
Porting PPP
Version 1.6

Programmer’s Guide
Copyright © 1998-2001 ARM Limited. All rights reserved.
ARM DUI 0143B

Porting PPP
Programmer’s Guide

Copyright © 1998-2001 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, PrimeCell, Angel, ARMulator, EmbeddedICE, ModelGen, MultiICE, ARM7TDMI,
ARM7TDMI-S, ARM9TDMI, TDMI, and STRONG are trademarks of ARM Limited.

Portions of source code are provided under the copyright of the respective owners, and are acknowledged in
the appropriate source files:

Copyright © 1998-2000 by InterNiche Technologies Inc.

Copyright © 1984, 1985, 1986 by the Massachusetts Institute of Technology.

Copyright © 1982, 1985, 1986 by the Regents of the University of California. All Rights Reserved.
Redistribution and use in source and binary forms are permitted provided that the above copyright notice and
this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other
materials related to such distribution and use acknowledge that the software was developed by the University
of California, Berkeley. The name of the University may not be used to endorse or promote products derived
from this software without specific prior written permission.

Copyright © 1988, 1989 by Carnegie Mellon University. All Rights Reserved. Permission to use, copy,
modify, and distribute this software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of CMU not be used in advertising
or publicity pertaining to distribution of the software without specific, written prior permission.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole or any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with prior written permission of the copyright holder.

The product described in this document is subject to continuous development and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Change History

Date Issue Change

Sept 2000 A First release of indepenedent PPP guide (ARM DUI 0143) for software version 1.6

June 2001 B Second release
ii Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for
any loss or damage arising from the use of any information in this document, or any error or omission in such
information, or any incorrect use of the product.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. iii

iv Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Contents
Porting PPP Programmer’s Guide

Preface
About this book .. vi
Feedback ... ix

Chapter 1 Introduction
1.1 A typical embedded networking stack ... 1-2
1.2 What is PPP? .. 1-4
1.3 ARM PPP requirements .. 1-7
1.4 Sample package directory and programs ... 1-11

Chapter 2 PPP Porting
2.1 Overview of the porting procedure .. 2-2
2.2 Porting PPP .. 2-3
2.3 Testing PPP .. 2-9

Chapter 3 PPP API Functions
3.1 Overview of user-provided PPP functions ... 3-2
3.2 User-provided PPP functions .. 3-3
3.3 Serial line drivers .. 3-10
3.4 PPP entry points ... 3-18
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. v

Contents
Chapter 4 Modem Functions
4.1 dialer.c .. 4-2
4.2 login.c ... 4-19
4.3 mdmport.c ... 4-25

Appendix A Testing the PPP stack
A.1 Setting up the PC ... A-2
A.2 Build and networking considerations .. A-3
A.3 Connecting to the Integrator board ... A-4
A.4 Routing ... A-5

Glossary
vi Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Preface

This preface introduces the ARM PPP implementation and its documentation.
It contains the following sections:

• About this book on page viii

• Feedback on page xi.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. vii

Preface
About this book

This guide is provided with the ARM Portable PPP stack sources.

It is assumed that the ARM PPP sources are available as a reference. It is also assumed
that the reader has access to a C language programmer’s guide and the ARM
Architecture Reference Manual.

Intended audience

This Programmer’s Guide is written for a moderately-experienced C programmer, with
a general understanding of PPP, who wants to port the stack to a new environment.

Using this book

This guide is organized into the following chapters:

Chapter 1 Introduction

Read this chapter to learn about porting in general and the system
requirements for using PPP stack sources.

Chapter 2 PPP Porting

Read this chapter for a description of PPP, and how to use the ARM PPP
code to allow the ARM TCP/IP code to transfer data over serial lines.

Chapter 3 PPP API Functions

Read this chapter for a description of the user-provided functions and
other entry points required for porting the ARM PPP stack.

Chapter 4 Modem Functions

Read this chapter to learn how to interface a Hayes-compatible modem to
the PPP stack.

Appendix A Testing the PPP stack

Read this appendix to learn how to test the ARM PPP stack against a
Windows NT machine.
viii Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

typewriter bold

Denotes language keywords when used outside example code.

italic Introduces special terminology, denotes internal cross-references, and
citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate.

Further reading

This section lists publications from by both ARM Ltd and third parties that provide
additional information that may help with porting ARM PPP.

ARM publications

This book contains reference information that is specific to ARM PPP. For additional
information, refer to the following ARM publications:

• ARM Architecture Reference Manual (ARM DUI 0100)

• Porting TCP/IP Programmer’s Guide (ARM DUI 0144)

• ARM ADS Tools Guide (ARM DUI 0067)

• ARM ADS Developer Guide (ARM DUI 0056).

Other publications

For other reference information, please refer to the following:

• Comer, Douglas E., Internetworking with TCP/IP: Principles, Protocols, and
Architecture, 3rd Edition, 1995, Prentice-Hall (ISBN 0-13-216987-8)

• Jagger, David, ARM Architecture Reference Manual, 1997, Prentice-Hall (ISBN
0-13-736299-4)
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. ix

Preface
• Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, 2nd
Edition, 1988, Prentice-Hall (ISBN 0-13-110370-8)

• RFC 1877, Cobb, S., PPP Internet Protocol Control Protocol Extensions for
Name Server Addresses, December 1995

• RFC 1661, Simpson, W., The Point-to-Point Protocol (PPP), 07/21/1994.
x Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Preface
Feedback

ARM Limited welcomes feedback on both ARM PPP and its documentation.

Feedback on ARM PPP

If you have any problems with ARM PPP, please contact your supplier. To help us
provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. xi

Preface
xii Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Chapter 1
Introduction

This chapter introduces networking, the ARM porting functions, the requirements for
porting ARM PPP, a list of the sample package directories, and an overview of the
sample programs provided. It contains the following sections:

• A typical embedded networking stack on page 1-2

• What is PPP? on page 1-4

• ARM PPP requirements on page 1-7

• Sample package directory and programs on page 1-11.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-1

Introduction
1.1 A typical embedded networking stack

Figure 1-1 shows the events that drive a typical embedded networking stack and the
responses from the stack:

• the user enters commands

• packets are received from the network

• timers go off.

In each case, a call is made to the stack to handle the event.

In response to these events, the stack:

• makes calls to the system

• sends network packets

• returns data or status information to the calling user

• sets additional timers.

Figure 1-1 Network stack events

In an ideal situation, calls are mapped directly onto the underlying system. For example,
when the stack makes an external to send a packet, this has the same syntax as the
exported send call of the network interface. However, in a more typical situation, the
stack designer does not know what tasking system, user applications, or interfaces are
supported in the target system.

�������		
���

�
��

��������������
���

��	���

����
��
�������
1-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Introduction
1.1.1 The ARM portable stack

The ARM PPP stack is designed with simple, generic interfaces. You must create a glue
layer that maps this generic interface onto the specific interfaces available on the target
system. For example, the PPP stack requires a glue function to write a byte to a
particular serial device.

To maximize portability, the stack:

• minimizes the number of calls to glue functions

• uses simple glue functions

• provides detailed documentation

• either uses standard interfaces (such as sockets and the ANSI C library) or
provides examples when there is no standard.

The majority of the work in porting a stack is understanding and implementing the glue
functions.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-3

Introduction
1.2 What is PPP?

PPP is a specification for the transmission of network data over point-to-point links. It:

• converts blocks of network data (packets) into single bytes for transmission over
a serial line, such as ISDN or a dial-up modem, and re-assembles the packets on
receipt

• checksums the packets

• compresses TCP/IP protocol headers

• verifies the identity of (authenticates) the computer on the other end of the line

• allows packets from multiple protocols to be transferred on a shared line.

PPP does not handle modem dialing. However, ARM provides additional software with
PPP that does this for a standard Hayes command-set modem. The ARM PPP stack
includes IPCP, to enable the transfer of IP datagrams. It does not include layers for
non-IP protocols, such as AppleTalk and DECnet.

Note
 In this document, the term PPP, when used without qualification, refers to the ARM PPP
code as ported to an embedded system.

1.2.1 Protocols

The ARM package implements all the protocols required for IP transmission and the
optional protocols for authentication and TCP/IP header compression.

PPP is actually a family of protocols, all working together to provide the functionality
described above. Two members of the family, LCPand IPCP, provide a virtual
connection service and handle a set of options, such as the authentication to use and
whether to compress packets.

Each connection protocol moves these connections between states defined by a Finite
State Machine (FSM) specification. Other members of the PPP family provide services
to the connection protocols, such as security (CHAP, UPAP).

Figure 1-2 on page 1-5 shows how PPP fits between the IP protocol family and the
hardware link. In this case, the line hardware is a modem.
1-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Introduction
Figure 1-2 The IP protocol and PPP

There are three layers:

LCP Link Control Protocol.

This is the carrier on which all the other protocols are layered. This layer
is responsible for establishing the initial link between the two ends, then
prompting the upper layers to start their option negotiation. It is also
responsible for identifying the protocol of each incoming packet and
passing those packets to the appropriate upper layers.

IPCP IP Control Protocol.

This handles IP-related options and packets. IPCP options include
assigning IP addresses and negotiating the use of TCP/IP header
compression. All IP packets sent and received on the PPP connection are
encapsulated in this protocol.

FSM Finite State Machine.

This is not an actual protocol, but contains the definitions for the series of
events that a PPP connection protocol moves through, from the initiation
of the link to termination.

Both LCP and IPCP use the same FSM code.

For more detail about the individual layers, see RFC 1661, the PPP specification.

��������	
��
��

�����	
��
��

���

���

���������
��	�
��	�	�	�

����

�������
���
����������

�����
��������	�����

��������

 ���	�
��!��������	�
	����������������

��

��� "#�

�	����#�
���

$�%&'&

������	��
���
�����	��
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-5

Introduction
Authentication protocols

You can configure any or all of the following authentication protocols, and each end of
the link can negotiate which of them will be used:

CHAP Challenge Handshake Authentication Protocol.

CHAP is the primary mechanism for a PPP node to guarantee the identity
of the host on the other end of the line. Authentication is initiated by
sending a CHAP message (the challenge) through LCP from one PPP
host to the other. The CHAP challenge contains an encrypted string,
generated by the industry standard MD5 digest algorithm, based on an
ASCII string (called a secret) that is known to both hosts.

The challenged host must return the correct CHAP reply. If it does not,
the challenger terminates the connection. Generally, either host can send
the CHAP challenge at any time after the LCP connection is established.

MS-CHAP The Microsoft implementation of CHAP (see above).

The encrypted string found in the CHAP challenge is generated by a
Microsoft proprietary algorithm, rather than by the MD5 digest
algorithm. The proprietary algorithm is based on a unicode string that is
known to both hosts.

MS-CHAP is used by Microsoft Remote Access Service (RAS).

UPAP User/Password Authentication Protocol.

UPAP is similar to CHAP, except that a user name and password are used
to generate the authentication packets. This is useful when multiple users
with different levels of access might be dialing into a PPP interface.
1-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Introduction
1.3 ARM PPP requirements

The ARM PPP software requires the following support from the host system:

• Line management functions

• Static memory on page 1-8

• Dynamic memory on page 1-9

• Periodic clock tick on page 1-10.

1.3.1 Line management functions

PPP must send and receive characters on the line hardware of the target system. It might
also have to initiate a connection (for example, dial the phone number) or disconnect.
You must provide a set of low-level functions to do this. If more than one type of line is
to be used, such as ISDN and Dialup, a set of functions must be provided for each line
type.

PPP defines a structure that contains a set of pointers to these functions. You must
ensure that all these pointers are set to appropriate functions at system initialization
time, even if the function does nothing other than return. Providing these functions is
generally the bulk of the work required to implement PPP on a new target system.

The PPP code comes with two sets of line management functions:

• A Universal Asynchronous Receiver/Transmitter (UART) serial line with modem
dialer. The line driver calls are described in detail in Serial line drivers on
page 3-10.

• A loopback driver. This is for testing purposes only and is not expected to be the
primary line driver of a real product.

If your target hardware is an embedded system and you intend to use an
8250/16450/16550 (or similar) UART and a Hayes-compatible modem, you can use the
(UART) line drivers exactly as provided.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-7

Introduction
1.3.2 Static memory

As with all embedded system code, the PPP code takes up some code and data space.
On embedded systems, the code is usually stored in ROM and can be moved to RAM
at boot time. The exact amount of code space required varies depending on:

• the PPP optional features you enable

• your processor

• your compiler.

Table 1-1 on page 1-9 and Table 1-2 on page 1-9 provide sample sizes of the major
modules in the sample program compilation. All figures exclude C runtime libraries,
board support, and application-specific code.These statistics were obtained under the
following conditions:

• compiled with space optimization enabled

• APCS 3 32-bit, no software stack check, no frame pointer

• Linker configured to remove unused sections

• compiled with the -zo option to generate one ELF section for each function if the
source code

• compiled without debug code.

Note
 Because the code is subject to continuous development, these values might change with
subsequent releases.

Total static memory for a configuration will be the amounts shown in the following
tables plus about 3kB of data space multiplied by the maximum number of connections
(_NPPP).
1-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Introduction
1.3.3 Dynamic memory

PPP has no real dynamic memory requirements. However, because of the way some
compilers allocate memory, some of the uninitialized static data areas are allocated at
initialization time rather than statically. PPP allocates these areas by calling functions
that have the same syntax as a standard C library malloc() call. These calls differ from
malloc() in two ways:

• they expect the returned buffer to be initialized to zeros (like calloc())

• each macro is used for one kind of buffer or structure only, so a reasonable
expected maximum size can be defined at compile time.

Table 1-1 PPP code size (in bytes) with all options enabled

Thumb Code
and read-only
data

Read-write
data

Zero-init
data

Thumb
ROM

RAM

PPP 11292 136 104 11428 240

IPCP 5216 60 196 5276 256

LCP 5232 64 144 5296 208

CHAP 6508 64 164 6572 228

MS-CHAP 5764 184 0 5948 184

VJ compression 2396 0 0 2396 0

(U)PAP 1580 0 48 1580 48

Modem 3864 292 292 4156 584

Totals 41852 800 948 42652 1748

Table 1-2 PPP code size (in bytes) with all options except NB_CONNECT disabled

Thumb code and
read-only data

Read-write
data

Zero-init
data

Thumb
ROM

RAM

PPP 9836 104 116 9940 220

IPCP 5200 60 196 5260 256

LCP 5084 64 144 5148 208

Totals 20120 228 456 20348 684
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-9

Introduction
If your C compiler and development environment support calloc(), you can map the
allocation macros directly to calloc() using the default macro definitions in the sample
source code.

If your system does not support calloc() or if you do not want to use it for performance
reasons, you can reserve arrays of static buffers of the sizes required and return pointers
to them from the allocation macros. The exact sizes required vary with the environment
(for example, CPU type and compiler packing options), so you must use sizeof()
operators in your static declaration statements.

The number of buffers of each type varies with the number of lines (units) you can open
at once.

1.3.4 Periodic clock tick

The PPP code includes a function that must be called by the system once per second.
This function drives retransmissions and timeouts.

In addition, the PPP code expects the system to maintain a 32-bit clock tick counter
variable, cticks, that increments TPS times a second. The macro TPS must be defined in
your ipport.h file or one of its nested includes (see the Porting TCP/IP Programmer’s
Guide for details).
1-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Introduction
1.4 Sample package directory and programs

The ARM PPP sources are distributed in a file called ppp.zip. This unpacks to the
following directories:

install_directory\crypt

Functions used by CHAP authentication.

install_directory\modem

Functions for controlling a Hayes-compatible modem.

install_directory\ppp

PPP implementation.

1.4.1 Sample programs

Most of the sample programs provided with the ARM TCP stack can make PPP
connections using a standard Hayes modem. For example, you can dial into an Internet
Service Provider with the Menus sample program and issue commands to ping remote
hosts. If you configure the IP stack to support both Ethernet and PPP, you can use it as
a dial-up router. See the Porting TCP/IP Programmer’s Guide for more information.

The sample code compiles with the ARM Developer Suite (ADS). Unless you are
familiar with PPP and are comfortable working with complex networking code, it is
recommended that you compile the sample programs and experiment with them before
you port your application.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 1-11

Introduction
1-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Chapter 2
PPP Porting

This chapter describes PPP and how to use the ARM PPP code to allow the ARM
TCP/IP stack to transfer data over a serial line. It contains the following sections:

• Overview of the porting procedure on page 2-2

• Porting PPP on page 2-3

• Testing PPP on page 2-9.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-1

PPP Porting
2.1 Overview of the porting procedure

To create a working version of the PPP stack on your target system:

1. Copy the PPP source files into your development environment.

2. Modify the ppp_port.c and ppp_port.h files (see Source files on page 2-4).

3. Compile the code (see Compiling PPP on page 2-5).

4. Add the hooks to connect PPP to your system (see Entry points and support calls
on page 2-8).

5. Test a PPP image (see Testing PPP on page 2-9).
2-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP Porting
2.2 Porting PPP

This section outlines the steps you must follow to port the ARM PPP code into the ARM
IP stack. Initially, define USE_PPP in ipport.h and include the PPP sources in your
makefile or project file (.mcp).

You must set up several port-specific defines, functions, and static variables before PPP
can operate. These are:

#define _NPPP 3

The maximum number of simultaneous PPP connections allowed (for
example, 1 per modem).

void ConPrintf(char *, …);

A user-provided printf-like function for debugging. In the sample
program, you can set this up to send its output to the console, a log file,
or both. Logging to a file during development is highly recommended if
you are writing a new serial driver.

int ppp_port_init(int unit);

The hook for per-port initialization. You must provide code in this
function to initialize the nets[] and ppp_lines[] entries.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-3

PPP Porting
2.2.1 Source files

As provided, the PPP source code is several C source files and include files. These are
called the portable or port-independent source files. You do not need to modify these
for a normal PPP port.

The PPP code is organized into files that are named for the layer or module
implemented. For example, lcp.c implements the LCP functionality. All
connection-oriented modules have a number of functions that implement the FSM.
These are table driven and, as such, are compiled into fsm_callbacks structures as
defined in fsm.h. Typically, you do not have to modify these functions.

Two additional files, one C source and one include file, are provided as part of the
sample package. These files implement the port-dependent functions. You must
duplicate the functionality of these files in the target system as part of the porting
process.

The sample port files total approximately 16KB of commented source. They are:

• ppp_port.c

• ppp_port.h.

If you have licensed the ARM TCP/IP stack, it is recommended that you compile and
run the ARM TCP/IP sample programs before you begin your porting activity. This
gives you some hands-on experience with PPP and you will have the opportunity to step
through the PPP code under the source-level debugger. Also, if your port is
unsuccessful, you will have a working reference platform to aid in debugging.
2-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP Porting
2.2.2 Compiling PPP

The first step in the porting process is to compile the portable portions of the PPP code
in your development system. You must set up a makefile or project file with the
appropriate compile options, library invocations, and linking command.

PPP include file

To compile the code, you must provide your own version of the ppp_port.h file to define
the data types shown in Example 2-1.

Example 2-1

typedef unsigned char u_char; /* 8-bit unsigned */
typedef unsigned short u_short; /* 16-bit unsigned */
typedef unsigned short unshort; /* duplicate */
typedef unsigned long u_long; /* 32-bit unsigned */
typedef int bool; /* another common */
 /* type extension */
#ifndef TRUE
#define TRUE -1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#ifndef NULL
#define NULL ((void*)0)
#endif

typedef unsigned long ip_addr; /* 32-bit IP v4 address */

For most compilers, you can use these defines exactly as they appear in the sample
package nptypes.h file, which is in the ..\inet directory of the ARM TCP/IP sources.

Setting PPP options

Early in the porting process, you must decide which of the optional features of PPP you
want to use, and set the defines for them. These defines are generally set in your
ppp_port.h file. The options they include can be useful, but they can nearly double the
size of the PPP code. If your systems have limited memory, you may want to omit these
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-5

PPP Porting
options. Most ports can simply define VJC and CHAP_SUPPORT, so you can go to Entry
points and support calls on page 2-8. However, the compile-time options are
documented here for completeness.

The following C code excerpt shows all options enabled:

#define PPP_VJC 1 /* VJ header compression */
#define CHAP_SUPPORT 1 /* CHAP authentication */
#define PAP_SUPPORT 1 /* password authentication */
#define LOCAL_RAND 1 /* use random number generator */
 /* in magic.c */
#define LB_XOVER 1 /* cross 2 loopback lines for test */
#define MSCHAP_SUPPORT 1 /* enable Microsoft CHAP */
 /* authentication */
#define PPP_DNS 1 /* enable RFC1877 operation */

Each of these compile switches is described below:

PPP_VJC Enables the use of Van Jacobson Compression (VJC) to compress
TCP/IP headers. VJC is a simple compression algorithm for
TCP/IP headers. It is based on the principle that most of the
information in the 40-byte TCP and IP headers does not vary on a
PPP link from frame to frame. The 40-byte header is replaced with
a much smaller header containing only the variable information.

Because many TCP/IP packets contain only the headers, this can
reduce the byte traffic on a PPP link by over 50% before any data
compression is applied to the data portion of the packet. The
drawback to VJC is that the code is one of the larger modules of
PPP. See Table 1-1 on page 1-9.

Disabling VJC does not prevent your system from operating with
any other PPP. It causes both systems to disable the feature and
slows performance.

CHAP_SUPPORT Includes the code for CHAP and MD5. CHAP must be configured
with a secret by the end user and negotiated when LCP connects.
If this feature is disabled, you do not have to provide the
get_secret() function.

MSCHAP_SUPPORT Includes the code for MS-CHAP, using DES and MD4. If this
feature is enabled, you must also enable CHAP_SUPPORT.

PAP_SUPPORT Includes the code for UPAP. UPAP must be configured by the end
user and negotiated when LCP connects.
2-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP Porting
LOCAL_RAND This includes code to provide a pseudo-random number generator
that is used as part of the compression code. On most target
systems, the standard C library calls rand() and srand() are
supported. This option must be enabled to provide these calls on
systems that do not already have them.

LB_XOVER This option applies only if the PPP line loopback driver is used. It
configures the loopback driver code to crossover two logical PPP
units to each other. Bytes sent on either unit are received on the
other crossed-over unit. This provides a testing environment for
emulating PPP client/server conditions.

This option is normally used only for development and testing and
is not needed in the final product. You must define the two unit
numbers to be connected. See the loopback example project in the
Porting TCP/IP Programmer’s Guide.

PPP_DNS Includes code to support the behavior described in RFD1877 (the
exchange of DNS addresses as part of the IPCP negotiation.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-7

PPP Porting
2.2.3 Entry points and support calls

When you have compiled the PPP code, you must add the hooks to connect PPP to your
system and link your line functions to the PPP code. This is generally done in
ppp_port_init() in the file ppp_port.c. PPP entry points on page 3-18 provides detailed
information about all PPP calls you must be aware of.

There are three classes of functions you must implement:

• Support functions that PPP needs from the host system, for example, time tick,
reading NV parameters, and memory allocation.

• Line drivers, functions for sending and receiving bytes, and connection
management. These are detailed in Serial line drivers on page 3-10.

• IP support functions for sending and receiving IP packets. This is implemented
using the NET structure in the ARM TCP/IP stack, so that the IP layer does not
treat PPP any differently than it would any other media, such as Ethernet or SLIP.

You must review the list of function calls in PPP entry points on page 3-18. At a
minimum you need to ensure that:

• prep_ppp() and ppp_timeisup() are called as appropriate

• the allocation functions are properly mapped

• a line driver is available.

For most ports, the line driver is the majority of the work.

To bind PPP to the ARM TCP/IP stack, you must call prep_ppp() from prep_ifaces() in
your ipport.c file. See prep_ifaces() in the Porting TCP/IP Programmer’s Guide.
Other IP stacks need a glue layer that maps their initialization, send and close calls to
PPP.
2-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP Porting
2.3 Testing PPP

When you have loaded a PPP image into your target system, you need to test (and
possibly debug) it. It is recommended that you perform the following sequence of tests:

• Loopback

• Client connection

• Server connection on page 2-10

• Abrupt disconnect on page 2-10

• Multilink test on page 2-10.

2.3.1 Loopback

A recommended first test is to set up a PPP loopback driver in crossover mode (see
LB_XOVER compile option in Setting PPP options on page 2-5) and ping it. The
recommended IP addresses of your loopback driver interfaces are 127.0.0.1 and
127.0.0.2. The loopback driver must establish an LCP connection between the two
crossover units, acting as a client on the unit that sends the ping and a server on the
crossover unit. The ping packet exits one unit and enters the other. This is reflected in
the packet and byte counters at the IP interface.

In the event the ping does not happen smoothly, the best approach is to trace the
execution with the source level debugger. Because all the ping events take place in a
single system, you can debug this basic functionality without the need to monitor two
separate systems.

2.3.2 Client connection

The next test is to try a client connection through a real line driver to a dial-up server.
When the PPP stack has some data to send (perhaps a ping packet), the PPP stack calls
ln_connect(). When ln_connect() returns successfully, the LCP layer sends a series of
LCP negotiation packets using ln_putc(). LCP will not go to the connected state until
it receives the correct LCP responses from the PPP server to which it is connected.

If you have already pinged in loopback, most of the debugging here will probably be in
your line driver. For debugging the initial connect call and the first send and receive, a
source level debugger is probably the best tool. At the point where LCP packets are
being exchanged, you must turn on the logging feature (see ConPrintf() on page 3-5) to
get a higher level look at what is happening during LCP negotiation.

Debugging LCP when connected with a remote machine is probably the most complex
part of a PPP port. It is recommended that you have a copy of the PPP RFC
specifications at hand (preferably hardcopy) and you must examine logged LCP option
negotiation packets in detail. If logging is enabled, these packets are written to a text file
in the current working directory.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 2-9

PPP Porting
For initial testing, turn off CHAP, VJC, and DHCP to simplify the negotiations.
Assuming the basic byte transfer works, most LCP problems are because one side of the
connection is insisting on an option setting that the other side does not support. When
you establish an LCP connection, turn these options on one at a time and retest. You
might find you want to add code for option reporting, for example, printing console
messages like:

Other side insists we use CHAP

Other side refuses to use CHAP

2.3.3 Server connection

The next recommended test is that you set your line hardware to auto-answer mode and
let another PPP machine call you. Debugging this is similar to client connection
debugging.

2.3.4 Abrupt disconnect

You must ensure that a broken connection does not permanently disable your PPP layer.
This is usually not a problem when PPP initiates the disconnect by way of a TERMREQ
LCP packet, but an unexpected line failure must be sure to call PPP by way of the
lcp_lowerdown() call (see lcp_lowerdown() on page 3-18).

2.3.5 Multilink test

As a final test, test the code with multiple simultaneous links.
2-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Chapter 3
PPP API Functions

This chapter describes the functions you must provide, and other entry points required,
for porting the ARM PPP stack. Refer to the code provided with the software for
examples.

This chapter contains the following sections:

• Overview of user-provided PPP functions on page 3-2

• User-provided PPP functions on page 3-3

• Serial line drivers on page 3-10

• PPP entry points on page 3-18.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-1

PPP API Functions
3.1 Overview of user-provided PPP functions

You must provide the functions described in this chapter as part of porting the ARM
PPP stack. In the sample package, these functions are mapped in one of the following
ways:

• directly to system calls by way of macros in ppp_port.h

• implemented in ppp_port.c

• implemented in files in the \armthumb and \integrator directories.

Many of these implementations map directly onto the system to which you are porting.
Others require extensive modification or complete rewrites.

Refer to Chapter 2 PPP Porting for the complete PPP porting procedure.
3-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.2 User-provided PPP functions

This section describes the PPP functions that you must implement:

• _ALLOC() functions

• ConPrintf() on page 3-5

• _FREE() functions on page 3-6

• get_secret() on page 3-7

• ppp_port_init() on page 3-8.

3.2.1 _ALLOC() functions

These functions allocate a block of memory.

Syntax

struct ppp_softc *PPPS_ALLOC(size_t size)

u_char *PPPB_ALLOC(size_t size)

struct timerq *PPPT_ALLOC(size_t size)

where:

size Is the number of bytes to be allocated.

Return value

Returns pointers to available memory.

Usage

Each call allocates a single type of buffer of a known maximum size. All have a
corresponding _FREE function. If your system has a calloc() call, these buffers can all
be mapped to calloc() as shown in the sample ppp_port.h file. If you are not using
calloc(), the buffers returned must have their contents set to all zeros with memset() or
a similar function.

If your system has no calloc() and free() functions, you can take buffers from a static
partition table as described in Dynamic memory on page 1-9.

PPPS_ALLOC() and PPPT_ALLOC() are only ever called to request structures. The
PPPB_ALLOC() function is called to request a maximum buffer size given by the
expression:

length = HDROFF + PPP_MRU + PPP_HDRLEN + PPP_FCS_LEN + 20;
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-3

PPP API Functions
where HDROFF is defined in ifppp.c, and PPP_MRU, PPP_HDRLEN, and PPP_FCS_LEN are
defined in ppp.h. This can be quite large (over 8KB), but only one block per PPP
network interface is allocated at any one time. Changing the definition of PPP_MRU in
ppp_port.h can reduce the size, but a size below 1500 bytes is not recommended for
interoperability reasons.

In practice, it is rare for a PPPB_ALLOC() request to be larger than 1600 bytes, so in
partition table systems with memory limitations, it is usually acceptable to reserve one
1600-byte buffer per PPP network interface.
3-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.2.2 ConPrintf()

All PPP ports must provide this function to record debug messages to a log. The log can
be a file, or UDP log server or other device, such as a serial console. The log can assist
you and your end users during complex installations.

Syntax

void ConPrintf(const char *format, …)

where:

format Is a format string like printf().

… Is an argument list, as described by format.

Return value

None.

Usage

In the sample package, this function uses a user-selectable option to print the messages
to the system console, to a disk file, or to both. Given the complexities of installing PPP
at end user sites, you might find it useful to leave this troubleshooting aid enabled in the
final product.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-5

PPP API Functions
3.2.3 _FREE() functions

These functions free a memory block that was previously allocated. They correspond to
the three allocation functions, PPPS_ALLOC(), PPPB_ALLOC(), and PPPT_ALLOC().

Syntax

void PPPS_FREE(struct ppp_soft *)

void PPPB_FREE(u_char *)

void PPPT_FREE(struct timerq *)

Return value

None.

Usage

If your system maps the allocation functions to calloc(), it must map these functions to
free(). If you use a partition system, you must mark the returned buffers as free and
maintain any data structures required by your algorithm.
3-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.2.4 get_secret()

This function must be provided for systems supporting CHAP. It gets the CHAP secret
stored in NVRAM and makes it available to the PPP CHAP internals.

Syntax

int get_secret(int unit, char *resp_name, char *rhostname, char
*out_buffer, int *out_buflen, int flags)

where:

unit Is the PPP unit number. Unit numbers start from zero.

resp_name Points to the name sent with the response.

rhostname Points to the name of the remote host receiving the response.

out_buffer Is the location into which the secret is copied.

out_buflen Points to the location where the number of valid characters in the
secret is to be stored by get_secret().

flags Is 0 if you are sending the response to the remote host. It is 1 if
you are verifying the response of the remote host to your
challenge.

Return value

Returns one of the following:

TRUE If successful.

FALSE If there were problems extracting or copying secret.

Usage

If your target system can initiate or accept connections from multiple remote hosts, you
can use resp_name, rhostname, and flags to select the appropriate secret for each
connection.The function get_secret() copies the secret to out_buffer and sets the int
pointed to by out_buflen to the number of valid characters. The buffer supplied by the
calling function must have room for MAXSECRETLEN characters. The get_secret()
function must not attempt to write more than this number of characters into the buffer.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-7

PPP API Functions
3.2.5 ppp_port_init()

This function initializes the interface for each PPP unit. It is called once for each unit
from prep_ppp().

Syntax

int ppp_port_init(int unit)

where:

unit is the PPP unit number to be initialized. Unit numbers start from zero.

Return value

Returns one of the following:

0 If successful.

nonzero error code

If not successful.

Usage

Typically, this function installs the pointers to the line functions in the ppp_lines[]
array, although this can also be done at compile time. In either case, the line functions
must be set up when this function returns.

It can also set the defaults for the ppp_softc structure of the unit. These include:

default_ip This is the default IP address. IPCP can optionally set your IP
address for you and it can then be overwritten by DHCP.

If you are not getting the IP address by way of IPCP and are not
using DHCP, the default IP address is the operational IP address
of your IP stack on this interface.

Because neither IPCP assignment nor DHCP service is
universally available, it is advisable to request that the end user
assign an IP address (stored in nonvolatile storage) as a fallback.
This can be zeros (0.0.0.0) if a DHCP assignment is required at the
end user site.

require_chap This specifies whether the user configuration requires CHAP
security.
3-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
If PPP_DNS is defined, these can also include the following, as IPCP can optionally get
one or two domain nameserver addresses from the PPP peer for local use. It can
optionally pass one or two domain nameserver addresses to the PPP peer for its use:

dns_pri Is the default value for the primary nameserver address set in
neg_dns_pri. This can be zero (0.0.0.0) if there is no default value.

dns_sec Is the default value for the secondary nameserver address set in
neg_dns_sec. This can be zero (0.0.0.0) if there is no default value.

neg_dns_pri Is a flag that, if set, indicates that IPCP must try to get the primary
nameserver address from the peer.

neg_dns_sec Is a flag that, if set, indicates that IPCP must try to get the
secondary nameserver address from the peer.

peer_dns_pri Is the primary nameserver address to give to the peer.

peer_dns_sec Is the secondary nameserver address to give to the peer.

neg_peer_dns_pri Is a flag that, if set, indicates that IPCP must try to give a primary
nameserver address to the peer.

neg_peer_dns_sec Is a flag that, if set, indicates that IPCP must try to give a
secondary nameserver address to the peer.

You do not generally have to change the other structure members manually.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-9

PPP API Functions
3.3 Serial line drivers

The PPP code defines a structure for each serial line it is to use (internally referred to as
units):

struct com_line /* structure to direct PPP requests*/
{

int (*ln_connect)(int unit, struct com_line* lineptr);
/* bring check line up */

int (*ln_hangup)(int unit); /* disconnect the line */
int (*ln_putc)(int unit, int byte);

/* send a byte */
int (*ln_write)(int unit, char *block, int length);

/* send a buffer */
long(*ln_speed)(int unit); /* query line's speed */
int (*ln_state)(int unit); /* query line's state */
int (*ln_getc)(int unit, int byte);

/* receive single char */
int media_type; /* SLIP or PPP */

}

An array of these structures (ppp_lines[_NPPP]) is statically defined. When the PPP code
accesses one of the line functions of the unit, it calls the functions in the table.

You must provide the functions defined in this structure and set pointers to them in
ppp_port_init(). PPP assumes these functions might block. For example, ln_connect()
usually dials a phone. Generally, the connect call is the only one that blocks for more
than a fraction of a second. PPP does not re-enter the functions or assume any timeout.

If multiple units have the same type of hardware, you can use the same functions in all
the ppp_lines[] entries. However, the line functions must be coded to use the unit
parameter to access the correct hardware device.

The line driver functions are defined in the following sections:

• ln_connect() on page 3-11

• ln_getc() on page 3-12

• ln_hangup() on page 3-13

• ln_putc() on page 3-14

• ln_speed() on page 3-15

• ln_state() on page 3-16

• ln_write() on page 3-17.
3-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.3.1 ln_connect()

This call checks to see whether the line is connected and initiates a connection if the line
is unconnected. It typically blocks while the connection is established. This might take
a minute or more while a modem line driver dials, awaits an answer, and trains, for
example.

When a value of 0 is returned, the PPP code assumes the line is ready to send or receive
characters.

Syntax

int (*ln_connect)(int unit, struct com_line* lineptr)

where:

unit Is the PPP unit number.

lineptr Is a pointer to the com_line structure associated with this unit.

Return value

Returns one of the following:

0 Connected and working.

1 Not connected. This is a temporary problem (for example, line busy).

2 Broken, noncorrectable hardware error detected.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-11

PPP API Functions
3.3.2 ln_getc()

This function is used by the line driver to call PPP with characters received from the
UART.

Syntax

int (*ln_getc)(int unit, int byte)

where:

unit Is the PPP unit number.

byte Is the data byte to be passed to the protocol stack from the UART.

Return value

Returns one of the following:

0 If the protocol accepted the byte.

nonzero If the protocol could not accept the byte.

Usage

Previous versions of the PPP stack required the line driver to call ppp_input() directly
with each character received. From PPP Release 1.4 onwards, the approved technique
is for the ln_getc() entry of the com_line structure to be initialized to point to the
ppp_input() routine, and for the line driver to call the protocol input routine this way.
The return value from the protocol stack is informational only. You do not have to take
any action upon failure.

Your main loop (or a separate thread if you are using an RTOS) must regularly check
for characters arriving at each unit, and then pass them to the PPP stack using ln_getc().
3-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.3.3 ln_hangup()

Line drivers disconnect the line. On modems, this is a hang-up. On return, the line
device must be ready to initiate another connection using ln_connect().

Syntax

int (*ln_hangup)(int unit)

where:

unit Is the PPP unit number.

Return value

Returns one of the following:

0 If the hardware hang-up event had no errors.

nonzero error code

If the event had errors. This return is strictly for information purposes.
PPP does not take any action based on the value returned.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-13

PPP API Functions
3.3.4 ln_putc()

This function sends a byte on the line. If the line hardware is temporarily blocked (for
example, full FIFO or XOFF state), the line driver must either block, or queue the byte
for later transmission.

Syntax

int (*ln_putc)(int unit, int byte)

where:

unit Is the PPP unit number.

byte Is the byte to be transmitted.

Return value

Returns one of the following:

0 If byte was sent without error.

nonzero If an error occurred while trying to send byte. PPP assumes the link has
failed, dumps the packet, and does not retry.

Indeterminate conditions, such as queuing a byte in a FIFO for sending, should return
0 unless a clear device failure is detected.
3-14 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.3.5 ln_speed()

This function queries the line speed and returns the bit rate. It is currently used only for
informational purposes, such as SNMP queries on interface speed. On devices where it
is difficult to obtain accurate speed information, it is acceptable to approximate. For
example, a 28.8 modem might always return 28800. If the device is not connected, the
maximum nominal speed of the device should be returned.

Syntax

long (*ln_speed)(int unit)

where:

unit Is the PPP unit number.

Return value

Returns the current speed (bits per second) of the line.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-15

PPP API Functions
3.3.6 ln_state()

This function queries the line state to determine if the line is connected or not. A line is
considered to be connected if it has completed an ln_connect() call without error, is
currently working, and has not been disconnected with a call to ln_hangup().

Syntax

int (*ln_state)(int unit)

where:

unit Is the PPP unit number.

Return value

Returns one of the following:

0 Connected and working.

1 Not connected, but may be connectable.

2 Broken, noncorrectable hardware error detected.

3 Dialing in progress.
3-16 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.3.7 ln_write()

This function sends a block of data on the line. This is currently unused by PPP, but is
expected to be needed for future development. It could be implemented as a for loop
that calls ln_putc() for each byte in the block.

Syntax

int (*ln_write)(int unit, char *block, int length)

where:

unit Is the PPP unit number.

block Is a pointer to the buffer containing the block of data to be sent.

length Is the number of bytes to send.

Return value

Returns one of the following:

0 If the block was sent without error.

nonzero If an error occurred while sending the block. PPP assumes the link has
failed, dumps the packet, and does not retry.

Indeterminate conditions, such as queuing a byte in a FIFO for sending, must return 0
unless a clear device failure is detected.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-17

PPP API Functions
3.4 PPP entry points

In addition to implementing the functions documented in Serial line drivers on
page 3-10, you must make calls directly to the PPP software. These calls are
documented in this section. The functions are as follows:

• lcp_lowerdown()

• lcp_lowerup() on page 3-19

• ppp_input() on page 3-20

• ppp_timeisup() on page 3-21

• prep_ppp() on page 3-22.

3.4.1 lcp_lowerdown()

This function informs the PPP stack that the communications line is no longer available
and that the current connection must be tidied up and closed.

Syntax

void lcp_lowerdown(int unit)

where:

unit Is the PPP unit number.

Return value

None.

Usage

This function must be called from the line driver whenever a connected device
terminates the connection. This includes terminations that are the result of an
ln_hangup() request. The PPP layers might attempt to send bytes using ln_putc().
However, the line code is free to discard them.

Failure to call this function after unexpected disconnection usually results in PPP being
unable to use the unit.
3-18 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.4.2 lcp_lowerup()

This function informs the PPP stack that the communications line has become available
and that a new connection must be established.

Syntax

void lcp_lowerup(int unit)

where:

unit Is the PPP unit number.

Return value

None.

Usage

This function must be called from the line driver code when a change in line status from
not connected to connected is detected. The most common example of this is a modem
in auto-answer mode accepting an incoming call. This callback to PPP initiates the
correct PPP events. In the example of a modem answering, the PPP layer sends packets
to begin an LCP link as a server.

Note
 • This call may take a long time to complete, so it must not be called:

— from an Interrupt Service Routine (ISR)

— while interrupts are disabled

— from a time-critical section of code.

• Because an initial LCP configuration request (CONFREQ, the beginning of
option negotiation) is sent in the context of this call, the line device must be
prepared for a series of calls to ln_putc() before this function returns.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-19

PPP API Functions
3.4.3 ppp_input()

This function must be called from your code whenever data is received from the UART
while the PPP connection is active.

Syntax

void ppp_input(int unit, int c)

where:

unit Is the PPP unit number.

c Is a character received from the UART.

Return value

None.

Usage

The ppp_input() function must be called with the unit number of the receiving unit on
which the character was received, and the received character.

Note
 There can be a considerable amount of processing performed by ppp_input(), especially
at the end of a frame, so it must not be called:

• from an ISR

• while interrupts are disabled

• from a time-critical section of code.

You can see an example of how to call ppp_input() in the modem dialer code supplied
(\modem\dialer.c). See also ln_getc() on page 3-12.
3-20 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

PPP API Functions
3.4.4 ppp_timeisup()

This function drives the internal PPP timers.

Syntax

void ppp_timeisup(void)

Return value

None.

Usage

The ppp_timeisup() function is provided in sys_np.c and must be called every second
by the system.

Note
 Because the ppp_timeisup() function can perform a considerable amount of work, it
must not be called:

• from an ISR

• while interrupts are disabled

• from a time-critical section of code.

Also, it is important not to call this function more or less than once per second, as this
causes the PPP timers to expire at the wrong time.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 3-21

PPP API Functions
3.4.5 prep_ppp()

This is the first PPP function called from the IP initialization logic.

Syntax

int prep_ppp(int firstnet)

where:

firstnet Is the index of the first interface to initialize for PPP.

Return value

Returns the index of the next available nets[] entry.

Usage

The prep_ppp() function must be called from prep_ifaces() in the ipport.c file to bind
PPP to the TCP/IP stack. This function sets the number of interfaces (nets[]) to be used
for PPP and maps one PPP unit (usually a serial link) to each interface. See the Porting
TCP/IP Programmer’s Guide.
3-22 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Chapter 4
Modem Functions

The files in the \modem subdirectory are provided as an example of how to interface a
Hayes-compatible modem to the PPP stack. The functions implemented within these
files are described in this chapter.

The modem functions are accessed from the PPP stack using the com_line structure
described in Serial line drivers on page 3-10. In turn, the modem functions make calls
to the UART device driver in the \integrator directory. The UART driver is
documented in the Porting TCP/IP Programmer’s Guide.

This chapter contains the following sections:

• dialer.c on page 4-2

• login.c on page 4-19

• mdmport.c on page 4-25.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-1

Modem Functions
4.1 dialer.c

The functions in dialer.c are the primary interface between the PPP stack and the
modem. The dialer.c file contains functions to manage the dialing of connections,
passing data between the modem and the PPP stack, and shutting down the PPP stack
when a connection terminates.

The dialer.c file is provided as an example of how to interface between the PPP stack
and a Hayes-compatible modem, and currently only supports one device.

The functions are listed in Table 4-1.The Interface column of the table shows the
functions that form the interface between PPP and the modem.

Table 4-1 dialer.c functions

Function name and page reference Interface

dial() on page 4-3 No

dial_check() on page 4-4 No

dialer_status() on page 4-5 No

modem_cmd() on page 4-6 No

modem_connect() on page 4-7 Yes

modem_getc() on page 4-8 No

modem_gets() on page 4-9 No

modem_hangup() on page 4-10 Yes

modem_init() on page 4-11 Yes

modem_lstate() on page 4-12 Yes

modem_putc() on page 4-13 Yes

modem_reset() on page 4-14 Yes

modem_speed() on page 4-15 Yes

modem_state() on page 4-16 No

modem_write() on page 4-17 Yes

modem_no_carrier() on page 4-18 No
4-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.1.1 dial()

This function starts the dialing process, the first step in establishing a connection.

Syntax

void dial(char *phone_num)

where:

phone_num Is a string containing the number to be dialed.

Return value

None.

Usage

Dialing can be initiated only in Idle or Auto-Answer mode. The dial() function sends
the string ATDT to the modem, followed by the requested phone number, and a
terminating carriage-return character, using the modem_cmd() function.

The dial() function does not wait for a connection to be established. It updates the
modem status to indicate that dialing is in progress.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-3

Modem Functions
4.1.2 dial_check()

This function drives the state of the dialer.

Syntax

void dial_check(void)

Return value

None.

Usage

The dial_check() function must be called periodically by the operating system so the
dialer can advance from state to state without blocking. In the example applications
provided with the source code, dial_check() is called from the tk_yield() function.

While the modem is not connected, characters received from it are processed for
responses such as CONNECTED or BUSY, and the state of the dialer is changed accordingly.

After the modem has entered the CONNECTED state, characters received from the modem
are passed through to the PPP layer, the line is monitored for inactivity timeouts, and
the DCD status is monitored. If DCD becomes low, the PPP layer is informed by calling
lcp_lowerdown().
4-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.1.3 dialer_status()

This function prints debug information about the status of the dialer.

Syntax

int dialer_status(void *pio)

where:

pio Is a pointer to the GenericIO structure where debug information is to be
written.

Return value

Always returns 0.

Usage

The dialer_status() function calls modem_portstat() and uart_stats() to report on the
status of the modem and the UART. This function can be used for debugging.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-5

Modem Functions
4.1.4 modem_cmd()

This function sends an AT command to the modem.

Syntax

int modem_cmd(char *data)

where:

data Is a null-terminated string containing the command to send to the modem.

Return value

Returns one of the following:

0 No error detected. The modem took and echoed the command.

–1 If an error occurred.

Usage

The modem_cmd() function attempts to send the command up to three times. It looks for
the echo of the command from the modem as indication of success.
4-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.1.5 modem_connect()

This function checks that a connection to the remote host has been established and
establishes one if it has not been done already.

Syntax

int modem_connect(int unit, struct com_line *lineptr)

where:

unit Is the interface unit number.

lineptr Is the pointer to the com_line structure for this unit.

Return value

Returns one of the following:

0 If the line is or was connected.

-1 If the line could not connect because of a temporary problem, for
example, if the line is busy.

-2 If the line could not connect because of a hard error.

3 Dialing in progress.

Usage

The modem_connect() function is called from the send code of the PPP interface when a
packet is to be sent. This checks that the modem and UART are ready and attempts to
dial if they are not.

If the line is already connected, modem_connect() returns 0 (connected) immediately.
Otherwise, modem_connect() calls dial() to send the dial string to the modem, and then
returns the value 3 (dialing in progress). The underlying protocol that called
modem_connect() re-calls it periodically until either 0 (connected) or one of the negative
error values is returned.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-7

Modem Functions
4.1.6 modem_getc()

This function gets a character from the modem.

Syntax

int modem_getc(unsigned tmo)

where:

tmo Is the timeout, in seconds, to wait for modem characters.

Return value

Returns one of the following:

char Returns the next character from the modem, if one appears within the
specified number of seconds.

–1 If timeout occurs without a character arriving from the modem.

Usage

The characters returned by this function are expected to be a reply to, or an echo of, a
command. This function is not intended for general data stream gathering.
4-8 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.1.7 modem_gets()

This function gets a line of input from the modem.

Syntax

void modem_gets(int wait)

where:

wait Is the number of ticks to wait for input.

Return value

None.

Usage

This function is designed to get responses to commands that are sent to the modem. It
returns immediately if the modem is currently connected and also if no input comes
within wait ticks. You can specify the wait parameter as 0 for immediate return if input
is not waiting.

The modem_gets() function leaves the input read from the modem in the
modem_in[] buffer and sets modem_index to point to the next location in modem_in[] to be
used.

If any input from the modem is received within wait ticks, the input string is considered
to be complete when no more characters are received for a whole second.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-9

Modem Functions
4.1.8 modem_hangup()

This function hangs up the modem line immediately and terminates any connection.

Syntax

int modem_hangup(int unit)

where:

unit Is the interface unit number.

Return value

Returns one of the following:

0 If successful.

–1 If not successful.

Usage

If PPP is being used, modem_hangup() calls pppclose() and lcp_lowerdown() to indicate
that the line is no longer available. It then calls modem_reset() to hangup the phone line
and re-initialize the modem.
4-10 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.1.9 modem_init()

This function sets up the modem.

Syntax

int modem_init(int unit)

where:

unit Is the interface unit number.

Return value

Returns one of the following:

0 If successful.

–1 If not successful.

Usage

The modem_init() function is called from ppp_port_init in the ppp_port.c file. It
initializes the UART, resets the modem, and sends the initialization string to the modem.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-11

Modem Functions
4.1.10 modem_lstate()

This function reports which state the modem is in, as a numeric code.

Syntax

int modem_lstate(int unit)

where:

unit Is the interface unit number.

Return value

Returns one of the following:

0 Connected.

1 Not connected, but working.

2 Not connected. Hard error.

3 Dialing in progress.

Usage

The modem_lstate() function is used by the PPP stack to obtain the current state of the
modem.
4-12 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.1.11 modem_putc()

This function sends a character through the modem connection.

Syntax

int modem_putc(int unit, int bByte)

where:

unit Is the interface unit number through which the character will be sent.

bByte Is the character to be sent.

Return value

Returns one of the following:

0 If successful.

–1 If not successful (timeout occurred).

Usage

The modem_putc() function is called by the protocol code to send single bytes. It must
not be called unless the modem is in the connected state.

The modem_putc() function waits for space to become available for up to one second by
calling tk_yield() in a loop and polling the UART using the uart_ready() function.
When space is available, modem_putc() calls uart_putc() to actually send the character
to the modem.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-13

Modem Functions
4.1.12 modem_reset()

This function resets the modem.

Syntax

void modem_reset(int unit)

where:

unit Is the interface unit number.

Return value

None.

Usage

The modem_reset() function is called to re-initialize the dial and initialization strings for
the modem from the values read from NVRAM, and calls uart_reset() to reset the
modem hardware.
4-14 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.1.13 modem_speed()

This function returns the bit rate value extracted from the last CONNECT string.

Syntax

long modem_speed(int unit)

where:

unit Is the interface unit number.

Return value

Returns the last known bit rate (bits per second).

Note
 The return value might not relate to the actual transmission speed between this modem
and the remote unit at all. Some modems report the connection speed between the
UART and the modem, rather than the line speed between the modems.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-15

Modem Functions
4.1.14 modem_state()

This function obtains a string describing the state of the modem.

Syntax

char *modem_state()

Return value

Returns a pointer to a static read-only string containing a description of the current
status.
4-16 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.1.15 modem_write()

This function sends several characters to the modem.

Syntax

int modem_write(int unit, char *buf, int len)

where:

unit Is the interface unit number.

buf Is the pointer to the characters to be sent.

len Is the number of characters to send.

Return value

Returns one of the following:

0 If successful.

–1 If timeout occurs while waiting to send.

Usage

The modem_write() function sends len characters of data from buf to the modem. This
function is not actually used by the current PPP stack. It is included to accommodate
future releases of PPP.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-17

Modem Functions
4.1.16 modem_no_carrier()

This function determines whether the modem has output a NO CARRIER string.

Syntax

int modem_no_carrier(int c)

where:

C Is a character received from the modem.

Return value

Returns one of the following:

TRUE When NO CARRIER is found in a sequence of characters.

FALSE Otherwise.

Usage

The modem_no_carrier() function only needs to be used if the modem does not support
the DCD line.
4-18 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.2 login.c

The functions in login.c implement a login script mechanism that you can use to
negotiate through the login: and password: prompts issued by some dial-in servers.
The functions are:

• do_script() on page 4-20

• login() on page 4-21

• log_input() on page 4-22

• log_output() on page 4-23

• logserver() on page 4-24.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-19

Modem Functions
4.2.1 do_script()

This function processes a login script for either login() or logserver().

Syntax

int do_script(char *sfilename)

where:

sfilename is the filename from which to read the script.

Return value

Returns one of the following:

0 If successful.

–1 If not successful.

Usage

The do_script() function is an engine to open a text file and treat it as a script for
logging into a remote host that has just been dialed into. The script file provides a
user-configurable script to log in to various hosts. It contains text for strings to output
to the modem and text for expected replies from the modem, including timeouts.

Special characters (when at the start of a line) are:

A comment character.

Recognized commands are:

input secs string

Gets characters from the modem until the string is matched or secs
seconds have elapsed. If the timeout expires before the string is found,
the script is aborted.

output string

Sends a string to the modem. It can contain escape sequences.

echo text

Sends text to the user console (or log).
4-20 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.2.2 login()

This function executes a login script to log in to a remote host after the connection has
been started.

Syntax

void login(void)

Return value

None.

Usage

This is called by the link control code, for example, the dialer, when a link connection
has been established. If no login script has been specified, it marks the connection as
logged in and returns. Otherwise, it executes the login script.

The login() function sets loggedin to TRUE if the login script was successful (or did not
exist), or FALSE if the login attempt failed.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-21

Modem Functions
4.2.3 log_input()

This function gets a string from the modem and checks that it matches the passed string.

Syntax

int log_input(char *string, int secs)

where:

string Is the sequence to look for.

secs Is the maximum time, in seconds, to wait for the sequence.

Return value

Returns one of the following:

TRUE If string was seen within secs seconds.

FALSE If string was not seen within secs seconds.

Usage

The log_input() function waits for up to secs seconds to see if string arrives from the
modem. It leaves the input from the modem in modem_in[].
4-22 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.2.4 log_output()

This function sends a string to the modem, converting escape sequences.

Syntax

void log_output(char *string)

where:

string Is the string to send.

Return value

None.

Usage

The log_output() function sends the printable ASCII characters from string to the
modem, converting escape sequences to their corresponding control characters. The
log_output() function waits for space to become available before sending each
character.

The log_output() function converts the following escape sequences:

\n Newline character (012)

\r Carriage return (015)

\t Tab (011)

\x Character x (for example, \\ to get a single backslash).
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-23

Modem Functions
4.2.5 logserver()

This function executes a login script to allow a remote host to log into this system when
they dial in.

Syntax

void logserver(void)

Return value

None.

Usage

The logserver() function is called by dial_check() in dialer.c to handle logging on
users who dial in. If the log server file has been specified in the NVRAM, the
logserver() function runs that script and sets loggedin to TRUE or FALSE, accordingly. If
no log server file has been specified, logserver() sets loggedin to TRUE.

This function leaves loggedin set to TRUE or FALSE.
4-24 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.3 mdmport.c

The functions in mdmport.c are the glue layer functions that are specific to porting the
modem control module to other platforms. The functions are:

• dial_delay() on page 4-26

• hangup() on page 4-27

• modem_clr_dtr() and modem_set_dtr() on page 4-28

• modem_DCD() on page 4-29

• modem_portstat() on page 4-30.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-25

Modem Functions
4.3.1 dial_delay()

This function causes a delay by allowing the task loop to spin.

Syntax

void dial_delay(unsigned long ticks)

where:

ticks Is the number of clock ticks to delay for.

Return value

None.

Usage

The dial_delay() function is called to allow the task loop to spin for ticks clock ticks
without re-entering dialer code. This function calls tk_yield() repeatedly until the
requisite number of clock ticks have passed.
4-26 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.3.2 hangup()

This function hangs up the modem (used by the menus demonstration application, as
documented in the Command-line Interface Reference Guide).

Syntax

int hangup(void *pio)

where:

pio Is a pointer to the GenericIO structure where debug information is to be
written.

Return value

The hangup() function returns the same values as modem_hangup() (see modem_hangup()
on page 4-10).

Usage

The hangup() function is used by the menus demonstration application to force a hangup
of the modem. It calls modem_hangup() with the default modem unit number.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-27

Modem Functions
4.3.3 modem_clr_dtr() and modem_set_dtr()

These functions control the Data Terminal Ready (DTR) signal to the modem.

Syntax

void modem_clr_dtr(void)

void modem_set_dtr(void)

Return value

None.

Usage

The modem_clr_dtr() function drops the DTR signal to the modem, and the
modem_set_dtr() function is used to assert the DTR signal. Dropping the DTR signal
usually causes the modem to hang-up the line, if it is connected, and to return to
command mode when the DTR signal is asserted again.
4-28 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Modem Functions
4.3.4 modem_DCD()

This tests the current status of the Data Carrier Detect (DCD) input from the modem.

Syntax

int modem_DCD(int unit)

where:

unit Is the interface unit number.

Return value

Returns one of the following:

TRUE If the carrier detect is down.

FALSE If the carrier detect is up.

Usage

The modem_DCD() function is called by the dialer functions to determine the current state
of the DCD input from the modem.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. 4-29

Modem Functions
4.3.5 modem_portstat()

This prints statistics about the modem port.

Syntax

void modem_portstat(void* pio int unit)

where:

pio Is a pointer to the GenericIO structure where debug information is to be
written.

Return value

None.

Usage

The modem_portstat() function is used for debugging purposes to print out statistics
about this modem port.
4-30 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Appendix A
Testing the PPP stack

A complete guide to dial-up networking on Windows NT is beyond the scope of this
document. However, this Appendix gives a checklist of points to remember when
testing the ARM PPP stack against a Windows NT machine. This information is written
for Windows NT Workstation 4, but NT Server 4 should be almost identical. This
Appendix contains the following sections:

• Setting up the PC on page A-2

• Build and networking considerations on page A-3

• Connecting to the Integrator board on page A-4

• Routing on page A-5.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. A-1

Testing the PPP stack
A.1 Setting up the PC

Use the following checklist to set up your PC:

1. The PC must be set up to use TCP/IP.

2. Enable IP forwarding, if necessary:

• Control Panel → Network → Protocols → TCP/IP → Routing

3. Connect a crossover (null-modem) serial cable between Serial B on the Integrator
board and a spare COM port on the PC.

4. Ensure that Remote Access Service (RAS) is present:

• Control Panel → Network → Services

5. Configure RAS to both dial out and receive calls:

• As above, then Properties → Configure

6. Configure RAS to allocate IP addresses appropriate for your environment:

• As above, but click on Network instead of Configure, then the Configure
button next to TCP/IP.

7. Reboot when prompted.

8. Add a modem of type Dial-Up Networking Serial Cable, attached to the
appropriate COM port. You might be prompted to do this during the installation
of RAS, above.

9. Configure the modem to operate at 115200 bits/second, and to use hardware flow
control.

10. Add a local user account:

• Start → Programs → Administrative Tools → User Manager

• Set up the account with the name PPP and password letmein (this is the
string specified after CHAP secret in the file direct.nv of the application
being tested).

• Give the user dial-in permission (click on the Dialin button at the bottom of
the User Properties dialog box).

11. Check that the RAS services have started properly (Control Panel → Services),
set them to Automatic startup, and start them if necessary.
A-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Testing the PPP stack
A.2 Build and networking considerations

For the build:

1. Ensure that a PPP target is built, and that DIRECT_RAS is defined in ipport.h.

2. Check the settings in direct.nv.

For the network:

1. Consider how routing is going to work between the Integrator board and any other
hosts it needs to access.

2. Choose IP numbers to assign to the PPP link.

3. Set up any routes necessary on other hosts. For example, the SMTP server (for the
maildemo project) needs a route to the Integrator board specifying the NT
machine as the gateway.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. A-3

Testing the PPP stack
A.3 Connecting to the Integrator board

Use the following checklist when connecting to your Integrator board:

1. Some of the PPP demonstration programs operate as servers (that is, the PC calls
them), some as clients (they call the PC), and some can operate in both modes.

2. Add a phonebook entry to dial the Integrator board:

• My Computer → Dial-Up Networking

The phone number field is not used.

3. Use Dial-Up Networking to make a connection to the Integrator board when a
program is running as a server.

4. Monitor the progress of an incoming client connection using the Dial-Up
Networking Monitor:

• My Computer → Dial-Up Networking → More → Monitor status

5. Check how NT is routing packets by using the route command. At a command
prompt, type:

route print

See Routing on page A-5 for more details.
A-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Testing the PPP stack
A.4 Routing

Sometimes, NT adds an incorrect route for an incoming PPP connection. If this is the
case, delete it and add a correct one.

For example, if the Integrator board is using 192.168.168.2, and the PC is using
192.168.168.1, there must be a route to 192.168.168.2 using 192.168.168.1 as a
gateway.

The following commands are useful in this case:

route print
route delete 192.168.168.2
route add 192.168.168.2 gw 192.168.168.1
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. A-5

Testing the PPP stack
A-6 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Glossary

ADS ARM Developer Suite.

CHAP Challenge-Handshake Authentication Protocol.

DCD Data Carrier Detect.

DHCP Dynamic Host Configuration Protocol.

DTR Data Terminal Ready.

FIFO First In, First Out.

FSM Finite State Machine.

IPCP Internet Protocol Control Protocol.

ISDN Integrated Services Digital Network.

ISR Interrupt Service Routine.

LCP Link Control Protocol.

MD4 Message Digest 4.

MD5 Message Digest 5.

NVRAM Non-volatile Random Access memory.

PPP Point-to-Point Protocol.
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. Glossary-1

Glossary
RAS Remote Access Service.

RTOS Real-time Operating System.

SMTP Simple Mail Transfer Protocol.

SNMP Simple Network Management Protocol.

TCP/IP Transmission Control Protocol/Internet Protocol.

UART Universal Asynchronous Receiver/Transmitter.

UDP User Datagram Protocol.

UPAP User/Password Authentication Protocol.

VJC Van Jacobson Compression.
Glossary-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
Abrupt disconnect 2-10
ARM directories

\armthumb 3-2
\pid7tdm 3-2

ARM PPP requirements 1-7
dynamic memory 1-9
line management functions 1-7
periodic clock tick 1-10
static memory 1-8

Auto-answer 3-19

C
calloc() 3-3, 3-6
CHAP 1-4, 1-6, 2-10
CHAP_SUPPORT 2-6
Client connection 2-9
Code space 1-8
Compile switches 2-6
Compiling PPP

include file 2-5
setting options 2-5

ConPrintf() 2-3, 3-5
Crossover 2-9
cticks 1-10

D
Data Terminal Ready (DTR) 4-28
DHCP 2-10, 3-8
dialer.c 3-20, 4-2

dialer_status() 4-5
dial() 4-3
dial_check() 4-4
modem_cmd() 4-6
modem_connect() 4-7
modem_getc() 4-8
modem_gets() 4-9
modem_hangup() 4-10
modem_init() 4-11
modem_lstate() 4-12
modem_no_carrier() 4-18

modem_putc() 4-13
modem_speed() 4-15
modem_state() 4-16
modem_write() 4-17

dialer_status() 4-5
dial() 4-3, 4-7
dial_check() 4-4
dial_delay() 4-26
do_script() 4-20

E
Entry points 3-18

support calls 2-8
Example package directories 1-11

F
free() 3-6
FSM 1-4, 1-5
fsm.h 2-4
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. Index-1

Index
fsm_callbacks 2-4

G
get_secret() 2-6, 3-7

H
hangup() 4-27

I
ifppp.c 3-4
IP loopback address 2-9
IPCP 1-4, 1-5
ipport.c 2-8, 3-2, 3-22
ipport.h 1-10, 3-2

definitions in 2-3
ISDN 1-7

L
LB_XOVER 2-7, 2-9
LCP 1-4, 1-5
lcp.c 2-4
lcp_lowerdown() 2-10, 3-18, 4-4, 4-10
lcp_lowerup() 3-19
ln_connect() 3-10, 3-11, 3-13, 3-16
ln_getc() 3-12
ln_hangup() 3-13, 3-16, 3-18, 4-3, 4-6,

4-8, 4-9, 4-12
ln_putc() 2-9, 3-14, 3-17, 3-18, 3-19
ln_speed() 3-15
ln_state() 3-16
ln_write() 3-17
LOCAL_RAND 2-7
login() 4-20, 4-21
login.c 4-19

do_script() 4-20
login() 4-21
logserver() 4-24
log_input() 4-22
log_output() 4-23

logserver() 4-20, 4-24
log_input() 4-22

log_output() 4-23
loopback demo 2-9

M
makefile 2-3, 2-5
MAXMRU 3-3
mdmport.c 4-25

dial_delay() 4-26
hangup() 4-27
modem_clr_dtr() 4-28
modem_DCD() 4-29
modem_portstat() 4-30
modem_reset() 4-14
modem_set_dtr() 4-28

MD5 2-6
Modem functions 4-1

dialer.c 4-2
login.c 4-19
mdmport.c 4-25

modem_clr_dtr() 4-28
modem_cmd() 4-3, 4-6
modem_connect() 4-7
modem_DCD() 4-29
modem_getc() 4-8
modem_gets() 4-9
modem_hangup() 4-10, 4-27
modem_init() 4-11
modem_lstate() 4-12
modem_no_carrier() 4-18
modem_portstat() 4-5, 4-30
modem_putc() 4-13
modem_reset() 4-10, 4-14
modem_set_dtr() 4-28
modem_speed() 4-15
modem_state() 4-16
modem_write() 4-17
Multilink test 2-10

N
nets 2-3, 3-22
nptypes.h 2-5

P
PAP 1-4
PAP_SUPPORT 2-6
Port-independent source files 2-4
Porting PPP

compiling 2-5
entry points and support calls 2-8
source files 2-4

PPP
include file 2-5
options 2-5
porting 2-3
testing 2-9

PPP entry points 3-18
lcp_lowerdown() 3-18
lcp_lowerup() 3-19
ppp_input() 3-20
ppp_timeisup() 3-21
prep_ppp() 3-22

PPP functions 3-2
ConPrintf() 3-5
get_secret() 3-7
ppp_port_init() 3-8
_ALLOC() functions 3-3
_FREE() functions 3-6

PPPB_ALLOC() 3-6
PPPB_FREE() 3-6
pppclose() 4-10
PPPS_ALLOC() 3-6
PPPS_FREE() 3-6
PPPT_ALLOC() 3-6
PPPT_FREE() 3-6
ppp.h 3-4
ppp.zip 1-11
PPP_DNS 2-7
ppp_input() 3-12
ppp_lines 2-3, 3-10
ppp_port.c 2-2, 2-4, 2-8, 4-11
ppp_port.h 2-2, 2-4, 2-5, 3-3, 3-4
ppp_port_init() 2-3, 2-8, 3-8, 3-10
ppp_timeisup() 3-20, 3-21
prep_ifaces() 2-8
prep_ppp() 2-8, 3-8, 3-22

R
rand() 2-7
Index-2 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

Index
S
Sample programs 1-8, 1-11
Serial line drivers 3-10

ln_connect() 3-11
ln_getc() 3-12
ln_hangup() 3-13
ln_putc() 3-14
ln_speed() 3-15
ln_state() 3-16
ln_write() 3-17

Server connection 2-10
Source files 2-4
srand() 2-7
Static memory 1-7
Static variables 2-3
sys_np.c 3-21

T
TERMREQ 2-10
Testing PPP

abrupt disconnect 2-10
client connection 2-9
loopback 2-9
multilink test 2-10
server connection 2-10

tk_yield() 4-4
TPS 1-10

U
uart_putc() 4-13
uart_ready() 4-13
uart_reset() 4-14
uart_stats() 4-5
UPAP 1-6
use_ppp() 2-3

V
VJC, VJ compression 2-6, 2-10

Y
YIELD() 4-13, 4-26

Symbols
\armthumb 3-2
\crypt 1-11
\modem 1-11, 4-1
\pid7tdm 3-2, 4-1
\ppp 1-11
_ALLOC() functions 3-3
_FREE() functions 3-6
_NPPP

defining 2-3
ARM DUI 0143B Copyright © 1998-2001 ARM Limited. All rights reserved. Index-3

Index
Index-4 Copyright © 1998-2001 ARM Limited. All rights reserved. ARM DUI 0143B

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on ARM PPP
	Feedback on this book

	Introduction
	1.1 A typical embedded networking stack
	1.1.1 The ARM portable stack

	1.2 What is PPP?
	1.2.1 Protocols

	1.3 ARM PPP requirements
	1.3.1 Line management functions
	1.3.2 Static memory
	1.3.3 Dynamic memory
	1.3.4 Periodic clock tick

	1.4 Sample package directory and programs
	1.4.1 Sample programs

	PPP Porting
	2.1 Overview of the porting procedure
	2.2 Porting PPP
	2.2.1 Source files
	2.2.2 Compiling PPP
	2.2.3 Entry points and support calls

	2.3 Testing PPP
	2.3.1 Loopback
	2.3.2 Client connection
	2.3.3 Server connection
	2.3.4 Abrupt disconnect
	2.3.5 Multilink test

	PPP API Functions
	3.1 Overview of user-provided PPP functions
	3.2 User-provided PPP functions
	3.2.1 _ALLOC() functions
	3.2.2 ConPrintf()
	3.2.3 _FREE() functions
	3.2.4 get_secret()
	3.2.5 ppp_port_init()

	3.3 Serial line drivers
	3.3.1 ln_connect()
	3.3.2 ln_getc()
	3.3.3 ln_hangup()
	3.3.4 ln_putc()
	3.3.5 ln_speed()
	3.3.6 ln_state()
	3.3.7 ln_write()

	3.4 PPP entry points
	3.4.1 lcp_lowerdown()
	3.4.2 lcp_lowerup()
	3.4.3 ppp_input()
	3.4.4 ppp_timeisup()
	3.4.5 prep_ppp()

	Modem Functions
	4.1 dialer.c
	4.1.1 dial()
	4.1.2 dial_check()
	4.1.3 dialer_status()
	4.1.4 modem_cmd()
	4.1.5 modem_connect()
	4.1.6 modem_getc()
	4.1.7 modem_gets()
	4.1.8 modem_hangup()
	4.1.9 modem_init()
	4.1.10 modem_lstate()
	4.1.11 modem_putc()
	4.1.12 modem_reset()
	4.1.13 modem_speed()
	4.1.14 modem_state()
	4.1.15 modem_write()
	4.1.16 modem_no_carrier()

	4.2 login.c
	4.2.1 do_script()
	4.2.2 login()
	4.2.3 log_input()
	4.2.4 log_output()
	4.2.5 logserver()

	4.3 mdmport.c
	4.3.1 dial_delay()
	4.3.2 hangup()
	4.3.3 modem_clr_dtr() and modem_set_dtr()
	4.3.4 modem_DCD()
	4.3.5 modem_portstat()

	Testing the PPP stack
	A.1 Setting up the PC
	A.2 Build and networking considerations
	A.3 Connecting to the Integrator board
	A.4 Routing

	Glossary
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	Y
	Symbols

