
Arm® CoreLink™ GIC-600AE Generic
Interrupt Controller

Revision: r0p2

Technical Reference Manual

Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved.
101206_0002_03_en

Arm® CoreLink™ GIC-600AE Generic Interrupt Controller
Technical Reference Manual
Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-00 31 July 2018 Confidential First beta release for r0p0.

0000-01 09 November 2018 Non-Confidential First early access release for r0p0.

0001-02 30 August 2019 Non-Confidential First early access release for r0p1.

0002-03 24 April 2020 Non-Confidential First release for r0p2.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2018–2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

 Arm® CoreLink™ GIC-600AE Generic Interrupt Controller

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

 Arm® CoreLink™ GIC-600AE Generic Interrupt Controller

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

https://www.arm.com

Contents
Arm® CoreLink™ GIC-600AE Generic Interrupt
Controller Technical Reference Manual

Preface
About this book 8
Feedback 11

Chapter 1 Introduction
1.1 About the GIC-600AE .. 1-13
1.2 Components 1-14
1.3 Compliance .. 1-18
1.4 Features 1-19
1.5 Test features .. 1-20
1.6 Product documentation .. 1-21
1.7 Product revisions 1-22

Chapter 2 Components and configuration
2.1 Distributor 2-24
2.2 Redistributor 2-30
2.3 Interrupt Translation Service .. 2-33
2.4 MSI-64 Encapsulator 2-39
2.5 SPI Collator 2-42
2.6 Wake Request 2-44
2.7 Interconnect 2-46
2.8 Hierarchy 2-47

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

Chapter 3 Operation
3.1 Interrupt types .. 3-50
3.2 Interrupt groups and security 3-53
3.3 Physical interrupt signals (PPIs and SPIs) 3-55
3.4 Affinity routing and assignment 3-56
3.5 SPI routing and 1 of N selection .. 3-58
3.6 Power management 3-60
3.7 Getting started 3-63
3.8 Backwards compatibility 3-64
3.9 Interrupt Translation Service .. 3-65
3.10 LPI caching .. 3-68
3.11 Memory access and attributes 3-69
3.12 MSI-64 3-71
3.13 RAMs and ECC 3-72
3.14 Performance Monitoring Unit 3-73
3.15 Reliability, Accessibility, and Serviceability .. 3-75
3.16 Multichip operation 3-96

Chapter 4 Programmers model
4.1 The GIC-600AE registers 4-103
4.2 Distributor registers (GICD/GICDA) summary 4-106
4.3 Distributor registers (GICA) for message-based SPIs summary 4-123
4.4 Redistributor registers for control and physical LPIs summary 4-126
4.5 Redistributor registers for SGIs and PPIs summary .. 4-134
4.6 ITS control register summary 4-140
4.7 ITS translation register summary 4-149
4.8 GICT register summary 4-150
4.9 GICP register summary 4-165
4.10 FMU register summary .. 4-179

Chapter 5 Functional Safety
5.1 Safety Mechanism overview .. 5-192
5.2 Fault Management Unit 5-195
5.3 FuSa programmer's view 5-208
5.4 FuSa I/O 5-209
5.5 Clocks and resets .. 5-212
5.6 Lockstep protection 5-217
5.7 RAM protection .. 5-219
5.8 External interface protection .. 5-221
5.9 AXI4-Stream internal interconnect protection .. 5-226
5.10 P-Channel and Q-Channel protection 5-232
5.11 PPI and SPI interrupt interface protection 5-242
5.12 Systematic fault watchdog protection .. 5-245
5.13 DFT protection 5-246
5.14 Generic fault inputs .. 5-248
5.15 Configuration and parameters 5-249

Appendix A Signal descriptions
A.1 Common control signals Appx-A-251
A.2 Power control signals Appx-A-253

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

A.3 Interrupt signals Appx-A-254
A.4 CPU interface signals Appx-A-255
A.5 ACE-Lite interface signals Appx-A-256
A.6 Miscellaneous signals .. Appx-A-260
A.7 Interblock signals Appx-A-262
A.8 Interdomain signals .. Appx-A-265
A.9 Interchip signals Appx-A-266

Appendix B Implementation-defined features
B.1 Implementation-defined features reference Appx-B-268

Appendix C Revisions
C.1 Revisions Appx-C-271

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

Preface

This preface introduces the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Technical
Reference Manual.

It contains the following:
• About this book on page 8.
• Feedback on page 11.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

 About this book
This book is the Technical Reference Manual for the Arm® CoreLink™ GIC-600AE Generic Interrupt
Controller.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is written for system designers and programmers who are designing or programming a System
on Chip (SoC) that uses the GIC-600AE.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces the GIC-600AE and its features.

Chapter 2 Components and configuration
This chapter describes the major components of the GIC-600AE.

Chapter 3 Operation
This chapter provides an operational description of the GIC-600AE.

Chapter 4 Programmers model
This chapter describes the memory map and registers, and provides information about
programming the device.

Chapter 5 Functional Safety
This chapter describes the Functional Safety (FuSa) detection features that are unique to
GIC-600AE.

Appendix A Signal descriptions
This appendix describes the input and output signals.

Appendix B Implementation-defined features
This appendix describes the features that are IMPLEMENTATION DEFINED.

Appendix C Revisions
This appendix describes changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

 Preface
 About this book

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

https://developer.arm.com/support/arm-glossary

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

 Additional reading

Information published by Arm and by third parties.

See Infocenter http://infocenter.arm.com, for access to Arm documentation.

 Preface
 About this book

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

http://infocenter.arm.com

Arm publications
This book contains information that is specific to this product. See the following documents for
other relevant information:
• AMBA® AXI and ACE Protocol Specification (IHI 0022F).
• AMBA® 4 AXI4-Stream Protocol Specification (IHI 0051A).
• AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces

(IHI 0068).
• Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3

and version 4 (IHI 0069).
• Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile (DDI 0487).
• Arm® GICv3 and GICv4 Software Overview (DAI 0492).
• Arm® CoreLink™ CMN-600 Coherent Mesh Network Technical Reference Manual (100180).

The following confidential books are only available to licensees:
• Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration and Integration

Manual (101207).
• Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Safety Manual (101208).
• Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Development Interface Report

(101209).
• Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Dependent Failure Analysis

Report (PJDOC-1779577084-8931).
• Arm® CoreLink™ GIC-600AE Generic Interrupt Controller FMEDA Report

(PJDOC-1779577084-8807).
• Arm® Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A

architecture profile (DDI 0587).
• Arm® CoreLink™ ADB-400 AMBA® Domain Bridge User Guide (DUI 0615).
• Arm® CoreLink™ CMN-600 Coherent Mesh Network Configuration and Integration Manual

(100613).

 Preface
 About this book

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm CoreLink GIC-600AE Generic Interrupt Controller Technical Reference Manual.
• The number 101206_0002_03_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter introduces the GIC-600AE and its features.

It contains the following sections:
• 1.1 About the GIC-600AE on page 1-13.
• 1.2 Components on page 1-14.
• 1.3 Compliance on page 1-18.
• 1.4 Features on page 1-19.
• 1.5 Test features on page 1-20.
• 1.6 Product documentation on page 1-21.
• 1.7 Product revisions on page 1-22.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

1.1 About the GIC-600AE
The GIC-600AE is a Functional Safety (FuSa) variant of the GIC‑600. The GIC-600AE is a Generic
Interrupt Controller (GIC) that handles interrupts from peripherals to the cores and between cores. The
GIC-600AE supports a distributed microarchitecture containing several individual blocks that are used to
provide a flexible GIC implementation.

The GIC-600AE supports the GICv3 architecture. For more information, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

The microarchitecture scales from a single core to coherent multichip environments containing up to 16
chips of up to 64 cores each.

All the GIC-600AE blocks communicate through fully credited AXI4-Stream interface channels. This
means that the interface only exerts transient backpressure on their ic<xy>tready signals, enabling
packets to be routed over any free-flowing interconnect. Channels can be routed over dedicated AXI4-
Stream buses, or over any available free-flowing transport layer in the system. A channel is described as
free-flowing if all transactions on that channel complete without a non-transient dependency on any other
transaction.

The GIC-600AE includes build scripts that can create appropriate levels of hierarchy for any particular
configuration. In small configurations, the distribution can be hidden and internally optimized.

 Note

GIC‑600 information is unchanged, and information about the FuSa features available in GIC-600AE
can be found in Chapter 5 Functional Safety on page 5-191.

1 Introduction
1.1 About the GIC-600AE

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

1.2 Components
The GIC-600AE comprises several significant blocks that work in combination to create a single
architecturally compliant GICv3 implementation within the system. The GIC-600AE top level can have
one of several optional structures.

The GIC-600AE consists of the following blocks:

Distributor

The Distributor is the hub of all the GIC communications and contains the functionality for all
Shared Peripheral Interrupts (SPIs) and Locality-specific Peripheral Interrupts (LPIs). It is
responsible for the entire GIC programmers model, except for the GITS_TRANSLATER
register, which is hosted in the Interrupt Translation Service (ITS) block.

The Distributor also maintains the coherency of the SPI register space in multichip
configurations.

 Note

The LPI functionality for all cores on a chip is combined into a single cache in the Distributor.

Redistributor

The Redistributor maintains the Private Peripheral Interrupts (PPIs) and Software Generated
Interrupts (SGIs) for a particular set of cores. A Redistributor can scale from 1-64 cores and is
best placed next to the processors that it is servicing to reduce wiring to the cores.

A Redistributor is also referred to as a PPI block.

The GICv3 architecture specifies a Redistributor address space containing two pages per core.
The SGI page functionality is contained in the GIC-600AE Redistributor. However, the
command and control pages for all cores on a chip are contained in the Distributor.

The GIC-600AE supports powering down the Redistributors and the associated cores.

Interrupt Translation Service

The ITS translates message-based interrupts, Message-Signaled Interrupts (MSI/MSIx), from an
external PCI Express (PCIe) Root Complex (RC), or other sources. The ITS also manages LPIs
during core power management.

The GIC-600AE supports up to eight ITS blocks per chip.

For more information about the ITS, see the Arm® GICv3 and GICv4 Software Overview.

MSI-64 Encapsulator

The MSI-64 Encapsulator is a small block that combines the DeviceID (DID), required by
writes to the GITS_TRANSLATER register, into a single memory access.

SPI Collator

The GIC-600AE supports up to 960 SPIs that are spread across the system. The SPI Collator
enables SPIs to be converted into messages remotely from the Distributor. This enables
hierarchical clock gating of the Distributor and the use of other more aggressive low-power
states.

Wake Request

The Wake Request contains all the architecturally defined wake_request signals for each core
on the chip. It is a separate block that can be positioned remotely from the Distributor, such as
next to a system control processor if necessary.

1 Introduction
1.2 Components

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

GIC interconnect

The GIC interconnect is a set of components that can be used for routing the AXI4-Stream
interfaces between the different blocks.

Top level

The top level has no specific interfaces but combines the interfaces of other blocks within the
clock or power domain to reduce the number of domain bridges. The GIC-600AE build scripts
enable you to build the GIC from a single combined block or a set of individual blocks that are
interconnected using your own transport layer.

These blocks can be combined in different ways:

• In systems where there is an available free-flowing transport layer in place, existing buses can be
used to route the GIC traffic.

• The GIC-600AE includes a narrow, 16-bit, AXI4-Stream interconnect that can be used for routing
internal traffic.

The following figure shows a GIC-600AE with a free-flowing interconnect in an example system.

PCIe Root
Complex

System Memory Management Unit
(SMMU)

Free-flowing interconnect

Core cluster

SPIs

Programming
interface

Core cluster

Key:

Free-flowing channel

Cross-chip
interfaces

DMC

GIC-600AE
components

Wake
Request

ITS

Distributor

RedistributorRedistributor

SPI
Collator

Figure 1-1 GIC-600AE with free-flowing interconnect in an example system

 Note

A free-flowing channel is clear to transmit a transaction that arrives at its destination without any non-
transient dependencies on other transactions.

The following figure shows a GIC-600AE with interconnect in an example system.

1 Introduction
1.2 Components

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

PCIe Root
Complex

SMMU

System interconnect

Core cluster Core cluster

SPIs

Programming
interface

Key:

Free-flowing channel

Cross-chip
interfaces

GIC-600AE
components

DMC

Wake
Request

ITS

Distributor

RedistributorRedistributor
SPI

Collator

Figure 1-2 GIC-600AE with interconnect in an example system

 Note

Cross-chip interfaces enable communication between cores in a multichip configuration.

1 Introduction
1.2 Components

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

The following figure shows a monolithic GIC-600AE with interconnect in an example system.

PCIe Root
Complex

SMMU

System interconnect

Core cluster Core cluster

SPIs

Programming
and ITS

interfacesKey:

Free-flowing channel

Cross-chip
interfaces

GIC-600AE
components

ITSDistributor

RedistributorRedistributor
SPI

Collator

DMC

Figure 1-3 Monolithic GIC-600AE with interconnect in an example system

 Note

If the GIC supports LPIs, there must be free-flowing access to main memory. This requirement is
irrespective of the interconnect that is used for routing the AXI4-Stream interfaces. For more
information, see the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration and
Integration Manual.

The GIC-600AE supports cores that implement only the Armv8.0-A architecture, and later versions such
as Armv8.2-A. The cores must also support the GIC CPU interface with the standard GIC AXI4-Stream
protocol interface. The GIC-600AE implements version 3.0 of the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version 4.

Related references
Chapter 2 Components and configuration on page 2-23

1 Introduction
1.2 Components

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.3 Compliance
The GIC-600AE interfaces are compliant with Arm specifications and protocols.

The GIC-600AE is compliant with:

• The AMBA AXI4-Stream protocol. See the AMBA® AXI and ACE Protocol Specification.
• Version 3.0 of the Arm GIC architecture specification. See the Arm® Generic Interrupt Controller

Architecture Specification, GIC architecture version 3 and version 4.

The GIC Stream protocol is based on the following specifications:
• The AMBA AXI4-Stream protocol. See the AMBA® 4 AXI4-Stream Protocol Specification.
• The GIC Stream Protocol Interface. See the Arm® Generic Interrupt Controller Architecture

Specification, GIC architecture version 3 and version 4.

1 Introduction
1.3 Compliance

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

1.4 Features
The GIC-600AE provides interrupt services and masking, registers and programming, interrupt grouping,
security, performance monitoring, and error correction.

Interrupt services and masking
The GIC-600AE provides the following interrupt services and masking features:
• Support for the following interrupt types:

— Up to 56000 LPIs. A peripheral generates these interrupts by writing to a memory-mapped
register in the GIC-600AE. See 2.1.7 Distributor configuration on page 2-28.

— Up to 960 SPIs in groups of 32. See 2.1.7 Distributor configuration on page 2-28.
— Up to 16 PPIs that are independent for each core and can be programmed to support either edge-

triggered or level-sensitive interrupts. See 2.2.6 Redistributor configuration on page 2-32.
— Up to 16 SGIs that are generated through the GIC CPU interface of a core.

• Up to eight ITS modules that provide device isolation and ID translation for message-based interrupts
and enable virtual machines to program devices directly.

• Interrupt masking and prioritization with 32 priority levels, five bits per interrupt.

Registers and programming
The GIC-600AE provides the following programming features:
• Flexible affinity routing, using the Multiprocessor Identification Register (MPIDR) addresses,

including support for all four affinity levels.
• Single ACE-Lite slave port on each chip for programming of all GIC Distributor (GICD) registers,

GIC Interrupt Translation Service (GITS) registers, and GIC Redistributor (GICR) registers. Each
ITS has an optional ACE-Lite slave port for programming the GITS_TRANSLATER register.

• Coherent view of SPI register data across multiple chips.

Security
The GIC-600AE provides the following security features:
• A global Disable Security (DS) bit. This bit enables support for systems without security.
• The following interrupt groups allow interrupts to target different Exception levels:

— Group 0.
— Non-secure Group 1.
— Secure Group 1.

See 3.2 Interrupt groups and security on page 3-53 for more information about security and
groupings.

 Note

For more information about Exception levels, see the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

Performance monitoring
The GIC-600AE provides the following performance monitoring features:
• Performance Monitoring Unit (PMU) counters with snapshot functionality.

Error correction
The GIC-600AE provides the following error correction features:
• Armv8.2 Reliability Accessibility Serviceability (RAS) architecture-compliant error reporting for:

— Software access errors.
— ITS command and translation errors.
— Error Correcting Code (ECC) errors.

1 Introduction
1.4 Features

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

1.5 Test features
The GIC-600AE provides Design for Test (DFT) signals for test mode.

Related references
A.1 Common control signals on page Appx-A-251

1 Introduction
1.5 Test features

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.6 Product documentation
Documentation that is provided with this product includes a Technical Reference Manual (TRM) and a
Configuration and Integration Manual (CIM), together with architecture and protocol information.

For relevant protocol and architectural information that relates to this product, see Additional reading
on page 9.

The GIC-600AE documentation is as follows:

Technical Reference Manual
The TRM describes the functionality and the effects of functional options on the behavior of the
GIC-600AE. It is required at all stages of the design flow. The choices that are made in the
design flow can mean that some behaviors that the TRM describes are not relevant. If you are
programming the GIC-600AE, contact:
• The implementer to determine:

— The build configuration of the implementation.
— What integration, if any, was performed before implementing the GIC-600AE.

• The integrator to determine the signal configuration of the device that you use.

The TRM complements architecture and protocol specifications and relevant external standards.
It does not duplicate information from these sources.

Configuration and Integration Manual
The CIM describes:
• The available build configuration options.
• How to configure the Register Transfer Level (RTL) with the build configuration options.
• How to integrate the GIC-600AE into an SoC.
• How to implement the GIC-600AE into your design.
• The processes to validate the configured design.

The Arm product deliverables include reference scripts and information about using them to
implement your design.

The CIM is a confidential book that is only available to licensees.

Safety Manual
The Safety Manual provides additional information on specific features of the GIC-600AE that
are relevant to Functional Safety. This information is important for SoC integrators whose final
designs target applications where Functional Safety is a concern.

Development Interface Report
The Development Interface Report (DIR) describes the activities conducted by Arm that are
related to the safety architecture of the GIC-600AE.

1 Introduction
1.6 Product documentation

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

1.7 Product revisions
This section describes the differences in functionality between product revisions.

r0p0 First release.
r0p0-r0p1 Functional changes are:

• Writing 0b10 clears the FMU_ERR<n>STATUS.CE field. See
4.10.3 FMU_ERR<n>STATUS, Error Record Primary Status Register on page 4-181.

• The FMU pready is gated when in Q-Channel low power state and no faults have been
reported to FMU.

• Bug fixes.

r0p1-r0p2 Functional changes are:
• To align with GICv2m, the GICA page supports the GICA_TYPER, GICA_IIDR, and

GICA_PIDR*, and GICA_CIDR* registers. See 4.3 Distributor registers (GICA) for
message-based SPIs summary on page 4-123.

• Bug fixes.

1 Introduction
1.7 Product revisions

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

Chapter 2
Components and configuration

This chapter describes the major components of the GIC-600AE.

It contains the following sections:
• 2.1 Distributor on page 2-24.
• 2.2 Redistributor on page 2-30.
• 2.3 Interrupt Translation Service on page 2-33.
• 2.4 MSI-64 Encapsulator on page 2-39.
• 2.5 SPI Collator on page 2-42.
• 2.6 Wake Request on page 2-44.
• 2.7 Interconnect on page 2-46.
• 2.8 Hierarchy on page 2-47.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

2.1 Distributor
The Distributor is the main communication point between all GIC-600AE blocks. It performs SPI
management and LPI caching, and all communications with other blocks and chips.

The following figure shows the Distributor and its interfaces.

GIC-600AE
Distributor

SPI
Collator

ACE-Lite
slave

ACE-Lite
master

AXI4-Stream
ITS

AXI4-Stream
Redistributor

Wake
Request

Q-Channel

SPIs

SPI_r

Power controller

Cross-chip
interfaces

Q-Channel
ITS power control

Figure 2-1 GIC-600AE Distributor

The Distributor is the main hub of the GIC and it implements most of the GICv3 architecture including:
• Programming, forwarding, and prioritization of SPIs, see 3.1.3 SPIs on page 3-50.
• Caching and forwarding of LPIs, see 3.1.4 LPIs on page 3-51.
• SGI routing and forwarding.
• Register programming of all registers apart from GITS_TRANSLATER.
• Power control of cores and Redistributor blocks.

This section contains the following subsections:
• 2.1.1 Distributor AXI4-Stream interfaces on page 2-25.
• 2.1.2 Distributor ACE-Lite slave interface on page 2-25.
• 2.1.3 Distributor ACE-Lite master interface on page 2-26.
• 2.1.4 Distributor Q-Channels on page 2-27.
• 2.1.5 P-Channel on page 2-27.
• 2.1.6 Distributor miscellaneous signals on page 2-27.
• 2.1.7 Distributor configuration on page 2-28.

2 Components and configuration
2.1 Distributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

2.1.1 Distributor AXI4-Stream interfaces

The GIC-600AE uses AXI4-Stream interfaces to communicate between blocks.

These interfaces are fully credited.
 Note

• ic<xy>tready xy can be cd, dc, pd, dp, id, di, rd, dr, or dw.
• Packets must not be reordered between endpoints, for example, between the Distributor and a single

Redistributor block, irrespective of the interconnect that is used. Packets must never be interleaved.

For information about AXI4-Stream signals, see the AMBA® 4 AXI4-Stream Protocol Specification.

For information about the TWAKE signal, see section E.2.9 of the AMBA® AXI and ACE Protocol
Specification. The TWAKE signal is equivalent to the AWAKEUP signal.

The following table lists the AXI4-Stream input interfaces.

Table 2-1 AXI4-Stream input interface descriptions

Bus Destination Width ic<xy>dtid

ICID ITS to Distributor 16-bit or 64-bit ITS number

ICPD Redistributor to Distributor 16-bit, 32-bit, or 64-bit Redistributor number

ICCD SPI Collator to Distributor 16-bit 0

ICRD Remote Chip to Distributor 64-bit 0

The following table lists the AXI4-Stream output interfaces.

Table 2-2 AXI4-Stream output interface descriptions

Bus Destination Width ic<xy>dtdest

ICDI Distributor to ITS 16-bit or 64-bit ITS number

ICDP Distributor to Redistributor 16-bit, 32-bit, or 64-bit Redistributor number

ICDC Distributor to SPI Collator 16-bit 0

ICDR Distributor to Remote Chip 64-bit Programmed value

ICDW Distributor to Wake Request block 16-bit -

Each bus has an associated ic<xy>twakeup signal that requests wakeup through the qactive signals
when the Distributor, or destination block, is hierarchically clock gated through the Q-Channel. The
ic<xy>twakeup input signal must be driven from a cleanly registered version of the ic<xy>tvalid signal
to prevent spurious wakeups caused by signal glitches.

For information about the Distributor Q-Channels, see 2.1.4 Distributor Q-Channels on page 2-27.

2.1.2 Distributor ACE-Lite slave interface

The AMBA ACE-Lite slave port on the GIC-600AE Distributor provides access to the entire register
map except for the GITS_TRANSLATER register. The interface supports 64-bit, 128-bit, or 256-bit data
widths.

The GIC-600AE only accepts single beat accesses of the sizes for each register that are shown in the
Programmers model, see Chapter 4 Programmers model on page 4-102. All other accesses are rejected
and given either an OKAY or SLVERR response that is based on the GICT_ERR0CTLR.UE bit.

When the GIC-600AE is a monolithic configuration without MSI-64 support, the Distributor and ITS
both share an ACE-Lite slave port, and the DeviceID for the ITS translation is taken from

2 Components and configuration
2.1 Distributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

awuser_s[did_width+2:3]. The value of the did_width parameter is set during silicon integration. For
more information about the ITS, see 2.3 Interrupt Translation Service on page 2-33.

 Note

The a<x>user_s[2:0] signals are not used and must be tied LOW.

The following table shows the acceptance capabilities of the Distributor ACE-Lite slave interface.

Table 2-3 Distributor ACE-Lite slave interface acceptance capabilities

Attribute Capability

Combined acceptance capability 3

Read acceptance capability 2

Read data reorder depth 1

Write acceptance capability 2

The GIC-600AE uses awatop_s, a<x>cache_s, a<x>domain_s, a<x>snoop_s, and a<x>bar_s signals
to detect cache maintenance operations and barrier transactions that are responded to in a protocol-
compliant manner but are otherwise ignored. The GIC-600AE also ignores other Cacheability,
Shareability, and protection settings, except for the a<x>prot_s[1] security signal.

If you are connecting to an AXI3 or AXI4 port, then awatop_s, a<x>domain>_s, a<x>snoop_s,
a<x>bar_s and, for AXI3, a<x>len[7:4] must all be tied LOW.

The GIC-600AE has a separate awakeup_s signal to force the GIC to wakeup when it is hierarchically
clock gated through the Q-Channel. The awakeup_s signal must be connected to a cleanly registered
version of (awvalid_s | arvalid_s) to ensure that the GIC does not request to be woken up due to
incoming signal glitches.

The GIC-600AE address map has multiple pages. The number of pages and the address aliasing depends
on your configuration. See 4.1.1 Register map pages on page 4-103.

You must set up the system address map so that each core accesses the GICD page on its local chip at the
same address. All other pages must be globally accessible, although access of pages on a remote chip by
a core is expected to be rare.

In most configurations, the GIC-600AE ignores address bits above ceil[log2(page_count)] + 15. For
example, a configuration that uses 11 pages ignores address bits above 19, and any address bits of the
form 0xXXXXX00000 is accepted to access the GICD page of the memory map. However, in monolithic
configurations, where the Distributor and ITS share the ACE-Lite slave port, there are two address tie-
offs that specify the full page address of the GICD and GITS_TRANSLATER pages. The page address
comprises address bits[x:16]. For example, if the GICD page is at 32-bit address 0xFFFF0000, the
gicd_page_offset tie-off is 16-bit 0xFFFF. See A.6 Miscellaneous signals on page Appx-A-260 for
information about the gicd_page_offset, its_transr_page_offset, and gits_transr_page_offset signals.
See also 4.1.1 Register map pages on page 4-103.

Related references
4.1.1 Register map pages on page 4-103

2.1.3 Distributor ACE-Lite master interface

The GICD uses the AMBA ACE-Lite master interface to access all pending, property, and translation
tables that are allocated to the GIC. If LPIs are not supported, then this interface is not present.

The interface can be configured to be 64-bit, 128-bit, or 256-bit wide.

The following table shows the issuing capabilities of the Distributor ACE-Lite master interface.

2 Components and configuration
2.1 Distributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

Table 2-4 Distributor ACE-Lite master interface issuing capabilities

Attribute Capability

Read Write Combined

256-bit aligned read and writes to any Pending table 3 3 3

8-bit read and writes to any Pending table 1 1 1

256-bit aligned reads to the Property table 1 0 1

8-bit reads to the Property table 4 0 4

Each transaction uses a unique transaction ID, and properties come from either the GICR_PROPBASER
or GICR_PENDBASER registers according to the destination. There is one copy of the attribute fields
for all GICR_PROPBASER registers and another for all GICR_PENDBASER registers, so software
must program these registers to a consistent value in all Redistributors.

The ACE-Lite master interface cannot issue barriers or Cache Maintenance Operations (CMOs).
However, it can issue shareable, ReadOnce and WriteUnique, transactions if programmed to do so.

See 3.11 Memory access and attributes on page 3-69 for more information.

The a<x>user_m signal outputs the GICR_TYPER.ProcessorNumber of the core that is associated with
each transaction, but it can be ignored and it is not necessary to route it anywhere else.

 Note

If the Distributor and ITS both share the same ACE-Lite master interface, the issuing capabilities are
cumulative.

2.1.4 Distributor Q-Channels

There is a single Q-Channel for clock gating the GIC-600AE Distributor. The Q-Channel interface
denies access when the Distributor is busy processing interrupts.

The Distributor also has a separate Q-Channel that enables power control for each configured ITS. The
GIC only accepts a low-power request when GITS_CTLR.Quiescent is set. If the Quiescent bit is set, the
Q-Channel qacceptn_its_gicd_<n> signal is asserted, and the GIC guarantees that the bus to the relevant
ITS is idle in both directions and that the ITS can be powered down. To perform wake-on-LPI
functionality, you can use GITS_FCTLR.PWE to disable the bus while the ITS is still active and able to
translate interrupts. If the bus is disabled, the system must re-enable the bus, based on the status of the
ITS QACTIVE signal, that is, when qactive_its_gicd_<n> is asserted.

 Note

The qreqn* signals are synchronized internally, and can be driven asynchronously. See A.2 Power
control signals on page Appx-A-253.

For more information, see the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-
Channel Interfaces.

2.1.5 P-Channel

The P-Channel is used for power control of the GIC-600AE Distributor.

The P-Channel is present only in multichip configurations. It is used to safely isolate the Distributor from
other chips to allow the save and restore of its register states.

2.1.6 Distributor miscellaneous signals

The Distributor generates or processes several signals, such as tie-offs, interrupts, and handshakes.

The following table shows the Distributor miscellaneous signals.

2 Components and configuration
2.1 Distributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

Table 2-5 Distributor miscellaneous signals

Signal Direction Description

chip_id Input Tie off this signal to identify the chip in the system. Only present if there is more than one chip in the
system.

fault_int Output These fault handling and error reporting interrupts are defined in Arm® Reliability, Availability, and
Serviceability (RAS) Specification Armv8, for the Armv8-A architecture profile. The GIC-600AE can
deliver these interrupts internally but the outputs are provided for any other device such as a system
control processor that does not receive normal interrupts from the GIC.

See 3.15 Reliability, Accessibility, and Serviceability on page 3-75.

err_int Output

pmu_int Output The PMU counter overflow interrupt. This interrupt can be routed internally but is provided as an
external output to trigger an external agent to service the GIC, for example, to read out the PMU
counter snapshot registers.

See 3.14 Performance Monitoring Unit on page 3-73.

sample_req Input This 4-phase handshake provides a hardware mechanism to snapshot the PMU counters and has the
same effect as writing to the GICP_CAPR register.

sample_ack Output

gict_allow_ns Input From reset, these tie-off signals control whether Non-secure software can access the GICT RAS and
GICP PMU pages. Secure software can override the values at any time.

gicp_allow_ns Input

gicd_page_offset Input This tie-off signal is used to set the page address bits[x:16] of the GICD page. Only present in
monolithic configurations.

2.1.7 Distributor configuration

You can configure several options that relate to the operation of the Distributor block.

Table 2-6 Configurable options for the Distributor

Feature Range of options

Number of chips 1-16

Affinity level that is used for chip selection 2, 3

Affinity0 width 0-4

Affinity1 width 0-8

Affinity2 width 0-8

Affinity3 width 0-8

LPI support True, False

LPI cache size (entries / 2) 8, 16, 32, 64, 128, 256, 512

Number of ITS 0-16

Number of Redistributors on chip 1-64

Number of message-based SPIs permitted in system 32-960, in blocks of 32

2 Components and configuration
2.1 Distributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

Table 2-6 Configurable options for the Distributor (continued)

Feature Range of options

Number of SPI wires on chip for wire-based SPIs 0-960

Security support Options include:
• Security support programmable. Resets to support security.
• Security support always present.
• Security support not present.

 Note

See Security model in the Arm® GICv3 and GICv4 Software Overview for
information about the implications of setting Security support to not present.

For more information, see the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration
and Integration Manual and Arm® GICv3 and GICv4 Software Overview.

2 Components and configuration
2.1 Distributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

2.2 Redistributor
The Redistributor is responsible for PPIs and SGIs that are associated with its related cluster or group of
cores. A Redistributor is also referred to as a PPI block.

The following figure shows the Redistributor block.

Redistributor

Distributor

AXI4-Stream interface

PPIs

Cluster of
cores

GIC Stream protocol interface

Cluster of
cores

Cluster of
cores

Q-Channel

cpu_active

ppi_id[15:0]

PPI_r

Figure 2-2 GIC-600AE Redistributor

The Redistributor performs the following functions:

• Maintaining the SGI and PPI programming.
• Monitoring, and if necessary, synchronizing the PPI wires.
• Prioritizing SGIs, PPIs, and any other interrupts that are sent from the Distributor, and forwarding

them to the core.
• Maintaining the GIC Stream protocol and communicating with the cluster.

There can be multiple Redistributors in a configuration and they can be sized to match your system. For
example, if you have two clusters of eight cores, then you can have one Redistributor positioned next to
each cluster. You can use a Redistributor for each cluster to reduce the PPI wiring and enable the
Redistributor to be powered down with the cores for extra power savings. Alternatively, for a small
system, combining all cores into one Redistributor block might be the best solution. See Configuration
options in the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration and Integration
Manual for more information.

 Note

The Redistributor (GICR) registers are programmed through the Distributor ACE-Lite slave port. The
Distributor also contains the architectural LPI functionality.

This section contains the following subsections:
• 2.2.1 Redistributor AXI4-Stream interface on page 2-31.
• 2.2.2 Redistributor GIC Stream Protocol interface on page 2-31.

2 Components and configuration
2.2 Redistributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

• 2.2.3 Redistributor Q-Channel on page 2-31.
• 2.2.4 Redistributor PPI signals on page 2-31.
• 2.2.5 Redistributor miscellaneous input signals on page 2-32.
• 2.2.6 Redistributor configuration on page 2-32.

2.2.1 Redistributor AXI4-Stream interface

Each Redistributor has an upstream and downstream AXI4-Stream port for communicating with the
Distributor. This interface is either 16-bit or 64-bit wide and uses a fully credited protocol.

2.2.2 Redistributor GIC Stream Protocol interface

The GIC-600AE uses the GIC Stream Protocol interface to send interrupts to the core and receive
notifications when the core activates interrupts. The GIC Stream Protocol interface has a pair of 16-bit
wide AXI4-Stream interfaces, one upstream interface, and one downstream interface.

The GIC Stream Protocol interface, also referred to as the GIC Stream interface, uses the GIC Stream
Protocol to pass interrupts and responses to the CPU interface inside each core.

Table 2-7 GIC Stream Protocol interface signals

Signal name Description

iri Prefix which identifies the names of the downstream interface signals. These signals are sent by the GIC Stream
master. On this interface, the Redistributor is the master and the CPU interface is the slave.

icc Prefix which identifies the names of the upstream interface signals. These signals are sent by the GIC Stream slave.
On this interface, the CPU interface is the master and the Redistributor is the slave.

iritdest The GIC Stream master uses this signal to direct packets to one core within the cluster.

icctid The GIC Stream slave interface uses this signal to determine which core within the cluster sent a packet.

Both the iritdest and icctid can support 64 cores that use packed binary encoding, as opposed to one-hot
encoding.

2.2.3 Redistributor Q-Channel

The Redistributor has a single Q-Channel input that is used to ensure that the Redistributor can be safely
clock gated hierarchically.

If the Redistributor is busy, actively processing interrupts or sending messages up or downstream, the Q-
Channel denies a quiescence request, qreqn, by asserting the qdeny signal. For more information, see
the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces.

 Note

• The qreqn input is synchronized inside the Redistributor.
• The qactive signal is connected to the PPI wires directly, and must be considered as an asynchronous

output.

Related references
A.2 Power control signals on page Appx-A-253

2.2.4 Redistributor PPI signals

GIC-600AE supports 8, 12, or 16 PPIs, and synchronized output return wires, for each core. The number
of PPIs and return wires must be the same for all cores sharing a Redistributor.

Level-sensitive PPI signals are active-LOW by default, as with previous Arm GIC implementations.
However, individual PPI signals can be inverted and synchronized using parameters
gic600ae_<config_name>_PPI<ppi_id>_<cpu_number>_<ppi_number>_<INV/SYNC>.

2 Components and configuration
2.2 Redistributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

Every wire has a corresponding wire from after the synchronizer or capture flop. These can be used to
create pulse extenders for edge-triggered interrupts that cross clock domains.

 Note

If you plan to use edge-triggered PPIs and the Q-Channel to clock gate the Redistributor hierarchically,
you must use pulse extenders to ensure that interrupts are not missed while the clock is restarted.

For information about the purpose of each PPI used by the core in your system, refer to the relevant core
Technical Reference Manual.

2.2.5 Redistributor miscellaneous input signals

The Redistributor receives signals that identify the status of each core. It also has a tie-off signal that
provides the Redistributor with a unique identifier.

Table 2-8 Redistributor miscellaneous input signals

Signal Direction Description

cpu_active Input This signal indicates if the core is active and not in a low-power state such as retention. The GIC can
decide to target only active cores for 1 of N SPIs. See 3.14 Performance Monitoring Unit on page 3-73.

 Note

cpu_active is not synchronized into the Redistributor. If cpu_active is driven from a different domain, it
must be synchronized externally.

ppi_id[15:0] Input This tie-off signal provides the Redistributor with a unique identifier that is used primarily to ensure that
the GIC is correctly integrated into the system.

Related concepts
3.6 Power management on page 3-60

2.2.6 Redistributor configuration

You can configure several options that relate to the operation of the Redistributor block.

Table 2-9 Configurable options for the Redistributor

Feature Range of options

Number of cores downstream 1-64

PPIs per core 8, 12, 16

ECC supporta True, False

Bus data width 16 or 32

GIC Stream bus structure Flexible buses and domains

For more information, see the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration
and Integration Manual and Arm® GICv3 and GICv4 Software Overview.

Related concepts
3.1 Interrupt types on page 3-50

a See 3.15 Reliability, Accessibility, and Serviceability on page 3-75 for more information.

2 Components and configuration
2.2 Redistributor

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

2.3 Interrupt Translation Service
The ITS provides a software mechanism for translating message-based interrupts into LPIs. The ITS is
supported optionally in configurations that support LPIs.

A peripheral generates an LPI by writing to the GITS_TRANSLATER in the ITS. The write provides the
ITS with the following information:

• EventID (VID). A value that is written to GITS_TRANSLATER. The EventID identifies which
interrupt the peripheral is sending. Each interrupt source is identified by an Interrupt Identifier
(INTID). The EventID might be the same as the INTID, or it might be translated by the ITS into the
INTID.

• DeviceID (DID). The DeviceID is a unique identifier that identifies the peripheral.

The following figure shows the ITS block.

ITS

ITS base address

AXI4-Stream

noram
Q-Channel

CollectionCache DIDVIDCacheDIDCache

ACE-Lite

Bypass switch
(optional)

Master interface

ACE-Lite

Slave interface

Figure 2-3 ITS block

The ITS is an implementation of the GICv3 Interrupt Translation Service as described in the Arm®

Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4. The
ITS translates MSI requests to the required LPI and target. It also has a set of commands for managing
LPIs for core power management and load balancing.

A main use of the ITS is the translation of MSI/MSIx messages from a PCIe Root Complex (RC). To
complete the translation, the ITS must be supplied with a DeviceID that is derived from the PCIe
RequestorID. To reduce the distance that the DeviceID is transferred and to enable better
compartmentalization between RCs, the ITS is best placed next to the RC. To ease integration, the ITS
has an optional bypass switch as shown in the ITS block diagram. If the bypass switch is not configured,
the ACE-Lite slave and master ports connect to the ITS directly. See 2.3.1 ITS ACE-Lite slave interface
on page 2-35 and 2.3.2 ITS ACE-Lite master interface on page 2-36.

In accordance with PCIe dependency rules, read responses on a PCIe Root Complex slave port must be
ordered against completion of posted writes on a Root Complex master port. This means that writes must
always make forward progress. The functionality of the ITS means that there is a dependency between
writes to the GITS_TRANSLATER register and reads to memory and therefore one of the following
conditions must be true:

• The interconnect must allow forward progress of reads under all circumstances.
• The GIC parameter dgi_mem_support must be set.

2 Components and configuration
2.3 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

 Note

— This option provides support for routing all ITS translation-dependent traffic through the ACE-
Lite master port on the Distributor which must have free flowing access to memory. After this
feature is configured, it must be enabled at boot time. To enable this feature, write to
GITS_FCTLR.DMA to route the traffic through the Distributor.

— If dgi_mem_support is set, the ITS uses its ACE-Lite master interface to access the Command
queue, and uses the Distributor ACE-Lite master interface to access tables.

— The ITS master interface sends one single outstanding read and one single outstanding write at a
time to access the Command queue. The ARID is 0x4 for the single outstanding read. The AWID
is 0x0 for the single outstanding write.

— Setting dgi_mem_support = 1 increases the width of the AxID signals on the Distributor master
interface.

If neither condition is true, you must not use the configuration that Figure 2-3 ITS block on page 2-33
shows. This condition also applies to the CoreLink CMN-600 Coherent Mesh Network if the I/O
coherent Requesting Node (RN-I) is able to access the same I/O Home Node (HN-I) that provides access
to the PCIe Root Complex slave port. If the ITS is configured without a bypass switch, then a bypass
switch can still be used to provide ITS access to memory through a different interconnect port, without
merging the master ports.

For more information, see 3.9 Interrupt Translation Service on page 3-65.

The following figure provides an example of the ITS integration process.

PCIe Root Complex

SMMU

ITS

Interconnect

Figure 2-4 ITS integration

An ITS can be placed anywhere in the system so that it is seen by devices that want to send MSIs.
However, the system is responsible for ensuring that the DeviceID reaching each ITS is not spoofed by
rogue software using either a<x>user signals or MSI-64. See 2.4 MSI-64 Encapsulator on page 2-39.

 Caution

If the ITS is placed downstream of an ACE interconnect, care must be taken to avoid system deadlock.
For more information, see Key integration tasks in the Arm® CoreLink™ GIC-600AE Generic Interrupt
Controller Configuration and Integration Manual.

For more information about each inner block, see 3.9 Interrupt Translation Service on page 3-65.

This section contains the following subsections:
• 2.3.1 ITS ACE-Lite slave interface on page 2-35.
• 2.3.2 ITS ACE-Lite master interface on page 2-36.
• 2.3.3 ITS AXI4-Stream interface on page 2-37.
• 2.3.4 ITS Q-Channel on page 2-37.
• 2.3.5 ITS miscellaneous signals on page 2-37.

2 Components and configuration
2.3 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

• 2.3.6 ITS configuration on page 2-37.

2.3.1 ITS ACE-Lite slave interface

The ITS AMBA ACE-Lite slave interface has a configurable data width of 64 bits, 128 bits, or 256 bits.
The address and data widths between the slave and master must match.

The ITS ACE-Lite slave port contains only the GITS_TRANSLATER register. See the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 for more
information.

If the bypass switch configuration option is selected, the port accepts all ACE-Lite traffic, and filters
accesses to the ITS based on an address match set by the ITS base address tie-off
target_address[ADDR_WIDTH−17:0]. Without the bypass switch, the upper bits of the address, 16
and above, are ignored, and the system address decoders must ensure that only relevant ITS writes arrive
at the ITS.

The ACE-Lite slave interface ignores all awatop, a<x>snoop, a<x>cache, a<x>domain, and a<x>prot
information other than to filter non-memory transactions such as atomics and cache maintenance
operations, to ensure that it replies in a protocol-compliant manner.

To generate an LPI, the ITS requires the DeviceID of the issuing master. For PCIe, the DeviceID is
derived from the RequestorID.

The GIC-600AE supports two different methods for deriving the DeviceID with the ACE-Lite slave
interface:

• When using the MSI-64 configuration parameter, the write to GITS_TRANSLATER is converted to
64-bit accesses at an unmapped system address and the DeviceID is transferred in the upper 32 bits of
the access. In this case, only burst length 1, 64-bit ACE-Lite writes are accepted.

• When not using MSI-64, the DeviceID is transported on the awuser_s[did_width+2:3] bus with the
address (AW) phase of the register access. In this case, burst length 1, 32-bit or 16-bit writes are
accepted.

The DeviceID must be transferred using a method that malicious software cannot spoof.

 Note

These two modes cannot be mixed on a single ITS.

If the bypass switch is configured, it includes a transaction tracker that ensures PCIe ordering
requirements are met. There are two options that are based on the full_bypass_tracker parameter:

0 A simple scheme is used, which ensures that all previous transactions sent downstream have
completed before forwarding an MSI to the ITS, and conversely, that the ITS has accepted all MSIs
before continuing to send traffic downstream.

1 A more complex scheme, which allows continuous downstream traffic including interleaved MSIs,
unless the buffer slots become full. There are two buffers, bypass_max_outstanding, which specifies
the number of concurrent downstream transactions allowed and bypass_interrupt_count, which
specifies the number of concurrent MSIs that can be waiting for their prerequisite transactions to
complete.

2 Components and configuration
2.3 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

 Note

• The ITS slave port contains only write-only registers, so the read channel always uses a simple
transaction tracker that only allows transactions to one destination at a time.

• If the bypass switch is configured, the slave and master ports must both have the same data width and
the same address width.

• If the Distributor and ITS both share the ACE-Lite slave port, the port properties match those of the
Distributor ACE-Lite slave port, which 2.1.2 Distributor ACE-Lite slave interface on page 2-25
describes.

The following table shows the acceptance capabilities of the ITS ACE-Lite slave interface.

Table 2-10 ITS ACE-Lite slave interface acceptance capabilities

Attribute With bypass switch Without bypass switch

Combined acceptance capability Read acceptance capability + Write acceptance capability 3

Read acceptance capability 128 1

Read data reorder depth 128 1

Write acceptance capability bypass_max_outstanding, but not exceeding 128. 2

The ITS ACE-Lite slave interface has an associated awakeup signal. To ensure that incoming traffic
wakes the ITS correctly when it is clock gated hierarchically through the Q-Channel, awakeup must be
driven from a registered version of awvalid and arvalid. To prevent spurious wake events, ensure that
the awakeup signal is registered cleanly.

2.3.2 ITS ACE-Lite master interface

The ITS AMBA ACE-Lite master interface has a configurable width of 64 bits, 128 bits, or 256 bits. If
the bypass switch is not included, the ID width is 4 bits, otherwise the ID width is one more than the ID
width of the corresponding input channel.

The ACE-Lite master port issues accesses to the ITS private tables and Command queue. If the bypass
switch is configured, the port also forwards transactions from the slave interface. The ACE-Lite bus can
issue I/O coherent transactions, therefore you can place these tables in shared memory if required.
Placing the Command queue in shared memory avoids having to flush the cache before executing ITS
commands.

 Note

• When heavily loaded, the ITS creates a necessary dependency between writes on its slave port and
reads on its master port. You must ensure that any writes that back up to the slave port do not prevent
the free-flow of both reads and writes to the memory.

• In an ACE system, you must ensure that the write channel from any core cache that could be snooped
is not blocked by accesses to the ITS slave port. If the write channel is blocked, and the snoop is
prevented from completing its task, a potential deadlock can result.

Arm recommends that if you place the ITS downstream of an ACE interconnect, then you must not place
tables in shareable memory.

The ITS can issue the following transaction types:

• 256-bit aligned read to the Command queue.
• 64-bit aligned read and write to the Device table.
• 32-bit aligned read and write to the Interrupt Translation Table (ITT).
• 16-bit aligned read and write to the Collection table.
• If the bypass switch is configured, any bypassed transactions from the slave port.

2 Components and configuration
2.3 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

ITS issued transactions output the DeviceID on the a<x>user_ signals. The DeviceID is used for
information and does not have to be routed anywhere if it is not required. If the bypass switch is
included, ITS issued transactions are identified by a value of 0 on a<x>id[0].

 Note

The ITS issues only one outstanding transaction per ID. This gives a maximum of one outstanding write
and five outstanding reads, excluding any transactions from the slave port. If this port is combined with
the Distributor ACE-Lite master port, some of these properties are changed. See Figure 2-8 GIC-600AE
top-level structure options on page 2-48 for more information.

For more information, see the Arm® GICv3 and GICv4 Software Overview.

2.3.3 ITS AXI4-Stream interface

The ITS AXI4-Stream interface is a bi-directional AXI4-Stream interface, with twakeup signal, of either
16-bit or 64-bit width for communication between the ITS and the GIC Distributor components on the
same chip.

Arm expects a typical distributed system to be 16 bits wide. When a pre-existing wide interconnect is
used, the 64-bit option allows messages to be efficiently packed.

The interface is fully credited so all messages can be accepted without dependency on any other ports.

2.3.4 ITS Q-Channel

The ITS has a Q-Channel interface which controls requests from an external clock gating source.

If the ITS is busy, the Q-Channel interface asserts the qdeny signal to deny an external request to gate its
clock. When an external request occurs, the interface requests a wakeup by asserting qactive.

The qreqn input is synchronized to the ITS.

Related references
A.2 Power control signals on page Appx-A-253

2.3.5 ITS miscellaneous signals

The ITS generates or processes several signals, such as an ID tie-off, and the ITS page offset.

Table 2-11 ITS miscellaneous signals

Signal Direction Description

target_address[<n>ADDR_WIDTH
−17:0]

Input Modifies the address map to ensure only writes to the correct location trigger
MSI requests. Only present when the bypass switch is configured.

Specifies the 64K page address that includes the GITS_TRANSLATER
register address, and is matched against axaddr[ADDR_WIDTH−1:16].

its_id[7:0] Input This is an ID tie-off. It must be tied to the ic<x>dtdest value used to read the
ITS on the AXI4-Stream interface. This ID value feeds into the GITS_CFGID
register and is used to check that the GIC system is correctly interconnected. If
top-level stitching is used, which creates a hierarchical level from the other
components, this signal is not visible.

its_transr_page_offset Input This tie-off signal is used to set the page address of the GITS_TRANSLATER
register. Only present in monolithic configurations.

2.3.6 ITS configuration

You can configure several options that relate to the operation of the ITS block.

2 Components and configuration
2.3 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

Table 2-12 Configurable options for the ITS

Feature Range of options

DeviceID width. 3-20

EventID width. 1-16

CollectionID width. 2-14

Inclusion of a bypass port. True or False

MSI-64 support, which controls whether the DeviceID is sent using the awuser signals or on
bits[63:32] that are written to GITS_TRANSLATER. See 3.12 MSI-64 on page 3-71.

True or False

The number of credits for supporting transfer of LPIs using non-locked translations to the
Distributor.

1-16

ACE-Lite slave interface address width 20-48

ACE-Lite slave interface data width 64, 128, or 256

ACE-Lite slave interface read ID width 1-32

ACE-Lite slave interface write ID width 1-32

AXI4-Stream data width 16, 64

ECC support for the caches.

For more information, see 3.15 Reliability, Accessibility, and Serviceability on page 3-75.

True or False

Collection cache depth, or cache entries ÷ 2. 2, 4, 8, 16, 32, 64, 128, 256, 512

Device cache depth, or cache entries ÷ 2. 2, 4, 8, 16, 32, 64, 128

Event cache depth, or cache entries ÷ 2. The number of Device and EventID pairs that are
cached in the ITS.

2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048

Domain name.

For more information, see Figure 2-8 GIC-600AE top-level structure options on page 2-48.

Any legal domain identifier

For more information, see the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration
and Integration Manual.

2 Components and configuration
2.3 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

2.4 MSI-64 Encapsulator
The MSI-64 Encapsulator reduces system wiring by combining the DeviceID onto the data bus for writes
to the GITS_TRANSLATER register.

The following figure shows an overview of the MSI-64 Encapsulator process.

MSI-64 Encapsulator

ACE-Lite slave awdeviceid

ACE-Lite master

msi_translator_page

msi_translator_page

msi64_translator_page

Detection

Retargeting

msi64_translator_page
Register slices

Figure 2-5 MSI-64 Encapsulator

The MSI-64 Encapsulator detects translations that are targeted at the target page address of the
GITS_TRANSLATER register, set by the msi_translator_page tie-off. It then converts accesses to 64-
bit writes with the awdeviceid in the upper 32 bits of the data and retargets them to the
msi64_translator_page. This avoids having to use wires to transfer a DeviceID to the
GITS_TRANSLATER register for translation.

See 3.12 MSI-64 on page 3-71 for more information.

This section contains the following subsections:
• 2.4.1 MSI-64 ACE-Lite interfaces on page 2-39.
• 2.4.2 MSI-64 miscellaneous signals on page 2-40.
• 2.4.3 MSI-64 Encapsulator configuration on page 2-40.

2.4.1 MSI-64 ACE-Lite interfaces

The MSI-64 Encapsulator has an ACE-Lite slave interface and an ACE-Lite master interface.

MSI-64 ACE-Lite slave interface with awdeviceid
This interface is a full ACE-Lite slave port with an extra awdeviceid input signal, which is
valid, and must remain stable with awvalid.

MSI-64 ACE-Lite master interface
This interface is a full ACE-Lite master port.

The following table shows the transaction acceptance capabilities of both slave and master ports.

2 Components and configuration
2.4 MSI-64 Encapsulator

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

Table 2-13 Transaction acceptance

Transaction type Maximum number of transactions allowed

Read Unlimited

Write Unlimited

Combined Unlimited

Any leading wdata is registered and held until the awaddr signal arrives. These signals are described in
A.5 ACE-Lite interface signals on page Appx-A-256.

 Note

• The MSI-64 Encapsulator requires a data bus that has a width of 64 bits or greater.
• The ACE-Lite master port never issues more than two addresses before signal wlast is asserted.

2.4.2 MSI-64 miscellaneous signals

The MSI-64 receives target address signals for the GITS_TRANSLATER register, and an ACE-Lite
sideband signal.

Table 2-14 MSI-64 miscellaneous signals

Signal Direction Description

msi_translator_page Input The target page address of the GITS_TRANSLATER register. The MSI-64 Encapsulator does
not support a msi_transalator_page value of 0.

msi64_translator_page Input The target address of the 64-bit GITS_TRANSLATER register. This page must be at a different
location to the msi_translator_page and at a location that is known only to the hypervisor. The
hypervisor must be able to project the page from accesses from devices and processors that can
spoof incorrect DeviceIDs.

awdeviceid Input The ACE-Lite AW sideband signal that reports the DeviceID for writes to
GITS_TRANSLATER. The value is ignored for non-MSI writes.

2.4.3 MSI-64 Encapsulator configuration

The MSI-64 Encapsulator does not have any configurable parameters at design time. However, if this
block is generated in your RTL design, it has several options that you can configure at build time.

The MSI-64 Encapsulator is generated as part of any GIC configuration that includes an MSI-64 enabled
ITS.

The following table shows the options for the MSI-64 Encapsulator that you can configure at build time.

Table 2-15 Configurable options for the MSI-64 Encapsulator

RTL parameter Function Range of options

DATA_WIDTH Specifies the width of rdata and wdata data signals. 64, 128, 256

ADDR_WIDTH Specifies the width of araddr and awaddr address signals. 17-48

AWUSER_WIDTH Specifies the width of awuser signal. 1-128

ARUSER_WIDTH Specifies the width of aruser signal. 1-128

RUSER_WIDTH Specifies the width of ruser signal. 1-128

WUSER_WIDTH Specifies the width of wuser signal. 1-128

BUSER_WIDTH Specifies the width of buser signal. 1-128

2 Components and configuration
2.4 MSI-64 Encapsulator

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

Table 2-15 Configurable options for the MSI-64 Encapsulator (continued)

RTL parameter Function Range of options

DID_WIDTH Specifies the width of the DeviceID. 3-20

WID_WIDTH Specifies the width of wid signal. 1-32

RID_WIDTH Specifies the width of rid signal. 1-32

FWD_REG_TYPE Register slice type on forward AW, AR, and W channels. 0 = None

1 = Reverse

2 = Forward

3 = Full

REV_REG_TYPE Register slice type on B and R channels. 0 = None

1 = Reverse

2 = Forward

3 = Full

2 Components and configuration
2.4 MSI-64 Encapsulator

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

2.5 SPI Collator
The SPI Collator converts SPI wires into messages to be sent to the Distributor.

The following figure shows the SPI Collator block.

SPI Collator

spi

spi_r

Clock
Q-Channel

AXI4-Stream

Power
Q-Channel

Figure 2-6 SPI Collator

Individual SPIs can be synchronized into the SPI Collator, or the SPI Collator can be placed in the same
clock domain as the interrupt sources and the messages that are synchronized into the Distributor.

Placing the SPI Collator in a clock domain that is always on and is remote from the GIC Distributor
enables more aggressive power saving because the GIC Distributor can be clock gated hierarchically.

This section contains the following subsections:
• 2.5.1 SPI Collator AXI4-Stream interface on page 2-42.
• 2.5.2 SPI Collator wires on page 2-42.
• 2.5.3 SPI Collator power Q-Channel on page 2-42.
• 2.5.4 SPI Collator clock Q-Channel on page 2-43.
• 2.5.5 SPI Collator configuration on page 2-43.

2.5.1 SPI Collator AXI4-Stream interface

The AXI4-Stream interface enables communication between the SPI Collator and the Distributor.

The AXI4-Stream ports apply only transient backpressure to the AXI4-Stream interface, which enables
packets to be routed over any free-flowing interconnect.

2.5.2 SPI Collator wires

The SPI Collator wires can be extended to create other functions.

By default, the asserted level of an SPI is active-HIGH, as with previous Arm GIC implementations.
However, each SPI can be either inverted, synchronized, or both, using the parameters
gic600ae_<config_name>_SPI_INV[n] and gic600ae_<config_name>_SPI_SYNC[n], where:
• SPI_INV[n] == 1 indicates that the inverter is enabled.
• SPI_SYNC[n] == 1 indicates that the synchronizer is enabled.
• [n] = SPI_ID − 32.

Each SPI Collator wire has a corresponding spi_r wire after the synchronizer or capture flop that can be
used to create pulse extenders for edge-triggered interrupts that cross clock domains. If SPI_INV[n] is
set to 1, then the wire after the synchronizer is inverted with respect to the input.

2.5.3 SPI Collator power Q-Channel

The SPI Collator has a power Q-Channel interface that accepts requests from an external source, such as
the system power controller.

When qactive_col is LOW, it indicates that all SPIs to the SPI Collator are in their idle state of either 0
(active-HIGH) or 1 (active-LOW), so all messages are sent to the Distributor.

If qactive_col is HIGH, the SPI Collator rejects any attempt to enter a low-power mode.

2 Components and configuration
2.5 SPI Collator

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-42

Non-Confidential

If qreqn_col is LOW and is accepted, the SPI Collator enters low-power mode and the AXI4-Stream
channels to the Distributor are flushed out to ensure that there are no messages in progress. When
accepted, you can reset the SPI Collator safely without having to also reset the Distributor. You can also
reset the Distributor, but you must first complete the instructions that are described in the subsections of
section 3.6 Power management on page 3-60 before the Distributor can be powered down.

 Note

• When the SPI Collator and Distributor are both in the same domain, the power Q-Channel interface is
redundant and can be tied off.

• In low-power mode, it is only safe to stop the Collator clock if all edge-triggered interrupts into the
SPI Collator are pulse extended to ensure that edges are not missed.

2.5.4 SPI Collator clock Q-Channel

The SPI Collator has a clock Q-Channel interface that accepts requests from an external clock gating
source, such as the system clock controller.

When signal qactive_col_clk is LOW, it indicates that all SPI toggles and level transitions have been
passed to the Distributor, and that the SPI Collator does not require the clock.

If qactive_col_clk is HIGH, the SPI Collator rejects any attempt to enter a low-power mode.

If qreqn_col_clk is LOW and is accepted, the SPI Collator enters low-power mode and no new
messages are sent to the Distributor until it enters low-power mode. If any interrupt line changes state,
qactive_col_clk is asserted.

 Note

In low-power mode, it is only safe to stop the Collator clock if all edge-triggered interrupts into the SPI
Collator are pulse extended to ensure that edges are not missed.

2.5.5 SPI Collator configuration

You can configure several options that relate to the operation of the SPI Collator block.

Table 2-16 Configurable options for the SPI Collator

Feature Range of options

The number of SPI wires. 0-960

SPI_INV is a wide vector of one bit for each SPI, indicating whether to invert the interrupt. True, False

SPI_SYNC is a wide vector of one bit for each SPI, indicating whether to synchronize the interrupt. True, False

For more information, see the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration
and Integration Manual.

2 Components and configuration
2.5 SPI Collator

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-43

Non-Confidential

2.6 Wake Request
The Wake Request block converts AXI4-Stream wake requests into one wake_request signal for each
core. Each wake_request connects to the system power controller.

The following figure shows the Wake Request block.

Wake Request
AXI4-Stream

wake_request
wake_request
wake_request
wake_request
wake_request

Figure 2-7 Wake Request

A wake_request signal wakes a powered-down core when one of the following conditions is true:
• An interrupt that targets only that specific core is pending.
• GICD_CTLR.E1NWF is set, and a 1-of-N SPI has selected that core as its target.

The GIC-600AE does not know whether a core is powered up or down. It only knows whether software
has enabled sending transactions on the AXI4-Stream interface. Therefore, wake_request remains
asserted after a core has powered up. wake_request deasserts when software clears
GICR_WAKER.ProcessorSleep and the GIC-600AE clears the GICR_WAKER.ChildrenAsleep bit.

If there are pending interrupts, either targeted or 1-of-N when GICR_WAKER.ProcessorSleep is set,
wake_request might assert during the powerdown sequence. The power controller must ignore the
wake_request signal until the core is powered down.

Each wake_request signal is protected with odd parity. The parity signals are
wake_request_chk[<cpus>−1:0].

The level of the asserted wake_request[<cpus>−1:0] signal drops only when the Distributor leaves
reset, or when the core is woken and the GICR_WAKER.ProcessorSleep bit is cleared to indicate that it
is able to communicate with the GIC. The GIC supports a Wake Request block reset only when the
Distributor is also reset.

This section contains the following subsections:
• 2.6.1 Wake Request AXI4-Stream interface on page 2-44.
• 2.6.2 Wake Request miscellaneous signals on page 2-44.
• 2.6.3 Wake Request configuration on page 2-45.

2.6.1 Wake Request AXI4-Stream interface

The AXI4-Stream interface enables the Wake Request block to communicate with the Distributor.

The AXI4-Stream interface does not exert back-pressure.

2.6.2 Wake Request miscellaneous signals

The Wake Request block generates the wake_request[<cpus>−1:0] signal.

Table 2-17 Wake Request miscellaneous signals

Signal Description

wake_request[<cpus>−1:0] This output signal indicates to the power controller that an interrupt is targeting this core and that the
core must be woken. When asserted, the wake_request is sticky unless the Distributor is put into the
gated state.

2 Components and configuration
2.6 Wake Request

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-44

Non-Confidential

2.6.3 Wake Request configuration

The configuration of the Wake Request block is based on the number of cores in the system. There are no
other options to configure.

For more information, see Arm® GICv3 and GICv4 Software Overview.

2 Components and configuration
2.6 Wake Request

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-45

Non-Confidential

2.7 Interconnect
The GIC-600AE uses AXI4-Stream interfaces for communication between some blocks.

These blocks are:
• Distributor to and from ITS.
• Distributor to and from Redistributors.
• Distributor to Distributor for cross-chip communications.
• Distributor to and from the SPI Collator.
• Distributor to and from the Wake Request block.

All these interfaces use fully credited schemes where all messages are guaranteed to be accepted without
dependency on any other port.

Apart from the cross-chip communications, GIC-600AE provides an AXI4-Stream interconnect for
transporting messages. However, messages can be sent over an existing interconnect provided the
interconnect is free-flowing.

2.7.1 Interconnect configuration

The internal interconnect is configured automatically in accordance with the number of cores and ITS
blocks in the system. The configuration produces a balanced tree structure with minimum Clock Domain
Crossings (CDCs).

The Arm internal scripts limit a single interconnect crossbar to 16 destinations. To work around this
limitation, you can use domains in the config file. For example, instead of 32 Redistributors in one
domain, you can use two domains that each contain 16.

2 Components and configuration
2.7 Interconnect

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-46

Non-Confidential

2.8 Hierarchy
There are three structure options that can be selected using the structure configuration parameter.

wrap This option provides the lowest level of structure, and wraps the following blocks:
• The Redistributor is wrapped with interconnect components between the Redistributor and

the cores. The components that are wrapped at this level are shown within the blue dashed
lines in the following figure. If the core is in a different clock domain, in accordance with
the domain tags, then half of the CoreLink ADB-400 domain bridge is included in a stitched
file that is named gic600ae_ppi_wrap_<n>_<usrcfg>.v.

• If a bypass switch is selected as shown in Figure 2-3 ITS block on page 2-33, the ITS block
is wrapped in a file that is named gic600ae_its_wrap_<n>_<usrcfg>.v.

• If the GIC-600AE is configured to share ACE-Lite ports between the ITS and GICD
(configuration parameter monolithic==1), the ITS and GICD are stitched together in a file
that is named gic600ae_gicd_wrap_<usrcfg>.v.

domain All blocks and wrapped components that are in the same domain are stitched together in a file
that is named gic600ae_domain_<name>_<usrcfg>.v and includes ADB-400 domain bridges
and collated Low-Power Interfaces. Blocks and components at this level are shown within the
red dashed lines in the following figure.

full All domains are stitched together to create a single top-level GIC-600AE file called
gic600ae_<usrcfg>.v.

The following figure shows the top-level options.

2 Components and configuration
2.8 Hierarchy

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-47

Non-Confidential

Distributor
ACE-Lite master interface

Interconnect

Redistributor
Interconnect

GIC Stream interfaces

ACE-Lite slave interface

Domain level
Redistributor level
Top level

Redistributor Redistributor

GIC Stream interfaces GIC Stream interface

AXI4-Stream

AXI4-Stream

ACE-Lite interfaceACE-Lite interface
ACE-Lite interface

Cross-chip interfaces

MasterSlave

ADBADB

Interconnect
Redistributor

Interconnect

ADB
AMBA

Domain
Bridge (ADB)

ITS

Interconnect

ITSITS

Figure 2-8 GIC-600AE top-level structure options

2 Components and configuration
2.8 Hierarchy

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-48

Non-Confidential

Chapter 3
Operation

This chapter provides an operational description of the GIC-600AE.

It contains the following sections:
• 3.1 Interrupt types on page 3-50.
• 3.2 Interrupt groups and security on page 3-53.
• 3.3 Physical interrupt signals (PPIs and SPIs) on page 3-55.
• 3.4 Affinity routing and assignment on page 3-56.
• 3.5 SPI routing and 1 of N selection on page 3-58.
• 3.6 Power management on page 3-60.
• 3.7 Getting started on page 3-63.
• 3.8 Backwards compatibility on page 3-64.
• 3.9 Interrupt Translation Service on page 3-65.
• 3.10 LPI caching on page 3-68.
• 3.11 Memory access and attributes on page 3-69.
• 3.12 MSI-64 on page 3-71.
• 3.13 RAMs and ECC on page 3-72.
• 3.14 Performance Monitoring Unit on page 3-73.
• 3.15 Reliability, Accessibility, and Serviceability on page 3-75.
• 3.16 Multichip operation on page 3-96.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

3.1 Interrupt types
The GIC-600AE manages SPIs, SGIs, PPIs, and LPIs.

This section contains the following subsections:
• 3.1.1 SGIs on page 3-50.
• 3.1.2 PPIs on page 3-50.
• 3.1.3 SPIs on page 3-50.
• 3.1.4 LPIs on page 3-51.
• 3.1.5 Choosing between LPIs and SPIs on page 3-51.

3.1.1 SGIs

Software Generated Interrupts (SGIs) are inter-processor interrupts, that is, interrupts generated from one
core and sent to other cores.

Each core in the system processes an SGI independently of the other cores. The priority of an SGI, and
other settings, are also independent for each core.

SGIs are generated by writing to System registers in the CPU interface of the core that generates the
interrupt. SGI signals are edge triggered.

Up to 16 SGIs can be recorded for each target core, where each SGI has a different INTID in the ID0-
ID15 range.

3.1.2 PPIs

A Private Peripheral Interrupt (PPI) identifies an interrupt source, such as a timer, that is private to the
core, and which is independent of the same source for another core. PPIs are typically used for
peripherals that are tightly coupled to a particular core.

Interrupts that connect to the PPI inputs associated with one core, are only sent to that core. Each core
processes a PPI independently of other cores. The settings of a PPI are also independent for each core.

A PPI is unique to one core. However, the PPIs to other cores can have the same INTID. Up to 16 PPIs
can be recorded for each target core, where each PPI has a different INTID in the ID16-ID31 range.

PPI signals are active-LOW level-sensitive by default. However, you can set a PPI signal to be either
level-sensitive or edge-triggered using GICR_ICFGR1. See the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version 4 for more information.

The GIC-600AE provides an option, through parameters, to include one or both a synchronizer and
inverter on each PPI interrupt signal. See 2.2.4 Redistributor PPI signals on page 2-31 for more
information.

For information about the purpose of each PPI used by the processor core in your system, refer to the
processor Technical Reference Manual.

3.1.3 SPIs

A Shared Peripheral Interrupt is generated by a peripheral that is accessible across the whole system,
such as a USB receiver, and which can be routed to several cores. SPIs are typically used for peripherals
that are not tightly coupled to a specific core.

You can program each SPI to target either a particular core or any core. Activating a SPI on one core
activates the SPI for all cores. That is, the GIC-600AE allows at most one core to activate a SPI. The
settings for each SPI are also shared between all cores.

SPIs are generated either by wire inputs or by writes to the ACE-Lite slave programming interface. The
GIC-600AE can support up to 960 SPIs corresponding to the external spi signal on the SPI Collator. The
number of SPIs available depends on the implemented configuration. The permitted values are ID32-
ID960, in steps of 32. The first SPI has an ID number of 32.

3 Operation
3.1 Interrupt types

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

You can configure whether each SPI is triggered on a rising edge or is active-HIGH level-sensitive. The
GIC-600AE provides an option, through a parameter, to include one or both a synchronizer and inverter
on each SPI interrupt wire.

The GIC-600AE uses the SPI Collator to convert wire-based interrupts into messages to reduce system
wiring, and to allow more aggressive clock gating of the GIC to reduce power consumption. See 2.5 SPI
Collator on page 2-42 for more information.

SPIs are programmed through the GICD register address space, which is spread coherently across all
configured chips to provide a single view to the Operating System (OS).

You can add a pending state to a valid SPI using GICD_SETSPI_NSR or GICD_SETSPI_SR, see the
Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

3.1.4 LPIs

Locality-specific Peripheral Interrupts (LPIs) are always message-based, and can be from a peripheral,
or from a PCIe root complex.

An LPI targets only one core. LPIs are generated when the peripheral writes to the ITS. The ITS contains
the registers to control the generation and maintenance of LPIs. The ITS provides INTID translation,
allowing peripherals to be owned directly by a virtual machine if an SMMU is also present for those
peripherals.

 Note

• The ITS enables interrupts to be translated to the ID space of the hypervisor instead of directly to a
virtual machine.

• Instead of using an ITS, registers can be used to configure the GIC-600AE to generate and control
LPIs. For more information, see GICR_SETLPIR register in the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version 4.

3.1.5 Choosing between LPIs and SPIs

Message-based interrupts can be either LPIs or SPIs.

The decision to use an LPI or SPI for an interrupt can be made by software, and depends on whether
there are spare SPIs and if the GIC-600AE has ITS support. This can be achieved by either making the
peripheral write to a different GIC-600AE address, or by changing the address translation for the
interrupt write in the SMMU. Changing only the SMMU is possible because the registers for Non-secure
message-based interrupts, GICD_SETSPI_NSR and GITS_TRANSLATER, or GICR_SETLPIR for
configurations without LPI support, are at the same address offset in different pages.

The following factors can help you to decide which interrupt type is most appropriate:
• Only the ITS provides INTID translation, therefore LPIs are preferable for peripherals that are owned

by a virtual machine. This is because the hypervisor can let the virtual machine program the
peripheral directly, and the ITS convert the IDs of interrupts used by the virtual machine to unique
physical IDs.

• LPIs are always Group 1 Non-secure, so message-based interrupts that target Secure software must
use SPIs.

• Only SPIs are able to target all cores, which means that the GIC-600AE attempts to automatically
balance the interrupt load to cores that are active but not handling other interrupts.

• The GIC-600AE can provide a greater number of LPIs than SPIs.
• You might decide not to include LPI support in a small system where the features of the ITS are not

required and there are few message-based interrupts.
• SPIs usually have a better worst-case interrupt latency than LPIs. This is because SPIs have all their

settings stored internally to the GIC-600AE, whereas LPIs that are not cached require external
memory accesses. The cache hit rate is expected to be higher for the LPIs that occur more frequently.
Therefore, Arm recommends that SPIs are used for any latency-sensitive interrupts that are expected
to occur infrequently.

3 Operation
3.1 Interrupt types

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

For more information, see the Arm® GICv3 and GICv4 Software Overview.

3 Operation
3.1 Interrupt types

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

3.2 Interrupt groups and security
The GIC-600AE configures the interrupts that it receives into one of three groups. Each group
determines the security status of an interrupt and how it is routed.

The following registers control to what group each interrupt is assigned:

• GICD_IGROUPRn.
• GICD_IGRPMODRn.
• GICR_IGROUPR0.
• GICR_IGRPMODR0.

The groups are:

• Group 0.
• Group 1 Secure.
• Group 1 Non-secure.

Each interrupt is programmed to belong to an interrupt group. Each interrupt group:

• Determines the Security state for interrupts in that group, depending on the Exception level of the
core.

• Has separate enable bits that control whether interrupts in that group can be forwarded to the core.
• Has an impact on later routing decisions in the core interfaces.

The GIC-600AE supports the three interrupt groups that the following table shows.

Table 3-1 Security and groupings

Interrupt type Example use

Secure Group 0 Interrupts for EL3 (Secure firmware)

Secure Group 1 Interrupts for Secure EL1 (Trusted OS)

Non-secure Group 1 Interrupts for the Non-secure state (OS and the Hypervisor, or one of both)

The following table shows the interrupt signals that are used for each interrupt group, Security state, and
Exception level.

Table 3-2 Interrupt signals, Security states, and Exception levels

Core Exception level and Security state Group 0 Group 1

Secure Non-secure

Secure EL0, EL1 FIQ IRQ FIQ

Non-secure EL0, EL1, EL2 FIQ FIQ IRQ

EL3 FIQ FIQ FIQ

The ds_value configuration parameter controls the GIC-600AE security, as the GIC exits reset.

0 Security enabled (fixed).
1 Security disabled (fixed).
P Security is programmable by software during the boot sequence using GICD_CTLR.DS.

Setting the Disable Security (DS) bit to 1 in the GICD_CTLR register removes the security support of
the GIC-600AE. It can be set by Secure software during the boot sequence or configured to be always set
when you configure the design using the ds_value parameter. When the system has no concept of
security, you must set GICD_CTLR.DS to allow access to important registers.

3 Operation
3.2 Interrupt groups and security

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

If you set GICD_CTLR.DS to 1, only a single Security state is supported. In a single Security state,
register access, and the behavior and number of interrupt groups supported are affected. For more
information, see Interrupt grouping, and Interrupt grouping and security in the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

 Note

Arm recommends that you only set GICD_CTLR.DS if either your system does not support security, or
the only software you run does not use security. See Security model in the Arm® GICv3 and GICv4
Software Overview for more information about the implications of setting GICD_CTLR.DS to 1.

If you run software without security awareness on a system that supports security, the Secure boot code
can set DS before switching to a Non-secure Exception level to run the software. This enables you to
program the GIC-600AE from any Exception level and use two interrupt groups, Group 0 and Group 1,
so that interrupts can target both the FIQ and IRQ handlers on a core.

Group 0 is always Secure in systems with security. If you decide to write security-unaware software
using Group 0, it might not be portable to systems with a concept of security. Security-unaware software
is most portable when written using Group 1.

If a system has a concept of security but one or more cores do not, then you must not set DS. Instead
each core is only able to enable the interrupt groups corresponding to the Security states that it supports.

In security aware systems, Secure software can prevent the DS bit from being written by writing to
Disable Security Lock bit (GICD_SAC.DSL). When set, only a hardware reset can clear the DSL bit.

If you know that your system is always security aware, then Arm recommends configuring the
GIC-600AE without DS support.

For more information, see the Arm® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3 and version 4 and the Arm® GICv3 and GICv4 Software Overview.

3 Operation
3.2 Interrupt groups and security

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

3.3 Physical interrupt signals (PPIs and SPIs)
The GIC-600AE supports two types of physical interrupt signal.

The two types of physical interrupt signal are:

Level-sensitive
The interrupt is pending while the interrupt input is asserted. As with previous Arm GICs, PPIs
are active-LOW, whereas SPIs are active-HIGH by default. However, you can change these
default settings, see 3.1 Interrupt types on page 3-50 for more information.

Edge-triggered
A rising-edge on the interrupt input causes the interrupt to become pending. The pending bit is
cleared later when the interrupt is activated by the CPU interface.

To set the correct settings for the system, you must program the GICD_ICFGRn and GICR_ICFGR1
registers.

The GIC-600AE provides optional synchronizers on every interrupt wire input and also return signals, to
enable pulse extenders when sending edge-triggered interrupts across domain boundaries, see 2.5.2 SPI
Collator wires on page 2-42.

For more information, see the Arm® GICv3 and GICv4 Software Overview and the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

3 Operation
3.3 Physical interrupt signals (PPIs and SPIs)

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

3.4 Affinity routing and assignment
The GIC-600AE uses affinity routing, a hierarchical scheme, to identify connected cores and for routing
interrupts to specific cores.

The Arm architecture defines a register in a core that identifies the logical address of the core in the
system. This register, which is known as the Multiprocessor Identification Register (MPIDR), has a
hierarchical format. Each level of the hierarchy is known as an affinity level, with the highest affinity
level specified first:

• For 32-bit Armv8 processors, the MPIDR defines three levels of affinity, with an implicit affinity
level 3 value of 0.

• For 64-bit Armv8 processors, the MPIDR defines four levels of affinity.

 Note

The GIC-600AE regards each hardware thread of a processor that supports multiple hardware threads as
a single independent core.

The affinity of a core is represented by four 8-bit fields using dot-decimal notation,
<Aff3>.<Aff2>.<Aff1>.<Aff0>, where Affn is a value for Affinity level n. An example of an
identification for a specific core would be 0.255.0.15.

The affinity scheme matches the format of the MPIDR_EL1 register in Armv8-A. System designers must
ensure that the ID reported by the core of the MPIDR_EL1 register matches how the core is connected to
the interrupt controller.

The GIC-600AE allows fully flexible allocation of MPIDR. However, it has two built-in default
assignments that are based on the aff0_thread configuration parameter, see the Arm® CoreLink™

GIC-600AE Generic Interrupt Controller Configuration and Integration Manual.
• When aff0_thread == 1, the four fields are mapped to 0.<cluster>.<core>.<thread>.
• When aff0_thread == 0, the four fields are mapped to 0.0.<cluster>.<core>.

The following figure shows the affinity hierarchical structure.

Distributor

150

CPU
interface

0.x.x.x

0.0.0.x

0.255.x.x

0.255.0.x …..

…..150150

CPU
interface

CPU
interface

CPU
interface

CPU
interface

CPU
interface

…..

0.0.255.x …..

Aff Level 3

Aff Level 2

…..…..

Aff Level 1

0.0.x.x

Aff Level 0
Redistributor

0.255.0.150.255.0.00.0.255.150.0.255.00.0.0.0 0.0.0.15

…..

Figure 3-1 Affinity routing

There can be up to 256 nodes at level 3, with each node able to host 256 child level 2 nodes. Similarly
each level 2 node can host 256 level 1 nodes. However, level 1 nodes can only host 16 child level 0
nodes.

3 Operation
3.4 Affinity routing and assignment

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

For more information about affinity routing, see the Arm® GICv3 and GICv4 Software Overview, and the
Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

3 Operation
3.4 Affinity routing and assignment

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-57

Non-Confidential

3.5 SPI routing and 1 of N selection
The GIC-600AE supports 1 of N selection of SPI interrupts. You can program an SPI to target several
cores, and the GIC-600AE can select which cores receive an SPI.

When the relevant GICD_IROUTERn.Interrupt_Routing_Mode == 1, the GIC selects an appropriate
core for an SPI.

When GICD_IROUTERn.Interrupt_Routing_Mode == 0, the SPI is routed to the core specified by the
remaining fields of GICD_IROUTERn.

The GIC-600AE only sends an SPI to cores that are powered up and have the relevant interrupt group
enabled. The GIC-600AE prioritizes cores that are considered active, but if there are no active cores, it
selects inactive cores.

The selections that the GIC-600AE makes can be controlled or influenced by several 1 of N features:

cpu_active
A cpu_active signal is an input to a Redistributor that corresponds to a particular core. When
cpu_active is LOW, it indicates to the GIC that a core is in a transparent low-power state, such
as retention, and that it must be selected as a target for an SPI if there are no other options
possible.

Ideally, the cores that are in retention are not woken without explicit software intervention, so
that cores spend more time in retention. To ensure that this is usually the case, use the following
guidelines:

• Cores in retention must drive their corresponding cpu_active signal LOW.
• Powered-up cores that are not in retention must drive their cpu_active signal HIGH.

Typically, a power controller or power control logic generates the cpu_active signal. If this
signal is not available in the system, the input must be tied HIGH.

 Note

• When a core is powered down, the value of its cpu_active signal is irrelevant. This is
because the software programming requirements for the GIC ensure that it knows when
cores are powered up or down.

• The cpu_active provides an indication only, it cannot stop selection of the core or stop the
GIC sending messages to the core.

GICR_CTLR.DPGxx (Disabled Processor Group)
Setting a DPG bit prevents 1 of N interrupts of a particular group being sent to that core. Any
interrupts that have not reached a core at the time of the change are recalled and reprioritized by
the GIC. For information about the DPG bits, see GICR_CTLR, Redistributor Control Register
in the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3
and version 4.

Processor and GICD Group enables and GICR_WAKER.ProcessorSleep
A 1 of N interrupt is not sent to a core if one of the following is true:
• The core is asleep, as indicated by GICR_WAKER.ProcessorSleep.
• The interrupt group is disabled by either the processor or the GICD_CTLR group enables.

3 Operation
3.5 SPI routing and 1 of N selection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential

Interrupt class
This is an implementation-defined feature that the GIC-600AE provides. Each core can be
assigned to either class 0 or class 1 by writing to the relevant GICR_CLASSR register. An SPI,
programmed as 1 of N, by GICD_IROUTERn.Interrupt_Routing_Mode, can be programmed to
target either class 0, class 1, or both classes by the GICD_ICLARn register. By default, all 1 of
N SPIs can go to both classes, so the interrupt class feature is disabled by default. The system
can use this partitioning for any purpose, for example in an Arm big.LITTLE™ system, all the
big cores can be in class 1 and little cores in class 0, allowing 1 of N SPIs to be partitioned
according to the amount of processing they require.

GICD_CTLR.E1NWF
The GICD_CTLR.E1NWF bit controls whether the GIC-600AE wakes a core if there are no
other possible targets for a 1 of N SPI.
The GIC tries to wake the minimum of cores possible and only wakes a core if there is no other
possible target awake that is able to accept the 1 of N interrupt. Therefore, the GIC uses the
GICR_CTRL.DPG and GICR_CLASSR.Class bits to determine if any core is awake that can
accept the interrupt. If a suitable core is not awake, the GIC then wakes a core.
Arm strongly recommends that if you use GICD_CTLR.E1NWF, you must also set the
GICR_CTLR.DPGx bits to specify whether a core is likely to accept a particular interrupt group
in a timely manner. The GIC does not continue to wake cores until one is found. The
GIC-600AE uses two passes to try to find the best place for a 1 of N interrupt, by using a round-
robin arbiter between:
• Any core that has cpu_active set, is fully enabled for the interrupt, and has no other pending

interrupts.
• Any core that is fully enabled for the interrupt and has no interrupts of a higher priority than

the 1 of N interrupt.

If neither option is available to the 1 of N, the interrupt is assigned to any legal target and
regularly re-evaluated to ensure that it is not excluded from other SPIs of the same priority.

3 Operation
3.5 SPI routing and 1 of N selection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential

3.6 Power management
The GIC-600AE can be powered down by the system power controller. The GIC also supports the power
controller powering down the cores that the GIC services. The GICR_WAKER and the GICR_PWRR
registers provide bits to control functions that are associated with power management.

This section contains the following subsections:
• 3.6.1 Redistributor power management on page 3-60.
• 3.6.2 Processor core power management on page 3-60.
• 3.6.3 Other power management on page 3-61.

3.6.1 Redistributor power management

At reset, the Redistributors are considered to be powered down. To power up the Redistributors, software
must use the GICR_PWRR register.

 Note

This requirement is true for all GIC-600AE configurations.

The GICR_PWRR register can control Redistributor power management either by operating through the
core, or through the Redistributor.

If operating through the core, each core must program its GICR_PWRR.RDPD = 0 and
GICR_PWRR.RDAG = 0 to ensure that the Redistributor powers up. Alternatively, a single core can
power up the Redistributor for all cores that connect to the same Redistributor by writing
GICR_PWRR.RDPD = 0 and GICR_PWRR.RDAG = 1.

You can use GICR_PWRR.RDG to identify which core shares a Redistributor.

The powerup and powerdown sequences are shown in the following pseudocode:

Power off (setting RDPD to 1):

// Check group not transitioning.
repeat
until (GICR_PWRR.RDGPD == GICR_PWRR.RDGPO)

// Write to power the CPU off.
GICR_PWRR.RDPD = 1;

Power on (setting RDPD to 0):

repeat
 // Check group not transitioning.
 repeat
 until (GICR_PWRR.RDGPD == GICR_PWRR.RDGPO)

 // Write to power the CPU on.
 GICR_PWRR.RDPD = 0;

 // Check access, if RDPD == 0 then powered on.
until (GICR_PWRR.RDPD == 0)

 Note

GICR_PWRR must be accessed using the GICR address space that relates to the core being powered on
or off.

3.6.2 Processor core power management

The GIC architecture defines the programming sequence to safely power down a core that connects to
the GIC-600AE.

3 Operation
3.6 Power management

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential

The powerdown programming sequence uses the GICR_WAKER.ProcessorSleep bit. When all cores
within a cluster are powered down using the architectural sequence, you can power gate the GIC Stream
interface for that cluster.

Before a core is powered down, you must set the GICR_WAKER.ProcessorSleep bit to 1. The core must
then poll the GICR_WAKER.ChildrenAsleep bit to ensure that there are no outstanding transactions on
the GIC Stream interface of the core.

To ensure that there are no interrupts during the powerdown of the core, in a typical powerdown
sequence you must:

1. Mask interrupts on the core.
2. Clear the CPU interface enables.
3. Set the interrupt bypass disable on the CPU interface.

 Note

The core powerdown sequence that you use must match the core powerdown sequence that is described
in the Technical Reference Manual for your processor.

When a core is powered down and the GICR_WAKER.ProcessorSleep bit is set to 1, if the GIC-600AE
receives an interrupt that targets only that core, the Wake Request block asserts the wake_request signal
that corresponds to that core. The wake_request signal must connect to the system power controller. See
2.6 Wake Request on page 2-44.

You must not set the GICR_WAKER.ProcessorSleep bit to 1 unless the core enters a power state where
the GIC-600AE uses the power controller to wake the core instead of the GIC Stream interface. For
example, with Arm Cortex®-A53 and Cortex-A57 processors, if a core enters a low-power state that is
based on the Wait For Interrupt (WFI) or Wait For Event (WFE) instructions, such as retention, you must
not set the GICR_WAKER.ProcessorSleep bit to 1.

Interrupts can cause the core to leave the low-power state, entered by executing a WFI or WFE instruction,
as defined in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile. The
system integrator can use the cpu_active signal to ensure that interrupts that can target multiple cores are
much less likely to target cores in certain low-power states. In such a system, software has more control
of the conditions under which cores leave low-power states.

 Note

Interrupts that target only one core are unaffected by cpu_active and are always sent to that core.
Moreover, if the GICR_WAKER.ProcessorSleep bit for that core is set, the wake_request signal is
asserted for that core.

See the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and
version 4 for information about power management, and about wakeup signals and their relation to the
core outputs.

3.6.3 Other power management

The GIC-600AE can be powered up and powered down using non-architectural protocols.

When powering down the GIC-600AE, software must preserve the state of the GIC-600AE, except for
any LPI pending interrupts that are preserved in pending tables, as defined in the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

You can preserve the LPI pending bits by using an implementation-defined powerdown sequence, which
ensures that the memory pointed to by each GICR_PENDBASER contains the updated pending
information for the LPIs. The implementation-defined powerdown sequence must:

1. Complete the powerdown sequence for all cores.
2. Set GICR_WAKER.Sleep to 1.
3. Poll GICR_WAKER until GICR_WAKER.Quiescent is set.

3 Operation
3.6 Power management

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential

 Note

• GICR_WAKER.Sleep can only be set to 1 when:
— All Redistributors have GICR_WAKER.ProcessorSleep == 1.
— All Redistributors have GICR_WAKER.ChildrenAsleep == 1.

• GICR_WAKER.ProcessorSleep can only be set to 0 when:
— GICR_WAKER.Sleep == 0.
— GICR_WAKER.Quiescent == 0.

• If software decides to abort a sleep request due to an external wake request, it can do so by
clearing GICR_WAKER.Sleep at any time. Software does not have to wait for
GICR_WAKER.Quiescent to be set.

• There is only one GICR_WAKER.Sleep and one GICR_WAKER.Quiescent bit that can be read
and written through the GICR_WAKER register of any Redistributor.

The powerdown described sequence ensures that all LPIs that are acknowledged by a write response to
the write GITS_TRANSLATER are saved to the Pending tables. Any interrupt that arrives when the
Sleep bit is set to 1 is ignored, and the ACE-Lite transaction completes in accordance with the ACE
protocol.

Arm recommends that you disable any interrupt sources before setting GICR_WAKER.Sleep. However,
if you require wake-on-interrupt behavior, the write to GITS_TRANSLATER must be gated upstream at
a location that enables software to reprogram and enable the GIC-600AE without deadlock.

When the GICR_WAKER.Quiescent bit is set, it is safe to power down the GIC-600AE without losing
LPI pending bits. Software must still perform other steps such as the save and restore of SPI state.
However, you must provide custom mechanisms to wake the GIC-600AE if any interrupts arrive that
must not be ignored.

When the GIC-600AE next powers up, you can program the GICR_PENDBASER registers to point to
the same memory to reload the LPI pending status. If there is no requirement to reload the pending LPIs,
Arm recommends that you speed up the initialization of the GIC-600AE as follows:
1. Zero the Pending table.
2. Set GICR_PENDBASER.PTZ to 1.

 Note

GICR_PENDBASER registers can only be modified before the GICR_CTLR.Enable_LPIs bit is set, or
when the GICR_WAKER.Sleep and GICR_WAKER.Quiescent bits are both set.

For more information, see the Arm® GICv3 and GICv4 Software Overview.

Related references
4.4.3 GICR_WAKER, Power Management Control Register on page 4-129

3 Operation
3.6 Power management

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential

3.7 Getting started
There are some basic tasks that you must complete before you can start to use the GIC-600AE.

Each Redistributor must be powered on using its GICR_PWRR register to enable the Redistributors to be
accessed, see 3.6.1 Redistributor power management on page 3-60 for more information.

When the GIC-600AE is powered up, it must be programmed as described in the Arm® GICv3 and
GICv4 Software Overview.

3 Operation
3.7 Getting started

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential

3.8 Backwards compatibility
The GIC-600AE does not support legacy operation.

Legacy operation is indicated by GICD_CTLR.ARE_S or GICD_CTLR.ARE_NS == 0.

Therefore, SGIs and PPIs can be programmed only through the GICR register space, and SGIs are not
banked by the source core.

3 Operation
3.8 Backwards compatibility

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

3.9 Interrupt Translation Service
Each ITS is compliant with the GICv3 architecture and is responsible for mapping translation requests
with an EventID and DeviceID through to the physical INTID (pINTID) and Collection, a group of
interrupts, and finally to the target core. The following figure shows the ITS process.

Interrupt Translation
Table (ITT)
 base, size

Device table

ITT base, size

device

ITT

pINTID, collection

base

ID
size

Collection table

Target, address

collection

Figure 3-2 ITS process

To reduce memory traffic and keep interrupt latency to a minimum, GIC-600AE has three two-way set
associative caches in each ITS:
• DeviceID to ITT base address.
• DeviceID and EventID to collection.
• Collection to target core.

In small configurations, these caches might be too small to be worth the overhead of implementing them
as SRAM. If ECC protection is not required for a cache that is implemented as an array of flops, and to
reduce RAM area, you can remove ECC from each RAM individually, see the Arm® CoreLink™

GIC-600AE Generic Interrupt Controller Configuration and Integration Manual for more information.

It is common for the DeviceID to be a non-contiguous number that is derived from the PCIe
RequestorID. To ensure that this does not result in a sparse DeviceID table and wasted memory, the
GIC-600AE supports indirect Device tables (GITS_BASERn.Indirect = 1) where the first-level table
points at subtables that can be allocated at runtime. See the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version 4 for more details.

The GIC-600AE uses memory-backed collections only, which means that before the ITS is enabled by
writing to GITS_CTLR.Enabled, memory must be allocated for the Device table, the Collection table,
and the ITS Command queue. Inline with the architecture, software must pre-clear these tables to 0, apart
from pointers to cleared level-two Device tables, unless the tables were previously populated by
GIC-600AE.

The GIC-600AE ITS supports all GICv3 commands as described in the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

GITS_TYPER.PTA is 0 for all configurations, which means that all references to processor cores in ITS
commands are implemented through the GICR_TYPER.ProcessorNumber field.

Command and translation errors are reported through the RAS registers. See 3.15 Reliability,
Accessibility, and Serviceability on page 3-75.

For details on how to program and use the ITS, see the GICv3 and GICv4 Software Overview.

This section contains the following subsections:
• 3.9.1 ITS cache control, locking, and test on page 3-66.
• 3.9.2 ITS commands and errors on page 3-66.

3 Operation
3.9 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

3.9.1 ITS cache control, locking, and test

The GIC-600AE can lock certain interrupt translations in the EventID cache.

If a translation is missed in a cache, several memory reads can be required to obtain the data necessary
from memory. This can result in a range of latency that might not be acceptable for some LPIs.

The GIC-600AE can lock certain translations into the ITS cache, with the following guarantee:
• Interrupts that are locked in ITS caches always hit and never require any translation.

The ITS caches are automatically managed and invalidated as necessary when the GITS_BASERn
registers are updated. Therefore, software intervention is not required. However, to aid debug and
integration testing, you can force invalidation of the appropriate cache by setting the relevant bit in the
GITS_FCTLR register.

A forced invalidation of the Event cache abandons all locked entries.

The GITS_OPR and GITS_OPSR registers control cache locking, when software provides the
DEVICE_ID, EVENT_ID, and the correct GITS_OPR.LOCK_TYPE (ITS lock = 2). The GIC attempts
to perform the lock, and reports the status in GITS_OPSR. If the lock succeeds,
GITS_OPSR.REQUEST_COMPLETE == 1 and GITS_OPSR.REQUEST_PASS == 1.

Each cache set is 2-way set associative. Only one entry can be locked in each cache set. Any attempt to
lock both ways in a set, reports as failed in GITS_OPSR. You can also use the GITS_OPR register to
unlock entries that are locked.

The GITS_OPR register has two test features:

Trial
Tests the mapping by writing a DeviceID and EventID to GITS_OPR with
GITS_OPR.LOCK_TYPE = 1 (Trial). This causes the ITS to translate the supplied DeviceID
and, or EventID pair, and report the generated translation data in GITS_OPSR. The GIC also
reports whether the translation fails, GITS_OPSR.REQUEST_PASS == 0, or if it hit a locked
entry, GITS_OPSR.ENTRY_LOCKED. The interrupt is not set to pending.

Track
Can be used to detect the arrival of a certain EventID and, or DeviceID pair, which the GIC
reports by setting GITS_OPSR.REQUEST_COMPLETE.

While any GITS_OPR operation, other than Track, is in progress, the
GITS_OPSR.REQUEST_IN_PROGRESS bit is set and no further updates are accepted by GITS_OPR
until the previous operation completes. To ensure that the operation is accepted, Arm recommends that
the GITS_OPR value is read after writing. You can abort Track operation by writing
GITS_OPR.LOCK_TYPE == Track abort.

3.9.2 ITS commands and errors

Each ITS detects a wide range of command errors and translation errors, and reports them in Armv8.2
RAS-compliant error records in the Distributor.

The ITS record error syndromes comprise four groups that each have separate enables in the
GITS_FCTLR register. The following table shows the ITS record error syndrome groups.

Table 3-3 ITS record error syndrome groups

Group Control

ACE-Lite slave write translation errors. Only when the ITS has a separate ACE-Lite
slave port.

GITS_FCTLR.AEE (Access Error Enable)

Translation errors on incoming writes to GITS_TRANSLATER. GITS_FCTLR.UEE (Unmapped Error
Enable)

3 Operation
3.9 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential

Table 3-3 ITS record error syndrome groups (continued)

Group Control

Errors during commands. GITS_FCTLR.CEE (Command Error
Enable)

Other errors such as memory system, or memory allocation errors. None

See ITS command and translation error records 13+ on page 3-88 for information about all the detected
syndromes.

ITS commands must be written by software before they are executed.

The ITS Command queue operates a stall mechanism on any error, irrespective of the
GITS_FCTLR.CEE value. To execute commands, software writes to a Command queue in memory and
then updates the GITS_CWRITER.Offset to indicate that there are commands to run. See 3.7 Getting
started on page 3-63 for more information.

• Normally, the GITS_CREADR.Offset increments until it matches the GITS_CWRITER.Offset,
wrapping as necessary, to indicate that the Command queue has completed.

• If an error occurs, GITS_CREADR.Stalled is set, which indicates that processing has stopped and
software intervention is required. If GITS_FCTLR.CEE is set, at least one error is reported in the
relevant error record to aid software debug. You can correct the command that GITS_CREADR
identifies and resume the Command queue, by writing to GITS_CWRITER.Retry. If the command is
no longer required, you must rewrite it as a SYNC command before you resume.

To determine when Command queue execution completes, you can either:
• Poll GITS_CREADR.Offset until it matches GITS_CWRITER.Offset.
• Put an INT command in the queue and waiting for that interrupt to arrive.

If you add an INT command, then Arm recommends that you enable GITS_FCTLR.CEE and that you
configure the fault handling interrupt or error recovery interrupt to be delivered to a core that can resolve
Command queue issues. See 3.15.5 Error recovery and fault handling interrupts on page 3-76 for more
information.

3 Operation
3.9 Interrupt Translation Service

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-67

Non-Confidential

3.10 LPI caching
If LPI support is configured, the GIC-600AE supports a single LPI cache per chip.

The LPI cache is 2-way set associative based on the lowest bits of the LPI INTID, and stores LPI
properties from the LPI Property table. The relevant set is checked for valid properties as each LPI
arrives in the system.

The cache is fully associative for pending LPIs, which means that the LPI system fills almost all lines in
the cache before sending anything to the Pending tables. The GIC-600AE is not optimized for collating
LPIs that have the same INTID. However the system is designed to reorder and sort the cache over time.
In some circumstances, this behavior can cause duplicated interrupts to not be collated efficiently.
However, the reduced use of the Pending table, results in better latency bounds under load.

This method of caching means that priorities are associated with an incoming LPI and remain with it
until it is serviced. The GIC does not accept changes in the LPI Property table, until the relevant INV and
SYNC commands are executed through an ITS, GICR_INVLPIR or GICR_INVALLR.

The GIC-600AE considers priority and enable when choosing data to retain in the cache. However,
pending interrupts always take priority over interrupts that are not pending, so there is no guarantee that
the highest priority interrupt data always remains stored in the cache.

Related references
2.1.7 Distributor configuration on page 2-28

3 Operation
3.10 LPI caching

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-68

Non-Confidential

3.11 Memory access and attributes
The LPI and ITS translations and properties are located in memory tables whose locations are defined in
registers that specify their base address, size, and access attributes.

Arm recommends that all tables are placed in Normal memory. All ITS tables are private, and after
allocation, are accessed only by the GIC. However, the LPI Property table and ITS Command queue are
written to by cores, and read by the GIC.

The following table shows the a<x>cache and a<x>domain mappings for the memory transactions that
the GIC generates.

Table 3-4 Memory access registers

Access type Register Mapping control bitb

LPI Property table GICR_PROPBASER GICD_FCTLR.DCC

LPI Pending table GICR_PENDBASER

ITS Device table GITS_BASER0 GITS_FCTLR.DCC

ITS Translation table GITS_BASER0

ITS Collection table GITS_BASER1

ITS Command queue GITS_CBASER

The main Cacheability value is derived from the *BASER*.OuterCache field, unless it is zero, in which
case the Cacheability value is a value that is shown in the following table.

Table 3-5 Cacheability values

Main Cacheability value

(*BASER*.OuterCache)

Other Cacheability value

(*BASER*.InnerCache)

arcache awcache arcache

(DCC = 1)

awcache

(DCC = 1)

0b000, Device-nGnRnE - 0b0010 0b0010 0b0010 0b0010

0b001, Normal Non-cacheable Match 0b0011 0b0011 0b0011 0b0011

0b001, Normal Non-cacheable No match 0b0011 0b0011 0b0011 0b0011

0b010, Normal Cacheable RA Write-Through Match 0b0011 0b0011 0b1110 0b0110

0b010, Normal Cacheable RA Write-Through No match 0b0011 0b0011 0b1110 0b0110

0b011, Normal Cacheable RA Write-Back Match 0b1111 0b0111 0b1111 0b0111

0b011, Normal Cacheable RA Write-Back No match 0b0011 0b0011 0b1111 0b0111

0b100, Normal Cacheable WA Write-Through Match 0b0011 0b0011 0b1010 0b1110

0b100, Normal Cacheable WA Write-Through No match 0b0011 0b0011 0b1010 0b1110

0b101, Normal Cacheable WA Write-Back Match 0b1011 0b1111 0b1011 0b1111

0b101, Normal Cacheable WA Write-Back No match 0b0011 0b0011 0b1011 0b1111

0b110, Normal Cacheable WA RA Write-Through Match 0b0011 0b0011 0b1110 0b1110

0b110, Normal Cacheable WA RA Write-Through No match 0b0011 0b0011 0b1110 0b1110

0b111, Normal Cacheable WA RA Write-Back Match 0b1111 0b1111 0b1111 0b1111

0b111, Normal Cacheable WA RA Write-Back No match 0b0011 0b0011 0b1111 0b1111

b The mappings are designed for the Armv8 and Armv8.2 generation of cores. However, setting this bit converts the GIC-600AE to full featured mapping.

3 Operation
3.11 Memory access and attributes

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-69

Non-Confidential

Signal a<x>domain is driven according to the *BASER*.Shareability field unless the resultant
Cacheability is Device or Non-cacheable, in which case it becomes 0b11, system Shareable in
accordance with the AMBA® AXI and ACE Protocol Specification.

3 Operation
3.11 Memory access and attributes

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-70

Non-Confidential

3.12 MSI-64
The MSI-64 Encapsulator can be used to combine the DeviceID into single memory access writes to the
GITS_TRANSLATER register in the ITS.

The ITS translates DeviceID/EventID pairs into LPI physical INTIDs.

A normal MSI/MSI64 write contains the EventID in the lower 16 bits or 32 bits of data. However, the
DeviceID must be transported using a different method. The DeviceID is often derived directly from a
PCIe RequestorID or System Memory Management Unit (SMMU) StreamID.

The GIC-600AE ITS supports two mechanisms:

awuser_*_s
The DeviceID arrives on sideband User signals. You must ensure that rogue software cannot
directly or indirectly, perform an access to the GITS_TRANSLATER register with a DeviceID
that matches a real device.

MSI-64
When configured to support MSI-64, the ITS expects the DeviceID to be in the upper 32 bits of
a 64-bit write to the GITS_TRANSLATER register.
To prevent rogue software accessing the GITS_TRANSLATER register and spoofing any
device, Arm recommends that the GITS_TRANSLATER register is moved to an arbitrary page
that is protected by the Hypervisor.
The GIC-600AE uses two methods to support this:
• The MSI-64 Encapsulator modifies the page address of accesses to the architectural

GITS_TRANSLATER address, set by the msi_translator_page tie-off, to the system-
defined page set by msi64_translator_page.

• When the ITS shares an ACE-Lite slave port, a separate page address tie-off
gits_transr_page_offset, allows the GITS_TRANSLATER register page to be moved to
anywhere in the address map to match the msi64_translator_page value that is independent
of the GICD address map reset.

 Note

The msi64_translator_page and its_transr_page_offset, or one of either, must not be on
top of any other GIC register page.

To ensure that this method of mapping is hidden from software, all accesses to the
GITS_TRANSLATER register must pass through an Encapsulator, or similar embedded
functionality. See 2.4 MSI-64 Encapsulator on page 2-39 for more information.

3 Operation
3.12 MSI-64

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-71

Non-Confidential

3.13 RAMs and ECC
The GIC-600AE uses multiple RAMs to store a range of states for all types of interrupt.

In typical operation, the RAMs are transparent to software.

Each RAM can be protected from errors using an ECC with Single Error Correction and Double Error
Detection (SECDED). See the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration
and Integration Manual for information about the ECC configuration parameters. If single or double
errors are detected, they are reported in the software visible error records, see 3.15 Reliability,
Accessibility, and Serviceability on page 3-75 for more information.

For all ECC schemes that are used in the GIC-600AE, the correction code is 0 when all data in the RAM
is 0.

3 Operation
3.13 RAMs and ECC

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-72

Non-Confidential

3.14 Performance Monitoring Unit
The GIC-600AE contains a PMU for counting key GIC events from both the Distributor and any
configured ITS blocks on the same chip.

 Note

Redistributor events are not tracked by the PMU. The delivery of PPI and SGI interrupts can be counted
by recording calls to the core interrupt service routine.

The GIC events are described in Table 4-61 EVENT field encoding on page 4-167.

The PMU has five counters with snapshot capability and overflow interrupt.

Secure and Non-secure interrupts are counted together and therefore Non-secure software cannot, by
default, access the GICP (PMU) register space. However, Secure software can decide to allow access.
This can be done by programming the GICD_SAC.GICPNS bit, or by integrating the GIC with the
gicp_allow_ns tie-off set HIGH.

 Note

If GICD_CTLR.DS == 1, the GICP register space is accessible to all software.

Count configuration

Each PMU counter can be programmed individually to count a range of events.

To configure a counter:
1. Program the counter GICP_EVCNTRn to a known value. This could be 0 to count events, or a higher

number to trigger an overflow after a known number of events.
2. Program the associated GICP_EVTYPERn to count the required event.
3. Program the required filter type for the event by programming GICP_FRn.
4. Enable the counter by programming the corresponding bit in GICP_CNTENSET0.
5. Repeat the previous steps for all counters that are required.
6. Enable the global count enable in GICP_CR.E.

 Note

PMU registers, other than enables, do not have resets and must be programmed before use.

Overflow interrupt

The overflow interrupt can be enabled on a per counter basis by enabling the relevant bit of
GICP_INTENSET0, where bit[0] enables GICP_EVCNTR0, bit[1] enables GICP_EVCNTR1, and so
on. Similarly, the overflow interrupt enable can be disabled by corresponding writes to
GICP_INTENCLR0.

When enabled, the interrupt activates at any of these events:
• A write to a GICP_OVSSET0 for any counter.
• An overflow on any enabled counter.

The GICP_OVSSET0 and GICP_OVSCLR0 registers can be used for save and restore operations and for
testing the correct integration of the pmu_int interrupt.

The pmu_int can be used to trigger external logic, for example, to trigger a read of the captured data.

Alternatively, by programming a valid SPI ID into the GICP_IRQCR.SPIID field, the pmu_int SPI is
delivered internally in accordance with normal SPI programming.

3 Operation
3.14 Performance Monitoring Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-73

Non-Confidential

Snapshot

Each PMU counter GICP_EVCNTRn has a corresponding GICP_SVRn snapshot register. On a snapshot
event, all five counters are copied to their backup registers so that all consistent data is copied out over a
longer period.

The snapshot events are:
• A handshake on the four phase sample_req/sample_ack external handshake.
• A write of 1 to GICP_CAPR.CAPTURE.
• An overflow of an enabled counter when GICP_EVTYPERn.OVFCAP is set.

 Note

There is only one set of snapshot registers, therefore data is replaced in multiple capture events.

3 Operation
3.14 Performance Monitoring Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-74

Non-Confidential

3.15 Reliability, Accessibility, and Serviceability
The GIC-600AE uses a range of RAS features for all RAMs, which include SECDED, ECC, and Scrub,
software and bus error reporting.

The GIC makes all necessary information available to software through Armv8.2 RAS architecture-
compliant register space.

This section contains the following subsections:
• 3.15.1 Non-secure access on page 3-75.
• 3.15.2 Scrub on page 3-75.
• 3.15.3 Error record classification on page 3-75.
• 3.15.4 ECC error reporting and recovery on page 3-75.
• 3.15.5 Error recovery and fault handling interrupts on page 3-76.
• 3.15.6 Error handling records on page 3-77.
• 3.15.7 Bus errors on page 3-95.

3.15.1 Non-secure access

You can control whether Non-secure software has access to the RAS architecture-compliant register
space by using GICD_SAC.GICTNS. Its reset value is set by the gict_allow_ns tie-off signal.

In the case of an error, and if the GICD_CTLR.DS == 0, all SPIs, PPIs, and SGIs, resort to a Secure
group. Therefore, interrupt programming is not revealed to the Non-secure side.

3.15.2 Scrub

The GIC-600AE holds significant programming and interrupt states in RAM, which is protected by
SECDED and ECC.

However, the contents of some RAMs is expected to be static over long periods of time, and there is a
potential for errors to accumulate if a particular address is not periodically accessed. To prevent this
occurring, software can periodically trigger a low-priority scrub of a RAM, by setting the
GITS_FCTLR.SIP, GICR_FCTLR.SIP, and GICD_FCTLR.SIP bits. This process triggers a check and if
necessary, a writeback of all valid RAM entries. Any errors that are found during a scrub are also
reported in the relevant RAS error record.

3.15.3 Error record classification

The GIC reports errors in Armv8.2 RAS architecture-compliant error records, which are accessible
through the ACE-Lite slave programming interface.

There are four classes of error records:
• Correctable ECC errors.
• Uncorrectable ECC errors.
• ITS command and translation errors.
• Software access errors.

The error records have a separate reset so that they can be read after a main GIC reset to determine any
problems.

3.15.4 ECC error reporting and recovery

When an ECC error is detected, the GIC-600AE attempts to contain the error and ensure it cannot
propagate further.

The following table shows the GIC behavior when errors are detected in each RAM.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-75

Non-Confidential

Table 3-6 ECC error reporting

RAM Action in response to an Uncorrectable Error

ITS caches All ITS caches are memory that is backed. The contents are reloaded from memory. However, if entries are locked in
the errored cache line, the lock is lost. Software can use the GITS_OPSR register to determine if all expected locked
entries are still in place.

SPI The SPI is flagged as being in error and the error is reported through the GICD_ICERRRn register. The corrupted
RAM contents can be read until the error is cleared by writing to GICD_ICERRRn. SPIs that are in the error state
can also be determined by reading the GICD_ICERRRn register. This SPI is not reused until it is reprogrammed and
re-enabled.

LPI All information from the RAM entry is reported. Software can determine the set of interrupts that might have errors,
based on the reported ID, to check priority, and to target information.

 Note

Repeated double errors in the LPI cache cause an overflow of the error record, which means subsequent information
is lost. Arm recommends that a high priority SPI is used to trigger a core to clear the error record as fast as possible.

Redistributor
RAM

In the Redistributor, only group and priority are maintained in the RAM. If an error occurs, this information becomes
unknown for four interrupts. Pending and Active states are maintained but the enable is cleared so that the interrupt is
not forwarded.
You can determine the interrupts that are in error by reading the GICR_IERRVR register.

 Note

Because the group is unknown, it is assumed to be Secure, and therefore interrupt deactivates can be ignored.
Software must consider this as part of the recovery sequence.

It is also possible for a GenerateSGI packet to become corrupted. In this case, the GenerateSGI is reported as bad.

For more information about Pending and Active PPI states, see the Arm® GICv3 and GICv4 Software Overview.

SGI The SGI RAM holds group and Non-Secure Access Control (NSACR) information for all cores. It is used to enable
wakeup of the Redistributor as required. If an error occurs in the RAM, then all SGIs for that core are considered to
be Secure. This prevents Non-secure masters from raising Secure interrupts incorrectly.

3.15.5 Error recovery and fault handling interrupts

You can assign a recorded correctable ECC error to the fault handling interrupt by setting
GICT_ERR<n>CTLR.CFI.

All correctable ECC errors have error counters, so the interrupt only fires when the counter in the
associated GICT_ERR<n>MISC0 register overflows. You can preset the counter to any value by writing
to GICT_ERR<n>MISC0.Count. For example, to fire an interrupt on any correctable error, write 0xFF,
or to fire an interrupt on every second correctable error, write 0xFE.

You can assign a recorded uncorrectable ECC error either to the fault handling interrupt, fault_int, by
setting GICT_ERR<n>CTLR.FI, or to the error recovery interrupt, err_int, by setting
GICT_ERR<n>CTLR.UI. The interrupt fires on every uncorrectable interrupt occurrence irrespective of
the counter value.

You can route interrupts fault_int and err_int out as interrupt wires for situations where error recovery
is handled by a core that does not receive interrupts directly from the GIC, such as a central system
control processor. Alternatively, you can drive each interrupt internally by programming the associated
GICT_ERRIRQCR<n> register.

Each GICT_ERRIRQCR<n> register contains an ID field that must be programmed to 0 if internal
routing is not required, or if internal routing is required, to a legally supported SPI ID. If the programmed

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-76

Non-Confidential

ID value is less than 32, out of range, or for multichip configurations, not owned on chip, the register
updates to 0 and no internal delivery occurs.

Arm recommends that if the err_int and fault_int are internally routed, the target interrupts must not
have SPI Collator wires, or if they are present, are tied off. This prevents software checking for the same
ID at multiple destinations.

The err_int and fault_int do not have direct test enable registers. You can test connectivity using error
record 0 and triggering an error, such as an illegal AXI access to a nonexistent register.

3.15.6 Error handling records

The GIC-600AE has several error records. The range of error handling records that are available depends
on the configuration of the GIC-600AE.

The following table lists the GIC-600AE error handling records.

Table 3-7 Error handling records

Record Error type Description, events, and recovery sequences

0 Uncorrected software error in the
Distributor.

Table 3-8 Software errors, record 0 on page 3-78

1 Corrected SPI RAM error. Table 3-9 SPI RAM errors, records 1-2 on page 3-84

2 Uncorrected SPI RAM error.

3 Corrected SGI RAM error. Table 3-10 SGI RAM errors, records 3-4 on page 3-85

4 Uncorrected SGI RAM error.

5 Reserved. -

6 Reserved. -

7 Corrected PPI RAM error. Table 3-11 PPI RAM errors, records 7-8 on page 3-86

8 Uncorrected PPI RAM error.

9 Corrected LPI RAM error. Table 3-12 LPI RAM errors, records 9-10 on page 3-87

Records 9-10 are not present if there is no LPI support.10 Uncorrected LPI RAM error.

11 Corrected ITS RAM error. Table 3-13 ITS RAM errors, records 11-12 on page 3-87

Records 11-12 are not present if an ITS is not present.12 Uncorrected ITS RAM error.

13+ Uncorrected software error in ITS. Table 3-15 ITS command and translation errors, records 13+ on page 3-88

One record per ITS on the chip. Records 13+ are not present if an ITS is not present.

Software error record 0

Software error record 0 records software errors that are uncorrectable.

Record 0 contains software programming errors from a wide range of sources within the GIC-600AE. In
general, these errors are contained. For uncorrected errors, the information that is provided gives enough
information to enable recovery without significant loss of functionality.

Arm recommends that record 0 is connected to a high priority interrupt. This prevents the record from
overflowing if it receives more errors than it is able to process with the possible loss of information that
is required for recovery. See 3.15.5 Error recovery and fault handling interrupts on page 3-76 for more
information.

The following table describes the syndromes that are recorded in record 0, the reported information, and
recovery instructions.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-77

Non-Confidential

Table 3-8 Software errors, record 0

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.Data

Description (other bits
RES0)c

Recovery, Prevention

0x0, SYN_ACE_BAD

Illegal ACE-Lite slave access.

0xE AccessRnW, bit[12]

AccessSparse, bit[11]

AccessSize, bits[10:8]

AccessLength, bits[7:0]

Repeat illegal access, with
appropriate size and properties.

Full access address is given in
GICT_ERR0ADDR.

0x1, SYN_PPI_PWRDWN

Attempt to access a powered down
Redistributor.

0xF Redistributor, bits[24:16]

Core, bits[8:0]

Ensure that the Redistributor is
powered up before accessing.
See GICR_PWRR.

Attempt was made by the core
reported in MISC0.

0x2, SYN_PPI_PWRCHANGE

Attempt to power down Redistributor
rejected.

0xF Redistributor, bits[24:16]

Core, bits[8:0]

Ensure that the core accessing
the register, or all cores with the
same GICR_PWRR.RDG if
GICR_PWRR.RDAG is set, has
completed the
GICR_WAKER.ProcessorSleep
handshake.

0x3, SYN_GICR_ARE

Attempt to access GICR or GICD
registers in mode that cannot work.

0xF Core, bits[8:0] Repeat the access to the
specified core accessing the
correct register space. That is, if
ARE_S and ARE_NS == 1 then
PPI and SGI registers must be
accessed through the GICRx
instead of GICD register space.

0x4, SYN_PROPBASE_ACC

Attempt to reprogram PROPBASE
registers to a value that is not accepted
because another value is already in use.

0xF Core, bits[8:0] GICR_PROPBASER is shared
between all cores on a chip.
When any
GICR_CTLR.Enable_LPIs bit
is set, the value is locked and
cannot be updated unless a
complete GICR_WAKER.Sleep
handshake is complete.

See A.2 Power control signals
on page Appx-A-253.

c Always packed from 0 (lowest = 0).

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-78

Non-Confidential

Table 3-8 Software errors, record 0 (continued)

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.Data

Description (other bits
RES0)c

Recovery, Prevention

0x5, SYN_PENDBASE_ACC

Attempt to reprogram PENDBASE
registers to a value that is not accepted
because another value is already in use.

0xF Core, bits[8:0] When any
GICR_CTLR.Enable_LPIs bit
is set, the Shareability,
InnerCache, and OuterCache
fields are locked for the whole
chip. They can only be changed
by completing the
GICR_WAKER.Sleep
handshake.

See A.2 Power control signals
on page Appx-A-253.
Otherwise, repeat the register
access using the current global
values.

0x6, SYN_LPI_CLR

Attempt to reprogram ENABLE_LPI
when not enabled and not asleep.

0xF Core, bits[8:0] Arm recommends that you do
not clear the Enable_LPIs bit.
Instead, interrupts must be
unmapped using an ITS. If you
must clear, then you must flush
the LPI cache using the
GICR_WAKER.Sleep
handshake.

See A.2 Power control signals
on page Appx-A-253.

0x7, SYN_WAKER_CHANGE

Attempt to change GICR_WAKER
abandoned due to handshake rules.

0xF Core, bits[8:0] GICR_WAKER.ProcessorSleep
and
GICR_WAKER.ChildrenAsleep
form a 4-phase handshake. The
attempt to change state must be
repeated when the previous
transition has completed.

0x8, SYN_SLEEP_FAIL

Attempt to put GIC to sleep failed as
cores are not fully asleep.

0xF Core, bits[8:0] All cores must be asleep, using
the
GICR_WAKER.ProcessorSleep
handshake, before you flush the
LPI cache using
GICR_WAKER.Sleep.

0x9, SYN_PGE_ON_QUIESCE

Core put to sleep before its Group enables
were cleared.

0xF Core, bits[8:0] The core must disable its group
enables before it toggles the
GICR_WAKER.ProcessorSleep
handshake, otherwise, the GIC
clears its record of the group
enables, causing a mismatch
between the GIC and the core.

c Always packed from 0 (lowest = 0).

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-79

Non-Confidential

Table 3-8 Software errors, record 0 (continued)

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.Data

Description (other bits
RES0)c

Recovery, Prevention

0xA, SYN_GICD_CTLR

Attempt to update GICD_CTLR was
prevented due to Register Write Pending
(RWP) or Group enable restrictions.

0xF Data, bits[7:0] Software must wait for
GICD_CTLR.RWP to be 0
before repeating the
GICD_CTLR write. The data
represents the target value.

0x10, SYN_SGI_NO_TGT

SGI sent with no valid destinations.

0xE Core, bits[8:0] If the SGI is required, software
must repeat the SGI from the
reported core with a valid target
list.

If this level of RAS
functionality is required, the
software must track generated
SGIs externally.

0x11, SYN_SGI_CORRUPTED

SGI corrupted without effect.

0x6 Core, bits[8:0] An SGI is corrupted due to a
RAM error in the PPI RAM.
The RAM error details are
reported separately in record 8.
The GIC ignores the SGI
generated from the recorded
core. If you want software to
recover from this error, it must
use an external record of the
generated SGI.

0x12, SYN_GICR_CORRUPTED

Data was read from GICR register space
that has encountered an uncorrectable
error.

0x6 GICT_ERR0ADDR is
populated

Software has tried to read
corrupted data that is stored in
SGI RAM or PPI RAM. Check
records 4 and 8, and perform a
recovery sequence for those
interrupts.

0x13, SYN_GICD_CORRUPTED

Data was read from GICD register space
that encountered an uncorrectable error.

0x6 GICT_ERR0ADDR is
populated

Software has tried to read
corrupted data that is stored in
SPI RAM.

Check record 2 and perform a
recovery sequence for those
interrupts.

0x14, SYN_ITS_OFF

Data was read from an ITS that is
powered down.

0xF GICT_ERR0ADDR is
populated

Ensure that the qreqn_its<x>
power control Q-Channel is in
the RUN state before accessing
the relevant ITS.

0x18, SYN_SPI_BLOCK

Attempt to access an SPI block that is not
implemented.

0xE Block, bits[4:0] No recovery is required.

Correct the software.

c Always packed from 0 (lowest = 0).

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-80

Non-Confidential

Table 3-8 Software errors, record 0 (continued)

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.Data

Description (other bits
RES0)c

Recovery, Prevention

0x19, SYN_SPI_OOR

Attempt to access a non-implemented SPI
using (SET|CLR)SPI.

0xE ID, bits[9:0] Reprogram the issuing device
so that it sends a supported SPI
ID.

0x1A, SYN_SPI_NO_DEST_TGT

An SPI has no legal target destinations.

0xF ID, bits[9:0] Before enabling the specified
SPI, reprogram the SPI to target
an existing core.

 Note

The same SPI might repeat this
error several times and cause an
overflow.

0x1B, SYN_SPI_NO_DEST_1OFN

A 1 of N SPI cannot be delivered due to
bad GICR_CTRL.DPG<0|1NS|1S> or
GICR_CLASSR programming.

0xF ID, bits[9:0] Ensure that there is at least one
valid target for the specified
1 of N interrupt, that is, ensure
that at least one core has
acceptable DPG and CLASS
settings to enable delivery.

 Note

The same SPI might repeat this
error several times and cause an
overflow.

0x1C, SYN_COL_OOR

A collator message is received for a non-
implemented SPI, or is larger than the
number of owned SPIs in a multichip
configuration.

0xF ID, bits[9:0] In a multichip configuration,
ensure that there are enough
owned SPIs to support all SPI
wires that are used. Any
unsupported interrupts must be
disabled at the source.

0x1D, SYN_DEACT_IN

A Deactivate to a non-existent SPI, or
with incorrect groups set. Deactivates to
LPI and non-existent PPI are not reported.

0xE None A Deactivate occurred to a non-
existent SPI, or that SPI group
prevented the Deactivate
occurring. Software must check
the active states of SPIs.

0x1E, SYN_SPI_CHIP_OFFLINE

An attempt was made to send an SPI to an
offline chip.

0xF ID, bits[9:0] Software must disable or
retarget interrupts that are
targeted at offline cores.

0x28, SYN_ITS_REG_SET_OOR

An attempt was made to set an Out-of-
Range (OOR) interrupt. Only valid when
GICR LPI injection registers are
supported.

0xE Core, bits[24:16]

Data, bits[15:0]

Software must reprogram the
source device to only create
legal LPI IDs.

c Always packed from 0 (lowest = 0).

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-81

Non-Confidential

Table 3-8 Software errors, record 0 (continued)

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.Data

Description (other bits
RES0)c

Recovery, Prevention

0x29, SYN_ITS_REG_CLR _OOR

An attempt was made to clear an OOR
interrupt. Only valid when GICR LPI
injection registers are supported.

0xE Core, bits[24:16]

Data, bits[15:0]

Software must not attempt to
clear non-existent LPIs.

0x2A, SYN_ITS_REG_INV_OOR

An attempt was made to invalidate an
OOR interrupt. Only valid when GICR
LPI injection registers are supported.

0xE Core, bits[24:16]

Data, bits[15:0]

Software must not attempt to
clear non-existent LPIs.

0x2B, SYN_ITS_REG_SET_ENB

An attempt was made to set an interrupt
when LPIs are not enabled. Only valid
when GICR LPI injection registers are
supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software must follow
architectural steps to enable
LPIs on the specified core
before enabling the core to send
interrupts.

0x2C, SYN_ITS_REG_CLR _ENB

An attempt was made to clear an interrupt
when LPIs are not enabled. Only valid
when GICR LPI injection registers are
supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software must not try to clear
LPIs on a core that does not
have LPIs enabled using
GICR_CTLR.Enable_LPIs.

0x2D, SYN_ITS_REG_INV_ENB

An attempt was made to invalidate an
interrupt when LPIs are not enabled. Only
valid when GICR LPI injection registers
are supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software must not try to
invalidate LPIs on a core that
does not have LPIs enabled
using
GICR_CTLR.Enable_LPIs.

0x40, SYN_LPI_PROP_READ_FAIL

An attempt was made to read properties
for a single interrupt, where an error
response was received with the data.

0x12 Target, bits[29:16]

ID, bits[15:0]

Software must reprogram the
LPI Property table for the
specified ID with error-free data
and then issue an INV command
through the ITS. If an overflow
occurred, an INVALL command
must be issued to all cores.

0x41, SYN_PT_PROP_READ_FAIL

An attempt was made to read properties
for a block of interrupts, where an error
response was received with the data.

0x12 Target, bits[29:16]

ID, bits[15:0]

Software must reprogram the
LPI Property table for the
specified ID with error-free data
and then issue an INV command
through the ITS. If an overflow
occurred, an INVALL command
must be issued to all cores.

c Always packed from 0 (lowest = 0).

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-82

Non-Confidential

Table 3-8 Software errors, record 0 (continued)

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.Data

Description (other bits
RES0)c

Recovery, Prevention

0x42,
SYN_PT_COARSE_MAP_READ_FAIL

An attempt was made to read the coarse
map for a target, where an error response
was received with the data.

0x12 Target, bits[29:16] No recovery is necessary
because the GIC assumes that
the coarse map is full.

0x43,
SYN_PT_COARSE_MAP_WRITE_FAIL

An attempt was made to write the coarse
map for a target, with an error received
with the write response.

0x12 Target, bits[29:16] The GIC attempts to continue,
however this error indicates
issues with the memory system,
and operation might be
unpredictable.

0x44, SYN_PT_TABLE_READ_FAIL

An attempt was made to read a block of
interrupts from a Pending table, where an
error response was received with the data.

0x12 Target, bits[29:16]

ID, bits[15:0]

Software must determine the
reason for the pending error
read fail. The GIC uses the data
that is supplied, however, it is
possible for the LPI interrupt to
be lost around the specified
LPI.

0x45, SYN_PT_TABLE_WRITE_FAIL

An attempt was made to write-back a
block of interrupts from a Pending table,
with an error received with the write
response.

0x12 Target, bits[29:16]

ID, bits[15:0]

The GIC tries to continue,
however, this error indicates
issues with the memory system,
and operation might be
unpredictable.

0x46,
SYN_PT_SUB_TABLE_READ_FAIL

An attempt was made to read a subblock
of interrupts from a Pending table, where
an error response was received with the
data.

0x12 Target, bits[29:16]

ID, bits[15:0]

Software must determine the
reason for the pending error
read fail. The GIC uses the data
that is supplied, however, it is
possible for the LPI interrupt to
be lost around the specified
LPI.

0x47,
SYN_PT_TABLE_WRITE_FAIL_BYTE

An attempt was made to write-back a
subblock of interrupts from a Pending
table, with an error received with the write
response.

0x12 Target, bits[29:16]

ID, bits[15:0]

The GIC tries to continue,
however, this error indicates
issues with the memory system,
and operation might be
unpredictable.

SPI RAM error records 1-2

SPI RAM error record 1 records RAM ECC errors that are correctable. SPI RAM error record 2 records
RAM ECC errors that are uncorrectable.

SPI RAM error records 1-2 are present if SPI RAM ECC is configured.

c Always packed from 0 (lowest = 0).

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-83

Non-Confidential

The GIC-600AE has two SPI RAM, SPI0 and SPI1 that contain the programming for SPIs. SPI0 contains
SPIs that have even-numbered IDs, and SPI1 contains SPIs that have odd-numbered IDs.

If a correctable error is detected in SPI RAM, it is corrected and the error is reported in error record 1.
See 3.15.5 Error recovery and fault handling interrupts on page 3-76 for information about the error
counters and interrupt generation options.

Correctable errors do not require software to take any action within the GIC. However, software can
choose to track error locations in case a RAM row or column can be repaired, and the RAM has repair
capability.

The GICT_ERR1MISC0 reports data for SPI error records 1-2 shown in the following table.

Table 3-9 SPI RAM errors, records 1-2

Record GICT_ERR1MISC0.Data

1 = Correctable Bit location, ID, bits[log2(SPIs)+]

2 = Uncorrectable ID, bits[log2(SPIs) − 1:0]

The RAM address can be determined from the ID >> 1. ID[0] specifies the SPI RAM number.

If an SPI has an uncorrectable error, GICD_ICERRRn identifies the SPI. While in this error state, the
interrupt reverts to a disabled, Secure group 0, edge-triggered SPI, and Non-secure access is controlled
by GICD_FCTLR.NSACR. This enables Secure software to control whether Non-secure accesses can set
the interrupt to pending while in the errored state.

For uncorrectable errors, software is required to perform the following recovery sequence:
1. Read the error record, to determine if an uncorrectable error has occurred.
2. Clear the error record, to enable future errors to be tracked.
3. Read all GICD_ICERRRn registers, so that you can identify the SPIs that have errors. The

GICD_ICERRRn registers must be read from the Secure side.

If the error record reports only one error, the block that contains the error can be determined using the
ID in the GICT_ERR2MISC0 register, by calculating the block number as 1 + (ID / 32). However, in
the case of an overflow, all GICD_ICERRRn registers must be checked.

4. If necessary, read out any of the current programmed states. This includes programmed data that is
corrupted and generates an error, unless GICT_ERR0CTRL.UE is disabled. Arm recommends that
intended programming is stored in memory so that this step is not required.

5. Write to GICD_ICENABLERn, to disable all interrupts that have errors.
6. Write 1 to the GICD_ICERRRn bits that step 3 indicates are showing an SPI error. This write clears

the interrupt error and reverts the corresponding GICD_IGROUPRn, GICD_IGRPMODRn,
GICD_ICFGRn, and GICD_NSACRn bits to their default values.

7. Read GICD_ICERRRn, to check that the error has cleared. If the error remains, then clear all the
GICD_CTLR group enables so that it forces all SPIs to return to their owner chips. When
GICD_CTLR.RWP returns to 0, repeat the write to GICD_ICERRRn. When the error clear is
accepted, you can re-enable the group enables.

8. Reprogram the interrupt to the intended settings.
9. If the interrupt is reprogrammed to be level-sensitive, write to GICD_ICPENDRn to ensure that any

edge-sensitive pending bits are cleared.
10. If the interrupt is edge-triggered, Arm recommends that software checks the device, if possible, in

case an edge is lost.
11. Ensure that the active bit is set correctly depending on whether it is being processed. Clear the active

bit using GICD_ICACTIVE to ensure that the interrupt is delivered when it is set to pending in the
future. However, if the interrupt is being processed in a core, the interrupt might be delivered again
before it is deactivated.

12. Re-enable the reprogrammed interrupts by writing to GICD_ISENABLER.
13. Recheck the error record, to ensure that no more errors are reported. If necessary, repeat step 2.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-84

Non-Confidential

SGI RAM error records 3-4

SGI RAM error record 3 records RAM ECC errors that are correctable. SGI RAM error record 4 records
RAM ECC errors that are uncorrectable.

SGI RAM error records 3-4 are present if SGI RAM ECC is configured.

The Distributor records a subset of the SGI programming, and stores this information in the SGI RAM,
to ensure that it can make the correct routing decisions for SGIs.

If a correctable error is detected in SGI RAM, the error is corrected and the error is reported in error
record 3. See 3.15.5 Error recovery and fault handling interrupts on page 3-76 for information about the
error counters and interrupt generation options.

Correctable errors do not require software to take any action within the GIC. However, the GIC can
choose to track error locations in case a RAM row or column can be repaired, and the RAM has repair
capability.

The GICT_ERR<n>MISC0 reports data for SGI error records 3-4 shown in the following table.

Table 3-10 SGI RAM errors, records 3-4

Record GICT_ERR<n>MISC0.Data

3 = Correctable Bit location, log2(width).

Address, bits[(ceil(cores / 16) × 16) − 1:0].

4 = Uncorrectable Address, bits[(ceil(cores / 16) × 16) − 1:0].

The RAM stores information for the same SGI for up to 16 cores on a single row.

The corrupted SGI number is given by address × 16 on cores (address − (address × 16)) to (address −
(address × 16)) + 15.

GICR_SGIDR contains default values for GICR_IGROUPR0, GICR_IGRPMODR0, and
GICR_NSACR for each SGI.

When an SGI is in error, the GIC operates using the values that GICR_SGIDR contains.

For uncorrectable errors that occur in either the PPI or SGI RAM, software is required to perform the
following recovery sequence:
1. Read the error record, to determine if an uncorrectable error has occurred.
2. Clear the error record, to enable future errors to be tracked.
3. Read all GICR_IERRVR registers, so that you can identify the SGIs and PPIs that have errors. The

GICR_IERRVR registers must be read from the Secure side.
4. If necessary, read out any of the current programmed states. This includes programmed data that is

corrupted and generates an error, unless GICT_ERR0CTRL.UE is disabled. Arm recommends that
intended programming is stored in memory so that this step is not required.

The GICR_NSACR is overwritten when an error occurs, so the pre-error value cannot be read back at
this stage.

5. Write to GICR_ICENABLER0, to disable all interrupts that have errors.
6. Write 1 to the GICR_IERRVR bits that step 3 indicates are showing an SGI or PPI error. This write

clears the interrupt error and reverts the corresponding GICR_IGROUPR0, GICR_IGRPMODR0,
and GICR_NSACR bits to their default values. The values of PPIs are not changed.

7. Reprogram the interrupt to the intended settings.
8. Re-enable the reprogrammed interrupts by writing to the relevant GICR_ISENABLER0.
9. Recheck the error record, to ensure that no more errors are reported. If necessary, repeat step 2.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-85

Non-Confidential

PPI RAM error records 7-8

PPI RAM error record 7 records RAM ECC errors that are correctable. PPI RAM error record 8 records
RAM ECC errors that are uncorrectable.

Error records 7-8 record the errors from PPI RAM that contain GICR_IPRIORITYRn information for
PPIs and SGIs. PPI RAM also contains a buffer that stores generated SGIs when backpressure occurs.

The GICT_ERR<n>MISC0 reports data for PPI error records 7-8 shown in the following table.

Table 3-11 PPI RAM errors, records 7-8

Record GICT_ERR<n>MISC0.Data

7 = Correctable PPI block, bits[18+].

Bit location, bits[17:12].

Offset, bits[11:8].

SGI/Int, bit[7].

Core, bits[6:0].

8 = Uncorrectable PPI block, bits[12+].

Offset, bits[11:8].

SGI/Int, bit[7].

Core, bits[6:0].

For uncorrectable errors, if:

Bit[7], SGI/Int == 0
Software must perform the recovery sequence that SGI RAM error records 3-4 on page 3-85
describes.

Bit[7], SGI/Int == 1
The GIC did not generate the SGI because an error occurred during SGI generation. Although
an SGI generation error occurs, the GIC continues to operate normally.

LPI RAM error records 9-10

LPI RAM error record 9 records RAM ECC errors that are correctable. LPI RAM error record 10 records
RAM ECC errors that are uncorrectable. Each error generates an LPI interrupt.

LPI RAM error records 9-10 are present if LPI support is configured.

The LPI RAM is the main LPI cache and it stores the LPI properties and pending information.

The GICT_ERR<n>MISC0 register reports data for LPI error records 9-10 shown in the following table.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-86

Non-Confidential

Table 3-12 LPI RAM errors, records 9-10

Record GICT_ERR<n>MISC0.Data

9 = Correctable Bit location, bits[15+].

Reserved, bit[14].

Pending, bits[13:12]. These bits indicate if there were pending interrupts in the cache at the time of the
corruption.

Reserved, bits[11:10].

Address, bits[9:0].

10 = Uncorrectable Pending, bits[13:12].

Reserved, bits[11:10].

Address, bits[9:0].

When an uncorrectable error occurs, the data shown in the table is stored and the GICT_ERR10MISC1
register is updated to contain the RAM contents of the corrupted line. The line in RAM is dropped, and
any pending interrupts that it might contain are lost.

If required, software can use the data in the GICT_ERR10MISC1 register to check several interrupt
sources, such as the corrupted INTID. This ID is never more than two bits away from the recorded ID.

ITS RAM error records 11-12

ITS RAM error record 11 records ITS RAM ECC errors that are correctable. ITS RAM error record 12
records ITS RAM ECC errors that are uncorrectable.

ITS RAM error records 11-12 are present if an ITS is configured.

Error records 11-12 record the errors from ITS RAM.

All ITS tables are memory backed allowing uncorrectable errors to be read from RAM again without
software intervention. These records are used for tracking RAM errors and for possible RAM
maintenance.

The GICT_ERR<n>MISC0 register reports data for ITS RAM error records 11-12 shown in the
following table.

Table 3-13 ITS RAM errors, records 11-12

Record GICT_ERR<n>MISC0.Data

11 = Correctable Bit location, bits[(x + 14)+].

Address, bits[(x + 13)+].

RAM, bits[x + 1:x].

ITS, bits[x − 1:0].

x = log2(ITS).

12 = Uncorrectable Address, bits[(x + 2)+].

RAM, bits[x + 1:x].

ITS, bits[x − 1:0].

x = log2(ITS).

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-87

Non-Confidential

GICT_ERR<n>MISC0 gives information relating to the corrupted ITS, RAM, and RAM address. The bit
location of a correctable error is also given. The ITS RAM encoding is shown in the following table.

Table 3-14 ITS RAM encoding

RAM Record 11 Record 12

0 None None

1 Device cache Device cache

2 Collection cache Collection cache

3 Event cache Event cache

4 - Reserved

5 - Reserved

6 - Reserved

7 - Event cache, locked

ITS command and translation error records 13+

The ITS command and translation error records 13+ record uncorrectable command and translation
errors from each configured ITS.

The ITS command and translation error records capture software events so that the operation of software
can be tracked. The software command errors that are captured are uncorrectable errors only, which
require software to correct the command to restart.

The GICT_ERR<n>STATUS.IERR field indicates whether an error is either related to the architecture
(0) or implementation defined (1). In both cases, the full 24-bit syndrome is reported in
GICT_ERR<n>MISC0. Extra data is reported in GICT_ERR<n>MISC1.

The data that is captured for each ITS software syndrome is shown in the following table.

Table 3-15 ITS command and translation errors, records 13+

Error mnemonic Encoding IERR Stall Mask Description

MOVALL_TGT_OOR 0x10E20 1 0 - MOVALL from a core that does not exist.

Command is ignored.

MOVALL_DST_TGT_OOR 0x10E21 1 0 - MOVALL to a core that does not exist.

Command is ignored.

MOVALL_CHIP_OFFLINE_OOR 0x10E22 1 0 - MOVALL to a chip that is out-of-range, or from a chip
that is offline.

Command is ignored.

MOVALL_ENABLE_LPI_OFF 0x10E23 1 0 - MOVALL from a core where GICR_CTLR.Enable_LPIs
is 0.

Command is ignored.

MOVALL_DST_ENABLE_LPI_OFF 0x10E24 1 0 - MOVALL to a core where GICR_CTLR.Enable_LPIs is
0, or to a destination chip that is offline.

LPIs on MOVALL source are dropped.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-88

Non-Confidential

Table 3-15 ITS command and translation errors, records 13+ (continued)

Error mnemonic Encoding IERR Stall Mask Description

INT_PHYSICALID_OOR 0x10326 1 0 - INT received with a physical ID that is beyond the
range that is specified in GICR_PROPBASER.IDbits.

Software must correct mappings.

Interrupt is dropped and ID is reported in
GICT_ERR<n>MISC1.

INT_TGT_OOR 0x10320 1 0 - INT received for a core that does not exist.

Software must correct mappings.

Interrupt is dropped and TGT is reported in
GICT_ERR<n>MISC1.

INT_CHIP_OFFLINE_OOR 0x10322 1 0 - INT received for a chip that is offline.

Software must either correct mappings or take the chip
online.

Interrupt is dropped and TGT is reported in
GICT_ERR<n>MISC1.

INT_LPI_OFF 0x10323 1 0 - INT received for TGT with GICR_CTLR.Enable_LPIs
disabled.

Software must either enable LPI or correct mappings.

TGT is reported in GICT_ERR<n>MISC1.

MAPD_DEVICE_OOR 0x10801 0 1 CEE A MAPD command has tried to map a device with a
DeviceID that is outside the supported range, or that is
beyond the memory allocated.

MAPD_ITTSIZE_OOR 0x10802 0 1 CEE A command has tried to allocate an ITT table that is
larger than the supported EventID size.

MAPC_COLLECTION_OOR 0x10903 0 1 CEE A MAPC command has tried to map a CollectionID that
is not supported. See GITS_TYPER.

MAPC_TGT_OOR 0x10920 1 1/0 CEE A MAPC command has tried to map to a core that does
not exist.

If the core is within the maximum range that the ITS
supports, the command stalls.

If the command is detected in the destination
Distributor, the command is ignored and the core is
reported in GICT_ERR<n>MISC1.

 Note

If the value in GICT_ERR<n>MISC1 is 0, the location
of the detected error is in the ITS.

CEE applies to errors detected in the ITS only.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-89

Non-Confidential

Table 3-15 ITS command and translation errors, records 13+ (continued)

Error mnemonic Encoding IERR Stall Mask Description

MAPC_LPI_OFF 0x10923 1 0 - A MAPC command has tried to map a collection to a
core that does not have LPIs enabled.

Software must correct the mapping, or it must first
enable LPIs using GICR_CTLR.Enable_LPIs.

The core is reported in GICT_ERR<n>MISC1.

MAPC_CHIP_OFFLINE_OOR 0x10922 1 0 - A MAPC command has targeted a core in an offline chip.

Software must correct the mapping or take the target
chip online.

MAPI_DEVICE_OOR 0x10B01 0 1 CEE A MAPI has tried to map a DeviceID that is not
supported.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

MAPI_COLLECTION_OOR 0x10B03 0 1 CEE A MAPI has tried to map to a collection that is not
supported.

See GITS_BASER1d, and for information about the
supported range, see GITS_TYPER.

MAPI_ID_OOR 0x10B05 0 1 CEE A MAPI has tried to map to an EventID size that is not
supported.

The size that is supported is reported in GITS_TYPER,
but might be reduced depending on the MAPD command
for the specified DeviceID.

MAPI_UNMAPPED_DEVICE 0x10B04 0 1 CEE A MAPI has tried to map an interrupt to a device that is
not mapped.

MAPVI_DEVICE_OOR 0x10A01 0 1 CEE A MAPVI has tried to map a device supported by the
ITS that is out-of-range.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

MAPVI_COLLECTION_OOR 0x10A03 0 1 CEE A MAPVI has tried to map to a collection that is outside
the range that the ITS supports.

See GITS_BASER1d, and for information about the
supported range, see GITS_TYPER.

MAPVI_UNMAPPED_DEVICE 0x10A04 0 1 CEE A MAPVI has tried to map an interrupt to a device that is
not mapped.

MAPVI_ID_OOR 0x10A05 0 1 CEE A MAPVI has tried to use an EventID that is outside the
size that the corresponding MAPD command supports.

MAPVI_PHYSICALID_OOR 0x10A06 0 1 CEE A MAPVI is received that has a physical ID outside the
range supported.

The supported range is >16-<8096 bits.

d The Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 describes this register.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-90

Non-Confidential

Table 3-15 ITS command and translation errors, records 13+ (continued)

Error mnemonic Encoding IERR Stall Mask Description

MOVI_DEVICE_OOR 0x10101 0 1 CEE A MAPVI has tried to map a device that is outside the
range that the ITS supports.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

MOVI_COLLECTION_OOR 0x10103 0 1 CEE A MOVI has tried to use a collection that is outside the
range that the ITS supports.

See GITS_BASER1d, and for information about the
supported range, see GITS_TYPER.

MOVI_UNMAPPED_DEVICE 0x10104 0 1 CEE A MOVI has tried to move an interrupt from a device
that is not mapped.

MOVI_ID_OOR 0x10105 0 1 CEE A MOVI has tried to use an EventID that is outside the
size that the corresponding MAPD command supports.

MOVI_UNMAPPED_INTERRUPT 0x10107 0 1 CEE A MOVI command has tried to operate on an interrupt
that is not mapped.

MOVI_UNMAPPED_COLLECTION 0x10109 0 1 CEE A MOVI command has tried to operate on a collection
that is not mapped.

DISCARD_DEVICE_OOR 0x10F01 0 1 CEE A DISCARD has tried to use a device that is outside the
range that the ITS supports.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

DISCARD_UNMAPPED_DEVICE 0x10F04 0 1 CEE A DISCARD has tried to drop an interrupt from a device
that is not mapped.

DISCARD_ID_OOR 0x10F05 0 1 CEE A DISCARD command has tried to use an EventID that
is outside the size that the corresponding MAPD
command supports.

DISCARD_UNMAPPED_INTERRUPT 0x10F07 0 1 CEE A MOVI command has tried to operate on an interrupt
that is not mapped.

DISCARD_ITE_INVALID 0x10F10 0 1 CEE A MOVI command has tried to operate on an EventID
that is not supported by the corresponding MAPD
command.

INV_DEVICE_OOR 0x10C01 0 1 CEE An INV has tried to use a device that is outside the
range that the ITS supports.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

INV_UNMAPPED_DEVICE 0x10C04 0 1 CEE An INV has tried to invalidate an interrupt from a
device that is not mapped.

INV_ID_OOR 0x10C05 0 1 CEE An INV has tried to use an EventID that is outside the
size that the corresponding MAPD command supports.

INV_UNMAPPED_INTERRUPT 0x10C07 0 1 CEE An INV has tried to invalidate an interrupt that is not
mapped.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-91

Non-Confidential

Table 3-15 ITS command and translation errors, records 13+ (continued)

Error mnemonic Encoding IERR Stall Mask Description

INV_ITE_INVALID 0x10C10 0 1 CEE An INV has tried to invalidate an interrupt with an
EventID that is invalid.

INV_PHYSICALID_OOR 0x10C26 1 0 - An INV has tried to invalidate an interrupt with a
physical ID that is larger than the target supports.

See GICR_PROPBASER.IDbitsd.

INV_TGT_OOR 0x10C20 1 0 - An INV has tried to invalidate an interrupt that is
mapped to an invalid target.

INV_LPI_OFF 0x10C23 1 0 - An INV has tried to invalidate an interrupt that is
mapped to a target that does not have LPIs enabled.

See GICR_CTLR.Enable_LPIsd.

INV_CHIP_OFFLINE_OOR 0x10C22 1 0 - An INV has tried to invalidate an interrupt that is
mapped to a chip that is offline.

INVALL_COLLECTION_OOR 0x10D03 0 1 CEE An INVALL has tried to invalidate an OOR collection.
See GITS_TYPER.

INVALL_UNMAPPED_COLLECTION 0x10D09 0 1 CEE An INVALL has tried to invalidate a collection that is
not mapped.

INVALL_TGT_OOR 0x10D20 1 0 - An INVALL has been sent to an illegal target.

INVALL_LPI_OFF 0x10D23 1 0 - An INVALL has been sent to a target that has LPIs
turned off.

INVALL_CHIP_OFFLINE_OOR 0x10D22 1 0 - An INVALL has tried to invalidate an interrupt from a
device that is not mapped.

INT_DEVICE_OOR 0x10301 0 1 UEE An incoming translation has attempted to use a device
that is outside the range that the ITS supports.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

INT_UNMAPPED_DEVICE 0x10304 0 1 UEE An incoming translation has tried to invalidate an
interrupt from a device that is not mapped.

INT_ID_OOR 0x10305 0 1 UEE An INT has tried to use an EventID that is outside the
size that the corresponding MAPD command supports.

INT_UNMAPPED_INTERRUPT 0x10307 0 1 UEE An INT command has tried to raise an interrupt that is
not mapped.

INT_ITE_INVALID 0x10310 0 1 UEE An INT command has tried to raise an interrupt with an
EventID that is not supported by the corresponding
MAPD command.

CLEAR_DEVICE_OOR 0x10501 0 1 CEE A CLEAR has attempted to use a device that is outside
the range that the ITS supports.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

CLEAR_UNMAPPED_DEVICE 0x10504 0 1 CEE A CLEAR has tried to drop an interrupt from a device
that is not mapped.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-92

Non-Confidential

Table 3-15 ITS command and translation errors, records 13+ (continued)

Error mnemonic Encoding IERR Stall Mask Description

CLEAR_ID_OOR 0x10505 0 1 CEE A CLEAR has tried to drop an interrupt from an EventID
that is not supported by the corresponding MAPD
command.

CLEAR_UNMAPPED_INTERRUPT 0x10507 0 1 CEE A CLEAR has attempted to drop an interrupt that is not
mapped.

CLEAR_ITE_INVALID 0x10510 0 1 CEE A CLEAR has tried to drop an interrupt from an EventID
that is not supported by the corresponding MAPD
command.

CLEAR_PHYSICALID_OOR 0x10526 1 0 - A CLEAR has tried to drop an interrupt, which has a
physical ID that is not supported by the target.

CLEAR_TGT_OOR 0x10520 1 0 - A CLEAR has been sent to an illegal target.

CLEAR_LPI_OFF 0x10523 1 0 - A CLEAR has been sent to a target that does not have
LPIs enabled.

CLEAR_CHIP_OFFLINE_OOR 0x10522 1 0 - A CLEAR has been sent to a target on a chip that is
offline.

OPR_DEVICE_OOR 0x10A01 1 - - Software has tried an operation through GITS_OPR
using a device that is outside the range that the ITS
supports.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

OPR_UNMAPPED_COLLECTION 0x10A03 1 - - Software has tried an operation through GITS_OPR
using a collection that is outside the range that the ITS
supports.

See GITS_BASER0d, and for information about the
supported range, see GITS_TYPER.

OPR_ID_OOR 0x10A05 1 - - Software has tried to lock an interrupt using an EventID
that is larger than the specified device supports.

The GITS_OPSR register reports a fail.

OPR_UNMAPPED_DEVICE 0x10A04 1 - - Software has tried to lock an interrupt from a device
that is not mapped through GITS_OPR.

The GITS_OPSR register reports a fail.

OPR_UNMAPPED_INTERRUPT 0x10A07 1 - - Software has tried to lock an interrupt that is not
mapped through GITS_OPR.

The GITS_OPSR register reports a fail.

OPR_SET_LOCKED 0x10A10 1 - - Software has tried to lock an interrupt into the cache but
the set already contains a locked interrupt.

The GITS_OPSR register reports a fail.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-93

Non-Confidential

Table 3-15 ITS command and translation errors, records 13+ (continued)

Error mnemonic Encoding IERR Stall Mask Description

INVALID_ML_DEV_TABLE_ENTRY 0x10B04 1 1 CEE Software is using a two-level Device table and the first-
level table entry has not completed.

Software must allocate and clear a new second-level
table, update the first-level entry, and repeat the
command.

ACE_LITE_ACCESS_FAILURE 0x10B01 1 - - An access that the ITS issues, receives an SLVERR or
DECODE error.

The address is given in GICT_ERR<n>MISC1. This
error can occur from multiple sources.

Software must determine whether the Command queue
is stalled, by checking GITS_CREADR.Stalled. If the
Command queue has stalled, the command might not
have occurred. See 3.9.2 ITS commands and errors
on page 3-66.

ACE_LITE_TRANS_FAILURE 0x10B03 1 - AEE An unknown source in the system has written to the
slave port with an access that is not a legal
GITS_TRANSLATER access.

The full address of the access is given in
GICT_ERR<n>MISC1.

If the address matches GITS_TRANSLATER, then the
size, length, strobes, or access type is wrong.

 Note

Read accesses are not tracked.

ACE_LITE_ADDR_OOR 0x10B05 1 - - ITS programming has tried to create an access to the
address specified in GICT_ERR<n>MISC1 that is
larger than the address space supported.

INVALID_COMMAND 0x10F00 1 - CEE An Invalid command has been detected in the
Command queue.

Software must correct this and then resume.

Clearing error records

After reading a GICT_ERR<n>STATUS register, software must clear the valid register bits so that any
new errors are recorded.

During this period, a new error might overwrite the syndrome for the error that was read previously. If
the register is read or written, the previous error is lost.

To prevent this, most bits use a modified version of write-1-to-clear:
• Writes to the GICT_ERR<n>STATUS.UE (uncorrectable error records) or

GICT_ERR<n>STATUS.CE (correctable error records) bits are ignored if
GICT_ERR<n>STATUS.OF is set and is not being cleared.

• Writes to other fields in the GICT_ERR<n>STATUS register are ignored if either
GICT_ERR<n>STATUS.UE or GICT_ERR<n>STATUS.CE are set and are not being cleared.

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-94

Non-Confidential

Similarly, GICT_ERR<n>MISC0 and GICT_ERR<n>MISC1 cannot be written, except the counter
fields, if the corresponding GICT_ERR<n>STATUS.MV bit is set, and GICT_ERR<n>ADDR cannot be
written if .AV is set.

Recommended recovery sequences are described for each error record in Software error record 0
on page 3-77 to ITS command and translation error records 13+ on page 3-88.

3.15.7 Bus errors

ACE-Lite bus error syndromes such as bad transactions, and corrupted RAM data reads can be made to
report an ACE-Lite External AXI Slave Error (SLVERR).

The GICT_ERR0CTLR.UE bit can be used to enable the SLVERR ACE-Lite bus error for the
syndromes shown in the following table.

Table 3-16 Bus error syndromes

Syndrome Description Direction

SYN_ACE_BAD ACE-Lite transactions are either bad or unrecognized. Read and write

SYN_GICR_CORRUPTED Data read from SPI RAM is corrupted. Read-only

SYN_GICD_CORRUPTED Data read from SGI or PPI RAM is corrupted. Read-only

SYN_ITS_OFF Access to ITS attempted when powered down. Read and write

3 Operation
3.15 Reliability, Accessibility, and Serviceability

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-95

Non-Confidential

3.16 Multichip operation
You can configure the GIC-600AE to support multichip operation.

This section contains the following subsections:
• 3.16.1 About multichip operation on page 3-96.
• 3.16.2 Connecting the chips on page 3-96.
• 3.16.3 Changing the Routing table owner on page 3-98.
• 3.16.4 SPI ownership for multichip operation on page 3-98.
• 3.16.5 Power control and P-Channel on page 3-99.
• 3.16.6 Isolating a chip from the system on page 3-99.
• 3.16.7 SPI operation for multichip operation on page 3-100.
• 3.16.8 LPI multichip operation on page 3-101.

3.16.1 About multichip operation

Systems that comprise more than one chip, can have several SoCs that are connected externally or a SoC
comprising several SoCs connected inside a single physical package. In all cases, each SoC is integrated
with a GIC-600AE. A multichip system can have up to 16 chips.

To control the consistency of all chips in the configuration, and make the GIC appear as a single entity to
the OS, the GIC-600AE uses a set of registers that define the connectivity between chips. These registers
are referred to as the Routing table and consist of three register types:

GICD_CHIPR<n>
These Chip Registers define the Routing table. It specifies the SPIs that the chip owns, and how
the chip is accessed. This register exists on each chip in the multichip configuration so that each
chip has a copy of the Routing table. The register number <n> corresponds to its chip_ID.

GICD_DCHIPR
The Default Chip Register specifies the current chip that is responsible for the consistency of the
Routing table, and indicates when an update is in progress. A single copy of this register exists
on each chip in the multichip configuration.

GICD_CHIPSR
The Chip Status Register specifies details of the current status of the chip. A single copy of this
register exists on each chip in the multichip configuration.

At reset, each chip in the multichip system configuration is effectively a standalone full-featured GIC.
The GICD_CHIPSR register on the chip indicates this state with bit RTS == Disconnected.

For the multichip configuration to be fully coherent, all chips in the configuration must be interconnected
and one chip must own the Routing table.

The sequence for connecting chips together is described in 3.16.2 Connecting the chips on page 3-96.

When multiple chips in the configuration are connected, each set of 32 SPIs (SPI block) is owned by a
specific chip, so that the SPI space between chips is partitioned.

 Note

• SPIs that are not owned by any chip in accordance with the Routing table cannot be used.
• SPI wires on a chip can only be used for SPIs that are owned. However, message-based accesses to

SPIs owned on any chip are supported.
• The Routing table can only process one operation at a time. Therefore, software must ensure that

GICD_DCHIPR.PUP == 0 before commencing any operation such as writes to GICD_CHIPRx or
GICD_DCHIPR.

3.16.2 Connecting the chips

Use the following procedure to connect the chips in a multichip configuration.

3 Operation
3.16 Multichip operation

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-96

Non-Confidential

The procedure for connecting the chips in a multichip configuration is as follows:

Procedure
1. Ensure that the values of the chip_id tie-off input signals to all chips are correct.
2. Ensure that all Group enables in the GICD_CTLR register are disabled and GICD_CTLR.RWP == 0.
3. Designate a chip, chip x, to own the Routing table.

 Note

You can designate a different chip later if required.

4. In a single register write, program GICD_CHIPRx with:
a. GICD_CHIPRx.ADDR so that each chip can forward messages to chip x.

 Note

This value is driven by the AXI4-Stream input interface icdrtdest signal. Depending on how
cross-chip messages are routed, this value can be the chip_id, or a more complex identifier.

b. GICD_CHIPRx.SPI_BLOCK_MIN and GICD_CHIPRx.SPI_BLOCKS to appropriate values for
the SPIs that chip x owns.
Example: If the range of interrupt ids for chip x is ID96-ID159:
• Set SPI_BLOCK_MIN = (96 – 32) / 32 = 2.
• Set SPI_BLOCKS = (159 – 96 + 1) / 32 = 2.

c. GICD_CHIPRx.SocketState = 1.
5. To check that the writes are successful, read GICD_CHIPRx.

 Note

The writes might fail due to security settings, an overlapping or non-existent SPI, or if another update
is still in progress. If the accesses fail, then GICD_CHIPRx.SocketState == 0, indicating that the chip
is offline.

6. To check that the actions of this sequence have executed correctly, read the following register fields
and ensure that their values are as follows:
1. GICD_CHIPSR.RTS == 2 (Consistent).
2. GICD_DCHIPR.rt_owner == chip x.
3. GICD_DCHIPR.PUP == 0.
Results: Chip x is now in the Consistent state and ready to accept connections to other chips in the
system configuration.

Connecting additional chips:
7. Set the relevant address and SPI ownership information of the next chip you want to connect to, chip

y, by writing to GICD_CHIPRy.
 Note

You can do this through any chip that is already connected, or more efficiently by writing to the chip
that owns the Routing table, chip_id == rt_owner.

8. Poll GICD_DCHIPR until bit PUP == 0, indicating that the connection is complete.
9. To check that the write to GICD_CHIPRy is accepted, read GICD_CHIPRy.

For each chip connection, repeat steps 7 on page 3-97 through 9 on page 3-97.

3 Operation
3.16 Multichip operation

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-97

Non-Confidential

 Note

• You must consider that data that is read from GICD_CHIPRn is valid only when
GICD_DCHIPR.PUP == 0, otherwise the data might be updating.

• If you are connecting a new chip, the accesses must be done through a chip that is in the
Consistent state and not by writing to the new chip directly.

• If you access GICD_CHIPSR while a chip is being connected, it shows RTS == Updating,
register GICD_DCHIPR bit PUP is set, indicating that the Routing table is updating, so the values
cannot be trusted.

• Adding or removing a chip when GICD_CTLR group enables are set is unpredictable. To check
that group enables are off, software must poll GICD_CTLR.RWP.

• If you are connecting together multiple different instances of the GIC-600AE, the settings for the
following parameters must match in all chips:
— All affinity widths (max_affinity_width*).
— Number of SPI blocks supported (spi_blocks).
— LPI support type (lpi_support).
— Disable Security settings (ds_value).
— Total number of chips supported (chip_count).
— Chip address width (chip_addr_width).
— Chip affinity select level (chip_affinity_select_level).
— Maximum number of cores on any single chip (max_pe_on_chip).

• If any chip in the system has an ITS block, parameter its_type_support = full, then direct
injection LPI registers are not supported.

See the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration and Integration
Manual for information on configuration parameters and their options.

3.16.3 Changing the Routing table owner

You can change the chip that owns the Routing table at any time.

A procedure that describes how to change the owner of the Routing table is as follows.
To change the owner of the Routing table:
1. Write to GICD_DCHIPR.rt_owner, where the value of the rt_owner is the chip_id of the new owner.
2. Poll for GICD_DCHIPR.PUP == 0.

The Routing table owner must be the last chip to be powered down.

3.16.4 SPI ownership for multichip operation

The owner of an SPI block is defined by the GICD_CHIPR<n> registers.

You can remove SPI blocks from a chip and add them to another chip by reprogramming the relevant
GICD_CHIPR<n> registers during operation. As with all Routing table operations, GICD_DCHIPR.PUP
must be polled to check completion of the operation.

Before you change the owner of an SPI block, you must ensure that the GICD_CTLR group enables have
cleared, GICD_CTLR.RWP has returned to 0, and that the SPI blocks are removed from a chip before
they are added to another chip.

When an SPI block is removed from, or added to, a chip, all programming that is associated with the SPI
block returns to the reset state.

 Note

You must not alter the SPI_BLOCK_MIN of an online chip because the results are unpredictable. To
change SPI_BLOCK_MIN:
1. Move the chip offline by setting GICD_CHIPR<n>.SocketState = 0.
2. Alter SPI_BLOCK_MIN when the chip is brought back online.

3 Operation
3.16 Multichip operation

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-98

Non-Confidential

3.16.5 Power control and P-Channel

You can use the P-Channel to isolate a chip from the system.

The P-Channel has the following states:

RUN (pstate == 0x0) The normal functional mode.
CONFIG (pstate == 0x9) The GIC does not send any cross-chip messages. It accepts incoming

messages but does not process them.
OFF (pstate == 0xF) The GIC does not send any cross-chip messages and does not accept any

incoming messages. The icrdtready signal is clamped LOW to prevent
accesses entering the GIC.

While in both the CONFIG and OFF states, register accesses that are normally sent to another chip are
serviced locally. Therefore, the Routing table registers read the local versions instead of the copies of the
Routing table owner. The same is true for SPIs that are owned remotely. Therefore, it is safe to save and
restore the Distributor register values in either of these P-Channel states.

You can exit reset in either the RUN or OFF states by setting the initial value of the pstate signal. If you
have saved register values and intend to restore them, you must use the OFF state and restore the Routing
table first before attempting to restore any SPI registers.

3.16.6 Isolating a chip from the system

You can isolate a chip from the system.

To isolate a chip from the system, use the following procedure:
1. Ensure that all cores on the chip are asleep by setting GICR_WAKER.ProcessorSleep.
2. Ensure all ITS blocks on the chip are disabled and the buses are quiesced by using the qreqn_its<n>

Q-Channel interfaces.
3. Ensure that LPIs from other chips are not routed to this chip.
4. Attempt to enter the CONFIG state (pstate = 0x9).

If the GIC is idle and all credits are returned, it accepts the request to go into CONFIG state,
otherwise it denies the request and remains in RUN state.

 Note

All SPIs must return to their own chip before a request is accepted. This means that SPIs that are
enabled and pending, but targeting a core on a remote chip where the relevant CPU group is disabled,
prevent transition into the CONFIG state.

When in the CONFIG state, any cross-chip messages that change the internal state are held in the
cross-chip interface, and all messages assert pactive. If pactive asserts while attempting to enter a
lower power state, you must return to RUN (pstate == 0x0).

5. When in CONFIG state, any required state can be saved.
 Note

Writing to GICD_CHIPRn or GICD_DCHIPR for any purpose other than to restore saved values
after a hardware reset is unpredictable.

6. Power down the Redistributors using the GICR_PWRR registers.
7. If required, flush the LPI cache using GICR_WAKER.Sleep.

Arm recommends that if wake-on-interrupt is required, LPIs from other chips do not target this chip
while the chip is being powered down (step 3), and must be routed back while the chip is in the OFF
state.

LPIs that arrive after sleep is set in the CONFIG state are dropped.
8. Attempt to enter the OFF state.

3 Operation
3.16 Multichip operation

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-99

Non-Confidential

 Note

If pactive is HIGH, return to the CONFIG state.

9. Use the Q-Channel to put the GIC into a safe mode to reset.
 Note

If the SPI Collator is in a different domain to the Distributor and only one of the domains is being
reset, then the Power Q-Channel must have also accepted before the reset can occur. This might
require masking interrupts outside of the GIC to ensure that all interrupt lines have reached their idle
state.

Power up is the reverse of the powerdown sequence. However, you must ensure that the Routing
table is restored before other registers, else the behavior is unpredictable. Restoring values to the
Routing table that are not exactly the same as those read out before a reset, can cause unpredictable
behavior.

 Note

Accesses to GICD_CTLR continue to be broadcast to the isolated chip, which requests wakeup.

3.16.7 SPI operation for multichip operation

When the Routing table is set up, SPIs can be programmed through any connected chip, and accesses to
update stored values are routed over the cross-chip interface of the chip that owns the SPIs.

SPIs can be routed to remote chips by programming the relevant GICD_IROUTERn register. Remote
chips are targeted using either Affinity2 or Affinity3, and the Affinity level can be discovered using
GICD_CFGID.AFSL.

If SPIs within an SPI block are sent to multiple chips, Arm recommends that you do not read or write
registers GICD_ISACTIVERn, GICD_ICACTIVERn, GICD_ISPENDRn, and GICD_ICPENDRn. It is
inefficient and these registers are not needed for immediate operation.

You can set interrupts to pending by writing to GICD_SETSPI_NSR, GICD_CLRSPI_NSR,
GICD_SETSPI_SR, and GICD_CLRSPI_SR. For efficient operation, Arm recommends that sources are
programmed to write SPI IDs that are owned by their chip. Other SPI IDs are supported if these SPIs are
owned somewhere in your system.

 Note

By default, the GIC-600AE does not guarantee that the pending bit has reached the point of serialization
for writes to set interrupts pending. This means that there is a race between the pending bit being set and
an activate being processed by the GIC after the bresp signal is asserted. To ensure that writes are always
propagated to the point of serialization, set GICD_FCTLR.POS = 1.

SPIs and the Collator

The SPI Collator wires are always connected to the lowest owned SPIs on the chip. If
GICD_CHIPRn.SPI_BLOCK_MIN = 4, the SPI Collator wires to chip x drive SPI IDs that start from
160, calculated by (4 × 32) + 32 = 160.

Therefore, in a homogeneous 2-chip system, each chip must not use more wires than 16 × (the number of
configured SPI blocks).

SPI 1 of N

The GIC-600AE never sends a 1 of N SPI to another chip.

3 Operation
3.16 Multichip operation

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-100

Non-Confidential

3.16.8 LPI multichip operation

The GIC-600AE does not use physical target addresses, so GITS_TYPER.PTA == 0. Therefore,
GIC-600AE uses the value of GICR_TYPER.ProcessorNumber to route all LPIs and commands to their
targets.

The GIC-600AE splits the ProcessorNumber value into two fields, Chip_ID and the padded linear on-
chip core number.

The width of the padded on-chip core number field is defined by the max_pe_on_chip configuration
parameter. This parameter sets the maximum number of cores on a single chip in the configuration. The
width of the linear on-chip core number field is discoverable through GICD_CFGID.PEW.

For example, if max_pe_on_chip = 17, the width of the lower part of the on-chip core number field is
ceil[log2(17)] = 5 bits. Therefore, the ProcessorNumber value of the first core on chip 1 is 0x20, the
value of the second core on chip 1 is 0x21, the value of the first core on chip 2 is 0x40.

The following figure shows the ProcessorNumber fields with typical values.

16124 12488

000001000

Chip_ID Core number

100001000

Chip 1, Core 1 = 0x20

Chip 1, Core 2 = 0x21

000000100 Chip 2, Core 1 = 0x40

Figure 3-3 ProcessorNumber fields

If software attempts to access a chip that does not exist, is offline, or access a core that does not exist, the
request is dropped and reported through the ITS command and translation error records.

3 Operation
3.16 Multichip operation

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-101

Non-Confidential

Chapter 4
Programmers model

This chapter describes the memory map and registers, and provides information about programming the
device.

It contains the following sections:
• 4.1 The GIC-600AE registers on page 4-103.
• 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.
• 4.3 Distributor registers (GICA) for message-based SPIs summary on page 4-123.
• 4.4 Redistributor registers for control and physical LPIs summary on page 4-126.
• 4.5 Redistributor registers for SGIs and PPIs summary on page 4-134.
• 4.6 ITS control register summary on page 4-140.
• 4.7 ITS translation register summary on page 4-149.
• 4.8 GICT register summary on page 4-150.
• 4.9 GICP register summary on page 4-165.
• 4.10 FMU register summary on page 4-179.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-102

Non-Confidential

4.1 The GIC-600AE registers
All the GIC-600AE registers have names that are constructed of mnemonics that indicate the logical
block that the register belongs to and the register function.

The following information applies to the GIC-600AE registers:
• The GIC-600AE implements only memory-mapped registers.
• The GIC-600AE has a single base address, except for the GITS_TRANSLATER register. The base

address is not fixed and can be different for each particular system implementation.
• The offset of each register from the base address is fixed.
• Accesses to reserved or unused address locations might result in a bus error that is based on

GICT_ERR0CTLR.UE.
• Unless otherwise stated in the accompanying text:

— Do not modify reserved register bits.
— Ignore reserved register bits on reads.
— A system reset or a Cold reset, resets all register bits to zero.

• The GIC-600AE ACE-Lite slave port can be 64 bits, 128 bits, or 256 bits wide, depending on the
configuration. The Arm® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3 and version 4 defines the permitted sizes of access.

 Note

The GIC-600AE guarantees single-copy atomicity for doubleword accesses.

• The GIC-600AE supports data only in little-endian format.
• The access types for the GIC-600AE are as follows:

RO Read-only.
RW Read and write.
WO Write-only, reads return as UNKNOWN.

This section contains the following subsections:
• 4.1.1 Register map pages on page 4-103.
• 4.1.2 Discovery on page 4-104.
• 4.1.3 GIC-600AE register access and banking on page 4-105.

4.1.1 Register map pages

The register map is separated into several pages.

The register map pages are defined in the following table.

Table 4-1 Register map pages

Offset[x:16] Page Description

0 GICD GICD main page.

1 GICA GICD message-based interrupts alias.

2 GICT GIC trace and debug page.

3 GICP GIC PMU.

4 + (ITSnum × 2) GITSn ITS address page.
 Note

ITSnum is the serial number of each ITS, which is from 0 to ITScount−1.

5 + (ITSnum × 2) GITSn translate ITS translation page.

4 Programmers model
4.1 The GIC-600AE registers

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-103

Non-Confidential

Table 4-1 Register map pages (continued)

Offset[x:16] Page Description

4 + (2 × ITScount) + (RDnum × 2) GICR (LPI) GICR LPI registers.
 Note

ITScount is the total number of ITS.

5 + (2 × ITScount) + (RDnum × 2) GICR (SGI) GICR PPI + SGI registers.
 Note

RDnum is the serial number of each “internal Redistributor”, which is from 0
to RDcount−1.

4 + (2 × ITScount) + (RDcount × 2) GICDA Alias to GICD (page after last GICR page).
 Note

RDcount is the total number of “internal Redistributor”, which equals total
number of CPU cores.

For more information, see the Arm® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0.

4.1.2 Discovery

Arm recommends that the operating system is provided with pointers to the start of the Distributor, every
ITS, and the first Redistributor page on each chip.

To verify that the pages are of GIC registers, these pointers can be checked against the discovery
registers, which start at offset 0xFFD0 for each GIC page. These registers allow discovery of the
architecture version and, for GIC-600AE, whether the page contains the Distributor, ITS, or
Redistributor registers. For example, to discover the page type software can:

1. Read from 0xFFE0 to determine the PIDR0.PART_0 value.
2. Read from 0xFFE4 to determine the PIDR1.PART_1 value.
3. Concatenate PART_1 (4 bits) and PART_0 (8 bits), to discover the 12-bit part number, PART_1||

PART_0. A value of:
• 0x492 indicates that this page contains Distributor registers.
• 0x493 indicates that this page contains Redistributor registers.
• 0x494 indicates that this page contains ITS registers.

When this information is known, software can obtain additional information from registers that are
specific to each page.

For Redistributors, Arm recommends that you examine GICR_TYPER to determine:

• Whether the implementation has two or four pages per Redistributor that are based on the features
implemented. It can be inferred that GIC-600AE has only two pages for each Redistributor because
the GICR_TYPER.VLPIS bit indicates that it does not support virtual LPIs.

• Whether it is the last Redistributor in the series of pages.
• Which core the Redistributor is for, based on affinity values.

This information allows you to iteratively search through all Redistributors in a discovery process.

4 Programmers model
4.1 The GIC-600AE registers

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-104

Non-Confidential

The GITS_TYPER register in the GIC-600AE indicates that you must program the ITS with unique
ProcessorNumbers, instead of physical target addresses. The GICR_TYPER contains the unique
ProcessorNumber that you must use to reference a Redistributor when programming the ITS.

 Note

In a multichip configuration, the ProcessorNumber upper bits are derived from the chip_id tie-off.
Therefore, the chip_id value must be set before the GIC exits from reset.

For more information, see the Arm® GICv3 and GICv4 Software Overview.

4.1.3 GIC-600AE register access and banking

The GIC-600AE uses an access and banking scheme for its registers.

 Note

For more information about the register access and banking scheme, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

The key characteristics of the scheme are:
• Some registers, such as the Distributor Control Register, GICD_CTLR, and the Redistributor Control

Register, GICR_CTLR, are banked by security that provides separate Secure and Non-secure copies
of the registers. A Secure access to the address accesses the Secure copy of the register. A Non-secure
access to the address accesses the Non-secure copy.

• Some registers, such as the Interrupt Group Registers, GICD_IGROUPRn, are only accessible using
Secure accesses.

• Non-secure accesses to registers, or parts of a register, which are only accessible to Secure accesses
are Read-As-Zero and Writes Ignored (RAZ/WI).

4 Programmers model
4.1 The GIC-600AE registers

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-105

Non-Confidential

4.2 Distributor registers (GICD/GICDA) summary
The GIC-600AE Distributor functions are controlled through the Distributor registers identified with the
prefix GICD. The Distributor Alias registers are identified with the prefix GICDA.

The following table lists the Distributor registers in base offset order and provides a reference to the
register description that is described in either this book or the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version 4.

Address offsets are relative to the Distributor base address defined by the system memory map.

Offsets that are not shown are Reserved and RAZ/WI. Accesses to these offsets might be reported in
error record 0 as a SYN_ACE_BAD access.

Table 4-2 Distributor registers (GICD/GICDA) summary

Offset Name Type Width Reset Description Architecture
defined?

0x0000 GICD_CTLR
on page 4-109

RW 32 Configuration
dependent

Distributor Control Register Yes

0x0004 GICD_TYPER
on page 4-110

RO 32 Configuration
dependent

Interrupt Controller Type Register Yes

0x0008 GICD_IIDR
on page 4-111

RO 32 Configuration
dependent

Distributor Implementer
Identification Register

Yes

0x000C-0x001C - - - - Reserved -

0x0020 GICD_FCTLR
on page 4-111

RW 32 0x0 Function Control Register e

0x0024 GICD_SAC
on page 4-113

RW 32 Tie-off
dependentf

Secure Access Control register e

0x0028-0x003C - - - - Reserved -

0x0040 GICD_SETSPI_NSR WO 32 - Non-secure SPI Set Register Yes

0x0044 - - - - Reserved -

0x0048 GICD_CLRSPI_NSR WO 32 - Non-secure SPI Clear Register Yes

0x004C - - - - Reserved -

0x0050 GICD_SETSPI_SRgh WO 32 - Secure SPI Set Register Yes

0x0054 - - - - Reserved -

0x0058 GICD_CLRSPI_SRgh WO 32 - Secure SPI Clear Register Yes

0x005C-0x007C - - - - Reserved -

0x0080-0x00FC GICD_IGROUPRnih RW 32 0x0 Interrupt Group Registers Yes

0x0100-0x017C GICD_ISENABLERni RW 32 0x0 Interrupt Set-Enable Registers Yes

0x0180-0x01FC GICD_ICENABLERni RW 32 0x0 Interrupt Clear-Enable Registers Yes

e Microarchitecture defined.
f The reset values of GICD_SAC.GICTNS and GICD_SAC.GICPNS are controlled by the gict_allow_ns and gicp_allow_ns tie-off signals respectively.
g The existence of this register depends on the configuration of the GIC-600AE. If Security support is not included, then this register does not exist.
h This register is only accessible from a Secure access.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-106

Non-Confidential

Table 4-2 Distributor registers (GICD/GICDA) summary (continued)

Offset Name Type Width Reset Description Architecture
defined?

0x0200-0x027C GICD_ISPENDRni RW 32 SPI wire
dependent

Interrupt Set-Pending Registers Yes

0x0280-0x02FC GICD_ICPENDRni RW 32 SPI wire
dependent

Interrupt Clear-Pending Registers Yes

0x0300-0x037C GICD_ISACTIVERni RW 32 0x0 Interrupt Set-Active Registers Yes

0x0380-0x03FC GICD_ICACTIVERni RW 32 0x0 Interrupt Clear-Active Registers Yes

0x0400-0x07FC GICD_IPRIORITYRnj RW 32 Security
dependent

Interrupt Priority Registers Yes

0x0800-0x0BFC - - - - Reserved -

0x0C00-0x0CFC GICD_ICFGRn RW 32 0x0 Interrupt Configuration Registers Yes

0x0D00-0x0D7C GICD_IGRPMODRn RW 32 0x0 Interrupt Group Modifier
Registers

Yes

0x0D80-0x0DFC - - - - Reserved -

0x0E00-0x0EFC GICD_NSACRngk RW 32 0x0 Non-secure Access Control
Registers

Yes

0x0F00-0x60FC - - - - Reserved -

0x6100-0x7FD8 GICD_IROUTERnl RW 64 0x0080000000 Interrupt Routing Registers.

See the Arm® GICv3 and GICv4
Software Overview.

 Note

All SPIs are reset with
Interrupt_Routing_Mode == 1.
The first register is
GICD_IROUTER32.

Yes

0x7FDC-0xBFFC - - - - Reserved -

0xC000 GICD_CHIPSR
on page 4-114

RW 32 P-Channel
dependent

Chip Status Register e

0xC004 GICD_DCHIPR
on page 4-115

RW 32 0x0 Default Chip Register e

0xC008-0xC080 GICD_CHIPRn
on page 4-116

RW 64 0x0 Chip Registers e

0xC088-0xDFFC - - - - Reserved -

0xE008-0xE0FC GICD_ICLARn
on page 4-116

RW 32 0x0 Interrupt Class Registers. The first
register is GICD_ICLAR2.

e

i The first one of these registers does not exist when affinity routing is enabled.
j The first eight of these registers do not exist when affinity routing is enabled.
k The first four of these registers do not exist when affinity routing is enabled.
l The first 32 of these registers do not exist when affinity routing is enabled.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-107

Non-Confidential

Table 4-2 Distributor registers (GICD/GICDA) summary (continued)

Offset Name Type Width Reset Description Architecture
defined?

0xE104-0xE17C GICD_ICERRRn
on page 4-117

RW 32 0x0 Interrupt Error Registers. The first
register is GICD_ICERRR1.

e

0xE180-0xEFFC - - - - Reserved -

0xF000 GICD_CFGID
on page 4-118

RO 64 Configuration
dependent

Configuration ID Register e

0xF008-0xFFCC - - - - Reserved -

0xFFD0 GICD_PIDR4
on page 4-119

RO 32 0x44 Peripheral ID 4 Register No

0xFFD4 GICD_PIDR5 RO 32 0x00 Peripheral ID 5 Register No

0xFFD8 GICD_PIDR6 RO 32 0x00 Peripheral ID 6 Register No

0xFFDC GICD_PIDR7 RO 32 0x00 Peripheral ID 7 Register No

0xFFE0 GICD_PIDR0
on page 4-121

RO 32 0x92 Peripheral ID 0 Register No

0xFFE4 GICD_PIDR1
on page 4-121

RO 32 0xB4 Peripheral ID 1 Register No

0xFFE8 GICD_PIDR2
on page 4-120

RO 32 0x3B Peripheral ID 2 Register No

0xFFEC GICD_PIDR3
on page 4-120

RO 32 0x00 Peripheral ID 3 Register No

0xFFF0 GICD_CIDR0 RO 32 0x0D Component ID 0 Register No

0xFFF4 GICD_CIDR1 RO 32 0xF0 Component ID 1 Register No

0xFFF8 GICD_CIDR2 RO 32 0x05 Component ID 2 Register No

0xFFFC GICD_CIDR3 RO 32 0xB1 Component ID 3 Register No

This section contains the following subsections:
• 4.2.1 GICD_CTLR, Distributor Control Register on page 4-109.
• 4.2.2 GICD_TYPER, Interrupt Controller Type Register on page 4-110.
• 4.2.3 GICD_IIDR, Distributor Implementer Identification Register on page 4-111.
• 4.2.4 GICD_FCTLR, Function Control Register on page 4-111.
• 4.2.5 GICD_SAC, Secure Access Control register on page 4-113.
• 4.2.6 GICD_CHIPSR, Chip Status Register on page 4-114.
• 4.2.7 GICD_DCHIPR, Default Chip Register on page 4-115.
• 4.2.8 GICD_CHIPR<n>, Chip Registers on page 4-116.
• 4.2.9 GICD_ICLARn, Interrupt Class Registers on page 4-116.
• 4.2.10 GICD_ICERRRn, Interrupt Clear Error Registers on page 4-117.
• 4.2.11 GICD_CFGID, Configuration ID Register on page 4-118.
• 4.2.12 GICD_PIDR4, Peripheral ID4 register on page 4-119.
• 4.2.13 GICD_PIDR3, Peripheral ID3 register on page 4-120.
• 4.2.14 GICD_PIDR2, Peripheral ID2 register on page 4-120.
• 4.2.15 GICD_PIDR1, Peripheral ID1 register on page 4-121.
• 4.2.16 GICD_PIDR0, Peripheral ID0 register on page 4-121.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-108

Non-Confidential

4.2.1 GICD_CTLR, Distributor Control Register

This register enables interrupts and affinity routing.

The GICD_CTLR characteristics are:

Usage constraints The EnableGrp* bits and the RWP bit must be 0 before the DS bit can be
updated. A write that sets the DS bit must also set the EnableGrp* bits to 0.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

EnableGrp1S
Reserved
ARE_S
ARE_NS
DS
E1NWF

30

RWP

Reserved

EnableGrp0
EnableGrp1NS

Figure 4-1 GICD_CTLR bit assignments

The following table shows the bit assignments.

Table 4-3 GICD_CTLR bit assignments

Bits Name Function Type Reset

[31] RWP Register Write Pending:
• 0 = No register write in progress.
• 1 = Register write in progress.

RO 0

[30:8] - Reserved. - -

[7] E1NWF Enable 1 of N Wakeup Functionality. RW 0

[6] DS Disable Security. RW ds_valuem

[5] ARE_NS Affinity Routing Enable, Non-secure state. RO 1

[4] ARE_S Affinity Routing Enable, Secure state. RO 1

[3] - Reserved. - -

[2] EnableGrp1S Enable Secure Group 1 interrupts. RW 0

[1] EnableGrp1NS Enable Non-secure Group 1 interrupts. RW 0

[0] EnableGrp0 Enable Group 0 interrupts. RW 0

 Note

For information about the different Security states for this register, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

m Resets to 1 when the ds_value configuration parameter is set to 1. Resets to 0 when ds_value is set to 0 or P.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-109

Non-Confidential

4.2.2 GICD_TYPER, Interrupt Controller Type Register

This register returns information about the configuration of the GIC-600AE. You can use this register to
determine the number of Security states, the number of INTIDs, and the number of processor cores that
the GIC supports.

The GICD_TYPER characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

ITLinesNumber

31 27 26 25 24 23 19 18 17 16 15 11 10 9 8 7 5 4 0

CPU
Numbernum_LPIsIDbitsReserved

Reserved
SecurityExtn

MBIS
LPIS
DVIS

A3V
No1N
RSS

Figure 4-2 GICD_TYPER bit assignments

The following table shows the bit assignments.

Table 4-4 GICD_TYPER bit assignments

Bits Name Function

[31:26] - Reserved, returns 0b000000.

[25] No1N 1 of N SPI:
• 0 = The GIC-600AE supports 1 of N SPI interrupts.

[24] A3V Affinity level 3 values. Depending on the configuration, returns either:
• 0 = The GIC-600AE Distributor only supports zero values of Affinity level 3.
• 1 = The GIC-600AE Distributor supports nonzero values of Affinity level 3.

[23:19] IDbits Interrupt identifier bits:
• 0b01111 = The GIC-600AE supports 16 interrupt identifier bits.

[18] DVIS Direct Virtual LPI injection support:
• 0 = The GIC-600AE does not support Direct Virtual LPI injection.

See the Arm® GICv3 and GICv4 Software Overview.

[17] LPIS Indicates whether the implementation supports LPIs. Depending on the configuration, returns either:
• 0 = LPIs are not supported.
• 1 = LPIs are supported.

[16] MBIS Message-based interrupt support:
• 1 = The GIC-600AE supports message-based interrupts.

[15:11] num_LPIs Returns 0b00000 because GICD_TYPER.IDbits indicates the number of LPIs that the GIC supports.

[10] SecurityExtn Security state support. Depending on the configuration, returns either:
• 0 = The GIC-600AE supports only a single Security state.
• 1 = The GIC-600AE supports two Security states.

When GICD_CTLR.DS == 1, this field is RAZ.

[9:8] - Reserved, returns 0b00000.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-110

Non-Confidential

Table 4-4 GICD_TYPER bit assignments (continued)

Bits Name Function

[7:5] CPUNumber Returns 0b000 because GICD_CTLR.ARE==1 (ARE_NS & ARE_S).

[4:0] ITLinesNumber Returns the maximum SPI INTID that this GIC-600AE implementation supports, and is given by 32×
(ITLinesNumber + 1) − 1.

4.2.3 GICD_IIDR, Distributor Implementer Identification Register

This register provides information about the implementer and revision of the Distributor.

The GICD_IIDR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Figure 4-3 GICD_IIDR bit assignments

The following table shows the bit assignments.

Table 4-5 GICD_IIDR bit assignments

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x3 = GIC-600AE.

[23:20] - Reserved, RAZ.

[19:16] Variant Indicates the major revision, or variant, of the product rmpn identifier:

0x0 = r0.

[15:12] Revision Indicates the minor revision of the product rmpn identifier:
• 0x1 = p0.
• 0x3 = p1.
• 0x4 = p2.

[11:0] Implementer Identifies the implementer:

0x43B = Arm.

4.2.4 GICD_FCTLR, Function Control Register

This register controls the scrubbing of all RAMs in the local Distributor. The register is not distributed
and only acts on the local chip.

The GICD_FCTLR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-111

Non-Confidential

The following figure shows the bit assignments.

31 4 3 1 0

CGO

29 19 18 17 16 15

Reserved
NSACR

Reserved SIP

Reserved
DCC

28 27 26 25 24 22 21 20 14 13

QDENY
POS

Reserved

ReservedReservedReserved

Figure 4-4 GICD_FCTLR bit assignments

The following table shows the bit assignments.

Table 4-6 GICD_FCTLR bit assignments

Bits Name Function

[31:29] - Reserved, returns 0b00000.

[28:27] - Reserved, RES0.

[26] POS Point Of Serialization.
When an interrupt is sent remotely and POS is set, it ensures that writes to GICD_SETSPI and GICD_CLRSPI
propagate to remote chips before ACE-Lite sends a response. Applies only to edge-triggered interrupts.
• 1 = Propagate access to POS.
• 0 = Store locally and propagate when possible.

Resets to 0b0.

[25] QDENY Q-Channel Deny.

Overrides the Q-Channel logic and forces the Distributor to reject powerdown requests.

[24:22] - Reserved, RES0.

[21] DCC Do not Correct Cache.

Modifies a<x>cache outputs from the Distributor.

See 3.11 Memory access and attributes on page 3-69.

[20:19] - Reserved, RES0.

[18] - Reserved.

[17:16] NSACR Non-secure Access Control. Values are as described in the GICD_NSACR register. This is the value that is used if
an SPI has an error.

Secure access only.

Resets to 0b00.

[15:14] - Reserved, returns 0b00.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-112

Non-Confidential

Table 4-6 GICD_FCTLR bit assignments (continued)

Bits Name Function

[13:4] CGO Clock gate override. One bit per clock gate:
• 1 = Leave clock running.
• 0 = Use full clock gating.

 Note

CGO must be set if clock gates are not implemented.

The clock gate bit assignments are:

Bit[4], CGO[0] CPU communications block.

Bit[5], CGO[1] SPI registers and search.

Bit[6], CGO[2] ACE-Lite slave interface.

Bit[7], CGO[3] ACE-Lite master interface.

Bit[8], CGO[4] LPI cache and search.

Bit[9], CGO[5] SGI and GICR registers.

Bit[10], CGO[6] Trace and debug.

Bit[11], CGO[7] Pending table search and control.

Bit[12], CGO[8] ITS communications block.

Bit[13], CGO[9] Reserved.

[3:1] - Reserved, returns 0b000.

[0] SIP Scrub in progress:
• 1 = Scrub in progress.
• 0 = No scrub in progress.

This bit is read and written by software. When a scrub is complete, the GIC clears the bit to 0.

4.2.5 GICD_SAC, Secure Access Control register

This register allows Secure software to control Non-secure access to GIC-600AE Secure features by
other software.

The GICD_SAC characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

31 3 2 1 0

Reserved

GICPNS
GICTNS
DSL

Figure 4-5 GICD_SAC bit assignments

The following table shows the bit assignments.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-113

Non-Confidential

Table 4-7 GICD_SAC bit assignments

Bits Name Function Type

[31:3] - Reserved, returns zero. -

[2] GICPNS Controls whether the Non-secure world can access the Secure PMU data:
• 1 = Allow Non-secure access to the GICP registers.
• 0 = Secure access only.

The gicp_allow_ns tie-off signal controls the reset value on a per-chip basis.

RW

[1] GICTNS Controls whether the Non-secure world can access the Secure trace data:
• 1 = Allow Non-secure access to the GICT registers.
• 0 = Secure access only.

The gict_allow_ns tie-off signal controls the reset value on a per-chip basis.

RW

[0] DSL Disable Security Lock. WriteOnce (WO):
• 1 = WO bit to lock GICD_CTLR.DS to be WO at its current value.
• 0 = No effect.

When set to 1, this bit only returns to 0 when the GIC is reset.

RW

4.2.6 GICD_CHIPSR, Chip Status Register

This register allows Secure software to access the status of the chip in a multichip configuration. A single
copy of this register exists on each chip in a multichip configuration.

The GICD_CHIPSR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations This register is available in all multichip configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

31 12 11 10 9 8 7 6 5 4 3 2 1 0

RTSReserved

SPI_busy Reserved
GTS

GTO
SGI_busy

LPI_busy
CC_busy Reserved

Reserved

Figure 4-6 GICD_CHIPSR bit assignments

The following table shows the bit assignments.

Table 4-8 GICD_CHIPSR bit assignments

Bits Name Function

[31:12] - Reserved, RES0.

[11] SPI_busy 1 = Ongoing SPI-related cross-chip traffic.

[10] SGI_busy 1 = Ongoing SGI-related traffic or not all cores are asleep.

[9] LPI_busy 1 = Ongoing LPI-related traffic.

[8] CC_busy 1 = Ongoing cross-chip traffic.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-114

Non-Confidential

Table 4-8 GICD_CHIPSR bit assignments (continued)

Bits Name Function

[7:6] - Reserved, RES0.

[5:4] RTS Routing Table Status:
• 0b00 = Disconnected.
• 0b01 = Updating.
• 0b10 = Consistent.
• 0b11 = Reserved.

[3] - Reserved, RES0.

[2] GTO Gating Transaction Ongoing:
• 0 = No accesses.
• 1 = Accesses ongoing.

[1] GTS Gating Status:
• 0 = Not gated.
• 1 = Gated.

[0] - Reserved, RES0.

4.2.7 GICD_DCHIPR, Default Chip Register

This register allows Secure software to access the status of a chip in a multichip system. A single copy of
this register exists on each chip in a multichip configuration.

The GICD_DCHIPR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations This register is available in all multichip configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

31 3 1 0

Reserved

4

rt_owner

8 7

PUP

Reserved

Figure 4-7 GICD_DCHIPR bit assignments

The following table shows the bit assignments.

Table 4-9 GICD_DCHIPR bit assignments

Bits Name Function Type

[31:8] - Reserved. -

[7:4] rt_owner Routing table owner:

Value = 0-15.

RW

[3:1] - Reserved. -

[0] PUP Power Update in Progress:
• 0 = PUP not in progress.
• 1 = PUP in progress.

RO

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-115

Non-Confidential

4.2.8 GICD_CHIPR<n>, Chip Registers

Each register controls the configuration of the chip in a multichip system. This register exists on each
chip in a multichip configuration and is identified by the chip number.

The GICD_CHIPR<n> characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations This register is available in all multichip configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

16 15 10 9 5 4 2 1 0

SPI_BLOCKS

48

ADDR

63

Reserved

47

Reserved
PUP
SocketState

SPI_BLOCK_MINADDR

32

31

Figure 4-8 GICD_CHIPR<n> bit assignments

The following table shows the bit assignments.

Table 4-10 GICD_CHIPR<n> bit assignments

Bits Name Function Type

[63:48] - Reserved. -

[47:16] ADDR Controls the value of icdrtdest, when routing messages to the remote chip. The
chip_addr_width configuration parameter controls the width of this field, so the field spans
from bit[16] upwards.

RW

[15:10] SPI_BLOCK_MIN Controls the minimum number of SPIs in a group (block). The permitted values are 0-31. RW

[9:5] SPI_BLOCKS Controls the number of SPI blocks. The permitted values are 0-31. RW

[4:2] - Reserved. -

[1] PUP This bit returns the power update status:
• 0 = Power update complete.
• 1 = Power update in progress.

RO

[0] SocketState This bit controls the state of the chip:
• 0 = Chip is offline.
• 1 = Chip is online.

RW

4.2.9 GICD_ICLARn, Interrupt Class Registers

These registers control whether a 1 of N SPI can target a core that is assigned to class 0 or class 1 group.
Each register controls 16 SPIs and the GIC-600AE has 60 registers, GICD_ICLAR2-GICD_ICLAR61.

The GICD_ICLARn characteristics are:

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-116

Non-Confidential

Usage constraints The Distributor provides up to 60 registers to support 960 SPIs. If you configure
the GIC-600AE to use fewer than 960 SPIs, then it reduces the number of
registers accordingly. For locations where interrupts are not implemented, the
register is RAZ/WI.

These registers are only accessible when the corresponding
GICD_IROUTERn.Interrupt_Routing_Mode == 1.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

nn+1n+2n+3n+4n+5n+6n+7n+8n+9n+10n+11n+12n+13n+14n+15

Class

0

Figure 4-9 GICD_ICLARn bit assignments

The following table shows the bit assignments.

Table 4-11 GICD_ICLARn bit assignments

Bits Name Function

[31:0]

Bits[2x+1:2x],
for x = 0 to 15

Class<x> Controls whether the 1 of N SPI can target a core, depending on the class group that the core is assigned
to:
• 0b00 = The SPI can target a core that is assigned to class 0 or class 1.
• 0b01 = The SPI can target a core that is assigned to class 1.
• 0b10 = The SPI can target a core that is assigned to class 0.
• 0b11 = The SPI cannot target a core that is assigned to class 0 or class 1.

 Note

The SPI that a bit refers to, depends on its bit position and the base address offset of the GICD_ICLARn,
that is, SPI = 16×n + bit[number]/2.

4.2.10 GICD_ICERRRn, Interrupt Clear Error Registers

These registers can clear the error status of an SPI or return the error status of an SPI. Each register
monitors 32 SPIs and the GIC-600AE has 30 registers, GICD_ICERRR1-GICD_ICERRR30.

 Note

In earlier versions of the GIC-600AE, this register was known as the GICD_IERRRn.

The GICD_ICERRRn characteristics are:

Usage constraints The Distributor provides up to 30 registers to support 960 SPIs. If you configure
the GIC-600AE to use fewer than 960 SPIs, it reduces the number of registers
accordingly. For locations where interrupts are not implemented, the register is
RAZ/WI.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-117

Non-Confidential

31 0

Status

Figure 4-10 GICD_ICERRRn bit assignments

The following table shows the bit assignments.

Table 4-12 GICD_ICERRRn bit assignments

Bits Name Function

[31:0] Status Indicates whether an SPI is in an error state:
• 0 = If read, the SPI is not in an error state and programming is valid. Writing 0 has no effect.
• 1 = If read, the SPI is in an error state and programming is not valid. Writing 1 clears the error.

 Note

The SPI that a bit refers to, depends on its bit position and the base address offset of the GICD_ICERRRn, that is, SPI
= 32×n + bit[number].

4.2.11 GICD_CFGID, Configuration ID Register

This register contains information that enables test software to determine if the GIC-600AE system is
compatible.

The GICD_CFGID characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

31 21 20 15 14 13 12 11 8 7 4 3 1 0

SNUMSPISReserved

63 47 44 43 40 39 36 35 32

AFF0Reserved AFF1AFF2AFF3

Reserved

4852

PEW

53

SO
Reserved

LPIS
DLPI
AFSL

Figure 4-11 GICD_CFGID bit assignments

The following table shows the bit assignments.

Table 4-13 GICD_CFGID bit assignments

Bits Name Function

[63:53] - Reserved, returns zero.

[52:48] PEW Width of lower part of on-chip core number field, ceil[log2(max_pe_on_chip)]. max_pe_on_chip is a
configuration option that is set during system integration, which defines the maximum number of cores on a single
chip in the system. See 3.16.8 LPI multichip operation on page 3-101 for more information.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-118

Non-Confidential

Table 4-13 GICD_CFGID bit assignments (continued)

Bits Name Function

[47:44] AFF3 Returns the Affinity3 bits.

[43:40] AFF2 Returns the Affinity2 bits.

[39:36] AFF1 Returns the Affinity1 bits.

[35:32] AFF0 Returns the Affinity0 bits.

[31:21] - Reserved, returns zero.

[20:15] SPIS Number of SPI blocks supported.

[14] AFSL Chip affinity selection level.

[13] DLPI Direct LPI registers supported.

[12] LPIS LPI supported.

[11:8] - Reserved, returns zero.

[7:4] CNUM Chip number.

[3:1] - Reserved, returns zero.

[0] SO Chip offline.

4.2.12 GICD_PIDR4, Peripheral ID4 register

This register returns byte[4] of the peripheral ID. The GICD_PIDR4 register is part of the set of
Distributor peripheral identification registers.

The GICD_PIDR4 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

DES_2SIZEReserved

31 8 7 4 3 0

Figure 4-12 GICD_PIDR4 bit assignments

The following table shows the bit assignments.

Table 4-14 GICD_PIDR4 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] SIZE Returns 0x4, which indicates that the Distributor occupies 64KB of memory, (2SIZE × 4KB).

[3:0] DES_2 Returns 0x4, which represents bits[10:7] of the JEDEC JEP106 identification code. Together, GICD_PIDR1.DES_0,
GICD_PIDR2 .DES_1, and DES_2 identify the component designer.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-119

Non-Confidential

4.2.13 GICD_PIDR3, Peripheral ID3 register

This register returns byte[3] of the peripheral ID. The GICD_PIDR3 register is part of the set of
Distributor peripheral identification registers.

The GICD_PIDR3 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

CMODREVANDReserved

31 8 7 4 3 0

Figure 4-13 GICD_PIDR3 bit assignments

The following table shows the bit assignments.

Table 4-15 GICD_PIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] REVAND Indicates minor errata fixes specific to the revision of the component being used, for example metal fixes after
implementation. 0x0 indicates that there are no errata fixes to this component.

0x0.

[3:0] CMOD Customer modified. Indicates whether the customer has modified the behavior of the component. Usually, this
field is 0x0. Customers change this value when they make authorized modifications to this component.

0x0.

4.2.14 GICD_PIDR2, Peripheral ID2 register

This register returns byte[2] of the peripheral ID. The GICD_PIDR2 register is part of the set of
Distributor peripheral identification registers.

The GICD_PIDR2 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

ArchRevReserved

31 8 7 4 3

DES_1

02

JEDEC

Figure 4-14 GICD_PIDR2 bit assignments

The following table shows the bit assignments.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-120

Non-Confidential

Table 4-16 GICD_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the Distributor complies:
• 0x3 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GICD_PIDR1
on page 4-121.

4.2.15 GICD_PIDR1, Peripheral ID1 register

This register returns byte[1] of the peripheral ID. The GICD_PIDR1 register is part of the set of
Distributor peripheral identification registers.

The GICD_PIDR1 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

PART_1DES_0Reserved

31 8 7 4 3 0

Figure 4-15 GICD_PIDR1 bit assignments

The following table shows the bit assignments.

Table 4-17 GICD_PIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] DES_0 Returns 0xB, which represents bits[3:0] of the JEDEC JEP106 identification code. Together, DES_0,
GICD_PIDR2.DES_1, and GICD_PIDR4.DES_2 identify the component designer.

[3:0] PART_1 Returns 0x4, which represents bits[11:8] of the 12-bit part number of the Distributor. Together,
GICD_PIDR0.PART_0 and PART_1 field values indicate the part number of the Distributor.

4.2.16 GICD_PIDR0, Peripheral ID0 register

This register returns byte[0] of the peripheral ID. The GICD_PIDR0 register is part of the set of
Distributor peripheral identification registers.

The GICD_PIDR0 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.2 Distributor registers (GICD/GICDA) summary on page 4-106.

The following figure shows the bit assignments.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-121

Non-Confidential

PART_0Reserved

31 8 7 0

Figure 4-16 GICD_PIDR0 bit assignments

The following table shows the bit assignments.

Table 4-18 GICD_PIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:0] PART_0 Returns 0x92, which represents bits[7:0] of the 12-bit part number of the Distributor. Together, PART_0 and
GICD_PIDR1.PART_1 field values indicate the part number of the Distributor.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-122

Non-Confidential

4.3 Distributor registers (GICA) for message-based SPIs summary
The functions for the GIC-600AE message-based SPIs are controlled through the Distributor registers
identified with the prefix GICA.

The following table lists the message-based SPI registers. All registers are 32 bits wide and 16-bit
accesses are allowed.

Table 4-19 Distributor registers (GICA) for message-based SPIs summary

Offset Name Type Width Reset Descriptionn Architecture
defined?

0x0000-0x0004 - - - - Reserved -

0x0008 4.3.1 GICA_TYPER, Type
Register on page 4-124

RO 64 Configuration
dependent

Aliased Type register. No

0x0010-0x003C - - - - Reserved -

0x0040 GICA_SETSPI_NSR WO 32 - Aliased Non-secure SPI
Set Register

Yes

0x0044 - - - - Reserved -

0x0048 GICA_CLRSPI_NSR WO 32 - Aliased Non-secure SPI
Clear Register

Yes

0x004C - - - - Reserved -

0x0050 GICA_SETSPI_SRo WO 32 - Aliased Secure SPI Set
Registerp

Yes

0x0054 - - - - Reserved -

0x0058 GICA_CLRSPI_SRo WO 32 - Aliased Secure SPI Clear
Registerp

Yes

0x005C-0xFFC8 - - - - Reserved -

0xFFCC 4.3.2 GICA_IIDR, Aliased
Distributor Implementer
Identification Register
on page 4-125

RO 32 0x0300443B Aliased Distributor
Implementer Identification
Register

Yes

0xFFD0 GICA_PIDR4 RO 32 0x44 Peripheral ID 4 Register No

0xFFD4 GICA_PIDR5 RO 32 0x00 Peripheral ID 5 Register No

0xFFD8 GICA_PIDR6 RO 32 0x00 Peripheral ID 6 Register No

0xFFDC GICA_PIDR7 RO 32 0x00 Peripheral ID 7 Register No

0xFFE0 GICA_PIDR0 RO 32 0x97 Peripheral ID 0 Register No

0xFFE4 GICA_PIDR1 RO 32 0xB4 Peripheral ID 1 Register No

0xFFE8 GICA_PIDR2 RO 32 0x3B Peripheral ID 2 Register No

0xFFEC GICA_PIDR3 RO 32 0x00 Peripheral ID 3 Register No

0xFFF0 GICA_CIDR0 RO 32 0x0D Component ID 0 Register No

n For the description of the registers that are not specific to the GIC-600AE, see the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3 and version 4.

o The existence of this register depends on the configuration of the GIC-600AE. If Security support is not included, this register does not exist.
p This register is only accessible from a Secure access.

4 Programmers model
4.3 Distributor registers (GICA) for message-based SPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-123

Non-Confidential

Table 4-19 Distributor registers (GICA) for message-based SPIs summary (continued)

Offset Name Type Width Reset Descriptionn Architecture
defined?

0xFFF4 GICA_CIDR1 RO 32 0xF0 Component ID 1 Register No

0xFFF8 GICA_CIDR2 RO 32 0x05 Component ID 2 Register No

0xFFFC GICA_CIDR3 RO 32 0xB1 Component ID 3 Register No

This section contains the following subsections:
• 4.3.1 GICA_TYPER, Type Register on page 4-124.
• 4.3.2 GICA_IIDR, Aliased Distributor Implementer Identification Register on page 4-125.

4.3.1 GICA_TYPER, Type Register

This register returns information about the number of SPIs that are assigned to the frame.

The GICA_TYPER characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.3 Distributor registers (GICA) for message-based SPIs summary

on page 4-123.

The following figure shows the bit assignments.

31 30 29 28 16 15 11 10 0

NumSPISReservedINTID

Valid SR
CLR

63 32

Reserved

Figure 4-17 GICA_TYPER bit assignments

The following table shows the bit assignments.

Table 4-20 GICA_TYPER bit assignments

Bits Name Function

[63:32] - Reserved, RES0.

[31] Valid Returns:
• 0 = Register reports no information on the capabilities of the frame, all other fields are RES0.
• 1 = Register reports information on capabilities of frame.

[30] CLR Indicates whether the GICA_CLRSPI registers are present:
• 0 = GICA_CLRSPI registers not present
• 1 = GICA_CLRSPI registers are present (only permitted value when Valid==1).

n For the description of the registers that are not specific to the GIC-600AE, see the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3 and version 4.

4 Programmers model
4.3 Distributor registers (GICA) for message-based SPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-124

Non-Confidential

Table 4-20 GICA_TYPER bit assignments (continued)

Bits Name Function

[29] SR Indicates whether the GICA_CLRSPI_SR and GICA_SETSPI_SR registers are present:
• 0 = GICA_CLRSPI_SR and GICA_SETSPI_SR registers not present
• 1 = GICA_CLRSPI_SR and GICA_SETSPI_SR registers are present (only permitted value when Valid==1).

[28:16] INTID The INTID of the lowest or first SPI that is assigned to the frame.

[15:11] - Reserved, RES0.

[10:0] NumSPIS Returns the number of SPIs that are assigned to the frame.

4.3.2 GICA_IIDR, Aliased Distributor Implementer Identification Register

This register provides information about the implementer and revision of the Distributor alias.

The GICA_IIDR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.3 Distributor registers (GICA) for message-based SPIs summary

on page 4-123.

The following figure shows the bit assignments.

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Figure 4-18 GICA_IIDR bit assignments

The following table shows the bit assignments.

Table 4-21 GICA_IIDR bit assignments

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x3 = GIC-600AE.

[23:20] - Reserved, RAZ.

[19:16] Variant Indicates the major revision, or variant, of the product rmpn identifier:

0x0 = r0.

[15:12] Revision Indicates the minor revision of the product rmpn identifier:
• 0x1 = p0.
• 0x3 = p1.
• 0x4 = p2.

[11:0] Implementer Identifies the implementer:

0x43B = Arm.

4 Programmers model
4.3 Distributor registers (GICA) for message-based SPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-125

Non-Confidential

4.4 Redistributor registers for control and physical LPIs summary
The functions for the GIC-600AE physical LPIs are controlled through the Redistributor registers
identified with the prefix GICR. In GICv3, these registers start from the base address of the
Redistributor.

For more information about LPIs, see the Arm® GICv3 and GICv4 Software Overview.

For descriptions of registers that are not specific to the GIC-600AE, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

Table 4-22 Redistributor registers for control and physical LPIs summary

Offset Name Type Width Reset Description Architecture
defined?

0x0000 GICR_CTLR RW 32 0x0 Redistributor Control
Register

Yes

0x0004 GICR_IIDR on page 4-127 RO 32 Configuration
dependent

Redistributor
Implementation
Identification Register

Yes

0x0008 GICR_TYPER on page 4-128 RO 64 Configuration
dependent

Redistributor Type
Register

Yes

0x0010 - - - - Reserved -

0x0014 GICR_WAKER on page 4-129 RW 32 0x6 Power Management
Control Registerq

r

0x0018-0x001C - - - - Reserved -

0x0020 GICR_FCTLR on page 4-130 RW 32 0x0 Function Control
Register

No

0x0024 GICR_PWRR on page 4-131 RW 32 Configuration
dependent

Power Register No

0x0028 GICR_CLASSR on page 4-132 RW 32 0x0 Class Register No

0x002C-0x003C - - - - Reserved -

0x0040 GICR_SETLPIRs WO 64 - - Yes

0x0048 GICR_CLRLPIRs WO 64 - - Yes

0x0050-0x006C - - - - Reserved -

0x0070 GICR_PROPBASERt RW 64 Configuration
dependent

Redistributor Properties
Base Address Register

Yes

0x0078 GICR_PENDBASERtuq RW 64 Configuration
dependent

Redistributor LPI
Pending Table Base
Address Register

Yes

0x0080-0x009C - - - - Reserved -

0x00A0 GICR_INVLPIRs WO 64 - - Yes

q This register is only accessible from a Secure access.
r Parts of this register are architecture defined and the other parts are microarchitecture defined.
s This register is present only when Direct LPI registers are configured.
t The existence of this register depends on the configuration of the GIC-600AE. If ITS and LPI support is not included, this register does not exist.
u Arm recommends that if possible, you set the GICR_PENDBASER Pending Table Zero bit to one. This reduces the power and time that is taken during

initialization.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-126

Non-Confidential

Table 4-22 Redistributor registers for control and physical LPIs summary (continued)

Offset Name Type Width Reset Description Architecture
defined?

0x00A8-0x00AC - - - - Reserved -

0x00B0 GICR_INVALLRs WO 64 - - Yes

0x00B8-0x00BC - - - - Reserved -

0x00C0 GICR_SYNCRs RO 32 0x0 - Yes

0x00C4-0xFFCC - - - - Reserved -

0xFFD0 GICR_PIDR4 RO 32 0x44 Peripheral ID 4 Register No

0xFFD4 GICR_PIDR5 RO 32 0x00 Peripheral ID 5 Register No

0xFFD8 GICR_PIDR6 RO 32 0x00 Peripheral ID 6 Register No

0xFFDC GICR_PIDR7 RO 32 0x00 Peripheral ID 7 Register No

0xFFE0 GICR_PIDR0 RO 32 0x93 Peripheral ID 0 Register No

0xFFE4 GICR_PIDR1 RO 32 0xB4 Peripheral ID 1 Register No

0xFFE8 GICR_PIDR2 on page 4-133 RO 32 0x3B Peripheral ID 2 Register No

0xFFEC GICR_PIDR3 RO 32 0x00 Peripheral ID 3 Register No

0xFFF0 GICR_CIDR0 RO 32 0x0D Component ID 0
Register

No

0xFFF4 GICR_CIDR1 RO 32 0xF0 Component ID 1
Register

No

0xFFF8 GICR_CIDR2 RO 32 0x05 Component ID 2
Register

No

0xFFFC GICR_CIDR3 RO 32 0xB1 Component ID 3
Register

No

This section contains the following subsections:
• 4.4.1 GICR_IIDR, Redistributor Implementation Identification Register on page 4-127.
• 4.4.2 GICR_TYPER, Redistributor Type Register on page 4-128.
• 4.4.3 GICR_WAKER, Power Management Control Register on page 4-129.
• 4.4.4 GICR_FCTLR, Function Control Register on page 4-130.
• 4.4.5 GICR_PWRR, Power Register on page 4-131.
• 4.4.6 GICR_CLASSR, Class Register on page 4-132.
• 4.4.7 GICR_PIDR2, Peripheral ID2 Register on page 4-133.

4.4.1 GICR_IIDR, Redistributor Implementation Identification Register

This register provides information about the implementer and revision of the Redistributor.

The GICR_IIDR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.4 Redistributor registers for control and physical LPIs summary

on page 4-126.

The following figure shows the bit assignments.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-127

Non-Confidential

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Figure 4-19 GICR_IIDR bit assignments

The following table shows the bit assignments.

Table 4-23 GICR_IIDR bit assignments

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x3 = GIC-600AE.

[23:20] - Reserved, RAZ.

[19:16] Variant Indicates the major revision, or variant, of the product rmpn identifier:

0x0 = r0.

[15:12] Revision Indicates the minor revision of the product rmpn identifier:
• 0x1 = p0.
• 0x3 = p1.
• 0x4 = p2.

[11:0] Implementer Identifies the implementer:

0x43B = Arm.

4.4.2 GICR_TYPER, Redistributor Type Register

This register returns information about the features that this Redistributor supports.

The GICR_TYPER characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.4 Redistributor registers for control and physical LPIs summary

on page 4-126.

The following figure shows the bit assignments.

31 26 25 24 23 8 7 6 5 4 3 2 1 0

ProcessorNumberReserved

63 32

AffinityValue

PLPIS
VLPIS

Reserved
DirectLPI

Last
DPGS

CommonLPIAff Reserved

Figure 4-20 GICR_TYPER bit assignments

The following table shows the bit assignments.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-128

Non-Confidential

Table 4-24 GICR_TYPER bit assignments

Bits Name Function

[63:32] AffinityValue Affinity level values for this Redistributor:

Bits[63:56], AF3 The Affinity level 3 value.

Bits[55:48], AF2 The Affinity level 2 value.

Bits[47:40], AF1 The Affinity level 1 value.

Bits[39:32], AF0 The Affinity level 0 value.

[31:26] - Reserved, returns 0b000000.

[25:24] CommonLPIAff Returns:
• 0b00 = Single core configuration.
• 0b01 = If chip set by AF3.
• 0b10 = If chip set by AF2.
• 0b11 = Reserved.

[23:8] ProcessorNumber Returns the core number and chip number that uniquely identifies this core in the system.

[7:6] - Reserved, returns 0b00.

[5] DPGS Disable Processor Group Selections:
• 1 = The GIC-600AE supports DPG. See the Arm® Generic Interrupt Controller Architecture

Specification, GIC architecture version 3 and version 4.

[4] Last Last Redistributor:
• 0 = This Redistributor is not the last Redistributor on the chip.
• 1 = This Redistributor is the last Redistributor on the chip.

[3] DirectLPI Indicates whether direct injection of physical LPIs is supported:
• 0 = This Redistributor does not support direct injection of physical LPIs. The GICR_SETLPIR,

GICR_CLRLPIR, GICR_INVLPIR, GICR_INVALLR, and GICR_SYNCR registers are not
implemented.

• 1 = This Redistributor supports direct injection of physical LPIs. The GICR_SETLPIR,
GICR_CLRLPIR, GICR_INVLPIR, GICR_INVALLR, and GICR_SYNCR registers are
implemented.

[2] - Reserved, returns 0.

[1] VLPIS Virtual LPI support:
• 0 = The GIC-600AE does not support virtual LPIs.

See the Arm® GICv3 and GICv4 Software Overview.

[0] PLPIS Physical LPI support:
• 0 = The GIC-600AE does not support physical LPIs.
• 1 = The GIC-600AE supports physical LPIs.

4.4.3 GICR_WAKER, Power Management Control Register

This register controls whether the GIC-600AE can be powered down.

The GICR_WAKER characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.4 Redistributor registers for control and physical LPIs summary

on page 4-126.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-129

Non-Confidential

The following figure shows the bit assignments.

31 30 3 2 1 0

ChildrenAsleepQuiescent

Reserved

ProcessorSleep
Sleep

Figure 4-21 GICR_WAKER bit assignments

The following table shows the bit assignments.

Table 4-25 GICR_WAKER bit assignments

Bits Name Function

[31] Quiescent Indicates that the GIC-600AE is idle and can be powered down if necessary.

[30:3] - Reserved, RAZ.

[2] ChildrenAsleep Indicates that the bus between the CPU interface and this Redistributor is quiescent.

[1] ProcessorSleep Indicates:
• 0 = This Redistributor never asserts wake_request and interrupt is delivered to the core.
• 1 = This Redistributor must assert a wake_request if there is a pending interrupt targeted at the

connected core. See 3.6.2 Processor core power management on page 3-60.

[0] Sleep Indicates the sleep state:
• 0 = Normal operation.
• 1 = The GIC-600AE ensures that all the caches are consistent with external memory and that it is safe to

power down. See 3.6.3 Other power management on page 3-61.

Related references
3.6.3 Other power management on page 3-61

4.4.4 GICR_FCTLR, Function Control Register

This register controls the scrubbing of all RAMs in the associated Redistributor.

The GICR_FCTLR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.4 Redistributor registers for control and physical LPIs summary

on page 4-126.

The following figure shows the bit assignments.

31 30 4 3 1 0

CGOReserved

67

SIPQD

Reserved

Figure 4-22 GICR_FCTLR bit assignments

The following table shows the bit assignments.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-130

Non-Confidential

Table 4-26 GICR_FCTLR bit assignments

Bits Name Function

[31] QD Q-Channel deny:
• 1 = Deny Q-Channel accesses.
• 0 = Allow Q-Channel accesses.

[30:7] - Reserved, RAZ/WI.

[6:4] CGO Clock gate override. One bit per clock gate:
• 1 = Leave clock running.
• 0 = Use full clock gating.

 Note

CGO must be set if clock gates are not implemented.

The clock gate bit assignments are:

Bit[4], CGO[0] Upstream message clock gate.

Bit[5], CGO[1] Downstream message clock gate.

Bit[6], CGO[2] Search clock gate.

[3:1] - Reserved, RAZ/WI.

[0] SIP Scrub in progress:
• 1 = Scrub in progress.
• 0 = No scrub in progress.

This bit is read and written by software. When a scrub is complete, the GIC clears the bit to 0.

4.4.5 GICR_PWRR, Power Register

This register controls the powerup sequence of the Redistributors. Software must write to this register
during the powerup sequence.

The GICR_PWRR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.4 Redistributor registers for control and physical LPIs summary

on page 4-126.

The following figure shows the bit assignments.

31 24 23 15 8 7 4 3 2 1 0

ReservedRDGORDGReserved

16

RDPD
RDAG
RDGPD
RDGPO

Figure 4-23 GICR_PWRR bit assignments

The following table shows the bit assignments.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-131

Non-Confidential

Table 4-27 GICR_PWRR bit assignments

Bits Name Function Type

[31:24] - Reserved, RAZ. -

[23:16] RDG RDGroup. This field indicates the number of this Redistributor. RO

[15:8] RDGO RDGroupOffset. This field indicates the identifier of the current core within the Redistributor. RO

[7:4] - Reserved, RAZ. -

[3] RDGPO RDGroupPoweredOff. This bit indicates:
• 0 = Redistributor is powered up and can be accessed.
• 1 = It is safe to power down the Redistributor.

RO

[2] RDGPD RDGroupPowerDown. This bit indicates the intentional power state of the Redistributor:
• 0 = Intend to power up.
• 1 = Intend to power down.

The Redistributor has reached its intentional power state when RDGPD = RDGPO.

RO

[1] RDAG RDApplyGroup. Setting this bit to 1 applies the RDPD value to all Redistributors on the same
Redistributor.

If the RDPD value cannot be applied to all cores in the group, then the GIC ignores this request.

WO

[0] RDPD RDPowerDown:
• 0 = Redistributor is powered up and can be accessed.
• 1 = The core permits the Redistributor to be powered down.

Writes to 1 are ignored if GICR_WAKER.ProcessorSleep != 1.

Writes are ignored if RDGPD != RDGPO and changing to not match RDGPD.

If all other cores in the Redistributor group have RDPD == 1, then setting this bit to 1 also sets RDGPD =
1.

RW

4.4.6 GICR_CLASSR, Class Register

This register specifies which class of 1 of N interrupt the CPU accepts.

The GICR_CLASSR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.4 Redistributor registers for control and physical LPIs summary

on page 4-126.

The following figure shows the bit assignments.

31 1 0

Reserved

Class

Figure 4-24 GICR_CLASSR bit assignments

The following table shows the bit assignments.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-132

Non-Confidential

Table 4-28 GICR_CLASSR bit assignments

Bits Name Function

[31:1] - Reserved, RAZ/WI.

[0] Class Interrupt class:
• 0 = Class 0.
• 1 = Class 1.

4.4.7 GICR_PIDR2, Peripheral ID2 Register

This register returns byte[2] of the peripheral ID. The GICR_PIDR2 register is part of the set of
Redistributor peripheral identification registers.

The GICR_PIDR2 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.4 Redistributor registers for control and physical LPIs summary

on page 4-126.

The following figure shows the bit assignments.

ArchRevReserved

31 8 7 4 3

DES_1

02

JEDEC

Figure 4-25 GICR_PIDR2 bit assignments

The following table shows the bit assignments.

Table 4-29 GICR_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the Redistributor complies:
• 0x3 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GICR_PIDR1.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-133

Non-Confidential

4.5 Redistributor registers for SGIs and PPIs summary
The functions for the GIC-600AE SGIs and PPIs are controlled through the Redistributor registers
identified with the prefix GICR.

For descriptions of registers that are not specific to the GIC-600AE, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

Table 4-30 Redistributor registers for SGIs and PPIs summary

Offset Name Type Width Reset Description Architecture
defined?

0x0000-0x007C - - - - Reserved -

0x0080 GICR_IGROUPR0 RW 32 0x0 Interrupt Group
Register

Yes

0x0084-0x0FFC - - - - Reserved -

0x0100 GICR_ISENABLER0 RW 32 0x0 Interrupt Set-Enable
Register

Yes

0x0104-0x017C - - - - Reserved -

0x0180 GICR_ICENABLER0 RW 32 0x0 Interrupt Clear-Enable
Register

Yes

0x0184-0x01FC - - - - Reserved -

0x0200 GICR_ISPENDR0 RW 32 PPI wire dependent Interrupt Set-Pending
Register

Yes

0x0204-0x027C - - - - Reserved -

0x0280 GICR_ICPENDR0 RW 32 PPI wire dependent Peripheral Clear
Pending Register

Yes

0x0284-0x02FC - - - - Reserved -

0x0300 GICR_ISACTIVER0 RW 32 0x0 Interrupt Set-Active
Register

Yes

0x0304-0x037C - - - - Reserved -

0x0380 GICR_ICACTIVER0 RW 32 0x0 Interrupt Clear-Active
Register

Yes

0x0384-0x03FC - - - - Reserved -

0x0400-0x041C GICR_IPRIORITYRn RW 32 0x0 Interrupt Priority
Registers

Yes

0x0420-0x0BFC - - - - Reserved -

0x0C00-0x0C04 GICR_ICFGRn RW 32 0xAAAAAAAA Interrupt Configuration
Registers

Yes

0x0C08-0x0CFC - - - - Reserved -

0x0D00 GICR_IGRPMODR0 RW 32 0x0 Interrupt Group
Modifier Register

Yes

0x0D04-0x0DFC - - - - Reserved -

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-134

Non-Confidential

Table 4-30 Redistributor registers for SGIs and PPIs summary (continued)

Offset Name Type Width Reset Description Architecture
defined?

0x0E00 GICR_NSACR RW 32 0x0 Non-secure Access
Control Register

Yes

0x0E04-0xBFFC - - - - Reserved -

0xC000 GICR_MISCSTATUSR
on page 4-135

RO 32 0x0 Miscellaneous Status
Register

No

0xC004 - - - - Reserved -

0xC008 GICR_IERRVR on page 4-136 RW 32 0x0 Interrupt Error Valid
Register

No

0xC00C - - - - Reserved -

0xC010 GICR_SGIDR on page 4-137 RW 64 - SGI Default Register No

0xC018-0xEFFC - - - - Reserved -

0xF000 GICR_CFGID0
on page 4-137

RO 32 Configuration
dependent

Configuration ID0
Register

No

0xF004 GICR_CFGID1
on page 4-138

RO 32 Configuration
dependent

Configuration ID1
Register

No

This section contains the following subsections:
• 4.5.1 GICR_MISCSTATUSR, Miscellaneous Status Register on page 4-135.
• 4.5.2 GICR_IERRVR, Interrupt Error Valid Register on page 4-136.
• 4.5.3 GICR_SGIDR, SGI Default Register on page 4-137.
• 4.5.4 GICR_CFGID0, Configuration ID0 Register on page 4-137.
• 4.5.5 GICR_CFGID1, Configuration ID1 Register on page 4-138.

4.5.1 GICR_MISCSTATUSR, Miscellaneous Status Register

Use this register to test the integration of the cpu_active and wake_request input signals. You can also
use the register to debug the CPU interface enables as seen by the GIC-600AE.

The GICR_MISCSTATUSR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.5 Redistributor registers for SGIs and PPIs summary on page 4-134.

The following figure shows the bit assignments.

31 30 3 2 1 0

Reserved

wake_request
cpu_active

AccessType

4

Reserved

5

EnableGrp0
EnableGrp1NSecure
EnableGrp1Secure

29

Figure 4-26 GICR_MISCSTATUSR bit assignments

The following table shows the bit assignments.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-135

Non-Confidential

Table 4-31 GICR_MISCSTATUSR bit assignments

Bits Name Function

[31] cpu_active Returns the status of the cpu_active signal for the core corresponding to the Redistributor whose
register is being read:
• 0 = cpu_active input signal not active.
• 1 = cpu_active input signal active.

This bit is undefined when ProcessorSleep or ChildrenAsleep is set for a core, because the core is
presumed to be powered down.

[30] wake_request Returns the status of the wake_request signal:
• 0 = wake_request not active.
• 1 = wake_request asserted.

[29:5] - Reserved.

[4] AccessType Returns the access type:
• 0 = Secure access.
• 1 = Non-secure access.

[3] - Reserved.

[2]v EnableGrp1Secure In systems that enable two Security states, when GICD_CTLR.DS == 0, then:
• For Secure reads, returns the Group 1 Secure CPU interface enable.
• For Non-secure reads, returns zero.

In systems that only enable a single Security state, when GICD_CTLR.DS == 1, then this bit returns
zero.

[1]v EnableGrp1NSecure In systems that enable two Security states, when GICD_CTLR.DS == 0, then:
• For Secure reads, this bit returns the Group 1 Non-secure CPU interface enable.
• For Non-secure reads, when GICD_CTLR.ARE_NS == 1, this bit returns the Group 1 Non-secure

CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS == 0, this bit returns zero.

In systems that only enable a single Security state, when GICD_CTLR.DS == 1, this bit returns the
Group 1 CPU interface enable.

[0]v EnableGrp0 In systems that enable two Security states, when GICD_CTLR.DS == 0, then:
• For Secure reads, this bit returns the Group 0 CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS == 0, this bit returns the Group 1 Non-secure

CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS == 1, this bit returns zero.

In systems that only enable a single Security state, when GICD_CTLR.DS == 1, this bit returns the
Group 0 CPU interface enable.

4.5.2 GICR_IERRVR, Interrupt Error Valid Register

This register indicates if the SGI or PPI data has been corrupted in SRAM. You can use this register to
clear an error.

The GICR_IERRVR characteristics are:

Usage constraints Only accessible by Secure accesses.

v These bits are a copy of the CPU interface group enables for the core corresponding to this Redistributor. These copies are undefined when ProcessorSleep or
ChildrenSleep is set for a core, because the core is presumed to be powered down. Upstream write packets maintain these copies that can de-synchronize after an
incorrect powerdown sequence. This register enables you to debug this scenario. For more information, see the Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3 and version 4.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-136

Non-Confidential

Configurations Available in all GIC-600AE configurations.
Attributes See 4.5 Redistributor registers for SGIs and PPIs summary on page 4-134.

The following table shows the bit assignments.

Table 4-32 GICR_IERRVR bit assignments

Bits Name Function

[31:16] valid Indicates whether a PPI is in an error state:

Bit[n] = 0
If read, PPI[n−16] is not in an error state. Writing 0 has no effect.

Bit[n] = 1
If read, PPI[n−16] is in an error state, so the interrupt is not delivered. Writing 1 clears the error on PPI[n
−16].

[15:0] Indicates whether an SGI is in an error state:

Bit[n] = 0
If read, SGIn is not in an error state. Writing 0 has no effect.

Bit[n] = 1
If read, SGIn is in an error state, so the interrupt is not delivered. Writing 1 clears the error on SGIn.

4.5.3 GICR_SGIDR, SGI Default Register

This register controls the default value of SGI settings, for use in the case of a Double-bit Error Detect
Error (DEDERR).

The GICR_SGIDR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations. If SGI ECC is not enabled, then this

register is RES0.
Attributes See 4.5 Redistributor registers for SGIs and PPIs summary on page 4-134.

The following table shows the bit assignments.

Table 4-33 GICR_SGIDR bit assignments

Bits Name Function

[3] + 4n:

[63, 59, 55, 51, 47, 43, 39, 35, 31, 27, 23, 19, 15, 11, 7, 3]

- Reserved, RES0.

[2] + 4n:

[62, 58, 54, 50, 46, 42, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2]

GRPMOD As GICR_IGRPMODR0 register.

[1] + 4n:

[61, 57, 53, 49, 45, 41, 37, 33, 29, 25, 21, 17, 13, 9, 5, 1]

GRP As GICR_IGROUPR0 register.

[0] + 4n:

[60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0]

NSACR 1 = Allow Non-secure access to interrupt <n>.

4.5.4 GICR_CFGID0, Configuration ID0 Register

This register returns information about the configuration of the Redistributors.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-137

Non-Confidential

The GICR_CFGID0 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.5 Redistributor registers for SGIs and PPIs summary on page 4-134.

The following figure shows the bit assignments.

PPINumber

31 28 27 24 23 20 19 16 15 12 11 10 9 8 0

Af0Width

ReservedECCSupport

Af1WidthAf2WidthAf3Width TGT0List
Width

Figure 4-27 GICR_CFGID0 bit assignments

The following table shows the bit assignments.

Table 4-34 GICR_CFGID0 bit assignments

Bits Name Function

[31:28] Af3Width Affinity 3 width.

[27:24] Af2Width Affinity 2 width.

[23:20] Af1Width Affinity 1 width.

[19:16] Af0Width Affinity 0 width.

[15:12] TGT0ListWidth The Target0 list width − 1.

[11] ECCSupport 1 = ECC is supported.

[10:9] - Reserved, RAZ.

[8:0] PPINumber RedistributorID.

The ppi_id[15:0] tie-off signal sets the value of the ID. Each Redistributor must have a unique ID.

Related references
A.6 Miscellaneous signals on page Appx-A-260

4.5.5 GICR_CFGID1, Configuration ID1 Register

This register returns information about the configuration of the Redistributors.

The GICR_CFGID1 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.5 Redistributor registers for SGIs and PPIs summary on page 4-134.

The following figure shows the bit assignments.

Reserved

31 28 27 24 23 20 19 16 15 13 12 11 4 3 0

NumCPUs0
PPIs_
per_

Processor
UserValueVersion

DirectUpstream

ReservedReserved

Figure 4-28 GICR_CFGID1 bit assignments

The following table shows the bit assignments.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-138

Non-Confidential

Table 4-35 GICR_CFGID1 bit assignments

Bits Name Function

[31:28] Version Identifies the major and minor revisions of GIC-600AE:
• 0x1 = r0p0.
• 0x3 = r0p1.
• 0x4 = r0p2.

[27:24] UserValue Modification value that you can set.

[23:20] - Reserved, RAZ.

[19:16] PPIs_per_Processor The number of Redistributors that each core supports − 1.

[15:13] - Reserved.

[12] DirectUpstream Indicates a direct upstream connection.

[11:4] NumCPUs The number of cores that are integrated in this Redistributor.

[3:0] - Reserved, RAZ.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-139

Non-Confidential

4.6 ITS control register summary
The GIC-600AE Interrupt Translation Service functions are controlled through registers that are
identified with the prefix GITS.

For descriptions of registers that are not specific to the GIC-600AE, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

 Note

This page does not exist in GIC-600AE configurations that do not support LPIs or that do not have an
ITS.

Table 4-36 ITS control register summary

Offset Name Type Width Reset Description Architecture
defined?

0x0000 GITS_CTLR RW 32 0x80000000 ITS Control Register Yes

0x0004 GITS_IIDR
on page 4-141

RO 32 Configuration dependent ITS Implementer
Identification Register

Yes

0x0008 GITS_TYPER
on page 4-142

RO 64 Configuration dependent ITS Type Register Yes

0x0010-0x001C - - 32 - Reserved -

0x0020 GITS_FCTLR
on page 4-143

RW 32 0x0 Function Control
Register

No

0x0024 - - - - Reserved -

0x0028 GITS_OPR
on page 4-145

RW 64 0x0 Operations Register No

0x0030 GITS_OPSR
on page 4-146

RO 64 0x0 Operation Status
Register

No

0x0038-0x007C - - - - Reserved -

0x0080 GITS_CBASER RW 64 0x0 Command Queue
Control Register

See the Arm® GICv3 and
GICv4 Software
Overview.

Yes

0x0088 GITS_CWRITER RW 64 0x0 Command Queue Write
Pointer Register

Yes

0x0090 GITS_CREADR RO 64 0x0 Command Queue Read
Pointer Register

Yes

0x0098-0x00FC - - - - Reserved -

0x0100 GITS_BASER0 RW 64 0x107000000000000 ITS Translation Table
Descriptor Register0

Yes

0x0108 GITS_BASER1 RW 64 0x0 ITS Translation Table
Descriptor Register1

Yes

0x0110-0xEFFC - - - - Reserved -

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-140

Non-Confidential

Table 4-36 ITS control register summary (continued)

Offset Name Type Width Reset Description Architecture
defined?

0xF000 GITS_CFGID
on page 4-147

RO 32 Configuration dependent Configuration ID
Register

No

0xF004-0xFFCC - - - - Reserved -

0xFFD0 GITS_PIDR4 RO 32 0x44 Peripheral ID 4 Register No

0xFFD4 GITS_PIDR5 RO 32 0x00 Peripheral ID 5 Register No

0xFFD8 GITS_PIDR6 RO 32 0x00 Peripheral ID 6 Register No

0xFFDC GITS_PIDR7 RO 32 0x00 Peripheral ID 7 Register No

0xFFE0 GITS_PIDR0 RO 32 0x94 Peripheral ID 0 Register No

0xFFE4 GITS_PIDR1 RO 32 0xB4 Peripheral ID 1 Register No

0xFFE8 GITS_PIDR2
on page 4-148

RO 32 0x3B Peripheral ID 2 Register No

0xFFEC GITS_PIDR3 RO 32 0x00 Peripheral ID 3 Register No

0xFFF0 GITS_CIDR0 RO 32 0x0D Component ID 0
Register

No

0xFFF4 GITS_CIDR1 RO 32 0xF0 Component ID 1
Register

No

0xFFF8 GITS_CIDR2 RO 32 0x05 Component ID 2
Register

No

0xFFFC GITS_CIDR3 RO 32 0xB1 Component ID 3
Register

No

This section contains the following subsections:
• 4.6.1 GITS_IIDR, ITS Implementer Identification Register on page 4-141.
• 4.6.2 GITS_TYPER, ITS Type Register on page 4-142.
• 4.6.3 GITS_FCTLR, Function Control Register on page 4-143.
• 4.6.4 GITS_OPR, Operations Register on page 4-145.
• 4.6.5 GITS_OPSR, Operation Status Register on page 4-146.
• 4.6.6 GITS_CFGID, Configuration ID Register on page 4-147.
• 4.6.7 GITS_PIDR2, Peripheral ID2 Register on page 4-148.

4.6.1 GITS_IIDR, ITS Implementer Identification Register

This register provides information about the implementer and revision of the ITS.

The GITS_IIDR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations that have one or more ITS blocks.
Attributes See 4.6 ITS control register summary on page 4-140.

The following figure shows the bit assignments.

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-141

Non-Confidential

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Figure 4-29 GITS_IIDR bit assignments

The following table shows the bit assignments.

Table 4-37 GITS_IIDR bit assignments

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x3 = GIC-600AE.

[23:20] - Reserved, RAZ.

[19:16] Variant Indicates the major revision, or variant, of the product rmpn identifier:

0x0 = r0.

[15:12] Revision Indicates the minor revision of the product rmpn identifier:
• 0x1 = p0.
• 0x3 = p1.
• 0x4 = p2.

[11:0] Implementer Identifies the implementer:

0x43B = Arm.

4.6.2 GITS_TYPER, ITS Type Register

This register returns information about the features that an ITS supports.

The GITS_TYPER characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations that have one or more ITS blocks.
Attributes See 4.6 ITS control register summary on page 4-140.

The following figure shows the bit assignments.

31 24 23 20 19 18 17 13 12 8 7 4 3 2 1 0

IDBitsDevBitsReservedHCC

CIDBits

63 36 35 32

Reserved

37

CIL

Physical
Virtual
CCT

SEIS
PTA

ITTEntrySize
Reserved

Figure 4-30 GITS_TYPER bit assignments

The following table shows the bit assignments.

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-142

Non-Confidential

Table 4-38 GITS_TYPER bit assignments

Bits Name Function

[63:37] - Reserved, RAZ.

[36] CIL Collection ID limit:

1 = The size of the Collection ID is set by the CIDBits field.

[35:32] CIDBits The number of CollectionID bits, minus one.

Set by the col_width configuration parameter.

[31:24] HCC Hardware collection count:

0 = Interrupt collections are held in external memory only.

[23:20] - Reserved, returns 0.

[19] PTA Physical target addresses:

0 = The GIC-600AE does not support physical target addresses.

[18] SEIS System error interrupts:

0 = The GIC-600AE does not support locally generated System Error interrupts.

[17:13] DevBits The number of device identifier bits implemented, minus one.

Set by the did_width configuration parameter.

[12:8] IDBits The number of interrupt identifier bits implemented, minus one.

Set by the vid_width configuration parameter.

[7:4] ITTEntrySize The number of bytes per entry, minus one:

0x3 = The GIC-600AE supports a 4-byte ITT entry size.

[3] - Reserved.

[2] CCT Cumulative collection tables:

0 = Total number of supported collections is determined by the number of collections that are held in memory
only.

[1] Virtual Virtual LPIs:

0 = The GIC-600AE does not support Virtual LPIs.

See the Arm® GICv3 and GICv4 Software Overview.

[0] Physical Physical LPIs:

1 = The GIC-600AE supports physical LPIs.

4.6.3 GITS_FCTLR, Function Control Register

This register controls many functions in the local GITS such as cache invalidation, clock gating, and the
scrubbing of all RAMs. The register is not distributed and only acts on the local chip.

The GITS_FCTLR characteristics are:

Usage constraints If the ITS is not quiescent, then the GIC ignores writes to some fields. The ITS is
quiescent when GITS_CTLR.Quiescent == 1.

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-143

Non-Confidential

Configurations Available in all GIC-600AE configurations that have one or more ITS blocks.
Attributes See 4.6 ITS control register summary on page 4-140.

The following figure shows the bit assignments.

31 3 2 1 0

CGO

7830 29

Reserved

19 18 17 16 15 9

Reserved

IDC
ICC AEE

CEE
UEE
LTE
SIP

IEC

PWE
DCC

10

QD

DMA

11

Reserved

12 4

Figure 4-31 GITS_FCTLR bit assignments

The following table shows the bit assignments.

Table 4-39 GITS_FCTLR bit assignments

Bits Name Function Type

[31] DCC Disable cache conversion:
• 1 = Use Direct attribute for AMBA mapping.
• 0 = Use SMMU attribute for AMBA mapping.

Writes ignored if the ITS is not quiescent.

RW

[30] PWE Powerdown when enabled:
• 1 = Do not request GITS_CTLR.Quiescent to indicate that the ITS is quiescent.
• 0 = Requests GITS_CTLR.Quiescent to indicate that the ITS is quiescent and can be powered down.

RW

[29:19] - Reserved, RAZ/WI. -

[18] IEC Invalidate Event cache:
• 1 = Invalidate Event cache.
• 0 = No effect.

WO

[17] IDC Invalidate Device cache:
• 1 = Invalidate Device cache.
• 0 = No effect.

WO

[16] ICC Invalidate Collection cache:
• 1 = Invalidate Collection cache.
• 0 = No effect.

WO

[15:12] - Reserved, RAZ/WI. -

[11] DMA Enable translation memory reads through the Distributor to meet PCIe dependency requirements:
• 1 = Enable translation memory reads through Distributor.
• 0 = All memory accesses through ACE-Lite master interface.

RW

[10] - Reserved, RAZ/WI. -

[9] QD Q-Channel deny:
• 1 = Always deny Q-Channel requests.
• 0 = Do not deny Q-Channel requests.

RW

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-144

Non-Confidential

Table 4-39 GITS_FCTLR bit assignments (continued)

Bits Name Function Type

[8] AEE Access error enable:
• 1 = Enable reporting of slave access errors.
• 0 = Do not enable reporting of slave access errors.

Writes ignored if the ITS is not quiescent.

RW

[7:4] CGO Clock gate override. One bit per clock gate:
• 1 = No clock gating.
• 0 = Use full clock gating.

 Note

CGO must be set if clock gates are not implemented.

The clock gate bit assignments are:

Bit[7], CGO[3] Map fetch.

Bit[6], CGO[2] Debug clock.

Bit[5], CGO[1] Command clock.

Bit[4], CGO[0] CCS, Translation logic.

RW

[3] CEE Command error enable:
• 1 = Enable reporting of command errors.
• 0 = Do not enable reporting of command errors.

Writes ignored if the ITS is not quiescent.

RW

[2] UEE Unmapped error enable:
• 1 = Enable reporting of unmapped interrupt errors.
• 0 = Do not enable reporting of unmapped interrupt errors.

Writes ignored if the ITS is not quiescent.

RW

[1] LTE Latency tracking enable:
• 1 = Enable latency tracking of interrupts.
• 0 = Disable latency tracking of interrupts.

Writes ignored if the ITS is not quiescent.

RW

[0] SIP Scrub in progress.

When read:

• 1 = Scrub in progress.
• 0 = No scrub in progress.

When written:
• 1 = Start a scrub.
• 0 = Abort the scrub.

When a scrub is complete, the GIC clears the bit to 0.

RW

4.6.4 GITS_OPR, Operations Register

This register controls cache lock.

The GITS_OPR characteristics are:

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-145

Non-Confidential

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations that have one or more ITS blocks.
Attributes See 4.6 ITS control register summary on page 4-140.

The following figure shows the bit assignments.

31 16 15 0

EVENT_IDReserved

63 32

DEVICE_IDReserved

5160 5259

LOCK_TYPE

Figure 4-32 GITS_OPR bit assignments

The following table shows the bit assignments.

Table 4-40 GITS_OPR bit assignments

Bits Name Function

[63:60] LOCK_TYPE Lock type supported:
• 0 = Track.
• 1 = Trial.
• 2 = ITS lock.
• 3 = ITS unlock.
• 4 = Track abort.
• 8 = ITS unlock all.
• 5-7, 9-15 = Reserved.

[59:52] - Reserved, RES0.

[51:32] DEVICE_ID 0-maximum DeviceID supported.

[31:16] - Reserved, RES0.

[15:0] EVENT_ID 0-maximum EventID supported.

4.6.5 GITS_OPSR, Operation Status Register

This register indicates cache lock status.

The GITS_OPSR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations that have one or more ITS blocks.
Attributes See 4.6 ITS control register summary on page 4-140.

The following figure shows the bit assignments.

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-146

Non-Confidential

63 48 32

TARGETReserved

45474962 61 60

31 16 15 0

PIDReserved

44

Reserved

ENTRY_LOCKEDREQUEST_IN_PROGRESS
REQUEST_PASS
REQUEST_COMPLETE

Figure 4-33 GITS_OPSR bit assignments

The following table shows the bit assignments.

Table 4-41 GITS_OPSR bit assignments

Bits Name Function

[63] REQUEST_COMPLETE Request to GITS_OPR completed.

[62] REQUEST_PASS Request to GITS_OPR completed without error.

[61] REQUEST_IN_PROGRESS Request to GITS_OPR in progress.

[60:49] - Reserved, RES0.

[48] ENTRY_LOCKED Locked entry in cache corresponds to request (valid for trial and lock operations).

[47:45] - Reserved, RES0.

[44:32] TARGET Target of interrupt requested. Valid for trial and lock operations.

[31:16] - Reserved, RES0.

[15:0] PID Physical ID of interrupt requested (valid for trial and lock operations).

4.6.6 GITS_CFGID, Configuration ID Register

This register returns information about the configuration of the ITS block such as its ID number.

The GITS_CFGID characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations that have one or more ITS blocks.
Attributes See 4.6 ITS control register summary on page 4-140.

The following figure shows the bit assignments.

0

ITS_NUMBER

31 28 27 24 23 20 19 18 17 16 15 12 11 8 7

LPI_Credit_
CountTarget_Bits

Collection_
Cache_

Index_Bits

Device_
Cache_

Index_Bits

Event_
Cache_

Index_Bits
MSI_64
Low_Latency_SupportCache_ECC

Reserved

Figure 4-34 GITS_CFGID bit assignments

The following table shows the bit assignments.

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-147

Non-Confidential

Table 4-42 GITS_CFGID bit assignments

Bits Name Function

[31:28] Event_Cache_Index_Bits Number of bits used to index Event cache.

[27:24] Device_Cache_Index_Bits Number of bits used to index Device cache.

[23:20] Collection_Cache_Index_Bits Number of bits used to index Collection cache.

[19] - Reserved.

[18] Cache_ECC Translation caching has ECC protection.

[17] Low_Latency_Support Lock translations in cache support.

[16] MSI_64 MSI-64 Encapsulator support. The msi_64 configuration parameter sets the value of this bit.

[15:12] Target_Bits Number of bits supported for targets.

[11:8] LPI_Credit_Count Number of LPI credits − 1. The number_int_credit configuration parameter minus 1, sets
the value of this field.

[7:0] ITS_Number Returns the ITS block ID. The its_id[7:0] tie-off signal controls the ID value. Each ITS block
must have a unique ID.

Related references
A.6 Miscellaneous signals on page Appx-A-260

4.6.7 GITS_PIDR2, Peripheral ID2 Register

This register returns byte[2] of the peripheral ID. The GITS_PIDR2 register is part of the set of ITS
peripheral identification registers.

The GITS_PIDR2 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations that have one or more ITS blocks.
Attributes See 4.6 ITS control register summary on page 4-140.

The following figure shows the bit assignments.

ArchRevReserved

31 8 7 4 3

DES_1

02

JEDEC

Figure 4-35 GITS_PIDR2 bit assignments

The following table shows the bit assignments.

Table 4-43 GITS_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the ITS complies:
• 0x3 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GITS_PIDR1.

4 Programmers model
4.6 ITS control register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-148

Non-Confidential

4.7 ITS translation register summary
Interrupts to be translated by the GIC-600AE Interrupt Translation Service are identified by EventIDs
that are written to the ITS translation register GITS_TRANSLATER.

For descriptions of registers that are not specific to the GIC-600AE, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

 Note

This page does not exist in GIC-600AE configurations that do not support LPIs or that do not have an
ITS.

Table 4-44 ITS translation register summary

Offset Name Type Reset Description Architecture defined?

0x0000-0x003C - - - Reserved -

0x0040 GITS_TRANSLATER WO - ITS Translation Register Yes

0x0044-0xFFFC - - - Reserved -

4 Programmers model
4.7 ITS translation register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-149

Non-Confidential

4.8 GICT register summary
The GIC-600AE trace and debug functions are controlled through registers that are identified with the
prefix GICT.

 Note

The GICD_SAC.GICTNS bit controls whether Non-secure software can access the GICT registers.

Table 4-45 GICT register summary

Offset Name Type Width Reset Description RAS ?

0x0000 + (n × 64) GICT_ERR<n>FR on page 4-152 RO 64 Record dependent Error Record Feature
Register

Yes

0x0008 + (n × 64) GICT_ERR<n>CTLR
on page 4-153

RW 64 0x0 Error Record Control
Register

Yes

0x0010 + (n × 64) GICT_ERR<n>STATUS
on page 4-154

RW 64 Record dependent Error Record Primary Status
Register

Yes

0x0018 + (n × 64) GICT_ERR<n>ADDR
on page 4-155

RW 64 Unknown Error Record Address
Register

Yes

0x0020 + (n × 64) GICT_ERR<n>MISC0
on page 4-155

RW 64 Unknown Error Record Miscellaneous
Register 0

Yes

0x0028 + (n × 64) GICT_ERR<n>MISC1
on page 4-161

RW 64 Unknown Error Record Miscellaneous
Register 1

Yes

0xE000 GICT_ERRGSR on page 4-162 RO 64 0x0 Error Group Status Register Yes

0xE008-0xE7FC - - - - Reserved, RAZ/WI -

0xE800-0xE808 GICT_ERRIRQCR<n>
on page 4-162

RW 64 0x0 Error Interrupt Configuration
Registers

Yes

0xE810-0xFFB8 - - - - Reserved, RAZ/WI -

0xFFBC GICT_DEVARCH RO 32 0x47700A00 Device Architecture register Yes

0xFFC0-0xFFC4 - - - - Reserved, RAZ/WI -

0xFFC8 GICT_ERRIDR on page 4-163 RO 32 Configuration
dependent

Error Record ID Register Yes

0xFFCC - - - - Reserved, RAZ/WI -

0xFFD0 GICT_PIDR4 RO 32 0x44 Peripheral ID 4 Register No

0xFFD4 GICT_PIDR5 RO 32 0x00 Peripheral ID 5 Register No

0xFFD8 GICT_PIDR6 RO 32 0x00 Peripheral ID 6 Register No

0xFFDC GICT_PIDR7 RO 32 0x00 Peripheral ID 7 Register No

0xFFE0 GICT_PIDR0 RO 32 0x95 Peripheral ID 0 Register No

0xFFE4 GICT_PIDR1 RO 32 0xB4 Peripheral ID 1 Register No

0xFFE8 GICT_PIDR2 on page 4-163 RO 32 0x3B Peripheral ID 2 Register No

0xFFEC GICT_PIDR3 RO 32 0x00 Peripheral ID 3 Register No

0xFFF0 GICT_CIDR0 RO 32 0x0D Component ID 0 Register No

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-150

Non-Confidential

Table 4-45 GICT register summary (continued)

Offset Name Type Width Reset Description RAS ?

0xFFF4 GICT_CIDR1 RO 32 0xF0 Component ID 1 Register No

0xFFF8 GICT_CIDR2 RO 32 0x05 Component ID 2 Register No

0xFFFC GICT_CIDR3 RO 32 0xB1 Component ID 3 Register No

The following table lists the error records for the various error conditions.

Table 4-46 Error records

Record Description Type Syndrome (SERR)

0 Software error in GICD
programming

UEOw See Table 3-8 Software errors, record 0 on page 3-78.

1 Correctable SPI RAM errors CEx 7, Data value from associative memory.

See Table 3-9 SPI RAM errors, records 1-2 on page 3-84.2 Uncorrectable SPI RAM
errors

UERy

3 Correctable SGI RAM errors CEx 7, Control value from associative memory.

See Table 3-10 SGI RAM errors, records 3-4 on page 3-85.4 Uncorrectable SGI RAM
errors

UERy

5 Reserved - -

6 Reserved - -

7 Correctable PPI RAM errors CEx 7, Control value from associative memory.

See Table 3-11 PPI RAM errors, records 7-8 on page 3-86.8 Uncorrectable PPI RAM
errors

UERy

9 Correctable LPI RAM errors CEx 7, Control value from associative memory.

See Table 3-12 LPI RAM errors, records 9-10 on page 3-87.10 Uncorrectable LPI RAM
errors

UERy

11 Correctable error from ITS
RAM

CEx 6, Data value from associative memory.

See Table 3-13 ITS RAM errors, records 11-12 on page 3-87.
12 Uncorrectable error from ITS

RAM
UEOw

13 + ITSnum ITS command and translation
errors

UERy 14, Illegal Access.

See Table 3-15 ITS command and translation errors, records 13+
on page 3-88.

This section contains the following subsections:
• 4.8.1 GICT_ERR<n>FR, Error Record Feature Register on page 4-152.
• 4.8.2 GICT_ERR<n>CTLR, Error Record Control Register on page 4-153.
• 4.8.3 GICT_ERR<n>STATUS, Error Record Primary Status Register on page 4-154.
• 4.8.4 GICT_ERR<n>ADDR, Error Record Address Register on page 4-155.
• 4.8.5 GICT_ERR<n>MISC0, Error Record Miscellaneous Register 0 on page 4-155.
• 4.8.6 GICT_ERR<n>MISC1, Error Record Miscellaneous Register 1 on page 4-161.

w Restartable error and contained.
x Correctable error.
y Recoverable error.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-151

Non-Confidential

• 4.8.7 GICT_ERRGSR, Error Group Status Register on page 4-162.
• 4.8.8 GICT_ERRIRQCR<n>, Error Interrupt Configuration Registers on page 4-162.
• 4.8.9 GICT_ERRIDR, Error Record ID Register on page 4-163.
• 4.8.10 GICT_PIDR2, Peripheral ID2 Register on page 4-163.

4.8.1 GICT_ERR<n>FR, Error Record Feature Register

This register returns information about the Armv8.2 RAS features that the GIC-600AE implements.

The GICT_ERR<n>FR characteristics are:

Usage constraints If GICD_SAC.GICTNS == 0, then only Secure software can access the contents
of this register.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

ED

31 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

DEUIFIUECFICECRPReserved

Figure 4-36 GICT_ERR<n>FR bit assignments

The following table shows the bit assignments.

Table 4-47 GICT_ERR<n>FR bit assignments

Bits Name Function

[31:16] - Reserved, RAZ.

[15] RP Repeat corrected error count:
• 0 = The GIC-600AE does not implement a repeat corrected error counter.

[14:12] CEC Corrected error count:
• 0b000 = The GIC-600AE does not implement a standard Corrected error counter in GICT_ERR<n>MISC0

on page 4-155.

[11:10] CFI Corrected errors fault interrupt. Depending on the configuration, returns either:
• 0b00 = The GIC-600AE does not provide a fault handling interrupt for corrected errors.
• 0b10 = The GIC-600AE provides a controllable fault handling interrupt for corrected errors.

[9:8] UE Uncorrected error. Depending on the configuration, returns either:
• 0b00 = The GIC-600AE does not provide an in-band uncorrected error reporting.
• 0b10 = The GIC-600AE provides a controllable in-band uncorrected error reporting.

[7:6] FI Fault handling interrupt for uncorrected errors. Depending on the configuration, returns either:
• 0b00 = The GIC-600AE does not provide a fault handling interrupt.
• 0b10 = The GIC-600AE provides a controllable fault handling interrupt.

[5:4] UI Error recovery interrupt for uncorrected errors. Depending on the configuration, returns either:
• 0b00 = The GIC-600AE does not provide an error recovery interrupt for uncorrected errors.
• 0b10 = The GIC-600AE provides a controllable error recovery interrupt for uncorrected errors.

[3:2] DE Deferring of errors support:
• 0b00 = The GIC-600AE does not support the deferring of errors.

[1:0] ED Uncorrected error reporting:
• 0b01 = Uncorrected error reporting is always enabled.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-152

Non-Confidential

4.8.2 GICT_ERR<n>CTLR, Error Record Control Register

This register controls how interrupts are handled.

The GICT_ERR<n>CTLR characteristics are:

Usage constraints If GICD_SAC.GICTNS == 0, then only Secure software can access the
functions of this register.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

31 16 15 14 9 8 7 5 4 3 2 1 0

UIFIUEReservedReservedRPReserved

ReservedCFI

Reserved

63 32

Figure 4-37 GICT_ERR<n>CTLR bit assignments

The following table shows the bit assignments.

Table 4-48 GICT_ERR<n>CTLR bit assignments

Bits Name Function

[63:16] - Reserved, RAZ.

[15] RP 0 = An error response to a transaction is reported.

[14:9] - Reserved, RAZ.

[8] CFI Controls whether a corrected error generates a fault handling interrupt.
SBZ on non-correctable errors else:
• 0 = The GIC-600AE does not assert a fault handling interrupt for corrected errors.
• 1 = The GIC-600AE asserts a fault handling interrupt, fault_int, when a corrected error occurs.

[7:5] - Reserved, RAZ.

[4] UE Uncorrected error.
RAZ/WI for all records except GICT error record (0) else:
• 0 = Do not send External abort with transaction.
• 1 = Send External abort with transaction. See 3.15.7 Bus errors on page 3-95.

[3] FI Fault handling interrupt.
SBZ on Correctable Error (CE) records else:
• 0 = Fault handling interrupt is not generated on any error.
• 1 = Fault handling interrupt, fault_int, is generated on all uncorrectable errors.

[2] UI Error recovery interrupt for uncorrected error.
SBZ on CE records else:
• 0 = Error recovery interrupt is not generated on any error.
• 1 = Error recovery interrupt, err_int, is generated on all uncorrectable errors.

[1:0] - Reserved, RAZ.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-153

Non-Confidential

4.8.3 GICT_ERR<n>STATUS, Error Record Primary Status Register

This register indicates information relating to the recorded errors.

The GICT_ERR<n>STATUS characteristics are:

Usage constraints If GICD_SAC.GICTNS == 0, then only Secure software can access the
functions of this register.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

SERR

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 8 7 0

IERRReservedUETCEOFERUEVAV

ReservedMV

Figure 4-38 GICT_ERR<n>STATUS bit assignments

The following table shows the bit assignments.

Table 4-49 GICT_ERR<n>STATUS bit assignments

Bits Name Function

[31] AV Indicates if the address is valid:
• 0 = GICT_ERR<n>ADDR is not valid.
• 1 = GICT_ERR<n>ADDR contains an address that is associated with the highest priority error that this record

stores. Only present in record 0.

[30] V Indicates if this register is valid:
• 0 = GICT_ERR<n>STATUS is not valid.
• 1 = GICT_ERR<n>STATUS is valid. One or more errors are recorded.

[29] UE Uncorrectable error bit.

SBZ in Correctable Error (CE) records.

[28] ER Indicates that at least one error has been reported over ACE-Lite.

Set for record 0 only, and only for accesses to corrupted data, and bad incoming access.

[27] OF Record has overflowed.

[26] MV Indicates if the GICT miscellaneous registers are valid:
• 0 = GICT_ERR<n>MISC0 and GICT_ERR<n>MISC1 are not valid.
• 1 = GICT_ERR<n>MISC0 and GICT_ERR<n>MISC1 are valid.

[25:24] CE Correctable Error. Indicates errors that are correctable as shown in Table 4-46 Error records on page 4-151:
• 0b00 = No CE recorded.
• 0b10 = At least one CE recorded.

[23:22] - Reserved, RAZ/WI.

[21:20] UET RES0 unless UE == 1, in which case:
• 0b10 = UEO.
• 0b11 = UER.

[19:16] - Reserved, RAZ/WI.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-154

Non-Confidential

Table 4-49 GICT_ERR<n>STATUS bit assignments (continued)

Bits Name Function

[15:8] IERR Implementation-defined error code:

Returns information that Table 4-52 Data field encoding on page 4-157 shows.

This field is RO apart from Record 0 and Record 13 (and above).

[7:0] SERR Architecturally defined primary error code:

Returns information that Table 4-52 Data field encoding on page 4-157 shows.

This field is RO apart from Record 0.

4.8.4 GICT_ERR<n>ADDR, Error Record Address Register

This register contains the address and security status of the write. This register is only present for GICT
software record 0.

The GICT_ERR<n>ADDR characteristics are:

Usage constraints If GICD_SAC.GICTNS == 0, then only Secure software can access the
functions of this register.

Ignores writes if GICT_ERR<n>STATUS.AV == 1.

All bits are RAZ/WI if GICT_ERR<n>STATUS.IERR = 0, 12, or 13.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

0

PADDR

Reserved

32

31

63 62 4748

PADDR

NS

Figure 4-39 GICT_ERR<n>ADDR bit assignments

The following table shows the bit assignments.

Table 4-50 GICT_ERR<n>ADDR bit assignments

Bits Name Function

[63] NS Non-secure attribute:
• 0 = The address is Secure.
• 1 = The address is Non-secure.

[62:48] - Reserved, RAZ/WI.

[47:0] PADDR The error address.

4.8.5 GICT_ERR<n>MISC0, Error Record Miscellaneous Register 0

This register contains the Corrected error counter and information that assists with identifying the RAM
in which the error was detected.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-155

Non-Confidential

The GICT_ERR<n>MISC0 characteristics are:

Usage constraints If GICD_SAC.GICTNS == 0, then only Secure software can access the
functions of this register.

If GICT_ERR<n>STATUS.MV == 1, then GICT_ERR<n>MISC0 ignores
writes to the Data field.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

Data

31 0

Count

63 42 41 40 39 32

REReserved

Overflow

Figure 4-40 GICT_ERR<n>MISC0 bit assignments

The following table shows the bit assignments.

Table 4-51 GICT_ERR<n>MISC0 bit assignments

Bits Name Function

[63:42] - Reserved, RAZ.

[41] RE Rounding Error.

The Rounding Error counter is under-reporting.

[40] Overflow Sticky overflow bit:
• 0 = Counter has not overflowed.
• 1 = Counter has overflowed.

If the corrected fault handling interrupt is enabled, then the GIC-600AE generates a fault handling interrupt.

[39:32] Count Corrected error count.

Error counter is not 0 or is more than 13+. Incremented for each corrected error that does not match the recorded
syndrome.

[31:0] Data Information that is associated with the error. A description of each error code is given in one of the following
tables:
• Table 3-8 Software errors, record 0 on page 3-78.
• Table 3-9 SPI RAM errors, records 1-2 on page 3-84.
• Table 3-10 SGI RAM errors, records 3-4 on page 3-85.
• Table 3-11 PPI RAM errors, records 7-8 on page 3-86.
• Table 3-12 LPI RAM errors, records 9-10 on page 3-87.
• Table 3-13 ITS RAM errors, records 11-12 on page 3-87.
• Table 3-15 ITS command and translation errors, records 13+ on page 3-88.

The following table shows the Data field encoding for each error record and syndrome.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-156

Non-Confidential

Table 4-52 Data field encoding

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x0, SYN_ACE_BAD

Illegal ACE-Lite slave access.

0xE AccessRnW, bit[12].

AccessSparse, bit[11].

AccessSize, bits[10:8].

AccessLength, bits[7:0].

Software Error
(0)

0x1, SYN_PPI_PWRDWN

Attempt to access a powered down Redistributor.

0xF Redistributor, bits[24:16].

Core, bits[8:0].

Software Error
(0)

0x2, SYN_PPI_PWRCHANGE

Attempt to power down Redistributor rejected.

0xF Redistributor, bits[24:16].

Core, bits[8:0].

Software Error
(0)

0x3, SYN_GICR_ARE

Attempt to access GICR or GICD registers in
mode that cannot work.

0xF Core, bits[8:0].

Software Error
(0)

0x4, SYN_PROPBASE_ACC

Attempt to reprogram PROPBASE registers to a
value that is not accepted because another value is
already in use.

0xF Core, bits[8:0].

Software Error
(0)

0x5, SYN_PENDBASE_ACC

Attempt to reprogram PENDBASE registers to a
value that is not accepted because another value is
already in use.

0xF Core, bits[8:0].

Software Error
(0)

0x6, SYN_LPI_CLR

Attempt to reprogram ENABLE_LPI when not
enabled and not asleep.

0xF Core, bits[8:0].

Software Error
(0)

0x7, SYN_WAKER_CHANGE

Attempt to change GICR_WAKER abandoned due
to handshake rules.

0xF Core, bits[8:0].

Software Error
(0)

0x8, SYN_SLEEP_FAIL

Attempt to put GIC to sleep failed because cores
are not fully asleep.

0xF Core, bits[8:0].

Software Error
(0)

0x9, SYN_PGE_ON_QUIESCE

Core put to sleep before its Group enables were
cleared.

0xF Core, bits[8:0].

Software Error
(0)

0xA, SYN_GICD_CTLR

Attempt to update GICD_CTLR was prevented
due to RWP or Group enable restrictions.

0xF Data, bits[7:0].

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-157

Non-Confidential

Table 4-52 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x10, SYN_SGI_NO_TGT

SGI sent with no valid destinations.

0xE Core, bits[8:0].

Software Error
(0)

0x11, SYN_SGI_CORRUPTED

SGI corrupted without effect.

0x6 Core, bits[8:0].

Software Error
(0)

0x12, SYN_GICR_CORRUPTED

Data was read from GICR register space that
encountered an uncorrectable error.

0x6 GICT_ERR0ADDR is populated.

Software Error
(0)

0x13, SYN_GICD_CORRUPTED

Data was read from GICD register space that
encountered an uncorrectable error.

0x6 GICT_ERR0ADDR is populated.

Software Error
(0)

0x14, SYN_ITS_OFF

Data was read from an ITS that is powered down.

0xF GICT_ERR0ADDR is populated.

Software Error
(0)

0x18, SYN_SPI_BLOCK.

Attempt to access an SPI block that is not
implemented.

0xE Block, bits[4:0].

Software Error
(0)

0x19, SYN_SPI_OOR

Attempt to access a non-implemented SPI using
(SET|CLR)SPI.

0xE ID, bits[9:0].

Software Error
(0)

0x1A, SYN_SPI_NO_DEST_TGT

An SPI has no legal target destinations.

0xF ID, bits[9:0].

Software Error
(0)

0x1B, SYN_SPI_NO_DEST_1OFN

A 1 of N SPI cannot be delivered due to bad
GICR_CTRL.DPG<0|1NS|1S> or
GICR_CLASSR programming.

0xF ID, bits[9:0].

Software Error
(0)

0x1C, SYN_COL_OOR

A collator message is received for a non-
implemented SPI, or is larger than the number of
owned SPIs in a multichip configuration.

0xF ID, bits[9:0].

Software Error
(0)

0x1D, SYN_DEACT_IN

A Deactivate to a non-existent SPI, or with
incorrect groups set. Deactivates to LPI and non-
existent PPI are not reported.

0xE None.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-158

Non-Confidential

Table 4-52 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x1E, SYN_SPI_CHIP_OFFLINE

An attempt was made to send an SPI to an offline
chip.

0xF ID, bits[9:0].

Software Error
(0)

0x28, SYN_ITS_REG_SET_OOR

An attempt was made to set an Out Of Range
(OOR) interrupt. Only valid when GICR LPI
injection registers are supported.

0xE Core, bits[24:16].

Data, bits[15:0].

Software Error
(0)

0x29, SYN_ITS_REG_CLR _OOR

An attempt was made to clear an OOR interrupt.
Only valid when GICR LPI injection registers are
supported.

0xE Core, bits[24:16].

Data, bits[15:0].

Software Error
(0)

0x2A, SYN_ITS_REG_INV_OOR

An attempt was made to invalidate an OOR
interrupt. Only valid when GICR LPI injection
registers are supported.

0xE Core, bits[24:16].

Data, bits[15:0].

Software Error
(0)

0x2B, SYN_ITS_REG_SET_ENB

An attempt was made to set an interrupt when
LPIs are not enabled. Only valid when GICR LPI
injection registers are supported.

0xF Core, bits[24:16].

Data, bits[15:0].

Software Error
(0)

0x2C, SYN_ITS_REG_CLR _ENB

An attempt was made to clear an interrupt when
LPIs are not enabled. Only valid when GICR LPI
injection registers are supported.

0xF Core, bits[24:16].

Data, bits[15:0].

Software Error
(0)

0x2D, SYN_ITS_REG_INV_ENB

An attempt was made to invalidate an interrupt
when LPIs are not enabled. Only valid when
GICR LPI injection registers are supported.

0xF Core, bits[24:16].

Data, bits[15:0].

Software Error
(0)

0x40, SYN_LPI_PROP_READ_FAIL

An attempt was made to read properties for a
single interrupt where an error response was
received with the data.

0x12 Target, bits[29:16]

ID, bits[15:0]

Software Error
(0)

0x41, SYN_PT_PROP_READ_FAIL

An attempt was made to read properties for a
block of interrupts where an error response was
received with the data.

0x12 Target, bits[29:16]

ID, bits[15:0]

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-159

Non-Confidential

Table 4-52 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x42, SYN_PT_COARSE_MAP_READ_FAIL

An attempt was made to read the coarse map for a
target where an error response was received with
the data.

0x12 Target, bits[29:16]

Software Error
(0)

0x43, SYN_PT_COARSE_MAP_WRITE_FAIL

An attempt was made to write the coarse map for a
target with an error received with the write
response.

0x12 Target, bits[29:16]

Software Error
(0)

0x44, SYN_PT_TABLE_READ_FAIL

An attempt was made to read a block of interrupts
from a Pending table, where an error response was
received with the data.

0x12 Target, bits[29:16]

ID, bits[15:0]

Software Error
(0)

0x45, SYN_PT_TABLE_WRITE_FAIL

An attempt was made to write-back a block of
interrupts from a Pending table with an error
received with the write response.

0x12 Target, bits[29:16]

ID, bits[15:0]

Software Error
(0)

0x46, SYN_PT_SUB_TABLE_READ_FAIL

An attempt was made to read a subblock of
interrupts from a Pending table, where an error
response was received with the data.

0x12 Target, bits[29:16]

ID, bits[15:0]

Software Error
(0)

0x47, SYN_PT_TABLE_WRITE_FAIL_BYTE

An attempt was made to write-back a subblock of
interrupts from a Pending table, with an error
received with the write response.

0x12 Target, bits[29:16]

ID, bits[15:0]

Correctable SPI
RAM errors (1)

0x00 0x7 See Table 3-9 SPI RAM errors,
records 1-2 on page 3-84.

Uncorrectable
SPI RAM errors
(2)

0x00 0x7

Correctable SGI
RAM errors (3)

0x00 0x7 See Table 3-10 SGI RAM errors,
records 3-4 on page 3-85.

Uncorrectable
SGI RAM
errors (4)

0x00 0x7

Reserved (5) - - -

Reserved (6) - - -

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-160

Non-Confidential

Table 4-52 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Correctable PPI
RAM errors (7)

0x00 0x7 See Table 3-11 PPI RAM errors,
records 7-8 on page 3-86.

Uncorrectable
PPI RAM errors
(8)

0x00 0x7

Correctable LPI
RAM errors (9)

0x00 0x7 See Table 3-12 LPI RAM errors,
records 9-10 on page 3-87.

Uncorrectable
LPI RAM
errors (10)

0x00 0x7

Correctable
error from ITS
RAM (11)

0x00 0x6 See Table 3-13 ITS RAM errors,
records 11-12 on page 3-87.

Uncorrectable
error from ITS
RAM (12)

0x00 0x6

Command or
translation error
in ITS (13+)

0x00, Architectural

0x01, Non-architectural

0x1 ITS 24-bit syndrome. See Table
3-15 ITS command and
translation errors, records 13+
on page 3-88.

4.8.6 GICT_ERR<n>MISC1, Error Record Miscellaneous Register 1
This register contains the data value of an uncorrectable error in the LPI RAM or ITS software
information for one of 13, or more, error records. The GIC-600AE only supports a single MISC1
register, so n = 10, and therefore this register is identified as GICT_ERR10MISC1.

The GICT_ERR10MISC1 characteristics are:

Usage constraints If GICD_SAC.GICTNS == 0, then only Secure software can access the
functions of this register.

If GICT_ERR10STATUS.MV == 1, then GICT_ERR10MISC1 ignores writes.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

31 x+1 x 0

INFOReserved

63 32

Reserved

Figure 4-41 GICT_ERR10MISC1 bit assignments

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-161

Non-Confidential

The following table shows the bit assignments.

Table 4-53 GICT_ERR10MISC1 bit assignments

Bits Name Function

[63:x + 1] - Reserved, RAZ.

[x:0] INFO Value represents either data that is written to the LPI RAM when an uncorrectable error is detected, or ITS
software information for one of 13, or more, error records. The value x depends on the width of the LPI RAM,
which is set during configuration of the GIC-600AE.

4.8.7 GICT_ERRGSR, Error Group Status Register

This register shows the status of the GIC-600AE Armv8.2 RAS architecture-compliant error records for
correctable and uncorrectable RAM ECC errors, ITS command and translation errors, and uncorrectable
software errors.

The GICT_ERRGSR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

31 0

Status

63 32

Status

Figure 4-42 GICT_ERRGSR bit assignments

The following table shows the bit assignments.

Table 4-54 GICT_ERRGSR bit assignments

Bits Name Function

[n] Status Indicates the status of error record n, where n is 0-13+ depending on the configuration:
• 0 = The error record is not reporting any errors.
• 1 = The error record is reporting one or more errors.

4.8.8 GICT_ERRIRQCR<n>, Error Interrupt Configuration Registers

GICT_ERRIRQCR0 controls which SPI is generated when a fault handling interrupt occurs.
GICT_ERRIRQCR1 controls which SPI is generated when an error recovery interrupt occurs.

The GICT_ERRIRQCR<n> characteristics are:

Usage constraints If GICD_SAC.GICTNS == 0, then only Secure software can access the
functions of this register.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-162

Non-Confidential

31 10 9 0

SPIIDReserved

Figure 4-43 GICT_ERRIRQCR<n> bit assignments

The following table shows the bit assignments.

Table 4-55 GICT_ERRIRQCR<n> bit assignments

Bits Name Function

[31:10] - Reserved, RAZ.

[9:0] SPIID SPI ID.

Returns 0 if an invalid entry is written.

In a multichip configuration, the SPIID field must only be programmed to an SPI ID that the chip owns. The relevant
GICD_CHIPRn register controls the SPI ownership.

Arm recommends that if these registers are used, then the SPI must not be used for another device either with a wire
or as a message-based interrupt.

4.8.9 GICT_ERRIDR, Error Record ID Register

This register returns information about the configuration of the GIC-600AE GICT such as whether an
LPI or ITS is available.

The GICT_ERRIDR characteristics are:

Usage constraints If GICD_SAC.GICTNS == 0, then only Secure software can read this register.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

31 16 15 0

NUMReserved

Figure 4-44 GICT_ERRIDR bit assignments

The following table shows the bit assignments.

Table 4-56 GICT_ERRIDR bit assignments

Bits Name Function

[31:16] - Reserved, RAZ.

[15:0] NUM Identifies the device configuration:
• 10 = No LPI available.
• 12 = LPI available but no ITS.
• 14 = LPI available and 1 × ITS.
• 15 = LPI available and 2 × ITS.
• 16 = LPI available and 3 × ITS.

4.8.10 GICT_PIDR2, Peripheral ID2 Register

This register returns byte[2] of the peripheral ID. The GICT_PIDR2 register is part of the set of trace and
debug peripheral identification registers.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-163

Non-Confidential

The GICT_PIDR2 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.8 GICT register summary on page 4-150.

The following figure shows the bit assignments.

ArchRevReserved

31 8 7 4 3

DES_1

02

JEDEC

Figure 4-45 GICT_PIDR2 bit assignments

The following table shows the bit assignments.

Table 4-57 GICT_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the trace and debug block complies:
• 0x3 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GICT_PIDR1.

4 Programmers model
4.8 GICT register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-164

Non-Confidential

4.9 GICP register summary
The GIC-600AE Performance Monitoring Unit functions are controlled through registers that are
identified with the prefix GICP.

 Note

The GICD_SAC.GICPNS bit controls whether Non-secure software can access the GICP registers.

Table 4-58 GICP register summary

Offset Name Type Width Reset Description Architecture
defined?

0x000 +
(n × 4)

GICP_EVCNTRn on page 4-166 RW 32 Unknown Event Counter Registers, n
= 0-4.

No

0x400 +
(n × 4)

GICP_EVTYPERn on page 4-167 RW 32 Unknown Event Type Configuration
Registers, n = 0-4.

No

0x600 +
(n × 4)

GICP_SVRn on page 4-170 RO 32 Unknown Shadow Value Registers, n =
0-4.

No

0xA00 +
(n × 4)

GICP_FRn on page 4-170 RW 32 Unknown Filter Registers, n = 0-4. No

0xC00 GICP_CNTENSET0 on page 4-171 RW 64 0x0 Counter Enable Set Register No

0xC20 GICP_CNTENCLR0 on page 4-172 RW 64 0x0 Counter Enable Clear
Register

No

0xC40 GICP_INTENSET0 on page 4-172 RW 64 0x0 Interrupt Contribution
Enable Set Register 0

No

0xC60 GICP_INTENCLR0 on page 4-173 RW 64 0x0 Interrupt Contribution
Enable Clear Register 0

No

0xC80 GICP_OVSCLR0 on page 4-174 RW 64 0x0 Overflow Status Clear
Register 0

No

0xCC0 GICP_OVSSET0 on page 4-174 RW 64 0x0 Overflow Status Set
Register 0

No

0xD88 GICP_CAPR on page 4-175 WO 32 - Counter Shadow Value
Capture Register

No

0xE00 GICP_CFGR on page 4-176 RO 32 0x401F04 Configuration Information
Register

No

0xE04 GICP_CR on page 4-176 RW 32 0x0 Control Register No

0xE50 GICP_IRQCR on page 4-177 RW 32 0x0 Interrupt Configuration
Register

No

0xFB8 GICP_PMAUTHSTATUS RO 32 0x088 - -

0xFBC GICP_PMDEVARCH RO 32 0x23B02A56 - -

0xFCC GICP_PMDEVTYPE RO 32 0x56 - -

0xFD0 GICP_PIDR4 RO 32 0x44 Peripheral ID 4 Register No

0xFD4 GICP_PIDR5 RO 32 0x00 Peripheral ID 5 Register No

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-165

Non-Confidential

Table 4-58 GICP register summary (continued)

Offset Name Type Width Reset Description Architecture
defined?

0xFD8 GICP_PIDR6 RO 32 0x00 Peripheral ID 6 Register No

0xFDC GICP_PIDR7 RO 32 0x00 Peripheral ID 7 Register No

0xFE0 GICP_PIDR0 RO 32 0x96 Peripheral ID 0 Register No

0xFE4 GICP_PIDR1 RO 32 0xB4 Peripheral ID 1 Register No

0xFE8 GICP_PIDR2 on page 4-177 RO 32 0x3B Peripheral ID 2 Register No

0xFEC GICP_PIDR3 RO 32 0x00 Peripheral ID 3 Register No

0xFF0 GICP_CIDR0 RO 32 0x0D Component ID 0 Register No

0xFF4 GICP_CIDR1 RO 32 0x90 Component ID 1 Register No

0xFF8 GICP_CIDR2 RO 32 0x05 Component ID 2 Register No

0xFFC GICP_CIDR3 RO 32 0xB1 Component ID 3 Register No

This section contains the following subsections:
• 4.9.1 GICP_EVCNTRn, Event Counter Registers on page 4-166.
• 4.9.2 GICP_EVTYPERn, Event Type Configuration Registers on page 4-167.
• 4.9.3 GICP_SVRn, Shadow Value Registers on page 4-170.
• 4.9.4 GICP_FRn, Filter Registers on page 4-170.
• 4.9.5 GICP_CNTENSET0, Counter Enable Set Register 0 on page 4-171.
• 4.9.6 GICP_CNTENCLR0, Counter Enable Clear Register 0 on page 4-172.
• 4.9.7 GICP_INTENSET0, Interrupt Contribution Enable Set Register 0 on page 4-172.
• 4.9.8 GICP_INTENCLR0, Interrupt Contribution Enable Clear Register 0 on page 4-173.
• 4.9.9 GICP_OVSCLR0, Overflow Status Clear Register 0 on page 4-174.
• 4.9.10 GICP_OVSSET0, Overflow Status Set Register 0 on page 4-174.
• 4.9.11 GICP_CAPR, Counter Shadow Value Capture Register on page 4-175.
• 4.9.12 GICP_CFGR, Configuration Information Register on page 4-176.
• 4.9.13 GICP_CR, Control Register on page 4-176.
• 4.9.14 GICP_IRQCR, Interrupt Configuration Register on page 4-177.
• 4.9.15 GICP_PIDR2, Peripheral ID2 Register on page 4-177.

4.9.1 GICP_EVCNTRn, Event Counter Registers

These registers contain the values of event counter n. The GIC-600AE supports five counters, n = 0-4.

The GICP_EVCNTRn characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 0

COUNT

Figure 4-46 GICP_EVCNTRn bit assignments

The following table shows the bit assignments.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-166

Non-Confidential

Table 4-59 GICP_EVCNTRn bit assignments

Bits Name Function

[31:0] COUNT Counter value.

If the counter is enabled, the counter value increments when an event matching GICP_EVTYPERn.EVENT occurs.

4.9.2 GICP_EVTYPERn, Event Type Configuration Registers

These registers configure which events that event counter n counts. The GIC-600AE supports five
counters, n = 0-4.

The GICP_EVTYPERn characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 30 0

EVENT

781516

EVENT_TYPEOVFCAP

1718

ReservedReserved

Figure 4-47 GICP_EVTYPERn bit assignments

The following table shows the bit assignments.

Table 4-60 GICP_EVTYPERn bit assignments

Bits Name Function

[31] OVFCAP When set to 1, an overflow of counter n triggers a capture if GICP_CAPR.CAPTURE is set.

[30:18] - Reserved.

[17:16] EVENT_TYPE Event tracking type:
• 0b00 = Count events.
• 0b10 = MaximumEvent.
• 0b11 = Reserved.

[15:8] - Reserved.

[7:0] EVENT Event identifier. See Table 4-61 EVENT field encoding on page 4-167.

All events reset to an unknown value. Registers corresponding to unimplemented counters are RES0.

The following table shows the events that the GIC can count.

Table 4-61 EVENT field encoding

Event Description EventID Filter

CLK Clock cycle. 0x0 None

CLK_NG Clock cycle that prevents Q-Channel clock gating. 0x1 None

- Reserved. 0x2-0x3 -

DN_MSG Downstream message to core excluding PPIs. 0x4 Target

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-167

Non-Confidential

Table 4-61 EVENT field encoding (continued)

Event Description EventID Filter

DN_SET Set to core SPIs and LPIs.. 0x5 Target/ID range

DN_SET1OFN Set to core, which is a 1 of N interrupt. 0x6 Target/ID range

- Reserved. 0x7 -

UP_MSG Upstream message from core. 0x8 Target

UP_ACT Upstream activate. 0x9 Target/ID range

UP_REL Upstream release. 0xA Target/ID range

UP_ACTREL Upstream activate or release. 0xB Target/ID range

UP_SET_COMP A set followed by an activate. This event counts the set and then
decrements on release.

0xC Target/ID range

UP_DEACT Upstream deactivate. SPIs only. 0xD Target/ID range

SGI_BRD Broadcast SGI messages. Target = source. 0x10 Target/ID range

SGI_TAR Targeted SGI messages. Target = source. 0x11 Target/ID range

SGI_ALL All SGI messages. Target = source. 0x12 Target/ID range

SGI_ACC Accepted SGI. Target = source. 0x13 Target/ID range

SGI_BRD_CC_IN Broadcast SGI message from cross-chip. 0x14 ID range/Chip

SGI_TAR_CC_IN Targeted SGI message from cross-chip. 0x15 ID range/Chip

SGI_TAR_CC_OUT Targeted SGI sent cross-chip. 0x16 Chip/ID range

ITS_NLL_LPI Incoming LPI. 0x20 Target/ID range/ITS

ITS_LL_LPI Incoming low latency LPI. 0x21 Target/ID range/ITS

ITS_LPI Incoming LPI (or low latency). 0x22 Target/ID range/ITS

ITS_LPI_CMD Incoming LPI command. 0x23 Target/ID range/ITS

ITS_DID_MISS Number of DeviceID cache misses. 0x24 Target/ID range/ITS

ITS_VID_MISS Number of EventID cache misses. 0x25 Target/ID range/ITS

ITS_COL_MISS Number of Collection cache misses. 0x26 Target/ID range/ITS

ITS_LAT Latency of the ITS transaction. 0x27 Target/ID range/ITS

ITS_MPFA Number of free slots during translation. 0x28 Target/ID range/ITS

LPI_CC_OUT LPI sent cross-chip. 0x29 ID range/Chip

LPI_CMD_CC_OUT LPI command sent cross-chip. 0x2A ID range/Chip

LPI_CC_IN LPI coming in from cross-chip. 0x2B Target/ID range/Chip

LPI_CMD_CC_IN LPI command coming in from cross-chip. 0x2C Target/ID range/Chip

LPI_OWN_STORED LPI stored in own location. 0x30 -

LPI_OOL_STORED LPI stored out of location. 0x31 -

LPI_HIT_EN LPI property read cache hit enabled. Uses the filter from counter 0
only.

0x32 Target/ID range

LPI_HIT_DIS LPI property read cache hit disabled. Uses the filter from counter 0
only.

0x33 Target/ID range

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-168

Non-Confidential

Table 4-61 EVENT field encoding (continued)

Event Description EventID Filter

LPI_HIT LPI property read cache hit. Uses the filter from counter 0 only. 0x34 Target/ID range

LPI_MATCH LPI coalesced. Uses the filter from counter 0 only. 0x35 Target/ID range

LPI_FAS Number of slots free on new LPI. 0x36 None

LPI_PROP_EN Enabled LPI property fetch. Uses the filter from counter 0. 0x37 Target/ID range

LPI_PROP_DIS Disabled LPI property fetch. Uses the filter from counter 0. 0x38 Target/ID range

LPI_PROP LPI property fetch. Uses the filter from counter 0. 0x39 Target/ID range

LPI_COMP_INC_MERGE Indicates that an LPI has completed.

Uses the filter from counter 0.

0x3A Target/ID range

SPI_COL_MSG New message from SPI Collator. 0x50 ID range

SPI_ENABLED SPI enabled (new SPI or register access if pending). 0x51 ID range

SPI_DISABLED SPI disabled (new SPI that is disabled or register access if pending). 0x52 ID range

SPI_PENDING_SET New SPI pending valid. 0x53 ID range

SPI_PENDING_CLR SPI pending bit cleared. 0x54 ID range

SPI_MATCH Collated edge-based SPI. Excludes collation in the collator. 0x55 ID range

SPI_CC_IN SPI from remote chip. 0x57 ID range/Chip

SPI_CC_OUT SPI sent to remote chip. 0x58 ID range/Chip

SPI_CC_DEACT SPI deactivate message sent. 0x5A ID range/Chip

PT_IN_EN Enabled interrupt written to Pending table. 0x60 Target/ID range

PT_IN_DIS Disabled interrupt written to Pending table. 0x61 Target/ID range

PT_PRI Priority of interrupt written to Pending table. 0x62 Target/ID range

PT_IN Interrupt written to Pending table. 0x63 Target/ID range

PT_MATCH Interrupt already set in Pending table. 0x64 Target/ID range

PT_OUT_EN Enabled interrupt taken out of Pending table (also covered
PT_MATCH when enabled).

0x65 Target/ID range

PT_OUT_DIS Disabled interrupt taken out of Pending table (also covered
PT_MATCH when disabled).

0x66 Target/ID range

PT_OUT Interrupt taken out of Pending table (also covered PT_MATCH). 0x67 Target/ID range

PT_BLOCK_SENT_CC Pending table block that is sent as part of MOVALL. 0x68 None

SPI_CC_LATENCY SPIs outstanding. 0x70 Chip

SPI_CC_LAT_WAIT SPIs waiting to be sent. 0x71 Chip

LPI_CC_LATENCY LPIs outstanding. 0x72 Chip

LPI_CC_LAT_WAIT LPI waiting to be sent. 0x73 Chip

SGI_CC_LATENCY SGIs outstanding. 0x74 Chip

SGI_LAT_WAIT SGIs waiting to be sent. 0x75 Chip

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-169

Non-Confidential

Table 4-61 EVENT field encoding (continued)

Event Description EventID Filter

ACC Counter(n − 1) − Counter(n − 2) every cycle. Prevents clock gating. 0x80 None

OFLOW Overflow of Counter n − 1. 0x81 None

4.9.3 GICP_SVRn, Shadow Value Registers

These registers contain the shadow value of event counter n. The GIC-600AE supports five counters, n =
0-4.

The GICP_SVRn characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 0

COUNT

Figure 4-48 GICP_SVRn bit assignments

The following table shows the bit assignments.

Table 4-62 GICP_SVRn bit assignments

Bits Name Function

[31:0] COUNT Captured counter value.

This field holds the captured counter values of the corresponding entry in GICP_EVCNTRn.

4.9.4 GICP_FRn, Filter Registers

These registers configure the filtering of event counter n. The GIC-600AE supports five counters, n =
0-4.

The GICP_FRn characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

Filter

31 30 29 28 16 15 0

Reserved

FilterEncoding
FilterType

Figure 4-49 GICP_FRn bit assignments

The following table shows the bit assignments.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-170

Non-Confidential

Table 4-63 GICP_FRn bit assignments

Bits Name Function

[31:30] FilterType Filter type:
• 0b00 = Filter on core.
• 0b01 = Filter on INTID.
• 0b10 = Filter on chip or ITS.
• 0b11 = Reserved, no effect.

[29] FilterEncoding 0 = Filter on range.

1 = Filter on an exact match.

[28:16] - Reserved.

[15:0] Filter If the corresponding GICP_EVTYPERn.EVENT indicates an event that cannot be filtered, then the value in
this register is ignored.

When FilterEncoding == 1, counter n counts events that are only associated with an exact match of the
FilterType.

When FilterEncoding == 0, this field is encoded so that the first LSB that is zero, indicates the uppermost of
a contiguous span of least significant FilterType content bits, that the GIC ignores for the purposes of
matching. For example, setting Filter to:
• 0b11110111_11110111 matches with values of 0b11110111_1111xxxx for FilterType content.
• 0b11110111_11110110 matches with values of 0b11110111_1111011x for FilterType content.
• 0b11110101_11111111 matches with values of 0b111101xx_xxxxxxxx for FilterType content.

4.9.5 GICP_CNTENSET0, Counter Enable Set Register 0

These registers contain the counter enables for each event counter. The GIC-600AE supports five event
counters.

The GICP_CNTENSET0 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 5 4 0

CNTENReserved

Figure 4-50 GICP_CNTENSET0 bit assignments

The following table shows the bit assignments.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-171

Non-Confidential

Table 4-64 GICP_CNTENSET0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ

[4:0] CNTEN Counter enable. The CNTEN[n] bit is the enable for counter n. This field resets to an unknown value. Reads return
the state of the counter enables.

Writing:

Bit[n] = 1 Sets the enable for counter n.

Bit[n] = 0 No effect. To disable a counter, use GICP_CNTENCLR0 on page 4-172.

Counter n is enabled when CNTEN[n] == 1 and GICP_CR.E == 1.

4.9.6 GICP_CNTENCLR0, Counter Enable Clear Register 0

This register contains the counter disables for each event counter. The GIC-600AE supports five event
counters.

The GICP_CNTENCLR0 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 5 4 0

CNTENReserved

Figure 4-51 GICP_CNTENCLR0 bit assignments

The following table shows the bit assignments.

Table 4-65 GICP_CNTENCLR0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ

[4:0] CNTEN Counter disable. The CNTEN[n] bit is the disable for counter n. This field resets to an unknown value. Reads return
the state of the counter enables.

Writing:

Bit[n] = 1 Disables counter n.

Bit[n] = 0 No effect. To enable a counter, use GICP_CNTENSET0 on page 4-171.

Counter n is disabled when CNTEN[n] == 0 or GICP_CR.E == 0.

4.9.7 GICP_INTENSET0, Interrupt Contribution Enable Set Register 0

This register contains the set mechanism for the counter interrupt contribution enables. The GIC-600AE
supports five counters, n = 0-4.

The GICP_INTENSET0 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-172

Non-Confidential

Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 5 4 0

INTENReserved

Figure 4-52 GICP_INTENSET0 bit assignments

The following table shows the bit assignments.

Table 4-66 GICP_INTENSET0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ

[4:0] INTEN Interrupt enable. The INTEN[n] bit is the interrupt enable for counter n. This field resets to an unknown value. Reads
return the state of the interrupt enables.

Writing:

Bit[n] = 1 Sets the interrupt enable for counter n.

Bit[n] = 0 No effect. To disable a counter interrupt enable, use GICP_INTENCLR0 on page 4-173.

The interrupt enable for counter n is enabled when INTEN[n] == 1 and GICP_CR.E == 1.

Overflow of counter n sets GICP_OVSSET0.OVS[n] to 1 and that triggers the PMU interrupt if INTEN[n] == 1.

4.9.8 GICP_INTENCLR0, Interrupt Contribution Enable Clear Register 0

This register contains the clear mechanism for the counter interrupt contribution enables. The
GIC-600AE supports five counters, n = 0-4.

The GICP_INTENCLR0 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 5 4 0

INTENReserved

Figure 4-53 GICP_INTENCLR0 bit assignments

The following table shows the bit assignments.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-173

Non-Confidential

Table 4-67 GICP_INTENCLR0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ.

[4:0] INTEN Interrupt enable. The INTEN[n] bit is the interrupt disable for counter n. This field resets to an unknown value.
Reads return the state of the interrupt enables.

Writing:

Bit[n] = 1 Clears the interrupt enable for counter n.

Bit[n] = 0 No effect. To set a counter interrupt enable, use GICP_INTENSET0 on page 4-172.

4.9.9 GICP_OVSCLR0, Overflow Status Clear Register 0

This register provides the clear mechanism for the counter overflow status bits and provides read access
to the counter overflow status bit values. The GIC-600AE supports five counters, n = 0-4.

The GICP_OVSCLR0 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 5 4 0

OVSReserved

Figure 4-54 GICP_OVSCLR0 bit assignments

The following table shows the bit assignments.

Table 4-68 GICP_OVSCLR0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ.

[4:0] OVS Overflow status. The OVS[n] bit is the overflow clear for counter n. This field resets to zero. Reads return the state of
the overflow status bits.

Writing:

Bit[n] = 1 Clears the overflow status for counter n.

Bit[n] = 0 No effect. To set a counter overflow status, use GICP_OVSSET0 on page 4-174.

Overflow of counter n, that is a transition past the maximum unsigned value of the counter that causes the value to
wrap and become zero, sets the corresponding OVS bit. In addition, this event can trigger the PMU interrupt and
cause a capture of the PMU counter values, see 4.9.2 GICP_EVTYPERn, Event Type Configuration Registers
on page 4-167.

4.9.10 GICP_OVSSET0, Overflow Status Set Register 0

This register provides the set mechanism for the counter overflow status bits and provides read access to
the counter overflow status bit values. The GIC-600AE supports five counters, n = 0-4.

The GICP_OVSSET0 characteristics are:

Usage constraints There are no usage constraints.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-174

Non-Confidential

Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 5 4 0

OVSReserved

Figure 4-55 GICP_OVSSET0 bit assignments

The following table shows the bit assignments.

Table 4-69 GICP_OVSSET0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ.

[4:0] OVS Overflow status. The OVS[n] bit is the overflow set for counter n. This field resets to zero. Reads return the state of
the overflow status bits.

Writing:

Bit[n] = 1 Sets the overflow status for counter n.

Bit[n] = 0 No effect. To clear a counter overflow status, use GICP_OVSCLR0 on page 4-174.

When the agent controlling the GIC-600AE sets an OVS bit, it is similar to an OVS bit being set because of a counter
overflow. Setting the OVS bit triggers the overflow interrupt if it is enabled.

4.9.11 GICP_CAPR, Counter Shadow Value Capture Register

This register controls the counter shadow value capture mechanism.

The GICP_CAPR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 1 0

Reserved

CAPTURE

Figure 4-56 GICP_CAPR bit assignments

The following table shows the bit assignments.

Table 4-70 GICP_CAPR bit assignments

Bits Name Function Type

[31:1] - Reserved. -

[0] CAPTURE A write of 1 triggers a capture of all values within the PMU into their respective shadow registers.

A write of 0 has no effect.

WO

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-175

Non-Confidential

Related references
A.6 Miscellaneous signals on page Appx-A-260

4.9.12 GICP_CFGR, Configuration Information Register

This register returns information about the PMU implementation.

The GICP_CFGR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 23 22 21 14 13 8 7 6 5 0

NCTRSIZEReservedReserved

ReservedCAPTURE

Figure 4-57 GICP_CFGR bit assignments

The following table shows the bit assignments.

Table 4-71 GICP_CFGR bit assignments

Bits Name Function

[31:23] - Reserved, RAZ.

[22] CAPTURE Returns 1, to indicate that the GIC supports capture.

[21:14] - Reserved, RAZ.

[13:8] SIZE Returns 31, to indicate that the GIC supports 32-bit counters.

[7:6] - Reserved, RAZ.

[5:0] NCTR Returns 4, to indicate that the GIC provides five counters.

4.9.13 GICP_CR, Control Register

This register controls whether all counters are enabled or disabled.

The GICP_CR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 1 0

EReserved

Figure 4-58 GICP_CR bit assignments

The following table shows the bit assignments.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-176

Non-Confidential

Table 4-72 GICP_CR bit assignments

Bits Name Function

[31:1] - Reserved.

[0] E Global counter enable:
• 0 = No events are counted and the values in GICP_EVCNTRn do not change.
• 1 = The counters are enabled.

Resets to 0.

This bit takes precedence over the GICP_CNTENSET0.CNTEN bits.

4.9.14 GICP_IRQCR, Interrupt Configuration Register

This register controls which SPI is generated when a PMU overflow interrupt occurs.

The GICP_IRQCR characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

31 10 9 0

SPIIDReserved

Figure 4-59 GICP_IRQCR bit assignments

The following table shows the bit assignments.

Table 4-73 GICP_IRQCR bit assignments

Bits Name Function

[31:10] - Reserved, RAZ.

[9:0] SPIID SPI ID.

Returns 0 if an invalid entry is written.

Creates a level-triggered interrupt if it is owned on chip. Otherwise it behaves as a normal message-based SPI.

In a multichip configuration, the SPIID field must only be programmed to an SPI ID that the chip owns. The relevant
GICD_CHIPRn register controls the SPI ownership.

Arm recommends that if these registers are used, then the SPI must not be used for another device either with a wire
or as a message-based interrupt.

4.9.15 GICP_PIDR2, Peripheral ID2 Register

This register returns byte[2] of the peripheral ID. The GICP_PIDR2 register is part of the set of
performance monitoring peripheral identification registers.

The GICP_PIDR2 characteristics are:

Usage constraints There are no usage constraints.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.9 GICP register summary on page 4-165.

The following figure shows the bit assignments.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-177

Non-Confidential

ArchRevReserved

31 8 7 4 3

DES_1

02

JEDEC

Figure 4-60 GICP_PIDR2 bit assignments

The following table shows the bit assignments.

Table 4-74 GICP_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the PMU complies:
• 0x3 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GICP_PIDR1.

4 Programmers model
4.9 GICP register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-178

Non-Confidential

4.10 FMU register summary
The GIC-600AE Fault Management Unit functions are controlled through registers that are identified
with the prefix FMU.

Table 4-75 FMU register summary

Offset Name Type Width Reset Description

0x000 + (n × 64) FMU_ERR<n>FR on page 4-179 RO 64 0xA2 Error Record Feature Register

0x008 + (n × 64) FMU_ERR<n>CTLR on page 4-180 RW 64 0x1 Error Record Control Register

0x010 + (n × 64) FMU_ERR<n>STATUS on page 4-181 RW 64 0x30_0000 Error Record Primary Status Register

0xE00 FMU_ERRGSR on page 4-183 RO 64 0x0 Error Group Status Register

0xEA0 FMU_KEY on page 4-184 RW 32 0x0 FMU Key Register

0xEA4 FMU_PINGCTLR on page 4-185 RW 32 0x0 Ping Control Register

0xEA8 FMU_PINGNOW on page 4-185 RW 32 0x0 Ping Now Register

0xEB0 FMU_SMEN on page 4-186 WO 32 0x0 Safety Mechanism Enable Register

0xEB4 FMU_SMINJERR on page 4-187 WO 32 0x0 Safety Mechanism Inject Error Register

0xEC0 FMU_PINGMASK on page 4-188 RW 64 0x0 Ping Mask Register

0xF00 FMU_STATUS on page 4-189 RO 32 0x1 FMU Status Register

0xFC8 FMU_ERRIDR on page 4-190 RO 32 0x2C Error Record ID Register

This section contains the following subsections:
• 4.10.1 FMU_ERR<n>FR, Error Record Feature Register on page 4-179.
• 4.10.2 FMU_ERR<n>CTLR, Error Record Control Register on page 4-180.
• 4.10.3 FMU_ERR<n>STATUS, Error Record Primary Status Register on page 4-181.
• 4.10.4 FMU_ERRGSR, Error Group Status Register on page 4-183.
• 4.10.5 FMU_KEY, FMU Key Register on page 4-184.
• 4.10.6 FMU_PINGCTLR, Ping Control Register on page 4-185.
• 4.10.7 FMU_PINGNOW, Ping Now Register on page 4-185.
• 4.10.8 FMU_SMEN, Safety Mechanism Enable Register on page 4-186.
• 4.10.9 FMU_SMINJERR, Safety Mechanism Inject Error Register on page 4-187.
• 4.10.10 FMU_PINGMASK, Ping Mask Register on page 4-188.
• 4.10.11 FMU_STATUS, FMU Status Register on page 4-189.
• 4.10.12 FMU_ERRIDR, Error Record ID Register on page 4-190.

4.10.1 FMU_ERR<n>FR, Error Record Feature Register

This register defines which of the common architecturally-defined features are implemented and, of the
implemented features, which are software programmable.

The FMU_ERR<n>FR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-179

Non-Confidential

31 8 7 6 4 3 2 1 0

EDFIReserved

Reserved

63 32

Reserved

UI

5

Figure 4-61 FMU_ERR<n>FR bit assignments

The following table shows the bit assignments.

Table 4-76 FMU_ERR<n>FR bit assignments

Bits Name Function

[63:8] - Reserved, RAZ.

[7:6] FI Fault handling interrupt. Feature is controllable using FMU_ERR<n>CTLR.FI.

[5:4] UI Error recovery interrupt for Uncorrected Errors. Feature is controllable using FMU_ERR<n>CTLR.UI.

[3:2] - Reserved, RAZ.

[1:0] ED Error reporting and logging. Feature is controllable using FMU_ERR<n>CTLR.ED.

4.10.2 FMU_ERR<n>CTLR, Error Record Control Register

This register controls which interrupt types are handled.

The FMU_ERR<n>CTLR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-180

Non-Confidential

31 4 3 2 1 0

Reserved

63 32

Reserved

ED
CE_EN
UI
FI

Figure 4-62 FMU_ERR<n>CTLR bit assignments

The following table shows the bit assignments.

Table 4-77 FMU_ERR<n>CTLR bit assignments

Bits Name Function

[63:4] - Reserved, RAZ.

[3] FI Fault Handling Interrupt (FHI) enable. When set to 1, it enables the fault handling interrupt for all Corrected error
events, and Uncorrected errors.

[2] UI Error Recovery Interrupt (ERI) enable. This bit controls whether an ERI is generated for all detected, logged
(FMU_ERR<n>CTLR.ED == 1) errors that are reported through this error record as UEs. That is:
• Correctable errors that are reported as uncorrectable (FMU_ERR<n>CTLR.CE_EN == 0).
• Uncorrectable errors.

 Note

An error that is reported as a UE might generate both an ERI and an FHI.

[1] CE_EN Correctable error enable.
• 0 = Treats correctable errors as uncorrectable errors (default).
• 1 = Treats correctable errors and uncorrectable errors differently, and reports them separately.

[0] ED Error reporting and logging enable.

4.10.3 FMU_ERR<n>STATUS, Error Record Primary Status Register

This register indicates information relating to the recorded errors.

The FMU_ERR<n>STATUS characteristics are:

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-181

Non-Confidential

Usage constraints • Only accessible by Secure accesses.
• After a write to this register, poll the FMU_STATUS register to ensure that

the effect of the write is complete. See 4.10.11 FMU_STATUS, FMU Status
Register on page 4-189. Until the write takes effect, that is,
FMU_STATUS.idle == 1 then:
— The corresponding bit of FMU_ERRGSR might still report as 1.
— Any interrupts caused by this record might still be asserted.
— Any new error that occurs is treated as a second error recording on top of

this error and causes an overflow to be set.
— Any read of this register might return the old value, or if a new error has

been recorded, then the newly recorded value.
• Do not write to an FMU_ERR<n>STATUS that corresponds to a powered-off

block. See Power management on page 5-206.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179. This register is only reset by the

dbg_[<domain>]reset_n signal.

The following figure shows the bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 8 7 0

SERRIERRReservedUETV

OF

Reserved

UE

Reserved

63 32

Reserved

39

BLKID

CE

Reserved

Reserved

40

Figure 4-63 FMU_ERR<n>STATUS bit assignments

The following table shows the bit assignments.

Table 4-78 FMU_ERR<n>STATUS bit assignments

Bits Name Function

[63:40] - Reserved, RAZ.

[39:32] BLKID This field is RO. Only valid for Error Record 0 (GICD). Valid only when FMU_ERR<n>STATUS.V==1 and
FMU_ERR<n>STATUS.IERR==19 (FMU ping ACK error).

When there is a PING_ACK timeout error, this field indicates the block ID of the remote GIC block that caused the
error.

This field is not updated when a PING_ACK timeout error is reported as a result of a software error injection using
the 4.10.9 FMU_SMINJERR, Safety Mechanism Inject Error Register on page 4-187.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-182

Non-Confidential

Table 4-78 FMU_ERR<n>STATUS bit assignments (continued)

Bits Name Function

[31] - Reserved, RAZ.

[30] V Indicates if this register is valid:
• 0 = FMU_ERR<n>STATUS is not valid.
• 1 = FMU_ERR<n>STATUS is valid. One or more errors are recorded.

Write 1 to clear. When clearing this bit, FMU_ERR<n>STATUS.UE and FMU_ERR<n>STATUS.CE must also be
cleared.

[29] UE Uncorrected Error bit.

Write 1 to clear. When clearing this bit, FMU_ERR<n>STATUS.V must also be cleared.

If FMU_ERR<n>STATUS.V is set to 0, this bit is not valid and reads unknown.

[28] - Reserved, RAZ.

[27] OF Record has overflowed.

Write 1 to clear.

[26] - Reserved, RAZ.

[25:24] CE Corrected error bit:
• 0b00 = No errors were corrected.
• 0b10 = One or more error was corrected.

Write 0b10 or 0b11 to clear.

If FMU_ERR<n>STATUS.V is set to 0, this field is not valid and reads unknown.

[23:22] - Reserved, RAZ.

[21:20] UET Uncorrected Error type.

0b11 = Uncorrected Error records.

This field is not valid and reads unknown if either of the following conditions are true:
• FMU_ERR<n>STATUS.V is set to 0.
• FMU_ERR<n>STATUS.UE is set to 0.

[19:16] - Reserved, RAZ.

[15:8] IERR Implementation-defined error code:

See Table 5-2 Safety Mechanism IDs on page 5-198 for Safety Mechanism ID encodings.

If FMU_ERR<n>STATUS.V is set to 0, this field is not valid and reads unknown.

[7:0] SERR Architecturally defined primary error code.

Returns information shown in Table 4-52 Data field encoding on page 4-157.

This field is RO in Error Record 0.

4.10.4 FMU_ERRGSR, Error Group Status Register

This register shows the status of the FMU error records.

The FMU_ERRGSR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-183

Non-Confidential

Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

31 0

S

63 32

Reserved

44 43

S

Figure 4-64 FMU_ERRGSR bit assignments

The following table shows the bit assignments.

Table 4-79 FMU_ERRGSR bit assignments

Bits Name Function

[63:44] - Reserved, RAZ.

[43:0] S Indicates the status of error record n, where n is 0-13+ depending on the configuration:
• 0 = The error record is not reporting any errors.
• 1 = The error record is reporting one or more errors.

4.10.5 FMU_KEY, FMU Key Register

This register receives the unlock key that is required for writes to FMU registers to be successful. This
register reads as 0 if the FMU register file is locked.

The FMU_KEY characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

31 0

KEYReserved

78

Figure 4-65 FMU_KEY bit assignments

The following table shows the bit assignments.

Table 4-80 FMU_KEY bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:0] KEY Writing the correct key to this field enables the next write to any other writable FMU register to succeed. See
5.2.7 Lock and key mechanism on page 5-204.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-184

Non-Confidential

4.10.6 FMU_PINGCTLR, Ping Control Register

This register configures the error ping timing interval.

The FMU_PINGCTLR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

31 16 15 1 0

ping_timeout_valueping_interval_diff

enable
Reserved

4 3

Figure 4-66 FMU_PINGCTLR bit assignments

The following table shows the bit assignments.

Table 4-81 FMU_PINGCTLR bit assignments

Bits Name Function

[31:16] ping_interval_diff Equal to (ping_interval − ping_timeout_value) in GIC clock cycles.

The minimum value supported is 4.

[15:4] ping_timeout_value Timeout threshold value for ping timeouts in GIC clock cycles.

The minimum value supported is 20. The clock frequency difference and average network congestion
must be considered when programming this field.

[3:1] - Reserved, RAZ.

[0] enabled When set to 1, it enables the GICD background ping engine. The GICD sends ping messages to each
remote GIC block, and expects a PING_ACK back within the specified timeout. If the PING_ACK is
not received within the specified timeout, then the GICD records this situation as an error. The GICD
sequentially moves to the next block and sends another ping message after ping_interval. If pings are
enabled, then FMU_PINGMASK.ping_mask field must unmask at least one remote GIC block.

See 5.2.6 Ping mechanism on page 5-202 for more information.

4.10.7 FMU_PINGNOW, Ping Now Register

This register specifies the remote GIC block to send the ping request to, and monitors whether that block
has acknowledged the ping.

The FMU_PINGNOW characteristics are:

Usage constraints • Only accessible by Secure accesses.
• After a write to this register, poll FMU_STATUS.idle to ensure that the effect

of the write is complete. See 4.10.11 FMU_STATUS, FMU Status Register
on page 4-189.

• Do not write to FMU_PINGNOW that corresponds to a powered-off block.
See Power management on page 5-206.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-185

Non-Confidential

Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

block_id

31 12 11 10 9 8 7 0

Reserved

enable
ping_ack_received

remote_block_inject_error
gicd_inject_error

Figure 4-67 FMU_PINGNOW bit assignments

The following table shows the bit assignments.

Table 4-82 FMU_PINGNOW bit assignments

Bits Name Function

[31:12] - Reserved, RAZ.

[11] remote_block_inject_error Set to 1 to inject an error on the PING_ACK response packet that is sent from the remote GIC
block to the FMU. This action causes errors along the route of the PING_ACK through the
interconnect. The presence of errors helps to confirm that the interconnect path from the
specified remote GIC block to the FMU has been properly connected.

[10] gicd_inject_error Set to 1 to inject an error on the PING data packet that is sent from the FMU to the remote GIC
block. This action causes errors along the route of the PING route through the interconnect. The
presence of errors helps to confirm that the interconnect path from the FMU to the specified
remote GIC block has been properly connected.

[9] ping_ack_received Indicates if a PING_ACK has been received:
• 0 = PING_ACK has not been received.
• 1 = PING_ACK has been received from the GIC block that was pinged.

[8] enable Ping enable:
• 0 = Does not initiate a ping. Allows software to clear the status of this register without

initiating another ping.
• 1 = Initiates a ping to the GIC block that FMU_PINGNOW.block_id specifies.

[7:0] block_id Block identifier. Sends a ping request to the specified GIC block.

See Table 5-1 Error record block IDs on page 5-196 for block ID encodings.

4.10.8 FMU_SMEN, Safety Mechanism Enable Register

This register enables or disables particular Safety Mechanisms inside a specified GIC block.

The FMU_SMEN characteristics are:

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-186

Non-Confidential

Usage constraints • Only accessible by Secure accesses.
• After a write to this register, poll FMU_STATUS.idle to ensure that the effect

of the write is complete. See 4.10.11 FMU_STATUS, FMU Status Register
on page 4-189.

• Do not write to FMU_SMEN and enable or disable a Safety Mechanism that
corresponds to a powered-off block. See Power management on page 5-206.

 Note

If a block is powered-off and then powered-on again, the enabled state of the
Safety Mechanism returns to the default reset state.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

31 24 23 16 15 8 7 0

BLKReservedSMID

EN

1

Reserved

Figure 4-68 FMU_SMEN bit assignments

The following table shows the bit assignments.

Table 4-83 FMU_SMEN bit assignments

Bits Name Function

[31:24] SMID Safety Mechanism identifier.

See Table 5-2 Safety Mechanism IDs on page 5-198 for Safety Mechanism ID encodings.

[23:16] - Reserved, RAZ.

[15:8] BLK Block identifier.

See Table 5-1 Error record block IDs on page 5-196 for block ID encodings.

[7:1] - Reserved, RAZ.

[0] EN Safety Mechanism enable.

 Note

This feature cannot be used for the following:
• BLK = GICD, SMID = 0.
• BLK = 3.
• BLK = PPI, SMID = 0.
• BLK = ITS, SMID = 0.
• BLK = SPI Collator, SMID = 0.
• BLK = Wake Request, SMID = 0.

4.10.9 FMU_SMINJERR, Safety Mechanism Inject Error Register

This register injects one error into the specified Safety Mechanism inside a GIC block.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-187

Non-Confidential

The FMU_SMINJERR characteristics are:

Usage constraints • Only accessible by Secure accesses.
• After a write to this register, poll FMU_STATUS.idle to ensure that the effect

of the write is complete. See 4.10.11 FMU_STATUS, FMU Status Register
on page 4-189.

• Do not write to FMU_SMINJERR and inject an error that corresponds to a
powered-off block. See Power management on page 5-206.

Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

31 24 23 16 15 8 7 0

BLKReservedSMID Reserved

Figure 4-69 FMU_SMINJERR bit assignments

The following table shows the bit assignments.

Table 4-84 FMU_SMINJERR bit assignments

Bits Name Function

[31:24] SMID Safety Mechanism identifier.

See Table 5-2 Safety Mechanism IDs on page 5-198 for Safety Mechanism ID encodings.

[23:16] - Reserved, RAZ.

[15:8] BLK Block identifier.

See Table 5-1 Error record block IDs on page 5-196 for block ID encodings.

[7:0] - Reserved, RAZ.

 Note

This feature cannot be used for the following:
• BLK = GICD, SMID = 0.
• BLK = 3.
• BLK = PPI, SMID = 0.
• BLK = ITS, SMID = 0.
• BLK = SPI Collator, SMID = 0.
• BLK = Wake Request, SMID = 0.

4.10.10 FMU_PINGMASK, Ping Mask Register

This register configures the ping mask.

The FMU_PINGMASK characteristics are:

Usage constraints • Only accessible by Secure accesses.
• Do not change FMU_PINGMASK when background ping is enabled, that is,

FMU_PINGCTLR.enable == 1.

Configurations Available in all GIC-600AE configurations.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-188

Non-Confidential

Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

31

4344

0

ping_mask

ping_mask

63 32

Reserved

Figure 4-70 FMU_PINGMASK bit assignments

The following table shows the bit assignments.

Table 4-85 FMU_PINGMASK bit assignments

Bits Name Function

[63:44] - Reserved, RAZ.

[43:0] ping_mask Ping mask. Bit position corresponds to the GIC block ID. See Table 5-1 Error record block IDs on page 5-196
for the block ID designations.

To make the FMU skip a specific block while generating background ping messages, write a one to the
corresponding bit.

For unpopulated GIC blocks, corresponding bits have no effect. The same applies to bit[0], because the FMU
does not ping GICD.

4.10.11 FMU_STATUS, FMU Status Register

This register monitors whether the FMU is idle.

The FMU_STATUS characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

31 0

idle

1

Reserved

Figure 4-71 FMU_STATUS bit assignments

The following table shows the bit assignments.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-189

Non-Confidential

Table 4-86 FMU_STATUS bit assignments

Bits Name Function

[31:1] - Reserved, RAZ.

[0] idle Indicates if the FMU is idle:
• 0 = FMU is busy processing the previous command.
• 1 = FMU is idle.

4.10.12 FMU_ERRIDR, Error Record ID Register

This register defines the highest numbered index of the error records in this group.

The FMU_ERRIDR characteristics are:

Usage constraints Only accessible by Secure accesses.
Configurations Available in all GIC-600AE configurations.
Attributes See 4.10 FMU register summary on page 4-179.

The following figure shows the bit assignments.

31 0

Reserved NUM

16 15

Figure 4-72 FMU_ERRIDR bit assignments

The following table shows the bit assignments.

Table 4-87 FMU_ERRIDR bit assignments

Bits Name Function

[31:16] - Reserved, RAZ.

[15:0] NUM Highest numbered index of the error records in this group + 1.

4 Programmers model
4.10 FMU register summary

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-190

Non-Confidential

Chapter 5
Functional Safety

This chapter describes the Functional Safety (FuSa) detection features that are unique to GIC-600AE.

It contains the following sections:
• 5.1 Safety Mechanism overview on page 5-192.
• 5.2 Fault Management Unit on page 5-195.
• 5.3 FuSa programmer's view on page 5-208.
• 5.4 FuSa I/O on page 5-209.
• 5.5 Clocks and resets on page 5-212.
• 5.6 Lockstep protection on page 5-217.
• 5.7 RAM protection on page 5-219.
• 5.8 External interface protection on page 5-221.
• 5.9 AXI4-Stream internal interconnect protection on page 5-226.
• 5.10 P-Channel and Q-Channel protection on page 5-232.
• 5.11 PPI and SPI interrupt interface protection on page 5-242.
• 5.12 Systematic fault watchdog protection on page 5-245.
• 5.13 DFT protection on page 5-246.
• 5.14 Generic fault inputs on page 5-248.
• 5.15 Configuration and parameters on page 5-249.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-191

Non-Confidential

5.1 Safety Mechanism overview
GIC-600AE is a version of GIC‑600 with FuSa detection features added. Logic Equivalence Checking
(LEC) is used to ensure that the original GIC‑600 logic is unchanged. All FuSa features are “bolted on”
to the periphery of GIC‑600 and do not alter the original GIC‑600 functionality.

The following figure shows where the main Safety Mechanisms of GIC-600AE reside.

ITS

PCIe

Q-Channel

ACE-Lite

P

P

CRC/parity

ITS

PCIe

ACE-Lite

P

CRC/parity

Message interrupts

SPI Collator

SPI interrupts

CRC/parity

Distributor

CRC/parity CRC/parity CRC/parity

P

P

P
FMU

APB

FHI

ERI P-Channel

Chip2Chip
CRC/parity CRC/parity

ADB

Redistributor Redistributor

CRC/parity CRC/parity

P P

CPU
interface

CPU
interface

PPI interrupts PPI interrupts

Register slice

Legend:

AXI4-Stream interconnect
protection (partial duplication)
Interrupt protection (parity)

Interface protection (AMBA FuSa)

RAM
(SECDED)

Logic
(duplication)

P Parity protection

AXI4-Stream interconnect

Figure 5-1 Safety Mechanism distribution

GIC-600AE contains the following FuSa Safety Mechanisms.

Lockstep logic protection

The logic is protected with duplicated logic running in lockstep.

5 Functional Safety
5.1 Safety Mechanism overview

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-192

Non-Confidential

RAM protection

The RAMs are shared between the duplicated blocks and are protected with SECDED ECC. The address
is further protected with parity.

AXI4-Stream interconnect protection

The AXI4-Stream interconnect that connects the GIC blocks, is protected by end-to-end partial
duplication. Partial duplication means that the primary interconnect is duplicated with a compressed
CRC representation of the payload data. Therefore, a wide primary payload is represented by a redundant
payload of only 8 bits.

The following components are protected with partial duplication:
• AMBA Domain Bridge (ADB). It has special logic to ensure the primary and redundant domains are

in sync, and the outputs have the correct temporal delay.
• Register Slice.

AMBA® external interface protection

All external interfaces are protected with AMBA Parity Extension. AMBA Parity Extension protects
point-to-point connections consisting of wires and buffers only, and no gates. This protection includes
the ACE-Lite, GIC Stream, Cross-Chip (CC), and APB external ports.

PPI and SPI source interrupt parity protection

The PPI and SPI interrupt input sources are protected with optional parity protection. There is one parity
bit for each PPI and SPI input pin.

P-Channel and Q-Channel protection
The P-Channel and Q-Channel are protected by parity.

 Note

• The P-Channel protection is for cross-chip functions, so it must protect the Distributor.
• Figure 5-1 Safety Mechanism distribution on page 5-192 shows Q-Channel protection that is enabled

on only one ITS block. However, the Q-Channel protection can support any block that has a different
CDC domain from the others.

Systematic fault watchdog

GIC-600AE contains a watchdog-based PING/ACK mechanism. This mechanism protects against
systematic errors on the interconnect that connects the various GIC blocks. It works by engaging a
hardware mechanism in the Distributor that pings each GIC block in a round-robin fashion and waits for
a response. If the mechanism does not receive a response within the programmable timeout window, it
reports a fault.

Clocks and resets

The clocks and resets are duplicated. The clocks operate with a temporal delay of two. That is, the
primary logic operates two cycles ahead of the redundant logic.

Fault Management Unit

The Fault Management Unit (FMU) resides in the Distributor. It processes faults that are detected by the
Safety Mechanisms from all blocks. The FMU records the fault syndrome in the Error Records and
reports the fault using Error Recovery Interrupt (ERI) and Fault Handling Interrupt (FHI). It also
provides fault injection and clearing for each Safety Mechanism. The FMU talks to an external Safety
Island through the APB port. The APB port is added for FuSa purposes and does not exist on the
GIC‑600, the non-FuSa version.

5 Functional Safety
5.1 Safety Mechanism overview

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-193

Non-Confidential

Safety Mechanisms

For a detailed list of the Safety Mechanisms available in GIC-600AE, see the Safety Mechanism
descriptions appendix in the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration
and Integration Manual.

5 Functional Safety
5.1 Safety Mechanism overview

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-194

Non-Confidential

5.2 Fault Management Unit
The FMU is part of the GIC Distributor (GICD) component. It implements the following functionality in
GIC-600AE:

• Uses a dedicated APB4 interface to access error records and other registers.
• Routes all errors to the Safety Island, if enabled.
• Provides software the means to enable or disable a Safety Mechanism within a GIC block.
• Receives error signaling from all Safety Mechanisms within other GIC blocks.
• Maintains error records for each GIC block, for software inspection and provides information on the

source of the error.
• Retains error records across functional reset.
• Enables software error recovery testing by providing error injection capabilities in a Safety

Mechanism.

The following figure shows the FMU and its interconnections.

FMU
Error records

Interconnect

GICD

PPI0 PPI1 ITS0

APB4 interface

fmu_err_outfmu_err_out

fmu_err_in
fmu_err_int

fmu_fh_int

fmu_err_out

Figure 5-2 FMU interconnections

This section contains the following subsections:
• 5.2.1 FMU APB4 interface on page 5-195.
• 5.2.2 Error signaling on page 5-196.
• 5.2.3 Error record format on page 5-196.
• 5.2.4 Reset on page 5-198.
• 5.2.5 Safety Mechanism IDs on page 5-198.
• 5.2.6 Ping mechanism on page 5-202.
• 5.2.7 Lock and key mechanism on page 5-204.
• 5.2.8 Correctable Error enable on page 5-205.
• 5.2.9 Software interaction on page 5-205.

5.2.1 FMU APB4 interface

The programmer view registers inside the FMU are accessible through an APB4 interface that is
protected with AMBA parity extensions.

The APB interface width is 32 bits. Some of the FMU registers are 64 bits wide, so two APB accesses
are needed to perform read or write operations to those registers.

The APB4 port allows only Secure access to the FMU. To implement this access restriction, PPROT[1]
is checked during an access. If the access fails the security check, PSLVERR is returned.

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-195

Non-Confidential

5.2.2 Error signaling

This section describes how GIC blocks signal errors, and how the FMU reports these errors.

Error signaling from a GIC block to the FMU

GIC-600AE implements several Safety Mechanisms (SMs) in each GIC block to protect against random
transient or permanent errors. Each Safety Mechanism sends an error signal to its GIC block. The GIC
block then forwards the error signal to the central GIC Distributor using the existing AXI4-Stream
interface.

In addition to reporting errors through the AXI4-Stream interconnect, each remote GIC block has an
fmu_err_out output signal that indicates an actual uncorrected error within its block. Corrected errors
never raise fmu_err_out, even if configured to report as uncorrected. See 5.2.8 Correctable Error
enable on page 5-205. The fmu_err_out must connect to the fmu_err_in input of the GICD to provide a
redundant path for error signaling from the remote GIC block to the FMU residing in the GICD. The
remote GIC block keeps fmu_err_in asserted until the error recovery software clears the error.

Error signaling by the FMU

When a Safety Mechanism detects an error, it forwards the error to the FMU. If the FMU is enabled, it
signals the error to the entire system using the error interrupt signals. These signals are:

• Error recovery interrupt, fmu_err_int (ERI).
• Fault handling interrupt, fmu_fault_int (FHI).

Error reporting through ERI or FHI is enabled by the FMU_ERR<n>CTLR register.
 Note

The ERI and FHI interrupts are disabled on reset, so they must be enabled in the boot-up routine.

Detected Uncorrectable Errors can be reported as ERI, FHI, or both when enabled. Detected Correctable
Errors can be reported as FHI when enabled. The FMU_ERR<n>CTLR.FI and FMU_ERR<n>CTLR.UI
bits control this reporting. The grouping of the errors into these two categories can be helpful in
redirecting these errors to different error recovery handlers based on the criticality of the errors or other
factors that are known at the system level.

5.2.3 Error record format

The FMU contains one error record for each GIC block.

GIC-600AE faults are recorded in error records.

The error record registers are accessible through a separate APB interface on the GICD. Arm expects that
there is a separate reset (Cold reset) so that the error record retains its state even when the GIC block is
being reset.

The following table lists the block IDs for each GIC block.

Table 5-1 Error record block IDs

Block ID GIC block

0 GICD

1 SPI Collator

2 Wake Request

3 Reserved

4 ITS0

5 ITS1

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-196

Non-Confidential

Table 5-1 Error record block IDs (continued)

Block ID GIC block

6 ITS2

7 ITS3

8 ITS4

9 ITS5

10 ITS6

11 ITS7

12 PPI0

13 PPI1

14 PPI2

15 PPI3

16 PPI4

17 PPI5

18 PPI6

19 PPI7

20 PPI8

21 PPI9

22 PPI10

23 PPI11

24 PPI12

25 PPI13

26 PPI14

27 PPI15

28 PPI16

29 PPI17

30 PPI18

31 PPI19

32 PPI20

33 PPI21

34 PPI22

35 PPI23

36 PPI24

37 PPI25

38 PPI26

39 PPI27

40 PPI28

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-197

Non-Confidential

Table 5-1 Error record block IDs (continued)

Block ID GIC block

41 PPI29

42 PPI30

43 PPI31

GIC-600AE supports a maximum of 32 PPI blocks and 8 ITS blocks.
 Note

For unsupported ITS or PPI blocks, the error record registers become RAZ.

5.2.4 Reset

When the FMU reports multiple uncorrectable errors, the error recovery procedure might require the GIC
to be reset. To facilitate this situation, the FMU operates on a dbg_reset_n reset.

This reset differs from the GIC functional reset, reset_n. It allows the FMU to retain error records across
GIC functional reset.

5.2.5 Safety Mechanism IDs

The following table lists the IDs for each Safety Mechanism inside each GIC block.

Table 5-2 Safety Mechanism IDs

GIC block Safety Mechanism ID Description

GICD 0 Reserved

1 GICD dual lockstep error

2 GICD AXI4 slave interface error

3 GICD-PPI AXI4-Stream interface error

4 GICD-ITS AXI4-Stream interface error

5 GICD-SPI-Collator AXI4-Stream interface error

6 GICD AXI4 master interface error

7 SPI RAM DED error

8 SGI RAM DED error

9 Reserved

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-198

Non-Confidential

Table 5-2 Safety Mechanism IDs (continued)

GIC block Safety Mechanism ID Description

GICD 10 LPI RAM DED error

11 GICD-remote-GICD AXI4-Stream interface error

12 GICD Q-Channel interface error

13 GICD P-Channel interface error

14 SPI RAM address decode error

15 SGI RAM address decode error

16 Reserved

17 LPI RAM address decode error

18 FMU dual lockstep error

19 FMU ping ACK error

GICD 20 FMU APB parity error

21 GICD-Wake AXI4-Stream interface error

22 GICD PageOffset or Chip ID error

23 MBIST REQ error
 Note

This Safety Mechanism is disabled by default.

24 SPI RAM SEC error

25 SGI RAM SEC error

26 Reserved

27 LPI RAM SEC error

28 User custom SM0 error

29 User custom SM1 error

GICD 30 GICD-ITS Monolithic switch error

31 GICD-ITS Q-Channel interface error

32 GICD-ITS Monolithic interface error

33 GICD FMU ClkGate override
 Note

This Safety Mechanism is disabled by default.

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-199

Non-Confidential

Table 5-2 Safety Mechanism IDs (continued)

GIC block Safety Mechanism ID Description

PPI 0 Reserved

1 PPI dual lockstep error

2 PPI-GICD AXI4-Stream interface error

3 PPI-CPU-IF AXI4-Stream interface error

4 PPI Q-Channel interface error

5 PPI RAM DED error

6 PPI RAM address decode error

7 PPI RAM SEC error

8 PPI User0 SM

9 PPI User1 SM

10 MBIST REQ error
 Note

This Safety Mechanism is disabled by default.

11 PPI interrupt parity protection error

12 PPI FMU ClkGate override
 Note

This Safety Mechanism is disabled by default.

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-200

Non-Confidential

Table 5-2 Safety Mechanism IDs (continued)

GIC block Safety Mechanism ID Description

ITS 0 Reserved

1 ITS dual lockstep error

2 ITS-GICD AXI4-Stream interface error

3 ITS AXI4 slave interface error

4 ITS AXI4 master interface error

5 ITS Q-Channel interface error

6 ITS RAM DED error

7 ITS RAM address decode error

8 Bypass ACE switch error

9 ITS RAM SEC error

10 ITS User0 SM

11 ITS User1 SM

12 ITS-GICD Monolithic interface error

13 MBIST REQ error
 Note

This Safety Mechanism is disabled by default.

14 ITS FMU ClkGate override
 Note

This Safety Mechanism is disabled by default.

SPI Collator 0 Reserved

1 SPI Collator dual lockstep error

2 SPI-Collator-GICD AXI4-Stream interface error

3 SPI Collator Q-Channel interface error

4 SPI Collator Q-Channel clock error

5 SPI interrupt parity error

Wake Request 0 Reserved

1 Wake dual lockstep error

2 Wake-GICD AXI4-Stream interface error

The SMID value 0 for error record[N] indicates that the FMU has detected an uncorrected error in the
corresponding remote GIC block (PPI, ITS, SPI Collator, or Wake Request) as indicated by
fmu_err_out/fmu_err_in. The Safety Mechanism that reports this error has still not been determined.
The Safety Mechanism that reports the error is updated after the Safety Mechanism in the remote GIC
block sends this information over the DTI interface to the FMU in the GICD, and then this information is
updated in the FMU_ERR<n>STATUS.IERR field.

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-201

Non-Confidential

If a software read of FMU_ERR<n>STATUS.IERR returns SMID:0, then the software is expected to
read this register again. If repeat reads of IERR always return SMID:0, then it might indicate that the
AXI4-Stream interconnect is broken possibly due to a permanent fault and is unable to receive messages.
The error recovery software does not have the SM information from the remote GIC block that had this
fault, so it must perform error recovery by resetting that remote GIC block and the AXI4-Stream
interconnect components.

Enabling or disabling a Safety Mechanism

All Safety Mechanisms are enabled on reset, except for the MBIST REQ Safety Mechanism.

To enable or disable a Safety Mechanism, write to the FMU_SMEN register. FMU_SMEN.BLK selects
the GIC block, and FMU_SMEN.SMID selects the specific Safety Mechanism in the GIC block to be
enabled or disabled.

 Note

• The following P-Channel and Q-Channel SMs cannot be disabled through the FMU_SMEN register:
— GICD SMs 12, 13, and 31.
— PPI SM 4.
— ITS SM 5.
— SPI SM 3.

These SMs must be disabled using design time parameters or tie-offs. For more information, see
5.10 P-Channel and Q-Channel protection on page 5-232.

• MBIST REQ SMs are not enabled on reset, and must be enabled after reset. For more information,
see 5.13 DFT protection on page 5-246.

Injecting an error in a Safety Mechanism

To inject an error into a Safety Mechanism, write to the FMU_SMINJERR register.

The FMU_SMINJERR.BLK field specifies the GIC block, and the FMU_SMINJERR.SMID field
specifies the SM into which to inject the error.

FMU_STATUS.idle protects the FMU_SMINJERR register. See FMU idle on page 5-206.

This method injects only one error. No clearing of error injection is required.

By introducing error through the software, the error injection feature can be used to test the software
error recovery handler.

 Restriction

The ClkGate override Safety Mechanisms do not support error injection.

5.2.6 Ping mechanism

The FMU provides background ping and directed ping mechanisms.

Background ping

The background ping mechanism can help identify the following issues:

• Connectivity issue between remote GIC blocks and the GICD.
• Systematic issue in the network that is causing misrouting of messages.
• Congestion in the network that exceeds ping_timeout_value.
• Permanent deadlock caused by VALID and READY signals that are stuck LOW.

The GICD sends a ping message over the AXI4-Stream network to a remote GIC block, one at a time. It
starts a timer and waits for the PING_ACK message from the GIC block. If the PING_ACK message is
not received within the expected interval, the FMU indicates a PING_ACK timeout error. The FMU
repeats this process for each GIC block.

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-202

Non-Confidential

The FMU sends ping messages in the following sequence, which repeats until background pings are
disabled:

1. PPI0 through PPI<ppi_count−1>.
2. ITS0 through ITS<its_count−1>.
3. SPI Collator.
4. Wake Request.

 Note

To skip a particular GIC block in the sequence, write to the FMU_PINGMASK register.

The following figure shows the relationship between the ping mechanism parameters.

Ping sent
to PPI0

Ping sent
to PPI1

Ping sent
to ITS0

ping_timeout_value ping_interval_diff

ping_interval ping_interval

Figure 5-3 Ping mechanism parameters

The ping_timeout_value defines the timeout in the FMU clock.

The ping_interval defines the interval at which the FMU pings the next remote block. As Figure 5-3
 Ping mechanism parameters on page 5-203 shows, the ping_interval is equal to
(ping_interval_diff + ping_timeout_value).

To enable or disable the background ping mechanism, write to FMU_PINGCTLR.enable.

When programming the ping_timeout_value in the FMU_PINGCTLR register, you must account for
the following:
• Round-trip ping latency.
• Concurrent GICD request traffic. Any concurrent GICD requests can delay transmission of the ping.
• Clock domain ratios. For example, if the FMU/GICD domain clock is running faster than a remote

domain clock, you must increase ping_timeout_value.

If the FMU indicates a PING_ACK timeout error, it is helpful to know which remote GIC block caused
the error. To determine its block ID, read the FMU_ERR<n>STATUS register.

Arm expects that background ping using FMU_PINGCTLR and directed ping using FMU_PINGNOW
are used mutually exclusively. When background pings are enabled, do not set FMU_PINGNOW.enable
= 1. See 4.10.6 FMU_PINGCTLR, Ping Control Register on page 4-185 and 4.10.7 FMU_PINGNOW,
Ping Now Register on page 4-185.

Before generating directed pings using the FMU_PINGNOW register, turn off background ping by
setting FMU_PINGCTLR.enable = 0 and wait for the last PING_ACK to return.

When the FMU indicates a PING_TIMEOUT error, you can obtain the remote GIC block ID by the
reading the FMU_ERR<n>STATUS register. See 4.10.3 FMU_ERR<n>STATUS, Error Record Primary
Status Register on page 4-181.

To conserve operational power of the GICD, the GICD accepts the Q-Channel handshake to enter low
powerdown state, if requested by the clock controller. When the GICD is in the low-power clock gated
state, it does not send background ping messages to the remote GIC block and does not report

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-203

Non-Confidential

PING_ACK violations. When the GICD exits the low-power clock gated state, the FMU resumes
background pings.

Directed ping

The software can also send a directed ping message to a specific block using the FMU_PINGNOW
register. Using this method can be helpful to debug PING_ACK violations caused by background pings.

The recommended procedure to initiate a directed software ping is as follows:

1. Disable background pings by writing FMU_PINGCTLR.enable=0.
2. Clear all flags by writing all zeros to FMU_PINGNOW.
3. Initiate a directed ping by writing:

a. FMU_PINGNOW.enable=1.
b. FMU_PINGNOW.ping_ack_received=0.
c. The appropriate block ID to FMU_PINGNOW.block_id.

4. Poll FMU_PINGNOW.ping_ack_received==1.
5. Optionally, set Error Injection bits to test remote GIC block or GICD integration, software, or both.

The PINGNOW feature can be used to send an erroneous packet from the GICD to a targeted remote
GIC block or from a targeted remote GIC block to the GICD. Using this feature enables the integrator to
verify the AXI4-Stream connections between the remote GIC block and the GICD.

Injecting an error on a GICD ping message and on the subsequent remote GIC block PING_ACK
message causes mismatches along the PING/PING_ACK route through the interconnect.

After injecting a PINGNOW error, you can read the GICD Error Records and verify that the expected
SM errors are reported along the PING or PING_ACK route, for example by the receiving block and by
any ADB components along the path.

When writing to the FMU_PINGNOW register and FMU_PINGNOW.enable is set to 1:
• A single ping is sent for each write to a present block.
• If another ping is sent before a previous PING_ACK has been received, then:

— If sent to the same destination, then the first ping back sets FMU_PINGNOW.ping_ack_received.
— If sent to a different destination, then the first PING_ACK is silently discarded if or when

received because it does not match the programmed FMU_PINGNOW.block_id.
• An attempt to send a ping to a non-present block does not launch a ping and

FMU_PINGNOW.ping_ack_received is not set to 1.

If FMU_PINGNOW.gicd_inject_error == 1, an error is injected on the outgoing PING packet on the
GICD to the Remote GIC block interface. The receiving remote GIC block and the ADB, if present,
detect the erroneous payload and report it as a fault.

If FMU_PINGNOW.remote_block_inject_error == 1, an error is injected on the outgoing PING_ACK
packet by the Remote GIC block on the Remote GIC block to the GICD interface. The receiving GICD
block and the ADB, if present, detect the erroneous payload and report it as a fault.

5.2.7 Lock and key mechanism

The FMU registers are protected against inadvertent writes by a lock and key mechanism.

The FMU registers are in a locked state after reset. If the register file is locked, then any write access to
any register other than the FMU_KEY register is ignored. See 4.10.5 FMU_KEY, FMU Key Register
on page 4-184.

The register file is unlocked when a write to FMU_KEY occurs that satisfies all of the following
conditions:

• Is Secure.
• Is for 32 bits. That is, all write strobes.
• The bottom 8 bits are 0xBE.

The register file is locked again when a write occurs that satisfies all of the following conditions:

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-204

Non-Confidential

• Is a Secure write.
• Is any width and any write strobes.
• Is to any register except for FMU_KEY.

A write to FMU_KEY, when unlocked, leaves the register file unlocked only if the write satisfies the
criteria for unlocking the register file. Otherwise, it locks the register file.

If the register file is unlocked, the FMU_KEY register reads as 0x00000BE. Otherwise, the FMU_KEY
register reads as 0x00000000.

 Note

Non-secure accesses never succeed and never affect the locked state of the register file.

Accessing 64-bit FMU registers

Some of the FMU registers are 64-bit registers, but the APB interface width is 32 bits. When in unlocked
state, the FMU allows for two consecutive writes to update the same 64-bit register without requiring
unlocking again before the second write. In this sequence, both the writes are Secure, with all write
strobes to the same register, except that the second write targets the other half of that register.

For example, the following sequence is successful in updating the register contents:
1. Secure write of 0xBE to FMU_KEY, with all write strobes asserted.
2. 32-bit Secure write to FMU_ERR0CTLR[63:32] addr 0x0C, all write strobes asserted.
3. 32-bit Secure write to FMU_ERR0CTLR[31:0] addr 0x08, all write strobes asserted.

This behavior is permitted to allow for the case when the APB interconnect splits a single 64-bit register
access and presents it to the FMU in any order.

5.2.8 Correctable Error enable

By default, the FMU considers all errors to be Uncorrectable Errors (UEs). To allow the FMU to treat
RAM Single Error Correct (SEC) error indications as Correctable Errors (CEs), set the
FMU_ERR<n>CTLR.CE_EN bit.

When FMU_ERR<n>CTLR.CE_EN is set to 1, the RAM SEC errors set the FMU_ERR<n>STATUS.CE
bit.

When a CE is followed by an UE, FMU_ERR<n>STATUS.IERR is updated to reflect the UE Safety
Mechanism ID. See Prioritized FMU_ERR<n>STATUS registers on page 5-206 for more information.

5.2.9 Software interaction

This section describes how software interacts with the FMU.

Initialization
The initialization routine can determine that 44 implemented error records exist, by reading the
FMU_ERRIDR register. It can iterate over the FMU_ERR<n>FR registers to understand the capabilities
of each error record.

 Note

All Safety Mechanisms are enabled on reset, which might lead to errors being logged in the error records.
If the system does not support or want to check a particular safety feature, then the software can disable
that Safety Mechanism.

To disable a Safety Mechanism, write the corresponding block ID and Safety Mechanism ID to the
FMU_SMEN register.

To analyze the logged errors, read the FMU_ERR<n>STATUS register.

To clear all logged errors, write all ones to the FMU_ERR<n>STATUS registers.

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-205

Non-Confidential

To enable error reporting through either the ERI or FHI, write to FMU_ERR<n>CTLR.FI or
FMU_ERR<n>CTLR.UI, respectively.

Interrupt handler

When an interrupt is received, the interrupt handling software identifies the error record ID by reading
the FMU_ERRGSR register. The asserted bit[M] indicates that error record M is in error. For additional
information about the error, read the FMU_ERR<M>STATUS register.

FMU_ERR<M>STATUS.IERR indicates which Safety Mechanism reported the error.

If more than one error has been reported by this block to this error record, FMU_ERR<M>STATUS.OF
is asserted. In case of overflow, the error record retains the Safety Mechanism ID of the first error.

When the recovery procedure is complete, the error from this error record can be cleared by writing all
ones to this register. Then the software should poll for FMU_STATUS.idle==1.

Prioritized FMU_ERR<n>STATUS registers
If a CE is followed by a UE before software has responded to the initial CE, the following sequence
occurs:
1. The status registers are updated to reflect the SM ID of the UE.
2. The UE bit is set along with the CE bit.
3. The OF bit is not set in this case. Overflow is only set when one of the following cases occurs:

a. Two UEs are received before software has responded, regardless of whether CEs were received.
b. Two CEs are received back-to-back before software has responded.

 Note

To avoid a CE blocking a head-of-line UE, the GIC-600AE has separate UE and CE pipelines.

FMU idle

The APB port to the FMU is designed not to introduce backpressure by deasserting PREADY. This
prevents software lockup and always keeps the error records accessible.

There are several operations which take multiple clock cycles to complete within the FMU. The FMU
frees up the APB bus by asserting PREADY to complete the APB transaction. However, it might still be
processing the previous request.

When software writes to one of the following FMU registers, it must poll for FMU_STATUS.idle==1
before it issues another write to these registers:
• FMU_ERR<n>STATUS
• FMU_SMEN
• FMU_SMINJERR
• FMU_PINGNOW

Power management

The software can power down the Redistributor (PPI block) using the procedure that 3.6.1 Redistributor
power management on page 3-60 describes, or the ITS could be powered down by using the
GITS_CTLR register. However, the powerdown state of the PPI block and the ITS block affects certain
functions of the FMU.

Writing to the following registers generates messages to the remote GIC block:

• FMU_ERR<n>STATUS
• FMU_PINGNOW
• FMU_SMEN
• FMU_SMINJERR.

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-206

Non-Confidential

The software must be aware of the power state of the remote blocks and does not initiate writes to these
registers that target a powered-down remote GIC block. If software initiates a write to the following
registers that target a powered-off remote GIC block, then:
• FMU_ERR<n>STATUS ignores the write for all purposes. FMU_ERR<n>STATUS is unchanged.
• FMU_PINGNOW ignores the write for all purposes other than reading back the register. It does not

send a PING packet and does not indicate that the FMU is non-idle through FMU_STATUS.
• FMU_SMEN ignores the write for all purposes.
• FMU_SMINJERR ignores the write for all purposes.

5 Functional Safety
5.2 Fault Management Unit

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-207

Non-Confidential

5.3 FuSa programmer's view
The FMU contains the Functional Safety registers.

The GIC‑600 memory map that is used to address the legacy GIC functional logic is unchanged on
GIC-600AE. Refer to Chapter 4 Programmers model on page 4-102 for the functional GIC‑600 memory
map.

GIC-600AE uses a separate and independent memory map for the Fault Detection and Control (FDC)
programmer's view. For a description of the registers that are specific to GIC-600AE, see 4.10 FMU
register summary on page 4-179.

5 Functional Safety
5.3 FuSa programmer's view

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-208

Non-Confidential

5.4 FuSa I/O
Ports have been added for FuSa fault detection and control.

See 5.8 External interface protection on page 5-221 for more information about the new interfaces.

This section contains the following subsections:
• 5.4.1 Non-architected FuSa ports on page 5-209.
• 5.4.2 P-Channel and Q-Channel FuSa ports on page 5-210.
• 5.4.3 AMBA interface FuSa ports on page 5-210.

5.4.1 Non-architected FuSa ports

The following ports have been added for fault detection and control.

 Note

Granularity refers to the hierarchy or block in which the ports are relevant.

Table 5-3 Non-architected FuSa ports

Port Direction Granularity Description

clk_fdc Input Per domain Clock for redundant logic and SMs.

reset_n_fdc Input Per domain Reset for redundant logic and SMs.

nmbistreset_fdc Input Per domain Redundant nmbistreset. Both resets must assert together.

dbg_reset_n_fdc Input GICD domain Redundant dgb_reset_n reset for PMU and FMU. Both resets
must assert together.

dftrstdisable_fdc Input All domains Prevents reset from asserting when reset generation FDC flops
are scanned.

dftcgen_fdc Input All domains Forces FDC clock gate enable, to ensure scanned flops get a
clock.

dftramhold_fdc Input All domains Redundant port for dftramhold.

dftse_fdc Input All domains Scan enable for FDC clock flops.

usr0_err Input Per block External IP user fault input 0.

usr1_err Input Per block External IP user fault input 1.

fmu_err_in[43:0] Input GICD block Redundant fault indicator inputs connecting outer GIC blocks to
Distributor.

fmu_err_out Output Outer blocks Redundant fault indicator outputs connecting outer GIC blocks to
Distributor.

fmu_fault_int Output GICD block Fault Handling Interrupt (FHI) from GICD FMU to Safety
Island.

fmu_fault_int_chk Output GICD block Redundant fmu_fault_int port.

fmu_err_int Output GICD block Error Recovery Interrupt (ERI) from GICD FMU to Safety
Island.

fmu_err_int_chk Output GICD block Redundant fmu_err_int port.

gicd_page_offset_chk Input GICD block Redundant tie-offs for gicd_page_offset. Only present in
monolithic configurations. This port is the inverted duplication of
gicd_page_offset.

5 Functional Safety
5.4 FuSa I/O

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-209

Non-Confidential

Table 5-3 Non-architected FuSa ports (continued)

Port Direction Granularity Description

its_transr_page_offset_chk Input GICD block Redundant tie-offs for its_transr_page_offset. Only present in
monolithic configurations. This port is the inverted duplication of
its_transr_page_offset.

wake_request_chk[cpus−1:0] Output Wake Request block Parity CHK for wake_request ports. Odd parity.

fault_* Input/output Outer blocks See Table 5-12 fault_* tie-offs on page 5-231 for more
information.

5.4.2 P-Channel and Q-Channel FuSa ports

The following interfaces add CHK bits, as specified in the Arm P-Channel and Q-Channel parity
extensions.

Table 5-4 P-Channel and Q-Channel FuSa ports

Port Direction Granularity Description

pwrqreqn_chk Input Per domain Redundant pwrqreqn port for Q-Channel power controller.

pwrqactive_chk Output Per domain Redundant pwrqactive port for Q-Channel power controller.

pwrqacceptn_chk Output Per domain Redundant pwrqacceptn port for Q-Channel power controller.

pwrqdeny_chk Output Per domain Redundant pwrqdeny port for Q-Channel power controller.

clkqreqn_chk Input Per domain Redundant clkqreqn port for Q-Channel clock controller.

clkqactive_chk Output Per domain Redundant clkqactive port for Q-Channel clock controller.

clkqacceptn_chk Output Per domain Redundant clkqacceptn port for Q-Channel clock controller.

clkqdeny_chk Output Per domain Redundant clkqdeny port for Q-Channel clock controller.

preq_chk Input GICD block Redundant preq port for P-Channel clock controller.

paccept_chk Output GICD block Redundant paccept port for P-Channel clock controller.

pdeny_chk Output GICD block Redundant pdeny port for P-Channel clock controller.

pstate_chk Input GICD block Redundant pstate port for P-Channel clock controller.

pactive_chk Output GICD block Redundant pactive port for P-Channel clock controller.

See 5.10 P-Channel and Q-Channel protection on page 5-232 for more information.

5.4.3 AMBA interface FuSa ports

The following interfaces add chk bits, as specified in the Arm AMBA Parity Extensions.

Table 5-5 AMBA interface FuSa ports

Port Granularity Description

APB4 interface GICD block APB4 interface added for FMU.

AXI4-Stream AMBA parity All blocks AMBA parity added to all external AXI4-Stream interfaces.

ACE-Lite AMBA parity GICD/ITS blocks AMBA parity added to all external ACE-Lite interfaces.

CPU interface (AXI4-Stream) Per PPI block irit (PPI to core) and icct (core to PPI) Parity Extensions for AXI4-Stream.

Cross-chip (AXI4-Stream) Per CC chip Parity Extensions for AXI4-Stream.

5 Functional Safety
5.4 FuSa I/O

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-210

Non-Confidential

The APB port has been added for fault detection and control between the FMU block and the Safety
Island in the SoC.

See 5.8 External interface protection on page 5-221 for more information.

5 Functional Safety
5.4 FuSa I/O

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-211

Non-Confidential

5.5 Clocks and resets
The GIC-600AE clocks and resets are identical to those of the GIC‑600, except for the added redundant
clock and reset.

The following figure shows how the redundant clock and reset are used by the FDC logic.

GIC block
no_ram

GIC block
no_ram

(duplicated)

reset_sync_prot
(main reset)

reset_sync_prot
(dbg reset)

Shared
RAM

dftrstdisable

dftrstdisable_fdc

dftrstdisable

dftrstdisable_fdc

clk clk_fdc

+

reset_n_sync
clk

clk_fdc

reset_n

reset_n_fdc

clk

clk_fdc

dbg_reset_n

dbg_reset_n_fdc

reset_n_fdc_sync

dbg_reset_n_sync

dbg_reset_n_fdc_sync

fault

ram inputs ram inputs

ram outputs ram outputs

Figure 5-4 GIC clocks and resets

 Note

• Internal _sync resets are asynchronous-assert and synchronous-deassert.
• reset_n_fdc_sync and dbg_reset_n_fdc_sync are deasserted two cycles after the non-FDC signals.
• The reset qualification with nmbistreset is not shown before the reset_sync_prot block.

The extra reset_n_fdc and clk_fdc signals provide redundancy in the clock and reset trees to guard
against faults on the tree branches. If a fault occurs on a branch in the primary or FDC clock trees, the
Dual LockStep (DLS) comparators detect it.

This section contains the following subsections:
• 5.5.1 Clocks on page 5-212.
• 5.5.2 Resets on page 5-213.

5.5.1 Clocks
The GIC-600AE has two global clocks for each stitched level.

The clock names that are used for wrap components are:

clk Clocks the primary mission critical logic.
clk_fdc Clocks the Fault Detection and Control (FDC) redundant logic.

5 Functional Safety
5.5 Clocks and resets

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-212

Non-Confidential

The clock names that are used for stitched domain modules, and the top level, are:

<domain>clk Clocks the primary mission critical logic.
<domain>clk_fdc Clocks the redundant logic.

The functional requirements for clk and clk_fdc are:
• clk and clk_fdc must be edge-synchronous and run at the same frequency.
• clk and clk_fdc must start and stop at the same time.

Asynchronous inputs to clk and clk_fdc

Some signals, such as qreqn[_*] and interrupt wires have built-in or optional inverters and
synchronizers. These inverters and synchronizers are set by the *_INV and *_SYNC parameters,
respectively. All other signals belonging to the same module must be synchronous to the clock.

For more information, see 2.2.4 Redistributor PPI signals on page 2-31 and 2.5.2 SPI Collator wires
on page 2-42.

Block-level clocking

The GICD, GICR, and ITS blocks all have a similar clocking structure.

The following figure shows an example clocking structure for the GICR.

PPI_noram
Master

ClkGate

ClkGate

ClkGate

wakeup_dn

wakeup_up

wakeup_ppsgi

clk_dn

clk_up

clk_ppsgi

clk_dn

clk_up

clk_ppsgi

clk

RAM

we/ce

addr

wdata

rdata

F F

F F

PPI_noram
Checker

we/ce_fdc

addr_fdc

wdata_fdc

rdata_fdc

ClkGate

ClkGate

ClkGate

clk_up_fdc

clk_ppsgi_fdc

clk_dn_fdc

clk_up_fdc

clk_ppsgi_fdc

clk_fdc

wakeup_up_fdc

clk_dn_fdc

wakeup_ppsgi_fdc

F F

F F

wakeup_dn_fdc

Figure 5-5 GICR block-level clocking example

clk, on the primary side, is the AON clock. It generates architecturally clock gated versions of the clocks
through the ClkGate cells.

In Figure 5-5 GICR block-level clocking example on page 5-213, the architecturally gated clocks are
clk_dn and clk_ppsgi.

clk_fdc, on the redundant side, works similarly but uses its own redundant ClkGate cells.

5.5.2 Resets
Each stitched level has two resets, which are active-LOW.

The reset names that are used for wrap components are:

reset_n Reset for primary mission critical logic.
reset_n_fdc Reset for redundant logic.

The reset names that are used for stitched domain modules are:

<domain>reset_n Reset for primary mission critical logic.

5 Functional Safety
5.5 Clocks and resets

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-213

Non-Confidential

<domain>reset_n_fdc Reset for redundant logic.

The GIC-600AE has an internal reset synchronizer, so that on reset the internal reset signal asserts
asynchronously and deasserts synchronously.

The functional requirements for reset_n and reset_n_fdc are:
• reset_n and reset_n_fdc must both assert before the reset can propagate to downstream logic. If only

one reset asserts, then GIC-600AE does not reset.
• To ensure that reset can properly propagate through the primary and redundant logic pipelines,

reset_n and reset_n_fdc must assert simultaneously for at least 16 clock cycles. Otherwise, false
fault assertions might occur.

The domain that contains the Distributor has separate dbg_[<domain>]reset_n and
dbg_[<domain>]reset_n_fdc signals. The dbg resets are used to reset debug, trace, and the FMU error
records containing fault status information. This allows the GIC to be reset using reset_n and
reset_n_fdc, while leaving any trace, debug, and fault error record information available for later
interrogation. It must be reset only when [<domain>]reset_n and [<domain>]reset_n_fdc are asserted.

DLS resetting

For blocks with DLS logic, the redundant block must exit reset two cycles after the primary block, or
else false fault assertions occur.

The reset_sync_prot block guarantees this behavior for the main resets and the dbg resets. It also filters
out transient reset assertion by preventing reset from propagating unless reset_n and reset_n_fdc are
both asserted.

The following figure shows this behavior in a timing diagram.

reset_n_fdc

reset_n

clk

reset_n_sync

reset_n_fdc_sync

Filtering: Both resets must
be asserted to propagate
(asynchronous assertion).

Single reset must
be deasserted to

propagate
(synchronous
deassertion).

Logic guarantees
a temporal delay

of two cycles.

Figure 5-6 FuSa reset timing diagram

FuSa reset port fault protection

Transient reset port protection
The GIC protects reset_n_sync, reset_n_fdc_sync, dbg_reset_n_sync, and
dbg_reset_n_fdc_sync from spurious transient faults. It does this in the reset_sync_prot block
by requiring both the primary and FDC resets to be asserted before it asserts the synchronized
reset to the downstream logic. For example, reset_n_sync and reset_n_fdc_sync are not
asserted unless reset_n and reset_n_fdc are asserted at the same time.

5 Functional Safety
5.5 Clocks and resets

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-214

Non-Confidential

Stuck-at-reset port protection/detection
The GIC protects itself from stuck-at-zero (STA0) faults on the reset pin inputs. Stuck-at-one
(STA1) faults are not detected or reported, as they prevent the GIC from resetting correctly. If an
implementation needs to detect STA1 faults, the SoC integrator can do so through external
hardware or self-test means. See Table 5-6 GIC reset failure modes on page 5-215 for more
information.

Internal reset fault protection/detection
The reset trees are duplicated, so faults on reset trees are detected through lockstep protection
mechanisms for the affected blocks.

reset_n

nmbistreset

reset_n_fdc

nmbistreset_fdc

i_reset_n

i_reset_n_fdc

Reset Sync

Reset Sync

reset_n_sync

reset_n_fdc_sync

Figure 5-7 GIC reset protection

The following table describes the GIC reset failure modes.

Table 5-6 GIC reset failure modes

Port Fault Detected by
GIC?

Failure mode

reset_n STA0 (asserted) No GIC logic behaves normally. GIC prevents reset_n from resetting GIC until
reset_n_fdc is asserted.

STA1 No GIC logic behaves normally. GIC cannot be reset.

reset_n_fdc STA0 No GIC logic behaves normally. GIC prevents reset_n_fdc from resetting GIC
until reset_n is asserted.

STA1 No GIC logic behaves normally. GIC cannot be reset.

dbg_reset_n STA0 No PMU/FMU logic behaves normally. GIC prevents dbg_reset_n from
resetting DBG/FMU until dbg_reset_n_fdc is asserted.

STA1 No PMU/FMU logic behaves normally. PMU/FMU cannot be reset.

dbg_reset_n_fdc STA0 No PMU/FMU logic behaves normally. GIC prevents dbg_reset_n_fdc from
resetting DBG/FMU until dbg_reset_n is asserted.

STA1 No PMU/FMU logic behaves normally. PMU/FMU cannot be reset.

Reset sequences

There are specific sequences for Cold resets and Warm resets.

Cold reset

Follow these steps to carry out a Cold reset.

5 Functional Safety
5.5 Clocks and resets

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-215

Non-Confidential

Procedure
1. Assert reset_n_sync, reset_n_fdc_sync, dbg_reset_n_sync, and dbg_reset_n_fdc_sync

simultaneously.
 Note

• reset_n_sync and reset_n_fdc_sync assert asynchronously at the same time. To assert
reset_n_sync and reset_n_fdc_sync, both external ports must be asserted.

• dbg_reset_n_sync and dbg_reset_n_fdc_sync assert asynchronously at the same time. To assert
dbg_reset_n_sync and dbg_reset_n_fdc_sync, both external ports must be asserted.

2. Keep resets asserted for 16 cycles.
Results: This guarantees a reset flush through non-resettable flops.

3. Release resets.
 Note

• When either reset_n or reset_n_fdc deasserts, reset_n_sync deasserts synchronously, followed
by reset_n_fdc_sync two cycles later.

• When either dbg_reset_n or dbg_reset_n_fdc deasserts, dbg_reset_n_sync deasserts
synchronously, followed by dbg_reset_n_fdc_sync two cycles later.

Warm reset

Follow these steps to carry out a Warm reset.

A Warm reset is a reset that occurs after the component has already been operating for some time. The
reset preserves the state of the PMU and the Error Records, in both the functional and FuSa GIC address
maps. This is accomplished by not toggling dbg_reset_n signals.

Procedure
1. Assert reset_n_sync and reset_n_fdc_sync simultaneously.

 Note

reset_n_sync and reset_n_fdc_sync assert asynchronously at the same time. To assert reset_n_sync
and reset_n_fdc_sync, both external ports must be asserted.

2. Keep resets asserted for 16 cycles.
Results: This duration guarantees a reset flush through non-resettable flops.

3. Release resets.
 Note

When either reset_n or reset_n_fdc deasserts, reset_n_sync deasserts synchronously, followed by
reset_n_fdc_sync two cycles later.

5 Functional Safety
5.5 Clocks and resets

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-216

Non-Confidential

5.6 Lockstep protection
The GIC-600AE logic is protected by redundant lockstep checking.

The exceptions to this are:
• The RAMs, which are shared.
• The internal AXI4-Stream interconnect, which uses full duplication.

The following figure shows the lockstep for the PPI (Redistributor).

PPI_noram
Master

ClkGate

ClkGate

ClkGate

wakeup_dn

wakeup_up

wakeup_ppsgi

clk_dn

clk_up

clk_ppsgi

clk_dn

clk_up

clk_ppsgi

clk

RAM

we/ce

addr

wdata

rdata

F F

F F

PPI_noram
Checker

we/ce_fdc

addr_fdc

wdata_fdc

rdata_fdc

ClkGate

ClkGate

ClkGate

clk_up_fdc

clk_ppsgi_fdc

clk_dn_fdc

clk_up_fdc

clk_ppsgi_fdc

clk_fdc

wakeup_up_fdc

clk_dn_fdc

wakeup_ppsgi_fdc

F F

F F

wakeup_dn_fdc

Figure 5-8 PPI lockstep

The lockstep has a standard Temporal Delay of two cycles, with RAM sharing and comparators. The
comparators are shown by a circle with an X in the middle. To save power, CRC is used to compress the
outputs.

The entire noram hierarchy is duplicated, with the comparators instanced in the block top level. The
clock gate and reset synchronizers must also be duplicated in the top level.

The clocking is also duplicated. To provide redundancy in the reset and clock trees, the master (primary)
and checker (shadow) logic are clocked by a separate clock and separate reset. If a branch of the reset of
clock tree fails in the master domain, it is detected by the checker domain, and vice versa.

This section contains the following subsections:
• 5.6.1 Comparators on page 5-217.
• 5.6.2 Non-resettable flops on page 5-218.
• 5.6.3 Reset on page 5-218.
• 5.6.4 Error injection on page 5-218.

5.6.1 Comparators

The lockstep comparators consist of an XOR tree. The same parameterized comparator component is
instanced throughout the design to promote uniformity and allow the implementation to be changed.

The comparators are known to be power hungry. Therefore, qualification is used wherever possible so
they only check the outputs when necessary. For instance, an AXI bus comparator checks the data only
when the valid bits are asserted. This methodology is necessary to:
• Prevent flagging on benign glitches when nothing is reading the bus.
• Prevent false error from being asserted due to unknown values on the bus, from RAMs or from

uninitialized datapath flops.

5 Functional Safety
5.6 Lockstep protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-217

Non-Confidential

Comparator duplication option

The comparators themselves can be duplicated by setting a parameter to aid in latent fault diagnostic
coverage goals.

Duplicating the comparators provides passive latent fault coverage, preventing the need to achieve
coverage through LBIST or software STL library means. The main trade-off is power and area, but
partners should check timing results as well. The option adds one additional gate into the comparator
paths.

To duplicate the comparators, set FUSA_COMP_DUP=1 when rendering the GIC-600AE.
 Note

All comparators in the GIC-600AE can be duplicated, including lockstep and CRC comparators.

5.6.2 Non-resettable flops

All non-resettable flops that could not be proven benign have been changed to resettable versions.

5.6.3 Reset

Logic to guarantee a proper reset for lockstep logic has been added to the GIC-600AE.

See the following sections for more information on reset assumptions and requirements related to
lockstep logic and FuSa.

Related references
5.5 Clocks and resets on page 5-212

5.6.4 Error injection

The FMU can be used to inject a fault into a fixed input of the lockstep comparators.

The main purpose is to test connectivity and software. It's not meant to be an exhaustive test of the
comparator XOR tree. For this purpose, the comparators can be duplicated as described in Comparator
duplication option on page 5-218.

5 Functional Safety
5.6 Lockstep protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-218

Non-Confidential

5.7 RAM protection
The GIC-600AE inherits SECDED ECC protection and patrol scrubbing from GIC‑600. The address is
not protected on GIC‑600, so this protection is added on GIC-600AE.

This section contains the following subsections:
• 5.7.1 SECDED ECC data protection on page 5-219.
• 5.7.2 Address protection on page 5-219.
• 5.7.3 RAM scrubbing on page 5-220.

5.7.1 SECDED ECC data protection

SECDED ECC is a legacy GIC-600 feature.

For information on how to use this feature, see the GIC-600 sections of this document.

SECDED ECC fault reporting

SECDED ECC faults are reported by separate registers in both the legacy GIC‑600 and the GIC-600AE
FuSa programmer's view.

The GIC‑600 programmer's view reports all information about the RAM fault, including the fault
address. The GIC-600AE programmer's view is limited to reporting whether a Single Error Corrected
(SEC) or Double Error Detected (DED) fault occurred. You cannot retrieve the affected address from the
GIC-600AE programmer's view.

SBEs treated as fatal errors or corrected errors

FMEDA analysis might show that it is necessary to treat Single-Bit Errors (SBEs) as fatal errors.

This might be necessary if Multiple-Bit Errors (MBEs) are common, meaning there are more than two
errors in read data. If an MBE is encountered, conservative SECDED math tells us there is
approximately a 33 percent chance that the SECDED algorithm mistakes an MBE for an SBE and
corrects it erroneously.

The RAM scrubbers can be used to mitigate the chance of an MBE error by finding and correcting SBEs
before they have the chance to become Double-Bit Errors (DBEs) or MBEs. However, if all SBEs are
treated as fatal data, the achieved coverage is approximately 99.4 percent (measured). SECs can be
flagged as fatal by programming the GIC FMU to output an ERI interrupt instead of an FHI interrupt. In
this case, the correction is ignored, and all SEC faults are treated as fatal. Correction cannot be disabled.

5.7.2 Address protection

Address protection must consider the protection of address decoders within the RAM decoder macro
themselves.

This is because the RAM is shared, and otherwise faults within the RAM macro address decoder cause
CMF. This protection is achieved by calculating parity for the address bits and writing the parity into the
RAM along with the data.

The following figure shows how the address protection works.

5 Functional Safety
5.7 RAM protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-219

Non-Confidential

Parity
generation

dat parity

ECC
generation

ECC
check/repair

Parity
generation

dat parity

GIC_x_noram RAM

data_i

data_o

addr

Error

wdata

wecc

recc

rdata

Aaddr

Error

D D+Ed+Ea

Ed

Ea

EaF

D

Ed

D+Ed+Ea

Figure 5-9 Address protection structure

5.7.3 RAM scrubbing

The GIC-600AE supports software-initiated RAM data scrubbing.

This feature reads an incremental address location and checks it for SBEs using the SECDED ECC
algorithm. If an SBE is found, the error is corrected and written back to memory.

Data scrubbing is a legacy GIC-600 feature. For more information on how to use data scrubbing, see the
GIC-600 sections of this document.

5 Functional Safety
5.7 RAM protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-220

Non-Confidential

5.8 External interface protection
All external bus interfaces are protected as defined by the AMBA Parity Extensions.

These external interfaces include:
• ACE-Lite.
• APB.
• AXI4-Stream, and the following interfaces, which use AXI4-Stream as their transport:

— GIC Stream.
— Chip2Chip.

The following figure shows the distribution of interface protection within the GIC-600AE.

ITS

PCIe

ITS

PCIe

Message interrupts

SPI Collator

SPI interrupts

Distributor

APB

FHI

ERI

Chip2Chip

Redistributor Redistributor

CPU
interface

CPU
interface

PPI interrupts PPI interrupts

Legend:
AXI4-Stream interconnect
protection (partial duplication)
Interrupt protection (parity)

Interface protection (AMBA FuSa)

RAM
(SECDED)

Logic
(duplication)

Figure 5-10 Interface protection distribution

Point-to-point protection

Point-to-point protection is sufficient for wires and buffers that cannot cause multiple-bit faults. An
example of an interconnect component that might cause multiple-bit faults is a switch. A single fault on a
switch mux input can switch the wrong data, causing multiple bits to fail.

5 Functional Safety
5.8 External interface protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-221

Non-Confidential

This section contains the following subsections:
• 5.8.1 ACE-Lite interface parity protection on page 5-222.
• 5.8.2 AXI4-Stream interface parity protection on page 5-223.
• 5.8.3 APB interface parity protection on page 5-224.

5.8.1 ACE-Lite interface parity protection

The GIC-600AE supports ACE-Lite interface parity protection for point-to-point connections from the
GIC-600AE to another functionally safe IP or FuSa interconnect. If a parity fault is detected, the
GIC-600AE flags a fault.

 Note

If this protection is not needed, it can be disabled through the GIC-600AE FMU programmer's view.
Disable this protection when using an interconnect that does not generate AMBA parity.

Assumptions of Use for FuSa purposes
Arm expects that:
• The GIC-600AE is directly connected to the far-end IP with only wires and repeater buffers.
• No complex logic gates, such as ADBs or cross bar switches exist in the path, as they could be a

source of Multiple-Bit Errors (MBEs).
• The far-end IP checks the parity bits generated by the GIC-600AE.
• The far-end IP generates the incoming parity bits, as the following table describes.

Table 5-7 ACE-Lite interface parity

Check signal Signals covered Width Granularity Check enable

AWVALIDCHK AWVALID 1 1 -

AWREADYCHK AWREADY 1 1 -

AWIDCHK AWID ceil(IdWidthW/8) IdWidthW AWVALID==1

AWADDRCHK AWADDR ceil(AddrWidth/8) 1-8 AWVALID==1

AWLENCHK AWLEN 1 8 AWVALID==1

AWCTLCHK0 AWSIZE, AWBURST, AWLOCK, AWPROT 1 1-9 AWVALID==1

AWCTLCHK1 AWREGION, AWCACHE, AWQOS 1 4-12 AWVALID==1

AWCTLCHK2 AWDOMAIN, AWSNOOP, AWUNIQUE, AWBAR 1 4-9 AWVALID==1

AWUSERCHK AWUSER ceil(AWUserWidth/8) 1-8 AWVALID==1

AWATOPCHKz AWATOP 1 6 AWVALID==1

WVALIDCHK WVALID 1 1 ARESETn==1

WREADYCHK WREADY 1 1 ARESETn==1

WDATACHK WDATA DataWidthW/8 8 WVALID==1

WSTRBCHK WSTRB ceil(DataWidthW/64) 1-8 WVALID==1

WLASTCHK WLAST 1 1 WVALID==1

WUSERCHK WUSER ceil(WUserWidth/8) 1-8 WVALID==1

BVALIDCHK BVALID 1 1 ARESETn==1

BREADYCHK BREADY 1 1 ARESETn==1

BIDCHK BID ceil(IdWidthW/8) IdWidthW BVALID==1

z AWATOP is used for atomics, and is only visible when atomic_support==1.

5 Functional Safety
5.8 External interface protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-222

Non-Confidential

Table 5-7 ACE-Lite interface parity (continued)

Check signal Signals covered Width Granularity Check enable

BRESPCHK BRESP 1 2 BVALID==1

BUSERCHK BUSER ceil(BUserWidth/8) 1-8 BVALID==1

ARVALIDCHK ARVALID 1 1 ARESETn==1

ARREADYCHK ARREADY 1 1 ARESETn==1

ARIDCHK ARID ceil(IdWidthR/8) IdWidthR ARVALID==1

ARADDRCHK ARADDR ceil(AddrWidth/8) 8 ARVALID==1

ARLENCHK ARLEN 1 8 ARVALID==1

ARCTLCHK0 ARSIZE, ARBURST, ARLOCK, ARPROT 1 1-9 ARVALID==1

ARCTLCHK1 ARREGION, ARCACHE, ARQOS 1 4-12 ARVALID==1

ARCTLCHK2 ARDOMAIN, ARSNOOP, ARBAR 1 4-8 ARVALID==1

ARUSERCHK ARUSER ceil(AWUserWidth/8) 1-8 ARVALID==1

RVALIDCHK RVALID 1 1 ARESETn==1

RREADYCHK RREADY 1 1 ARESETn==1

RIDCHK RID ceil(IdWidthR/8) IdWidthR RVALID==1

RDATACHK RDATA DataWidthR/8 8 RVALID==1

RRESPCHK RRESP 1 2-4 RVALID==1

RLASTCHK RLAST 1 1 RVALID==1

RUSERCHK RUSER ceil(RUserWidth/8) 1-8 RVALID==1

5.8.2 AXI4-Stream interface parity protection

The GIC-600AE supports AXI4-Stream interface parity protection on point-to-point connections from
the GIC-600AE to another FuSa IP or FuSa interconnect. If a parity fault is detected, the GIC-600AE
flags a fault.

 Note

If this protection is not needed, it can be disabled through the GIC-600AE FMU Programmers View.
When using an interconnect that does not generate AMBA parity, set FUSA_AXIS_INT_BUSPROT_TYPE=0
to indicate parity, tie off all parity bits to 1, and disable the AXI4-Stream protection for all blocks in the
Programmers View.

Assumptions of Use for FuSa purposes
Arm expects that:
• The GIC-600AE is directly connected to the far-end IP with only wires and repeater buffers.
• No complex logic gates, such as ADBs or cross bar switches exist in the path, as they could be a

source of MBEs.
• The ADB FuSa parameters FW_CHK_FIFO_DEPTH and RV_CHK_FIFO_DEPTH are set as described in this

document.
• The far-end IP checks the parity bits generated by the GIC-600AE.
• The far-end IP generates the incoming parity bits as the following table describes.

5 Functional Safety
5.8 External interface protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-223

Non-Confidential

Table 5-8 AXI4-Stream interface parity

Check signal Signals
covered

Width Granularity Check enable

TCLKCHK TCLK 1 1 -

TRESETCHK TRESETn 1 1 -

TVALIDCHK TVALID 1 1 -

TREADYCHK TREADY 1 1 -

TDATACHK TDATA n 8 TVALID==1

TSTRBCHK TSTRB ceil(n/8) 1-8 TVALID==1

TKEEPCHK TKEEP ceil(n/8) 1-8 TVALID==1

TLASTCHK TLAST 1 1 TVALID==1

TIDCHK TID 1
 Note

The recommended maximum width for TID is 8 bits. If it is
wider than 8 bits, TIDCHK is wider than 1 bit.

1-8 TVALID==1

TDESTCHK TDEST 1
 Note

The recommended maximum width of TDEST is 4 bits. If it is
wider than 4 bits, TDESTCHK is wider than 1 bit.

1-4 TVALID==1

5.8.3 APB interface parity protection

The GIC-600AE supports APB interface parity protection on point-to-point connections from the
GIC-600AE to another FuSa IP or FuSa interconnect. If a parity fault is detected, the GIC-600AE flags a
fault.

 Note

If this protection is not needed, it can be disabled through the GIC-600AE FMU programmer's view.
Disable this protection when using an interconnect that does not generate AMBA parity.

Assumptions of Use for FuSa purposes
Arm expects that:
• The GIC-600AE is directly connected to the far-end IP with only wires and repeater buffers.
• No complex logic gates, such as ADBs or cross bar switches exist in the path, as they could be a

source of MBEs.
• The far-end IP checks the parity bits generated by the GIC-600AE.
• The far-end IP generates the incoming parity bits as the following table describes.

Table 5-9 APB interface parity

Check signal Signals covered Width Granularity Check enable

PADDRCHK PADDR ceil(AddrWidth/8) 1-8 PSEL==1

PCTRLCHK PPROT, PWRITE 1 4 PSEL==1

PSELCHK PSEL 1 1 -

5 Functional Safety
5.8 External interface protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-224

Non-Confidential

Table 5-9 APB interface parity (continued)

Check signal Signals covered Width Granularity Check enable

PENABLECHK PENABLE 1 1 PSEL==1

PWDATACHK PWDATA ceil(DataWidth/8) 8 PSEL&&PWRITE

PREADYCHK PREADY 1 1 PENABLE==1

PRDATACHK PRDATA ceil(DataWidth/8) 8 PSEL&&PREADY&&!PWRITE

PSLVERRCHK PSLVERR 1 1 PREADY

5 Functional Safety
5.8 External interface protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-225

Non-Confidential

5.9 AXI4-Stream internal interconnect protection
The GIC-600AE renders a protected AXI4-Stream interconnect for connecting the various GIC blocks.
Alternatively, the SoC integrator can use a non-GIC-600AE AXI4-Stream-interface-compliant IP to
connect the GIC blocks.

The GIC-600AE supports the following options for protecting the AXI4-Stream interfaces:

Duplicated AXI4-Stream interfaces
Use the GIC-600AE protected AXI4-Stream interconnect. The GIC-600AE generates an
interconnect, in which the interconnect components are partially duplicated. That is, the
redundant interconnect payload is represented by an 8-bit CRC code. See 5.9.1 GIC-rendered
partially duplicated interconnect on page 5-226 for more information.

Single AXI4-Stream interface with AMBA protection
Use non-GIC-600AE interconnect IP with interfaces between GIC blocks and the interconnect.
The interface between the GIC blocks and interconnect IP is protected with AMBA Parity
Extensions. In this mode, the GIC-600AE generates the parity for the interface outputs, checks
the parity for interface inputs, and flags a fault if there is a mismatch. See 5.8.2 AXI4-Stream
interface parity protection on page 5-223 for more information.

Single AXI4-Stream interface with no protection
Use non-GIC-600AE standard AXI4-Stream interconnect IP without AMBA Parity Extensions
to connect GIC blocks. The GIC-600AE must ignore the input parity signals.

This section contains the following subsections:
• 5.9.1 GIC-rendered partially duplicated interconnect on page 5-226.
• 5.9.2 Non-GIC interconnect IP on page 5-227.

5.9.1 GIC-rendered partially duplicated interconnect

The AXI4-Stream internal interconnect is protected with partial duplication.

Partial duplication is the same as full duplication, except a CRC code is sent on the redundant leg instead
of the fully duplicated payload. The CRC code on the shadow leg is then compared with the data from
the primary leg at the destination.

Compared to full duplication, all known random faults are covered at a lower cost. This includes faults
appearing on single-shot packets that do not have an associated response packet.

The following figure shows the GIC-600AE partial duplication microarchitecture.

ITS ITS SPI Collator

Distributor

Figure 5-11 Partial duplication microarchitecture

5 Functional Safety
5.9 AXI4-Stream internal interconnect protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-226

Non-Confidential

• The black line represents the primary interconnect and payload.
• The orange line represents the redundant interconnect compressed and represented by CRC.

 Note

If a GIC-600AE configuration needs no interconnect components between two GIC blocks, the GIC
interconnect render engine automatically uses point-to-point (P2P) protection.

Example
Consider an interconnect with the following conditions:
• One ITS block, with no ADB.
• No register slices between the ITS and Distributor.

The connections are point-to-point, and AMBA parity extensions are used instead of partial duplication
with CRC. If any interconnect component lies between the ITS and Distributor, the render engine
chooses partial duplication.

AMBA Domain Bridge

To maintain lockstep operation between the primary and redundant interconnects, the SoC integrator
must use the GIC-600AE AMBA Domain Bridge (ADB).

To support partial duplication across asynchronous CDC, the ADB must also be partially duplicated.

The asynchronous nature of the CDC crossing makes the arrival time at the slave indeterminate.
Assuming a temporal delay of two cycles between the primary and shadow, the nondeterminism means
that any of the following scenarios can occur. The primary can arrive:
• One cycle ahead of the shadow, which is a fast shadow.
• Two cycles ahead of the shadow, which is the normal case.
• Three cycles ahead of the shadow, which is a slow shadow.

Any variation in arrival times between the primary and shadow at the slave or in the ready assertion in
the master causes the lock stepped blocks to lose sync. As a result, a fault is flagged. To prevent this
fault, the ADB must ensure the master and shadow are always two cycles apart, or a temporal delay of
two cycles, when they exit the ADB.

BAS switch

The BAS switch is partially duplicated.

There is no detection in the duplicated switch itself. Instead, fault detection occurs at the endpoint blocks
or the ADB. Therefore, there is no fault wire exiting the switch.

Register slice

The register slice is partially duplicated.

Although the register slice has a Q-Channel interface, the interface must be synchronous to that clock
domain by means of an LPD. Therefore it does not need to be protected by any special means of
asynchronous protection. Faults that appear on the Q-Channel interface or logic are addressed in one of
the following ways:
• If the faults are benign, the register slice absorbs them.
• If the faults are not benign, they are passed downstream for detection. The downstream block can be

one of the main blocks that contains fault detection mechanisms. It can also be the LPD itself, as it
has fault detection mechanisms and a fault wire to report the faults.

5.9.2 Non-GIC interconnect IP

Any interconnect that supports AXI4-Stream-compliant interfaces can be used to connect the GIC
blocks.

5 Functional Safety
5.9 AXI4-Stream internal interconnect protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-227

Non-Confidential

The GIC-600AE can be configured to have AMBA Parity Protection on the AXI4-Stream interface. This
interface is adequate for protecting wires and buffers that connect a GIC block to any non-GIC
interconnect IP in a point-to-point configuration. This allows the GIC to be connected with any
unprotected legacy AXI4-Stream interconnect IP.

In this mode, the GIC-600AE generates the parity for the interface outputs, checks the parity for interface
inputs, and flags a fault if there is mismatch.

If the parity protection is not needed, tie off the extra parity inputs and program the GIC-600AE to
disable this protection.

Configuring and integrating with a non-GIC interconnect

To use AXI4-Stream interconnect IP not rendered by the GIC, configure the GIC as follows:

Procedure
1. Render the configuration that you require, ensuring that it satisfies the following requirements:

• There are no AXI4-Stream components between the rendered GIC blocks.
• The fusa_axis_int_busprot_type parameter is set to 0, which indicates the setting for AXI4-

Stream-interface-compliant with AMBA parity protection.

 Note

Arm expects that the rendered top-level files containing the interconnect are not used.

2. Discard the top level and connect the blocks to other AXI4-Stream IP.
3. Tie off the fault_* ports in Table 5-12 fault_* tie-offs on page 5-231.

These ports are proprietary, and are only used by the GIC-rendered interconnect. Arm expects that
one of the following is true:
• The non-GIC interconnect has its own method of protecting interconnect components.
• The non-GIC interconnect does not require this protection.

4. Connect the fmu_err_out ports in Table 5-11 Mandatory connections for FuSa using a non-GIC-
rendered interconnect on page 5-229.
These connections are from the outer GIC blocks to the GICD. They are a redundant way to
communicate an outer GIC block fault to the FMU. The outer GIC blocks include:
• Wake.
• SPI.
• PPI.
• ITS.

If the SoC integrator does not make these connections, a deadlock or livelock condition can occur on
the AXI4-Stream interconnect. This condition can block the fault from propagating to, and being
flagged by, the FMU.

Operating an unprotected AXI4-Stream interface

Follow these steps to operate interconnect IP with a legacy AXI4-Stream interface that is not protected
with AMBA Parity Extensions.

Prerequisites

Configure and render your non-GIC interconnect, as described in Configuring and integrating with a
non-GIC interconnect on page 5-228.

Procedure
1. Tie off the unused parity chk input bits to any value, either HIGH or LOW.
2. Disable the following AXI4-Stream interface SMs, using the FMU_SMEN register.

5 Functional Safety
5.9 AXI4-Stream internal interconnect protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-228

Non-Confidential

Table 5-10 Safety Mechanisms to disable for unprotected interconnect

Block Block ID SM ID SM description Additional information

GICD 0 3 GICD-PPI AXI4-Stream interface error -

0 4 GICD-ITS AXI4-Stream interface error -

0 5 GICD-SPI AXI4-Stream interface error -

0 20 FMU APB parity error -

0 21 GICD-WAKE AXI4-Stream interface error -

SPI 1 2 SPI-GICD AXI4-Stream interface error SPI Collator block.

WAKE 2 2 WAKE-GICD AXI4-Stream interface error -

ITS 4-11 2 ITS-GICD AXI4-Stream interface error Disable this SM for each block.

PPI 12-43 2 PPI-GICD AXI4-Stream interface error Disable this SM for each block.

Mandatory connections for safety

This section lists the connections that are required when using a non-GIC-rendered interconnect.

The remote blocks use the AXI4-Stream interface to report faults that are detected by their own Safety
Mechanisms to the central GICD.

Each GIC-600AE remote block has an output, fmu_err_out, which indicates an error within the block.
You must connect this signal to the fmu_err_in input of the GICD. This connection provides a
redundant path for error signaling from all remote GIC-600AE blocks to the FMU. The remote block
keeps the fmu_err_in wire asserted until the error recovery software clears the error.

When using a GIC-rendered interconnect, the fmu_err_* fault wires connect automatically. However,
when using a non-GIC-rendered interconnect, you must manually connect these signals. These signals
are designed to be leveled, or cleared by software, so that they can easily traverse CDC boundaries.

The following table lists the mandatory connections to make when using a non-GIC-rendered
interconnect for FuSa operation.

Table 5-11 Mandatory connections for FuSa using a non-GIC-rendered interconnect

fmu_err_in[x] && block ID Block

0 GICD

1 SPI

2 WAKE

3 Reserved

4 ITS0

5 ITS1

6 ITS2

7 ITS3

8 ITS4

9 ITS5

10 ITS6

11 ITS7

12 PPI0

5 Functional Safety
5.9 AXI4-Stream internal interconnect protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-229

Non-Confidential

Table 5-11 Mandatory connections for FuSa using a non-GIC-rendered interconnect (continued)

fmu_err_in[x] && block ID Block

13 PPI1

14 PPI2

15 PPI3

16 PPI4

17 PPI5

18 PPI6

19 PPI7

20 PPI8

21 PPI9

22 PPI10

23 PPI11

24 PPI12

25 PPI13

26 PPI14

27 PPI15

28 PPI16

29 PPI17

30 PPI18

31 PPI19

32 PPI20

33 PPI21

34 PPI22

35 PPI23

36 PPI24

37 PPI25

38 PPI26

39 PPI27

40 PPI28

41 PPI29

42 PPI30

43 PPI31

Port connections for a non-GIC interconnect

The following table lists the fault_* tie-offs.

5 Functional Safety
5.9 AXI4-Stream internal interconnect protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-230

Non-Confidential

Table 5-12 fault_* tie-offs

Port Block Tie-off value Description

fault_icpdp* PPI Low Carries fault information from ADB on icpd/icdp to PPI.

fault_icidi* Low Carries fault information from ADB on icid/icdi to PPI.

fault_external* ITS Low Carries fault information from ACE-bypass switch to ITS.

fault_qchannel* Low Carries Q-Channel fault information from LPD-CG to ITS.

fault_qchannel_pwr* Low Carries Q-Channel fault information from LPD-PWR to ITS.

fault_icwdw* WAKE Low Carries fault information from ADB on icwd/icdw to WAKE.

fault_iccdc* SPI Low Carries fault information from ADB on iccd/icdc to SPI.

fault_icpdp* GICD Low Carries fault information from ADB on icpd/icdp to GICD.

fault_icidi* Low Carries fault information from ADB on icid/icdi to GICD.

fault_iccdc* Low Carries fault information from ADB on iccd/icdc to GICD.

fault_icwdw* Low Carries fault information from ADB on icwd/icdw to GICD.

fault_ace_switch* Low Carries fault information from Monolithic Switch to GICD.

fault_qchannel* Low Carries Q-Channel fault information from LPD-CG to GICD.

fault_qchannel_pwr* Low Carries Q-Channel fault information from LPD-PWR to GICD.

5 Functional Safety
5.9 AXI4-Stream internal interconnect protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-231

Non-Confidential

5.10 P-Channel and Q-Channel protection
The P-Channel and Q-Channel logic and connections can be complex for topologies with multiple clock
or power domains.

The following figure shows a top-level example of a GIC topology with multiple clock domains.

X

X

SPI C
O

LLATO
R

ITS

GICD
ITS

I/O DEVICE

ASYNC

SPI
SPI
SPI

I/O DEVICE

ASYNC

REGSLICE

REGSLICE

XX

X

X

Clock
Controller

ASYNC

ASYNC

REGSLICE

REGSLICE

XX

X

X
X

X

ASYNC

ASYNC

ASYNC

ASYNC

ASYNC

ASYNC

Config Master Off-Chip IF

X X X

A
SYN

C

A
SYN

C

X

ITS IF

A
SYN

C

A
SYN

C

A
SYN

C

A
SYN

C

IC
N

X
X
X

SYSTEM INTERCONNECT
XXX

X

Clock
Controller

X

X

Clock
Controller

X

X

X

X

X X

X

X

Clock
Controller

X
X

Clock
Controller

X
X

A
SYN

C

A
SYN

CX

A
SYN

C

A
SYN

C

X X

X XXX

ClusterCluster

CORE

CPUIF CPUIF

CORE

PPIPPI

CORE

CPUIF CPUIF

CORE

PPIPPI

Clock
Controller

X
X
X
X

X

X

XX

X

Key

 Clock Q-channel

 Power Q-channel

 P-channel

X

Figure 5-12 Multiple clock domain GIC topology

The following figure shows a top-level example of a GIC topology with multiple power domains.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-232

Non-Confidential

X

X

X

X

SPI C
O

LLATO
R

ITS

GICD
ITS

I/O DEVICE

ASYNC

SPI
SPI
SPI

I/O DEVICE

ASYNC

REGSLICE

REGSLICE

XX

X

X

Power
Controller

ASYNC

ASYNC

REGSLICE

REGSLICE

XX

X

X
X

X

ASYNC

ASYNC

ASYNC

ASYNC

ASYNC

ASYNC

Config Master Off-Chip IF

X X X

A
SYN

C

A
SYN

C

X

ITS IF

A
SYN

C

A
SYN

C

A
SYN

C

A
SYN

C

IC
N

X
X
X

SYSTEM INTERCONNECT
XXX

X

Power
Controller

X
Power

Controller

X

X X

X

X

Power
Controller

X

X

Power
Controller

X

X

A
SYN

C

A
SYN

CX

A
SYN

C

A
SYN

C

X X

X XXX

ClusterCluster

CORE

CPUIF CPUIF

CORE

PPIPPI

CORE

CPUIF CPUIF

CORE

PPIPPI

Power
Controller

X
X
X
X

X

X

XX

X

X

X

Key

 Clock Q-channel

 Power Q-channel

 P-channel

A
C

G
A

C
G

This could also be
controlled by

another domain if
the SPI Collator is

located there.

Figure 5-13 Multiple power domain GIC topology

This example power domain hook-up has the following power domain relationships:
• Core before cluster.
• Cluster before GICD.
• ITS before GICD.

 Note

Possible scenarios also relate to making the ITS quiescent while the I/O domain is ON.

• GICD before interconnect.
 Note

It is also beneficial to control the interconnect before the GICD. This implies different control on the
bridges, either from the other side, or independent/combined if there is no fixed relationship.

In Figure 5-12 Multiple clock domain GIC topology on page 5-232 and Figure 5-13 Multiple power
domain GIC topology on page 5-233, the Q-Channel connections are made by the GIC rendering engine.
A Q-Channel is used for power control by the GIC in all cases except for cross/remote chip power
control, which uses a P-Channel port on the Distributor.

The P-Channel and Q-Channel are protected with additional AMBA-specified redundant CHK bits with
reverse polarity. Due to the four-phase asynchronous nature of the P-Channel and Q-Channel, all signals
are checked individually, except for pstate. With four-phase handshaking, all assertions must be held
until handshaking feedback is received. Therefore, transient assertions are treated as faults, which are
filtered by the protection logic for reliability. The protection logic prevents these faults from reaching
mission mode logic and causing errors. Permanent faults, or Stuck-At Faults (SAFs), are detected and
flagged.

The following figure shows a high-level Q-Channel example employed by the GIC blocks.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-233

Non-Confidential

Asynchronous
QCH Master

Lockstep
Slave

qactive

qdeny

qacceptn

qactive_chk

qdeny_chk

qacceptn_chk

sig_prot

sig_prot

qreqn

qreqn_fdc

SYNC

SYNC

qreqn

qreqn_chk

Figure 5-14 Q-Channel protection example

The qreqn and qreqn_chk signals are synchronized separately. These signals then pass through
redundant sig_prot blocks, where the transient filtering and stuck-at checker counters live.

The Q-Channel outputs are passed to the external power controller, or internal GIC LPD, with a temporal
delay no greater than two cycles. The temporal delay can vary from 0-2 cycles, due to corner cases
regarding clock alignment in the ADB. The P-Channel and Q-Channel AMBA extensions allow this
variation.

This section contains the following subsections:
• 5.10.1 CHK bit timing on page 5-234.
• 5.10.2 Transient faults on page 5-235.
• 5.10.3 Stuck-at faults on page 5-236.
• 5.10.4 Disabling P-Channel and Q-Channel Safety Mechanisms on page 5-237.
• 5.10.5 P-Channel on page 5-237.
• 5.10.6 Q-Channel on page 5-239.

5.10.1 CHK bit timing

There is a hard timing requirement that is determined by the Stuck-At Fault (SAF) detection logic.

The skew of preqn, preqn_chk, qreqn, and qreqn_chk must be less than the maximum skew that the
SAF detection logic allows.

Clock Ratio (CR)
Equal to (GIC clock frequency)/(channel controller clock frequency).

Implementation Skew
Silicon skew due to asynchronous clock domain crossings or other factors.

Temporal Delay Skew
Skew between lockstep primary and redundant logic blocks.

Since the GIC-600AE SAF detector counts to 64 before flagging an SAF, the permitted skew is
calculated as follows:

Maximum skew allowed = 64/CR.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-234

Non-Confidential

Example 5-1 Q-Channel skew calculation

• GIC clock frequency = 1000MHz.
• Q-Channel frequency = 125MHz.

Based on these frequencies, the CR is calculated as follows:

CR = (GIC clock frequency)/(channel controller clock frequency) = 1000MHz/125MHz = 8.

Maximum skew allowed = 64/CR = 64/8 = 8 cycles.

Therefore, the SoC integrator is allowed eight cycles for Implementation Skew and Temporal Delay
Skew that originate from the SoC Q-Channel controller.

5.10.2 Transient faults

The following figure shows the normal situation with no fault.

63 62 61 63

Error

Count

QREQn_chk

QREQn

clk

QREQn_int

Figure 5-15 Normal assertion of qreqn and qreqn_chk

The following figure shows how a transient fault on qreqn is filtered.

63 62 61 63

Error

Count

QREQn_chk

QREQn

clk

60 59

QREQn_int

Figure 5-16 Transient fault on qreqn

The following figure shows how a transient fault on qreqn_chk is filtered.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-235

Non-Confidential

63 62 63

Error

Count

QREQn_chk

QREQn

clk

QREQn_int

Figure 5-17 Transient fault on qreqn_chk

The output of the filtering logic, qreqn_int, does not assert. The figures depict a version of qreqn and
qreqn_chk after they pass synchronizer cells. The counter depicts the operation of the SAF detector. In
this example, the SAF detector is set to a value of 63 whenever qreqn and qreqn_chk are the same
polarity. If it detects a polarity difference between qreqn and qreqn_chk, it starts counting down. If the
counter reaches zero, it flags an error.

5.10.3 Stuck-at faults

The following figure shows how the SAF detector detects a stuck-at-one error on qreqn.

63 62 63

Error

Count

QREQn_chk

QREQn

clk

QREQn_int

62 61 60 59 2 1 0

Figure 5-18 Stuck-at-one error on qreqn

The following figure shows how the SAF detector detects a stuck-at-one error on qreqn_chk.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-236

Non-Confidential

63

Error

Count

QREQn_chk

QREQn

clk

QREQn_int

62 61 60 59 2 1 0

Figure 5-19 Stuck-at-one error on qreqn_chk

5.10.4 Disabling P-Channel and Q-Channel Safety Mechanisms

The FMU_SMEN register cannot disable the P-Channel and Q-Channel Safety Mechanisms. They can
be disabled during design time using one of the following methods:

• To disable specific P-Channel and Q-Channel Safety Mechanisms:
— On the P-Channel interfaces for which you want to disable protection, tie preqn_chk to the value

of !preqn.
— On the Q-Channel interfaces for which you want to disable protection, tie qreqn_chk to the value

of !qreqn.
• To disable all P-Channel and Q-Channel Safety Mechanisms in the GIC-600AE, set

FUSA_DISABLE_PQCHAN_PROT=1. For a list of the Safety Mechanisms that cannot be disabled through
the FMU_SMEN register, see Enabling or disabling a Safety Mechanism on page 5-202.

5.10.5 P-Channel

This section contains information for P-Channel protection.

P-Channel signaling

The following figure shows the device and controller signal mappings, including the added CHK signals.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-237

Non-Confidential

PREQ

Device Clock or power controller

PREQCHK

PACCEPT

PACCEPTCHK

PDENY

PDENYCHK

PACTIVE[N-1:0]

PACTIVECHK[N-1:0]

PREQ

PREQCHK

PACCEPT

PACCEPTCHK

PDENY

PDENYCHK

PACTIVE[N-1:0]

PACTIVECHK[N-1:0]

PSTATE[M-1:0]

PSTATECHK

PSTATE[M-1:0]

PSTATECHK

Figure 5-20 P-Channel device and controller signal mappings

There is one CHK bit with inverted polarity for each P-Channel signal, with the exception of pstate. This
includes pactive as separate active signals.

Capturing pstate

In a non-FuSa case, pstate is captured with a synchronized preq. In the FuSa case, we must wait until
both preq and preqchk are at the correct level before sampling pstate and pstatechk. pstatechk is then
tested against pstate at capture.

The implied timing constraint is similar to the non-FuSa constraint.

Non-FuSa P-Channel constraint
pstate maximum delay < (preq delay + 2 capture cycles).

FuSa P-Channel constraint
• pstate and pstatechk maximum delay < (preq delay + 2 capture cycles).
• pstate and pstatechk maximum delay < (preqchk delay + 2 capture cycles).

P-Channel acceptance

The following figure shows the opposite polarity of the CHK bits and pstatechk bit during the P-
Channel acceptance and entry sequence.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-238

Non-Confidential

PREQ

PACCEPT

State 001PSTATE[M:0]

PDENY

Power
Controller Actions

Pre-Transition Actions Post-Transition Actions

P_REQUEST P_ACCEPT P_COMPLETEP_STABLE P_STABLE

State 000

PSTATECHK

PREQCHK

PACCEPTCHK

PDENYCHK

t0 t1 t2 t3 t4 t5 t6

Figure 5-21 P-Channel acceptance

P-Channel denial

The following figure shows the opposite polarity of the CHK bits and pstatechk bit during the P-
Channel denial sequence.

PREQ

PACCEPT

State 001PSTATE[M:0]

PDENY

Pre-Transition Actions Post-Transition Actions

P_REQUEST P_ACCEPT P_COMPLETEP_STABLE P_STABLE

State 000

PSTATECHK

PREQCHK

PACCEPTCHK

PDENYCHK

Power
Controller Actions

State 000

t0 t1 t2 t3 t4 t5 t6

Figure 5-22 P-Channel denial

Related concepts
3.6 Power management on page 3-60

5.10.6 Q-Channel

This section contains information for Q-Channel protection.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-239

Non-Confidential

Q-Channel signaling

The following figure shows the Q-Channel device and controller signal mappings, including the added
chk signals.

qreqn

Device Clock or power controller

qreqnchk

qacceptn
qacceptnchk

qdeny
qdenychk

qactive
qactivechk

qreqn
qreqnchk

qacceptn
qacceptnchk

qdeny
qdenychk

qactive
qactivechk

Figure 5-23 Q-Channel device and controller signal mappings

There is one new chk bit with inverted polarity for each Q-Channel signal.

Q-Channel acceptance

The following figure shows the opposite polarity of the chk bits during the Q-Channel entry, acceptance,
and exit sequence.

qreqn

qacceptn

qdeny

Q_RUN Q_STOPPEDQ_REQUEST Q_EXIT Q_RUN

clk

qreqnchk

qdenychk

qacceptnchk

t1 t2 t3 t4 t5

Figure 5-24 Q-Channel acceptance

Q-Channel denial

The following figure shows the opposite polarity of the chk bits during the Q-Channel denial sequence.

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-240

Non-Confidential

qreqn

qacceptn

qdeny

Q_RUN Q_REQUEST Q_RUNQ_DENIED Q_CONTINUE

clk

qreqnchk

qacceptnchk

qdenychk

t1 t2 t3 t4 t5

Figure 5-25 Q-Channel denial

5 Functional Safety
5.10 P-Channel and Q-Channel protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-241

Non-Confidential

5.11 PPI and SPI interrupt interface protection
PPIs and SPIs are protected by _chk parity bits, which can be optionally added. A _chk bit is added for
each physical SPI and PPI port rendered when setting the following parameters:

• spi_wires.
• All PPI parameters that affect the number of PPI ports on the Redistributors.

The following figure shows the signals that relate to PPI and SPI interrupt interface protection.

GIC SoC
peripherals

n <= 16/core

m <= 960

ppi_chk[n]
ppi[n]

ppi_r[n]

spi_chk[m]
spi[m]

spi_r[m]

Figure 5-26 PPI and SPI interrupt interface protection

The _chk bits have inverse polarity from the ppi and spi ports that they protect. The ppi and spi inputs
and their corresponding _chk parity bit are considered asynchronous inputs. The GIC-600AE contains
specific logic to handle asynchronous uncertainty on the ppi/ppi_chk and spi/spi_chk pairs.

This section contains the following subsections:
• 5.11.1 CHK bit timing on page 5-242.
• 5.11.2 Transient faults on page 5-243.
• 5.11.3 Stuck-at faults on page 5-243.
• 5.11.4 Configuration parameters on page 5-244.

5.11.1 CHK bit timing

It is permissible for the chk bit to arrive on a different cycle than the ppi/spi bit that it protects.

The SAF detector defines the upper limit of the allowed skew. If the SAF detector detects a difference
between the chk bit and the ppi/spi bit that it protects, it starts counting. If it reaches the skew limit, the
SAF detector assumes a SAF, and the GIC FMU flags the fault.

Clock Ratio (CR)
Equal to (GIC clock frequency)/(channel controller clock frequency).

Implementation Skew
Silicon skew due to asynchronous clock domain crossings or other factors.

Temporal Delay Skew
Skew between lockstep primary and redundant logic blocks.

Since the GIC-600AE SAF detector counts to 16 before flagging an SAF, the permitted skew is
calculated as follows:

Maximum skew allowed = 16/CR.

Example 5-2 Interrupt skew calculation

• GIC clock frequency = 800MHz.
• Interrupt source frequency = 200MHz.

Based on these frequencies, the CR is calculated as follows:

5 Functional Safety
5.11 PPI and SPI interrupt interface protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-242

Non-Confidential

CR = (GIC clock frequency)/(channel controller clock frequency) = 800MHz/200MHz = 4.

Maximum skew allowed = 16/CR = 16/4 = 4 cycles.

Therefore, the SoC integrator is allowed four cycles for Implementation Skew and Temporal Delay Skew
that originate from the interrupt source IP.

5.11.2 Transient faults

If a corresponding spi_chk edge is not detected within 16 cycles, a transient fault is reported.

The following figure shows an assertion of spi that causes a transient fault.

Error

spi

clk

spi_chk

15 14Count 13 12 11 2 1 0

spi_int

Figure 5-27 Transient fault on spi

5.11.3 Stuck-at faults

The following figure shows the case where spi is stuck for 16 cycles, prompting the FMU to flag a fault.

15

Error

Count

spi_chk

spi

clk

spi_int

14 13 12 11 2 1 0

Figure 5-28 Stuck-at-one fault on spi

5 Functional Safety
5.11 PPI and SPI interrupt interface protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-243

Non-Confidential

 Note

The spi_int port has inverse polarity.

5.11.4 Configuration parameters

The following parameters apply to PPI and SPI interrupt interface protection.

• fusa_spi_prot.
• fusa_ppi_prot.

For more information about these parameters, see Configuration options in the Arm® CoreLink™

GIC-600AE Generic Interrupt Controller Configuration and Integration Manual.

5 Functional Safety
5.11 PPI and SPI interrupt interface protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-244

Non-Confidential

5.12 Systematic fault watchdog protection
The GIC-600AE contains a watchdog-based PING/ACK mechanism that guards against systematic
errors on the interconnect.

It engages a hardware mechanism in the Distributor, which pings each GIC block in a round-robin
fashion and waits for a response. If a response is not received within a programmable timeout window, a
fault is reported. This mechanism can guard against:
• Lockup on the interconnect that connects the GIC blocks.
• Possible lockup on external buses that causes the GIC blocks and internal interconnect to stall.

The source of the lockup might be software issues, DoS issues, or systematic faults in the silicon.

Related concepts
5.2.6 Ping mechanism on page 5-202

5 Functional Safety
5.12 Systematic fault watchdog protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-245

Non-Confidential

5.13 DFT protection
Functional Safety Mechanisms have been added to protect the MBIST and ATPG Scan logic from faults
during functional mode.

This section contains the following subsections:
• 5.13.1 MBIST on page 5-246.
• 5.13.2 ATPG/Scan on page 5-246.
• 5.13.3 LBIST on page 5-247.

5.13.1 MBIST

The MBIST wrapper logic built into GIC-600AE is duplicated, which lets the mechanism detect faults in
this logic.

For example, it can detect a fault on a RAM address bit. It can detect the fault due to the comparators at
the inputs of the shared RAMs.

The following MBIST interface inputs can cause mission-mode errors, so they are protected.

Table 5-13 Protected MBIST inputs

Signal Protection Notes

mbistreq Assertion
detection

If mbistreq is asserted when the GIC block is in functional mode, the GIC detects and reports it. If
this happens in MBIST mode, it is assumed the fault is ignored and cleared by software, via a reset or
the FMU clearing mechanism. Alternately, to prevent the fault from asserting, software can disable
the SM before entering MBIST mode.

nmbistreset Duplication The reset is duplicated. The duplicated reset is nmbistreset_fdc. For a reset to occur, both
nmbistreset and nmbistreset_fdc must be asserted. Please see 5.5.2 Resets on page 5-213 for more
information.

 Note

The MBIST interface pins themselves are unchanged from GIC‑600.

The other MBIST inputs, including mbistaddr and mbistindata, are benign and cause no harm if they
experience faults during functional mode.

If faults occur on the MBIST controller or MBIST signals, it is assumed the MBIST controller detects
them.

5.13.2 ATPG/Scan

All DFT/ATPG input ports are duplicated.

These duplicate ports allow the SoC integrator to have separate scan chains for clk and clk_fdc, if
wanted. If the scan chains are shared by clk and clk_fdc flops, drive the duplicate ports in the same way
at the same time.

The following table summarizes the duplicate ports.

Table 5-14 Duplicate ATPG input ports

clk scan input clk_fdc scan input Description

dftrstdisable dftrstdisable_fdc Prevents reset from asserting when reset generation flops are scanned.

dftcgen dftcgen_fdc Ensures scanned flops get a clock by forcing clock gate enable.

5 Functional Safety
5.13 DFT protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-246

Non-Confidential

Table 5-14 Duplicate ATPG input ports (continued)

clk scan input clk_fdc scan input Description

dftramhold dftramhold_fdc Asserting prevents RAM access during ATPG. This can reduce coverage for logic in the
RAM shadow.

dftse dftse_fdc Scan enable.

5.13.3 LBIST

Arm has verified that a third-party LBIST controller can be instanced and used to control the scan chains
and obtain additional latent fault coverage or diagnostic information.

5 Functional Safety
5.13 DFT protection

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-247

Non-Confidential

5.14 Generic fault inputs
Each GIC block has generic fault inputs that allow the SoC integrator to connect and flag external faults
through the FMU.

For instance, an SoC integrator might have an external Safety Mechanism physically located next to a
GIC block. The SoC integrator can connect the fault signal from this external SM to the usr0_err or
usr1_err inputs of the GIC block. If a fault occurs, the GIC flags and reports a fault in the same manner
it does with internal faults.

The following guidelines are associated with this safety feature:
• The fault signal can be pulsed or level. However, there is no mechanism for the GIC to clear the fault

state in the external mechanism. Therefore a pulse is the recommended implementation.
• To be captured correctly, the fault pulse must be held for at least one GIC block clock cycle.
• A captured fault is reported in the GIC block error record with a User Custom SMx error code.
• There are two generic fault inputs on each GIC block, usr0_err and usr1_err.
• If unused, the inputs should be tied LOW.

5 Functional Safety
5.14 Generic fault inputs

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-248

Non-Confidential

5.15 Configuration and parameters
This section summarizes the differences between GIC‑600 and GIC-600AE.

Added configurations to GIC-600
• The fusa_comp_dup parameter can add one additional gate into the comparator paths. For more

information, see 5.6.1 Comparators on page 5-217.
• The fusa_axis_int_busprot_type parameter indicates the bus protection to be deployed on the

AXI4-Stream interfaces between the GIC-600AE blocks.
• The fusa_spi_prot parameter indicates whether parity _chk bit protection is deployed to SPI

interrupt inputs.
• The fusa_ppi_prot parameter indicates whether parity _chk bit protection is deployed to PPI

interrupt inputs.
• The fusa_disable_pqchan_prot parameter can disable P-Channel and Q-Channel Safety

Mechanisms.

For more information, see 5.10.4 Disabling P-Channel and Q-Channel Safety Mechanisms
on page 5-237.

For more information about these parameters, see Configuration options in the Arm® CoreLink™

GIC-600AE Generic Interrupt Controller Configuration and Integration Manual.

Reduced configurations from GIC-600
• The GIC-600AE does not support the option to have RAM macros (compiled memories) without

ECC.
• The GIC-600AE does not render logic on external interfaces, including the external GIC-Stream-

AXI4-Stream interface.
• The GIC-600AE can render the msi_64 module, but it is not protected. This block is an optimization

and is not required for correct operation of the GIC-600AE.
• On GIC-600AE, the supported range of values for ppi_count is 1-32.
• On GIC-600AE, the supported range of values for its_count is 1-8.

For more information about these considerations, see the Configuration and rendering chapter of the
Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Configuration and Integration Manual.

5 Functional Safety
5.15 Configuration and parameters

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-249

Non-Confidential

Appendix A
Signal descriptions

This appendix describes the input and output signals.

It contains the following sections:
• A.1 Common control signals on page Appx-A-251.
• A.2 Power control signals on page Appx-A-253.
• A.3 Interrupt signals on page Appx-A-254.
• A.4 CPU interface signals on page Appx-A-255.
• A.5 ACE-Lite interface signals on page Appx-A-256.
• A.6 Miscellaneous signals on page Appx-A-260.
• A.7 Interblock signals on page Appx-A-262.
• A.8 Interdomain signals on page Appx-A-265.
• A.9 Interchip signals on page Appx-A-266.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-250

Non-Confidential

A.1 Common control signals
The following table shows the GIC-600AE common control signal set.

Table A-1 Common control signals

Signal name Type Source or
destination

Description

[<domain>]clk Input Clock source Clock input.

[<domain>]reset_n Input Reset source Active-LOW reset. Minimum of one cycle.

dbg_[<domain>]reset_n Input Reset source Active-LOW reset for the PMU and error records.

Only present for domain containing the Distributor.

Test signals

dftrstdisable Input DFT control logic Reset disable. Disables the external reset input for test
mode. When this signal is HIGH, it forces the internal
active-LOW reset HIGH, bypassing the reset synchronizer.

dftse Input Scan enable. Disables clock gates for test mode.

dftcgen Input Clock gate enable. When this signal is HIGH, it forces all
the clock gates on so that all internal clocks always run.

dftramhold Input RAM hold. When this signal is HIGH, it forces all the
RAM chip selects LOW, preventing accesses to the RAMs.

MBIST controller signals

[<domain>_]mbistack Output MBIST controller MBIST mode ready.

GIC-600AE acknowledges that it is ready for MBIST
testing.

[<domain>_]mbistreq Input MBIST mode request.

Request to GIC-600AE to enable MBIST testing. This
signal must be tied LOW during functional operation.

[<domain>_]nmbistreset Input Resets MBIST logic.

Resets functional logic to enable MBIST operation by an
active-LOW signal. This signal must be tied HIGH during
functional operation.

A Signal descriptions
A.1 Common control signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-251

Non-Confidential

Table A-1 Common control signals (continued)

Signal name Type Source or
destination

Description

[<domain>_]mbistaddr[variable:0]aa Input MBIST controller Logical address.

The width is based on the RAM with the largest number of
words. You must drive the most significant bits to zero
when accessing RAMs with fewer address bits.

[<domain>_]mbistindata[variable:0]aa Input Data in.

Write data. Width that is based on the RAM with the largest
number of data bits.

[<domain>_]mbistoutdata[variable:0]aa Output Data out.

Read data. Width that is based on the RAM with the largest
number of data bits.

[<domain>_]mbistwriteen Input Write control (mbistwriteen) and read control
(mbistreaden). No access occurs if both enables are LOW.
It is illegal to activate both enables simultaneously.[<domain>_]mbistreaden Input

[<domain>_]mbistarray[variable:0]aa Input Array selector.

This signal controls which RAM array is accessed. For the
single RAM configuration, this port is unused.

This signal is not present on a block containing only one
RAM.

[<domain>_]mbistcfg Input MBIST ALL enable.

When enabled, allows simultaneous access to all RAM
arrays for maximum array power consumption.

This signal is not present on a block containing only one
RAM.

aa The variable is configuration-dependent.

A Signal descriptions
A.1 Common control signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-252

Non-Confidential

A.2 Power control signals
The following table shows the GIC-600AE power control signals.

Table A-2 Power control signals

Signal name Type Description

cpu_active[_<ppi_block>]
[_<bus>][<cpus>−1:0]

Input Indicates if the core is active and not in a low-power state such as retention. This signal is
used for lowering the priority of selection for 1 of N SPIs. There is 1 bit per core on the ICC
bus. See 3.6.2 Processor core power management on page 3-60.

wake_request[<cpus>−1:0] Output Wake request signal to power controller indicating that an interrupt is targeting this core and
it must be woken. When asserted, the wake_request is sticky unless the Distributor is put
into the gated state.

wake_request_chk[<cpus>
−1:0]

Output Odd parity protection bits.

qreqn_col Input Q-Channel device interface to flush out the path between the SPI Collator and the Distributor
to aid in power down.
When asserted, messages are not sent to the Distributor until low-power state is exited.

 Note

It is only safe to stop the Collator clock if all interrupts are level sensitive, or if edge-
triggered interrupts are pulse extended into the SPI Collator.

qacceptn_col Output

qdeny_col Output

qactive_col Output

qreqn_its[<its>] Input Required to flush out the path between the ITS and the Distributor.

There is one Q-Channel for each ITS.

All Distributor ITS Q-Channels are combined as a single set of vectored signals,
qreqn_its[its_count−1:0]. The its_count parameter sets the number of ITS blocks on the
chip.

These signals are not present in monolithic configurations where the Distributor and ITS
share an ACE-Lite port.

qacceptn_its[<its>] Output

qdeny_its[<its>] Output

qactive_its[<its>] Output

[<domain_>]clkqreqn Input Q-Channel device interface for clock gating of everything in the domain.

[<domain_>]clkqreqn is synchronized into the GIC-600AE.

This bus must be treated asynchronously.

[<domain_>]clkqacceptn Output

[<domain_>]clkqdeny Output

[<domain_>]clkqactive Output

[<domain_>]pwrqreqn Input Q-Channel device interface for the CoreLink ADB-400 AMBA Domain Bridge power
interface within the domain.

[<domain_>]pwrqacceptn Output

[<domain_>]pwrqdeny Output

[<domain_>]pwrqactive Output

preq Input This P-Channel device interface is only present in multichip configurations.

See 3.16.5 Power control and P-Channel on page 3-99.

preq is synchronized into the GIC-600AE.

pstate must be stable when preq is asserted.

This bus must be treated asynchronously.

pstate[4:0] Input

paccept Output

pdeny Output

pactive Output

A Signal descriptions
A.2 Power control signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-253

Non-Confidential

A.3 Interrupt signals
The following table shows the GIC-600AE interrupt signals.

Table A-3 Interrupt signals

Signal name Type Description

ppi<n>[_<ppi_block>][_<bus>]
[<cpus>−1:0]
If there are:
• 8 PPIs per core, n is 22-27, 29, or

30.
• 12 PPIs per core, n is 20-31.
• 16 PPIs per core, n is 16-31.

Input PPI input wires for interrupt <n>. One bit per core.

The PPIs for each core are independent and are typically used for peripherals that are
not shared between cores. For example, timers on the core typically use PPIs.

By default, PPIs are active-LOW. The GIC provides top-level RTL parameters so that
a PPI can be active-HIGH.

The GIC also provides top-level RTL parameters so that a PPI can be synchronized to
clk.

By default, PPIs are level-sensitive interrupts. However, software can change an
interrupt to be edge triggered by programming the GICD_ICFGRn and
GICR_ICFGR1 registers.

ppi<n>_r_[_<ppi_block>][_<bus>] Output PPI output after synchronization and edge detection. You can use these signals to
create pulse extenders for edge-triggered interrupts that cross clock domains.

spi[variable:0] Input This signal is the number of SPI wires that the GIC supports.
 Note

This is not the same as the number of SPIs supported because they could be message-
based only or be on another chip.

By default, SPIs are active-HIGH. The GIC provides top-level RTL parameters so that
an SPI can be active-LOW.

The GIC also provides top-level RTL parameters so that an SPI can be synchronized
to clk.

spi_r[variable:0] Output SPI output after synchronization and edge detection. Can be used for cross-domain
pulse detection.

A Signal descriptions
A.3 Interrupt signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-254

Non-Confidential

A.4 CPU interface signals
The following table shows the GIC-600AE CPU interface signal set.

Table A-4 CPU interface signals

Signal name Type Source or
destination

Description

icctready[_<ppi_num>]
[_<bus>]

Output Core block GIC Stream-compliant bus for communication from the core block to the
Redistributor. It is fully credited and can be sent over any free-flowing
interconnect.

See the Redistributor to downstream CPU interface table in the GIC
Stream Redistributor to downstream CPU interface Appendix of the Arm®

Generic Interrupt Controller Architecture Specification, GIC architecture
version 3 and version 4.

IDs icctid values of <cpus−1:0> are used. Issuing other values is
unpredictable.

icctvalid[_<ppi_num>]
[_<bus>]

Input

icctdata[_<ppi_num>]
[_<bus>][15:0]

Input

icctid[_<ppi_num>][_<bus>]
[variable:0]ab

Input

icctlast[_<ppi_num>]
[_<bus>]

Input

iccttwakeup[_<ppi_num>]
[_<bus>]

Input Registered wake signal to indicate that a message is arriving or is about to
arrive on the icc bus. Signals icctvalid and icctready control data transfer.

iritready[_<ppi_num>]
[_<bus>]

Input Core block GIC Stream-compliant bus for communication from the Redistributor to
the core block. It is fully credited and can be sent over any free-flowing
interconnect.

See the Redistributor to downstream CPU interface table in the GIC
Stream Redistributor to downstream CPU interface Appendix of the Arm®

Generic Interrupt Controller Architecture Specification, GIC architecture
version 3 and version 4.

IDs iritdest values of <cpus−1:0> are used.

iritvalid[_<ppi_num>]
[_<bus>]

Output

iritdata[_<ppi_num>]
[_<bus>][15:0]

Output

iritdest [_<ppi_num>]
[_<bus>][variable:0]ab

Output

iritlast[_<ppi_num>]
[_<bus>]

Output

iritwakeup[_<ppi_num>]
[_<bus>]

Output Registered wake signal to indicate that a message is arriving or is about to
arrive on the iri bus. Signals iritvalid and iritready control data transfer.

ab The variable is configuration-dependent.

A Signal descriptions
A.4 CPU interface signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-255

Non-Confidential

A.5 ACE-Lite interface signals
The following table shows the GIC-600AE ACE-Lite signals.

Table A-5 ACE-Lite slave interface signals

Signal name Type Description

Write address channel signals → Slave

There are multiple versions of this bus. Buses that have _its[_<num>] are dedicated ITS slave ports for GITS_TRANSLATER only.
There is always one port that has no _its suffix that is used for all registers except GITS_TRANSLATER. This port is used for all
registers in monolithic configurations.

awuser_[its[_<num>]]_s[variable:0]ac Input Optional User signal.

Indicates the DeviceID of writes to GITS_TRANSLATER if MSI_64 is not
configured.

awatop_[its[_<num>]]_s[5:0] Input This signal is only present on ITSs with atomic support. It indicates the type of
access being received by the slave.

awaddr_[its[_<num>]]_s[variable:0]ac Input The write address gives the address of the first transfer in a write burst
transaction.

awid_[its[_<num>]]_s[variable:0]ac Input This signal is the identification tag for the write address group of signals.

awlen_[its[_<num>]]_s[7:0] Input The burst length gives the exact number of transfers in a burst. This information
determines the number of data transfers associated with the address.

awsize_[its[_<num>]]_s[2:0] Input This signal indicates the size of each transfer in the burst.

awburst_[its[_<num>]]_s[1:0] Input The burst type and the size information, determine how the address for each
transfer within the burst is calculated.

awprot_[its[_<num>]]_s[2:0] Input This signal indicates the privilege and security level of the transaction, and
whether the transaction is a data access or an instruction access.

awvalid_[its[_<num>]]_s Input This signal indicates that the channel is signaling valid write address and control
information.

awready_[its[_<num>]]_s Output This signal indicates that the slave is ready to accept an address and associated
control signals.

awcache_[its[_<num>]]_s[3:0] Input This signal indicates how transactions are required to progress through a system.

awdomain_[its[_<num>]]_s[1:0] Input This signal indicates the Shareability domain of a write transaction.

awsnoop_[its[_<num>]]_s[2:0] Input This signal indicates the transaction type for Shareable write transactions.

awbar_[its[_<num>]]_s[1:0] Input This signal indicates a write barrier transaction.

Write data channel signals → Slave

wstrb_[its[_<num>]]_s[variable:0]ac Input This signal indicates which byte lanes hold valid data. There is one write strobe
bit for every eight bits of the write data bus.

wdata_[its[_<num>]]_s[variable:0]ac Input Write data.

wvalid_[its[_<num>]]_s Input This signal indicates that valid write data and strobes are available.

wready_[its[_<num>]]_s Output This signal indicates that the slave can accept the write data.

wlast_[its[_<num>]]_s Input This signal indicates the last transfer in a write burst.

Write response channel signals → Slave

A Signal descriptions
A.5 ACE-Lite interface signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-256

Non-Confidential

Table A-5 ACE-Lite slave interface signals (continued)

Signal name Type Description

bid_[its[_<num>]]_s[variable:0]ac Output This signal is the ID tag of the write response.

bvalid_[its[_<num>]]_s Output This signal indicates that the channel is signaling a valid write response.

bready_[its[_<num>]]_s Input This signal indicates that the master can accept a write response.

bresp_[its[_<num>]]_s[1:0] Output This signal indicates the status of the write transaction.

buser_[its[_<num>]]_s[n:0] Output Write response User signal, where n = axis_buser_width−1.

Read address channel signals → Slave

arcache_[its[_<num>]]_s[3:0] Input This signal indicates how transactions are required to progress through a system.

arbar_[its[_<num>]]_s[1:0] Input This signal indicates a read barrier transaction.

arsnoop_[its[_<num>]]_s[3:0] Input This signal indicates the transaction type for Shareable read transactions.

ardomain_[its[_<num>]]_s[1:0] Input This signal indicates the Shareability domain of a read transaction.

araddr_[its[_<num>]]_s[variable:0]ac Input The read address gives the address of the first transfer in a read burst transaction.

arid_[its[_<num>]]_s[variable:0]ac Input This signal is the identification tag for the read address group of signals.

arlen_[its[_<num>]]_s[7:0] Input This signal indicates the exact number of transfers in a burst. This changes
between AXI3 and AXI4.

arsize_[its[_<num>]]_s[2:0] Input This signal indicates the size of each transfer in the burst.

aruser_[its[_<num>]]_s[2:0] Input This signal indicates some user-defined sideband content that transfers with the
read address. The GIC-600AE ignores aruser data that it receives on the GICD
(Distributor) slave port or the ITS page containing the GITS_TRANSLATER
register.

arburst_[its[_<num>]]_s[1:0] Input The burst type and the size information determine how the address for each
transfer within the burst is calculated.

arprot_[its[_<num>]]_s[2:0] Input This signal indicates the privilege and security level of the transaction, and
whether the transaction is a data access or an instruction access.

arvalid_[its[_<num>]]_s Input This signal indicates that the channel is signaling valid read address and control
information.

arready_[its[_<num>]]_s Output This signal indicates that the slave is ready to accept an address and associated
control signals.

Read data channel signals → Slave

rid_[its[_<num>]]_s[variable:0]ac Output This signal is the identification tag for the read data group of signals generated
by the slave.

rdata_[its[_<num>]]_s[variable:0]ac Output Read data.

rresp_[its[_<num>]]_s[1:0] Output This signal indicates the status of the read transfer.

rlast_[its[_<num>]]_s Output This signal indicates the last transfer in a read burst.

rvalid_[its[_<num>]]_s Output This signal indicates that the channel is signaling the required read data.

rready_[its[_<num>]]_s Input This signal indicates that the master can accept the read data and response
information.

ruser_[its[_<num>]]_s[n:0] Output Read response User signal, where n = axis_ruser_width−1.

A Signal descriptions
A.5 ACE-Lite interface signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-257

Non-Confidential

Table A-6 ACE-Lite master interface signals

Signal name Type Description

Write address channel signals → Master. Only present if LPI support is configured.

Buses containing _its[_<num>] are used by the specific ITS for read/writes to the private tables and Command queue. Buses without
an _its suffix are used for accesses to the LPI Pending and Property tables. This port performs all accesses in monolithic
configurations.

awaddr_[its[_<num>]]_m[variable:0]ac Output The write address gives the address of the first transfer in a write burst
transaction.

awatop_[its[_<num>]]_m[5:0] Output This signal is only present on ITSs with atomic support. It indicates the type of
access being forwarded by the master port. Atomic accesses are never generated
by an ITS and are only forwarded from the slave port.

awid_[its[_<num>]]_m[variable:0]ac Output This signal is the identification tag for the write address group of signals.

awlen_[its[_<num>]]_m[7:0] Output The burst length gives the exact number of transfers in a burst. This information
determines the number of data transfers associated with the address.

awsize_[its[_<num>]]_m[2:0] Output This signal indicates the size of each transfer in the burst.

awburst_[its[_<num>]]_m[1:0] Output The burst type and size information determine how the address for each transfer
within the burst is calculated.

awprot_[its[_<num>]]_m[2:0] Output This signal indicates the privilege and security level of the transaction, and
whether the transaction is a data access or an instruction access.

awvalid_[its[_<num>]]_m Output This signal indicates that the channel is signaling valid write address and control
information.

awready_[its[_<num>]]_m Input This signal indicates that the channel is signaling valid write address and control
information.

awcache_[its[_<num>]]_m[3:0] Output This signal indicates how transactions are required to progress through a
system.

awdomain_[its[_<num>]]_m[1:0] Output This signal indicates the Shareability domain of a write transaction.

awsnoop_[its[_<num>]]_m[2:0] Output This signal indicates the transaction type for Shareable write transactions.

awbar_[its[_<num>]]_m[1:0] Output This signal indicates a write barrier transaction.

awuser_[its[_<num>]]_m[variable:0]ac Output Optional User signal.

Write data channel signals → Master. Only present if LPI support is configured.

wstrb_[its[_<num>]]_m[variable:0]ac Output This signal indicates which byte lanes hold valid data. There is one write strobe
bit for every eight bits of the write data bus.

wdata_[its[_<num>]]_m[variable:0]ac Output Write data.

wvalid_[its[_<num>]]_m Output This signal indicates that valid write data and strobes are available.

wready_[its[_<num>]]_m Input This signal indicates that the slave can accept the write data.

wlast_[its[_<num>]]_m Output This signal indicates the last transfer in a write burst.

Write response channel signals → Master. Only present if LPI support is configured.

bid_[its[_<num>]]_m[variable:0]ac Input This signal is the ID tag of the write response.

bvalid_[its[_<num>]]_m Input This signal indicates that valid write data and strobes are available.

bready_[its[_<num>]]_m Output This signal indicates that the channel is signaling a valid write response.

ac The variable is configuration-dependent.

A Signal descriptions
A.5 ACE-Lite interface signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-258

Non-Confidential

Table A-6 ACE-Lite master interface signals (continued)

Signal name Type Description

bresp_[its[_<num>]]_m[1:0] Input This signal indicates the status of the write transaction.

buser_[its[_<num>]]_m[n:0] Input Write response User signal, where n = axis_buser_width−1.

Read address channel signals → Master. Only present if LPI support is configured.

araddr_[its[_<num>]]_m[variable:0]ac Output The read address gives the address of the first transfer in a read burst
transaction.

arid_[its[_<num>]]_m[variable:0]ac Output This signal is the identification tag for the read address group of signals.

arlen_[its[_<num>]]_m[7:0] Output This signal indicates the exact number of transfers in a burst. This changes
between AXI3 and AXI4.

arsize_[its[_<num>]]_m[2:0] Output This signal indicates the size of each transfer in the burst.

arburst_[its[_<num>]]_m[1:0] Input The burst type and the size information determine how the address for each
transfer within the burst is calculated.

arprot_[its[_<num>]]_m[2:0] Output This signal indicates the privilege and security level of the transaction, and
whether the transaction is a data access or an instruction access.

arvalid_[its[_<num>]]_m Output The signal indicates that the channel is signaling valid read address and control
information.

arready_[its[_<num>]]_m Input This signal indicates that the slave is ready to accept an address and associated
control signals.

arcache_[its[_<num>]]_m[3:0] Output This signal indicates how transactions are required to progress through a
system.

ardomain_[its[_<num>]]_m[1:0] Output This signal indicates the Shareability domain of a read transaction.

arsnoop_[its[_<num>]]_m[3:0] Output This signal indicates the transaction type for Shareable read transactions.

arbar_[its[_<num>]]_m[1:0] Output This signal indicates a read barrier transaction.

aruser_[its[_<num>]]_m[variable:0]ac Output Optional User signal.

Read data channel signals → Master. Only present if LPI support is configured.

rid_[its[_<num>]]_m[variable:0]ac Input This signal is the identification tag for the read data group of signals generated
by the slave.

rada_[its[_<num>]]_m[variable:0]ac Input Read data.

rresp_[its[_<num>]]_m[1:0] Input This signal indicates the status of the read transfer.

rlast_[its[_<num>]]_m Input This signal indicates the last transfer in a read burst.

rvalid_[its[_<num>]]_m Input This signal indicates that the channel is signaling the required read data.

rready_[its[_<num>]]_m Output This signal indicates that the master can accept the read data and response
information.

ruser_[its[_<num>]]_m[n:0] Input Read response User signal, where n = axis_ruser_width−1.

A Signal descriptions
A.5 ACE-Lite interface signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-259

Non-Confidential

A.6 Miscellaneous signals
The following table shows the GIC-600AE miscellaneous signals.

Table A-7 Miscellaneous signals

Signal name Type Description

chip_id[<CHIP_ID_WIDTH>−1:0] Input An ID number that identifies the chip in the system. Only present if there is more
than one chip in the system.

ppi_id[15:0] Input An ID number that identifies the Redistributor in the system. Software can read the
GICR_CFGID0 register to access the value of this signal.

its_id[7:0] Input An ID number that identifies the ITS block in the system. Software can read the
GITS_CFGID register to access the value of this signal. It must be tied to the
ic<x>dtdest value that is used to read the ITS using the AXI4-Stream interface.

fault_int Output Fault handling interrupt. The GIC-600AE can deliver this interrupt internally but
the output is provided for any other device such as a system control processor that
does not receive normal interrupts from the GIC. See 3.15.5 Error recovery and
fault handling interrupts on page 3-76.

err_int Output Error handling interrupt. The GIC-600AE can deliver this interrupt internally but
the output is provided for any other device such as a system control processor that
does not receive normal interrupts from the GIC. See 3.15.5 Error recovery and
fault handling interrupts on page 3-76.

pmu_int Output PMU counter overflow interrupt. This signal is a level-sensitive interrupt. The
GIC-600AE can deliver this interrupt internally but the output is provided as an
external output to trigger an external agent to service the GIC, for example, to read
out the PMU counter snapshot registers. See Overflow interrupt on page 3-73.

sample_req Input Request from a Cross Trigger Interface (CTI) to sample the PMU counters.
Equivalent to writing to the GICP_CAPR register. See Snapshot on page 3-74 for
more information.

sample_ack Output This signal goes HIGH when the GIC acknowledges the PMU sample request from
the CTI.

gict_allow_ns Input From reset, this tie-off signal controls whether Non-secure software can access the
GICT Error Record registers.

gicp_allow_ns Input From reset, this tie-off signal controls whether Non-secure software can access the
GICP PMU registers.

gicd_page_offset Input From reset, this tie-off signal controls the page address bits[x:16] of the GICD
page. Only present in monolithic configurations. See 2.1.2 Distributor ACE-Lite
slave interface on page 2-25.

its_transr_page_offset Input From reset, this tie-off signal controls the page address of the
GITS_TRANSLATER register. Only present in monolithic configurations. See
3.12 MSI-64 on page 3-71 and 2.1.2 Distributor ACE-Lite slave interface
on page 2-25.

target_address<n>[ADDR_WIDTH
−17:0]

Input Modifies the address map to ensure only writes to the correct location can trigger
MSI requests. Only present when the bypass switch is configured. <n> represents
an ITS identifier.

Specifies the 64K page address that includes the GITS_TRANSLATER register
address, and is matched against axaddr[ADDR_WIDTH−1:16]. See 2.3.1 ITS
ACE-Lite slave interface on page 2-35.

A Signal descriptions
A.6 Miscellaneous signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-260

Non-Confidential

Table A-7 Miscellaneous signals (continued)

Signal name Type Description

msi_translator_page Input The target page address of the GITS_TRANSLATER register. The MSI-64
Encapsulator does not support a msi_transalator_page value of 0. See 2.4 MSI-64
Encapsulator on page 2-39.

msi64_translator_page Input The target address of the 64-bit GITS_TRANSLATER register. This page must be
at a different location to the msi_translator_page and at a location that is known
only to the hypervisor. The hypervisor must be able to protect the page from
accesses from devices and processors that can spoof incorrect DeviceIDs. See
2.4 MSI-64 Encapsulator on page 2-39 and 3.12 MSI-64 on page 3-71.

awdeviceid Input The ACE-Lite AW sideband signal that reports the DeviceID for writes to
GITS_TRANSLATER. The value is ignored for non-MSI writes. See 2.4 MSI-64
Encapsulator on page 2-39 and 2.4.1 MSI-64 ACE-Lite interfaces on page 2-39.

Related references
4.5.4 GICR_CFGID0, Configuration ID0 Register on page 4-137
4.6.6 GITS_CFGID, Configuration ID Register on page 4-147
4.9.11 GICP_CAPR, Counter Shadow Value Capture Register on page 4-175

A Signal descriptions
A.6 Miscellaneous signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-261

Non-Confidential

A.7 Interblock signals
The following table shows the GIC-600AE interblock signals.

Table A-8 Interblock signals

Signal name Forward
or reverse

Source or
destination

Description

icdptready Reverse Redistributor →
Distributor

AXI4-Stream compliant bus for communication between the
Distributor and a Redistributor. It is fully credited and must never
backpressure. It can be sent over any free-flowing interconnect.

icdptvalid Forward Distributor →
Redistributor

icdptdata[variable:0]a

d
Forward

icdptlast Forward

icdptwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the icdp bus. Signals icdptvalid and icdptready control
data transfer.

icdptdest Forward Specifies the destination Redistributor block.

This signal is only present on the Distributor.

See AXI4-Stream interfaces in Functional integration guidelines of the
Arm® CoreLink™ GIC-600AE Generic Interrupt Controller
Configuration and Integration Manual for more information.

icdptkeep Forward Indicates the data bytes that must be transferred.

This signal is only present on the Distributor.

icpdtready Reverse AXI4-Stream compliant bus for communication between the
Redistributor and the Distributor. It is fully credited and can be sent
over any free-flowing interconnect.icpdtvalid Forward Redistributor →

Distributor
icpdtdata[variable:0]a

d
Forward

icpdtlast Forward

icpdtwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the icpd bus. Signals icpdtvalid and icpdtready control
data transfer.

icpdtid Forward Specifies the source Redistributor block.

This signal is only present on the Distributor.

See AXI4-Stream interfaces in Functional integration guidelines of the
Arm® CoreLink™ GIC-600AE Generic Interrupt Controller
Configuration and Integration Manual for more information.

icpdtkeep Forward Indicates the data bytes that must be transferred.

This signal is only present on the Redistributor.

ad The variable is configuration-dependent.

A Signal descriptions
A.7 Interblock signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-262

Non-Confidential

Table A-8 Interblock signals (continued)

Signal name Forward
or reverse

Source or
destination

Description

icditready Reverse ITS → Distributor AXI4-Stream compliant bus for communication from the Distributor to
the ITS. It is fully credited and can be sent over any free-flowing
interconnect.icditvalid Forward Distributor → ITS

icditdata[variable:0]ad Forward

icditlast Forward

icditwakeup Forward Indicates that a message is arriving or is about to arrive on the icdi bus.
Signals icditvalid and icditready control data transfer.

icditdest Forward Specifies the destination ITS block.

This signal is only present on the Distributor.

See AXI4-Stream interfaces in Functional integration guidelines of the
Arm® CoreLink™ GIC-600AE Generic Interrupt Controller
Configuration and Integration Manual for more information.

icditkeep Forward Indicates the data bytes that must be transferred.

This signal is only present on the Distributor.

icidtready Reverse AXI4-Stream compliant bus for communication from the ITS to the
Distributor. It is fully credited and can be sent over any free-flowing
interconnect.icidtvalid Forward ITS → Distributor

icidtdata[variable:0]ad Forward

icidtkeep[variable:0]a

d
Forward

icidtlast Forward

icidtdid Forward Specifies the source ITS.

This signal is only present on the Distributor.

See AXI4-Stream interfaces in Functional integration guidelines of the
Arm® CoreLink™ GIC-600AE Generic Interrupt Controller
Configuration and Integration Manual for more information.

icidtkeep Forward Indicates the data bytes that must be transferred.

This signal is only present on the ITS.

icidtwakeup Forward Registered wake
signal

Indicates that a message is arriving or is about to arrive on the icid bus.
Signals icidtvalid and icidtready control data transfer.

icdwtready Reverse Wake Request →
Distributor

AXI4-Stream compliant bus for communication from the Distributor to
the Wake Request block.

It is fully credited and can be sent over any free-flowing interconnect.

This bus is not exposed when the top level is stitched.

icdwtvalid Forward Distributor → Wake
Request

icdwtdata[15:0] Forward

icdwtwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the icdw bus. Signals icdwtvalid and icdwtready control
data transfer.

This signal is not exposed when the top level is stitched.

A Signal descriptions
A.7 Interblock signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-263

Non-Confidential

Table A-8 Interblock signals (continued)

Signal name Forward
or reverse

Source or
destination

Description

icdctready Reverse SPI Collator →
Distributor

AXI4-Stream compliant bus for communication between the
Distributor and the SPI Collator. It is fully credited and must never
backpressure. It can be sent over any free-flowing interconnect.

icdctvalid Forward Distributor → SPI
Collator

icdctdata[15:0] Forward

icdctlast Forward

icdctwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the icdc bus. Signals icdctvalid and icdctready control
data transfer.

iccdtdest Forward Indicates that the collator number is always 0.

iccdtready Reverse AXI4-Stream compliant bus for communication between the SPI
Collator and the Distributor. It is fully credited and must never
backpressure. It can be sent over any free-flowing interconnect.iccdtvalid Forward SPI Collator →

Distributor
iccdtdata[15:0] Forward

iccdtlast Forward

iccdtwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the iccd bus. Signals iccdtvalid and iccdtready control
data transfer.

iccdtid Forward Indicates that the collator number must be tied to 0.

This signal is only present on the Distributor.

A Signal descriptions
A.7 Interblock signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-264

Non-Confidential

A.8 Interdomain signals
Interdomain signals are routed between domains.

The following table shows the interdomain signals.

Table A-9 Interdomain signals

Signal name

wakeup_sm_*

wakeup_ms_*

async

If you instantiate domain levels, you must ensure that matching input and output pairs of interdomain
signals connect together directly, and are not separated by synchronizers.

A Signal descriptions
A.8 Interdomain signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-265

Non-Confidential

A.9 Interchip signals
The following table shows the GIC-600AE interchip signals.

Table A-10 Interchip signals

Signal name Forward or
reverse

Source or
destination

Description

icdrtready Reverse Remote chip →
Distributor

AXI4-Stream compliant bus for communication between the
Distributor and a remote chip. It is fully credited and must never
backpressure. It can be sent over any free-flowing interconnect.

icdrtvalid Forward Distributor →
Remote chip

icdrtdata[63:0] Forward

icdrtlast Forward

icdrtwakeup Forward Registered wake signal to indicate that a message is arriving or is
about to arrive on the icdr bus. Signals icdrtvalid and icdrtready
control data transfer.

icdrtdest[variable:0]a

e
Forward Specifies the destination remote chip.

This signal is only present on the Distributor.

See AXI4-Stream interfaces in Functional integration guidelines of
the Arm® CoreLink™ GIC-600AE Generic Interrupt Controller
Configuration and Integration Manual for more information.

icdrtkeep Forward Indicates the data bytes that must be transferred.

This signal is only present on the Distributor.

icrdtready Reverse AXI4-Stream compliant bus for communication between the remote
chip and the Distributor. It is fully credited and can be sent over any
free-flowing interconnect.icrdtvalid Forward Remote chip →

Distributor
icrdtdata[63:0] Forward

icrdtlast Forward

icrdtwakeup Forward Registered wake signal to indicate that a message is arriving or is
about to arrive on the icrd bus. Signals icrdtvalid and icrdtready
control data transfer.

ae The variable is configuration-dependent.

A Signal descriptions
A.9 Interchip signals

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-266

Non-Confidential

Appendix B
Implementation-defined features

This appendix describes the features that are IMPLEMENTATION DEFINED.

It contains the following section:
• B.1 Implementation-defined features reference on page Appx-B-268.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-267

Non-Confidential

B.1 Implementation-defined features reference
The GIC-600AE implements features that are defined in the GICv3 Architecture. Many of these features
also have options in the GICv3 Architecture, which determine behavior that is specific to the
GIC-600AE. These features and options are configurable at build time.

The following table summarizes features in the Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3 and version 4 that are used by the GIC-600AE, and which have
options that are IMPLEMENTATION-DEFINED. The table also gives references to sections within this manual
that provide information about IMPLEMENTATION-DEFINED behavior that is specific to the GIC-600AE.

Table B-1 Declared implementation-defined features

GICv3
Architecture
feature

Architectural specification reference Description

Chapter Section

1 of N model Introduction Models for handling
interrupts

See 3.5 SPI routing and 1 of N selection on page 3-58.

Direct LPI support GIC partitioning The GIC logical
components

Direct LPI support is by configuration if there are no ITS blocks
in the system.

ITS to Redistributor
communications

Locality-specific
peripheral interrupts
and the ITS

LPIs This is done over a fully credited AXI4-Stream.

INTIDs Distribution and
routing of interrupts

INTIDs 16-bit width when supporting LPIs, otherwise the width is set to
support the number of SPIs and SGIs.

All error cases - Pseudocode
throughout the
document

All errors are reported through error records, see
3.15 Reliability, Accessibility, and Serviceability on page 3-75.

Message-based SPIs Physical interrupt
handling and
prioritization

Shared peripheral
interrupts

Pending bits for level sensitive SPIs that are set by writes to
GICD_SETSPI_* or GICA_SETSPI_* are not affected by
writes to GICD_ICPENDRn. Writes to GICD_CLRSPI_* or
GICA_CLRSPI_* have no effect on pending bits set by
GICD_ISPENDRn.

Interrupt grouping Physical interrupt
handling and
prioritization

Interrupt grouping All implemented SPIs, SGIs, and PPIs have programmable
groups.

Interrupt enables Physical interrupt
handling and
prioritization

Enabling individual
interrupts

All SGIs have a programmable enable.

Interrupt
prioritization

Physical interrupt
handling and
prioritization

Interaction of group
and individual
interrupt enables

Interrupts that are disabled through the GICC_CTLR register or
the ICC_CTLR_* registers are not considered in the selection
of the highest pending interrupt and do not block fully enabled
interrupts of a lower priority.

Interrupt
prioritization

GIC-600AE supports 32 priority levels, 16 for LPIs that are
always Non-secure.

Effects of disabling
interrupts

Physical interrupt
handling and
prioritization

Effect of disabling
interrupts

Interrupts are set pending irrespective of the
GICD_CTLR.EnableGrp* settings.

B Implementation-defined features
B.1 Implementation-defined features reference

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-268

Non-Confidential

Table B-1 Declared implementation-defined features (continued)

GICv3
Architecture
feature

Architectural specification reference Description

Chapter Section

Changing priority Physical interrupt
handling and
prioritization

Interrupt
prioritization.

Changing the
priority of enabled
PPIs, SGIs, and
SPIs.

Reprogramming a IPRIORITYRn register does not change the
priority of an active interrupt but causes a pending and not
active interrupt to be recalled from the CPU interface so that the
new value can be applied.

Direct LPI registers Locality-specific
peripheral interrupts
and the ITS

LPIs The GICR_SETLPIR, GICR_CLRLPIR, GICR_INVLPIR,
GICR_INVALLR, and GICR_SYNCR are supported in
configurations that support LPIs but have no ITS anywhere in
the system. If there is an ITS, these registers, and their
locations, are RAZ/WI.

LPI caching Locality-specific
peripheral interrupts
and the ITS

LPIs See 3.10 LPI caching on page 3-68 and 3.9 Interrupt
Translation Service on page 3-65.

LPI configuration
tables

Locality-specific
peripheral interrupts
and the ITS

LPI configuration
tables

The GIC-600AE has one GICR_PROPBASER register for all
cores on a chip and therefore points at a single table. Each chip
in a multichip configuration can point to a copy of the table in
local memory. See CommonLPIAff in Table 4-24 GICR_TYPER
bit assignments on page 4-129 for more information.

When interrupts are sent between chips, they keep the
properties associated with them until the next invalidate. All
property fetches are always from the offset specified in the
GICR_PROPBASER of the issuing chip.

LPI Pending tables Locality-specific
peripheral interrupts
and the ITS

LPI Pending tables Refer to the GICv3 Architecture description.

B Implementation-defined features
B.1 Implementation-defined features reference

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-269

Non-Confidential

Appendix C
Revisions

This appendix describes changes between released issues of this book.

It contains the following section:
• C.1 Revisions on page Appx-C-271.

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-270

Non-Confidential

C.1 Revisions
This appendix describes changes between released issues of this book.

Table C-1 Issue 0000-00

Change Location Affects

First release for r0p0. - -

Table C-2 Differences between issue 0000-00 and issue 0000-01

Change Location Affects

Changed instances of qactive_clk_col to
qactive_col_clk.

2.5.4 SPI Collator clock Q-Channel on page 2-43 All revisions.

Updated bit assignments. • 4.10.2 FMU_ERR<n>CTLR, Error Record Control Register
on page 4-180

• 4.10.3 FMU_ERR<n>STATUS, Error Record Primary Status
Register on page 4-181

• 4.10.6 FMU_PINGCTLR, Ping Control Register on page 4-185
• 4.10.7 FMU_PINGNOW, Ping Now Register on page 4-185

All revisions.

Replaced redundant table with reference to Safety
Manual.

5.1 Safety Mechanism overview on page 5-192 All revisions.

Removed MSI-64 Encapsulator Safety
Mechanism.

5.2.5 Safety Mechanism IDs on page 5-198 All revisions.

Added list of Safety Mechanisms that cannot be
disabled through the FMU_SMEN register.

Enabling or disabling a Safety Mechanism on page 5-202 All revisions.

Added software procedure to initiate a directed
ping.

5.2.6 Ping mechanism on page 5-202 All revisions.

Added section. 5.2.8 Correctable Error enable on page 5-205 All revisions.

Added section Prioritized
FMU_ERR<n>STATUS registers.

5.2.9 Software interaction on page 5-205 All revisions.

Added section. 5.10.4 Disabling P-Channel and Q-Channel Safety Mechanisms
on page 5-237

All revisions.

Added section. 5.11 PPI and SPI interrupt interface protection on page 5-242 All revisions.

Added FUSA_DISABLE_PQCHAN_PROT
parameter.

Removed redundant information about FuSa
parameters.

5.15 Configuration and parameters on page 5-249 All revisions.

Table C-3 Differences between issue 0000-01 and issue 0001-02

Change Location Affects

Changed instances of DEVICEID_WIDTH to DID_WIDTH. Throughout document. All revisions.

Changed instances of num_cpus to cpus. Throughout document. All revisions.

Changed instances of num_ppis to ppi_count. Throughout document. All revisions.

Changed instances of num_its to its_count. Throughout document. All revisions.

C Revisions
C.1 Revisions

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-271

Non-Confidential

Table C-3 Differences between issue 0000-01 and issue 0001-02 (continued)

Change Location Affects

Added information to note. 2.3 Interrupt Translation Service on page 2-33 All revisions.

Updated the ACE_LITE_ACCESS_FAILURE
description.

ITS command and translation error records 13+
on page 3-88

All revisions.

Corrected the values of the ProductID, Variant, and
Revision fields.

• 4.2.3 GICD_IIDR, Distributor Implementer
Identification Register on page 4-111.

• 4.4.1 GICR_IIDR, Redistributor Implementation
Identification Register on page 4-127.

• 4.6.1 GITS_IIDR, ITS Implementer Identification
Register on page 4-141.

All revisions.

Corrected the values of the Version field. 4.5.5 GICR_CFGID1, Configuration ID1 Register
on page 4-138

r0p1

Writing 0b10 also clears the CE field. 4.10.3 FMU_ERR<n>STATUS, Error Record Primary
Status Register on page 4-181

r0p1

Added the following Safety Mechanisms:
• GICD FMU ClkGate override
• PPI FMU ClkGate override
• ITS FMU ClkGate override

5.2.5 Safety Mechanism IDs on page 5-198 All revisions.

Added restriction for ClkGate override Safety
Mechanisms.

Injecting an error in a Safety Mechanism on page 5-202 All revisions.

Table C-4 Differences between issue 0001-02 and issue 0002-03

Change Location Affects

Removed reference to Reliability Accessibility
Serviceability (RAS).

Throughout 4.10 FMU register summary on page 4-179 and
including its subsections, and Chapter 5 Functional Safety
on page 5-191.

All revisions.

Updated the Revision field value. • 4.2.3 GICD_IIDR, Distributor Implementer Identification
Register on page 4-111.

• 4.4.1 GICR_IIDR, Redistributor Implementation Identification
Register on page 4-127.

• 4.6.1 GITS_IIDR, ITS Implementer Identification Register
on page 4-141.

r0p2

Added registers • 4.3.1 GICA_TYPER, Type Register on page 4-124.
• 4.3.2 GICA_IIDR, Aliased Distributor Implementer

Identification Register on page 4-125.

r0p2

Updated the Version field value. 4.5.5 GICR_CFGID1, Configuration ID1 Register on page 4-138 r0p2

Corrected the EVENT_ID description. Table 4-40 GITS_OPR bit assignments on page 4-146 All revisions.

Corrected the FMU_ERR<n>STATUS reset value. 4.10 FMU register summary on page 4-179 All revisions.

Updated the FI and UI bit descriptions. 4.10.2 FMU_ERR<n>CTLR, Error Record Control Register
on page 4-180

All revisions.

Updated the Usage constraints and Attributes.
Updated the BLKID description.

4.10.3 FMU_ERR<n>STATUS, Error Record Primary Status
Register on page 4-181

All revisions.

Updated the enabled description. 4.10.6 FMU_PINGCTLR, Ping Control Register on page 4-185 All revisions.

C Revisions
C.1 Revisions

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-272

Non-Confidential

Table C-4 Differences between issue 0001-02 and issue 0002-03 (continued)

Change Location Affects

Corrected the ping_ack_received description. 4.10.7 FMU_PINGNOW, Ping Now Register on page 4-185 All revisions.

Added the remote_block_inject_error and
gicd_inject_error bits.

4.10.7 FMU_PINGNOW, Ping Now Register on page 4-185 r0p2

Updated the Usage constraints. 4.10.10 FMU_PINGMASK, Ping Mask Register on page 4-188 All revisions.

Updated the Usage constraints. Added a note
about which combinations of BLK and SMID are
not permitted.

4.10.8 FMU_SMEN, Safety Mechanism Enable Register
on page 4-186

All revisions.

Updated the Usage constraints. Added a note
about which combinations of BLK and SMID are
not permitted.

4.10.9 FMU_SMINJERR, Safety Mechanism Inject Error Register
on page 4-187

All revisions.

Updated the description of Safety Mechanism ID
0, for all blocks. Added extra content about
handling an SMID:0 response.

5.2.5 Safety Mechanism IDs on page 5-198 All revisions.

Added the BLK and SMID field information.
Added information about FMU_STATUS.idle.

Injecting an error in a Safety Mechanism on page 5-202 All revisions.

Added extra content. 5.2.6 Ping mechanism on page 5-202 All revisions.

Added extra information and an example of a 64-
bit write access.

5.2.7 Lock and key mechanism on page 5-204 All revisions.

Added new content. Power management on page 5-206 All revisions.

C Revisions
C.1 Revisions

101206_0002_03_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-273

Non-Confidential

	Arm® CoreLink™ GIC-600AE Generic Interrupt Controller Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the GIC-600AE
	1.2 : Components
	1.3 : Compliance
	1.4 : Features
	1.5 : Test features
	1.6 : Product documentation
	1.7 : Product revisions

	2 : Components and configuration
	2.1 : Distributor
	2.1.1 : Distributor AXI4-Stream interfaces
	2.1.2 : Distributor ACE-Lite slave interface
	2.1.3 : Distributor ACE-Lite master interface
	2.1.4 : Distributor Q-Channels
	2.1.5 : P-Channel
	2.1.6 : Distributor miscellaneous signals
	2.1.7 : Distributor configuration

	2.2 : Redistributor
	2.2.1 : Redistributor AXI4-Stream interface
	2.2.2 : Redistributor GIC Stream Protocol interface
	2.2.3 : Redistributor Q-Channel
	2.2.4 : Redistributor PPI signals
	2.2.5 : Redistributor miscellaneous input signals
	2.2.6 : Redistributor configuration

	2.3 : Interrupt Translation Service
	2.3.1 : ITS ACE-Lite slave interface
	2.3.2 : ITS ACE-Lite master interface
	2.3.3 : ITS AXI4-Stream interface
	2.3.4 : ITS Q-Channel
	2.3.5 : ITS miscellaneous signals
	2.3.6 : ITS configuration

	2.4 : MSI-64 Encapsulator
	2.4.1 : MSI-64 ACE-Lite interfaces
	2.4.2 : MSI-64 miscellaneous signals
	2.4.3 : MSI-64 Encapsulator configuration

	2.5 : SPI Collator
	2.5.1 : SPI Collator AXI4-Stream interface
	2.5.2 : SPI Collator wires
	2.5.3 : SPI Collator power Q-Channel
	2.5.4 : SPI Collator clock Q-Channel
	2.5.5 : SPI Collator configuration

	2.6 : Wake Request
	2.6.1 : Wake Request AXI4-Stream interface
	2.6.2 : Wake Request miscellaneous signals
	2.6.3 : Wake Request configuration

	2.7 : Interconnect
	2.7.1 : Interconnect configuration

	2.8 : Hierarchy

	3 : Operation
	3.1 : Interrupt types
	3.1.1 : SGIs
	3.1.2 : PPIs
	3.1.3 : SPIs
	3.1.4 : LPIs
	3.1.5 : Choosing between LPIs and SPIs

	3.2 : Interrupt groups and security
	3.3 : Physical interrupt signals (PPIs and SPIs)
	3.4 : Affinity routing and assignment
	3.5 : SPI routing and 1 of N selection
	3.6 : Power management
	3.6.1 : Redistributor power management
	3.6.2 : Processor core power management
	3.6.3 : Other power management

	3.7 : Getting started
	3.8 : Backwards compatibility
	3.9 : Interrupt Translation Service
	3.9.1 : ITS cache control, locking, and test
	3.9.2 : ITS commands and errors

	3.10 : LPI caching
	3.11 : Memory access and attributes
	3.12 : MSI-64
	3.13 : RAMs and ECC
	3.14 : Performance Monitoring Unit
	3.15 : Reliability, Accessibility, and Serviceability
	3.15.1 : Non-secure access
	3.15.2 : Scrub
	3.15.3 : Error record classification
	3.15.4 : ECC error reporting and recovery
	3.15.5 : Error recovery and fault handling interrupts
	3.15.6 : Error handling records
	Software error record 0
	SPI RAM error records 1-2
	SGI RAM error records 3-4
	PPI RAM error records 7-8
	LPI RAM error records 9-10
	ITS RAM error records 11-12
	ITS command and translation error records 13+
	Clearing error records

	3.15.7 : Bus errors

	3.16 : Multichip operation
	3.16.1 : About multichip operation
	3.16.2 : Connecting the chips
	3.16.3 : Changing the Routing table owner
	3.16.4 : SPI ownership for multichip operation
	3.16.5 : Power control and P-Channel
	3.16.6 : Isolating a chip from the system
	3.16.7 : SPI operation for multichip operation
	3.16.8 : LPI multichip operation

	4 : Programmers model
	4.1 : The GIC-600AE registers
	4.1.1 : Register map pages
	4.1.2 : Discovery
	4.1.3 : GIC-600AE register access and banking

	4.2 : Distributor registers (GICD/GICDA) summary
	4.2.1 : GICD_CTLR, Distributor Control Register
	4.2.2 : GICD_TYPER, Interrupt Controller Type Register
	4.2.3 : GICD_IIDR, Distributor Implementer Identification Register
	4.2.4 : GICD_FCTLR, Function Control Register
	4.2.5 : GICD_SAC, Secure Access Control register
	4.2.6 : GICD_CHIPSR, Chip Status Register
	4.2.7 : GICD_DCHIPR, Default Chip Register
	4.2.8 : GICD_CHIPR<n>, Chip Registers
	4.2.9 : GICD_ICLARn, Interrupt Class Registers
	4.2.10 : GICD_ICERRRn, Interrupt Clear Error Registers
	4.2.11 : GICD_CFGID, Configuration ID Register
	4.2.12 : GICD_PIDR4, Peripheral ID4 register
	4.2.13 : GICD_PIDR3, Peripheral ID3 register
	4.2.14 : GICD_PIDR2, Peripheral ID2 register
	4.2.15 : GICD_PIDR1, Peripheral ID1 register
	4.2.16 : GICD_PIDR0, Peripheral ID0 register

	4.3 : Distributor registers (GICA) for message-based SPIs summary
	4.3.1 : GICA_TYPER, Type Register
	4.3.2 : GICA_IIDR, Aliased Distributor Implementer Identification Register

	4.4 : Redistributor registers for control and physical LPIs summary
	4.4.1 : GICR_IIDR, Redistributor Implementation Identification Register
	4.4.2 : GICR_TYPER, Redistributor Type Register
	4.4.3 : GICR_WAKER, Power Management Control Register
	4.4.4 : GICR_FCTLR, Function Control Register
	4.4.5 : GICR_PWRR, Power Register
	4.4.6 : GICR_CLASSR, Class Register
	4.4.7 : GICR_PIDR2, Peripheral ID2 Register

	4.5 : Redistributor registers for SGIs and PPIs summary
	4.5.1 : GICR_MISCSTATUSR, Miscellaneous Status Register
	4.5.2 : GICR_IERRVR, Interrupt Error Valid Register
	4.5.3 : GICR_SGIDR, SGI Default Register
	4.5.4 : GICR_CFGID0, Configuration ID0 Register
	4.5.5 : GICR_CFGID1, Configuration ID1 Register

	4.6 : ITS control register summary
	4.6.1 : GITS_IIDR, ITS Implementer Identification Register
	4.6.2 : GITS_TYPER, ITS Type Register
	4.6.3 : GITS_FCTLR, Function Control Register
	4.6.4 : GITS_OPR, Operations Register
	4.6.5 : GITS_OPSR, Operation Status Register
	4.6.6 : GITS_CFGID, Configuration ID Register
	4.6.7 : GITS_PIDR2, Peripheral ID2 Register

	4.7 : ITS translation register summary
	4.8 : GICT register summary
	4.8.1 : GICT_ERR<n>FR, Error Record Feature Register
	4.8.2 : GICT_ERR<n>CTLR, Error Record Control Register
	4.8.3 : GICT_ERR<n>STATUS, Error Record Primary Status Register
	4.8.4 : GICT_ERR<n>ADDR, Error Record Address Register
	4.8.5 : GICT_ERR<n>MISC0, Error Record Miscellaneous Register 0
	4.8.6 : GICT_ERR<n>MISC1, Error Record Miscellaneous Register 1
	4.8.7 : GICT_ERRGSR, Error Group Status Register
	4.8.8 : GICT_ERRIRQCR<n>, Error Interrupt Configuration Registers
	4.8.9 : GICT_ERRIDR, Error Record ID Register
	4.8.10 : GICT_PIDR2, Peripheral ID2 Register

	4.9 : GICP register summary
	4.9.1 : GICP_EVCNTRn, Event Counter Registers
	4.9.2 : GICP_EVTYPERn, Event Type Configuration Registers
	4.9.3 : GICP_SVRn, Shadow Value Registers
	4.9.4 : GICP_FRn, Filter Registers
	4.9.5 : GICP_CNTENSET0, Counter Enable Set Register 0
	4.9.6 : GICP_CNTENCLR0, Counter Enable Clear Register 0
	4.9.7 : GICP_INTENSET0, Interrupt Contribution Enable Set Register 0
	4.9.8 : GICP_INTENCLR0, Interrupt Contribution Enable Clear Register 0
	4.9.9 : GICP_OVSCLR0, Overflow Status Clear Register 0
	4.9.10 : GICP_OVSSET0, Overflow Status Set Register 0
	4.9.11 : GICP_CAPR, Counter Shadow Value Capture Register
	4.9.12 : GICP_CFGR, Configuration Information Register
	4.9.13 : GICP_CR, Control Register
	4.9.14 : GICP_IRQCR, Interrupt Configuration Register
	4.9.15 : GICP_PIDR2, Peripheral ID2 Register

	4.10 : FMU register summary
	4.10.1 : FMU_ERR<n>FR, Error Record Feature Register
	4.10.2 : FMU_ERR<n>CTLR, Error Record Control Register
	4.10.3 : FMU_ERR<n>STATUS, Error Record Primary Status Register
	4.10.4 : FMU_ERRGSR, Error Group Status Register
	4.10.5 : FMU_KEY, FMU Key Register
	4.10.6 : FMU_PINGCTLR, Ping Control Register
	4.10.7 : FMU_PINGNOW, Ping Now Register
	4.10.8 : FMU_SMEN, Safety Mechanism Enable Register
	4.10.9 : FMU_SMINJERR, Safety Mechanism Inject Error Register
	4.10.10 : FMU_PINGMASK, Ping Mask Register
	4.10.11 : FMU_STATUS, FMU Status Register
	4.10.12 : FMU_ERRIDR, Error Record ID Register

	5 : Functional Safety
	5.1 : Safety Mechanism overview
	5.2 : Fault Management Unit
	5.2.1 : FMU APB4 interface
	5.2.2 : Error signaling
	5.2.3 : Error record format
	5.2.4 : Reset
	5.2.5 : Safety Mechanism IDs
	Enabling or disabling a Safety Mechanism
	Injecting an error in a Safety Mechanism

	5.2.6 : Ping mechanism
	5.2.7 : Lock and key mechanism
	5.2.8 : Correctable Error enable
	5.2.9 : Software interaction

	5.3 : FuSa programmer's view
	5.4 : FuSa I/O
	5.4.1 : Non-architected FuSa ports
	5.4.2 : P-Channel and Q-Channel FuSa ports
	5.4.3 : AMBA interface FuSa ports

	5.5 : Clocks and resets
	5.5.1 : Clocks
	Block-level clocking

	5.5.2 : Resets
	DLS resetting
	Reset sequences
	Cold reset
	Warm reset

	5.6 : Lockstep protection
	5.6.1 : Comparators
	Comparator duplication option

	5.6.2 : Non-resettable flops
	5.6.3 : Reset
	5.6.4 : Error injection

	5.7 : RAM protection
	5.7.1 : SECDED ECC data protection
	SECDED ECC fault reporting
	SBEs treated as fatal errors or corrected errors

	5.7.2 : Address protection
	5.7.3 : RAM scrubbing

	5.8 : External interface protection
	5.8.1 : ACE-Lite interface parity protection
	5.8.2 : AXI4-Stream interface parity protection
	5.8.3 : APB interface parity protection

	5.9 : AXI4-Stream internal interconnect protection
	5.9.1 : GIC-rendered partially duplicated interconnect
	AMBA Domain Bridge
	BAS switch
	Register slice

	5.9.2 : Non-GIC interconnect IP
	Configuring and integrating with a non-GIC interconnect
	Operating an unprotected AXI4-Stream interface
	Mandatory connections for safety

	5.10 : P-Channel and Q-Channel protection
	5.10.1 : CHK bit timing
	5.10.2 : Transient faults
	5.10.3 : Stuck-at faults
	5.10.4 : Disabling P-Channel and Q-Channel Safety Mechanisms
	5.10.5 : P-Channel
	P-Channel signaling
	Capturing pstate

	P-Channel acceptance
	P-Channel denial

	5.10.6 : Q-Channel
	Q-Channel signaling
	Q-Channel acceptance
	Q-Channel denial

	5.11 : PPI and SPI interrupt interface protection
	5.11.1 : CHK bit timing
	5.11.2 : Transient faults
	5.11.3 : Stuck-at faults
	5.11.4 : Configuration parameters

	5.12 : Systematic fault watchdog protection
	5.13 : DFT protection
	5.13.1 : MBIST
	5.13.2 : ATPG/Scan
	5.13.3 : LBIST

	5.14 : Generic fault inputs
	5.15 : Configuration and parameters

	A : Signal descriptions
	A.1 : Common control signals
	A.2 : Power control signals
	A.3 : Interrupt signals
	A.4 : CPU interface signals
	A.5 : ACE-Lite interface signals
	A.6 : Miscellaneous signals
	A.7 : Interblock signals
	A.8 : Interdomain signals
	A.9 : Interchip signals

	B : Implementation-defined features
	B.1 : Implementation-defined features reference

	C : Revisions
	C.1 : Revisions

