
ARM® Compiler v5.06 for µVision®

Version 5

fromelf User Guide

Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved.
ARM DUI0459F

ARM® Compiler v5.06 for µVision®

fromelf User Guide
Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A December 2008 Non-Confidential Release for RVCT v4.0 for µVision

B June 2011 Non-Confidential Release for ARM Compiler v4.1 for µVision

C July 2012 Non-Confidential Release for ARM Compiler v5.02 for µVision

D 30 May 2014 Non-Confidential Release for ARM Compiler v5.04 for µVision

E 12 December 2014 Non-Confidential Release for ARM Compiler v5.05 for µVision

F 15 August 2015 Non-Confidential Release for ARM Compiler v5.06 for µVision

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © [2008, 2011, 2012, 2014, 2015], ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

 ARM® Compiler v5.06 for µVision®

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 ARM® Compiler v5.06 for µVision®

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
ARM® Compiler v5.06 for µVision® fromelf User
Guide

Preface
About this book 8

Chapter 1 Overview of the fromelf Image Converter
1.1 About the fromelf image converter 1-11
1.2 fromelf execution modes 1-12
1.3 Getting help on the fromelf command 1-13
1.4 fromelf command-line syntax 1-14

Chapter 2 Using fromelf
2.1 General considerations when using fromelf 2-16
2.2 Examples of processing ELF files in an archive .. 2-17
2.3 Option to print specific details of ELF files 2-18
2.4 Using fromelf to find where a symbol is placed in an executable ELF image 2-19

Chapter 3 fromelf Command-line Options
3.1 --base [[object_file::]load_region_ID=]num .. 3-23
3.2 --bin 3-24
3.3 --bincombined .. 3-25
3.4 --bincombined_base=address 3-26
3.5 --bincombined_padding=size,num 3-27
3.6 --cad 3-28

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 4
Non-Confidential

3.7 --cadcombined 3-30
3.8 --compare=option[,option,…] 3-31
3.9 --continue_on_error 3-32
3.10 --cpu=list .. 3-33
3.11 --cpu=name 3-34
3.12 --datasymbols .. 3-35
3.13 --decode_build_attributes .. 3-36
3.14 --diag_error=tag[,tag,…] .. 3-37
3.15 --diag_remark=tag[,tag,…] 3-38
3.16 --diag_style={arm|ide|gnu} 3-39
3.17 --diag_suppress=tag[,tag,…] 3-40
3.18 --diag_warning=tag[,tag,…] 3-41
3.19 --dump_build_attributes 3-42
3.20 --emit=option[,option,…] .. 3-43
3.21 --expandarrays 3-45
3.22 --extract_build_attributes 3-46
3.23 --fieldoffsets 3-47
3.24 --fpu=list 3-49
3.25 --fpu=name .. 3-50
3.26 --help 3-52
3.27 --i32 3-53
3.28 --i32combined .. 3-54
3.29 --ignore_section=option[,option,…] 3-55
3.30 --ignore_symbol=option[,option,…] 3-56
3.31 --info=topic[,topic,…] 3-57
3.32 input_file 3-58
3.33 --interleave=option 3-59
3.34 --liclinger=seconds 3-60
3.35 --licretry .. 3-61
3.36 --m32 3-62
3.37 --m32combined .. 3-63
3.38 --only=section_name 3-64
3.39 --output=destination 3-65
3.40 --qualify .. 3-66
3.41 --relax_section=option[,option,…] .. 3-67
3.42 --relax_symbol=option[,option,…] .. 3-68
3.43 --select=select_options .. 3-69
3.44 --show_cmdline 3-70
3.45 --source_directory=path 3-71
3.46 --text 3-72
3.47 --version_number 3-74
3.48 --vhx 3-75
3.49 --via=file 3-76
3.50 --vsn 3-77
3.51 -w 3-78
3.52 --widthxbanks 3-79

Chapter 4 Via File Syntax
4.1 Overview of via files 4-82
4.2 Via file syntax rules .. 4-83

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 5
Non-Confidential

List of Tables
ARM® Compiler v5.06 for µVision® fromelf User
Guide

Table 3-1 Examples of using --base .. 3-23

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 6
Non-Confidential

Preface

This preface introduces the ARM® Compiler v5.06 for µVision® fromelf User Guide.

It contains the following:
• About this book on page 8.

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 7
Non-Confidential

 About this book
ARM® Compiler for µVision® fromelf User Guide. This manual provides information on how to use the
fromelf utility. It is also available as a PDF.

 Using this book

This book is organized into the following chapters:

Chapter 1 Overview of the fromelf Image Converter
Gives an overview of the fromelf image converter provided with ARM® Compiler.

Chapter 2 Using fromelf
Describes how to use the fromelf image converter provided with ARM Compiler.

Chapter 3 fromelf Command-line Options
Describes the command-line options of the fromelf image converter provided with ARM
Compiler.

Chapter 4 Via File Syntax
Describes the syntax of via files accepted by fromelf.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

 Preface
 About this book

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 8
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title ARM® Compiler v5.06 for µVision® fromelf User Guide.
• The number ARM DUI0459F.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 9
Non-Confidential

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Overview of the fromelf Image Converter

Gives an overview of the fromelf image converter provided with ARM® Compiler.

It contains the following sections:
• 1.1 About the fromelf image converter on page 1-11.
• 1.2 fromelf execution modes on page 1-12.
• 1.3 Getting help on the fromelf command on page 1-13.
• 1.4 fromelf command-line syntax on page 1-14.

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 1-10
Non-Confidential

1.1 About the fromelf image converter
The fromelf image conversion utility allows you to modify ELF image and object files, and to display
information on those files.

fromelf allows you to:
• Process ARM ELF object and image files that the compiler, assembler, and linker generate.
• Process all ELF files in an archive that armar creates, and output the processed files into another

archive if necessary.
• Convert ELF images into other formats that for use by ROM tools or for direct loading into memory.

The formats available are:
— Plain binary.
— Motorola 32-bit S-record.
— Intel Hex-32.
— Byte oriented (Verilog Memory Model) hexadecimal.

• Display information about the input file, for example, disassembly output or symbol listings, to either
stdout or a text file.

 Note

If your image is produced without debug information, fromelf cannot:
• Translate the image into other file formats.
• Produce a meaningful disassembly listing.

 Note

The command-line option descriptions and related information in the individual ARM Compiler tools
documents describe all the features that ARM Compiler supports. Any features not documented are not
supported and are used at your own risk. You are responsible for making sure that any generated code
using unsupported features is operating correctly.

Related references
1.2 fromelf execution modes on page 1-12.
1.4 fromelf command-line syntax on page 1-14.
Chapter 3 fromelf Command-line Options on page 3-21.

1 Overview of the fromelf Image Converter
1.1 About the fromelf image converter

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 1-11
Non-Confidential

1.2 fromelf execution modes
You can run fromelf in various execution modes.

The execution modes are:
• Text mode (--text, and others), to output information about an object or image file.
• Format conversion mode (--bin, --m32, --i32, --vhx).

Related references
3.2 --bin on page 3-24.
3.27 --i32 on page 3-53.
3.36 --m32 on page 3-62.
3.46 --text on page 3-72.
3.48 --vhx on page 3-75.

1 Overview of the fromelf Image Converter
1.2 fromelf execution modes

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 1-12
Non-Confidential

1.3 Getting help on the fromelf command
Use the --help option to display a summary of the main command-line options.

This is the default if you do not specify any options or files.

To display the help information, enter:

fromelf --help

Related references
1.4 fromelf command-line syntax on page 1-14.
3.26 --help on page 3-52.

1 Overview of the fromelf Image Converter
1.3 Getting help on the fromelf command

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 1-13
Non-Confidential

1.4 fromelf command-line syntax
You can specify an ELF file or library of ELF files on the fromelf command-line.

Syntax

fromelf options input_file
options

fromelf command-line options.
input_file

The ELF file or library file to be processed. When some options are used, multiple input files
can be specified.

Related references
Chapter 3 fromelf Command-line Options on page 3-21.
3.32 input_file on page 3-58.

1 Overview of the fromelf Image Converter
1.4 fromelf command-line syntax

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 1-14
Non-Confidential

Chapter 2
Using fromelf

Describes how to use the fromelf image converter provided with ARM Compiler.

It contains the following sections:
• 2.1 General considerations when using fromelf on page 2-16.
• 2.2 Examples of processing ELF files in an archive on page 2-17.
• 2.3 Option to print specific details of ELF files on page 2-18.
• 2.4 Using fromelf to find where a symbol is placed in an executable ELF image on page 2-19.

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 2-15
Non-Confidential

2.1 General considerations when using fromelf
There are some changes that you cannot make to an image with fromelf.

When using fromelf you cannot:
• Change the image structure or addresses, other than altering the base address of Motorola S-record or

Intel Hex output with the --base option.
• Change a scatter-loaded ELF image into a non scatter-loaded image in another format. Any structural

or addressing information must be provided to the linker at link time.

Related references
3.1 --base [[object_file::]load_region_ID=]num on page 3-23.
3.32 input_file on page 3-58.

2 Using fromelf
2.1 General considerations when using fromelf

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 2-16
Non-Confidential

2.2 Examples of processing ELF files in an archive
Examples of how you can process all ELF files in an archive, or a subset of those files. The processed
files together with any unprocessed files are output to another archive.

Examples

Consider an archive, test.a, containing the following ELF files:

bmw.o
bmw1.o
call_c_code.o
newtst.o
shapes.o
strmtst.o

This example prints the global and static addresses for each object file in an archive.

fromelf --text -a test.a

Related references
3.32 input_file on page 3-58.
3.39 --output=destination on page 3-65.

2 Using fromelf
2.2 Examples of processing ELF files in an archive

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 2-17
Non-Confidential

2.3 Option to print specific details of ELF files
You can specify the elements of an ELF object that you want to appear in the textual output with the
--emit option.

The output includes ELF header and section information. You can specify these elements as a comma
separated list.

 Note

You can specify some of the --emit options using the --text option.

Examples

To print the contents of the data sections of an ELF file, infile.axf, enter:

fromelf --emit=data infile.axf

To print relocation information and the dynamic section contents for the ELF file infile2.axf, enter:

fromelf --emit=relocation_tables,dynamic_segment infile2.axf

Related references
1.4 fromelf command-line syntax on page 1-14.
3.20 --emit=option[,option,…] on page 3-43.
3.46 --text on page 3-72.

2 Using fromelf
2.3 Option to print specific details of ELF files

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 2-18
Non-Confidential

2.4 Using fromelf to find where a symbol is placed in an executable ELF image
You can find where a symbol is placed in an executable ELF image.

To find where a symbol is placed in an ELF image file, use the --text -s -v options to view the
symbol table and detailed information on each segment and section header, for example:

The symbol table identifies the section where the symbol is placed.

Do the following:

Procedure
1. Create the file s.c containing the following source code:

long long altstack[10] __attribute__ ((section ("STACK"), zero_init));
int main()
{
 return sizeof(altstack);
}

2. Compile the source:
armcc --target=arm-arm-none-eabi -c s.c -o s.o

3. Link the object s.o and keep the STACK symbol:
armlink --keep=s.o(STACK) s.o --output=s.axf

4. Run the fromelf command to display the symbol table and detailed information on each segment and
section header:
fromelf --text -s -v s.o

5. Locate the STACK and altstack symbols in the fromelf output, for example:

 ...
 ** Section #9
 Name : .symtab
 Type : SHT_SYMTAB (0x00000002)
 Flags : None (0x00000000)
 Addr : 0x00000000
 File Offset : 2792 (0xae8)
 Size : 2896 bytes (0xb50)
 Link : Section 10 (.strtab)
 Info : Last local symbol no = 115
 Alignment : 4
 Entry Size : 16

 Symbol table .symtab (180 symbols, 115 local)

 # Symbol Name Value Bind Sec Type Vis Size
 ===
 ...
 16 STACK 0x00008228 Lc 2 Sect De 0x50
 ...
 179 altstack 0x00008228 Gb 2 Data Hi 0x50
 ...

The Sec column shows the section where the stack is placed. In this example, section 2.
6. Locate the section identified for the symbol in the fromelf output, for example:

 ...
 ====================================
 ** Section #2
 Name : ER_ZI
 Type : SHT_NOBITS (0x00000008)
 Flags : SHF_ALLOC + SHF_WRITE (0x00000003)
 Addr : 0x000081c8
 File Offset : 508 (0x1fc)
 Size : 176 bytes (0xb0)
 Link : SHN_UNDEF
 Info : 0
 Alignment : 8
 Entry Size : 0
 ====================================
 ...

2 Using fromelf
2.4 Using fromelf to find where a symbol is placed in an executable ELF image

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 2-19
Non-Confidential

This shows that the symbols are placed in a ZI execution region.

Related references
3.46 --text on page 3-72.

2 Using fromelf
2.4 Using fromelf to find where a symbol is placed in an executable ELF image

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 2-20
Non-Confidential

Chapter 3
fromelf Command-line Options

Describes the command-line options of the fromelf image converter provided with ARM Compiler.

It contains the following sections:
• 3.1 --base [[object_file::]load_region_ID=]num on page 3-23.
• 3.2 --bin on page 3-24.
• 3.3 --bincombined on page 3-25.
• 3.4 --bincombined_base=address on page 3-26.
• 3.5 --bincombined_padding=size,num on page 3-27.
• 3.6 --cad on page 3-28.
• 3.7 --cadcombined on page 3-30.
• 3.8 --compare=option[,option,…] on page 3-31.
• 3.9 --continue_on_error on page 3-32.
• 3.10 --cpu=list on page 3-33.
• 3.11 --cpu=name on page 3-34.
• 3.12 --datasymbols on page 3-35.
• 3.13 --decode_build_attributes on page 3-36.
• 3.14 --diag_error=tag[,tag,…] on page 3-37.
• 3.15 --diag_remark=tag[,tag,…] on page 3-38.
• 3.16 --diag_style={arm|ide|gnu} on page 3-39.
• 3.17 --diag_suppress=tag[,tag,…] on page 3-40.
• 3.18 --diag_warning=tag[,tag,…] on page 3-41.
• 3.19 --dump_build_attributes on page 3-42.
• 3.20 --emit=option[,option,…] on page 3-43.
• 3.21 --expandarrays on page 3-45.
• 3.22 --extract_build_attributes on page 3-46.
• 3.23 --fieldoffsets on page 3-47.

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-21
Non-Confidential

• 3.24 --fpu=list on page 3-49.
• 3.25 --fpu=name on page 3-50.
• 3.26 --help on page 3-52.
• 3.27 --i32 on page 3-53.
• 3.28 --i32combined on page 3-54.
• 3.29 --ignore_section=option[,option,…] on page 3-55.
• 3.30 --ignore_symbol=option[,option,…] on page 3-56.
• 3.31 --info=topic[,topic,…] on page 3-57.
• 3.32 input_file on page 3-58.
• 3.33 --interleave=option on page 3-59.
• 3.34 --liclinger=seconds on page 3-60.
• 3.35 --licretry on page 3-61.
• 3.36 --m32 on page 3-62.
• 3.37 --m32combined on page 3-63.
• 3.38 --only=section_name on page 3-64.
• 3.39 --output=destination on page 3-65.
• 3.40 --qualify on page 3-66.
• 3.41 --relax_section=option[,option,…] on page 3-67.
• 3.42 --relax_symbol=option[,option,…] on page 3-68.
• 3.43 --select=select_options on page 3-69.
• 3.44 --show_cmdline on page 3-70.
• 3.45 --source_directory=path on page 3-71.
• 3.46 --text on page 3-72.
• 3.47 --version_number on page 3-74.
• 3.48 --vhx on page 3-75.
• 3.49 --via=file on page 3-76.
• 3.50 --vsn on page 3-77.
• 3.51 -w on page 3-78.
• 3.52 --widthxbanks on page 3-79.

3 fromelf Command-line Options

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-22
Non-Confidential

3.1 --base [[object_file::]load_region_ID=]num
Enables you to alter the base address specified for one or more load regions in Motorola S-record and
Intel Hex file formats.

Syntax

--base [[object_file::]load_region_ID=]num

Where:

object_file
An optional ELF input file.

load_region_ID
An optional load region. This can either be a symbolic name of an execution region belonging to
a load region or a zero-based load region number, for example #0 if referring to the first region.

num
Either a decimal or hexadecimal value.

You can:
• Use wildcard characters ? and * for symbolic names in object_file and load_region_ID

arguments.
• Specify multiple values in one option followed by a comma-separated list of arguments.

All addresses encoded in the output file start at the base address num. If you do not specify a --base
option, the base address is taken from the load region address.

Restrictions

You must use one of the output formats --i32, --i32combined, --m32, or --m32combined with this
option. Therefore, you cannot use this option with object files.

Examples

The following table shows examples:

Table 3-1 Examples of using --base

--base 0 decimal value

--base 0x8000 hexadecimal value

--base #0=0 base address for the first load region

--base foo.o::*=0 base address for all load regions in foo.o

--base #0=0,#1=0x8000 base address for the first and second load regions

Related concepts
2.1 General considerations when using fromelf on page 2-16.

Related references
3.27 --i32 on page 3-53.
3.28 --i32combined on page 3-54.
3.36 --m32 on page 3-62.
3.37 --m32combined on page 3-63.

3 fromelf Command-line Options
3.1 --base [[object_file::]load_region_ID=]num

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-23
Non-Confidential

3.2 --bin
Produces plain binary output, one file for each load region. You can split the output from this option into
multiple files with the --widthxbanks option.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --bin
If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for each load region in the
input image. fromelf places the output files in the destination directory.

 Note

For multiple load regions, the name of the first non-empty execution region in the corresponding load
region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in a output
file.

Example

To convert an ELF file to a plain binary file, for example outfile.bin, enter:

fromelf --bin --output=outfile.bin infile.axf

Related references
3.39 --output=destination on page 3-65.
3.52 --widthxbanks on page 3-79.

3 fromelf Command-line Options
3.2 --bin

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-24
Non-Confidential

3.3 --bincombined
Produces plain binary output. It generates one output file for an image containing multiple load regions.

Usage

By default, the start address of the first load region in memory is used as the base address. fromelf
inserts padding between load regions as required to ensure that they are at the correct relative offset from
each other. Separating the load regions in this way means that the output file can be loaded into memory
and correctly aligned starting at the base address.

Use this option with --bincombined_base and --bincombined_padding to change the default values
for the base address and padding.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --bincombined

Use this option with --bincombined_base to change the default value for the base address.

The default padding value is 0xFF. Use this option with --bincombined_padding to change the default
padding value.

If you use a scatter file that defines two load regions with a large address space between them, the
resulting binary can be very large because it contains mostly padding. For example, if you have a load
region of size 0x100 bytes at address 0x00000000 and another load region at address 0x30000000, the
amount of padding is 0x2FFFFF00 bytes.

ARM recommends that you use a different method of placing widely spaced load regions, such as --bin,
and make your own arrangements to load the multiple output files at the correct addresses.

Examples

To produce a binary file that can be loaded at start address 0x1000, enter:

fromelf --bincombined --bincombined_base=0x1000 --output=out.bin in.axf

To produce plain binary output and fill the space between load regions with copies of the 32-bit word
0x12345678, enter:

fromelf --bincombined --bincombined_padding=4,0x12345678 --output=out.bin in.axf

Related references
3.4 --bincombined_base=address on page 3-26.
3.5 --bincombined_padding=size,num on page 3-27.
3.39 --output=destination on page 3-65.
3.52 --widthxbanks on page 3-79.

Related information
Input sections, output sections, regions, and Program Segments.

3 fromelf Command-line Options
3.3 --bincombined

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-25
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362065900278.html

3.4 --bincombined_base=address
Enables you to lower the base address used by the --bincombined output mode. The output file
generated is suitable to be loaded into memory starting at the specified address.

Syntax

--bincombined_base=address
Where address is the start address where the image is to be loaded:
• If the specified address is lower than the start of the first load region, fromelf adds padding at the

start of the output file.
• If the specified address is higher than the start of the first load region, fromelf gives an error.

Default

By default the start address of the first load region in memory is used as the base address.

Restrictions

You must use --bincombined with this option. If you omit --bincombined, a warning message is
displayed.

Example

--bincombined --bincombined_base=0x1000

Related references
3.3 --bincombined on page 3-25.
3.5 --bincombined_padding=size,num on page 3-27.

Related information
Input sections, output sections, regions, and Program Segments.

3 fromelf Command-line Options
3.4 --bincombined_base=address

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-26
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362065900278.html

3.5 --bincombined_padding=size,num
Enables you to specify a different padding value from the default used by the --bincombined output
mode.

Syntax

--bincombined_padding=size,num
Where:

size
Is 1, 2, or 4 bytes to define whether it is a byte, halfword, or word.

num
The value to be used for padding. If you specify a value that is too large to fit in the specified
size, a warning message is displayed.

 Note

fromelf expects that 2-byte and 4-byte padding values are specified in the appropriate endianness for the
input file. For example, if you are translating a big endian ELF file into binary, the specified padding
value is treated as a big endian word or halfword.

Default

The default is --bincombined_padding=1,0xFF.

Restrictions

You must use --bincombined with this option. If you omit --bincombined, a warning message is
displayed.

Examples

The following examples show how to use --bincombined_padding:

--bincombined --bincombined_padding=4,0x12345678
This example produces plain binary output and fills the space between load regions with copies
of the 32-bit word 0x12345678.

--bincombined --bincombined_padding=2,0x1234
This example produces plain binary output and fills the space between load regions with copies
of the 16-bit halfword 0x1234.

--bincombined --bincombined_padding=2,0x01
This example when specified for big endian memory, fills the space between load regions with
0x0100.

Related references
3.3 --bincombined on page 3-25.
3.4 --bincombined_base=address on page 3-26.

3 fromelf Command-line Options
3.5 --bincombined_padding=size,num

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-27
Non-Confidential

3.6 --cad
Produces a C array definition or C++ array definition containing binary output.

Usage

You can use each array definition in the source code of another application. For example, you might want
to embed an image in the address space of another application, such as an embedded operating system.

If your image has a single load region, the output is directed to stdout by default. To save the output to a
file, use the --output option together with a filename.

If your image has multiple load regions, then you must also use the --output option together with a
directory name. Unless you specify a full path name, the path is relative to the current directory. A file is
created for each load region in the specified directory. The name of each file is the name of the
corresponding execution region.

Use this option with --output to generate one output file for each load region in the image.

Restrictions

You cannot use this option with object files.

Considerations when using --cad

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in a output
file.

Example
The following examples show how to use --cad:
• To produce an array definition for an image that has a single load region, enter:

fromelf --cad myimage.axf
unsigned char LR0[] = {
 0x00,0x00,0x00,0xEB,0x28,0x00,0x00,0xEB,0x2C,0x00,0x8F,0xE2,0x00,0x0C,0x90,0xE8,
 0x00,0xA0,0x8A,0xE0,0x00,0xB0,0x8B,0xE0,0x01,0x70,0x4A,0xE2,0x0B,0x00,0x5A,0xE1,
 0x00,0x00,0x00,0x1A,0x20,0x00,0x00,0xEB,0x0F,0x00,0xBA,0xE8,0x18,0xE0,0x4F,0xE2,
 0x01,0x00,0x13,0xE3,0x03,0xF0,0x47,0x10,0x03,0xF0,0xA0,0xE1,0xAC,0x18,0x00,0x00,
 0xBC,0x18,0x00,0x00,0x00,0x30,0xB0,0xE3,0x00,0x40,0xB0,0xE3,0x00,0x50,0xB0,0xE3,
 0x00,0x60,0xB0,0xE3,0x10,0x20,0x52,0xE2,0x78,0x00,0xA1,0x28,0xFC,0xFF,0xFF,0x8A,
 0x82,0x2E,0xB0,0xE1,0x30,0x00,0xA1,0x28,0x00,0x30,0x81,0x45,0x0E,0xF0,0xA0,0xE1,
 0x70,0x00,0x51,0xE3,0x66,0x00,0x00,0x0A,0x64,0x00,0x51,0xE3,0x38,0x00,0x00,0x0A,
 0x00,0x00,0xB0,0xE3,0x0E,0xF0,0xA0,0xE1,0x1F,0x40,0x2D,0xE9,0x00,0x00,0xA0,0xE1,
.
.
.
 0x3A,0x74,0x74,0x00,0x43,0x6F,0x6E,0x73,0x74,0x72,0x75,0x63,0x74,0x65,0x64,0x20,
 0x41,0x20,0x23,0x25,0x64,0x20,0x61,0x74,0x20,0x25,0x70,0x0A,0x00,0x00,0x00,0x00,
 0x44,0x65,0x73,0x74,0x72,0x6F,0x79,0x65,0x64,0x20,0x41,0x20,0x23,0x25,0x64,0x20,
 0x61,0x74,0x20,0x25,0x70,0x0A,0x00,0x00,0x0C,0x99,0x00,0x00,0x0C,0x99,0x00,0x00,
 0x50,0x01,0x00,0x00,0x44,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};

• For an image that has multiple load regions, the following commands create a file for each load
region in the directory root\myprojects\multiload\load_regions:

cd root\myprojects\multiload

fromelf --cad image_multiload.axf --output load_regions

If image_multiload.axf contains the execution regions EXEC_ROM and RAM, then the files EXEC_ROM
and RAM are created in the load_regions subdirectory.

Related references
3.7 --cadcombined on page 3-30.
3.39 --output=destination on page 3-65.

3 fromelf Command-line Options
3.6 --cad

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-28
Non-Confidential

Related information
Input sections, output sections, regions, and Program Segments.

3 fromelf Command-line Options
3.6 --cad

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-29
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362065900278.html

3.7 --cadcombined
Produces a C array definition or C++ array definition containing binary output.

Usage

You can use each array definition in the source code of another application. For example, you might want
to embed an image in the address space of another application, such as an embedded operating system.

The output is directed to stdout by default. To save the output to a file, use the --output option
together with a filename.

Restrictions

You cannot use this option with object files.

Example

The following commands create the file load_regions.c in the directory root\myprojects
\multiload:

cd root\myprojects\multiload

fromelf --cadcombined image_multiload.axf --output load_regions.c

Related references
3.6 --cad on page 3-28.
3.39 --output=destination on page 3-65.

3 fromelf Command-line Options
3.7 --cadcombined

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-30
Non-Confidential

3.8 --compare=option[,option,…]
Compares two input files and prints a textual list of the differences.

Usage

The input files must be the same type, either two ELF files or two library files. Library files are
compared member by member and the differences are concatenated in the output.

All differences between the two input files are reported as errors unless specifically downgraded to
warnings by using the --relax_section option.

Syntax

--compare=option[,option,…]

Where option is one of:

section_sizes
Compares the size of all sections for each ELF file or ELF member of a library file.

section_sizes::object_name
Compares the sizes of all sections in ELF objects with a name matching object_name.

section_sizes::section_name
Compares the sizes of all sections with a name matching section_name.

sections
Compares the size and contents of all sections for each ELF file or ELF member of a library file.

sections::object_name
Compares the size and contents of all sections in ELF objects with a name matching
object_name.

sections::section_name
Compares the size and contents of all sections with a name matching section_name.

function_sizes
Compares the size of all functions for each ELF file or ELF member of a library file.

function_sizes::object_name
Compares the size of all functions in ELF objects with a name matching object_name.

function_size::function_name
Compares the size of all functions with a name matching function_name.

global_function_sizes
Compares the size of all global functions for each ELF file or ELF member of a library file.

global_function_sizes::function_name
Compares the size of all global functions in ELF objects with a name matching function_name.

You can:
• Use wildcard characters ? and * for symbolic names in section_name, function_name, and

object_name arguments.
• Specify multiple values in one option followed by a comma-separated list of arguments.

Related references
3.29 --ignore_section=option[,option,…] on page 3-55.
3.30 --ignore_symbol=option[,option,…] on page 3-56.
3.41 --relax_section=option[,option,…] on page 3-67.
3.42 --relax_symbol=option[,option,…] on page 3-68.

3 fromelf Command-line Options
3.8 --compare=option[,option,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-31
Non-Confidential

3.9 --continue_on_error
Reports any errors and then continues.

Usage

Use --diag_warning=error instead of this option.

Related references
3.18 --diag_warning=tag[,tag,…] on page 3-41.

3 fromelf Command-line Options
3.9 --continue_on_error

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-32
Non-Confidential

3.10 --cpu=list
Lists the architecture and processor names that are supported by the --cpu=name option.

Syntax

--cpu=list

Related references
3.11 --cpu=name on page 3-34.

3 fromelf Command-line Options
3.10 --cpu=list

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-33
Non-Confidential

3.11 --cpu=name
Affects the way machine code is disassembled by options such as -c or --disassemble, so that it is
disassembled in the same way that the specified processor interprets it.

Syntax

--cpu=name

Where name is the name of a processor. Enter name as shown on ARM data sheets, for example, Cortex-
M3.

Processor names are not case-sensitive.

Usage

The following general points apply to processor options:

Processors
• Selecting the processor selects the appropriate architecture, Floating-Point Unit (FPU), and

memory organization.

FPU
• Some specifications of --cpu imply an --fpu selection.

 Note

Any explicit FPU, set with --fpu on the command line, overrides an implicit FPU.

• If no --fpu option is specified and no --cpu option is specified, --fpu=softvfp is used.

Example

To specify the Cortex®-M4 processor, use:

--cpu=Cortex-M4

Related references
3.10 --cpu=list on page 3-33.
3.31 --info=topic[,topic,…] on page 3-57.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.11 --cpu=name

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-34
Non-Confidential

3.12 --datasymbols
Modifies the output information of data sections so that symbol definitions are interleaved.

Usage

You can use this option only with --text -d.

Related references
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.12 --datasymbols

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-35
Non-Confidential

3.13 --decode_build_attributes
Prints the contents of the build attributes section in human-readable form for standard build attributes or
raw hexadecimal form for nonstandard build attributes.

 Note

The standard build attributes are documented in the Application Binary Interface for the ARM
Architecture.

Restrictions

You can use this option only in text mode.

Example

The following example shows the output for --decode_build_attributes:

** Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES)
 Size : 69 bytes
 'aeabi' file build attributes:
 0x000000: 05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01 .ARM7TDMI.......
 0x000010: 12 02 14 02 17 01 18 01 19 01 1a 01 1e 03 20 02
 0x000020: 41 52 4d 00 ARM.
 Tag_CPU_name = "ARM7TDMI"
 Tag_CPU_arch = ARM v4T (=2)
 Tag_ARM_ISA_use = ARM instructions were permitted to be used (=1)
 Tag_ABI_PCS_GOT_use = Data are imported directly (=1)
 Tag_ABI_PCS_wchar_t = Size of wchar_t is 2 (=2)
 Tag_ABI_FP_denormal = This code was permitted to require that the sign of a flushed-
to-zero number be preserved in the sign of 0 (=2)
 Tag_ABI_FP_number_model = This code was permitted to use only IEEE 754 format FP
numbers (=1)
 Tag_ABI_align8_needed = Code was permitted to depend on the 8-byte alignment of 8-
byte data items (=1)
 Tag_ABI_align8_preserved = Code was required to preserve 8-byte alignment of 8-byte
data objects (=1)
 Tag_ABI_enum_size = Enum values occupy the smallest container big enough to hold all
values (=1)
 Tag_ABI_optimization_goals = Optimized for small size, but speed and debugging
illusion preserved (=3)
 Tag_compatibility = 2, "ARM"
 'ARM' file build attributes:
 0x000000: 04 01 12 01

Related references
3.19 --dump_build_attributes on page 3-42.
3.20 --emit=option[,option,…] on page 3-43.
3.22 --extract_build_attributes on page 3-46.

Related information
Application Binary Interface for the ARM Architecture.

3 fromelf Command-line Options
3.13 --decode_build_attributes

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-36
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html

3.14 --diag_error=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Error severity.

Syntax

--diag_error=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to error severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• warning, to treat all warnings as errors.

Related references
3.15 --diag_remark=tag[,tag,…] on page 3-38.
3.16 --diag_style={arm|ide|gnu} on page 3-39.
3.17 --diag_suppress=tag[,tag,…] on page 3-40.
3.18 --diag_warning=tag[,tag,…] on page 3-41.

3 fromelf Command-line Options
3.14 --diag_error=tag[,tag,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-37
Non-Confidential

3.15 --diag_remark=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Remark severity.

Syntax

--diag_remark=tag[,tag,…]

Where tag is a comma-separated list of diagnostic message numbers. This is the four-digit number,
nnnn, with the tool letter prefix, but without the letter suffix indicating the severity.

Related references
3.14 --diag_error=tag[,tag,…] on page 3-37.
3.16 --diag_style={arm|ide|gnu} on page 3-39.
3.17 --diag_suppress=tag[,tag,…] on page 3-40.
3.18 --diag_warning=tag[,tag,…] on page 3-41.

3 fromelf Command-line Options
3.15 --diag_remark=tag[,tag,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-38
Non-Confidential

3.16 --diag_style={arm|ide|gnu}
Specifies the display style for diagnostic messages.

Syntax

--diag_style=string

Where string is one of:

arm
Display messages using the ARM compiler style.

ide
Include the line number and character count for any line that is in error. These values are
displayed in parentheses.

Usage

--diag_style=ide matches the format reported by Microsoft Visual Studio.

Default

The default is --diag_style=arm.

Related references
3.14 --diag_error=tag[,tag,…] on page 3-37.
3.15 --diag_remark=tag[,tag,…] on page 3-38.
3.17 --diag_suppress=tag[,tag,…] on page 3-40.
3.18 --diag_warning=tag[,tag,…] on page 3-41.

3 fromelf Command-line Options
3.16 --diag_style={arm|ide|gnu}

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-39
Non-Confidential

3.17 --diag_suppress=tag[,tag,…]
Suppresses diagnostic messages that have a specific tag.

Syntax

--diag_suppress=tag[,tag,…]
Where tag can be:
• A diagnostic message number to be suppressed. This is the four-digit number, nnnn, with the tool

letter prefix, but without the letter suffix indicating the severity.
• error, to suppress all errors that can be downgraded.
• warning, to suppress all warnings.

Related references
3.14 --diag_error=tag[,tag,…] on page 3-37.
3.15 --diag_remark=tag[,tag,…] on page 3-38.
3.16 --diag_style={arm|ide|gnu} on page 3-39.
3.18 --diag_warning=tag[,tag,…] on page 3-41.

3 fromelf Command-line Options
3.17 --diag_suppress=tag[,tag,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-40
Non-Confidential

3.18 --diag_warning=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Warning severity.

Syntax

--diag_warning=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to warning severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• error, to set all errors that can be downgraded to warnings.

Related references
3.14 --diag_error=tag[,tag,…] on page 3-37.
3.15 --diag_remark=tag[,tag,…] on page 3-38.
3.16 --diag_style={arm|ide|gnu} on page 3-39.
3.18 --diag_warning=tag[,tag,…] on page 3-41.

3 fromelf Command-line Options
3.18 --diag_warning=tag[,tag,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-41
Non-Confidential

3.19 --dump_build_attributes
Prints the contents of the build attributes section in raw hexadecimal form.

Restrictions

You can use this option only in text mode.

Example

The following example shows the output for --dump_build_attributes:

...
** Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES)
 Size : 69 bytes
 0x000000: 41 33 00 00 00 61 65 61 62 69 00 01 29 00 00 00 A3...aeabi..)...
 0x000010: 05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01 .ARM7TDMI.......
 0x000020: 12 02 14 02 17 01 18 01 19 01 1a 01 1e 03 20 02
 0x000030: 41 52 4d 00 11 00 00 00 41 52 4d 00 01 09 00 00 ARM.....ARM.....
 0x000040: 00 04 01 12 01

Related references
3.13 --decode_build_attributes on page 3-36.
3.20 --emit=option[,option,…] on page 3-43.
3.22 --extract_build_attributes on page 3-46.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.19 --dump_build_attributes

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-42
Non-Confidential

3.20 --emit=option[,option,…]
Enables you to specify the elements of an ELF object that you want to appear in the textual output. The
output includes ELF header and section information.

Restrictions

You can use this option only in text mode.

Syntax

--emit=option[,option,…]

Where option is one of:

addresses
Prints global and static data addresses (including addresses for structure and union contents). It
has the same effect as --text -a.

This option can only be used on files containing debug information. If no debug information is
present, a warning message is generated.

Use the --select option to output a subset of the data addresses.

If you want to view the data addresses of arrays, expanded both inside and outside structures,
use the --expandarrays option with this text category.

build_attributes
Prints the contents of the build attributes section in human-readable form for standard build
attributes or raw hexadecimal form for nonstandard build attributes. The produces the same
output as the --decode_build_attributes option.

code
Disassembles code, alongside a dump of the original binary data being disassembled and the
addresses of the instructions. It has the same effect as --text -c.

data
Prints contents of the data sections. It has the same effect as --text -d.

data_symbols
Modifies the output information of data sections so that symbol definitions are interleaved.

debug_info
Prints debug information. It has the same effect as --text -g.

dynamic_segment
Prints dynamic segment contents. It has the same effect as --text -y.

exception_tables
Decodes exception table information for objects. It has the same effect as --text -e.

got
Prints the contents of the Global Offset Table (GOT) objects.

raw_build_attributes
Prints the contents of the build attributes section in raw hexadecimal form, that is, in the same
form as data.

relocation_tables
Prints relocation information. It has the same effect as --text -r.

string_tables
Prints the string tables. It has the same effect as --text -t.

summary
Prints a summary of the segments and sections in a file. It is the default output of fromelf
--text. However, the summary is suppressed by some --info options. Use --emit summary to
explicitly re-enable the summary, if required.

symbol_tables
Prints the symbol and versioning tables. It has the same effect as --text -s.

3 fromelf Command-line Options
3.20 --emit=option[,option,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-43
Non-Confidential

vfe
Prints information about unused virtual functions.

You can specify multiple options in one option followed by a comma-separated list of arguments.

Related references
3.13 --decode_build_attributes on page 3-36.
3.21 --expandarrays on page 3-45.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.20 --emit=option[,option,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-44
Non-Confidential

3.21 --expandarrays
Prints data addresses, including arrays that are expanded both inside and outside structures.

Restrictions

You can use this option with --text -a or with --fieldoffsets.

Example

The following example shows the output for a struct containing arrays when --fieldoffsets
--expandarrays is specified:

< more foo.c
struct S {
 char A[8];
 char B[4];
};
struct S s;

struct S* get()
{
 return &s;
}

< armcc --debug -c foo.c
< fromelf --fieldoffsets --expandarrays foo.o

; Structure, S , Size 0xc bytes, from foo.c
|S.A| EQU 0 ; array[8] of char
|S.A[0]| EQU 0 ; char
|S.A[1]| EQU 0x1 ; char
|S.A[2]| EQU 0x2 ; char
|S.A[3]| EQU 0x3 ; char
|S.A[4]| EQU 0x4 ; char
|S.A[5]| EQU 0x5 ; char
|S.A[6]| EQU 0x6 ; char
|S.A[7]| EQU 0x7 ; char
|S.B| EQU 0x8 ; array[4] of char
|S.B[0]| EQU 0x8 ; char
|S.B[1]| EQU 0x9 ; char
|S.B[2]| EQU 0xa ; char
|S.B[3]| EQU 0xb ; char
; End of Structure S

 END

Related references
3.23 --fieldoffsets on page 3-47.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.21 --expandarrays

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-45
Non-Confidential

3.22 --extract_build_attributes
Prints only the build attributes in a form that depends on the type of attribute.

Usage
Prints the build attributes in:
• Human-readable form for standard build attributes.
• Raw hexadecimal form for nonstandard build attributes.

Restrictions

You can use this option only in text mode.

Example

The following example shows the output for --extract_build_attributes:

==
** Object/Image Build Attributes
 'aeabi' file build attributes:
 0x000000: 05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01 .ARM7TDMI.......
 0x000010: 12 02 14 02 17 01 18 01 19 01 1a 01 1e 03 20 02
 0x000020: 41 52 4d 00 ARM.
 Tag_CPU_name = "ARM7TDMI"
 Tag_CPU_arch = ARM v4T (=2)
 Tag_ARM_ISA_use = ARM instructions were permitted to be used (=1)
 Tag_ABI_PCS_GOT_use = Data are imported directly (=1)
 Tag_ABI_PCS_wchar_t = Size of wchar_t is 2 (=2)
 Tag_ABI_FP_denormal = This code was permitted to require that the sign of a flushed-
to-zero number be preserved in the sign of 0 (=2)
 Tag_ABI_FP_number_model = This code was permitted to use only IEEE 754 format FP
numbers (=1)
 Tag_ABI_align8_needed = Code was permitted to depend on the 8-byte alignment of 8-
byte data items (=1)
 Tag_ABI_align8_preserved = Code was required to preserve 8-byte alignment of 8-byte
data objects (=1)
 Tag_ABI_enum_size = Enum values occupy the smallest container big enough to hold all
values (=1)
 Tag_ABI_optimization_goals = Optimized for small size, but speed and debugging
illusion preserved (=3)
 Tag_compatibility = 2, "ARM"
 'ARM' file build attributes:
 0x000000: 04 01 12 01

Related references
3.13 --decode_build_attributes on page 3-36.
3.19 --dump_build_attributes on page 3-42.
3.20 --emit=option[,option,…] on page 3-43.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.22 --extract_build_attributes

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-46
Non-Confidential

3.23 --fieldoffsets
Prints a list of assembly language EQU directives that equate C++ class or C structure field names to their
offsets from the base of the class or structure.

Usage

The input ELF file can be a relocatable object or an image.

Use --output to redirect the output to a file. Use the INCLUDE command from armasm to load the
produced file and provide access to C++ classes and C structure members by name from assembly
language.

This option outputs all structure information. To output a subset of the structures, use --select
select_options.

If you do not require a file that can be input to armasm, use the --text -a options to format the display
addresses in a more readable form. The -a option only outputs address information for structures and
static data in images because the addresses are not known in a relocatable object.

Restrictions
This option:
• Is not available if the source file does not have debug information.
• Can be used in text mode and with --expandarrays.

Examples
The following examples show how to use --fieldoffsets:
• To produce an output listing to stdout that contains all the field offsets from all structures in the file

inputfile.o, enter:

fromelf --fieldoffsets inputfile.o

• To produce an output file listing to outputfile.s that contains all the field offsets from structures in
the file inputfile.o that have a name starting with p, enter:

fromelf --fieldoffsets --select=p* --output=outputfile.s inputfile.o

• To produce an output listing to outputfile.s that contains all the field offsets from structures in the
file inputfile.o with names of tools or moretools, enter:

fromelf --fieldoffsets --select=tools.*,moretools.* --output=outputfile.s inputfile.o

• To produce an output file listing to outputfile.s that contains all the field offsets of structure fields
whose name starts with number and are within structure field top in structure tools in the file
inputfile.o, enter:

fromelf --fieldoffsets --select=tools.top.number* --output=outputfile.s inputfile.o

The following is an example of the output, and includes name. and name...member that arise because of
anonymous structs and unions:

; Structure, Table , Size 0x104 bytes, from inputfile.cpp
|Table.TableSize| EQU 0 ; int
|Table.Data| EQU 0x4 ; array[64] of MyClassHandle
; End of Structure Table
; Structure, Box2 , Size 0x8 bytes, from inputfile.cpp
|Box2.| EQU 0 ; anonymous
|Box2..| EQU 0 ; anonymous
|Box2...Min| EQU 0 ; Point2
|Box2...Min.x| EQU 0 ; short
|Box2...Min.y| EQU 0x2 ; short
|Box2...Max| EQU 0x4 ; Point2
|Box2...Max.x| EQU 0x4 ; short
|Box2...Max.y| EQU 0x6 ; short
; Warning: duplicate name (Box2..) present in (inputfile.cpp) and in (inputfile.cpp)
; please use the --qualify option
|Box2..| EQU 0 ; anonymous
|Box2...Left| EQU 0 ; unsigned short
|Box2...Top| EQU 0x2 ; unsigned short

3 fromelf Command-line Options
3.23 --fieldoffsets

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-47
Non-Confidential

|Box2...Right| EQU 0x4 ; unsigned short
|Box2...Bottom| EQU 0x6 ; unsigned short
; End of Structure Box2
; Structure, MyClassHandle , Size 0x4 bytes, from inputfile.cpp
|MyClassHandle.Handle| EQU 0 ; pointer to MyClass
; End of Structure MyClassHandle
; Structure, Point2 , Size 0x4 bytes, from defects.cpp
|Point2.x| EQU 0 ; short
|Point2.y| EQU 0x2 ; short
; End of Structure Point2
; Structure, __fpos_t_struct , Size 0x10 bytes, from C:\Program Files\DS-5\bin\..\include
\stdio.h
|__fpos_t_struct.__pos| EQU 0 ; unsigned long long
|__fpos_t_struct.__mbstate| EQU 0x8 ; anonymous
|__fpos_t_struct.__mbstate.__state1| EQU 0x8 ; unsigned int
|__fpos_t_struct.__mbstate.__state2| EQU 0xc ; unsigned int
; End of Structure __fpos_t_struct
 END

Related references
3.21 --expandarrays on page 3-45.
3.40 --qualify on page 3-66.
3.43 --select=select_options on page 3-69.
3.46 --text on page 3-72.

Related information
EQU.
GET or INCLUDE.

3 fromelf Command-line Options
3.23 --fieldoffsets

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-48
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0379-/dom1361290008953.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0379-/dom1361290015482.html

3.24 --fpu=list
Lists the FPU architectures that are supported by the --fpu=name option.

Deprecated options are not listed.

Related references
3.25 --fpu=name on page 3-50.

3 fromelf Command-line Options
3.24 --fpu=list

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-49
Non-Confidential

3.25 --fpu=name
Specifies the target FPU architecture.

To obtain a full list of FPU architectures use the --fpu=list option.

Syntax

--fpu=name

Where name is one of:

none
Selects no floating-point option. No floating-point code is to be used.

vfpv2
Selects a hardware floating-point unit conforming to architecture VFPv2.

vfpv3
Selects a hardware vector floating-point unit conforming to architecture VFPv3. VFPv3 is
backwards compatible with VFPv2 except that VFPv3 cannot trap floating-point exceptions.

vfpv3_fp16
Selects a hardware vector floating-point unit conforming to architecture VFPv3 that also
provides the half-precision extensions.

vfpv3_d16
Selects a hardware vector floating-point unit conforming to VFPv3-D16 architecture.

vfpv3_d16_fp16
Selects a hardware vector floating-point unit conforming to VFPv3-D16 architecture, that also
provides the half-precision extensions.

vfpv4
Selects a hardware floating-point unit conforming to the VFPv4 architecture.

vfpv4_d16
Selects a hardware floating-point unit conforming to the VFPv4-D16 architecture.

fpv4-sp
Selects a hardware floating-point unit conforming to the single precision variant of the FPv4
architecture.

fpv5_d16
Selects a hardware floating-point unit conforming to the FPv5-D16 architecture.

fpv5-sp
Selects a hardware floating-point unit conforming to the single precision variant of the FPv5
architecture.

softvfp
Selects software floating-point support where floating-point operations are performed by a
floating-point library, fplib. This is the default if you do not specify a --fpu option, or if you
select a CPU that does not have an FPU.

softvfp+vfpv2
Selects a hardware floating-point unit conforming to VFPv2, with software floating-point
linkage. Select this option if you are interworking Thumb code with ARM code on a system that
implements a VFP unit.

softvfp+vfpv3
Selects a hardware vector floating-point unit conforming to VFPv3, with software floating-point
linkage.

softvfp+vfpv3_fp16
Selects a hardware vector floating-point unit conforming to VFPv3-fp16, with software floating-
point linkage.

softvfp+vfpv3_d16
Selects a hardware vector floating-point unit conforming to VFPv3-D16, with software floating-
point linkage.

3 fromelf Command-line Options
3.25 --fpu=name

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-50
Non-Confidential

softvfp+vfpv3_d16_fp16
Selects a hardware vector floating-point unit conforming to VFPv3-D16-fp16, with software
floating-point linkage.

softvfp+vfpv4
Selects a hardware floating-point unit conforming to FPv4, with software floating-point linkage.

softvfp+vfpv4_d16
Selects a hardware floating-point unit conforming to VFPv4-D16, with software floating-point
linkage.

softvfp+fpv4-sp
Selects a hardware floating-point unit conforming to FPv4-SP, with software floating-point
linkage.

softvfp+fpv5_d16
Selects a hardware floating-point unit conforming to FPv5-D16, with software floating-point
linkage.

softvfp+fpv5-sp
Selects a hardware floating-point unit conforming to FPv5-SP, with software floating-point
linkage.

Usage

This option selects disassembly for a specific FPU architecture. It affects how fromelf interprets the
instructions it finds in the input files.

If you specify this option, it overrides any implicit FPU option that appears on the command line, for
example, where you use the --cpu option.

Any FPU explicitly selected using the --fpu option always overrides any FPU implicitly selected using
the --cpu option.

Default

The default target FPU architecture is derived from use of the --cpu option.

If the CPU you specify with --cpu has a VFP coprocessor, the default target FPU architecture is the VFP
architecture for that CPU.

Related references
3.24 --fpu=list on page 3-49.
3.31 --info=topic[,topic,…] on page 3-57.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.25 --fpu=name

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-51
Non-Confidential

3.26 --help
Displays a summary of the main command-line options.

Default

This is the default if you specify fromelf without any options or source files.

Related references
3.44 --show_cmdline on page 3-70.
3.47 --version_number on page 3-74.
3.50 --vsn on page 3-77.

3 fromelf Command-line Options
3.26 --help

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-52
Non-Confidential

3.27 --i32
Produces Intel Hex-32 format output. It generates one output file for each load region in the image.

You can specify the base address of the output with the --base option.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --i32
If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for each load region in the
input image. fromelf places the output files in the destination directory.

 Note

For multiple load regions, the name of the first non-empty execution region in the corresponding load
region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in a output
file.

Example

To convert the ELF file infile.axf to an Intel Hex-32 format file, for example outfile.bin, enter:

fromelf --i32 --output=outfile.bin infile.axf

Related references
3.1 --base [[object_file::]load_region_ID=]num on page 3-23.
3.28 --i32combined on page 3-54.
3.39 --output=destination on page 3-65.

3 fromelf Command-line Options
3.27 --i32

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-53
Non-Confidential

3.28 --i32combined
Produces Intel Hex-32 format output. It generates one output file for an image containing multiple load
regions.

You can specify the base address of the output with the --base option.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --i32combined

If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for all load regions in the
input image. fromelf places the output file in the destination directory.

ELF images contain multiple load regions if, for example, they are built with a scatter file that defines
more than one load region.

Example

To create a single output file,outfile2.bin, from an image file infile2.axf, with two load regions,
and with a start address of 0x1000, enter:

fromelf --i32combined --base=0x1000 --output=outfile2.bin infile2.axf

Related references
3.1 --base [[object_file::]load_region_ID=]num on page 3-23.
3.27 --i32 on page 3-53.
3.39 --output=destination on page 3-65.

3 fromelf Command-line Options
3.28 --i32combined

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-54
Non-Confidential

3.29 --ignore_section=option[,option,…]
Specifies the sections to be ignored during a compare. Differences between the input files being
compared are ignored if they are in these sections.

Syntax

--ignore_section=option[,option,…]

Where option is one of:

object_name::
All sections in ELF objects with a name matching object_name.

object_name::section_name
All sections in ELF objects with a name matching object_name and also a section name
matching section_name.

section_name
All sections with a name matching section_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --compare with this option.

Related references
3.8 --compare=option[,option,…] on page 3-31.
3.30 --ignore_symbol=option[,option,…] on page 3-56.
3.41 --relax_section=option[,option,…] on page 3-67.

3 fromelf Command-line Options
3.29 --ignore_section=option[,option,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-55
Non-Confidential

3.30 --ignore_symbol=option[,option,…]
Specifies the symbols to be ignored during a compare. Differences between the input files being
compared are ignored if they are related to these symbols.

Syntax

--ignore_symbol=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also a symbols name
matching symbol_name.

symbol_name
All symbols with a name matching symbol_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --compare with this option.

Related references
3.8 --compare=option[,option,…] on page 3-31.
3.29 --ignore_section=option[,option,…] on page 3-55.
3.42 --relax_symbol=option[,option,…] on page 3-68.

3 fromelf Command-line Options
3.30 --ignore_symbol=option[,option,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-56
Non-Confidential

3.31 --info=topic[,topic,…]
Prints information about specific topics.

Syntax

--info=topic[,topic,…]

Where topic is a comma-separated list from the following topic keywords:

instruction_usage
Categorizes and lists the ARM and Thumb instructions defined in the code sections of each
input file.

function_sizes
Lists the names of the global functions defined in one or more input files, together with their
sizes in bytes and whether they are ARM or Thumb functions.

function_sizes_all
Lists the names of the local and global functions defined in one or more input files, together
with their sizes in bytes and whether they are ARM or Thumb functions.

sizes
Lists the Code, RO Data, RW Data, ZI Data, and Debug sizes for each input object and library
member in the image. Using this option implies --info=sizes,totals.

totals
Lists the totals of the Code, RO Data, RW Data, ZI Data, and Debug sizes for input objects and
libraries.

 Note

Code related sizes also include the size of any execute-only code.

The output from --info=sizes,totals always includes the padding values in the totals for input
objects and libraries.

 Note

Spaces are not permitted between topic keywords in the list. For example, you can enter --
info=sizes,totals but not --info=sizes, totals.

Restrictions

You can use this option only in text mode.

Related references
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.31 --info=topic[,topic,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-57
Non-Confidential

3.32 input_file
Specifies the ELF file or archive containing ELF files to be processed.

Usage
Multiple input files are supported if you:
• Output --text format.
• Use the --compare option.
• Specify an output directory using --output.

If input_file is a scatter-loaded image that contains more than one load region and the output format is
one of --bin, --cad, --m32, --i32, or --vhx, then fromelf creates a separate file for each load region.

If input_file is a scatter-loaded image that contains more than one load region and the output format is
one of --cadcombined, --m32combined, or --i32combined, then fromelf creates a single file
containing all load regions.

If input_file is an archive, you can process all files, or a subset of files, in that archive. To process a
subset of files in the archive, specify a filter after the archive name as follows:

archive.a(filter_pattern)

where filter_pattern specifies a member file. To specify a subset of files use the following wildcard
characters:

*
Matches zero or more characters.

?
Matched any single character.

Any files in the archive that are not processed are included in the output archive together with the
processed files.

Example

To convert all files in the archive beginning with s, and create a new archive, my_archive.a, containing
the processed and unprocessed files, enter:

fromelf archive.a(s*.o) --output=my_archive.a

Related concepts
2.2 Examples of processing ELF files in an archive on page 2-17.

Related references
3.2 --bin on page 3-24.
3.6 --cad on page 3-28.
3.7 --cadcombined on page 3-30.
3.8 --compare=option[,option,…] on page 3-31.
3.27 --i32 on page 3-53.
3.28 --i32combined on page 3-54.
3.36 --m32 on page 3-62.
3.37 --m32combined on page 3-63.
3.39 --output=destination on page 3-65.
3.46 --text on page 3-72.
3.48 --vhx on page 3-75.

3 fromelf Command-line Options
3.32 input_file

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-58
Non-Confidential

3.33 --interleave=option
Inserts the original source code as comments into the disassembly if debug information is present.

Syntax

--interleave=option

Where option can be one of the following:

line_directives
Interleaves #line directives containing filenames and line numbers of the disassembled
instructions.

line_numbers
Interleaves comments containing filenames and line numbers of the disassembled instructions.

none
Disables interleaving. This is useful if you have a generated makefile where the fromelf
command has multiple options in addition to --interleave. You can then specify
--interleave=none as the last option to ensure that interleaving is disabled without having to
reproduce the complete fromelf command.

source
Interleaves comments containing source code. If the source code is no longer available then
fromelf interleaves in the same way as line_numbers.

source_only
Interleaves comments containing source code. If the source code is no longer available then
fromelf does not interleave that code.

Usage

Use this option with --emit=code or --text -c.

Use this option with --source_directory if you want to specify additional paths to search for source
code.

Default

The default is --interleave=none.

Related references
3.20 --emit=option[,option,…] on page 3-43.
3.45 --source_directory=path on page 3-71.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.33 --interleave=option

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-59
Non-Confidential

3.34 --liclinger=seconds
The time in seconds that a license is to remain checked out.

Syntax

--liclinger=seconds

3 fromelf Command-line Options
3.34 --liclinger=seconds

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-60
Non-Confidential

3.35 --licretry
If you are using floating licenses, fromelf makes up to 10 attempts to obtain a license when invoked.

 Note

This option is always enabled. fromelf ignores this option if you specify it.

Related information
Toolchain environment variables.
ARM DS-5 License Management Guide.

3 fromelf Command-line Options
3.35 --licretry

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-61
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0592-/pge1362395708683.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html

3.36 --m32
Produces Motorola 32-bit format (32-bit S-records) output. It generates one output file for each load
region in the image.

You can specify the base address of the output with the --base option.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --m32
If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for each load region in the
input image. fromelf places the output files in the destination directory.

 Note

For multiple load regions, the name of the first non-empty execution region in the corresponding load
region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in a output
file.

Example

To convert the ELF file infile.axf to a Motorola 32-bit format file, for example outfile.bin, enter:

fromelf --m32 --output=outfile.bin infile.axf

Related references
3.1 --base [[object_file::]load_region_ID=]num on page 3-23.
3.37 --m32combined on page 3-63.
3.39 --output=destination on page 3-65.

3 fromelf Command-line Options
3.36 --m32

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-62
Non-Confidential

3.37 --m32combined
Produces Motorola 32-bit format (32-bit S-records) output. It generates one output file for an image
containing multiple load regions.

You can specify the base address of the output with the --base option.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --m32combined

If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for all load regions in the
input image. fromelf places the output file in the destination directory.

ELF images contain multiple load regions if, for example, they are built with a scatter file that defines
more than one load region.

Example

To create a single Motorola 32-bit format output file, outfile2.bin, from an image file infile2.axf,
with two load regions, and with a start address of 0x1000, enter:

fromelf --m32combined --base=0x1000 --output=outfile2.bin infile2.axf

Related references
3.1 --base [[object_file::]load_region_ID=]num on page 3-23.
3.36 --m32 on page 3-62.
3.39 --output=destination on page 3-65.

3 fromelf Command-line Options
3.37 --m32combined

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-63
Non-Confidential

3.38 --only=section_name
Filters the list of sections that are displayed in the main section-by-section output from --text. It does
not affect any additional output after the main section-by-section output.

Syntax

--only=section_name

Where section_name is the name of the section to be displayed.

You can:
• Use wildcard characters ? and * for a section name.
• Use multiple --only options to specify additional sections to display.

Examples
The following examples show how to use --only:
• To display only the symbol table, .symtab, from the section-by-section output, enter:

fromelf --only=.symtab --text -s test.axf
• To display all ERn sections, enter:

fromelf --only=ER? test.axf
• To display the HEAP section and all symbol and string table sections, enter:

fromelf --only=HEAP --only=.*tab --text -s -t test.axf

Related references
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.38 --only=section_name

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-64
Non-Confidential

3.39 --output=destination
Specifies the name of the output file, or the name of the output directory if multiple output files are
created.

Syntax

--output=destination

--o destination

Where destination can be either a file or a directory. For example:

--output=foo
is the name of an output file

--output=foo/
is the name of an output directory.

Usage
Usage with --bin:
• You can specify a single input file and a single output filename.
• If you specify many input filenames and specify an output directory, then the output from processing

each file is written into the output directory. Each output filename is derived from the corresponding
input file. Therefore, specifying an output directory in this way is the only method of converting
many ELF files to a binary or hexadecimal format in a single run of fromelf.

• If you specify an archive file as the input, then the output file is also an archive. For example, the
following command creates an archive file called output.o:

fromelf archive.a(s*.o) --output=output.o

• If you specify a pattern in parentheses to select a subset of objects from an archive, fromelf only
converts the subset. All the other objects are passed through to the output archive unchanged.

Related references
3.2 --bin on page 3-24.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.39 --output=destination

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-65
Non-Confidential

3.40 --qualify
Modifies the effect of the --fieldoffsets option so that the name of each output symbol includes an
indication of the source file containing the relevant structure.

Usage

This enables the --fieldoffsets option to produce functional output even if two source files define
different structures with the same name.

If the source file is in a different location from the current location, then the source file path is also
included.

Examples

A structure called foo is defined in two headers for example, one.h and two.h.

Using fromelf --fieldoffsets, the linker might define the following symbols:

• foo.a, foo.b, and foo.c.
• foo.x, foo.y, and foo.z.

Using fromelf --qualify --fieldoffsets, the linker defines the following symbols:
• oneh_foo.a, oneh_foo.b and oneh_foo.c.
• twoh_foo.x, twoh_foo.y and twoh_foo.z.

Related references
3.23 --fieldoffsets on page 3-47.

3 fromelf Command-line Options
3.40 --qualify

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-66
Non-Confidential

3.41 --relax_section=option[,option,…]
Changes the severity of a compare report for the specified sections to warnings rather than errors.

Restrictions

You must use --compare with this option.

Syntax

--relax_section=option[,option,…]

Where option is one of:

object_name::
All sections in ELF objects with a name matching object_name.

object_name::section_name
All sections in ELF objects with a name matching object_name and also a section name
matching section_name.

section_name
All sections with a name matching section_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Related references
3.8 --compare=option[,option,…] on page 3-31.
3.29 --ignore_section=option[,option,…] on page 3-55.
3.42 --relax_symbol=option[,option,…] on page 3-68.

3 fromelf Command-line Options
3.41 --relax_section=option[,option,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-67
Non-Confidential

3.42 --relax_symbol=option[,option,…]
Changes the severity of a compare report for the specified symbols to warnings rather than errors.

Restrictions

You must use --compare with this option.

Syntax

--relax_symbol=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name.

object_name::section_name
All symbols in ELF objects with a name matching object_name and also a symbol name
matching symbol_name.

symbol_name
All symbols with a name matching symbol_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Related references
3.8 --compare=option[,option,…] on page 3-31.
3.30 --ignore_symbol=option[,option,…] on page 3-56.
3.41 --relax_section=option[,option,…] on page 3-67.

3 fromelf Command-line Options
3.42 --relax_symbol=option[,option,…]

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-68
Non-Confidential

3.43 --select=select_options
When used with --fieldoffsets or --text -a options, displays only those fields that match a
specified pattern list.

Syntax

--select=select_options
Where select_options is a list of patterns to match. Use special characters to select multiple fields:
• Use a comma-separated list to specify multiple fields, for example:

a*,b*,c*
• Use the wildcard character * to match any name.
• Use the wildcard character ? to match any single letter.
• Prefix the select_options string with + to specify the fields to include. This is the default behavior.
• Prefix the select_options string with ~ to specify the fields to exclude.

If you are using a special character on Unix platforms, you must enclose the options in quotes to prevent
the shell expanding the selection.

Usage

Use this option with either --fieldoffsets or --text -a.

Example

The output from the --fieldoffsets option might include the following data structure:

|structure.f1| EQU 0 ; int16_t
|structure.f2| EQU 0x2 ; int16_t
|structure.f3| EQU 0x4 ; int16_t
|structure.f11| EQU 0x6 ; int16_t
|structure.f21| EQU 0x8 ; int16_t
|structure.f31| EQU 0xA ; int16_t
|structure.f111| EQU 0xC ; int16_t

To output only those fields that start with f1, enter:

fromelf --select=structure.f1* --fieldoffsets infile.axf

This produces the output:

|structure.f1| EQU 0 ; int16_t
|structure.f11| EQU 0x6 ; int16_t
|structure.f111| EQU 0xC ; int16_t

 END

Related references
3.23 --fieldoffsets on page 3-47.
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.43 --select=select_options

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-69
Non-Confidential

3.44 --show_cmdline
Outputs the command line used by the ELF file converter.

Usage
Shows the command line after processing by the ELF file converter, and can be useful to check:
• The command line a build system is using.
• How the ELF file converter is interpreting the supplied command line, for example, the ordering of

command-line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard error stream (stderr).

Related references
3.49 --via=file on page 3-76.

3 fromelf Command-line Options
3.44 --show_cmdline

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-70
Non-Confidential

3.45 --source_directory=path
Explicitly specifies the directory of the source code.

Syntax

--source_directory=path

Usage

By default, the source code is assumed to be located in a directory relative to the ELF input file. You can
use this option multiple times to specify a search path involving multiple directories.

You can use this option with --interleave.

Related references
3.33 --interleave=option on page 3-59.

3 fromelf Command-line Options
3.45 --source_directory=path

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-71
Non-Confidential

3.46 --text
Prints image information in text format. You can decode an ELF image or ELF object file using this
option.

Syntax

--text [options]

Where options specifies what is displayed, and can be one or more of the following:

-a
Prints the global and static data addresses (including addresses for structure and union contents).

This option can only be used on files containing debug information. If no debug information is
present, a warning is displayed.

Use the --select option to output a subset of fields in a data structure.

If you want to view the data addresses of arrays, expanded both inside and outside structures,
use the --expandarrays option with this text category.

-c
This option disassembles code, alongside a dump of the original binary data being disassembled
and the addresses of the instructions.

 Note

The disassembly cannot be input to the assembler.

-d
Prints contents of the data sections.

-e
Decodes exception table information for objects. Use with -c when disassembling images.

-g
Prints debug information.

-r
Prints relocation information.

-s
Prints the symbol and versioning tables.

-t
Prints the string tables.

-v
Prints detailed information on each segment and section header of the image.

-w
Eliminates line wrapping.

-y
Prints dynamic segment contents.

-z
Prints the code and data sizes.

These options are only recognized in text mode.

Usage

If you do not specify a code output format, --text is assumed. That is, you can specify one or more
options without having to specify --text. For example, fromelf -a is the same as
fromelf --text -a.

If you specify a code output format, such as --bin, then any --text options are ignored.

3 fromelf Command-line Options
3.46 --text

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-72
Non-Confidential

If destination is not specified with the --output option, or --output is not specified, the information
is displayed on stdout.

Use the --only option to filter the list of sections.

Examples
The following examples show how to use --text:
• To produce a plain text output file that contains the disassembled version of an ELF image and the

symbol table, enter:

fromelf --text -c -s --output=outfile.lst infile.axf

• To list to stdout all the global and static data variables and all the structure field addresses, enter:

fromelf -a --select=* infile.axf

• To produce a text file containing all of the structure addresses in infile.axf but none of the global
or static data variable information, enter:

fromelf --text -a --select=*.* --output=structaddress.txt infile.axf

• To produce a text file containing addresses of the nested structures only, enter:

fromelf --text -a --select=*.*.* --output=structaddress.txt infile.axf

• To produce a text file containing all of the global or static data variable information in infile.axf
but none of the structure addresses, enter:

fromelf --text -a --select=*,~*.* --output=structaddress.txt infile.axf

• To output only the .symtab section information in infile.axf, enter:

fromelf --only .symtab -s --output=symtab.txt infile.axf

Related tasks
2.4 Using fromelf to find where a symbol is placed in an executable ELF image on page 2-19.

Related references
3.11 --cpu=name on page 3-34.
3.20 --emit=option[,option,…] on page 3-43.
3.21 --expandarrays on page 3-45.
3.31 --info=topic[,topic,…] on page 3-57.
3.33 --interleave=option on page 3-59.
3.38 --only=section_name on page 3-64.
3.39 --output=destination on page 3-65.
3.43 --select=select_options on page 3-69.
3.51 -w on page 3-78.

Related information
Linker options for getting information about images.

3 fromelf Command-line Options
3.46 --text

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-73
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0377-/pge1362065940495.html

3.47 --version_number
Displays the version of fromelf you are using.

Usage
The ELF file converter displays the version number in the format nnnbbbb, where:
• nnn is the version number.
• bbbb is the build number.

Example

Version 5.06 build 0019 is displayed as 5060019.

Related references
3.26 --help on page 3-52.
3.50 --vsn on page 3-77.

3 fromelf Command-line Options
3.47 --version_number

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-74
Non-Confidential

3.48 --vhx
Produces Byte oriented (Verilog Memory Model) hexadecimal format output.

Usage

This format is suitable for loading into the memory models of Hardware Description Language (HDL)
simulators. You can split output from this option into multiple files with the --widthxbanks option.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --vhx
If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for each load region in the
input image. fromelf places the output files in the destination directory.

 Note

For multiple load regions, the name of the first non-empty execution region in the corresponding load
region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in a output
file.

Examples

To convert the ELF file infile.axf to a byte oriented hexadecimal format file, for example
outfile.bin, enter:

fromelf --vhx --output=outfile.bin infile.axf

To create multiple output files, in the regions directory, from an image file multiload.axf, with two 8-bit
memory banks, enter:

fromelf --vhx --8x2 multiload.axf --output=regions

Related references
3.39 --output=destination on page 3-65.
3.52 --widthxbanks on page 3-79.

3 fromelf Command-line Options
3.48 --vhx

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-75
Non-Confidential

3.49 --via=file
Reads an additional list of input filenames and ELF file converter options from filename.

Syntax

--via=filename

Where filename is the name of a via file containing options to be included on the command line.

Usage

You can enter multiple --via options on the ELF file converter command line. The --via options can
also be included within a via file.

3 fromelf Command-line Options
3.49 --via=file

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-76
Non-Confidential

3.50 --vsn
Displays the version information and the license details.

Example

> fromelf --vsn
Product: ARM Compiler N.nn
Component: ARM Compiler N.nn (toolchain_build_number)
Tool: fromelf [build_number]
license_type
Software supplied by: ARM Limited

Related references
3.26 --help on page 3-52.
3.47 --version_number on page 3-74.

3 fromelf Command-line Options
3.50 --vsn

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-77
Non-Confidential

3.51 -w
Causes some text output information that usually appears on multiple lines to be displayed on a single
line.

Usage

This makes the output easier to parse with text processing utilities such as Perl.

Example

> fromelf --text -w -c test.axf
==
** ELF Header Information
.
.
.
==
** Section #1 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR] Size : 36 bytes
(alignment 4) Address: 0x00000000 $a
 .text
.
.
.
** Section #7 '.rel.text' (SHT_REL) Size : 8 bytes (alignment 4) Symbol table #6
'.symtab' 1 relocations applied to section #1 '.text'
** Section #2 '.ARM.exidx' (SHT_ARM_EXIDX) [SHF_ALLOC + SHF_LINK_ORDER] Size : 8 bytes
(alignment 4) Address: 0x
00000000 Link to section #1 '.text'
** Section #8 '.rel.ARM.exidx' (SHT_REL) Size : 8 bytes (alignment 4) Symbol table
#6 '.symtab' 1 relocations applied to section #2 '.ARM.exidx'
** Section #3 '.arm_vfe_header' (SHT_PROGBITS) Size : 4 bytes (alignment 4)
** Section #4 '.comment' (SHT_PROGBITS) Size : 74 bytes
** Section #5 '.debug_frame' (SHT_PROGBITS) Size : 140 bytes
** Section #9 '.rel.debug_frame' (SHT_REL) Size : 32 bytes (alignment 4) Symbol
table #6 '.symtab' 4 relocations applied to section #5 '.debug_frame'
** Section #6 '.symtab' (SHT_SYMTAB) Size : 176 bytes (alignment 4) String table #11
'.strtab' Last local symbol no. 5
** Section #10 '.shstrtab' (SHT_STRTAB) Size : 110 bytes
** Section #11 '.strtab' (SHT_STRTAB) Size : 223 bytes
** Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES) Size : 69 bytes

Related references
3.46 --text on page 3-72.

3 fromelf Command-line Options
3.51 -w

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-78
Non-Confidential

3.52 --widthxbanks
Outputs multiple files for multiple memory banks.

Syntax

--widthxbanks

Where:

banks
specifies the number of memory banks in the target memory system. It determines the number
of output files that are generated for each load region.

width
is the width of memory in the target memory system (8-bit, 16-bit, 32-bit, or 64-bit).

Valid configurations are:

--8x1
--8x2
--8x4
--16x1
--16x2
--32x1
--32x2
--64x1

Usage

fromelf uses the last specified configuration if more than one configuration is specified.

If the image has one load region, fromelf generates the same number of files as the number of banks
specified. The filenames are derived from the --output=destination argument, using the following
naming conventions:

• If there is one memory bank (banks = 1) the output file is named destination.
• If there are multiple memory banks (banks > 1), fromelf generates banks number of files named

destinationN where N is in the range 0 to banks - 1. If you specify a file extension for the output
filename, then the number N is placed before the file extension. For example:

fromelf --vhx --8x2 test.axf --output=test.txt

This generates two files named test0.txt and test1.txt.

If the image has multiple load regions, fromelf creates a directory named destination and generates
banks files for each load region in that directory. The files for each load region are named load_regionN
where load_region is the name of the load region, and N is in the range 0 to banks - 1. For example:

fromelf --vhx --8x2 multiload.axf --output=regions/

This might produce the following files in the regions directory:

EXEC_ROM0
EXEC_ROM1
RAM0
RAM1

The memory width specified by width controls the amount of memory that is stored in a single line of
each output file. The size of each output file is the size of memory to be read divided by the number of
files created. For example:
• fromelf --vhx --8x4 test.axf --output=file produces four files (file0, file1, file2, and

file3). Each file contains lines of single bytes, for example:

00
00
2D
00
2C

3 fromelf Command-line Options
3.52 --widthxbanks

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-79
Non-Confidential

8F
…

• fromelf --vhx --16x2 test.axf --output=file produces two files (file0 and file1). Each file
contains lines of two bytes, for example:

0000
002D
002C
…

Restrictions

You must use --output with this option.

Related references
3.2 --bin on page 3-24.
3.39 --output=destination on page 3-65.
3.48 --vhx on page 3-75.

3 fromelf Command-line Options
3.52 --widthxbanks

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 3-80
Non-Confidential

Chapter 4
Via File Syntax

Describes the syntax of via files accepted by fromelf.

It contains the following sections:
• 4.1 Overview of via files on page 4-82.
• 4.2 Via file syntax rules on page 4-83.

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 4-81
Non-Confidential

4.1 Overview of via files
Via files are plain text files that allow you to specify ELF file converter command-line arguments and
options.

Typically, you use a via file to overcome the command-line length limitations. However, you might want
to create multiple via files that:
• Group similar arguments and options together.
• Contain different sets of arguments and options to be used in different scenarios.

 Note

In general, you can use a via file to specify any command-line option to a tool, including --via. This
means that you can call multiple nested via files from within a via file.

Via file evaluation
When the ELF file converter is invoked it:
1. Replaces the first specified --via via_file argument with the sequence of argument words

extracted from the via file, including recursively processing any nested --via commands in the via
file.

2. Processes any subsequent --via via_file arguments in the same way, in the order they are
presented.

That is, via files are processed in the order you specify them, and each via file is processed completely
including processing nested via files before processing the next via file.

Related references
4.2 Via file syntax rules on page 4-83.
3.49 --via=file on page 3-76.

4 Via File Syntax
4.1 Overview of via files

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 4-82
Non-Confidential

4.2 Via file syntax rules
Via files must conform to some syntax rules.

• A via file is a text file containing a sequence of words. Each word in the text file is converted into an
argument string and passed to the tool.

• Words are separated by whitespace, or the end of a line, except in delimited strings, for example:

--vhx --8x2 (two words)

--vhx--8x2 (one word)
• The end of a line is treated as whitespace, for example:

--vhx
--8x2

This is equivalent to:

--vhx --8x2
• Strings enclosed in quotation marks ("), or apostrophes (') are treated as a single word. Within a

quoted word, an apostrophe is treated as an ordinary character. Within an apostrophe delimited word,
a quotation mark is treated as an ordinary character.

Use quotation marks to delimit filenames or path names that contain spaces, for example:

--output C:\My Project\output.txt (three words)

--output "C:\My Project\output.txt" (two words)

Use apostrophes to delimit words that contain quotes, for example:

-DNAME='"ARM Compiler"' (one word)
• Characters enclosed in parentheses are treated as a single word, for example:

--option(x, y, z) (one word)

--option (x, y, z) (two words)
• Within quoted or apostrophe delimited strings, you can use a backslash (\) character to escape the

quote, apostrophe, and backslash characters.
• A word that occurs immediately next to a delimited word is treated as a single word, for example:

--output"C:\Project\output.txt"

This is treated as the single word:

--outputC:\Project\output.txt
• Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace character are

comment lines. A semicolon or hash character that appears anywhere else in a line is not treated as
the start of a comment, for example:

-o objectname.axf ;this is not a comment

A comment ends at the end of a line, or at the end of the file. There are no multi-line comments, and
there are no part-line comments.

Related concepts
4.1 Overview of via files on page 4-82.

Related references
3.49 --via=file on page 3-76.

4 Via File Syntax
4.2 Via file syntax rules

ARM DUI0459F Copyright © 2008, 2011, 2012, 2014, 2015 ARM. All rights reserved. 4-83
Non-Confidential

	ARM® Compiler v5.06 for µVision® fromelf User Guide
	Contents
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Overview of the fromelf Image Converter
	1.1 : About the fromelf image converter
	1.2 : fromelf execution modes
	1.3 : Getting help on the fromelf command
	1.4 : fromelf command-line syntax

	2 : Using fromelf
	2.1 : General considerations when using fromelf
	2.2 : Examples of processing ELF files in an archive
	2.3 : Option to print specific details of ELF files
	2.4 : Using fromelf to find where a symbol is placed in an executable ELF image

	3 : fromelf Command-line Options
	3.1 : --base [[object_file::]load_region_ID=]num
	3.2 : --bin
	3.3 : --bincombined
	3.4 : --bincombined_base=address
	3.5 : --bincombined_padding=size,num
	3.6 : --cad
	3.7 : --cadcombined
	3.8 : --compare=option[,option,…]
	3.9 : --continue_on_error
	3.10 : --cpu=list
	3.11 : --cpu=name
	3.12 : --datasymbols
	3.13 : --decode_build_attributes
	3.14 : --diag_error=tag[,tag,…]
	3.15 : --diag_remark=tag[,tag,…]
	3.16 : --diag_style={arm|ide|gnu}
	3.17 : --diag_suppress=tag[,tag,…]
	3.18 : --diag_warning=tag[,tag,…]
	3.19 : --dump_build_attributes
	3.20 : --emit=option[,option,…]
	3.21 : --expandarrays
	3.22 : --extract_build_attributes
	3.23 : --fieldoffsets
	3.24 : --fpu=list
	3.25 : --fpu=name
	3.26 : --help
	3.27 : --i32
	3.28 : --i32combined
	3.29 : --ignore_section=option[,option,…]
	3.30 : --ignore_symbol=option[,option,…]
	3.31 : --info=topic[,topic,…]
	3.32 : input_file
	3.33 : --interleave=option
	3.34 : --liclinger=seconds
	3.35 : --licretry
	3.36 : --m32
	3.37 : --m32combined
	3.38 : --only=section_name
	3.39 : --output=destination
	3.40 : --qualify
	3.41 : --relax_section=option[,option,…]
	3.42 : --relax_symbol=option[,option,…]
	3.43 : --select=select_options
	3.44 : --show_cmdline
	3.45 : --source_directory=path
	3.46 : --text
	3.47 : --version_number
	3.48 : --vhx
	3.49 : --via=file
	3.50 : --vsn
	3.51 : -w
	3.52 : --widthxbanks

	4 : Via File Syntax
	4.1 : Overview of via files
	4.2 : Via file syntax rules

