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Chapter 1
Preface

1.1 Arm C Language Extensions

Document number: 101028

Date of Issue: 31/05/2020

1.2 Abstract

This document specifies the Arm C Language Extensions to enable C/C++ programmers to exploit the Arm architec-
ture with minimal restrictions on source code portability.

1.3 Keywords

ACLE, ABI, C, C++, compiler, armcc, gcc, intrinsic, macro, attribute, Neon, SIMD, atomic

1.4 How to find the latest release of this specification or report a de-
fect in it

Please check the Arm Information Center or Arm Developer Website for a later release if your copy is more than one
year old.

Please report defects in this specification to arm.acle@arm.com.

1.5 Confidentiality status

This document is Non-Confidential.
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1.6 About this document

1.6.1 Change control

1.6.1.1 Change history

Table 1.1: History
Issue Date By Change
A 11/11/11 AG First release
B 13/11/13 AG Version 1.1. Editorial changes. Corrections and completions to intrinsics as

detailed in 3.3. Updated for C11/C++11.
C 09/05/14 TB Version 2.0. Updated for Armv8 AArch32 and AArch64.
D 24/03/16 TB Version 2.1. Updated for Armv8.1 AArch32 and AArch64.
E 02/06/17 Arm Version ACLE Q2 2017. Updated for Armv8.2-A and Armv8.3-A.
F 30/04/18 Arm Version ACLE Q2 2018. Updated for Armv8.4-A.
G 30/03/19 Arm Version ACLE Q1 2019. Updated for Armv8.5-A and MVE. Various bugfixes.
H 30/06/19 Arm Version ACLE Q2 2019. Updated for TME and more Armv8.5-A intrinsics.

Various bugfixes.
ACLE
Q3 2019

30/09/19 Arm Version ACLE Q3 2019.

ACLE
Q4 2019

31/12/19 Arm Version ACLE Q4 2019.

ACLE
Q2 2020

31/05/20 Arm Version ACLE Q2 2020.

1.6.1.2 Changes between ACLE Q4 2019 and ACLE Q2 2020

• Updates to CDE intrinsics.

• Allow some Neon intrinsics previously available in A64 only in A32 as well.

1.6.1.3 Changes between ACLE Q3 2019 and ACLE Q4 2019

• BETA support for the Custom Datapath Extension.

• MVE intrinsics updates and fixes.

• Feature macros for Pointer Authentication and Branch Target Identification.

1.6.1.4 Changes between ACLE Q2 2019 and ACLE Q3 2019

• Support added for Armv8.6-A features.

• Support added for random number instruction intrinsics from Armv8.5-A [ARMARMv85].

1.6.1.5 Changes between ACLE Q1 2019 and ACLE Q2 2019

• Support added for TME features.

• Support added for rounding intrinsics from Armv8.5-A [ARMARMv85].
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1.6.1.6 Changes between ACLE Q2 2018 and ACLE Q1 2019

• Support added for features introduced in Armv8.5-A [ARMARMv85] (including the MTE extension).

• Support added for MVE [MVE-spec] from the Armv8.1-M architecture.

• Support added for Armv8.4-A half-precision extensions through Neon intrinsics.

• Added feature detection macro for LSE atomic operations.

• Added floating-point versions of intrinsics to access coprocessor registers.

1.6.1.7 Changes between ACLE Q2 2017 and ACLE Q2 2018

Most changes in ACLE Q2 2018 are updates to support features introduced in Armv8.3-A [ARMARMv83]. Support is
added for the Complex addition and Complex MLA intrinsics. Armv8.4-A [ARMARMv84]. Support is added for the
Dot Product intrinsics.

1.6.2 References

This document refers to the following documents.

1.6.3 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning
AAPCS Arm Procedure Call Standard, part of the ABI, defined in [AAPCS].
ABI Arm Application Binary Interface.
ACLE Arm C Language Extensions, as defined in this document.
Advanced SIMD A 64-bit/128-bit SIMD instruction set defined as part of the Arm architecture.
build attributes Object build attributes indicating configuration, as defined in [BA].
ILP32 A 32-bit address mode where long is a 32-bit type.
LLP64 A 64-bit address mode where long is a 32-bit type.
LP64 A 64-bit address mode where long is a 64-bit type.
Neon An implementation of the Arm Advanced SIMD extensions.
SIMD Any instruction set that operates simultaneously on multiple elements of a vector data type.
Thumb The Thumb instruction set extension to Arm.
VFP The original Arm non-SIMD floating-point instruction set.
word A 32-bit quantity, in memory or a register.

1.7 Scope

The Arm C Language Extensions (ACLE) specification specifies source language extensions and implementation
choices that C/C++ compilers can implement in order to allow programmers to better exploit the Arm architecture.

The extensions include:

• Predefined macros that provide information about the functionality of the target architecture

• Intrinsic functions

• Attributes that can be applied to functions, data and other entities

1.7. Scope
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This specification does not standardize command-line options, diagnostics or other external behavior of compilers.

The intended users of this specification are:

• Application programmers wishing to adapt or hand-optimize applications and libraries for Arm targets

• System programmers needing low-level access to Arm targets beyond what C/C++ provides for

• Compiler implementors, who will implement this specification

• Implementors of IDEs, static analysis and other similar tools who wish to deal with the C/C++ source language
extensions when encountered in source code

ACLE is not a hardware abstraction layer (HAL), and does not specify a library component but it may make it easier
to write a HAL or other low-level library in C rather than assembler.

1.8 Scalable Vector Extensions (SVE)

ACLE support for SVE is defined in the Arm C Language Extensions for SVE document [SVE-ACLE] available on
the Arm Developer Website.
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Chapter 2
Introduction

The Arm architecture includes features that go beyond the set of operations available to C/C++ programmers. The
intention of the Arm C Language Extensions (ACLE) is to allow the writing of applications and middleware code that
is portable across compilers, and across Arm architecture variants, while exploiting the advanced features of the Arm
architecture.

The design principles for ACLE can be summarized as:

• Be implementable in (or as an addition to) current C/C++ implementations.

• Build on and standardize existing practice where possible.

ACLE incorporates some language extensions introduced in the GCC C compiler. Current GCC documentation [GCC]
can be found at http://gcc.gnu.org/onlinedocs/gcc. Formally it should be assumed that ACLE refers to the documenta-
tion for GCC 4.5.1: http://gcc.gnu.org/onlinedocs/gcc-4.5.1/gcc/.

Some of the ACLE extensions are not specific to the Arm architecture but have proven to be of particular benefit in
low-level and systems programming; examples include features for controlling the alignment and packing of data, and
some common operations such as word rotation and reversal. As and when features become available in international
standards (and implementations), it is recommended to use these in preference to ACLE. When implementations are
widely available, any ACLE-specific features can be expected to be deprecated.

2.1 Portable binary objects

In AArch32, the ABI for the Arm Architecture defines a set of build attributes [BA]. These attributes are intended to
facilitate generating cross-platform portable binary object files by providing a mechanism to determine the compat-
ibility of object files. In AArch64, the ABI does not define a standard set of build attributes and takes the approach
that binaries are, in general, not portable across platforms. References to build attributes in this document should be
interpreted as applying only to AArch32.
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Chapter 3
C language extensions

3.1 Data types

This section overlaps with the specification of the Arm Procedure Call Standard, particularly [AAPCS] (4.1). ACLE
extends some of the guarantees of C, allowing assumptions to be made in source code beyond those permitted by
Standard C.

• Plain char is unsigned, as specified in the ABI [AAPCS] and [AAPCS64] (7.1.1).

• When pointers are 32 bits, the long type is 32 bits (ILP32 model).

• When pointers are 64 bits, the long type may be either 64 bits (LP64 model) or 32 bits (LLP64 model).

ACLE extends C by providing some types not present in Standard C and defining how they are dealt with by the
AAPCS.

• Vector types for use with the Advanced SIMD intrinsics (see Vector data types).

• The __fp16 type for 16-bit floating-point values (see Half-precision floating-point).

• The __bf16 type for 16-bit brain floating-point values (see Half-precision brain floating-point).

3.1.1 Implementation-defined type properties

ACLE and the Arm ABI allow implementations some freedom in order to conform to long-standing conventions in
various environments. It is suggested that implementations set suitable defaults for their environment but allow the
default to be overridden.

The signedness of a plain int bit-field is implementation-defined.

Whether the underlying type of an enumeration is minimal or at least 32-bit, is implementation-defined. The predefined
macro __ARM_SIZEOF_MINIMAL_ENUM should be defined as 1 or 4 according to the size of a minimal enumeration
type such as enum { X=0 }. An implementation that conforms to the Arm ABI must reflect its choice in the
Tag_ABI_enum_size build attribute.

wchar_t may be 2 or 4 bytes. The predefined macro __ARM_SIZEOF_WCHAR_T should be defined as the same
number. An implementation that conforms to the Arm ABI must reflect its choice in the Tag_ABI_PCS_wchar_t
build attribute.
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3.2 Predefined macros

Several predefined macros are defined. Generally these define features of the Arm architecture being targeted, or
how the C/C++ implementation uses the architecture. These macros are detailed in Feature test macros. All ACLE
predefined macros start with the prefix __ARM.

3.3 Intrinsics

ACLE standardizes intrinsics to access the Arm ® Neon ™ architecture extension. These intrinsics are intended to
be compatible with existing implementations. Before using the Neon intrinsics or data types, the <arm_neon.h>
header must be included. The Neon intrinsics are defined in Advanced SIMD (Neon) intrinsics. Note that the Neon
intrinsics and data types are in the user namespace.

ACLE standardizes intrinsics to access the Arm M-profile Vector Extension (MVE). These intrinsics are intended to
be compatible with existing implementations. Before using the MVE intrinsics or data types, the <arm_mve.h>
header must be included. The MVE intrinsics are defined in M-profile Vector Extension (MVE) intrinsics. Note that
the MVE data types are in the user namespace, the MVE intrinsics can optionally be left out of the user namespace.

ACLE also standardizes other intrinsics to access Arm instructions which do not map directly to C operators generally
either for optimal implementation of algorithms, or for accessing specialist system-level features. Intrinsics are defined
further in various following sections.

Before using the non-Neon intrinsics, the <arm_acle.h> header should be included.

Whether intrinsics are macros, functions or built-in operators is unspecified. For example:

• It is unspecified whether applying #undef to an intrinsic removes the name from visibility

• It is unspecified whether it is possible to take the address of an intrinsic

However, each argument must be evaluated at most once. So this definition is acceptable:

#define __rev(x) __builtin_bswap32(x)

but this is not:

#define __rev(x) ((((x) & 0xff) << 24) | (((x) & 0xff00) << 8) | \
(((x) & 0xff0000) >> 8) | ((x) >> 24))

3.3.1 Constant arguments to intrinsics

Some intrinsics may require arguments that are constant at compile-time, to supply data that is encoded into the
immediate fields of an instruction. Typically, these intrinsics require an integral-constant-expression in a specified
range, or sometimes a string literal. An implementation should produce a diagnostic if the argument does not meet the
requirements.

3.4 Header files

<arm_acle.h> is provided to make the non-Neon intrinsics available. These intrinsics are in the C implementation
namespace and begin with double underscores. It is unspecified whether they are available without the header being
included. The __ARM_ACLE macro should be tested before including the header:

8
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#ifdef __ARM_ACLE
#include <arm_acle.h>
#endif /* __ARM_ACLE */

<arm_neon.h> is provided to define the Neon intrinsics. As these intrinsics are in the user namespace, an imple-
mentation would not normally define them until the header is included. The __ARM_NEON macro should be tested
before including the header:

#ifdef __ARM_NEON
#include <arm_neon.h>
#endif /* __ARM_NEON */

<arm_mve.h> is provided to define the M-Profile Vector Extension (MVE) intrinsics. By default these intrinsics oc-
cupy both the user namespace and the __arm_ namespace, defining __ARM_MVE_PRESERVE_USER_NAMESPACE
will hide the definition of the user namespace variants. The __ARM_FEATURE_MVE macro should be tested before
including the header:

#if (__ARM_FEATURE_MVE & 3) == 3
#include <arm_mve.h>
/* MVE integer and floating point intrinsics are now available to use. */
#elif __ARM_FEATURE_MVE & 1
#include <arm_mve.h>
/* MVE integer intrinsics are now available to use. */
#endif

<arm_fp16.h> is provided to define the scalar 16-bit floating point arithmetic intrinsics. As these intrinsics
are in the user namespace, an implementation would not normally define them until the header is included. The
__ARM_FEATURE_FP16_SCALAR_ARITHMETIC feature macro should be tested before including the header:

#ifdef __ARM_FEATURE_FP16_SCALAR_ARITHMETIC
#include <arm_fp16.h>
#endif /* __ARM_FEATURE_FP16_SCALAR_ARITHMETIC */

Including <arm_neon.h> will also cause <arm_fp16.h> to be included if appropriate.

<arm_bf16.h> is provided to define the 16-bit brain floating point arithmetic intrinsics. As these intrinsics
are in the user namespace, an implementation would not normally define them until the header is included. The
__ARM_FEATURE_BF16 feature macro should be tested before including the header:

#ifdef __ARM_FEATURE_BF16
#include <arm_bf16.h>
#endif /* __ARM_FEATURE_BF16 */

When __ARM_BF16_FORMAT_ALTERNATIVE is defined to 1 the only scalar instructions available are conversion
instrinstics between bfloat16_t and float32_t. These instructions are:

• vcvth_bf16_f32 (convert float32_t to bfloat16_t)

• vcvtah_f32_bf16 (convert bfloat16_t to float32_t)

Including <arm_neon.h> will also cause <arm_bf16.h> to be included if appropriate.

These headers behave as standard library headers; repeated inclusion has no effect beyond the first include.

It is unspecified whether the ACLE headers include the standard headers <assert.h>, <stdint.h> or
<inttypes.h>. However, the ACLE headers will not define the standard type names (for example uint32_t)
except by inclusion of the standard headers. Programmers are recommended to include the standard headers explicitly
if the associated types and macros are needed.

3.4. Header files
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In C++, the following source code fragments are expected to work correctly:

#include <stdint.h>
// UINT64_C not defined here since we did not set __STDC_FORMAT_MACROS
...
#include <arm_neon.h>

and:

#include <arm_neon.h>
...
#define __STDC_FORMAT_MACROS
#include <stdint.h>
// ... UINT64_C is now defined

3.5 Attributes

GCC-style attributes are provided to annotate types, objects and functions with extra information, such as alignment.
These attributes are defined in Attributes and pragmas.

3.6 Implementation strategies

An implementation may choose to define all the ACLE non-Neon intrinsics as true compiler intrinsics, i.e. built-in
functions. The <arm_acle.h> header would then have no effect.

Alternatively, <arm_acle.h> could define the ACLE intrinsics in terms of already supported features of the imple-
mentation, for example compiler intrinsics with other names, or inline functions using inline assembler.

3.6.1 Half-precision floating-point

ACLE defines the __fp16 type, which can be used for half-precision (16-bit) floating-point in one of two formats.
The binary16 format defined in [IEEE-FP], and referred to as IEEE format, and an alternative format, defined by Arm,
which extends the range by removing support for infinities and NaNs, referred to as alternative format. Both formats
are described in [ARMARM] (A2.7.4), [ARMARMv8] (A1.4.2).

Toolchains are not required to support the alternative format, and use of the alternative format precludes use of the
ISO/IEC TS 18661:3 [CFP15] _Float16 type and the Armv8.2-A 16-bit floating-point extensions. For these rea-
sons, Arm deprecates the use of the alternative format for half precision in ACLE.

The format in use can be selected at runtime but ACLE assumes it is fixed for the life of a program. If the
__fp16 type is available, one of __ARM_FP16_FORMAT_IEEE and __ARM_FP16_FORMAT_ALTERNATIVE
will be defined to indicate the format in use. An implementation conforming to the Arm ABI will set the
Tag_ABI_FP_16bit_format build attribute.

The __fp16 type can be used in two ways; using the intrinsics ACLE defines when the Armv8.2-A 16-bit float-
ing point extensions are available, and using the standard C operators. When using standard C operators, values of
__fp16 type promote to (at least) float when used in arithmetic operations, in the same way that values of char or
short types promote to int. There is no support for arithmetic directly on __fp16 values using standard C operators.

void add(__fp16 a, __fp16 b) {
a + b; /* a and b are promoted to (at least) float.

Operation takes place with (at least) 32-bit precision. */
vaddh_f16 (a, b); /* a and b are not promoted.
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Operation takes place with 16-bit precision. */
}

Armv8 introduces floating point instructions to convert 64-bit to 16-bit i.e. from double to __fp16. They are not
available in earlier architectures, therefore have to rely on emulation libraries or a sequence of instructions to achieve
the conversion.

Providing emulation libraries for half-precision floating point conversions when not implemented in hardware is
implementation-defined.

double xd;
__fp16 xs = (float)xd;

rather than:

double xd;
__fp16 xs = xd;

In some older implementations, __fp16 cannot be used as an argument or result type, though it can be used as a field
in a structure passed as an argument or result, or passed via a pointer. The predefined macro __ARM_FP16_ARGS
should be defined if __fp16 can be used as an argument and result. C++ name mangling is Dh as defined in [cxxabi],
and is the same for both the IEEE and alternative formats.

In this example, the floating-point addition is done in single (32-bit) precision:

void add(__fp16 *z, __fp16 const *x, __fp16 const *y, int n) {
int i;
for (i = 0; i < n; ++i) z[i] = x[i] + y[i];

}

3.6.2 Relationship between __fp16 and ISO/IEC TS 18661

ISO/IEC TS 18661-3 [CFP15] is a published extension to [C11] which describes a language binding for the [IEEE-
FP] standard for floating point arithmetic. This language binding introduces a mapping to an unlimited number of
interchange and extended floating-point types, on which binary arithmetic is well defined. These types are of the form
_FloatN, where N gives size in bits of the type.

One instantiation of the interchange types introduced by [CFP15] is the _Float16 type. ACLE defines the __fp16
type as a storage and interchange only format, on which arithmetic operations are defined to first promote to a type
with at least the range and precision of float.

This has implications for the result of operations which would result in rounding had the operation taken place in
a native 16-bit type. As software may rely on this behaviour for correctness, arithmetic operations on __fp16 are
defined to promote even when the Armv8.2-A fp16 extension is available.

Arm recommends that portable software is written to use the _Float16 type defined in [CFP15].

Type conversion between a value of type __fp16 and a value of type _Float16 leaves the object representation of
the converted value unchanged.

When __ARM_FP16_FORMAT_IEEE == 1, this has no effect on the value of the object. However, as the represen-
tation of certain values has a different meaning when using the Arm alternative format for 16-bit floating point values
[ARMARM] (A2.7.4) [ARMARMv8] (A1.4.2), when __ARM_FP16_FORMAT_ALTERNATIVE == 1 the type con-
version may introduce or remove infinity or NaN representations.

Arm recommends that software implementations warn on type conversions between __fp16 and _Float16 if
__ARM_FP16_FORMAT_ALTERNATIVE == 1.

3.6. Implementation strategies
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In an arithmetic operation where one operand is of __fp16 type and the other is of _Float16 type, the
_Float16 type is first converted to __fp16 type following the rules above, and then the operation is completed
as if both operands were of __fp16 type.

[CFP15] and [C11] do not define vector types, however many C implementations do provide these extensions. Where
they exist, type conversion between a value of type vector of __fp16 and a value of type vector of _Float16 leaves
the object representation of the converted value unchanged.

ACLE does not define vector of _Float16 types.

3.6.3 Half-precision brain floating-point

ACLE defines the __bf16 type, which can be used for half-precision (16-bit) brain floating-point in an alternative
format, defined by Arm, which closely resembles the IEEE 754 single-precision floating point format.

The __bf16 type is only available when the __ARM_BF16_FORMAT_ALTERNATIVE feature macro is defined.
When it is available it can only be used by the ACLE intrinsics ; it cannot be used with standard C operators. It is
expected that arithmetic using standard C operators be used using a single-precision floating point format and the value
be converted to __bf16 when required using ACLE intrinsics.

Armv8.2-A introduces floating point instructions to convert 32-bit to brain 16-bit i.e. from float to __bf16. They
are not available in earlier architectures, therefore have to rely on emulation libraries or a sequence of instructions to
achieve the conversion.

Providing emulation libraries for half-precision floating point conversions when not implemented in hardware is
implementation-defined.
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Chapter 4
Architecture and CPU names

4.1 Introduction

The intention of this section is to standardize architecture names, for example for use in compiler command lines.
Toolchains should accept these names case-insensitively where possible, or use all lowercase where not possible.
Tools may apply local conventions such as using hyphens instead of underscores.

(Note: processor names, including from the Arm Cortex® processor family, are used as illustrative examples. This
specification is applicable to any processors implementing the Arm architecture.)

4.2 Architecture names

4.2.1 CPU architecture

The recommended CPU architecture names are as specified under Tag_CPU_arch in [BA]. For details of how to use
predefined macros to test architecture in source code, see A32/T32 instruction set architecture.

The following table lists the architectures and the A32 and T32 instruction set versions.
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Table 4.1: CPU architecture
Name Features A32 T32 Example processor
Armv4 Armv4 4 DEC/Intel StrongARM
Armv4T Armv4 with Thumb instruction set 4 2 Arm7TDMI
Armv5T Armv5 with Thumb instruction set 5 2 Arm10TDMI
Armv5TE Armv5T with DSP extensions 5 2 Arm9E, Intel XScale
Armv5TEJ Armv5TE with Jazelle® extensions 5 2 Arm926EJ
Armv6 Armv6 (includes TEJ) 6 2 Arm1136J r0
Armv6K Armv6 with kernel extensions 6 2 Arm1136J r1
Armv6T2 Armv6 with Thumb-2 architecture 6 3 Arm1156T2
Armv6Z Armv6K with Security Extensions (includes K) 6 2 Arm1176JZ-S
Armv6-M T32 (M-profile) 2 Cortex-M0, Cortex-M1
Armv7-A Armv7 application profile 7 4 Cortex-A8, Cortex-A9
Armv7-R Armv7 realtime profile 7 4 Cortex-R4
Armv7-M Armv7 microcontroller profile: Thumb-2 in-

structions only
4 Cortex-M3

Armv7E-M Armv7-M with DSP extensions 4 Cortex-M4
Armv8-A
AArch32

Armv8 application profile 8 4 Cortex-A57, Cortex-A53

Armv8-A
AArch64

Armv8 application profile 8 Cortex-A57, Cortex-A53

Note that there is some architectural variation that is not visible through ACLE; either because it is only relevant at the
system level (for example the Large Physical Address Extension) or because it would be handled by the compiler (for
example hardware divide might or might not be present in the Armv7-A architecture).

4.2.2 FPU architecture

For details of how to test FPU features in source code, see Floating-point, Advanced SIMD (Neon) and MVE hardware.
In particular, for testing which precisions are supported in hardware, see _ssec-HWFP.

Name Features Example processor
VFPv2 VFPv2 Arm1136JF-S
VFPv3 VFPv3 Cortex-A8
VFPv3_FP16 VFPv3 with FP16 Cortex-A9 (with Neon)
VFPv3_D16 VFPv3 with 16 D-registers Cortex-R4F
VFPv3_D16_FP16 VFPv3 with 16 D-registers and FP16 Cortex-A9 (without Neon), Cortex-

R7
VFPv3_SP_D16 VFPv3 with 16 D-registers, single-precision only Cortex-R5 with SP-only
VFPv4 VFPv4 (including FMA and FP16) Cortex-A15
VFPv4_D16 VFPv4 (including FMA and FP16) with 16 D-

registers
Cortex-A5 (VFP option)

FPv4_SP FPv4 with single-precision only Cortex-M4.fp

4.3 CPU names

ACLE does not standardize CPU names for use in command-line options and similar contexts. Standard vendor
product names should be used.

Object producers should place the CPU name in the Tag_CPU_name build attribute.
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Chapter 5
Feature test macros

5.1 Introduction

The feature test macros allow programmers to determine the availability of ACLE or subsets of it, or of target archi-
tectural features. This may indicate the availability of some source language extensions (for example intrinsics) or the
likely level of performance of some standard C features, such as integer division and floating-point.

Several macros are defined as numeric values to indicate the level of support for particular features. These macros
are undefined if the feature is not present. (Aside: in Standard C/C++, references to undefined macros expand to 0 in
preprocessor expressions, so a comparison such as:

#if __ARM_ARCH >= 7

will have the expected effect of evaluating to false if the macro is not defined.)

All ACLE macros begin with the prefix __ARM_. All ACLE macros expand to integral constant expressions suitable
for use in an #if directive, unless otherwise specified. Syntactically, they must be primary-expressions generally this
means an implementation should enclose them in parentheses if they are not simple constants.

5.2 Testing for Arm C Language Extensions

__ARM_ACLE is defined to the version of this specification implemented, as 100 * major_version +
minor_version. An implementation implementing version 2.1 of the ACLE specification will define
__ARM_ACLE as 201.

5.3 Endianness

__ARM_BIG_ENDIAN is defined as 1 if data is stored by default in big-endian format. If the macro is not set, data
is stored in little-endian format. (Aside: the “mixed-endian” format for double-precision numbers, used on some very
old Arm FPU implementations, is not supported by ACLE or the Arm ABI.)
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5.4 A32 and T32 instruction set architecture and features

References to the target architecture refer to the target as configured in the tools, for example by appropriate command-
line options. This may be a subset or intersection of actual targets, in order to produce a binary that runs on more than
one real architecture. For example, use of specific features may be disabled.

In some cases, hardware features may be accessible from only one or other of A32 or T32 state. For example, in the
v5TE and v6 architectures, DSP instructions and (where available) VFP instructions, are only accessible in A32 state,
while in the v7-R architecture, hardware divide is only accessible from T32 state. Where both states are available, the
implementation should set feature test macros indicating that the hardware feature is accessible. To provide access
to the hardware feature, an implementation might override the programmer’s preference for target instruction set, or
generate an interworking call to a helper function. This mechanism is outside the scope of ACLE. In cases where
the implementation is given a hard requirement to use only one state (for example to support validation, or post-
processing) then it should set feature test macros only for the hardware features available in that state as if compiling
for a core where the other instruction set was not present.

An implementation that allows a user to indicate which functions go into which state (either as a hard requirement or
a preference) is not required to change the settings of architectural feature test macros.

5.4.1 A32/T32 instruction set architecture

__ARM_ARCH is defined as an integer value indicating the current Arm instruction set architecture (for example 7
for the Arm v7-A architecture implemented by Cortex-A8 or the Armv7-M architecture implemented by Cortex-M3
or 8 for the Armv8-A architecture implemented by Cortex-A57). Armv8.1-A [ARMARMv81] onwards, the value of
__ARM_ARCH is scaled up to include minor versions. The formula to calculate the value of __ARM_ARCH from
Armv8.1-A [ARMARMv81] onwards is given by the following formula:

For an Arm architecture ArmvX.Y, __ARM_ARCH = X * 100 + Y. E.g.
for Armv8.1 __ARM_ARCH = 801.

Since ACLE only supports the Arm architecture, this macro would always be defined in an ACLE implementation.

Note that the __ARM_ARCH macro is defined even for cores which only support the T32 instruction set.

__ARM_ARCH_ISA_ARM is defined to 1 if the core supports the Arm instruction set. It is not defined for M-profile
cores.

__ARM_ARCH_ISA_THUMB is defined to 1 if the core supports the original T32 instruction set (including the v6-M
architecture) and 2 if it supports the T32 instruction set as found in the v6T2 architecture and all v7 architectures.

__ARM_ARCH_ISA_A64 is defined to 1 if the core supports AArch64’s A64 instruction set.

__ARM_32BIT_STATE is defined to 1 if code is being generated for AArch32.

__ARM_64BIT_STATE is defined to 1 if code is being generated for AArch64.

5.4.2 Architectural profile (A, R, M or pre-Cortex)

__ARM_ARCH_PROFILE is defined as A, R, M or S, or unset, according to the architectural profile of the target. S
indicates the common subset of A and R. The common subset of A, R and M is indicated by:

__ARM_ARCH == 7 && !defined (__ARM_ARCH_PROFILE)

This macro corresponds to the Tag_CPU_arch_profile object build attribute. It may be useful to writers of
system code. It is expected in most cases programmers will use more feature-specific tests.

The macro is undefined for architectural targets which predate the use of architectural profiles.
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5.4.3 Unaligned access supported in hardware

__ARM_FEATURE_UNALIGNED is defined if the target supports unaligned access in hardware, at least to the extent
of being able to load or store an integer word at any alignment with a single instruction. (There may be restrictions
on load-multiple and floating-point accesses.) Note that whether a code generation target permits unaligned access
will in general depend on the settings of system register bits, so an implementation should define this macro to match
the user’s expectations and intentions. For example, a command-line option might be provided to disable the use of
unaligned access, in which case this macro would not be defined.

5.4.4 LDREX/STREX

This feature was deprecated in ACLE 2.0. It is strongly recommended that C11/C++11 atomics be used instead.

__ARM_FEATURE_LDREX is defined if the load/store-exclusive instructions (LDREX/STREX) are supported. Its
value is a set of bits indicating available widths of the access, as powers of 2. The following bits are used:

Bit Value Access width Instruction
0 0x01 byte LDREXB/STREXB
1 0x02 halfword LDREXH/STREXH
2 0x04 word LDREX/STREX
3 0x08 doubleword LDREXD/STREXD

Other bits are reserved.

The following values of __ARM_FEATURE_LDREX may occur:

Macro value Access widths Example architecture
(undefined) none Armv5, Armv6-M
0x04 word Armv6
0x07 word, halfword, byte Armv7-M
0x0F doubleword, word, halfword, byte Armv6K, Armv7-A/R

Other values are reserved.

The LDREX/STREX instructions are introduced in recent versions of the Arm architecture and supersede the SWP
instruction. Where both are available, Arm strongly recommends programmers to use LDREX/STREX rather than
SWP. Note that platforms may choose to make SWP unavailable in user mode and emulate it through a trap to a
platform routine, or fault it.

5.4.5 Large System Extensions

__ARM_FEATURE_ATOMICS is defined if the Large System Extensions introduced in the Armv8.1-A
[ARMARMv81] architecture are supported on this target. Note: It is strongly recommended that standardized
C11/C++11 atomics are used to implement atomic operations in user code.

5.4.6 CLZ

__ARM_FEATURE_CLZ is defined to 1 if the CLZ (count leading zeroes) instruction is supported in hardware. Note
that ACLE provides the __clz() family of intrinsics (see Miscellaneous data-processing intrinsics) even when
__ARM_FEATURE_CLZ is not defined.

5.4. A32 and T32 instruction set architecture and features
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5.4.7 Q (saturation) flag

__ARM_FEATURE_QBIT is defined to 1 if the Q (saturation) global flag exists and the intrinsics defined in The Q
(saturation) flag are available. This flag is used with the DSP saturating-arithmetic instructions (such as QADD) and
the width-specified saturating instructions (SSAT and USAT). Note that either of these classes of instructions may
exist without the other: for example, v5E has only QADD while v7-M has only SSAT.

Intrinsics associated with the Q-bit and their feature macro __ARM_FEATURE_QBIT are deprecated in ACLE 2.0 for
A-profile. They are fully supported for M-profile and R-profile. This macro is defined for AArch32 only.

5.4.8 DSP instructions

__ARM_FEATURE_DSP is defined to 1 if the DSP (v5E) instructions are supported and the intrinsics defined in
Saturating intrinsics are available. These instructions include QADD, SMULBB and others. This feature also implies
support for the Q flag.

__ARM_FEATURE_DSP and its associated intrinsics are deprecated in ACLE 2.0 for A-profile. They are fully sup-
ported for M and R-profiles. This macro is defined for AArch32 only.

5.4.9 Saturation instructions

__ARM_FEATURE_SAT is defined to 1 if the SSAT and USAT instructions are supported and the intrinsics defined
in Width-specified saturation intrinsics are available. This feature also implies support for the Q flag.

__ARM_FEATURE_SAT and its associated intrinsics are deprecated in ACLE 2.0 for A-profile. They are fully sup-
ported for M and R-profiles. This macro is defined for AArch32 only.

5.4.10 32-bit SIMD instructions

__ARM_FEATURE_SIMD32 is defined to 1 if the 32-bit SIMD instructions are supported and the intrinsics defined
in 32-bit SIMD intrinsics are available. This also implies support for the GE global flags which indicate byte-by-byte
comparison results.

__ARM_FEATURE_SIMD32 is deprecated in ACLE 2.0 for A-profile. Users are encouraged to use Neon Intrinsics
as an equivalent for the 32-bit SIMD intrinsics functionality. However they are fully supported for M and R-profiles.
This is defined for AArch32 only.

5.4.11 Hardware integer divide

__ARM_FEATURE_IDIV is defined to 1 if the target has hardware support for 32-bit integer division in all available
instruction sets. Signed and unsigned versions are both assumed to be available. The intention is to allow programmers
to choose alternative algorithm implementations depending on the likely speed of integer division.

Some older R-profile targets have hardware divide available in the T32 instruction set only. This can be tested for
using the following test:

#if __ARM_FEATURE_IDIV || (__ARM_ARCH_PROFILE == R)

5.4.12 Transactional Memory Extension

__ARM_FEATURE_TME is defined to 1 if the Transactional Memory Extension instructions are supported in hardware
and intrinsics defined in Transactional Memory Extension (TME) intrinsics are available.
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5.5 Floating-point, Advanced SIMD (Neon) and MVE hardware

5.5.1 Hardware floating point

__ARM_FP is set if hardware floating-point is available. The value is a set of bits indicating the floating-point preci-
sions supported. The following bits are used:

Bit Value Precision
1 0x02 half (16-bit) data type only
2 0x04 single (32-bit)
3 0x08 double (64-bit)

Bits 0 and 4..31 are reserved

Currently, the following values of __ARM_FP may occur (assuming the processor configuration option for hardware
floating-point support is selected where available):

Value Precisions Example processor
(undefined) none any processor without hardware floating-point support
0x04 single Cortex-R5 when configured with SP only
0x06 single, half Cortex-M4.fp
0x0C double, single Arm9, Arm11, Cortex-A8, Cortex-R4
0x0E double, single, half Cortex-A9, Cortex-A15, Cortex-R7

Other values are reserved.

Standard C implementations support single and double precision floating-point irrespective of whether floating-point
hardware is available. However, an implementation might choose to offer a mode to diagnose or fault use of floating-
point arithmetic at a precision not supported in hardware.

Support for 16-bit floating-point language or 16-bit brain floating-point language extensions (see Half-precision (16-
bit) floating-point format and Brain half-precision (16-bit) floating-point format) is only required if supported in
hardware

5.5.2 Half-precision (16-bit) floating-point format

__ARM_FP16_FORMAT_IEEE is defined to 1 if the IEEE 754-2008 [IEEE-FP] 16-bit floating-point format is used.

__ARM_FP16_FORMAT_ALTERNATIVE is defined to 1 if the Arm alternative [ARMARM] 16-bit floating-point
format is used. This format removes support for infinities and NaNs in order to provide an extra exponent bit.

At most one of these macros will be defined. See Half-precision floating-point for details of half-precision floating-
point types.

5.5.3 Brain half-precision (16-bit) floating-point format

__ARM_BF16_FORMAT_ALTERNATIVE is defined to 1 if the Arm alternative [ARMARM] 16-bit brain floating-
point format is used. This format closely resembles the IEEE 754 single-precision format. As such a brain half-
precision floating point value can be converted to an IEEE 754 single-floating point format by appending 16 zero bits
at the end.

5.5. Floating-point, Advanced SIMD (Neon) and MVE hardware
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__ARM_FEATURE_BF16_VECTOR_ARITHMETIC is defined to 1 if the brain 16-bit floating-point arithmetic in-
structions are supported in hardware and the associated vector intrinsics defined by ACLE are available. Note that this
implies:

• __ARM_FP & 0x02 == 1

• __ARM_NEON_FP & 0x02 == 1

See Half-precision brain floating-point for details of half-precision brain floating-point types.

5.5.4 Fused multiply-accumulate (FMA)

__ARM_FEATURE_FMA is defined to 1 if the hardware floating-point architecture supports fused floating-point
multiply-accumulate, i.e. without intermediate rounding. Note that C implementations are encouraged [C99] (7.12)
to ensure that <math.h> defines FP_FAST_FMAF or FP_FAST_FMA, which can be tested by portable C code. A C
implementation on Arm might define these macros by testing __ARM_FEATURE_FMA and __ARM_FP.

5.5.5 Advanced SIMD architecture extension (Neon)

__ARM_NEON is defined to a value indicating the Advanced SIMD (Neon) architecture supported. The only current
value is 1.

In principle, for AArch32, the Neon architecture can exist in an integer-only version. To test for the presence of Neon
floating-point vector instructions, test __ARM_NEON_FP.When Neon does occur in an integer-only version, the VFP
scalar instruction set is also not present. See [ARMARM] (table A2-4) for architecturally permitted combinations.

__ARM_NEON is always set to 1 for AArch64.

5.5.6 Neon floating-point

__ARM_NEON_FP is defined as a bitmap to indicate floating-point support in the Neon architecture. The meaning of
the values is the same as for __ARM_FP. This macro is undefined when the Neon extension is not present or does not
support floating-point.

Current AArch32 Neon implementations do not support double-precision floating-point even when it is present in VFP.
16-bit floating-point format is supported in Neon if and only if it is supported in VFP. Consequently, the definition of
__ARM_NEON_FP is the same as __ARM_FP except that the bit to indicate double-precision is not set for AArch32.
Double-precision is always set for AArch64.

If __ARM_FEATURE_FMA and __ARM_NEON_FP are both defined, fused-multiply instructions are available in Neon
also.

5.5.7 M-profile Vector Extension

__ARM_FEATURE_MVE is defined as a bitmap to indicate M-profile Vector Extension (MVE) support.

Bit Value Support
0 0x01 Integer MVE
1 0x02 Floating-point MVE
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5.5.8 Wireless MMX

If Wireless MMX operations are available on the target, __ARM_WMMX is defined to a value that indicates the level of
support, corresponding to the Tag_WMMX_arch build attribute.

This specification does not further define source-language features to support Wireless MMX.

5.5.9 Crypto extension

NOTE: The __ARM_FEATURE_CRYPTO macro is deprecated in favor of the finer grained feature macros described
below.

__ARM_FEATURE_CRYPTO is defined to 1 if the Armv8-A Crypto instructions are supported and intrinsics tar-
geting them are available. These instructions include AES{E, D}, SHA1{C, P, M} and others. This also implies
__ARM_FEATURE_AES and __ARM_FEATURE_SHA2.

5.5.10 AES extension

__ARM_FEATURE_AES is defined to 1 if the AES Crypto instructions from Armv8-A are supported and intrinsics
targeting them are available. These instructions include AES{E, D}, AESMC, AESIMC and others.

5.5.11 SHA2 extension

__ARM_FEATURE_SHA2 is defined to 1 if the SHA1 & SHA2 Crypto instructions from Armv8-A are supported and
intrinsics targeting them are available. These instructions include SHA1{C, P, M} and others.

5.5.12 SHA512 extension

__ARM_FEATURE_SHA512 is defined to 1 if the SHA2 Crypto instructions from Armv8.2-A are supported and
intrinsics targeting them are available. These instructions include SHA1{C, P, M} and others.

5.5.13 SHA3 extension

__ARM_FEATURE_SHA3 is defined to 1 if the SHA1 & SHA2 Crypto instructions from Armv8-A and the SHA2
and SHA3 instructions from Armv8.2-A and newer are supported and intrinsics targeting them are available. These
instructions include AES{E, D}, SHA1{C, P, M}, RAX, and others.

5.5.14 SM3 extension

__ARM_FEATURE_SM3 is defined to 1 if the SM3 Crypto instructions from Armv8.2-A are supported and intrinsics
targeting them are available. These instructions include SM3{TT1A, TT1B}, and others.

5.5.15 SM4 extension

__ARM_FEATURE_SM4 is defined to 1 if the SM4 Crypto instructions from Armv8.2-A are supported and intrinsics
targeting them are available. These instructions include SM4{E, EKEY} and others.

5.5. Floating-point, Advanced SIMD (Neon) and MVE hardware
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5.5.16 FP16 FML extension

__ARM_FEATURE_FP16_FML is defined to 1 if the FP16 multiplication variant instructions
from Armv8.2-A are supported and intrinsics targeting them are available. Available when
__ARM_FEATURE_FP16_SCALAR_ARITHMETIC.

5.5.17 CRC32 extension

__ARM_FEATURE_CRC32 is defined to 1 if the CRC32 instructions are supported and the intrinsics defined in
CRC32 intrinsics are available. These instructions include CRC32B, CRC32H and others. This is only available when
__ARM_ARCH >= 8.

5.5.18 Random Number Generation Extension

__ARM_FEATURE_RNG is defined to 1 if the Random Number Generation instructions are supported and the intrin-
sics defined in Random number generation intrinsics are available.

5.5.19 Directed rounding

__ARM_FEATURE_DIRECTED_ROUNDING is defined to 1 if the directed rounding and conversion vector instruc-
tions are supported and rounding and conversion intrinsics are available. This is only available when __ARM_ARCH
>= 8.

5.5.20 Numeric maximum and minimum

__ARM_FEATURE_NUMERIC_MAXMIN is defined to 1 if the IEEE 754-2008 compliant floating point maximum
and minimum vector instructions are supported and intrinsics targeting these instructions are available. This is only
available when __ARM_ARCH >= 8.

5.5.21 Half-precision argument and result

__ARM_FP16_ARGS is defined to 1 if __fp16 can be used as an argument and result.

5.5.22 Rounding doubling multiplies

__ARM_FEATURE_QRDMX is defined to 1 if SQRDMLAH and SQRDMLSH instructions and their associated intrin-
sics are available.

5.5.23 16-bit floating-point data processing operations

__ARM_FEATURE_FP16_SCALAR_ARITHMETIC is defined to 1 if the 16-bit floating-point arithmetic instructions
are supported in hardware and the associated scalar intrinsics defined by ACLE are available. Note that this implies:

• __ARM_FP16_FORMAT_IEEE == 1

• __ARM_FP16_FORMAT_ALTERNATIVE == 0

• __ARM_FP & 0x02 == 1
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__ARM_FEATURE_FP16_VECTOR_ARITHMETIC is defined to 1 if the 16-bit floating-point arithmetic instructions
are supported in hardware and the associated vector intrinsics defined by ACLE are available. Note that this implies:

• __ARM_FP16_FORMAT_IEEE == 1

• __ARM_FP16_FORMAT_ALTERNATIVE == 0

• __ARM_FP & 0x02 == 1

• __ARM_NEON_FP & 0x02 == 1

5.5.24 Javascript floating-point conversion

__ARM_FEATURE_JCVT is defined to 1 if the FJCVTZS (AArch64) or VJCVT (AArch32) instruction and the asso-
ciated intrinsic is available.

5.6 Floating-point model

These macros test the floating-point model implemented by the compiler and libraries. The model determines the
guarantees on arithmetic and exceptions.

__ARM_FP_FAST is defined to 1 if floating-point optimizations may occur such that the computed results are different
from those prescribed by the order of operations according to the C standard. Examples of such optimizations would
be reassociation of expressions to reduce depth, and replacement of a division by constant with multiplication by its
reciprocal.

__ARM_FP_FENV_ROUNDING is defined to 1 if the implementation allows the rounding to be configured at run-
time using the standard C fesetround() function and will apply this rounding to future floating-point operations. The
rounding mode applies to both scalar floating-point and Neon.

The floating-point implementation might or might not support denormal values. If denormal values are not supported
then they are flushed to zero.

Implementations may also define the following macros in appropriate floating-point modes:

__STDC_IEC_559__ is defined if the implementation conforms to IEC This implies support for floating-point
exception status flags, including the inexact exception. This macro is specified by [C99] (6.10.8).

__SUPPORT_SNAN__ is defined if the implementation supports signalling NaNs. This macro is specified by the C
standards proposal WG14 N965 Optional support for Signaling NaNs. (Note: this was not adopted into C11.)

5.7 Procedure call standard

__ARM_PCS is defined to 1 if the default procedure calling standard for the translation unit conforms to the base PCS
defined in [AAPCS]. This is supported on AArch32 only.

__ARM_PCS_VFP is defined to 1 if the default is to pass floating-point parameters in hardware floating-point registers
using the VFP variant PCS defined in [AAPCS]. This is supported on AArch32 only.

__ARM_PCS_AAPCS64 is defined to 1 if the default procedure calling standard for the translation unit conforms to
the [AAPCS64].

Note that this should reflect the implementation default for the translation unit. Implementations which allow the PCS
to be set for a function, class or namespace are not expected to redefine the macro within that scope.

5.6. Floating-point model
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5.8 Position-independent code

__ARM_ROPI is defined to 1 if the translation unit is being compiled in read-only position independent mode. In this
mode, all read-only data and functions are at a link-time constant offset from the program counter.

__ARM_RWPI is defined to 1 if the translation unit is being compiled in read-write position independent mode. In this
mode, all writable data is at a link-time constant offset from the static base register defined in [AAPCS].

The ROPI and RWPI position independence modes are compatible with each other, so the __ARM_ROPI and
__ARM_RWPI macros may be defined at the same time.

5.9 Coprocessor intrinsics

__ARM_FEATURE_COPROC is defined as a bitmap to indicate the presence of coprocessor intrinsics for the target
architecture. If __ARM_FEATURE_COPROC is undefined or zero, that means there is no support for coprocessor
intrinsics on the target architecture. The following bits are used:

Bit Value Intrinsics Available
0 0x1 __arm_cdp __arm_ldc, __arm_ldcl, __arm_stc, __arm_stcl, __arm_mcr and __arm_mrc
1 0x2 __arm_cdp2, __arm_ldc2, __arm_stc2, __arm_ldc2l, __arm_stc2l, __arm_mcr2 and __arm_mrc2
2 0x4 __arm_mcrr and __arm_mrrc
3 0x8 __arm_mcrr2 and __arm_mrrc2

5.10 Armv8.5-A Floating-point rounding extension

__ARM_FEATURE_FRINT is defined to 1 if the Armv8.5-A rounding number instructions are supported and the
scalar and vector intrinsics are available. This macro may only ever be defined in the AArch64 execution state. The
scalar intrinsics are specified in Floating-point data-processing intrinsics and are not expected to be for general use.
They are defined for uses that require the specialist rounding behavior of the relevant instructions. The vector intrinsics
are specified in the Arm Neon Intrinsics Reference Architecture Specification [Neon].

5.11 Dot Product extension

__ARM_FEATURE_DOTPROD is defined if the dot product data manipulation instructions are supported and the
vector intrinsics are available. Note that this implies:

• __ARM_NEON == 1

5.12 Complex number intrinsics

__ARM_FEATURE_COMPLEX is defined if the complex addition and complex multiply-accumulate vector instruc-
tions are supported. Note that this implies:

• __ARM_NEON == 1

These instructions require that the input vectors are organized such that the real and imaginary parts of the complex
number are stored in alternating sequences: real, imag, real, imag, . . . etc.
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5.13 Branch Target Identification

__ARM_FEATURE_BTI_DEFAULT is defined to 1 if the Branch Target Identification extension is used to protect
branch destinations by default. The protection applied to any particular function may be overriden by mechanisms
such as function attributes.

5.14 Pointer Authentication

__ARM_FEATURE_PAC_DEFAULT is defined as a bitmap to indicate the use of the Pointer Authentication extension
to protect code against code reuse attacks by default. The bits are defined as follows:

Bit Meaning
0 Protection using the A key
1 Protection using the B key
2 Protection including leaf functions

For example, a value of 0x5 indicates that the Pointer Authentication extension is used to protect function entry
points, including leaf functions, using the A key for signing. The protection applied to any particular function may be
overriden by mechanisms such as function attributes.

5.15 Matrix Multiply Intrinsics

__ARM_FEATURE_MATMUL_INT8 is defined if the integer matrix multiply instructions are supported. Note that
this implies:

• __ARM_NEON == 1

5.16 Custom Datapath Extension

__ARM_FEATURE_CDE is defined to 1 if the Arm Custom Datapath Extension (CDE) is supported.

__ARM_FEATURE_CDE_COPROC is a bitmap indicating the CDE coprocessors available. The following bits are
used:

Bit Value CDE Coprocessor available
0 0x01 p0
1 0x02 p1
2 0x04 p2
3 0x08 p3
4 0x10 p4
5 0x20 p5
6 0x30 p6
7 0x40 p7

5.13. Branch Target Identification
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5.17 Mapping of object build attributes to predefines

This section is provided for guidance. Details of build attributes can be found in [BA].

Table 5.1: Mapping of object build attributes to predefines
Tag no. Tag Predefined macro
6 Tag_CPU_arch __ARM_ARCH, __ARM_FEATURE_DSP
7 Tag_CPU_arch_profile __ARM_PROFILE
8 Tag_ARM_ISA_use __ARM_ISA_ARM
9 Tag_THUMB_ISA_use __ARM_ISA_THUMB
11 Tag_WMMX_arch __ARM_WMMX
18 Tag_ABI_PCS_wchar_t __ARM_SIZEOF_WCHAR_T
20 Tag_ABI_FP_denormal
21 Tag_ABI_FP_exceptions
22 Tag_ABI_FP_user_exceptions
23 Tag_ABI_FP_number_model
26 Tag_ABI_enum_size __ARM_SIZEOF_MINIMAL_ENUM
34 Tag_CPU_unaligned_access __ARM_FEATURE_UNALIGNED
36 Tag_FP_HP_extension __ARM_FP16_FORMAT_IEEE

__ARM_FP16_FORMAT_ALTERNATIVE
38 Tag_ABI_FP_16bit_for __ARM_FP16_FORMAT_IEEE

__ARM_FP16_FORMAT_ALTERNATIVE

5.18 Summary of predefined macros

Table 5.2: Summary of predefined macros
Macro name Meaning Example See section
__ARM_32BIT_STATE Code is for AArch32

state
1 A32/T32 instruc-

tion set architec-
ture

__ARM_64BIT_STATE Code is for AArch64
state

1 A32/T32 instruc-
tion set architec-
ture

__ARM_ACLE Indicates ACLE imple-
mented

101 Testing for Arm C
Language Exten-
sions

__ARM_ALIGN_MAX_PWR Log of maximum align-
ment of static object

20 Alignment of static
objects

__ARM_ALIGN_MAX_STACK_PWR Log of maximum align-
ment of stack object

3 Alignment of stack
objects

__ARM_ARCH Arm architecture level 7 A32/T32 instruc-
tion set architec-
ture

__ARM_ARCH_ISA_A64 AArch64 ISA present 1 A32/T32 instruc-
tion set architec-
ture

Continued on next page
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Table 5.2 – continued from previous page
Macro name Meaning Example See section
__ARM_ARCH_ISA_ARM Arm instruction set

present
1 A32/T32 instruc-

tion set architec-
ture

__ARM_ARCH_ISA_THUMB T32 instruction set
present

2 A32/T32 instruc-
tion set architec-
ture

__ARM_ARCH_PROFILE Architecture profile A Architectural pro-
file (A, R, M or pre-
Cortex)

__ARM_BIG_ENDIAN Memory is big-endian 1 Endianness
__ARM_FEATURE_COMPLEX Armv8.3-A extension 1 Complex number

intrinsics
__ARM_FEATURE_BTI_DEFAULT Branch Target Identifica-

tion
1 Branch Target

Identification
__ARM_FEATURE_PAC_DEFAULT Pointer authentication 0x5 Pointer Authentica-

tion
__ARM_FEATURE_CLZ CLZ instruction 1 CLZ, Miscel-

laneous data-
processing intrin-
sics

__ARM_FEATURE_CRC32 CRC32 extension 1 CRC32 extension
__ARM_FEATURE_CRYPTO Crypto extension 1 Crypto extension
__ARM_FEATURE_DIRECTED_ROUNDING Directed Rounding 1 Directed rounding
__ARM_FEATURE_DOTPROD Dot product extension

(ARM v8.2-A)
1 Dot Product exten-

sion, Availability of
Dot Product intrin-
sics

__ARM_FEATURE_FRINT Floating-point rounding
extension (Arm v8.5-A)

1 Armv8.5-A
Floating-point
rounding exten-
sion, Availability
of Armv8.5-A
floating-point
rounding intrinsics

__ARM_FEATURE_DSP DSP instructions (Arm
v5E) (32-bit-only)

1 DSP instruc-
tions, Saturating
intrinsics

__ARM_FEATURE_AES AES Crypto extension
(Arm v8-A)

1 Crypto extension,
AES extension

__ARM_FEATURE_FMA Floating-point fused
multiply-accumulate

1 Fused multiply-
accumulate (FMA),
Floating-point
data-processing
intrinsics

__ARM_FEATURE_IDIV Hardware Integer Divide 1 Hardware integer
divide

Continued on next page

5.18. Summary of predefined macros
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Table 5.2 – continued from previous page
Macro name Meaning Example See section
__ARM_FEATURE_JCVT Javascript conversion

(ARMv8.3-A)
1 Javascript floating-

point conversion
Floating-point
data-processing
intrinsics

__ARM_FEATURE_LDREX (Deprecated) Load/store exclusive in-
structions

0x0F LDREX/STREX,
Synchronization,
barrier, and hint
intrinsics

__ARM_FEATURE_MATMUL_INT8 Integer Matrix Multiply
extension (Armv8.6-A,
optional Armv8.2-A,
Armv8.3-A, Armv8.4-A,
Armv8.5-A)

1 Matrix Multiply In-
trinsics Availability
of Armv8.6-A Inte-
ger Matrix Multiply
intrinsics

__ARM_FEATURE_MEMORY_TAGGING Memory Tagging
(Armv8.5-A)

1 Memory tagging

__ARM_FEATURE_ATOMICS Large System Extensions 1 Large System Ex-
tensions

__ARM_FEATURE_NUMERIC_MAXMIN Numeric Maximum and
Minimum

1 Numeric maximum
and minimum

__ARM_FEATURE_QBIT Q (saturation) flag (32-
bit-only)

1 Q (saturation) flag,
The Q (saturation)
flag

__ARM_FEATURE_QRDMX SQRDMLxH instruc-
tions and associated
intrinsics availability

1 Rounding doubling
multiplies

__ARM_FEATURE_SAT Width-specified sat-
uration instructions
(32-bit-only)

1 Saturation in-
structions Width-
specified saturation
intrinsics

__ARM_FEATURE_SHA2 SHA2 Crypto extension
(Arm v8-A)

1 Crypto extension,
SHA2 extension

__ARM_FEATURE_SHA512 SHA2 Crypto ext.
(Arm v8.4-A, optional
Armv8.2-A, Armv8.3-A)

1 Crypto extension,
SHA512 extension

__ARM_FEATURE_SHA3 SHA3 Crypto extension
(Arm v8.4-A)

1 Crypto extension,
SHA3 extension

__ARM_FEATURE_SIMD32 32-bit SIMD instructions
(Armv6) (32-bit-only)

1 Saturation instruc-
tions, 32-bit SIMD
intrinsics

__ARM_FEATURE_SM3 SM3 Crypto extension
(Arm v8.4-A, optional
Armv8.2-A, Armv8.3-A)

1 Crypto extension,
SM3 extension

__ARM_FEATURE_SM4 SM4 Crypto extension
(Arm v8.4-A, optional
Armv8.2-A, Armv8.3-A)

1 Crypto extension,
SM4 extension

__ARM_FEATURE_FP16_FML FP16 FML extension
(Arm v8.4-A, optional
Armv8.2-A, Armv8.3-A)

1 FP16 FML exten-
sion

Continued on next page
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Table 5.2 – continued from previous page
Macro name Meaning Example See section
__ARM_FEATURE_UNALIGNED Hardware support for un-

aligned access
1 Unaligned ac-

cess supported in
hardware

__ARM_FP Hardware floating-point 0x0C Hardware floating
point

__ARM_FP16_ARGS __fp16 argument and
result

1 Half-precision ar-
gument and result

__ARM_FP16_FORMAT_ALTERNATIVE 16-bit floating-point, al-
ternative format

1 Half-precision (16-
bit) floating-point
format

__ARM_FP16_FORMAT_IEEE 16-bit floating-point,
IEEE format

1 Half-precision (16-
bit) floating-point
format

__ARM_FP_FAST Accuracy-losing opti-
mizations

1 Floating-point
model

__ARM_FP_FENV_ROUNDING Rounding is configurable
at runtime

1 Floating-point
model

__ARM_BF16_FORMAT_ALTERNATIVE 16-bit brain floating-
point, alternative format

1 Brain half-
precision (16-bit)
floating-point
format

__ARM_FEATURE_BF16 16-bit brain floating-
point, vector instruction

1 Brain half-
precision (16-bit)
floating-point
format

__ARM_FEATURE_MVE M-profile Vector Exten-
sion

0x01 M-profile Vector
Extension

__ARM_FEATURE_CDE Custom Datapath Exten-
sion

1 Custom Datapath
Extension

__ARM_FEATURE_CDE_COPROC Custom Datapath Exten-
sion

0xf Custom Datapath
Extension

__ARM_NEON Advanced SIMD (Neon)
extension

1 Neon floating-point

__ARM_NEON_FP Advanced SIMD (Neon)
floating-point

0x04 Wireless MMX

__ARM_FEATURE_COPROC Coprocessor Intrinsics 0x01 Coprocessor intrin-
sics

__ARM_PCS Arm procedure call stan-
dard (32-bit-only)

1 Procedure call
standard

__ARM_PCS_AAPCS64 Arm PCS for AArch64. 1 Procedure call
standard

__ARM_PCS_VFP Arm PCS hardware FP
variant in use (32-bit-
only)

1 Procedure call
standard

__ARM_FEATURE_RNG Random Number Gen-
eration Extension
(Armv8.5-A)

1 Random Num-
ber Generation
Extension

__ARM_ROPI Read-only PIC in use 1 Position-
independent
code

Continued on next page

5.18. Summary of predefined macros
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Table 5.2 – continued from previous page
Macro name Meaning Example See section
__ARM_RWPI Read-write PIC in use 1 Position-

independent
code

__ARM_SIZEOF_MINIMAL_ENUM Size of minimal enumer-
ation type: 1 or 4

1 Implementation-
defined type
properties

__ARM_SIZEOF_WCHAR_T Size of wchar_t: 2 or 4 2 Implementation-
defined type
properties

__ARM_WMMX Wireless MMX exten-
sion (32-bit-only)

1 Wireless MMX
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Chapter 6
Attributes and pragmas

6.1 Attribute syntax

The general rules for attribute syntax are described in the GCC documentation <http://gcc.gnu.org/onlinedocs/gcc/
Attribute-Syntax.html>. Briefly, for this declaration:

A int B x C, D y E;

attribute A applies to both x and y; B and C apply to x only, and D and E apply to y only. Programmers are recom-
mended to keep declarations simple if attributes are used.

Unless otherwise stated, all attribute arguments must be compile-time constants.

6.2 Hardware/software floating-point calling convention

The AArch32 PCS defines a base standard, as well as several variants.

On targets with hardware FP the AAPCS provides for procedure calls to use either integer or floating-point argument
and result registers. ACLE allows this to be selectable per function.

__attribute__((pcs("aapcs")))

applied to a function, selects software (integer) FP calling convention.

__attribute__((pcs("aapcs-vfp")))

applied to a function, selects hardware FP calling convention.

The AArch64 PCS standard variants do not change how parameters are passed, so no PCS attributes are supported.

The pcs attribute applies to functions and function types. Implementations are allowed to treat the procedure call
specification as part of the type, i.e. as a language linkage in the sense of [C++ #1].

6.3 Target selection

The following target selection attributes are supported:
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__attribute__((target("arm")))

when applied to a function, forces A32 state code generation.

__attribute__((target("thumb")))

when applied to a function, forces T32 state code generation.

The implementation must generate code in the required state unless it is impossible to do so. For example, on an Armv5
or Armv6 target with VFP (and without the T32 instruction set), if a function is forced to T32 state, any floating-point
operations or intrinsics that are only available in A32 state must be generated as calls to library functions or compiler-
generated functions.

This attribute does not apply to AArch64.

6.4 Weak linkage

__attribute__((weak)) can be attached to declarations and definitions to indicate that they have weak static
linkage (STB_WEAK in ELF objects). As definitions, they can be overridden by other definitions of the same symbol.
As references, they do not need to be satisfied and will be resolved to zero if a definition is not present.

6.4.1 Patchable constants

In addition, this specification requires that weakly defined initialized constants are not used for constant propagation,
allowing the value to be safely changed by patching after the object is produced.

6.5 Alignment

The new standards for C [C11] (6.7.5) and C++ [CPP11] (7.6.2) add syntax for aligning objects and types. ACLE
provides an alternative syntax described in this section.

6.5.1 Alignment attribute

__attribute__((aligned(N))) can be associated with data, functions, types and fields. N must be an integral
constant expression and must be a power of 2, for example 1, 2, 4, 8. The maximum alignment depends on the storage
class of the object being aligned. The size of a data type is always a multiple of its alignment. This is a consequence
of the rule in C that the spacing between array elements is equal to the element size.

The aligned attribute does not act as a type qualifier. For example, given:

char x ``__attribute__((aligned(8)));``
int y ``__attribute__((aligned(1)));``

the type of &x is char * and the type of &y is int *. The following declarations are equivalent:

struct S x __attribute__((aligned(16))); /* ACLE */

struct S _Alignas(16) x/* C11 */

#include <stdalign.h> /* C11 (alternative) */
struct S alignas(16) x;
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struct S alignas(16) x; /* C++11 */

6.5.2 Alignment of static objects

The macro __ARM_ALIGN_MAX_PWR indicates (as the exponent of a power of 2) the maximum available alignment
of static data – for example 4 for 16-byte alignment. So the following is always valid:

int x __attribute__((aligned(1 << __ARM_ALIGN_MAX_PWR)));

or, using the C11/C++11 syntax:

alignas(1 << __ARM_ALIGN_MAX_PWR) int x;

Since an alignment request on an object does not change its type or size, x in this example would have type int and
size 4.

There is in principle no limit on the alignment of static objects, within the constraints of available memory. In the
Arm ABI an object with a requested alignment would go into an ELF section with at least as strict an alignment
requirement. However, an implementation supporting position-independent dynamic objects or overlays may need to
place restrictions on their alignment demands.

6.5.3 Alignment of stack objects

It must be possible to align any local object up to the stack alignment as specified in the AAPCS for AArch32 (i.e. 8
bytes) or as specified in AAPCS64 for AArch64 (i.e. 16 bytes) this being also the maximal alignment of any native
type.

An implementation may, but is not required to, permit the allocation of local objects with greater alignment, for
example 16 or 32 bytes for AArch32. (This would involve some runtime adjustment such that the object address was
not a fixed offset from the stack pointer on entry.)

If a program requests alignment greater than the implementation supports, it is recommended that the compiler warn
but not fault this. Programmers should expect over-alignment of local objects to be treated as a hint.

The macro __ARM_ALIGN_MAX_STACK_PWR indicates (as the exponent of a power of 2) the maximum available
stack alignment. For example, a value of 3 indicates 8-byte alignment.

6.5.4 Procedure calls

For procedure calls, where a parameter has aligned type, data should be passed as if it was a basic type of the given
type and alignment. For example, given the aligned type:

struct S { int a[2]; } __attribute__((aligned(8)));

the second argument of:

f(int, struct S);

should be passed as if it were:

f(int, long long);

which means that in AArch32 AAPCS the second parameter is in R2/R3 rather than R1/R2.

6.5. Alignment
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6.5.5 Alignment of C heap storage

The standard C allocation functions [C99] (7.20.3), such as malloc(), return storage aligned to the normal maximal
alignment, i.e. the largest alignment of any (standard) type.

Implementations may, but are not required to, provide a function to return heap storage of greater alignment. Suitable
functions are:

int posix_memalign(void **memptr, size_t alignment, size_t size );

as defined in [POSIX], or:

void *aligned_alloc(size_t alignment, size_t size);

as defined in [C11] (7.22.3.1).

6.5.6 Alignment of C++ heap allocation

In C++, an allocation (with new) knows the object’s type. If the type is aligned, the allocation should also be aligned.
There are two cases to consider depending on whether the user has provided an allocation function.

If the user has provided an allocation function for an object or array of over-aligned type, it is that function’s responsi-
bility to return suitably aligned storage. The size requested by the runtime library will be a multiple of the alignment
(trivially so, for the non-array case).

(The AArch32 C++ ABI does not explicitly deal with the runtime behavior when dealing with arrays of alignment
greater than 8. In this situation, any cookie will be 8 bytes as usual, immediately preceding the array; this means that
the cookie is not necessarily at the address seen by the allocation and deallocation functions. Implementations will
need to make some adjustments before and after calls to the ABI-defined C++ runtime, or may provide additional
non-standard runtime helper functions.) Example:

struct float4 {
void *operator new[](size_t s) {
void *p;
posix_memalign(&p, 16, s);
return p;

}
float data[4];

} __attribute__((aligned(16)));

If the user has not provided their own allocation function, the behavior is implementation-defined.

The generic itanium C++ ABI, which we use in AArch64, already handles arrays with arbitrarily aligned elements

6.6 Other attributes

The following attributes should be supported and their definitions follow [GCC]. These attributes are not specific to
Arm or the Arm ABI.

alias, common, nocommon, noinline, packed, section, visibility, weak

Some specific requirements on the weak attribute are detailed in Weak linkage.
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Chapter 7
Synchronization, barrier, and hint intrinsics

7.1 Introduction

This section provides intrinsics for managing data that may be accessed concurrently between processors, or between
a processor and a device. Some intrinsics atomically update data, while others place barriers around accesses to data
to ensure that accesses are visible in the correct order.

Memory prefetch intrinsics are also described in this section.

7.2 Atomic update primitives

7.2.1 C/C++ standard atomic primitives

The new C and C++ standards [C11] (7.17), [CPP11] (clause 29) provide a comprehensive library of atomic operations
and barriers, including operations to read and write data with particular ordering requirements. Programmers are
recommended to use this where available.

7.2.2 IA-64/GCC atomic update primitives

The __sync family of intrinsics (introduced in [IA-64] (section 7.4), and as documented in the GCC documentation)
may be provided, especially if the C/C++ atomics are not available, and are recommended as being portable and
widely understood. These may be expanded inline, or call library functions. Note that, unusually, these intrinsics are
polymorphic they will specialize to instructions suitable for the size of their arguments.

7.3 Memory barriers

Memory barriers ensure specific ordering properties between memory accesses. For more details on memory barriers,
see [ARMARM] (A3.8.3). The intrinsics in this section are available for all targets. They may be no-ops (i.e. generate
no code, but possibly act as a code motion barrier in compilers) on targets where the relevant instructions do not exist,
but only if the property they guarantee would have held anyway. On targets where the relevant instructions exist but
are implemented as no-ops, these intrinsics generate the instructions.
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The memory barrier intrinsics take a numeric argument indicating the scope and access type of the barrier, as shown
in the following table. (The assembler mnemonics for these numbers, as shown in the table, are not available in the
intrinsics.) The argument should be an integral constant expression within the required range see Constant arguments
to intrinsics.

Argument Mnemonic Domain Ordered Accesses (before-after)
15 SY Full system Any-Any
14 ST Full system Store-Store
13 LD Full system Load-Load, Load-Store
11 ISH Inner shareable Any-Any
10 ISHST Inner shareable Store-Store
9 ISHLD Inner shareable Load-Load, Load-Store
7 NSH or UN Non-shareable Any-Any
6 NSHST Non-shareable Store-Store
5 NSHLD Non-shareable Load-Load, Load-Store
3 OSH Outer shareable Any-Any
2 OSHST Outer shareable Store-Store
1 OSHLD Outer shareable Load-Load, Load-Store

The following memory barrier intrinsics are available:

void __dmb(/*constant*/ unsigned int);

Generates a DMB (data memory barrier) instruction or equivalent CP15 instruction. DMB ensures the observed
ordering of memory accesses. Memory accesses of the specified type issued before the DMB are guaranteed to be
observed (in the specified scope) before memory accesses issued after the DMB. For example, DMB should be used
between storing data, and updating a flag variable that makes that data available to another core.

The __dmb() intrinsic also acts as a compiler memory barrier of the appropriate type.

void __dsb(/*constant*/ unsigned int);

Generates a DSB (data synchronization barrier) instruction or equivalent CP15 instruction. DSB ensures the com-
pletion of memory accesses. A DSB behaves as the equivalent DMB and has additional properties. After a DSB
instruction completes, all memory accesses of the specified type issued before the DSB are guaranteed to have com-
pleted.

The __dsb() intrinsic also acts as a compiler memory barrier of the appropriate type.

void __isb(/*constant*/ unsigned int);

Generates an ISB (instruction synchronization barrier) instruction or equivalent CP15 instruction. This instruction
flushes the processor pipeline fetch buffers, so that following instructions are fetched from cache or memory. An ISB
is needed after some system maintenance operations.

An ISB is also needed before transferring control to code that has been loaded or modified in memory, for example by
an overlay mechanism or just-in-time code generator. (Note that if instruction and data caches are separate, privileged
cache maintenance operations would be needed in order to unify the caches.)

The only supported argument for the __isb() intrinsic is 15, corresponding to the SY (full system) scope of the ISB
instruction.

7.3.1 Examples

In this example, process P1 makes some data available to process P2 and sets a flag to indicate this.
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P1:

value = x;
/* issue full-system memory barrier for previous store:

setting of flag is guaranteed not to be observed before
write to value */

__dmb(14);
flag = true;

P2:

/* busy-wait until the data is available */
while (!flag) {}
/* issue full-system memory barrier: read of value is guaranteed

not to be observed by memory system before read of flag */
__dmb(15);
/* use value */;

In this example, process P1 makes data available to P2 by putting it on a queue.

P1:

work = new WorkItem;
work->payload = x;
/* issue full-system memory barrier for previous store:

consumer cannot observe work item on queue before write to
work item's payload */

__dmb(14);
queue_head = work;

P2:

/* busy-wait until work item appears */
while (!(work = ``queue_head))`` {}
/* no barrier needed: load of payload is data-dependent */
/* use work->payload */

7.4 Hints

The intrinsics in this section are available for all targets. They may be no-ops (i.e. generate no code, but possibly act
as a code motion barrier in compilers) on targets where the relevant instructions do not exist. On targets where the
relevant instructions exist but are implemented as no-ops, these intrinsics generate the instructions.

void __wfi(void);

Generates a WFI (wait for interrupt) hint instruction, or nothing. The WFI instruction allows (but does not require)
the processor to enter a low-power state until one of a number of asynchronous events occurs.

void __wfe(void);

Generates a WFE (wait for event) hint instruction, or nothing. The WFE instruction allows (but does not require) the
processor to enter a low-power state until some event occurs such as a SEV being issued by another processor.

void __sev(void);

7.4. Hints
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Generates a SEV (send a global event) hint instruction. This causes an event to be signaled to all processors in a
multiprocessor system. It is a NOP on a uniprocessor system.

void __sevl(void);

Generates a send a local event hint instruction. This causes an event to be signaled to only the processor executing this
instruction. In a multiprocessor system, it is not required to affect the other processors.

void __yield(void);

Generates a YIELD hint instruction. This enables multithreading software to indicate to the hardware that it is per-
forming a task, for example a spin-lock, that could be swapped out to improve overall system performance.

void __dbg(/*constant*/ unsigned int);

Generates a DBG instruction. This provides a hint to debugging and related systems. The argument must be a constant
integer from 0 to 15 inclusive. See implementation documentation for the effect (if any) of this instruction and the
meaning of the argument. This is available only when compiling for AArch32.

7.5 Swap

__swp is available for all targets. This intrinsic expands to a sequence equivalent to the deprecated (and possibly
unavailable) SWP instruction.

uint32_t __swp(uint32_t, volatile void *);

Unconditionally stores a new value at the given address, and returns the old value.

As with the IA-64/GCC primitives described in 0, the __swp intrinsic is polymorphic. The second argument must
provide the address of a byte-sized object or an aligned word-sized object and it must be possible to determine the size
of this object from the argument expression.

This intrinsic is implemented by LDREX/STREX (or LDREXB/STREXB) where available, as if by:

uint32_t __swp(uint32_t x, volatile uint32_t *p) {
uint32_t v;
/* use LDREX/STREX intrinsics not specified by ACLE */
do v = __ldrex(p); while (__strex(x, p));
return v;

}

or alternatively,:

uint32_t __swp(uint32_t x, uint32_t *p) {
uint32_t v;
/* use IA-64/GCC atomic builtins */
do v = *p; while (!__sync_bool_compare_and_swap(p, v, x));
return v;

}

It is recommended that compilers should produce a downgradeable/upgradeable warning on encountering the __swp
intrinsic.

Only if load-store exclusive instructions are not available will the intrinsic use the SWP/SWPB instructions.

It is strongly recommended to use standard and flexible atomic primitives such as those available in the C++ <atomic>
header. __swp is provided solely to allow straightforward (and possibly automated) replacement of explicit use
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of SWP in inline assembler. SWP is obsolete in the Arm architecture, and in recent versions of the architecture,
may be configured to be unavailable in user-mode. (Aside: unconditional atomic swap is also less powerful as a
synchronization primitive than load-exclusive/store-conditional.)

7.6 Memory prefetch intrinsics

Intrinsics are provided to prefetch data or instructions. The size of the data or function is ignored. Note that the
intrinsics may be implemented as no-ops (i.e. not generate a prefetch instruction, if none is available). Also, even
where the architecture does provide a prefetch instruction, a particular implementation may implement the instruction
as a no-op (i.e. the instruction has no effect).

7.6.1 Data prefetch

void __pld(void const volatile *addr);

Generates a data prefetch instruction, if available. The argument should be any expression that may designate a data
address. The data is prefetched to the innermost level of cache, for reading.

void __pldx(/*constant*/ unsigned int /*access_kind*/,
/*constant*/ unsigned int /*cache_level*/,
/*constant*/ unsigned int /*retention_policy*/,
void const volatile *addr);

Generates a data prefetch instruction. This intrinsic allows the specification of the expected access kind (read or write),
the cache level to load the data, the data retention policy (temporal or streaming), The relevant arguments can only be
one of the following values.

Access Kind Value Summary
PLD 0 Fetch the addressed location for reading
PST 1 Fetch the addressed location for writing

Cache Level Value Summary
L1 0 Fetch the addressed location to L1 cache
L2 1 Fetch the addressed location to L2 cache
L3 2 Fetch the addressed location to L3 cache

Retention Policy Value Summary
KEEP 0 Temporal fetch of the addressed location (i.e. allocate in cache normally)
STRM 1 Streaming fetch of the addressed location (i.e. memory used only once)

7.6.2 Instruction prefetch

void __pli(T addr);

Generates a code prefetch instruction, if available. If a specific code prefetch instruction is not available, this intrinsic
may generate a data-prefetch instruction to fetch the addressed code to the innermost level of unified cache. It will not
fetch code to data-cache in a split cache level.

7.6. Memory prefetch intrinsics
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void __plix(/*constant*/ unsigned int /*cache_level*/,
/*constant*/ unsigned int /*retention_policy*/,
T addr);

Generates a code prefetch instruction. This intrinsic allows the specification of the cache level to load the code, the
retention policy (temporal or streaming). The relevant arguments can have the same values as in __pldx.

__pldx and __plix arguments cache level and retention policy are ignored on unsupported targets.

7.7 NOP

void __nop(void);

Generates an unspecified no-op instruction. Note that not all architectures provide a distinguished NOP instruction.
On those that do, it is unspecified whether this intrinsic generates it or another instruction. It is not guaranteed that
inserting this instruction will increase execution time.
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Chapter 8
Data-processing intrinsics

The intrinsics in this section are provided for algorithm optimization.

The <arm_acle.h> header should be included before using these intrinsics.

Implementations are not required to introduce precisely the instructions whose names match the intrinsics. However,
implementations should aim to ensure that a computation expressed compactly with intrinsics will generate a similarly
compact sequence of machine code. In general, C’s as-if rule [C99] (5.1.2.3) applies, meaning that the compiled code
must behave as if the instruction had been generated.

In general, these intrinsics are aimed at DSP algorithm optimization on M-profile and R-profile. Use on A-profile is
deprecated. However, the miscellaneous intrinsics and CRC32 intrinsics described in Miscellaneous data-processing
intrinsics and CRC32 intrinsics respectively are suitable for all profiles.

8.1 Programmer’s model of global state

8.1.1 The Q (saturation) flag

The Q flag is a cumulative (sticky) saturation bit in the APSR (Application Program Status Register) indicating that
an operation saturated, or in some cases, overflowed. It is set on saturation by most intrinsics in the DSP and SIMD
intrinsic sets, though some SIMD intrinsics feature saturating operations which do not set the Q flag.

[AAPCS] (5.1.1) states:

The N, Z, C, V and Q flags (bits 27-31) and the GE[3:0] bits (bits 16-19) are undefined on entry to or return from a
public interface.

Note that this does not state that these bits (in particular the Q flag) are undefined across any C/C++ function call
boundary only across a public interface. The Q and GE bits could be manipulated in well-defined ways by local
functions, for example when constructing functions to be used in DSP algorithms.

Implementations must avoid introducing instructions (such as SSAT/USAT, or SMLABB) which affect the Q flag,
if the programmer is testing whether the Q flag was set by explicit use of intrinsics and if the implementation’s
introduction of an instruction may affect the value seen. The implementation might choose to model the definition
and use (liveness) of the Q flag in the way that it models the liveness of any visible variable, or it might suppress
introduction of Q-affecting instructions in any routine in which the Q flag is tested.

ACLE does not define how or whether the Q flag is preserved across function call boundaries. (This is seen as an area
for future specification.)
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In general, the Q flag should appear to C/C++ code in a similar way to the standard floating-point cumulative exception
flags, as global (or thread-local) state that can be tested, set or reset through an API.

The following intrinsics are available when __ARM_FEATURE_QBIT is defined:

int __saturation_occurred(void);

Returns 1 if the Q flag is set, 0 if not.

void __set_saturation_occurred(int);

Sets or resets the Q flag according to the LSB of the value. __set_saturation_occurred(0) might be used
before performing a sequence of operations after which the Q flag is tested. (In general, the Q flag cannot be assumed
to be unset at the start of a function.)

void __ignore_saturation(void);

This intrinsic is a hint and may be ignored. It indicates to the compiler that the value of the Q flag is not live (needed)
at or subsequent to the program point at which the intrinsic occurs. It may allow the compiler to remove preceding
instructions, or to change the instruction sequence in such a way as to result in a different value of the Q flag. (A
specific example is that it may recognize clipping idioms in C code and implement them with an instruction such as
SSAT that may set the Q flag.)

8.1.2 The GE flags

The GE (Greater than or Equal to) flags are four bits in the APSR. They are used with the 32-bit SIMD intrinsics
described in 32-bit SIMD intrinsics.

There are four GE flags, one for each 8-bit lane of a 32-bit SIMD operation. Certain non-saturating 32-bit SIMD
intrinsics set the GE bits to indicate overflow of addition or subtraction. For 4x8-bit operations the GE bits are set one
for each byte. For 2x16-bit operations the GE bits are paired together, one for the high halfword and the other pair
for the low halfword. The only supported way to read or use the GE bits (in this specification) is by using the __sel
intrinsic, see Parallel selection.

8.1.3 Floating-point environment

An implementation should implement the features of <fenv.h> for accessing the floating-point runtime environment.
Programmers should use this rather than accessing the VFP FPSCR directly. For example, on a target supporting
VFP the cumulative exception flags (for example IXC, OFC) can be read from the FPSCR by using the fetestexcept()
function, and the rounding mode (RMode) bits can be read using the fegetround() function.

ACLE does not support changing the DN, FZ or AHP bits at runtime.

VFP short vector mode (enabled by setting the Stride and Len bits) is deprecated, and is unavailable on later VFP
implementations. ACLE provides no support for this mode.
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8.2 Miscellaneous data-processing intrinsics

The following intrinsics perform general data-processing operations. They have no effect on global state.

[Note: documentation of the __nop intrinsic has moved to NOP]

For completeness and to aid portability between LP64 and LLP64 models, ACLE also defines intrinsics with l suffix.

uint32_t __ror(uint32_t x, uint32_t y);
unsigned long __rorl(unsigned long x, uint32_t y);
uint64_t __rorll(uint64_t x, uint32_t y);

Rotates the argument x right by y bits. y can take any value. These intrinsics are available on all targets.

unsigned int __clz(uint32_t x);
unsigned int __clzl(unsigned long x);
unsigned int __clzll(uint64_t x);

Returns the number of leading zero bits in x. When x is zero it returns the argument width, i.e. 32 or 64. These
intrinsics are available on all targets. On targets without the CLZ instruction it should be implemented as an instruction
sequence or a call to such a sequence. A suitable sequence can be found in [Warren] (fig. 5-7). Hardware support for
these intrinsics is indicated by __ARM_FEATURE_CLZ.

unsigned int __cls(uint32_t x);
unsigned int __clsl(unsigned long x);
unsigned int __clsll(uint64_t x);

Returns the number of leading sign bits in x. When x is zero it returns the argument width - 1, i.e. 31 or 63. These
intrinsics are available on all targets. On targets without the CLZ instruction it should be implemented as an instruction
sequence or a call to such a sequence. Fast hardware implementation (using a CLS instruction or a short code sequence
involving the CLZ instruction) is indicated by __ARM_FEATURE_CLZ.

uint32_t __rev(uint32_t);
unsigned long __revl(unsigned long);
uint64_t __revll(uint64_t);

Reverses the byte order within a word or doubleword. These intrinsics are available on all targets and should be
expanded to an efficient straight-line code sequence on targets without byte reversal instructions.

uint32_t __rev16(uint32_t);
unsigned long __rev16l(unsigned long);
uint64_t __rev16ll(uint64_t);

Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. These
intrinsics are available on all targets and should be expanded to an efficient straight-line code sequence on targets
without byte reversal instructions.

int16_t __revsh(int16_t);

Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
This intrinsic is available on all targets and should be expanded to an efficient straight-line code sequence on targets
without byte reversal instructions.

uint32_t __rbit(uint32_t x);
unsigned long __rbitl(unsigned long x);
uint64_t __rbitll(uint64_t x);

Reverses the bits in x. These intrinsics are only available on targets with the RBIT instruction.

8.2. Miscellaneous data-processing intrinsics
Copyright © 2011, 2020 Arm Limited or its affiliates. All rights reserved. 

101028_Q220_00_en
51



Arm C Language Extensions Documentation, Release ACLE Q2 2020

8.2.1 Examples

#ifdef __ARM_BIG_ENDIAN
#define htonl(x) (uint32_t)(x)
#define htons(x) (uint16_t)(x)
#else /* little-endian */
#define htonl(x) __rev(x)
#define htons(x) (uint16_t)__revsh(x)
#endif /* endianness */
#define ntohl(x) htonl(x)
#define ntohs(x) htons(x)

/* Count leading sign bits */
inline unsigned int count_sign(int32_t x) { return __clz(x ^ (x << 1)); }

/* Count trailing zeroes */
inline unsigned int count_trail(uint32_t x) {
#if (__ARM_ARCH >= 6 && __ARM_ISA_THUMB >= 2) || __ARM_ARCH >= 7
/* RBIT is available */

return __clz(__rbit(x));
#else

unsigned int n = __clz(x & -x); /* get the position of the last bit */
return n == 32 ? n : (31-n);

#endif
}

8.3 16-bit multiplications

The intrinsics in this section provide direct access to the 16x16 and 16x32 bit multiplies introduced in Armv5E.
Compilers are also encouraged to exploit these instructions from C code. These intrinsics are available when
__ARM_FEATURE_DSP is defined, and are not available on non-5E targets. These multiplies cannot overflow.

int32_t __smulbb(int32_t, int32_t);

Multiplies two 16-bit signed integers, i.e. the low halfwords of the operands.

int32_t __smulbt(int32_t, int32_t);

Multiplies the low halfword of the first operand and the high halfword of the second operand.

int32_t __smultb(int32_t, int32_t);

Multiplies the high halfword of the first operand and the low halfword of the second operand.

int32_t __smultt(int32_t, int32_t);

Multiplies the high halfwords of the operands.

int32_t __smulwb(int32_t, int32_t);

Multiplies the 32-bit signed first operand with the low halfword (as a 16-bit signed integer) of the second operand.
Return the top 32 bits of the 48-bit product.

int32_t __smulwt(int32_t, int32_t);
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Multiplies the 32-bit signed first operand with the high halfword (as a 16-bit signed integer) of the second operand.
Return the top 32 bits of the 48-bit product.

8.4 Saturating intrinsics

8.4.1 Width-specified saturation intrinsics

These intrinsics are available when __ARM_FEATURE_SAT is defined. They saturate a 32-bit value at a given bit
position. The saturation width must be an integral constant expression – see Constant arguments to intrinsics.

int32_t __ssat(int32_t, /*constant*/ unsigned int);

Saturates a signed integer to the given bit width in the range 1 to 32. For example, the result of saturation to 8-bit
width will be in the range -128 to 127. The Q flag is set if the operation saturates.

uint32_t __usat(int32_t, /*constant*/ unsigned int);

Saturates a signed integer to an unsigned (non-negative) integer of a bit width in the range 0 to 31. For example, the
result of saturation to 8-bit width is in the range 0 to 255, with all negative inputs going to zero. The Q flag is set if the
operation saturates.

8.4.2 Saturating addition and subtraction intrinsics

These intrinsics are available when __ARM_FEATURE_DSP is defined.

The saturating intrinsics operate on 32-bit signed integer data. There are no special saturated or fixed point types.

int32_t __qadd(int32_t, int32_t);

Adds two 32-bit signed integers, with saturation. Sets the Q flag if the addition saturates.

int32_t __qsub(int32_t, int32_t);

Subtracts two 32-bit signed integers, with saturation. Sets the Q flag if the subtraction saturates.

int32_t __qdbl(int32_t);

Doubles a signed 32-bit number, with saturation. __qdbl(x) is equal to __qadd(x,x) except that the argument
x is evaluated only once. Sets the Q flag if the addition saturates.

8.4.3 Accumulating multiplications

These intrinsics are available when __ARM_FEATURE_DSP is defined.

int32_t __smlabb(int32_t, int32_t, int32_t);

Multiplies two 16-bit signed integers, the low halfwords of the first two operands, and adds to the third operand.
Sets the Q flag if the addition overflows. (Note that the addition is the usual 32-bit modulo addition which wraps on
overflow, not a saturating addition. The multiplication cannot overflow.):

int32_t __smlabt(int32_t, int32_t, int32_t);

8.4. Saturating intrinsics
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Multiplies the low halfword of the first operand and the high halfword of the second operand, and adds to the third
operand, as for __smlabb.

int32_t __smlatb(int32_t, int32_t, int32_t);

Multiplies the high halfword of the first operand and the low halfword of the second operand, and adds to the third
operand, as for __smlabb.

int32_t __smlatt(int32_t, int32_t, int32_t);

Multiplies the high halfwords of the first two operands and adds to the third operand, as for __smlabb.

int32_t __smlawb(int32_t, int32_t, int32_t);

Multiplies the 32-bit signed first operand with the low halfword (as a 16-bit signed integer) of the second operand.
Adds the top 32 bits of the 48-bit product to the third operand. Sets the Q flag if the addition overflows. (See note for
__smlabb).

int32_t __smlawt(int32_t, int32_t, int32_t);

Multiplies the 32-bit signed first operand with the high halfword (as a 16-bit signed integer) of the second operand and
adds the top 32 bits of the 48-bit result to the third operand as for __smlawb.

8.4.4 Examples

The ACLE DSP intrinsics can be used to define ETSI/ITU-T basic operations [G.191]:

#include <arm_acle.h>
inline int32_t L_add(int32_t x, int32_t y) { return __qadd(x, y); }
inline int32_t L_negate(int32_t x) { return __qsub(0, x); }
inline int32_t L_mult(int16_t x, int16_t y) { return __qdbl(x*y); }
inline int16_t add(int16_t x, int16_t y) { return (int16_t)(__qadd(x<<16, y<<16) >>
→˓16); }
inline int16_t norm_l(int32_t x) { return __clz(x ^ (x<<1)) & 31; }
...

This example assumes the implementation preserves the Q flag on return from an inline function.

8.5 32-bit SIMD intrinsics

8.5.1 Availability

Armv6 introduced instructions to perform 32-bit SIMD operations (i.e. two 16-bit operations or four 8-bit operations)
on the Arm general-purpose registers. These instructions are not related to the much more versatile Advanced SIMD
(Neon) extension, whose support is described in Advanced SIMD (Neon) intrinsics.

The 32-bit SIMD intrinsics are available on targets featuring Armv6 and upwards, including the A and R profiles.
In the M profile they are available in the Armv7E-M architecture. Availability of the 32-bit SIMD intrinsics implies
availability of the saturating intrinsics.

Availability of the SIMD intrinsics is indicated by the __ARM_FEATURE_SIMD32 predefine.

To access the intrinsics, the <arm_acle.h> header should be included.

46
Copyright © 2011, 2020 Arm Limited or its affiliates. All rights reserved. 

101028_Q220_00_en
54



Arm C Language Extensions Documentation, Release ACLE Q2 2020

8.5.2 Data types for 32-bit SIMD intrinsics

The header <arm_acle.h> should be included before using these intrinsics.

The SIMD intrinsics generally operate on and return 32-bit words consisting of two 16-bit or four 8-bit values. These
are represented as int16x2_t and int8x4_t below for illustration. Some intrinsics also feature scalar accumulator
operands and/or results.

When defining the intrinsics, implementations can define SIMD operands using a 32-bit integral type (such as
unsigned int).

The header <arm_acle.h> defines typedefs int16x2_t, uint16x2_t, int8x4_t, and uint8x4_t. These
should be defined as 32-bit integral types of the appropriate sign. There are no intrinsics provided to pack or unpack
values of these types. This can be done with shifting and masking operations.

8.5.3 Use of the Q flag by 32-bit SIMD intrinsics

Some 32-bit SIMD instructions may set the Q flag described in The Q (saturation) flag. The behavior of the intrinsics
matches that of the instructions.

Generally, instructions that perform lane-by-lane saturating operations do not set the Q flag. For example, __qadd16
does not set the Q flag, even if saturation occurs in one or more lanes.

The explicit saturation operations __ssat and __usat set the Q flag if saturation occurs. Similarly, __ssat16
and __usat16 set the Q flag if saturation occurs in either lane.

Some instructions, such as __smlad, set the Q flag if overflow occurs on an accumulation, even though the accumu-
lation is not a saturating operation (i.e. does not clip its result to the limits of the type).

In the following descriptions of intrinsics, if the description does not mention whether the intrinsic affects the Q flag,
the intrinsic does not affect it.

8.5.4 Parallel 16-bit saturation

These intrinsics are available when __ARM_FEATURE_SIMD32 is defined. They saturate two 16-bit values to a
given bit width as for the __ssat and __usat intrinsics defined in Width-specified saturation intrinsics.

int16x2_t __ssat16(int16x2_t, /*constant*/ unsigned int);

Saturates two 16-bit signed values to a width in the range 1 to 16. The Q flag is set if either operation saturates.

int16x2_t __usat16(int16x2_t, /*constant */ unsigned int);

Saturates two 16-bit signed values to a bit width in the range 0 to 15. The input values are signed and the output values
are non-negative, with all negative inputs going to zero. The Q flag is set if either operation saturates.

8.5.5 Packing and unpacking

These intrinsics are available when __ARM_FEATURE_SIMD32 is defined.

int16x2_t __sxtab16(int16x2_t, int8x4_t);

Two values (at bit positions 0..7 and 16..23) are extracted from the second operand, sign-extended to 16 bits, and added
to the first operand.

8.5. 32-bit SIMD intrinsics
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int16x2_t __sxtb16(int8x4_t);

Two values (at bit positions 0..7 and 16..23) are extracted from the first operand, sign-extended to 16 bits, and returned
as the result.

uint16x2_t __uxtab16(uint16x2_t, uint8x4_t);

Two values (at bit positions 0..7 and 16..23) are extracted from the second operand, zero-extended to 16 bits, and
added to the first operand.

uint16x2_t __uxtb16(uint8x4_t);

Two values (at bit positions 0..7 and 16..23) are extracted from the first operand, zero-extended to 16 bits, and returned
as the result.

8.5.6 Parallel selection

This intrinsic is available when __ARM_FEATURE_SIMD32 is defined.

uint8x4_t __sel(uint8x4_t, uint8x4_t);

Selects each byte of the result from either the first operand or the second operand, according to the values of the GE
bits. For each result byte, if the corresponding GE bit is set then the byte from the first operand is used, otherwise the
byte from the second operand is used. Because of the way that int16x2_t operations set two (duplicate) GE bits
per value, the __sel intrinsic works equally well on (u)int16x2_t and (u)int8x4_t data.

8.5.7 Parallel 8-bit addition and subtraction

These intrinsics are available when __ARM_FEATURE_SIMD32 is defined. Each intrinsic performs 8-bit parallel
addition or subtraction. In some cases the result may be halved or saturated.

int8x4_t __qadd8(int8x4_t, int8x4_t);

4x8-bit addition, saturated to the range -2**7 to 2**7-1.

int8x4_t __qsub8(int8x4_t, int8x4_t);

4x8-bit subtraction, with saturation.

int8x4_t __sadd8(int8x4_t, int8x4_t);

4x8-bit signed addition. The GE bits are set according to the results.

int8x4_t __shadd8(int8x4_t, int8x4_t);

4x8-bit signed addition, halving the results.

int8x4_t __shsub8(int8x4_t, int8x4_t);

4x8-bit signed subtraction, halving the results.

int8x4_t __ssub8(int8x4_t, int8x4_t);

4x8-bit signed subtraction. The GE bits are set according to the results.
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uint8x4_t __uadd8(uint8x4_t, uint8x4_t);

4x8-bit unsigned addition. The GE bits are set according to the results.

uint8x4_t __uhadd8(uint8x4_t, uint8x4_t);

4x8-bit unsigned addition, halving the results.

uint8x4_t __uhsub8(uint8x4_t, uint8x4_t);

4x8-bit unsigned subtraction, halving the results.

uint8x4_t __uqadd8(uint8x4_t, uint8x4_t);

4x8-bit unsigned addition, saturating to the range 0 to 2**8-1.

uint8x4_t __uqsub8(uint8x4_t, uint8x4_t);

4x8-bit unsigned subtraction, saturating to the range 0 to 2**8-1.

uint8x4_t __usub8(uint8x4_t, uint8x4_t);

4x8-bit unsigned subtraction. The GE bits are set according to the results.

8.5.8 Sum of 8-bit absolute differences

These intrinsics are available when __ARM_FEATURE_SIMD32 is defined. They perform an 8-bit sum-of-absolute
differences operation, typically used in motion estimation.

uint32_t __usad8(uint8x4_t, uint8x4_t);

Performs 4x8-bit unsigned subtraction, and adds the absolute values of the differences together, returning the result as
a single unsigned integer.

uint32_t __usada8(uint8x4_t, uint8x4_t, uint32_t);

Performs 4x8-bit unsigned subtraction, adds the absolute values of the differences together, and adds the result to the
third operand.

8.5.9 Parallel 16-bit addition and subtraction

These intrinsics are available when __ARM_FEATURE_SIMD32 is defined. Each intrinsic performs 16-bit parallel
addition and/or subtraction. In some cases the result may be halved or saturated.

int16x2_t __qadd16(int16x2_t, int16x2_t);

2x16-bit addition, saturated to the range -2**15 to 2**15-1.

int16x2_t __qasx(int16x2_t, int16x2_t);

Exchanges halfwords of second operand, adds high halfwords and subtracts low halfwords, saturating in each case.

int16x2_t __qsax(int16x2_t, int16x2_t);

8.5. 32-bit SIMD intrinsics
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Exchanges halfwords of second operand, subtracts high halfwords and adds low halfwords, saturating in each case.

int16x2_t __qsub16(int16x2_t, int16x2_t);

2x16-bit subtraction, with saturation.

int16x2_t __sadd16(int16x2_t, int16x2_t);

2x16-bit signed addition. The GE bits are set according to the results.

int16x2_t __sasx(int16x2_t, int16x2_t);

Exchanges halfwords of the second operand, adds high halfwords and subtracts low halfwords. The GE bits are set
according to the results.

int16x2_t __shadd16(int16x2_t, int16x2_t);

2x16-bit signed addition, halving the results.

int16x2_t __shasx(int16x2_t, int16x2_t);

Exchanges halfwords of the second operand, adds high halfwords and subtract low halfwords, halving the results.

int16x2_t __shsax(int16x2_t, int16x2_t);

Exchanges halfwords of the second operand, subtracts high halfwords and add low halfwords, halving the results.

int16x2_t __shsub16(int16x2_t, int16x2_t);

2x16-bit signed subtraction, halving the results.

int16x2_t __ssax(int16x2_t, int16x2_t);

Exchanges halfwords of the second operand, subtracts high halfwords and adds low halfwords. The GE bits are set
according to the results.

int16x2_t __ssub16(int16x2_t, int16x2_t);

2x16-bit signed subtraction. The GE bits are set according to the results.

uint16x2_t __uadd16(uint16x2_t, uint16x2_t);

2x16-bit unsigned addition. The GE bits are set according to the results.

uint16x2_t __uasx(uint16x2_t, uint16x2_t);

Exchanges halfwords of the second operand, adds high halfwords and subtracts low halfwords. The GE bits are set
according to the results of unsigned addition.

uint16x2_t __uhadd16(uint16x2_t, uint16x2_t);

2x16-bit unsigned addition, halving the results.

uint16x2_t __uhasx(uint16x2_t, uint16x2_t);

Exchanges halfwords of the second operand, adds high halfwords and subtracts low halfwords, halving the results.
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uint16x2_t __uhsax(uint16x2_t, uint16x2_t);

Exchanges halfwords of the second operand, subtracts high halfwords and adds low halfwords, halving the results.

uint16x2_t __uhsub16(uint16x2_t, uint16x2_t);

2x16-bit unsigned subtraction, halving the results.

uint16x2_t __uqadd16(uint16x2_t, uint16x2_t);

2x16-bit unsigned addition, saturating to the range 0 to 2**16-1.

uint16x2_t __uqasx(uint16x2_t, uint16x2_t);

Exchanges halfwords of the second operand, and performs saturating unsigned addition on the high halfwords and
saturating unsigned subtraction on the low halfwords.

uint16x2_t __uqsax(uint16x2_t, uint16x2_t);

Exchanges halfwords of the second operand, and performs saturating unsigned subtraction on the high halfwords and
saturating unsigned addition on the low halfwords.

uint16x2_t __uqsub16(uint16x2_t, uint16x2_t);

2x16-bit unsigned subtraction, saturating to the range 0 to 2**16-1.

uint16x2_t __usax(uint16x2_t, uint16x2_t);

Exchanges the halfwords of the second operand, subtracts the high halfwords and adds the low halfwords. Sets the GE
bits according to the results of unsigned addition.

uint16x2_t __usub16(uint16x2_t, uint16x2_t);

2x16-bit unsigned subtraction. The GE bits are set according to the results.

8.5.10 Parallel 16-bit multiplication

These intrinsics are available when __ARM_FEATURE_SIMD32 is defined. Each intrinsic performs two 16-bit mul-
tiplications.

int32_t __smlad(int16x2_t, int16x2_t, int32_t);

Performs 2x16-bit multiplication and adds both results to the third operand. Sets the Q flag if the addition overflows.
(Overflow cannot occur during the multiplications.):

int32_t __smladx(int16x2_t, int16x2_t, int32_t);

Exchanges the halfwords of the second operand, performs 2x16-bit multiplication, and adds both results to the third
operand. Sets the Q flag if the addition overflows. (Overflow cannot occur during the multiplications.):

int64_t __smlald(int16x2_t, int16x2_t, int64_t);

Performs 2x16-bit multiplication and adds both results to the 64-bit third operand. Overflow in the addition is not
detected.

8.5. 32-bit SIMD intrinsics
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int64_t __smlaldx(int16x2_t, int16x2_t, int64_t);

Exchanges the halfwords of the second operand, performs 2x16-bit multiplication and adds both results to the 64-bit
third operand. :: Overflow in the addition is not detected.

int32_t __smlsd(int16x2_t, int16x2_t, int32_t);

Performs two 16-bit signed multiplications. Takes the difference of the products, subtracting the high-halfword product
from the low-halfword product, and adds the difference to the third operand. Sets the Q flag if the addition overflows.
(Overflow cannot occur during the multiplications or the subtraction.)

int32_t __smlsdx(int16x2_t, int16x2_t, int32_t);

Performs two 16-bit signed multiplications. The product of the high halfword of the first operand and the low halfword
of the second operand is subtracted from the product of the low halfword of the first operand and the high halfword
of the second operand, and the difference is added to the third operand. Sets the Q flag if the addition overflows.
(Overflow cannot occur during the multiplications or the subtraction.)

int64_t __smlsld(int16x2_t, int16x2_t, int64_t);

Perform two 16-bit signed multiplications. Take the difference of the products, subtracting the high-halfword product
from the low-halfword product, and add the difference to the third operand. Overflow in the 64-bit addition is not
detected. (Overflow cannot occur during the multiplications or the subtraction.)

int64_t __smlsldx(int16x2_t, int16x2_t, int64_t);

Perform two 16-bit signed multiplications. The product of the high halfword of the first operand and the low halfword
of the second operand is subtracted from the product of the low halfword of the first operand and the high halfword of
the second operand, and the difference is added to the third operand. Overflow in the 64-bit addition is not detected.
(Overflow cannot occur during the multiplications or the subtraction.)

int32_t __smuad(int16x2_t, int16x2_t);

Perform 2x16-bit signed multiplications, adding the products together. :: Set the Q flag if the addition overflows.

int32_t __smuadx(int16x2_t, int16x2_t);

Exchange the halfwords of the second operand (or equivalently, the first operand), perform 2x16-bit signed multipli-
cations, and add the products together. Set the Q flag if the addition overflows.

int32_t __smusd(int16x2_t, int16x2_t);

Perform two 16-bit signed multiplications. Take the difference of the products, subtracting the high-halfword product
from the low-halfword product.

int32_t __smusdx(int16x2_t, int16x2_t);

Perform two 16-bit signed multiplications. The product of the high halfword of the first operand and the low halfword
of the second operand is subtracted from the product of the low halfword of the first operand and the high halfword of
the second operand.

8.5.11 Examples

Taking the elementwise maximum of two SIMD values each of which consists of four 8-bit signed numbers:
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int8x4_t max8x4(int8x4_t x, int8x4_t y) { __ssub8(x, y); return __sel(x, y); }

As described in :ref:sec-Parallel-selection, where SIMD values consist of two 16-bit unsigned numbers:

int16x2_t max16x2(int16x2_t x, int16x2_t y) { __usub16(x, y); return __sel(x, y); }

Note that even though the result of the subtraction is not used, the compiler must still generate the instruction, because
of its side-effect on the GE bits which are tested by the __sel() intrinsic.

8.6 Floating-point data-processing intrinsics

The intrinsics in this section provide direct access to selected floating-point instructions. They are defined only if the
appropriate precision is available in hardware, as indicated by __ARM_FP (see Hardware floating point).

double __sqrt(double x);
float __sqrtf(float x);

The __sqrt intrinsics compute the square root of their operand. They have no effect on errno. Negative values
produce a default NaN result and possible floating-point exception as described in [ARMARM] (A2.7.7).

double __fma(double x, double y, double z);
float __fmaf(float x, float y, float z);

The __fma intrinsics compute (x*y)+z, without intermediate rounding. These intrinsics are available only if
__ARM_FEATURE_FMA is defined. On a Standard C implementation it should not normally be necessary to use
these intrinsics, because the fma functions defined in [C99] (7.12.13) should expand directly to the instructions if
available.

float __rintnf (float);
double __rintn (double);

The __rintn intrinsics perform a floating point round to integral, to nearest with ties to even. The __rintn
intrinsic is available when __ARM_FEATURE_DIRECTED_ROUNDING is defined to 1. For other rounding modes
like ‘to nearest with ties to away’ it is strongly recommended that C99 standard functions be used. To achieve a
floating point convert to integer, rounding to ‘nearest with ties to even’ operation, use these rounding functions with a
type-cast to integral values. For example:

(int) __rintnf (a);

maps to a floating point convert to signed integer, rounding to nearest with ties to even operation.

int32_t __jcvt (double);

Converts a double-precision floating-point number to a 32-bit signed integer following the Javascript Convert instruc-
tion semantics [ARMARMv83]. The __jcvt intrinsic is available if __ARM_FEATURE_JCVT is defined.

float __rint32zf (float);
double __rint32z (double);
float __rint64zf (float);
double __rint64z (double);
float __rint32xf (float);
double __rint32x (double);
float __rint64xf (float);
double __rint64x (double);

8.6. Floating-point data-processing intrinsics
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These intrinsics round their floating-point argument to a floating-point value that would be representable in a 32-bit
or 64-bit signed integer type. Out-of-Range values are forced to the Most Negative Integer representable in the target
size, and an Invalid Operation Floating-Point Exception is generated. The rounding mode can be either the ambient
rounding mode (for example __rint32xf) or towards zero (for example __rint32zf).

These instructions are introduced in the Armv8.5-A extensions [ARMARMv85] and are available only in the AArch64
execution state. The intrinsics are available when __ARM_FEATURE_FRINT is defined.

8.7 Random number generation intrinsics

The Random number generation intrinsics provide access to the Random Number instructions introduced in Armv8.5-
A. These intrinsics are only defined for the AArch64 execution state and are available when __ARM_FEATURE_RNG
is defined.

int __rndr (uint64_t *);

Stores a 64-bit random number into the object pointed to by the argument and returns zero. If the implementation
could not generate a random number within a reasonable period of time the object pointed to by the input is set to zero
and a non-zero value is returned.

int __rndrrs (uint64_t *);

Reseeds the random number generator. After that stores a 64-bit random number into the object pointed to by the
argument and returns zero. If the implementation could not generate a random number within a reasonable period of
time the object pointed to by the input is set to zero and a non-zero value is returned.

These intrinsics have side-effects on the system beyond their results. Implementations must preserve them even if the
results of the intrinsics are unused.

To access these intrinsics, <arm_acle.h> should be included.

8.8 CRC32 intrinsics

CRC32 intrinsics provide direct access to CRC32 instructions CRC32{C}{B, H, W, X} in both Armv8 AArch32 and
AArch64 execution states. These intrinsics are available when __ARM_FEATURE_CRC32 is defined.

uint32_t __crc32b (uint32_t a, uint8_t b);

Performs CRC-32 checksum from bytes.

uint32_t __crc32h (uint32_t a, uint16_t b);

Performs CRC-32 checksum from half-words.

uint32_t __crc32w (uint32_t a, uint32_t b);

Performs CRC-32 checksum from words.

uint32_t __crc32d (uint32_t a, uint64_t b);

Performs CRC-32 checksum from double words.

uint32_t __crc32cb (uint32_t a, uint8_t b);
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Performs CRC-32C checksum from bytes.

uint32_t __crc32ch (uint32_t a, uint16_t b);

Performs CRC-32C checksum from half-words.

uint32_t __crc32cw (uint32_t a, uint32_t b);

Performs CRC-32C checksum from words.

uint32_t __crc32cd (uint32_t a, uint64_t b);

Performs CRC-32C checksum from double words.

To access these intrinsics, <arm_acle.h> should be included.

8.8. CRC32 intrinsics
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Chapter 9
Custom Datapath Extension

The specification for CDE is in BETA state and may change or be extended in the future.

The intrinsics in this section provide access to instructions in the Custom Datapath Extension.

The <arm_cde.h> header should be included before using these intrinsics. The header is available when the
__ARM_FEATURE_CDE feature macro is defined.

The intrinsics are stateless and pure, meaning an implementation is permitted to discard an invocation of an intrinsic
whose result is unused without considering side-effects.

9.1 CDE intrinsics

The following intrinsics are available when __ARM_FEATURE_CDE is defined. These intrinsics use the
coproc and imm compile-time constants to generate the corresponding CDE instructions. The coproc ar-
gument indicates the CDE coprocessor to use. The range of available coprocessors is indicated by the bitmap
__ARM_FEATURE_CDE_COPROC, described in Custom Datapath Extension. The imm argument must fit within
the immediate range of the corresponding CDE instruction. Values for these arguments outside these ranges must be
rejected.

uint32_t __arm_cx1(int coproc, uint32_t imm);
uint32_t __arm_cx1a(int coproc, uint32_t acc, uint32_t imm);
uint32_t __arm_cx2(int coproc, uint32_t n, uint32_t imm);
uint32_t __arm_cx2a(int coproc, uint32_t acc, uint32_t n, uint32_t imm);
uint32_t __arm_cx3(int coproc, uint32_t n, uint32_t m, uint32_t imm);
uint32_t __arm_cx3a(int coproc, uint32_t acc, uint32_t n, uint32_t m, uint32_t imm);

uint64_t __arm_cx1d(int coproc, uint32_t imm);
uint64_t __arm_cx1da(int coproc, uint64_t acc, uint32_t imm);
uint64_t __arm_cx2d(int coproc, uint32_t n, uint32_t imm);
uint64_t __arm_cx2da(int coproc, uint64_t acc, uint32_t n, uint32_t imm);
uint64_t __arm_cx3d(int coproc, uint32_t n, uint32_t m, uint32_t imm);
uint64_t __arm_cx3da(int coproc, uint64_t acc, uint32_t n, uint32_t m, uint32_t imm);

The following intrinsics are also available when __ARM_FEATURE_CDE is defined, providing access to the CDE
instructions that read and write the floating-point registers:
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uint32_t __arm_vcx1_u32(int coproc, uint32_t imm);
uint32_t __arm_vcx1a_u32(int coproc, uint32_t acc, uint32_t imm);
uint32_t __arm_vcx2_u32(int coproc, uint32_t n, uint32_t imm);
uint32_t __arm_vcx2a_u32(int coproc, uint32_t acc, uint32_t n, uint32_t imm);
uint32_t __arm_vcx3_u32(int coproc, uint32_t n, uint32_t m, uint32_t imm);
uint32_t __arm_vcx3a_u32(int coproc, uint32_t acc, uint32_t n, uint32_t m, uint32_t
→˓imm);

In addition, the following intrinsics can be used to generate the D-register forms of the instructions:

uint64_t __arm_vcx1d_u64(int coproc, uint32_t imm);
uint64_t __arm_vcx1da_u64(int coproc, uint64_t acc, uint32_t imm);
uint64_t __arm_vcx2d_u64(int coproc, uint64_t m, uint32_t imm);
uint64_t __arm_vcx2da_u64(int coproc, uint64_t acc, uint64_t m, uint32_t imm);
uint64_t __arm_vcx3d_u64(int coproc, uint64_t n, uint64_t m, uint32_t imm);
uint64_t __arm_vcx3da_u64(int coproc, uint64_t acc, uint64_t n, uint64_t m, uint32_t
→˓imm);

The above intrinsics use the uint32_t and uint64_t types as general container types.

The following intrinsics can be used to generate CDE instructions that use the MVE Q registers.

uint8x16_t __arm_vcx1q_u8 (int coproc, uint32_t imm);
T __arm_vcx1qa(int coproc, T acc, uint32_t imm);
T __arm_vcx2q(int coproc, T n, uint32_t imm);
uint8x16_t __arm_vcx2q_u8(int coproc, T n, uint32_t imm);
T __arm_vcx2qa(int coproc, T acc, U n, uint32_t imm);
T __arm_vcx3q(int coproc, T n, U m, uint32_t imm);
uint8x16_t __arm_vcx3q_u8(int coproc, T n, U m, uint32_t imm);
T __arm_vcx3qa(int coproc, T acc, U n, V m, uint32_t imm);

T __arm_vcx1q_m(int coproc, T inactive, uint32_t imm, mve_pred16_t p);
T __arm_vcx2q_m(int coproc, T inactive, U n, uint32_t imm, mve_pred16_t p);
T __arm_vcx3q_m(int coproc, T inactive, U n, V m, uint32_t imm, mve_pred16_t p);

T __arm_vcx1qa_m(int coproc, T acc, uint32_t imm, mve_pred16_t p);
T __arm_vcx2qa_m(int coproc, T acc, U n, uint32_t imm, mve_pred16_t p);
T __arm_vcx3qa_m(int coproc, T acc, U n, V m, uint32_t imm, mve_pred16_t p);

These intrinsics are polymorphic in the T, U and V types, which must be of size 128 bits. The __arm_vcx1q_u8,
__arm_vcx2q_u8 and __arm_vcx3q_u8 intrinsics return a container vector of 16 bytes that can be reinterpreted
to other vector types as needed using the intrinsics below:

uint16x8_t __arm_vreinterpretq_u16_u8 (uint8x16_t in);
int16x8_t __arm_vreinterpretq_s16_u8 (uint8x16_t in);
uint32x4_t __arm_vreinterpretq_u32_u8 (uint8x16_t in);
int32x4_t __arm_vreinterpretq_s32_u8 (uint8x16_t in);
uint64x2_t __arm_vreinterpretq_u64_u8 (uint8x16_t in);
int64x2_t __arm_vreinterpretq_s64_u8 (uint8x16_t in);
float16x8_t __arm_vreinterpretq_f16_u8 (uint8x16_t in);
float32x4_t __arm_vreinterpretq_f32_u8 (uint8x16_t in);
float64x2_t __arm_vreinterpretq_f64_u8 (uint8x16_t in);

The parameter inactive can be set to an uninitialized (don’t care) value using the MVE vuninitializedq
family of intrinsics.
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Chapter 10
Memory tagging intrinsics

The intrinsics in this section provide access to the Memory Tagging Extension (MTE) introduced with the Armv8.5-A
[ARMARMv85] architecture.

The <arm_acle.h> header should be included before using these intrinsics.

These intrinsics are expected to be used in system code, including freestanding environments. As such, implementa-
tions must guarantee that no new linking dependencies to runtime support libraries will occur when these intrinsics
are used.

10.1 Memory tagging

Memory tagging is a lightweight, probabilistic version of a lock and key system where one of a limited set of lock
values can be associated with the memory locations forming part of an allocation, and the equivalent key is stored in
unused high bits of addresses used as references to that allocation. On each use of a reference the key is checked to
make sure that it matches with the lock before an access is made.

When allocating memory, programmers must assign a lock to that section of memory. When freeing an allocation,
programmers must change the lock value so that further referencing using the previous key has a reasonable probability
of failure.

The intrinsics specified below support creation, storage, and retrieval of the lock values, leaving software to select and
set the values on allocation and deallocation. The intrinsics are expected to help protect heap allocations.

The lock is referred in the text below as allocation tag and the key as logical address tag (or in short
logical tag).

10.2 Terms and implementation details

The memory system is extended with a new physical address space containing an allocation tag for each 16-byte
granule of memory in the existing data physical address space. All loads and stores to memory must pass a valid
logical address tag as part of the reference. However, SP- and PC-relative addresses are not checked. The logical tag
is held in the upper bits of the reference. There are 16 available logical tags that can be used.
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10.3 MTE intrinsics

These intrinsics are available when __ARM_FEATURE_MEMORY_TAGGING is defined. Type T below can be any
type. Where the function return type is specified as T, the return type is determined from the input argument which
must be also be specified as of type T. If the input argument T has qualifiers const or volatile, the return type T
will also have the const or volatile qualifier.

T* __arm_mte_create_random_tag(T* src, uint64_t mask);

This intrinsic returns a pointer containing a randomly created logical address tag. The first argument is a pointer src
containing an address. The second argument is a mask, where the lower 16 bits specify logical tags which must be
excluded from consideration. The intrinsic returns a pointer which is a copy of the input address but also contains a
randomly created logical tag (in the upper bits), that excludes any logical tags specified by the mask. A mask of zero
excludes no tags.

T* __arm_mte_increment_tag(T* src, unsigned offset);

This intrinsic returns a pointer which is a copy of the input pointer src but with the logical address tag part offset
by a specified offset value. The first argument is a pointer src containing an address and a logical tag. The second
argument is an offset which must be a compile time constant value in the range [0,15]. The intrinsic adds offset
to the logical tag part of src returning a pointer with the incremented logical tag. If adding the offset increments the
logical tag beyond the valid 16 tags, the value is wrapped around.

uint64_t __arm_mte_exclude_tag(T* src, uint64_t excluded);

This intrinsic adds a logical tag to the set of excluded logical tags. The first argument is a pointer src containing an
address and a logical tag. The second argument excluded is a mask where the lower 16 bits specify logical tags
which are in current excluded set. The intrinsic adds the logical tag of src to the set specified by excluded and
returns the new excluded tag set.

void __arm_mte_set_tag(T* tag_address);

This intrinsic stores an allocation tag, computed from the logical tag, to the tag memory thereby setting the allocation
tag for the 16-byte granule of memory. The argument is a pointer tag_address containing a logical tag and an
address. The address must be 16-byte aligned. The type of the pointer is ignored (i.e. allocation tag is set only for a
single granule even if the pointer points to a type that is greater than 16 bytes). These intrinsics generate an unchecked
access to memory.

T* __arm_mte_get_tag(T* address);

This intrinsic loads the allocation tag from tag memory and returns the corresponding logical tag as part of the returned
pointer value. The argument is a pointer address containing an address from which allocation tag memory is read.
The pointer address need not be 16-byte aligned as it applies to the 16-byte naturally aligned granule containing the
un-aligned pointer. The return value is a pointer whose address part comes from address and the logical tag value
is the value computed from the allocation tag that was read from tag memory.

ptrdiff_t __arm_mte_ptrdiff(T* a, T* b);

The intrinsic calculates the difference between the address parts of the two pointers, ignoring the tags. The return
value is the sign-extended result of the computation. The tag bits in the input pointers are ignored for this operation.
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Chapter 11
System register access

11.1 Special register intrinsics

Intrinsics are provided to read and write system and coprocessor registers, collectively referred to as special register.

uint32_t __arm_rsr(const char *special_register);

Reads a 32-bit system register.

uint64_t __arm_rsr64(const char *special_register);

Reads a 64-bit system register.

void* __arm_rsrp(const char *special_register);

Reads a system register containing an address.

float __arm_rsrf(const char *special_register);

Reads a 32-bit coprocessor register containing a floating point value.

double __arm_rsrf64(const char *special_register);

Reads a 64-bit coprocessor register containing a floating point value.

void __arm_wsr(const char *special_register, uint32_t value);

Writes a 32-bit system register.

void __arm_wsr64(const char *special_register, uint64_t value);

Writes a 64-bit system register.

void __arm_wsrp(const char *special_register, const void *value);

Writes a system register containing an address.

void __arm_wsrf(const char *special_register, float value);
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Writes a floating point value to a 32-bit coprocessor register.

void __arm_wsrf64(const char *special_register, double value);

Writes a floating point value to a 64-bit coprocessor register.

11.2 Special register designations

The special_register parameter must be a compile time string literal. This means that the implementation can
determine the register being accessed at compile-time and produce the correct instruction without having to resort to
self-modifying code. All register specifiers are case-insensitive (so “apsr” is equivalent to “APSR”). The string literal
should have one of the forms described below.

11.2.1 AArch32 32-bit coprocessor register

When specifying a 32-bit coprocessor register to __arm_rsr, __arm_rsrp, __arm_rsrf, __arm_wsr,
__arm_wsrp, or __arm_wsrf:

cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2>

Or (equivalently):

p<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2>

Where:

• <coprocessor> is a decimal integer in the range [0, 15]

• <opc1>, <opc2> are decimal integers in the range [0, 7]

• <CRn>, <CRm> are decimal integers in the range [0, 15].

The values of the register specifiers will be as described in [ARMARM] or the Technical Reference Manual (TRM) for
the specific processor.

So to read MIDR:

unsigned int midr = __arm_rsr("cp15:0:c0:c0:0");

ACLE does not specify predefined strings for the system coprocessor register names documented in the Arm Archi-
tecture Reference Manual (for example “MIDR”).

11.2.2 AArch32 32-bit system register

When specifying a 32-bit system register to __arm_rsr, __arm_rsrp, __arm_wsr, or __arm_wsrp, one of:

• The values accepted in the spec_reg field of the MRS instruction [ARMARM] (B6.1.5), for example CPSR.

• The values accepted in the spec_reg field of the MSR (immediate) instruction [ARMARM] (B6.1.6).

• The values accepted in the spec_reg field of the VMRS instruction [ARMARM] (B6.1.14), for example
FPSID.

• The values accepted in the spec_reg field of the VMSR instruction [ARMARM] (B6.1.15), for example
FPSCR.
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• The values accepted in the spec_reg field of the MSR and MRS instructions with virtualization extensions
[ARMARM] (B1.7), for example ELR_Hyp.

• The values specified in Special register encodings used in Armv7-M system instructions. [ARMv7M] (B5.1.1),
for example PRIMASK.

11.2.3 AArch32 64-bit coprocessor register

When specifying a 64-bit coprocessor register to __arm_rsr64, __arm_rsrf64, __arm_wsr64, or
__arm_wsrf64:

cp<coprocessor>:<opc1>:c<CRm>

Or (equivalently):

p<coprocessor>:<opc1>:c<Rm>

Where:

• <coprocessor> is a decimal integer in the range [0, 15]

• <opc1> is a decimal integer in the range [0, 7]

• <CRm> is a decimal integer in the range [0, 15]

11.2.4 AArch64 system register

When specifying a system register to __arm_rsr, __arm_rsr64, __arm_rsrp, __arm_wsr, __arm_wsr64
or __arm_wsrp:

"o0:op1:CRn:CRm:op2"

Where:

• <o0> is a decimal integer in the range [0, 1]

• <op1>, <op2> are decimal integers in the range [0, 7]

• <CRm>, <CRn> are decimal integers in the range [0, 15]

11.2.5 AArch64 processor state field

When specifying a processor state field to __arm_rsr, __arm_rsp, __arm_wsr, or __arm_wsrp, one of the
values accepted in the pstatefield of the MSR (immediate) instruction [ARMARMv8] (C5.6.130).

11.3 Coprocessor Intrinsics

11.3.1 AArch32 coprocessor intrinsics

In the intrinsics below coproc, opc1, opc2, CRn and CRd are all compile time integer constants with appropriate
values as defined by the coprocessor for the intended architecture.

The argument order for all intrinsics is the same as the operand order for the instruction as described in the Arm Archi-
tecture Reference Manual, with the exception of MRC/ MRC2/ MRRC/MRRC2 which omit the Arm register arguments

11.3. Coprocessor Intrinsics
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and instead returns a value and MCRR/MCRR2 which accepts a single 64 bit unsigned integer instead of two 32-bit
unsigned integers.

11.3.2 AArch32 Data-processing coprocessor intrinsics

Intrinsics are provided to create coprocessor data-processing instructions as follows:

Intrinsics Equivalent Instruction
void __arm_cdp(coproc, opc1, CRd, CRn, CRm, opc2) CDP coproc, opc1, CRd, CRn, CRm, opc2
void __arm_cdp2(coproc, opc1, CRd, CRn, CRm, opc2) CDP2 coproc, opc1, CRd, CRn, CRm, opc2

11.3.2.1 AArch32 Memory coprocessor transfer intrinsics

Intrinsics are provided to create coprocessor memory transfer instructions as follows:

Intrinsics Equivalent Instruction
void __arm_ldc(coproc, CRd, const void* p) LDC coproc, CRd, [. . . ]
void __arm_ldcl(coproc, CRd, const void* p) LDCL coproc, CRd, [. . . ]
void __arm_ldc2(coproc, CRd, const void* p) LDC2 coproc, CRd, [. . . ]
void __arm_ldc2l(coproc, CRd, const void* p) LDC2L coproc, CRd, [. . . ]
void __arm_stc(coproc, CRd, void* p) STC coproc, CRd, [. . . ]
void __arm_stcl(coproc, CRd, void* p) STCL coproc, CRd, [. . . ]
void __arm_stc2(coproc, CRd, void* p) STC2 coproc, CRd, [. . . ]
void __arm_stc2l(coproc, CRd, void* p) STC2L coproc, CRd, [. . . ]

11.3.3 AArch32 Integer to coprocessor transfer intrinsics

Intrinsics are provided to map to coprocessor to core register transfer instructions as follows:

Intrinsics Equivalent Instruction
void __arm_mcr(coproc, opc1, uint32_t value, CRn, CRm, opc2) MCR coproc, opc1, Rt, CRn, CRm, opc2
void __arm_mcr2(coproc, opc1, uint32_t value, CRn, CRm, opc2) MCR2 coproc, opc1, Rt, CRn, CRm, opc2
uint32_t __arm_mrc(coproc, opc1, CRn, CRm, opc2) MRC coproc, opc1, Rt, CRn, CRm, opc2
uint32_t __arm_mrc2(coproc, opc1, CRn, CRm, opc2) MRC2 coproc, opc1, Rt, CRn, CRm, opc2
void __arm_mcrr(coproc, opc1, uint64_t value, CRm) MCRR coproc, opc1, Rt, Rt2, CRm
void __arm_mcrr2(coproc, opc1, uint64_t value, CRm) MCRR2 coproc, opc1, Rt, Rt2, CRm
uint64_t __arm_mrrc(coproc, opc1, CRm) MRRC coproc, opc1, Rt, Rt2, CRm
uint64_t __arm_mrrc2(coproc, opc1, CRm) MRRC2 coproc, opc1, Rt, Rt2, CRm

The intrinsics __arm_mcrr/__arm_mcrr2 accept a single unsigned 64-bit integer value instead of two 32-
bit integers. The low half of the value goes in register Rt and the high half goes in Rt2. Likewise for
__arm_mrrc/__arm_mrrc2 which return an unsigned 64-bit integer.

11.4 Unspecified behavior

ACLE does not specify how the implementation should behave in the following cases:

• When merging multiple reads/writes of the same register.
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• When writing to a read-only register, or a register that is undefined on the architecture being compiled for.

• When reading or writing to a register which the implementation models by some other means (this covers – but
is not limited to – reading/writing cp10 and cp11 registers when VFP is enabled, and reading/writing the CPSR).

• When reading or writing a register using one of these intrinsics with an inappropriate type for the value being
read or written to.

• When writing to a coprocessor register that carries out a “System operation”.

• When using a register specifier which doesn’t apply to the targetted architecture.

11.4. Unspecified behavior
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Chapter 12
Instruction generation

12.1 Instruction generation, arranged by instruction

The following table indicates how instructions may be generated by intrinsics, and/or C code. The table includes
integer data processing and certain system instructions.

Compilers are encouraged to use opportunities to combine instructions, or to use shifted/rotated operands where avail-
able. In general, intrinsics are not provided for accumulating variants of instructions in cases where the accumulation
is a simple addition (or subtraction) following the instruction.

The table indicates which architectures the instruction is supported on, as follows:

Architecture 8 means Armv8-A AArch32 and AArch64, 8-32 means Armv8-AArch32 only. 8-64 means Armv8-
AArch64 only.

Architecture 7 means Armv7-A and Armv7-R.

In the sequence of Arm architectures { 5, 5TE, 6, 6T2, 7 } each architecture includes its predecessor instruction set.

In the sequence of Thumb-only architectures { 6-M, 7-M, 7E-M } each architecture includes its predecessor instruction
set.

7MP are the Armv7 architectures that implement the Multiprocessing Extensions.

Instruction Flags Arch. Intrinsic or C code
BKPT 5 none
BFC 6T2, 7-M C
BFI 6T2, 7-M C
CLZ 5 __clz, __builtin_clz
DBG 7, 7-M __dbg
DMB 8,7, 6-M __dmb
DSB 8, 7, 6-M __dsb
FRINT32Z 8-64 __rint32zf, __rint32z
FRINT64Z 8-64 __rint64zf, __rint64z
FRINT32X 8-64 __rint32xf, __rint32x
FRINT64X 8-64 __rint64xf, __rint64x
ISB 8, 7, 6-M __isb
LDREX 6, 7-M __sync_xxx

Continued on next page
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Table 12.1 – continued from previous page
LDRT all none
MCR/MRC all see System register access
MSR/MRS 6-M see System register access
PKHBT 6 C
PKHTB 6 C
PLD 8-32,5TE, 7-M __pld
PLDW 7-MP __pldx
PLI 8-32,7 __pli
QADD Q 5E, 7E-M __qadd
QADD16 6, 7E-M __qadd16
QADD8 6, 7E-M __qadd8
QASX 6, 7E-M __qasx
QDADD Q 5E, 7E-M __qadd(__qdbl)
QDSUB Q 5E, 7E-M __qsub(__qdbl)
QSAX 6, 7E-M __qsax
QSUB Q 5E, 7E-M __qsub
QSUB16 6, 7E-M __qsub16
QSUB8 6, 7E-M __qsub8
RBIT 8,6T2, 7-M __rbit, __builtin_rbit
REV 8,6, 6-M __rev, __builtin_bswap32
REV16 8,6, 6-M __rev16
REVSH 6, 6-M __revsh
ROR all __ror
SADD16 GE 6, 7E-M __sadd16
SADD8 GE 6, 7E-M __sadd8
SASX GE 6, 7E-M __sasx
SBFX 8,6T2, 7-M C
SDIV 7-M+ C
SEL (GE) 6, 7E-M __sel
SETEND 6 n/a
SEV 8,6K,6-M,7-M __sev
SHADD16 6, 7E-M __shadd16
SHADD8 6, 7E-M __shadd8
SHASX 6, 7E-M __shasx
SHSAX 6, 7E-M __shsax
SHSUB16 6, 7E-M __shsub16
SHSUB8 6, 7E-M __shsub8
SMC 8,6Z, T2 none
SMI 6Z, T2 none
SMLABB Q 5E, 7E-M __smlabb
SMLABT Q 5E, 7E-M __smlabt
SMLAD Q 6, 7E-M __smlad
SMLADX Q 6, 7E-M __smladx
SMLAL all, 7-M C
SMLALBB 5E, 7E-M __smulbb and C
SMLALBT 5E, 7E-M __smulbt and C
SMLALTB 5E, 7E-M __smultb and C
SMLALTT 5E, 7E-M __smultt and C
SMLALD 6, 7E-M __smlald
SMLALDX 6, 7E-M __smlaldx

Continued on next page
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Table 12.1 – continued from previous page
SMLATB Q 5E, 7E-M __smlatb
SMLATT Q 5E, 7E-M __smlatt
SMLAWB Q 5E, 7E-M __smlawb
SMLAWT Q 5E, 7E-M __smlawt
SMLSD Q 6, 7E-M __smlsd
SMLSDX Q 6, 7E-M __smlsdx
SMLSLD 6, 7E-M __smlsld
SMLSLDX 6, 7E-M __smlsldx
SMMLA 6, 7E-M C
SMMLAR 6, 7E-M C
SMMLS 6, 7E-M C
SMMLSR 6, 7E-M C
SMMUL 6, 7E-M C
SMMULR 6, 7E-M C
SMUAD Q 6, 7E-M __smuad
SMUADX Q 6, 7E-M __smuadx
SMULBB 5E, 7E-M __smulbb; C
SMULBT 5E, 7E-M __smulbt ; C
SMULTB 5E, 7E-M __smultb; C
SMULTT 5E, 7E-M __smultt; C
SMULL all, 7-M C
SMULWB 5E, 7E-M __smulwb; C
SMULWT 5E, 7E-M __smulwt; C
SMUSD 6, 7E-M __smusd
SMUSDX 6, 7E-M __smusd
SSAT Q 6, 7-M __ssat
SSAT16 Q 6, 7E-M __ssat16
SSAX GE 6, 7E-M __ssax
SSUB16 GE 6, 7E-M __ssub16
SSUB8 GE 6, 7E-M __ssub8
STREX 6, 7-M __sync_xxx
STRT all none
SVC all none
SWP A32 only __swp [deprecated; see Swap]
SXTAB 6, 7E-M (int8_t)x + a
SXTAB16 6, 7E-M __sxtab16
SXTAH 6, 7E-M (int16_t)x + a
SXTB 8,6, 6-M (int8_t)x
SXTB16 6, 7E-M __sxtb16
SXTH 8,6, 6-M (int16_t)x
UADD16 GE 6, 7E-M __uadd16
UADD8 GE 6, 7E-M __uadd8
UASX GE 6, 7E-M __uasx
UBFX 8,6T2, 7-M C
UDIV 7-M+ C
UHADD16 6, 7E-M __uhadd16
UHADD8 6, 7E-M __uhadd8
UHASX 6, 7E-M __uhasx
UHSAX 6, 7E-M __uhsax
UHSUB16 6, 7E-M __uhsub16

Continued on next page
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Table 12.1 – continued from previous page
UHSUB8 6, 7E-M __uhsub8
UMAAL 6, 7E-M C
UMLAL all, 7-M acc += (uint64_t)x * y
UMULL all, 7-M C
UQADD16 6, 7E-M __uqadd16
UQADD8 6, 7E-M __uqadd8
UQASX 6, 7E-M __uqasx
UQSAX 6, 7E-M __uqsax
UQSUB16 6, 7E-M __uqsub16
UQSUB8 6, 7E-M __uqsub8
USAD8 6, 7E-M __usad8
USADA8 6, 7E-M __usad8 + acc
USAT Q 6, 7-M __usat
USAT16 Q 6, 7E-M __usat16
USAX 6, 7E-M __usax
USUB16 6, 7E-M __usub16
USUB8 6, 7E-M __usub8
UXTAB 6, 7E-M (uint8_t)x + i
UXTAB16 6, 7E-M __uxtab16
UXTAH 6, 7E-M (uint16_t)x + i
UXTB16 6, 7E-M __uxtb16
UXTH 8,6, 6-M (uint16_t)x
VFMA VFPv4 fma, __fma
VSQRT VFP sqrt, __sqrt
WFE 8,6K, 6-M __wfe
WFI 8,6K, 6-M __wfi
YIELD 8,6K, 6-M __yield
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Chapter 13
Advanced SIMD (Neon) intrinsics

13.1 Introduction

The Advanced SIMD instructions provide packed Single Instruction Multiple Data (SIMD) and single-element scalar
operations on a range of integer and floating-point types.

Neon is an implementation of the Advanced SIMD instructions which is provided as an extension for some Cortex-A
Series processors. Where this document refers to Neon instructions, such instructions refer to the Advanced SIMD
instructions as described by the Arm Architecture Reference Manual [ARMARMv8].

The Advanced SIMD extension provides for arithmetic, logical and saturated arithmetic operations on 8-bit, 16-bit
and 32-bit integers (and sometimes on 64-bit integers) and on 32-bit and 64-bit floating-point data, arranged in 64-bit
and 128-bit vectors.

The intrinsics in this section provide C and C++ programmers with a simple programming model allowing easy access
to code-generation of the Advanced SIMD instructions for both AArch64 and AArch32 execution states.

13.1.1 Concepts

The Advanced SIMD instructions are designed to improve the performance of multimedia and signal processing
algorithms by operating on 64-bit or 128-bit vectors of elements of the same scalar data type.

For example, uint16x4_t is a 64-bit vector type consisting of four elements of the scalar uint16_t data type.
Likewise, uint16x8_t is a 128-bit vector type consisting of eight uint16_t elements.

In a vector programming model, operations are performed in parallel across the elements of the vector. For example,
vmul_u16(a, b) is a vector intrinsic which takes two uint16x4_t vector arguments a and b, and returns the
result of multiplying corresponding elements from each vector together.

The Advanced SIMD extension also provides support for vector-by-lane and vector-by-scalar operations. In these
operations, a scalar value is extracted from one element of a vector input, or provided directly, duplicated to create a
new vector with the same number of elements as an input vector, and an operation is performed in parallel between
this new vector and other input vectors.

For example, vmul_lane_u16(a, b, 1), is a vector-by-lane intrinsic which takes two uint16x4_t vector
elements. From b, element 1 is extracted, a new vector is formed which consists of four copies of b, and this new
vector is multiplied by a.
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Reduction, cross-lane, and pairwise vector operations work on pairs of elements within a vector, or across the whole
of a single vector performing the same operation between elements of that vector. For example, vaddv_u16(a) is
a reduction intrinsic which takes a uint16x4_t vector, adds each of the four uint16_t elements together, and
returns a uint16_t result containing the sum.

13.1.2 Vector data types

Vector data types are named as a lane type and a multiple. Lane type names are based on the types defined in
<stdint.h>. For example,. int16x4_t is a vector of four int16_t values. The base types are int8_t,
uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t, float16_t, float32_t,
poly8_t, poly16_t, poly64_t, poly128_t and bfloat16_t`. The multiples are such that
the resulting vector types are 64-bit and 128-bit. In AArch64, ``float64_t is
also a base type.

Not all types can be used in all operations. Generally, the operations available on a type correspond to the operations
available on the corresponding scalar type.

ACLE does not define whether int64x1_t is the same type as int64_t, or whether uint64x1_t is the same
type as uint64_t, or whether poly64x1_t is the same as poly64_t for example for C++ overloading purposes.

float16 types are only available when the __fp16 type is defined, i.e. when supported by the hardware.

bfloat types are only available when the __bf16 type is defined, i.e. when supported by the hardware. The bfloat
types are all opaque types. That is to say they can only be used by intrinsics.

13.1.3 Advanced SIMD Scalar data types

AArch64 supports Advanced SIMD scalar operations that work on standard scalar data types viz. int8_t, uint8_t,
int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t, float32_t, float64_t.

13.1.4 Vector array data types

Array types are defined for multiples of 2, 3 or 4 of all the vector types, for use in load and store operations, in table-
lookup operations, and as the result type of operations that return a pair of vectors. For a vector type <type>_t the
corresponding array type is <type>x<length>_t. Concretely, an array type is a structure containing a single array
element called val.

For example an array of two int16x4_t types is int16x4x2_t, and is represented as:

struct int16x4x2_t { int16x4_t val[2]; };

Note that this array of two 64-bit vector types is distinct from the 128-bit vector type int16x8_t.

13.1.5 Scalar data types

For consistency, <arm_neon.h> defines some additional scalar data types to match the vector types.

float32_t is defined as an alias for float.

If the __fp16 type is defined, float16_t is defined as an alias for it.

If the __bf16 type is defined, bfloat16_t is defined as an alias for it.

72
Copyright © 2011, 2020 Arm Limited or its affiliates. All rights reserved. 

101028_Q220_00_en
80



Arm C Language Extensions Documentation, Release ACLE Q2 2020

poly8_t, poly16_t, poly64_t and poly128_t are defined as unsigned integer types. It is unspecified whether
these are the same type as uint8_t, uint16_t, uint64_t and uint128_t for overloading and mangling
purposes.

float64_t is defined as an alias for double.

13.1.6 16-bit floating-point arithmetic scalar intrinsics

The architecture extensions introduced by Armv8.2-A [ARMARMv82] provide a set of data processing instructions
which operate on 16-bit floating-point quantities. These instructions are available in both AArch64 and AArch32
execution states, for both Advanced SIMD and scalar floating-point values.

ACLE defines two sets of intrinsics which correspond to these data processing instructions; a set of scalar intrinsics,
and a set of vector intrinsics.

The intrinsics introduced in this section use the data types defined by ACLE. In particular, scalar intrinsics use the
float16_t type defined by ACLE as an alias for the __fp16 type, and vector intrinsics use the float16x4_t
and float16x8_t vector types.

Where the scalar 16-bit floating point intrinsics are available, an implementation is required to ensure that including
<arm_neon.h> has the effect of also including <arm_fp16.h>.

To only enable support for the scalar 16-bit floating-point intrinsics, the header <arm_fp16.h> may be included
directly.

13.1.7 16-bit brain floating-point arithmetic scalar intrinsics

The architecture extensions introduced by Armv8.6-A [Bfloat16] provide a set of data processing instructions which
operate on brain 16-bit floating-point quantities. These instructions are available in both AArch64 and AArch32
execution states, for both Advanced SIMD and scalar floating-point values.

The brain 16-bit floating-point format (bfloat) differs from the older 16-bit floating-point format (float16) in that the
former has an 8-bit exponent similar to a single-precision floating-point format but has a 7-bit fraction.

ACLE defines two sets of intrinsics which correspond to these data processing instructions; a set of scalar intrinsics,
and a set of vector intrinsics.

The intrinsics introduced in this section use the data types defined by ACLE. In particular, scalar intrinsics use the
bfloat16_t type defined by ACLE as an alias for the __bf16 type, and vector intrinsics use the bfloat16x4_t
and bfloat16x8_t vector types.

Where the 16-bit brain floating point intrinsics are available, an implementation is required to ensure that including
<arm_neon.h> has the effect of also including <arm_bf16.h>.

To only enable support for the 16-bit brain floating-point intrinsics, the header <arm_bf16.h> may be included
directly.

When __ARM_BF16_FORMAT_ALTERNATIVE is defined to 1 then these types are storage only and cannot be used
with anything other than ACLE intrinsics. The underlying type for them is uint16_t.

13.1.8 Operations on data types

ACLE does not define implicit conversion between different data types. E.g.

int32x4_t x;
uint32x4_t y = x; // No representation change
float32x4_t z = x; // Conversion of integer to floating type

13.1. Introduction
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Is not portable. Use the vreinterpret intrinsics to convert from one vector type to another without changing
representation, and use the vcvt intrinsics to convert between integer and floating types; for example:

int32x4_t x;
uint32x4_t y = vreinterpretq_u32_s32(x);
float32x4_t z = vcvt_f32_s32(x);

ACLE does not define static construction of vector types. E.g.

int32x4_t x = { 1, 2, 3, 4 };

Is not portable. Use the vcreate or vdup intrinsics to construct values from scalars.

In C++, ACLE does not define whether Advanced SIMD data types are POD types or whether they can be inherited
from.

13.1.9 Compatibility with other vector programming models

ACLE does not specify how the Advanced SIMD Intrinsics interoperate with alternative vector programming models.
Consequently, programmers should take particular care when combining the Advanced SIMD Intrinsics programming
model with such programming models.

For example, the GCC vector extensions permit initialising a variable using array syntax, as so

#include "arm_neon.h"
...
uint32x2_t x = {0, 1}; // GCC extension.
uint32_t y = vget_lane_s32 (x, 0); // ACLE Neon Intrinsic.

But the definition of the GCC vector extensions is such that the value stored in y will depend on both the target
architecture (AArch32 or AArch64) and whether the program is running in big- or little-endian mode.

It is recommended that Advanced SIMD Intrinsics be used consistently:

#include "arm_neon.h"
...
const int temp[2] = {0, 1};
uint32x2_t x = vld1_s32 (temp);
uint32_t y = vget_lane_s32 (x, 0);

13.1.10 Availability of Advanced SIMD intrinsics and Extensions

13.1.11 Availability of Advanced SIMD intrinsics

Advanced SIMD support is available if the __ARM_NEON macro is predefined (see Advanced SIMD architecture
extension (Neon)). In order to access the Advanced SIMD intrinsics, it is necessary to include the <arm_neon.h>
header.

#if __ARM_NEON
#include <arm_neon.h>

/* Advanced SIMD intrinsics are now available to use. */
#endif

Some intrinsics are only available when compiling for the AArch64 execution state. This can be determined using the
__ARM_64BIT_STATE predefined macro (see A32/T32 instruction set architecture.
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13.1.12 Availability of 16-bit floating-point vector interchange types

When the 16-bit floating-point data type __fp16 is available as an interchange type for scalar values, it is also
available in the vector interchange types float16x4_t and float16x8_t. When the vector interchange types
are available, conversion intrinsics between vector of __fp16 and vector of float types are provided.

This is indicated by the setting of bit 1 in __ARM_NEON_FP (see Neon floating-point).

#if __ARM_NEON_FP & 0x1
/* 16-bit floating point vector types are available. */
float16x8_t storage;

#endif

13.1.13 Availability of fused multiply-accumulate intrinsics

Whenever fused multiply-accumulate is available for scalar operations, it is also available as a vector operation in the
Advanced SIMD extension. When a vector fused multiply-accumulate is available, intrinsics are defined to access it.

This is indicated by __ARM_FEATURE_FMA (see Fused multiply-accumulate (FMA)).

#if __ARM_FEATURE_FMA
/* Fused multiply-accumulate intrinsics are available. */
float32x4_t a, b, c;
vfma_f32 (a, b, c);

#endif

13.1.14 Availability of Armv8.1-A Advanced SIMD intrinsics

The Armv8.1-A [ARMARMv81] architecture introduces two new instructions: SQRDMLAH and SQRDMLSH.
ACLE specifies vector and vector-by-lane intrinsics to access these instructions where they are available in hardware.

This is indicated by __ARM_FEATURE_QRDMX (see Rounding doubling multiplies).

#if __ARM_FEATURE_QRDMX
/* Armv8.1-A RDMA extensions are available. */
int16x4_t a, b, c;
vqrdmlah_s16 (a, b, c);

#endif

13.1.15 Availability of 16-bit floating-point arithmetic intrinsics

Armv8.2-A [ARMARMv82] introduces new data processing instructions which operate on 16-bit floating point data in
the IEEE754-2008 [IEEE-FP] format. ACLE specifies intrinsics which map to the vector forms of these instructions
where they are available in hardware.

This is indicated by __ARM_FEATURE_FP16_VECTOR_ARITHMETIC (see 16-bit floating-point data processing
operations).

#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
float16x8_t a, b;
vaddq_f16 (a, b);

#endif

13.1. Introduction
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ACLE also specifies intrinsics which map to the scalar forms of these instructions, see 16-
bit floating-point arithmetic scalar intrinsics. Availability of the scalar intrinsics is indicated by
__ARM_FEATURE_FP16_SCALAR_ARITHMETIC.

#if __ARM_FEATURE_FP16_SCALAR_ARITHMETIC
float16_t a, b;
vaddh_f16 (a, b);

#endif

13.1.16 Availability of 16-bit brain floating-point arithmetic intrinsics

Armv8.2-A [ARMARMv82] introduces new data processing instructions which operate on 16-bit brain floating point
data as described in the Arm Architecture Reference Manual. ACLE specifies intrinsics which map to the vector forms
of these instructions where they are available in hardware.

This is indicated by __ARM_FEATURE_BF16_VECTOR_ARITHMETIC (see Brain half-precision (16-bit) floating-
point format).

#if __ARM_FEATURE_BF16_VECTOR_ARITHMETIC
float32x2_t res = {0};
bfloat16x4_t a' = vld1_bf16 (a);
bfloat16x4_t b' = vld1_bf16 (b);
res = vdot_bf16 (res, a', b');

#endif

ACLE also specifies intrinsics which map to the scalar forms of these instructions, see 16-bit
brain floating-point arithmetic scalar intrinsics. Availability of the scalar intrinsics is indicated by
__ARM_FEATURE_BF16_SCALAR_ARITHMETIC.

#if __ARM_FEATURE_BF16_SCALAR_ARITHMETIC
bfloat16_t a;
float32_t b = ..;
a = b<convert> (b);

#endif

13.1.17 Availability of Armv8.4-A Advanced SIMD intrinsics

New Crypto and FP16 Floating Point Multiplication Variant instructions in Armv8.4-A:

• New SHA512 crypto instructions (available if __ARM_FEATURE_SHA512)

• New SHA3 crypto instructions (available if __ARM_FEATURE_SHA3)

• SM3 crypto instructions (available if __ARM_FEATURE_SM3)

• SM4 crypto instructions (available if __ARM_FEATURE_SM4)

• New FML[A|S] instructions (available if __ARM_FEATURE_FP16_FML).

These instructions have been backported as optional instructions to Armv8.2-A and Armv8.3-A.

13.1.18 Availability of Dot Product intrinsics

The architecture extensions introduced by Armv8.2-A provide a set of dot product instructions which operate on 8-
bit sub-element quantities. These instructions are available in both AArch64 and AArch32 execution states using
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Advanced SIMD instructions. These intrinsics are available when __ARM_FEATURE_DOTPROD is defined (see Dot
Product extension).

#if __ARM_FEATURE_DOTPROD
uint8x8_t a, b;
vdot_u8 (a, b);

#endif

13.1.19 Availability of Armv8.5-A floating-point rounding intrinsics

The architecture extensions introduced by Armv8.5-A provide a set of floating-point rounding instructions that round
a floating-point number to an to a floating-point value that would be representable in a 32-bit or 64-bit signed integer
type. NaNs, Infinities and Out-of-Range values are forced to the Most Negative Integer representable in the target size,
and an Invalid Operation Floating-Point Exception is generated. These instructions are available only in the AArch64
execution state. The intrinsics for these are available when __ARM_FEATURE_FRINT is defined. The Advanced
SIMD intrinsics are specified in the Arm Neon Intrinsics Reference Architecture Specification [Neon].

13.1.20 Availability of Armv8.6-A Integer Matrix Multiply intrinsics

The architecture extensions introduced by Armv8.6-A provide a set of integer matrix multiplication and mixed sign
dot product instructions. These instructions are optional from Armv8.2-A to Armv8.5-A.

These intrinsics are available when __ARM_FEATURE_MATMUL_INT8 is defined (see Matrix Multiply Intrinsics).

13.2 Specification of Advanced SIMD intrinsics

The Advanced SIMD intrinsics are specified in the Arm Neon Intrinsics Reference Architecture Specification [Neon].

The behavior of an intrinsic is specified to be equivalent to the AArch64 instruction it is mapped to in [Neon]. In-
trinsics are specified as a mapping between their name, arguments and return values and the AArch64 instruction and
assembler operands which they are equivalent to.

A compiler may make use of the as-if rule from C [C99] (5.1.2.3) to perform optimizations which preserve the
instruction semantics.

13.3 Undefined behavior

Care should be taken by compiler implementers not to introduce the concept of undefined behavior to the semantics
of an intrinsic. For example, the vabsd_s64 intrinsic has well defined behaviour for all input values, while the C99
llabs has undefined behaviour if the result would not be representable in a long long type. It would thus be
incorrect to implement vabsd_s64 as a wrapper function or macro around llabs.

13.4 Alignment assertions

The AArch32 Neon load and store instructions provide for alignment assertions, which may speed up access to aligned
data (and will fault access to unaligned data). The Advanced SIMD intrinsics do not directly provide a means for
asserting alignment.

13.2. Specification of Advanced SIMD intrinsics
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Chapter 14
M-profile Vector Extension (MVE) intrinsics

The M-profile Vector Extension (MVE) [MVE-spec] instructions provide packed Single Instruction Multiple Data
(SIMD) and single-element scalar operations on a range of integer and floating-point types. MVE can also be referred
to as Helium.

The M-profile Vector Extension provides for arithmetic, logical and saturated arithmetic operations on 8-bit, 16-bit
and 32-bit integers (and sometimes on 64-bit integers) and on 16-bit and 32-bit floating-point data, arranged in 128-bit
vectors.

The intrinsics in this section provide C and C++ programmers with a simple programming model allowing easy access
to the code generation of the MVE instructions for the Armv8.1-M Mainline architecture.

14.1 Concepts

The MVE instructions are designed to improve the performance of SIMD operations by operating on 128-bit vectors
of elements of the same scalar data type.

For example, uint16x8_t is a 128-bit vector type consisting of eight elements of the scalar uint16_t data type.
Likewise, uint8x16_t is a 128-bit vector type consisting of sixteen uint8_t elements.

In a vector programming model, operations are performed in parallel across the elements of the vector. For example,
vmulq_u16(a, b) is a vector intrinsic which takes two uint16x8_t vector arguments a and b, and returns the
result of multiplying corresponding elements from each vector together.

The M-profile Vector Extension also provides support for vector-by-scalar operations. In these operations, a scalar
value is provided directly, duplicated to create a new vector with the same number of elements as an input vector, and
an operation is performed in parallel between this new vector and other input vectors.

For example, vaddq_n_u16(a, s), is a vector-by-scalar intrinsic which takes one uint16x8_t vector argument
and one uint16_t scalar argument. A new vector is formed which consists of eight copies of s, and this new vector
is multiplied by a.

Reductions work across the whole of a single vector performing the same operation between elements of that vector.
For example, vaddvq_u16(a) is a reduction intrinsic which takes a uint16x8_t vector, adds each of the eight
uint16_t elements together, and returns a uint32_t result containing the sum. Note the difference in return types
between MVE’s vaddvq_u16 and Advanced SIMD’s implementation of the same name intrinsic, MVE returns the
uint32_t type whereas Advanced SIMD returns the element type uint16_t.
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Cross-lane and pairwise vector operations work on pairs of elements within a vector, sometimes performing the
same operation like in the case of the vector saturating doubling multiply subtract dual returning high half with ex-
change vqdmlsdhxq_s8 or sometimes a different one as is the case with the vector complex addition intrinsic
vcaddq_rot90_s8.

Some intrinsics may only read part of the input vectors whereas others may only write part of the results. For example,
the vector multiply long intrinsics, depending on whether you use vmullbq_int_s32 or vmulltq_int_s32,
will read the even (bottom) or odd (top) elements of each int16x8_t input vectors, multiply them and write to
a double-width int32x4_t vector. In contrast the vector shift right and narrow will read in a double-width input
vector and, depending on whether you pick the bottom or top variant, write to the even or odd elements of the single-
width result vector. For example, vshrnbq_n_s16(a, b, 2) will take each eight elements of type int16_t of
argument b, shift them right by two, narrow them to eight bits and write them to the even elements of the int8x16_t
result vector, where the odd elements are picked from the equally typed int8x16_t argument a.

Predication: the M-profile Vector Extension uses vector predication to allow SIMD operations on selected lanes. The
MVE intrinsics expose vector predication by providing predicated intrinsic variants for instructions that support it.
These intrinsics can be recognized by one of the four suffixes: * _m (merging) which indicates that false-predicated
lanes are not written to and keep the same value as they had in the first argument of the intrinsic. * _p (predicated)
which indicates that false-predicated lanes are not used in the SIMD operation. For example vaddvq_p_s8, where
the false-predicated lanes are not added to the resulting sum. * _z (zero) which indicates that false-predicated lanes
are filled with zeroes. These are only used for load instructions. * _x (dont-care) which indicates that the false-
predicated lanes have undefined values. These are syntactic sugar for merge intrinsics with a vuninitializedq
inactive parameter.

These predicated intrinsics can also be recognized by their last parameter being of type mve_pred16_t. This is an
alias for the uint16_t type. Some predicated intrinsics may have a dedicated first parameter to specify the value in
the result vector for the false-predicated lanes; this argument will be of the same type as the result type. For example,
v = veorq_m_s8(inactive, a, b, p), will write to each of the sixteen lanes of the result vector v, either
the result of the exclusive or between the corresponding lanes of vectors a and b, or the corresponding lane of vector
inactive, depending on whether that lane is true- or false-predicated in p. The types of inactive, a, b and v are
all int8x16_t in this case and p has type mve_pred16_t.

When calling a predicated intrinsic, the predicate mask value should contain the same value in all bits corresponding to
the same element of an input or output vector. For example, an instruction operating on 32-bit vector elements should
have a predicate mask in which each block of 4 bits is either all 0 or all 1.

mve_pred16_t mask8 = vcmpeqq_u8 (a, b);
uint8x16_t r8 = vaddq_m_u8 (inactive, a, b, mask8); // OK
uint16x8_t r16 = vaddq_m_u16 (inactive, c, d, mask8); // UNDEFINED BEHAVIOR
mve_pred16_t mask8 = 0x5555; // Predicate every other byte.
uint8x16_t r8 = vaddq_m_u8 (inactive, a, b, mask8); // OK
uint16x8_t r16 = vaddq_m_u16 (inactive, c, d, mask8); // UNDEFINED BEHAVIOR

In cases where the input and output vectors have different sizes (a widening or narrowing operation), the mask
should be consistent with the largest element size used by the intrinsic. For example, vcvtbq_m_f16_f32 and
vcvtbq_m_f32_f16 should both be passed a predicate mask consistent with 32-bit vector lanes.

Users wishing to exploit the MVE architecture’s predication behavior in finer detail than this constraint permits are
encouraged to use inline assembly.

14.2 Scalar shift intrinsics

The M-profile Vector Extension (MVE) also provides a set of scalar shift instructions that operate on signed and
unsigned double-words and single-words. These shifts can perform additional saturation, rounding, or both. The
ACLE for MVE defines intrinsics for these instructions.
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14.3 Namespace

By default all M-profile Vector Extension intrinsics are available with and without the __arm_ prefix. If the
__ARM_MVE_PRESERVE_USER_NAMESPACE macro is defined, the __arm_ prefix is mandatory. This is avail-
able to hide the user-namespace-polluting variants of the intrinsics.

14.4 Intrinsic polymorphism

The ACLE for the M-profile Vector Extension intrinsics was designed in such a way that it supports a polymorphic
implementation of most intrinsics. The polymorphic name of an intrinsic is indicated by leaving out the type suffix
enclosed in square brackets, for example the vector addition intrinsic vaddq[_s32] can be called using the function
name vaddq. Note that the polymorphism is only possible on input parameter types and intrinsics with the same
name must still have the same number of parameters. This is expected to aid implementation of the polymorphism
using C11’s _Generic selection.

14.5 Vector data types

Vector data types are named as a lane type and a multiple. Lane type names are based on the types defined
in <stdint.h>. For example,. int16x8_t is a vector of eight int16_t values. The base types are
int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t, float16_t and
float32_t. The multiples are such that the resulting vector types are 128-bit.

14.6 Vector array data types

Array types are defined for multiples of 2 and 4 of all the vector types, for use in load and store operations. For a vector
type <type>_t the corresponding array type is <type>x<length>_t. Concretely, an array type is a structure
containing a single array element called val.

For example, an array of two int16x8_t types is int16x4x8_t, and is represented as:

struct int16x8x2_t { int16x8_t val[2]; };

14.7 Scalar data types

For consistency, <arm_mve.h> defines some additional scalar data types to match the vector types.

float32_t is defined as an alias for float, float16_t is defined as an alias for __fp16 and mve_pred16_t
is defined as an alias for uint16_t.

14.8 Operations on data types

ACLE does not define implicit conversion between different data types. E.g.

int32x4_t x;
uint32x4_t y = x; // No representation change
float32x4_t z = x; // Conversion of integer to floating type

14.3. Namespace
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Is not portable. Use the vreinterpretq intrinsics to convert from one vector type to another without changing
representation, and use the vcvtq intrinsics to convert between integer and floating types; for example:

int32x4_t x;
uint32x4_t y = vreinterpretq_u32_s32(x);
float32x4_t z = vcvtq_f32_s32(x);

ACLE does not define static construction of vector types. E.g.

int32x4_t x = { 1, 2, 3, 4 };

Is not portable. Use the vcreateq or vdupq intrinsics to construct values from scalars.

In C++, ACLE does not define whether MVE data types are POD types or whether they can be inherited from.

14.9 Compatibility with other vector programming models

ACLE does not specify how the MVE Intrinsics interoperate with alternative vector programming models. Conse-
quently, programmers should take particular care when combining the MVE programming model with such program-
ming models.

For example, the GCC vector extensions permit initialising a variable using array syntax, as so

#include "arm_mve.h"
...
uint32x4_t x = {0, 1, 2, 3}; // GCC extension.
uint32_t y = vgetq_lane_s32 (x, 0); // ACLE MVE Intrinsic.

But the definition of the GCC vector extensions is such that the value stored in y will depend on whether the program
is running in big- or little-endian mode.

It is recommended that MVE Intrinsics be used consistently:

#include "arm_mve.h"
...
const int temp[4] = {0, 1, 2, 3};
uint32x4_t x = vld1q_s32 (temp);
uint32_t y = vgetq_lane_s32 (x, 0);

14.10 Availability of M-profile Vector Extension intrinsics

M-profile Vector Extension support is available if the __ARM_FEATURE_MVE macro has a value other than 0 (see
M-profile Vector Extension). The availability of the MVE Floating Point data types and intrinsics are predicated on
the value of this macro having bit two set. In order to access the MVE intrinsics, it is necessary to include the
<arm_mve.h> header.

#if (__ARM_FEATURE_MVE & 3) == 3
#include <arm_mve.h>

/* MVE integer and floating point intrinsics are now available to use. */
#elif __ARM_FEATURE_MVE & 1
#include <arm_mve.h>

/* MVE integer intrinsics are now available to use. */
#endif
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14.10.1 Specification of M-profile Vector Extension intrinsics

The M-profile Vector Extension intrinsics are specified in the Arm MVE Intrinsics Reference Architecture Specifica-
tion [MVE].

The behavior of an intrinsic is specified to be equivalent to the MVE instruction it is mapped to in [MVE]. Intrinsics
are specified as a mapping between their name, arguments and return values and the MVE instruction and assembler
operands which they are equivalent to.

A compiler may make use of the as-if rule from C [C99] (5.1.2.3) to perform optimizations which preserve the
instruction semantics.

14.10.2 Undefined behavior

Care should be taken by compiler implementers not to introduce the concept of undefined behavior to the semantics
of an intrinsic.

14.10.3 Alignment assertions

The MVE load and store instructions provide for alignment assertions, which may speed up access to aligned data
(and will fault access to unaligned data). The MVE intrinsics do not directly provide a means for asserting alignment.

14.10. Availability of M-profile Vector Extension intrinsics
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Chapter 15
Future directions

15.1 Extensions under consideration

15.1.1 Procedure calls and the Q / GE bits

The Arm procedure call standard [AAPCS] says that the Q and GE bits are undefined across public interfaces, but in
practice it is desirable to return saturation status from functions. There are at least two common use cases:

To define small (inline) functions defined in terms of expressions involving intrinsics, which provide abstractions or
emulate other intrinsic families; it is desirable for such functions to have the same well-defined effects on the Q/GE
bits as the corresponding intrinsics.

15.1.2 DSP library functions

Options being considered are to define an extension to the pcs attribute to indicate that Q is meaningful on the return,
and possibly also to infer this in the case of functions marked as inline.

15.1.3 Returning a value in registers

As a type attribute this would allow things like:

struct __attribute__((value_in_regs)) Point { int x[2]; };

This would indicate that the result registers should be used as if the type had been passed as the first argument. The
implementation should not complain if the attribute is applied inappropriately (i.e. where insufficient registers are
available) it might be a template instance.

15.1.4 Custom calling conventions

Some interfaces may use calling conventions that depart from the AAPCS. Examples include:

Using additional argument registers, for example passing an argument in R5, R7, R12.

Using additional result registers, for example R0 and R1 for a combined divide-and-remainder routine (note that some
implementations may be able to support this by means of a value in registers structure return).
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Returning results in the condition flags.

Preserving and possibly setting the Q (saturation) bit.

15.1.5 Traps: system calls, breakpoints, . . .

This release of ACLE does not define how to invoke a SVC (supervisor call), BKPT (breakpoint) and other related
functionality.

One option would be to mark a function prototype with an attribute, for example

int __attribute__((svc(0xAB))) system_call(int code, void const \*params);

When calling the function, arguments and results would be marshalled according to the AAPCS, the only difference
being that the call would be invoked as a trap instruction rather than a branch-and-link.

One issue is that some calls may have non-standard calling conventions. (For example, Arm Linux system calls expect
the code number to be passed in R7.)

Another issue is that the code may vary between A32 and T32 state. This issue could be addressed by allowing two
numeric parameters in the attribute.

15.1.6 Mixed-endian data

Extensions for accessing data in different endianness have been considered. However, this is not an issue specific to
the Arm architecture, and it seems better to wait for a lead from language standards.

15.1.7 Memory access with non-temporal hints

Supporting memory access with cacheability hints through language extensions is being investigated. Eg.

int *__attribute__((nontemporal)) p;

As a type attribute, will allow indirection of p with non-temporal cacheability hint.

15.2 Features not considered for support

15.2.1 VFP vector mode

The short vector mode of the original VFP architecture is now deprecated, and unsupported in recent implementations
of the Arm floating-point instructions set. There is no plan to support it through C extensions.

15.2.2 Bit-banded memory access

The bit-banded memory feature of certain Cortex-M cores is now regarded as being outside the architecture, and there
is no plan to standardize its support.
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Chapter 16
Transactional Memory Extension (TME)
intrinsics

16.1 Introduction

This section describes the intrinsics for the instructions of the Transactional Memory Extension (TME). TME adds
support for transactional execution where transactions are started and committed by a set of new instructions. The
TME instructions are present in the AArch64 execution state only.

TME is designed to improve performance in cases where larger system scaling requires atomic and isolated access to
data structures whose composition is dynamic in nature and therefore not readily amenable to fine-grained locking or
lock-free approaches.

TME transactions are isolated. This means that transactional stores are hidden from other observers, and transactional
loads cannot see stores from other observers until the transaction commits. Also, if the transaction fails then stores to
memory and writes to registers by the transaction are discarded and the processor returns to the state it had when the
transaction started.

TME transactions are best-effort. This means that the architecture does not guarantee success for any transaction.
The architecture requires that all transactions specify a failure handler allowing the software to fallback to a non-
transactional alternative to provide guarantees of forward progress.

TME defines flattened nesting of transactions, where nested transactions are subsumed by the outer transaction. This
means that the effects of a nested transaction do not become visible to other observers until the outer transaction
commits. When a nested transaction fails it causes the outer transaction, and all nested transactions within, to fail.

The TME intrinsics are available when __ARM_FEATURE_TME is defined.

16.2 Failure definitions

Transactions can fail due to various causes. The following macros are defined to help use or detect these causes.

#define _TMFAILURE_REASON 0x00007fffu
#define _TMFAILURE_RTRY 0x00008000u
#define _TMFAILURE_CNCL 0x00010000u
#define _TMFAILURE_MEM 0x00020000u
#define _TMFAILURE_IMP 0x00040000u
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#define _TMFAILURE_ERR 0x00080000u
#define _TMFAILURE_SIZE 0x00100000u
#define _TMFAILURE_NEST 0x00200000u
#define _TMFAILURE_DBG 0x00400000u
#define _TMFAILURE_INT 0x00800000u
#define _TMFAILURE_TRIVIAL 0x01000000u

16.3 Intrinsics

uint64_t __tstart (void);

Starts a new transaction. When the transaction starts successfully the return value is 0. If the transaction fails, all state
modifications are discarded and a cause of the failure is encoded in the return value. The macros defined in Failure
definitions can be used to detect the cause of the failure.

void __tcommit (void);

Commits the current transaction. For a nested transaction, the only effect is that the transactional nesting depth is de-
creased. For an outer transaction, the state modifications performed transactionally are committed to the architectural
state.

void __tcancel (/*constant*/ uint64_t);

Cancels the current transaction and discards all state modifications that were performed transactionally. The intrinsic
takes a 16-bit immediate input that encodes the cancellation reason. This input could be given as

__tcancel (_TMFAILURE_RTRY | (failure_reason & _TMFAILURE_REASON));

if retry is true or

__tcancel (failure_reason & _TMFAILURE_REASON);

if retry is false.

uint64_t __ttest (void);

Tests if executing inside a transaction. If no transaction is currently executing, the return value is 0. Otherwise, this
intrinsic returns the depth of the transaction.

16.4 Instructions

Intrinsics Argument Result Instruction
uint64_t __tstart (void) - Xt -> result tstart <Xt>
void __tcommit (void) - - tcommit
void __tcancel (/*constant*/ uint64_t reason) reason -> #<imm> - tcancel #<imm>
uint64_t __ttest (void) - Xt -> result ttest <Xt>

These intrinsics are available when arm_acle.h is included.
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