
Arm® Compiler
Version 6.6

Migration and Compatibility Guide

Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All rights reserved.
DUI0742K

Arm® Compiler
Migration and Compatibility Guide
Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential Arm Compiler v6.00 Release

B 15 December 2014 Non-Confidential Arm Compiler v6.01 Release

C 30 June 2015 Non-Confidential Arm Compiler v6.02 Release

D 18 November 2015 Non-Confidential Arm Compiler v6.3 Release

E 24 February 2016 Non-Confidential Arm Compiler v6.4 Release

F 29 June 2016 Non-Confidential Arm Compiler v6.5 Release

G 04 November 2016 Non-Confidential Arm Compiler v6.6 Release

H 08 May 2017 Non-Confidential Arm Compiler v6.6.1 Release

I 29 November 2017 Non-Confidential Arm Compiler v6.6.2 Release

J 28 August 2019 Non-Confidential Arm Compiler v6.6.3 Release

K 26 August 2020 Non-Confidential Arm Compiler v6.6.4 Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if

 Arm® Compiler

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2

Non-Confidential

there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2014–2017, 2019, 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

 Arm® Compiler

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://developer.arm.com

Contents
Arm® Compiler Migration and Compatibility Guide

Preface
About this book 9

Chapter 1 Configuration and Support Information
1.1 Support level definitions 1-12
1.2 Compiler configuration information .. 1-16

Chapter 2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.1 Migration overview 2-18
2.2 Toolchain differences 2-19
2.3 Default differences 2-20
2.4 Optimization differences .. 2-22
2.5 Diagnostic messages 2-24
2.6 Migration example 2-26

Chapter 3 Migrating from armcc to armclang
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler

6 3-29
3.2 Arm® Compiler 5 and Arm® Compiler 6 stack protection behavior 3-36
3.3 Command-line options for preprocessing assembly source code 3-38
3.4 Migrating architecture and processor names for command-line options 3-39

Chapter 4 Compiler Source Code Compatibility
4.1 Language extension compatibility: keywords 4-46

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4

Non-Confidential

4.2 Language extension compatibility: attributes 4-49
4.3 Language extension compatibility: pragmas 4-51
4.4 Language extension compatibility: intrinsics 4-54
4.5 Diagnostics for pragma compatibility 4-58
4.6 C and C++ implementation compatibility 4-60
4.7 Compatibility of C++ objects .. 4-62

Chapter 5 Migrating from armasm to the armclang Integrated Assembler
5.1 Overview of differences between armasm and GNU syntax assembly code 5-65
5.2 Comments 5-67
5.3 Labels .. 5-68
5.4 Numeric local labels 5-69
5.5 Functions 5-71
5.6 Sections 5-72
5.7 Symbol naming rules 5-74
5.8 Numeric literals .. 5-75
5.9 Operators 5-76
5.10 Alignment 5-77
5.11 PC-relative addressing 5-78
5.12 Conditional directives 5-79
5.13 Data definition directives 5-80
5.14 Instruction set directives .. 5-82
5.15 Miscellaneous directives .. 5-83
5.16 Symbol definition directives 5-84

Appendix A Code Examples
A.1 Example startup code for Arm® Compiler 5 project .. Appx-A-87
A.2 Example startup code for Arm® Compiler 6 project .. Appx-A-89

Appendix B Licenses
B.1 Apache License Appx-B-92

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5

Non-Confidential

List of Figures
Arm® Compiler Migration and Compatibility Guide

Figure 1-1 Integration boundaries in Arm Compiler 6. .. 1-14

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

6

Non-Confidential

List of Tables
Arm® Compiler Migration and Compatibility Guide

Table 1-1 FlexNet versions .. 1-16
Table 2-1 List of compilation tools ... 2-19
Table 2-2 Differences in defaults ... 2-20
Table 2-3 Optimization settings ... 2-22
Table 2-4 Command-line changes ... 2-26
Table 3-1 Comparison of compiler command-line options in Arm Compiler 6 and Arm Compiler 5 3-29
Table 3-2 Architecture selection in Arm Compiler 5 and Arm Compiler 6 ... 3-39
Table 3-3 Processor selection in Arm Compiler 5 and Arm Compiler 6 .. 3-40
Table 4-1 Keyword language extensions in Arm Compiler 5 and Arm Compiler 6 4-46
Table 4-2 Migrating the __packed keyword ... 4-48
Table 4-3 Support for __declspec attributes .. 4-49
Table 4-4 Migrating __attribute__((at(address))) and zero-initialized __attribute__((section("name"))) ... 4-

50
Table 4-5 Pragma language extensions that must be replaced .. 4-51
Table 4-6 Compiler intrinsic support in Arm Compiler 6 .. 4-54
Table 4-7 Pragma diagnostics ... 4-58
Table 4-8 C and C++ implementation detail differences .. 4-60
Table 5-1 Operator translation ... 5-76
Table 5-2 Conditional directive translation ... 5-79
Table 5-3 Data definition directives translation .. 5-80
Table 5-4 Instruction set directives translation .. 5-82
Table 5-5 Miscellaneous directives translation .. 5-83
Table 5-6 Symbol definition directives translation ... 5-84

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

7

Non-Confidential

Preface

This preface introduces the Arm® Compiler Migration and Compatibility Guide.

It contains the following:
• About this book on page 9.

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

8

Non-Confidential

 About this book
The Arm® Compiler Migration and Compatibility Guide provides migration and compatibility
information for users moving from older versions of Arm Compiler to Arm Compiler 6.

 Using this book

This book is organized into the following chapters:

Chapter 1 Configuration and Support Information
Summarizes the support levels and FlexNet versions supported by the Arm compilation tools.

Chapter 2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
Provides an overview of the differences between Arm Compiler 5 and Arm Compiler 6.

Chapter 3 Migrating from armcc to armclang
Compares Arm Compiler 6 command-line options to older versions of Arm Compiler.

Chapter 4 Compiler Source Code Compatibility
Provides details of source code compatibility between Arm Compiler 6 and older armcc compiler
versions.

Chapter 5 Migrating from armasm to the armclang Integrated Assembler
Describes how to migrate assembly code from armasm syntax to GNU syntax (used by armclang).

Appendix A Code Examples
Provides source code examples for Arm Compiler 5 and Arm Compiler 6.

Appendix B Licenses
Describes the Apache license.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

 Preface
 About this book

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

9

Non-Confidential

https://developer.arm.com/support/arm-glossary

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Compiler Migration and Compatibility Guide.
• The number DUI0742K.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

10

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Configuration and Support Information

Summarizes the support levels and FlexNet versions supported by the Arm compilation tools.

It contains the following sections:
• 1.1 Support level definitions on page 1-12.
• 1.2 Compiler configuration information on page 1-16.

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

1-11

Non-Confidential

1.1 Support level definitions
This describes the levels of support for various Arm Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore it has more functionality than the set
of product features described in the documentation. The following definitions clarify the levels of
support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and endeavors to support
users to a level that is appropriate for that feature. You can contact support at https://developer.arm.com/
support.

Identification in the documentation

All features that are documented in the Arm Compiler 6 documentation are product features, except
where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested, and is
expected to be stable across feature and update releases.
• Arm endeavors to give advance notice of significant functionality changes to product features.
• If you have a support and maintenance contract, Arm provides full support for use of all product

features.
• Arm welcomes feedback on product features.
• Any issues with product features that Arm encounters or is made aware of are considered for fixing in

future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features

Beta product features are implementation complete, but have not been sufficiently tested to be
regarded as suitable for use in production environments.

Beta product features are indicated with [BETA].
• Arm endeavors to document known limitations on beta product features.
• Beta product features are expected to eventually become product features in a future release

of Arm Compiler 6.
• Arm encourages the use of beta product features, and welcomes feedback on them.
• Any issues with beta product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Alpha product features

Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are indicated with [ALPHA].
• Arm endeavors to document known limitations of alpha product features.
• Arm encourages the use of alpha product features, and welcomes feedback on them.
• Any issues with alpha product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Community features

Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology where
possible. This means that there are additional features available in Arm Compiler that are not listed in the
documentation. These additional features are known as Community features. For information on these
Community features, see the documentation for the Clang/LLVM project.

1 Configuration and Support Information
1.1 Support level definitions

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

1-12

Non-Confidential

https://developer.arm.com/support
https://developer.arm.com/support
http://clang.llvm.org/docs/UsersManual.html

Where Community features are referenced in the documentation, they are indicated with
[COMMUNITY].
• Arm makes no claims about the quality level or the degree of functionality of these features, except

when explicitly stated in this documentation.
• Functionality might change significantly between feature releases.
• Arm makes no guarantees that Community features will remain functional across update releases,

although changes are expected to be unlikely.

Some Community features might become product features in the future, but Arm provides no roadmap
for this. Arm is interested in understanding your use of these features, and welcomes feedback on them.
Arm supports customers using these features on a best-effort basis, unless the features are unsupported.
Arm accepts defect reports on these features, but does not guarantee that these issues will be fixed in
future releases.

Guidance on use of Community features
There are several factors to consider when assessing the likelihood of a Community feature being
functional:
• The following figure shows the structure of the Arm Compiler 6 toolchain:

1 Configuration and Support Information
1.1 Support level definitions

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

1-13

Non-Confidential

armasm

armclang

Arm C library

Arm C++ library

armlink

LLVM Project
clang

armasm syntax
assembly

armasm syntax
assembly

C/C++
Source code

C/C++
Source code

GNU syntax
Assembly

GNU syntax
Assembly

Source code
headers

Source code
headers

ObjectsObjects ObjectsObjects ObjectsObjects

Scatter/Steering/
Symdefs file

Scatter/Steering/
Symdefs file

ImageImage

LLVM Project
libc++

Figure 1-1 Integration boundaries in Arm Compiler 6.

The dashed boxes are toolchain components, and any interaction between these components is an
integration boundary. Community features that span an integration boundary might have significant
limitations in functionality. The exception to this is if the interaction is codified in one of the
standards supported by Arm Compiler 6. See Application Binary Interface (ABI) for the Arm®

Architecture. Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long
time in other toolchains, are likely to be mature. The functionality of new features, such as support

1 Configuration and Support Information
1.1 Support level definitions

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

1-14

Non-Confidential

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/architectures/system-architectures/software-standards/abi

for new language features, is likely to be less mature and therefore more likely to have limited
functionality.

Unsupported features

With both the product and Community feature categories, specific features and use-cases are known not
to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive list of
unsupported features or use-cases for Community features. The known limitations on Community
features are listed in Community features on page 1-12.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
• The Clang option -stdlib=libstdc++ is not supported.
• C++ static initialization of local variables is not thread-safe when linked against the standard C++

libraries. For thread-safety, you must provide your own implementation of thread-safe functions as
described in Standard C++ library implementation definition.

 Note

This restriction does not apply to the [ALPHA]-supported multi-threaded C++ libraries.

• Use of C11 library features is unsupported.
• Any Community feature that exclusively pertains to non-Arm architectures is not supported.
• Compilation for targets that implement architectures older than Armv7 or Armv6‑M is not supported.
• The long double data type is not supported for AArch64 state because of limitations in the current

Arm C library.
• Complex numbers are not supported because of limitations in the current Arm C library.

1 Configuration and Support Information
1.1 Support level definitions

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

1-15

Non-Confidential

https://developer.arm.com/docs/dui0808/k/the-arm-c-and-c-libraries/iso-c-library-implementation-definition/standard-c-library-implementation-definition

1.2 Compiler configuration information
Summarizes the locales and FlexNet versions supported by the Arm compilation tools.

FlexNet versions in the compilation tools

Different versions of Arm Compiler support different versions of FlexNet.

The FlexNet versions in the compilation tools are:

Table 1-1 FlexNet versions

Compilation tools version Windows Linux

Arm Compiler 6.01 and later 11.12.1.0 11.12.1.0

Arm Compiler 6.00 11.10.1.0 11.10.1.0

Locale support in the compilation tools

Arm Compiler only supports the English locale.

Related information
Arm DS-5 License Management Guide

1 Configuration and Support Information
1.2 Compiler configuration information

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

1-16

Non-Confidential

https://developer.arm.com/docs/dui0577/latest

Chapter 2
Migrating from Arm® Compiler 5 to Arm® Compiler 6

Provides an overview of the differences between Arm Compiler 5 and Arm Compiler 6.

It contains the following sections:
• 2.1 Migration overview on page 2-18.
• 2.2 Toolchain differences on page 2-19.
• 2.3 Default differences on page 2-20.
• 2.4 Optimization differences on page 2-22.
• 2.5 Diagnostic messages on page 2-24.
• 2.6 Migration example on page 2-26.

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-17

Non-Confidential

2.1 Migration overview
Migrating from Arm Compiler 5 to Arm Compiler 6 requires the use of new command-line options and
might also require changes to existing source files.

Arm Compiler 6 is based on the modern LLVM compiler framework. Arm Compiler 5 is not based on
the LLVM compiler framework. Therefore migrating your project and source files from Arm Compiler 5
to Arm Compiler 6 requires you to be aware of:
• Differences in the command-line options when invoking the compiler.
• Differences in the adherence to language standards.
• Differences in compiler specific keywords, attributes, and pragmas.
• Differences in optimization and diagnostic behavior of the compiler.

Even though these differences exist between Arm Compiler 5 and Arm Compiler 6, it is possible to
migrate your projects from Arm Compiler 5 to Arm Compiler 6 by modifying your command-line
arguments and by changing your source code if required.

Arm Compiler 5 does not support processors based on Armv8 and later architectures. Migrating to Arm
Compiler 6 enables you to generate highly efficient code for processors based on Armv8 and later
architectures.

Related information
Migrating projects from Arm Compiler 5 to Arm Compiler 6

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.1 Migration overview

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-18

Non-Confidential

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/migrating-projects-from-arm-compiler-5-to-arm-compiler-6

2.2 Toolchain differences
Arm Compiler 5 and Arm Compiler 6 share many of the same compilation tools. However, the main
difference between the two toolchains is the compiler tool armclang, which is based on Clang and
LLVM.

The table lists the individual compilation tools and the toolchain they apply to.

Table 2-1 List of compilation tools

Arm Compiler 5 Arm Compiler 6 Function

armcc armclang Compiles C and C++ language source files, including inline assembly.

armcc armclang Preprocessor.

armasm armasm Assembles assembly language source files written in armasm syntax.

Not available armclang. This is also
called the armclang
integrated assembler.

Assembles assembly language source files written in GNU assembly syntax.

fromelf fromelf Converts Arm ELF images to binary formats and can also generate textual
information about the input image, such as its disassembly and its code and data
size.

armlink armlink Combines the contents of one or more object files with selected parts of one or
more object libraries to produce an executable program.

armar armar Enables sets of ELF object files to be collected together and maintained in archives
or libraries.

Arm Compiler 6 uses the compiler tool armclang instead of armcc. The command-line options for
armclang are different to the command-line options for armcc. These differences are described in
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6
on page 3-29.

Arm Compiler 6 provides armasm, which you can use to assemble your existing assembly language
source files that are written in armasm syntax. Arm recommends that you write new assembly code using
the GNU assembly syntax, which you can assemble using the armclang integrated assembler. You can
also migrate existing assembly language source files from armasm syntax to GNU syntax, and then
assemble them using the armclang integrated assembler. For more information see Chapter 5 Migrating
from armasm to the armclang Integrated Assembler on page 5-64.

Related information
Migrating projects from Arm Compiler 5 to Arm Compiler 6

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.2 Toolchain differences

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-19

Non-Confidential

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/migrating-projects-from-arm-compiler-5-to-arm-compiler-6

2.3 Default differences
Some compiler and assembler options are different between Arm Compiler 5 and Arm Compiler 6, or
have different default values.

The following table lists these differences.

Table 2-2 Differences in defaults

Arm Compiler 5 Arm Compiler 6 Notes Further information

--apcs=/hardfp or
--apcs=/softfp

-mfloat-abi=softfp The default floating-point linkage in Arm
Compiler 5 depends on the specified processor.
If the processor has floating-point hardware,
then Arm Compiler 5 uses hardware floating-
point linkage. If the processor does not have
floating-point hardware, then Arm Compiler 5
uses software floating-point linkage. In Arm
Compiler 6, the default is always software
floating-point linkage for AArch32 state.

The -mfloat-abi option also controls the
type of floating-point instructions that the
compiler uses. -mfloat-abi=softfp uses
hardware floating-point instructions. Use
-mfloat-abi=soft to use software floating-
point linkage and software library functions for
floating-point operations.

--apcs for Arm® Compiler 5.

-mfloat-abi for Arm®

Compiler 6.

__image.axf a.out Default name for the executable image if none
of -o, -c, -E, or -S are specified on the
command-line.

-o for Arm® Compiler 5.

-o for Arm® Compiler 6.

--enum_is_int is
disabled by default

-fno-short-enums --enum_is_int is disabled by default in
Arm Compiler 5, so the smallest data type that
can hold the enumerator values is used.
-fno-short-enums is the default in Arm
Compiler 6, so the size of the enumeration type
is at least 32 bits.

--enum_is_int for Arm®

Compiler 5.

-fno-short-enums for
Arm® Compiler 6.

-O2 -O0 Arm Compiler 5 uses high optimization (-O2)
by default. Arm Compiler 6 uses minimum
optimization (-O0) by default.

-O for Arm® Compiler 5.

-O for Arm® Compiler 6.

Optimization differences
on page 2-22.

C++03 C++98 In Arm Compiler 5, the default C++ source
language mode is C++03. In Arm Compiler 6,
the default source language mode is C++98.
You can override the default source language
with -std in Arm Compiler 6.

--cpp for Arm® Compiler 5.

-std for Arm® Compiler 6.

C90 C11 In Arm Compiler 5, the default C source
language mode C90. In Arm Compiler 6, the
default C source language mode C11. You can
override the default source language with
-std in Arm Compiler 6.

--c90 for Arm® Compiler 5.

-std for Arm® Compiler 6.

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.3 Default differences

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-20

Non-Confidential

https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-apcsqualifierqualifier
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-mfloat-abi
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-mfloat-abi
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-o-filename
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-o
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-enum_is_int
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-enum_is_int
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-fshort-enums-fno-short-enums
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-fshort-enums-fno-short-enums
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-onum
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-o-1
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-cpp
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-std
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-c90
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-std

Table 2-2 Differences in defaults (continued)

Arm Compiler 5 Arm Compiler 6 Notes Further information

--no_exceptions -fexceptions or
-fno-exceptions

In Arm Compiler 5, C++ exceptions are
disabled by default (--no_exceptions). In
Arm Compiler 6, C++ exceptions are enabled
by default (-fexceptions) for C++ sources,
or disabled by default (-fno-exceptions)
for C sources.

--no_exceptions for Arm®

Compiler 5.

-fexceptions for Arm®

Compiler 6.

--wchar16 -fno-short-wchar In Arm Compiler 5, the size of wchar_t is 2
bytes by default (--wchar16). In Arm
Compiler 6, the size of wchar_t is 4 bytes by
default (-fno-short-wchar).

--wchar16 for Arm®

Compiler 5.

-fno-short-wchar for
Arm® Compiler 6.

--split_sections
is disabled by default

-ffunction-sections In Arm Compiler 5, functions are not put into
separate ELF sections by default (--
split_sections is disabled). In Arm
Compiler 6, each function is put into a separate
ELF section by default (-ffunction-
sections).

--split_sections for
Arm® Compiler 5.

-ffunction-sections for
Arm® Compiler 6.

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.3 Default differences

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-21

Non-Confidential

https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-exceptions-no_exceptions
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-exceptions-no_exceptions
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-fexceptions-fno-exceptions
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-fexceptions-fno-exceptions
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-wchar16
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-wchar16
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-fshort-wchar-fno-short-wchar
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-fshort-wchar-fno-short-wchar
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-split_sections
https://developer.arm.com/docs/dui0472/latest/compiler-command-line-options/-split_sections
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-ffunction-sections-fno-function-sections
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-ffunction-sections-fno-function-sections

2.4 Optimization differences
Arm Compiler 6 provides more performance optimization settings than are present in Arm Compiler 5.
However, the optimizations that are performed at each optimization level might differ between the two
toolchains.

The table compares the optimization settings and functions in Arm Compiler 5 and Arm Compiler 6.

Table 2-3 Optimization settings

Description Arm Compiler 5 Arm Compiler 6

Optimization levels for performance. • -Otime -O0
• -Otime -O1
• -Otime -O2
• -Otime -O3

 Note

The Arm Compiler 5 -O0 option is more
similar to the Arm Compiler 6 -O1 option
than the Arm Compiler 6 -O0 option.

• -O0
• -O1
• -O2
• -O3
• -Ofast
• -Omax

Optimization levels for code size. • -Ospace -O0
• -Ospace -O1
• -Ospace -O2
• -Ospace -O3

 Note

The Arm Compiler 5 -O0 option is more
similar to the Arm Compiler 6 -O1 option
than the Arm Compiler 6 -O0 option.

• -Os
• -Oz

Default -Ospace -O2 -O0

Best trade-off between image size,
performance, and debug.

-Ospace -O2 -O1

Highest optimization for performance -Otime -O3 -Omax

Highest optimization for code size -Ospace -O3 -Oz

Arm Compiler 6 provides an aggressive optimization setting, -Omax, which automatically enables a
feature called Link Time Optimization. For more information, see -flto.

When using -Omax, armclang can perform link time optimizations that were not possible in Arm
Compiler 5. These link time optimizations can expose latent bugs in the final image. Therefore, an image
built with Arm Compiler 5 might have a different behavior to the image built with Arm Compiler 6.

For example, unused variables without the volatile keyword might be removed when using -Omax in
Arm Compiler 6. If the unused variable is actually a volatile variable that requires the volatile
keyword, then the removal of the variable can cause the generated image to behave unexpectedly. Since
Arm Compiler 5 does not have this aggressive optimization setting, it might not have removed the

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.4 Optimization differences

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-22

Non-Confidential

https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-flto

unused variable, and the resulting image might behave as expected, and therefore the error in the code
would be more difficult to detect.

 Note

If the main() function has no arguments (no argc and argv), then Arm Compiler 5 applies a particular
optimization at all optimization levels including -O0. Arm Compiler 6 applies this optimization only for
optimization levels other than -O0.

When main() is compiled with Arm Compiler 6 at any optimization level except -O0, the compiler
defines the symbol __ARM_use_no_argv if main() does not have input arguments. This symbol enables
the linker to select an optimized library that does not include code to handle input arguments to main().

When main() is compiled with Arm Compiler 6 at -O0, the compiler does not define the symbol
__ARM_use_no_argv. Therefore, the linker selects a default library that includes code to handle input
arguments to main(). This library contains semihosting code.

If your main() function does not have arguments and you are compiling at -O0 with Arm Compiler 6,
you can select the optimized library by manually defining the symbol __ARM_use_no_argv using inline
assembly:

__asm(".global __ARM_use_no_argv\n\t" "__ARM_use_no_argv:\n\t");

Also note that:
• Microlib does not support the symbol __ARM_use_no_argv. Only define this symbol when using the

standard C library.
• Semihosting code can cause a HardFault on systems that are unable to handle semihosting code. To

avoid this HardFault, you must define one or both of:
— __use_no_semihosting
— __ARM_use_no_argv

• If you define __use_no_semihosting without __ARM_use_no_argv, then the library code to handle
argc and argv requires you to retarget the following functions:
— _ttywrch()
— _sys_exit()
— _sys_command_string()

Related information
-flto armclang option
-O armclang option
Effect of the volatile keyword on compiler optimization
Optimizing across modules with link time optimization

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.4 Optimization differences

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-23

Non-Confidential

https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-flto
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-o-1
https://developer.arm.com/docs/dui0773/k/coding-considerations/effect-of-the-volatile-keyword-on-compiler-optimization
https://developer.arm.com/docs/dui0773/k/optimization_techniques/optimizing-across-modules-with-link-time-optimization

2.5 Diagnostic messages
In general, armclang provides more precise and detailed diagnostic messages compared to armcc.
Therefore you can expect to see more information about your code when using Arm Compiler 6, which
can help you understand and fix your source more quickly.

armclang and armcc differ in the quality of diagnostic information they provide about your code. The
following sections demonstrate some of the differences.

Assignment in condition

The following code is an example of armclang providing more precise information about your code. The
error in this example is that the assignment operator, =, must be changed to the equality operator, ==.

main.cpp:

#include <stdio.h>

int main()
{
 int a = 0, b = 0;
 if (a = b)
 {
 printf("Right\n");
 }
 else
 {
 printf("Wrong\n");
 }
 return 0;
}

Compiling this example with Arm Compiler 5 gives the message:

"main.cpp", line 6: Warning: #1293-D: assignment in condition
if (a = b)
 ^

Compiling this example with Arm Compiler 6 gives the message:

main.cpp:6:7: warning: using the result of an assignment as a condition without parentheses[-
Wparentheses]
 if (a = b)
 ~^~

main.cpp:6:7: note: place parentheses around the assignment to silence this warning
 if (a = b)
 ^
 ()

main.cpp:6:7: note: use '==' to turn this assignment into an equality comparison
 if (a = b)
 ^
 ==

armclang highlights the error in the code, and also suggests two different ways to resolve the error. The
warning messages highlight the specific part which requires attention from the user.

 Note

When using armclang, it is possible to enable or disable specific warning messages. In the example
above, you can enable this warning message using the -Wparentheses option, or disable it using the -
Wno-parentheses option.

Automatic macro expansion

Another very useful feature of diagnostic messages in Arm Compiler 6, is the inclusion of notes about
macro expansion. These notes provide useful context to help you understand diagnostic messages
resulting from automatic macro expansion.

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.5 Diagnostic messages

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-24

Non-Confidential

Consider the following code:

main.cpp:

#include <stdio.h>

#define LOG(PREFIX, MESSAGE) fprintf(stderr, "%s: %s", PREFIX, MESSAGE)
#define LOG_WARNING(MESSAGE) LOG("Warning", MESSAGE)

int main(void)
{
 LOG_WARNING(123);
}

The macro LOG_WARNING has been called with an integer argument. However, expanding the two macros,
you can see that the fprintf function expects a string. When the macros are close together in the code it
is easy to spot these errors. These errors are not easy to spot if they are defined in different part of the
source code, or in other external libraries.

Compiling this example with Arm Compiler 5 armcc main.cpp gives the message:

main.cpp", line 8: Warning: #181-D: argument is incompatible with corresponding format
string conversion
 LOG_WARNING(123);
 ^

Compiling this example with Arm Compiler 6 armclang --target=arm-arm-none-eabi -
march=armv8-a gives the message:

main.cpp:8:14: warning: format specifies type 'char *' but the argument has type 'int' [-
Wformat]
 LOG_WARNING(123);
 ~~~~~~~~~~~~^~~

main.cpp:4:45: note: expanded from macro 'LOG_WARNING'
#define LOG_WARNING(MESSAGE) LOG("Warning", MESSAGE)
                             ~~~~~~~~~~~~~~~^~~~~~~

main.cpp:3:64: note: expanded from macro 'LOG'
#define LOG(PREFIX, MESSAGE) fprintf(stderr, "%s: %s", PREFIX, MESSAGE)
 ~~ ^~~~~~~

For more information, see 4.5 Diagnostics for pragma compatibility on page 4-58.
 Note

When starting the migration from Arm Compiler 5 to Arm Compiler 6, you can expect additional
diagnostic messages because armclang does not recognize some of the pragmas, keywords, and
attributes that were specific to armcc. When you replace the pragmas, keywords, and attributes from
Arm Compiler 5 with their Arm Compiler 6 equivalents, the majority of these diagnostic messages
disappear. You might require additional code changes if there is no direct equivalent for Arm Compiler 6.
For more information see Chapter 4 Compiler Source Code Compatibility on page 4-45.

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.5 Diagnostic messages

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-25

Non-Confidential

2.6 Migration example
This topic shows you the process of migrating an example code from Arm Compiler 5 to Arm Compiler
6.

 Note

This topic includes descriptions of [COMMUNITY] features. See Support level definitions on page 1-12.

Compiling with Arm® Compiler 5

For an example startup code that builds with Arm Compiler 5, see Example startup code for Arm®

Compiler 5 project on page Appx-A-87.

To compile this example with Arm Compiler 5, enter:

armcc startup_ac5.c --cpu=7-A -c

This command generates a compiled object file for the Armv7‑A architecture.

Compiling with Arm® Compiler 6

Try to compile the startup_ac5.c example with Arm Compiler 6. The first step in the migration is to
use the new compiler tool, armclang, and use the correct command-line options for armclang.

To compile this example with Arm Compiler 6, enter:

armclang --target=arm-arm-none-eabi startup_ac5.c -march=armv7-a -c -O1 -std=c90

The following table shows the differences in the command-line options between Arm Compiler 5 and
Arm Compiler 6:

Table 2-4 Command-line changes

Description Arm Compiler 5 Arm Compiler 6

Tool armcc armclang

Specifying an architecture --cpu=7-A • -march=armv7-a
• --target is a mandatory option for

armclang.

Optimization The default optimization is -O2. The default optimization is -O0. To get
similar optimizations as the Arm Compiler
5 default, use -O1.

Source language mode The default source language mode for .c
files is c90.

The default source language mode for .c
files is gnu11 [COMMUNITY]. To
compile for c90 in Arm Compiler 6, use -
std=c90.

Arm Compiler 6 generates the following errors and warnings when trying to compile the example
startup_ac5.c file in c90 mode:

startup_ac5.c:39:22: error: 'main' must return 'int'
__declspec(noreturn) void main (void)
 ^~~~
 int
startup_ac5.c:45:9: error: '#pragma import' is an ARM Compiler 5 extension, and is not
supported by ARM Compiler 6 [-Warmcc-pragma-import]
#pragma import (__use_no_semihosting)
 ^
startup_ac5.c:60:7: error: expected '(' after 'asm'
__asm void Vectors(void) {

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.6 Migration example

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-26

Non-Confidential

 ^
startup_ac5.c:60:6: error: expected ';' after top-level asm block
__asm void Vectors(void) {
 ^
 ;
startup_ac5.c:61:3: error: use of undeclared identifier 'IMPORT'
 IMPORT Undef_Handler
 ^
startup_ac5.c:80:7: error: expected '(' after 'asm'
__asm void Reset_Handler(void) {
 ^
startup_ac5.c:80:6: error: expected ';' after top-level asm block
__asm void Reset_Handler(void) {
 ^
 ;
startup_ac5.c:83:3: error: use of undeclared identifier 'CPSID'
 CPSID if
 ^
8 errors generated.

The following section describes how to modify the source file to fix these errors and warnings.

Modifying the source code for Arm® Compiler 6
You must make the following changes to the source code to compile with armclang.
• The return type of function main function cannot be void in standard C. Replace the following line:

__declspec(noreturn) void main(void)

With:

__declspec(noreturn) int main(void)

• The intrinsic __enable_irq() is not supported in Arm Compiler 6. You must replace the intrinsic
with an inline assembler equivalent. Replace the following line:

__enable_irq();

With:

__asm("CPSIE i");

• The #pragma import is not supported in Arm Compiler 6. You must replace the pragma with an
equivalent directive using inline assembler. Replace the following line:

#pragma import(__use_no_semihosting)

With:

__asm(".global __use_no_semihosting");

• In certain situations, armclang might remove infinite loops that do not have side-effects. You must
use the volatile keyword to tell armclang not to remove such code. Replace the following line:

while(1);

With:

while(1) __asm volatile("");

2 Migrating from Arm® Compiler 5 to Arm® Compiler 6
2.6 Migration example

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

2-27

Non-Confidential

Chapter 3
Migrating from armcc to armclang

Compares Arm Compiler 6 command-line options to older versions of Arm Compiler.

It contains the following sections:
• 3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6

on page 3-29.
• 3.2 Arm® Compiler 5 and Arm® Compiler 6 stack protection behavior on page 3-36.
• 3.3 Command-line options for preprocessing assembly source code on page 3-38.
• 3.4 Migrating architecture and processor names for command-line options on page 3-39.

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-28

Non-Confidential

3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm®

Compiler 6
Arm Compiler 6 provides many command-line options, including most Clang command-line options in
addition to several Arm-specific options.

 Note

This topic includes descriptions of [COMMUNITY] features. See Support level definitions on page 1-12.

The following table describes the most common Arm Compiler 5 command-line options, and shows the
equivalent options for Arm Compiler 6.

Additional information about command-line options is available:
• The armclang Reference Guide provides more detail about a number of command-line options.
• For a full list of Clang command-line options, see the Clang and LLVM documentation.

Table 3-1 Comparison of compiler command-line options in Arm Compiler 6 and Arm Compiler 5

Arm Compiler 5 option Arm Compiler 6
option

Description

--allow_fpreg_for_nonfpdata, --
no_allow_fpreg_for_nonfpdata

-mimplicit-float, -
mno-implicit-float
[COMMUNITY]

Enables or disables the use of VFP and SIMD registers and
data transfer instructions for non-VFP and non-SIMD data.

--apcs=/nointerwork No equivalent. Disables interworking between A32 and T32 code.
Interworking is always enabled in Arm Compiler 6.

--apcs=/ropi

--apcs=/noropi

-fropi

-fno-ropi

Enables or disables the generation of Read-Only Position-
Independent (ROPI) code.

--apcs=/rwpi

--apcs=/norwpi

-frwpi

-fno-rwpi

Enables or disables the generation of Read/Write Position-
Independent (RWPI) code.

--arm -marm Targets the A32 instruction set. The compiler is permitted to
generate both A32 and T32 code, but recognizes that A32
code is preferred.

--arm_only No equivalent. Enforces A32 instructions only. The compiler does not
generate T32 instructions.

--asm -save-temps Instructs the compiler to generate intermediate assembly files
as well as object files.

-c -c Performs the compilation step, but not the link step.

--c90 -xc -std=c90 Enables the compilation of C90 source code.

-xc is a positional argument and only affects subsequent
input files on the command-line. It is also only required if the
input files do not have the appropriate file extension.

--c99 -xc -std=c99 Enables the compilation of C99 source code.

-xc is a positional argument and only affects subsequent
input files on the command-line. It is also only required if the
input files do not have the appropriate file extension.

3 Migrating from armcc to armclang
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-29

Non-Confidential

Table 3-1 Comparison of compiler command-line options in Arm Compiler 6 and Arm Compiler 5 (continued)

Arm Compiler 5 option Arm Compiler 6
option

Description

--cpp -xc++ -std=c++03 Enables the compilation of C++03 source code.

-xc++ is a positional argument and only affects subsequent
input files on the command-line. It is also only required if the
input files do not have the appropriate file extension.

The default C++ language standard is different between Arm
Compiler 5 and Arm Compiler 6.

--cpp11 -xc++ -std=c++11 Enables the compilation of C++11 source code.

-xc++ is a positional argument and only affects subsequent
input files on the command-line.

The default C++ language standard is different between Arm
Compiler 5 and Arm Compiler 6.

--cpp_compat No equivalent. Compiles C++ code to maximize binary compatibility.

--cpu 8-A.32 --target=arm-arm-
none-eabi -
march=armv8-a

Targets Armv8‑A, AArch32 state.

--cpu 8-A.64 --target=aarch64-
arm-none-eabi

Targets Armv8‑A AArch64 state. (Implies -march=armv8-
a if -mcpu is not specified.)

--cpu 7-A --target=arm-arm-
none-eabi -
march=armv7-a

Targets the Armv7‑A architecture.

--cpu=Cortex-M4 --target=arm-arm-
none-eabi -
mcpu=cortex-m4

Targets the Cortex®-M4 processor.

--cpu=Cortex-A15 --target=arm-arm-
none-eabi -
mcpu=cortex-a15

Targets the Cortex‑A15 processor.

-D -D Defines a preprocessing macro.

--depend -MF Specifies a filename for the makefile dependency rules.

--depend_dir No equivalent. Use -MF to
specify each dependency
file individually.

Specifies the directory for dependency output files.

--depend_format=unix_escaped Dependency file entries use UNIX-style path separators and
escapes spaces with \. This is the default in Arm Compiler 6.

--depend_target -MT Changes the target name for the makefile dependency rule.

--diag_error -Werror Turn warnings into errors.

--diag_suppress=foo -Wno-foo Suppress warning message foo. The error or warning codes
might be different between Arm Compiler 5 and Arm
Compiler 6.

-E -E Executes only the preprocessor step.

3 Migrating from armcc to armclang
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-30

Non-Confidential

Table 3-1 Comparison of compiler command-line options in Arm Compiler 6 and Arm Compiler 5 (continued)

Arm Compiler 5 option Arm Compiler 6
option

Description

--enum_is_int -fno-short-enums, -
fshort-enums

Sets the minimum size of an enumeration type.

By default Arm Compiler 5 does not set a minimum size. By
default Arm Compiler 6 uses -fno-short-enums to set the
minimum size to 32-bit.

--forceline No equivalent. Forces aggressive inlining of functions. Arm Compiler 6
automatically decides whether to inline functions depending
on the optimization level.

--fpmode=std -ffp-mode=std Provides IEEE-compliant code with no IEEE exceptions,
NaNs, and Infinities. Denormals are sign preserving. This is
the default.

--fpmode=fast -ffp-mode=fast Similar to the default behavior, but also performs aggressive
floating-point optimizations and therefore it is not IEEE-
compliant.

--fpmode=ieee_full -ffp-mode=full Provides full IEEE support, including exceptions.

--fpmode=ieee_fixed

--fpmode=ieee_no_fenv

There are no supported
equivalent options.

There might be community features that provide these IEEE
floating-point modes.

--fpu

For example --fpu=fpv5_d16

-mfpu

For example -
mfpu=fpv5-d16

Specifies the target FPU architecture.
 Note

--fpu=none checks the source code for floating-point
operations, and if any are found it produces an error. -
mfpu=none prevents the compiler from using hardware-
based floating-point functions. If the compiler encounters
floating-point types in the source code, it uses software-based
floating-point library functions.

The option values might be different. For example
fpv5_d16 in Arm Compiler 5 is equivalent to fpv5-d16 in
Arm Compiler 6, and targets the FPv5-D16 floating-point
extension.

-I -I Adds the specified directories to the list of places that are
searched to find included files.

--ignore_missing_headers -MG Prints dependency lines for header files even if the header
files are missing.

--inline Default at -O2 and -O3. There is no equivalent of the --inline option. Arm
Compiler 6 automatically decides whether to inline functions
at optimization levels -O2 and -O3.

-J -isystem Adds the specified directories to the list of places that are
searched to find included system header files.

-L -Xlinker Specifies command-line options to pass to the linker when a
link step is being performed after compilation.

--library_interface=armcc This is the default. Arm Compiler 6 by default uses the Arm standard C library.

3 Migrating from armcc to armclang
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-31

Non-Confidential

Table 3-1 Comparison of compiler command-line options in Arm Compiler 6 and Arm Compiler 5 (continued)

Arm Compiler 5 option Arm Compiler 6
option

Description

--library_interface=lib

Where lib is one of:
• aeabi_clib
• aeabi_clib90
• aeabi_clib99

-nostdlib -
nostdlibinc -fno-
builtin

Specifies that the compiler output works with any ISO C
library compliant with the ARM Embedded Application
Binary Interface (AEABI).

--library_interface=lib

Where lib is not one of:
• aeabi_clib
• aeabi_clib90
• aeabi_clib99
• armcc

No equivalent. Arm Compiler 6 assumes the use of an AEABI compliant
library.

--licretry No equivalent. There is no equivalent of the --licretry option. The Arm
Compiler 6 tools automatically retry failed attempts to obtain
a license.

--list_macros -E -dM List all the macros that are defined at the end of the
translation unit, including the predefined macros.

--littleend -mlittle-endian Generates code for little-endian data.

--lower_ropi, --no_lower_ropi -fropi-lowering, -
fno-ropi-lowering

Enables or disables less restrictive C when generating Read-
Only Position-Independent (ROPI) code.

 Note

In Arm Compiler 5, when--acps=/ropi is specified, --
lower_ropi is not switched on by default. In Arm
Compiler 6, when -fropi is specified, -fropi-lowering
is switched on by default.

--lower_rwpi, --no_lower_rwpi -frwpi-lowering, -
fno-rwpi-lowering

Enables or disables less restrictive C when generating Read-
Write Position-Independent (RWPI) code.

-M -M Instructs the compiler to produce a list of makefile
dependency lines suitable for use by a make utility.

--md -MD Creates makefile dependency files, including the system
header files. In Arm Compiler 5, this is equivalent to --md
--depend_system_headers.

--md --no_depend_system_headers -MMD Creates makefile dependency files, without the system header
files.

--mm -MM Creates a single makefile dependency file, without the
system header files. In Arm Compiler 5, this is equivalent to
-M --no_depend_system_headers.

--no_exceptions -fno-exceptions Disables the generation of code needed to support C++
exceptions.

-o -o Specifies the name of the output file.

3 Migrating from armcc to armclang
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-32

Non-Confidential

Table 3-1 Comparison of compiler command-line options in Arm Compiler 6 and Arm Compiler 5 (continued)

Arm Compiler 5 option Arm Compiler 6
option

Description

-Onum -Onum Specifies the level of optimization to be used when
compiling source files.

The default for Arm Compiler 5 is -O2. The default for Arm
Compiler 6 is -O0. For debug view in Arm Compiler 6, Arm
recommends -O1 rather than -O0 for best trade-off between
image size, performance, and debug.

-Ospace -Oz / -Os Performs optimizations to reduce image size at the expense
of a possible increase in execution time.

-Otime This is the default. Performs optimizations to reduce execution time at the
expense of a possible increase in image size.

There is no equivalent of the -Otime option. Arm Compiler
6 optimizes for execution time by default, unless you specify
the -Os or -Oz options.

--phony_targets -MP Emits dummy makefile rules.

--preinclude -include Include the source code of a specified file at the beginning of
the compilation.

--protect_stack -fstack-protector,-
fstack-protector-
strong

Enables stack protection on vulnerable functions. See
3.2 Arm® Compiler 5 and Arm® Compiler 6 stack protection
behavior on page 3-36 for more information.

--protect_stack_all -fstack-protector-
all

Enables stack protection on all functions. See 3.2 Arm®

Compiler 5 and Arm® Compiler 6 stack protection behavior
on page 3-36 for more information.

--relaxed_ref_def -fcommon Places zero-initialized definitions in a common block.

-S -S Outputs the disassembly of the machine code generated by
the compiler.

The output from this option differs between releases. Older
Arm Compiler versions produce output with armasm syntax
while Arm Compiler 6 produces output with GNU syntax.

--show_cmdline -v Shows how the compiler processes the command-line. The
commands are shown normalized, and the contents of any via
files are expanded.

--split_ldm -fno-ldm-stm Disables the generation of LDM and STM instructions.

Note that while the armcc --split_ldm option limits the
size of generated LDM/STM instructions, the armclang -
fno-ldm-stm option disables the generation of LDM and
STM instructions altogether.

3 Migrating from armcc to armclang
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-33

Non-Confidential

Table 3-1 Comparison of compiler command-line options in Arm Compiler 6 and Arm Compiler 5 (continued)

Arm Compiler 5 option Arm Compiler 6
option

Description

--split_sections -ffunction-sections Generates one ELF section for each function in the source
file.

In Arm Compiler 6, -ffunction-sections is the default.
Therefore, the merging of identical constants cannot be done
by armclang. Instead, the merging is done by armlink.

--strict -pedantic-errors Generate errors if code violates strict ISO C and ISO C++.

--strict_warnings -pedantic Generate warnings if code violates strict ISO C and ISO C+
+.

--thumb -mthumb Targets the T32 instruction set.

--no_unaligned_access, --
unaligned_access

-mno-unaligned-
access, -munaligned-
access

Enables or disables unaligned accesses to data on Arm
processors.

--use_frame_pointer, --
no_use_frame_pointer

-fno-omit-frame-
pointer, -fomit-
frame-pointer

Controls whether a register is used for storing stack frame
pointers.

--vectorize

--no_vectorize

-fvectorize

-fno-vectorize

Enables or disables the generation of Advanced SIMD vector
instructions directly from C or C++ code.

--via @file Reads an additional list of compiler options from a file.

--vla No equivalent. Support for variable length arrays. Arm Compiler 6
automatically supports variable length arrays in accordance
to the language standard.

--vsn --version Displays version information and license details. In Arm
Compiler 6 you can also use --vsn.

--wchar16, --wchar32 -fshort-wchar, -fno-
short-wchar

Sets the size of wchar_t type.

The default for Arm Compiler 5 is --wchar16. The default
for Arm Compiler 6 is -fno-short-wchar.

 Note

If the main() function has no arguments (no argc and argv), then Arm Compiler 5 applies a particular
optimization at all optimization levels including -O0. Arm Compiler 6 applies this optimization only for
optimization levels other than -O0.

When main() is compiled with Arm Compiler 6 at any optimization level except -O0, the compiler
defines the symbol __ARM_use_no_argv if main() does not have input arguments. This symbol enables
the linker to select an optimized library that does not include code to handle input arguments to main().

When main() is compiled with Arm Compiler 6 at -O0, the compiler does not define the symbol
__ARM_use_no_argv. Therefore, the linker selects a default library that includes code to handle input
arguments to main(). This library contains semihosting code.

If your main() function does not have arguments and you are compiling at -O0 with Arm Compiler 6,
you can select the optimized library by manually defining the symbol __ARM_use_no_argv using inline
assembly:

__asm(".global __ARM_use_no_argv\n\t");

3 Migrating from armcc to armclang
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-34

Non-Confidential

Also note that:
• Semihosting code can cause a HardFault on systems that are unable to handle semihosting code. To

avoid this HardFault, you must define one or both of:
— __use_no_semihosting
— __ARM_use_no_argv

• If you define __use_no_semihosting without __ARM_use_no_argv, then the library code to handle
argc and argv requires you to retarget these functions:
— _ttywrch()
— _sys_exit()
— _sys_command_string()

Related information
Arm Compiler 6 Command-line Options
Merging identical constants
The LLVM Compiler Infrastructure Project

3 Migrating from armcc to armclang
3.1 Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-35

Non-Confidential

https://developer.arm.com/docs/dui0774/k/compiler-command-line-options
https://developer.arm.com/docs/dui0803/k/armlink-optimization-features/merging-identical-constants
http://llvm.org/

3.2 Arm® Compiler 5 and Arm® Compiler 6 stack protection behavior
You can see which functions are protected and compare Arm Compiler 5 protection with Arm Compiler
6 protection after migration.

 Note

This topic includes descriptions of [COMMUNITY] features. See Support level definitions on page 1-12.

The behavior of armclang -fstack-protector and armclang -fstack-protector-strong is
different from the behavior of the armcc --protect_stack option:
• With armcc --protect_stack, a function is considered vulnerable if it contains a char or wchar_t

array of any size.
• With armclang -fstack-protector, a function is considered vulnerable if it contains at least one of

the following:
— A character array larger than 8 bytes.
— An 8-bit integer array larger than 8 bytes.
— A call to alloca() with either a variable size or a constant size bigger than 8 bytes.

• With armclang -fstack-protector-strong, a function is considered vulnerable if it contains:
— An array of any size and type.
— A call to alloca().
— A local variable that has its address taken.

Arm recommends the use of -fstack-protector-strong.

 Note

When using Arm Compiler 5, the value of the variable __stack_chk_guard could change during the life
of the program. With Arm Compiler 6, a suitable implementation might set this variable to a random
value when the program is loaded, before the first protected function is entered. The value must then
remain unchanged during the life of the program.

Example
1. Create the file test.c containing the following code:

// test.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void *__stack_chk_guard = (void *)0xdeadbeef;

void __stack_chk_fail(void) {
 printf("Stack smashing detected.\n");
 exit(1);
}

static void copy(const char *p) {
 char buf[8];
 strcpy(buf, p);
 printf("Copied: %s\n", buf);
}

int main(void) {
 const char *t = "Hello World!";
 copy(t);
 printf("%s\n", t);

3 Migrating from armcc to armclang
3.2 Arm® Compiler 5 and Arm® Compiler 6 stack protection behavior

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-36

Non-Confidential

 return 0;
}

2. For Arm Compiler 5, search for branches to the __stack_chk_fail() function in the output from the
fromelf -c command. The functions containing such branches are protected.

armcc -c --cpu=7-A --protect_stack test.c -o test.o
fromelf -c test.o
...
 copy
 0x00000010: e92d403e >@-. PUSH {r1-r5,lr}
 0x00000014: e1a04000 .@.. MOV r4,r0
 0x00000018: e59f0070 p... LDR r0,[pc,#112] ; [__stack_chk_guard =
0x90] = 0
 0x0000001c: e5905000 .P.. LDR r5,[r0,#0]
 0x00000020: e58d5008 .P.. STR r5,[sp,#8]
 0x00000024: e1a01004 MOV r1,r4
 0x00000028: e1a0000d MOV r0,sp
 0x0000002c: ebfffffe BL strcpy
 0x00000030: e1a0100d MOV r1,sp
 0x00000034: e28f0058 X... ADR r0,{pc}+0x60 ; 0x94
 0x00000038: ebfffffe BL __2printf
 0x0000003c: e59d0008 LDR r0,[sp,#8]
 0x00000040: e1500005 ..P. CMP r0,r5
 0x00000044: 0a000000 BEQ {pc}+0x8 ; 0x4c
 0x00000048: ebfffffe BL __stack_chk_fail ; 0x0 Section #1
 0x0000004c: e8bd803e >... POP {r1-r5,pc}
...

3. For Arm Compiler 6, use the armclang [COMMUNITY] -Rpass remark option.

armclang -c --target=arm-arm-none-eabi -march=armv8-a -O0 -Rpass=stack-protector test.c
test.c:14:13: remark: Stack protection applied to function copy due to a stack allocated
buffer or struct containing a
 buffer [-Rpass=stack-protector]
static void copy(const char *p) {
 ^

 Note

You can also use the fromelf -c command and search the output for functions containing branches
to the __stack_chk_fail() function.

3 Migrating from armcc to armclang
3.2 Arm® Compiler 5 and Arm® Compiler 6 stack protection behavior

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-37

Non-Confidential

3.3 Command-line options for preprocessing assembly source code
The functionality of the --cpreproc and --cpreproc_opts command-line options in the version of
armasm supplied with Arm Compiler 6 is different from the options used in earlier versions of armasm to
preprocess assembly source code.

If you are using armasm to assemble source code that requires the use of the preprocessor, you must use
both the --cpreproc and --cpreproc_opts options together. Also:

• As a minimum, you must include the armclang options --target and either -mcpu or -march in --
cpreproc_opts.

• The input assembly source must have an upper-case extension .S.

If you have existing source files, which require preprocessing, and that have the lower-case extension .s,
then to avoid having to rename the files:
1. Perform the pre-processing step manually using the armclang -x assembler-with-cpp option.
2. Assemble the preprocessed file without using the --cpreproc and --cpreproc_opts options.

Example using armclang -x

This example shows the use of the armclang -x option.

armclang --target=aarch64-arm-none-eabi -march=armv8-a -x assembler-with-cpp -E test.s -o
test_preproc.s
armasm --cpu=8-A.64 test_preproc.s

Example using armasm --cpreproc_opts
The options to the preprocessor in this example are --cpreproc_opts=--target=arm-arm-none-
eabi,-mcpu=cortex-a9,-D,DEF1,-D,DEF2.

armasm --cpu=cortex-a9 --cpreproc --cpreproc_opts=--target=arm-arm-none-eabi,-mcpu=cortex-
a9,-D,DEF1,-D,DEF2 -I /path/to/includes1 -I /path/to/includes2 input.S

 Note

Ensure that you specify compatible architectures in the armclang options --target, -mcpu or -march,
and the armasm --cpu option.

Related information
--cpreproc assembler option
--cpreproc_opts assembler option
Specifying a target architecture, processor, and instruction set
-march armclang option
-mcpu armclang option
--target armclang option
-x armclang option
Preprocessing assembly code

3 Migrating from armcc to armclang
3.3 Command-line options for preprocessing assembly source code

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-38

Non-Confidential

https://developer.arm.com/docs/dui0801/k/armasm-command-line-options/-cpreproc
https://developer.arm.com/docs/dui0801/k/armasm-command-line-options/-cpreproc_optsoptionoption
https://developer.arm.com/docs/dui0773/k/compiling-c-and-c-code/specifying-a-target-architecture-processor-and-instruction-set
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-march
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-mcpu
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-target
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-x
https://developer.arm.com/docs/dui0773/k/assembling-assembly-code/preprocessing-assembly-code

3.4 Migrating architecture and processor names for command-line options
There are minor differences between the architecture and processor names that Arm Compiler 6
recognizes, and the names that Arm Compiler 5 recognizes. Within Arm Compiler 6, there are
differences in the architecture and processor names that armclang recognizes and the names that armasm,
armlink, and fromelf recognize. This topic shows the differences in the architecture and processor
names for the different tools in Arm Compiler 5 and Arm Compiler 6.

The tables show the documented --cpu options in Arm Compiler 5 and their corresponding options for
migrating your Arm Compiler 5 command-line options to Arm Compiler 6.

 Note

The tables assume the default floating-point unit derived from the --cpu option in Arm Compiler 5.
However, in Arm Compiler 6, armclang selects different defaults for floating-point unit (VFP) and
Advanced SIMD. Therefore, the tables also show how to use the armclang -mfloat-abi and -mfpu
options to be compatible with the default floating-point unit in Arm Compiler 5. The tables do not
provide an exhaustive list.

Table 3-2 Architecture selection in Arm Compiler 5 and Arm Compiler 6

armcc, armlink, armasm,
and fromelf option in Arm
Compiler 5

armclang option in Arm
Compiler 6

armlink, armasm, and
fromelf option in Arm
Compiler 6

Architecture description

--cpu=4 Not supported Not supported Armv4

--cpu=4T Not supported Not supported Armv4T

--cpu=5T Not supported Not supported Armv5T

--cpu=5TE Not supported Not supported Armv5TE

--cpu=5TEJ Not supported Not supported Armv5TEJ

--cpu=6 Not supported Not supported Generic Armv6

--cpu=6-K Not supported Not supported Armv6-K

--cpu=6-Z Not supported Not supported Armv6-Z

--cpu=6T2 Not supported Not supported Armv6T2

--cpu=6-M --target=arm-arm-none-
eabi -march=armv6-m

--cpu=6S-M Armv6‑M

--cpu=6S-M --target=arm-arm-none-
eabi -march=armv6s-m

--cpu=6S-M Armv6S-M

3 Migrating from armcc to armclang
3.4 Migrating architecture and processor names for command-line options

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-39

Non-Confidential

Table 3-2 Architecture selection in Arm Compiler 5 and Arm Compiler 6 (continued)

armcc, armlink, armasm,
and fromelf option in Arm
Compiler 5

armclang option in Arm
Compiler 6

armlink, armasm, and
fromelf option in Arm
Compiler 6

Architecture description

--cpu=7-A

--cpu=7-A.security

--target=arm-arm-none-
eabi -march=armv7-a -
mfloat-abi=soft

--cpu=7-A.security Armv7‑A without VFP and
Advanced SIMD.

In Arm Compiler 5, security
extension is not enabled with
--cpu=7-A but is enabled with
--cpu=7-A.security. In
Arm Compiler 6, armclang
always enables the Armv7‑A
TrustZone security extension
with -march=armv7-a.
However, armclang does not
generate an SMC instruction
unless you specify it with an
intrinsic or inline assembly.

--cpu=7-R --target=arm-arm-none-
eabi -march=armv7-r -
mfloat-abi=soft

--cpu=7-R Armv7‑R without VFP and
Advanced SIMD

--cpu=7-M --target=arm-arm-none-
eabi -march=armv7-m

--cpu=7-M Armv7‑M

--cpu=7E-M --target=arm-arm-none-
eabi -march=armv7e-m -
mfloat-abi=soft

--cpu=7E-M Armv7E-M

Table 3-3 Processor selection in Arm Compiler 5 and Arm Compiler 6

armcc, armlink, armasm,
and fromelf option in Arm
Compiler 5

armclang option in Arm
Compiler 6

armlink, armasm, and
fromelf option in Arm
Compiler 6

Description

--cpu=Cortex-A5 --target=arm-arm-none-
eabi -mcpu=cortex-a5 -
mfloat-abi=soft

--cpu=Cortex-
A5.no_neon.no_vfp

Cortex‑A5 without Advanced
SIMD and VFP

--cpu=Cortex-A5.neon --target=arm-arm-none-
eabi -mcpu=cortex-a5 -
mfloat-abi=hard

--cpu=Cortex-A5 Cortex‑A5 with Advanced
SIMD and VFP

--cpu=Cortex-A5.vfp --target=arm-arm-none-
eabi -mcpu=cortex-a5 -
mfloat-abi=hard -
mfpu=vfpv4-d16

--cpu=Cortex-A5.no_neon Cortex‑A5 with VFP, without
Advanced SIMD

--cpu=Cortex-A7 --target=arm-arm-none-
eabi -mcpu=cortex-a7 -
mfloat-abi=hard

--cpu=Cortex-A7 Cortex‑A7 with Advanced
SIMD and VFP

--cpu=Cortex-
A7.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a7 -
mfloat-abi=soft

--cpu=Cortex-
A7.no_neon.no_vfp

Cortex‑A7 without Advanced
SIMD and VFP

3 Migrating from armcc to armclang
3.4 Migrating architecture and processor names for command-line options

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-40

Non-Confidential

Table 3-3 Processor selection in Arm Compiler 5 and Arm Compiler 6 (continued)

armcc, armlink, armasm,
and fromelf option in Arm
Compiler 5

armclang option in Arm
Compiler 6

armlink, armasm, and
fromelf option in Arm
Compiler 6

Description

--cpu=Cortex-A7.no_neon --target=arm-arm-none-
eabi -mcpu=cortex-a7 -
mfloat-abi=hard -
mfpu=vfpv4-d16

--cpu=Cortex-A7.no_neon Cortex‑A7 with VFP, without
Advanced SIMD

--cpu=Cortex-A8 --target=arm-arm-none-
eabi -mcpu=cortex-a8 -
mfloat-abi=hard

--cpu=Cortex-A8 Cortex‑A8 with VFP and
Advanced SIMD

--cpu=Cortex-A8.no_neon --target=arm-arm-none-
eabi -mcpu=cortex-a8 -
mfloat-abi=soft

--cpu=Cortex-A8.no_neon Cortex‑A8 without Advanced
SIMD and VFP

--cpu=Cortex-A9 --target=arm-arm-none-
eabi -mcpu=cortex-a9 -
mfloat-abi=hard

--cpu=Cortex-A9 Cortex-A9 with Advanced
SIMD and VFP

--cpu=Cortex-
A9.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a9 -
mfloat-abi=soft

--cpu=Cortex-
A9.no_neon.no_vfp

Cortex‑A9 without Advanced
SIMD and VFP

--cpu=Cortex-A9.no_neon --target=arm-arm-none-
eabi -mcpu=cortex-a9 -
mfloat-abi=hard -
mfpu=vfpv3-d16-fp16

--cpu=Cortex-A9.no_neon Cortex‑A9 with VFP but
without Advanced SIMD

--cpu=Cortex-A12 --target=arm-arm-none-
eabi -mcpu=cortex-a12 -
mfloat-abi=hard

--cpu=Cortex-A12 Cortex‑A12 with Advanced
SIMD and VFP

--cpu=Cortex-
A12.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a12 -
mfloat-abi=soft

--cpu=Cortex-
A12.no_neon.no_vfp

Cortex‑A12 without Advanced
SIMD and VFP

--cpu=Cortex-A15 --target=arm-arm-none-
eabi -mcpu=cortex-a15 -
mfloat-abi=hard

--cpu=Cortex-A15 Cortex‑A15 with Advanced
SIMD and VFP

--cpu=Cortex-
A15.no_neon

--target=arm-arm-none-
eabi -mcpu=cortex-a15 -
mfloat-abi=hard -
mfpu=vfpv4-d16

--cpu=Cortex-
A15.no_neon

Cortex‑A15 with VFP, without
Advanced SIMD

--cpu=Cortex-
A15.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a15 -
mfloat-abi=soft

--cpu=Cortex-
A15.no_neon.no_vfp

Cortex‑A15 without Advanced
SIMD and VFP

--cpu=Cortex-A17 --target=arm-arm-none-
eabi -mcpu=cortex-a17 -
mfloat-abi=hard

--cpu=Cortex-A17 Cortex-A17 with Advanced
SIMD and VFP

--cpu=Cortex-
A17.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a17 -
mfloat-abi=soft

--cpu=Cortex-
A17.no_neon.no_vfp

Cortex‑A17 without Advanced
SIMD and VFP

3 Migrating from armcc to armclang
3.4 Migrating architecture and processor names for command-line options

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-41

Non-Confidential

Table 3-3 Processor selection in Arm Compiler 5 and Arm Compiler 6 (continued)

armcc, armlink, armasm,
and fromelf option in Arm
Compiler 5

armclang option in Arm
Compiler 6

armlink, armasm, and
fromelf option in Arm
Compiler 6

Description

--cpu=Cortex-R4 --target=arm-arm-none-
eabi -mcpu=cortex-r4

--cpu=Cortex-R4 Cortex‑R4 without VFP

--cpu=Cortex-R4F --target=arm-arm-none-
eabi -mcpu=cortex-r4f -
mfloat-abi=hard

--cpu=Cortex-R4F Cortex‑R4 with VFP

--cpu=Cortex-R5 --target=arm-arm-none-
eabi -mcpu=cortex-r5 -
mfloat-abi=soft

--cpu=Cortex-R5.no_vfp Cortex‑R5 without VFP

--cpu=Cortex-R5F --target=arm-arm-none-
eabi -mcpu=cortex-r5 -
mfloat-abi=hard

--cpu=Cortex-R5 Cortex‑R5 with double
precision VFP

--cpu=Cortex-R5F-
rev1.sp

--target=arm-arm-none-
eabi -mcpu=cortex-r5 -
mfloat-abi=hard -
mfpu=vfpv3xd

--cpu=Cortex-R5.sp Cortex‑R5 with single precision
VFP

--cpu=Cortex-R7 --target=arm-arm-none-
eabi -mcpu=cortex-r7 -
mfloat-abi=hard

--cpu=Cortex-R7 Cortex‑R7 with VFP

--cpu=Cortex-R7.no_vfp --target=arm-arm-none-
eabi -mcpu=cortex-r7 -
mfloat-abi=soft

--cpu=Cortex-R7.no_vfp Cortex‑R7 without VFP

--cpu=Cortex-R8 --target=arm-arm-none-
eabi -mcpu=cortex-r8 -
mfloat-abi=hard

--cpu=Cortex-R8 Cortex‑R8 with VFP

--cpu=Cortex-R8.no_vfp --target=arm-arm-none-
eabi -mcpu=cortex-r8 -
mfloat-abi=soft

--cpu=Cortex-R8.no_vfp Cortex‑R8 without VFP

--cpu=Cortex-M0 --target=arm-arm-none-
eabi -mcpu=cortex-m0

--cpu=Cortex-M0 Cortex‑M0

--cpu=Cortex-M0plus --target=arm-arm-none-
eabi -mcpu=cortex-
m0plus

--cpu=Cortex-M0plus Cortex-M0+

--cpu=Cortex-M1 --target=arm-arm-none-
eabi -mcpu=cortex-m1

--cpu=Cortex-M1 Cortex‑M1

--cpu=Cortex-M3 --target=arm-arm-none-
eabi -mcpu=cortex-m3

--cpu=Cortex-M3 Cortex-M3

--cpu=Cortex-M4 --target=arm-arm-none-
eabi -mcpu=cortex-m4 -
mfloat-abi=soft

--cpu=Cortex-M4.no_fp Cortex-M4 without VFP

--cpu=Cortex-M4.fp --target=arm-arm-none-
eabi -mcpu=cortex-m4 -
mfloat-abi=hard

--cpu=Cortex-M4 Cortex-M4 with VFP

3 Migrating from armcc to armclang
3.4 Migrating architecture and processor names for command-line options

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-42

Non-Confidential

Table 3-3 Processor selection in Arm Compiler 5 and Arm Compiler 6 (continued)

armcc, armlink, armasm,
and fromelf option in Arm
Compiler 5

armclang option in Arm
Compiler 6

armlink, armasm, and
fromelf option in Arm
Compiler 6

Description

--cpu=Cortex-M7 --target=arm-arm-none-
eabi -mcpu=cortex-m7 -
mfloat-abi=soft

--cpu=Cortex-M7.no_fp Cortex‑M7 without VFP

--cpu=Cortex-M7.fp.dp --target=arm-arm-none-
eabi -mcpu=cortex-m7 -
mfloat-abi=hard

--cpu=Cortex-M7 Cortex‑M7 with double
precision VFP

--cpu=Cortex-M7.fp.sp --target=arm-arm-none-
eabi -mcpu=cortex-m7 -
mfloat-abi=hard -
mfpu=fpv5-sp-d16

--cpu=Cortex-M7.fp.sp Cortex‑M7 with single
precision VFP

Enabling or disabling architectural features in Arm® Compiler 6

Arm Compiler 6, by default, automatically enables or disables certain architectural features such as the
floating-point unit, Advanced SIMD, and Cryptographic extensions depending on the specified
architecture or processor. For a list of architectural features, see -mcpu in the armclang Reference Guide.
You can override the defaults using other options.

For armclang:

• For AArch64 targets, you must use either -march or -mcpu to specify the architecture or processor
and the required architectural features. You can use +[no]feature with -march or -mcpu to override
any architectural feature.

• For AArch32 targets, you must use either -march or -mcpu to specify the architecture or processor
and the required architectural features. You can use -mfloat-abi to override floating-point linkage.
You can use -mfpu to override floating-point unit, Advanced SIMD, and Cryptographic extensions.
You can use +[no]feature with -march or -mcpu to override certain other architectural features.

For armasm, armlink, and fromelf, you must use the --cpu option to specify the architecture or
processor and the required architectural features. You can use --fpu to override the floating-point unit
and floating-point linkage. The --cpu option is not mandatory for armlink and fromelf, but is
mandatory for armasm.

 Note

• In Arm Compiler 5, if you use the armcc --fpu=none option, the compiler generates an error if it
detects floating-point code. This behavior is different in Arm Compiler 6. If you use the armclang -
mfpu=none option, the compiler automatically uses software floating-point libraries if it detects any
floating-point code. You cannot use the armlink --fpu=none option to link object files created using
armclang.

• To link object files created using the armclang -mfpu=none option, you must set armlink --fpu to
an option that supports software floating-point linkage, for example --fpu=SoftVFP, rather than
using --fpu=none.

Related information
armclang -mcpu option
armclang -march option
armclang -mfloat-abi option
armclang --mfpu option
armclang --target option
armlink --cpu option

3 Migrating from armcc to armclang
3.4 Migrating architecture and processor names for command-line options

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-43

Non-Confidential

https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-mcpu
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-march
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-mfloat-abi
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-mfpu
https://developer.arm.com/docs/dui0774/k/compiler-command-line-options/-target
https://developer.arm.com/docs/dui0803/k/armlink-command-line-options/-cpuname

armlink --fpu option
fromelf --cpu option
fromelf --fpu option
armasm --cpu option
armasm --fpu option

3 Migrating from armcc to armclang
3.4 Migrating architecture and processor names for command-line options

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

3-44

Non-Confidential

https://developer.arm.com/docs/dui0803/k/armlink-command-line-options/-fpuname
https://developer.arm.com/docs/dui0805/k/fromelf-command-line-options/-cpuname
https://developer.arm.com/docs/dui0805/k/fromelf-command-line-options/-fpuname
https://developer.arm.com/docs/dui0801/k/armasm-command-line-options/-cpuname
https://developer.arm.com/docs/dui0801/k/armasm-command-line-options/-fpuname

Chapter 4
Compiler Source Code Compatibility

Provides details of source code compatibility between Arm Compiler 6 and older armcc compiler
versions.

It contains the following sections:
• 4.1 Language extension compatibility: keywords on page 4-46.
• 4.2 Language extension compatibility: attributes on page 4-49.
• 4.3 Language extension compatibility: pragmas on page 4-51.
• 4.4 Language extension compatibility: intrinsics on page 4-54.
• 4.5 Diagnostics for pragma compatibility on page 4-58.
• 4.6 C and C++ implementation compatibility on page 4-60.
• 4.7 Compatibility of C++ objects on page 4-62.

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-45

Non-Confidential

4.1 Language extension compatibility: keywords
Arm Compiler 6 provides support for some keywords that are supported in Arm Compiler 5.

 Note

This topic includes descriptions of [COMMUNITY] features. See Support level definitions on page 1-12.

The following table lists some of the commonly used keywords that are supported by Arm Compiler 5
and shows whether Arm Compiler 6 supports them using __attribute__. Replace any instances of these
keywords in your code with the recommended alternative where available or use inline assembly
instructions.

 Note

This is not an exhaustive list of all keywords.

Table 4-1 Keyword language extensions in Arm Compiler 5 and Arm Compiler 6

Keyword supported by Arm
Compiler 5

Recommended Arm Compiler 6 keyword or alternative

__align(x) __attribute__((aligned(x)))

__alignof__ __alignof__

__ALIGNOF__ __alignof__

Embedded assembly using __asm Arm Compiler 6 does not support the __asm keyword on function definitions and
declarations for embedded assembly. Instead, you can write embedded assembly using the
__attribute__((naked)) function attribute. See __attribute__((naked)).

__const __attribute__((const))

__attribute__((const)) __attribute__((const))

__forceinline __attribute__((always_inline))

__global_reg Use inline assembler instructions or equivalent routine.

__inline(x) __inline__. The use of this depends on the language mode.

__int64 No equivalent. However, you can use long long. When you use long long in C90 mode,
the compiler gives:
• a warning.
• an error, if you also use -pedantic-errors.

__INTADDR None. There is community support for this as a Clang builtin.

__irq __attribute__((interrupt)). This is not supported in AArch64.

4 Compiler Source Code Compatibility
4.1 Language extension compatibility: keywords

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-46

Non-Confidential

https://developer.arm.com/docs/dui0774/k/compiler-specific-function-variable-and-type-attributes/__attribute__naked-function-attribute

Table 4-1 Keyword language extensions in Arm Compiler 5 and Arm Compiler 6 (continued)

Keyword supported by Arm
Compiler 5

Recommended Arm Compiler 6 keyword or alternative

__packed for removing padding
within structures.

__attribute__((packed)). This provides limited functionality compared to __packed:
• The __attribute__((packed)) variable attribute applies to members of a structure

or union, but it does not apply to variables that are not members of a struct or union.
• __attribute__((packed)) is not a type qualifier. Taking the address of a packed

member can result in unaligned pointers, and in most cases the compiler generates a
warning. Arm recommends upgrading this warning to an error when migrating code that
uses __packed. To upgrade the warning to error, use the armclang option -
Werror=name.

The placement of the attribute is different from the placement of __packed. If your legacy
code contains typedef __packed struct, then replace it with:

typedef struct __attribute__((packed))

__packed as a type qualifier for
unaligned access.

__unaligned. This provides limited functionality compared to the __packed type
qualifier.

The __unaligned type qualifier can be used over a structure only when using typedef or
when declaring a structure variable. This limitation does not apply when using __packed in
Arm Compiler 5. Therefore, there is currently no migration for legacy code that contains
__packed struct S{...};.

__pure __attribute__((const))

__smc Use inline assembler instructions or equivalent routine.

__softfp __attribute__((pcs("aapcs")))

__svc Use inline assembler instructions or equivalent routine.

__svc_indirect Use inline assembler instructions or equivalent routine.

__svc_indirect_r7 Use inline assembler instructions or equivalent routine.

__thread __thread

__value_in_regs __attribute__((value_in_regs))

__weak __attribute__((weak))

__writeonly No equivalent.

 Note

The __const keyword was supported by older versions of armcc. The equivalent for this keyword in
Arm Compiler 5 and Arm Compiler 6 is __attribute__((const)).

Migrating the __packed keyword from Arm® Compiler 5 to Arm® Compiler 6
The __packed keyword in Arm Compiler 5 has the effect of:
• Removing the padding within structures.
• Qualifying the variable for unaligned access.

Arm Compiler 6 does not support __packed, but supports __attribute__((packed)) and __unaligned
keyword. Depending on the use, you might need to replace __packed with both
__attribute__((packed)) and __unaligned. The following table shows the migration paths for
various uses of __packed.

4 Compiler Source Code Compatibility
4.1 Language extension compatibility: keywords

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-47

Non-Confidential

Table 4-2 Migrating the __packed keyword

Arm Compiler 5 Arm Compiler 6

__packed int x; __unaligned int x;

__packed int *x; __unaligned int *x;

int * __packed x; int * __unaligned x;

__unaligned int * __packed x; __unaligned int * __unaligned x;

typedef __packed struct S{...} s; typedef __unaligned struct __attribute__((packed)) S{...} s;

__packed struct S{...}; There is currently no migration. Use a typedef instead.

__packed struct S{...} s; __unaligned struct __attribute__((packed)) S{...} s;

Subsequent declarations of variables of type struct S must use __unaligned, for
example __unaligned struct S s2.

struct S{__packed int a;} struct S {__attribute__((packed)) __unaligned int a;}

Related references
4.6 C and C++ implementation compatibility on page 4-60
4.2 Language extension compatibility: attributes on page 4-49
4.3 Language extension compatibility: pragmas on page 4-51
Related information
__unaligned keyword

4 Compiler Source Code Compatibility
4.1 Language extension compatibility: keywords

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-48

Non-Confidential

https://developer.arm.com/docs/dui0774/k/compiler-specific-keywords-and-operators/__unaligned

4.2 Language extension compatibility: attributes
Arm Compiler 6 provides support for some function, variable, and type attributes that were supported in
Arm Compiler 5. Other attributes are not supported, or have an alternate implementation.

The following attributes are supported by Arm Compiler 5 and Arm Compiler 6. These attributes do not
require modification in your code:
• __attribute__((aligned(x)))
• __attribute__((always_inline))
• __attribute__((const))
• __attribute__((deprecated))
• __attribute__((noinline))
• __declspec(noinline)
• __attribute__((nonnull))
• __attribute__((noreturn))
• __declspec(noreturn)
• __attribute__((nothrow))
• __declspec(nothrow)
• __attribute__((pcs("calling convention")))
• __attribute__((pure))
• __attribute__((unused))
• __attribute__((used))

 Note

In Arm Compiler 6, functions marked with __attribute__((used)) can still be removed by linker
unused section removal. To prevent the linker from removing these sections, you can use either the --
keep=symbol or the --no_remove armlink options. In Arm Compiler 5, functions marked with
__attribute__((used)) are not removed by the linker.

• __attribute__((visibility))
• __attribute__((weak))
• __attribute__((weakref))

Though Arm Compiler 6 supports certain __declspec attributes, Arm recommends using
__attribute__ where available.

Table 4-3 Support for __declspec attributes

declspec supported by Arm Compiler 5 Recommended Arm Compiler 6 alternative

__declspec(dllimport) None. There is no support for BPABI linking models.

__declspec(dllexport) None. There is no support for BPABI linking models.

__declspec(noinline) __attribute__((noinline))

__declspec(noreturn) __attribute__((noreturn))

__declspec(nothrow) __attribute__((nothrow))

__declspec(notshared) None. There is no support for BPABI linking models.

__declspec(thread) __thread

Section

__attribute__((section("name"))) is supported by Arm Compiler 5 and Arm Compiler 6. However,
this attribute might require modification in your code.

4 Compiler Source Code Compatibility
4.2 Language extension compatibility: attributes

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-49

Non-Confidential

When using Arm Compiler 5, section names do not need to be unique. Therefore, you could use the same
section name to create different section types.

Arm Compiler 6 supports multiple sections with the same section name only if you specify a unique ID.
You must ensure that different section types either:
• Have a unique section name.
• Have a unique ID, if they have the same section name.

If you use the same section name, for another section or symbol, without a unique ID, then armclang
integrated assembler merges the sections and gives the merged section the flags of the first section with
that name.

Migrating __attribute__((at(address))) and zero-initialized __attribute__((section("name")))
from Arm® Compiler 5 to Arm® Compiler 6
Arm Compiler 5 supports the following attributes, which Arm Compiler 6 does not support:
• __attribute__((at(address))) to specify the absolute address of a function or variable.
• __attribute__((at(address), zero_init)) to specify the absolute address of a zero-initialized

variable.
• __attribute__((section(name), zero_init)) to place a zero-initialized variable in a zero-

initialized section with the given name.
• __attribute__((zero_init)) to generate an error if the variable has an initializer.

The following table shows migration paths for these features using Arm Compiler 6 supported features:

Table 4-4 Migrating __attribute__((at(address))) and zero-initialized __attribute__((section("name")))

Arm Compiler 5 attribute Arm Compiler 6 attribute Description

__attribute__((at(address))) __attribute__((section(".ARM.__
at_address")))

armlink in Arm Compiler 6 still supports
the placement of sections in the form
of .ARM.__at_address

__attribute__((at(address),
zero_init))

__attribute__((section(".bss.AR
M.__at_address")))

armlink in Arm Compiler 6 supports the
placement of zero-initialized sections in the
form of .bss.ARM.__at_address.
The .bss prefix is case sensitive and must
be all lowercase.

__attribute__((section(name),
zero_init))

__attribute__((section(".bss.na
me")))

name is a name of your choice. The .bss
prefix is case sensitive and must be all
lowercase.

__attribute__((zero_init)) Arm Compiler 6 by default places zero-
initialized variables in a .bss section.
However, there is no equivalent to generate
an error when you specify an initializer.

Arm Compiler 5 generates an error if the
variable has an initializer. Otherwise, it
places the zero-initialized variable in
a .bss section.

Related references
4.6 C and C++ implementation compatibility on page 4-60
4.1 Language extension compatibility: keywords on page 4-46
4.3 Language extension compatibility: pragmas on page 4-51
Related information
armlink User Guide: Placing functions and data in a named section
armlink User Guide: Placing __at sections at a specific address

4 Compiler Source Code Compatibility
4.2 Language extension compatibility: attributes

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-50

Non-Confidential

https://developer.arm.com/docs/dui0774/k/armclang-integrated-assembler-directives/section-directives
https://developer.arm.com/docs/dui0803/k/scatter-loading-features/root-region-and-the-initial-entry-point/placing-functions-and-data-in-a-named-section
https://developer.arm.com/docs/dui0803/k/scatter-loading-features/root-region-and-the-initial-entry-point/placing-__at-sections-at-a-specific-address

4.3 Language extension compatibility: pragmas
Arm Compiler 6 provides support for some pragmas that are supported in Arm Compiler 5. Other
pragmas are not supported, or must be replaced with alternatives.

The following table lists some of the commonly used pragmas that are supported by Arm Compiler 5 but
are not supported by Arm Compiler 6. Replace any instances of these pragmas in your code with the
recommended alternative.

Table 4-5 Pragma language extensions that must be replaced

Pragma supported by Arm Compiler 5 Recommended Arm Compiler 6 alternative

#pragma import (symbol) __asm(".global symbol\n\t");

#pragma anon_unions

#pragma no_anon_unions

In C, anonymous structs and unions are a C11 extension which is enabled by
default in armclang. If you specify the -pedantic option, the compiler emits
warnings about extensions do not match the specified language standard. For
example:

armclang --target=aarch64-arm-none-eabi -c -pedantic --std=c90
test.c
 test.c:3:5: warning: anonymous structs are a C11 extension [-
Wc11-extensions]

In C++, anonymous unions are part of the language standard, and are always
enabled. However, anonymous structs and classes are an extension. If you specify
the -pedantic option, the compiler emits warnings about anonymous structs and
classes. For example:

armclang --target=aarch64-arm-none-eabi -c -pedantic -xc++
test.c
 test.c:3:5: warning: anonymous structs are a GNU extension [-
Wgnu-anonymous-struct]

Introducing anonymous unions, struct and classes using a typedef is a separate
extension in armclang, which must be enabled using the -fms-extensions
option.

#pragma arm

#pragma thumb

armclang does not support switching instruction set in the middle of a file. You
can use the command-line options -marm and -mthumb to specify the instruction
set of the whole file.

#pragma arm section #pragma clang section

In Arm Compiler 5, the section types you can use this pragma with are rodata,
rwdata, zidata, and code. In Arm Compiler 6, the equivalent section types are
rodata, data, bss, and text respectively.

4 Compiler Source Code Compatibility
4.3 Language extension compatibility: pragmas

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-51

Non-Confidential

Table 4-5 Pragma language extensions that must be replaced (continued)

Pragma supported by Arm Compiler 5 Recommended Arm Compiler 6 alternative

#pragma diag_default

#pragma diag_suppress

#pragma diag_remark

#pragma diag_warning

#pragma diag_error

The following pragmas provide equivalent functionality for diag_suppress,
diag_warning, and diag_error:
• #pragma clang diagnostic ignored "-Wmultichar"
• #pragma clang diagnostic warning "-Wmultichar"
• #pragma clang diagnostic error "-Wmultichar"

Note that these pragmas use armclang diagnostic groups, which do not have a
precise mapping to armcc diagnostic tags.

armclang has no equivalent to diag_default or diag_remark.
diag_default can be replaced by wrapping the change of diagnostic level with
#pragma clang diagnostic push and #pragma clang diagnostic pop,
or by manually returning the diagnostic to the default level.

There is an additional diagnostic level supported in armclang, fatal, which causes
compilation to fail without processing the rest of the file. You can set this as
follows:

#pragma clang diagnostic fatal "-Wmultichar"

#pragma exceptions_unwind

#pragma no_exceptions_unwind

armclang does not support these pragmas.

Use the __attribute__((nothrow)) function attribute instead.

#pragma GCC system_header This pragma is supported by both armcc and armclang, but #pragma clang
system_header is the preferred spelling in armclang for new code.

#pragma hdrstop

#pragma no_pch

armclang does not support these pragmas.

#pragma
import(__use_no_semihosting)

#pragma
import(__use_no_semihosting_swi)

armclang does not support these pragmas. However, in C code, you can replace
these pragmas with:

__asm(".global __use_no_semihosting\n\t");

#pragma inline

#pragma no_inline

armclang does not support these pragmas. However, inlining can be disabled on a
per-function basis using the __attribute__((noinline)) function attribute.

The default behavior of both armcc and armclang is to inline functions when the
compiler considers this worthwhile, and this is the behavior selected by using
#pragma inline in armcc. To force a function to be inlined in armclang, use
the __attribute__((always_inline)) function attribute.

#pragma Onum

#pragma Ospace

#pragma Otime

armclang does not support changing optimization options within a file. Instead
these must be set on a per-file basis using command-line options.

4 Compiler Source Code Compatibility
4.3 Language extension compatibility: pragmas

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-52

Non-Confidential

Table 4-5 Pragma language extensions that must be replaced (continued)

Pragma supported by Arm Compiler 5 Recommended Arm Compiler 6 alternative

#pragma pop

#pragma push

armclang does not support these pragmas. Therefore, you cannot push and pop
the state of all supported pragmas.

However, you can push and pop the state of the diagnostic pragmas and the state of
the pack pragma.

To control the state of the diagnostic pragmas, use #pragma clang diagnostic
push and #pragma clang diagnostic pop.

To control the state of the pack pragma, use #pragma pack(push) and #pragma
pack(pop).

#pragma softfp_linkage armclang does not support this pragma. Instead, use the
__attribute__((pcs("aapcs"))) function attribute to set the calling
convention on a per-function basis, or use the -mfloat-abi=soft command-line
option to set the calling convention on a per-file basis.

#pragma no_softfp_linkage armclang does not support this pragma. Instead, use the
__attribute__((pcs("aapcs-vfp"))) function attribute to set the calling
convention on a per-function basis, or use the -mfloat-abi=hard command-line
option to set the calling convention on a per-file basis.

#pragma unroll[(n)]

#pragma unroll_completely

armclang supports these pragmas.

The default for #pragma unroll (that is, with no iteration count specified) differs
between armclang and armcc:
• With armclang, the default is to fully unroll a loop.
• With armcc, the default is #pragma unroll(4).

Related references
4.6 C and C++ implementation compatibility on page 4-60
4.1 Language extension compatibility: keywords on page 4-46
4.2 Language extension compatibility: attributes on page 4-49
4.5 Diagnostics for pragma compatibility on page 4-58
Related information
armclang Reference Guide: #pragma GCC system_header
armclang Reference Guide: #pragma once
armclang Reference Guide: #pragma pack(n)
armclang Reference Guide: #pragma weak symbol, #pragma weak symbol1 = symbol2
armclang Reference Guide: #pragma unroll[(n)], #pragma unroll_completely

4 Compiler Source Code Compatibility
4.3 Language extension compatibility: pragmas

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-53

Non-Confidential

https://developer.arm.com/docs/dui0774/k/compiler-specific-pragmas/pragma-clang-system_header
https://developer.arm.com/docs/dui0774/k/compiler-specific-pragmas/pragma-once
https://developer.arm.com/docs/dui0774/k/compiler-specific-pragmas/pragma-pack
https://developer.arm.com/docs/dui0774/k/compiler-specific-pragmas/pragma-weak-symbol-pragma-weak-symbol1-symbol2
https://developer.arm.com/docs/dui0774/k/compiler-specific-pragmas/pragma-unrolln-pragma-unroll_completely

4.4 Language extension compatibility: intrinsics
Arm Compiler 6 provides support for some intrinsics that are supported in Arm Compiler 5.

The following table lists some of the commonly used intrinsics that are supported by Arm Compiler 5
and shows whether Arm Compiler 6 supports them or provides an alternative. If there is no support Arm
Compiler 6, you must replace them with suitable inline assembly instructions or calls to the standard
library. To use the intrinsic in Arm Compiler 6, you must include the appropriate header file. For more
information on the ACLE intrinsics, see the Arm® C Language Extensions.

 Note

• This is not an exhaustive list of all the intrinsics.
• The intrinsics provided in <arm_compat.h> are only supported for AArch32.

Table 4-6 Compiler intrinsic support in Arm Compiler 6

Intrinsic in Arm
Compiler 5

Function Support in Arm Compiler 6 Header file for
Arm Compiler 6

__breakpoint Inserts a BKPT instruction. Yes arm_compat.h

__cdp Inserts a coprocessor instruction. Yes. In Arm Compiler 6, the equivalent intrinsic is
__arm_cdp.

arm_acle.h

__clrex Inserts a CLREX instruction. No -

__clz Inserts a CLZ instruction or
equivalent routine.

Yes arm_acle.h

__current_pc Returns the program counter at
this point.

Yes arm_compat.h

__current_sp Returns the stack pointer at this
point.

Yes arm_compat.h

__isb Inserts ISB or equivalent. Yes arm_acle.h

__disable_fiq Disables FIQ interrupts (Armv7
architecture only). Returns
previous value of FIQ mask.

Yes arm_compat.h

__disable_irq Disable IRQ interrupts. Returns
previous value of IRQ mask.

Yes arm_compat.h

__dmb Inserts a DMB instruction or
equivalent.

Yes arm_acle.h

__dsb Inserts a DSB instruction or
equivalent.

Yes arm_acle.h

__enable_fiq Enables fast interrupts. Yes arm_compat.h

__enable_irq Enables IRQ interrupts. Yes arm_compat.h

__fabs Inserts a VABS or equivalent
code sequence.

No. Arm recommends using the standard C library
function fabs().

-

__fabsf Single precision version of
__fabs.

No. Arm recommends using the standard C library
function fabsf().

-

4 Compiler Source Code Compatibility
4.4 Language extension compatibility: intrinsics

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-54

Non-Confidential

https://developer.arm.com/docs/ihi0053/c

Table 4-6 Compiler intrinsic support in Arm Compiler 6 (continued)

Intrinsic in Arm
Compiler 5

Function Support in Arm Compiler 6 Header file for
Arm Compiler 6

__force_stores Flushes all external variables
visible from this function, if they
have been changed.

Yes arm_compat.h

__ldrex Inserts an appropriately sized
Load Exclusive instruction.

No. This intrinsic is deprecated in ACLE 2.0. -

__ldrexd Inserts an LDREXD instruction. No. This intrinsic is deprecated in ACLE 2.0. -

__ldrt Inserts an appropriately sized
user-mode load instruction.

No -

__memory_changed Is similar to __force_stores,
but also reloads the values from
memory.

Yes arm_compat.h

__nop Inserts a NOP or equivalent
instruction that will not be
optimized away. It also inserts a
sequence point, and scheduling
barrier for side-effecting
function calls.

Yes arm_acle.h

__pld Inserts a PLD instruction, if
supported.

Yes arm_acle.h

__pldw Inserts a PLDW instruction, if
supported (Armv7 architecture
with MP).

No. Arm recommends using __pldx described in
the ACLE document.

arm_acle.h

__pli Inserts a PLI instruction, if
supported.

Yes arm_acle.h

__promise Compiler assertion that the
expression always has a nonzero
value. If asserts are enabled then
the promise is checked at
runtime by evaluating expr
using assert(expr).

Yes. However, you must #include
<assert.h> to use __promise. __promise has
the same behavior as assert() unless at least
one of NDEBUG or
__DO_NOT_LINK_PROMISE_WITH_ASSERT is
defined.

assert.h

__qadd Inserts a saturating add
instruction, if supported.

Yes arm_acle.h

__qdbl Inserts instructions equivalent to
qadd(val,val), if supported.

Yes arm_acle.h

__qsub Inserts a saturating subtract, or
equivalent routine, if supported.

Yes arm_acle.h

__rbit Inserts a bit reverse instruction. Yes arm_acle.h

__rev Insert a REV, or endian swap
instruction.

Yes arm_acle.h

__return_address Returns value of LR when
returning from current function,
without inhibiting optimizations
like inlining or tailcalling.

No. Arm recommends using inline assembly
instructions.

-

4 Compiler Source Code Compatibility
4.4 Language extension compatibility: intrinsics

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-55

Non-Confidential

Table 4-6 Compiler intrinsic support in Arm Compiler 6 (continued)

Intrinsic in Arm
Compiler 5

Function Support in Arm Compiler 6 Header file for
Arm Compiler 6

__ror Insert an ROR instruction. Yes arm_acle.h

__schedule_barrier Create a sequence point without
effecting memory or inserting
NOP instructions. Functions with
side effects cannot move past the
new sequence point.

Yes arm_compat.h

__semihost Inserts an SVC or BKPT
instruction.

Yes arm_compat.h

__sev Insert a SEV instruction. Error if
the SEV instruction is not
supported.

Yes arm_acle.h

__sqrt Inserts a VSQRT instruction on
targets with a VFP coprocessor.

No -

__sqrtf single precision version of
__sqrt.

No -

__ssat Inserts an SSAT instruction.
Error if the SSAT instruction is
not supported.

Yes arm_acle.h

__strex Inserts an appropriately sized
Store Exclusive instruction.

No. This intrinsic is deprecated in ACLE 2.0. -

__strexd Inserts a doubleword Store
Exclusive instruction.

No. This intrinsic is deprecated in ACLE 2.0. -

__strt Insert an appropriately sized
STRT instruction.

No -

__swp Inserts an appropriately sized
SWP instruction.

Yes. However, the SWP instruction is deprecated,
and Arm does not recommend the use of __swp.

arm_acle.h

__usat Inserts a USAT instruction. Error
if the USAT instruction is not
supported.

Yes arm_acle.h

__wfe Inserts a WFE instruction. Error if
the WFE instruction is not
supported.

Yes arm_acle.h

__wfi Inserts a WFI instruction. Error if
the WFI instruction is not
supported.

Yes arm_acle.h

__yield Inserts a YIELD instruction.
Error if the YIELD instruction is
not supported.

Yes arm_acle.h

ARMv6 SIMD
intrinsics

Inserts an Armv6 SIMD
instruction.

No -

4 Compiler Source Code Compatibility
4.4 Language extension compatibility: intrinsics

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-56

Non-Confidential

Table 4-6 Compiler intrinsic support in Arm Compiler 6 (continued)

Intrinsic in Arm
Compiler 5

Function Support in Arm Compiler 6 Header file for
Arm Compiler 6

ETSI intrinsics 35 intrinsic functions and 2
global variable flags specified in
ETSI G729 used for speech
encoding. These are provided in
the Arm headers in dspfns.h.

No -

C55x intrinsics Emulation of selected TI C55x
compiler intrinsics.

No -

__vfp_status Reads the FPSCR. Yes arm_compat.h

FMA intrinsics Intrinsics for fused-multiply-add
on the Cortex-M4 or Cortex‑A5
processor in c99 mode.

No -

Named register
variables

Allows direct manipulation of a
system register as if it were a C
variable.

No. To access FPSCR, use the __vfp_status
intrinsic or inline assembly instructions.

-

4 Compiler Source Code Compatibility
4.4 Language extension compatibility: intrinsics

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-57

Non-Confidential

4.5 Diagnostics for pragma compatibility
Older armcc compiler versions supported many pragmas which are not supported by armclang, but
which could change the semantics of code. When armclang encounters these pragmas, it generates
diagnostic messages.

The following table shows which diagnostics are generated for each pragma type, and the diagnostic
group to which that diagnostic belongs. armclang generates diagnostics as follows:
• Errors indicate use of an armcc pragma which could change the semantics of code.
• Warnings indicate use of any other armcc pragma which is ignored by armclang.
• Pragmas other than those listed are silently ignored.

Table 4-7 Pragma diagnostics

Pragma supported by older compiler versions Default diagnostic type Diagnostic group

#pragma anon_unions Warning armcc-pragma-anon-unions

#pragma no_anon_unions Warning armcc-pragma-anon-unions

#pragma arm Error armcc-pragma-arm

#pragma arm section [section_type_list] Error armcc-pragma-arm

#pragma diag_default tag[,tag,...] Error armcc-pragma-diag

#pragma diag_error tag[,tag,...] Error armcc-pragma-diag

#pragma diag_remark tag[,tag,...] Warning armcc-pragma-diag

#pragma diag_suppress tag[,tag,...] Warning armcc-pragma-diag

#pragma diag_warning tag[,tag,...] Warning armcc-pragma-diag

#pragma exceptions_unwind Error armcc-pragma-exceptions-unwind

#pragma no_exceptions_unwind Error armcc-pragma-exceptions-unwind

#pragma GCC system_header None -

#pragma hdrstop Warning armcc-pragma-hdrstop

#pragma import symbol_name Error armcc-pragma-import

#pragma inline Warning armcc-pragma-inline

#pragma no_inline Warning armcc-pragma-inline

#pragma no_pch Warning armcc-pragma-no-pch

#pragma Onum Warning armcc-pragma-optimization

#pragma once None -

#pragma Ospace Warning armcc-pragma-optimization

#pragma Otime Warning armcc-pragma-optimization

#pragma pack None -

#pragma pop Error armcc-pragma-push-pop

#pragma push Error armcc-pragma-push-pop

#pragma softfp_linkage Error armcc-pragma-softfp-linkage

#pragma no_softfp_linkage Error armcc-pragma-softfp-linkage

#pragma thumb Error armcc-pragma-thumb

4 Compiler Source Code Compatibility
4.5 Diagnostics for pragma compatibility

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-58

Non-Confidential

Table 4-7 Pragma diagnostics (continued)

Pragma supported by older compiler versions Default diagnostic type Diagnostic group

#pragma weak symbol None -

#pragma weak symbol1 = symbol2 None -

In addition to the above diagnostic groups, there are the following additional diagnostic groups:

armcc-pragmas
Contains all of the above diagnostic groups.

unknown-pragmas
Contains diagnostics about pragmas which are not known to armclang, and are not in the above
table.

pragmas
Contains all pragma-related diagnostics, including armcc-pragmas and unknown-pragmas.

Any non-fatal armclang diagnostic group can be ignored, upgraded, or downgraded using the following
command-line options:

Suppress a group of diagnostics:
-Wno-diag-group

Upgrade a group of diagnostics to warnings:
-Wdiag-group

Upgrade a group of diagnostics to errors:
-Werror=diag-group

Downgrade a group of diagnostics to warnings:
-Wno-error=diag-group

Related references
4.3 Language extension compatibility: pragmas on page 4-51

4 Compiler Source Code Compatibility
4.5 Diagnostics for pragma compatibility

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-59

Non-Confidential

4.6 C and C++ implementation compatibility
Arm Compiler 6 C and C++ implementation details differ from previous compiler versions.

The following table describes the C and C++ implementation detail differences.

Table 4-8 C and C++ implementation detail differences

Feature Older versions of Arm Compiler Arm Compiler 6

Integer operations

Shifts int shifts > 0 && < 127

int left_shifts > 31 == 0

int right_shifts > 31 == 0

(for unsigned or positive)

int right_shifts > 31 == -1

(for negative)

long long shifts > 0 && < 63

Warns when shift amount > width of type.

You can use the -Wshift-count-overflow option to
suppress this warning.

Integer division Checks that the sign of the remainder
matches the sign of the numerator.

The sign of the remainder is not necessarily the same as
the sign of the numerator.

Floating-point operations

Default standard IEEE 754 standard, rounding to nearest
representable value, exceptions disabled by
default.

All facilities, operations, and representations guaranteed
by the IEEE standard are available in single and double-
precision. Modes of operation can be selected dynamically
at runtime.

This is equivalent to the --fpmode=ieee_full option in
older versions of Arm Compiler.

#pragma STDC
FP_CONTRACT

#pragma STDC FP_CONTRACT Might affect code generation.

Unions, enums and structs

Enum packing Enums are implemented in the smallest
integral type of the correct sign to hold the
range of the enum values, except for when
compiling in C++ mode with
--enum_is_int.

By default enums are implemented as int, with long
long used when required.

Allocation of bit-fields in
containers

Allocation of bit-fields in containers. A container is an object, aligned as the declared type. Its
size is sufficient to contain the bit-field, but might be
smaller or larger than the bit-field declared type.

Signedness of plain bit-
fields

Unsigned.

Plain bit-fields declared without either the
signed or unsigned qualifiers default to
unsigned. The --signed_bitfields
option treats plain bit-fields as signed.

Signed.

Plain bit-fields declared without either the signed or
unsigned qualifiers default to signed. There is no
equivalent to either the --signed_bitfields or
--no_signed_bitfields options.

Arrays and pointers

4 Compiler Source Code Compatibility
4.6 C and C++ implementation compatibility

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-60

Non-Confidential

Table 4-8 C and C++ implementation detail differences (continued)

Feature Older versions of Arm Compiler Arm Compiler 6

Casting between integers
and pointers

No change of representation Converting a signed integer to a pointer type with greater
bit width sign-extends the integer.

Converting an unsigned integer to a pointer type with
greater bit width zero-extends the integer.

Misc C

sizeof(wchar_t) 2 bytes 4 bytes

size_t Defined as unsigned int, 32-bit. Defined as unsigned int in 32-bit architectures, and
<sign><type> 64-bit in 64-bit architectures.

ptrdiff_t Defined as signed int, 32-bit. Defined as unsigned int in 32-bit architectures, and
<sign><type> 64-bit in 64-bit architectures.

Misc C++

C++ library Rogue Wave Standard C++ Library LLVM libc++ Library
 Note

• When the C++ library is used in source code, there is
limited compatibility between object code created with
Arm Compiler 6 and object code created with Arm
Compiler 5. This also applies to indirect use of the
C++ library, for example memory allocation or
exception handling.

Implicit inclusion If compilation requires a template definition
from a template declared in a header file
xyz.h, the compiler implicitly includes the
file xyz.cc or xyz.CC.

Not supported.

Alternative template
lookup algorithms

When performing referencing context
lookups, name lookup matches against
names from the instantiation context as well
as from the template definition context.

Not supported.

Exceptions Off by default, function unwinding on with
--exceptions by default.

On by default in C++ mode.

Translation

Diagnostics messages
format

source-file, line-number :
severity : error-code :
explanation

source-file:line-number:char-number:
description [diagnostic-flag]

Environment

Physical source file bytes
interpretation

Current system locale dependent or set using
the --locale command-line option.

UTF-8

Related references
4.1 Language extension compatibility: keywords on page 4-46
4.2 Language extension compatibility: attributes on page 4-49
4.3 Language extension compatibility: pragmas on page 4-51
4.7 Compatibility of C++ objects on page 4-62

4 Compiler Source Code Compatibility
4.6 C and C++ implementation compatibility

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-61

Non-Confidential

4.7 Compatibility of C++ objects
The compatibility of C++ objects compiled with Arm Compiler 5 depends on the C++ libraries used.

Compatibility with objects compiled using Rogue Wave standard library headers

Arm Compiler 6 does not support binary compatibility with objects compiled using the Rogue Wave
standard library include files.

There are warnings at link time when objects are mixed. L6869W is reported if an object requests the
Rogue Wave standard library. L6870W is reported when using an object that is compiled with Arm
Compiler 5 with exceptions support.

The impact of mixing objects that have been compiled against different C++ standard library headers
might include:
• Undefined symbol errors.
• Increased code size.
• Possible runtime errors.

If you have Arm Compiler 6 objects that have been compiled with the legacy -stdlib=legacy_cpplib
option then these objects use the Rogue Wave standard library and therefore might be incompatible with
objects created using Arm Compiler 6.4 or later. To resolve these issues, you must recompile all object
files with Arm Compiler 6.4 or later.

Compatibility with C++ objects compiled using Arm® Compiler 5

The choice of C++ libraries at link time must match the choice of C++ include files at compile time for
all input objects. Arm Compiler 5 objects that use the Rogue Wave C++ libraries are not compatible with
Arm Compiler 6 objects. Arm Compiler 5 objects that use C++ but do not make use of the Rogue Wave
header files can be compatible with Arm Compiler 6 objects that use libc++ but this is not guaranteed.

Arm recommends using Arm Compiler 6 for building the object files.

Compatibility of arrays of objects compiled using Arm® Compiler 5

Arm Compiler 6 is not compatible with objects from Arm Compiler 5 that use operator new[] and
delete[]. Undefined symbol errors result at link time because Arm Compiler 6 does not provide the
helper functions that Arm Compiler 5 depends on. For example:

construct.cpp:

class Foo
{
public:
 Foo() : x_(new int) { *x_ = 0; }
 void setX(int x) { *x_ = x; }
 ~Foo() { delete x_; }
private:
 int* x_;
};

void func(void)
{
 Foo* array;
 array = new Foo [10];
 array[0].setX(1);
 delete[] array;
}

If you build this example with Arm Compiler 5 compiler, armcc, and linking with the Arm Compiler 6
linker, armlink, using:

armcc -c construct.cpp -Ospace -O1 --cpu=cortex-a9
armlink construct.o -o construct.axf

4 Compiler Source Code Compatibility
4.7 Compatibility of C++ objects

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-62

Non-Confidential

the linker reports:

Error: L6218E: Undefined symbol __aeabi_vec_delete (referred from construct.o).
Error: L6218E: Undefined symbol __aeabi_vec_new_cookie_nodtor (referred from construct.o).

To resolve these linker errors, you must use the Arm Compiler 6 compiler, armclang, to compile all C++
files that use the new[] and delete[] operators.

 Note

You do not have to specify --stdlib=libc++ for armlink, because this is the default and only option in
Arm Compiler 6.4, and later.

Related information
armlink User Guide: --stdlib

4 Compiler Source Code Compatibility
4.7 Compatibility of C++ objects

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

4-63

Non-Confidential

https://developer.arm.com/docs/dui0803/k/armlink-command-line-options/-stdlib

Chapter 5
Migrating from armasm to the armclang Integrated
Assembler

Describes how to migrate assembly code from armasm syntax to GNU syntax (used by armclang).

It contains the following sections:
• 5.1 Overview of differences between armasm and GNU syntax assembly code on page 5-65.
• 5.2 Comments on page 5-67.
• 5.3 Labels on page 5-68.
• 5.4 Numeric local labels on page 5-69.
• 5.5 Functions on page 5-71.
• 5.6 Sections on page 5-72.
• 5.7 Symbol naming rules on page 5-74.
• 5.8 Numeric literals on page 5-75.
• 5.9 Operators on page 5-76.
• 5.10 Alignment on page 5-77.
• 5.11 PC-relative addressing on page 5-78.
• 5.12 Conditional directives on page 5-79.
• 5.13 Data definition directives on page 5-80.
• 5.14 Instruction set directives on page 5-82.
• 5.15 Miscellaneous directives on page 5-83.
• 5.16 Symbol definition directives on page 5-84.

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-64

Non-Confidential

5.1 Overview of differences between armasm and GNU syntax assembly code
armasm (for assembling legacy assembly code) uses armasm syntax assembly code.

armclang aims to be compatible with GNU syntax assembly code (that is, the assembly code syntax
supported by the GNU assembler, as).

If you have legacy assembly code that you want to assemble with armclang, you must convert that
assembly code from armasm syntax to GNU syntax.

The specific instructions and order of operands in your UAL syntax assembly code do not change during
this migration process.

However, you need to make changes to the syntax of your assembly code. These changes include:
• The directives in your code.
• The format of labels, comments, and some types of literals.
• Some symbol names.
• The operators in your code.

The following examples show simple, equivalent, assembly code in both armasm and GNU syntax.

armasm syntax
; Simple armasm syntax example
;
; Iterate round a loop 10 times, adding 1 to a register each time.

 AREA ||.text||, CODE, READONLY, ALIGN=2

main PROC
 MOV w5,#0x64 ; W5 = 100
 MOV w4,#0 ; W4 = 0
 B test_loop ; branch to test_loop
loop
 ADD w5,w5,#1 ; Add 1 to W5
 ADD w4,w4,#1 ; Add 1 to W4
test_loop
 CMP w4,#0xa ; if W4 < 10, branch back to loop
 BLT loop
 ENDP

 END

GNU syntax
// Simple GNU syntax example 5.2 Comments on page 5-67//
// Iterate round a loop 10 times, adding 1 to a register each time.

 .section .text,"x" // 5.6 Sections on page 5-72 .balign
4

main: // 5.3 Labels on page 5-68
 MOV w5,#0x64 // W5 = 100 5.8 Numeric literals on page 5-75
MOV w4,#0 // W4 = 0
 B test_loop // branch to test_loop
loop:
 ADD w5,w5,#1 // Add 1 to W5
 ADD w4,w4,#1 // Add 1 to W4
test_loop:
 CMP w4,#0xa // if W4 < 10, branch back to loop
 BLT loop
 .end // 5.15 Miscellaneous directives on page 5-83

Related references
5.2 Comments on page 5-67
5.3 Labels on page 5-68
5.4 Numeric local labels on page 5-69
5.5 Functions on page 5-71
5.6 Sections on page 5-72
5.7 Symbol naming rules on page 5-74

5 Migrating from armasm to the armclang Integrated Assembler
5.1 Overview of differences between armasm and GNU syntax assembly code

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-65

Non-Confidential

5.8 Numeric literals on page 5-75
5.9 Operators on page 5-76
5.10 Alignment on page 5-77
5.11 PC-relative addressing on page 5-78
5.12 Conditional directives on page 5-79
5.13 Data definition directives on page 5-80
5.14 Instruction set directives on page 5-82
5.15 Miscellaneous directives on page 5-83
5.16 Symbol definition directives on page 5-84
Related information
About the Unified Assembler Language

5 Migrating from armasm to the armclang Integrated Assembler
5.1 Overview of differences between armasm and GNU syntax assembly code

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-66

Non-Confidential

https://developer.arm.com/docs/dui0801/k/writing-a32t32-assembly-language/about-the-unified-assembler-language

5.2 Comments
A comment identifies text that the assembler ignores.

armasm syntax

A comment is the final part of a source line. The first semicolon on a line marks the beginning of a
comment except where the semicolon appears inside a string literal.

The end of the line is the end of the comment. A comment alone is a valid line.

For example:

; This whole line is a comment
; As is this line

myProc: PROC
 MOV r1, #16 ; Load R0 with 16

GNU syntax
GNU syntax assembly code provides two different methods for marking comments:
• The /* and */ markers identify multiline comments:

/* This is a comment
that spans multiple
lines */

• The // marker identifies the remainder of a line as a comment:

MOV R0,#16 // Load R0 with 16

Related information
GNU Binutils - Using as: Comments
armasm User Guide: Syntax of source lines in assembly language

5 Migrating from armasm to the armclang Integrated Assembler
5.2 Comments

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-67

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Comments.html#Comments
https://developer.arm.com/docs/dui0801/k/structure-of-assembly-language-modules/syntax-of-source-lines-in-assembly-language

5.3 Labels
Labels are symbolic representations of addresses. You can use labels to mark specific addresses that you
want to refer to from other parts of the code.

armasm syntax

A label is written as a symbol beginning in the first column. A label can appear either in a line on its
own, or in a line with an instruction or directive. Whitespace separates the label from any following
instruction or directive:

 MOV R0,#16
loop SUB R0,R0,#1 ; "loop" is a label
 CMP R0,#0
 BGT loop

GNU syntax

A label is written as a symbol that either begins in the first column, or has nothing but whitespace
between the first column and the label. A label can appear either in a line on its own, or in a line with an
instruction or directive. A colon ":" follows the label (whitespace is allowed between the label and the
colon):

 MOV R0,#16
loop: // "loop" label on its own line
 SUB R0,R0,#1
 CMP R0,#0
 BGT loop

 MOV R0,#16
loop: SUB R0,R0,#1 // "loop" label in a line with an instruction
 CMP R0,#0
 BGT loop

Related references
5.4 Numeric local labels on page 5-69
Related information
GNU Binutils - Using as: Labels

5 Migrating from armasm to the armclang Integrated Assembler
5.3 Labels

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-68

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Labels.html#Labels

5.4 Numeric local labels
Numeric local labels are a type of label that you refer to by a number rather than by name. Unlike other
labels, the same numeric local label can be used multiple times and the same number can be used for
more than one numeric local label.

armasm syntax

A numeric local label is a number in the range 0-99, optionally followed by a scope name corresponding
to a ROUT directive.

Numeric local labels follow the same syntax as all other labels.

Refer to numeric local labels using the following syntax:

%[F|B][A|T]n[routname]

Where:
• F and B instruct the assembler to search forwards and backwards respectively. By default, the

assembler searches backwards first, then forwards.
• A and T instruct the assembler to search all macro levels or only the current macro level respectively.

By default, the assembler searches all macros from the current level to the top level, but does not
search lower level macros.

• n is the number of the numeric local label in the range 0-99.
• routname is an optional scope label corresponding to a ROUT directive. If routname is specified in

either a label or a reference to a label, the assembler checks it against the name of the nearest
preceding ROUT directive. If it does not match, the assembler generates an error message and the
assembly fails.

For example, the following code implements an incrementing loop:

 MOV r4,#1 ; r4=1
1 ; Local label
 ADD r4,r4,#1 ; Increment r4
 CMP r4,#0x5 ; if r4 < 5...
 BLT %b1 ; ...branch backwards to local label "1"

Here is the same example using a ROUT directive to restrict the scope of the local label:

routA ROUT ; Start of "routA" scope
 MOV r4,#1 ; r4=1
1routA ; Local label
 ADD r4,r4,#1 ; Increment r4
 CMP r4,#0x9 ; if r4 < 9...
 BLT %b1routA ; ...branch backwards to local label "1routA"
routB ROUT ; Start of "routB" scope (and therefore end of "routA" scope)

GNU syntax

A numeric local label is a number in the range 0-99.

Numeric local labels follow the same syntax as all other labels.

Refer to numeric local labels using the following syntax:

n{f|b}

Where:

• n is the number of the numeric local label in the range 0-99.
• f and b instruct the assembler to search forwards and backwards respectively. There is no default.

You must specify one of f or b.

For example, the following code implements an incrementing loop:

 MOV r4,#1 // r4=1
1: // Local label
 ADD r4,r4,#1 // Increment r4

5 Migrating from armasm to the armclang Integrated Assembler
5.4 Numeric local labels

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-69

Non-Confidential

 CMP r4,#0x5 // if r4 < 5...
 BLT 1b // ...branch backwards to local label "1"

 Note

GNU syntax assembly code does not provide mechanisms for restricting the scope of local labels.

Related references
5.3 Labels on page 5-68
Related information
GNU Binutils - Using as: Labels
GNU Binutils - Using as: Local labels
armasm User Guide: Labels
armasm User Guide: Numeric local labels
armasm User Guide: Syntax of numeric local labels
armasm User Guide: ROUT

5 Migrating from armasm to the armclang Integrated Assembler
5.4 Numeric local labels

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-70

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Labels.html#Labels
https://sourceware.org/binutils/docs-2.24/as/Symbol-Names.html#Symbol-Names
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/labels
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/numeric-local-labels
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/syntax-of-numeric-local-labels
https://developer.arm.com/docs/dui0801/k/directives-reference/rout

5.5 Functions
Assemblers can identify the start of a function when producing DWARF call frame information for ELF.

armasm syntax

The FUNCTION directive marks the start of a function. PROC is a synonym for FUNCTION.

The ENDFUNC directive marks the end of a function. ENDP is a synonym for ENDFUNC.

For example:

myproc PROC
 ; Procedure body
 ENDP

GNU syntax

Use the .type directive to identify symbols as functions. For example:

 .type myproc, "function"
myproc:
 // Procedure body

GNU syntax assembly code provides the .func and .endfunc directives. However, these are not
supported by armclang. armclang uses the .size directive to set the symbol size:

 .type myproc, "function"
myproc:
 // Procedure body
.Lmyproc_end0:
 .size myproc, .Lmyproc_end0-myproc

 Note

Functions must be typed to link properly.

Related information
GNU Binutils - Using as: .type
armasm User Guide: FUNCTION or PROC
armasm User Guide: ENDFUNC or ENDP

5 Migrating from armasm to the armclang Integrated Assembler
5.5 Functions

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-71

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Type.html#Type
https://developer.arm.com/docs/dui0801/k/directives-reference/function-or-proc
https://developer.arm.com/docs/dui0801/k/directives-reference/endfunc-or-endp

5.6 Sections
Sections are independent, named, indivisible chunks of code or data that are manipulated by the linker.

armasm syntax

The AREA directive instructs the assembler to assemble a new code or data section.

Section attributes within the AREA directive provide information about the section. Available section
attributes include the following:

• CODE specifies that the section contains machine instructions.
• READONLY specifies that the section must not be written to.
• ALIGN=n specifies that the section is aligned on a 2n byte boundary

For example:

AREA mysection, CODE, READONLY, ALIGN=3

 Note

The ALIGN attribute does not take the same values as the ALIGN directive. ALIGN=n (the AREA attribute)
aligns on a 2n byte boundary. ALIGN n (the ALIGN directive) aligns on an n-byte boundary.

GNU syntax

The .section directive instructs the assembler to assemble a new code or data section.

Flags provide information about the section. Available section flags include the following:

• a specifies that the section is allocatable.
• x specifies that the section is executable.
• w specifies that the section is writable.
• S specifies that the section contains null-terminated strings.

For example:

.section mysection,"ax"

Not all armasm syntax AREA attributes map onto GNU syntax .section flags. For example, the armasm
syntax ALIGN attribute corresponds to the GNU syntax .balign directive, rather than a .section flag:

.section mysection,"ax"

.balign 8

 Note

When using Arm Compiler 5, section names do not need to be unique. Therefore, you could use the same
section name to create different section types.

Arm Compiler 6 supports multiple sections with the same section name only if you specify a unique ID.
You must ensure that different section types either:

• Have a unique section name.
• Have a unique ID, if they have the same section name.

If you use the same section name, for another section or symbol, without a unique ID, then armclang
integrated assembler merges the sections and gives the merged section the flags of the first section with
that name.

// stores both the code and data in one section
// uses the flags from the first section
 .section "sectionX", "ax"
 mov r0, r0
 .section "sectionX", "a", %progbits
 .word 0xdeadbeef

5 Migrating from armasm to the armclang Integrated Assembler
5.6 Sections

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-72

Non-Confidential

https://developer.arm.com/docs/dui0774/k/armclang-integrated-assembler-directives/section-directives

// stores both the code and data in one section
// uses the flags from the first section
 .section "sectionY", "a", %progbits
 .word 0xdeadbeef
 .section "sectionY", "ax"
 mov r0, r0

When you assemble the above example code with:

armclang --target=arm-arm-none-eabi -c -march=armv8-m.main example_sections.s

The armclang integrated assembler:
• merges the two sections named sectionX into one section with the flags "ax".
• merges the two sections named sectionY into one section with the flags "a", %progbits.

Related information
GNU Binutils - Using as: .section
GNU Binutils - Using as: .align
armasm User Guide: AREA

5 Migrating from armasm to the armclang Integrated Assembler
5.6 Sections

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-73

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Section.html#Section
https://sourceware.org/binutils/docs-2.24/as/Align.html#Align
https://developer.arm.com/docs/dui0801/k/directives-reference/area

5.7 Symbol naming rules
armasm syntax assembly code and GNU syntax assembly code use similar, but different naming rules for
symbols.

Symbol naming rules which are common to both armasm syntax and GNU syntax include:

• Symbol names must be unique within their scope.
• Symbol names are case-sensitive, and all characters in the symbol name are significant.
• Symbols must not use the same name as built-in variable names or predefined symbol names.

Symbol naming rules which differ between armasm syntax and GNU syntax include:
• armasm syntax symbols must start with a letter or the underscore character "_".

GNU syntax symbols must start with a letter, the underscore character "_", or a period ".".
• armasm syntax symbols use double bars to delimit symbol names containing non-alphanumeric

characters (except for the underscore):

IMPORT ||Image$$ARM_LIB_STACKHEAP$$ZI$$Limit||

GNU syntax symbols do not require double bars:

.global Image$$ARM_LIB_STACKHEAP$$ZI$$Limit

Related information
GNU Binutils - Using as: Symbol Names
armasm User Guide: Symbol naming rules

5 Migrating from armasm to the armclang Integrated Assembler
5.7 Symbol naming rules

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-74

Non-Confidential

https://sourceware.org/binutils/docs/as/Symbol-Names.html#Symbol-Names
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/symbol-naming-rules

5.8 Numeric literals
armasm syntax assembly and GNU syntax assembly provide different methods for specifying some types
of numeric literal.

Implicit shift operations

armasm syntax assembly allows immediate values with an implicit shift operation. For example, the MOVK
instruction takes a 16-bit operand with an optional left shift. armasm accepts the instruction MOVK x1,
#0x40000, converting the operand automatically to MOVK x1, #0x4, LSL #16.

GNU syntax assembly expects immediate values to be presented as encoded. The instruction MOVK x1,
#0x40000 results in the following message: error: immediate must be an integer in range [0,
65535].

Hexadecimal literals

armasm syntax assembly provides two methods for specifying hexadecimal literals, the prefixes "&" and
"0x".

For example, the following are equivalent:

ADD r1, #0xAF
ADD r1, #&AF

GNU syntax assembly only supports the "0x" prefix for specifying hexadecimal literals. Convert any "&"
prefixes to "0x".

n_base-n-digits format

armasm syntax assembly lets you specify numeric literals using the following format:

n_base-n-digits

For example:
• 2_1101 is the binary literal 1101 (13 in decimal).
• 8_27 is the octal literal 27 (23 in decimal).

GNU syntax assembly does not support the n_base-n-digits format. Convert all instances to a
supported numeric literal form.

For example, you could convert:

ADD r1, #2_1101

to:

ADD r1, #13

or:

ADD r1, #0xD

Related information
GNU Binutils - Using as: Integers
armasm User Guide: Syntax of numeric literals

5 Migrating from armasm to the armclang Integrated Assembler
5.8 Numeric literals

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-75

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Integers.html#Integers
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/syntax-of-numeric-literals

5.9 Operators
armasm syntax assembly and GNU syntax assembly provide different methods for specifying some
operators.

The following table shows how to translate armasm syntax operators to GNU syntax operators.

Table 5-1 Operator translation

armasm syntax operator GNU syntax operator

:OR: |

:EOR: ^

:AND: &

:NOT: ~

:SHL: <<

:SHR: >>

:LOR: ||

:LAND: &&

:ROL: No GNU equivalent

:ROR: No GNU equivalent

Related information
GNU Binutils - Using as: Infix Operators
armasm User Guide: Unary operators
armasm User Guide: Shift operators
armasm User Guide: Addition, subtraction, and logical operators

5 Migrating from armasm to the armclang Integrated Assembler
5.9 Operators

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-76

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Infix-Ops.html#Infix-Ops
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/unary-operators
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/shift-operators
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/addition-subtraction-and-logical-operators

5.10 Alignment
Data and code must be aligned to appropriate boundaries.

For example, The T32 pseudo-instruction ADR can only load addresses that are word aligned, but a label
within T32 code might not be word aligned. You must use an alignment directive to ensure four-byte
alignment of an address within T32 code.

An alignment directive aligns the current location to a specified boundary by padding with zeros or NOP
instructions.

armasm syntax

armasm syntax assembly provides the ALIGN n directive, where n specifies the alignment boundary in
bytes. For example, the directive ALIGN 128 aligns addresses to 128-byte boundaries.

armasm syntax assembly also provides the PRESERVE8 directive. The PRESERVE8 directive specifies that
the current file preserves eight-byte alignment of the stack.

GNU syntax

GNU syntax assembly provides the .balign n directive, which uses the same format as ALIGN.

Convert all instances of ALIGN n to .balign n.
 Note

GNU syntax assembly also provides the .align n directive. However, the format of n varies from
system to system. The .balign directive provides the same alignment functionality as .align with a
consistent behavior across all architectures.

Convert all instances of PRESERVE8 to .eabi_attribute Tag_ABI_align_preserved, 1.

Related information
GNU Binutils - Using as: ARM Machine Directives
GNU Binutils - Using as: .align
GNU Binutils - Using as: .balign
armasm User Guide: REQUIRE8 and PRESERVE8
armasm User Guide: ALIGN

5 Migrating from armasm to the armclang Integrated Assembler
5.10 Alignment

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-77

Non-Confidential

https://sourceware.org/binutils/docs/as/ARM-Directives.html#ARM-Directives
https://sourceware.org/binutils/docs-2.24/as/Align.html#Align
https://sourceware.org/binutils/docs-2.24/as/Balign.html#Balign
https://developer.arm.com/docs/dui0801/k/directives-reference/require8-and-preserve8
https://developer.arm.com/docs/dui0801/k/directives-reference/align

5.11 PC-relative addressing
armasm syntax assembly and GNU syntax assembly provide different methods for performing PC-
relative addressing.

armasm syntax

armasm syntax assembly provides the symbol {pc} to let you specify an address relative to the current
instruction.

For example:

ADRP x0, {pc}

GNU syntax

GNU syntax assembly does not support the {pc} symbol. Instead, it uses the special dot "." character, as
follows:

ADRP x0, .

Related information
GNU Binutils - Using as: The Special Dot Symbol
armasm User Guide: Register-relative and PC-relative expressions

5 Migrating from armasm to the armclang Integrated Assembler
5.11 PC-relative addressing

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-78

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Dot.html#Dot
https://developer.arm.com/docs/dui0801/k/symbols-literals-expressions-and-operators/register-relative-and-pc-relative-expressions

5.12 Conditional directives
Conditional directives specify conditions that control whether or not to assemble a sequence of assembly
code.

The following table shows how to translate armasm syntax conditional directives to GNU syntax
directives:

Table 5-2 Conditional directive translation

armasm syntax directive GNU syntax directive

IF .if family of directives

IF :DEF: .ifdef

IF :LNOT::DEF: .ifndef

ELSE .else

ELSEIF .elseif

ENDIF .endif

In addition to the change in directives shown, the following syntax differences apply:
• In armasm syntax, the conditional directives can use forward references. This is possible as armasm is

a two-pass assembler. In GNU syntax, forward references are not supported, as the armclang
integrated assembler only performs one pass over the main text.

If a forward reference is used with the .ifdef directive, the condition will always fail implicitly.
Similarly, if a forward reference is used with the .ifndef directive, the condition will always pass
implicitly.

• In armasm syntax, the maximum total nesting depth for directive structures such as
IF...ELSE...ENDIF is 256. In GNU syntax, this limit is not applicable.

Related information
GNU Binutils - Using as: .if
GNU Binutils - Using as: .else
GNU Binutils - Using as: .elseif
GNU Binutils - Using as: .endif
armasm User Guide: IF, ELSE, ENDIF, and ELIF

5 Migrating from armasm to the armclang Integrated Assembler
5.12 Conditional directives

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-79

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/If.html#If
https://sourceware.org/binutils/docs-2.24/as/Else.html#Else
https://sourceware.org/binutils/docs-2.24/as/Elseif.html#Elseif
https://sourceware.org/binutils/docs-2.24/as/Endif.html#Endif
https://developer.arm.com/docs/dui0801/k/directives-reference/if-else-endif-and-elif

5.13 Data definition directives
Data definition directives allocate memory, define data structures, and set initial contents of memory.

The following table shows how to translate armasm syntax data definition directives to GNU syntax
directives:

 Note

This list only contains examples of common data definition assembly directives. It is not exhaustive.

Table 5-3 Data definition directives translation

armasm
syntax
directive

GNU syntax
directive

Description

DCB .byte Allocate one-byte blocks of memory, and specify the initial contents.

DCW .hword Allocate two-byte blocks of memory, and specify the initial contents.

DCD .word Allocate four-byte blocks of memory, and specify the initial contents.

DCI .inst Allocate a block of memory in the code, and specify the opcode. In A32 code, this is a four-byte
block. In T32 code, this can be a two-byte or four-byte block. .inst.n allocates a two-byte block
and .inst.w allocates a four-byte block.

DCQ .quad Allocate eight-byte blocks of memory, and specify the initial contents.

SPACE .org Allocate a zeroed block of memory.

The armasm syntax SPACE directive allocates a zeroed block of memory with the specified size. The
GNU assembly .org directive zeroes the memory up to the given address. The address must be
greater than the address at which the directive is placed.

The following example shows the armasm syntax and GNU syntax methods of creating a 100-byte
zeroed block of memory using these directives:

; armasm syntax implementation
start_address SPACE 0x100

// GNU syntax implementation
start_address:
.org start_address + 0x100

 Note

If label arithmetic is not required, the GNU assembly .space directive can be used instead of
the .org directive. However, Arm recommends using the .org directive wherever possible.

The following examples show how to rewrite a vector table in both armasm and GNU syntax.

5 Migrating from armasm to the armclang Integrated Assembler
5.13 Data definition directives

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-80

Non-Confidential

armasm syntax GNU syntax

Vectors
LDR PC, Reset_Addr
LDR PC, Undefined_Addr
LDR PC, SVC_Addr
LDR PC, Prefetch_Addr
LDR PC, Abort_Addr
B . ; Reserved vector
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr

Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SVC_Addr DCD SVC_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler

Vectors:
ldr pc, Reset_Addr
ldr pc, Undefined_Addr
ldr pc, SVC_Addr
ldr pc, Prefetch_Addr
ldr pc, Abort_Addr
b . // Reserved vector
ldr pc, IRQ_Addr
ldr pc, FIQ_Addr

.balign 4
Reset_Addr:
.word Reset_Handler
Undefined_Addr:
.word Undefined_Handler
SVC_Addr:
.word SVC_Handler
Prefetch_Addr:
.word Prefetch_Handler
Abort_Addr:
.word Abort_Handler
IRQ_Addr:
.word IRQ_Handler
FIQ_Addr:
word FIQ_Handler

Related information
GNU Binutils - Using as: .byte
GNU Binutils - Using as: .word
GNU Binutils - Using as: .hword
GNU Binutils - Using as: .quad
GNU Binutils - Using as: .space

5 Migrating from armasm to the armclang Integrated Assembler
5.13 Data definition directives

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-81

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Byte.html#Byte
https://sourceware.org/binutils/docs-2.24/as/Word.html#Word
https://sourceware.org/binutils/docs-2.24/as/hword.html#hword
https://sourceware.org/binutils/docs-2.24/as/Quad.html#Quad
https://sourceware.org/binutils/docs-2.24/as/Space.html#Space

5.14 Instruction set directives
Instruction set directives instruct the assembler to interpret subsequent instructions as either A32 or T32
instructions.

The following table shows how to translate armasm syntax instruction set directives to GNU syntax
directives:

Table 5-4 Instruction set directives translation

armasm syntax directive GNU syntax directive Description

ARM or CODE32 .arm or .code 32 Interpret subsequent instructions as A32 instructions.

THUMB or CODE16 .thumb or .code 16 Interpret subsequent instructions as T32 instructions.

Related information
GNU Binutils - Using as: ARM Machine Directives
armasm User Guide: ARM or CODE32 directive
armasm User Guide: CODE16 directive
armasm User Guide: THUMB directive

5 Migrating from armasm to the armclang Integrated Assembler
5.14 Instruction set directives

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-82

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/ARM-Directives.html#ARM-Directives
https://developer.arm.com/docs/dui0801/k/directives-reference/arm-or-code32-directive
https://developer.arm.com/docs/dui0801/k/directives-reference/code16-directive
https://developer.arm.com/docs/dui0801/k/directives-reference/thumb-directive

5.15 Miscellaneous directives
Miscellaneous directives perform a range of different functions.

The following table shows how to translate armasm syntax miscellaneous directives to GNU syntax
directives:

Table 5-5 Miscellaneous directives translation

armasm syntax
directive

GNU syntax directive Description

foo EQU 0x1C .equ foo, 0x1C Assigns a value to a symbol. Note the rearrangement of operands.

EXPORT
StartHere

GLOBAL
StartHere

.global StartHere

.type StartHere,
@function

Declares a symbol that can be used by the linker (that is, a symbol that is visible to
the linker).

armasm automatically determines the types of exported symbols. However,
armclang requires that you explicitly specify the types of exported symbols using
the .type directive.

If the .type directive is not specified, the linker outputs warnings of the form:

Warning: L6437W: Relocation #RELA:1 in test.o(.text) with
respect to symbol...

Warning: L6318W: test.o(.text) contains branch to a non-code
symbol symbol.

GET file

INCLUDE file

.include file Includes a file within the file being assembled.

IMPORT foo .global foo Provides the assembler with a name that is not defined in the current assembly.

INCBIN .incbin Partial support, armclang does not fully support .incbin.

INFO n,
"string"

.warning "string" The INFO directive supports diagnostic generation on either pass of the assembly
(specified by n). The .warning directive does not let you specify a particular
pass, because the armclang integrated assembler only performs one pass.

ENTRY armlink --
entry=location

The ENTRY directive declares an entry point to a program. armclang does not
provide an equivalent directive. Use armlink --entry=location to specify
the entry point directly to the linker, rather than defining it in the assembly code.

END .end Marks the end of the assembly file.

Related information
GNU Binutils - Using as: .type
GNU Binutils - Using as: .warning
GNU Binutils - Using as: .equ
GNU Binutils - Using as: .global
GNU Binutils - Using as: .include
GNU Binutils - Using as: .incbin
armasm User Guide: ENTRY
armasm User Guide: END
armasm User Guide: INFO
armasm User Guide: EXPORT or GLOBAL
armlink User Guide: --entry

5 Migrating from armasm to the armclang Integrated Assembler
5.15 Miscellaneous directives

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-83

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Type.html#Type
https://sourceware.org/binutils/docs/as/Warning.html
https://sourceware.org/binutils/docs/as/Equ.html#Equ
https://sourceware.org/binutils/docs/as/Global.html#Global
https://sourceware.org/binutils/docs/as/Include.html#Include
https://sourceware.org/binutils/docs/as/Incbin.html#Incbin
https://developer.arm.com/docs/dui0801/k/directives-reference/entry
https://developer.arm.com/docs/dui0801/k/directives-reference/end
https://developer.arm.com/docs/dui0801/k/directives-reference/info
https://developer.arm.com/docs/dui0801/k/directives-reference/export-or-global
https://developer.arm.com/docs/dui0803/k/armlink-command-line-options/-entrylocation

5.16 Symbol definition directives
Symbol definition directives declare and set arithmetic, logical, or string variables.

The following table shows how to translate armasm syntax symbol definition directives to GNU syntax
directives:

 Note

This list only contains examples of common symbol definition directives. It is not exhaustive.

Table 5-6 Symbol definition directives translation

armasm syntax
directive

GNU syntax directive Description

LCLA var No GNU equivalent Declare a local arithmetic variable, and initialize its value to 0.

LCLL var No GNU equivalent Declare a local logical variable, and initialize its value to FALSE.

LCLS var No GNU equivalent Declare a local string variable, and initialize its value to a null string.

No armasm equivalent .set var, 0 Declare a static arithmetic variable, and initialize its value to 0.

No armasm equivalent .set var, FALSE Declare a static logical variable, and initialize its value to FALSE.

No armasm equivalent .set var, "" Declare a static string variable, and initialize its value to a null string.

GBLA var .global var

.set var, 0

Declare a global arithmetic variable, and initialize its value to 0.

GBLL var .global var

.set var, FALSE

Declare a global logical variable, and initialize its value to FALSE.

GBLS var .global var

.set var, ""

Declare a global string variable, and initialize its value to a null string.

var SETA expr .set var, expr Set the value of an arithmetic variable.

var SETL expr .set var, expr Set the value of a logical variable.

var SETS expr .set var, expr Set the value of a string variable.

foo RN 11 foo .req r11 Define an alias foo for register R11.

5 Migrating from armasm to the armclang Integrated Assembler
5.16 Symbol definition directives

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-84

Non-Confidential

Table 5-6 Symbol definition directives translation (continued)

armasm syntax
directive

GNU syntax directive Description

foo QN q5.I32

VADD foo, foo,
foo

foo .req q5

VADD.I32 foo, foo,
foo

Define an I32-typed alias foo for the quad-precision register Q5.

When using the armasm syntax, you can specify a typed alias for quad-
precision registers. The example defines an I32-typed alias foo for the
quad-precision register Q5.

When using GNU syntax, you must specify the type on the instruction rather
than on the register. The example specifies the I32 type on the VADD
instruction.

foo DN d2.I32

VADD foo, foo,
foo

foo .req d2

VADD.I32 foo, foo,
foo

Define an I32-typed alias foo for the double-precision register D2.

When using the armasm syntax, you can specify a typed alias for double-
precision registers. The example defines an I32-typed alias foo for the
double-precision register D2.

When using GNU syntax, you must specify the type on the instruction rather
than on the register. The example specifies the I32 type on the VADD
instruction.

Related information
GNU Binutils - Using as: ARM Machine Directives
GNU Binutils - Using as: .global
GNU Binutils - Using as: .set

5 Migrating from armasm to the armclang Integrated Assembler
5.16 Symbol definition directives

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

5-85

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/ARM-Directives.html#ARM-Directives
https://sourceware.org/binutils/docs/as/Global.html#Global
https://sourceware.org/binutils/docs-2.24/as/Set.html#Set

Appendix A
Code Examples

Provides source code examples for Arm Compiler 5 and Arm Compiler 6.

It contains the following sections:
• A.1 Example startup code for Arm® Compiler 5 project on page Appx-A-87.
• A.2 Example startup code for Arm® Compiler 6 project on page Appx-A-89.

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-A-86

Non-Confidential

A.1 Example startup code for Arm® Compiler 5 project
This is an example startup code that compiles without errors using Arm Compiler 5.

This code has been modified to demonstrate migration from Arm Compiler 5 to Arm Compiler 6. This
code requires other modifications for use in a real application.

startup_ac5.c:

/*
* Copyright (c) 2009-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*--
 Definitions
 --/
#define USR_MODE 0x10 // User mode
#define FIQ_MODE 0x11 // Fast Interrupt Request mode
#define IRQ_MODE 0x12 // Interrupt Request mode
#define SVC_MODE 0x13 // Supervisor mode
#define ABT_MODE 0x17 // Abort mode
#define UND_MODE 0x1B // Undefined Instruction mode
#define SYS_MODE 0x1F // System mode

/*--
 Internal References
 --/
void Vectors (void) __attribute__ ((section("RESET")));
void Reset_Handler(void);
extern int printf(const char *format, ...);

__declspec(noreturn) void main (void)
{
 __enable_irq();
 printf("Starting main\n");
 while(1);
}
#pragma import (__use_no_semihosting)

/*--
 Exception / Interrupt Handler
 --/
void Undef_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void SVC_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void PAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void DAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void IRQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void FIQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));

/*--
 Exception / Interrupt Vector Table
 --/
__asm void Vectors(void) {
 IMPORT Undef_Handler
 IMPORT SVC_Handler
 IMPORT PAbt_Handler
 IMPORT DAbt_Handler
 IMPORT IRQ_Handler
 IMPORT FIQ_Handler
 LDR PC, =Reset_Handler
 LDR PC, =Undef_Handler
 LDR PC, =SVC_Handler
 LDR PC, =PAbt_Handler
 LDR PC, =DAbt_Handler
 NOP
 LDR PC, =IRQ_Handler

A Code Examples
A.1 Example startup code for Arm® Compiler 5 project

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-A-87

Non-Confidential

 LDR PC, =FIQ_Handler
}

/*--
 Reset Handler called on controller reset
 --/
__asm void Reset_Handler(void) {

 // Mask interrupts
 CPSID if

 // Put any cores other than 0 to sleep
 MRC p15, 0, R0, c0, c0, 5 // Read MPIDR
 ANDS R0, R0, #3
goToSleep
 WFINE
 BNE goToSleep

 // Reset SCTLR Settings
 MRC p15, 0, R0, c1, c0, 0 // Read CP15 System Control register
 BIC R0, R0, #(0x1 << 12) // Clear I bit 12 to disable I Cache
 BIC R0, R0, #(0x1 << 2) // Clear C bit 2 to disable D Cache
 BIC R0, R0, #0x1 // Clear M bit 0 to disable MMU
 BIC R0, R0, #(0x1 << 11) // Clear Z bit 11 to disable branch prediction
 BIC R0, R0, #(0x1 << 13) // Clear V bit 13 to disable hivecs
 MCR p15, 0, R0, c1, c0, 0 // Write value back to CP15 System Control register
 ISB

 // Configure ACTLR
 MRC p15, 0, r0, c1, c0, 1 // Read CP15 Auxiliary Control Register
 ORR r0, r0, #(1 << 1) // Enable L2 prefetch hint (UNK/WI since r4p1)
 MCR p15, 0, r0, c1, c0, 1 // Write CP15 Auxiliary Control Register

 // Set Vector Base Address Register (VBAR) to point to this application's vector table
 LDR R0, =Vectors
 MCR p15, 0, R0, c12, c0, 0

 // Setup Stack for each exceptional mode
 IMPORT |Image$$FIQ_STACK$$ZI$$Limit|
 IMPORT |Image$$IRQ_STACK$$ZI$$Limit|
 IMPORT |Image$$SVC_STACK$$ZI$$Limit|
 IMPORT |Image$$ABT_STACK$$ZI$$Limit|
 IMPORT |Image$$UND_STACK$$ZI$$Limit|
 IMPORT |Image$$ARM_LIB_STACK$$ZI$$Limit|
 CPS #0x11
 LDR SP, =|Image$$FIQ_STACK$$ZI$$Limit|
 CPS #0x12
 LDR SP, =|Image$$IRQ_STACK$$ZI$$Limit|
 CPS #0x13
 LDR SP, =|Image$$SVC_STACK$$ZI$$Limit|
 CPS #0x17
 LDR SP, =|Image$$ABT_STACK$$ZI$$Limit|
 CPS #0x1B
 LDR SP, =|Image$$UND_STACK$$ZI$$Limit|
 CPS #0x1F
 LDR SP, =|Image$$ARM_LIB_STACK$$ZI$$Limit|

 // Call SystemInit
 IMPORT SystemInit
 BL SystemInit

 // Unmask interrupts
 CPSIE if

 // Call main
 IMPORT main
 BL main

}

/*--
 Default Handler for Exceptions / Interrupts
 --/
void Default_Handler(void) {
 while(1);
}

A Code Examples
A.1 Example startup code for Arm® Compiler 5 project

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-A-88

Non-Confidential

A.2 Example startup code for Arm® Compiler 6 project
This is an example startup code that compiles without errors using Arm Compiler 6.

This code has been modified to demonstrate migration from Arm Compiler 5 to Arm Compiler 6. This
code requires other modifications for use in a real application.

startup_ac6.c:

/*
* Copyright (c) 2009-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*--
 Definitions
 --/
#define USR_MODE 0x10 // User mode
#define FIQ_MODE 0x11 // Fast Interrupt Request mode
#define IRQ_MODE 0x12 // Interrupt Request mode
#define SVC_MODE 0x13 // Supervisor mode
#define ABT_MODE 0x17 // Abort mode
#define UND_MODE 0x1B // Undefined Instruction mode
#define SYS_MODE 0x1F // System mode

/*--
 Internal References
 --/
void Vectors (void) __attribute__ ((naked, section("RESET")));
void Reset_Handler (void) __attribute__ ((naked));
extern int printf(const char *format, ...);

__declspec(noreturn) int main (void)
{
 __asm("CPSIE i");
 printf("Starting main\n");
 while(1) __asm volatile("");
}
__asm(".global __use_no_semihosting");

/*--
 Exception / Interrupt Handler
 --/
void Undef_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void SVC_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void PAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void DAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void IRQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void FIQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));

/*--
 Exception / Interrupt Vector Table
 --/
void Vectors(void) {
 __asm volatile(
 "LDR PC, =Reset_Handler \n"
 "LDR PC, =Undef_Handler \n"
 "LDR PC, =SVC_Handler \n"
 "LDR PC, =PAbt_Handler \n"
 "LDR PC, =DAbt_Handler \n"
 "NOP \n"
 "LDR PC, =IRQ_Handler \n"
 "LDR PC, =FIQ_Handler \n"
);
}

/*--
 Reset Handler called on controller reset

A Code Examples
A.2 Example startup code for Arm® Compiler 6 project

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-A-89

Non-Confidential

 --/
void Reset_Handler(void) {
 __asm volatile(

 // Mask interrupts
 "CPSID if \n"

 // Put any cores other than 0 to sleep
 "MRC p15, 0, R0, c0, c0, 5 \n" // Read MPIDR
 "ANDS R0, R0, #3 \n"
 "goToSleep: \n"
 "WFINE \n"
 "BNE goToSleep \n"

 // Reset SCTLR Settings
 "MRC p15, 0, R0, c1, c0, 0 \n" // Read CP15 System Control register
 "BIC R0, R0, #(0x1 << 12) \n" // Clear I bit 12 to disable I Cache
 "BIC R0, R0, #(0x1 << 2) \n" // Clear C bit 2 to disable D Cache
 "BIC R0, R0, #0x1 \n" // Clear M bit 0 to disable MMU
 "BIC R0, R0, #(0x1 << 11) \n" // Clear Z bit 11 to disable branch
prediction
 "BIC R0, R0, #(0x1 << 13) \n" // Clear V bit 13 to disable hivecs
 "MCR p15, 0, R0, c1, c0, 0 \n" // Write value back to CP15 System
Control register
 "ISB \n"

 // Configure ACTLR
 "MRC p15, 0, r0, c1, c0, 1 \n" // Read CP15 Auxiliary Control
Register
 "ORR r0, r0, #(1 << 1) \n" // Enable L2 prefetch hint (UNK/WI
since r4p1)
 "MCR p15, 0, r0, c1, c0, 1 \n" // Write CP15 Auxiliary Control
Register

 // Set Vector Base Address Register (VBAR) to point to this application's vector table
 "LDR R0, =Vectors \n"
 "MCR p15, 0, R0, c12, c0, 0 \n"

 // Setup Stack for each exceptional mode
 "CPS #0x11 \n"
 "LDR SP, =Image$$FIQ_STACK$$ZI$$Limit \n"
 "CPS #0x12 \n"
 "LDR SP, =Image$$IRQ_STACK$$ZI$$Limit \n"
 "CPS #0x13 \n"
 "LDR SP, =Image$$SVC_STACK$$ZI$$Limit \n"
 "CPS #0x17 \n"
 "LDR SP, =Image$$ABT_STACK$$ZI$$Limit \n"
 "CPS #0x1B \n"
 "LDR SP, =Image$$UND_STACK$$ZI$$Limit \n"
 "CPS #0x1F \n"
 "LDR SP, =Image$$ARM_LIB_STACK$$ZI$$Limit \n"

 // Call SystemInit
 "BL SystemInit \n"

 // Unmask interrupts
 "CPSIE if \n"

 // Call main
 "BL main \n"
);
}

/*--
 Default Handler for Exceptions / Interrupts
 --/
void Default_Handler(void) {
 while(1);
}

A Code Examples
A.2 Example startup code for Arm® Compiler 6 project

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-A-90

Non-Confidential

Appendix B
Licenses

Describes the Apache license.

It contains the following section:
• B.1 Apache License on page Appx-B-92.

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-B-91

Non-Confidential

B.1 Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this
License.

"Source" form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any
modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication sent to the Licensor or
its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor
for the purpose of discussing and improving the Work, but excluding communication that is
conspicuously marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to
reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute
the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

B Licenses
B.1 Apache License

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-B-92

Non-Confidential

http://www.apache.org/licenses/

Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this
section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the
Work, where such license applies only to those patent claims licensable by such Contributor that are
necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with
the Work to which such Contribution(s) was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the date such litigation
is filed.

4. Redistribution.
You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium,
with or without modifications, and in Source or Object form, provided that You meet the following
conditions:
a. You must give any other recipients of the Work or Derivative Works a copy of this License; and
b. You must cause any modified files to carry prominent notices stating that You changed the files;

and
c. You must retain, in the Source form of any Derivative Works that You distribute, all copyright,

patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the
Work by You to the Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product
names of the Licensor, except as required for reasonable and customary use in describing the origin
of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any
warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of
using or redistributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability.

B Licenses
B.1 Apache License

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-B-93

Non-Confidential

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in
writing, shall any Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this License or out of the
use or inability to use the Work (including but not limited to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee
for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent
with this License. However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims
asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR WORK

To apply the Apache License to your work, attach the following boilerplate notice, with the fields
enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!)
The text should be enclosed in the appropriate comment syntax for the file format. We also recommend
that a file or class name and description of purpose be included on the same "printed page" as the
copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

B Licenses
B.1 Apache License

DUI0742K Copyright © 2014–2017, 2019, 2020 Arm Limited or its affiliates. All
rights reserved.

Appx-B-94

Non-Confidential

	Arm® Compiler Migration and Compatibility Guide
	Table of Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Configuration and Support Information
	1.1 : Support level definitions
	1.2 : Compiler configuration information

	2 : Migrating from Arm® Compiler 5 to Arm® Compiler 6
	2.1 : Migration overview
	2.2 : Toolchain differences
	2.3 : Default differences
	2.4 : Optimization differences
	2.5 : Diagnostic messages
	2.6 : Migration example

	3 : Migrating from armcc to armclang
	3.1 : Migration of compiler command-line options from Arm® Compiler 5 to Arm® Compiler 6
	3.2 : Arm® Compiler 5 and Arm® Compiler 6 stack protection behavior
	3.3 : Command-line options for preprocessing assembly source code
	3.4 : Migrating architecture and processor names for command-line options

	4 : Compiler Source Code Compatibility
	4.1 : Language extension compatibility: keywords
	4.2 : Language extension compatibility: attributes
	4.3 : Language extension compatibility: pragmas
	4.4 : Language extension compatibility: intrinsics
	4.5 : Diagnostics for pragma compatibility
	4.6 : C and C++ implementation compatibility
	4.7 : Compatibility of C++ objects

	5 : Migrating from armasm to the armclang Integrated Assembler
	5.1 : Overview of differences between armasm and GNU syntax assembly code
	5.2 : Comments
	5.3 : Labels
	5.4 : Numeric local labels
	5.5 : Functions
	5.6 : Sections
	5.7 : Symbol naming rules
	5.8 : Numeric literals
	5.9 : Operators
	5.10 : Alignment
	5.11 : PC-relative addressing
	5.12 : Conditional directives
	5.13 : Data definition directives
	5.14 : Instruction set directives
	5.15 : Miscellaneous directives
	5.16 : Symbol definition directives

	A : Code Examples
	A.1 : Example startup code for Arm® Compiler 5 project
	A.2 : Example startup code for Arm® Compiler 6 project

	B : Licenses
	B.1 : Apache License

