
Performance Advisor
Version 1.2

User Guide

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
102009_0102_00_en

Performance Advisor
User Guide
Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0100-00 28 February 2020 Non-Confidential New document for v1.0.

0101-00 29 May 2020 Non-Confidential New document for v1.1.

0102-00 26 August 2020 Non-Confidential New document for v1.2.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

 Performance Advisor

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

 Performance Advisor

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3
Non-Confidential

https://developer.arm.com

Contents
Performance Advisor User Guide

Preface
About this book 7

Chapter 1 Introduction to Performance Advisor
1.1 Overview of Performance Advisor 1-10
1.2 Performance report example 1-12
1.3 Performance Advisor workflows 1-14

Chapter 2 Before you begin
2.1 Set up your host machine .. 2-17
2.2 Set up your device 2-18
2.3 Integrate Performance Advisor with your application 2-19

Chapter 3 Quick start guide
3.1 Connect Streamline to your device .. 3-25
3.2 Choose a counter template 3-27
3.3 Capture a Streamline profile .. 3-28
3.4 Generate a performance report 3-29

Chapter 4 Running Performance Advisor in continuous integration workflows
4.1 Generate performance reports automatically 4-32
4.2 Export performance data as a JSON file 4-34
4.3 Generate multiple report types 4-37

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4
Non-Confidential

Chapter 5 Capturing a slow frame
5.1 Capturing slow frame rate images 5-39
5.2 Tagging slow frames .. 5-41

Chapter 6 Adding semantic input to the reports
6.1 Manually create annotations from your application 6-43
6.2 Specify a CSV file containing the regions .. 6-45
6.3 Clip unwanted data from the capture 6-46

Appendix A Analytics
A.1 Data collection in Performance Advisor Appx-A-48
A.2 Disable analytics data collection .. Appx-A-49

Appendix B Command-line options
B.1 The pa command Appx-B-51
B.2 The lwi_me.py script options Appx-B-54

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5
Non-Confidential

Preface

This preface introduces the Performance Advisor User Guide.

It contains the following:
• About this book on page 7.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6
Non-Confidential

 About this book
This book describes how to install and use Arm® Performance Advisor to generate reports from your
Arm Streamline capture data.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction to Performance Advisor
This section introduces the Performance Advisor tool and the workflows that it is designed to
handle.

Chapter 2 Before you begin
Set up Arm Mobile Studio and integrate Performance Advisor with your application by following
the steps in this section.

Chapter 3 Quick start guide
Performance Advisor runs on a capture file generated from Streamline. Follow the steps in this
section when you are ready to perform an interactive capture.

Chapter 4 Running Performance Advisor in continuous integration workflows
Regular performance reports enable you to get instant feedback throughout your development
cycle. With an Arm Mobile Studio Professional license, you can integrate Performance Advisor
into your continuous integration workflow. This workflow enables you to automatically generate
daily reports that help your team monitor how changes during the development cycle impact
performance. Also, you can automatically generate machine-readable JSON reports that you can
import into your existing performance regression tracking systems.

Chapter 5 Capturing a slow frame
Identify slow frames by using the lightweight interceptor (LWI) in different modes. Before you
can use the LWI, you must first integrate it with your application.

Chapter 6 Adding semantic input to the reports
Performance Advisor can use semantic information that the application provides as key input data
when generating the analysis reports.

Appendix A Analytics

Appendix B Command-line options

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

 Preface
 About this book

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7
Non-Confidential

https://developer.arm.com/support/arm-glossary

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Performance Advisor User Guide.
• The number 102009_0102_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 8
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introduction to Performance Advisor

This section introduces the Performance Advisor tool and the workflows that it is designed to handle.

It contains the following sections:
• 1.1 Overview of Performance Advisor on page 1-10.
• 1.2 Performance report example on page 1-12.
• 1.3 Performance Advisor workflows on page 1-14.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-9
Non-Confidential

1.1 Overview of Performance Advisor
Performance Advisor analyzes performance data from your Streamline capture, and generates a report
that shows how your application is performing on your mobile device.

The summary at the top of the report shows whether your application is non-fragment or fragment
bound. See how efficiently your CPU and GPU are running, your boundness split, and whether you are
achieving your required frame rate.

To help you further understand how your application is performing over time, you can analyze key
metrics shown on a series of charts:

Overdraw per pixel
Identify problems caused by transparency or rendering order, by monitoring the number of times
pixels are shaded before they are displayed.

Draw calls per frame
To identify CPU workload inefficiencies, check the absolute number of draw calls per frame.

Primitives per frame
See how many input primitives are being processed per frame, and how many of them are
visible in the scene.

Pixels per frame
See the total number of pixels being rendered per frame. This metric helps you to rule out
problems caused by changes in the application render pass configuration. For example, extra
passes for new shadow casters or post-processing effects.

Shader cycles per frame
The total number of shader cycles per frame, broken down by pipeline, so that you can see
which workloads are occupying the GPU.

GPU cycles per frame
See how the GPU is processing non-fragment and fragment workloads, and whether the shader
core resources are balanced.

1 Introduction to Performance Advisor
1.1 Overview of Performance Advisor

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-10
Non-Confidential

GPU bandwidth per frame
Monitor the distribution of GPU bandwidth, including the breakdown between reads and writes,
so that you can minimize external memory accesses to save energy.

CPU cycles per frame
See the consumption of CPU cycles per rendered frame. This metric helps you to validate
improvements and regressions, which might not be visible in the CPU utilization charts.

Running the Performance Advisor report regularly enables you to get performance feedback throughout
the development cycle. You can also integrate Performance Advisor in your performance regression
workflows, by generating machine-readable JSON reports that you can import into other tracking
systems.

Performance Advisor can identify scheduling issues that prevent you from achieving your target frame
rate, and provide advice on how to resolve it. See 3.4 Generate a performance report on page 3-29 for
more information.

Related concepts
1.2 Performance report example on page 1-12
Related references
Chapter 2 Before you begin on page 2-16
Chapter 3 Quick start guide on page 3-24

1 Introduction to Performance Advisor
1.1 Overview of Performance Advisor

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-11
Non-Confidential

1.2 Performance report example
In this example, we will look at the charts in the Performance Advisor report to review the performance
of your application. See how to use the report to investigate problems with any scenes in your application
that are not performing well.

We have generated a Performance Advisor report from a Streamline capture file, and saved it as an
HTML file.

Report summary

First look at the charts at the top of the report. These three charts provide a summary of how your
application is performing for the duration of your capture. To identify any changes to your application
throughout your development process, we recommend that you monitor these charts regularly.

Here, we can see that the average frame rate for the capture is not achieving the target of 30fps. When we
check the boundness distribution, we can see that the application is fragment bound. The utilization chart
confirms that a graphical problem is causing this drop in frame rate.

Analyze frame rate
To see how the frame rate changes throughout the duration of your capture, check the FPS analysis
chart.

 Note

In this capture, we have used the lwi_me.py script to take a screenshot if the frame rate goes below
20fps. We have also specified a number of frames between captures to ensure that we do not capture too
many images.

The background color of this chart is blue, indicating that the GPU in the device is struggling to process
fragment workloads. We can also see that the frame rate has dropped below the target threshold of 20 in
three places, so Performance Advisor has captured these frames. To see an image of the frame, hover the
cursor on the screen capture icon . In the image, you might be able to see which graphical element is
causing the frame rate to drop. To get a better understanding about what is happening in your application,
continue your analysis by looking at the GPU behavior metrics.

1 Introduction to Performance Advisor
1.2 Performance report example

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-12
Non-Confidential

Investigate GPU behavior

Scroll through the GPU behavior charts to find any strong correlation between the GPU metric and a
drop in the frame rate. Performance Advisor provides advice above a chart where it finds a potential
problem. You can also get further advice on optimizing your code by clicking the accompanying link to
our developer website.

The GPU cycles per frame chart shows that the frame rate drops when the number of fragment cycles
increases.

The Shader cycles per frame chart shows that the drop in frame rate correlates with high numbers of
execution engine cycles.

This chart shows that the GPU is busy with arithmetic operations. We need to reduce the complexity of
the shaders, and textures that we used. From here, we can click through to read optimization advice about
how to improve shader performance.

We annotated the capture with region names to help us identify what is happening at different parts of the
application. If we scroll down the report, we can analyze in more detail the specific region that we are
interested in.

Next steps

When you have identified a performance problem with Performance Advisor, use the other tools in the
Arm Mobile Studio suite to explore your problem in more detail.

Related information
Get started with Arm Mobile Studio

1 Introduction to Performance Advisor
1.2 Performance report example

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-13
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/advice
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/learn/get-started

1.3 Performance Advisor workflows
You can use Performance Advisor with Streamline in several different workflows, enabling you to solve
multiple different types of problem.

Interactive capture with Performance Advisor report

You can use Performance Advisor to assist with a manual debug session. Manually connect to a target
and capture data using Streamline. Use Performance Advisor to post-process the dataset to provide an
initial quick analysis.

Automated capture with Performance Advisor report
 Note

This feature is license managed and might not be available with some editions of Arm Mobile Studio.
For more information, see Arm Mobile Studio Professional Edition.

You can use Performance Advisor as part of a continuous integration (CI) workflow. To capture data
from automated game tests, without using the Streamline GUI on the host, integrate the gator daemon
from Streamline into a nightly test system. Use Performance Advisor to generate a report, which can be
published automatically. This workflow enables a QA team to review the status each morning.

Automated capture with Performance Advisor data export
 Note

This feature is license managed and might not be available with some editions of Arm Mobile Studio.
For more information, see Arm Mobile Studio Professional Edition.

1 Introduction to Performance Advisor
1.3 Performance Advisor workflows

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-14
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/professional
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/professional

You can use Streamline and Performance Advisor to generate a machine-readable JSON report. You can
import data from the JSON report into other QA test reporting systems, allowing automated regression
tracking of in-depth workload metrics. See Chapter 4 Running Performance Advisor in continuous
integration workflows on page 4-31 for more information.

The APC data file that the CI workflow creates is a full Streamline capture that you can import into the
Streamline GUI. Arm recommends that you store the APC data file alongside other build artifacts. If
Performance Advisor reports a problem, it is then immediately available for manual investigation in
Streamline.

For more information about using Streamline for profiling graphical applications running on Mali GPUs,
see the Arm Community blog Accelerating Mali GPU analysis using Arm Mobile Studio.

Using Streamline and Graphics Analyzer for further deep-dive analysis

The Performance Advisor report shows where your application is causing a problem. You can then use
the other tools in Arm Mobile Studio suite to investigate any problems in more detail.

Streamline
Capture a profile of your application running on a mobile device and see where your system
spends most of its time. Use interactive charts and comprehensive data visualizations to identify
whether CPU processing or GPU rendering are causing any performance bottlenecks.

Graphics Analyzer
Graphics Analyzer enables you to evaluate all the OpenGL ES or Vulkan API calls your
application makes, as it runs on an Android device. Explore the scenes in your game frame-by-
frame, draw call-by-draw call, to identify rendering defects, or opportunities to optimize
performance. For more information, see Graphics Analyzer on the Arm Developer website.

1 Introduction to Performance Advisor
1.3 Performance Advisor workflows

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-15
Non-Confidential

https://community.arm.com/developer/tools-software/graphics/b/blog/posts/accelerating-mali-gpu-analysis-using-arm-mobile-studio
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/components/graphics-analyzer

Chapter 2
Before you begin

Set up Arm Mobile Studio and integrate Performance Advisor with your application by following the
steps in this section.

It contains the following sections:
• 2.1 Set up your host machine on page 2-17.
• 2.2 Set up your device on page 2-18.
• 2.3 Integrate Performance Advisor with your application on page 2-19.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-16
Non-Confidential

2.1 Set up your host machine
To use Performance Advisor, download and install the Arm Mobile Studio suite, then install the
necessary software and set up environment variables on your host machine.

Procedure
1. Download Arm Mobile Studio from https://developer.arm.com/tools-and-software/graphics-and-

gaming/arm-mobile-studio/downloads.
2. Install Arm Mobile Studio using the instructions at https://developer.arm.com/tools-and-software/

graphics-and-gaming/arm-mobile-studio/installation.
3. Install Python 3.6 (or higher). Arm Mobile Studio uses Python to run the provided lwi_me.py and

gator_me.py script, which uses the gatord agent to connect Streamline to your Android target.
4. Install Android Debug Bridge (adb). Arm Mobile Studio uses the adb utility to connect to the target

device. Download the latest version of adb from the Android SDK platform tools (https://
developer.android.com/studio/releases/platform-tools).

5. Edit your PATH environment variable to add the paths to the Performance Advisor, Python3, and
Android SDK platform tools directories.

Next Steps

See 2.2 Set up your device on page 2-18 for information about preparing your device for profiling your
application.

2 Before you begin
2.1 Set up your host machine

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-17
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/downloads
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/downloads
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/installation
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/installation
https://developer.android.com/studio/releases/platform-tools
https://developer.android.com/studio/releases/platform-tools

2.2 Set up your device
To use Performance Advisor, set up your device with the application you want to profile.

 Note

A list of the recommended devices that support Arm Mobile Studio is available from https://
developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/support/supported-
devices.

Procedure
1. Set your device to Developer Mode.
2. Select Settings > Developer options and enable USB debugging.
3. Connect the device to the host machine through USB. If the connection is successful, running the adb

devices command on the host returns your device ID:

adb devices
List of devices attached
ce12345abcdf1a1234 device

4. For devices running Android 9 or earlier, you need to add a library file to your application, to enable
Performance Advisor to collect frame rate and graphics API call counts. See 2.3 Integrate
Performance Advisor with your application on page 2-19 for instructions on how to do this.

5. Install a debuggable build of your application on the device:
• If you are not using Unity, enable the android:debuggable setting in the application manifest

file, as described in https://developer.android.com/guide/topics/manifest/application-element.
• In Unity, when building your application, select the Development Build option in Build Settings.

Next Steps

3.1 Connect Streamline to your device on page 3-25

2 Before you begin
2.2 Set up your device

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-18
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/support/supported-devices
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/support/supported-devices
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/support/supported-devices
https://developer.android.com/studio/debug/dev-options
https://developer.android.com/guide/topics/manifest/application-element

2.3 Integrate Performance Advisor with your application
For devices running Android 9 or earlier, package the lightweight interceptor library (LWI) with your
application. Performance Advisor uses the LWI to collect performance data, such as frame rate and API
call counts, from your application.

For devices running Android 10 or later, you do not need to package the library file with your
application. Instead use the --lwi-gles-layer-lib-path or --lwi-vk-layer-lib-path options to
specify the layer library file when you 3.1 Connect Streamline to your device on page 3-25.

The LWI enables you to capture performance data automatically from your application, such as frame
rate and frame captures. It is a lighter version of the Graphics Analyzer interceptor.

The LWI enables you to automatically capture data in the following situations:
• To automatically detect frame boundaries, or other API statistics, instead of manually embedding

frame markers into the application.
• To identify slow parts of your application, you can capture a screenshot when your application goes

below a threshold value that you configure.

 Note

If you want to analyze your application with Graphics Analyzer, you must use a different library file,
packaged in the same way as the LWI.
• For Unity applications, see Prepare your Unity application.
• For applications not using Unity, see Get started with Graphics Analyzer.

If you intend to capture frames when the frame rate goes below a specified value, you must use the LWI
instead.

OpenGL ES

For OpenGL ES applications, package the required library file libMGD.so, which is provided in your
Arm Mobile Studio package:

<install_directory>/performance_advisor/lwi/target/android/arm/unrooted/

Two versions of the library are provided:
• For 64-bit targets, use the library file located in the arm64-v8a directory.
• For 32-bit targets, use the library file located in the armeabi-v7a directory.

 Note

You can package one or both interceptor libraries depending on the requirements of your application.

Vulkan

For Vulkan applications, package the required Vulkan layer file, which is provided in your Arm Mobile
Studio package:

<install_directory>/performance_advisor/lwi/target/android/arm/rooted/

 Note

If your target device is running Android 9 or above, you do not need to package the Vulkan layer with
the application. Instead specify the path to the Vulkan layer when running the target connection script.

Two versions of the library are provided:
• For 64-bit targets, use the library file located in the arm64-v8a directory.
• For 32-bit targets, use the library file located in the armeabi-v7a directory.

2 Before you begin
2.3 Integrate Performance Advisor with your application

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-19
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/learn/get-started/get-started-with-graphics-analyzer/prepare-your-unity-application
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/learn/get-started/get-started-with-graphics-analyzer

Next steps
Continue with the appropriate instructions for your project:
• 2.3.1 Prepare your Unity project on page 2-20
• 2.3.2 Prepare your Android Studio project on page 2-23

2.3.1 Prepare your Unity project

Copy the library file or Vulkan layer file into Unity, and set the necessary attributes and settings. Then
build your APK and install it on your device. You are then ready to perform a capture.

Prerequisites

Locate the required library file or Vulkan layer file, as described in 2.3 Integrate Performance Advisor
with your application on page 2-19.

Procedure
1. Copy the required libMGD.so file or Vulkan layer into the Assets/Plugins/Android/ directory in

your Unity project. Create this directory if it does not exist.

If you are packaging both interceptor libraries:
• Create two directories in the Assets/Plugins/ directory. For example, armv7 and armv8.
• Create a directory called Android in each of these directories.
• Copy each libMGD.so file into the appropriate Android directory.

2. Select the library in Unity and set the following attributes in the Inspector:
• Under Select platforms for plugin, select Android.
• Under Platform settings, set the CPU architecture to ARM64 for 64-bit applications, or ARMv7

for 32-bit applications.

Click Apply.

2 Before you begin
2.3 Integrate Performance Advisor with your application

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-20
Non-Confidential

3. Select File > Build Settings, then select Player Settings.
4. Under Identification, set Target API Level to the required Android version.

 Note

By default, Target API Level is set to the latest version of the Android SDK tools that you have
installed. If you change to a lower API level, ensure that you have the SDK tools for that version
installed. If you build for a higher API version later, change this setting accordingly.

5. Under Configuration, set the following options to build a 64-bit application:
1. Set the scripting backend in Unity to work with 64-bit targets. Set Scripting Backend to

IL2CPP. For more information about IL2CPP, refer to the Unity documentation.
2. Under Target Architectures, select ARM64.

2 Before you begin
2.3 Integrate Performance Advisor with your application

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-21
Non-Confidential

To build a 32-bit application:
1. Leave the scripting backend at its default setting, Mono.
2. Under Target Architectures, select ARM7.

6. Close the Player Settings. In the Build Settings, select the Development Build checkbox. This
option ensures that your application is marked as debuggable in the Android application manifest.

2 Before you begin
2.3 Integrate Performance Advisor with your application

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-22
Non-Confidential

7. To build your APK and install it on your device in one step, select Build and Run. Alternatively,
select Build to build the APK and then install it on your device using Android Debug Bridge:

adb install -r YourApplication.apk

Next Steps

Perform an interactive capture, see 3.1 Connect Streamline to your device on page 3-25.

2.3.2 Prepare your Android Studio project

Supply the path to the library file or Vulkan layer file, and load the library in your code. Then build your
APK and install it on your device. You are then ready to perform a capture.

Prerequisites

Locate the required library file or Vulkan layer file, as described in 2.3 Integrate Performance Advisor
with your application on page 2-19.

Procedure
1. Supply the path to the LWI library or Vulkan layer files in your applications gradle file.

• For OpenGL ES applications, supply the path to the LWI library in your applications gradle file:

android {
 sourceSets {
 main {
 jniLibs.srcDirs += 'install_directory/performance_advisor/lwi/target/
android/arm/unrooted/'
 }
 }
}

• For Vulkan applications, supply the path to the Vulkan layer files in your applications gradle file:

android {
 sourceSets {
 main {
 jniLibs.srcDirs += '<install_directory>/performance_advisor/lwi/target/
android/arm/rooted/'
 }
 }
}

2. Load the library in a static block in your code:

static
{
 try
 {
 System.loadLibrary("LWI");
 }
 catch (UnsatisfiedLinkError e)
 { ... }
}

3. Build your APK and install it on your device.

Next Steps

Perform an interactive capture, see 3.1 Connect Streamline to your device on page 3-25.

2 Before you begin
2.3 Integrate Performance Advisor with your application

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-23
Non-Confidential

Chapter 3
Quick start guide

Performance Advisor runs on a capture file generated from Streamline. Follow the steps in this section
when you are ready to perform an interactive capture.

 Note

If you already have the capture files, you can go straight to 3.4 Generate a performance report
on page 3-29.

You can also watch a demonstration of the steps on the Android profiling with Performance Advisor
video on YouTube or Youku.

It contains the following sections:
• 3.1 Connect Streamline to your device on page 3-25.
• 3.2 Choose a counter template on page 3-27.
• 3.3 Capture a Streamline profile on page 3-28.
• 3.4 Generate a performance report on page 3-29.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-24
Non-Confidential

https://www.youtube.com/watch?v=D3xgHjK6SQM
https://v.youku.com/v_show/id_XNDYxNDUwNTA2NA==.html

3.1 Connect Streamline to your device
Arm provides a Python script, lwi_me.py that makes connecting to your device easy. Run the script so
that Streamline can connect to your device, and collect data.

Procedure
1. Open a command terminal on your host machine and navigate to the Performance Advisor

installation directory, <install_directory>/performance_advisor/lwi/helpers.
2. Run the lwi_me.py Python script:

python3 lwi_me.py --daemon <path_to_gatord> \
 [--lwi-gles-layer-lib-path | --lwi-vk-layer-lib-path \
 <path_to_Android10_layer_lib>]

Use the --daemon option to specify the path to the gatord binary that you want to install on your
device to collect data. This file is provided in your installation directory in two versions:

• For 32-bit applications, use <install_directory>/streamline/bin/arm/gatord.
• For 64-bit applications, use <install_directory>/streamline/bin/arm64/gatord.

For Android 10, use --lwi-gles-layer-lib-path or --lwi-vk-layer-lib-path to specify the
path to the OpenGL ES or Vulkan layer library file for Android 10 devices. These files are provided
in your installation directory. Libraries for both 32-bit and 64-bit applications are stored in different
folders; armeabi-v7a for 32-bit applications, and arm64-v8a for 64-bit applications.
• The Open GL ES layer library file libGLES_layer_lwi.so is located in: <install_directory>/

performance_advisor/lwi/target/android/arm/unrooted/{arm64-v8a|armeabi-v7a}/
libGLES_layer_lwi.so

• The Vulkan layer library file libVkLayerLWI64.so is located in: <install_directory>/
performance_advisor/lwi/target/android/arm/rooted/{arm64-v8a|armeabi-v7a}/
libVkLayerLWI64.so

For example:

python3 lwi_me.py --daemon ../../../streamline/bin/arm64/gatord \
 --lwi-gles-layer-lib-path ../target/android/arm/unrooted/arm64-v8a/libGLES_layer_lwi.so

 Tip

To simplify command entry, copy the following files from the Arm Mobile Studio installation
directory to a working directory:

• <install_directory>/performance_advisor/lwi/helpers/lwi_me.py
• <install_directory>/performance_advisor/lwi/helpers/gator_me.py
• <install_directory>/streamline/bin/arm64/gatord
• <install_directory>/performance_advisor/lwi/target/android/arm/unrooted/arm64-

v8a/libGLES_layer_lwi.so

Note that the lwi_me.py script requires that the accompanying gator_me.py script is in the same
directory, so ensure you copy both files.

3. The script returns a numbered list of the Android package names for the debuggable applications that
are installed on your device. Enter the number of the package you want to profile.

The script identifies the GPU in the device, installs the daemon application, and waits for you to
complete the capture in Streamline. Leave the terminal window open, as you must come back to it
later to terminate the script.

4. Launch Streamline:

3 Quick start guide
3.1 Connect Streamline to your device

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-25
Non-Confidential

• On Windows, from the Start menu, navigate to Arm MS 2020.2 and select Arm MS Streamline
2020.2.

• On macOS, go to the <install_directory>/streamline folder, and double-click the
Streamline.app file.

• On Linux, go to the <install_directory>/streamline folder, and run the Streamline file:

cd <install_directory>/streamline
./Streamline

 Note

To launch Streamline with an Arm Mobile Studio professional license, you must open this file from
within a Terminal shell that has the correct licensing environment variables set. For example:

cd /streamline/
open Streamline.app

Refer to Adding a professional license for instructions.

5. In the Start view, select your device from the list of detected targets.

Next Steps

Choose a counter template. For more information about how to find and select a counter template, see
3.2 Choose a counter template on page 3-27.

3 Quick start guide
3.1 Connect Streamline to your device

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-26
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/installation/adding-a-professional-license

3.2 Choose a counter template
Counter templates are pre-defined sets of counters that enable you to review the performance of both
CPU and GPU behavior. Choose the most appropriate template for the GPU in your target device.

Prerequisites

Follow the instructions detailed in 3.1 Connect Streamline to your device on page 3-25 before you
choose your counter template.

Procedure
1. In the Start view, click Configure Counters.

2. Click Add counters from a template to see a list of available templates.

3. Select a counter template appropriate for the GPU in your target device, then Save your changes.
The number of counters in the template that your target device supports is shown next to each
template. Choose the template with the highest number of supported counters. For example, here, 34
of the 38 available counters in the Mali Midgard template are supported in the connected device.

4. Optionally, in the Start view, click Advanced Settings to set more capture options, including the
sample rate and the capture duration (by default unlimited). Refer to Set capture options in the Arm
Streamline User Guide.

Next Steps

Capture a profile using Streamline. For more information about how to capture the behavior of your CPU
and GPU performance using Streamline, see 3.3 Capture a Streamline profile on page 3-28.

3 Quick start guide
3.2 Choose a counter template

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-27
Non-Confidential

https://developer.arm.com/documentation/101816/0704/Capture-a-Streamline-profile/Set-capture-options

3.3 Capture a Streamline profile
Start a capture session to profile data from your application in real time. When the capture session ends,
Streamline automatically opens a report for you to analyze later.

Prerequisites

Before you capture a profile in Streamline, you must 3.1 Connect Streamline to your device on page 3-25
and 3.2 Choose a counter template on page 3-27.

Procedure
1. In the Start view, click Start Capture to start capturing data from the target device.

Specify the name and location on the host for the capture file that Streamline creates when the
capture is complete. Streamline then switches to Live view and waits for you to start the application
on the device.

2. Start the application that you want to profile.
The Live view shows charts for each counter that you selected. Below the charts is a list of running
processes in your application with their CPU usage. The charts now start updating in real time to
show the data that gatord captures from your running application.

3. Unless you specified a capture duration, in the Capture Control view, click Stop capture and
analyze to end the capture.
Streamline stores the capture file in the location that you specified previously, and then prepares the
capture for analysis. When complete, the capture appears in the Timeline view.

4. IMPORTANT: Switch back to the terminal running the lwi_me.py script and press any key to
terminate it. The script kills all processes that it started and removes gatord from the target.

Next Steps

• 3.4 Generate a performance report on page 3-29
• To analyze performance with Streamline, see Analyze your capture in the Arm Streamline User

Guide.

3 Quick start guide
3.3 Capture a Streamline profile

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-28
Non-Confidential

https://developer.arm.com/documentation/101816/0704/Analyze-your-capture

3.4 Generate a performance report
Generate an HTML performance report from an existing Streamline capture.

Prerequisites

To generate a report, you must first 3.1 Connect Streamline to your device on page 3-25, 3.2 Choose a
counter template on page 3-27, and 3.3 Capture a Streamline profile on page 3-28.

Procedure
1. Open a terminal in the directory containing your APC file.

 Note

The APC file can be a zip file or an uncompressed .apc directory.

2. Run Performance Advisor using the following command:

pa <filename>.apc [options]

To control how the pa command runs, you can pass various options to it. See B.1 The pa command
on page Appx-B-51 for detailed descriptions of all the available options. You can also add multiple
command-line options to a file that you pass to the pa command, see B.1.1 pa command-line options
file on page Appx-B-53 for details.

 Note

• For example, to include build and device information in the report summary, include the --
build-name, --build-timestamp, and --device-name command-line options.

• To show any CPU and GPU scheduling issues with your application, include the --main-thread
option and specify the thread that you want to analyze:

--main-thread=<thread-name>

If any scheduling issues are detected, Performance Advisor shows an indicator at the top of the
report.

• To check whether your application exceeds certain threshold values, include options for setting a
per-frame budget.

Performance Advisor saves an HTML file to the current directory. Alternatively, you can specify a
different directory using the --directory option. The file contains the results of the performance
analysis, and links to advice on how to improve the performance.

The summary section shown at the top of the report is based on the duration of your capture. To take a
closer look at a specific area of interest, click and drag the cursor over the region to select it.

3 Quick start guide
3.4 Generate a performance report

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-29
Non-Confidential

Click anywhere on the chart when you are ready to go back to the original capture duration.

You can zoom in to any line chart in the report in the same way, by clicking and dragging over the area
of interest. When you zoom in on one chart, all other charts in the same section zoom in to the same
point so you can easily compare them.

If you set any per-frame budgets, a solid line appears on the relevant charts so you can check whether
your application remains below it.

To get help on overcoming graphics problems and optimizing your application, click the advice links on
the report.

Related tasks
4.2 Export performance data as a JSON file on page 4-34
4.3 Generate multiple report types on page 4-37
Related references
B.1 The pa command on page Appx-B-51
Related information
Optimization advice

3 Quick start guide
3.4 Generate a performance report

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-30
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/advice
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/advice

Chapter 4
Running Performance Advisor in continuous
integration workflows

Regular performance reports enable you to get instant feedback throughout your development cycle.
With an Arm Mobile Studio Professional license, you can integrate Performance Advisor into your
continuous integration workflow. This workflow enables you to automatically generate daily reports that
help your team monitor how changes during the development cycle impact performance. Also, you can
automatically generate machine-readable JSON reports that you can import into your existing
performance regression tracking systems.

It contains the following sections:
• 4.1 Generate performance reports automatically on page 4-32.
• 4.2 Export performance data as a JSON file on page 4-34.
• 4.3 Generate multiple report types on page 4-37.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-31
Non-Confidential

4.1 Generate performance reports automatically
If your development team uses a CI (continuous integration) system to merge daily code changes, you
can run nightly automated on-device performance testing across multiple devices.

 Note

CI functionality is only available with Arm Mobile Studio Professional Edition.

Use a CI tool such as Jenkins, TeamCity, or Buildbot to send the following instructions to the host
machines for each device in your device farm.

Prerequisites

Generate a configuration.xml file by connecting Streamline to your device on page 3-25, choosing
your counter configuration or counter template on page 3-27, and then exporting a configuration file.

Procedure
1. Change to the <install_directory>/performance_advisor/lwi/helpers directory, or copy the

following files to your working directory:
• <install_directory>/performance_advisor/lwi/helpers/lwi_me.py
• <install_directory>/performance_advisor/lwi/helpers/gator_me.py
• <install_directory>/streamline/bin/arm64/gatord
• <install_directory>/performance_advisor/lwi/target/android/arm/unrooted/arm64-

v8a/libGLES_layer_lwi.so
• configuration.xml

2. Run the lwi_me.py script with the --headless option, and specify the path to the configuration file:

python3 lwi_me.py --package <app.package.name> \
 --headless <path_to_directory>/<filename>.apc \
 --daemon <install_directory>/streamline/bin/arm64/gatord \
 --config <path_to_config_file>/configuration.xml

For Android 10, add one of the following options:

• --lwi-gles-layer-lib-path <path_to_GLES_layer_lib>
• --lwi-vk-layer-lib-path <path_to_Vulkan_layer_lib>

Add any other optional arguments you require, refer to B.2 The lwi_me.py script options
on page Appx-B-54 for details.

 Note

If you built your application with Unity, include the Unity player activity in <app.package.name>,
for example:

com.arm.mygame/com.unity3d.player.UnityPlayerActivity

3. Add a wait period of at least one minute, to allow the script to prepare the device for profiling.
4. Start the application on the target device. For example:

adb shell am start -n <app.package.name>

5. To stop profiling, exit the application in one of the following ways:
• Set your application test case to exit after a certain length of time.
• Forcefully kill the application using:

adb shell am force-stop <app.package.name>

4 Running Performance Advisor in continuous integration workflows
4.1 Generate performance reports automatically

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-32
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/professional
https://developer.arm.com/documentation/101816/0704/Capture-a-Streamline-profile/Counter-Configuration/Importing-and-exporting-counter-configuration-files

The Streamline capture file is saved to the location you specified with the --headless command-line
option.

 Note

Instead of exiting the application, you can specify a --headless-timeout <seconds> value. This
method is not ideal for test scenarios with variable performance.

6. Generate Performance Advisor reports in HTML and JSON formats:

pa <capture_filename.apc> -p <app.package.name> -d <output_directory> -t
html:<file_name>.html,json:<file_name>.json

For the full list of available command-line options, refer to B.1 The pa command
on page Appx-B-51.

Next Steps

Push the HTML reports to a centrally visible location for your team to analyze each day. Push the JSON
reports to any JSON-compatible database and visualization tool, such as ELK Stack.

For more information, refer to Integrate Arm Mobile Studio into a CI workflow on the Arm Developer
website.

4 Running Performance Advisor in continuous integration workflows
4.1 Generate performance reports automatically

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-33
Non-Confidential

https://www.elastic.co/what-is/elk-stack
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/learn/tutorials/integrate-arm-mobile-studio-into-a-ci-workflow/

4.2 Export performance data as a JSON file
Generate a JSON report that you can import into other tools. Use reports from multiple test runs to track
performance over time.

 Note

JSON reports are only available with Arm Mobile Studio Professional Edition.

JSON reports provide a raw data export that you can import into other tools, such as a NoSQL database,
to compare different test runs. For example, you can track the average number of visible primitives per
frame between builds.

Procedure
1. Open a terminal in the directory containing your APC file.

 Note

The APC file can be a Streamline archive (.zip) or an uncompressed .apc directory.

2. Run Performance Advisor using the following command:

pa <capture.apc.zip> -p <app.package.name> -d <optional output dir> -t json

To change the output file name, append it to the -t argument using a colon:

-t json:your_file_name.json

The JSON report output is packed by default, to make it compatible with most third-party database and
visualization tools. If you want to view the data in a more human-readable format, use the --pretty-
print option.

The following example shows part of a JSON report that was output with the --pretty-print option:

{
 "deviceInfo": {
 "build": null,
 "device": "Example board",
 "processors": "Cortex-A55 MP4, Mali-G72"
 },
 "allCapture": {
 "averageFrameRateFps": 19.4,
 "boundnessSplitPercentage": {
 "fragment": 0.0,
 "non-fragment": 0.0,
 "vsync": 0.0,
 "cpu": 98.5,
 "unknown": 1.5
 },
 "averageUtilizationPercentage": {
 "averageGpuUtilization": 19.0,
 "averageCpuUtilization": 62.7
 }
 },
 "fpsBoundness": {
 "frameRate": {
 "average": 19.4,
 "max": 21.1,
 "min": 17.9,
 "centiles": {
 "80": 20.0,
 "98": 21.1,
 "95": 20.7
 }
 },
 "vsync": {
 "target": 60,
 "percentageTimeUnderTarget": 100
 }
 },
 "overdrawPerPixel": {

4 Running Performance Advisor in continuous integration workflows
4.2 Export performance data as a JSON file

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-34
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/professional

 "overdraw": {
 "average": 0.3,
 "max": 0.4,
 "min": 0.1,
 "centiles": {
 "80": 0.4,
 "98": 0.4,
 "95": 0.4
 }
 }
 },
 "gpuUsagePerFrame": {
 "nonfragmentCycles": {
 "average": 1707767.6,
 "max": 2039630.8,
 "min": 770117.5,
 "centiles": {
 "80": 1917112.6,
 "98": 2039630.8,
 "95": 2039630.8
 }
 },
 "gpuCycles": {
 "average": 4157114.0,
 "max": 4897026.6,
 "min": 1587167.6,
 "centiles": {
 "80": 4649032.8,
 "98": 4897026.6,
 "95": 4897026.6
 }
 },
 "fragmentCycles": {
 "average": 2449346.8,
 "max": 2911080.0,
 "min": 608306.8,
 "centiles": {
 "80": 2857394.4,
 "98": 2911080.0,
 "95": 2911080.0
 }
 }
 },
 "drawCallsPerFrame": {
 "drawCalls": {
 "average": 456.0,
 "max": 456.0,
 "min": 456.0,
 "centiles": {
 "80": 456.0,
 "98": 456.0,
 "95": 456.0
 }
 }
 },
 "primitivesPerFrame": {
 "totalPrimitives": {
 "average": 290318.2,
 "max": 331233.8,
 "min": 114309.3,
 "centiles": {
 "80": 325304.5,
 "98": 331233.8,
 "95": 331233.8
 }
 },
 "visiblePrimitives": {
 "average": 89856.7,
 "max": 102210.2,
 "min": 34685.2,
 "centiles": {
 "80": 100151.9,
 "98": 102210.2,
 "95": 102210.2
 }
 }
 },
 "pixelsPerFrame": {
 "pixels": {
 "average": 4669783.4,
 "max": 5315129.7,
 "min": 3197000.8,
 "centiles": {
 "80": 5165539.5,

4 Running Performance Advisor in continuous integration workflows
4.2 Export performance data as a JSON file

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-35
Non-Confidential

 "98": 5315129.7,
 "95": 5315129.7
 }
 }
 },
…

Related tasks
3.4 Generate a performance report on page 3-29
4.3 Generate multiple report types on page 4-37
Related references
B.1 The pa command on page Appx-B-51

4 Running Performance Advisor in continuous integration workflows
4.2 Export performance data as a JSON file

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-36
Non-Confidential

4.3 Generate multiple report types
Generate an HTML performance report and a JSON performance report from an existing Streamline
capture.

Prerequisites

Before you can generate a report, you must have a Streamline capture file. For help on creating a capture,
see 3.3 Capture a Streamline profile on page 3-28.

Procedure
1. Open a terminal in the directory containing your APC file.

 Note

The APC file can be a zip file or an uncompressed .apc directory.

2. Run Performance Advisor using the following command:

pa <capture.apc.zip> -p <app.package.name> -d <optional output dir> -t html,json

To change the output file names, append each file name to the corresponding type argument using a
colon:

-t html:your_file_name.html,json:your_file_name.json

Related tasks
3.4 Generate a performance report on page 3-29
4.2 Export performance data as a JSON file on page 4-34
Related references
B.1 The pa command on page Appx-B-51

4 Running Performance Advisor in continuous integration workflows
4.3 Generate multiple report types

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-37
Non-Confidential

Chapter 5
Capturing a slow frame

Identify slow frames by using the lightweight interceptor (LWI) in different modes. Before you can use
the LWI, you must first integrate it with your application.

It contains the following sections:
• 5.1 Capturing slow frame rate images on page 5-39.
• 5.2 Tagging slow frames on page 5-41.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-38
Non-Confidential

5.1 Capturing slow frame rate images
Use Performance Advisor to continuously monitor frame rate and trigger frame captures when a slow
part is detected.

Arm provides the helper script lwi_me.py to enable you to capture data from your device using the
lightweight interceptor. This script is located in <install_directory>/performance_advisor/lwi/
helpers.

Procedure
1. Create an empty directory for the frame capture images.

 Note

Frame captures might not have completed writing at the point of application exit, which can lead to
incomplete frame captures. Performance Advisor ignores these incomplete frame captures, and only
shows complete frame captures in the report.

2. In a terminal, navigate to <install_directory>/performance_advisor/lwi/helpers, where the
Python script lwi_me.py is located.

3. Run the lwi_me.py script with the options you need for your frame capture.

The script configures your device so that Performance Advisor can collect data from it. Specify the
directory you created in step 1 so the frame capture images are saved there.

 Note

This directory must be empty.

For example, to capture a frame when the frame rate goes below 30fps, and allow at least 100 frames
between captures:

python3 lwi_me.py --daemon <path_to_gatord> --lwi-fps-threshold 30 \
 --lwi-frame-gap 100 --lwi-mode capture \
 --lwi-out-dir <path_to_frame_captures_directory> \
 [--lwi-gles-layer-lib-path <path_to_GLES_layer_lib>]

The gatord binaries are in the Arm Mobile Studio installation directory:

• For 32-bit applications, set --daemon to <install_directory>/streamline/bin/arm/gatord
• For 64-bit applications, set --daemon to <install_directory>/streamline/bin/arm64/

gatord

The --lwi-gles-layer-lib-path option is required for Android 10 devices to specify the path to
the OpenGL ES layer library file. This file is supplied in the Arm Mobile Studio installation
directory. For example:

--lwi-gles-layer-lib-path \
 ../target/android/arm/unrooted/arm64-v8a/libGLES_layer_lwi.so

See B.2 The lwi_me.py script options on page Appx-B-54 for details of all the available command-
line options.

 Note

Capturing frames can affect performance. If you notice a decrease in performance when capturing
images, tag the slow frames instead. See 5.2 Tagging slow frames on page 5-41 for more
information.

5 Capturing a slow frame
5.1 Capturing slow frame rate images

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-39
Non-Confidential

4. If there are multiple debuggable packages on your device, the script lists them. Enter the number of
the package you want to analyze and follow the instructions to take a Streamline capture, as described
in 3.3 Capture a Streamline profile on page 3-28.
You do not need to run the gator_me script as it is called by the lwi_me script.

 Important

When Streamline prompts you to save the capture file, do not save it to the frame captures directory
that you specified in step 1. The contents of this directory are replaced when the frame capture
images are written there.

 Note

During the capture, images are saved to the output directory every time the FPS drops below the
target threshold. By default, images stop being captured after the first 500 frames. You can adjust the
end frame by specifying a different number using the -lwi-frame-end option when running the
lwi_me.py script. You can also specify the frame number at which to start the capture, using the -
lwi-frame-start option.

5. Use the pa command to generate an HTML report, specifying the location where you saved the frame
capture images in step 1. Optionally specify a directory in which to save the HTML report, otherwise
the HTML report is saved to the current directory.

pa <my_capture.apc> --frame-capture=<path_to_frame_captures_directory> \
 [--directory=<path_to_output_directory>]

You can use other options to specify metadata for your report, such as the build name, device name,
and application name. See B.1 The pa command on page Appx-B-51 for all the available command-
line options.

For more information about generating an HTML report, see 4.3 Generate multiple report types
on page 4-37.

6. Open the HTML report in a browser.

To see the captured frame, hover the cursor over the screen capture icon .

5 Capturing a slow frame
5.1 Capturing slow frame rate images

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-40
Non-Confidential

5.2 Tagging slow frames
If capturing frames directly impacts the performance of your application by reducing the frame rate, run
the lwi_me.py command to capture the frame numbers in tag mode. Then run the lwi_me.py command
to capture the frames in replay mode.

Procedure
1. Trace your application and output the capture to a specified folder.

For example, use the following command to trace an OpenGL ES application, tagging a frame when
the frame rate goes below 50fps:

python3 lwi_me.py --daemon <path to gator> --package <app.package.name> \
 --lwi-fps-threshold 50 --lwi-mode tag --lwi-out-dir /some/folder

Run the file with tagged frame numbers using --lwi-mode replay to capture the tagged frames.

python3 lwi_me.py --daemon <path to gator> --package <app.package.name> \
 --lwi-fps-threshold 50 --lwi-mode replay --lwi-slow-frames /some/folder/slow-frames \
 --lwi-out-dir /some/folder

2. Manually capture a Streamline profile, as described in 3.3 Capture a Streamline profile on page 3-28.
 Note

During the Streamline capture, the captured resources are written in the target when the trace reaches
the end frame. The default is to end the capture at frame 500. You can adjust the end frame by
specifying an alternative value for the FRAMEEND parameter of the lwi_me.py script.

3. To export the capture to the HTML report, send the frame capture path to the output directory:

pa [capture.apc] --package <app.package.name> --frame-capture=path [frame_capture_folder]

For more information about generating an HTML report, see 4.3 Generate multiple report types
on page 4-37.

To see the captured frame, hover the cursor over the screen capture icon .

5 Capturing a slow frame
5.2 Tagging slow frames

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-41
Non-Confidential

Chapter 6
Adding semantic input to the reports

Performance Advisor can use semantic information that the application provides as key input data when
generating the analysis reports.

The analysis reports support the use of region annotations to give context to the different frame ranges in
a test scenario. Manually add these annotations into the application code. Alternatively, if manually
adding annotations is not possible, or for quick debugging and extra analysis, specify a CSV file
containing the regions. Give Performance Advisor the path to the CSV file using the --regions
argument.

It contains the following sections:
• 6.1 Manually create annotations from your application on page 6-43.
• 6.2 Specify a CSV file containing the regions on page 6-45.
• 6.3 Clip unwanted data from the capture on page 6-46.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-42
Non-Confidential

6.1 Manually create annotations from your application
Streamline allows an application to manually create annotations, which can be used as an alternative
source of frame boundary annotations.

 Note

If you are hand-coding Performance Advisor annotations, use the gator_me.py script instead of
lwi_me.py script. The script is located in the Arm Mobile Studio installation directory:
<install_directory>/performance_advisor/lwi/helpers/

Native code

The native C code to include for generating annotations is located in the <ms_install>/streamline/
gator/annotate/ directory.

Unity plug-in code

Source code for a proof-of-concept plug-in for Unity 2018.2, which provides C# bindings for the
Streamline annotation functions, is located here:

[GitHub] ARM-software Mobile Studio Unity Plugin

6.1.1 Generating frame boundary annotations

The Graphics Analyzer interceptor automatically adds frame boundary annotations. However, for more
flexibility over how the frames are defined, you can manually specify the annotations. For example, if
you only want to track certain frames or if you have multiple contexts.

To implement frame boundary annotations manually, generate Streamline marker annotations matching
the following regular expression format, where the number is a monotonically incrementing frame
number:

F(/d+)

For example:

F10
F11
F12

6.1.2 Generating region annotations

Region annotations enable you to define consecutive frames as a named group to help you see which part
of your application is running when you review its performance. Performance Advisor produces a
separate section in the report for each defined region so that you can analyze the metrics for each region
in more detail.

To define a region in your code, manually generate Streamline marker annotations:

Region Start <region name>
Region End <region name>

 Note

To prevent an error, ensure that region names are unique by appending a number to the end of the region
name.

To ensure that conclusions are statistically significant, Arm recommends keeping regions and subregions
relatively large. For example, at least two seconds in length.

6 Adding semantic input to the reports
6.1 Manually create annotations from your application

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-43
Non-Confidential

https://github.com/ARM-software/Tool-Solutions/tree/master/mobile-application-profiling/mobile-studio-with-unity/InfiniteTerrain/Assets/Arm%20Mobile%20Studio

The regions defined in your code are shown on the FPS analysis chart. Any regions that overlap are
shown as subregions on the chart.

Click a region to zoom in and analyze it further on the FPS analysis chart, or scroll down the report to
see metrics for each region.

6 Adding semantic input to the reports
6.1 Manually create annotations from your application

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-44
Non-Confidential

6.2 Specify a CSV file containing the regions
If manually adding annotations is not possible, or for quick debugging and extra analysis, specify a CSV
file containing the regions and use the --regions argument.

Create a CSV file using the following format, where each region is on a new line:

Region Name,Start,End

Start and End are a timestamp in milliseconds or a frame number followed by f.

For example, specify a region that starts at 500ms and ends at 15000ms with:

Test Region,500,15000

Specify a region that starts at the 500th frame and ends at the 15000th frame with:

Test Region,500f,15000f

To set the start to the start of the capture, or the end to the end of the capture, use a *. For example:

Test Region,*,15000

Test Region,5000f,*

 Note

Performance Advisor ignores the region if you use * for both the start and the end, as this region is the
whole capture.

Give Performance Advisor the path to the CSV file using the --regions argument.

6 Adding semantic input to the reports
6.2 Specify a CSV file containing the regions

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-45
Non-Confidential

6.3 Clip unwanted data from the capture
Specify the part of the capture that you want to include in the analysis report and discard the remaining
data. For example, remove the loading and ending screens so they are not included in the report.

You can specify the start and end time with one of the following:
• A timestamp in milliseconds.
• A region name with :start or :end appended to it.

Procedure
1. Specify the start of the report with --clip-start=<clipStartStr>.

If you do not specify a start, the report starts from the beginning of the capture.
2. Specify the end of the report with --clip-end=<clipEndStr>.

If you do not specify an end, the report ends at the end of the capture.

Example 6-1 Clip sections of a capture

• Clip the capture so the report starts at two seconds and ends at 15 seconds:

--clip-start=2000 --clip-end=15000

• Clip the capture so the report starts at the end of the region named "loading screen":

--clip-start="loading screen:end"

• Clip the capture so the report starts at the end of the region "level one loading screen" and ends at the
start of the region "level two loading screen":

--clip-start="level one loading screen:end" --clip-end="level two loading screen:start"

Related references
B.1 The pa command on page Appx-B-51

6 Adding semantic input to the reports
6.3 Clip unwanted data from the capture

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-46
Non-Confidential

Appendix A
Analytics

It contains the following sections:
• A.1 Data collection in Performance Advisor on page Appx-A-48.
• A.2 Disable analytics data collection on page Appx-A-49.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-A-47
Non-Confidential

A.1 Data collection in Performance Advisor
Arm periodically collects anonymous information about the usage of our products to understand, and
analyze, what components or features you are using. We use this information to improve our products
and your experience with them.

Product usage analytics contain information such as system information, settings, and usage of specific
features of the product. You can enable or disable the feature in the product settings.

The data that we collect through Performance Advisor is anonymous and does not include any personal
information.

Host information includes:

• Operating system details, such as version number, platform, language, and architecture (for example
64-bit).

• CPU and GPU information.
• Java version and memory.
• Number of monitors.
• Screen pixels per inch (PPI) and monitor resolutions.

Product information includes:

• Version and build number of Performance Advisor.
• Edition of license that you are using (Starter, Evaluation, or Professional).
• Session time using Performance Advisor.

Feature information includes:
• Number, and type (HTML or JSON), of reports generated.
• Number of headless captures used.
• Number of captures containing user regions.
• Number of captures containing overdraw, or draw call information.
• Number of times screenshots were supplied.
• Total number of errors that you encountered, reported by type of error.
• Total number of licensing errors (unsupported/unknown license).
• Use of the --mspf option to display milliseconds per frame in the report.

A Analytics
A.1 Data collection in Performance Advisor

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-A-48
Non-Confidential

A.2 Disable analytics data collection
Analytics collection is enabled by default. Use these options to disable the collection of analytics data in
Performance Advisor.

• Set the command-line argument --disable-analytics when running Performance Advisor to
disable it for the current invocation.

• Alternatively, set the ARM_DISABLE_ANALYTICS environment variable to any nonzero value before
running Performance Advisor to disable analytics collection for all invocations.

A Analytics
A.2 Disable analytics data collection

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-A-49
Non-Confidential

Appendix B
Command-line options

It contains the following sections:
• B.1 The pa command on page Appx-B-51.
• B.2 The lwi_me.py script options on page Appx-B-54.

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-B-50
Non-Confidential

B.1 The pa command
The pa command runs Performance Advisor on a capture.

Syntax
pa [OPTIONS] <capture.apc>

 Note

You can pass options to pa in a configuration file. See B.1.1 pa command-line options file
on page Appx-B-53 for details.

Options

<capture.apc>
The path to the capture APC directory or zip file.

--centiles=int[,int...]
Comma-separated integer values specifying the percentiles to calculate for each data series.
Default = 80,90,95.

--clip-end=clipEndStr
Specify the time that you want the report to end at. clipEndStr is the timestamp in milliseconds
or the frame number followed by f. For example, --clip-end=7000 ends the clip at 7000ms, or
--clip-end=7000f ends the clip at the 7000th frame. Alternatively you can use the format
<region-name>:start or <region-name>:end to use the start or end time of a region.

--clip-start=clipStartStr
Specify the time that you want the report to start from. clipStartStr is the timestamp in
milliseconds or the frame number followed by f. For example, --clip-start=500 starts the
clip at 500ms, or --clip-start=500f starts the clip at the 500th frame. Alternatively you can
use the format <region-name>:start or <region-name>:end to use the start or end time of a
region.

-d, --directory=path
The output directory path for the reports.

--disable-analytics
Disable sending any analytics data to Arm.

-f, --frame-capture=path
The path to the frame captures directory.

-h, --help
Show command-line arguments and descriptions, and exit.

-m, --main-thread=string
The name of the main render thread to analyze.

--mspf
Display milliseconds per frame throughout the HTML report instead of FPS.

--pretty-print
Print the JSON output with whitespace, making it human readable.

-p, --process=string
The name of the process to inspect.

--[no-]progress
Whether to display progress bars or not.

B Command-line options
B.1 The pa command

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-B-51
Non-Confidential

-r, --regions=file
Takes a CSV file containing custom regions to add to the report, where each line of the CSV file
is of the format regionName,start,end. start and end are a timestamp in milliseconds or a
frame number followed by f. For example, regionName,500,7000 starts the region at 500ms
and ends it at 7000ms. regionName,500f,7000f starts the region at the 500th frame and ends it
at the 7000th frame. See 6.2 Specify a CSV file containing the regions on page 6-45.

-t, --type=type[:file][,type[:file]...]
A comma-separated list of report types, where the type is one of:

json
JSON CI report

html
Interactive html report

You can specify an output filename for each report.

--target-fps=int
The target frame rate in frames per second. Default = 60.

-V, --version
Print version information and exit.

Options for report metadata:

--application-name=string
The human readable name of the application being analyzed. For example, "Awesome Game". If
the name contains whitespace, use quotes. This name becomes the report title. Default =
"Performance Advisor Report".

--build-name=string
The build name of your application. For example, nightly. fa34c92.

--build-timestamp=string
The timestamp of your application build. For example, Thu, 22 Aug 2019 12:47:30.

--device-name=string
The name of the device that is used to obtain the capture.

Options for setting a per-frame budget:

--bandwidth-budget=<value>
Threshold for read/write bytes.

--cpu-cycles-budget=<value>
Threshold for CPU cycles.

--draw-calls-budget=<value>
Threshold for draw calls.

--gpu-cycles-budget=<value>
Threshold for GPU cycles.

--overdraw-budget=<value>
Threshold for overdraw.

--pixels-budget=<value>
Threshold for pixels.

--primitives-budget=<value>
Threshold for primitives.

--shader-cycles-budget=<value>
Threshold for shader cycles.

B Command-line options
B.1 The pa command

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-B-52
Non-Confidential

--vertices-budget=<value>
Threshold for vertices.

This section contains the following subsection:
• B.1.1 pa command-line options file on page Appx-B-53.

B.1.1 pa command-line options file

You can list command-line options in a file that you pass to the pa command.

For example, you might create a file for your budget thresholds called budget that contains the following
options:

--cpu-cycles-budget 100000000
--gpu-cycles-budget 28000000
--shader-cycles-budget 20000000
--draw-calls-budget 350
--vertices-budget 1000000

 Note

Use a space between an option and its value in the file, not an equals sign.

When you run Performance Advisor, specify the file with @<filename>, for example:

pa --type=html:output.html capture.apc @budget

B Command-line options
B.1 The pa command

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-B-53
Non-Confidential

B.2 The lwi_me.py script options
To see the possible options and their default values for the lwi_me.py command, run python3
lwi_me.py -h.

Syntax
python3 lwi_me.py --daemon <path_to_gatord> [OPTIONS]

Options

--device or -E
The target device name. If not specified, the script automatically detects the name from the
device.

--package or -P
The application package name. If not specified, the script returns a list of debuggable packages
on the device, and prompts you to choose one.

--headless or -H
Perform a headless capture, and write the result to a specified <capture_path>. Default =
perform interactive capture.

--headless-timeout or -T
Exit the headless timeout after the specified number of <seconds>. Default = wait for process
exit.

--config or -C
Specify the <filename> of the configuration XML file you want to use for a headless capture.
Default = None for an interactive capture, or configuration.xml for a headless capture.

--daemon or -D
Mandatory. Specify the <path> to the gatord binary you want to use. The gatord binaries are
supplied in the Arm Mobile Studio installation directory:

<install_directory>/streamline/bin/{arm|arm64}/gatord

Different folders contain different versions of gatord for 32-bit (arm) or 64-bit (arm64)
applications.

--no-clean-start
Disable pre-run device cleanup. Default = enabled.

--no-clean-end
Disable post-run device cleanup. Default = enabled.

--overwrite
Overwrite an earlier headless output. Default = disabled.

--verbose or -v
Enable verbose logging. Default = disabled.

--lwi on | off | alone
Enable or disable the LWI. The alone mode bypasses gator. Default = on.

--lwi-api gles | vulkan
Select the API you want to listen to. Default = gles.

--lwi-compress-img or -X
Compress screenshots. Default = no.

--lwi-gles-layer-name <name>
The OpenGL ES layer name. Default = libGLES_layer_lwi.so.

B Command-line options
B.2 The lwi_me.py script options

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-B-54
Non-Confidential

--lwi-gles-layer-lib-path <path>
The path to the OpenGL ES layer library file. This file is supplied in the Arm Mobile Studio
installation directory:

<install_directory>/performance_advisor/lwi/target/android/arm/{rooted|
unrooted}/{arm64-v8a|armeabi-v7a}/libGLES_layer_lwi.so

Different files are supplied for rooted or unrooted devices, and for 32-bit (armeabi-v7a) or 64-
bit (arm64-v8a) applications.

--lwi-vk-layer-name <name>
The Vulkan layer name. Default = VK_LAYER_ARM_LWI.

--lwi-vk-layer-lib-path <path>
The Vulkan layer library path.

--lwi-fps-window or -W
Specify the <number_of_frames> for the sliding window used for FPS calculation. Default = 5.

--lwi-fps-threshold or -Th
Perform a capture if the FPS goes under a specified <fps_value>. Default = 30.

--lwi-frame-start or -S
Start tracking from a specified <frame_number>. Default = 1.

--lwi-frame-end or -N
End tracking at the specified <frame_number>. Default = 500.

--lwi-frame-gap or -G
Minimum <number_of_frames> between two captures. Default = 200.

--lwi-mode or -M
Specify in which mode you want the LWI to operate:
• none to not capture images or tag frames. This value is the default.
• capture or c to capture frame images when the fps goes below the specified --lwi-fps-

threshold <fps_value>. You must specify an output directory for the captured images
with --lwi-out-dir.

• tag or t to tag frame numbers when the fps goes below the specified --lwi-fps-threshold
<fps_value>. You must specify an output directory for the tagged frames with --lwi-out-
dir.

• replay or r to run the file of tagged frame numbers.

--lwi-out-dir or -o
Specify the path to a directory for the captured images or tagged frames. This directory must be
empty.

--lwi-slow-frames <path>
Path to a file containing the indices of slow frames (required in replay mode). Generate this file
using the LWI in tag mode.

B Command-line options
B.2 The lwi_me.py script options

102009_0102_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-B-55
Non-Confidential

	Performance Advisor User Guide
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction to Performance Advisor
	1.1 : Overview of Performance Advisor
	1.2 : Performance report example
	1.3 : Performance Advisor workflows

	2 : Before you begin
	2.1 : Set up your host machine
	2.2 : Set up your device
	2.3 : Integrate Performance Advisor with your application
	2.3.1 : Prepare your Unity project
	2.3.2 : Prepare your Android Studio project

	3 : Quick start guide
	3.1 : Connect Streamline to your device
	3.2 : Choose a counter template
	3.3 : Capture a Streamline profile
	3.4 : Generate a performance report

	4 : Running Performance Advisor in continuous integration workflows
	4.1 : Generate performance reports automatically
	4.2 : Export performance data as a JSON file
	4.3 : Generate multiple report types

	5 : Capturing a slow frame
	5.1 : Capturing slow frame rate images
	5.2 : Tagging slow frames

	6 : Adding semantic input to the reports
	6.1 : Manually create annotations from your application
	6.1.1 : Generating frame boundary annotations
	6.1.2 : Generating region annotations

	6.2 : Specify a CSV file containing the regions
	6.3 : Clip unwanted data from the capture

	A : Analytics
	A.1 : Data collection in Performance Advisor
	A.2 : Disable analytics data collection

	B : Command-line options
	B.1 : The pa command
	B.1.1 : pa command-line options file

	B.2 : The lwi_me.py script options

