into DCTBLOCK. INTVALUE must be
an unsigned character in the range 0-255.

X is the x (column) coordinate into the current block where INTVALUE is to
be stored.

Y is the y (row) coordinate into the current block where INTVALUE is to be
stored.

BCOUNTER is the current block number in the sequence of blocks in DCTBLOCK where
INTVALUE is to be added.

Usage

BCOUNTER provides the offset into DCTBLOCK for the current block that data is being added.
X and Y provide the location within that block where the current value must be stored.

Notes

This macro adds the current integer value into the low 16 bits of the integer in the current
block, if the value of BCOUNTER is divisible by 2. If the value of BCOUNTER is not divisible
by 2, the value is added into the high 16 bits.

Because blocks are paired, the data is stored in the block referenced by BCOUNTER / 2.

INTVALUE is shifted by one bit to allow for a fixed-point precision before being stored in
the block in either the low or high 16 bits.
5-16 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
5.4.4 POSTFDCT

This macro extracts a value from a data array that was processed by fdct_fast().

Syntax

POSTFDCT(DCTBLOCK, INTVALUE, X, Y, BCOUNTER)

where:

DCTBLOCK is a pointer to the start of a sequence of 8x8 integer block pairs that hold
data generated by fdct_fast().

INTVALUE is an integer to store the current value read from DCTBLOCK.

On output, INTVALUE contains the integer read from block BCOUNTER in
DCTBLOCK, at position (X,Y).

X is the x (column) coordinate into the current block for the integer value to
retrieve.

Y is the y (row) coordinate into the current block for the integer value to
retrieve.

BCOUNTER is the current block number in the sequence of blocks in DCTBLOCK from
which the integer value is to be retrieved.

Usage

BCOUNTER provides the offset into DCTBLOCK for the current block from which the data is
being retrieved. X and Y provide the location within that block from which the current
value must be retrieved.

Notes

This macro extracts the current integer value from the low 16 bits of the integer in the
current block if the value of BCOUNTER is divisible by 2. If the value of BCOUNTER is not
divisible by 2, the value is extracted from the high 16 bits.

Because blocks are paired, the data is retrieved from the block referenced by BCOUNTER /
2.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-17

Two-Dimensional Discrete Cosine Transform
5.4.5 PRERDCT

This macro adds the current integer value of the data to be reversed DCT’d in the correct
position and format to a data array to be passed to rdct_fast().

Syntax

PRERDCT(DCTBLOCK, INTVALUE, X, Y, BCOUNTER)

where:

DCTBLOCK is a pointer to the start of a sequence of 8x8 integer block pairs.

On output, DCTBLOCK contains a pointer to the start of a sequence of 8x8
integer block pairs that hold the data to be passed to rdct_fast(),
including INTVALUE stored in block BCOUNTER at position (X,Y).

INTVALUE is the current integer value to be added into DCTBLOCK. The value must be
data that has been output from a call to fdct_fast().

X is the x (column) coordinate into the current block where INTVALUE is to
be stored.

Y is the y (row) coordinate into the current block where INTVALUE is to be
stored.

BCOUNTER is the current block number in the sequence of blocks in DCTBLOCK where
INTVALUE is to be added.

Usage

BCOUNTER provides the offset into DCTBLOCK for the current block to which the data is
being added. X and Y provide the location within that block where the current value must
be stored.

Notes

This macro adds the current integer value into the low 16 bits of the integer in the current
block, if the value of BCOUNTER is divisible by 2. If the value of BCOUNTER is not divisible
by 2, the value is added into the high 16 bits.

Because blocks are paired, the data is stored in the block referenced by BCOUNTER / 2.

INTVALUE is re-ordered and shifted by three bits to allow for a fixed-point precision rather
than being stored in the block in either the low or high 16 bits. The re-ordering is the
reverse operation to that performed in a call to fdct_fast(), which sorts the data into a
form suitable for output. The reverse operation is performed externally to the reverse
5-18 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Two-Dimensional Discrete Cosine Transform
DCT call because the values produced by a forward DCT are normally entropy encoded
and then the operation of re-ordering performed here is normally absorbed into the
entropy decoding before passing the data to the reverse DCT.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 5-19

Two-Dimensional Discrete Cosine Transform
5.4.6 POSTRDCT

This macro extracts a value from a data array that was processed by rdct_fast(). This
is the original data before the call to a forward DCT, such as fdct_fast().

Syntax

POSTRDCT(DCTBLOCK, INTVALUE, X, Y, BCOUNTER)

where:

DCTBLOCK is a pointer to the start of a sequence of 8x8 integer block pairs that hold
data generated by rdct_fast().

INTVALUE is an integer to store the current value read from DCTBLOCK.

On output, INTVALUE contains the integer read from block BCOUNTER in
DCTBLOCK, at position (X,Y). The integer is shifted down by seven bits to
remove the fixed-point precision. The macro adds 128 to the value
because each output value from the reverse DCT is in the range from
–128 to 127.

X is the x (column) coordinate into the current block for the integer value to
retrieve.

Y is the y (row) coordinate into the current block for the integer value to
retrieve.

BCOUNTER is the current block number in the sequence of blocks in DCTBLOCK from
which the integer value is to be retrieved.

Usage

BCOUNTER provides the offset into DCTBLOCK for the current block from which the data is
being retrieved. X and Y provide the location within that block from which the current
value must be retrieved.

Notes

This macro extracts the current integer value from the low 16 bits of the integer in the
current block if the value of BCOUNTER is divisible by 2. If the value of BCOUNTER is not
divisible by 2, the value is extracted from the high 16 bits.

Because blocks are paired, the data is retrieved from the block referenced by BCOUNTER /
2.
5-20 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 6
Huffman and Bit Coding/Decoding

This chapter describes an implementation of a Huffman coder/decoder (codec) that uses
a general bit codec based on lookup tables. It contains the following sections:

• Overview on page 6-2

• BitStreamState data structure on page 6-6

• Functions on page 6-10.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-1

Huffman and Bit Coding/Decoding
6.1 Overview

This section provides general information on the Huffman and bit coding/decoding.

6.1.1 Implementation

Huffman coding compresses data using the probability of a symbol appearing in the
data to be coded. A symbol with a high probability of occurrence is coded using fewer
bits than a symbol with a low probability of occurrence. Given the probabilities, the
frequency of occurrence for each length of codeword can be determined.

Variable length codewords, with a unique prefix attribute, can be generated from the
symbols of the data to be coded. These codewords are sorted into increasing order of
frequency of occurrence, together with the frequency of occurrence for each length of
codeword. This information is all that is required to perform Huffman coding and
decoding, and must be stored with a Huffman encoded stream to enable the stream to
be uniquely decoded.

Figure 6-1 Huffman coding

The functionality of the blocks in Figure 6-1 is as follows:

Counter counts the frequency of occurrence for each symbol in the data and
determines the maximum symbol value in the data.

Sorter sorts the symbols and frequency of occurrence for each symbol into
increasing order of frequency.

Huffman generates the frequency of occurrence for each length of codeword.

������� 	�����
�����
�����
��

	�����
��

�����
6-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
Encoder

Encoding is performed as shown in Figure 6-2.

Figure 6-2 Encoding

The functionality of the blocks is described as follows:

Codes generates the symbol-to-codeword lookup table.

Encoder encodes the fixed size input data to variable size codewords.

Decoder

Decoding is performed as shown in Figure 6-3.

Figure 6-3 Decoding

�����

������� �������
�	
	

�	
	���

����	�
�	
	

���
��
�	
	

�������

������� �������
�	
	

�������
�	
	

���
��
�	
	

����	�
�	
	
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-3

Huffman and Bit Coding/Decoding
The functionality of the blocks is described as follows:

DeCodes generates the codeword-to-symbol lookup tables.

Decoder decodes the variable size codewords to fixed size output data.

Table lookup

The encoder and decoder use lookup tables to convert symbols to and from codewords.
The maximum length of a codeword is 27 bits. Restricting codewords to this length
enables a codeword of 27 bits to be packed into a 32-bit integer word, with the length
of the codeword packed in the remaining five bits (the minimum number of bits required
for a value of 27). It is not possible to have a 28-bit codeword because 33 bits would be
required.

In practice, the maximum codeword length of 27 bits is not a limitation, because
Huffman codewords are shorter for symbols with a higher probability of occurrence and
a codeword of length 27 has a very small probability of occurrence. An increase of one
bit in the maximum codeword length results in a negligible increase in compression, at
the expense of increasing the overhead of computation because a codeword and its
length cannot be packed into a 32-bit integer word.

For example, if the data to be coded has a Fibonacci sequence for the frequency of
occurrence of the symbols, this gives the highest probability of occurrence for each
length of codeword. The probability of a 27-bit codeword occurring is:

The probability of a 28-bit code word occurring is:

�
����
�	

�� � �
� � ��

�

��	�
	

�� � �
�
 ��
6-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
6.1.2 Files

The files in Table 6-1 are provided in the implementation.

Table 6-1 Huffman and codec files

Filename Archive name Code type Functionality

huffmanc.c arm_huff C Generation of an array of frequency of occurrence
for each length of codeword

huffmanc.h arm_huff C header Huffman function prototype and constant definitions

makctm.h arm_huff C macro Generic function to generate the
symbol-to-codeword lookup table for bit coding

makct8c.c,
makct16c.c,
makct32c.c

arm_huff C Generation of symbol-to-codeword lookup table for
bit coding 8-bit, 16-bit, and 32-bit data, respectively

makctc.h arm_huff C header Generic symbol-to-codeword table generation
function prototype

makct8c.h,
makct16c.h,
makct32c.h

arm_huff C header Symbol-to-codeword table generation function
prototypes for 8-bit, 16-bit, and 32-bit data,
respectively

mkdctm.h arm_huff C macro Generic function to generate the
codeword-to-symbol lookup tables for bit decoding

mkdct8c.c,
mkdct16c.c,
mkdct32c.c

arm_huff C Generation of codeword-to-symbol lookup tables for
bit decoding to 8-bit, 16-bit, and 32-bit data,
respectively

mkdctc.h arm_huff C header Generic codeword-to-symbol tables generation
function prototype

mkdct8c.h,
mkdct16c.h,
mkdct32c.h

arm_huff C header Codeword-to-symbol tables generation function
prototypes for 8-bit, 16-bit, or 32-bit data,
respectively

bitcodes.s arm_huff ARM assembly language Bit code 8-bit, 16-bit, or 32-bit data to variable length
codewords

bitcodes.h arm_huff C header Bit coding function prototypes

bitdcods.s arm_huff ARM assembly language Bit decode variable length codewords to 8-bit, 16-bit,
or 32-bit data

bitdcods.h arm_huff C header Bit decoding function prototypes
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-5

Huffman and Bit Coding/Decoding
6.2 BitStreamState data structure

This structure is used to maintain the bit-stream and the bit-position reached within the
bit stream, between calls to the bit codec functions.

6.2.1 Definition

typedef struct BitStreamState BitStreamState ;
typedef BitStreamState *BitStreamStatePtr ;

struct BitStreamState {
 unsigned char *bitstreamend ;
 unsigned int freebits ;
 /* additional elements if required */
} ;

where:

bitstreamend

is the pointer to the bit-stream. It is the last word-aligned memory address
before the last bit-position reached in the stream. Therefore, the address
in bitstreamend is always within 32 bits of the last bit-position referenced
by freebits.

freebits is the number of bits between bitstreamend and the next word-aligned
memory address (bitstreamend + 4 bytes) that either does not contain
coded data or has not been decoded. The memory address of the last
bit-position reached in the stream is defined as (the memory address in
bitstreamend + 32 – freebits).
6-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
6.2.2 Description

The bit stream of codewords, created by the bit coder and decoded by the bit decoder,
is stored, eight bits at a time, as an array of unsigned chars. If necessary, codewords can
continue over the boundary between two (8-bit) characters.

A pointer to the bit-stream is maintained in the BitStreamState structure, together with
a reference to the final bit-position reached within the bit-stream. The bit stream is
defined as all the bits from the starting address of the data array to the last bit-position
in the last byte in the array that contains the coded data.

The bit stream structure simplifies calling the bit codec functions multiple times.
Multiple calls are necessary if there is insufficient memory available to hold all the data
for only one call to the codec routine, or if the entire data is not available with each call,
for example if reading data from a file. Because the last bit position reached in the
stream is saved in the BitStreamState structure between calls, the bit codec functions
can continue referencing the bit-stream from the last position accessed by a previous
call to a function.

The information in the BitStreamState structure is insufficient to determine the starting
address of the bit-stream (for example when initializing the stream address for
decoding) because bitstreamend references the last word-aligned memory address for
the stream that was reached during a bit codec function call. Therefore, the starting
address of the bit-stream must be maintained separately.

The first two elements in the BitStreamState structure must be bitstreamend and
freebits, and they must be defined within the structure in that order. However, the
structure can contain more than the two elements required by the bit codec functions.
For example, the starting address of the stream as a third element and any other elements
required by a particular implementation can be maintained in the structure after the
definition of freebits, as indicated in the structure in Definition on page 6-6.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-7

Huffman and Bit Coding/Decoding
6.2.3 Usage

Before the first call to the bit codec functions, BitStreamState must be initialized as
follows:

• bitstreamend must reference the word-aligned starting address of the unsigned
character array bit stream

• freebits must be set to 32, which is the number of bits before the next
word-aligned memory address.

If the bit codec functions are to be called using the same bit-stream, BitStreamState
must be maintained as-is between calls to the bit codec functions.

For example, if the bit coder function is called and coding is limited to 64 bits of coded
data, the bit-stream and the values in the BitStreamState structure for bitstreamend and
freebits before the bit coder function call might be set as shown in Figure 6-4.

Figure 6-4 Before bit coding

After the bit coder function, if 54 bits of coded data were generated, the coded
bit-stream and the values returned in the BitStreamState structure for bitstreamend and
freebits might be set as shown in Figure 6-5.

Figure 6-5 After bit coding, 54 bits of coded data

����
��

���
��������

�����������

�����	 �!�����
	�
��!�	������

																																																																

"���
��

�������
���

����
��

���
��������

���������#"
�����	 �!�����
	�
��!�	������

		�	�			���	�	�		����			�����		�	�	�	�	�										�	�											

�������
���

�����	 �!�����
	�
��!�	������

"���
��
6-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
In this example, the bit-stream has been initialized to zero for clarity. However, this is
not necessary because both ends of the coded stream are uniquely defined by the starting
address of the stream and the values returned in bitstreamend and freebits after a
function call.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-9

Huffman and Bit Coding/Decoding
6.3 Functions

This section describes the Huffman routines. The functions are:

• Create the array of frequency of occurrence for each length of codeword
(Huffman)

• Create symbol-to-codeword lookup tables (MakeHuffCodeTablenn on page 6-12)

• Create codeword-to-symbol lookup tables (MakeHuffDecodeTablenn on
page 6-14)

• Encode fixed-size data to variable-size codewords (BitCodeByteSymbols,
BitCodeHalfWordSymbols, and BitCodeWordSymbols on page 6-17)

• Decode variable-size codewords to fixed-size data (BitDecodeByteSymbols,
BitDecodeHalfWordSymbols, and BitDecodeWordSymbols on page 6-19).

6.3.1 Huffman

This function generates an array of the frequency of occurrence for each length of
codeword in the data to be coded.

Syntax

unsigned int *Huffman(unsigned int freq[], unsigned int nfreqs, unsigned int
maxcodewlen)

where:

freq is an array of frequency of occurrence for each symbol in the data
to be coded, sorted into increasing order of frequency.

If the array is not sorted in order of increasing frequency, the
returned array of frequency of occurrence for each length of
codeword is incorrect.

nfreqs is the number of frequencies referenced by freq.

maxcodewlen is the maximum length of codeword that can be generated.

The value can be from two to the maximum length possible for a
codeword (27 bits). The minimum value is two because if the
maximum length for a codeword were given as one (or less), there
is at most one symbol for coding, and Huffman is beyond the
requirements of the data.
6-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
The number of distinct symbols in the data to be coded must be
less than or equal to 2maxcodewlen to guarantee that each symbol can
be assigned a codeword. In most cases, the value should be given
as 27 because this allows for the best compression ratio to be
achieved for the given data.

Return value

An array of frequency of occurrence for each length of codeword.

Notes

The freq parameter must be sorted into increasing order of frequency such that:

freq [i] ≤ freq [i+1] ∀ i

The nfreqs parameter is the number of frequencies that are referenced by freq. The
maximum index into the array is given as:

(nfreqs – 1)

and:

freq [i] ≤ freq[nfreqs – 1], 0 ≤ i ≤ (nfreqs – 2)

This means that the last element in the array, freq [nfreqs – 1], is the frequency of
occurrence for the symbol that occurs most frequently in the data that is to be coded.
The frequency of occurrence for the symbol that occurs most infrequently in the data to
be coded is given by freq[0].

The number of elements that are created in the array of frequency of occurrence for each
length of codeword is given as maxcodewlen + 1. The value of maxcodewlen defines the
maximum codeword length that can be assigned to a symbol, so that all codewords that
are created are between one and maxcodewlen bits in length. A zero length codeword
cannot occur, so the first entry in the returned array is always zero.

The value of maxcodewlen ensures that, after creating pure Huffman codewords (which
can be greater than the maximum length), codewords are recalculated as necessary to fit
within the bit limit on their length. However, the value of maxcodewlen should be set as
large as possible since any recalculation of codewords reduces the compression ratio
that is achieved by using pure Huffman codewords.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-11

Huffman and Bit Coding/Decoding
6.3.2 MakeHuffCodeTablenn

These functions create a symbol-to-codeword lookup table from byte symbols,
halfword symbols, or word symbols, where nn in the function name is 8 (byte), 16
(halfword), or 32 (word), depending on the symbol size. The lookup table can be used
to code a stream of fixed size data that consists of occurrences of the given symbols to
a stream of variable size codewords.

Syntax

unsigned int *MakeHuffCodeTable8(unsigned char symbols[], unsigned int
nsymbols,
unsigned int freqcodelen[], unsigned int
maxcodewlen)

unsigned int *MakeHuffCodeTable16(unsigned short symbols[], unsigned int
nsymbols,
unsigned int freqcodelen[], unsigned int
maxcodewlen)

unsigned int *MakeHuffCodeTable32(unsigned int symbols[], unsigned int
nsymbols,
unsigned int freqcodelen[], unsigned int
maxcodewlen)

where:

symbols is an array of byte symbols, halfword symbols, or word symbols,
sorted into increasing order of frequency of occurrence for each
symbol in the data to be coded.

nsymbols is the number of symbols in the array.

freqcodelen

is an array of frequency of occurrence for each length of
codeword.

maxcodewlen

is the maximum length of codeword referenced by the array
freqcodelen. This value also gives the number of elements in the
array as maxcodewlen + 1. The maximum length must be a value
greater than zero, because a zero length codeword can never occur.
This value cannot be greater than the maximum length of
codeword possible, which is 27.
6-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
Return value

A pointer to a symbol-to-codeword lookup table.

Usage

The initial presorted symbol array, symbols, must be such that for each index i,
i ≤ 0 < nsymbols, symbols[i]=i. The array of symbols must be sorted into increasing order
of frequency of occurrence for each symbol.

For symbols that have identical frequency of occurrence, the ordering is not significant,
because although it affects the codeword that is assigned to each symbol, it does not
change the length of the assigned codeword. Therefore, in the sorted array of symbols,
the frequency of occurrence of symbols [i] ≤ the frequency of occurrence of symbols[i+1]
∀ i. The symbol that occurs most infrequently in the data to be coded is symbols[0].

The maximum symbol value that occurs in the data to be coded must be nsymbols – 1.
The maximum index into the array is then nsymbols – 1, and the frequency of occurrence
of symbols [i] ≤ the frequency of occurrence of symbols [nsymbols – 1], 0 ≤ i ≤ (nsymbols
– 2). This means that the last element in the array, symbols[nsymbols – 1], is the symbol
that occurs most frequently in the data that is to be coded.

The freqcodelen parameter must be such that, for each index i, 1 ≤ i ≤ maxcodewlen,
freqcodelen [i] is the frequency of occurrence of codewords of length i. A codeword of
length zero can never occur and freqcodelen [0] must always be zero. The value of:

must also be the number of symbols in symbols that have a non-zero frequency of
occurrence.

The symbol-to-codeword lookup table that is returned is unique for the data that is
given. However, if symbols has symbols that occur with equal frequency, the ordering
for these symbols directly affects the codewords that are assigned to these symbols.
That is, the symbol-to-codeword lookup table is dependent on the order of the symbols
that are given.

���)�����
 �� �

� ��

&��������

�

ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-13

Huffman and Bit Coding/Decoding
6.3.3 MakeHuffDecodeTablenn

These functions create codeword-to-symbol lookup tables for byte symbols, halfword
symbols, or word symbols, where nn in the function name is 8 (byte), 16 (halfword), or
32 (word) depending on the symbol size. The lookup tables can be used to decode a
stream of variable-size codewords to a stream of fixed-size data that consists of
occurrences of the given symbols.

Syntax

unsigned char *MakeHuffCodeTable8(unsigned char symbols[], unsigned int
nsymbols,
unsigned int freqcodelen[], unsigned int
maxcodewlen, unsigned int tablebits, unsigned
char **lentable)

unsigned short *MakeHuffCodeTable16(unsigned short symbols[], unsigned int
nsymbols, unsigned int freqcodelen[],
unsigned int maxcodewlen, unsigned int
tablebits, unsigned char **lentable)

unsigned int *MakeHuffCodeTable32(unsigned int symbols[], unsigned int
nsymbols,
unsigned int freqcodelen[], unsigned int
maxcodewlen, unsigned int tablebits, unsigned
char **lentable)

where:

symbols is an array of byte symbols, halfword symbols, or word symbols
sorted into increasing order of frequency of occurrence for each
symbol in the data that has been coded.

nsymbols is the number of symbols in the array.

freqcodelen is an array of frequency of occurrence for each length of
codeword.

maxcodewlen is the maximum length of codeword referenced by the array
freqcodelen. This value also gives the number of elements in the
array as maxcodewlen + 1.

tablebits is the maximum length, in bits, of a codeword that can be decoded
directly using a direct lookup table.

lentable is a pointer to an unallocated array of unsigned characters to hold
the codeword length lookup table.
6-14 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
When this function returns, lentable contains a pointer to an array
of unsigned characters that defines the codeword length lookup
table.

Return value

A pointer to the codeword-to-symbol lookup table.

Usage

The parameters, symbols, nsymbols, freqcodelen, and maxcodewlen are exactly the same
as the parameters to the MakeHuffCodeTablenn() functions. See MakeHuffCodeTablenn
on page 6-12.

The codeword-to-symbol lookup table created by the function is split across two tables:

• lentable, which contains the length of the codewords that are being decoded

• the codeword-to-symbol lookup table returned by the function, which contains
the symbols to which the codewords are decoded.

These tables are synchronized, which means that for a given index there is a value in the
symbol table and a corresponding length value in lentable at the same index.

The tables that are returned are unique, and are only valid for reversing the
symbol-to-codeword lookup table returned by a call to MakeHuffCodeTablenn().

Depending on the value in tablebits and the data to be decoded, the function either uses
direct lookup tables, or a combination of direct lookup tables and decoding tree tables.

direct lookup tables

In direct lookup tables, for each codeword in the stream that is to be
decoded, the lookup tables have entries that give the symbol that the
codeword is decoded to (symbol table) and the length of the codeword
that is decoded (lentable). The index into the tables is the codeword.

decoding tree tables

In decoding tree tables, for each codeword that cannot be decoded
directly using a lookup table, the codeword is decoded one bit at a time
by traversing a binary tree until a leaf node is reached. The leaf nodes
contain the symbols to decode to, and the lengths of codewords that are
decoded in the symbol and length trees, respectively.

All codewords of a length up to and including tablebits have decoding entries defined
in the direct lookup tables. All codewords longer than the value in tablebits have
decoding entries defined in the decoding trees. The size of the direct lookup tables is
determined, therefore, by the value of tablebits and the number of entries required for
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-15

Huffman and Bit Coding/Decoding
each direct lookup table is defined as 2tablebits. That is, with each bit increase in the
length of codeword that can be decoded using the direct lookup tables, the size of the
table doubles.

When specifying the value in tablebits, a trade-off between resources and speed is
required. Larger values of tablebits means that more codewords can be decoded
directly (and more quickly), but the direct lookup tables are larger and more memory is
required. However, the greater the length of the codeword, the smaller the probability
of occurrence.

For example, if the data to be decoded has a Fibonacci sequence for the frequency of
occurrence of the original symbols, this gives the highest probability of occurrence for
each length of codeword. In this case, a codeword of 10 bits has a probability of
occurring of 1⁄376 ≈ 2.7 × 10–3 times, and if 10 bits of codeword can be decoded
directly, the tables have 1024 entries.

If the length of the codeword that can be decoded directly is increased to 11 bits, a
codeword of length 11 has a probability of occurring of 1⁄609 ≈ 1.6 × 10–3 times and the
number of entries for each table has doubled to 2048. However, a 7-bit codeword, that
has a probability of occurring of 1⁄88 ≈ 0.011, requires 16 entries in the direct decoding
tables as opposed to eight entries when the tables only contained 10 bits of direct
codeword lookup.

Limitations on input values

The values of symbols, nsymbols, freqcodelen, and maxcodewlen must be the same values
passed to MakeHuffCodeTablenn(). If the values are not the same, the
codeword-to-symbol lookup tables created by this function cannot correctly decode a
stream of data that was coded using the symbol-to-codeword lookup table created by
the functions MakeHuffCodeTablenn().
6-16 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
6.3.4 BitCodeByteSymbols, BitCodeHalfWordSymbols, and BitCodeWordSymbols

These functions encode a stream of fixed-size byte input data, halfword input data, or
word input data values to a bit-stream of variable-size codewords, using a
codeword-length lookup table.

Syntax

BitStreamStatePtr BitCodeByteSymbols(unsigned char source[], unsigned int n,

BitStreamStatePtr bitstreamstateptr, unsigned int codetable[])

BitStreamStatePtr BitCodeHalfWordSymbols(

unsigned short source[],

unsigned int n,

BitStreamStatePtr bitstreamstateptr, unsigned int codetable[])

BitStreamStatePtr BitCodeWordSymbols(unsigned int source[],

unsigned int n,

BitStreamStatePtr bitstreamstateptr, unsigned int codetable[])

where:

source is the array of byte data, halfword data, or word data to be coded.

n is the number of coded values from the input array to be coded. This value
can be any number from zero (no coding is performed), to the total
number of entries referenced by the array.

bitstreamstateptr

is a pointer to a BitStreamState structure that references a bit-stream, and
a bit-position within that bit stream.

codetable

is an array of codewords and lengths for encoding the symbols of the
input data. The array must contain an entry for every possible symbol that
occurs in the input data. The index into the table is the symbol value itself.

Each table entry must be constructed with the bottom Z bits containing
the codeword that is used to encode the symbol, with the top (32 – Z) bits
identifying the length of the codeword. The value of Z is implementation
defined and is specified to the functions by the CODEWBITS flag in
bitcodes.s. It must be given as the value that was used to construct the
codeword-length table that is passed in the parameter codetable.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-17

Huffman and Bit Coding/Decoding
Return value

A pointer to the BitStreamState structure that references the encoded bit-stream and the
last bit-position reached within the bit stream.

Usage

When the function is called, the BitStreamState structure must reference the first
bit-position in an array of unsigned characters to which the codewords can be added.
The BitStreamState structure that is returned references the first bit-position in the array
after the last bit of coded data.

The encoded bit-stream is defined as all the bits from the starting address of the encoded
data array to the last bit-position in the last byte reached in the array. The array must
reference enough bytes to hold all the coded data. In the worst case, the maximum
number of bits of coded data that can be produced is given as the maximum length (in
bits) of all codewords, multiplied by n.
6-18 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
6.3.5 BitDecodeByteSymbols, BitDecodeHalfWordSymbols, and BitDecodeWordSymbols

These functions decode an encoded variable-size codeword bit-stream to a stream of
fixed-size byte symbols, halfword symbols, or word symbols, given synchronized
length and symbol lookup tables.

Syntax

BitStreamStatePtr BitDecodeByteSymbols(

BitStreamStatePtr bitstreamstateptr,

unsigned int n,

unsigned char dest[],

unsigned char lentable[],

unsigned char symtable[])

BitStreamStatePtr BitDecodeHalfWordSymbols(

BitStreamStatePtr bitstreamstateptr,

unsigned int n,

unsigned short dest[],

unsigned char lentable[],

unsigned short symtable[])

BitStreamStatePtr BitDecodeWordSymbols(

BitStreamStatePtr bitstreamstateptr,

unsigned int n,

unsigned int dest[],

unsigned char lentable[],

unsigned int symtable[])

where:

bitstreamstateptr

is a pointer to a BitStreamState structure that references a bit stream of
coded data and bit-position within that bit stream.

n is the number of data items to be decoded.

dest is an array to hold the decoded byte data, halfword data, or word data.

lentable is a table of codeword lengths that can be decoded by the corresponding
symtable.

symtable is a table of symbols for decoding the codewords from the input
bit-stream.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-19

Huffman and Bit Coding/Decoding
Return value

A pointer to the BitStreamState structure that references the encoded bit-stream and the
last bit-position reached within the stream.

Usage

When the function is called, the BitStreamState structure must reference the first
bit-position in an array of unsigned characters that codewords are decoded from. The
BitStreamState structure that is returned references the first bit-position in the array
after the last bit of data that has been decoded.

No explicit value is given for the number of coded bits in the bit-stream being decoded
because each codeword in the bit-stream represents a unique symbol. Therefore, by
knowing the number of symbols that were coded into the stream, knowledge of the exact
number of coded bits in the stream is not required. The number of values to decode into
the dest array is defined by n, which can be any number from zero (although no
decoding is performed) to the maximum of either:

• the total number of entries in dest to which decoded data can be added

• the number of coded symbols in the bit-stream being decoded.

The two lookup tables, lentable and symtable, must be synchronized arrays in which
the codewords from the bit-stream are the index into the tables to find the related
decoded symbol. The tables can be direct lookup tables or direct lookup tables and
decoding trees.

Direct lookup table

The direct lookup table is defined for a maximum length of all codewords, X, in bits,
such that for all lengths of codewords from one bit up to and including X bits, the
codeword is the index into the lookup table. Therefore, the direct lookup table
contains 2X entries, and the indices into the table are X bits in length.

For codewords whose length, Y, is less than X, the lookup table must contain 2X – Y
entries for that codeword. The X bits of the indices for these entries consist of the
codeword in the top Y bits, with the bottom (X – Y) bits containing all possible
combinations of these bits set. That is, the bottom (X – Y) bits of the codeword take all
values from zero to 2X – Y – 1. The entries in the tables for these codeword indices must
be the length of the codeword that is being decoded in lentable, and the symbol to
decode the codeword to in symtable. In this way each codeword up to X bits in length
can be directly looked up in the tables and uniquely decoded because each codeword
has the unique prefix property.
6-20 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Huffman and Bit Coding/Decoding
Decoding tree table

The decoding tree is defined for all codewords whose length is (X + 1) bits or more, up
to the maximum possible length of all codewords (27 bits). For each of these codewords,
the first X bits of the codeword are all set by the unique prefix property and this value,
2x – 1, is used as an index into the direct lookup tables. The entry for this index in
lentable must be 255. The index into symtable gives the root node of the tree and is
defined as: (symtable + (2 × the size of symbols in bytes)).

Each entry in the symbol table is now defined as a tree node that is either:

• an offset from the root of the tree to the next node pair in the tree, such that the
next tree index is 2 x offset

• the decoded symbol value.

Each offset to a node pair in the tree gives the left child of the parent at the offset with
the right child of the parent given by the left child’s index plus the size of symbols in
bytes.

Taking the bits from the codeword one bit at a time, starting with X + 1, while the
codeword has not been decoded, if the bit is set, the right child of the parent node is
selected. Otherwise, the left child of the parent node is selected. If the node in the tree
is an internal node, such that the value in the symbol tree is for a node pair offset, the
value for the node in the length tree must be 255. If the node in the tree is for a decoded
symbol value, the value for the node in the length tree must be 255 minus the length of
the codeword that is being decoded. In this way, the tree can be traversed, without the
length of the codeword being known, and the search terminated when the length entry
is no longer given as 255.

The value of X, which determines the size of the direct lookup table and the number of
bits of codeword that can be decoded directly, is implementation defined and is
specified to the functions by the TABLEBITS flag in the file bitdcods.s. It must be set to
the value that was used to construct the symbol and length tables that are passed in
symtable and lentable.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 6-21

Huffman and Bit Coding/Decoding
6-22 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 7
Filters

This chapter describes implementations of finite impulse response (FIR), infinite
impulse response (IIR), and least mean square (LMS) filters. It contains the following
sections:

• Files on page 7-2

• Finite impulse response on page 7-3

• Infinite impulse response on page 7-5

• Least mean square on page 7-9.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 7-1

Filters
7.1 Files

The files in Table 7-1 are provided in the implementation.

Table 7-1 Filter files

Filename Archive name Code type Functionality

firs.s arm_fil\arm_fir ARM assembly language FIR filter

firs.h arm_fil\arm_fir C header FIR filter function prototype

iirm.h arm_fil\arm_iir ARM assembly language macros IIR filter macros

iirs.s arm_fil\arm_iir ARM assembly language IIR filter macro initializations with
C-based code wrapping

iirs.h arm_fil\arm_iir C header IIR filter function prototypes

lmsm.h arm_fil\arm_lms ARM assembly language macros LMS filter macros

lmss.s arm_fil\arm_lms ARM assembly language LMS filter macro initializations with
C-based code wrapping

lmss.h arm_fil\arm_lms C header LMS filter function prototypes
7-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Filters
7.2 Finite impulse response

The finite impulse response filter is implemented as a non-recursive n-point real filter,
with each output characterized by the following difference equation:

where:

x k + i is the (k + i)th input sample.

yk is the kth output sample.

ci is the ith coefficient value.

There is one function described in this section:

• Perform a real FIR filter (s_blk_fir_rhs on page 7-4).

�
�� �� �

�

�
�

�

����
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 7-3

Filters
7.2.1 s_blk_fir_rhs

This function performs FIR filtering on an array of input values, based on a set of
coefficients (weights) that determine the behavior of the filter. The result is an array of
filtered values.

Syntax

void s_blk_fir_rhs(int outputs[], int inputs[], int coeffs[], int nOutputs, int
nCoeffs, int nInputs)

where:

outputs is an initialized array to hold the output values. The size of the array is
defined by nOutputs. The number of output values can be any number
required and can be greater than the number of inputs, although the extra
outputs are returned with zero value.

When the function returns, outputs contains an array of output values.

inputs is an array of input sample values. The length of the array is defined by
nInputs. Any number of input samples can be filtered.

coeffs is an array of coefficient values. The appropriate coefficients must be
selected to perform the required filtering. The length of the array is
defined by nCoeffs. There is no limit on the number of coefficients that
can be used. This depends on the required filter specification.

nOutputs is the number of outputs to obtain from the FIR filter, and the size of the
output buffer, referenced by outputs.

nCoeffs is the number of data points in the coefficient array, referenced by coeffs.

nInputs is the number of data points in the input array, referenced by inputs.

Limitations on input values

The inputs and the coefficients are 32-bit values, but must complement each other so
that multiplying the inputs by the coefficients and summing over the range of the
coefficient values does not overflow a 32-bit value. Therefore, for larger input values,
the coefficient values must be smaller, and for smaller input values, larger coefficient
values are possible.
7-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Filters
7.3 Infinite impulse response

The infinite impulse response filter implementation is a cascade realization of
second-order canonic filter sections that are characterized by the following equations.

For each input element, the IIR filter of the element over N biquads is given as:

where:

and:

xk is the kth input sample.

yk is the kth output sample.

The macros described in this section are:

• Perform a real IIR filter (IIR_MACRO on page 7-6)

• Initialize an array of coefficients and states
(IIR_PowerUp_MACRO on page 7-8).

� � � � � � � � � �� �� (� � � �� � �
 � �
" " " " " "

(�� �
" �

(� � � � �� � � � � � � � � �
 � �
" " " " " "� � �� �

� (� �"�

�
�

�
�

�

�
�

�
�

�

�

"

"

�

ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 7-5

Filters
7.3.1 IIR_MACRO

This macro performs IIR filtering on an array of input values, based on a set of
coefficients (weights) that determine the behavior of the filter. The result of the filtering
is an array of data values.

Syntax

MACRO IIR_MACRO $outPtr, $inPtr, $nInputs, $nBqs, $coeffsPtr,
 $in, $c0, $c1, $c2, $c3, $s0, $s1, $coefPtrCop

where:

$outPtr is a register containing the address of an array to hold the output values.
The output array must reference at least as many entries as the input
sample array (it must be at least the size defined in $nInputs).

On output, $outPtr contains a pointer to the array of output values.

$inPtr is a register containing the address of an array of input values. The size
of the array is defined in $nInputs. The number of input samples that can
be filtered is not limited by the macro. The samples must be 16-bit
fixed-point values, with the decimal point between bit 13 and bit 14.

$nInputs is a register containing the number of values in the input buffer and the
number of values returned in the output array. It is used as a loop counter,
and does not contain the original value on output.

$nBqs contains the number of biquads to perform. This number is determined by
dividing the number of coefficients by four. The $nBqs register is used as
a loop counter, and does not contain the original value on output.

$coeffsPtr

is a register containing the address of an array of coefficients interleaved
with states, which are required during the IIR filtering. There is no limit
on the number of coefficients that can be used, however the number of
coefficients must be divisible by four. Each coefficient should be selected
to perform the required filtering. More coefficients are required to get the
filter specification closer to the ideal filter.

$in, $c0, $c1, $c2, $c3, $s0, $s1, $coefPtrCop

are temporary registers required during the calculations. On output, any
value is undefined.
7-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Filters
Register differentiation

All registers must be distinct.

The register allocation must obey the following ordering:

$c0 < $c1 < $c2 < $c3 < $s0 < $s1 and $in < $s0

See also

For information on setting up $coeffsPtr, see IIR_PowerUp_MACRO on page 7-8.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 7-7

Filters
7.3.2 IIR_PowerUp_MACRO

Given an array of selected coefficients (weights) for IIR filtering, this macro initializes
an array of coefficients interleaved with states, which is required by IIR_MACRO.

Syntax

MACRO IIR_PowerUp_MACRO $outPtr, $inPtr, $taps, $c0, $c1, $c2,
 $c3, $s0, $s1

where:

$outPtr is a register containing the address of an array to hold the coefficients
interleaved with the states. The array must be initialized to reference
enough memory to hold at least 1.5 × the number of coefficients in the
array referenced by $inPtr. That is, for every four coefficients in the
output coefficient/state array, there are two corresponding state entries
that are initialized to zero.

On output, $outPtr contains a pointer to the array of coefficients
interleaved with the states.

$inPtr is a register containing the address of the array of input coefficient values.
The number of entries in the array must be divisible by four. The
coefficients must be 16-bit fixed-point values, with the decimal point
between bit 13 and bit 14.

$taps contains the number of biquads. This number is determined by dividing
the number of coefficient values (size of array referenced by $inPtr) by
four. The $taps register is used as a loop counter and does not contain the
original value on output.

$c0, $c1, $c2, $c3, $s0, $s1

are temporary registers required during the array initialization. On
output, any value is undefined.

Register differentiation

All registers must be distinct.

The register allocation must obey the following ordering:

$c0 < $c1 < $c2 < $c3 < $s0 < $s1
7-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Filters
7.4 Least mean square

The least mean square filter calculates a FIR filter output, compares this with a
predetermined required value, and calculates the error between the values. The
adaptation rate, the input value, and the error are multiplied together, and the
coefficients for the filter are updated based on this value. The coefficients are initially
set to an arbitrary fixed value.

Each output sample, yk, k=0,1,2,..., is given by:

where:

xk-i is the (k-i)th input sample.

ck,i is the ith coefficient value for sample k.

The error estimate, ek, for each output sample is given by:

where:

dk is the kth desired output.

The coefficients are updated after each output sample is calculated by:

where:

μ is the adaptation rate.

The macros described in this section are:

• Perform an LMS filter (LMS_MACRO on page 7-10)

• Initialize an array of coefficients/states
(LMS_PowerUp_MACRO on page 7-12)

• Retrieve modified coefficients from the coefficient and state array
(LMS_PowerDown_MACRO on page 7-13).

�

�
��� ��� �

�

�
��

�

��� ��� ��

 � ��
���� ������� �� �� ""� $
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 7-9

Filters
7.4.1 LMS_MACRO

This macro performs an LMS filtering on an array of 16-bit fixed-point input values,
based on a set of coefficients (weights) that determine the behavior of the filter, and a
set of desired values to which the filter adapts. The result of the filtering is an array of
data values and an array of modified coefficients interleaved with states.

Syntax

MACRO LMS_MACRO $outPtr, $inPtr, $nInputs, $desPtr, $out, $c0,
 $in, $tmp, $s0, $c1, $s1, $err, $nCoeffs,
 $coeffsPtr

where:

$outPtr is a register containing the address of an array to hold the output values.
The output array must reference at least as many entries as the input
sample array (it must be at least the size defined in $nInputs).

On output, $outPtr contains the pointer to the array of output values.

$inPtr is a register containing the address of an array of sample input values. The
size of the array is defined by $nInputs. The number of samples that can
be filtered is not limited by the macro. The samples must be 16-bit
fixed-point values, with the decimal point between bit 13 and bit 14.

$nInputs is a register containing the number of values in the input buffer and the
number of values returned in the output array. It is used as a loop counter,
and does not contain the original value on output.

$desPtr is a register containing the address of the array of required values to
which the filter adapts. There must be at least as many entries in this array
as in the input array. In other words, for each of the inputs, the ideal FIR
filter output is given by the respective desired value. The difference
between the required and calculated values is used to update the
coefficients of the LMS filter. Each required value should be selected to
perform the required filtering and to ensure that the filter is stable.

$s0 is a register containing the adaptation multiplier that determines the step
size used by the filter, and gives the rate at which the filter learns. A small
step size makes the filter slow to adapt, but provides more accurate results
with a good convergence rate and greater stability. A large step size
makes the adaptation faster, but with less accuracy, a poorer convergence
rate, and less stability. Therefore, a trade-off must be accepted between
the step size and the rate of adaptation, the error in the values, the rate of
convergence, and the stability of the filter.
7-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Filters
$out, $c0, $in, $tmp, $c1, $s1, $err

are temporary registers required during the calculations. On output, any
value is undefined.

$nCoeffs is a register containing the number of coefficients in the array referenced
by $coeffsPtr.

$coeffsPtr

is a register containing the address of an array of coefficients interleaved
with states, which are required during the LMS filtering. There is no limit
on the number of coefficients that can be used, however the number of
coefficients must be divisible by two, with each loop of the filter
performing two operations. More coefficients are required to get the filter
specification closer to the ideal filter.

On output, coeffsPtr contains the address of the array of modified
coefficients interleaved with states.

Register differentiation

All registers must be distinct.

The register allocation must obey the following ordering:

$c0 < $in < $tmp < $s0 < $c1 < $s1 and $s0 < $nCoeffs

See also

For information on setting up $coeffsPtr, see LMS_PowerUp_MACRO on page 7-12.

For information on retrieving the modified coefficients post-LMS filtering, see
LMS_PowerDown_MACRO on page 7-13.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 7-11

Filters
7.4.2 LMS_PowerUp_MACRO

Given an array of selected coefficients (weights) for LMS filtering, this macro
initializes the array of coefficients interleaved with states, which is required by
LMS_MACRO.

Syntax

MACRO LMS_PowerUp_MACRO $outPtr, $inPtr, $nInputs, $c0, $s0,
 $c1, $s1

where:

$outPtr is a register containing the address of an array to hold the coefficients
interleaved with the states. The array must be initialized to reference
enough memory for at least twice the number of coefficients in the array
referenced by $inPtr. This means that for every two coefficients in the
output coefficient/state array, there are two corresponding state entries
that are initialized to zero.

On output, $outPtr contains a pointer to the array of coefficients
interleaved with the states.

$inPtr is a register containing the address of the array of input coefficient values.
The number of entries in the array must be divisible by two. The
coefficients must be 16-bit fixed-point values, with the decimal point
between bit 13 and bit 14.

$nInputs contains the number of coefficient values, which is the size of the array
referenced by $inPtr. The $nInputs register is used as a loop counter and
does not contain the original value on output.

$c0, $s0, $c1, $s1

are temporary registers required during the array initialization. On
output, any value is undefined.

Register differentiation

All registers must be distinct.

The register allocation must obey the following ordering:

$c0 < $s0 < $c1 < $s1
7-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Filters
7.4.3 LMS_PowerDown_MACRO

This macro retrieves the modified coefficients and states that have been modified by
LMS_MACRO, and copies them into the output array.

Syntax

MACRO LMS_PowerDown_MACRO $outPtr, $inPtr, $nInputs, $c0, $s0,
 $c1, $s1

where:

$outPtr is a register containing the address of an array, of size $nInputs, to hold
the coefficients modified by LMS_MACRO. The array must be initialized to
reference enough memory to hold at least the number of coefficients in
the array referenced by $inPtr and does not require space for the states
which are discarded. The number of coefficients must be divisible by two.

On output, $outPtr contains a pointer to the array of modified
coefficients.

$inPtr is a register containing the address of the array of interleaved coefficient
and state values. The input values must be LMS_MACRO filtered values.

$nInputs contains the number of coefficient values in the array referenced by
$inPtr and the size of array referenced by $outPtr. The $nInputs register
is used as a loop counter and does not contain the original value on
output.

$c0, $s0, $c1, $s1

are temporary registers required during the array set-up. On output, any
value is undefined.

Register differentiation

All registers must be distinct.

The register allocation must obey the following ordering:

$c0 < $s0 < $c1 < $s1
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 7-13

Filters
7-14 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 8
IS-54 Convolutional Encoder

This chapter describes an implementation of the convolutional encoder from the IS-54
standard for digital mobile telephones in the United States of America. It contains the
following sections:

• Overview on page 8-2

• Macro and function on page 8-3.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 8-1

IS-54 Convolutional Encoder
8.1 Overview

This section provides general information on the IS-54 convolution encoder.

8.1.1 Implementation

The implementation is based on the Cellular System Dual-Mode Mobile Station-Base
Station Compatibility Standard (IS-54-B) from the Electronic Industries Association
(EIA) and Telecommunications Industry Association (TIA).

The input data to the convolutional encoder is made up of 89 bits:

• 77 bits from the speech encoder

• seven bits of cyclic redundancy check (CRC) for the frame

• five bits for the tail.

The ARM implementation differs from the IS-54-B standard in that 16 bits of data are
processed at a time rather than performing the encoding one bit at a time.

8.1.2 Files

The files in Table 8-1 are provided with the implementation.

Table 8-1 IS-54 files

Filename Archive name Code type Functionality

is54cem.h arm_is54 ARM assembly language macro IS-54 convolutional encoding on a pair of 16
input bits

is54ces.s arm_is54 ARM assembly language Full IS-54 convolutional encoding of 89 bits

is54ces.h arm_is54 C header IS-54 function prototype
8-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

IS-54 Convolutional Encoder
8.2 Macro and function

This section describes the IS-54 Convolutional Encoder macro and function. They are:

• Encode two 16-bit values to a 32-bit IS-54 value
(ConvolutionalEncoderKernelMacro)

• Perform IS-54 encoding of 89 bits (ConvolutionalEncoder on page 8-5).

8.2.1 ConvolutionalEncoderKernelMacro

This macro encodes two 16 bits of both speech and CRC into a 32-bit IS-54 value.

Syntax

MACRO ConvolutionalEncoderKernelMacro $in, $G0, $G1, $msk1,
 $msk2, $msk3, $out

where:

$in is a register containing the two 16 bits of both speech and CRC to be
encoded, packed into a 32-bit word:

• the high 16 bits must be the current 16 bits

• the low 16 bits must be the previous 16 bits in the sequence.

To encode the last nine bits of both speech and CRC, as in the case at the
end of the 89 bits, the high 23 bits should be packed with zeros.

$G0, $G1 are temporary registers required during the encoding. On output, any
value is undefined.

$msk1, $msk2, $msk3

are registers that must contain the binary masks 0x0F000F00,
0x30303030 and 0x44444444, respectively. If these registers do not
contain the required values, the encoding output is undetermined.

$out is a register to hold the 32-bit IS-54 encoding of the two 16 bits of input.
When encoding the last nine bits of both speech and CRC, as in the case
at the end of the 89 bits, the high 14 bits of the 32-bit output should be
ignored because they are all zero and are produced as a result of the
packing.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 8-3

IS-54 Convolutional Encoder
Register differentiation

$in, $G0, and $G1 must be distinct registers.

$G0, $G1, $msk1, $msk2, and $msk3 must be distinct registers.

$in need not be distinct from $msk1, $msk2, or $msk3 (although if $in is equal to any of
the three mask registers, the IS-54 encoding is applied to the respective mask).

$out need not be distinct from $in, $G0, $G1, $msk1, $msk2, or $msk3.
8-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

IS-54 Convolutional Encoder
8.2.2 ConvolutionalEncoder

This function encodes 89 bits of both speech and CRC into a sequence of 178 IS-54
encoded output bits.

Syntax

void ConvolutionalEncoder(unsigned int outputs[],
unsigned short inputs[])

where:

outputs is an initialized array, referencing a minimum of six 32-bit entries that is
used to hold the 178 output bits of the encoder.

When the function returns, outputs holds the 178 IS-54 encoder output
bits and 14 pad bits, split over six 32-bit values.

inputs is an array that references seven 16-bit entries that must contain the 89
input bits and 23 bits of padding, split over the 16-bit values. The extra
23 bits of zeros are for padding because the encoding is performed on
16-bit quantities, and the final nine bits of both speech and CRC are
padded by seven bits and encoded with a further 16 bits of zeros.

If the top seven bits of the sixth entry and the 16 bits of the seventh entry
in the input array are not zero-initialized, the procedure still produces the
required encoding. However, the top 14 bits of the final output may
contain non-zero data and must not be regarded as encoded data.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 8-5

IS-54 Convolutional Encoder
8-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 9
Multi-tone Multi-frequency
Generation/Detection

This chapter describes an implementation of a multi-tone multi-frequency (MTMF)
detector and generator. It contains the following sections:

• Overview on page 9-2

• ToneState data structure on page 9-4

• Functions on page 9-5.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 9-1

Multi-tone Multi-frequency Generation/Detection
9.1 Overview

This section provides general information on the MTMF generator and detector.

9.1.1 Implementation

The MTMF generator and detector are implemented using the Goertzel algorithm. The
Goertzel algorithm is a second order resonant filter.

Each output value, wi, 0 ≤ i < N, is given by:

where:

ƒ is the frequency of the tone.

ƒs is the sample rate frequency.

w–1 = 0

w–2 = 0

xi is the ith input value.

wN is the basis for the output energy with w0, …, wN–1 being states internal to the
algorithm.

The generator implementation is a special case of the Goertzel algorithm. The input is
an impulse delta function, incorporated into the value for w–1, such that there is no
addition of an input value in calculating each output value, wi. The intermediate values
w0, …, wN–1 are the generator outputs. Therefore, the generator implementation is:

wi = 2 cosθw i–1 – wi–2

where:

w–1 = sinθ

θ, ƒ, ƒs, w–2 are defined as before.

�� �� �� �
������ � ���
 %

% �
�

�
�

�

�

� �
�
 �
9-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Multi-tone Multi-frequency Generation/Detection
9.1.2 Files

The files in Table 9-1 are provided with the implementation.

Table 9-1 MTMF files

Filename Archive name Code type Functionality

mtmfdets.s arm_mtmf ARM assembly language MTMF detection

mtmfgens.s arm_mtmf ARM assembly language MTMF generation

mtmfc.h arm_mtmf C header MTMF generation and detection function prototypes
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 9-3

Multi-tone Multi-frequency Generation/Detection
9.2 ToneState data structure

This structure is used to maintain a tone, and a set of internal state values relative to this
tone.

9.2.1 Definition

typedef struct ToneState ToneState ;
typedef ToneState *ToneStatePtr ;

struct ToneState {
 int tone ;
 int w0 ;
 int w1 ;
} ;

9.2.2 Description

The MTMF generator and detector operations maintain internal state information. This
state information is required between the MTMF generator setup routine and the
generator, and between the MTMF detector and the function that obtains the results of
the detection. The states and the frequency are maintained in the ToneState structure.

9.2.3 Usage

MTMF generation and detection require a ToneState structure for each of the tones to
be generated or detected. Each structure instance must be initialized before passing
through to the MTMF routines. For generation this is done using ToneGenerateSetup()
and for detection this is done using ToneDetectSetup().
9-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Multi-tone Multi-frequency Generation/Detection
9.3 Functions

This section describes the MTMF routines. The functions are:

• Initialize ToneState structures for detection (ToneDetectSetup)

• Detect a set of tones in a set of samples (ToneDetect on page 9-7)

• Determine energies detected for a set of tones
(ToneDetectResults on page 9-8)

• Initialize a ToneState structure for generation (ToneGenerateSetup on page 9-9)

• Generate discrete samples for a waveform comprising of multiple tones
(ToneGenerate on page 9-11).

9.3.1 ToneDetectSetup

This function initializes an MTMF state structure, for each tone coefficient, for a given
set of 16-bit fixed-point tone coefficient values.

Syntax

void ToneDetectSetup(ToneState toneStates[], int tones[], unsigned int nTones)

where:

toneStates

is the array of MTMF structures initialized by the function.

tones is an array of tone coefficients for detection. Although the values are
passed in 32-bit integer words, they must be 16-bit fixed-point values
with the point between bits 14 and 15.

nTones is the number of tones, referenced by tones, for detection. This value also
defines the number of MTMF state structures to be initialized, referenced
by toneStates.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 9-5

Multi-tone Multi-frequency Generation/Detection
Usage

Each tone coefficient must be given as the value of:

where:

ƒ is the tone frequency.

ƒs is the sample rate frequency.

multiplication by the constant 215 defines the fixed-point precision.

���

����
� �

�

�
�

�

�
 �
9-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Multi-tone Multi-frequency Generation/Detection
9.3.2 ToneDetect

This function determines the energy for each of the tones in the given waveform, given:

• a stream of 16-bit fixed-point input samples that define a waveform sampled over
time

• a set of tones to detect in the waveform, as defined in the MTMF state structures.

Syntax

short *ToneDetect(short *inputs, unsigned int nInputs,
ToneState toneStates[], unsigned int nTones)

where:

inputs is a pointer to the discrete samples of the waveform in which the tones are
to be detected. The input samples must be 16-bit fixed-point values with
the point between bits 14 and 15.

nInputs is the number of input samples to analyze.

toneStates

is an array of initialized MTMF structures, with one structure for each
tone to be detected.

When the function returns, toneStates contains the updated state values
that reflect the detected energy for each tone.

nTones is the number of tones to be detected. This value defines the size of the
array referenced by toneStates.

Return value

A pointer to the next location in the input data after the last input value read for
detection. The pointer is given by inputs + nInputs.

Notes

The detection of each tone is performed by calculating its state values (given in the
MTMF state structure for each tone) to reflect the energy of the tone that is detected in
the given input waveform. However, the detector cannot fully differentiate between a
tone to be detected and frequencies that are near to that tone. To select between
frequencies with similar values to the tones, a large number of input samples may be
required. The more input samples that are given, the greater the accuracy of the detected
energies for the tones, but the slower the detection for the given set of tones.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 9-7

Multi-tone Multi-frequency Generation/Detection
9.3.3 ToneDetectResults

This function determines the detected energy for each of the tones in an array of
ToneState structures updated by ToneDetect().

Syntax

void ToneDetectResults(unsigned int outputs[],
unsigned int shift,
ToneState toneStates[],
unsigned int nTones)

where:

outputs is an array to hold the detected energy for each of the tones returned by
the function.

shift is a scaling factor to ensure that the energies do not overflow 32 bits.

toneStates

is an array of MTMF structures that have been updated by the function
ToneDetect().

nTones is the number of tones, and, hence, MTMF state structures referenced by
toneStates. This value also defines the number of outputs.

Usage

It is possible for any of the detected energies to be large enough that without any scaling,
the energy overflows a 32-bit value. Therefore, the value given in shift should be half
the number of bits to scale the detected energies, so that for each bit given to shift down
by, the energy is actually shifted down by two bits.
9-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Multi-tone Multi-frequency Generation/Detection
9.3.4 ToneGenerateSetup

This function initializes an MTMF state structure for the tone coefficient values, given
a correction factor for the generator, and the peak value of the waveform to be
generated.

Syntax

void ToneGenerateSetup(ToneStatePtr toneStatePtr, int tone,
int correction, unsigned int level)

where:

toneStatePtr

is a pointer to the MTMF structure to be initialized by the function.

When the function returns, toneStatePtr contains a pointer to the
initialized structure.

tone is the tone coefficient for which the waveform is generated. Although
passed in a 32-bit integer word, the value must be 16-bit fixed-point, with
the point between bits 14 and 15.

correction

is the MTMF correction factor for the Goertzel algorithm. Although
passed in a 32-bit integer word, the value must be 16-bit fixed-point, with
the point between bits 14 and 15.

level is the value of the waveform to be generated at its peak.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 9-9

Multi-tone Multi-frequency Generation/Detection
Usage

The tone coefficient must be given as the value of:

where:

ƒ is the tone frequency.

ƒs is the sample rate frequency.

The correction factor must be given as the value of:

For both the tone coefficient and the correction factor, the multiplication by the constant
215 defines the fixed-point precision.

���

����
� �

�

�
�

�

�
 �

���

����
� �

�

�
�

�
 �
�

9-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Multi-tone Multi-frequency Generation/Detection
9.3.5 ToneGenerate

This function generates a discrete set of samples for the waveform, which represent the
given set of tones and initialized states.

Syntax

short *ToneGenerate(short outputs[], unsigned int nOutputs,
ToneState toneStates[],
unsigned int nTones)

where:

outputs is an array to hold the discrete samples for the generated waveform. The
samples generated are 16-bit fixed-point values with the point between
bits 14 and 15.

nOutputs is the number of samples to be generated for the waveform.

toneStates

is an array of initialized MTMF structures, with one structure for each
tone to be generated.

nTones is the number of tones to be generated. The value defines the size of the
array referenced by toneStates.

Return Value

A pointer to the next location in the output stream after the last output value generated.
The pointer is given by outputs + nOutputs.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 9-11

Multi-tone Multi-frequency Generation/Detection
9-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 10
Bit Manipulation

This chapter describes macros to perform common bit manipulation routines. It
contains the following sections:

• Files on page 10-2

• Macros on page 10-3.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 10-1

Bit Manipulation
10.1 Files

The files in Table 10-1 are provided in the implementation.

Table 10-1 Bit manipulation files

Filename Archive name Code type Functionality

bitmanm.h arm_bitm ARM assembly language macros Binary coded decimal addition
Bit and byte reversal within a word
Byte-wise maximum over two words
Least and most significant bit set in a word
Population count over a set of words

bstables.s arm_bitm ARM assembly language A BitSetTable lookup table for least and most
significant bit set in a word
10-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Bit Manipulation
10.2 Macros

This section describes the bit manipulation macros. All macros operate over 32-bit
words unless specified otherwise. The macros are:

• Add two binary coded decimal numbers to produce a binary coded decimal result
(BCDADD)

• Reverse the bits of a word (BITREV, BITREVC on page 10-5)

• Reverse the bytes of a word (BYTEREV, BYTEREVC on page 10-7)

• Calculate the byte-wise maximum of two words
(BYTEWISEMAX on page 10-9)

• Find the least or most significant bit set of a word
(LSBSET, MSBSET on page 10-10)

• Determine the number of bits set in up to seven words
(POPCOUNT, POPCOUNT7 on page 10-12).

10.2.1 BCDADD

This macro adds two binary coded decimal numbers and gives a binary coded decimal
result.

Syntax

MACRO BCDADD $c, $a, $b, $t, $constant1, $constant2

where:

$c is a register to hold the binary coded decimal result of the addition of $a
and $b.

$a, $b are registers that hold the two binary coded decimal numbers to be added.

$t is a temporary register required during the operation. On output, any
value is undefined.

$constant1, $constant2

are registers that must contain the constant values 0x33333333 and
0x88888888, respectively.

Notes

In a binary coded decimal word each nibble (four bits) of the word can take a value in
the range 0–9 only. Therefore, the value given in hexadecimal reads as a decimal value.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 10-3

Bit Manipulation
Limitations on input values

The output from the macro has no meaning if the two inputs are not binary coded
decimal values.

Register differentiation

$constant1 and $constant2 must be distinct from each other.

$t must be distinct from $a, $b, $c, and $constant2.

$c must be distinct from $a and $b.

$a need not be distinct from $b.

$constant1 need not be distinct from $a, $b, $c, or $t.

$constant2 need not be distinct from $a, $b, or $c.
10-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Bit Manipulation
10.2.2 BITREV, BITREVC

These macros reverse the bits of a given word (32-bit integer).

Syntax

MACRO BITREV $c, $a, $t, $constant

MACRO BITREVC $c, $a, $t, $constant1, $constant2, $constant3,
 $constant4

where:

$c is a register to hold the result of the bit-reversal of $a. For each bit x of $a,
the bit is output as bit (31 – x) of $c.

$a is a register that holds the word to be bit-reversed. It is assumed that the
value is unsigned.

$t is a temporary register required during the operation. On output, any
value is undefined.

$constant is a temporary register required for the creation of the constant values
during the operation (BITREV only).

$constant1, $constant2, $constant3, $constant4

are registers that must contain the constant values 0xffff00ff, 0x0f0f0f0f,
0x33333333, and 0x55555555, respectively (BITREVC only).

Cycle counts

Seventeen cycles with no register set-up (BITREV) or 12 cycles + five register set-up
(BITREVC).
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 10-5

Bit Manipulation
Usage

BITREVC requires the four constants, $constant1–$constant4, to be setup in registers prior
to using the macro, but requires only 12 cycles to reverse the bits of the word.

In contrast, BITREV does not require the constants to be setup, but does require five more
cycles than BITREVC to perform the bit-reversal operation.

Determining which macro to use depends on:

• the number of uses to reverse the bits of a word, which determines the total
number of cycles after several macro uses

• the number of registers that are available for use.

Register differentiation

$c need not be distinct from $a.

$a and $c must be distinct from $t.

$t and $constant must be distinct registers (BITREV only).

$a and $c must be distinct from $constant (BITREV only).

$c and $constant2, $constant3, and $constant4 must be distinct registers (BITREVC only).

$t, $constant1, $constant2, $constant3, and $constant4 must all be distinct registers
(BITREVC only).

$c need not be distinct from $constant1 (BITREVC only).

$a need not be distinct from any of the $constant1, $constant2, $constant3, and
$constant4 (BITREVC only).
10-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Bit Manipulation
10.2.3 BYTEREV, BYTEREVC

These macros reverse the bytes of a given word (32-bit integer).

Syntax

MACRO BYTEREV $c, $a, $t

MACRO BYTEREVC $c, $a, $t, $constant

where:

$c is a register to hold the result, (d,c,b,a), of the byte-reversal of $a.

$a is a register that holds the word, (a,b,c,d), to be byte-reversed. The value
is assumed to be unsigned.

$t is a temporary register required during the operation. On output, any
value is undefined.

$constant is a register that must contain the constant value 0xffff00ff (BYTEREVC
only).

Cycle counts

Four cycles with no register set-up (BYTEREV) or three cycles + register setup (BYTEREVC).

Usage

BYTEREVC requires the constant 0xffff00ff to be setup in a register prior to using the
macro, but requires only three cycles to reverse the bytes of the word.

In contrast, BYTEREV does not require the constant setup, but does require one more cycle
than BYTEREVC to perform the byte-reversal operation.

Determining which macro to use depends on:

• the number of uses to reverse the bytes of a word, which determines the total
number of cycles after several macro uses

• the number of registers that are available for use.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 10-7

Bit Manipulation
Register differentiation

$a and $t must be distinct registers.

$c need not be distinct from $a.

$c and $t must be distinct registers (for BYTEREV only).

$constant and $t must be distinct registers (for BYTEREVC only).

$c need not be distinct from $t or $constant (for BYTEREVC only).
10-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Bit Manipulation
10.2.4 BYTEWISEMAX

This macro creates a word where each byte corresponds to the maximum value from the
respective bytes of two given words.

Syntax

MACRO BYTEWISEMAX $c, $d, $a, $b, $t, $constant

where:

$c is a register to hold the byte-wise maximum word.

$d is a register to hold a 0 or 1 in each byte of the word, to indicate whether
the byte in $c is from $a (0) or $b (1).

$a, $b are registers that hold the two words from which the byte-wise maximum
word is created. The values are assumed to be unsigned.

$t is a temporary register required during the operation. On output, any
value is undefined.

$constant is a register that must contain the constant value 0x01010101.

Example

Given two words:

(a,b,c,d) and (e,f,g,h)

this macro calculates:

(max(a,e),max(b,f),max(c,g,),max(d,h))

Register differentiation

$a, $c, $d and $t must be distinct registers.

$b and $c must be distinct registers.

$c and $d must be distinct from $constant.

$d or $t need not be distinct from $b.

$t need not be distinct from $constant.

$a, $b, and $constant need not be distinct.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 10-9

Bit Manipulation
10.2.5 LSBSET, MSBSET

These macros determine the position of the least significant bit set (LSBSET) or most
significant bit set (MSBSET) in a given word.

Syntax

MACRO LSBSET $c, $a, $table, $hastable

MACRO MSBSET $c, $a, $table, $hastable

where:

$c is a register to hold the position of the least or most significant bit set in
$a.

On output, if any bits are set in $a, $c contains a number between 0 and
31, inclusive, that defines the position of the least or most significant bit
set. If no bits are set in the given word (value is 0), a value that is outside
of the range 0 to 31, inclusive, is output.

$a is a register that holds the word for which the least significant or most
significant bit set is to be determined.

$table is a register that holds the address of BitSetTable to determine the
position of the least or most significant bit set. This address is either
supplied on input or initialized by the macro. If the macro is to be used
repeatedly, $table can be initialized the first time the macro is used and
then passed as a parameter with each subsequent use.

$hastable is an optional parameter that can contain any value. If $hastable is
present, the address of BitSetTable table is supplied to the macro in
$table. If $hastable is not present, $table is initialized by the macro.

Usage

The macro requires the address of the BitSetTable for the conversion. This address is
held in the register identified by $table, and can be either:

• supplied to the macro, in which case $hastable must be supplied

• initialized by the macro, in which case $hastable must not be supplied.
10-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Bit Manipulation
Register differentiation

$a and $c must be distinct from $table.

$a and $c need not be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 10-11

Bit Manipulation
10.2.6 POPCOUNT, POPCOUNT7

These macros determine population count, which is the number of bits set (the number
of 1s), in the binary expressions of up to seven words.

Syntax

MACRO POPCOUNT $c, $a, $t, $constant1, $constant2

MACRO POPCOUNT7 $res, $a, $b, $c, $d, $e, $f, $g,
 $constant1, $constant2, $constant3

where:

$a is a register that holds the word for which the number of bits set is
determined (POPCOUNT only).

$a, $b, $c, $d, $e, $f, $g

are registers that hold the seven words for which the number of bits set is
determined (POPCOUNT7 only).

$c is a register to hold the result of the population count, which is the number
of bits set in the binary expression of $a (POPCOUNT only).

$res is a register to hold the result of the population count over the seven words
which are the number of bits set in the binary expressions of $a, $b, $c,
$d, $e, $f and $g (POPCOUNT7 only).

$t is a temporary register required during the operation (POPCOUNT only). On
output, any value is undefined.

$constant1, $constant2

are registers that must contain the constant values 0x49249249 and
0xc71c71c7, respectively (POPCOUNT only).

$constant1, $constant2, $constant3

are registers that must contain the constant values 0x55555555,
0x33333333 and 0x0f0f0f0f, respectively (POPCOUNT7 only).

Cycle counts

Ten cycles + two register constants (POPCOUNT) or 46 cycles + three register constants
(POPCOUNT7).
10-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Bit Manipulation
Usage

The choice of which macro to use depends on the number of words on which the
population count will be performed and the number of registers available. POPCOUNT
requires at least four distinct registers, and POPCOUNT7 requires at least 10 distinct
registers.

POPCOUNT should be used for a population count of between one and four words. The
macro is used repeatedly for each word up to the four given words with the result of each
count accumulated into a free register. Each use of POPCOUNT takes 10 cycles. Therefore,
assuming one cycle for each cumulative count, the total number of cycles for a
population count over four words is 44 cycles.

POPCOUNT7 should be used for a population count of between five and seven words, with
a count over five or six words having the remaining words of the count as
zero-initialized registers. The number of cycles for POPCOUNT7 is 46. If two possible
cycles for zero-initializing two registers is added, the total number of cycles is less than
if POPCOUNT was used five or more times.

Register differentiation

$constant1, $constant2, $c, and $t must be distinct registers (POPCOUNT only).

$a and $t must be distinct registers (POPCOUNT only).

$a need not be distinct from $constant1, $constant2, or $c (POPCOUNT only).

$a, $b, $c, $d, $e, $f, $g, $constant1, $constant2, and $constant3 must all be distinct
registers (POPCOUNT7 only).

$res need not be distinct from the other registers (POPCOUNT7 only).
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 10-13

Bit Manipulation
10-14 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Chapter 11
Mathematics

This chapter describes macros that perform common mathematical functions. It
contains the following sections:

• Overview on page 11-2

• Integer multiplication on page 11-3

• Integer division on page 11-8

• Fixed-point division on page 11-24

• Integer square and cube root on page 11-28

• Trigonometric functions on page 11-31

• General macros on page 11-34.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-1

Mathematics
11.1 Overview

This section provides general information on the mathematics component.

11.1.1 Files

The file in Table 11-1 is provided with the implementation.

11.1.2 ARM architecture requirements

Some of the macro algorithms in this chapter are defined to use long multiply
instructions under ARM architectures that support these instructions, with alternative
definitions under ARM Architecture Version 3. The alternative definitions require the
use of three extra distinct registers specified by mul_temp_0, mul_temp_1 and mul_temp_2.
The extra registers must be defined before the inclusion of the macro file, and they must
be free for use. If ARM Architecture Version 3M, 4 or later is available, the extra
registers are not required.

To include the mathsm.h file, refer to the following examples:

• ARM architectures that support long multiplies:

 INCLUDE mathsm.h

• ARM Architecture Version 3 (only):

mul_temp_0 RN 2
mul_temp_1 RN 3
mul_temp_2 RN 12
 INCLUDE mathsm.h

Table 11-1 Mathematics files

Filename Archive name Code type Functionality

mathsm.h arm_math ARM assembly language macros Integer multiplication and division with inputs and
outputs of varying precision
Fixed-point divisions
Fast square root and cube root
Fixed-point cosine and sine
c=a+abs(b)
Signed-saturated addition
11-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
11.2 Integer multiplication

This section describes the mathematical macros that perform integer multiplication with
varying precision. Table 11-2 lists these macros, and shows where they are documented
within this section:

11.2.1 UMUL_32x32_64

This macro multiplies a 32-bit unsigned integer by a 32-bit unsigned integer, producing
a 64-bit unsigned integer result in two registers.

Syntax

MACRO UMUL_32x32_64 $al, $ah, $b, $c

where:

$al, $ah are registers to hold the 64-bit unsigned integer result of the
multiplication. The low bits of the result are stored in $a1. The high bits
of the result are stored in $ah.

$b, $c are registers that hold the two 32-bit unsigned integers to be multiplied
together. If $c = $b, the result of the multiplication is the square of the
value in $b.

Register differentiation

$al, $ah, and $b must be distinct registers.

$al, $ah, and $c must be distinct registers.

$b and $c need not be distinct registers.

Table 11-2

Precision
Unsigned
multiplication

Signed
multiplication

Documentation

32-bit input, 64-bit output UMUL_32x32_64 SMUL_32x32_64 page 11-3 and
page 11-4

64-bit input, 64-bit output MUL_64x64_64 MUL_64x64_64 page 11-5

64-bit input, 128-bit output UMUL_64x64_128 SMUL_64x64_128 page 11-6 and
page 11-7
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-3

Mathematics
11.2.2 SMUL_32x32_64

This macro multiplies a 32-bit signed integer by a 32-bit signed integer, producing a
64-bit signed integer result in two registers.

Syntax

MACRO SMUL_32x32_64 $al, $ah, $b, $c

where:

$al, $ah are registers to hold the 64-bit signed integer result of the multiplication.
The low bits of the result are stored in $a1. The high bits of the result are
stored in $ah.

$b, $c are registers that hold the 32-bit signed integers to be multiplied together.
If $c = $b, the result of the multiplication is the square of the value in $b.

Register differentiation

$al, $ah, and $b must be distinct registers.

$al, $ah, and $c must be distinct registers.

$b and $c need not be distinct registers.
11-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
11.2.3 MUL_64x64_64

This macro multiplies a 64-bit integer by a 64-bit integer, producing a 64-bit integer
result in two registers.

Syntax

MACRO MUL_64x64_64 $al, $ah, $bl, $bh, $cl, $ch

where:

$al, $ah are registers to hold the 64-bit integer result of the multiplication (($bh,
$bl) x ($ch,$cl)). The result is the low 64 bits of the actual 128-bit result.
The low bits of the result are stored in $a1. The high bits of the result are
stored in $ah.

$bl, $bh are registers that hold a 64-bit integer. The low bits of the integer are
stored in $b1. The high bits of the integer are stored in $bh.

$cl, $ch are registers that hold a 64-bit integer. The low bits of the integer are
stored in $c1. The high bits of the integer are stored in $ch.

Notes

The multiplication is the same, whether the input values are signed or unsigned. If the
input values are signed, the result of the multiplication will be signed. Conversely, if the
input values are unsigned, the result of the multiplication will be unsigned.

If $ch = $bh and $cl = $bl, the result of the multiplication is the square of the 64-bit value
in registers $bh and $bl.

Register differentiation

$al, $ah, $bl, and $bh must be distinct.

$al, $ah, $cl, and $ch must be distinct.

Register pairs ($bl, $bh) and ($cl, $ch) need not be distinct.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-5

Mathematics
11.2.4 UMUL_64x64_128

This macro multiplies a 64-bit unsigned integer by a 64-bit unsigned integer, producing
a 128-bit unsigned integer result, which is split over four registers, from low to high bits.

Syntax

MACRO UMUL_64x64_128 $a0, $a1, $a2, $a3, $bl, $bh, $cl, $ch,
 $tl, $th

where:

$a0, $a1, $a2, $a3

are registers to hold the 128-bit unsigned integer result of the
multiplication (($bh, $bl) x ($ch,$cl)). The result is split over the four
registers from low 32 bits ($a0) to high 32 bits ($a3).

$bl, $bh are registers that hold a 64-bit unsigned integer. The low bits of the
integer are stored in $b1. The high bits of the integer are stored in $bh.

$cl, $ch are registers that hold a 64-bit unsigned integer. The low bits of the
integer are stored in $c1. The high bits of the integer are stored in $ch.

$tl, $th are temporary registers required during the multiplication. On output, any
value is undefined.

Notes

If $ch = $bh and $cl = $bl, the result of the multiplication is the square of the 64-bit value
in registers $bh and $bl.

Register differentiation

$a0, $a1, $a2, $a3, $bl, $bh, $tl and $th must be distinct registers.

$a0, $a1, $a2, $a3, $cl, $ch, $tl and $th must be distinct registers.

Register pairs ($bl, $bh) and ($cl, $ch) need not be distinct.
11-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
11.2.5 SMUL_64x64_128

This macro multiplies a 64-bit signed integer by a 64-bit signed integer, producing a
128-bit signed integer result, which is split over four registers, from low to high bits.

Syntax

MACRO SMUL_64x64_128 $a0, $a1, $a2, $a3, $bl, $bh, $cl, $ch,
 $tl, $th

where:

$a0, $a1, $a2, $a3

are registers to hold the 128-bit signed integer result of the multiplication
(($bh, $bl) x ($ch,$cl)). The result is split over the 4 registers from low 32
bits ($a0) to high 32 bits ($a3).

$bl, $bh are registers that hold the 64-bit signed integer. The low bits of the integer
are stored in $b1. The high bits of the integer are stored in $bh.

$cl, $ch are registers that hold the 64-bit signed integer. The low bits of the integer
are stored in $c1. The high bits of the integer are stored in $ch.

$tl, $th are temporary registers required during the multiplication. On output, any
value is undefined.

Notes

If $ch = $bh and $cl = $bl, the result of the multiplication is the square of the 64-bit value
in registers $bh and $bl.

Register differentiation

$a0, $a1, $a2, $a3, $bl, $bh, $tl, and $th must be distinct registers.

$a0, $a1, $a2, $a3, $cl, $ch, $tl, and $th must be distinct registers.

Register pairs ($bl, $bh) and ($cl, $ch) need not be distinct.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-7

Mathematics
11.3 Integer division

This section describes the mathematical macros that perform integer division with
varying precision. Table 11-3 lists these macros, and shows where they are documented
within this section:

11.3.1 UDIV_32d16_16r16

This macro divides a 32-bit unsigned integer numerator by a 16-bit unsigned integer
denominator, producing a 16-bit unsigned integer quotient and a 16-bit unsigned integer
remainder.

Syntax

MACRO UDIV_32d16_16r16 $q, $r, $n, $d

where:

$q is a register to hold the 16-bit unsigned integer quotient of the integer.

$r is a register to hold the 16-bit unsigned integer remainder of the integer.

$n is a register that holds the 32-bit unsigned integer numerator.

$d is a register that holds the 16-bit unsigned integer denominator.

Table 11-3

Precision {n,d}, {q,r} Unsigned division Signed division Documentation

{32,16}-bit input,
{16,16}-bit output

UDIV_32d16_16r16 SDIV_32d16_16r16 page 11-8 and
page 11-10

{32,32}-bit input,
{32,32}-bit output

UDIV_32d32_32r32 SDIV_32d32_32r32 page 11-12 and
page 11-14

{64,32}-bit input,
{32,32}-bit output

UDIV_64d32_32r32 SDIV_64d32_32r32 page 11-16 and
page 11-18

{64,64}-bit input,
{64-64}-bit output

UDIV_64d64_64r64 SDIV_64d64_64r64 page 11-20 and
page 11-22
11-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Notes

If:

n = numerator
d = denominator
q = quotient
r = remainder

then the macro is equivalent to:

or:

n = q × d + r

where:

Limitations on input values

It is assumed n < (d << 16). Otherwise, the value in q overflows. This means that
division by zero (d = 0) is not possible because it violates the constraint.

Register differentiation

$n and $d must be distinct registers.

$q and $r must be distinct registers.

Register pairs ($n, $d) and ($q, $r) need not be distinct.

�
���) �

�
�����

�� ��

ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-9

Mathematics
11.3.2 SDIV_32d16_16r16

This macro divides a 32-bit signed integer numerator by a 16-bit signed integer
denominator to produce a 16-bit signed integer quotient and a 16-bit signed integer
remainder.

Syntax

MACRO SDIV_32d16_16r16 $q, $r, $n, $d, $sign

where:

$q is a register to hold the 16-bit signed integer quotient of the result.

$r is a register to hold the 16-bit signed integer remainder of the result.

$n is a register that holds the 32-bit signed integer numerator.

$d is a register that holds the 16-bit signed integer denominator.

$sign is a temporary register required during the division. On output, any value
is undefined.

Notes

If:

n = numerator
d = denominator
q = quotient
r = remainder

then the macro is equivalent to:

or:

n = q × d + r

where:

�
���) �

�
�����

�
 �� �
11-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Limitations on input values

It is assumed n < (d << 16). Otherwise, the value in q overflows. This means that
division by zero (d = 0) is not possible because it violates the constraint.

Register differentiation

$n, $d and $sign must be distinct registers.

$q, $r and $sign must be distinct registers.

Register pairs ($n, $d) and ($q, $r) need not be distinct.

()nd<<<1
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-11

Mathematics
11.3.3 UDIV_32d32_32r32

This macro divides a 32-bit unsigned integer numerator by a 32-bit unsigned integer
denominator, producing a 32-bit unsigned integer quotient and a 32-bit unsigned integer
remainder.

Syntax

MACRO UDIV_32d32_32r32 $q, $r, $n, $d

where:

$q is a register to hold the 32-bit unsigned integer quotient of the result.

$r is a register to hold the 32-bit unsigned integer remainder of the result.

$n is a register that contains the 32-bit unsigned integer numerator. On
output, this register is corrupt.

$d is a register that contains the 32-bit unsigned integer denominator. On
output, this register is corrupt.

Notes

If:

n = numerator
d = denominator
q = quotient
r = remainder

then the macro is equivalent to:

or:

n = q × d + r

where:

If d = 0, then q = 0 and r = 0.

�
���) �

�
�����

�� ��

11-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Register differentiation

All registers must be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-13

Mathematics
11.3.4 SDIV_32d32_32r32

This macro divides a 32-bit signed integer numerator by a 32-bit signed integer
denominator, producing a 32-bit signed integer quotient and a 32-bit signed integer
remainder.

Syntax

MACRO SDIV_32d32_32r32 $q, $r, $n, $d,

where:

$q is a register to hold the 32-bit signed integer quotient of the result.

$r is a register to hold the 32-bit signed integer remainder of the result.

$n is a register that contains the 32-bit signed integer numerator. On output,
this register is corrupt.

$d is a register that contains the 32-bit signed integer denominator. On
output, this register is corrupt.

$sign is a temporary register required during the division. On output, any value
is undefined.

Notes

If:

n = numerator
d = denominator
q = quotient
r = remainder

then the macro is equivalent to:

or:

n = q × d + r

where:

�
���) �

�
�����

�
 �� �
11-14 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
If d = 0, then q = 0 and r = 0.

In the above calculation, q is rounded towards zero, and r has the same sign as n,
therefore:

Register differentiation

All registers must be distinct registers.

��

������ ��� ��'���
��	"�

�

�

������ ��� ��'���
��	�

��

�

������ �� ��'���
��	"�
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-15

Mathematics
11.3.5 UDIV_64d32_32r32

This macro divides a 64-bit unsigned integer numerator by a 32-bit unsigned integer
denominator, producing a 32-bit unsigned integer quotient and a 32-bit unsigned integer
remainder.

Syntax

MACRO UDIV_64d32_32r32 $q, $r, $nl, $nh, $d

where:

$q is a register to hold the 32-bit unsigned integer quotient of the result.

$r is a register to hold the 32-bit unsigned integer remainder of the result.

$nl, $nh are registers that hold the 64-bit unsigned integer numerator. The low bits
of the integer are stored in $n1. The high bits of the integer are stored in
$nh.

$d is a register that holds the 32-bit unsigned integer denominator.

Notes

If:

n = numerator
d = denominator
q = quotient
r = remainder

then the macro is equivalent to:

or:

n = q × d + r

where:

�
���) �

�
�����

�� ��

11-16 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Limitations on input values

The top bit of denominator d must be 0 so that d < 231.

It is assumed that n < (d << 32) else the value in q overflows. This means that division
by zero (d = 0) is not possible because it violates the constraint.

Register differentiation

$nl and $nh must be distinct registers.

$q and $r must be distinct registers.

$nl and $q need not be distinct registers.

$nh and $r need not be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-17

Mathematics
11.3.6 SDIV_64d32_32r32

This macro divides a 64-bit signed integer numerator by a 32-bit signed integer
denominator, producing a 32-bit signed integer quotient and a 32-bit signed integer
remainder.

Syntax

MACRO SDIV_64d32_32r32 $q, $r, $nl, $nh, $d, $sign

where:

$q is a register to hold the 32-bit signed integer quotient of the result.

$r is a register to hold the 32-bit signed integer remainder of the result.

$nl, $nh are registers that hold the 64-bit signed integer numerator. The low bits of
the integer are stored in $n1. The high bits of the integer are stored in $nh.

$d is a register that holds the 32-bit signed integer denominator.

$sign is a temporary register required during the division. On output, any value
is undefined.

Notes

If:

n = numerator
d = denominator
q = quotient
r = remainder

then the macro is equivalent to:

or:

n = q × d + r

where:

�
���) �

�
�����

�
 �� �
11-18 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Limitations on input values

It is assumed that n < (d << 32) else the value in q overflows. This means that division
by zero (d = 0) is not possible because it violates the constraint.

Register differentiation

$nl, $nh, and $sign must be distinct registers.

$q, $r, and $sign must be distinct registers.

$nl and $q need not be distinct registers.

$nh and $r need not be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-19

Mathematics
11.3.7 UDIV_64d64_64r64

This macro divides a 64-bit unsigned integer numerator by a 64-bit unsigned integer
denominator, producing a 64-bit unsigned integer quotient and a 64-bit unsigned integer
remainder.

Syntax

MACRO UDIV_64d64_64r64 $ql, $qh, $rl, $rh, $nl, $nh, $dl, $dh,
 $t

where:

$ql, $qh are registers to hold the 64-bit unsigned integer quotient of the result. The
low bits of the result are stored in $q1. The high bits of the result are stored
in $qh.

$rl, $rh are registers to hold the 64-bit unsigned integer remainder of the result.
The low bits of the result are stored in $r1. The high bits of the result are
stored in $rh.

$nl, $nh are registers that hold the 64-bit unsigned integer numerator. The low bits
of the integer are stored in $n1. The high bits of the integer are stored in
$nh. On output, these registers are corrupt.

$dl, $dh are registers that hold the 64-bit unsigned integer denominator. The low
bits of the integer are stored in $d1. The high bits of the integer are stored
in $dh. On output, these registers are corrupt.

$t is a temporary register required during the division. On output, any value
is undefined.
11-20 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Notes

If:

n = numerator
d = denominator
q = quotient
r = remainder

then the macro is equivalent to:

or:

n = q × d + r

where:

If d = 0, then q = 0 and r = 0.

Register differentiation

All registers must be distinct registers from each other.

�
���) �

�
�����

�� ��

ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-21

Mathematics
11.3.8 SDIV_64d64_64r64

This macro divides a 64-bit signed integer numerator by a 64-bit signed integer
denominator, producing a 64-bit signed integer quotient and a 64-bit signed integer
remainder.

Syntax

MACRO SDIV_64d64_64r64 $ql, $qh, $rl, $rh, $nl, $nh, $dl, $dh,
 $t, $sign

where:

$ql, $qh are registers to hold the 64-bit signed integer quotient of the result. The
low bits of the result are stored in $q1. The high bits of the result are stored
in $qh.

$rl, $rh are registers to hold the 64-bit signed integer remainder of the result. The
low bits of the result are stored in $r1. The high bits of the result are stored
in $rh.

$nl, $nh are registers that hold the 64-bit signed integer numerator. The low bits of
the integer are stored in $n1. The high bits of the integer are stored in $nh.
On output, these registers are corrupt.

$dl, $dh are registers that hold the 64-bit signed integer denominator. The low bits
of the integer are stored in $d1. The high bits of the integer are stored in
$dh. On output, these registers are corrupt.

$t, $sign are temporary registers required during the division. On output, any value
is undefined.
11-22 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Notes

If:

n = numerator
d = denominator
q = quotient
r = remainder

then the macro is equivalent to:

or:

n = q × d + r

where:

If d = 0, then q = 0 and r = 0.

In the above calculation, q is rounded towards zero, and r has the same sign as n,
therefore:

Register differentiation

All registers must be distinct registers from each other.

�
���) �

�
�����

�
 �� �

��

������ ��� ��'���
��	"�

�

�

������ ��� ��'���
��	�

��

�

������ �� ��'���
��	"�
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-23

Mathematics
11.4 Fixed-point division

This section describes the mathematical macros that perform fixed-point division.
Table 11-4 lists these macros, and shows where they are documented within this
section:

11.4.1 UDIVF_32d32_32

This macro divides a 32-bit unsigned fixed-point numerator by a 32-bit unsigned
fixed-point denominator, producing a 32-bit unsigned fixed-point result.

Syntax

MACRO UDIVF_32d32_32 $q, $n, $d, $bit, $topbit, $overflow

where:

$q is a register to hold the 32-bit unsigned fixed-point result.

$n is a register that holds the 32-bit unsigned fixed-point numerator. On
output, this register is corrupt.

$d is a register that holds the 32-bit unsigned fixed-point denominator. On
output, this register is corrupt.

$bit is a register that holds a constant value that defines the position of the
binary point in the two fixed-point input values and the fixed-point output
result. The binary point is given as the position before the value in $bit.

$topbit ia a register that holds a constant value that defines the maximum number
of bits in the result before the value overflows. In other words, the result
must be no more than $topbit bits. Otherwise, the macro branches to the
procedure in $overflow. This value is typically 32.

$overflow is an optional label of a procedure to branch to if there is an overflow in
the result or if the denominator is zero.

Table 11-4

Precision
Unsigned
division

Signed division Documentation

{32,32}-bit fixed-point input,
32-bit fixed-point output

UDIVF_32d32_32 SDIVF_32d32_32 page 11-24 and
page 11-26
11-24 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Notes

The format of a number is:

 31 $topbit $bit 0
 unsigned 000...000 xxx...xxx yyy...yyy

where x is the integer part and y the fractional part.

Limitations on input values

The two 32-bit fixed-point inputs must have the same number of bits after the binary
point.

Register differentiation

$q, $n, and $d must be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-25

Mathematics
11.4.2 SDIVF_32d32_32

This macro divides a 32-bit signed fixed-point numerator by a 32-bit signed fixed-point
denominator, producing a 32-bit signed fixed-point result.

Syntax

MACRO SDIVF_32d32_32 $q, $n, $d, $bit, $topbit, $sign, $overflow

where:

$q is a register to hold the 32-bit signed fixed-point result.

$n is a register that holds the 32-bit signed fixed-point numerator. On output,
this register is corrupt.

$d is a register that holds the 32-bit signed fixed-point denominator. On
output, this register is corrupt.

$bit is a register that holds a constant value that defines the position of the
binary point in the two fixed-point input values and the fixed-point output
result. The binary point is given as the position before the value in $bit.

$topbit is a register that holds a constant value that defines the maximum number
of bits in the result before the value overflows. In other words, the result
must be no more than $topbit bits. Otherwise, the macro branches to the
procedure in $overflow. This value is typically 32.

$sign is a temporary register required during the division. On output, any value
is undefined.

$overflow is an optional label to a procedure to branch to if there is an overflow in
the result or if the denominator is zero.

Notes

The format of a number is

 31 $topbit $bit 0
 signed sss...sss sxx...xxx yyy...yyy

where s is the sign bit, x is the integer part of the number, and y is the fractional part of
the number.
11-26 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Limitations on input values

The two 32-bit fixed-point inputs must have the same number of bits after the binary
point.

Register differentiation

$q, $n, and $d must be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-27

Mathematics
11.5 Integer square and cube root

This section describes the macros that perform integer square root and integer cube root.
The macros are:

• Square root (SQR_32_16r17)

• Cube root (CBR_32_11 on page 11-30).

11.5.1 SQR_32_16r17

This macro calculates the integer square root of a 32-bit unsigned integer, producing a
16-bit unsigned integer square root and a 17-bit unsigned integer remainder.

Syntax

MACRO SQR_32_16r17 $q, $r, $n, $t

where:

$q is a register to hold the 16-bit unsigned integer square root result.

$r is a register to hold the 17-bit unsigned integer remainder of the square
root result.

$n is a register that holds the 32-bit unsigned integer for which the square
root is calculated.

$t is a temporary register required during the calculation. On output, any
value is undefined.

Notes

If:

n = input number
q = square root
r = remainder

then the macro is equivalent to:

n = q × q + r

where:

r ≤ 2 × q and, therefore, can be 17 bits.
11-28 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
Register differentiation

$q, $r, and $t must be distinct registers.

$n need not be distinct from $q, $r, or $t.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-29

Mathematics
11.5.2 CBR_32_11

This macro calculates the integer cube root of a 32-bit signed integer, producing an
11-bit signed integer cube root result.

Syntax

MACRO CBR_32_11 $q, $n, $t0, $t1, $t2, $t3, $t4

where:

$q is a register to hold the 11-bit signed integer cube root of the value in $n.

$n is a register that holds the 32-bit signed integer for which the cube root is
calculated.

$t0, $t1, $t2, $t3, $t4

are temporary registers required during the calculation. On output, any
value is undefined.

Notes

If:

n = input number
q = cube root

then the macro is equivalent to:

The remainder is not returned.

Limitations on input values

There is no limitation on input values.

Register differentiation

$n, $t0, $t1, $t2, $t3, and $t4 must be distinct registers.

$q does not need to be distinct from $n, $t0, $t1, $t2, $t3, or $t4.

)))
)))� � � � � � � � �� � �	
 	
 	

11-30 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
11.6 Trigonometric functions

This section describes the macros that perform fixed-point trigonometric functions. The
macros are:

• Fixed-point cosine (ARMCOS)

• Fixed-point sine (ARMSIN on page 11-33).

11.6.1 ARMCOS

This macro calculates the cosine of a 32-bit signed fixed-point radian value to produce
a 32-bit signed fixed-point result.

Syntax

MACRO ARMCOS $r, $n, $t0, $t1, $prec, $range

where:

$r is a register to hold the 32-bit signed fixed-point result of the cosine
calculation.

$n is a register that holds the 32-bit signed fixed-point radian value for which
the cosine is calculated. The value cannot be specified in degrees. On
output, this register is corrupt.

$t0, $t1 are temporary registers required during the calculation. On output, any
value is undefined.

$prec is a register that holds a value defining the position of the binary point in
the fixed-point input value and in the fixed-point output result. The binary
point is given as the position before bit $prec and determines the precision
of the calculation. The value in $prec must be an integer such that 0 ≤
$prec ≤ 14.

$range is a register that holds 0 if the fixed-point radian value in register $n is in
the range –π⁄2 < $n < π⁄2, shifted to the fixed-point precision given in
$prec. Otherwise, $range is set to 1.

Limitations on input values

If $range is 0 and the radian value of $n is outside the range –π⁄2 < $n < π⁄2, shifted to
the same fixed-point precision as $n, the result is undetermined.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-31

Mathematics
Register differentiation

All registers must be distinct.
11-32 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
11.6.2 ARMSIN

This macro calculates the sine of a 32-bit signed fixed-point radian value to produce a
32-bit signed fixed-point result.

Syntax

MACRO ARMSIN $r, $n, $t0, $t1, $prec, $range

where:

$r is a register to hold the 32-bit signed fixed-point result of the sine
calculation.

$n is a register that holds the 32-bit signed fixed-point radian value for which
the sine is calculated. The value cannot be specified in degrees. On
output, this register is corrupt.

$t0, $t1 are temporary registers required during the calculation. On output, any
value is undefined.

$prec is a register that holds a value defining the position of the binary point in
the fixed-point input value and in the fixed-point output result. The binary
point is given as the position before bit $prec and determines the precision
of the calculation. The value in $prec must be an integer such that 0 ≤
$prec ≤ 14.

$range is a register set to 0 if the fixed-point radian value in register $n is in the
range –π⁄2 < $n < π⁄2, shifted to the fixed-point precision given in $prec.
Otherwise, $range is set to 1.

Notes

If $range is 0 and the radian value of $n is outside the range –π⁄2 < $n < π⁄2, shifted to
the same fixed-point precision as $n, the result is undetermined.

Register differentiation

All registers must be distinct.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-33

Mathematics
11.7 General macros

This section describes the macros that perform general mathematical operations. The
macros are:

• Addition of absolute value, c=a+abs(b) (ADDABS)

• Signed-saturated addition (SIGNSAT on page 11-35).

11.7.1 ADDABS

This macro adds the absolute value of a 32-bit signed integer to a 32-bit signed integer,
producing a 32-bit signed integer result.

Syntax

MACRO ADDABS $c, $a, $b

where:

$c is a register to hold the 32-bit signed integer result of the addition
($a + abs($b)).

$a is a register that holds the 32-bit signed integer to add to the absolute
value of $b.

$b is a register that holds the 32-bit signed integer to add the absolute value
of to $a.

Register differentiation

$a and $c must be distinct registers.

$b and $c must be distinct registers.

$a and $b need not be distinct registers.
11-34 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Mathematics
11.7.2 SIGNSAT

This macro adds a 32-bit signed integer to a 32-bit signed integer, producing a saturated
32-bit signed integer result.

Syntax

MACRO SIGNSAT $c, $a, $b, $constant

where:

$c is a register to hold the saturated 32-bit signed integer result of the
addition.

$a, $b are registers that hold the two 32-bit signed integers to be added together.

$constant is a register that must contain the constant value 0x8000000.

Notes

The saturated result is such that:

• if $a and $b are both positive and $a + $b is negative the result is 0x7fffffff

• if $a and $b are both negative and $a + $b is positive the result is 0x80000000

• otherwise, the result is the value of $a + $b.

Register differentiation

$c and $constant must be distinct registers.

$a, $b, and $constant need not be distinct registers.

$a, $b, and $c need not be distinct registers.
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. 11-35

Mathematics
11-36 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
Absolute value addition 11-34
Adaptive differential pulse code

modulation (ADPCM) 1-2
decoding formulas 2-3
encoding formulas 2-5
implementation 2-2

ADDABS
addition of absolute value macro

11-34
Addition

absolute value macro 11-34
binary coded decimal numbers 10-3
saturated value 11-35

ADPCM
see Adaptive differential pulse code

modulation
ADPCMState structure 2-7
adpcms.h 2-6
adpcms.s 2-6
adpcm_decode()

adaptive differential pulse code
modulation decoding 2-9

adpcm_encode()
adaptive differential pulse code

modulation encoding 2-8
adpstruc.h 2-6
A-law 1-3
ARM architecture requirements

discrete cosine transform 5-2
mathematics 11-2

ARMCOS
cosine macro 11-31

ARMSIN
sine macro 11-33

B
BCDADD

binary coded decimal addition macro
10-3

Binary coded decimal
addition 10-3

Bit manipulation 1-6
Bit reversal 10-5
BitCodeByteSymbols()

encode bytes 6-17
BitCodeHalfWordSymbols()

encode halfwords 6-17
bitcodes.h 6-5
bitcodes.s 6-5
BitCodeWordSymbols()

encode words 6-17
bitdcods.s 6-5
BitDecodeByteSymbols()

decode to bytes 6-19
BitDecodeHalfWordSymbols()

decode to halfwords 6-19
BitDecodeWordSymbols()

decode to words 6-19
bitmanm.h 10-2
BITREV

bit reversal macro 10-5
BITREVC

bit reversal macro 10-5
Bits
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. Index-1

Index
counting 10-12
decoding and encoding 1-4

BitStreamState structure 6-6
bstables.s 10-2
btdcods.h 6-5
Build directories 1-8
Building 1-8

Windows 1-9
Byte reversal 10-7
BYTEREV

byte reversal macro 10-7
BYTEREVC

byte reversal macro 10-7
Byte-wise maximum 10-9
BYTEWISEMAX

byte-wise maximum macro 10-9

C
CBR_32_11

cube root macro 11-30
Complex structure 4-9
Compression 1-3

signals 1-4
sound 1-2

Convolutional encoder 1-5
ConvolutionalEncoderKernelMacro

16 bits to 32 bits encoding macro
8-3

ConvolutionalEncoder()
IS-54 convolutional encoder 8-5

Cosine macro 11-31
CREATEDCTBLOCK

memory allocation for DCT macro
5-15

CREATEFDCTSTABLEARRAY
create pointers to SCALETABLE

macro 5-13
Cube root 11-30

D
Data structures

ADPCMState 2-7
BitStreamState 6-6
Complex 4-9
SCALETABLE 5-7

ToneState 9-4
DCT

See Discrete cosine transform
dcts.h 5-6
dcts.s 5-2, 5-6
dcttgenc.c 5-6
dcttgenc.h 5-6
Decoding

adaptive differential pulse code
modulation 2-3

Huffman 1-4
Decompression 1-3

signals 1-4
sound 1-2

Dial tones
detecting 1-6

Digital filters 1-4
Digital mobile telephone standard 1-5
Digital signal processing algorithms

1-3
Discrete cosine transform (DCT) 1-4

architecture requirements 5-2
forward function 5-9
reverse function 5-11

Division
fixed-point 11-24
fixed-point signed 11-26
fixed-point unsigned 11-24
integer 11-8
signed 11-10, 11-14, 11-18, 11-22
unsigned 11-8, 11-12, 11-16, 11-20

E
Encoding

adaptive differential pulse code
modulation 2-5

Huffman 1-4
IS-54 1-5
speech 8-5
16 bits to 32 bits 8-3

F
Fast Fourier transform (FFT) 1-3

flags 4-6
forward 4-2

implementation 4-2
inverse 4-3

FASTMUL
DCT algorithms flag 5-2

fdct_fast()
forward DCT 5-9

FFT
see Fast Fourier transform

fftstruc.h 4-8
ffts.h 4-8
ffts.s 4-8
ffttabls.h 4-8
ffttgenc.c 4-8
ffttgenc.h 4-8
FFT()

forward or inverse FFT 4-10
Files

adaptive differential pulse code
modulation 2-6

bit manipulation 10-2
fast Fourier transform 4-8
filters 7-2
G.711 3-2
Huffman 6-5
IS-54 8-2
mathematics 11-2
multi-tone multi-frequency 9-3
two-dimensional discrete cosine

transform 5-6
Filtering 1-4, 7-1

files 7-2
finite impulse response equations

7-3
finite impulse response function 7-4
infinite impulse response equations

7-5
infinite impulse response macro 7-6
least mean square equations 7-9
least mean square macro 7-10
power-down macro

LMS_PowerDown_MACRO
7-13

power-up macro
IIR_PowerUp_MACRO 7-8
LMS_PowerUp_MACRO 7-12

Finite impulse response (FIR) 1-5
equations 7-3
function 7-4

FIR
Index-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Index
See Finite impulse response
firs.h 7-2
firs.s 7-2
Fixed-point division 11-24
FORWARD

fast Fourier transform flag 4-6
Forward DCT function 5-9
Frequency

data compression 1-4
filtering 1-4

Frequency of occurrence array
Huffman 6-10

G
GenerateWindow()

generate Hamming or Hanning
window coefficients 4-14

Goertzel algorithm 1-6, 9-2
Graphics compression algorithms 1-4
g711m.h 3-2
g711s.h 3-2
g711s.s 3-2
g711uats.s 3-2
G711_alaw2linear_macro

A-law to PCM conversion macro
3-4

G711_alaw2ulaw_macro
A-law to μ-law conversion macro

3-7
G711_linear2alaw_macro

PCM to A-law conversion macro
3-3

G711_linear2ulaw_macro
PCM to μ-law conversion macro

3-5
G711_ulaw2alaw_macro

μ-law to A-law conversion macro
3-9

G711_ulaw2linear_macro
μ-law to PCM conversion macro

3-6
G.711 1-3

implementation 3-2

H
Hamming windows 1-3, 4-1, 4-7

implementation 4-2
HammingWindow()

perform a Hamming window 4-15
Hanning windows 1-3, 4-1, 4-7

implementation 4-2
HanningWindow()

perform a Hanning window 4-16
Huffman 1-4, 6-4

implementation 6-2
huffmanc.c 6-5
huffmanc.h 6-5
Huffman()

generate Huffman data 6-10

I
IIR

see Infinite impulse response
iirm.h 7-2
iirs.h 7-2
iirs.s 7-2
IIR_MACRO

infinite impulse response macro 7-6
IIR_PowerUp_MACRO

infinite impulse response power-up
macro 7-8

Implementation
adaptive differential pulse code

modulation 2-2
fast Fourier transform 4-2
filters

FIR 7-4
IIR 7-6
LMS 7-10

G.711 3-2
Huffman 6-2
IS-54-B 8-2
Multi-tone multi-frequency 9-2
one-dimensional forward DCT 5-3
two-dimensional DCT 5-3, 5-6

Infinite impulse response (IIR) 1-5
equations 7-5
macro 7-6
power-up macro 7-8

INPLACE

fast Fourier transform flag 4-7
Integer

division 11-8
multiplication 11-3

INVERSE
fast Fourier transform flag 4-6

Inverse DCT
see Reverse DCT

Inverse fast Fourier transform 4-3
IS-54 convolutional encoder 1-5
IS-54-B

implementation 8-2
is54cem.h 8-2
is54ces.h 8-2
is54ces.s 8-2

L
Least mean square (LMS) 1-5

equations 7-9
macro 7-10
power-down macro 7-13
power-up macro 7-12

Least significant bit 10-10
Linear 16-bit pulse code modulation

1-3
Linker output 1-8
LMS

see Least mean square
lmsm.h 7-2
lmss.h 7-2
lmss.s 7-2
LMS_MACRO

least mean square filtering macro
7-10

LMS_PowerDown_MACRO
least mean square filtering

power-down macro 7-13
LMS_PowerUp_MACRO

least mean square filtering power-up
macro 7-12

Logarithmic compression 1-3
LSBSET

least significant bit macro 10-10
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. Index-3

Index
M
Macros

example 1-7
makctc.h 6-5
makctm.h 6-5
makct16c.c 6-5
makct16c.h 6-5
makct32c.c 6-5
makct32c.h 6-5
makct8c.c 6-5
makct8c.h 6-5
MakeHuffCodeTable16()

creating halfword lookup table for
coding 6-12

MakeHuffCodeTable32()
creating word lookup table for

coding 6-12
MakeHuffCodeTable8()

creating byte lookup table for coding
6-12

MakeHuffDecodeTable16()
creating halfword lookup table for

decoding 6-14
MakeHuffDecodeTable32()

creating word lookup table for
decoding 6-14

MakeHuffDecodeTable8()
creating byte lookup table for

decoding 6-14
Mathematics 1-6

files 11-2
mathsm.h 11-2
mkdctc.h 6-5
mkdctm.h 6-5
mkdct16c.c 6-5
mkdct16c.h 6-5
mkdct32c.c 6-5
mkdct32c.h 6-5
mkdct8c.c 6-5
mkdct8c.h 6-5
Most significant bit 10-10
MSBSET

most significant bit macro 10-10
MTMF

See Multi-tone multi-frequency
mtmfc.h 9-3
mtmfdets.s 9-3
mtmfgens.s 9-3

Multiplication
integer 11-3
signed 11-4, 11-7
signed/unsigned 11-5
unsigned 11-3, 11-6

Multi-tone multi-frequency (MTMF)
1-6

implementation 9-2
mul_temp_0

additional mathematics register
11-2

mul_temp_1
additional mathematics register

11-2
mul_temp_2

additional mathematics register
11-2

MUL_64x64_64
signed/unsigned multiplication

macro 11-5

O
OPTIMISE

fast Fourier transform flag 4-6
Options

run-time 1-9
OUTPLACE

fast Fourier transform flag 4-7
Output formats 1-8

P
POPCOUNT

population count macro 10-12
POPCOUNT7

population count over seven words
macro 10-12

POSTFDCT
extract value post-forward DCT

macro 5-17
POSTRDCT

extract value post-reverse DCT
macro 5-20

PREFDCT
add value pre-forward DCT macro

5-16

PRERDCT
add value pre-reverse DCT macro

5-18
Pulse code modulation (PCM) 1-3

decoding 2-9
encoding 2-8

R
rdct_fast()

reverse DCT 5-11
REALFFTS

fast Fourier transform flag 4-7
REALFFT()

forward real FFT 4-12
Registers

specifying 1-7
Registers in macro arguments

specifying 1-7
Resonant filter 9-2
Reverse DCT function 5-11
Running 1-8
Run-time considerations 1-9

S
SCALETABLE structure 5-7
SDIVF_32d32_32

fixed-point signed division macro
11-26

SDIV_32d16_16r16
signed division macro 11-10

SDIV_32d32_32r32
signed division macro 11-14

SDIV_64d32_32r32
signed division macro 11-18

SDIV_64d64_64r64
signed division macro 11-22

Set bits
counting 10-12

Signed saturated addition 11-35
SIGNSAT

signed saturated addition macro
11-35

Sine macro 11-33
SMUL_32x32_64

signed multiplication macro 11-4
Index-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

Index
SMUL_64x64_128
signed multiplication macro 11-7

Speech
compression 1-2
signal filtering 1-4

SQR_32_16r17
square root macro 11-28

Square root 11-28
s_blk_fir_rhs()

finite impulse response filtering 7-4

T
Table lookup 6-4
ToneDetectResults()

determine energy detected 9-8
ToneDetectSetup()

tone detection initialization 9-5
ToneDetect()

determine waveform energy 9-7
ToneGenerateSetup()

tone generation initialization 9-9
ToneGenerate()

generate waveform samples 9-11
Tones

samples 9-11
waveform energy 9-7

ToneState
detecting results 9-8
initialize 9-5, 9-9

ToneState data structure 9-4
Trigonometric functions 11-31

U
UDIVF_32d32_32

fixed-point unsigned division macro
11-24

UDIV_32d16_16r16
unsigned division macro 11-8

UDIV_32d32_32r32
unsigned division macro 11-12

UDIV_64d32_32r32
unsigned division macro 11-16

UDIV_64d64_64r64
unsigned division macro 11-20

UMUL_32x32_64

unsigned multiplication macro 11-3
UMUL_64x64_128

unsigned multiplication macro 11-6

V
Variants 1-8
Voice-frequency 1-3

W
Waveform

energy 9-7
samples 9-11

Windowing
frequency conversion 1-3

windowsc.c 4-8
windowsc.h 4-8

Numerics
1D 8-element forward DCT 5-3
1D 8-element reverse DCT 5-5
2D 8x8 element DCT 5-6

Symbols
µ-law 1-3
ARM DUI 0081B Copyright © 1998-2001 ARM Limited. All rights reserved. Index-5

Index
Index-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0081B

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Introduction
	1.1 About the ARM Applications Library
	1.1.1 Noncompliant adaptive differential pulse code modulation
	1.1.2 G.711
	1.1.3 Fast Fourier transform and windowing
	1.1.4 Discrete cosine transform
	1.1.5 Huffman encoding/decoding
	1.1.6 Filtering
	1.1.7 IS-54 convolutional encoder
	1.1.8 Multi-tone multi-frequency and Goertzel algorithm
	1.1.9 Bit manipulation
	1.1.10 Mathematics

	1.2 Registers in macro arguments
	1.2.1 Example

	1.3 Building and running a demonstration
	1.3.1 Variants
	1.3.2 Linker output
	1.3.3 Building and running
	1.3.4 Execution considerations

	Adaptive Differential Pulse Code Modulation
	2.1 Overview
	2.1.1 Implementation
	Decoding ADPCM
	Encoding ADPCM

	2.1.2 Files

	2.2 ADPCMState data structure
	2.2.1 Definition
	2.2.2 Description
	2.2.3 Usage

	2.3 Functions
	2.3.1 adpcm_encode
	Syntax
	Return Value
	Usage

	2.3.2 adpcm_decode
	Syntax
	Return Value
	Usage

	G.711-A-law, µ-law, PCM Conversions
	3.1 Overview
	3.1.1 Implementation
	3.1.2 Files

	3.2 Functions
	3.2.1 G711_linear2alaw_macro
	Syntax
	Register differentiation

	3.2.2 G711_alaw2linear_macro
	Syntax
	Register differentiation

	3.2.3 G711_linear2ulaw_macro
	Syntax
	Register differentiation

	3.2.4 G711_ulaw2linear_macro
	Syntax
	Register differentiation

	3.2.5 G711_alaw2ulaw_macro
	Syntax
	Usage
	Register differentiation

	3.2.6 G711_ulaw2alaw_macro
	Syntax
	Usage
	Register differentiation

	Fast Fourier Transform and Windowing
	4.1 Overview
	4.1.1 Implementation
	Forward FFT
	Inverse FFT
	Table lookup

	4.1.2 FFT optimization and conditional assembly
	OPTIMISE
	FORWARD, INVERSE
	INPLACE, OUTPLACE
	REALFFTS

	4.1.3 Hamming and Hanning windows
	4.1.4 Files

	4.2 Complex data structure
	4.2.1 Definition
	4.2.2 Description

	4.3 Functions
	4.3.1 FFT
	Syntax
	Return Value
	Usage
	Notes

	4.3.2 REALFFT
	Syntax
	Return Value
	Usage
	Notes

	4.3.3 GenerateWindow
	Syntax
	Return Value
	Usage

	4.3.4 HammingWindow
	Syntax
	Usage

	4.3.5 HanningWindow
	Syntax
	Usage

	Two-Dimensional Discrete Cosine Transform
	5.1 Overview
	5.1.1 ARM architecture requirements
	5.1.2 Implementation
	1D 8-element forward DCT
	1D 8-element reverse DCT
	2D 8x8 element DCT

	5.1.3 Files

	5.2 SCALETABLE data structure
	5.2.1 Definition
	5.2.2 Description
	Forward 2D DCT
	Reverse 2D DCT

	5.3 Functions
	5.3.1 fdct_fast
	Syntax
	Usage
	See also

	5.3.2 rdct_fast
	Syntax
	Usage
	Limitations on input values
	See also

	5.4 Supplementary macros
	5.4.1 CREATEFDCTSTABLEARRAY
	Syntax
	Usage

	5.4.2 CREATEDCTBLOCK
	Syntax

	5.4.3 PREFDCT
	Syntax
	Usage
	Notes

	5.4.4 POSTFDCT
	Syntax
	Usage
	Notes

	5.4.5 PRERDCT
	Syntax
	Usage
	Notes

	5.4.6 POSTRDCT
	Syntax
	Usage
	Notes

	Huffman and Bit Coding/Decoding
	6.1 Overview
	6.1.1 Implementation
	Encoder
	Decoder
	Table lookup

	6.1.2 Files

	6.2 BitStreamState data structure
	6.2.1 Definition
	6.2.2 Description
	6.2.3 Usage

	6.3 Functions
	6.3.1 Huffman
	Syntax
	Return value
	Notes

	6.3.2 MakeHuffCodeTablenn
	Syntax
	Return value
	Usage

	6.3.3 MakeHuffDecodeTablenn
	Syntax
	Return value
	Usage
	Limitations on input values

	6.3.4 BitCodeByteSymbols, BitCodeHalfWordSymbols, and BitCodeWordSymbols
	Syntax
	Return value
	Usage

	6.3.5 BitDecodeByteSymbols, BitDecodeHalfWordSymbols, and BitDecodeWordSymbols
	Syntax
	Return value
	Usage

	Filters
	7.1 Files
	7.2 Finite impulse response
	7.2.1 s_blk_fir_rhs
	Syntax
	Limitations on input values

	7.3 Infinite impulse response
	7.3.1 IIR_MACRO
	Syntax
	Register differentiation
	See also

	7.3.2 IIR_PowerUp_MACRO
	Syntax
	Register differentiation

	7.4 Least mean square
	7.4.1 LMS_MACRO
	Syntax
	Register differentiation
	See also

	7.4.2 LMS_PowerUp_MACRO
	Syntax
	Register differentiation

	7.4.3 LMS_PowerDown_MACRO
	Syntax
	Register differentiation

	IS-54 Convolutional Encoder
	8.1 Overview
	8.1.1 Implementation
	8.1.2 Files

	8.2 Macro and function
	8.2.1 ConvolutionalEncoderKernelMacro
	Syntax
	Register differentiation

	8.2.2 ConvolutionalEncoder
	Syntax

	Multi-tone Multi-frequency Generation/Detection
	9.1 Overview
	9.1.1 Implementation
	9.1.2 Files

	9.2 ToneState data structure
	9.2.1 Definition
	9.2.2 Description
	9.2.3 Usage

	9.3 Functions
	9.3.1 ToneDetectSetup
	Syntax
	Usage

	9.3.2 ToneDetect
	Syntax
	Return value
	Notes

	9.3.3 ToneDetectResults
	Syntax
	Usage

	9.3.4 ToneGenerateSetup
	Syntax
	Usage

	9.3.5 ToneGenerate
	Syntax
	Return Value

	Bit Manipulation
	10.1 Files
	10.2 Macros
	10.2.1 BCDADD
	Syntax
	Notes
	Limitations on input values
	Register differentiation

	10.2.2 BITREV, BITREVC
	Syntax
	Cycle counts
	Usage
	Register differentiation

	10.2.3 BYTEREV, BYTEREVC
	Syntax
	Cycle counts
	Usage
	Register differentiation

	10.2.4 BYTEWISEMAX
	Syntax
	Example
	Register differentiation

	10.2.5 LSBSET, MSBSET
	Syntax
	Usage
	Register differentiation

	10.2.6 POPCOUNT, POPCOUNT7
	Syntax
	Cycle counts
	Usage
	Register differentiation

	Mathematics
	11.1 Overview
	11.1.1 Files
	11.1.2 ARM architecture requirements

	11.2 Integer multiplication
	11.2.1 UMUL_32x32_64
	Syntax
	Register differentiation

	11.2.2 SMUL_32x32_64
	Syntax
	Register differentiation

	11.2.3 MUL_64x64_64
	Syntax
	Notes
	Register differentiation

	11.2.4 UMUL_64x64_128
	Syntax
	Notes
	Register differentiation

	11.2.5 SMUL_64x64_128
	Syntax
	Notes
	Register differentiation

	11.3 Integer division
	11.3.1 UDIV_32d16_16r16
	Syntax
	Notes
	Limitations on input values
	Register differentiation

	11.3.2 SDIV_32d16_16r16
	Syntax
	Notes
	Limitations on input values
	Register differentiation

	11.3.3 UDIV_32d32_32r32
	Syntax
	Notes
	Register differentiation

	11.3.4 SDIV_32d32_32r32
	Syntax
	Notes
	Register differentiation

	11.3.5 UDIV_64d32_32r32
	Syntax
	Notes
	Limitations on input values
	Register differentiation

	11.3.6 SDIV_64d32_32r32
	Syntax
	Notes
	Limitations on input values
	Register differentiation

	11.3.7 UDIV_64d64_64r64
	Syntax
	Notes
	Register differentiation

	11.3.8 SDIV_64d64_64r64
	Syntax
	Notes
	Register differentiation

	11.4 Fixed-point division
	11.4.1 UDIVF_32d32_32
	Syntax
	Notes
	Limitations on input values
	Register differentiation

	11.4.2 SDIVF_32d32_32
	Syntax
	Notes
	Limitations on input values
	Register differentiation

	11.5 Integer square and cube root
	11.5.1 SQR_32_16r17
	Syntax
	Notes
	Register differentiation

	11.5.2 CBR_32_11
	Syntax
	Notes
	Limitations on input values
	Register differentiation

	11.6 Trigonometric functions
	11.6.1 ARMCOS
	Syntax
	Limitations on input values
	Register differentiation

	11.6.2 ARMSIN
	Syntax
	Notes
	Register differentiation

	11.7 General macros
	11.7.1 ADDABS
	Syntax
	Register differentiation

	11.7.2 SIGNSAT
	Syntax
	Notes
	Register differentiation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Numerics
	Symbols

