
Graphics Analyzer
Version 5.6

User Guide

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
101545_0506_00_en

Graphics Analyzer
User Guide
Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0505-00 14 February 2020 Non-Confidential New document for v5.5.

0506-00 21 August 2020 Non-Confidential New document for v5.6.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

 Graphics Analyzer

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

 Graphics Analyzer

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3
Non-Confidential

https://developer.arm.com

Contents
Graphics Analyzer User Guide

Preface
About this book 8

Chapter 1 Introduction
1.1 Installation package 1-11

Chapter 2 Before you begin
2.1 Host system requirements 2-13
2.2 Target system requirements .. 2-14
2.3 Prerequisites .. 2-15
2.4 Preparing OpenGL ES applications for Android 9 and earlier 2-16
2.5 Preparing non-debuggable applications .. 2-22
2.6 Linux .. 2-23
2.7 Chrome OS .. 2-26
2.8 webOS 2-29
2.9 Troubleshooting 2-32

Chapter 3 Getting started
3.1 Open Graphics Analyzer 3-34
3.2 Tracing OpenGL ES Android and Vulkan applications .. 3-35
3.3 Tracing Linux devices and IP address of target devices 3-38
3.4 Configure tracing assets .. 3-41
3.5 Pause, step frames, and resume 3-42
3.6 Capturing frame buffer content .. 3-43

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4
Non-Confidential

3.7 Capturing all frame buffer attachments 3-44

Chapter 4 Analyzing your trace
4.1 Analyzing overdraw 4-46
4.2 Analyzing the shader map 4-47
4.3 Overdraw and shader map limitations 4-49
4.4 Analyzing the fragment count .. 4-50
4.5 Frame overrides 4-51
4.6 Debugging an OpenCL application .. 4-55
4.7 Using GPUVerify to validate OpenCL kernels 4-56
4.8 Comparing state between function calls .. 4-58
4.9 Bookmarks 4-59
4.10 Dealing with VR applications 4-60
4.11 Tracing an application that is already running 4-61
4.12 Tracing multiple processes .. 4-62

Chapter 5 The Graphics Analyzer interface
5.1 Perspectives .. 5-65
5.2 Trace view 5-66
5.3 Trace Outline view 5-69
5.4 Timeline view 5-70
5.5 Statistics view .. 5-71
5.6 Function Call view 5-72
5.7 Trace Analysis view 5-73
5.8 Target State view 5-74
5.9 Buffers view 5-75
5.10 OpenGL ES Framebuffers view 5-76
5.11 Vulkan Frame Capture view 5-78
5.12 Assets view .. 5-80
5.13 Shaders view 5-82
5.14 Textures view 5-83
5.15 Images view 5-84
5.16 Vertices view .. 5-85
5.17 Uniforms view .. 5-87
5.18 Automated Trace view 5-88
5.19 Render Pass Dependencies view .. 5-91
5.20 Bookmarks view 5-93
5.21 Console view 5-94
5.22 Scripting view 5-95
5.23 Filtering and searching in Graphics Analyzer .. 5-97
5.24 Host-side headless mode .. 5-98
5.25 Target-side headless mode 5-100

Chapter 6 Integration with Arm Streamline
6.1 Installation 6-107
6.2 Using Streamline annotations .. 6-108

Chapter 7 Known issues
7.1 OpenGL ES extensions .. 7-111
7.2 Shading language version 7-112
7.3 Shader compiler 7-113

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5
Non-Confidential

7.4 API asset coverage .. 7-114
7.5 Memory .. 7-115
7.6 Partial support for earlier trace versions .. 7-116
7.7 Graphics Analyzer becomes unresponsive when closed while dynamic help is open

.. 7-117
7.8 Issues viewing Khronos reference pages .. 7-118
7.9 Intercepting without using LD_PRELOAD 7-119
7.10 Multiple drivers installed on the system 7-120
7.11 Application crashes while tracing 7-121

Appendix A Analytics
A.1 Analytics information .. Appx-A-123
A.2 Disable analytics data collection .. Appx-A-124

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6
Non-Confidential

Preface

This preface introduces the Graphics Analyzer User Guide.

It contains the following:
• About this book on page 8.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7
Non-Confidential

 About this book
This book describes how to install and use Graphics Analyzer on a Windows, Linux, or macOS host to
examine an application running on an Android or Linux target.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Graphics Analyzer is a tool to help OpenGL ES and Vulkan developers get the best out of their
applications through analysis at the API level.

Chapter 2 Before you begin
Follow the steps in this section to prepare your applications ready to trace using Graphics
Analyzer.

Chapter 3 Getting started
This chapter describes how to use the host GUI to configure and perform a trace and to capture
frame buffer content while capturing a trace. It also describes how to use the capture modes in
Graphics Analyzer to capture extra content.

Chapter 4 Analyzing your trace
Learn about the different ways you can analyze your trace in more detail.

Chapter 5 The Graphics Analyzer interface
This chapter describes the Graphics Analyzer host GUI which provides different views over the
captured application trace. The GUI also provides access to headless mode, which enables
automated data capture on the target.

Chapter 6 Integration with Arm Streamline
The Graphics Analyzer interceptor library generates Streamline annotations and chart
information.

Chapter 7 Known issues
This chapter describes some known issues in this release of Graphics Analyzer.

Appendix A Analytics

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

 Preface
 About this book

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 8
Non-Confidential

https://developer.arm.com/support/arm-glossary

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Graphics Analyzer User Guide.
• The number 101545_0506_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 9
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introduction

Graphics Analyzer is a tool to help OpenGL ES and Vulkan developers get the best out of their
applications through analysis at the API level.

The tool allows you to observe API call arguments and return values, and interact with a running target
application to investigate the effect of individual API calls. It highlights attempted misuse of the API,
and gives recommendations for improvements.

For help and support from Arm and fellow developers, visit the Arm Graphics and Gaming Community.

It contains the following section:
• 1.1 Installation package on page 1-11.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-10
Non-Confidential

https://community.arm.com/developer/tools-software/graphics

1.1 Installation package
Graphics Analyzer is available for the Arm Mobile Studio or the Arm Development Studio product
suites. The installation package contains everything that you need to start investigating GPU
applications.

Download Arm Mobile Studio or Arm Development Studio, depending on the package appropriate to
your platform. Graphics Analyzer is available for Windows, Linux, and macOS.

The installation package contains three main components:
• The GUI application
• The target interceptor components
• Sample traces.

After you have installed Graphics Analyzer, the extracted directory hierarchy on the host contains a
target directory with the following subdirectories:

Arm Mobile Studio users

android/arm/

Contains daemon and Graphics Analyzer interceptor for Android-based Armv8 (64-bit) and
Armv7 (32-bit) target devices.

android/intel/

Contains daemon and Graphics Analyzer interceptor for Android-based x86-64 (64-bit) and x86
(32-bit) target devices.

 Note

For OpenGL ES Android 9 and earlier, you must manually add the libraries to your Android application.
See 2.4 Preparing OpenGL ES applications for Android 9 and earlier on page 2-16 for details.

Arm Development Studio users

linux/soft_float/

Contains daemon and Graphics Analyzer interceptor for Linux-based Armv7 or Armv8 (32-bit)
target devices.

linux/hard_float/

Contains daemon and Graphics Analyzer interceptor for Linux-based Armv7 or Armv8 (32-bit)
hard-float target devices.

linux/arm64/

Contains daemon and Graphics Analyzer interceptor for Linux-based Armv8 (64-bit) target
devices.

Licenses

Some Graphics Analyzer features require a valid license, for instance to trace a Linux target system that
is not Android-based. Refer to the relevant studio documentation for information about what each license
includes:

• Arm Mobile Studio Editions.
• Arm Development Studio Editions.

For instructions on adding your license, see:
• Licensing Arm Mobile Studio.
• Licensing Arm Development Studio.

1 Introduction
1.1 Installation package

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 1-11
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/downloads
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/downloads
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/editions
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/editions
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/installation
https://developer.arm.com/documentation/101469/2000/Licensing-Arm-Development-Studio

Chapter 2
Before you begin

Follow the steps in this section to prepare your applications ready to trace using Graphics Analyzer.

It contains the following sections:
• 2.1 Host system requirements on page 2-13.
• 2.2 Target system requirements on page 2-14.
• 2.3 Prerequisites on page 2-15.
• 2.4 Preparing OpenGL ES applications for Android 9 and earlier on page 2-16.
• 2.5 Preparing non-debuggable applications on page 2-22.
• 2.6 Linux on page 2-23.
• 2.7 Chrome OS on page 2-26.
• 2.8 webOS on page 2-29.
• 2.9 Troubleshooting on page 2-32.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-12
Non-Confidential

2.1 Host system requirements
Ensure that your host meets these requirements for running Graphics Analyzer:

• It can connect to the target using TCP/IP, for online analysis, and has port 5002 open.
• At least 8GB of system RAM is available. Arm recommends that you have at least 12GB of RAM

available.

This section contains the following subsections:
• 2.1.1 Increase the available memory on page 2-13.
• 2.1.2 Temporary storage on page 2-13.

2.1.1 Increase the available memory

To increase the maximum trace size that Graphics Analyzer can accommodate, increase the amount of
memory that is available to the application.

Procedure
1. Open <install_directory>/gui/aga.ini with a text editor.
2. Find the Java Virtual Machine (JVM) argument starting with -Xmx.

The number that follows the argument defines the maximum amount of memory that the application
claims when running, with a trailing m for megabytes or g for gigabytes.

3. Increase this number with a multiple of four that matches the capabilities of your system.
Ensure that your modifications follow the same format for the argument, that is no spaces and a
trailing lowercase m, or g.

2.1.2 Temporary storage

Depending on the complexity of the application being traced, Graphics Analyzer can require a large
amount of temporary disk storage.

By default, the system temporary storage directory is used. If there is not enough free space available in
this directory, Graphics Analyzer displays a warning and stops caching data to the directory, increasing
memory usage.

Change the temporary storage directory by clicking Edit > Preferences and selecting an existing
directory for the Custom temporary storage directory field.

2 Before you begin
2.1 Host system requirements

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-13
Non-Confidential

2.2 Target system requirements
Graphics Analyzer supports tracing on specific Khronos Group APIs.

For Android 7 and above:

• Vulkan 1.0-1.2
• OpenGL ES 2.0, 3.0, 3.1, or 3.2

 Note

A list of the recommended Android devices that support Graphics Analyzer is available from the Arm
Mobile Studio Supported Devices page on Developer.

For platforms other than Android:
• OpenCL 1.0, 1.1, and 1.2

2 Before you begin
2.2 Target system requirements

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-14
Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/support/supported-devices

2.3 Prerequisites
To run Graphics Analyzer on an unrooted Android target device, ensure that the host and target are
configured correctly.

Configure your host
• Install the Android Debug Bridge (ADB) on the host machine. The adb is available with the Android

Software Development Kit (SDK).
• Edit the PATH environment variable on the host machine to include the path to the Android SDK

platform tools directory.
• Your host machine must be able to use TCP/IP on port 5002 to communicate with the target device.
• The application that you want to trace must be debuggable.
• To modify the application that you want to analyze, you must have access to the source code.

Configure your device
• Enable Developer Mode, then enable USB debugging on the target device, by selecting Settings >

Developer options.
• If Device Manager does not find your device, test the adb connection. Connect the target device to

your host machine, then run the adb devices command in a terminal window. If the adb connection
is good, you will see the ID of your device with no permission errors, and you can run adb shell
without issues. See the Android Studio User Guide for more information.

• Make sure that port 5002 is available to allow TCP/IP communication between the target device and
the host machine.

• The Android device must be running Android 7.0 or above.

2 Before you begin
2.3 Prerequisites

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-15
Non-Confidential

https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/releases/platform-tools.html
https://developer.android.com/studio/releases/platform-tools.html
https://developer.android.com/studio/debug/dev-options
https://developer.android.com/studio/run/device

2.4 Preparing OpenGL ES applications for Android 9 and earlier
Graphics Analyzer uses two target components, an interceptor library and a daemon application, that
interact to collect and transmit trace information from your application to the GUI on the host. For
OpenGL ES applications running on Android 9, you must manually install these components.

 Note

If you are running OpenGL ES Android 10 or Vulkan, then you can use the Device Manager to connect
your device and start tracing your application with no setup required. See 3.2 Tracing OpenGL ES
Android and Vulkan applications on page 3-35 instead.

Follow the instructions in this chapter to set up your OpenGL ES Android 9 application for tracing.

This section contains the following subsections:
• 2.4.1 Preparing your application on page 2-16.
• 2.4.2 Building an OpenGL ES Unity application on page 2-17.
• 2.4.3 Building an OpenGL ES Unreal Engine application on page 2-21.

2.4.1 Preparing your application

For devices running Android 9 or earlier, you must package the interceptor library so that Graphics
Analyzer can collect information for the API calls made by the application.

 Note

If you are building your application with the Unity or Unreal engine, use the following instructions
instead:
• 2.4.2 Building an OpenGL ES Unity application on page 2-17
• 2.4.3 Building an OpenGL ES Unreal Engine application on page 2-21

Prerequisites

Ensure that your build is debuggable in its Android manifest.

Procedure
1. Add the following code to the build.gradle file for your module:

android {
 sourceSets {
 main {
 jniLibs.srcDirs += ['<install_directory>/target/android/arm/unrooted/']
 }
 }
}

This code adds the Graphics Analyzer unrooted library folder to the list of locations that the Android
build system searches for native libraries.

2. In the AndroidManifest.xml for your application, add the following attribute to the <activity>
element, if it is not already present:

android:debuggable="true"

Because the interceptor for unrooted devices is only available for the armeabi-v7a and arm64-v8a
ABIs, you must also specify an appropriate value for abiFilters in the build.gradle for your
module. For example, to target both Armv7 and Armv8, use the following code:

android {
 defaultConfig {
 ndk {
 abiFilters 'armeabi-v7a', 'arm64-v8a'
 }

2 Before you begin
2.4 Preparing OpenGL ES applications for Android 9 and earlier

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-16
Non-Confidential

 }
}

For more information about Android ABIs, see https://developer.android.com/ndk/guides/abis.html.
3. To ensure your project loads Graphics Analyzer, you must add some code to the beginning of the

main Activity class in your project. Use the instructions for the type of application you are running:
• If your application uses Java components, add the following code:

static
{
 try
 {
 System.loadLibrary("AGA");
 }
 catch (UnsatisfiedLinkError e)
 {
 // Feel free to remove this log message.
 Log.e("[GA]", "GA not loaded: " + e.getMessage());
 Log.d("[GA]", Log.getStackTraceString(e));
 }
}

• If your application is C or C++-only, you must add a small Java component to it:
1. Create an Activity class that extends android.app.NativeActivity. Include the Java code

that is given above.
2. Open your AndroidManifest.xml.
3. Locate the <activity> element and reference the new Activity as the android:name

attribute.
4. Locate the <application> element and check that the android:hasCode attribute is true. If

this attribute is false, the new Java files are excluded from the APK.

Next Steps

Recompile the application and install it on your Android device.

2.4.2 Building an OpenGL ES Unity application

To enable Graphics Analyzer to trace your application, add the Arm interceptor library to your Unity
project. Unity detects the presence of the interceptor library and automatically loads it when you build
the application.

The library libMGD.so is provided in your studio package:

<install_directory>/graphics_analyzer/target/android/arm/unrooted/

Two versions of the library are provided:
• For 64-bit applications, use the library file that is located in the arm64-v8a directory.
• For 32-bit applications, use the library file that is located in the armeabi-v7a directory.

 Note

You can package one or both interceptor libraries depending on the requirements of your application.

To add the library to Unity and set the player and build settings to use it, follow these steps. For more
detailed instructions, see Arm guide for Unity developers.

Prerequisites

Check that you are using the Unity recommended Android SDK and Android NDK versions in the Unity
editor.
• On Windows and Linux, select Edit > Preferences > External Tools.
• On macOS, select Unity > Preferences > External Tools.

If the checkboxes are selected, they are installed. Otherwise, you can add them as modules. See https://
docs.unity3d.com/Manual/android-sdksetup.html for more information.

2 Before you begin
2.4 Preparing OpenGL ES applications for Android 9 and earlier

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-17
Non-Confidential

https://developer.android.com/ndk/guides/abis.html
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html

Procedure
1. Copy the required interceptor library file libMGD.so into your Unity project, in the Assets/

Plugins/Android/ directory. Create this directory if it does not exist.

If you are packaging both interceptor libraries:
1. Create two directories in the Assets/Plugins/ directory. For example, armv7 and armv8.
2. Create the Android directory within each of these directories.
3. Copy each libMGD.so file into the appropriate Android directory.

2. In Unity, select the library in the Project window, and set the following attributes in the Inspector:
1. Under Select platforms for plugin, select Android.
2. Under Platform settings, set the CPU architecture to ARM64 for 64-bit applications, or ARMv7

for 32-bit applications.

2 Before you begin
2.4 Preparing OpenGL ES applications for Android 9 and earlier

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-18
Non-Confidential

3. Select File > Build Settings and select Player Settings.
4. Under Identification, set Target API Level to the required Android version.

 Note

By default, Target API Level is set to the latest version of the Android SDK tools that you have
installed. If you change to a lower API level, ensure that you have the SDK tools for that version
installed. Be aware that if you want to build for a higher API version later, you must change this
setting accordingly.

5. Under Configuration, set the following options.
• To build a 64-bit application:

1. Set the scripting backend in Unity to work with 64-bit targets. Set Scripting Backend to
IL2CPP. For more information about IL2CPP, refer to the Unity documentation.

2. Under Target Architectures, select ARM64.

2 Before you begin
2.4 Preparing OpenGL ES applications for Android 9 and earlier

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-19
Non-Confidential

• To build a 32-bit application:
1. Leave the Scripting Backend at its default setting, Mono.
2. Under Target Architectures, select ARM7.

6. Close the Player Settings. In the Build Settings, select the Development Build checkbox. This
option ensures that your application is marked as debuggable in the Android application manifest.

2 Before you begin
2.4 Preparing OpenGL ES applications for Android 9 and earlier

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-20
Non-Confidential

7. Select Build and Run to build your APK and install it on your device in one step. Alternatively,
select Build to build the APK and then install it on your device using adb:

adb install -r YourApplication.apk

Next Steps

To trace the Unity application, follow the instructions in 3.2 Tracing OpenGL ES Android and Vulkan
applications on page 3-35.

2.4.3 Building an OpenGL ES Unreal Engine application

You can install and use the Graphics Analyzer with help from Unreal Engine on an unrooted Android
device.

In version 4.15 and later, Unreal Engine supports packaging the Graphics Analyzer interceptor into your
application from the package settings. You can read a detailed set of instructions with screenshots on the
Arm Community website.

 Note

The instructions refer to Mali™ Graphics Debugger but they apply to Graphics Analyzer.

The following list is a summary of the instructions:

Procedure
1. Open your Unreal Engine project.
2. Open the Project Settings window.
3. From the left menu, select the Android option, then Platforms, then select Mali Graphics

Debugger in the Graphic Debuggerlist.
4. Enter the path to your Graphics Analyzer installation.

Next Steps

After the Unreal Engine application has installed, follow the instructions in 3.2 Tracing OpenGL ES
Android and Vulkan applications on page 3-35 to connect to the device and trace the application.

2 Before you begin
2.4 Preparing OpenGL ES applications for Android 9 and earlier

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-21
Non-Confidential

https://community.arm.com/developer/tools-software/graphics/b/blog/posts/building-an-unreal-engine-post-4-15-application-with-mali-graphics-debugger-support

2.5 Preparing non-debuggable applications
To trace non-debuggable applications, you must install a Vulkan or OpenGL ES layer driver, manually
install and configure aga-daemon to collate information from different traced applications, then use the
Device Manager to connect to your device.

These instructions are applicable to Vulkan and OpenGL ES Android 10 applications only. Tracing of
non-debuggable applications on older Android versions is not supported.

 Note

Loading layer drivers into non-debuggable applications is only possible using Android eng or userdebug
builds of the operating system. It is not possible in release builds of the operating system.

Procedure
1. Install the layer driver appropriate to which API you are using:

• To allow Vulkan applications to be traced using the Vulkan API layers system, you must install
the interceptor as a global Vulkan layer on their device. See Install Vulkan validation layers on
Android for more information.

• To allow OpenGL ES applications to be traced, you must install the interceptor as a global
OpenGL ES layer. See Install OpenGL ES layers on Android.

2. Open a shell on your host machine.
3. Navigate to the Graphics Analyzer installation directory.
4. Copy the daemon to your target device.

• If your device is Arm-based, use this command:

adb push target/android/arm/aga-daemon /data/local/tmp

• If you are using an x86-based device, use this command:

adb push target/android/intel/aga-daemon /data/local/tmp

5. Open a shell on your target device as the super user by running:

adb shell
su

6. Install the daemon on the device, and grant appropriate permissions:

cp /sdcard/aga-daemon /data/local/tmp/aga-daemon
chmod 777 /system/bin/aga-daemon

7. Enter the following commands on the host machine:

adb forward tcp:5002 tcp:5002
adb shell aga-daemon

Next Steps

Open Graphics Analyzer and the Device Manager, then open the Linux/IP tab to connect to the default
IP address 127.0.0.1 and port 5002. See 3.2 Tracing OpenGL ES Android and Vulkan applications
on page 3-35 for more information.

2 Before you begin
2.5 Preparing non-debuggable applications

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-22
Non-Confidential

https://developer.android.com/ndk/guides/graphics/validation-layer
https://developer.android.com/ndk/guides/graphics/validation-layer
https://developer.android.com/ndk/guides/rootless-debug-gles

2.6 Linux
Follow these instructions for installing and using Graphics Analyzer on a Linux target.

 Note

Linux support requires a valid license.

This section contains the following subsections:
• 2.6.1 Prerequisites on page 2-23.
• 2.6.2 Install Graphics Analyzer on a Linux target on page 2-23.
• 2.6.3 Connect the host and the target on page 2-24.
• 2.6.4 Trace an OpenGL ES, EGL, or OpenCL application on page 2-24.
• 2.6.5 Trace a Vulkan application on page 2-24.
• 2.6.6 Uninstall Graphics Analyzer on page 2-25.

2.6.1 Prerequisites

To run Graphics Analyzer on a Linux target, ensure that the target has the following:

• A running OpenGL ES, EGL, OpenCL, or Vulkan application.
• A network connection to a host running the Graphics Analyzer GUI.
• The target must permit TCP/IP communication on port 5002.

2.6.2 Install Graphics Analyzer on a Linux target

To install Graphics Analyzer on a Linux target, take the following steps.

1. Navigate to <install_directory>/target/linux and then to the soft_float, hard_float, or
arm64 directory, according to the configuration of your system.

Inside each of these directories, there are the following files:
• libinterceptor.so
• aga-daemon

 Note

• The Linux interceptor supports Armv7, Armv8, Intel 32-bit, and Intel 64-bit target architectures.
• Make sure that you use the correct libraries for your target architecture. If you are running on

Armv7, you must use either the soft float libraries or the hard float libraries, depending on the
requirements of your system.

• If you are running on Armv8 (64-bit) and intend to trace a 64-bit application, you must use the
Armv8 libraries.

• If you are running on Armv8 but intend to trace a 32-bit application, you must use the appropriate
Armv7 libraries.

• You can use the 64-bit build of the daemon when tracing both 64-bit and 32-bit applications.

2. Install the daemon by copying aga-daemon to anywhere on your target device, and setting the execute
permission bit on the file. You can set the execute permission bit by running the following command
from inside the directory that you copied aga-daemon into:

chmod +x aga-daemon

3. Install the OpenGL ES, EGL, and OpenCL interceptor by copying libinterceptor.so to anywhere
on your target device.

4. Install the Vulkan layer:

2 Before you begin
2.6 Linux

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-23
Non-Confidential

a. The Graphics Analyzer interceptor doubles as a Vulkan layer. To use it in this way, copy
libinterceptor.so to anywhere on your target device, and rename it to libVkLayerAGA.so.

 Note

Graphics Analyzer supports tracing Vulkan applications on all Linux targets except for Arm soft-
float.

b. <install_directory>/target/linux contains the VK_LAYER_ARM_AGA.json manifest file.
Copy this file into the same directory as libVkLayerAGA.so.

 Note

If the application does not query or request them, loading layers and extensions might be
expensive and unnecessary. Manifests allow the Vulkan loader to identify the names and attributes
of layers and extensions without needing to load them.

2.6.3 Connect the host and the target

To connect Graphics Analyzer on your host device to the target device you want to trace, the daemon
application must be running on the target device.

1. To start the daemon, open a terminal, navigate to the directory you copied aga-daemon into on your
target, and run:

./aga-daemon

The daemon can handle multiple applications starting and stopping. Only close it when you have
finished tracing all the applications.

2. Connect to aga-daemon running on the device using the Device Manager. If the Device Manager
detects a running instance of aga-daemon on the local network, it gives you the option to connect to
it. Otherwise, you can use the Device Manager to directly connect to the IP address of the device. See
3.3 Tracing Linux devices and IP address of target devices on page 3-38 for more information.

3. Start the application that you want to trace by following the instructions in 2.6.4 Trace an OpenGL
ES, EGL, or OpenCL application on page 2-24, or in 2.6.5 Trace a Vulkan application
on page 2-24.

2.6.4 Trace an OpenGL ES, EGL, or OpenCL application

To trace an OpenGL ES, EGL, or OpenCL application, the system must preload the libinterceptor.so
library that you copied onto your target.

To preload the library, define the LD_PRELOAD environment variable to point at this library. For example:

LD_PRELOAD=/path/to/intercept/libinterceptor.so ./your_app

If you are unable to use LD_PRELOAD on your system, see 7.9 Intercepting without using LD_PRELOAD
on page 7-119 for an alternative method.

If you have more than one version of your graphics driver on your system and are having issues, see
7.10 Multiple drivers installed on the system on page 7-120 for more information.

2.6.5 Trace a Vulkan application

To trace your Vulkan application, you must tell the Vulkan loader the location of the Graphics Analyzer
layer and manifest that you copied onto your target. You must also tell it the name of the Graphics
Analyzer layer to load as both an instance and a device layer.

For example:

VK_LAYER_PATH=/path/to/aga/layer/ VK_INSTANCE_LAYERS=VK_LAYER_ARM_AGA
VK_DEVICE_LAYERS=VK_LAYER_ARM_AGA ./your_vulkan_app

2 Before you begin
2.6 Linux

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-24
Non-Confidential

 Note

The concept of device layers has been deprecated. However, some older drivers might still require the
VK_DEVICE_LAYERS environment variable to be set to allow Graphics Analyzer to trace all Vulkan
function calls in the application.

2.6.6 Uninstall Graphics Analyzer

To uninstall Graphics Analyzer, remove the files that were copied onto the target platform.

2 Before you begin
2.6 Linux

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-25
Non-Confidential

2.7 Chrome OS
Follow these instructions for using Graphics Analyzer to trace an application running on a Chrome OS
device.

This section contains the following subsections:
• 2.7.1 Prerequisites on page 2-26.
• 2.7.2 Trace an Android application on Chrome OS on page 2-26.
• 2.7.3 Trace a Linux application on Chrome OS on page 2-26.
• 2.7.4 Trace the Chrome application on Chrome OS on page 2-27.

2.7.1 Prerequisites

Graphics Analyzer supports tracing the following types of application running on Chrome OS devices:

• Android applications on Chrome OS devices that support the App Runtime for Chrome (ARC)
• Linux applications
• The Chrome application itself, and any Chrome apps that are running within Chrome OS

To debug your Chrome OS device, first enter Developer Mode. The next steps depend on the type of
application.

 Note

To debug Chrome or Linux applications, enable debugging features when you boot into Developer
Mode.

2.7.2 Trace an Android application on Chrome OS

The App Runtime for Chrome (ARC) allows you to run Android applications on your Chrome OS
device. If your device supports the ARC, then you can trace your application in Graphics Analyzer.

Tracing an Android application on Chrome OS is mostly the same as for other unrooted Android devices:
1. Connect to your device over a network using adb. You can find the IP address of the target device in

the Chrome OS WiFi menu, and the default port to use is 22. For example:

adb connect (IP address):22

For more information about connecting to a Chrome OS device over adb, see The development
environment.

2. To connect to the device and trace the application, follow the instructions in 3.2 Tracing OpenGL ES
Android and Vulkan applications on page 3-35.

2.7.3 Trace a Linux application on Chrome OS

Use the Linux interceptor and Graphics Analyzer daemon to trace a Linux application running on a
Chrome OS device.

 Note

You must set up SSH access to your Chrome OS device before you can trace native Linux applications
with Graphics Analyzer. For details, see Setting up SSH Access to your test device.

1. SSH into the Chrome OS device as root using the command:

ssh root@(IP address)

2. Create a directory to store the Graphics Analyzer daemon and interceptor library, for example:

mkdir /usr/bin/aga

3. To allow connections on port 5002, run the following command:

sudo iptables -A INPUT -p tcp -m tcp --dport 5002 -j ACCEPT

2 Before you begin
2.7 Chrome OS

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-26
Non-Confidential

https://chromium.googlesource.com/chromiumos/docs/+/master/developer_mode.md
https://developer.android.com/topic/arc/development-environment
https://developer.android.com/topic/arc/development-environment
https://www.chromium.org/chromium-os/testing/autotest-developer-faq/ssh-test-keys-setup

4. Copy the Graphics Analyzer daemon and interceptor library onto your device. Depending on your
device, use a version of the Linux Graphics Analyzer components appropriate to your architecture,
either hard float, soft float, or 64-bit. You might need root access to copy files onto the Chrome OS
file system. For example:

scp libinterceptor.so root@(IP address):/usr/bin/aga/

5. From your root user SSH session, launch aga-daemon.
6. Using the Device Manager, connect to the running daemon by following the instructions in

3.3 Tracing Linux devices and IP address of target devices on page 3-38.
7. Launch a new SSH session.
8. Run your Linux application and preload the interceptor library by defining the LD_PRELOAD

environment variable to point at this library. For example:

LD_PRELOAD=/path/to/intercept/libinterceptor.so ./your_app

 Note

• If you are unable to use LD_PRELOAD on your system, see 7.9 Intercepting without using
LD_PRELOAD on page 7-119 for an alternative method.

• If you have more than one version of your graphics driver on your system and are having issues,
see 7.10 Multiple drivers installed on the system on page 7-120 for more information.

As a result, trace data starts appearing in the desktop Graphics Analyzer client.

2.7.4 Trace the Chrome application on Chrome OS

Graphics Analyzer supports tracing the Chrome application in Chrome OS, which is useful for
debugging websites, web apps, and Chrome applications.

The method is similar to tracing a Linux application on Chrome OS, with a few differences.

 Note

• You must set up SSH access to your Chrome OS device before you can trace Chrome with Graphics
Analyzer. For details, see Setting up SSH Access to your test device.

• Chrome OS tries to reboot when you attempt to stop the UI. To prevent this reboot, you must modify
the file /usr/share/cros/init/ui-post-stop by commenting out the following lines:

while ! sudo -u chronos kill -9 -- -1 ; do
 sleep .1
done

Check for still-living chronos processes and log their status.
ps -u chronos --no-headers -o pid,stat,args |
 logger -i -t "${JOB}-unkillable" -p crit

After you have SSH access and the ability to stop the UI, install Graphics Analyzer on your device:

1. Follow the Graphics Analyzer daemon and interceptor installation instructions in 2.7.3 Trace a Linux
application on Chrome OS on page 2-26.

2. Set up a password for the chronos user by starting an SSH session as root and using:

passwd chronos

3. Start a new SSH session, this time using the chronos user:

ssh chronos@(IP address)

4. From your root user SSH session, launch aga-daemon. You might need to restart the root session after
starting an SSH session as chronos.

5. Connect to your Chrome OS device from Graphics Analyzer.

2 Before you begin
2.7 Chrome OS

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-27
Non-Confidential

https://www.chromium.org/chromium-os/testing/autotest-developer-faq/ssh-test-keys-setup

6. From your chronos SSH session, suspend the Chrome OS UI using the command:

sudo stop ui

7. You must preload the interceptor library and launch Chrome from the chronos user SSH session. For
example:

LD_PRELOAD=/usr/bin/aga/libinterceptor.so /opt/google/chrome/chrome \
--ozone-platform=gbm --ozone-use-surfaceless \
--user-data-dir=/home/chronos/ --bwsi \
--login-user='$guest' --login-profile=user

 Note

If you are unable to use LD_PRELOAD on your system, see 7.9 Intercepting without using
LD_PRELOAD on page 7-119 for an alternative method.

As a result, trace data starts appearing in the desktop Graphics Analyzer client.
 Note

On some devices, Chrome might not launch correctly while the desktop Graphics Analyzer client is
connected, and might launch numerous subprocesses. If Chrome does not launch correctly, disconnect
the Graphics Analyzer client and launch Chrome again. After it has launched, connect Graphics Analyzer
and trace Chrome.

2 Before you begin
2.7 Chrome OS

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-28
Non-Confidential

2.8 webOS
Follow these instructions for installing and using Graphics Analyzer to trace different types of webOS
applications.

This section contains the following subsections:
• 2.8.1 Application support on page 2-29.
• 2.8.2 Install Graphics Analyzer on webOS on page 2-29.
• 2.8.3 Trace a web-based application on page 2-30.
• 2.8.4 Trace a QML application on page 2-30.
• 2.8.5 Trace a native application on page 2-31.

2.8.1 Application support

Graphics Analyzer can trace all types of webOS applications, but different approaches are required for
each.

The application types are:

• Web-based applications
• QML-based applications
• Native applications

It is possible to trace one application type without tracing the others.
 Note

For each installed application, you can find the application type, internal name, installation location, and
main executable by examining the output from this command:

luna-send -n 1 -f luna://com.webos.service.applicationManager/listApps "{}"

2.8.2 Install Graphics Analyzer on webOS

webOS devices are based on Linux and can use Graphics Analyzer executables that are intended for
Linux.

Ensure that you use binaries that are compiled for the architecture of the target device, see
1.1 Installation package on page 1-11.

The installation steps are as follows:
1. Make a directory on the device named /opt/graphics_analyzer/.
2. Copy the following files into this new directory:

• The Graphics Analyzer interceptor, libinterceptor.so
• The Graphics Analyzer daemon process, aga-daemon

3. Create a script named /opt/graphics_analyzer/aga-wrapper. This script applies the Graphics
Analyzer interceptor to arbitrary applications. Populate the script as follows:

#!/bin/sh
MGD_LIBRARY_PATH=/usr/lib
LD_PRELOAD=/usr/lib/libcbe.so:\
`dirname $0`/ga/libinterceptor.so:\
$LD_PRELOAD

export MGD_LIBRARY_PATH LD_PRELOAD
exec $0.bin "$@"

4. Create a script named /etc/init/graphics_analyzer.conf. This script ensures that the Graphics
Analyzer daemon launches at device boot. Populate the script as follows:

description "Launch the Graphics Analyzer daemon from Arm Ltd."
start on started sam
respawn
script

2 Before you begin
2.8 webOS

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-29
Non-Confidential

http://webosose.org/develop/web-app-dev/Web-App-Basics/
http://webosose.org/develop/qml-apps/qml-apps-overview/
http://webosose.org/develop/native-apps/overview-native-app/

exec /opt/graphics_analyzer/aga-daemon > /var/log/aga-daemon.log 2>&1
end script

 Note

This script directs messages from the Graphics Analyzer daemon to /var/log/aga-daemon.log.

5. Edit the file /etc/luna-service2/ls-hubd.conf as follows:
• Locate the [Security] section.
• Change the Enabled key from true to false and save it.

This step allows you to change executables on the device without a security fault being issued.

2.8.3 Trace a web-based application

This method involves loading the Graphics Analyzer interceptor into the Web Application Manager
(WAM), which is the process responsible for displaying a web-based application.

The steps are as follows:
1. Open /etc/init/WebAppMgr.conf
2. Near the end of this file is a line beginning exec $WEBOS_NICE $WAM_EXE_PATH … that loads WAM.

Immediately before this line, insert the following line to include the Graphics Analyzer interceptor
into the environment:

export LD_PRELOAD=/usr/lib/libcbe.so:/opt/graphics_analyzer/libinterceptor.so:$LD_PRELOAD

3. Reboot or turn on the device.
4. Open the Graphics Analyzer host GUI application on your workstation.
5. Connect to the device using the Graphics Analyzer Device Manager. The device appears under Linux

Devices and can be chosen with a single click.
6. Start the web-based application.
7. Observe function calls being traced in the Graphics Analyzer host GUI. You might see other

applications being traced at the same time, because many applications in webOS are web-based.
 Caution

Here and elsewhere, libcbe.so (Google Chrome) must be placed in LD_PRELOAD before
libinterceptor.so. If you do not do this, web-based applications hang.

For an example web-based application, see the app store, /mnt/otncabi/usr/palm/applications/
com.webos.app.discovery

2.8.4 Trace a QML application

/usr/bin/qml-runner interprets QML applications.

These applications can be traced in the following way:
1. Navigate to /usr/bin/
2. Create the subdirectory /usr/bin/ga/, if it does not exist.
3. Hard link /opt/graphics_analyzer/libinterceptor.so into subdirectory /usr/bin/ga/
4. Rename the executable /usr/bin/qml-runner to /usr/bin/qml-runner.bin
5. Hard link /opt/graphics_analyzer/aga-wrapper to /usr/bin/qml-runner
6. Reboot or turn on the device.
7. Open the Graphics Analyzer GUI application on your workstation. Connect to the device using the

Graphics Analyzer Device Manager.
8. Start the QML application.
9. Observe function calls being traced in the Graphics Analyzer GUI application.

2 Before you begin
2.8 webOS

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-30
Non-Confidential

 Tip

To temporarily disable the tracing of QML applications, rename /usr/bin/ga/
libinterceptor.so, for example, to libinterceptor.so.removed.

For an example QML-based application, see the screensaver, com.webos.app.screensaver,
under /usr/palm/applications/com.webos.app.screensaver.

2.8.5 Trace a native application

The following steps show the general method of tracing a native application:

1. Run the following command:

luna-send -n 1 -f luna://com.webos.service.applicationManager/listApps "{}"

Note the following information relating to the traced application:

folderPath
The home directory of the application

main
The main executable of the application. The following steps change this executable so that
the application loads the Graphics Analyzer interceptor.

2. Move into the home directory of the application.
3. Make a subdirectory named ga. Hard link /opt/graphics_analyzer/libinterceptor.so into this

subdirectory. Do not use soft links because some native apps execute in a chroot jail and cannot
see /opt/graphics_analyzer while running. As an alternative, copy libinterceptor.so into this
subdirectory.

4. Add an extension .bin to the main executable of the application.
5. Hard link /opt/graphics_analyzer/aga-wrapper into the home directory of the application, giving

aga-wrapper the same name that the main executable originally had. Alternatively, use a copy rather
than a hard link.

6. Open the Graphics Analyzer host GUI application on your workstation.
7. Connect to the device using the Graphics Analyzer Device Manager.
8. Start the application being traced in the usual way.
9. Observe function calls being traced in the Graphics Analyzer Host GUI application.

 Tip

To temporarily disable tracing, rename the hard link to libinterceptor.so, for example to
libinterceptor.so.removed. Note that this renaming affects other native applications in the

same directory.

Example 2-1 webOS main menu (com.webos.app.home)

This application draws the main system menu bar. The main executable of this application is /usr/bin/
com.webos.app.home. The commands to trace this application are:

mkdir -p /usr/bin/ga
ln /opt/graphics_analyzer/libinterceptor.so /usr/bin/ga
mv /usr/bin/com.webos.app.home /usr/bin/com.webos.app.home.bin
ln /opt/graphics_analyzer/aga-wrapper /usr/bin/com.webos.app.home

After the host GUI has started and is connected to the webOS device, launch the main menu and observe
function calls being traced. To temporarily disable tracing, use this command:

mv /usr/bin/ga/libinterceptor.so /usr/bin/ga/libinterceptor.so.removed

2 Before you begin
2.8 webOS

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-31
Non-Confidential

2.9 Troubleshooting
This section describes how to avoid some issues that might prevent Graphics Analyzer working correctly
with your target.

This section contains the following subsection:
• 2.9.1 No trace is visible on page 2-32.

2.9.1 No trace is visible

The interceptor component on the target reports through logcat on Android. If no trace is found, then
Arm recommends that you review the logcat trace.

In general, ensure the following:
• On Linux, ensure that the interceptor library is in your PRELOAD path.
• On Android, the system must be fully restarted to load the interceptor library.
• Ensure you force close and reopen your application after installing the interceptor, to ensure the

interceptor is loaded.
• Ensure the daemon is started before the application.
• Ensure your application is making OpenGL ES or Vulkan calls.

2 Before you begin
2.9 Troubleshooting

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 2-32
Non-Confidential

Chapter 3
Getting started

This chapter describes how to use the host GUI to configure and perform a trace and to capture frame
buffer content while capturing a trace. It also describes how to use the capture modes in Graphics
Analyzer to capture extra content.

It contains the following sections:
• 3.1 Open Graphics Analyzer on page 3-34.
• 3.2 Tracing OpenGL ES Android and Vulkan applications on page 3-35.
• 3.3 Tracing Linux devices and IP address of target devices on page 3-38.
• 3.4 Configure tracing assets on page 3-41.
• 3.5 Pause, step frames, and resume on page 3-42.
• 3.6 Capturing frame buffer content on page 3-43.
• 3.7 Capturing all frame buffer attachments on page 3-44.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-33
Non-Confidential

3.1 Open Graphics Analyzer
Follow these instructions to open Graphics Analyzer.

• On Windows, click Start, expand the studio folder, then select Graphics Analyzer.
• On Linux, run the command:

<install_directory>/gui/aga &

• On macOS, press Cmd+Space, type Graphics Analyzer, then press Enter.

When the main GUI window opens, the Device Manager dialog box opens automatically.

To load one of the supplied sample traces, select File > Open, or click the Open icon, and navigate to
<install_directory>/samples/traces/. The various application windows fill with information from
the loaded trace which you can examine.

3 Getting started
3.1 Open Graphics Analyzer

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-34
Non-Confidential

3.2 Tracing OpenGL ES Android and Vulkan applications
Connecting to your debuggable Android devices for OpenGL ES Android 10 and Vulkan is automated
through the Device Manager. To set up your device for tracing applications, the Device Manager
detects any Android devices that are connected to the host, then automatically installs the Graphics
Analyzer components when the tracing session starts.

Prerequisites

• Connect your target device to a USB port on your host machine.
• Enable Developer Mode, then enable USB debugging on the target device, by selecting Settings >

Developer options.
• Ensure you have installed a debuggable build of your application.

 Note

If your target device is running OpenGL ES Android 9 or earlier, you must manually include the
interceptor library in your project. Follow the steps in 2.4.1 Preparing your application on page 2-16.

Procedure
1. Open Graphics Analyzer.

Results: The Device Manager opens on startup. If the Device Manager is not open, then click the
Open the Device Manager button.

2. In the Android tab, choose which Android device you want to connect to.
3. Choose the application that you want to trace from the list of debuggable packages.

Figure 3-1 Connect to your Android device in the Device Manager
4. Click the Trace Activity button for the Device Manager to install layers and start the daemon

automatically.
Results: Graphics Analyzer connects to your device and installs the layer driver and daemon
application that it uses to communicate with it. When the connection is established, the Device
Manager closes and the live trace is shown.

5. Optionally, select a preset configuration, or choose which API assets are captured.

3 Getting started
3.2 Tracing OpenGL ES Android and Vulkan applications

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-35
Non-Confidential

https://developer.android.com/studio/debug/dev-options

Figure 3-2 Trace Config dialog

The more asset types you enable, the slower the application will run, the more memory is required,
and the generated trace file will be larger. See 3.4 Configure tracing assets on page 3-41 for more
information.

6. Perform your test scenario on the device. Graphics Analyzer displays the trace data it receives from
the device.

7. When you see a problem area in the trace data:
• Use the pause, step, and play buttons to locate a frame that you want to analyze more closely. See

3.5 Pause, step frames, and resume on page 3-42.
• Click the camera icon to capture the frame buffer output at the current frame. See 3.6 Capturing

frame buffer content on page 3-43.
• Capture extra frame data by enabling Overdraw, Shader map or Fragment count modes, then click

the camera icon to collect the data. Learn more about these modes in Chapter 4 Analyzing your
trace on page 4-45.

8. When you are ready to stop tracing, click the Stop tracing button.
Results: The frames are listed in the Trace Outline view. To identify the type of frame capture you
performed, an icon is shown next to the frames when you have captured extra data.

9. To show only the frames where you have captured extra data, select the Show Only Frames With
Features Enabled check box.

Figure 3-3 Show only frames with features enabled

3 Getting started
3.2 Tracing OpenGL ES Android and Vulkan applications

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-36
Non-Confidential

10. Expand a frame to see the render passes and draw calls within it. Select frames, renderpasses and
draw calls to explore their data using the different data views. See Chapter 5 The Graphics Analyzer
interface on page 5-63 for more information about the views.

Next Steps

To save or export the trace file, use the options under the File menu.

3 Getting started
3.2 Tracing OpenGL ES Android and Vulkan applications

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-37
Non-Confidential

3.3 Tracing Linux devices and IP address of target devices
Connecting to a Linux device or IP address is automated through the Device Manager. The Device
Manager detects any Linux devices on the network that has aga-daemon running on it. When a
connection is established, Graphics Analyzer installs the layer driver and daemon application that it uses
to communicate with it ready to trace your application.

Prerequisites

To run Graphics Analyzer on a Linux device, ensure that the device has:
• A running OpenGL ES, OpenCL, or Vulkan application.
• A network connection to a host running the Graphics Analyzer GUI.
• The target must permit TCP/IP communication on port 5002.

Procedure
1. Open Graphics Analyzer.

Results: The Device Manager opens on startup. If the Device Manager is not open, then click the
Open the Device Manager button.

2. Select the Linux/IP tab.
Results: The Device Manager automatically shows any Linux devices on the same local network
and subnet as the host that are running the aga-daemon application. Alternatively, you can connect to
the IP address of the device.

3. Connect to your device:

Figure 3-4 The Device Managerdialog

• Select a Linux device. If no Linux devices have been detected, you can directly connect to the
device using the IP address instead.

• Enter the IP address of the device, and the port that the daemon is running on. Then click
Connect.

3 Getting started
3.3 Tracing Linux devices and IP address of target devices

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-38
Non-Confidential

 Note

— The default port is 5002.
— The Device Manager obtains the GL Vendor, GL Renderer, and GL Version strings of the

device by dynamically loading the libGLESv2 library. If this library could not be found or
loaded, the strings appear as Unknown.

Results: Graphics Analyzer connects to your device and installs the layer driver and daemon
application that it uses to communicate with it. When the connection is established, the Device
Manager closes and the live trace is shown.

4. Optionally, select a preset configuration, or choose which API assets are captured.

Figure 3-5 Trace Config dialog

The more asset types you enable, the slower the application runs, the more memory is required, and
the larger the generated trace file is. See 3.4 Configure tracing assets on page 3-41 for more
information.

5. Perform your test scenario on the device. Graphics Analyzer displays the trace data it receives from
the device.

6. When you see a problem area in the trace data:
• Use the pause, step, and play buttons to locate a frame that you want to analyze more closely. See

3.5 Pause, step frames, and resume on page 3-42.
• Click the camera icon to capture the frame buffer output at the current frame. See 3.6 Capturing

frame buffer content on page 3-43.
• Capture extra frame data by enabling Overdraw, Shader map or Fragment count modes, then click

the camera icon to collect the data. Learn more about these modes in Chapter 4 Analyzing your
trace on page 4-45.

7. When you are ready to stop tracing, click the Stop tracing button.
Results: The frames are listed in the Trace Outline view. To identify the type of frame capture you
performed, an icon is shown next to the frames when you have captured extra data.

8. To show only the frames where you have captured extra data, select the Show Only Frames With
Features Enabled check box.

3 Getting started
3.3 Tracing Linux devices and IP address of target devices

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-39
Non-Confidential

Figure 3-6 Show only frames with features enabled
9. Expand a frame to see the render passes and draw calls within it. Select frames, renderpasses, and

draw calls to explore their data using the different data views. See Chapter 5 The Graphics Analyzer
interface on page 5-63 for more information about the views.

Next Steps

To save or export the trace file, use the options under the File menu.

3 Getting started
3.3 Tracing Linux devices and IP address of target devices

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-40
Non-Confidential

3.4 Configure tracing assets
When you have established a connection to a target device, configure which types of API assets are sent
to the host when API function calls are traced.

For example, if you do not want to examine the contents of the textures and buffers being used in your
OpenGL ES application, use the Trace Config dialog to disable these asset types and speed up tracing of
your application.

The more types of assets you enable, the more information is visible in Graphics Analyzer. However, the
application being traced runs more slowly, the generated trace file is larger, and Graphics Analyzer uses
more memory.

Figure 3-7 Trace Config dialog

You can change the configuration at any time, even after the process has started. Any function calls
traced in the application after the new configuration has been set will use the new configuration.

If you are tracing multiple processes at the same time in the same trace, each process has its own trace
configuration. Changing the trace configuration of one process does not affect another.

Several configuration presets are available. You can also manually set a custom configuration. Any
configuration can be saved as the default, and is then used as the starting configuration for any future
connections to target devices.

 Note

Use the Legacy configuration to send assets that are equivalent to the default types that were sent in
versions of Graphics Analyzer before the Trace Config dialog existed.

A distinction is made in the Trace Config dialog between explicit and implicit memory:
• Explicit memory is memory that a function call uploads explicitly. For example, in a call to

glBufferData, or any other function call that explicitly specifies a host pointer and a length.
• Implicit memory is memory uploaded by modifying a buffer that has been mapped into the host

memory space. For example, in a call to glMapBuffer, vkMapMemory, or any other function call that
returns a pointer to memory that the application can then modify.

3 Getting started
3.4 Configure tracing assets

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-41
Non-Confidential

3.5 Pause, step frames, and resume
Graphics Analyzer displays the trace data as it receives it from the device. When you get to a problem
area, use the pause, step and play buttons to locate a frame that you want to analyze more closely.

To pause the currently selected process, press the button. The process is stopped at the next
eglSwapBuffers() call to allow you to examine the result. Pressing this button again before the process
has paused forces the application to pause on the next function call, regardless of whether it is
eglSwapBuffers() or not.

To pause all connected processes, press the button. The processes are stopped at the next
eglSwapBuffers() call to allow you to examine the result.

When a process is paused, you can render individual frames for the selected process by stepping with the
 button.

To resume the selected process, press the button.
 Note

Only the threads that are calling the graphics API functions are paused.

3 Getting started
3.5 Pause, step frames, and resume

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-42
Non-Confidential

3.6 Capturing frame buffer content
To see the on-screen output sent to the frame buffer, capture frame data of the output from the graphics
system on a draw-by-draw basis.

Prerequisites

Procedure

1. Click the Pause button to pause your application.
2. To take a snapshot of the frame buffer content following each draw call in the next full frame of the

application, click the Capture button.
 Note

Taking this snapshot involves considerable work in composing and transferring data, which slows
down the application.

3. Open the Trace Outline view. Any frames that include extra captured data are shown with an icon, to
identify the type of frame capture you performed. Any regular frame now has a icon to show that
it is a captured frame.

4. To capture subsequent frames, you must pause the application by clicking , then click the
Capture button for each frame that you want to capture.

 Note

Some limitations exist for frame capture of Vulkan applications. For more information, see
5.11 Vulkan Frame Capture view on page 5-78.

5. Optionally, you can use special capture modes to capture extra frame data, such as frame buffer
attachments, or to modify the frame buffer content in some way. To enable a capture mode, toggle the
capture mode icon in the Graphics Analyzer toolbar, then press the Capture button to trigger the
frame capture.

6. To stop tracing, click the Stop tracing button.

3 Getting started
3.6 Capturing frame buffer content

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-43
Non-Confidential

3.7 Capturing all frame buffer attachments
It is possible to capture most frame buffer attachments, including all color attachments and the depth and
stencil attachments.

While capturing a live trace, click to toggle the capture mode. When a frame is captured with this
mode enabled, all the available attachments are captured for each draw call. This information is visible
for each frame buffer in the Framebuffers view.

In the following example, three squares are drawn on screen with varying depths moving from -1.0
towards 0.0, with a colored cube rendered behind them. The draw calls for the four shapes have different
values set for the stencil buffer write mask, with the stencil pass operation set to GL_REPLACE.

Figure 3-8 Color attachment Figure 3-9 Depth attachment Figure 3-10 Stencil attachment

Depth attachment values range from -1.0 to 1.0, where -1.0 is full blue, 0.0 is black, and 1.0 is full red.
The output is enhanced on the host to increase contrast.

Stencil attachment values are from 0-255, where 0 is black, and 255 is red.

Limitations on capturing all frame buffer attachments
• This mode is disabled in the interceptor for Mali-400 series devices.
• It is not possible to capture the depth or stencil attachments for FBO 0 on an OpenGL ES 2.0-only

configuration.
• Only a low-resolution capture of the depth buffer is possible when:

— The configuration does not support depth texture sampling.
— The device only has OpenGL ES 2.0 available and the depth attachment is a renderbuffer.

3 Getting started
3.7 Capturing all frame buffer attachments

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 3-44
Non-Confidential

Chapter 4
Analyzing your trace

Learn about the different ways you can analyze your trace in more detail.

It contains the following sections:
• 4.1 Analyzing overdraw on page 4-46.
• 4.2 Analyzing the shader map on page 4-47.
• 4.3 Overdraw and shader map limitations on page 4-49.
• 4.4 Analyzing the fragment count on page 4-50.
• 4.5 Frame overrides on page 4-51.
• 4.6 Debugging an OpenCL application on page 4-55.
• 4.7 Using GPUVerify to validate OpenCL kernels on page 4-56.
• 4.8 Comparing state between function calls on page 4-58.
• 4.9 Bookmarks on page 4-59.
• 4.10 Dealing with VR applications on page 4-60.
• 4.11 Tracing an application that is already running on page 4-61.
• 4.12 Tracing multiple processes on page 4-62.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-45
Non-Confidential

4.1 Analyzing overdraw
Overdraw mode highlights overdraw in a given scene.

While capturing a live trace, click to toggle overdraw mode. When overdraw mode is enabled,
whenever Graphics Analyzer captures a frame, it replaces the fragment shader in the target application
with an almost transparent white fragment shader. Each time a pixel is rendered to the frame buffer, the
alpha value is increased using an additive blend. Therefore, as more overdraw happens in an area, the
whiter the final image appears. An application with low levels of overdraw is a uniform dull gray.

Figure 4-1 Original image

Figure 4-2 Image with overdraw mode turned on

To see the level of overdraw in an area of the frame, move the cursor over the area in the Framebuffer
view. The overlay displays the level of overdraw.

Any frame with overdraw mode turned on has the icon in the Trace Outline view.

4 Analyzing your trace
4.1 Analyzing overdraw

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-46
Non-Confidential

4.2 Analyzing the shader map
Graphics Analyzer can give each shader program that a scene uses a different solid color.

While capturing a live trace, click to toggle the capture mode. While this capture mode is enabled,
when Graphics Analyzer captures a frame it tracks which shader each object in the scene uses. It then
maps each shader to a solid color. This mapping allows detection of any bugs that incorrect shader
assignment might cause. An example of this feature is displayed here:

Figure 4-3 Original image

Figure 4-4 Image with shader map feature turned on

There are 100 unique colors that Graphics Analyzer can assign to shader programs, after which programs
have duplicate colors. You can identify which program corresponds to each color by putting the cursor
on a frame buffer image that was captured in shader map mode. The active shader is identified above the
image.

4 Analyzing your trace
4.2 Analyzing the shader map

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-47
Non-Confidential

Any frame with shader map mode turned on has the icon in the Trace Outline view.

4 Analyzing your trace
4.2 Analyzing the shader map

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-48
Non-Confidential

4.3 Overdraw and shader map limitations
Applying any full-screen post-processing effects, for example rendering to a texture, prevents the
overdraw map or shader map from displaying correctly on the device. However, the information can be
seen by switching to the correct frame buffer in the UI after capturing a frame while either feature is
active.

4 Analyzing your trace
4.3 Overdraw and shader map limitations

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-49
Non-Confidential

4.4 Analyzing the fragment count
Graphics Analyzer can count the number of fragments that a shader processes per draw call. If depth
testing is enabled and a fragment would be excluded as a result, then that fragment is not included in the
count.

To toggle this feature, click . When a frame is captured while this capture mode is enabled, each draw
call increments the Fragments field of the fragment shader used to draw it. The fragment count
represents the number of fragments that have been rendered with the selected shader in the current frame,
up to and including the currently selected draw call. For example:

Figure 4-5 Fragment count analysis

The Total cycles field is calculated using the average number of cycles for a given shader, multiplied by
the number of fragments processed.

The Fragments and Total cycles columns are only available for those frames where the fragment count
analysis has been requested. These columns indicate N/A (not available) for other frames.

Any frame with fragment count mode turned on has this icon in the Trace Outline view.
 Note

• You cannot capture frame buffer content while also collecting fragment shader statistics.
• To maintain compatibility with older OpenGL ES 2.0 hardware and software, the fragment count

feature uses a software method to count the number of fragments. As a result, a single draw call can
take several seconds to complete. In addition, the target device screen only shows the final draw call
in a frame, and the frame capture feature does not show any usable information.

4 Analyzing your trace
4.4 Analyzing the fragment count

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-50
Non-Confidential

4.5 Frame overrides
Graphics Analyzer can change a frame before replaying it on a target device. These modifications are
made on the Frame Overrides view.

Figure 4-6 Frame Overrides view

You can apply the following overrides:

4.5.1 Replace texture on page 4-51

Replace a selected texture with a 256 x 256 pixel texture of different colors in a grid-like
pattern.

4.5.2 Force precision on page 4-52

Replace the shaders of a program with a version that forces a specific precision for all types.

4.5.3 Modify shaders on page 4-52

Replace both the fragment and vertex shaders of a program with custom versions.

This section contains the following subsections:
• 4.5.1 Replace texture on page 4-51.
• 4.5.2 Force precision on page 4-52.
• 4.5.3 Modify shaders on page 4-52.

4.5.1 Replace texture

This texture can be used to ensure that you have generated the texture coordinates of your object
correctly.

4 Analyzing your trace
4.5 Frame overrides

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-51
Non-Confidential

Figure 4-7 Replacement texture

Only the textures that are listed on the Frame Overrides menu are replaced. These overrides are in use for
every frame replay until they are removed from the Frame Overrides list.

4.5.2 Force precision

For a given program, the fragment shader and vertex shader are modified so that the precision specifiers
highp, mediump, and lowp are replaced with the precision that you specify.

Also, default precision modifiers are applied to the source for the following types:

ESSL version Types

#version 300 es float, int, sampler2D, samplerCube, sampler3D, samplerCubeShadow, sampler2DShadow,
sampler2DArray, sampler2DArrayShadow, isampler2D, isampler3D, isamplerCube,
isampler2DArray, usampler2D, usampler3D, usamplerCube, usampler2DArray

#version 310 es float, int, atomic_uint, sampler2D, samplerCube, sampler3D, sampler2DArray,
samplerCubeShadow, sampler2DShadow, sampler2DArrayShadow, sampler2DMS, isampler2D,
isampler3D, isamplerCube, isampler2DArray, isampler2DMS, usampler2D, usampler3D,
usamplerCube, usampler2DArray, usampler2DMS, image2D, image3D, imageCube, image2DArray,
iimage2D, iimage3D, iimageCube, iimage2DArray, uimage2D, uimage3D, uimageCube,
uimage2DArray

Everything else float, int, sampler2D, samplerCube

When the frame is replayed, the modified shaders replace the original shaders, allowing you to observe
the effect of changing the precision mode.

4.5.3 Modify shaders

This override allows you to change both the fragment shader and vertex shader of a program.

When you select a program and select finish on the wizard, two text editors are displayed:

• One corresponds to the vertex shader of the program.
• The other corresponds to the fragment shader of the program.

4 Analyzing your trace
4.5 Frame overrides

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-52
Non-Confidential

Figure 4-8 Editing shader source

Each editor allows you to edit the source for that particular shader. When you save your changes, these
new source files are stored and used in the replay frames of your application until the override is deleted.

 Note

If you do not save your modifications, they are not used when replaying the frame.

4 Analyzing your trace
4.5 Frame overrides

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-53
Non-Confidential

Figure 4-9 Frame Overrides view containing a shader source replacement

There is also an option to compile the source to see if there are any errors in your modifications.

The results of the compilation can be found in the Console view, for example:

[INFO]: Processing shader...
[INFO]: Compilation successful

If the changes that were made to the shader are invalid, the frame override is not used and the original
program is used instead. Invalid shaders are shaders that either do not compile, or the inputs and outputs
do not match the original shader.

4 Analyzing your trace
4.5 Frame overrides

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-54
Non-Confidential

4.6 Debugging an OpenCL application
Graphics Analyzer supports tracing OpenCL applications on Linux, in addition to OpenGL ES and
Vulkan.

OpenCL tracing is a part of the interceptor library and does not require any special installation. Because
it is not a graphics API, there are a few things to bear in mind when debugging OpenCL with Graphics
Analyzer.

When you start or open an OpenCL trace, you are prompted to launch the OpenCL perspective. This
perspective adjusts the visible views to only those views that are supported for OpenCL. For more
information, see 5.1 Perspectives on page 5-65.

The Assets view tracks and displays contexts, kernels, memory objects, and programs. Graphics
Analyzer tracks the relationship between memory objects and subbuffers, which are displayed in the
Assets view. Graphics Analyzer warns you about dangerous overlapping subbuffers.

 Note

Graphics Analyzer tracks memory that is initialized into any memory object, using the
CL_MEM_USE_HOST_PTR flag. It also tracks calls to clEnqueueCopyBuffer and clEnqueueWriteBuffer.
However, Graphics Analyzer does not support sending changes to mapped OpenCL memory, or changes
to memory caused by kernel invocations. Therefore the memory reported in Graphics Analyzer might not
accurately reflect your application.

Because there are no conceptual frames in OpenCL, the Trace Outline assigns all function calls to Frame
0 and Render Pass 0. The Trace Outline view displays the following function calls:
1. Function calls that enqueue commands.
2. Function calls that block queued commands.
3. clFlush() and clFinish() function calls, which issue command queues to a device.

Blocking calls tell you how long they blocked for, and also the size of the wait list passed into the
function call, if applicable.

4 Analyzing your trace
4.6 Debugging an OpenCL application

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-55
Non-Confidential

4.7 Using GPUVerify to validate OpenCL kernels
GPUVerify is a tool that can test whether an OpenCL kernel is free from various issues, including intra-
group data races, inter-group data races, and barrier divergence.

GPUVerify is a stand-alone application and is not provided by Graphics Analyzer. Download it from the
Imperial College website, GPUVerify: a Verifier for GPU Kernels. Before using it with Graphics
Analyzer, Arm recommends that you get it working in a stand-alone context, using its own
documentation.

To use GPUVerify with Graphics Analyzer, you must first point Graphics Analyzer to the binary in your
GPUVerify directory. Click Edit > Preferences and fill in the Path to GPUVerify field, as shown here:

Figure 4-10 Preferences dialog

If you enter an invalid path in this field, Apply and OK are grayed out.

When tracing an OpenCL application, Graphics Analyzer captures calls to all OpenCL 1.2 functions,
including clCreateProgramWithSource, clCreateKernel, clCreateKernelsInProgram, and
clEnqueueNDRangeKernel. It then uses the data from these functions to get:
• The names of all the OpenCL kernels.
• The source code associated with the OpenCL kernels.
• Any run-time parameters that are known at this point, for example the local and global workgroup

sizes.

To run any of the kernels that were found in a trace through GPUVerify, select a function call in the trace
with live kernel objects, then select Debug > Launch GPUVerify. You are presented with the following
dialog:

4 Analyzing your trace
4.7 Using GPUVerify to validate OpenCL kernels

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-56
Non-Confidential

http://multicore.doc.ic.ac.uk/tools/GPUVerify/

Figure 4-11 Run kernel through GPUVerify dialog

The Kernel drop-down list shows all the kernel objects that are live and have available source code at
the currently selected function call. Source code is only available to Graphics Analyzer for kernels that
have been created from a program that was created using clCreateProgramWithSource followed by
clBuildProgram. If the kernel you expect to see is not in the list, ensure that you have selected a
function call where that kernel object is live and that the kernel was created using the described method.

After you have selected a kernel from the drop-down list, the Local Work Size, Global Work Size, and
Kernel Build Options fields are populated with all the information Graphics Analyzer has available.
You can pick the local and global work sizes from the drop-down lists, which are populated from the
enqueue history of the kernel. Alternatively enter them manually as a comma-separated list of numbers.
The number of dimensions of the local and global sizes must match. If invalid options are entered, an
error box is displayed, giving more information. There are no restrictions to the Kernel Build Options
field, though GPUVerify might output an error if the options are unsupported.

The output for GPUVerify is shown in the Graphics Analyzer Console view.

4 Analyzing your trace
4.7 Using GPUVerify to validate OpenCL kernels

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-57
Non-Confidential

4.8 Comparing state between function calls
When investigating an application trace, you might want to compare the API state between two function
calls to examine what has changed. You can do this using the Generate Diff command.

To compare changes in state between two functions in the trace, either:
• Select two function calls from the trace using Ctrl+click on Windows or Linux hosts, or Command

+click on OS X hosts.
• Select two draw calls from the Trace Outline view, then select Generate Diff from the popup menu.

Figure 4-12 Difference Report view

This view shows the difference between states for the two function calls. It is a table of the items that are
different, or have changed at some point between the two functions. Values that have changed but have
since reverted to the original value are highlighted in light blue. Values that are different between the two
functions are highlighted in red. Where state values are made up of multiple components, for example
GL_VIEWPORT, the subcomponents are highlighted individually. In this case, subcomponents that have not
changed are shown with gray text.

The final column in the output table is labeled Related functions. This column lists the numerical id of
function calls in the trace that modified the particular state item. By menu-clicking on one of the rows,
you can navigate to one of the related functions using the menu that appears.

The results of the state comparison are persistent until the window closes. Therefore it is possible to open
multiple differences at a time, allowing you to manually compare sets of changes.

4 Analyzing your trace
4.8 Comparing state between function calls

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-58
Non-Confidential

4.9 Bookmarks
Graphics Analyzer contains a Bookmarks feature to allow you to bookmark particular function calls and
optionally add notes to the bookmark.

These bookmarks can be saved and loaded with the trace. You can use this feature, for example, to make
notes on a function call that looks like it might be a candidate for optimization, as a reminder.

Bookmarks can be viewed and manipulated in the 5.20 Bookmarks view on page 5-93 and the 5.2 Trace
view on page 5-66.

4 Analyzing your trace
4.9 Bookmarks

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-59
Non-Confidential

4.10 Dealing with VR applications
Virtual Reality (VR) applications have a peculiar pattern in term of OpenGL ES calls. They usually have
multiple threads or contexts to handle different steps, for example scene rendering, barrel distortion, and
chromatic aberration.

Graphics Analyzer shows every context using a different color to make it clear what is part of which
context. The relevant views are the 5.2 Trace view on page 5-66, the 5.3 Trace Outline view
on page 5-69, and the 5.4 Timeline view on page 5-70.

When you pause a VR application or a generic multi-threaded application, pausing is delayed over the
frame end until all render passes, including render passes from other threads, have finished. The function
calls and render passes traced after the frame end are shown as part of the next frame in the 5.3 Trace
Outline view on page 5-69. That frame is considered incomplete and is marked with the icon until
the application is resumed and the end of the frame is reached.

4 Analyzing your trace
4.10 Dealing with VR applications

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-60
Non-Confidential

4.11 Tracing an application that is already running
It is possible to attach to a process that is already running and recover almost all of the state of the
OpenGL ES and EGL APIs, despite not having intercepted all of the calls from the application.

In addition, it is possible to attach to and detach from the same process multiple times within a single
trace. Detaching then reattaching allows you to skip tracing parts of the application that are not of
interest.

 Note

If Graphics Analyzer is attached to a running process or reattached to a detached process, the Frame
Replay and Automated Trace features are not available.

To intercept a running application, the daemon must have been started before the application was
launched. However it is not necessary to connect the host to the target until the appropriate part of the
application is about to be reached.

To detach from an application that is being traced, select the toggle button from the toolbar. When the
application is detached from the debugger, the button is depressed. To reattach, toggle the same button.
Function calls that contain information about the state of the target API following an attach are marked
with the icon. Frames in the outline view are also marked with this icon. A bookmark is also
generated for the reattach function to aid navigation, see 4.9 Bookmarks on page 4-59.

 Note

All core EGL and OpenGL ES assets and state items are recovered when attaching to a process. If an
extension become core in a later version of the API, most assets and state items that it defines are also
recovered. However, some combinations of target driver and API version mean that certain data cannot
be recovered.

A non-exhaustive list of things that might not be recovered are:
• OpenGL ES 1.1 contexts might not be supported correctly.
• Anything that is defined within an extension that is not part of a later revision of an API.
• Buffer contents on OpenGL ES 2.0-only devices that do not support the GL_EXT_map_buffer_range

extension.
• Buffer contents on any API version where the contents of the buffer are mapped at the point the host

attaches, unless the full buffer was mapped as readable.
• Texture data for most textures other than color renderable GL_TEXTURE_2D textures, and only for

mipmap level 0.
• Program pipeline objects.
• Programs and shaders that are created from binaries rather than from sources might not be supported

correctly.

 Note

OpenCL and Vulkan applications are not supported.

4 Analyzing your trace
4.11 Tracing an application that is already running

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-61
Non-Confidential

4.12 Tracing multiple processes
You can trace multiple processes concurrently with Graphics Analyzer. Any intercepted application
launched after the host has connected to the daemon is received into the trace file on the host.

Individual processes are displayed in the 5.3 Trace Outline view on page 5-69.
 Note

Most commands that are available for interacting with a live target only affect the currently selected
process, including:
• All capture commands.
• The resume and step commands.
• All replay commands, including the frame overrides.
• All automated trace commands, except the command to disconnect.

4 Analyzing your trace
4.12 Tracing multiple processes

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 4-62
Non-Confidential

Chapter 5
The Graphics Analyzer interface

This chapter describes the Graphics Analyzer host GUI which provides different views over the captured
application trace. The GUI also provides access to headless mode, which enables automated data capture
on the target.

It contains the following sections:
• 5.1 Perspectives on page 5-65.
• 5.2 Trace view on page 5-66.
• 5.3 Trace Outline view on page 5-69.
• 5.4 Timeline view on page 5-70.
• 5.5 Statistics view on page 5-71.
• 5.6 Function Call view on page 5-72.
• 5.7 Trace Analysis view on page 5-73.
• 5.8 Target State view on page 5-74.
• 5.9 Buffers view on page 5-75.
• 5.10 OpenGL ES Framebuffers view on page 5-76.
• 5.11 Vulkan Frame Capture view on page 5-78.
• 5.12 Assets view on page 5-80.
• 5.13 Shaders view on page 5-82.
• 5.14 Textures view on page 5-83.
• 5.15 Images view on page 5-84.
• 5.16 Vertices view on page 5-85.
• 5.17 Uniforms view on page 5-87.
• 5.18 Automated Trace view on page 5-88.
• 5.19 Render Pass Dependencies view on page 5-91.
• 5.20 Bookmarks view on page 5-93.
• 5.21 Console view on page 5-94.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-63
Non-Confidential

• 5.22 Scripting view on page 5-95.
• 5.23 Filtering and searching in Graphics Analyzer on page 5-97.
• 5.24 Host-side headless mode on page 5-98.
• 5.25 Target-side headless mode on page 5-100.

5 The Graphics Analyzer interface

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-64
Non-Confidential

5.1 Perspectives
Graphics Analyzer includes a perspectives feature which allows related windows to be grouped for ease
of use.

Graphics Analyzer comes with three perspectives:

• OpenGL ES. This perspective is the default.
• Vulkan
• OpenCL

These perspectives only have the views that are operational for the named API open by default.

Open new perspectives by selecting the button. You can switch between perspectives at any time
using the perspective switcher that is at the top right.

By default, Graphics Analyzer prompts you to switch perspectives when it detects that the traced process
uses a different API to the currently selected perspective. This behavior can be changed in Edit >
Preferences > Graphics Analyzer to either never prompt you, or to always automatically switch
perspectives when a different API is detected.

Create custom perspectives by right-clicking on an existing perspective and selecting Save As ….
Custom perspectives can be removed using Edit > Preferences > Perspectives.

Customize perspectives by moving, resizing, opening, and closing views. Open views using the Window
> Show View menu. Customizations are saved when Graphics Analyzer is closed.

5 The Graphics Analyzer interface
5.1 Perspectives

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-65
Non-Confidential

5.2 Trace view
The main window in Graphics Analyzer shows a table of function calls made by your application as it is
running. Use this information to examine what your application requested from the graphics system and
what the system returned.

Each call has:
• The time at which it was made.
• The time at which it finished.
• The duration of the call in microseconds.

 Important

This duration is the time that is spent in the driver for the function call. It is not how much time the
GPU spends doing the work that the function call requests.

• The list of arguments sent to the call.
 Note

This list is truncated to save space. For a complete list of the arguments, see 5.6 Function Call view
on page 5-72.

• The value, if any, returned by the underlying system when the function was called.
• The error code returned by the underlying system when the function was called.
• The process ID (PID) of the process the function call was made from.
• The thread ID (TID) of the thread the function call was made from.
• Any bookmark notes you have added to the function call. See 5.2.1 Add a bookmark to a function call

on page 5-67.

 Note

Some columns in this table might initially be hidden. To enable or disable columns, click .

Each call executed in a different EGL context is highlighted using a different color.

The Trace Outline shows a frame-oriented view of the trace. A call to eglSwapBuffers() delimits each
frame. Draw calls in a frame are grouped by the frame buffer that is bound at the time they were called.
Selecting an item in the overview highlights the corresponding item in the main trace.

You can open documentation for an API call, if available, in a browser by menu-clicking on the call and
selecting Open Documentation.

It is possible to select two function calls from the trace using Ctrl+click on Windows or Linux hosts, or
Command+click on OS X hosts. Menu-clicking on one of the two selected functions displays a popup
menu showing various options including the ability to generate a state difference report, see
4.8 Comparing state between function calls on page 4-58. Alternatively, select two draw calls from the
Outline view and use the popup menu to compare the two draw calls instead.

Searching

To find a particular function call, or set of calls, Graphics Analyzer includes a search feature. You can
open the search dialog by pressing Ctrl+F with the Trace view selected, or by selecting Edit > Find API
call… from the main menu. Type your search string in the search box and Graphics Analyzer highlights
matching calls in the trace. Click and to jump between the search results.

To close the search and hide the results, click or press Esc.

5 The Graphics Analyzer interface
5.2 Trace view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-66
Non-Confidential

By default, the search only looks at the function call name. If you want to search the function call
parameters as well, select the Include parameters option. With this option selected, Graphics Analyzer
searches the functions exactly as they appear in the Function Call column of this view.

See 5.23 Filtering and searching in Graphics Analyzer on page 5-97 for more information.

This section contains the following subsection:
• 5.2.1 Add a bookmark to a function call on page 5-67.

5.2.1 Add a bookmark to a function call

In the Trace view, the Bookmark Notes column lets you view and edit bookmarks for each function call.

 Note

For general information on bookmarks, see 4.9 Bookmarks on page 4-59.

Procedure
• To add a bookmark with a note, double-click on the Bookmark Notes column for the function call

and enter your note.
• To add an empty bookmark, right-click on the function call and select Add Bookmark.

The bookmarked function call turns green in the trace and a green marker appears on the right-hand side
of the trace. The highlighting and markers allow quick navigation to bookmarked function calls.

Figure 5-1 Bookmarked function call with a note

You can disable the highlighting and markers by right-clicking anywhere in the Trace view window and
selecting Toggle Bookmark Highlighting.

Figure 5-2 Toggling bookmark highlighting

5 The Graphics Analyzer interface
5.2 Trace view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-67
Non-Confidential

View and manipulate all bookmarks in the 5.20 Bookmarks view on page 5-93.
 Note

To remove a bookmark, right-click on the function call and select Remove Bookmark.

5 The Graphics Analyzer interface
5.2 Trace view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-68
Non-Confidential

5.3 Trace Outline view
The Trace Outline view shows a summary tree view of the function calls made by your application as it
is running. Use this view to easily navigate through the trace.

The top-level items in the tree are processes. If you have traced more than one process on the target
system, you can switch between them by selecting them in this view. Selecting a process causes the
Trace view to only display calls for that process.

Function calls are further grouped depending on the API in use. For example, OpenGL ES calls are
grouped into frames and render passes. For each item in the tree, including the groupings, the name,
index, and extra interesting information for that item are shown. For certain items, extra information can
be found in the tooltip for the item.

Selecting an item in the tree causes other views to be updated to provide information about that item.
Selections that are made in the Trace view, Breadcrumb bar, or the Statistics view Charts tab cause the
selection in the Trace Outline view to update. If the item selected in another view is not an item in the
Trace Outline view, a selection line indicates where the item would be.

When you have a trace with many frames, you can use the Show Only Frames With Features Enabled
option to quickly find interesting frames. With this mode turned on, only frames that meet one of the
following criteria are shown:
• Frame Capture
• Frame Replay
• Fragment Count
• Overdraw Mode
• Shader Map Mode

To collapse all the items in the tree, click Collapse All.

Right-clicking on items in the tree allows you to generate a diff report between two items and export
frame buffers. See 4.8 Comparing state between function calls on page 4-58 and 5.12.1 Exporting assets
on page 5-80 for more information.

Each call that is executed in a different EGL context is highlighted using a different color.

5 The Graphics Analyzer interface
5.3 Trace Outline view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-69
Non-Confidential

5.4 Timeline view
The Timeline view shows a graphical representation of the function calls in your application.

There are three types of Timeline view:

• When you first open a trace, the Process Timeline view is shown. This view shows you a high-level
view of API function call activity for each process that was traced.
— Select a process by clicking it.
— Select the first frame of a process by double-clicking the process.

• When a frame or render pass has been selected, the Render Pass Timeline view is shown. This view
shows you each context in the selected process and each render pass in each context.
— Select a render pass by clicking it.
— Select the first draw call in a render pass by double-clicking the render pass.

• When a draw call has been selected, the Draw Call Timeline view is shown. This view is identical to
the render pass view, except individual draw calls are visible.
— Select the first draw call in a render pass by clicking the render pass.
— Select a draw call by clicking it.

All three types of Timeline view can be navigated in the same way:
• Scroll the X-axis by holding down the left mouse button and dragging left or right.
• Zoom in or out of the X-axis by scrolling up or down using the scroll wheel. Alternatively hold down

the right mouse button and drag up or down.
• Display a tooltip showing context-sensitive information about an element, including the axes, by

hovering over the element in the chart.

5 The Graphics Analyzer interface
5.4 Timeline view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-70
Non-Confidential

5.5 Statistics view
Three tabs are available in this window, General, Charts, and Memory.

General

This tab gives statistics and averages for the currently selected process. Use this tab to gain an
overview of the state of your application as it ran.

Charts
This tab shows charts for various statistics for the currently selected item type. For example,
selecting a process shows you statistics about all the processes in the current trace. The currently
selected item is highlighted in the chart and the parent of the item is shown as the chart title. The
following actions are available for the charts:
• Hovering over a slice of the pie chart allows you to see more information about the slice,

including its value.
• Clicking a slice selects that item in the trace.
• Double-clicking a slice selects the first child of that item in the trace.

 Note

Some items do not support all the available statistics. For example, Render Passes do not
support the number of render passes statistic.

Memory

This tab shows information on memory usage for each frame. This data can be produced on
Mali-T600 or later based devices, but the vendor might choose not to enable this feature. To see
if this feature is supported, check if your device contains one of the following files:

• /sys/kernel/debug/mali0/ctx/*/mem_profile
• /sys/kernel/debug/mali/mem/*

If the files are present and non-empty, then your device is supported.

 Note

• To allow Graphics Analyzer to process this data, turn off the SELinux permissions by
running setenforce 0 on your device. If this command produces an error, try the following
command instead:

supolicy --live 'permissive untrusted_app'

• You might need to mount the Linux debugfs mount point for this feature to work, using:

mount -t debugfs /sys/kernel/debug /sys/kernel/debug

When selecting a frame, a pie chart showing the memory allocated by each channel is shown.
Each channel is a driver-defined heap for a different type of object:
• Hovering over a slice of the pie chart shows you the memory contained in that channel.
• Clicking a slice displays information about the memory contained in that trace and the

percentage of total memory used in that frame.
• Double-clicking a slice displays a histogram showing more details about the memory

allocations.

The histogram shows the number of memory allocations made for each memory range.
Hovering over each bar shows the total amount of memory this range contains.

5 The Graphics Analyzer interface
5.5 Statistics view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-71
Non-Confidential

5.6 Function Call view
This view has three sub tabs, Arguments, Additional Information, and Documentation. All the tabs
show data for the selected function call. Therefore, the data is visible only when a function call is
selected in the trace.

Arguments

This tab shows the unabridged arguments for the selected function call alongside their values.
This tab can be useful because, due to the limited size of the 5.2 Trace view on page 5-66, the
values of arguments are truncated in that view to save space.

Additional Information

This tab shows any additional information that is available about the currently selected function
call. Only functions that are shown in the outline view have additional information.

Depending on the type of function call selected, different information might be shown. This
view is useful when using indirect draw calls such as glDrawElementsIndirect. As those calls
use a command struct as a parameter, it is impossible to see what parameters were passed to the
call in the normal trace view. It simply shows the value of the struct pointer. However, the struct
is parsed and displayed in this view.

Documentation

This tab shows the Khronos documentation page for the selected function call, if it is available.

5 The Graphics Analyzer interface
5.6 Function Call view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-72
Non-Confidential

5.7 Trace Analysis view
This view shows problems or interesting information related to API calls as they were made. These
problems can include improper use of the API, for example passing illegal arguments, or issues known to
adversely impact performance.

Use this view to improve the quality and performance of your application.

Selecting an entry in this view highlights the offending issues within the trace view. To gain a more
detailed view of the problem, if available, hover your cursor over the problem report.

5 The Graphics Analyzer interface
5.7 Trace Analysis view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-73
Non-Confidential

5.8 Target State view
This view shows the state of the underlying system at a time following the function selected in the Trace
view. It updates as the trace selection changes. Use this view to explore how the system state changes
over time and the causes of that change.

 Note

This view is only available in the OpenGL ES + EGL perspective by default. For more information,
see 5.1 Perspectives on page 5-65.

The initial state is shown as an entry in normal type. If the relevant API standard defines an initial state,
then this state is shown, otherwise <unknown> appears instead.

If a state item has been changed anywhere in the trace, it is highlighted in light green. A state item that is
not currently its default value is highlighted in dark green. Any read-only constant states such as
GL_MAX_DRAW_BUFFERS are highlighted in yellow. States that have never been changed in the trace are
shown in white.

If a state has been changed, you can find the function call that changed it by selecting Select Previous
Change Location from the right-click menu on the state item. The function call that next changes a
given state item can be located in a similar way.

You can use the Filter box to filter the states and values in the view. For example, type texture into the
box and the view only shows states that have texture in the name or in the value. See 5.23 Filtering and
searching in Graphics Analyzer on page 5-97 for more information.

In addition to the Filter box, there are several filtering modes available:

All states
No additional filtering is applied.

States that have been modified
Only show the states that have been changed in this trace.

States that have not been modified
Only states that never change value in the trace are shown.

States that are not currently their defaults
Only states that, at the currently selected function call, are not at their default values are shown.

States changed by this function
Only states changed by the currently selected function call are shown.

Read-only states
Only read-only constant states such as GL_MAX_DRAW_BUFFERS are shown.

5 The Graphics Analyzer interface
5.8 Target State view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-74
Non-Confidential

5.9 Buffers view
This view shows information about the currently allocated buffer objects.

You can filter the list of buffer objects by usage, or, for OpenGL ES only, by the last bound target
column. The bottom part of the view shows the size of the currently selected buffer objects. If no buffer
object is selected, the size of all the displayed buffer objects is shown.

To filter the view to show only the buffer objects with a given usage or last bound target, use the Filter
box. For example, type transform into the box and the view only shows you the buffer objects that have
transform in the usage field. See 5.23 Filtering and searching in Graphics Analyzer on page 5-97 for
more information.

5 The Graphics Analyzer interface
5.9 Buffers view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-75
Non-Confidential

5.10 OpenGL ES Framebuffers view
After you have captured a frame using the Capture Frame button, you can find the results in the
Framebuffers view. Use this view to gain an insight into what the graphics system has produced as a
result of your application calls.

 Note

This view is only available in the OpenGL ES + EGL perspective by default.

See 3.6 Capturing frame buffer content on page 3-43 for more information about capturing frames.

Figure 5-3 Selecting a framebuffer in OpenGL ES Framebuffers view

Selecting a frame buffer in the left-hand list brings up a list of the attachments used in that frame buffer
in the lower list. If relevant, it also brings up histograms displaying the overdraw or shader map data. To
bring up a larger view of an attachment, select it in the lower list. For multiview rendering, the views are
displayed as separate selectable elements in the attachments list. You can then mouse over the attachment
for additional information. Double-clicking the main image opens the attachment in an external editor.

In certain situations, you might want to view the frame buffer with different alpha options. The following
alpha modes are available:

Use Alpha
Does normal alpha blending using the alpha values in the frame buffer.

Ignore Alpha
Ignores the alpha values in the frame buffer and sets the alpha value for each pixel to its
maximum, that is, fully opaque.

5 The Graphics Analyzer interface
5.10 OpenGL ES Framebuffers view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-76
Non-Confidential

Visualize Alpha
Ignores the color information in the frame buffer and shows the alpha values for each pixel. The
alpha values are shown in a range from black (minimum alpha or fully transparent) to white
(maximum alpha or fully opaque).

For a captured frame, you can step through the sequence of draw calls one at a time and observe how the
final scene is constructed.

5 The Graphics Analyzer interface
5.10 OpenGL ES Framebuffers view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-77
Non-Confidential

5.11 Vulkan Frame Capture view
You can capture frame buffers for Vulkan applications using the Capture Frame button. For all calls to
vkQueueSubmit within the captured frame, Graphics Analyzer captures each color, resolve, and depth/
stencil frame buffer attachment that has been modified by each draw call inside each submitted command
buffer.

 Note

This view is only available in the Vulkan perspective by default.

See 3.6 Capturing frame buffer content on page 3-43 for more information about capturing frames.

Frame buffer attachment images that were created with anything other than the VK_SAMPLE_COUNT_1_BIT
as the samples parameter are not captured. However, if the multisampled image has a corresponding
resolve attachment in the render pass, the resolve attachment is captured after each draw call.

The Overdraw, Shadermap, and Fragment Count capture modes are unsupported for Vulkan
applications. These buttons are disabled when tracing an application that contains only Vulkan function
calls.

Also, the Capture All Framebuffer Attachments button is disabled, because by default all frame
buffer attachments are captured.

When a call to vkQueueSubmit has been selected, the tree of draw calls within the vkQueueSubmit is
displayed in the Frame Capture view. Selecting any tree item shows information about that tree item.

Figure 5-4 Selecting a subpass in Vulkan Frame Capture view

If the currently selected call to vkQueueSubmit is within a captured frame, selecting a draw call displays
the contents of all captured frame buffer attachments after that draw call was executed.

5 The Graphics Analyzer interface
5.11 Vulkan Frame Capture view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-78
Non-Confidential

Figure 5-5 Selecting a draw call in Vulkan Frame Capture view

The icon is displayed next to tree items when frame buffer attachment data has been received. You
can view captured frame buffer attachments when the host receives the data. It is therefore not necessary
to wait until the Capturing frame dialog completes to start examining the data.

In certain situations, you might want to view the frame buffer attachment with different alpha options.
The following alpha modes are available:

Ignore Alpha
Ignores the alpha values in the attachment and sets the alpha value for each pixel to its
maximum, in other words, fully opaque.

Use Alpha
Does normal alpha blending using the alpha values in the attachment.

Visualize Alpha Channel
Ignores the color information in the attachment and shows the alpha values for each pixel. The
alpha values are shown in a range from black (minimum alpha or fully transparent) to white
(maximum alpha or fully opaque).

The stencil component of combined depth/stencil attachments is visualized in the alpha channel of the
displayed image.

High Dynamic Range (HDR) image formats such as VK_FORMAT_B10G11R11_UFLOAT_PACK32 are tone
mapped for display in the UI. First the minimum and maximum floating-point values in the entire image
are calculated for each channel. Then the values for each channel are scaled to 0-255 according to these
calculated minimum and maximum values. The tone mapper ignores channels that have a value of 0.
These channels remain at 0 in the displayed image.

5 The Graphics Analyzer interface
5.11 Vulkan Frame Capture view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-79
Non-Confidential

5.12 Assets view
The Assets view shows the tree of created assets and their properties at the currently selected function
call, for all supported APIs. Use this view to explore the API objects that your application has created
and is using.

In the tab pane on the right side of the Assets view, Source, Image, and Buffer tabs are available. When
certain assets, such as shaders, textures, or buffers, are selected, the appropriate tab that can preview the
content becomes selectable and displays the asset data.

Figure 5-6 Assets view

Under certain conditions, assets might be displayed differently in the assets view:
• Assets that are highlighted in green were created in the currently selected function call.
• Assets that are highlighted in light green were modified in the currently selected function call.
• Assets that are considered active, such as the currently bound OpenGL ES frame buffer, are displayed

in bold type.

The right-click context menu for assets allows you to navigate to the API call that created or previously
modified the asset.

This section contains the following subsection:
• 5.12.1 Exporting assets on page 5-80.

5.12.1 Exporting assets

Assets can be exported from your application trace to disk.

You can export frame buffers in the following ways:

5 The Graphics Analyzer interface
5.12 Assets view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-80
Non-Confidential

• Selecting File > Export All Captured Framebuffers. This option is only enabled if OpenGL ES
function calls are present in the application trace.

• Selecting the frames, render targets, or draw calls containing the captured frame buffers that you want
to export from the Trace Outline view, right-clicking, and selecting Export Selected Captured
Framebuffers. This option is grayed out if your selection does not contain any captured frame
buffers.

You can export textures in the following ways:

• Right-clicking on a single function call and selecting Export Textures. This method exports all
textures that existed at the time of that function call.

• Selecting the textures that you want to export from the Textures view, right-clicking, and selecting
Export Textures.

You can export shaders in the following ways:
• Right-clicking on a single function call and selecting Export Shaders. This method exports all

shaders that existed at the time of that function call.
• Selecting the shaders that you want to export from the Shaders view, right-clicking, and selecting

Export Shaders.

5 The Graphics Analyzer interface
5.12 Assets view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-81
Non-Confidential

5.13 Shaders view
This view is an alternative tabular view of all currently loaded shaders.

 Note

This view is only available in the OpenGL ES + EGL perspective by default.

For each shader, various cycle counts are shown allowing you to identify which shaders are most costly.
These cycle counts are calculated using the Mali Offline Shader Compiler for the Mali-T760 GPU.

The Cycles field in the table shows the estimate of the number of cycles each shader takes for a single
invocation. This estimate might be inaccurate for any shaders that have any kind of non-linear control
flow. For example, a loop where the number of iterations cannot be statically determined, or if the shader
contains any if statements.

For fragment shaders, the Fragments column and other dependent columns are empty unless the
Fragment count feature was active for the selected frame. See 4.4 Analyzing the fragment count
on page 4-50 for more information.

Active shaders are shown in bold type.

5 The Graphics Analyzer interface
5.13 Shaders view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-82
Non-Confidential

5.14 Textures view
This view shows an alternative tabular view of all currently loaded textures and includes information on
their size and format. Use this view to visualize the images that you have loaded into the system.

 Note

This view is only available in the OpenGL ES + EGL perspective by default.

Loading textures is done using an external program.

 Note

For larger traces, the application can take a short time to convert and display all textures.

The following texture formats are supported:
• GL_COMPRESSED_RGBA8_ETC2_EAC
• GL_COMPRESSED_RGB8_ETC2
• GL_ETC1_RGB8_OES
• GL_LUMINANCE
• GL_ALPHA
• GL_RGBA4
• GL_RGBA with type GL_UNSIGNED_BYTE or GL_UNSIGNED_SHORT_4_4_4_4
• GL_RGB with type GL_UNSIGNED_BYTE
• GL_COMPRESSED_RGBA_ASTC_*_KHR
• GL_COMPRESSED_SRGB8_ALPHA_ASTC_*_KHR

In certain situations, you might want to view the textures with different alpha options. The following
alpha modes are available:

Use Alpha
Does normal alpha blending using the alpha values in the texture.

Ignore Alpha
Ignores the alpha values in the texture and sets the alpha value for each pixel to its maximum,
that is, fully opaque.

Visualize Alpha
Ignores the color information in the texture and shows the alpha values for each pixel. The alpha
values are shown in a range from black (minimum alpha or fully transparent) to white
(maximum alpha or fully opaque).

5 The Graphics Analyzer interface
5.14 Textures view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-83
Non-Confidential

5.15 Images view
This view shows an alternative tabular view of all currently loaded images, including information on
their size and format. Use this view to visualize the images that you have loaded into the system.

 Note

This view is only available in the Vulkan perspective by default.

Loading images is done using an external program.

 Note

For larger traces, the application can take a short time to convert and display all images.

The following image formats are supported:

• VK_FORMAT_R8G8B8A8_UNORM
• VK_FORMAT_R16G16B16A16_SFLOAT
• VK_FORMAT_R32G32B32A32_SFLOAT
• VK_FORMAT_R32G32B32A32_UINT
• VK_FORMAT_B8G8R8A8_UNORM
• VK_FORMAT_A2R10G10B10_UNORM_PACK32
• VK_FORMAT_R32_SFLOAT
• VK_FORMAT_B10G10R11_UFLOAT_PACK32
• VK_FORMAT_ASTC_*_UNORM_BLOCK
• VK_FORMAT_ASTC_*_SRGB_BLOCK

The view has the following limitations:
• Only one layer is displayed for multiple-layer images.
• Only base mipmap level is displayed.
• Optimal tiling images content is displayed tracking buffer-to-image and image-to-image copy

operations.
• Image copy operations from and to buffer subregions and from and to specific image subresources

are not supported.

In certain situations, you might want to view the images with different alpha options. The following
alpha modes are available:

Use Alpha
Does normal alpha blending using the alpha values in the image.

Ignore Alpha
Ignores the alpha values in the image and sets the alpha value for each pixel to its maximum,
that is, fully opaque.

Visualize Alpha
Ignores the color information in the image and shows the alpha values for each pixel. The alpha
values are shown in a range from black (minimum alpha or fully transparent) to white
(maximum alpha or fully opaque).

5 The Graphics Analyzer interface
5.15 Images view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-84
Non-Confidential

5.16 Vertices view
This view has three sub tabs, Attributes, Indices, and Geometry. All the tabs show data for the selected
draw call. Therefore, the data is visible only when a draw call, such as glDrawArrays or
glDrawElements is selected in the trace.

 Note

This view is only available in the OpenGL ES + EGL perspective by default.

This section contains the following subsections:
• 5.16.1 Attributes tab on page 5-85.
• 5.16.2 Indices tab on page 5-85.
• 5.16.3 Geometry tab on page 5-85.

5.16.1 Attributes tab

This tab shows the values of the vertex attributes that are passed to the vertex shader.

If GL_ELEMENT_ARRAY_BUFFER_BINDING or GL_ARRAY_BUFFER_BINDING is set, the corresponding buffer
object is used to provide the values. The vertex indices used in this view have been sorted and duplicates
removed.

5.16.2 Indices tab

This tab shows the original list of vertex indices that were passed to the draw call.

5.16.3 Geometry tab

This tab shows, as a wireframe, the geometry drawn by the draw call.

This tab allows you to get a quick idea of what the draw call was drawing and also to inspect the
geometry for defects. You can see if the geometry is incorrect due to missing or unexpected extra
vertices. Or you can see if the geometry is too dense, which might lead to performance problems.

If you use the Geometry view with the Framebuffers view, you can see where in the scene the geometry
was drawn. Seeing the position of the geometry allows you to detect if the geometry is appropriate for its
position in the scene. For example, if the geometry is always far away from the camera, the geometry
detail can probably be lower. Or, if the complex internal geometry of an object is always occluded, it is
probably not worth drawing.

To render the correct geometry, Graphics Analyzer must know which one of the shader attributes
corresponds to the geometry position data. You can select the attribute from the Position Attribute
choice box. Graphics Analyzer uses the names of the attributes and their types to initially auto-select its
best guess at a matching attribute.

The axes in the corner of the view show the orientation of the geometry relative to the three axes, X
(red), Y (green), and Z (blue).

 Note

The Geometry viewer and export function only work with the GL_TRIANGLES, GL_TRIANGLE_STRIP, and
GL_POINTS draw modes. When using GL_POINTS, each point is rendered as a small tetrahedron. Primitive
restart is also not supported. If you are using this feature, you might see unexpected results.

5 The Graphics Analyzer interface
5.16 Vertices view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-85
Non-Confidential

Camera controls

You can rotate the camera around the center of the geometry by clicking and dragging the primary mouse
button in the view. For more precise rotation, the numeric keypad direction buttons 2, 4, 6, and 8 can also
be used to rotate the camera.

To zoom the camera in and out, use the mouse scroll wheel or the W and S keys.

To move the camera, click and drag with the secondary mouse button. Alternatively, to move left and
right press A and D, and to move up and down press Q and E.

To reset the position and orientation of the camera at any point, press the Reset Camera button.

Exporting
To do more in-depth analysis of the geometry, you can export it to a Wavefront .obj file. Most 3D model
editors and viewers can load these files. To export the geometry, right-click on the geometry viewer and
select Export to .obj.

 Note

• Wavefront .obj files do not support triangle strips so Graphics Analyzer converts any triangle strip
data to a series of individual triangles when exporting.

• Wavefront .obj files do not support points so Graphics Analyzer converts any point data into a series
of small tetrahedrons when exporting.

5 The Graphics Analyzer interface
5.16 Vertices view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-86
Non-Confidential

5.17 Uniforms view
This view shows uniform data for the active OpenGL ES shader program or programs, if program
pipeline objects are in use, at the time of the selected function call.

 Note

This view is only available in the OpenGL ES + EGL perspective by default.

For each active uniform, its index, location, type, and value are shown. If the uniform is a block, the
block name and the block buffer binding are shown.

5 The Graphics Analyzer interface
5.17 Uniforms view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-87
Non-Confidential

5.18 Automated Trace view
The Automated Trace view allows you to run a range of standard Graphics Analyzer commands
automatically when a certain frame is encountered.

For example, you could run your application and automatically take a frame capture on frame 10, do a
frame capture with overdraw mode switched on at frame 20 and do a frame capture with fragment count
mode enabled at frame 30.

 Note

You can only add automated trace commands after an application has started.

To add an automated trace command, first select and pause the process that you want to add commands
to and then open the Automated Trace view:

Figure 5-7 Automated Trace view

Select Add Command and the Add Automated Trace Command dialog opens:

Figure 5-8 Add Automated Trace Command dialog

Here you can select the type of command you want and which frames it applies to. You must specify at
least one frame number to add a command. For a frame number to be considered valid, it must:

5 The Graphics Analyzer interface
5.18 Automated Trace view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-88
Non-Confidential

• Be greater than the current frame plus one.
• Not already have an automated command associated with it.

If the list of frames is invalid, the Frame number(s) text box is highlighted in red. A tooltip on the text
box gives the reason.

 Note

Empty frame numbers, which are represented by a series of commas with no numbers between them, and
duplicate frame numbers are ignored.

When you have a valid list of frames, select the OK button:

Figure 5-9 Specifying a list of frame numbers

You can then add more commands and remove existing ones:

Figure 5-10 Selecting command types

5 The Graphics Analyzer interface
5.18 Automated Trace view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-89
Non-Confidential

When you are happy with the list, press the button. When the trace reaches frames that you have
added commands to, those commands are executed.

 Note

If you send a play, step, or capture command in a frame, or in the frame before it, automated trace
commands for that frame are ignored.

5 The Graphics Analyzer interface
5.18 Automated Trace view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-90
Non-Confidential

5.19 Render Pass Dependencies view
Graphics Analyzer can work out what dependencies there are between different render passes in a
selected frame.

 Note

This view is only available in the OpenGL ES + EGL perspective by default.

The different types of dependencies it can detect are:

• If a render pass reads from a texture that was written to in a different render pass without being
cleared. For example, render pass 0 draws to texture 1 and render pass 1 then reads from texture 1:

• If a render pass has the same depth or stencil buffer bound as another render pass without being
cleared, assuming that depth or stencil testing is enabled. For example, both render pass 0 and render
pass 1 have render buffer 1 attached to their depth target:

• If a render pass does a glBlitFramebuffer call on a different frame buffer. For example, render pass
0 draws to frame buffer 1 and render pass 1 blits frame buffer 1 into frame buffer 2:

5 The Graphics Analyzer interface
5.19 Render Pass Dependencies view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-91
Non-Confidential

The Render Pass Dependencies view shows render pass dependencies for the selected frame. To generate
a list of dependencies, select a frame in the Trace Outline view and press the Generate button in the
Render Pass Dependencies view. Any render pass in the selected frame that depends on another render
pass is shown in the tree. Expanding the render pass tells you:
• Which render pass it depends on.
• Which frame that render pass is in.
• Why Graphics Analyzer considers it a dependency.

The dependency analysis stops at the first dependency for each render pass. To find out the next
dependency in the chain, if there is one, select the frame with the earlier render pass in it and run the
analysis again.

For example, in the following screenshot, two of the render passes in Frame 1, namely Render Pass 1 and
Render Pass 4, have dependencies on previous render passes. Render Pass 1 depends on Render Pass 26
in the previous frame (Frame 0). Render Pass 4 depends on Render Pass 3 in the current frame (Frame
1). In both cases, there are dependencies because Texture 18 is attached to the active frame buffer for the
render passes:

Figure 5-11 Render Pass Dependencies view showing dependencies

5 The Graphics Analyzer interface
5.19 Render Pass Dependencies view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-92
Non-Confidential

5.20 Bookmarks view
This view shows bookmarks that have been added to the trace and allows you to add, remove, and edit
bookmarks.

Bookmarks are links to specific function calls in the trace and can contain notes for you to add
interesting information. Pressing the Add Bookmark button adds an empty bookmark to the
currently selected function call in the Trace view. Pressing the Remove Bookmark button removes
the selected bookmark from the Bookmarks view. You can edit a bookmark by double-clicking on the
notes area next to the bookmark.

For more information, see 4.9 Bookmarks on page 4-59.

Bookmarks can also be viewed and manipulated in the Trace view.

You can jump to the function call associated with a bookmark by clicking the Go to Function button
next to the bookmark.

5 The Graphics Analyzer interface
5.20 Bookmarks view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-93
Non-Confidential

5.21 Console view
This view contains a read-only console that Graphics Analyzer uses to present its internal log. You can
attach the output from this view to bug reports and it might be helpful when making a support request.

5 The Graphics Analyzer interface
5.21 Console view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-94
Non-Confidential

5.22 Scripting view
The user interface might not have all the tools that you require to extract or analyze information that is
retrieved from the target device. Therefore Graphics Analyzer has a Python scripting environment that
allows you to directly interface with the Graphics Analyzer trace model. You can either perform an
analysis natively in Python, or output the data that you need to an external file.

 Note

This feature requires a valid license.

The Jython interpreter

The Scripting view contains a Jython interpreter that implements the Python 2.7.0 specification. The
interpreter supports the standard Python syntax and the Python standard library.

There is one interpreter per trace file. These interpreters cannot share data. Closing the Scripting view
closes all interpreters. The interpreter supports loading script code in the following forms:
• User script files that you load and run from the Scripting view.
• Python modules that you load using the import statement in a user script. Imported user modules are

found by searching based on the JYTHON_PATH environment variable, not the PYTHON_PATH
environment variable.

 Note

After a script completes, all globally scoped declarations (imports, global variables, class definitions,
function definitions, …) persist in the scripting environment.

For convenience, the interpreter is initialized with two extra global variables:

trace
A representation of the Graphics Analyzer internal model.

monitor
An interface to the progress bar underneath the interpreter input text area. You can use this
interface to track progress in your scripts.

For more information about these objects, or any other Graphics Analyzer object, use the built-in Python
help function to print API documentation. For example:

help(trace)

Graphics Analyzer also comes with some sample scripts in <install_directory>/samples/scripts/
that provide examples of different ways to perform analysis on a trace object.

The scripting console

The scripting console allows you to interact with the Jython interpreter.

You can use the Up and Down keys to move through a history of the commands you have previously
executed.

Clicking Interrupt causes any running script and any created threads to stop.

Clear allows you to clear the output text area.

To reset the interpreter back to its original state, click Reset .

5 The Graphics Analyzer interface
5.22 Scripting view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-95
Non-Confidential

Loading scripts

The Scripting view contains an interactive interpreter, but for more complicated analysis it is easier to
write a script in a separate Python file. The Scripting view also allows you to load Python scripts, or
directories of Python scripts, from your file system. Graphics Analyzer only loads scripting files with
the .py extension.

The script locations that you load are stored in your workspace and are persistent across runs of Graphics
Analyzer.

To load a single script, click Add Script .

To load a directory, click Add Directory . File-system changes to this directory are reflected in
Graphics Analyzer.

To remove any top-level item, click Remove . The file and directory on the file system are not
affected.

Scripts are loaded and displayed in a staging area next to the interpreter. To execute a script, either
double-click it or highlight it in the staging area and either right-click and select Run or press the R key.

Performance considerations
The scripting environment is powerful, but also potentially memory intensive. The following tips might
help improve the performance of your scripts:
• Holding global references to objects that you no longer need wastes memory. Delete an individual

reference with the del keyword or click Reset to re-initialize the scripting environment, deleting all
references.

• Only touching the parts of the model that you are interested in keeps memory usage low.
• Traversing the model forwards is faster than traversing backwards.
• Printing excessively large strings to the interpreter console can slow down the Graphics Analyzer

user interface. If you must write large strings, write to an external file rather than the scripting
console.

5 The Graphics Analyzer interface
5.22 Scripting view

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-96
Non-Confidential

5.23 Filtering and searching in Graphics Analyzer
Filtering and searching in Graphics Analyzer uses Java regular expressions. For example, type
gl_program|gl_texture into a filter or search box to match entries that contain gl_texture or
gl_program. Filtering and searching in Graphics Analyzer is case insensitive.

By default, matches are performed on substrings. For example, program matches GL_PROGRAM. To anchor
your expressions, use the standard regular expression boundary matchers such as ^ for the beginning of a
line, and $ for the end of a line. For example, program$ matches GL_CURRENT_PROGRAM but not
GL_PROGRAM_PIPELINE_BINDING.

If the filter you type is not a valid regular expression, the Filter or Search box goes red and the error is
shown as a tooltip.

To learn more about Java regular expressions, see:
• Class Pattern
• Oracle regular expressions tutorial

5 The Graphics Analyzer interface
5.23 Filtering and searching in Graphics Analyzer

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-97
Non-Confidential

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/tutorial/essential/regex/index.html

5.24 Host-side headless mode
Headless mode allows you to do certain tasks without launching the Graphics Analyzer user interface. It
allows you to automate tracing a target device, or export assets from an existing trace.

 Note

This feature requires a valid license.

You can also use headless mode to trace a target device using just the target-side components. The main
difference between using the host and target-side headless modes is where the trace output is stored.
Host-side headless mode can only save traces to the host machine, and target-side headless mode can
only save traces onto the target device. The interfaces for each headless mode are also slightly different.
For more information, see 5.25 Target-side headless mode on page 5-100.

 Note

Exporting assets from an existing trace file can only be performed on the host.

This section contains the following subsections:
• 5.24.1 Exporting assets on page 5-98.
• 5.24.2 Tracing a target device on page 5-99.

5.24.1 Exporting assets

You can use headless mode to export shader source code and texture assets from an OpenGL ES trace.
You must provide an index in the trace from which to export.

For example, you could export the shaders that were loaded at the end of frame 15, or the textures that
were loaded at function call index 500.

To export assets, run the aga-headless script from the Graphics Analyzer installation directory. Pass in
the location of the trace file to export assets from. You must also provide the output directory with the
--export-output-directory switch. This directory is used to write the exported shaders and source
code, and must be writable, otherwise the export operations fail.

You must provide the name of the process that you want to export assets from with the -p or --process
switch. If your trace contains multiple processes with the same name, you must also provide the process
ID of the process you want to export from, using the --process-id switch.

Provide the trace index for Graphics Analyzer to extract the assets from. Graphics Analyzer attempts to
compute the OpenGL ES state at the index and export the assets that are present at that point.

You can specify the index as a function call by using these switches:

--export-function-textures
--export-function-shaders

Alternatively, you can index the trace by the frame number, which works the same way as selecting a
frame in the Trace Outline. Graphics Analyzer indexes the trace to the function call at the end of the
frame that you provide.

You can specify the index as a frame by using these switches:

--export-frame-textures
--export-frame-shaders

You can specify a trace index only, in which case Graphics Analyzer exports all assets of the specified
type at that index. For example, --export-frame-shaders 15 would export all shaders from frame 15.

You can further provide a comma-separated list of asset IDs to export from the trace index, in which case
Graphics Analyzer exports those assets only. Join the frame index to the list of asset IDs with a colon (:)

5 The Graphics Analyzer interface
5.24 Host-side headless mode

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-98
Non-Confidential

character. For example, --export-function-textures 100:1,2,3,4 would export only texture IDs 1,
2, 3, and 4 from function call index 100.

You can specify multiple frame indexes in the same command. Each index requires its own switch.

Putting it all together, the final command looks similar to this example, using Unix formatting
convention:

aga-headless/path/to/trace.mgd --export-output-directory /path/to/output-dir \
 --process com.my.process --process-id 3089 --export-frame-textures 22 \
 --export-function-shaders 200:1,2,3,4,5

This command exports the textures from frame 22 and the first five shaders from function index 200 into
the output-dir directory.

5.24.2 Tracing a target device

You can use headless mode to trace a target device with the same configuration options that can be
enabled from the GUI.

 Note

To get a full list of all the command-line switches, invoke the headless script with missing or malformed
arguments. For example, invoking aga-headless with no arguments causes the command line to fail and
triggers the headless mode help to print to the console. This help message contains an explanation of
each of the command-line switches, which map to functionality from the GUI. If it is your first time
running headless mode, or if you need reminding how to configure the trace, use this method to get the
headless mode documentation.

Headless mode assumes that the Graphics Analyzer daemon is already installed on the target device.
Instructions are available in Chapter 2 Before you begin on page 2-12.

Graphics Analyzer requires you to provide details about the device to connect. Use an IP address to
connect using the --device-ip switch. Make sure that the aga-daemon executable is running on the
target. Graphics Analyzer attempts to connect using port 5002.

You must specify a process name with --process. Headless mode does not support tracing multiple
processes.

You must provide a file name with --trace-file-output. This file is where the trace is written to when
the session ends. You must provide a file path that points to a writable location and include the file name
you want to use, for example /path/to/my-trace.mgd. Use the .mgd extension so that Graphics
Analyzer recognizes it as a trace file. If you do not use the standard extension, it is appended to the file
name automatically.

 Note

If the file you provide exists, Graphics Analyzer tries to delete it when it saves the trace.

To tell Graphics Analyzer when to stop tracing, use --timeout to set a timeout in seconds, or --exit-
at-frame to set a frame limit for the trace.

You can also use the command line to set the trace configuration. Use the preset configurations, such as
Full Trace, which allows you to replay the trace later, using the --trace-config switch. Alternatively,
you can manually tell the interceptor to collect specific data, depending on your needs. For the full list of
switches and valid inputs, run headless without any arguments to generate the help message.

5 The Graphics Analyzer interface
5.24 Host-side headless mode

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-99
Non-Confidential

5.25 Target-side headless mode
Headless mode allows you to perform a trace on the target device without a connection to the host
Graphics Analyzer application. In target-side headless mode, trace files are stored in a local directory on
the target device.

 Note

This feature requires a valid license.

There are two ways to use headless trace mode:

• Using a global configuration file
• Using the daemon in headless mode

You can also use headless mode to trace a target device from the host machine, without using the host
GUI. The main difference between using the host and target-side headless modes is where the trace
output is stored. The host headless mode can only save traces to the host machine, and the target headless
mode can only save traces onto the target device. The interfaces for each headless mode are also slightly
different. For more information, see 5.24 Host-side headless mode on page 5-98.

 Note

Exporting assets from an existing trace file can only be performed on the host.

This section contains the following subsections:
• 5.25.1 File locations on page 5-100.
• 5.25.2 Headless configuration file reference on page 5-101.
• 5.25.3 Starting the daemon in headless mode on page 5-103.
• 5.25.4 Arguments accepted by the daemon on page 5-104.

5.25.1 File locations

The locations for the configuration file and the output trace file on the target device depend on the target
OS.

Android

By default, trace files are saved to the $EXTERNAL_STORAGE/traces/ directory if the application loading
the interceptor has the Android WRITE_EXTERNAL_STORAGE permission, or /data/data/{package-name}
if the permission is not available.

Place the default configuration file in $EXTERNAL_STORAGE/aga-headless.conf if the application
loading the interceptor library has the Android READ_EXTERNAL_STORAGE permission, or /data/data/
{package-name}/aga-headless.conf if not.

 Note

• If the target device is non-rooted, make sure that the application manifest contains the
WRITE_EXTERNAL_STORAGE permission and that the application has that permission enabled in
Settings. Without this permission, it is not possible to set the configuration file for the application or
write the trace files, as internal application storage cannot be accessed without su, which requires the
device to be rooted.

• Android devices might implement specific SELinux policies which prevent Graphics Analyzer from
reading the headless mode configuration file. You can verify if these policies are implemented by
checking if there are any error messages using adb logcat -s audit. You can solve the issue by
disabling SELinux on your rooted device.

5 The Graphics Analyzer interface
5.25 Target-side headless mode

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-100
Non-Confidential

• The WRITE_EXTERNAL_STORAGE permission also implicitly grants READ_EXTERNAL_STORAGE, so if this
permission is available, the interceptor always looks for the config file in $EXTERNAL_STORAGE/aga-
headless.conf.

• On most devices $EXTERNAL_STORAGE is /sdcard.

Linux

Trace files are saved to the $HOME/traces/ directory by default.

Place the configuration file in $HOME/aga-headless.conf.

5.25.2 Headless configuration file reference

The headless configuration file is formatted as JSON. The top-level object contains a single key,
processes, which is an array of JSON objects, with each object corresponding to a configuration for an
individual process.

 Important

Configuration file items are case-sensitive. Make sure that keys and values are typed exactly as shown.

Table 5-1 Configuration file keys reference

Key Required? Type Accepted values Description Default value

name Yes String A valid process name, or
package name on Android.

Name of the process. None

config No String fullTrace, everything,
balanced, functionsOnly,
legacy

Preset config name. legacy

customConfig No Object A valid customConfig
object, see Custom config
reference on page 5-101.

Custom configuration of
resources per API.

None. Use preset
as-is with no
changes.

traceDirectory No String A valid filesystem path. Directory used for creating
headless trace files.

None. Use default,
see 5.25.1 File
locations
on page 5-100.

frameCaptures No Object A valid frameCaptures
object, see Frame captures
reference on page 5-102.

Allows setting frame captures
frame numbers and modes.

None

disconnectBefo
reFrame

No Integer A valid frame number. Number of the frame to
disconnect and disable tracing
before.

None

Custom config reference

The customConfig object contains keys for each API. Values are objects containing keys specifying
whether resources are enabled for that API. All keys are optional.

For an example of how to format this object, see Example configuration file on page 5-103.
 Note

Custom configuration resource toggles are always applied after the preset. A preset can therefore be
applied first and then modified by applying the changes made by the custom preset on top. For example,

5 The Graphics Analyzer interface
5.25 Target-side headless mode

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-101
Non-Confidential

after applying the Everything preset and a custom config with gles.shaderSources disabled, the
resulting config has all resources except OpenGL ES shader sources enabled.

Table 5-2 customConfig object keys

Key Type

cl OpenCL config object. See OpenCL config object reference on page 5-102.

gles OpenGL ES config object. See OpenGL ES config object reference on page 5-102.

vulkan Vulkan config object. See Vulkan config object reference on page 5-102.

OpenCL config object reference

Key Type

programSources Boolean

explicitMemory Boolean

OpenGL ES config object reference

Key Type

shaderSources Boolean

shaderUniforms Boolean

shaderBinaries Boolean

textureContents Boolean

explicitBuffers Boolean

implicitBuffers Boolean

outputBuffers Boolean

Vulkan config object reference

Key Type

shaderBinaries Boolean

implicitMemory Boolean

Frame captures reference

The frameCaptures configuration object contains keys for each frame capture mode. All keys are
optional.

For an example of how to format this object, see Example configuration file on page 5-103.

Table 5-3 frameCaptures object keys

Key Type

default Integer array

overdraw Integer array

fragmentCount Integer array

5 The Graphics Analyzer interface
5.25 Target-side headless mode

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-102
Non-Confidential

Table 5-3 frameCaptures object keys (continued)

Key Type

shaderMap Integer array

allAttachments Integer array

Example configuration file

This topic shows an example of a headless configuration file.

{
 "processes": [
 {
 "name": "com.example.application",
 "customConfig": {
 "cl": {
 "programSources": false,
 "explicitMemory": false
 },
 "gles": {
 "shaderSources": false,
 "shaderUniforms": false,
 "shaderBinaries": false,
 "textureContents": false,
 "explicitBuffers": false,
 "implicitBuffers": false,
 "outputBuffers": false
 },
 "vulkan": {
 "shaderBinaries": false,
 "implicitMemory": false
 }
 }
 },
 {
 "name": "cube",
 "config": "fullTrace",
 "customConfig": {
 "gles": {
 "outputBuffers": true
 }
 },
 "frameCaptures": {
 "default": [50],
 "overdraw": [65, 81],
 "allAttachments": [22],
 "shaderMap": [25, 33],
 "fragmentCount": [70, 73, 76, 80, 90]
 },
 "disconnectBeforeFrame": 50
 },
 {
 "name": "com.sample.teapot",
 "traceDirectory": "/some/path/"
 }
]
}

5.25.3 Starting the daemon in headless mode

As an alternative to using a headless configuration file, you can start the daemon in headless mode by
passing arguments to it.

 Note

A limitation of using the daemon arguments instead of a headless configuration file is that only one
process, specified using --name, can be configured at a time. The configuration file can contain multiple
configurations for different processes.

The daemon accepts a series of arguments. For details, see 5.25.4 Arguments accepted by the daemon
on page 5-104. If the --HeadlessMode argument is present, the daemon starts in headless mode.

5 The Graphics Analyzer interface
5.25 Target-side headless mode

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-103
Non-Confidential

Otherwise, it starts as normal, ignoring the rest of the headless configuration arguments. The daemon
does not reset the headless mode configuration until you kill the daemon or you connect to the host.

The process for starting the daemon in headless mode depends on the target device. However, the
argument names are the same for both methods.

For a Linux device, start the daemon executable, passing extra arguments as required. For example:

./aga-daemon --HeadlessMode --name cube

To stop the daemon, kill it like any other Linux process. Killing the daemon clears any headless
configurations that were passed in as an argument.

5.25.4 Arguments accepted by the daemon

You can pass these arguments to the daemon when starting it in headless mode.

 Note

• If --HeadlessMode is specified, --name must also be specified, otherwise the daemon does not start.
• For explicit resource arguments, specified as 1 or 0, if the argument is not present, the resource

setting from the preset is used.
• Comma-separated argument values have the format 1,[2…] with no spaces. For example, 1,2,4,8.

Table 5-4 Arguments for starting the daemon

Argument Description Default value Required?

--HeadlessMode Start the daemon in headless mode. false No, but required for
the other options to
apply.

--name/-n {process_name} Name of the process. None Yes, if
--HeadlessMode
is present.

--config/-c {preset_name} Config preset. See accepted values for the
config key in 5.25.2 Headless
configuration file reference on page 5-101.

legacy No

--traceDirectory/-o {directory} Output directory for trace files. None. Uses the
default, see
5.25.1 File locations
on page 5-100.

No

--disconnectBeforeFrame/-d
{frame_number}

Frame number before which to stop
tracing.

None No

--frameCaptures.[CaptureMode]
{comma-
separated_list_of_frame_numbers
}

Frame captures for the given mode, where
[CaptureMode] is one of the frame
capture keys. See Frame captures reference
on page 5-102), given as a comma-
separated list.

None No

--cl.[Resource] {1/0} Explicitly enable (1) or disable (0) a
resource, where [Resource] is one of the
CL resource keys. See OpenCL config
object reference on page 5-102.

None No

5 The Graphics Analyzer interface
5.25 Target-side headless mode

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-104
Non-Confidential

Table 5-4 Arguments for starting the daemon (continued)

Argument Description Default value Required?

--gles.[Resource] {1/0} Explicitly enable (1) or disable (0) a
resource, where [Resource] is one of the
OpenGL ES resource keys. See OpenGL
ES config object reference on page 5-102.

None No

--vulkan.[Resource] {1/0} Explicitly enable (1) or disable (0) a
resource, where [Resource] is one of the
Vulkan resource keys. See Vulkan config
object reference on page 5-102.

None No

5 The Graphics Analyzer interface
5.25 Target-side headless mode

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 5-105
Non-Confidential

Chapter 6
Integration with Arm Streamline

The Graphics Analyzer interceptor library generates Streamline annotations and chart information.

When profiling an application with Streamline, and provided the interceptor is installed and being used,
the following additional information is now available:
• Charts showing:

— Frames per second.
— Direct and indirect draw calls per frame.
— Vertices and instanced vertices.
— Vertices per frame.

• A per process activity view, which shows:
— Active contexts.
— Frames within each context.
— Render passes within each frame.
— Important calls per render pass, including draw calls, frame end calls, and flushing calls.

• The Heat Map and Core Map views show the active EGL contexts for threads of intercepted
processes.

It contains the following sections:
• 6.1 Installation on page 6-107.
• 6.2 Using Streamline annotations on page 6-108.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-106
Non-Confidential

6.1 Installation
Install Streamline and set up your host machine and target device.

See Getting started with Streamline in the Arm Streamline User Guide for more information about
Streamline.

To set up Graphics Analyzer, follow the instructions in Chapter 2 Before you begin on page 2-12.

6 Integration with Arm Streamline
6.1 Installation

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-107
Non-Confidential

https://developer.arm.com/documentation/101816/0704/Getting-started-with-Streamline

6.2 Using Streamline annotations
The details panel and charts in Streamline display a range of extra information.

Charts

The interceptor provides five charts that track draw calls, frame rate, and vertices.

Figure 6-1 Charts in Streamline.

Draw Calls / Frame

This chart shows, for each EGL context, the number of draw calls per frame. Selecting a range with the
caliper tool gives you the average for that period. This chart is stacked so the total height indicates the
total number of draw calls at any given time.

Frame Rate

This chart shows, for each EGL context, the average frame in frames-per-second. The frame rate, r, is
calculated using a simple rolling average over the last six frames. Selecting a range using the caliper tool
shows an average value for that period.

Indirect Draw Calls

This chart shows, for each EGL context, the number of indirect draw calls. This information indicates
how much extra work the GPU might be doing, as it is not possible to determine the number of vertices
or instanced vertices for these draw calls. Selecting a range using the caliper tool shows the total value
for that period. This chart is stacked so the total height indicates the total number of indirect draw calls at
any given time.

Vertices

This chart shows, as a global total for the application, the number of vertices and instanced vertices sent
with all direct draw calls. The two series are overlaid so that the height of the instanced vertices series
shows the total number of vertices processed by the vertex shader. It is possible to select a range using
the caliper tool and see the total number of vertices and instanced vertices for that period. For programs
not using instanced rendering, the two series are the same.

Vertices / Frame

This chart shows, for each EGL context, the number of vertices per frame. Selecting a range using the
caliper tool shows an average value for that period. This chart is stacked so the total height indicates the
total number of vertices at any given time.

Graphics Analyzer Activity View
A new view is available from the mode menu in the details panel for each process that was traced using
the Graphics Analyzer interceptor. This view shows the following:
• Active contexts on each thread.
• Each frame within a context.

6 Integration with Arm Streamline
6.2 Using Streamline annotations

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-108
Non-Confidential

• Each render pass within a frame.
• Interesting API calls within a render pass.

Figure 6-2 Graphics Analyzer Activity in the details panel.

It is possible to select a frame, render pass or call item and see its relationship with other items. Selecting
a frame highlights all render passes within that frame and all calls associated with each render pass.
Selecting a render pass highlights the chain of render passes and calls for a given frame so far. Selecting
a call highlights all previous calls within a render pass.

Information such as the time spent in the driver for an item is available by hovering over the item.
Render passes also give an indication of the reason for the render pass. For example, eglSwapBuffers
for the end of frame, or glBindFramebuffer(fboID) indicating that you changed the bound draw FBO.

Figure 6-3 Tooltip displaying render pass information

For more detailed information, zoom in to a level where it is possible to see individual API calls. Calls
are color coded to indicate the type of call they are.

Figure 6-4 Color coded API calls.

API Call Marker Colors

Red Flushing calls such as glFlush

Green End of frame calls such as eglSwapBuffers

Blue Direct draw commands such as glDrawArrays

Yellow Indirect draw commands such as glDrawArraysIndirect

Heat Map and Core Map Annotations

The Heat Map and Core Map views show active EGL contexts for each rendering thread. The length of
each bar indicates the duration that that context was active between eglMakeCurrent calls.

Figure 6-5 Active EGL contexts in the details panel.

6 Integration with Arm Streamline
6.2 Using Streamline annotations

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 6-109
Non-Confidential

Chapter 7
Known issues

This chapter describes some known issues in this release of Graphics Analyzer.

It contains the following sections:
• 7.1 OpenGL ES extensions on page 7-111.
• 7.2 Shading language version on page 7-112.
• 7.3 Shader compiler on page 7-113.
• 7.4 API asset coverage on page 7-114.
• 7.5 Memory on page 7-115.
• 7.6 Partial support for earlier trace versions on page 7-116.
• 7.7 Graphics Analyzer becomes unresponsive when closed while dynamic help is open on page 7-117.
• 7.8 Issues viewing Khronos reference pages on page 7-118.
• 7.9 Intercepting without using LD_PRELOAD on page 7-119.
• 7.10 Multiple drivers installed on the system on page 7-120.
• 7.11 Application crashes while tracing on page 7-121.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-110
Non-Confidential

7.1 OpenGL ES extensions
In general, known OpenGL ES extensions appear in the trace, but do not affect the trace or asset state.

7 Known issues
7.1 OpenGL ES extensions

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-111
Non-Confidential

7.2 Shading language version
The host application supports syntax-highlighting of shaders from OpenGL ES 3.1 and earlier. There is
support for Open CL kernel source but this support is limited to a plain text view.

7 Known issues
7.2 Shading language version

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-112
Non-Confidential

7.3 Shader compiler
The system uses a built-in version of the Mali Offline Shader Compiler to determine shader cycle counts.
These cycle counts are based on compilation for a Mali-T880 GPU.

7 Known issues
7.3 Shader compiler

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-113
Non-Confidential

7.4 API asset coverage
Graphics Analyzer has limited support for most API extension enumerations. Not all asset types are
covered at present, and not all texture types and formats are currently supported.

7 Known issues
7.4 API asset coverage

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-114
Non-Confidential

7.5 Memory
Capturing for long periods of time or attempting to capture many frame buffer or other images is
expensive on memory. If a memory shortage is detected, an active trace might be terminated to protect
the system.

See 2.1.1 Increase the available memory on page 2-13 for advice.

7 Known issues
7.5 Memory

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-115
Non-Confidential

7.6 Partial support for earlier trace versions
As new features are added to Graphics Analyzer, the data format of the saved traces is updated. We aim
to support opening and visualizing traces that were captured with an earlier version of the tool but cannot
guarantee full functionality for older traces. The best solution is to update the Graphics Analyzer
software on both target and host and re-trace the application.

7 Known issues
7.6 Partial support for earlier trace versions

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-116
Non-Confidential

7.7 Graphics Analyzer becomes unresponsive when closed while dynamic help
is open

If you try to close Graphics Analyzer while the dynamic help view is open, Graphics Analyzer does not
close and becomes unresponsive.

To avoid this issue, ensure that you close the dynamic help view before closing Graphics Analyzer. The
application then closes normally.

This issue only affects Linux.

7 Known issues
7.7 Graphics Analyzer becomes unresponsive when closed while dynamic help is open

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-117
Non-Confidential

7.8 Issues viewing Khronos reference pages
Depending on your platform, you might or might not be able to correctly view the Khronos reference
pages when double-clicking functions. This issue particularly affects Windows machines that use Internet
Explorer. It is outside of our control, as it is an incompatibility between the Khronos reference page
format and the platform default browser.

7 Known issues
7.8 Issues viewing Khronos reference pages

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-118
Non-Confidential

7.9 Intercepting without using LD_PRELOAD
Sometimes it might not be possible to use LD_PRELOAD, for example if LD_PRELOAD is already being used
for another purpose.

In such cases, you must define both LD_LIBRARY_PATH and MGD_LIBRARY_PATH as follows:

LD_LIBRARY_PATH=/path/to/intercept/dir/:$LD_LIBRARY_PATH
MGD_LIBRARY_PATH=/path/to/original/drivers/dir/

In this example, /path/to/intercept/dir/ is the directory on the target where the installation files
were copied to. This directory must contain libinterceptor.so, and include symlinks to
libinterceptor.so named libEGL.so, libGLESv2.so, and libGLESv1_CM.so.

You can set up the required symlinks for libinterceptor.so as follows:

ln -s /path/to/intercept/libinterceptor.so /path/to/intercept/libEGL.so
ln -s /path/to/intercept/libinterceptor.so /path/to/intercept/libGLESv1_CM.so
ln -s /path/to/intercept/libinterceptor.so /path/to/intercept/libGLESv2.so
ln -s /path/to/intercept/libinterceptor.so /path/to/intercept/libOpenCL.so

The directory /path/to/original/drivers/dir/ should contain the pre-existing libGLESv2.so and
libEGL.so files from the graphics driver installation.

LD_PRELOAD does not need to be defined when using this method.

When a graphics application runs, the Graphics Analyzer interceptor libraries are loaded from the
LD_LIBRARY_PATH first. These interceptor libraries dynamically load the original graphics libraries from
the MGD_LIBRARY_PATH location, as required.

 Important

You might find that the original Mali drivers pointed to by MGD_LIBRARY_PATH are small shim libraries
that do not export any entry points, but instead depend on libmali.so. If so, the interceptor fails to
correctly load the driver libraries unless MGD_LIBRARY_PATH also contains libmali.so. If this is not the
case, you can either point MGD_LIBRARY_PATH to the location of libmali.so, regardless of whether that
location also contains the libEGL or libGLES libraries, or you can point MGD_LIBRARY_PATH to a location
that contains symlinks to libmali.so instead.

7 Known issues
7.9 Intercepting without using LD_PRELOAD

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-119
Non-Confidential

7.10 Multiple drivers installed on the system
More than one version of the Mali driver might be installed on your device. For example, if you aim to
use both X11 and FBDEV on the same Linux platform.

If so, it might not be possible to use the standard LD_PRELOAD approach on its own.

Instead, you must use that approach as normal while defining the MGD_LIBRARY_PATH environment
variable as follows:

MGD_LIBRARY_PATH=/path/to/original/drivers/dir/

The /path/to/original/drivers/dir/ contains the pre-existing libGLESv2.so and libEGL.so files
from the graphics driver installation.

When a graphics application runs, the Graphics Analyzer interceptor libraries are preloaded as normal.
The interceptor libraries then dynamically load the original graphics libraries from the
MGD_LIBRARY_PATH location as required.

See 7.9 Intercepting without using LD_PRELOAD on page 7-119 for more information.

7 Known issues
7.10 Multiple drivers installed on the system

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-120
Non-Confidential

7.11 Application crashes while tracing
Graphics Analyzer uses shader replacement to instrument the application and provide debug
visualizations of captured frames. To avoid the application using previously compiled and cached shader
or program binaries, which cannot be instrumented, the installed Graphics Analyzer layer forces all calls
that load previously compiled shaders and programs to fail.

This forced failure includes functions such as glShaderBinary() or glProgramBinary(). If an
application does not handle these functions failing cleanly, falling back to a new source compilation, the
application might fail to start or might render incorrectly.

You can work around this issue by doing one of the following, depending on the application:
• Clear the application storage cache, which clears the automatic caching on Android.
• Delete all application data, which clears any application managed caching.
• Uninstall and re-install the application, forcing a fresh compile on first load.

 Note

Calls to glShaderBinary() or glProgramBinary() can fail at any time on a device, for example if a
system update installs a newer graphics driver. Applications should therefore always fall back to
compiling from source when binary loads fail.

7 Known issues
7.11 Application crashes while tracing

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. 7-121
Non-Confidential

Appendix A
Analytics

It contains the following sections:
• A.1 Analytics information on page Appx-A-123.
• A.2 Disable analytics data collection on page Appx-A-124.

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-A-122
Non-Confidential

A.1 Analytics information
Arm collects anonymous information about the usage of our products to help us improve our products
and your experience with them.

Product usage analytics contain information such as system information, settings, and usage of specific
features of the product. You can enable or disable the feature in the product settings. Product usage
analytics do not include any personal information.

Host information includes:

• Operating system name, version, language, architecture, and locale
• Number of CPUs
• Amount of physical memory
• Screen resolution
• Processor and GPU type
• Java environment

Product information includes:

• Build ID, version, and edition
• License information

Feature information includes:
• OS architecture of the target device
• GPU vendor of the target device
• GL renderer of the target device
• OpenGL version running on the target device
• Is the target device running a rooted Android?
• Number of times a trace is taken on the system

A Analytics
A.1 Analytics information

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-A-123
Non-Confidential

A.2 Disable analytics data collection
Use these options to disable the collection of product usage analytics data.

Procedure
• Set the environment variable ARM_DISABLE_ANALYTICS to any value, including 0 or an empty string,

to disable analytics collection for all tools running in that environment.
• The command-line option --disable_analytics disables analytics collection for that single tool

invocation.
• Uncheck the option Edit > Preferences > Product usage analytics > Allow collection of product

usage analytics.
 Note

The preference is not persistent across tool versions. If you uncheck the option on a particular
Graphics Analyzer version and then install a newer version, the preference reverts to the default.

A Analytics
A.2 Disable analytics data collection

101545_0506_00_en Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Appx-A-124
Non-Confidential

	Graphics Analyzer User Guide
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction
	1.1 : Installation package

	2 : Before you begin
	2.1 : Host system requirements
	2.1.1 : Increase the available memory
	2.1.2 : Temporary storage

	2.2 : Target system requirements
	2.3 : Prerequisites
	2.4 : Preparing OpenGL ES applications for Android 9 and earlier
	2.4.1 : Preparing your application
	2.4.2 : Building an OpenGL ES Unity application
	2.4.3 : Building an OpenGL ES Unreal Engine application

	2.5 : Preparing non-debuggable applications
	2.6 : Linux
	2.6.1 : Prerequisites
	2.6.2 : Install Graphics Analyzer on a Linux target
	2.6.3 : Connect the host and the target
	2.6.4 : Trace an OpenGL ES, EGL, or OpenCL application
	2.6.5 : Trace a Vulkan application
	2.6.6 : Uninstall Graphics Analyzer

	2.7 : Chrome OS
	2.7.1 : Prerequisites
	2.7.2 : Trace an Android application on Chrome OS
	2.7.3 : Trace a Linux application on Chrome OS
	2.7.4 : Trace the Chrome application on Chrome OS

	2.8 : webOS
	2.8.1 : Application support
	2.8.2 : Install Graphics Analyzer on webOS
	2.8.3 : Trace a web-based application
	2.8.4 : Trace a QML application
	2.8.5 : Trace a native application

	2.9 : Troubleshooting
	2.9.1 : No trace is visible

	3 : Getting started
	3.1 : Open Graphics Analyzer
	3.2 : Tracing OpenGL ES Android and Vulkan applications
	3.3 : Tracing Linux devices and IP address of target devices
	3.4 : Configure tracing assets
	3.5 : Pause, step frames, and resume
	3.6 : Capturing frame buffer content
	3.7 : Capturing all frame buffer attachments

	4 : Analyzing your trace
	4.1 : Analyzing overdraw
	4.2 : Analyzing the shader map
	4.3 : Overdraw and shader map limitations
	4.4 : Analyzing the fragment count
	4.5 : Frame overrides
	4.5.1 : Replace texture
	4.5.2 : Force precision
	4.5.3 : Modify shaders

	4.6 : Debugging an OpenCL application
	4.7 : Using GPUVerify to validate OpenCL kernels
	4.8 : Comparing state between function calls
	4.9 : Bookmarks
	4.10 : Dealing with VR applications
	4.11 : Tracing an application that is already running
	4.12 : Tracing multiple processes

	5 : The Graphics Analyzer interface
	5.1 : Perspectives
	5.2 : Trace view
	5.2.1 : Add a bookmark to a function call

	5.3 : Trace Outline view
	5.4 : Timeline view
	5.5 : Statistics view
	5.6 : Function Call view
	5.7 : Trace Analysis view
	5.8 : Target State view
	5.9 : Buffers view
	5.10 : OpenGL ES Framebuffers view
	5.11 : Vulkan Frame Capture view
	5.12 : Assets view
	5.12.1 : Exporting assets

	5.13 : Shaders view
	5.14 : Textures view
	5.15 : Images view
	5.16 : Vertices view
	5.16.1 : Attributes tab
	5.16.2 : Indices tab
	5.16.3 : Geometry tab

	5.17 : Uniforms view
	5.18 : Automated Trace view
	5.19 : Render Pass Dependencies view
	5.20 : Bookmarks view
	5.21 : Console view
	5.22 : Scripting view
	5.23 : Filtering and searching in Graphics Analyzer
	5.24 : Host-side headless mode
	5.24.1 : Exporting assets
	5.24.2 : Tracing a target device

	5.25 : Target-side headless mode
	5.25.1 : File locations
	5.25.2 : Headless configuration file reference
	Custom config reference
	Frame captures reference
	Example configuration file

	5.25.3 : Starting the daemon in headless mode
	5.25.4 : Arguments accepted by the daemon

	6 : Integration with Arm Streamline
	6.1 : Installation
	6.2 : Using Streamline annotations

	7 : Known issues
	7.1 : OpenGL ES extensions
	7.2 : Shading language version
	7.3 : Shader compiler
	7.4 : API asset coverage
	7.5 : Memory
	7.6 : Partial support for earlier trace versions
	7.7 : Graphics Analyzer becomes unresponsive when closed while dynamic help is open
	7.8 : Issues viewing Khronos reference pages
	7.9 : Intercepting without using LD_PRELOAD
	7.10 : Multiple drivers installed on the system
	7.11 : Application crashes while tracing

	A : Analytics
	A.1 : Analytics information
	A.2 : Disable analytics data collection

