
Porting TCP/IP
Version 1.6

Programmer’s Guide
Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved.
ARM DUI 0144B

Porting TCP/IP
Programmer’s Guide

Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, PrimeCell, Angel, ARMulator, EmbeddedICE, ModelGen, MultiICE, ARM7TDMI,
ARM7TDMI-S, ARM9TDMI, TDMI, and STRONG are trademarks of ARM Limited.

Portions of source code are provided under the copyright of the respective owners, and are acknowledged in
the appropriate source files:

Copyright 1998-2000 by InterNiche Technologies Inc.

Copyright © 1984, 1985, 1986 by the Massachusetts Institute of Technology.

Copyright © 1982, 1985, 1986 by the Regents of the University of California. All Rights Reserved.
Redistribution and use in source and binary forms are permitted provided that the above copyright notice and
this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other
materials related to such distribution and use acknowledge that the software was developed by the University
of California, Berkeley. The name of the University may not be used to endorse or promote products derived
from this software without specific prior written permission.

Copyright © 1988, 1989 by Carnegie Mellon University. All Rights Reserved. Permission to use, copy,
modify, and distribute this software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of CMU not be used in advertising
or publicity pertaining to distribution of the software without specific, written prior permission.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole or any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with prior written permission of the copyright holder.

The product described in this document is subject to continuous development and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Change History

Date Issue Change

Sept 2000 A First release of independent TCP/IP version (DUI 0144), without PPP information.

June 2001 B Second release. Minor changes.
ii Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for
any loss or damage arising from the use of any information in this document, or any error or omission in such
information, or any incorrect use of the product.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. iii

iv Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Contents
TCP/IP Programmer’s Guide

Preface
About this book .. viii
Feedback .. xii

Chapter 1 Introduction
1.1 A typical embedded networking stack ... 1-2
1.2 ARM TCP/IP requirements .. 1-4
1.3 Sample package directories .. 1-7
1.4 Sample programs .. 1-8

Chapter 2 TCP/IP Porting
2.1 Porting procedure ... 2-2
2.2 Portable and nonportable files .. 2-3
2.3 Creating the IP port file ... 2-4
2.4 Coding the glue layer .. 2-14
2.5 Specifying IP addresses ... 2-18
2.6 Testing the TCP/IP port .. 2-20

Chapter 3 TCP/IP API Functions
3.1 User-provided TCP and IP functions ... 3-2
3.2 Network interfaces .. 3-14
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. v

Chapter 4 DHCP Client Functions
4.1 DHCP client functions ... 4-2

Chapter 5 Sockets
5.1 ARM implementation of sockets ... 5-2
5.2 Socket API reference .. 5-3

Chapter 6 Low-overhead UDP Functions
6.1 UDP functions ... 6-2

Chapter 7 The TCP Zero-copy API
7.1 About the TCP Zero-copy API .. 7-2
7.2 Sending data with the TCP Zero-copy API ... 7-4
7.3 Receiving data with the TCP Zero-copy API .. 7-6
7.4 TCP Zero-copy API reference .. 7-8

Chapter 8 ARM-specific Functions
8.1 ARM directories .. 8-2
8.2 ARM Firmware Suite .. 8-8

Chapter 9 Miscellaneous Library Functions
9.1 Description of misclib files .. 9-2
9.2 in_utils.c .. 9-6
9.3 nextcarg.c ... 9-17
9.4 parseip.c ... 9-18
9.5 reshost.c ... 9-19
9.6 timeouts.c ... 9-21
9.7 testmenu.c .. 9-23
9.8 userpass.c .. 9-24

Chapter 10 Internal Functions
10.1 ARP routines .. 10-2
10.2 IP routines .. 10-4
10.3 ICMP routines ... 10-14

Appendix A Error Codes
A.1 ENP_ error codes ... A-2
A.2 Socket error codes ... A-4

Appendix B Editing ARM Networking .nv Files
B.1 About the .nv files ... B-2
B.2 Primary .nv file parameters ... B-3
B.3 Secondary .nv file parameters .. B-6
vi Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Appendix C Sample Applications
C.1 Requirements ... C-2
C.2 Building projects ... C-3
C.3 Running the examples ... C-4
C.4 Descriptions of the examples ... C-5

Appendix D The i8255x Ethernet Driver
D.1 About the i8255x driver .. D-2
D.2 Build options .. D-4
D.3 Porting the i8255x driver .. D-6
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. vii

viii Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Preface

This preface introduces the ARM TCP/IP implementation and its documentation. It
contains the following sections:
• About this book on page x
• Feedback on page xiv.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ix

Preface
About this book

This guide is provided with the ARM Portable TCP/IP stack sources.

It is assumed that the ARM TCP/IP sources are available as a reference. It is also
assumed that the reader has access to a C language programmer’s guide and the ARM
Architecture Reference Manual.

Intended audience

This Programmer’s Guide is written for a moderately-experienced C programmer, with
a general understanding of TCP/IP, who wants to port the stack to a new environment.

Using this book

This guide is organized into the following chapters:

Chapter 1 Introduction
Read this chapter to learn about porting in general and the system
requirements for using the TCP/IP protocol stack source.

Chapter 3 TCP/IP Porting
 Read this chapter for step-by-step instructions on porting and testing.

Chapter 2 TCP/IP API Functions
Read this chapter for a description of the user-provided functions
required for porting the ARM TCP/IP stack.

Chapter 3 DHCP Client Functions
Read this chapter for a description of the DHCP function calls used to
request information for an interface.

Chapter 4 Sockets
Read this chapter for an introduction to sockets, and for a description of
the sockets API.

Chapter 5 Low-overhead UDP Functions
Read this chapter for a description of the low-overhead UDP functions.

Chapter 6 The TCP Zero-copy API
Read this chapter for information on sending and receiving data with the
TCP Zero-copy API.
x Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Preface
Chapter 7 ARM-specific Functions
Read this chapter for details on the sample sources provided as part of the
TCP/IP stack. This chapter also details functions, specific to the ARM
environment, that these files contain.

Chapter 8 Miscellaneous Library Functions
Read this chapter for a description of the assortment of functions to be
found in the \misclib directory. These functions perform a variety of
tasks that are used by the example programs and by the TCP/IP stack.

Chapter 9 Internal Functions
Read this chapter for a description of ARP, IP, and ICMP functions.

Appendix A Error Codes
Read this appendix to see a list of both the standard ENP_ error codes you
might encounter while porting, and the socket error codes.

Appendix B Editing ARM Networking .nv Files
Read this appendix to find out how to edit ARM networking parameters.

Appendix C Sample Applications
Read this appendix for information on the sample applications provided,
and on how to build and run projects.

Appendix D The i8255x Ethernet Driver
Read this appendix for information on the i8255x Ethernet driver, its
features and build options, and instructions on porting.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. xi

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

typewriter bold
Denotes language keywords when used outside example code.

italic Introduces special terminology, denotes internal cross-references, and
citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on porting ARM TCP/IP.

ARM publications

This book contains reference information that is specific to ARM TCP/IP. For
additional information, refer to the following ARM publications:
• Porting PPP Programmer’s Guide (ARM DUI 0143)
• the documentation set for the ARM Developer Suite (ADS)
• ARM Architecture Reference Manual (ARM DDI 0100).

Other publications

For other reference information, please refer to the following:

• Comer, Douglas E., Internetworking with TCP/IP: Principles, Protocols, and
Architecture, 3rd Edition, 1995, Prentice-Hall (ISBN 0-13-216987-8).

• Jagger, David, ARM Architecture Reference Manual, 1997, Prentice-Hall (ISBN
0-13-736299-4).

• Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, 2nd
Edition, 1988, Prentice-Hall (ISBN 0-13-110370-8).
xii Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Preface
• RFC 1071, Borman, D., Braden, B. and Partridge, C., Computing the Internet
checksum, 09/01/1988.

• RFC 1072, Braden, B. and Jacobson, V., TCP extensions for long-delay paths,
10/01/1988.

• RFC 1213, McCloghrie, K. and Rose, M., Management Information Base for
Network Management of TCP/IP-based internets: MIB-II, 03/26/1991.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. xiii

Preface
Feedback

ARM Limited welcomes feedback on both ARM TCP/IP, and its documentation.

Feedback on ARM TCP/IP

If you have any problems with ARM TCP/IP, please contact your supplier. To help us
provide a rapid and useful response, please give:
• details of the release you are using
• details of the platform you are running on, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually happened
• the commands you used, including any command-line options
• sample output illustrating the problem.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:
• the document title
• the document number
• the page number(s) to which you comments apply
• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
xiv Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 1
Introduction

The TCP/IP porting sources are provided to enable you to port ARM TCP/IP to other
networking environments.

This chapter introduces networking, the ARM porting functions, the requirements for
porting ARM TCP/IP, a list of the sample package directories, and an overview of the
sample programs provided. This chapter contains the following sections:
• A typical embedded networking stack on page 1-2
• ARM TCP/IP requirements on page 1-4
• Sample package directories on page 1-7
• Sample programs on page 1-9.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 1-1

Introduction
1.1 A typical embedded networking stack
Figure 1-1 shows the events that drive a typical embedded networking stack and the
responses from the stack:
• the user enters commands
• packets are received from the network
• timers go off.

In each case, a call is made to the stack to handle the event.

In response to these events, the stack:
• makes calls to the system
• sends network packets
• returns data or status information to the calling user
• sets additional timers.

Figure 1-1 Network stack events

In an ideal situation, calls are mapped directly onto the underlying system. For example,
the external call from the stack to send a packet has the same syntax as t exported send
call from the network interface. However, in a more typical situation, the stack designer
does not know what tasking system, user applications, or interfaces are supported in the
target system.

�����

��	
�������

��	
�
���
����
����
��

�	���
�����	
���	�
1-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Introduction
The ARM portable stack is designed with simple, generic interfaces. You must create a
glue layer that maps this generic interface onto the specific interfaces available on the
target system. For example, the stack is designed with a generic send_packet() call, and
you code a glue function to send the packet using the system network interface. In this
example, an ethernet driver, a SLIP driver, and a PPP driver each need different glue
functions.

To maximize portability, the stack:
• minimizes the number of calls to glue functions
• uses simple glue functions
• provides detailed documentation
• either uses standard interfaces (such as sockets and the ANSI C library) or

provides examples when there is no standard.

The majority of the work in porting a stack is understanding and implementing the glue
functions. The ARM TCP/IP stack has the following categories of glue functions:
• Application Program Interface (API)
• memory allocation and management
• network hardware interface
• timer and tasking interface.

These functions are discussed in greater detail in Chapter 2 TCP/IP API Functions.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 1-3

Introduction
1.1 ARM TCP/IP requirements

Before beginning a port, you must ensure that the necessary resources are available in
the target environment. There must be:
• a processor with spare CPU capacity with an operating system
• a debug monitor
• RAM
• a network interface.

The exact size of these resources varies depending on the features you plan to
implement, the performance you require, and how many simultaneous users you have
to support.

The following is a brief summary of services that ARM TCP/IP requires from the
system:
• at least one network interface device
• a timer that ticks at least once a second
• memory, processing power, and operating system requirements, which are

detailed in this section.

1.1.2 Memory requirements

It is not possible to provide exact memory requirements, however an estimate can be
obtained by examining the results provided by the examples. The values provided in
Table 1-1 on page 1-5 are from the menus example (see menus on page C-5). The code
was compiled for the ARM7TDMI processor core in Thumb state with ADS, version
1.0.1 and was optimized for code size rather than speed. All figures exclude C runtime
libraries, board support, and the Menus application.

The majority of the ipport.h build options (such as, routing, NPDEBUG, NET_STATS, and
DHCP_CLIENT) are not defined, so the sizes shown in the table below are smaller than if
they had been defined. Packet buffers, that are allocated from the heap at initialization
time, are not included in these figures.

Note
 The values in Table 1-1 on page 1-5 might change with subsequent releases because the
code is subject to continuous development.
1-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Introduction

The compilers place read-only data items, such as strings and constants, into the
read-only code area. Therefore, the memory requirements for the code area include
these constant data items. When designing your system, you have to estimate the
amount of ROM and RAM required:

• The ROM requirement is the sum of the read-only area and the read-write data
(the read-write data has pre-initialized values).

• The RAM requirement is the sum of the read-write data and the zero-init data,
plus the dynamic memory requirements of the system (for example, network
buffers).

TCP and sockets use a large portion of memory. Systems that require only IP and User
Datagram Protocol (UDP) services (such as routers and SNMP agents) can remove the
TCP and sockets layers to reduce memory requirements.

Table 1-1 ARM7TDMI memory requirements (in bytes) for a basic stack

Thumb
code and
read-only

data

Read-write
data

Zero-init
data

Thumb
ROM

RAM

IP 6720 8028 408 6804 488

ICMP 664 4 104 668 108

UDP 568 4 16 572 20

TCP 10304 76 172 10380 248

sockets 1652 0 0 1652 0

ARP 1272 20 232 1292 252

Ethernet driver 4303 80 128 4336 208

NV parameters 1336 12 200 1348 212

Totals 26820 276 1260 27096 1536
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 1-5

Introduction
1.2.1 Operating system requirements

The stack requires the following basic services from the target system:

clock tick A clock tick counter must be incremented at regular intervals. See cticks
in the section on Timers and multitasking on page 3-8.

memory access
The standard malloc() and free() library calls are ideal. If you do not
need a TCP or Dynamic Host Configuration Protocol (DHCP) server,
these functions are called at startup time only and can be replaced with a
static or partition-based scheme.

multitasking
The stack must obtain CPU cycles to process received packets (and
handle timeouts) on a timely basis. Two methods are discussed in Task
control on page 3-14.
1-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Introduction
1.3 Sample package directories

The ARM TCP/IP distribution contains the following directories:

install_directory\armthumb
Code common to ARM and Thumb architectures.

install_directory\docs
Documentation.

install_directory\inet
IP, UDP, and related sources (excluding TCP and sockets),
including startup, interface, and buffer management code.

install_directory\integrator
Code specific to the Integrator/AP development card fitted with
an ARM7TDMI processor and an Intel PRO/100+ Server
Adapter.

install_directory\tcp
TCP and sockets source files.

install_directory\chargen
Demonstration of a simple server.

install_directory\loopback
MAC and PPP loopback benchmark code.

install_directory\maildemo
A simple client that uses SMTP to send an email message.

install_directory\menus
Menuing system, useful for debugging.

install_directory\emailer
Source code for the Email Alerter embedded SMTP client. This
package allows an embedded system to send email messages.

install_directory\misclib
Miscellaneous support routines required by the stack.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 1-7

Introduction
install_directory\uHAL
μHAL and PCI libraries and header files from the ARM Firmware
Suite. These libraries provide the low-level board support for the
Integrator/AP platform.
1-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Introduction
1.2 Sample programs
The sample code compiles with ADS 1.0.1. Unless you are familiar with TCP/IP and
are comfortable working with complex networking code, it is recommended that you
compile the sample programs and experiment with them before you port your
application. Instructions for compiling sample programs are in Appendix C Sample
Applications.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 1-9

Introduction
1-10 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 3
TCP/IP Porting

This chapter discusses porting the TCP/IP stack to a new environment. It is assumed
that the stack is being ported to a small, embedded system with a network interface and
that ADS 1.0 is available. This chapter contains the following sections:
• *** Do not use an ItemizedList’s Mark attribute ***

Porting procedure on page 3-2
• Portable and nonportable files on page 3-3
• Creating the IP port file on page 3-4
• Coding the glue layer on page 3-14
• Specifying IP addresses on page 3-18
• Testing the TCP/IP port on page 3-20.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-1

TCP/IP Porting
3.1 Porting procedure

To create a working version of the TCP/IP stack on your target system:

1. Copy the portable source files into your development environment (see Portable
and nonportable files on page 3-3).

2. Create a version of ipport.h (see Creating the IP port file on page 3-4) and
compile the portable sources.

3. Write and compile the necessary code for the glue layers (see Coding the glue
layer on page 3-14).

4. Specify the IP address information (see Specifying IP addresses on page 3-18).

5. Add your own code to use the stack.

6. Build a target system image, test, and debug (see Testing the TCP/IP port on
page 3-20).
3-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
3.2 Portable and nonportable files

There are two types of files provided in the distribution:

• portable files that can be compiled and used on any target system without
modification

• nonportable or port-dependent files that must be modified or replaced for
different target systems.

3.2.1 Portable files

Portable files are the IP and TCP stack source files that must not need to be modified in
the course of a normal port. If you need to modify one of these files, discuss it with
ARM technical support staff first, as we may be able to suggest an alternative.

These files are in the \inet and \tcp directories under your installation directory.

3.2.2 Nonportable files

All other files in the sample package contain nonportable glue layer code that must be
modified, replaced, or omitted.

The support functions required for basic operation of the stack are covered in Chapter
2 TCP/IP API Functions.

You must also provide at least one network interface that conforms to the specification
described in Network interfaces on page 2-14. The sample sources come with a sample
Ethernet network interface driver.

The ARM TCP/IP stack and related applications, such as DHCP and SNMP, generally
have one C file and one include file containing all the nonportable code for that module.
These files have the generic name moduleport.x, where module is the module name (for
example, tcp or http), and x is either .c or .h. For example, the TCP directory has the
files tcpport.c and tcpport.h.

The ipport.h file is kept with your application code, allowing different applications to
use different TCP/IP stack configurations. All other source files in the TCP directory
are intended to be fully portable.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-3

TCP/IP Porting
3.3 Creating the IP port file

This section contains the following information:
• The ipport.h file
• Standard macros and definitions
• CPU architecture on page 3-5
• Pre-emption and protection on page 3-6
• Debugging aids on page 3-6
• Timers and multitasking on page 3-8
• Stack features and options on page 3-8
• Optional compilation switches on page 3-9.

3.3.1 The ipport.h file

The ipport.h file contains the port-dependent definitions for the IP layer, and the
architectural definitions for all the IP-related code. It also controls CPU architectures
(big-endian or little-endian), compiler options, and optional features (DHCP, multiple
interfaces, and IP routing support).

Caution
 A mistake in this file (such as using big-endian in place of little-endian) can create
severe problems, so it is important to set this file up correctly.

You must create a version of the IP port file before you compile the portable TCP/IP
stack files, and must #include the ipport.h file in every C file of every module
throughout the TCP/IP software.

3.3.2 Standard macros and definitions

The ARM TCP/IP stack expects TRUE, FALSE, and NULL to be defined in ipport.h.
Typically, the best way to do this is to include the standard C library file stdio.h in
ipport.h. If stdio.h is impractical to use or not available on your system, the following
example works in most environments:

#ifndef TRUE
#define TRUE -1
#define FALSE 0
#endif
#ifndef NULL
#define NULL (void*)0
#endif
3-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
3.3.3 CPU architecture

Four common macros from Berkeley UNIX are used for doing byte order conversions
between different CPU architecture types:
• htons()

• htonl()

• ntohs()

• ntohl().

You can use these functions as either macros or functions. They accept 16-bit and 32-bit
quantities as shown and convert them from network format (big-endian) to the format
supported by the local system.

If your system is using the ARM processor in big-endian mode, these macros can return
the variable passed, for example:

#define htonl(l) (l)
#define htons(s) (s)
#define ntohl(l) (l)
#define ntohs(s) (s)

If your system is using the ARM processor in little-endian mode, the byte order must
be swapped. For htonl() and ntohl(), use the lswap() function provided in the
\armthumb directory (see Sample package directories on page 1-7). For htons() and
ntohs(), use a byte-swapping macro, as shown below:

#define htonl(l) lswap(l)
#define htons(s) ((u_short)(((u_short)(s) >> 8) |

 ((u_short)(s) << 8)))
#define ntohl(l) lswap(l)
#define ntohs(s) htons(s)
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-5

TCP/IP Porting
3.3.4 Pre-emption and protection

You must define primitives in order to protect sections of code that must not be
interrupted or pre-empted (see Implementing pre-emption and protection on
page 3-16).

The critical section protection scheme is typically used on embedded systems that lack
a multitasking capability:

void ENTER_CRIT_SECTION(); /* enter critical section */
void EXIT_CRIT_SECTION(); /* exit critical section */

Those systems are described in detail in ENTER_CRIT_SECTION() and
EXIT_CRIT_SECTION() on page 2-6.

The lock net resource macros are typically used on real-time kernels, such as VRTX and
VxWorks:

void LOCK_NET_RESOURCE(); /* start re-entrance protection */
void UNLOCK_NET_RESOURCE(); /* end re-entrance protection */

3.3.5 Debugging aids

You must include the following macros in your functions to provide support while you
are debugging your code:
• dtrap
• initmsg() and dprintf() on page 3-7
• NPDEBUG on page 3-7.

dtrap

This macro is called by the stack code when it detects a situation that should not be
occurring. The intention is for the dtrap() macro to invoke whatever debugger may be
in use by the programmer. In this way, it acts like an embedded breakpoint. The stack
code can continue executing after a dtrap(), but the dtrap() typically indicates that
something is wrong with the port.

Note
 Products based on this code should not be shipped until all calls to dtrap() have been
removed from the code. You can redefine dtrap() to a null macro to slightly reduce code
size.
3-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
initmsg() and dprintf()

The initmsg() and dprintf() macros have the same function and syntax as printf().
They have different names so their output can be redirected to different locations, or so
they can be individually disabled.

The initmsg() macro is called by various stack functions to print function status
messages during initialization. These messages are for information and are not
warnings.

The dprintf() macro is used throughout the stack code to print warning messages when
something seems to be wrong.

In most ports, these can both be mapped to printf() while the product is under
development.

Note
 Mapping initmsg() and dprintf() to printf() works with the ADS, but performance of
the stack is severely affected by the time taken to transfer debugging information across
the RDI link to the ARM debugger.

A more efficient alternative is to use low-level functions to replace putchar() and
printf() and to write output to a UART or other console device. The file
\misclib\ttyio.c contains an example dprintf() function that can be used in
conjunction with \integrator\uartio.c for this purpose.

#define initmsg printf /* Same parms as printf. Called at */
/* boot time */

#define dprintf printf /* Same parms as printf. Called */
/* during run time */

For some products, it may be desirable to define these to a null macro before releasing.

#define initmsg /* define to nothing */
#define dprintf /* define to nothing */

NPDEBUG

Defining the NPDEBUG macro causes the debug code to be compiled into the application.
The debug code performs tasks, such as checking for valid parameters and sensible
configurations during runtime. The debug code invokes dtrap() or dprintf() to inform
the programmer of detected problems. To make use of this feature, make sure NPDEBUG
is defined during development.

#define NPDEBUG 1 /* enable debug checks */
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-7

TCP/IP Porting
3.3.6 Timers and multitasking

The ARM TCP/IP stack requires a clock tick for TCP and ARP timers. The stack
depends on an unsigned long variable named cticks.

The cticks variable should be regularly incremented (between 5 and 100 times per
second) by the port code, wrapping back to 0 after reaching 0xFFFFFFFF. The stack code
uses the TPS macro to adjust cticks (ticks per second) for actual time. You must define
this in ipport.h, for example:

#define TPS 50 /* cticks per second*/

An example using µHAL timers is available in \integrator\clock.c. The example sets
the timer to match the value assigned to TPS in ipport.h.

If you are testing the stack using the ARMulator, you can define cticks to call the
clock() library function instead:

#define cticks (clock())
extern long clock(void);

If you use clock() to provide the value for cticks, you must define TPS to be 100 in the
ipport.h file.

3.3.7 Stack features and options

The stack assumes that you have at least one device for sending and receiving network
packets. These devices are usually hardware devices, such as Ethernet or serial ports,
but they can be logical devices, such as loopback drivers or inter-process
communication software.

Most IP stacks on embedded systems support only one device. However, devices like
routers need two or more. The ARM stack supports multiple logical devices and has
been used with up to three. The structures to manage these devices are statically
allocated at compile time, so the maximum number of devices the system uses at run
time must be set in ipport.h:

/* define the maximum number of hardware interfaces */
#define MAXNETS 2 /* maximum entries of nets[] array */
3-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
3.3.8 Optional compilation switches

The lists of optional compilation switches in this section can be defined in ipport.h. The
options must be commented out if they are not required. Some of these switches add
hooks. The switches available depend on the products installed.

Note
 Setting the defined value to 0 does not disable the feature. You must comment out the
definition to disable it.

General switches

INCLUDE_ARP If defined, the stack uses the ARP protocol to perform physical
address resolution on those interfaces that support ARP.
If not defined, the ARP protocol is not performed. ARP is required
for Ethernet operation.

FULL_ICMP If defined, the stack implements the entire ICMP protocol.
If not defined, the stack implements only the ping (ICMP ECHO)
protocol.

INCLUDE_TCP If defined, the stack includes support for the TCP protocol.

TCP_ZEROCOPY If defined, the stack includes support for the TCP Zero-Copy API
extensions.

NPDEBUG If defined, debug messages are displayed on the system console.

IP_FRAGMENTS If defined, the stack attempts to reassemble IP packet fragments
that are destined for the target system.
If not defined, the stack silently discards fragmented IP packets
that are destined for the target system.
This option also controls whether or not the stack generates
fragmented IP packets.

NB_CONNECT If defined, the stack includes code to support non-blocking
connection attempts.

IP_ROUTING Controls whether or not IP layer packet routing is performed on
multihomed hosts.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-9

TCP/IP Porting
MULTI_HOMED This constant must be defined if the target system can have more
than one physical interface, for example, an Ethernet and a serial
link. This must be undefined on targets with a single interface to
minimize target memory usage.

NET_STATS If defined, the stack includes the code and data structures that
allow stack performance and other statistics to be displayed.

IP_LOOPBACK If defined, the stack can loopback packets destined for the IP
loopback address at the bottom of the IP layer, without being
queued to a network interface.

MAC_LOOPBACK If defined, the stack can loopback packets destined for the IP
loopback address via a separate loopback network interface.

NO_UDP_CKSUM If defined, UDP checksums are not generated for transmitted UDP
packets and are not verified on received UDP packets.

MEM_LIBS The stack includes implementations of several C library functions
like memcpy(), memset(), and memcmp(), for targets whose C libraries
do not include these functions. Define this constant if your C
library does not include implementations of these functions.

INICHE_LIBS The stack includes implementations of several C library functions
that operate on strings (for example, strlen(), strcpy()) for
targets whose C libraries do not include these functions. Define
this constant if your C library does not include implementations of
these functions.

NATIVE_PRINTF The misclib directory contains an implementation of formatted
output functions that perform a function similar to printf(). If you
intend to use these functions instead of the formatted output
function provided by your C compiler, this constant should be
undefined. If you intend to use the printf() from your C compiler
for formatted output, you must define this constant.

INCLUDE_NVPARMS If defined, the stack includes code that can parse a configuration
file to set the various parameters for the stack, such as IP
addresses and DNS configuration.

MONITOR_ALLOCS This causes npalloc() and npfree() to track memory allocation,
check for freeing memory that has not been allocated, check for
freeing memory that has already been freed, and check for
memory heap corruption.

USE_I8255X If defined, the stack uses the Intel 82559 Ethernet driver.
3-10 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
VFS_FILES If defined, the stack uses the Virtual File System routines found in
the vfs directory.

HT_LOCALFS If defined, the stack accesses files on the local system using fopen
/ fread. This can be used with VFS_FILES.

WANT_PACKET If defined, this includes a routine that can be called by the Ethernet
Interrupt Service Routine (ISR) to determine if a packet is
potentially of interest to the stack. This allows the ISR to discard
uninteresting packets instead of queuing them, which helps reduce
the number of packet resources being consumed, but at the cost of
some code space and interrupt service time.

IN_MENUS If defined, the stack includes the diagnostic menu system.

MENU_HISTORY If defined, the diagnostic menu system supports a history
mechanism. You must #define MENU_HISTORY to be the number of
commands to be remembered. For example, the following line
allocates ten slots in the history array:
#define MENU_HISTORY 10

UDPSTEST If defined, the Sockets based UDP echo client and server are
included in the target.

DNS_CLIENT If defined, the stack includes code to perform DNS lookups of
host names.

PING_APP Define this constant if the target system generates ICMP
ping/echo requests. This constant is not required for the client to
respond to echo requests from other hosts.

DHCP_CLIENT If defined, the stack implements the client side of the DHCP
protocol during system startup.

SMTP_ALERTS If defined, the stack includes code to send email alerts to a
configured user upon the detection of various runtime exception
and error conditions.

TCP_ECHOTEST If defined, the TCP echo client and server are included in the
target.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-11

TCP/IP Porting
ARM PPP

The following are available if you have ARM PPP:

USE_PPP If defined, the stack implements the PPP protocol.

USE_MODEM If defined, the stack supports call setup and hangup using a
Hayes-compatible modem.

RAS_DIRECT If defined, the stack supports direct cable connection networking
to Microsoft RAS servers. This option requires USE_PPP and
USE_MODEM to be defined as well.

ARM Embedded Web Server

The following switch is only functional if you have the ARM Embedded Web Server
software:

WEBPORT If defined, the stack includes the ARM HTTP server.

ARM SNMP Agent

The following switches are only functional if you have the ARM SNMP Agent
software:

INCLUDE_SNMP If defined, the stack includes the ARM SNMP agent.

SNMP_SOCKETS If defined, the stack implements the SNMP agent using the
standard Sockets API. This is useful if you wish to use the ARM
SNMP product without the ARM TCP/IP product.

ARM FTP Server

The following switches are only functional if you have the ARM FTP Server software:

FTP_SERVER If defined, the stack includes an FTP server.

FTP_CLIENT If defined, the stack includes an API that allows the calling
application to generate the client side of the FTP protocol.

ARM DHCP Server

The following switch is only functional if you have purchased the ARM DHCP Server
software:

DHCP_SERVER If defined, the stack includes the ARM DHCP server.
3-12 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
ARM Telnet Server

The following switch is only functional if you have purchased the ARM Telnet Server
software:

TELNET_SVR If defined, the stack includes the ARM Telnet Server.

ARM RIP

The following switch is only functional if you have purchased the ARM Telnet Server
software:

RIP_SUPPORT If defined, the stack includes the ARM RIP functionality.

ARM TFTP Server

The following switches are only functional if you have the ARM TFTP Server software:

TFTP_SERVER If defined, the stack includes the ARM TFTP Server.

TFTP_CLIENT If defined, the stack includes an API that allows the calling
application to generate the client side of the TFTP protocol.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-13

TCP/IP Porting
3.4 Coding the glue layer

After you have edited your ipport.h file (Creating the IP port file on page 3-4), you
must code the glue layers in ipport.c. These functions map the generic service requests
made by the stack to the specific services provided by your target system.

Many requests are handled through mappings in ipport.h. The remainder must be
implemented as a minimal layer of C code and as interface functions to drive any
hardware devices required. In the example package, some of these are collected in
ipport.c, and the rest are in separate source files within the \armthumb and \integrator
directories.

Typically, the most complex part of the glue layers is the network hardware interface,
described in Network interfaces on page 2-14. The ipport.c file exports a function
called prep_ifaces(), that:
• initializes the pre-allocated network structures to point to the interface functions
• fills in hardware specific parameters
• sets up MIB structures.

You might have to modify this function to reflect your own interfaces.

Most of the functions you require in order to code the glue layer are described in
Chapter 2 TCP/IP API Functions. Every function described there must be either coded
or mapped directly onto a system function using a macro in ipport.h.

3.4.1 Task control

The TCP/IP stack must obtain CPU cycles to process received packets and handle
timeouts on a timely basis. This is achieved using a superloop that regularly polls using
a central function.

Like some simpler embedded systems, there is no real multitasking system available to
the example code. The sample programs obtain control after they are loaded and run
until the user tells them to stop. Internally they are in an infinite loop waiting for new
input to act on. This internal loop is referred to as the superloop.

The example works as follows:

1. At the end of the main() function, the example calls all the initialization functions
and enters an infinite loop calling the nonportable function tk_yield().

2. The tk_yield() function polls all the linked modules (for example, the IP stack,
servers, and modem drivers) and returns.

3. The linked modules are called through a portable function that checks for work to
be done by that module, processes any work, and returns.
3-14 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
In the case of the IP stack, tk_yield() calls the nonportable packet_check() to
guard against re-entry, which calls pkt_demux(), the portable function that
dequeues received packets.

This superloop technique is well suited to taskless systems. The drawback is that CPU
cycles are wasted by polling functions that have no work to do.

3.4.2 TCP

The TCP portion of the stack implements two functions that allow it to wait if resources,
such as free buffers, are unavailable or the remote host responds too slowly. These
functions are:
• tcp_sleep()

• tcp_wakeup().

You must map these functions onto the block or sleep function your OS provides.

If you are not using TCP in your port, you do not have to implement these functions.

The tcp_sleep() function takes as its argument a pointer (usually to a socket data buffer)
on which to block. This means the calling TCP function is waiting for data. At the very
least, the system should give the net task a chance to process more incoming packets
before returning from the call to tcp_sleep().

Whenever data arrives for such a buffer, the TCP code calls tcp_wakeup().This means
that for optimum efficiency, a call to tcp_sleep() can block until the related call to
tcp_wakeup() is received.

The stack calls the tcp_wakeup() function with the same pointer that tcp_sleep() was
called with. When tcp_wakeup() is called with a particular pointer value, your code must
ensure that all of the tasks that called tcp_sleep() with that value are made runnable.

If tcp_sleep() returns before the tcp_wakeup() call is made, the calling TCP code loops
back to retest the buffer condition and calls tcp_sleep() again.

In the example port, tcp_sleep() calls the superloop function, tk_yield(), and
tcp_wakeup() is a null operation. This is the simplest possible round-robin process. For
details on how this is done, refer to the source code in tcpport.c. Most RTOS products
support a type of call that lets the round-robin scheduler spin all the tasks once and then
return. This is typically what tcp_sleep() does.

If you are familiar with the UNIX kernel sleep() and wakeup() functions, you can see
that tcp_sleep() and tcp_wakeup() can be mapped directly to the UNIX sleep() and
wakeup() functions.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-15

TCP/IP Porting
3.4.3 Implementing pre-emption and protection

You must implement a process control method to protect the internal structures of the
stack from being corrupted by reentrant code. The following is an example problem
scenario:

1. The IP stack code is in the process of adding an item to a queue as the result of a
socket call by a user application and has made local copies of some of the
structure internals of the queue.

2. An IP packet arrives and the net task wakes up, pre-empting the user task and
modifying the same queue copied in step 1.

3. The user task resumes and finishes adding the item to the queue, corrupting the
structure of the queue when it writes back its local copies of the internal structures
of the queue.

The ARM TCP/IP stack provides two separate methods of protecting itself against this
kind of problem:
• The critical section method
• The network resource lock method on page 3-17.

You must select the method that best fits your target system and ensure the appropriate
macros are implemented in ipport.h.

The critical section method

A critical section refers to a sequence of code that must be allowed to complete without
interruption. This code is bracketed between macros or C calls designed to ensure that
the code is not interrupted. For the ARM stack these functions are:
• ENTER_CRITICAL_SECTION()

• EXIT_CRITICAL_SECTION().

Critical sections are typically the preferred method of protection on general purpose
systems like DOS or UNIX. On UNIX kernels, these macros can be mapped directly to
the splnet() and splx() calls. Typically, ARM ports implement these macros by turning
off interrupts. Refer to the example source in \integrator\irq.c.

ENTER_CRITICAL_SECTION() and EXIT_CRITICAL_SECTION() must handle nesting correctly.
As an example, ENTER_CRITICAL_SECTION() could disable interrupts and increment a
count of how many times it has been called. EXIT_CRITICAL_SECTION() decrements that
count and then only re-enables interrupts when the count has been decremented to zero.

See ENTER_CRIT_SECTION() and EXIT_CRIT_SECTION() on page 2-6 for more
information.
3-16 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
The network resource lock method

The resource lock method of protection is provided as an alternative to critical section
protection. This method was created for systems with strict real-time requirements that
want to run the networking protocols at a low priority, and want to pre-empt them at any
time. Resource locking assigns three system resource IDs to the IP stack. These work
as mutex (mutually exclusive) semaphores. The macros for this are:
• LOCK_NET_RESOURCE()

• UNLOCK_NET_RESOURCE().

See LOCK_NET_RESOURCE() and UNLOCK_NET_RESOURCE() on page 2-7 for
more details.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-17

TCP/IP Porting
3.5 Specifying IP addresses

Before you can test your stack, you must set up some basic IP addressing information.
The ARM stack offers the latest protocols for setting up IP addresses, but it still requires
additional information from both the porting programmer and the end user.

3.5.1 Porting programmer IP issues

You must first assign a valid IP address to each interface.

Caution
 You must assign these addresses as part of the port. If the IP address values are not
correctly set, your stack might not work and you might even disable other users on the
net. If you do not know which values to use, ask your network administrator or refer to
Internetworking with TCP/IP, by Douglas E. Comer, on IP addressing.

Fill in the n_ipaddr member of the net structure for each interface. (The net structure is
discussed in detail in Network interfaces on page 2-14.) This must be done before or
during the network interfaces n_init() call. You must also set the fields for n_defgw
(default router) and snmask (subnet mask). These three values are collectively referred
to as the IP addressing information.

Note
 In little-endian systems, these addresses are stored in network byte order (big-endian
format) rather than little-endian. Refer to the n_ipaddr setup code in \inet\macloop.c for
a portable example that works on both big-endian and little-endian architectures.
3-18 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP Porting
3.5.2 End user IP issues

A product issue you will encounter is how the end user assigns the IP addresses.
Traditionally, the end user was required to sit down at a console attached to the device,
usually a serial terminal attached to an RS-232 port, and key in an IP address, subnet
mask, default router, and possibly other information. The IP address information was
stored in permanent storage (NVRAM or disk) and read each time the machine was
booted.

Although it is still a good idea to support manual IP address assignment, more recent IP
technology has developed several easier ways to do this, most notably DHCP. For a
description of the ARM DHCP client functions, see Chapter 3 DHCP Client Functions.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-19

TCP/IP Porting
3.6 Testing the TCP/IP port

When your ipport.h file is set up and your glue layers are coded, you are ready to test
your stack. The traditional first test of most IP stacks is ping, the popular term for ICMP
echo packets. You must connect your hardware to the network and ping from a remote
machine. At a DOS or UNIX shell prompt, enter:

ping number

where number is an IP address. Use the number you assigned to the network interface
of your stack (in Specifying IP addresses on page 3-18).

When you use ping, it sends a network packet to the ARM stack, which echoes it back.
This indicates that:
• the packet was transferred from the net media to your interface
• the IP information for your interface is properly configured
• your IP layer is receiving from the interface
• the ICMP layer has attached to IP
• ICMP can send to IP
• IP can send to the interface
• the interface can send on the physical net.

If you are using Ethernet, ARP has also worked.

If ping works, most of your port is complete.

The other tests you should run depend on your product. ARM also sells FTP servers,
SNMP agents, and Web Servers for embedded systems. If you are using any of these
packages, refer to the documentation provided for implementation and testing
information.

Once you have been able to use ping to verify the basic operation of the stack, you might
want to use the menus sample program to more fully explore the stack, and to test the
TCP and UDP modules. The sample programs are described in detail in Appendix C
Sample Applications.
3-20 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 2
TCP/IP API Functions

This chapter describes the functions the user must provide to port the ARM TCP/IP
stack. Refer to the code provided with the software for examples. It contains the
following sections:
• *** Do not use an ItemizedList’s Mark attribute ***

User-provided TCP and IP functions on page 2-2
• Network interfaces on page 2-14.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-1

TCP/IP API Functions
2.1 User-provided TCP and IP functions
This section describes the TCP and IP functions that you must implement as part of
porting the ARM TCP/IP stack. A description of how to use the function is given in each
case.

In the sample package, these functions are either mapped directly to system calls by way
of macros in ipport.h, or they are implemented in ipport.c, tcpport.c, or in files in the
\armthumb, \integrator and \misclib directories. Many of these implementations map
directly onto the system to which you are porting. Others need extensive modification
or complete rewrites.

Refer to Chapter 3 TCP/IP Porting for the complete TCP/IP porting procedure.

The functions are as follows:
• cksum() on page 2-3
• dprintf() and initmsg() on page 2-4
• dtrap() on page 2-5
• ENTER_CRIT_SECTION() and EXIT_CRIT_SECTION() on page 2-6
• LOCK_NET_RESOURCE() and UNLOCK_NET_RESOURCE() on page 2-7
• npalloc() on page 2-8
• npfree() on page 2-9
• panic() on page 2-10
• prep_ifaces() on page 2-11
• tcp_sleep() on page 2-12
• tcp_wakeup() on page 2-12.
2-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
1.0.1 cksum()

This function returns a 16-bit Internet checksum of the buffer.

The algorithm for this is described in RFC 1071.

Syntax

unsigned short cksum(unsigned short *buffer, unsigned word_count)

where:

buffer Is the pointer to the buffer to checksum.

word_count Is the number of 16-bit words in the buffer.

Return value

The cksum function returns the 16-bit checksum.

Usage

Both C language and ARM assembly language versions of this function are provided
with the sample package. The C version is in \inet\ccksum.c and the assembler version
is in \armthumb\cksum.s. You must include only one of these files in your project.

The C version is included to provide an insight into what is going on in the assembler
versions. A significant amount of TCP/IP stack processor time is spent in the cksum()
function, so the optimized assembler versions must be used.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-3

TCP/IP API Functions
1.0.2 dprintf() and initmsg()

Both dprintf() and initmsg() are functionally the same as printf(). Both are called by
the stack code to inform the programmer or end user of system status. The initmsg()
function prints normal status messages at initialization time and dprintf() prints error
and warning messages during runtime.

Syntax

void dprintf(char *fmt, …)

void initmsg(char *fmt, …)

where:

fmt Is a format string like printf().

… Is an argument list, as described by fmt.

Return value

None.

Usage

You can either define these functions to use printf() in ipport.h or you can write your
own implementation. See the sample code in \misclib\ttyio.c for a sample
implementation.

The ttyio.c implementation of dprintf() uses of the function dputchar() to perform its
output. By default, dputchar() is implemented as part of the UART driver, to allow
debug output to be sent to a serial terminal. If you have other debug channels, for
example a video card, then debug may be redirected by recoding dputchar().

See also the detailed description in Debugging aids on page 3-6.
2-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
1.0.3 dtrap()

This function can enter a debugger when it is called.

Syntax

void dtrap(void)

Return value

None.

Usage

See the detailed description in Debugging aids on page 3-6.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-5

TCP/IP API Functions
1.0.4 ENTER_CRIT_SECTION() and EXIT_CRIT_SECTION()

These two functions protect a sequence of code that must be allowed to complete
without interruption (see Implementing pre-emption and protection on page 3-16).

Syntax

void ENTER_CRIT_SECTION(void *ptr)

void EXIT_CRIT_SECTION(void *ptr)

where:

ptr Refers to a memory location specific to this critical section. The ptr
parameter might be used by your function to identify which critical
section is being entered and released, and to confirm that nested critical
sections are exited in the correct order.

Return value

None.

Usage

Typically these functions disable and re-enable interrupts. On UNIX-like systems, they
can be mapped to the spl() primitive. Examples for the Integrator/AP are provided in
the sample code.

Refer to The critical section method on page 3-16 for more information on critical
sections.
2-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
1.0.5 LOCK_NET_RESOURCE() and UNLOCK_NET_RESOURCE()

These two functions are used by the system to preserve mutual exclusion on important
data structures in much the same way as the ENTER_CRIT_SECTION() and
EXIT_CRIT_SECTION() functions described above. Resource locking is required by some
RTOS implementations in order to guarantee minimum latency for time critical tasks.
If you are porting ARM TCP/IP to such an environment, you must map
LOCK_NET_RESOURCE() and UNLOCK_NET_RESOURCE() onto the appropriate calls for your
RTOS.

Syntax

void LOCK_NET_RESOURCE(int resourceid)

void UNLOCK_NET_RESOURCE(int resourceid)

where:

resourceid Is the system resource identifier to be locked. Three such
identifiers are required by the TCP/IP stack:
NET_RESID Protects the majority of the data structures

on the TCP/IP stack.
RXQ_RESID Protects the received packet queue data

structure.
FREEQ_RESID Protects the free packet queue data structure.
These must be #defined in ipport.h and mapped onto suitable
resource identifiers for your operating system.

Return value

None.

Usage

The LOCK_NET_RESOURCE() function must block until the resource identified by
resourceid is available. When the resource lock is available, LOCK_NET_RESOURCE() must
lock it and return. While waiting for the lock to become available, the task scheduler
must be allowed to run other tasks.

Testing and setting the lock must be an atomic operation to prevent two tasks from
believing that they have both locked the same resource. If you are using resource
locking implemented within an RTOS, this has already been done for you. Otherwise,
this is usually implemented by turning off all interrupts while the test and set operations
are performed.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-7

TCP/IP API Functions
The UNLOCK_NET_RESOURCE() function must unlock the resource identified by resourceid
and therefore allow any tasks waiting for this resource to continue execution. Refer to
Pre-emption and protection on page 3-6 for more information.

2.1.1 npalloc()

This function allocates the dynamic memory for the IP stack. The syntax for this
function is exactly the same as the standard C library call, malloc(), except that memory
returned by npalloc() is assumed to be pre-initialized to all zeros. In this respect
npalloc() is like calloc().

Syntax

void *npalloc(unsigned size)

where:

size Is the size in bytes of the memory to be allocated.

Return value

Returns a pointer to the block allocated, or NULL if no memory is available.

Usage

If your embedded system already supports standard calloc() calls, add the following
line to ipport.h:

#define npalloc(size) calloc(1,size)

If your system does not support calloc(), you must implement it. A description of how
this function works and sample code is available in The C Programming Language.

The great majority of the calls to npalloc() are made at initialization time. Only the
UDP and TCP layers require these calls during runtime. Some ports with severe
memory shortages have modified these layers to use pre-allocated blocks of static
memory rather than implementing fully functional npalloc() and npfree() functions,
but this invariably involves more work and puts limits on the number of simultaneous
connections that can be supported.

You may also want to add debugging facilities in order to help detect any memory leaks
within the system. A sample implementation of a simple debugging npalloc() is in
\misclib\memman.c.
2-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
2.1.2 npfree()

This function frees dynamic memory for the IP stack. The syntax for this function is
exactly the same as the standard C library call, free().

Syntax

void npfree(void *ptr)

where:

ptr Points to a block of memory that was previously allocated by npalloc().

Return value

None.

Usage

If your embedded system already supports standard free() calls, add the following line
to ipport.h:

#define npfree(ptr) free(ptr)

If your system does not support free(), you must implement it. See The C Programming
Language for a description.

You might want to add some debugging facilities in order to help detect memory leaks
within the system. A sample implementation of a simple debugging npfree() is in
\misclib\memman.c.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-9

TCP/IP API Functions
1.2.6 panic()

This function is called if the stack detects a fatal system error.

Syntax

void panic(char *msg)

where:

msg Is a short message describing the fault.

Return value

Generally there is no return from this function. However, it is sometimes useful to allow
a return under the control of a debugger.

Usage

The task performed by this function varies with the implementation. In a testing or
development environment, it can print messages, start debuggers, or perform other
debugging tasks. The system designer must decide what action is taken in an embedded
implementation. One possibility is to restart (warm boot) the system. It is recommended
that you do not continue execution after panic() has been called.
2-10 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
1.2.7 prep_ifaces()

This call prepares the nets[] structures for the network interfaces used by this port.

Syntax

int prep_ifaces(int ifIndex)

where:

ifIndex is the index to be used for the first nets[] structure.

Return value

Returns an index to the nets[] structure for the next interface to be set up. If no
interfaces were set up, the returned value is the same as the passed value.

Usage

The integer passed is the nets[] index of the first interface to set up. This is always 0
in standard ports, but nets[0] has a dedicated use in some customized versions. If you
are setting up multiple interfaces, you must set nets[X] for each interface. If the
interfaces are similar, using a for loop to set them may be appropriate.

The appropriate nets[] members must be filled in. See Network interfaces on
page 2-14 for full details. A sample implementation of prep_ifaces() can be found in
\inet\ipport.c.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-11

TCP/IP API Functions
2.1.3 tcp_sleep()

This function is called from the TCP code when a TCP operation is blocked by a
temporary lack of resources, typically a lack of free buffers.

Syntax

void tcp_sleep(void *ptr)

where:

ptr Is the memory address of some structure relevant to the current task. The
tcp_wakeup() function is called from elsewhere in the stack to restart this
task. The tcp_wakeup() function is called with the same memory address.

Return value

None.

Usage

This function must allow the tasking system to attempt to run each task at least once and
then return. The calling code then retests the condition and:
• proceeds
• times out
• calls tcp_sleep() again.

See the detailed description of this in TCP on page 3-15.

1.3.8 tcp_wakeup()

This function is called by the TCP/IP code when an incoming packet or timeout causes
a previously blocked process to become runable.

Syntax

void tcp_wakeup(void *ptr)

where:

ptr Is the memory address that the sleeping process passed to tcp_sleep().
All tasks that called tcp_sleep() with this address is woken.
2-12 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
Return value

None.

Usage

This function must cause all processes that were sleeping because of a call to
tcp_sleep() with the same value for ptr to be marked as runable. In a superloop system,
tcp_wakeup() performs no action because tcp_sleep() does not block. Instead,
tcp_sleep() calls the nonportable superloop function, tk_yield(). tcp_wakeup() can
be called even if no process is currently blocked in tcp_sleep().
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-13

TCP/IP API Functions
2.2 Network interfaces
Network interfaces are described to the ARM stack by the NET structure in the file
\inet\net.h. One of these structures is statically allocated for each MAC link the stack
uses (see the definition of MAXNETS in ipport.h). You must write the functions listed
below for the hardware used in your target system.

The network interface functions are:

n_close() Net close function.

n_init() Net initialization function.

n_reg_type() Register a MAC type, for example, 0x0800 for IP.

n_stats() Print net statistics.

raw_send() Send data on media.

pkt_send() Send data on media.

You must also provide a packet receive mechanism that takes received packets and
places them in the rcvdq queue. The receive function obtains its data buffers as PACKET
structures obtained by calls to pk_alloc().

The remainder of this section describes both the NET structure and the functions in
detail. The functions are as follows:
• n_close() on page 2-17
• n_init() on page 2-18
• n_reg_type() on page 2-20
• n_stats() on page 2-21
• pkt_send() on page 2-22
• raw_send() on page 2-25.
2-14 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
2.0.9 The NET structure

The NET structure is defined in \inet\net.h. An array of NET structures describes the
network interfaces that the IP stack is to use. Each NET structure describes one such
interface, as in Example 2-1.

Example 2-1

/* The NET struct has all the actual interface characteristics that are visible */
/* at the internet level and has pointers to the interface handling functions. */

struct net {
int (*n_init)(int); /* net initialization function */

/* MAC drivers can set one of the next two for */
/* sending; other should be left NULL */

int (*raw_send)(struct net *, char *, unsigned); /* put raw data on media */
int (*pkt_send)(struct netbuf *); /* send packet on media */
int (*n_close)(int); /* net close function */
int (*n_reg_type)(unshort, struct net *); /* register a MAC type, */

/* 0x0800 for IP */
void (*n_stats)(int iface); /* per device-type (ODI, pktdrv) statistics dump */
int n_lnh; /* net’s local net header size*/
int n_mtu; /* net’s largest legal buffer size */
ip_addr n_ipaddr; /* interface’s internet address */
int n_snbits ; /* number of subnet bits */
ip_addr snmask; /* interface’s subnet mask */
ip_addr n_defgw; /* the default gateway for this net */
ip_addr n_netbr; /* our network broadcast address */
ip_addr n_netbr42; /* our (4.2BSD) network broadcast */
ip_addr n_subnetbr; /* our subnetwork broadcast address */
unsigned n_hal; /* Hardware address length */
unsigned n_type; /* interface type ETHERNET, PPP, SLIP,... */
char * n_haddr; /* pointer to hardware address, size=n_hal */
IFMIB n_mib; /* pointer to interface(if) mib structure */
void * n_local; /* pointer to custom info, null if unused */
};

typedef struct net *NET;

The NET structure contains:

• Six pointers to functions within the interface device driver. The functions are
described in detail throughout this section.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-15

TCP/IP API Functions
• Information about the interface device driver. The four media information values
(described below) must be initialized either when your network interface is
prepared or when its n_init() function is called.
n_lnh Describes the length (in bytes) of the local network header. This is the

amount of space that is reserved by the IP layer at the front of a packet
buffer so the device driver layer can insert any addressing information
required by the networking hardware. This is 16 for Ethernet.

n_mtu Contains the size of the largest packet that can be transmitted by the
network hardware. For Ethernet, this is 1500 + n_lnh.

n_hal Contains the length of a hardware address (MAC address) for the
network hardware. This is 6 for Ethernet.

n_haddr This points to the hardware address for this interface.

• IP addressing information. This comprises the address, subnet mask, broadcast
address, and default gateway. These values must be initialized either by way of
DHCP or from NVRAM.

• MIB information. This is held within a MIB structure (defined in \inet\net.h),
which is pointed to by the n_mib entry of the NET structure. The MIB information
is used only if you have an SNMP agent running with your system. Values for the
MIB structure must be initialized either when the interface is first prepared or
when the n_init() function is called.

• Driver-specific local information. This is a generic void * pointer that can be
assigned any value that you choose. You can also use it to point to a structure that
gives more detail on your interface hardware, such as port addresses.

Note
 In systems based on ARM processors, word data must be word aligned. This means that
you must take care when coding Ethernet device drivers.

An Ethernet header contains 14 bytes of information. The sample Ethernet driver (in
\integrator\i8255x.c) declares that this header is actually 16 bytes long in order to
achieve 32-bit alignment of the other data structures within a packet, such as the IP
header.

Specifying n_lnh to be 16 requires that the Ethernet driver processes incoming packets
specially. It copies the first 14 bytes (the Ethernet header) into the packet data buffer,
then skips two bytes in the buffer before copying in the remaining bytes from the
Ethernet hardware. This allows both the Ethernet header and the IP or ARP header that
follows it in the packet to be accessed starting on a 32-bit boundary.
2-16 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
2.2.1 n_close()

This function performs the tasks required to shutdown the device and its associated
driver software prior to exiting the application. Any resources allocated to
accommodate multiple packet types, for example, 0x0800 for IP and 0x0806 for ARP,
must be released here. On embedded systems that start their devices at power up and do
not shut them down, this function is not required.

Syntax

int n_close(int if_number)

where:

if_number is an index into the nets[] array of the interface to be closed.

Return value

Returns one of the following:

0 If successful.

ENP_Code If not successful (see ENP_ error codes on page A-2).
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-17

TCP/IP API Functions
2.2.2 n_init()

This function prepares the device to send and receive packets. It is called during system
startup after prep_ifaces() has been called, and before any of the other network
interface functions are invoked.

Syntax

int n_init(int if_number)

where:

if_number Is an index into the nets[] array of the interface to be initialized.

Return value

Returns one of the following:

0 If successful.

ENP_Code If not successful (see ENP_ error codes on page A-2).

Usage

When this function returns, the device must be set up as follows:

• the network hardware must be ready to send and receive packets

• all required fields of the nets[] structure must be filled in

• the MIB-II structure of the interface must be filled in, as shown in Example 2-1
on page 2-19

• IP addressing information must be set before this function returns unless DHCP
or BOOTP is to be used (see Specifying IP addresses on page 3-18).

This function typically includes hardware operations, such as initializing the device and
enabling interrupts. It does not include setting protocol types. This is handled by
n_reg_type().

On returning from this function, it is safe for your hardware interrupt or receive
functions to start queuing received packets in the rvcdq queue. Packets that are not IP
or ARP are discarded by the stack.
2-18 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
The nets[] structure must be completely filled in when this function returns. The
structure is defined in \inet\net.h. The work of filling this structure is shared between
prep_ifaces() and n_init(). If all your nets[] structure setup was done in
prep_ifaces() (see prep_ifaces() on page 2-11), there might be no additional work.

Example 2-1 shows sample code for setting up the MIB structure for a 10MB Ethernet
interface. The n_mib field points to a structure that has already been statically allocated
by the calling code. See RFC 1213 for detailed descriptions of the MIB fields.

Most of the MIB fields are used only for debugging and statistical information and are
not critical unless your device is managed by SNMP.

You must make sure that nets[]->n_haddr points to a static buffer containing the MAC
address before n_init() returns. The size of this address is determined by the media (6
bytes for Ethernet) and should be set in the nets[] structure member n_hal (hardware
address length). You must also ensure that nets[]->n_type is set to the media type, for
example, Ethernet.

Example 2-1

np->n_lnh = ETHHDR_SIZE; /* 16 on ARM for alignment*/
np->n_mtu = 1500 + ETHHDR_SIZE; /* 1516 on ARM */
np->n_hal = 6;
np->n_init = i8255x_init;
np->pkt_send = i8255x_pkt_send;
np->n_close = raw_send
;
np->n_stats = NULL;

np->n_local = (void *)dev;
#ifdef NET_STATS

np->n_mib->ifOperStatus = 2; /* interface is down */
np->n_mib->ifAdminStatus = 2; /* interface is down */
np->n_mib->ifLastChange = cticks;
np->n_mib->ifDescr = (u_char *)i8255x_chip[revision];
np->n_mib->ifIndex = i8255x_next_net;
np->n_mib->ifMtu = ET_MAXLEN;
np->n_mib->ifSpeed = 10000000;

#endif
np->n_haddr = dev->mac_address;
np->n_type = ETHERNET;

See the sample Ethernet driver interface in \integrator\i8255x.c.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-19

TCP/IP API Functions
2.2.3 n_reg_type()

This function registers with lower level drivers to receive a MAC type, such as 0x0800
for IP and 0x0806 for ARP.

Syntax

int n_reg_type(unsigned short type, NET net)

where:

type Is the MAC type to be registered.

net Is a pointer to the NET structure corresponding to this interface.

Return value

Returns one of the following:

0 If successful.

ENP_Code If not successful (see ENP_ error codes on page A-2).

Usage

On most embedded systems with Ethernet, the ARM stack does not share the hardware
with other network stacks, so no action is required. The stack gets all the packets and
n_reg_type() can return an OK status without doing anything. However, you must make
sure that all received packets are passed to the stack. On some driver subsystems, a type
must be registered with the driver. On other drivers, an intermediate layer must be
notified that the application is interested in the packets.

On PPP links, PPP processes the packets, so you do not have to modify n_reg_type().
2-20 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
2.2.4 n_stats()

This is an optional function that you can use to display per-net statistics. You can also
use it to log such statistics or return a pointer to a status block, depending on your
requirements.

Syntax

void *n_stats(void *pio, int if_number)

where:

pio Is a pointer to a GenericIO structure into which debug information is to
be written.

if_number Is an index into the nets[] array of the interface for which statistics are
to be dumped.

Return value

Optional.

Usage

This function is only used for debugging purposes.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-21

TCP/IP API Functions
2.2.5 pkt_send()

This function either sends the data in the passed PACKET structure or queues the PACKET
structure for later transmission. If the MAC hardware is idle, the actual transmission of
the packet must be started by this function, otherwise it must be scheduled to be sent
later, usually by an End Of Transmission (EOT) interrupt from the hardware.

MAC headers for media, such as Ethernet or Token Ring, are placed at the head of the
buffer passed by the calling function. Some drivers might have to access, strip, or
modify the MAC header if they are layered on top of complex lower layers.

Syntax

int pkt_send(PACKET pkt)

where:

pkt Is the PACKET structure containing the frame to send.

Return value

Returns one of the following:

0 If successful.

ENP_code If not successful (see ENP_ error codes on page A-2).

Usage

The PACKET structure is defined in the file \inet\netbuf.h. All the information needed to
send the packet is filled in before this call is made. The important fields are:

pkt->nb_prot Pointer to data to send.

pkt->nb_plen Length of data to send.

pkt->net nets[] structure for posting statistics.

The hardware driver must send nb_plen bytes, starting at nb_prot. When all the bytes are
sent, the PACKET structure must be returned to the free queue by a call to pk_free(), which
can be called at interrupt time. Do not free the packet before it has been successfully
sent by the hardware, because it can then be reused (and its buffer altered) by the IP
stack.
2-22 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
The simplest way to implement this function is to block (busy-wait) until the data is
sent. This allows fast prototyping of new drivers, but generally affects performance.
The usual design is to:

1. Put the packet in an awaiting_send queue.

2. Check to see if the hardware is idle.

3. Call a send_next_from_q() function to dequeue the packet at the head of the send
queue.

4. Begin sending the packet.

The EOT interrupt frees the packet that has just been sent and calls the
send_next_from_q() function again. Moving all the PACKETS through the awaiting_send
queue ensures that they are sent in FIFO order. This significantly improves TCP and
application performance.

If your hardware (or a lower layer driver) does not have an EOT interrupt or any
analogous mechanism, you may need to use the raw_send() alternative to this function.

Slow devices, such as serial links and hardware that DMAs data directly out of
predefined memory areas, can copy the passed buffer into driver-managed memory
buffers, free the PACKET, and return immediately. However, these devices must be
prepared to be called with more packets before transmission is complete.

Interface transmit functions must also maintain system statistics about packet
transmissions. These are kept in the n_mib structure attached to each nets[] entry. Exact
definitions of all these counters are available in RFC 1213. At a minimum, you should
maintain packet byte and error counts, because these can help you debug your product
during development and isolate configuration problems in the field. It is recommended
that you perform statistics keeping at EOT time, but statistics can be approximated in
this call. Example 2-1 shows a generic example.

Example 2-1

/* compile statistics about completed transmit */
eth = (struct ethhdr *)pkt->nb_prot; /* get ether header */
ifc = pkt->net;
if(send_status==SUCCESSFUL) /* send_status set by hardware EOT */
{

if(eth->e_dst[0] & 0x01) /* see if multicast bit is on */
ifc->n_mib->ifOutNUcastPkts++;

else
ifc->n_mib->ifOutUcastPkts++;
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-23

TCP/IP API Functions
ifc->n_mib->ifOutOctets +=pkt->nb_plen;
}
else /* error sending packet */
{

ifc->n_mib->ifOutErrors++;
}

Because this function may not wait for the packet transmission to complete, depending
on your implementation, you can return a 0 if the packet has been successfully queued
for send, or the send is in progress. Error (nonzero) codes should only be returned if a
distinct hardware failure is detected. There is no mechanism to report errors detected in
previous packets or during the EOT interrupt.
2-24 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

TCP/IP API Functions
2.2.6 raw_send()

This function transmits the data on the device corresponding to the nets[] entry passed
to it. Any MAC header required is placed at the head of the buffer passed by the calling
function. This function must not return until it has finished processing the data in the
passed buffer, because the buffer may be reused (corrupting the data) immediately upon
return.

Note
 The pkt_send() function (pkt_send() on page 2-22) must be used instead of this function
if there is an EOT interrupt available on the hardware. This function is designed for old
packet driver type drivers that do not support EOT and might not be needed otherwise.
The function you are not using (either pkt_send() or raw_send()) must be set to NULL
in the nets[] structure.

Syntax

int raw_send(NET net, char *data, unsigned data_bytes)

where:

net Is the net structure on which to send it.

data Is a pointer to the data buffer to send.

data_bytes Is the number of bytes to send (length of data).

Return value

Returns one of the following:

0 If successful.

ENP_Code If not successful (see ENP_ error codes on page A-2).

Usage

Slow devices (such as serial links) and hardware that DMAs data directly out of
predefined memory areas can copy the passed buffer into driver managed memory
buffers and return immediately. However, these devices must be prepared to be called
with more data before transmission is complete.

Interface transmit functions must also maintain system statistics about packet
transmissions. These are kept in the n_mib structure attached to each nets[] entry. Exact
definitions of all these counters are available in RFC 1213.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 2-25

TCP/IP API Functions
At a minimum, you must maintain packet byte and error counts, because these can aid
greatly with debugging your product during development and isolating configuration
problems in the field. It is recommended that you perform statistics keeping at EOT
time, but these can be approximated in this call. Example 2-1 is a generic example.

Example 2-1

/* compile statistics about completed transmit */
eth = (struct ethhdr *)data; /* get ether header */
if(send_status == SUCCESSFUL) /* send_status read from hardware */
{

if(eth->e_dst[0] & 0x01) /* see if multicast bit is on */
net->n_mib->ifOutNUcastPkts++;

else
net->n_mib->ifOutUcastPkts++;

net_>n_mib->ifOutOctets +=databytes;
}
else /* error sending packet*/
{

net->n_mib->ifOutErrors++;
}

2-26 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 3
DHCP Client Functions

DHCP is used for configuring a network interface using information stored on a remote
server. This chapter describes the function calls used to request configuration
information for an interface. It contains the following section:
• DHCP client functions on page 3-2.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-1

DHCP Client Functions
3.1 DHCP client functions

All DHCP client functions are found in inet\dhcpclnt.c. Many of them also require
inet\dhcputil.c to be added to your project. The DHCP client functions are:
• dhc_init()
• dhc_discover()
• dhc_set_callback() on page 3-3
• dhc_halt() on page 3-4
• dhc_second() on page 3-4.

3.1.1 dhc_init()

This function initializes the DHCP client. It must be called before attempting to use
DHCP to configure any network interfaces. This function attempts to open a UDP
connection to listen for incoming replies. After DHCP has been initialized, the
application must call dhc_second() one time every second.

Syntax

int dhcinit(void)

Return value

Returns one of the following:

0 If successful.

ENP_ code If not successful (see ENP_ error codes on page A-2).

3.1.2 dhc_discover()

This function begins the process of configuring a network interface using DHCP. The
process may take several seconds, and the DHCP client will keep retrying if the service
does not respond. You must abandon the attempt using dhc_halt() (see dhc_halt() on
page 3-4) if the interface is not configured within a reasonable period (such as 30
seconds).

Syntax

int dhc_discover(int net)

where:

net Is the index of the network interface to be configured.
3-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

DHCP Client Functions
Return value

Returns one of the following:

0 If successful.

ENP_ code If not successful (see ENP_ error codes on page A-2).

Usage

A simple way to check for completion is to set the IP address for the interface to 0.0.0.0
before starting, and waiting until it becomes nonzero, as illustrated in Example 3-1.

Example 3-1

#ifdef DHCP_CLIENT
dhc_init();
for(i = 0; i < MAXNETS; i++)
{

dprintf("Using DHCP to obtain IP address information for
interface %d\n", i);

nets[i]->n_ipaddr = 0L;
dhc_discover(i);

}
do {

tk_yield();
e = 0;
for(i = 0; i < MAXNETS; i++)
{

if (nets[i]->n_ipaddr)
e++;

}
} while (e != MAXNETS);
dprintf("All interfaces are now configured.\n");

#endif

As an alternative to polling the IP address, you can install a callback to signal
completion. See dhc_set_callback() for details.

3.1.3 dhc_set_callback()

This function installs a callback to be used to signal that the configuration of an
interface is complete. This allows a multi-threaded RTOS to use DHCP without the
overhead of polling loops.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-3

DHCP Client Functions
Syntax

void dhc_set_callback(int net, int(*routine)(int, int))

where:

net Is the index of the network interface of interest.

routine Is the function to call when configuration is complete. This receives the
index of the interface and the current DHCP state of the interface.

Return value

None.

Usage

This function is used to inform the application that the network interface is now
available for use. It typically does this by setting a volatile flag, or by signaling the
RTOS thread(s) waiting for the interface. The callback routine is called several times
per interface, each time with an updated state. The interface can be used when the state
is DHCS_BOUND.

3.1.4 dhc_halt()

This function stops all DHCP activity on a network interface.

Syntax

void dhc_halt(int net)

where:

net Is the index of the network interface on which to abandon DHCP.

Return value

None.

3.1.5 dhc_second()

This function must be called by the application exactly once every second. It is used to
handle retry timeouts and lease expiry.
3-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

DHCP Client Functions
Syntax

void dhc_second(void)

Return value

None.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 3-5

DHCP Client Functions
3-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 4
Sockets

This chapter documents the sockets layer. Sockets are an API, primarily used for TCP
programming. It provides a functional reference for the socket subset supported by the
ARM TCP/IP stack. For more general information on sockets programming, many
books and tutorials are available, for example, Internetworking with TCP/IP.

This chapter contains the following sections:
• ARM implementation of sockets on page 4-2
• Socket API reference on page 4-3.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-1

Sockets
4.1 ARM implementation of sockets

In the ARM implementation of sockets, function names start with t_, for example,
socket() is t_socket(). The names have been changed so that existing embedded
systems that use standard socket functions do not have a conflict at link time. By adding
the appropriate definitions to your tcpport.h file, you can continue to use the original
socket function names in your code.

Also in the ARM implementation, the UNIX errno mechanism has been replaced by an
error holder attached to each socket structure. The error holder is assigned a value when
an error occurs. When a socket call indicates failure, you can examine this member or
call t_errno(socket) to find out what went wrong. Possible values for sockets errors are
listed in tcp\nptcp.h. These errors are a subset of the standard Berkeley sockets errors
and are documented in Socket error codes on page A-4.
4-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
4.2 Socket API reference

This section contains an alphabetical list of the socket functions supported by ARM
TCP/IP. Most of these are defined in tcp\sockcall.c:
• t_accept() on page 4-4
• t_bind() on page 4-5
• t_connect() on page 4-6
• t_errno() on page 4-7
• t_getpeername() on page 4-8
• t_getsockname() on page 4-9
• t_getsockopt() on page 4-10
• t_listen() on page 4-13
• t_recv() and t_recvfrom() on page 4-14
• t_select() on page 4-16
• t_send() and t_sendto() on page 4-18
• t_setsockopt() on page 4-19
• t_shutdown() on page 4-21
• t_socket() on page 4-22
• t_socketclose() on page 4-24.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-3

Sockets
4.2.1 t_accept()

This function is used to accept a connection from a remote host.

Syntax

long t_accept(long socket, struct sockaddr *addr)

where:

socket Is a socket created with t_socket(), bound to an address with
t_bind(), and is waiting for connections after a t_listen().

addr Is the returned IP address and port number of the connecting entity
(as known to the communications layer).

Return value

Returns one of the following:

descriptor A descriptor for the accepted socket if successful.

–1 If not successful. On failure, the t_accept() function sets an
internal socket variable, errno, to one of the errors listed in
ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).

Usage

The t_accept() function is used with connection-based socket types, currently with
SOCK_STREAM.

This function extracts the first connection on the queue of pending connections, creates
a new socket with the same properties as socket, and allocates a new socket descriptor
for the socket.

If no pending connections are present on the queue and the socket is not marked as
nonblocking, t_accept() blocks the caller until a connection is present. If the socket is
marked as nonblocking and no pending connections are present on the queue,
t_accept() returns -1 and sets the socket errno to EWOULDBLOCK.

The accepted socket is used to read data to and write data from the socket that connected
to this one. It is not used to accept more connections. The original socket, socket,
remains open for accepting further connections.

It is possible to t_select() a socket for the purposes of doing a t_accept() by selecting
it for read.
4-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
4.2.2 t_bind()

This function assigns a name to an unnamed socket. When a socket is created with
t_socket(), it exists in a name space (address family) but has no name assigned.

Syntax

int t_bind(long socket, struct sockaddr *name)

where:

socket Is the identifier of the unnamed socket to be bound.

name Is the IP address and port number to be assigned to socket.

Return value

Returns one of the following:

0 If successful.

–1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-5

Sockets
4.2.3 t_connect()

This function creates a socket connection.

Syntax

extern int t_connect(long socket, struct sockaddr *name)

where:

socket Is created by t_socket(). It is bound to an IP address and port number
using t_bind().
If the type, as determined when the socket was created using t_socket(),
is SOCK_DGRAM, t_connect() specifies the peer with which the socket is to
be associated. This is the address to which datagrams are sent and is the
only address from which datagrams are received.
If the type is SOCK_STREAM, t_connect() attempts to make a connection to
another socket.

name Is an address in the communications space of the remote socket. Each
communications space interprets the name parameter in its own way.

Return value

Returns one of the following:

0 If successful.

-1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).

Usage

Generally, SOCK_STREAM sockets can successfully use t_connect() only once. SOCK_DGRAM
sockets can use t_connect() multiple times to change their association. Datagram
sockets may dissolve the association by connecting to an invalid address, such as a null
address.
4-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
4.2.4 t_errno()

This function is used to retrieve the current value of the error flag associated with a
socket. The error status is not reset by this call.

Syntax

int t_errno (long s)

where:

s Is a socket descriptor.

Return value

The current error value associated with this socket (see Socket error codes on
page A-4).
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-7

Sockets
4.2.5 t_getpeername()

This function returns the IP addressing information of the connected host.

Syntax

int t_getpeername(long socket, struct sockaddr *name)

where:

socket Is the socket on which addressing information for the remote, connected
host is returned.

name Is the returned IP address and port information.

Return value

Returns one of the following:

0 If successful.

-1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).
4-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
4.2.6 t_getsockname()

This function returns the current name for the specified socket.

Syntax

int t_getsockname(long socket, struct sockaddr *name)

where:

socket Is the identifier of the socket to be named.

name Is the name of the specified socket. On return from t_getsocketname(),
this parameter contains IP address and port number information for
socket.

Return value

Returns one of the following:

0 If successful.

–1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-9

Sockets
4.2.7 t_getsockopt()

This function returns the options associated with a socket.

Syntax

int t_getsockopt(long socket, int optname, void *optval)

where:

socket Is the socket for which the option values are returned.

optname Is the name of the option to be examined. The options are discussed in
more detail below.

optval Is a pointer to a location where the value of the requested option is to be
stored. If no option value is to be returned, optval can be supplied as
NULL. Other than SO_LINGER, most socket-level options take a pointer to
an int parameter for optval.

Return value

Returns one of the following:

0 If successful.

–1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).

Options

The following options are available:

SO_BIO This returns the value 1 if the socket is currently set to be blocking.

SO_BROADCAST

If optval is nonzero, this indicates that datagrams may be broadcast on
this socket.

SO_DONTROUTE

If optval is nonzero, this indicates that outgoing messages must bypass
the standard routing facilities. Instead, messages are directed to the
appropriate network interface according to the network portion of the
destination address.
4-10 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
SO_ERROR This returns any pending error on the socket and clears the error status. It
can be used to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

SO_KEEPALIVE

If optval is nonzero, this indicates that periodic transmission of messages
on a connected socket is enabled.

SO_LINGER

This indicates the action taken when unsent messages are queued on
socket and a t_socketclose() is performed. If the socket promises
reliable delivery of data and SO_LINGER is set, the system blocks the
process on the t_socketclose() attempt until it is able to transmit the data
or until it decides it is unable to deliver the information. A timeout period,
known as the linger interval, is specified in the t_setsockopt() call when
SO_LINGER is requested.
If SO_LINGER is disabled and a t_socketclose() is issued, the system
processes the close in a manner that allows the process to continue as
quickly as possible.
SO_LINGER uses a pointer to a struct linger parameter, defined in
socket.h, that specifies the desired state of the option and the linger
interval.

SO_MAXMSG This returns the TCP maximum segment size (TCP_MSS) as defined in
tcpport.h.

SO_MYADDR This returns the IP address of the primary network interface for this host.

SO_NBIO, SO_NONBLOCK

These return the value 1 if the socket is currently set to be nonblocking.

SO_OOBINLINE

If optval is nonzero, this option indicates that out-of-band data is placed
in the normal data input queue as received. It is then accessible through
t_recv() calls without the MSG_OOB flag. This is valid with protocols that
support out-of-band data.

SO_REUSEADDR
If optval is nonzero, SO_REUSADDR indicates that the rules used in
validating addresses supplied in a t_bind() call allow reuse of local
addresses.

SO_RXDATA This returns the number of characters currently available for reading from
the socket.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-11

Sockets
SO_SNDBUF and SO_RCVBUF
These return the buffer sizes allocated for output and input buffers,
respectively.

SO_TYPE This returns the type of the socket, such as SOCK_STREAM. It is useful for
servers that inherit sockets on startup.
4-12 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
4.2.8 t_listen()

This function tells the socket library that socket is going to be used for accepting
connections from other hosts.

Syntax

extern int t_listen(long socket, int backlog)

where:

socket Is the socket used for accepting connections.

backlog Defines the maximum length to which the queue of pending connections
can grow. If a connection request arrives when the queue is full, the client
receives the error message ECONNREFUSED.

Return value

Returns one of the following:

0 If successful.

–1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).

Usage

To accept connections:

1. A socket is created with t_socket().

2. A backlog for incoming connections is specified with t_listen().

3. The connections are then accepted with t_accept().

The t_listen() call applies only to SOCK_STREAM sockets.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-13

Sockets
4.2.9 t_recv() and t_recvfrom()

These functions are used to receive messages from another socket.

Syntax

int t_recv(long socket, char *buffer, int length, int flags)

int t_recvfrom(long socket, char *buffer, int length, int flags
, struct sockaddr *from)

where:

socket Is the identifier of the socket from which the messages are received. The
socket is created with t_socket().

buffer Is the received message. If a message is too long to fit in buffer, excess
bytes may be discarded depending on the type of socket from which the
message is received.

length Is the length of buffer in bytes.

flags Is formed by ORing zero or more of the following:
MSG_OOB Reads any out-of-band data present on the socket,

rather than the regular in-band data.
MSG_PEEK Looks at the data present on the socket. The data is

returned, but not consumed, so a subsequent receive
operation will see the same data.

from Is either NULL, or points to a struct sockaddr that will be filled in by
t_recvfrom() with the source address of the message.

Return value

Returns one of the following:

number The number of bytes received, if successful.

–1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).
4-14 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
Usage

You can only use the t_recv() function on a connected socket (see t_connect()). The
t_recvfrom() function can be used to receive data on a socket, whether it is in a
connected state or not.

If no messages are available at the socket and the socket is blocking, the receive call
waits for a message to arrive. If the socket is nonblocking (see t_setsockopt() on
page 4-19), –1 is returned, with the external socket errno set to EWOULDBLOCK.

You can use the t_select() function to determine when more data arrives.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-15

Sockets
4.2.10 t_select()

This function examines the input/output descriptor sets (whose addresses are passed in
readfds, writefds, and exceptfds) to see if some of their descriptors are ready for
reading, ready for writing, or have an exceptional condition pending. On return,
t_select() replaces the given descriptor sets with subsets consisting of the descriptors
that are ready for the requested operation. The total number of ready descriptors in all
the sets is returned.

Syntax

int t_select(fd_set *readfds, fd_set *writefds,
 fd_set *exceptfds, long timeout)

readfds Is the set of socket descriptors to be tested for available data to be read.

writefds Is the set of socket descriptors to be tested for available buffer space for
write operations.

exceptfds Is the set of socket descriptors to be tested for pending exceptional
conditions (if out-of-band data is available to be read).

timeout Is the wait interval in cticks clock ticks. If timeout is neither 0 nor –1, it
specifies the maximum number of clock ticks (at TPS ticks per second) to
wait for the selection to complete. If timeout is zero, t_select() modifies
the descriptor sets to indicate which are ready for the requested operation,
and returns immediately. If timeout is –1, t_select() blocks until at least
one of the requested operations is ready, and there is no timeout.

Return value

Returns one of the following:

+value A positive value indicates the number of ready descriptors in the
descriptor sets.

0 Indicates that the time limit referred to by timeout has expired.

–1 If not successful.
4-16 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
Usage

You can give the parameters readfds, writefds, and exceptfds as NULL pointers if no
descriptors are of interest.

To determine if a call to t_accept() will return immediately, call t_select(), passing the
socket as a member of the readfds set.

Note
 Under rare circumstances, t_select() can indicate that a descriptor is ready for writing
when, in fact, an attempt to write would block. This can happen if system resources
necessary for a write are subsequently exhausted after the select has returned or are
otherwise unavailable. If an application deems it critical that writes to a socket
descriptor do not block, it should set the descriptor for nonblocking input/output using
the SO_NBIO request to t_setsockopt().

The descriptors are stored within the fd_set structures as opaque objects. The macros
below are provided for manipulating such structures.

The behavior of these macros is undefined if an invalid descriptor value is passed.

FD_ZERO FD_ZERO(fd_set *fdset)

This macro initializes a descriptor set fdset to the null set.

FD_SET FD_SET(long fd, fd_set *fdset)

This macro includes a particular socket descriptor fd in fdset.

FD_CLR FD_CLR(long fd, fd_set *fdset)

This macro removes fd from fdset.

FD_ISSET FD_ISSET(long fd, fd_set *fdset)

This macro is nonzero if fd is a member of fdset, and zero otherwise.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-17

Sockets
4.2.11 t_send() and t_sendto()

These functions are used to transmit a message.

Syntax

int t_send(int s, char *msg, int len, int flags)

int t_sendto(int s, char *msg, int len, int flags,
 struct sockaddr *to)

where:
s Is a socket descriptor created with t_socket().
msg Is a pointer to the data to be sent.
len Is the number of bytes to be sent.
flags Are flags that control how the data is to be sent (see below).
to Is the destination to which the data is to be sent.

Return value

Returns one of the following:

number The number of bytes received, if successful.

–1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).

Usage

You can only use the t_send() function when the socket is in a connected state. The
t_sendto() function can be used at any time.

The flags parameter is formed from the bitwise OR of zero or more of the following:

MSG_OOB Sends out-of-band data. Only SOCK_STREAM sockets support
out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the duration of the
operation. It is used only by diagnostic or routing programs.

If the socket does not have enough buffer space available to hold the message being
sent, the t_send() functions block, unless the socket has been placed in nonblocking
input/output mode (see t_setsockopt() on page 4-19).
4-18 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
4.2.12 t_setsockopt()

This function sets the options associated with a socket.

Syntax

int t_setsockopt(long socket, int optname, char *optval)

where:

socket Is the identifier of the socket to be changed.

optname Is the name of the option to be set.

optval Is the value the option will be set to. The parameter should be nonzero to
enable a boolean option, or zero if the option is to be disabled. Most
socket-level options take an int parameter for optval.

Return value

Returns one of the following:

0 If successful.

–1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).

Options

The following options are available:

SO_BIO This sets the socket to blocking mode. Operations on the socket
are blocked until completion.

SO_BROADCAST This boolean value requests permission to send broadcast
datagrams on the socket. Broadcast was a privileged operation in
earlier versions of the system.

SO_CALLBACK This registers a callback function for use with the TCP Zero-Copy
API. See Chapter 6 The TCP Zero-copy API for more information.

SO_DONTROUTE This boolean value indicates that outgoing messages must bypass
the standard routing facilities. Instead, messages are directed to
the appropriate network interface according to the network
portion of the destination address.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-19

Sockets
SO_KEEPALIVE This boolean value enables the periodic transmission of messages
on a connected socket. If the connected party fails to respond to
these messages, the connection is considered broken.

SO_LINGER This option controls the action taken when unsent messages are
queued on socket and a t_socketclose() is performed.
If the socket promises reliable delivery of data and SO_LINGER is
set, the system blocks the process on the t_socketclose() attempt
until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger
interval, is specified in the t_setsockopt() call when SO_LINGER is
requested).
If SO_LINGER is disabled and a t_socketclose() is issued, the
system will process the close in a manner that allows the process
to continue as quickly as possible.
SO_LINGER uses a pointer to a struct linger parameter, defined in
socket.h, that specifies the desired state of the option and the
linger interval.

SO_NBIO This sets the socket to nonblocking mode. If further operations on
the socket cannot complete immediately, they return –1 and set the
socket errno variable to EWOULDBLOCK.

SO_NOBLOCK This boolean value enables or disables blocking mode on the
socket. If optval is set to zero, the socket is in blocking mode. If
optval is set to a nonzero value, the socket is in nonblocking
mode.

SO_OOBINLINE With protocols that support out-of-band data, this boolean option
requests that out-of-band data be placed in the normal data input
queue as received. It will then be accessible with t_recv().

SO_REUSEADDR This boolean value indicates that the rules used in validating
addresses supplied in a t_bind() call must allow reuse of local
addresses.

SO_SNDBUF, SO_RCVBUF

These are options to adjust the normal buffer sizes allocated for
output and input buffers, respectively. The buffer size can be
increased for high-volume connections or can be decreased to
limit the possible backlog of incoming data. The system places an
absolute limit of 16KB on these values.
4-20 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
4.2.13 t_shutdown()

This function causes all or part of a full duplex connection on the socket associated with
socket to be shut down.

Syntax

int t_shutdown(long socket, int how)

where:

socket Is the connection to be shut down.

how Is the method of shut down, specified as follows:
0 Further receives are disallowed
1 Further sends are disallowed
2 Further sends and receives are disallowed.

Return value

Returns one of the following:

0 If successful.

–1 If not successful. The internal socket variable, errno, is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).

ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-21

Sockets
4.2.14 t_socket()

This function creates an endpoint for communication and returns a descriptor.

Syntax

extern long t_socket (int domain, int type, int protocol)

where:

domain Specifies a communications domain within which communication takes
place. It selects the protocol family that should be used. The protocol
family is typically the same as the address family for the addresses
supplied in later operations on the socket. These families are defined in
the include file tcp\socket.h. The only currently understood format is
PF_INET (ARPA Internet protocols).

type Specifies the semantics of communication. Currently allowed types are:
SOCK_STREAM (TCP) Provides sequenced, reliable, two-way

connection-based byte streams. An out-of-band
data transmission mechanism can be supported.

SOCK_DGRAM (UDP) Supports datagrams, connectionless,
unreliable messages of a fixed (typically small)
maximum length.

protocol Is the protocol to use. It must be set to zero for ARM IP.

Return value

Returns one of the following:

descriptor A descriptor for the accepted socket, if successful.

–1 If not successful.
4-22 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sockets
Usage

SOCK_STREAM sockets are full duplex byte streams, similar to UNIX pipes. A stream
socket must be in a connected state before it can send or receive data.

A connection to another socket is created with a t_connect() call. When connected, data
can be transferred using t_send() and t_recv(). When a session has been completed,
t_socketclose() can be performed. Out-of-band data can also be transmitted and
received, as described in the t_send() and t_recv() documentation. For more details,
see t_send() and t_sendto() on page 4-18 and t_recv() and t_recvfrom() on page 4-14.

The communications protocols used to implement a SOCK_STREAM ensure that data is not
lost or duplicated. If a piece of data (for which the peer protocol has buffer space)
cannot be transmitted successfully within a reasonable length of time, the connection is
considered broken. In this case, calls return with a value of -1 and ETIMEDOUT is written
to the internal variable errno.

The protocols optionally keep sockets warm by forcing transmissions roughly every
minute in the absence of other activity. An error is indicated if no response has been
received on an otherwise idle connection for an extended period, for example, five
minutes.

SOCK_DGRAM sockets allow datagrams to be sent to correspondents named in t_sendto()
calls. Datagrams are generally received with t_recvfrom(), which returns the next
datagram with its return address.

The operation of sockets is controlled by socket-level options. These options are
defined in the file socket.h. The t_getsockopt() and t_setsockopt() functions are used
to get and set options, respectively (see t_getsockopt() on page 4-10 and t_setsockopt()
on page 4-19).
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 4-23

Sockets
4.2.15 t_socketclose()

This function deletes a descriptor from the reference table. On the close of a socket,
associated naming information and queued data are discarded.

Note
 This is just close() on traditional sockets systems.

Syntax

int t_socketclose(long socket)

where:

socket Is the identifier of the socket to be closed.

Return value

Returns one of the following:

0 If successful.

–1 If not successful. The internal socket variable errno is set to one of the
errors listed in ipport.h. The value of errno can be retrieved by a call to
t_errno(socket).
4-24 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 5
Low-overhead UDP Functions

This chapter describes low-overhead UDP functions. The functions described here are
low-overhead in that they require little processing time and offer a small memory
footprint. It contains the following sections:

• UDP functions on page 5-2.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 5-1

Low-overhead UDP Functions
5.1 UDP functions

These calls to the UDP layer are provided for systems that do not need the overhead of
sockets (see Chapter 4 Sockets). These routines impose a lower demand on CPU and
system memory requirements than sockets. However, they do not offer the portability
of sockets. Most of these functions are defined in inet\udp.c. The exceptions are
documented.

The following sections describe the low-overhead UDP functions. They are as follows:
• udp_alloc()
• udp_close() on page 5-3
• udp_free() on page 5-4
• udp_open() on page 5-5
• udp_send() on page 5-6
• udp_socket() on page 5-7.

5.1.1 udp_alloc()

This returns a packet large enough for the UDP data. It works by adding the space
needed for UDP, IP, and MAC headers to the datalen passed, and calling pk_alloc(). It
also ensures that the FREEQ_RESID resource is locked around the call to pk_alloc().

Syntax

PACKET udp_alloc(int datalen, int optlen)

where:

datalen Is the length of UDP data, not including the UDP header.

optlen Is the length of IP options, if any. This is typically 0.

Return value

Returns one of the following:

PACKET A pointer to a packet buffer.

NULL If a large-enough packet was not available.

When the packet has been successfully transmitted by the hardware, it must be released
by calling udp_free(). This is usually done by the sending interface.
5-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Low-overhead UDP Functions
5.1.2 udp_close()

This function must be called by your application when it has finished with a UDP
connection and is no longer interested in receiving UDP packets associated with the
connection. This function is defined in inet\udp_open.c.

Syntax

void udp_close(UDPCONN con)

where:

con Is the UDP connection identifier returned by a previous call to
udp_open().

Return value

None.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 5-3

Low-overhead UDP Functions
5.1.3 udp_free()

This function returns a previously allocated packet to the free pool on the stack. It calls
pk_free() and ensures that the FREEQ_RESID resource is locked around the access to
the free packet pool.

Syntax

void udp_free(ptr)

where:

ptr Is a pointer to the netbuf structure previously allocated by udp_alloc().

Return value

None.
5-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Low-overhead UDP Functions
5.1.4 udp_open()

This function is defined in inet\udp_open.c and creates a structure in the UDP layer to
receive, and pass upwards, UDP packets that match the parameters passed. The foreign
host, fhost, and port, fport, can be set to 0 as a wild card, which enables the reception
of broadcast datagrams.

The callback handler function is called with a pointer to a received datagram and a copy
of the data pointer which is passed to udp_open(). This can be any data the programmer
requires, such as a pointer to another function, or a control structure to aid in
demultiplexing the received UDP packet.

Syntax

UDPCONN udp_open(ip_addr fhost,
unsigned short fport,
unsigned short lport,
int (*handler)(PACKET, void *),
void *data)

where:

fhost Is the foreign host from which you will accept data. It must be set to 0 if
listening for any host.

fport Is the foreign port number. It must be set to 0 if listening for datagrams
from any foreign port.

lport Is the local port on which to receive data.

handler Is the UDP receive callback function.

data Is the data that is passed (along with the received UDP datagram) to the
callback handler.

Return value

Returns one of the following:

ID A UDP connection identifier if successful. This handle must be passed to
udp_close() when the connection is no longer required.

NULL If not successful.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 5-5

Low-overhead UDP Functions
5.1.5 udp_send()

This function sends a UDP datagram to the foreign host in pkt->fhost. Local and remote
ports in the UDP header are set from the values passed.

Syntax

int udp_send(unsigned short fport,
unsigned short lport,
PACKET pkt)

where:

fport Is the target UDP port.

lport Is the local UDP port.

pkt Is the packet to send, with nb_prot, nb_plen, and fhost (members of the
PACKET structure) set.

Return value

Returns one of the following:

0 If successful.

ENP_Code If not successful (see ENP_ error codes on page A-2).
5-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Low-overhead UDP Functions
5.1.6 udp_socket()

This function is used to obtain a random port number that is suitable for use as the lport
parameter in a call to udp_open(). The udp_socket() function avoids picking port
numbers in the reserved range 0-1024, or in the range 1025-1199, which may be used
for server applications.

Syntax

int udp_socket(void)

Return value

Returns a UDP port number. This number is the lport parameter that is suitable for
passing to udp_open().
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 5-7

Low-overhead UDP Functions
5-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 6
The TCP Zero-copy API

This chapter describes the TCP Zero-copy API, an optional extension to the Sockets
layer. It contains the following sections:
• About the TCP Zero-copy API on page 6-2
• Sending data with the TCP Zero-copy API on page 6-4
• Receiving data with the TCP Zero-copy API on page 6-6
• TCP Zero-copy API reference on page 6-8.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 6-1

The TCP Zero-copy API
6.1 About the TCP Zero-copy API

This section documents an optional extension to the Sockets layer, the TCP Zero-copy
API. This extension is only present if the stack has been built with the TCP_ZEROCOPY
package option defined in ipport.h.

The TCP Zero-copy API is intended to assist the development of higher-performance
embedded network applications by allowing the application direct access to the TCP/IP
stack packet buffers. This feature can be used to avoid the overhead of having the stack
copy data between application-owned buffers and stack-owned buffers in t_send() and
t_recv(), but the application has to fit its data into, and accept its data from, the stack
buffers.

6.1.1 Content of the API

The TCP Zero-copy API comprises:

• two functions for allocating and freeing packet buffers

• a function for sending a packet buffer on an open socket

• an application-supplied callback function for accepting received packets

• an extension to the Sockets t_setsockopt() function for registration of the
callback function.

The TCP Zero-copy API is small because it is simply an extension to the existing
Sockets API that provides an alternate mechanism for sending and receiving data on a
socket. The Sockets API is used for all other operations on the socket.

Allocating and freeing packet buffers

The two functions for allocating and freeing packet buffers are straightforward requests:

tcp_pktalloc() Allocates a packet buffer from the pool of packet buffers on the
stack.

tcp_pktfree() Frees a packet buffer.

Applications using the TCP Zero-copy API are responsible for allocating packet buffers
for use in sending data, as well as for freeing buffers that have been used to receive data
and those that the application has allocated but decided not to use for sending data. As
these packet buffers are a limited resource, it is important that applications free them
promptly when they are no longer of use.
6-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

The TCP Zero-copy API
Sending data through an open socket

The function for sending data, tcp_xout(), sends a packet buffer of data using a socket.

If successful, it is considered to have consumed the supplied buffer and so the
application does not have to free the buffer using tcp_pktfree().

Callback function

Applications that use the TCP Zero-copy API for receiving data must include a callback
function for acceptance of received packets, and must register the callback function
with the socket using the t_setsockopt() Sockets function with the SO_CALLBACK option
name. The callback function, once registered, receives not only received data packets,
but also connection events that result in socket errors.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 6-3

The TCP Zero-copy API
6.2 Sending data with the TCP Zero-copy API

This section describes the procedure for allocating a packet buffer and sending data, in
the following sections:
• Allocating a packet buffer
• Filling the allocated buffer with data on page 6-5
• Sending the packet on page 6-5.

6.2.1 Allocating a packet buffer

The first step in using the TCP Zero-copy API to send data is to allocate a packet buffer
from the stack using the tcp_pktalloc() function. This function takes a single argument
(the maximum length of the data you intend to send in the buffer) and returns a
PACKET, a pointer to a network buffer structure, as shown in Example 6-1.

Example 6-1 The tcp_pktalloc() function

PACKET pkt; /* pointer to netbuf structure for packet buffer */
int datalen; /* amount of data to send */

datalen = 512; /* should indicate amount of data to send */
pkt = tcp_pktalloc(datalen);
if (pkt == NULL)
{

/* error, could not allocate packet buffer */
}

Note
 This limits how much data that you can send in one call using the TCP Zero-copy API,
as the data sent in one call to tcp_xout() must fit in a single packet buffer, with the TCP,
IP, and lower-layer headers that the stack needs to add in order to send the packet.

The actual limit is determined by the big packet buffer size, bigbufsiz, less the HDRSLEN
definition in tcpport.h. If you try to request a larger buffer than this, tcp_pktalloc()
returns NULL to indicate that it cannot allocate a sufficiently-large buffer.
6-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

The TCP Zero-copy API
6.2.2 Filling the allocated buffer with data

Having allocated the packet buffer, you now fill it with the data to send. The function
tcp_pktalloc() has initialized the returned PACKET and so pkt->nb_prot points to
where you can start depositing data.

When you have filled the buffer, you must set pkt->nb_plen to the number of bytes of
data that you have placed in the buffer.

6.2.3 Sending the packet

Finally, you send the packet by giving it back to the stack using the function tcp_xout().

e = tcp_xout(s, pkt);
if (e < 0)
{

tcp_pktfree(pkt);
}

This function sends the packet over TCP, or returns an error. If its return value is less
than zero, it has not accepted the packet and the application must either free the packet
or retain it for sending later.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 6-5

The TCP Zero-copy API
6.3 Receiving data with the TCP Zero-copy API

This section describes how you write and register a callback function, in the sections:
• Writing a callback function
• Registering the callback function on page 6-7.

6.3.1 Writing a callback function

Using the TCP Zero-copy API for receiving data requires the application developer to
write a callback function that the stack can use to inform the application of received
data packets and other socket events. This function is expected to conform to the
following prototype:

int rx_callback(struct socket * so, PACKET pkt, int code);

The stack calls this function when it has received a data packet or other event to report
for a socket, where:

so Identifies the socket.

pkt Passes a pointer to the packet buffer (if there is a packet buffer).
If pkt is not NULL, it is a pointer to a packet buffer containing received
data for the socket. pkt->nb_prot points to the start of the received data,
and pkt->nb_len indicates the number of bytes of received data in this
buffer.

code Passes an error event (if there is an error to report).
If code is not 0, it is a socket error indicating that an error or other event
has occurred on the socket. Typical nonzero values are:
ESHUTDOWN The connected peer has closed its end of the

connection and sends no more data.
ECONNRESET The connected peer has abruptly closed its end of

the connection and neither sends nor receives more
data.
6-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

The TCP Zero-copy API
Identifying which socket is in use

If the application is using the same callback function for several sockets, it can use so
to identify the socket for which the callback has occurred. For example, the following
code fragment walks a list of data structures to find one with a matching socket, and
illustrates a way to compare the so argument with a socket returned by t_socket().

for (ftps = ftplist; ftps; ftps = ftps->next)
if(ftps->datasock == so)

break;

Once the callback function has identified the socket, it must examine the pkt and code
parameters, as these contain the information about the socket.

Returned values

If the callback function returns 0, it indicates that it has accepted responsibility for the
packet buffer and returns it to the stack (using the tcp_pktfree() function) when it no
longer requires the buffer. If the callback function returns any nonzero value, it indicates
to the stack that it has not accepted responsibility for the packet buffer. The stack keeps
the packet buffer in the queue and calls the callback function again at a later time.

Note
 The callback function is called from the stack and is expected to return promptly. Some
of the places where the stack calls the callback function require that the data structures
on the stack remain consistent through the callback, so the callback function must not
call back into the stack except to call tcp_pktfree(). (This restriction might be removed
in a future release of the stack.)

6.3.2 Registering the callback function

The application must also inform the stack of the callback function. If the stack has been
built with the TCP_ZEROCOPY option enabled, the t_setsockopt() function provides an
additional socket option, SO_CALLBACK, which should be used for this purpose once the
socket has been created. The following code fragment illustrates the use of this option
to register a callback function named rxupcall() on the socket sock:

t_setsockopt(sock, SO_CALLBACK, (void *)rxupcall);

The function t_setsockopt() is described in t_setsockopt() on page 4-19.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 6-7

The TCP Zero-copy API
6.4 TCP Zero-copy API reference

This section gives the syntax and description of the following functions:
• tcp_pktalloc()
• tcp_pktfree() on page 6-9
• tcp_xout() on page 6-9.

6.4.1 tcp_pktalloc()

This function allocates a packet buffer. It is a small wrapper around the internal
pk_alloc() function that provides the necessary synchronization and calculation of
header length.

Syntax

PACKET tcp_pktalloc(int datalen);

where:

datalen Is the length of TCP data (not including the TCP header).

Usage

This function allocates a packet buffer large enough to hold datalen bytes of TCP data,
plus TCP, IP and MAC headers.

This function must be called to allocate a buffer for sending data via tcp_xout(). It
returns the allocated packet buffer with its pkt->nb_prot field set to where the
application must deposit the data to be sent.

Return value

Returns one of the following:

pointer A pointer to struct netbuf if the allocation was successful.

NULL If a big enough packet was not available.
6-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

The TCP Zero-copy API
6.4.2 tcp_pktfree()

This function frees a packet buffer allocated by tcp_pktalloc(). It is a small wrapper
around the internal pk_free() function that provides necessary synchronization.

Syntax

void tcp_pktfree(PACKET pkt);

where:

pkt Is a pointer to packet to be freed.

Return value

No return value.

6.4.3 tcp_xout()

This function sends a packet buffer on a socket.

Syntax

int tcp_xout(long s, PACKET pkt);

where:
s Is the socket on which the packet is to be sent.
pkt Is a pointer to packet to be sent.

Usage

The packet buffer must be initialized with pkt->nb_prot pointing to the start of the
application data to be sent (this was set by tcp_pktalloc()), and with pkt->nb_plen set
to the number of bytes of data to be sent.

Return values

This function returns an integer indicating the success or failure of the function:
0 Indicates that the packet was sent successfully.
<0 Indicates that the packet was not accepted by the stack. The application

must re-send the packet using a call to tcp_xout(), or free the packet
using tcp_pktfree().

>0 Indicates that the packet has been accepted and queued on the socket but
has not yet been transmitted.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 6-9

The TCP Zero-copy API
6-10 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 7
ARM-specific Functions

The sample sources provided as part of the TCP/IP stack contain several functions that
are specific to the ARM environment. This chapter describes those files and the
functions they contain. It contains the following sections:
• ARM directories on page 7-2
• ARM Firmware Suite on page 7-8.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 7-1

ARM-specific Functions
7.1 ARM directories

The ARM-specific files are contained within the following directories:

\armthumb Contains functions specific to ARM or Thumb processors.

\integrator Contains functions specific to the ARM Integrator/AP
development board.

\uHAL Contains libraries and header files from the ARM Firmware Suite.

7.1.1 ARM-specific routines

The \armthumb directory contains files that provide functionality common to all ARM
processors and development platforms, and contains the following files:

armthumb.h C declarations for the functions implemented in this directory.

asmacros.h Assembler macros used by files in this directory.

cksum.s Optimized ARM assembler implementation of the checksum
function, cksum().

dtrap.s Stub function that can be used to trap to the debugger.

lswap.s Optimized ARM assembler implementations of 32-bit and 16-bit
endian swap routines.

armthumb.h

This C header file contains function declarations for the following functions
implemented by other files in this directory:

extern unsigned short cksum(unsigned short *, unsigned);
extern void dtrap(void);
extern unsigned lswap(unsigned);
extern unsigned short bswap(unsigned short);

asmacros.h

This assembler header file contains macro definitions used by assembler files in the
\armthumb and \integrator directories. The macros allow you to code assembler
functions to handle interworked and non-interworked operation cleanly.

For interworking in ADS
Invoke armasm with -PD "INTER SETA 2" on the command line.
7-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

ARM-specific Functions
For interworking in SDT
Invoke armasm with -PD "INTER SETA 1" on the command line.

No interworking
In either ADS or SDT, invoke armasm with -PD "INTER SETA 0", or omit
the command-line predefine completely.

 Of the macros defined in asmacros.h, the following are used by the stack:

RETMOV <register>, <cc> to simulate MOV<cc> pc, <register>
RETLDM <list>, <cc>to simulate LDM<cc>FD sp!, {<list>, pc}

cksum.s

The file cksum.s contains optimized ARM and Thumb versions of the cksum() function.
IP, UDP, TCP, and PPP use this function to calculate the checksum of a block of data.
The algorithm implemented is described by RFC 1071. A C version of this function is
also provided in the inet directory, but this must only be used if you suspect that there
is some problem with these optimized versions.

You can optimize the ARM implementation of this function by setting the NREG variable
within this file to a value between one and eight. NREG controls the number of registers
used to perform the checksumming operation. The default value of five has been
selected through a benchmarking process. The ARMulator is used to emulate an
ARM7TDMI core without caching, while performing TCP and UDP transfers of
varying block sizes using the Loopback example program. You might want to run
performance tests on your system to determine the best value to use, especially if the
processor you are using has a data cache.

dtrap.s

The function dtrap(), implemented in this file, does nothing. If the RTOS you are using
supports a trap to debugger call, you can call that from this function. It is possible to
use an .obey file containing the command break @_dtrap to cause the debugger to halt
execution of the system when dtrap() is called.

You do not need to include dtrap.s in production code because you have eliminated all
possible causes of dtrap() before production.

lswap.s

You must include lswap.s only if you are implementing a little-endian system.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 7-3

ARM-specific Functions
When using the Internet Protocol (IP), all protocol data larger than a single byte is
transmitted on the network in network byte order (big-endian mode). If your system is
operating in little-endian mode, all 16-bit and 32-bit quantities that are sent or received
must be byte-swapped from network byte order to little-endian byte order. Traditionally,
four macros are defined:

htonl(l) Converts a 32-bit value from host byte order to network byte order.

ntohl(l) Converts a 32-bit value from network byte order to host byte order.

htons(s) Converts a 16-bit value from host byte order to network byte order.

ntohs(s) Converts a 16-bit value from network byte order to host byte order.

For 32-bit quantities, you define htonl() and ntohl() to use the lswap() function
implemented in the lswap.s file. This is an optimized routine for performing
endian-swap operations on 32-bit values.

For 16-bit quantities, you either use the bswap() function implemented in the lswap.s
file, or you can use the following macros if you are optimizing for speed rather than
code size, and are using ARM state rather than Thumb state:

#define htons(s) ((u_short)(((u_short)(s)>>8) | ((u_short)(s)<<8)))
#define ntohs(s) htons(s)

7.1.2 Integrator/AP-specific routines

The \integrator directory contains files used to provide support for the Integrator/AP
development platform fitted with an ARM Integrator/CM7TDMI core module. It
contains the following files:

clock.c Provides the basic timer.

crit.c Provides critical section protection.

i8255x.c Is the Ethernet device driver for PCI NICs based on Intel
82557/82558/82559.

lowlevel.s Are the Assembler routines used by other files in this section.

initboard.c Contains the start-up routine that calls all of the other modules to
initialize them.

uartio.c Is an interrupt-driven UART driver with hardware flow control
and circular buffers.
7-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

ARM-specific Functions
clock.c

This file contains three functions, clock_init(), clock_c(), and ticker() that manage
timer interrupts used solely to keep track of elapsed time:

clock_init() Initializes one of the µHAL timers to generate a regular clock tick
interrupt. The values used to program the timer are calculated
from the TPS value defined in ipport.h.

clock_c() Reverses the actions performed by clock_init() by freeing the
µHAL timer. This stops the timer running, and disables the
interrupts generated by it.

clock_c() Called in timer interrupt context to increment cticks TPS times
every second.

crit.c

This file contains implementations of ENTER_CRIT_SECTION() and EXIT_CRIT_SECTION().

This particular implementation:

• disables all interrupts when ENTER_CRIT_SECTION() is called

• keeps track of nested critical sections

• re-enables interrupts when EXIT_CRIT_SECTION() is called on the outermost critical
section.

It also contains code to check that the critical sections are balanced. That is,
EXIT_CRIT_SECTION() is called with the same pointer value that the corresponding
ENTER_CRIT_SECTION() was called with.

ENTER_CRIT_SECTION() and EXIT_CRIT_SECTION() use assembler routines defined in
lowlevel.s to test, set, and clear the interrupt disable bits in the ARM Current Processor
Status Register (CPSR). Your implementation of ENTER_CRIT_SECTION() and
EXIT_CRIT_SECTION() might have to use a different technique, perhaps only disabling
interrupts from the network interface hardware, or disabling scheduler pre-emption in
an RTOS environment.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 7-5

ARM-specific Functions
i8255x.c

This file contains a device driver for the Intel 82557, 82558, and 82559 PCI Network
Interface Controllers (NICs). This device is a PCI bus master device that can manage
complex buffering schemes, scatter and gather DMA, media management, and many
other features.

This driver implements a subset of the full functionality of the 82559 device so that it
works with previous versions of the chip, such as the 82558 and 82557. The 82559
device is used on the Intel PRO/100+ Management Adapter.

The driver uses the PCI and µHAL libraries from the ARM Firmware Suite 1.1 to
manage the low-level interface to the card. See ARM Firmware Suite on page 7-8 for
information on using other variants of these libraries.

lowlevel.s

This file implements some low-level routines used by some of the device drivers in this
directory:

unsigned test_and_set_ibit(void);
Sets the interrupt disable bit and returns the previous state.

unsigned set_ibit(unsigned flag);
Sets the interrupt disable bit if flag is true, and clears it otherwise.

void nano(unsigned ns);
Delays for ns nanoseconds.

unsigned mrc_15(unsigned cpreg);
Returns the current value of co-processor 15 register 2 (if cpreg equals 2)
or register 1 (otherwise).

void mcr_15(unsigned value);
Writes value to co-processor 15 register 1.
7-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

ARM-specific Functions
initboard.c

This file implements the board-level startup sequence. The initboard.c file contains
routines you can use to alter these settings, set the bus mode of the processor being used,
and reprogram the MMU/MPU.

unsigned int InitialiseBoard(void);

Your main() routine must call InitialiseBoard() before doing anything else.
InitialiseBoard() sets up the uHAL and PCI library environments, and initializes the
UART drivers.

uartio.c

This file contains a device driver for the PrimeCell UARTs used on the Integrator/AP
motherboard that:
• is interrupt-driven
• implements hardware flow control
• uses large circular buffers.

uartio.c has implementations of dputchar(), kbhit(), and getch() that are used by the
menus system and for debug:

int uart_getc(int unit);

void uart_putc(int unit, int ch);

int uart_ready(int unit);

int uart_stats(void *pio, int unit);

void uart_set_dtr(int unit, int state);

int uart_get_dcd(int unit);

The file also implements the UART interface required by the ARM PPP software
package which is available separately. The UART interface is described in the Porting
PPP Programmer's Guide.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 7-7

ARM-specific Functions
7.2 ARM Firmware Suite

The \uHAL directory contains µHAL and PCI libraries and header files taken directly
from the ARM Firmware Suite (AFS) Version 1.1 CD-ROM. Using µHAL allows you
to port the stack with ease to other development platforms that support µHAL with.

The libraries shipped with ARM TCP/IP are the IntegratorT variants, that work with the
following core modules:
• Integrator/CM7TDMI
• Integrator/CM720T
• Integrator/CM740T
• Integrator/CM920T
• Integrator/CM940T.

This supports ARM/Thumb interworking.

Note
 The IntegratorT variant does not support the memory management and protection units
available on the CM720T/740T/920T/940T core modules. If you want to use this, or
any other functionality provided by µHAL for these core modules, you have to copy the
appropriate files from the AFS CD-ROM.

7.2.1 Example

As an example, the libraries for the Integrator/CM740T are in the following locations
on the CD-ROM:

\common\images\Integrator740T\uHAL\Build\Integrator740T.b\
semihosted\uHALlibrary.a

\common\images\Integrator740T\PCI\Build\Integrator740T.b\
semihosted\PCIlib.a

The header files in the µHAL directory are copied from the following locations on the
CD-ROM:

\{windows|unix}\source\all\uHAL\h

\{windows|unix}\source\all\uHAL\Processors

\{windows|unix}\source\all\PCI\Sources

\{windows|unix}\source\all\uHAL\Boards\INTEGRATOR
7-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 8
Miscellaneous Library Functions

This chapter describes the assortment of functions that are found in the \misclib
directory. These functions perform a variety of tasks that are used by the example
programs, and by the TCP/IP stack. You might not require all, or any, of these functions
in your final system. These functions enable you to perform a sample port, but they do
not comprise part of the supported product. It contains the following sections:
• Description of misclib files on page 8-2
• in_utils.c on page 8-6
• nextcarg.c on page 8-17
• parseip.c on page 8-18
• reshost.c on page 8-19
• userpass.c on page 8-24.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-1

Miscellaneous Library Functions
8.1 Description of misclib files

This section lists the files in misclib and gives an overview of their functions:
• app_ping.c
• in_utils.c
• memman.c
• menus.c, menulib.c, and nrmenus.c on page 8-3
• nextcarg.c on page 8-3
• nvparms.c on page 8-3
• parseip.c on page 8-3
• reshost.c on page 8-4
• strilib.c on page 8-4
• strlib.c on page 8-4
• tcp_echo.c on page 8-4
• timeouts.c on page 8-4
• testmenu.c on page 8-5
• ttyio.c on page 8-5
• udp_echo.c on page 8-5
• userpass.c on page 8-5.

8.1.1 app_ping.c

The functions within the app_ping.c file implement an interface to the ping facilities
available in the \inet directory for the menus subsystem.

8.1.2 in_utils.c

This file contains an assortment of general utility functions. They are described in
in_utils.c on page 8-6.

8.1.3 memman.c

The ARM networking software uses the two functions npalloc() and npfree() to make
dynamic memory allocations. In systems that include the standard C library, these can
be mapped directly onto calloc() and free() using defined macros in the ipport.h file.
8-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
If you are experiencing memory allocation problems and suspect that memory blocks
are being referenced after they have been freed, or that data is being written beyond the
end of the allocated area, you may be able to use the npalloc() and npfree() functions
implemented in memman.c to help with debugging. If you are using these functions, you
may also use the diagnostic function blocklist() which uses dprintf() to print a list of
the memory blocks currently in use.

memman.c also contains a function, check_memory(), that you can call at any point in your
code. It checks that all of the structures used by the dynamic memory allocation routines
in memman.c are still intact and have not been accidentally overwritten. Typically, you
would place calls to check_memory() before and after a section of code that you suspect
is corrupting the dynamic memory heap.

8.1.4 menus.c, menulib.c, and nrmenus.c

These three files contain functions that implement a menu system that can be readily
extended as new modules are added to a project. The menu system is intended to run
with your application code, and allows you to exercise different areas of the network
protocols. The menus can be accessed either by way of the standard input and output
channels, or by way of a TELNET socket or other GenericIO channel.

8.1.5 nextcarg.c

This file contains only one function, nextcarg(), that splits a comma-delimited string
into its components. It is described in nextcarg.c on page 8-17.

8.1.6 nvparms.c

The nvparms.c file contains a large number of routines used to read and parse a
configuration file. This configuration file can either reside in nonvolatile Flash memory,
or in a file on the native file system. If you choose to store files in flash memory, you
must define INCLUDE_FLASHFS in your ipport.h file and provide suitable definitions to nv_
functions in nvfsio.h. If INCLUDE_FLASHFS has not been defined, the standard C library
functions, such as fopen(), fgets(), and fclose(), are used.

8.1.7 parseip.c

The parseip.c file implements only one function, parse_ipad(), used to parse a string
containing a dotted-quad IP address (for example, 192.168.117.43) and return it as an
ip_addr value. It is described in parseip.c on page 8-18.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-3

Miscellaneous Library Functions
8.1.8 reshost.c

The reshost.c file implements only one function, in_reshost(), used to resolve a host
name into an IP address. It is described in reshost.c on page 8-19.

8.1.9 strilib.c

There are three functions, stricmp(), strnicmp(), and stristr(), that are implemented
in strilib.c. They each perform case-independent string comparisons. They behave
just like strcmp(), strncmp(), and strstr(), taking the same arguments and returning the
same results, with the exception that each character of each string is converted to
lowercase before being compared. The strings passed to these functions are not
modified.

8.1.10 strlib.c

The strlib.c file contains implementations of the following standard C string
functions:
• strcat()

• strchr()

• strcmp()

• strcpy()

• strlen()

• strncmp()

• strncpy()

• strstr().

If your C libraries do not include these functions, they may be included from the
strlib.c file by defining the macro INICHE_LIBS in your ipport.h file, and configuring
which particular functions you require in the in_utils.h file.

8.1.11 tcp_echo.c

The functions within the tcp_echo.c file implement a menus interface to the TCP echo
mechanism, which is useful for testing purposes.

8.1.12 timeouts.c

This file contains a single function, inet_timer(), that should be called at least twice per
second if you are using a superloop system. It is described in timeouts.c on page 8-21.
8-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.1.13 testmenu.c

This file adds three commands to the diagnostic menus system to allow you to send a
large number of ICMP ECHO requests or ARP requests to a target host. It is described
in testmenu.c on page 8-23.

8.1.14 ttyio.c

This file contains an implementation of the dprintf() function that can be used to send
debug output by way of a UART driver. The dprintf() function supports the following
formatting characters:
%x unsigned hex
%d signed decimal
%u unsigned decimal
%c character
%s null-terminated string
%p unsigned pointer (same as %x)
%lx unsigned long hex
%ld signed long decimal
%lu unsigned long decimal.

If this file is compiled with FIELDWIDTH defined, %[[-]w][.][p]f formats are understood,
where w is the minimum field width and p is the precision, indicating the minimum
number of digits to be printed. If w is negative, the field is left adjusted. If w starts with
a leading zero, the field is padded using zeros instead of spaces.

This function uses dputchar() to perform output.

8.1.15 udp_echo.c

The functions within the udp_echo.c file implement a menus interface to the UDP echo
mechanism, which is useful for testing purposes.

8.1.16 userpass.c

The userpass.c file contains code to implement a simple user/password database. Its
functions are described in userpass.c on page 8-24.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-5

Miscellaneous Library Functions
8.2 in_utils.c

This file contains an assortment of general utility functions. They are described in this
section. The functions are:
• con_page() on page 8-7
• hexdump() on page 8-8
• nextarg() on page 8-9
• ns_printf() on page 8-10
• panic() on page 8-11
• print_eth() on page 8-12
• print_ipad() on page 8-13
• print_uptime() on page 8-13
• std_in() on page 8-14
• std_out() on page 8-15
• sysuptime() on page 8-15
• uslash() on page 8-16.
8-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.2.1 con_page()

This function implements a simple more facility.

Syntax

int con_page(void *vio, int lines)

where:

vio Points to a generic I/O structure (see ns_printf() on page 8-10).

lines Is a counter containing the number of lines printed so far.

Return value

Returns one of the following:

0 If more output should be produced.

1 If the user indicates that no more output is wanted.

Usage

The con_page() function implements a simple more facility that waits for a key press
from the user if more than a screen of information has been displayed. Normally, 0 is
returned. The value 1 is returned if the Escape key is pressed as a response to the press
any key for more prompt, indicating that the user does not wish to see more output.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-7

Miscellaneous Library Functions
8.2.2 hexdump()

This function is used to display an area of memory, usually for debugging purposes.

Syntax

void hexdump(void *pio, void * buffer, unsigned len)

where:

pio Points to a generic I/O structure (see ns_printf() on page 8-10).

buffer Points to the memory area to be displayed.

len Is the number of bytes to be displayed.

Return value

None.

Usage

The hexdump() function displays len bytes of data, starting from the address buffer,
using the dprintf() routine.
8-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.2.3 nextarg()

This function is used to parse a string into separate arguments.

Syntax

char *nextarg(char *argp)

where:

argp Points to the string of arguments to be processed.

Return value

Returns a pointer to the next argument in argp, or to the terminating null character if
there are no more arguments.

Usage

This function returns a pointer to the next argument in the string passed. Arguments are
considered to be printable ASCII sequences of characters delimited by spaces. If there
are no more arguments present within the string passed, this function returns a pointer
to the null character that terminates the string. For example, calling nextarg() with the
string one two three returns a pointer to the letter t of the word two. Calling nextarg()
with that pointer returns a pointer to the letter t of the word three, and calling nextarg()
once more returns a pointer to the terminating null character of the string.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-9

Miscellaneous Library Functions
8.2.4 ns_printf()

This function is used to report network statistics.

Syntax

int ns_printf(void *vio, char *format, …)

where:

vio Is a generic input/output pointer.

format Is a format string like printf().

… Is a list of arguments, as described by format.

Return value

Returns one of the following:

chars is the number of characters printed, if successful.

value negative value, if not successful.

Usage

The ns_printf() function is used by the various network statistics printing routines
within the stack to report current counter values. The vio argument is a pointer to a
GenericIO structure, which can be used to direct output to different streams, such as the
debug console or a TELNET socket.
8-10 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.2.5 panic()

This function is used to indicate a nonrecoverable fault within the system.

Syntax

void panic(char *msg)

where:

msg Is an informative message indicating the nature of the problem.

Return value

None.

Usage

This function uses dprintf() to print the message string passed, attempts to trap to the
debugger using dtrap(), and then halts the system by calling netexit(). You must
modify this code if you want your system to restart (warm boot) after such a failure.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-11

Miscellaneous Library Functions
8.2.6 print_eth()

This function is used to format an Ethernet address as an ASCII string for printing.

Syntax

char *print_eth(char *addr, char spacer)

where:

addr Points to the 6-byte Ethernet address.

spacer Is the character to be used between each octet.

Return value

Returns a pointer to a statically allocated buffer containing a null-terminated ASCII
string that represents the Ethernet address pointed to by addr.

Usage

This function is useful for formatting Ethernet MAC addresses. It returns a pointer to a
static buffer containing the MAC address represented as a string of six 2-digit
hexadecimal numbers. Each number is separated from the next by the character spacer.
The complete string of six numbers is null-terminated. If spacer is passed as \0, no
spacing characters are inserted into the output string and the resulting string is 12
characters long. If spacer is nonzero, the resulting string is 17 characters long.
8-12 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.2.7 print_ipad()

This function is used to format an IP address as an ASCII string for printing.

Syntax

char *print_ipad(unsigned long ipaddr)

where:

ipaddr Is the network address to be printed, in network byte order.

Return value

Returns a pointer to a statically allocated buffer containing a null-terminated ASCII
string that represents the Internet address passed in ipaddr.

Usage

This function returns a pointer to a static buffer that contains the dotted quad notation
for the IP address passed. The IP address is expected to be in network byte order
(big-endian).

8.2.8 print_uptime()

This function is used to format a time value as an ASCII string for printing.

Syntax

char *print_uptime(unsigned long timetick)

where:

timetick Is the number of ticks to be translated to an uptime string.

Return value

Returns a pointer to a statically allocated buffer containing a null-terminated ASCII
string that represents the time value passed in timetick.

Usage

This function takes a time value, timetick, in centiseconds and returns a pointer to a
static buffer containing an uptime string that indicates the number of days, hours,
minutes, and seconds represented.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-13

Miscellaneous Library Functions
8.2.9 std_in()

This function inputs a character from the standard input channel.

Syntax

int std_in(long s)

where:

s Is the index of the input device (unused by std_in()).

Return value

Returns one of the following:

0 If no character is available from the standard input channel.

char The character typed, if a character is available.

Usage

The std_in() function is used with a GenericIO structure to allow the menus system to
receive input from the standard input channel.
8-14 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.2.10 std_out()

This function outputs characters to the standard output channel.

Syntax

int std_out(long s, char *buf, int len)

where:

s Is the index of the output device (unused by std_out()).

buf Is a pointer to the data to be printer.

len Is the number of characters to output from buf.

Return value

Returns the number of characters actually printed.

Usage

The std_out() function is used with a GenericIO structure to allow the ns_printf()
function to print network statistics to the standard output channel.

8.2.11 sysuptime()

This function returns the age of the system.

Syntax

unsigned long sysuptime(void)

Return value

Returns the number of centiseconds since the clock started counting.

Usage

The sysuptime() function returns the time since some arbitrary epoch. This epoch is
usually the moment when the clock driver was initialized at boot time. The time period
is expressed in hundredths of a second.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-15

Miscellaneous Library Functions
8.2.12 uslash()

This function is used to translate DOS-style path separator characters (\) into
UNIX-style separator characters (/).

Syntax

char *uslash(char *path)

where:

path Is the string to be translated.

Return value

Returns the string pointed to by path, with every occurrence of the \ character replaced
with /.

Usage

The string is modified in place, and therefore must not be a constant (read-only) string.
8-16 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.3 nextcarg.c

The nextcarg.c file contains only one function, nextcarg().

8.3.1 nextcarg()

This function is used to split a comma-delimited string into its components.

Syntax

char *nextcarg(char *arg)

where:

arg Is a pointer to a null-terminated string containing a comma-delimited
argument list.

Return value

Returns one of the following:

next The next argument from arg if there is an argument to be returned.

NULL If there are no more arguments.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-17

Miscellaneous Library Functions
8.4 parseip.c

The parseip.c file implements only one function, parse_ipad().

8.4.1 parseip()

This function is used to parse a string containing a dotted-quad IP address (for example,
192.168.117.43) and return it as an ip_addr value.

Syntax

char *parse_ipad(ip_addr *ipout, unsigned *sbits,
char *stringin)

where:

ipout Is a pointer to an ip_addr that will contain the return value.

sbits Is a pointer to a location that will contain the number of subnet bits
corresponding to the class of the network address passed.

stringin Is a pointer to the string to be parsed.

Return value

Returns one of the following:

NULL If successful, that is, if the string passed was fully parsed.

pointer A pointer to a string describing the problem if not successful, that is, if
the string passed could not be fully parsed.

Usage

The parse_ipad() function understands that network addresses with zeroes in them may
be abbreviated. For example, 127.1 is expanded to the address 127.0.0.1. The
parse_ipad() function also fills in the number of subnet bits corresponding to the class
of the network address in the location pointed to by sbits. That is, *sbits will be set to
8 if the address is class A, 16 for class B, and 24 for a class C.
8-18 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.5 reshost.c

The reshost.c file implements only one function, in_reshost().

8.5.1 in_reshost()

This function is used to resolve a host name into an IP address.

Syntax

int in_reshost(char *host, ip_addr *address, int flags)

where:

host Contains the host-name string to be resolved.

address Points to the location where the resolved IP address is to be stored.

flags Are flags to control how in_reshost() operates (see Usage below).

Return value

Returns one of the following:

0 If successful.

ENP_Code If not successful (see ENP_ error codes on page A-2).

Usage

The in_reshost() function is called with a string containing the host name to be
resolved, either in dotted-quad notation (for example, 192.168.117.43), or as a
fully-qualified domain name (for example, myhost.mydomain.com). The in_reshost()
function will attempt to parse the address, first as a dotted-quad address, and then using
Domain Name System (DNS) lookup (if configured into the system), and will fill in the
ip_addr pointed to by address with the IP address of the host. The flags value is used to
control how the lookup is performed, and consists of the following flags, ORed
together:

RH_VERBOSE Prints debugging/progress information about the request.

RH_BLOCK Blocks until the address has been resolved, or until an error has
been detected.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-19

Miscellaneous Library Functions
IF RH_BLOCK is not specified, and DNS resolution is required, this routine returns
immediately, having sent the request to the DNS server. It is important that the calling
routine should zero the location pointed to by address before calling in_reshost(), and
should then poll this function until the value pointed to by literal becomes nonzero.

Note
 Trying to resolve a local hostname, such as ahost, without a qualifying domain name,
will almost certainly fail. For domain-name resolution to be successful, the
fully-qualified domain name is required.
8-20 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.6 timeouts.c

This file contains a single function, inet_timer(), that you must call at least twice per
second if you are using a superloop system. It calls the polling routine for the following
protocols:
• IP (for fragment reassembly)
• TCP
• Modem
• PPP
• DHCP Client
• DHCP Server
• DNS Client
• NAT Router
• RIP.

The following code shows a tk_yield() function that uses inet_timer().

/*
** tk_yield() - this is called whenever the program is looping
** waiting for user (or network) input. It handles the various
** background work needed such as polling alarm conditions and
** de-multiplexing incoming packets.
*/

extern void inet_timer(void);

void
tk_yield()
{
#ifdef IN_MENUS

kbdio(); /* check for user input for menus */
#endif

packet_check(); /* check for newly received packets */

inet_timer(); /* poll all the protocols */

/* give cycles to optional features */
#ifdef PING_APP

ping_check(); /* see if ping reply rolled in */
#endif
#ifdef SMTP_ALERTS

smtpalert_task(); /* email alerter... */
#endif
#ifdef UDPSTEST

udp_echo_poll(); /* UDP echo client/server */
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-21

Miscellaneous Library Functions
#endif
#ifdef TCP_ECHOTEST

tcp_echo_poll(); /* TCP echo client/server */
#endif
}

8-22 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.7 testmenu.c

This file adds three commands to the diagnostic menus system:

fping Flood ping.

farp Flood ARP.

fcount Set flood count.

These routines allow you to send a large number of ICMP ECHO requests or ARP
requests to a target host. The default is for these routines to send 100 requests in quick
succession to the current default host. You can change the number of requests using the
fcount command, and you can also change the default host using the host command.

Note
 Flood ARP must only be used on isolated test networks, as it may disrupt network
access for any or all other hosts on the network.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-23

Miscellaneous Library Functions
8.8 userpass.c

The userpass.c file contains code to implement a simple user/password database. It
implements the following functions:
• add_user()
• check_permit() on page 8-25.

8.8.1 add_user()

This function is used to add a username and password to the database.

Syntax

int add_user(char *username, char *password, void *permissions)

where:

username Is the name of the user to add.

password Is the user password.

permissions Is unused (see Usage below).

Return value

Returns one of the following:

TRUE If the user/password combination was accepted.

FALSE If the user/password combination was not accepted.

Usage

The username and password combination specified is added to the table of valid users.
The permissions parameter is ignored in the example applications and in this library
implementation. However, it could be used for checking that the user has the required
access permissions for the operation requested.

The number of users is limited by the value NUM_NETUSERS, defined in userpass.h. The
maximum user name and password length are limited by the value MAX_USERLENGTH,
defined in userpass.h.
8-24 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Miscellaneous Library Functions
8.8.2 check_permit()

This function is used to authenticate users.

Syntax

int check_permit(char *username, char *password, int appcode, void *permissions)

where:

username Is the name of the user to check.

password Is the password that the user has entered.

appcode Is the application asking for authentication (see Usage below).

permissions

is unused (see Usage below).

Return value

Returns one of the following:

TRUE If the user has been successfully authenticated.

FALSE If the user was not authenticated.

Usage

The check_permit() function is called by an application when it wishes to check if a
particular user is authorized to use that application. The username and password values
are as entered by the end user, and the appcode is selected from the list in userpass.h.
Like add_user(), the permissions parameter is unused in the example applications and
in this library implementation, but can be used for checking that the user has the
required access permissions for a specific operation, such as writing a system file.

The example implementation of check_permit() simply performs a string comparison
of the password and username, and if the two match, it is regarded as a positive
authentication. Your implementation must implement a proper password authenticating
mechanism in order to be secure.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 8-25

Miscellaneous Library Functions
8-26 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Chapter 9
Internal Functions

This chapter contains a list of internal routines that may be useful to programmers
writing customized applications with the stack. These functions are a subset of the
routines in the libraries that could be of interest to a TCP/IP application or network
interface writer. It contains the following sections:
• ARP routines on page 9-2
• IP routines on page 9-4
• ICMP routines on page 9-14.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 9-1

Internal Functions
9.1 ARP routines

The ARP routines are located in et_arp.c and are as follows:
• etainit()
• make_arp_entry()
• arprcv() on page 9-3.

9.1.1 etainit()

The etainit() routine must be called once at initialization time to initialize the ARP
layer. It registers the ARP types with the hardware drivers and sets up an ARP timer.

Syntax

int etainit (void);

Return values
0 If successful.
1 If the ARP type could not be registered with the network driver.

9.1.2 make_arp_entry()

The make_arp_entry() routine finds the first unused (or the oldest) ARP table entry and
makes a new entry to prepare it for an ARP reply.

Syntax

struct arptabent *make_arp_entry(ip_addr dest_ip, NET net);

where:
dest_ip Is the IP address to make the entry for.
net Is the associated network interface.

Usage

If the IP address already has an ARP entry, the entry is returned with only the time stamp
modified. The MAC address of the created entry is not resolved, but is left as zeros. The
eventual ARP reply fills in the MAC address.

Return value

pointer a pointer to the selected ARP table entry.
9-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Internal Functions
9.1.3 arprcv()

The arprcv() routine is the upcall for received ARP packets. It is called by the interface
layer.

Syntax

int arprcv(PACKET pkt);

where:

pkt Is the PACKET containing the incoming ARP packet.

Return values

0 If the received ARP packet was processed successfully.

ENP_ code If not successful (see ENP_ error codes on page A-2).
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 9-3

Internal Functions
9.2 IP routines

The IP routines are located in various files in the inet directory and are as follows:
• ip_write() on page 9-5
• ip2mac() on page 9-6
• ip_mymach() on page 9-7
• iproute() on page 9-8
• add_route() on page 9-9
• ip_rcv() on page 9-10
• parse_ipad() on page 9-11
• pk_alloc() on page 9-12
• pk_free() on page 9-13.
9-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Internal Functions
9.2.1 ip_write()

The ip_write() routine fills in the Internet header in the packet and sends the packet
through the appropriate net interface.

Syntax

int ip_write(u_char prot, PACKET p);

where:

prot Indicates which protocol the packet is carrying (TCP, UDP, ICMP).

p Is the packet to send.

Usage

This routine uses routing. You call it with the p->nb_plen and p->nb_prot fields set to the
start of the upper (UDP) layer, and with the p->fhost field set to the target IP address.

Return values

Return one of the following:

0 If the transmission was successful.

ENP_SEND_PENDING
If it is waiting for ARP.

ENP_ code If an error is detected (see ENP_ error codes on page A-2).

Location

The ip_write() routine is found in the following file:

inet\ip.c
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 9-5

Internal Functions
9.2.2 ip2mac()

The ip2mac() routine takes as input an outgoing IP packet with no MAC information
and tries to resolve an Ethernet address matching the passed IP address.

Syntax

int ip2mac(PACKET pkt, ip_addr dest_ip);

where:

pkt Is the packet itself, without the MAC address

dest_ip Is the IP address of the host or gateway.

Usage

If the MAC address is not already cached, an ARP request is broadcast for the missing
IP address. The packet is then attached to the pending pointer. The packet is sent when
the ARP reply comes in, or it is freed if the request times out.

Return values

Returns one of the following values:

SUCCESS (0)
If the packet was sent.

ENP_SEND_PENDING
If awaiting the ARP reply.

SEND_FAILED
If an error was detected.

Location

The ip2mac() routine is found in the following file:

inet/ipnet.c
9-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Internal Functions
9.2.3 ip_mymach()

The ip_mymach() routine returns the address of your machine, relative to a given foreign
host IP address.

Syntax

ip_addr ip_mymach(ip_addr host);

where:

host Is the IP address of the foreign host.

Usage

On a single-home host, this always returns the IP address of the sole interface. On a
router, it returns the address of the interface where packets for the host are routed.

Return value

This routine returns the IP address of the interface used to send packets to host.

Location

The ip_mymach() routine is found in the following file:

inet\ip.c
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 9-7

Internal Functions
9.2.4 iproute()

The iproute() routine performs IP routing on an outgoing IP packet.

Syntax

NET iproute(ip_addr host, ip_addr *hop1);

where:

host Is the IP address of the final destination host.

*hop1 Is the IP address to use in resolving the MAC address.

Usage

This routine takes the destination Internet address for a packet, and returns the net
interface through which to send it.

An IP address is returned (pointed to by the output parameter hop1). This is the IP
address for resolving the MAC destination address of the packets. If the target host is
on the local segment, hop1 is the same as host. Otherwise, it is the IP address of the
gateway or router through which host is accessible.

Return value

Returns one of the following values:

pointer Indicates a net structure which describes the interface of the MAC media
to use for sending the packet.

NULL If unable to route.

Location

The iproute() routine is found in the following file:

inet\ip.c
9-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Internal Functions
9.2.5 add_route()

The add_route() routine makes an entry in the route table. If the route already exists, it
is updated.

Syntax

RTMIB add_route(ip_addr dest, ip_addr mask, ip_addr nexthop, int iface, int
prot);

where:

dest Is the destination network or host IP address.

mask Is either the subnet mask for the destination network, or 0xFFFFFFFF if the
destination is a host.

nexthop Is the IP address of the next hop router.

iface Is the number of the network interface used to reach the next hop router.

prot Indicates the source of the route:
IPRP_RIP Is set through RIP.
IPRP_HELLO Is set through HELLO protocol.
IPRP_GGP Is set through GGP.
IPRP_EGP Is set through EGP.
IPRP_ICMP Is set through ICMP redirect.
IPRP_NETMGMT Is set through SNMP.
IPRP_LOCAL Is set manually.
IPRP_OTHER Is none of the above.

Return value

This routine returns a pointer to the table entry, so the caller can process it further, for
example, add metrics.

Location

The add_route() routine is found in the following file:

inet\ip.c
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 9-9

Internal Functions
9.2.6 ip_rcv()

The ip_rcv() routine is the IP receive upcall routine. It handles packets received by
network ISRs, and so on, verifies their IP headers, and performs the upcall to the upper
layer that receives the packet.

Syntax

int ip_rcv(PACKET p);

where:

p Is the received packet.

Usage

You call this routine with p->nb_prot and p->nb_plen pointing to the start of the IP
header, and with the MAC information fields filled in.

Return values

Returns one of the following values:

0 If the packet was processed successfully.

ENP_NOT_MINE If the packet was not for this destination.

ENP_ code If the packet was badly formed (see ENP_ error codes on
page A-2).

Location

The ip_rcv() routine is found in the following file:

inet\ipdemux.c
9-10 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Internal Functions
9.2.7 parse_ipad()

The parse_ipad() routine looks for an IP address in a buffer, and forms an IP address
(in network byte order) from it.

Syntax

char *parse_ipad(ip_addr *ipout, unsigned *sbits, char *stringin);

where:

*ipout Is a pointer to the IP address to set.

*sbits Is a pointer to a location that is filled in with the number of bits set in the
default subnet mask for ipout. Its value is 8, 16, or 24.

*stringin Is the buffer containing the ASCII to parse.

Return values

Returns one of the following values:

NULL If the operations was successful.

pointer A string that describes the syntax problem in the input string.

Location

The parse_ipad() routine is found in the following file:

\misclib\parseip.c
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 9-11

Internal Functions
9.2.8 pk_alloc()

The pk_alloc() routine allocates a netbuf structure and associated packet buffer that the
caller can use to store data to be transmitted or data that has been received.

This routine is used internally by the stack to pass data between the various protocol
layers.

Syntax

PACKET pk_alloc(unsigned int len);

where:

len Is the length in bytes of the packet data to be stored in the buffer.

Usage

You must lock the FREEQ_RESID before calling pk_alloc(), and unlock it after pk_alloc()
returns.

Return values

Returns one of the following values:

pointer If the allocation was successful, a pointer to the allocated netbuf structure
is returned.

NULL If allocation was unsuccessful.

Location

The pk_alloc() routine is found in the following file:

inet\pktalloc.c
9-12 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Internal Functions
9.2.9 pk_free()

The pk_free() routine returns a previously allocated netbuf structure to the pool of such
structures that is maintained by the stack.

Syntax

void pk_free(PACKET pkt);

where:

pkt Is a pointer to the netbuf structure previously allocated by pk_alloc().

Usage

Include a call to pk_free() in your network interface code in order to return a netbuf
structure and its associated packet buffer to the free pool, after the packet has been
transmitted by the network device. For a description of how this is performed, see the
description of pkt_send() on page 2-22.

You must lock the FREEQ_RESID before calling pk_alloc(), and unlock it after pk_alloc()
returns.

Return values

None

Location

The pk_free() routine is found in the following file:

inet\pktalloc.c
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 9-13

Internal Functions
9.3 ICMP routines

The ICMP routines are located in various files in the inet directory and are as follows:
• icmprcv()
• icmp_destun() on page 9-15
• icmpEcho() on page 9-16.

9.3.1 icmprcv()

The icmprcv() routine is the ICMP received packet upcall handler.

Syntax

int icmprcv(PACKET p);

where:

p Is the received packet.

Usage

Call this routine with p->nb_prot and p->nb_plen pointing to the start of the ICMP
header, and with p->fhost filled in.

Returned values

Returns one of the following values:

0 If the packet was processed successfully.

ENP_NOT_MINE If the packet was not for this destination.

ENP_ code If an error occurred (see ENP_ error codes on page A-2).

Location

The icmprcv() routine is found in the following file:

inet\icmp.c
9-14 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Internal Functions
9.3.2 icmp_destun()

The icmp_destun() routine sends an ICMP destination-unreachable packet.

Syntax

void icmp_destun(ip_addr host, struct ip *ip,
unsigned type, NET net);

where:

host Is the destination IP host.

*ip Is the IP header of the packet which triggered the
destination-unreachable packet.

type Is one of the ICMP destination-unreachable message types. It must be
one of the following defined constants:
• DSTNET

• DSTHOST

• DSTPROT

• DSTPORT

• DSTFRAG

• DSTSRC.

net Is the interface that the packet came in on.

Returned values

None.

Location

The icmp_destun() routine is found in the following file:

inet\icmp.c
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. 9-15

Internal Functions
9.3.3 icmpEcho()

The icmpEcho() routine sends an ICMP echo request.

Syntax

int icmpEcho(ip_addr host, char *data, unsigned length, unshort pingseq);

where:

host Is the host to ping (32-bit, local-endian).

*data Is the ping data. This is set to NULL in a don’t care case.

length Is the total desired length of the packet on media.

pingseq Is the ping sequence number.

Usage

This routine is callable from applications. It sends a single ping (ICMP echo request) to
the specified host. The application must provide an appropriate pingDemux() routine if
ping replies are to be checked.

Return values

Returns one of the following values:

0 If the transmission was successful.

ENP_ code If an error occurred (see ENP_ error codes on page A-2).

Location

The icmp_destun() routine is found in the following file:

inet\ping.c
9-16 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Appendix A
Error Codes

This appendix contains a list of both the standard ENP_ error codes you might encounter
while porting (see Chapter 2 TCP/IP API Functions and Chapter 5 Low-overhead UDP
Functions) and the socket error codes (see Chapter 4 Sockets). It contains the following
sections:
• ENP_ error codes on page A-2
• Socket error codes on page A-4.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. A-1

Error Codes
A.1 ENP_ error codes

The error codes listed in Table A-1 are used throughout the stack. Success is zero,
definite errors are negative numbers, and indeterminate conditions are positive
numbers. These codes are provided in ipport.h. You can modify them to wrap around
an existing system.

Note
 If you define errors with non-negative values, the stack does not work.

These error codes are typically returned by functions that return an integer. See the
function specifications (Chapter 2 TCP/IP API Functions and Chapter 5 Low-overhead
UDP Functions) for information on specific functions.

Table A-1 ENP_ error codes

Error type
Error code
(defined in ipport.h)

Return
value

Description

No errors: SUCCESS 0 Success

OK 0 Success

Nonfatal/success: ENP_SEND_PENDING

ARP_WAITING

1 ARP is holding the packet while awaiting a
response from the target host

ENP_NOT_MINE 2 The packet was of no interest (callback reply
only)

Programming errors: ENP_PARAM –10 Bad parameter

ENP_LOGIC –11 Illogical sequence of events

System errors: ENP_NOMEM –20 malloc() or calloc() failed

ENP_NOBUFFER –21 Ran out of free packets

ENP_RESOURCE

SEND_DROPPED

–22 Ran out of queueable resources OR full queue

ENP_BAD_STATE –23 TCP layer error

ENP_TIMEOUT –24 Operation did not complete in reasonable time

ENP_NOFILE –25 Expected file was missing.

ENP_FILEIO –26 File I/O error
A-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Error Codes
Net errors: ENP_SENDERR –30 Send to net failed at a lower layer

ENP_NOARPREP –31 No ARP reply for a given host

ENP_BAD_HEADER –32 Bad header at the upper layer (for callbacks)

ENP_NO_ROUTE –33 Cannot find a reasonable next IP hop

ENP_NO_IFACE –34 Cannot find a reasonable interface

ENP_HARDWARE –35 Detected a hardware failure

Table A-1 ENP_ error codes (continued)

Error type
Error code
(defined in ipport.h)

Return
value

Description
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. A-3

Error Codes
A.2 Socket error codes

Table A-2 lists the sockets errors that may be encountered when implementing ARM
sockets. They are a subset of the standard Berkeley errors. See the function
specifications in Chapter 4 Sockets for information on specific functions.

Table A-2 Socket error codes

Error code
Return
value

Description

ENOBUFS 1 Insufficient packet buffers available to complete the
operation

ETIMEDOUT 2 The operation could not be completed within the time limit

EISCONN 3 A connection is already established, so a new one cannot
be established at this time

EOPNOTSUPP 4 The requested operation, protocol, or format is not
supported

ECONNABORTED 5 The connection or connection attempt was aborted

EWOULDBLOCK 6 The requested operation would have to block in order to
complete and the socket has been marked as nonblocking

ECONNREFUSED 7 The attempted connection has been refused by the remote
host

ECONNRESET 8 The connection associated with this socket has been reset

ENOTCONN 9 The requested operation cannot be completed because the
socket is not in the connected state

EALREADY 10 The requested operation cannot be performed because a
similar operation is already in progress on this socket

EINVAL 11 The requested operation is invalid in the current socket
state, or one or more of the arguments for the request is
invalid

EMSGSIZE 12 The datagram is too large to be sent

EPIPE 13 Cannot send using this socket because it has been
shutdown for writing

EDESTADDRREQ 14 An address must be specified for t_connect() to connect to

ESHUTDOWN 15 The operation could not be completed because the socket
has been shutdown
A-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Error Codes
ENOPROTOOPT 16 The option that you have requested or tried to set using
t_setsockopt() or t_getsockopt() has not been recognized

EHAVEOOB 17 There is Out Of Band data waiting on the socket

ENOMEM 18 The socket sub-system could not allocate enough memory
to complete the requested operation

EADDRNOTAVAIL 19 The requested address is not available

EADDRINUSE 20 The requested address is already in use

EAFNOSUPPORT 21 The only address/protocol family supported is AF_INET

EINPROGRESS 22 The connect request failed because a previous connect was
already in progress

ELOWER 23 There was an error in the IP layer.

Table A-2 Socket error codes (continued)

Error code
Return
value

Description
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. A-5

Error Codes
A-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Appendix B
Editing ARM Networking .nv Files

This appendix describes the values that you can specify in .nv files. It contains the
following sections:
• About the .nv files on page B-2
• Primary .nv file parameters on page B-3
• Secondary .nv file parameters on page B-6.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. B-1

Editing ARM Networking .nv Files
B.1 About the .nv files

Some ARM networking products require various types of configuration to occur on the
target system at run time. For example:

• TCP/IP needs to know either its own IP address or whether an IP address is to be
picked from a DHCP server.

• DHCP server needs to know the IP address pools.

These values can be specified in .nv files. These files are plain text files that can be
easily read and modified by a human operator. Each data item occupies one line of text.
The name of the data item is first on the line. Every data item name ends with a colon
character. The text after the colon is the data; usually an IP address, numeric parameter,
or text string.

Note
 A pattern-match is performed on the parameter names, so the end-user must be
informed that these must not be changed.

All sample applications (Appendix C Sample Applications) read parameters from a
primary .nv file and some of these applications also read parameters from secondary .nv
file(s).

Primary .nv file
The primary file used depends upon the options that have been defined
when building a target. Any one of the following files may be used:
ether.nv Used when USE_PPP is undefined, that is, for

ethernet-compatible targets.
direct.nv Used when USE_PPP and DIRECT_RAS are

defined, that is, where PPP is used over a serial link.
dialup.nv Used when USE_PPP is defined and

DIRECT_RAS is undefined, that is, where PPP is
used over a modem.

The parameters documented in Primary .nv file parameters on page B-3
are all for use in primary .nv files.

Secondary .nv file(s)
The secondary .nv file(s) can be used by an application, depending on
which products are implemented in the application. Secondary .nv files
and their contents are described in Secondary .nv file parameters on
page B-6.
B-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Editing ARM Networking .nv Files
B.2 Primary .nv file parameters

This section describes parameters that are used in the primary .nv file. These parameters
are categorized according to the products that they support. These products are:
• TCP/IP
• DNS Client
• DHCP Server
• PPP
• Modem
• SNMP
• Webserver.

The parameter names are self-explanatory to experienced TCP/IP programmers.

B.2.1 TCP/IP

For TCP/IP, the following parameters are needed for each of the interfaces:

 Net interface: 0
IP address: 10.0.0.1
subnet mask: 255.0.0.0
gateway: 0.0.0.0
DHCP Client: NO

Note
 The Net interface: parameter specifies the interface to which the following parameters
apply. If the IP address has to be dynamically assigned via a DHCP Server, the DHCP
Client must have the value YES.

B.2.2 DNS Client

To use the DNS Client, you initialize the following fields. Each parameter contains the
IP address of a DNS Server.

DNS server: 1 - 204.156.128.1
DNS server: 2 - 204.156.128.10
DNS server: 3 - 204.156.128.20

The maximum number of DNS servers is defined by MAXDNSSERVERS in dns.h.

B.2.3 B.2.3 DHCP Server

To use the DHCP Server, you set the following parameter:
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. B-3

Editing ARM Networking .nv Files
Be local DHCP server: YES

This activates the DHCP Server. DHCP Server then picks the rest of the initialization
values from the file dhcpsrv.nv as described in Secondary .nv file parameters on
page B-6.

The DHCP Server also needs the file dhcprecs.nv for data storage, as described in
Secondary .nv file parameters on page B-6.

B.2.4 B.2.4 PPP

To use PPP, you set the following parameters:

PPP Console Logging: YES
PPP File Logging: NO
PPP keepalive: 0
PPP client timeout: 60

If VJ Compression is enabled in the source code, set:

PPP VJ request: YES

If CHAP is enabled in the source code, set:

CHAP secret: secret_words
require CHAP: NO

If PAP is enabled in the source code, set:

require PAP: NO

B.2.5 Modem

To use the modem code, set the following values:

Phone Number: your_isp
User Name: your_name
Password: your_password
Modem Init: AT&D2&C1
Idle line timeout: 600
login file: login.nv
log server file: server.nv
B-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Editing ARM Networking .nv Files
B.2.6 SNMP

If SNMP agent is enabled, the following system parameters are needed:

SNMP Get Community: public
SNMP Set Community: public
SNMP sysContact: Somebody
SNMP sysName: ARM_networking_print_server
SNMP sysLocation: Lab
SNMP Trap target1: 10.0.0.85
SNMP Trap Community1: public

B.2.7 Webserver

Webserver needs to know the directory where HTML content is located:

http root: /
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. B-5

Editing ARM Networking .nv Files
B.3 Secondary .nv file parameters

This section describes parameters that are used in secondary .nv files. These parameters
are categorized according to the .nv file that they are used in. These files are:

dhcpsrv.nv This file is described in Porting the ARM DHCP Server Version
1.6 Programmer's Guide, supplied separately with the ARM
DHCP Server product.

dhcprecs.nv This file is described in Porting the ARM DHCP Server Version
1.6 Programmer's Guide, supplied separately with the ARM
DHCP Server product.

login_file.nv The name of this file is specified after login file: in the primary
.nv file. The use of this file is described with the do_script()
function in the Porting PPP Version 1.6 Programmer's Guide.
This guide is supplied separately with the ARM PPP product.
B-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Appendix C
Sample Applications

This chapter describes the sample applications provided with the TCP/IP sources. It
contains the following sections:
• Requirements on page C2
• Building projects on page C3
• Running the examples on page C4
• Descriptions of the examples on page C5.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. C1

Sample Applications
C.1 Requirements

In order to use the sample projects supplied, you need the following:

• ARM Development Suite (ADS), version 1.0.1

• ARM Integrator/AP fitted with an Integrator/CM7TDMI core module

• ARM Ethernet Kit for the ARM Development Board (Intel PRO/100+
Management Adapter)

• ARM MultiICE for downloading to the board.

If you are using the ARM PPP sources, you also need a Hayes-compatible modem and
a PPP server to dial into.
C2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sample Applications
C.2 Building projects

A single CodeWarrior project file is supplied for each example application. These
project files have an .mcp file extension. Project files can be used to build one or more
targets.

All project files build a target supporting 16-bit Thumb code for a little-endian system,
full debug and Ethernet connectivity. Some project files also provide a second target
that uses PPP rather than the Ethernet drivers.

Note
 Take care when selecting options in CodeWarrior, as any changes made are saved
immediately to the project file. If the project file is closed and reopened, any changes
made in the earlier invocation persist. For more information on using CodeWarrior, see
the ADS CodeWarrior IDE Guide.

C.2.1 Project files

The project files must be opened with CodeWarrior. There are two ways to open the
files:

• Select the project file from Windows Explorer, assuming that the appropriate
Open With link to CodeWarrior is made.

• Run CodeWarrior, and select the Project File from the File → Open menu option.

When the project is open, a project window is displayed. If there is more than one target,
use the drop-down list to select the target required (PPP or Ethernet).

You can then build the executable image by selecting Make from the Project menu, or
pressing Function Key F7.

C.2.2 Project folders

Working folders are used for each project. These are created for each CodeWarrior
project when it is loaded in the folder containing the .mcp file. The folder has the same
name as the project file, with _Data appended. Another sub-folder is also created for
each target in the project. This holds the executable .axf and another folder that contains
the object files for the target.

C.2.3 Cleaning up after a build

To clean up completely after a build, delete the folder called target_Data from the folder
containing the project file.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. C3

Sample Applications
C.3 Running the examples

Before you can run the program on the Integrator, you must:

1. Start Multi-ICE and configure it using Auto-Configure.

2. Use a cross-over cable to connect Serial Port A of the Integrator/AP to a COM: port
on your workstation.

3. Use a terminal emulator to monitor the COM: port for diagnostic messages.

Serial A is configured to run at 38400 baud, and uses 8 data bits, 1 stop bit, and no
parity.

For PPP examples, connect your modem to Serial Port B on the Integrator/AP.

You can download the target into the Integrator using CodeWarrior by selecting Debug
from the CodeWarrior Project menu. The startup commands and sequences for AXD,
the debug tool, are defined in the CodeWarrior project, and use command files provided.

The operation of CodeWarrior, MultiIce and AXD are described in the documentation
provided with the ARM Developer Suite (ADS).

Figure C-1 Running PPP examples

��������	�
�	
������
���

�	
������
���

	���

�����	��
	��������

����	����	
C4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Sample Applications
C.4 Descriptions of the examples

The following sections contain detailed descriptions of each sample application. The
demonstration projects shipped with the sources are:

chargen A simple server application.

maildemo An implementation of a simple SMTP client that sends an email message.

menus An interactive menus system that is useful for debugging during porting.

C.4.1 chargen

The chargen project provides a simple demonstration of how to implement a server. The
chargen server listens for connections on TCP port 19. When a connection is
established, chargen continuously sends lines of test data (a swirling printer test pattern,
with line numbers).

When the connection is closed, the chargen server returns to waiting for connections.

C.4.2 maildemo

The maildemo project demonstrates how to write a simple client program. The client:
• connects to the SMTP port (TCP port 25) of a known mail server
• exchanges some messages with the sendmail that is listening on that port
• sends an email message to a preconfigured destination.

To configure the mail server IP address and the To: and From: addresses of the email
message, modify the values defined near the top of \maildemo\main.c before you build
the project.

C.4.3 menus

The menus project is intended as a debugging aid during porting. It presents a menu of
options that allow you to exercise different sections of the stack in a controlled manner.

The menus project cannot be used with the debug console because menus relies on being
able to poll the keyboard for data and RDI does not support this operation. To work
around this limitation, the UART driver is used as a debug interface by including
ttyio.c and uart.c in the project, and by configuring ipport.h to map the print
functions onto those implemented as functions in ttyio.c and uart.c.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. C5

Sample Applications
C6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Appendix D
The i8255x Ethernet Driver

This appendix describes the i8255x Ethernet Driver for the ARM Network Protocol
Suite. It contains the following sections:
• About the i8255x driver on page D-2
• Build options on page D-4
• Porting the i8255x driver on page D-6.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. D-1

The i8255x Ethernet Driver
D.1 About the i8255x driver

The Intel 10/100 Mbit Ethernet Family is a common, embeddable, PCI Ethernet chip
set, that is also used in the Intel PRO/100+ series of PCI Ethernet cards. The range
includes the 82557, 82558, and 82559 controllers, that can be coupled with various
PHY parts.

The ARM i8255x driver interfaces between any of these controllers and the ARM
Network Protocol Suite. It was developed on the Integrator/AP development platform,
using several different 8255x cards, version 1.1 of the Intel 8255x documentation, and
the ARM Firmware Suite, version 1.1.

It is intended to be easily portable to target hardware.

This section describes particular features of the i8255x driver.

Compatibility The i8255x driver uses none of the additional features of the
i82558 and i82559 controllers, and is therefore compatible with
the whole range.

PCI bus The PCI Library from the ARM Firmware Suite is used to find all
the i8255x devices on the Integrator PCI bus. Multiple devices are
allowed, and each device is mapped to a separate interface in the
TCP/IP stack.

Note
 Early builds of the FPGAs on the Integrator had problems that affected the PCI bus.
Ensure that up-to-date versions are used.

Memory structure
Both receive and transmit are performed in flexible mode, meaning that
the descriptors for the frames are separate from the descriptors for the
data buffers. There is one data buffer for each frame.
Contrary to the documentation for the controllers, the end-of-list bits are
not set in either the frame descriptors or the buffer descriptors. Rather, the
descriptors are linked together as a circular FIFO, and the device never
enters a No Resources condition. If there are no free descriptors, frames
are simply discarded.

Missing features
No power-management features are implemented, TCO functionality is
not used, and there is no support for the Intel Adaptive Technology. The
checksum offload feature of the 82559 is not used.
D-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

The i8255x Ethernet Driver
Other features
The Intel-suggested workaround for a receiver lock-up problem with
some controllers is implemented. This requires a call-back every second
from the timer tick handler. This also updates the statistics.
There is a function to put a particular device into promiscuous mode, but
this is not currently used.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. D-3

The i8255x Ethernet Driver
D.2 Build options

This section describes the build options for the i8255x driver:
• Statistics
• Memory architecture
• Other tuneable values on page D-5.

Note
 ARM currently provides the i8255x driver in object form. Consequently, build options
are not tuneable. Please refer to .../readme.txt to find out about the options used when
building the i8255x drivers supplied with this release.

D.2.1 Statistics

You can include code in the build to gather statistics on Ethernet errors from the
controller. The code also keeps totals of bytes transmitted, for example. This is
controlled by the macro NET_STATS in ipport.h.

D.2.2 Memory architecture

The driver requires a pool of memory that is accessible by both the CPU and the
Ethernet controller. This must be uncached, unbuffered memory.

There are two architecture options available to the driver:
• shared packet
• private buffer.

The pre-processor macro USE_I8255X_SHARED_PACKETS selects between them.

If the shared packet architecture is in use (USE_I8255X_SHARED_PACKETS is defined in
ipport.h), all of the large packets (bigbufsiz) on the IP stack must reside in an area of
memory that can be accessed by both the Ethernet MAC attached to the PCI bus, and
the processor. This memory must be uncached and unbuffered. The Ethernet MAC uses
DMA to directly read or write the data in the packets buffer area. The advantage of the
shared packet architecture is that data need not be copied into the IP stack buffers. The
disadvantage is that the packet memory is uncached, and so all accesses to packet
structures (for example, for checksum calculation) are external accesses.

If the private buffers architecture is in use (USE_I8255X_SHARED_PACKETS not defined), the
Ethernet MAC has dedicated memory assigned to it for the transmit and receive buffer
space, and data is copied in to or out of the packets on the IP stack using memcpy(). The
dedicated memory must still be uncached and unbuffered, but the pool of packets on the
IP stack can be fully cached.
D-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

The i8255x Ethernet Driver
As shipped, the driver can use either the 512KB of SSRAM on the Integrator/AP, at
address 0x28000000, or the 256KB of unused core module SDRAM at 0x80000000.
Uncomment either USE_I8255X_SDRAM or USE_I8255X_SSRAM in i8255x.h. If you are using
a cached processor, ensure that the cacheable and bufferable bits are clear in the
appropriate MMU descriptor or MPU register.

D.2.3 Other tuneable values

The other values you can change are:

MAX_I8255X
This sets the number of i8255x devices that can be supported by the
driver. Each device configured requires a static data structure, so you
adjust this value to reflect the actual number of devices in your system.

I8255X_TX_BUFFERS
This number governs the number of transmit descriptors and buffers used
by the driver. Higher values allow higher performance, at a cost of using
more memory.

I8255X_RX_BUFFERS
This number governs the number of receive descriptors and buffers used
by the driver. If you are using the shared packet architecture, one
bigbufsiz packet is pre-allocated per receive descriptor, so you must
ensure that the system has more than I8255X_RX_BUFFERS bigbufsiz
packets available. Higher values for I8255X_RX_BUFFERS allow higher
performance and the lower possibility of having to drop incoming
packets, but at a cost of using more memory.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. D-5

The i8255x Ethernet Driver
D.3 Porting the i8255x driver

This section lists considerations for porting the i8255x driver:
• Driver memory allocation
• µHAL.

Note
 ARM currently provides the i8255x driver in object form. There is no source code
provided as a starting point for porting.

D.3.1 Driver memory allocation

Data areas that need to be shared between the Ethernet MAC and the IP stack are
allocated using the i8255x_alloc() function. As shipped, this function manages the area
of memory being used as a heap, using a very simple allocation algorithm that assumes
the memory is never freed.

TO_PCI_ADDRESS This macro translates from the virtual address of a memory area
allocated by i8255x_alloc() to the physical address of the memory
area, as seen from the PCI bus.

TO_CPU_ADDRESS This macro translates the physical address (as seen from the PCI
bus) of a memory area to the virtual address that the processor
would use to access that memory.

D.3.2 µHAL

If your target system does not support µHAL, you must provide routines that implement
equivalent functionality to the following ARM Firmware Suite 1.1 functions:
• uHALr_PCIHost()

• PCIr_ForEveryDevice()

• uHALr_EnableInterrupt()

• uHALr_DisableInterrupt()

• uHALr_FreeInterrupt()

• uHALr_RequestInterrupt()

• uHALr_PCICfgWrite16()

• uHALr_PCICfgRead16()

• uHALr_PCICfgWrite32()

• uHALr_PCICfgRead32()

• uHALr_PCICfgWrite8()
D-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

The i8255x Ethernet Driver
• uHALr_PCICfgRead8()

• uHALr_PCIIORead32().

Please refer to the documentation that accompanies the ARM Firmware Suite for details
of the functionality provided by these routines.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. D-7

The i8255x Ethernet Driver
D-8 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Glossary

ADS ARM Developer Suite.

API Application Program Interface.

ARP Address Resolution Protocol.

AXD ARM eXtendable Debugger.

DHCP Dynamic Host Configuration Protocol.

DMA Direct Memory Access.

DNS Domain Name System.

EOT End Of Transmission.

FIFO First-In, First-Out.

FTP File Transfer Protocol.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

ICMP Internet Control Message Protocol.

IP Internet Protocol.

ISR Interrupt Service Routine.

LAN Local Area Network.
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. Glossary-1

Glossary
MAC Media Access Control.

MIB Management Information Base.

MMU Memory Management Unit.

MPU Memory Protection Unit.

NIC Network Interface Controller.

NVRAM Non-Volatile Random Access Memory.

PPP Point-to-Point Protocol.

RDI Remote Debug Interface.

RFC Request For Comments.

RIP Routing Information Protocol.

RTOS Real-Time Operating System.

SDRAM Synchronous Dynamic Random Access Memory.

SDT Software Development Toolkit.

SLIP Serial Line Internet Protocol.

SMTP Simple Mail Transfer Protocol.

SNMP Simple Network Management Protocol.

SSRAM Synchronous Static Random Access Memory.

TCO Total Cost of Ownership.

TCP Transmission Control Protocol.

TFTP Trivial File Transfer Protocol.

UART Univeral Asynchronous Reveiver/Transmitter.

UDP User Datagram Protocol.

VFS Virtual File System.

VJ Van Jacobson.
Glossary-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
add_route() 10--9
add_user() 9--24, 9--25
app_ping.c 9--2
ARM directories 8--2

\armthumb 2--5, 2--14, 3--2, 8--2
\pid7tdm 2--14, 3--2, 8--2

ARM Firmware Suite 8--8
ARM TCP/IP requirements 1--4

memory 1--4
operating system 1--6

armsd.ini 8--3
ARM-specific routines 8--2
ARP routines 10--2

arprcv() 10--3
etainit() 10--2
make_arp_entry() 10--2

arprcv() 10--3

B
blocklist() 9--3

C
Callback function 7--3, 7--6
calloc() 3--8, 9--2
ccksum.c 3--3
check_permit() 9--25
cksum() 3--3, 8--3
cksum.s 3--3, 8--3
clock() 2--8
clock.c 2--8, 8--5
con_page() 9--7
Critical section 2--16
crit.c 8--5
cticks 2--8

D
Debugging aids 2--6

dprintf() 2--7
dtrap() 2--6
initmsg() 2--7
NPDEBUG 2--7

Default router, setting 2--18
DHCP client functions 4--2

dhc_discover() 4--3
dhc_halt() 4--3, 4--5
dhc_init() 4--2
dhc_second() 4--2, 4--6
dhc_set_callback() 4--5

dhcpclnt.c 4--2
dhcputil.c 4--2
dhc_discover() 4--3
dhc_halt() 4--3, 4--5
dhc_init() 4--2
dhc_second() 4--2, 4--6
dhc_set_callback() 4--5
Domain Name Service (DNS) 9--19
Dotted-quad notation 9--18, 9--19
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. Index-1

Index
dprintf() 2--7, 3--4, 9--3, 9--5, 9--8,
9--11

dputchar() 9--5
dtrap() 2--6, 3--5, 8--3, 9--11
dtrap.s 8--3

E
Editing .nv files B--1
ENP_ error codes A--2
ENTER_CRIT_SECTION() 3--6
errno 5--2, 5--7, 5--18
Error codes A--2, A--4
etainit() 10--2
EWOULDBLOCK 5--15, 5--20
exceptfds 5--16
EXIT_CRITICAL_SECTION(). 2--17
EXIT_CRIT_SECTION() 3--6

F
farp 9--23
fcount 9--23
FD_CLR() 5--17
FD_ISSET() 5--17
fd_set structures

FD_CLR() 5--17
FD_ISSET() 5--17
FD_SET() 5--17
FD_ZERO() 5--17

FD_SET() 5--17
FD_ZERO() 5--17
fping 9--23
free() 3--9, 9--2
Fully-qualified domain name 9--19

G
Glue layer

coding task control 2--14
TCP 2--15

Glue layer coding 2--14

H
hexdump() 9--8
htonl() 2--5
htons() 2--5

I
ICMP routines 10--14

icmpEcho() 10--16
icmprcv() 10--14
icmp_destun() 10--15

icmpEcho() 10--16
icmprcv() 10--14
icmp_destun() 10--15
inet_timer() 9--21
INICHE_LIBS (macro) 9--4
initboard.c 8--7
initmsg() 2--7, 3--4
Integrator/AP-specific routines 8--4
Internal functions 10--1
in_reshost() 9--19
in_utils.c 9--2, 9--6

con_page() 9--7
hexdump() 9--8
nextarg() 9--9
ns_printf() 9--10
panic() 9--11
print_eth() 9--12
print_ipad() 9--13
print_uptime() 9--13
std_in() 9--14
std_out() 9--15
sysuptime() 9--15
uslash() 9--16

in_utils.h 9--4
IP

addresses 2--18
end user 2--19
porting programmer 2--18

IP routines 10--4
add_route() 10--9
iproute() 10--8
ip2mac() 10--6
ip_mymach() 10--7
ip_rcv() 10--10
ip_write() 10--5
parse_ipad() 10--11

pk_alloc() 10--12
pk_free() 10--13

ipport.c 2--14, 3--2
ipport.h 2--2, 2--4, 5--18, 9--4

CPU architecture 2--5
creating 2--4
debugging aids 2--6
definitions in 2--8, 2--9, 2--14,

2--16, 3--2, 3--4, 3--7, 3--8, 3--9,
9--2

errors defined in 5--2, 5--4, 5--5,
5--6, 5--8, 5--9, 5--10, 5--13,
5--14, 5--19, 5--21, 5--24, A--2

optional compilation switches 2--9
pre-emption and protection 2--6
stack features and options 2--8
standard macros and definitions

2--4
timers and multitasking 2--8

iproute() 10--8
ip2mac() 10--6
ip_addr 9--18, 9--19
ip_mymach() 10--7
ip_rcv() 10--10
ip_write() 10--5
irq.c 2--16
istring.c

strcmp() 9--4
stricmp() 9--4
stristr() 9--4
strncmp() 9--4
strnicmp() 9--4
strstr() 9--4

i8255x Ethernet driver D--1
build options D--4
error statistics D--4
general configurable values D--5
memory allocation D--6
memory architecture D--4
porting D--6
uHAL D--6

i8255x.c 8--6

L
LOCK_NET_RESOURCE() 2--17,

3--7
lowlevel.s 8--6
Index-2 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Index
lswap() 2--5

M
macloop.c 2--18
make_arp_entry() 10--2
malloc() 3--8
MAXNETS 3--14
MAX_USERLENGTH 9--24
memman.c 3--8, 3--9

blocklist() 9--3
npalloc() 9--2
npfree() 9--2

menulib.c 9--3
menus demo 9--2, 9--14
menus.c 9--3
MIB-II 3--18
Modem functions 4--1
MSG_DONTROUTE 5--18
MSG_OOB 5--18

N
NET structure 3--15
netbuf.h 3--22
netexit() 9--11
Network interfaces 3--14

n_close() 3--17
n_init() 3--18
n_reg_type() 3--20
n_stats() 3--21
pkt_send() 3--22
raw_send() 3--25

Network interfacesNET structure
3--15

Network resource locks 2--17
NET_RESID 3--7
net.h 3--14, 3--15, 3--16, 3--19
net[] structure

driver-specific 3--16
IP addressing information 3--16
MIB information 3--16

nextarg() 9--9
nextcarg.c 9--17

nextcarg() 9--17
Non-portable files 2--3
npalloc() 3--8, 9--2

NPDEBUG 2--7
npfree() 3--9, 9--2
nrmenus.c 9--3
ns_printf() 9--10, 9--15
ntohl() 2--5
ntohs() 2--5
NUM_NETUSERS 9--24
nvparms.c 9--3
n_close() 3--17
n_defgw 2--18
n_init() 2--18, 3--18
n_ipaddr 2--18
n_mib 3--23, 3--25
n_reg_type() 3--18, 3--20
n_stats() 3--21

O
olicom.c 3--16, 3--19
Optional compile switches 2--9
Out-of-band 5--16, 5--18

P
Packet buffers 7--2, 7--4
panic() 3--10, 9--11
parseip.c 9--18

parse_ipad() 9--18
parse_ipad() 10--11
ping 9--2
pkt_send() 3--22
pk_alloc() 10--12
pk_free() 10--13
Portable files 2--3
Pre-emption and protection 2--6, 2--16

critical sections 2--16
network resource locks 2--17

prep_ifaces() 3--11, 3--18, 3--19
printf() 3--4
print_eth() 9--12
print_ipad() 9--13
print_uptime() 9--13

R
raw_send() 3--25

readfds 5--16
reg_type 3--18
reshost.c 9--19

in_reshost() 9--19
RH_BLOCK 9--19
RH_VERBOSE 9--19
rvcdq 3--18
RXQ_RESID 3--7

S
Sample applications C--1

building projects C--3
chargen C--5
maildemo C--5
menus C--5
project files C--3
project folders C--3
requirements C--2
running C--4

Sample package directories 1--7
Sample programs 1--8
send_next_from_q() 3--23
sleep_chan() 2--16
sleep() 2--16
Socket 5--4
Socket error codes A--4
Socket functions

t_accept() 5--4
t_bind() 5--5
t_connect() 5--6
t_errno() 5--7
t_getpeername() 5--8
t_getsockname() 5--9
t_getsockopt() 5--10
t_listen() 5--13
t_recvfrom() 5--14
t_recv() 5--14
t_select() 5--16
t_sendto() 5--18
t_send() 5--18
t_setsockopt() 5--19
t_shutdown() 5--21
t_socketclose() 5--24
t_socket() 5--22

Sockets 5--1
API reference 5--3
identifying 7--7
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. Index-3

Index
implementation 5--2
TCP Zero-copy API extension 7--2

socket.h 5--11, 5--20, 5--22, 5--23
splnet() 2--16
splx() 2--16
Stack 2--8
stdio.h 2--4
std_in() 9--14
std_out() 9--15
strcat() 9--4
strchr() 9--4
strcmp() 9--4
strcpy() 9--4
stricmp() 9--4
strilib.c 9--4
stristr() 9--4
strlen() 9--4
strlib.c 9--4
strncmp() 9--4
strncpy() 9--4
strnicmp() 9--4
strstr() 9--4
struct net 3--14
Subnet mask, setting 2--18
sysuptime() 9--15

T
Task control 2--14

superloop method 2--14
TCP Zero-copy API 7--2

functions 7--8
receiving data 7--6
sending data 7--4
tcp_pkfree() 7--9
tcp_pktalloc() 7--8
tcp_xout() 7--9

tcpport.c 2--15
tcpport.h 5--2, 5--11
tcp_echo.c 9--4
tcp_pktalloc() 7--2, 7--8
tcp_pktfree() 7--2, 7--9
tcp_sleep() 3--12, 3--13
tcp_wakeup() 3--12, 3--13
tcp_xout() 7--3, 7--9
TCP/IP functions 3--2

cksum() 3--3
dprintf() 3--4

dtrap() 3--5
ENTER_CRIT_SECTION() 3--6
EXIT_CRIT_SECTION() 3--6
initmsg() 3--4
LOCK_NET_RESOURCE() 3--7
npalloc() 3--8
npfree() 3--9
panic() 3--10
prep_ifaces() 3--11
tcp_sleep() 3--12
tcp_wakeup() 3--13
UNLOCK_NET_RESOURCE()

3--7
TCP/IP, testing 2--20
Testing 2--20
testmenu.c 9--23
timeouts.c 9--21
Timers and multitasking 2--8
tk_yield() 2--14, 3--13
ttyio.c 2--7, 3--4, 9--5
t_accept() 5--4
t_bind() 5--5
t_connect() 5--6
t_errno() 5--4, 5--7, 5--9, 5--13, 5--14,

5--18, 5--24
t_getpeername() 5--8
t_getsockname() 5--9
t_getsockopt() 5--10
t_listen() 5--13
t_recvfrom() 5--14
t_recv() 5--14
t_select() 5--16

fd_set structures 5--17
t_sendto() 5--18
t_send() 5--18

flags 5--18
t_send() flags

MSG_DONTROUTE 5--18
MSG_OOB 5--18

t_setsockopt() 5--19, 7--3
t_shutdown() 5--21
t_socketclose() 5--24
t_socket() 5--2, 5--22

U
uartio.c 8--7
uart.c 2--7

UDP functions 6--2
udp_alloc() 6--2
udp_close() 6--3
udp_free() 6--4
udp_open() 6--5
udp_send() 6--6
udp_socket() 6--7

udp_alloc() 6--2
udp_close() 6--3
udp_echo.c 9--5
udp_free() 6--4
udp_open() 6--5
udp_send() 6--6
udp_socket() 6--7
udp.c 6--2
UNIX kernels 2--16
UNLOCK_NET_RESOURCE()

2--17, 3--7
userpass.c 9--24

add_user() 9--24
check_permit() 9--25

userpass.h 9--24, 9--25
uslash() 9--16

W
wakeup_chan() 2--16
wakeup() 2--16
writefds 5--16

Directories
\armthumb 1--7, 2--5, 2--14, 3--2, 8--2
\chargen 1--7
\docs 1--7
\inet 1--7, 2--3, 8--3, 9--2
\loopback 1--7
\maildemo 1--7
\menus 1--7
\misclib 9--1
\pid7tdm 1--7, 2--14, 3--2, 8--2
\tcp 1--7, 2--3
\uHAL 8--8
Index-4 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

Index
Symbols
.nv files

configuration values B--2
DHCP Server parameters B--3
DNS Client parameters B--3
editing B--1
modem parameters B--4
PPP parameters B--4
primary B--2
SNMP parameters B--5
TCP/IP parameters B--3
Webserver parameters B--5
ARM DUI 0144B Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. Index-5

Index
Index-6 Copyright © 1998-2001 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0144B

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on ARM TCP/IP
	Feedback on this book

	Introduction
	1.1 A typical embedded networking stack
	1.1 ARM TCP/IP requirements
	1.1.2 Memory requirements
	1.2.1 Operating system requirements

	1.3 Sample package directories
	1.2 Sample programs

	TCP/IP Porting
	3.1 Porting procedure
	3.2 Portable and nonportable files
	3.2.1 Portable files
	3.2.2 Nonportable files

	3.3 Creating the IP port file
	3.3.1 The ipport.h file
	3.3.2 Standard macros and definitions
	3.3.3 CPU architecture
	3.3.4 Pre-emption and protection
	3.3.5 Debugging aids
	3.3.6 Timers and multitasking
	3.3.7 Stack features and options
	3.3.8 Optional compilation switches

	3.4 Coding the glue layer
	3.4.1 Task control
	3.4.2 TCP
	3.4.3 Implementing pre-emption and protection

	3.5 Specifying IP addresses
	3.5.1 Porting programmer IP issues
	3.5.2 End user IP issues

	3.6 Testing the TCP/IP port

	TCP/IP API Functions
	2.1 User-provided TCP and IP functions
	1.0.1 cksum()
	1.0.2 dprintf() and initmsg()
	1.0.3 dtrap()
	1.0.4 ENTER_CRIT_SECTION() and EXIT_CRIT_SECTION()
	1.0.5 LOCK_NET_RESOURCE() and UNLOCK_NET_RESOURCE()
	2.1.1 npalloc()
	2.1.2 npfree()
	1.2.6 panic()
	1.2.7 prep_ifaces()
	2.1.3 tcp_sleep()
	1.3.8 tcp_wakeup()

	2.2 Network interfaces
	2.0.9 The NET structure
	2.2.1 n_close()
	2.2.2 n_init()
	2.2.3 n_reg_type()
	2.2.4 n_stats()
	2.2.5 pkt_send()
	2.2.6 raw_send()

	DHCP Client Functions
	3.1 DHCP client functions
	3.1.1 dhc_init()
	3.1.2 dhc_discover()
	3.1.3 dhc_set_callback()
	3.1.4 dhc_halt()
	3.1.5 dhc_second()

	Sockets
	4.1 ARM implementation of sockets
	4.2 Socket API reference
	4.2.1 t_accept()
	4.2.2 t_bind()
	4.2.3 t_connect()
	4.2.4 t_errno()
	4.2.5 t_getpeername()
	4.2.6 t_getsockname()
	4.2.7 t_getsockopt()
	4.2.8 t_listen()
	4.2.9 t_recv() and t_recvfrom()
	4.2.10 t_select()
	4.2.11 t_send() and t_sendto()
	4.2.12 t_setsockopt()
	4.2.13 t_shutdown()
	4.2.14 t_socket()
	4.2.15 t_socketclose()

	Low-overhead UDP Functions
	5.1 UDP functions
	5.1.1 udp_alloc()
	5.1.2 udp_close()
	5.1.3 udp_free()
	5.1.4 udp_open()
	5.1.5 udp_send()
	5.1.6 udp_socket()

	The TCP Zero-copy API
	6.1 About the TCP Zero-copy API
	6.1.1 Content of the API

	6.2 Sending data with the TCP Zero-copy API
	6.2.1 Allocating a packet buffer
	6.2.2 Filling the allocated buffer with data
	6.2.3 Sending the packet

	6.3 Receiving data with the TCP Zero-copy API
	6.3.1 Writing a callback function
	6.3.2 Registering the callback function

	6.4 TCP Zero-copy API reference
	6.4.1 tcp_pktalloc()
	6.4.2 tcp_pktfree()
	6.4.3 tcp_xout()

	ARM-specific Functions
	7.1 ARM directories
	7.1.1 ARM-specific routines
	7.1.2 Integrator/AP-specific routines

	7.2 ARM Firmware Suite
	7.2.1 Example

	Miscellaneous Library Functions
	8.1 Description of misclib files
	8.1.1 app_ping.c
	8.1.2 in_utils.c
	8.1.3 memman.c
	8.1.4 menus.c, menulib.c, and nrmenus.c
	8.1.5 nextcarg.c
	8.1.6 nvparms.c
	8.1.7 parseip.c
	8.1.8 reshost.c
	8.1.9 strilib.c
	8.1.10 strlib.c
	8.1.11 tcp_echo.c
	8.1.12 timeouts.c
	8.1.13 testmenu.c
	8.1.14 ttyio.c
	8.1.15 udp_echo.c
	8.1.16 userpass.c

	8.2 in_utils.c
	8.2.1 con_page()
	8.2.2 hexdump()
	8.2.3 nextarg()
	8.2.4 ns_printf()
	8.2.5 panic()
	8.2.6 print_eth()
	8.2.7 print_ipad()
	8.2.8 print_uptime()
	8.2.9 std_in()
	8.2.10 std_out()
	8.2.11 sysuptime()
	8.2.12 uslash()

	8.3 nextcarg.c
	8.3.1 nextcarg()

	8.4 parseip.c
	8.4.1 parseip()

	8.5 reshost.c
	8.5.1 in_reshost()

	8.6 timeouts.c
	8.7 testmenu.c
	8.8 userpass.c
	8.8.1 add_user()
	8.8.2 check_permit()

	Internal Functions
	9.1 ARP routines
	9.1.1 etainit()
	9.1.2 make_arp_entry()
	9.1.3 arprcv()

	9.2 IP routines
	9.2.1 ip_write()
	9.2.2 ip2mac()
	9.2.3 ip_mymach()
	9.2.4 iproute()
	9.2.5 add_route()
	9.2.6 ip_rcv()
	9.2.7 parse_ipad()
	9.2.8 pk_alloc()
	9.2.9 pk_free()

	9.3 ICMP routines
	9.3.1 icmprcv()
	9.3.2 icmp_destun()
	9.3.3 icmpEcho()

	Error Codes
	A.1 ENP_ error codes
	A.2 Socket error codes

	Editing ARM Networking .nv Files
	B.1 About the .nv files
	B.2 Primary .nv file parameters
	B.2.1 TCP/IP
	B.2.2 DNS Client
	B.2.3 B.2.3 DHCP Server
	B.2.4 B.2.4 PPP
	B.2.5 Modem
	B.2.6 SNMP
	B.2.7 Webserver

	B.3 Secondary .nv file parameters

	Sample Applications
	C.1 Requirements
	C.2 Building projects
	C.2.1 Project files
	C.2.2 Project folders
	C.2.3 Cleaning up after a build

	C.3 Running the examples
	C.4 Descriptions of the examples
	C.4.1 chargen
	C.4.2 maildemo
	C.4.3 menus

	The i8255x Ethernet Driver
	D.1 About the i8255x driver
	D.2 Build options
	D.2.1 Statistics
	D.2.2 Memory architecture
	D.2.3 Other tuneable values

	D.3 Porting the i8255x driver
	D.3.1 Driver memory allocation
	D.3.2 µHAL

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Directories
	Symbols

