
Model Debugger for Fast Models
Version 11.0

User Guide

Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved.
ARM 100968_1100_00_en

Model Debugger for Fast Models
User Guide
Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 31 May 2014 Non-Confidential New document for Fast Models v9.0, from DUI0314P for v8.3.

B 30 November 2014 Non-Confidential Update for v9.1.

C 28 February 2015 Non-Confidential Update for v9.2.

D 31 May 2015 Non-Confidential Update for v9.3.

E 31 August 2015 Non-Confidential Update for v9.4.

F 30 November 2015 Non-Confidential Update for v9.5.

G 29 February 2016 Non-Confidential Update for v9.6.

H 31 May 2016 Non-Confidential Update for v10.0.

I 31 August 2016 Non-Confidential Update for v10.1.

J 11 November 2016 Non-Confidential Update for v10.2.

K 17 February 2017 Non-Confidential Update for v10.3.

1100-00 31 May 2017 Non-Confidential Update for v11.0. Document numbering scheme has changed.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

 Model Debugger for Fast Models

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2
Non-Confidential

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2014–2017, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Model Debugger for Fast Models

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com

Contents
Model Debugger for Fast Models User Guide

Preface
About this book 7

Chapter 1 Introduction
1.1 About Model Debugger .. 1-10
1.2 Key features 1-11
1.3 Retargetable debugger .. 1-12
1.4 Cluster debugging 1-13

Chapter 2 Using Model Debugger
2.1 Launching Model Debugger 2-15
2.2 Model Debugger application windows 2-24
2.3 Debug views for source code and disassembly 2-39
2.4 Debug views for registers and memory 2-46
2.5 Debug views for pipelines .. 2-52
2.6 Watch window and Expression Evaluator 2-57
2.7 Breakpoints in Model Debugger 2-60
2.8 Model Debugger sessions 2-64
2.9 Preferences dialog box .. 2-65

Chapter 3 Installation and Configuration
3.1 Linux installation procedure 3-68
3.2 Windows installation procedure 3-70

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4
Non-Confidential

Chapter 4 Shortcuts
4.1 Keyboard shortcuts .. 4-72

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 5
Non-Confidential

Preface

This preface introduces the Model Debugger for Fast Models User Guide.

It contains the following:
• About this book on page 7.

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 6
Non-Confidential

 About this book
This document describes how to use Model Debugger GUI for CADI-compliant processor models.
Generate them using either System Canvas or System Generator. Both are ARM Fast Models tools.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces Model Debugger and describes its key features.

Chapter 2 Using Model Debugger
This chapter describes how to use Model Debugger.

Chapter 3 Installation and Configuration
This chapter describes how to install and configure a standalone version of Model Debugger.
Model Debugger is automatically installed with Fast Models.

Chapter 4 Shortcuts
This chapter describes shortcuts available in Model Debugger.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

 Preface
 About this book

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 7
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Model Debugger for Fast Models User Guide.
• The number ARM 100968_1100_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Developer.
• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 8
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introduction

This chapter introduces Model Debugger and describes its key features.

It contains the following sections:
• 1.1 About Model Debugger on page 1-10.
• 1.2 Key features on page 1-11.
• 1.3 Retargetable debugger on page 1-12.
• 1.4 Cluster debugging on page 1-13.

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-9
Non-Confidential

1.1 About Model Debugger
Model Debugger for Fast Models is a fully retargetable debugger for scalable cluster software
development. It is designed to address the requirements of SoC software developers.

Model Debugger has an easy to use GUI front end and supports:
• Source-level debugging.
• Complex breakpoints.
• Advanced symbolic register display.
• Customized window layout.

Model Debugger can connect to any Component Architecture Debug Interface (CADI) compliant model.

Model Debugger supports full cluster debugging, and multiple instances of Model Debugger stay fully
synchronized while debugging different cores running within a single system.

Figure 1-1 A Model Debugger session: main window with debug windows

Related information
Component Architecture Debug Interface v2.0 Developer Guide.

1 Introduction
1.1 About Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-10
Non-Confidential

https://developer.arm.com/docs/100963/latest

1.2 Key features
This section describes the key features of Model Debugger.

• Full simulation control on C-statement and instruction levels.
• C-source level display with syntax highlighting.
• Integrated variable browser.
• Low-level disassembly display.
• Call stack and backtrace.
• Complex register display with unlimited register groups and compound registers.
• Memory windows with support for multiple memory spaces and bit widths.
• Breakpoints on register and memory locations with complex conditions.
• Advanced search capabilities.
• Intuitive GUI with fully customizable window layout.
• Project management to store debugging sessions including window layout, open files, and

breakpoints.
 Note

Fast Models targets do not support all of these features.

1 Introduction
1.2 Key features

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-11
Non-Confidential

1.3 Retargetable debugger
Model Debugger supports completely retargetable debugging of any target that supports the CADI debug
interface.

All target-related information, such as the disassembly and resources like register files and flags, is
contained in the target model library. Model Debugger communicates with the target using CADI to
retrieve the static target-specific information, for example a register file. It can then determine the target
state and control execution.

Model Debugger can attach to and debug target components that are part of Fast Models systems. It can
also debug any stand-alone target model library that has a CADI interface.

Related information
Component Architecture Debug Interface v2.0 Developer Guide.

1 Introduction
1.3 Retargetable debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-12
Non-Confidential

https://developer.arm.com/docs/100963/latest

1.4 Cluster debugging
Model Debugger supports cluster debugging and can be attached to an arbitrary number of core targets in
a cluster system.

If attached to a processor model, Model Debugger automatically loads the debug information for the
respective target processor and colors all views.

Model Debugger can save the appearance for each target that is based on project files. Information that
can be saved and restored includes:
• Debugger geometry.
• Complete layout and geometry of all views.
• Breakpoints.

Related references
2.8 Model Debugger sessions on page 2-64.

1 Introduction
1.4 Cluster debugging

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-13
Non-Confidential

Chapter 2
Using Model Debugger

This chapter describes how to use Model Debugger.

It contains the following sections:
• 2.1 Launching Model Debugger on page 2-15.
• 2.2 Model Debugger application windows on page 2-24.
• 2.3 Debug views for source code and disassembly on page 2-39.
• 2.4 Debug views for registers and memory on page 2-46.
• 2.5 Debug views for pipelines on page 2-52.
• 2.6 Watch window and Expression Evaluator on page 2-57.
• 2.7 Breakpoints in Model Debugger on page 2-60.
• 2.8 Model Debugger sessions on page 2-64.
• 2.9 Preferences dialog box on page 2-65.

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-14
Non-Confidential

2.1 Launching Model Debugger
This section describes how to launch Model Debugger, and how to start models and connect to them
from it.

This section contains the following subsections:
• 2.1.1 Launching from the command line on page 2-15.
• 2.1.2 Launching from System Canvas on page 2-17.
• 2.1.3 Launching Model Debugger separately on page 2-21.
• 2.1.4 Starting simulations and connecting automatically on page 2-22.

2.1.1 Launching from the command line

To launch Model Debugger from the command line, type modeldebugger, with options and arguments.

Table 2-1 Command-line options

Short Long option Description

--cyclelimit cycles Set a limit on the number of system cycles for a simulation in non-GUI mode.

Use the --nogui option to enable this option.

--debug-isim
isim_system

Start isim_system and connect Model Debugger remote to the simulation.

--debug-sysc systemc Start systemc Simulation and connect Model Debugger remote to the simulation.

-T --timelimit time Set a time limit for a simulation in non-GUI mode.

Use the --nogui option to enable this option.

-a --application filename Load the application file filename. To target cores in cluster systems, prefix the name with
the path to the instance. For example, foo.bar.core=dhrystone.axf.

-C --parameter parameter Set one model parameter. Specify it as a path naming the instance and the parameter name
using dot separators. For example, foo.bar.inst.parameter=1000. To set multiple
parameters, use --config-file.

-c --connect
simulation_id

Connect to a remote CADI simulation. simulation_id specifies the simulation to connect
to. --list-connections displays the list of available connections.

-E --enable-verbose
msgClass

Use verbose messages if displaying message text for message classes msgClass. Without an
argument, this option lists all classes.

-e --env-connect Connect to remote CADI simulation using the following environment variables:
• CADI_CLIENTPORT_TCP – port number
• CADI_INSTANCEID – component instance name
• CADI_APPLICATIONFILENAME – application file name

-F --stdout-to-file FILE Print all application output to FILE instead of the StdIO pane in the Output Window.

-f --config-file filename Use model parameters from the configuration file filename.

-h --help Print the available options and exit.

-i --instance Specify the instance.

-L --cadi-log Log all CADI calls into an XML logfile CADILog-nnnn.xml, where nnnn is a set of four
digits. The logfile is created in the same directory as the model.

--list-connections List possible connections to remote CADI simulations on the local machine and exit
afterwards. Each simulation is given a unique simulation ID.

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-15
Non-Confidential

Table 2-1 Command-line options (continued)

Short Long option Description

--list-instances List target instances.

-l --list-params List target instances and their parameters.

-m --model filename Load the model library in the file named filename.

-N --nogui Run the simulation without displaying the GUI.

Use the --script option to load and run a script on startup.

-n --no-params-dialog Do not display the parameter configuration dialog at startup.

-O --stdout-to-stdout Print all application output to stdout instead of the StdIO pane in the Output Window.

-p --project filename Load the project file filename.

-q --quiet Suppress all Model Debugger and Model Shell output.

-s --script filename Execute the commands from the script named filename.

--plugin Load specific trace plug-ins. The equivalent environment variable is FM_TRACE_PLUGINS.

-V --verbose Equivalent to --enable-verbose “MaxView”.

-v --version Print the tool version and exit.

-x --force-reg-hex Force registers with initial integer display to be hexadecimal format instead.

-Y --layout filename Load the layout file filename.

-y --no-target-dialog Suppress the Select Target dialog box that normally appears when a model is loaded. Model
Debugger automatically connects to targets that have the executes_software flag set.
From the GUI, you can use the Other Settings check box in the Preferences dialog box to
suppress the Select Target dialog box.

String syntax

Filenames, and similar strings, included when starting Model Debugger from the command line must be
within double quotes if there is white space in the string.

For example:

modeldebugger -a "my application file.axf"

There is, however, no requirement to use quotes if your parameter is a single word with no spaces. Both
of these forms are valid:

modeldebugger --script myscript.txt

modeldebugger --script "myscript.txt"

Configuration file syntax

You can configure a model that you start from the command line with Model Debugger by including a
reference to an optional plain text configuration file. Each line of the configuration file must contain the
name of the component instance, the parameter to be modified, and its value.

Use this format:

instance.parameter=value

The instance can be a hierarchical path, with each level separated by a dot “.” character. If value is a
string, additional formatting rules might apply.

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-16
Non-Confidential

You can include comment lines in your configuration file. Such lines begin with a # character. Boolean
values can be set using either true/false or 1/0. A sample configuration file including a variety of
syntax examples looks like this:

Disable semihosting using true/false syntax
coretile.core.semihosting-enable=false
#
Enable VFP at reset using 1/0 syntax
coretile.core.vfp-enable_at_reset=1
#
Set the baud rate for UART 0
baseboard.uart_0.baud_rate=0x4800

Related references
String syntax on page 2-16.

Running Model Debugger without a GUI

Running a simulation using Model Debugger can be scripted with the MxScript language.

A scripted simulation typically does not require control of the target system beyond the provided script.
Model Debugger can therefore be run without a Graphical User Interface (GUI). This mode is triggered
by the command-line option --nogui.

 Note

A simulation platform hosted by Model Debugger in non-GUI mode does not require a script. You can
therefore also run Model Debugger in non-GUI mode without any scripted interaction.

To limit the duration of a simulation in non-GUI mode, specify the amount of seconds or system cycles
using the command-line options:
• --timelimit time_in_seconds

• --cyclelimit number_of_system_cycles

The timelimit and cyclelimit options are only enabled in --nogui mode.

2.1.2 Launching from System Canvas

This section describes how to launch Model Debugger from System Canvas.

Procedure
1. Open the Debug Simulation dialog box:

• Click the Debug button on the toolbar.
• Select main menu > Project > Launch Model Debugger .

The Debug Simulation dialog box appears.
 Note

If you have loaded a model, the CADI library option and the Application field are available for use.

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-17
Non-Confidential

Figure 2-1 Debug Simulation dialog box
2. Click OK.

Model Debugger starts.

Using the Configure Model Parameters dialog box

This section describes how to configure models.

If you had not yet loaded a model at the time that Model Debugger starts:

1. Select File > Load Model.
2. In the Load Model dialog box that appears, locate and select the required model, then click Open.
3. A dialog box appears:

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-18
Non-Confidential

Figure 2-2 Configure Model Parameters dialog box

If you had already loaded a model before Model Debugger starts, Model Debugger checks the available
components and opens a similar dialog box.

 Note

The exact contents and titles of the panes might differ because they depend on the model.

The Configure Model Parameters dialog box has the following sections:

Parameter category
This pane contains a hierarchical list of the component parameters by category. To expand the
view, click the + symbol. To collapse the view, click the - symbol.

Parameter setting
The parameter values are displayed in the right-hand pane.
To toggle between hexadecimal or decimal views, use the box in the lower left corner of the
window.

 Note

The name of this pane varies, depending on the model, but its purpose and usage is the same in
all cases.

To view the configuration parameters as a single list, click the List View tab. The Tree View is similar,
but shows the same parameters in a grouped hierarchy.

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-19
Non-Confidential

Figure 2-3 Configure Model Parameters dialog box, List View tab

Set the parameters for the model and click OK to close the Configure Model Parameters dialog box.

Using the Select Targets dialog box

After closing the Configure Model Parameters dialog box, the Select Targets dialog box appears. Select
those components that can be debugged in the model.

Figure 2-4 Select Targets dialog box

1. Click the box next to the components that are to load.
2. The Application file column displays applications to load for the processors. If the correct

application is not selected, click in the field and enter the name of the source file.
3. If the application name in the list is the same as the application that was already loaded, the debug

information is automatically loaded to the debugger.
4. Click OK to close the dialog box.
5. One or more instances of Model Debugger are created, depending on how many targets you selected

to load.

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-20
Non-Confidential

If the application is loaded and the source code can be found from the debug information in the
specified file, Model Debugger displays the code in the source window.

If the debug information cannot be found because, for example, the Application file field is empty,
use the Load Application dialog box to specify the location for the source code.

Using the Load Application dialog box

If the application and source code are not loaded automatically, select File > Load Application to locate
and load the code manually.

Figure 2-5 Load Application dialog box

Reset the component after loading the source.
 Note

The Load Application dialog box only displays if you have loaded a model from Model Debugger.

2.1.3 Launching Model Debugger separately

How to connect to remote Integrated SIMulator (ISIM) model simulations.

You can debug any model that has a CADI interface with Model Debugger.

Procedure
1. Start your model, for example using Model Shell with a CADI server enabled.
2. Launch Model Debugger.
3. To display the Model Debugger - Connect remote dialog box, select File > Connect to Model :

Figure 2-6 Connect remote dialog box
4. Select the required simulation instance and click Connect.

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-21
Non-Confidential

5. Select a target, for example the processor, and click Connect to connect to the specific component
instance in the simulation.

Figure 2-7 Select Target dialog box

If you select more than one instance, one Model Debugger window opens for each component. Click
OK to close the dialog box.

6. If no application loads, select File > Load Application Code . Select the application image from the
Load Application dialog box and click Open.

 Note

If the application loads and the debug information in the application file allows it, Model Debugger
displays the source code in the source window.

2.1.4 Starting simulations and connecting automatically

In Model Debugger, you can start a SystemC or Integrated SIMulator (ISIM) model simulation and then
connect to it.

Procedure
1. Select:

• File > Debug Isim System … to display the Debug Isim System dialog box.
• File > Debug SystemC Simulation … to display the Debug SystemC Simulation dialog box.

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-22
Non-Confidential

Figure 2-8 Debug Isim System dialog box
2. Select a simulation and optionally an application (and parameter file for an ISIM only). If a file is

missing, an error message appears. Click OK to start the simulation and connect.
The Select Targets dialog box appears.

Related tasks
2.1.3 Launching Model Debugger separately on page 2-21.

Related references
2.9 Preferences dialog box on page 2-65.

2 Using Model Debugger
2.1 Launching Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-23
Non-Confidential

2.2 Model Debugger application windows
The Model Debugger GUI consists of the main menu, the toolbar, and the workspace with dock
windows.

This section contains the following subsections:
• 2.2.1 Workspace on page 2-24.
• 2.2.2 Main toolbar on page 2-25.
• 2.2.3 Menu bar on page 2-27.
• 2.2.4 Dock windows on page 2-33.
• 2.2.5 Moving or copying views on page 2-33.
• 2.2.6 Saving the window layout on page 2-35.
• 2.2.7 Opening new debug views on page 2-37.
• 2.2.8 Closing windows and views on page 2-37.
• 2.2.9 Output window on page 2-38.

2.2.1 Workspace

The workspace can contain various view types.

• Source code.
• Disassembly.
• Call stack.
• Thread.
• Register.
• Memory.
• Global variables.
• Local variables.
• Output.
• Watch.

By default, the layout does not contain the thread, global variable, or watch windows.

The workspace layout can be customized by opening views, closing views, or specifying options in the
Preferences dialog box.

All views can be moved or resized. Project files enable saving and restoring the customized layout. The
files can give each processor target type, and even each target instance, a unique appearance.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-24
Non-Confidential

Figure 2-9 Default layout for Model Debugger

2.2.2 Main toolbar

The main toolbar provides buttons for frequently used functions. If the functionality is not available in
the current context, the buttons are grayed out.

Figure 2-10 Main toolbar

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-25
Non-Confidential

Open
Click to open a model library and application file. When the button is clicked:
1. If a model library is not already open, a dialog box is displayed to enable you to select a

model library to load.

Select the model library and click OK.
2. If an application is not already open, a dialog box opens to enable you to select the

application file to load into the target.

Select the application file and click OK.
3. If a model library and application are already open, a dialog box is displayed to select the

source file for the application.

Select the source file and click OK.
 Note

You might use a Symmetric MultiProcessing (SMP) model with more than one processor, such
as one based on the Cortex®-A9 processor. In this case, Model Debugger only loads one image
that is run on all processors. All Model Debuggers that are attached to the SMP model load the
debug information for that image. This feature is called SMP awareness.

In certain circumstances, you can switch SMP awareness on or off by using the Model
Debugger Preferences dialog box.

Bkpts
Click to open the breakpoint manager.

Run
To run the simulation until a breakpoint is hit or some exception occurs, click this button.
Encountering a simulation halt is an example of an exception that stops simulation.

Pause/Cont
Click to pause or continue the current high-level simulation step command. An example would
be a source-level step. The button text and icon changes depending on whether the simulation is
running (Pause) or stopped (Cont).

You can interrupt high-level simulation control commands with breakpoints before completion.
These commands can be completed by clicking the Cont button.

Stop
Click to stop the execution of the model being debugged.

Step
To execute until the simulation reaches a different source line, click to cause a source-level step.

Over
To execute the simulation and step over any function calls, click to cause source-level steps.

Out
To execute control command until the current function is exited, click to cause source-level
steps.

i Step
Click to advance the simulation by executing one source-level instruction.

i Over
Click to advance the simulation by one source-level instruction without following any call
instructions.

 Note

Not all model targets support this command.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-26
Non-Confidential

i Out
Click to advance the simulation until a return instruction is executed.

 Note

Not all model targets support this command.

i Step n
Click to advance the simulation by executing the number of source-level instructions that are
specified in the <-n-> control.

Cycle
Click to advance the simulation by a single cycle.

Cycle n
Click to advance the simulation by the number of cycles that are specified in the edit box. The
default is 1000 cycles.

<-n ->
Enter the number of cycles to step if the Cycle n or Back n buttons are clicked. The default is
1000 cycles.

If the i Step n button is clicked, this control indicates the number of instructions to step.

Back n
Click to step the simulation backwards by the number of cycles that are specified in the edit box.
The default is 1000 cycles.

 Note

Not all model targets support this command.

Back
Click to step the simulation backwards by one cycle.

 Note

Not all model targets support this command.

Reset
Click to cause a reset of the target model. The application is reloaded.

Main
Click to cause a reset of the target model. The application is reloaded. The model runs until the
main() function of the application source code is reached.

 Note

This command is only available if a main() function can be found in the debug information of
the application file.

Related references
2.9 Preferences dialog box on page 2-65.

2.2.3 Menu bar

The main menu bar provides access to most Model Debugger functions and commands.

File menu

The File menu has the following options:

Open Source …
Opens the source code for the application.

Source File Manager …
Displays the Source File Manager dialog box.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-27
Non-Confidential

Load Application Code …
Loads application code to the model.

Load Application Code (Debug info only) …
Loads debug information only.

Load Model …
Loads a model.

Connect to Model …
Displays the Connect to Target dialog box to connect to a model file.

Debug Isim System …
Displays the Debug Isim System dialog box to start and debug an isim system.

Debug SystemC Simulation …
Displays the Debug SystemC Simulation dialog box to start and debug a SystemC simulation.

Close Model
Closes the currently open model. If Model Debugger is connected to a CADI server, Model
Shell for example, the connection is closed but the simulation continues to run.

Open Session …
Opens a previously saved session.

Save Session
Saves the current debug session.

Save Session As
Saves the current debug session to a new location and name.

Preferences
Displays the Preferences dialog box to enable you to modify the user preferences.

Recently Opened Models
Displays a list of the most recently opened model files. To open the file, click a list entry. By
default, the last 16 files are displayed in the list. The number of files to display can be set in the
Preferences dialog box.

To remove a file from the list, move the mouse cursor over the file name. Press the Delete key
or right click and select Remove from list from the context menu.

Recently Opened Applications
Displays a list of the most recently opened applications. To open the application, click a list
entry. By default, the last 16 applications are displayed in the list. The number of applications to
display can be set in the Preferences dialog box.

To remove an application from the list, move the mouse cursor over the application name. Press
the Delete key or right click and select Remove from list from the context menu.

Recently Opened Sessions
Displays a list of the most recently opened sessions. To open the session, click a list entry. By
default, the last 16 sessions are displayed in the list. The number of sessions to display can be
set in the Preferences dialog box.

To remove a session from the list, move the mouse cursor over the session name. Press the
Delete key or right click and select Remove from list from the context menu.

Exit
Ends Model Debugger. If you have modified files or sessions, a dialog box prompts you to save
your changes.

Search menu

The Search menu has the following options:

Find …
Opens a dialog box that enables searching for a string in a currently active window.

Find Next
Repeats the last defined search to find the next occurrence.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-28
Non-Confidential

Find Previous
Repeats the last defined search, but the search direction is backwards in the document.

Control menu

The Control menu has the following options:

Hard Reset
This option resets the simulation without reloading the application.

Reset
Click to cause a reset of the target model. The application is reloaded automatically.

Goto Main
Cause a reset of the target model. The application is reloaded. The model runs until the main()
function of the application source code is reached.

 Note

This command is only available if a function main() can be found in the debug information of
the application file.

Run
Run the simulation until a breakpoint is hit or some exception occurs. An example would be
simulation halt.

Pause/Continue Source Step
Pause or continue the current high-level simulation step command. An example would be a
source-level step.

Source Step Over
Cause a source-level step to execute until the simulation reaches a different source line.

Source Step Out
Cause source-level steps to execute control command until the current function is exited.

Instruction Step
Advance the simulation by executing one source-level instruction.

Instruction Step Over
Advance the simulation by one source-level instruction without following any call instructions.

 Note

Not all model targets support this command.

Instruction Step Out
Advance the simulation until a return instruction is executed.

 Note

Not all model targets support this command.

Instruction Step n
Advance the simulation by the number of instructions in the <- n -> edit box. The default is
1000 cycles.

Cycle Step
Advance the simulation by a single cycle.

Cycle Step n
Advance the simulation by the number of cycles in the edit box. The default is 1000 cycles.

Enable/Disable Step Back
Enable or disable stepping back by cycles.

 Note

Not all model targets support this command.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-29
Non-Confidential

Back
Step the simulation backwards by one cycle.

 Note

Not all model targets support this command.

Back n
Step the simulation backwards by the number of cycles in the edit box. The default is 1000
cycles.

 Note

Not all model targets support this command.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-30
Non-Confidential

Configure cores for MP stepping …
To enable independent execution of cores, that is, targets, use the Configure cores for MP
stepping dialog box.

Figure 2-11 Configure cores for MP stepping dialog box

In cluster (multiprocessor) debugging, each Model Debugger window is connected to a
particular target, and the controls in that window apply only to that target. It is the simulation
that determines how other connected targets behave when you click Stop, Step, or Run within a
window. Typical behavior is to stop and run the whole simulation.

You use the Configure cores for MP stepping dialog box to enable Model Debugger to
override the default behavior. Model Debugger can control each target to which it is connected.
It can force that target to stop executing code while the simulation is running or stepping. In that
instance, Model Debugger does not stop any target to which it is not connected. To stop during
independent stepping, connect to a target, even if you do not specifically want to view or control
that target.

 Note

The Configure cores for MP stepping dialog box is only enabled if you have loaded a model.

The available MP stepping modes are as follows:
• Use Default - step whole simulation to place all execution control with the simulator. In

this mode, Model Debugger does not explicitly stop any targets.
• Foreground core only - other attached targets are stopped enables the foreground target

to run, and to stop all other targets to which it is connected.
 Note

The foreground target is the target that is associated with the window that you have selected
to run.

• Custom - single-step selected targets together enables a fixed set of targets to run, and to
stop all other targets to which Model Debugger is connected. This mode disables step and
run controls for deselected targets.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-31
Non-Confidential

Debug menu

The Debug menu has the following options:

Display Messages
Display debug messages.

Clear Log
Clear the log of debug messages.

Clear Model Output
Clears all output messages from the model.

Clear Output Summary
Clear the summary output messages.

Breakpoint Manager …
Display the Breakpoint Manager dialog box.

Profiling Manager …
Display the Profiling Manager dialog box.

 Note

Fast Models does not use the profiling options.

View Profiling …
Display the Profile Information dialog box.

 Note

Fast Models does not use the profiling options.

Save Model State …
Save the current model state. If reloaded, simulation continues from the point where the model
state was saved.

Restore Model State …
Reload a previously saved model state.

Load Debug Info for Module
Load debug information for the module.

Set Parameters
Set parameter values for the model.

Select Targets
Select the execution target within the model.

Layout menu

The Layout menu has the following options:

Layout Control Window
To set layout options such as tiling, display this window.

Load Layout …
Load a previously saved window layout.

Save Layout …
Save the current layout. Model state is not saved.

Load Recent Layout
Use a recently used window layout.

Restore Default Layout
Restore the window layout to the defaults. This option is useful if the layout has become
disorganized.

Window menu

The Window menu has the following options:

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-32
Non-Confidential

New View
Display a new debug view.

Hide
Hide an existing debug view.

Show
Display view that was most recently hidden.

Show All
Displays all previously hidden views.

Close
Close the window in focus.

Arrange Horizontally
Tile all view windows horizontally.

Arrange Vertically
Tile all view windows vertically.

Move
Move a view to the new position specified on the submenu.

Docked Views
Dock or undock the view list on the submenu.

Help menu

The Help menu has the following options:

Help …
Opens this book in Adobe Acrobat Reader.

About …
Displays the standard About dialog box displaying version and license information.

About Model …
Opens the text file that contains the release notes.

2.2.4 Dock windows

Model Debugger provides dock windows that can be docked inside the main workspace or floated as a
top-level window. To toggle between the docked and floating state, double-click on the dock window
handle or the title bar of the floating window.

2.2.5 Moving or copying views

Move or copy debug views within the same dock window or copied by dragging and dropping into
another dock window.

To start a drag-and-drop operation, left-click the debug view and, while holding the mouse button down,
press the F9 key.

A gray box on the left edge near the bottom of the Model Debugger window indicates the target location.
Releasing the mouse button drops the window into the gray box.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-33
Non-Confidential

Figure 2-12 Drag-and-drop of debug views, while moving the Memory window

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-34
Non-Confidential

To copy the window, press Ctrl+F9. This action effectively duplicates the existing view. A gray box near
the center of the Model Debugger window indicates the location for the duplicate view for the Local
Variables window. Releasing the mouse button creates the duplicate window in the target location.

Figure 2-13 Duplicating a register view

 Note

The windows might be difficult to place into the required position. To force the window to dock to a
particular location, select the window handle and right-click to display the context menu. The options
are: Dock Bottom, Dock Left, Dock Right, and Dock Top. It might take several moves to force the
window to the required location.

2.2.6 Saving the window layout

If you use different debug windows and views for different models, you can save and later reload layouts
to simplify reorganizing the views.

The Layout menu has the following entries:

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-35
Non-Confidential

Layout Control Window
Displays the window. To change focus to the selected window, click an entry.

Figure 2-14 Layout Control window

Right-click to display a context menu for moving or duplicating windows.

Figure 2-15 Layout Control context menu

 Note

You can also use drag-and-drop within the Layout Control window to change the location of the
windows.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-36
Non-Confidential

Load Layout
Load a previously saved layout file. The window positions match the window configuration
present when the layout was saved.

Figure 2-16 Load Layout dialog box

Save Layout
Save the current window arrangement to a layout file.

Load Recent Layout
Load the last saved layout. If you have modified the current layout, a prompt asks whether to
save the current layout.

Restore Default Layout
Use the default layout.

2.2.7 Opening new debug views

This section describes how to open new debug views.

To open a new window:
• Select New View from the Window menu and selecting the required type of debug view.
• Click the View icon at the right of the menu bar and select a view from the list.

Figure 2-17 Icons for selecting a new debug view

2.2.8 Closing windows and views

This section describes how to close windows and views.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-37
Non-Confidential

You can close a dock window, and all views in the window, by clicking the close button in the dock
handle or title bar. This action closes all views in the window.

To close views individually, click the specific close icon.

Close window Close view

Figure 2-18 Closing windows or individual debug views

2.2.9 Output window

This window displays messages from Model Debugger and from the debugging targets.

The window has the following tabs:

Log
Debugger messages, such as errors and warnings.

StdIO
Output from the target model.

All
An interleaved view for both the Log and StdIO categories.

The MxScript Command text box is located next at the bottom of the Output window.

To execute a command, enter the command text in the text field and click the cmd> button.

Related information
MxScript for Fast Models Reference Manual.

Related references
2.9 Preferences dialog box on page 2-65.
2.2.6 Saving the window layout on page 2-35.

2 Using Model Debugger
2.2 Model Debugger application windows

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-38
Non-Confidential

https://developer.arm.com/docs/DUI0840/latest/

2.3 Debug views for source code and disassembly
The Source code and Disassembly views share a common window.

Each view consists of:
• A title bar with controls for selecting a target line or switching between views.
• The actual code browser for source or disassembly.
• Columns for line number or address.

The function of the columns and title bar controls is specific to each view.

This section contains the following subsections:
• 2.3.1 Source view on page 2-39.
• 2.3.2 Disassembly view on page 2-43.
• 2.3.3 Call Stack view on page 2-45.

2.3.1 Source view

This section describes the Source view.

The Source view on the left contains two columns with a gray background that contain the line number
and bullets that represent executable code locations. The right side of the view contains your source
code.

The button with the green arrow scrolls the code browser to the location of the statement or instruction
that is to be executed next. You can find this button at the top left of the Source view window.

Figure 2-19 Arrow button for scrolling code

To highlight the corresponding addresses in the disassembly view, click the left-most column in the
Source view. The highlighting reveals the instructions the source statement maps to.

 Note

Highlighting is only available for source lines with a bullet. The bullet indicates that the line is
executable.

To set a breakpoint on the source line, double click a bullet. A filled red circle is displayed next to the
line to indicate that a breakpoint has been set.

Figure 2-20 Source view

2 Using Model Debugger
2.3 Debug views for source code and disassembly

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-39
Non-Confidential

The Source view title bar has controls for:
• Selecting a target line in the source using the Line: entry box.
• Selecting a source file that has already been loaded using the File: drop down list.
• Opening the Debug Source Files dialog box.

Context menu for Source view

Right click in the Source view to display the context menu. The menu has the following options:

Insert Breakpoint
Insert a breakpoint at the selected location.

Enable Breakpoint
Enable the breakpoint at the selected location.

Breakpoint Properties
If a breakpoint is present on the selected instruction, selecting this option displays the
Breakpoint properties dialog box.

Run to here
Run to the selected instruction.

Word wrap
Wrap the text to fit inside the window.

File properties
Display the filename and path for the file.

Debug Source Files dialog box

The Debug Source Files dialog box lets you locate source files that are required for debugging an
application. To open the dialog box, click the icon in the upper right corner of the Source view.

 Note

Pathnames appear with slash (/) characters, even on MS Windows. This fact does not affect operation.

Figure 2-21 Debug Source Files dialog box

The tabs switch between two different views that list the properties for the source file:

Filename
This column contains a list of files that the debugged application refers to. This column is not
shown in Hierarchy view.

Debug pathname
This column shows the path for the file. The pathname comes from the debug information of the
application. This path might be invalid because it refers to the original source file at compilation
time. The debug pathname can be absolute or relative to the executable.

2 Using Model Debugger
2.3 Debug views for source code and disassembly

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-40
Non-Confidential

Actual pathname
This column contains the path Model Debugger actually uses to locate the file. You can set the
path by double clicking a row or selecting a row and clicking Open File. The File Open dialog
box enables selecting the source file. After selecting the file, the file is opened in the debugger.

Click Find File to display the Find source file dialog box and navigate to the directory containing the
source.

Figure 2-22 Find Source File dialog box

Click Properties to display the File Properties dialog box for the selected file. You can also use the
Find File button in the File Properties dialog box to locate the file.

Figure 2-23 Source File Properties dialog box

Model Debugger has an automatic mechanism to add replacement paths that are invoked every time you
are prompted to find a source file. If the source file is found, an automatic source path replacement is
calculated.

This path might not always be correct. There are situations where you must manually edit source path
replacements because the automatic path is wrong for that context. You might, for example, have a
header file whose name is common between two different compilers, and Model Debugger chooses the
wrong one.

2 Using Model Debugger
2.3 Debug views for source code and disassembly

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-41
Non-Confidential

Click Source Paths… to open the Source Path Replacements dialog box. Use this dialog box to change
the path, or priority of the paths, to the source files for the application.

 Note

The source path replacements are stored in the Model Debugger session file and not with user
preferences.

Figure 2-24 Source Path Replacement dialog box

Existing source file replacements are displayed in the top part of the Source Path Replacement dialog
box. You can remove or reorder paths by highlighting an entry and clicking one of the following buttons:

Move Up
Move the path up one position in the list.

Move Down
Move the path down one position in the list.

Remove Entry
Delete the path from the list.

Debug Path and Actual Path have the same meaning as in the Debug Source Files dialog box.

In the lower part of the Source Path Replacement dialog box, you can add new source paths or modify
existing ones. The additional features are:

Debug info paths
Provides a tree view that simplifies navigation through the debug paths in the debug information
of the source file.

Browse
Click this button to select a path with a browser rather than typing in the actual path directly.

2 Using Model Debugger
2.3 Debug views for source code and disassembly

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-42
Non-Confidential

Apply Changes
Modify the selected entry using the entered changes.

Insert as New Entry
Adds the new path to the source path replacement list.

Searching in source files

You can search for text in the active window by using the Find dialog box. Click Find on the Search
menu to open the Find dialog box.

Figure 2-25 Find dialog box

Type the text in the box and click the Find Next or Find Previous buttons to search upwards or
downwards. Re-use previous search terms by clicking the drop-down arrow on the right of the text entry
box.

The dialog box is modeless, so you can change views without closing it. The mode is updated
automatically.

2.3.2 Disassembly view

The Disassembly view provides four columns for breakpoints and PC indicator, address, opcode, and
disassembly string.

If your target model has TrustZone® support, disassembly breakpoints from all worlds appear in the first
column. The filled red circles indicate a breakpoint in the world in the disassembly view, and unfilled red
circles indicate breakpoints in other worlds.

The green arrow indicates the actual position of the PC.

To display the whole disassembly in a help bubble, move the cursor over a disassembly line. This
function is useful if the complete disassembly string does not fit horizontally into the view.

2 Using Model Debugger
2.3 Debug views for source code and disassembly

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-43
Non-Confidential

Figure 2-26 Disassembly view

The Disassembly view title bar has the following controls:

Address:
Enter a start address to display the code from.

Memory space:
Select Secure (TrustZone) or Normal memory space, if applicable for the processor
architecture.

Architecture
Select the disassembly mode or instruction sets for the opcodes, such as ARM or Thumb.

Mapping source lines to the disassembly listing
To highlight in blue the corresponding addresses in the disassembly view, click the left-most column in
the source view. The highlighting indicates the disassembly instructions to which the respective source
statement maps.

 Note

This action is only possible for source lines with a bullet point.

Figure 2-27 Matching source and disassembly

2 Using Model Debugger
2.3 Debug views for source code and disassembly

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-44
Non-Confidential

Context menu for Disassembly view

Right-click one in the Disassembly view to display the context menu. The menu has the following
options:

Insert/Remove Breakpoint
Insert/Remove a breakpoint on the selected location only in the current shown memory space
(TrustZone world). The same can be achieved with a double click in the first column.

Insert/Remove Breakpoint into /from all Program Memories
Insert /Remove a breakpoint on the selected location in all program memory spaces.

Enable/Disable Breakpoint
Enable/Disable the breakpoint at the selected location.

Breakpoint Properties
If a breakpoint is present on the selected location, selecting this option displays the Breakpoint
properties dialog box.

Show memory
Select a memory space and update the Memory view to display the memory contents at the
address specified corresponding to the instruction location.

Run to here
Step the code until the selected location is reached.

2.3.3 Call Stack view

The Call Stack view displays the call history.

To use the Call Stack view, DWARF register mapping must be defined for the architecture and provided
in the model.

Figure 2-28 Call Stack view

 Note

The loaded application must be an ELF file that contains a .debug_frame section. No other type of
debug information is supported for the call stack view. The .debug_frame section must contain valid
DWARF debug information that matches the DWARF 2 or DWARF 3 specification. The C compiler
provides this information to describe all necessary information to unwind the stack:
• The stack pointer.
• How to retrieve the previous frame pointer.
• All registers that are involved in the unwinding process.

Only the frame section can supply this information.

2 Using Model Debugger
2.3 Debug views for source code and disassembly

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-45
Non-Confidential

2.4 Debug views for registers and memory
This section describes the views that relate to register or memory contents.

This section contains the following subsections:
• 2.4.1 Register views on page 2-46.
• 2.4.2 Memory view on page 2-47.
• 2.4.3 Variables view on page 2-49.

2.4.1 Register views

This section describes the register debug views.

The Register view displays registers and their values and organizes them into multiple groups. A combo
box enables switching between the groups that the target model predefines.

Figure 2-29 Select register group

For each register, a buffered state of the register (previous value) is stored. To view the contents:
• Use the context menu in the Register view and select Show Previous Values.

Figure 2-30 Register view showing current and previous contents
• Place the cursor over the respective register. The buffered state is updated every time the model

execution stops.

2 Using Model Debugger
2.4 Debug views for registers and memory

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-46
Non-Confidential

Figure 2-31 Register view contents at cursor

Context menu for Register view

Right-click one of the registers in the Register view to display the context menu. The menu has the
following options:

Copy
Copy the contents of the selected register.

Add to Watch
Add the selected register to the Watch view.

Insert Breakpoint
Insert a breakpoint on the selected register.

Enable Breakpoint
Enable the breakpoint at the selected register.

Breakpoint Properties
If a breakpoint is present on the selected register, selecting this option displays the Breakpoint
properties dialog box.

Edit Value
Edit the contents for the selected register.

Select and show memory at nnn
Select a memory space and update the Memory view to display the memory contents at the
address that the register contents specify.

Show memory at nnn
Update the Memory view to display the memory contents at the address that the register
contents specify.

Format
Choose the number base to use to display the register contents. The options are Default
Format, Unsigned Decimal, Signed Decimal, Hexadecimal, Binary, Float, or ASCII.

Show Previous Value
Display the current value and the previous value for the selected register.

Select All
Select the registers in the Register view.

2.4.2 Memory view

This section describes the memory debug view.

The Memory view displays a range of memory starting from the base address that the address field
(Addr:) specifies. Enter base addresses as decimal numbers or, by using the prefix 0x, as hexadecimal
numbers. Other fields allow for selection of the address space (Space:) and physical memory block
(Block:).

2 Using Model Debugger
2.4 Debug views for registers and memory

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-47
Non-Confidential

Figure 2-32 Memory view

Context menu for Memory view

To display the context menu, right click one of the cells in the Memory view. The menu has these
options:

Insert Breakpoint
Insert a breakpoint on the selected memory location.

Enable Breakpoint
Enable the breakpoint at the selected memory location.

Breakpoint Properties
If a breakpoint is present on the selected memory location, selecting this option displays the
Breakpoint properties dialog box.

Edit Value
Edit the contents for the selected memory location.

Select and show memory at nnn
Select a memory space and update the Memory view to display the memory contents at the
address that the contents of the memory location specify.

Show memory at nnn
Update the Memory view to display the memory contents at the address that the contents of the
memory location specify.

Show disassembly at nnn
Update the disassembly view to display the disassembly contents at the address that the contents
of the memory location specify.

Copy
Copy the contents of the selected memory location.

Add to Watch
Add the selected memory location to the Watch view.

Endian
Select the memory model to use to display memory contents. The options are: Default Endian,
Little Endian, and Big Endian.

Format
Choose the number base to use to display the memory contents. The options are Default
Format, Unsigned Decimal, Signed Decimal, Hexadecimal, Binary, Float, or ASCII.

Fixed column count
Display a fixed number of memory values per row. The width of the memory window
determines the number to display.

Increment column count
Increment the number of memory values to display per row.

Decrement column count
Decrement the number of memory values to display per row.

2 Using Model Debugger
2.4 Debug views for registers and memory

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-48
Non-Confidential

Increment current address
Increment the start address that is used for each memory row.

Decrement current address
Decrement the start address that is used for each memory row.

Increment MAU per cell
Increase the size of the word, that is, the Minimum Addressable Unit (MAU), to be displayed in
each memory cell. This option also changes the memory access size. If the chosen access size is
not supported, Model Debugger defaults to a size of a single MAU.

Decrement MAU per cell
Decrease the size of the word, meaning MAU, to be displayed in each memory cell. This option
also changes the memory access size. If the chosen access size is not supported, Model
Debugger defaults to a size of a single MAU.

Load File to Memory …
To load a binary or ASCII file into memory, use the Load File to Memory dialog box.

Save Memory in a File …
To save the contents of memory in a binary or ASCII file, use the Save Memory in a File dialog
box.

Memory Display Options
To enable setting column count, view format, endian mode, and MAU per cell, use the Memory
Display Options dialog box.

Load File to Memory and Store File to Memory dialog boxes

To load or store the memory contents of the target model, use these dialog boxes.

Figure 2-33 Load File to Memory dialog box

Enter the file name into the top field of the dialog box. You can use the button next to it to browse for the
file. When loading or storing a binary or ASCII file, select the correct button. The Memory Space and
Start Address fields are filled automatically from the memory view where you opened the dialog box.
You can change the values. Put an end address into the bottom field. When loading a file, unless you
enter a value here the maximum address of the memory is used.

If any problems occur, a message appears in the Message field.

2.4.3 Variables view

This section describes the Variables debug view.

Variables are displayed in these windows:

2 Using Model Debugger
2.4 Debug views for registers and memory

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-49
Non-Confidential

Local Variables window
This window shows all local variables and parameters that are valid for the current PC value,
with their type and value.
• A blue letter L before the variable name indicates a local variable.
• A green letter P indicates a parameter.

Figure 2-34 Local Variable view

Global Variables window
This window shows the global variables with their types and values. A green letter G marks
them.

Figure 2-35 Global Variable view

Complex values such as structs and arrays or pointers can be expanded by clicking the small cross before
the variable name.

 Note

To use the variables windows, the loaded application must be an ELF file that contains .debug_info
and .debug_abbrev sections. No other type of debug information is supported for this view.
The .debug_info section must contain valid DWARF debug information that matches the DWARF 2 or
DWARF 3 specification. The model must provide a PC register to enable locating local variables.

For applications that have more than one compilation unit, the units are only loaded when the PC reaches
the respective context.

2 Using Model Debugger
2.4 Debug views for registers and memory

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-50
Non-Confidential

The loading of these compilation units can be triggered manually by selecting Load Debug Info for
Module from the Debug menu. Right-click on one of the variables windows and select Load Debug
Info for Module.

The displayed dialog box lists the compilation units that can be loaded.

Context menu for the Variable view

To display the context menu, right click one of the items in the Global or Local Variable view. The menu
has these options:

Copy
Copy the contents of the selected variable.

Add to Watch
Add the selected variable to the Watch view.

Insert Breakpoint
Insert a breakpoint on the selected variable.

Enable Breakpoint
Enable the breakpoint at the selected variable.

Breakpoint Properties
If a breakpoint is present on the selected variable, selecting this option displays the Breakpoint
properties dialog box.

Edit Value
Edit the contents of the selected variable.

Show memory
Select a memory space and update the Memory view. You can display the memory contents at
the address of the value of the variable.

Show Previous Value
Display the current value and the previous value for the selected variable.

Select All
Select the variables in the variable view.

Load Debug Info for Module
Load debug information for the module that contains the selected variable.

2 Using Model Debugger
2.4 Debug views for registers and memory

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-51
Non-Confidential

2.5 Debug views for pipelines
Model Debugger provides options for viewing the pipeline.

The options are:
• The Pipeline Overview window.
• The Pipeline Table.

Pipeline views are only available if your model supports them. If the pipeline icons are gray, not orange,
then you cannot view pipeline information.

This section contains the following subsections:
• 2.5.1 Pipeline Overview window on page 2-52.
• 2.5.2 Pipeline Table window on page 2-52.

2.5.1 Pipeline Overview window

The Pipeline Overview window presents the main details of every pipeline stage.

The Pipeline Overview contains the name, program counter, opcode, and disassembly for the stages.

Figure 2-36 Pipeline Overview window

2.5.2 Pipeline Table window

The Pipeline Table gives a detailed view of the pipeline stages.

By default, the table shows views for all pipeline stages. Each of the detailed entries has a name and
value field.

2 Using Model Debugger
2.5 Debug views for pipelines

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-52
Non-Confidential

Figure 2-37 Pipeline Table window

Columns and rows can be resized by grabbing the lines between them and dragging them.

The cross in the top left corner of every pipeline stage view is the starting point for drag and drop
operations. A view can be copied or moved to an empty table cell. If it is dragged beyond the boundaries
of the table, a new row or column is added in the direction of the drag.

Drag and drop handle Close view

Open Pipeline Stage dialog List of pipeline stages

Figure 2-38 Pipeline Table icons

Double click the first column of a view to set or remove a breakpoint on the field.

Double click the second column of a view to open the field for inline edit of the value. You cannot,
however, perform an inline edit of an opcode or disassembly.

Pipeline Table context menu

Right click the empty space in the table or in an empty cell to open the context menu.

2 Using Model Debugger
2.5 Debug views for pipelines

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-53
Non-Confidential

Figure 2-39 Pipeline Table context menu

The context menu has the following entries:

New Pipeline Stage
Create a stage and add it to the view.

Reset to default
Use the default layout for the Pipeline Table view.

Insert Row Above/Insert Row Below
Insert a new row above or below the current cell.

Insert Column Left/Insert Column Right
Insert a new column to the left or right of the current cell.

Remove Row/Remove Column
Remove the row or column that includes the current cell.

Save Pipeline Table Layout
Save the current layout.

Load Pipeline Table Layout
Load a previously saved layout and use that configuration in the Pipeline Table view.

Pipeline Stage Properties dialog box

To open the Pipeline Stage Properties dialog box, click the orange icon to the right of the cross. You can
customize the lists in the Pipeline table with this dialog box. The combo box to the right of the orange
icon lists all pipeline stages that are available for the current model. The chosen pipeline stage is
displayed in the view underneath. To remove the view from the cell, click the X, located in the right top
corner of each list.

2 Using Model Debugger
2.5 Debug views for pipelines

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-54
Non-Confidential

Figure 2-40 Pipeline Stage Properties dialog box

Choose the fields to be displayed in the pipeline stage list by checking the boxes or clicking the Show
All or Hide All buttons.

The size of the first column can be set in the Visible characters in the name column control.

The optional header can be switched on and off by checking the Show header check box.

Context menu for an entry in the Pipeline Table

Right click an item in the Pipeline view lists to open the context menu.

Figure 2-41 Pipeline view context menu

The context menu has the following entries:

Close Pipeline Stage
Select to close the pipeline stage.

Copy
Select to copy the pipeline field. The field can be pasted into the Watch window.

Add to Watch
Select to add the pipeline field to the Watch window.

Remove Breakpoint/Insert Breakpoint
The text that appears depends on whether the selected field already has a breakpoint:
• If a breakpoint is present, select Remove Breakpoint to delete it.
• If a breakpoint is not present, select Insert Breakpoint to add a breakpoint.

2 Using Model Debugger
2.5 Debug views for pipelines

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-55
Non-Confidential

Enable Breakpoint/Disable Breakpoint
If a breakpoint is present:
• Select Enable Breakpoint to enable it
• Select Disable Breakpoint to retain the breakpoint, but disable it.

Breakpoint Properties
View and set the details and conditions for a particular breakpoint.

This dialog box is also available from the Breakpoint Manager dialog box.

Edit Value
Select to open the chosen field for inline edit.

Show Memory
Select to mark the memory address in the Memory Window.

Format
Select to open the submenu. This menu lets you choose the format for number display.

Figure 2-42 Submenu for display format

Select All
Selects all fields in the list.

Pipeline Stage Properties
To change the contents of the Pipeline Stage view, open the Pipeline Stage Properties dialog
box.

Pipeline Table
Select to display a submenu for the Pipeline Table.

Related references
2.7.4 Breakpoint Manager dialog box on page 2-62.

2 Using Model Debugger
2.5 Debug views for pipelines

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-56
Non-Confidential

2.6 Watch window and Expression Evaluator
The Expression Evaluator is located in the Watch window.

To display the window, select Window > New View > New Watch Window .

Figure 2-43 Watch window

There are two types of entry in the Watch window:

System variables
Entries in this group are marked with small icons to the left of their name to indicate their
origin. They can be manipulated in the Watch window in the same way as in their original view.
Items in this category include:
• Registers.
• Memory locations.
• Pipeline fields.
• Variables from source code.

Expressions for evaluation
These items do not have an associated icon because they are not duplicates of an item in a
different view. They cannot have breakpoints set and their value cannot be changed. However,
you can edit the expression itself by text in the Name column.

Double click in the left column of an existing entry to add a breakpoint for that variable.

Double click in the right column of an existing entry to edit the contents.

Double click on the last entry in the left column to enter a new expression. Press the Enter key to
evaluate the expression.

The following rules apply to the names of the resources in the target:
• Registers must be entered in the form:

$registerGroup.registerName

If the register name is unique for the whole target, the following shorthand notation can be used:

$registerName

• Pipeline stage fields must be entered in the form:

@pipelineStage.fieldName

• Memory locations must be entered in the form:

memorySpace:address

The content of a memory location is queried with the following expression:

*memorySpace:address

The delivered pointer can be type cast into any required type:

(typeName*)memorySpace:address

2 Using Model Debugger
2.6 Watch window and Expression Evaluator

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-57
Non-Confidential

The variables of the software running on top of the target processor can be entered using an expression as
they appear in the software. They do not require a prefix or quotes. Access components of structs or
unions with the '.' or '->' operator according to the C syntax.

Numeric values can be entered in the following formats:

Integer values
Integer values can have binary, octal, decimal, or hexadecimal representation. The prefix
indicates the representation format:
• Binary numbers have a leading 0b.
• Octal numbers a leading 0.
• Hexadecimals have a leading 0x.
• Literals with no prefix are interpreted as decimals.

Floating-point values
Floating-point values can have decimal and scientific representation.

Enter floating-point values in decimal representation (123.456) or in scientific representation
with positive or negative exponent (1.23456e2).

To form complex expressions, combine resources, variables, and literals in the target with operators. The
expression evaluator has the same operands as the C language and has the same precedence and
associativity of operators. Inside the complex expression, the resources of the target can be used if an
integer value would be sufficient in a regular C expression.

Table 2-2 Operator precedence

Precedence Operators Associativity

1 [] -> . Left to right

2 ! ~ + - * & (unary) (cast) sizeof Right to left

3 * (binary) / % Left to right

4 + - (binary) Left to right

5 << >> Left to right

6 < <= > => Left to right

7 == != Left to right

8 & (binary) Left to right

9 ^ Left to right

10 | Left to right

11 && Left to right

12 || Left to right

13 ?: Left to right

This section contains the following subsection:
• 2.6.1 Context menu for Watch window on page 2-58.

2.6.1 Context menu for Watch window

To display the context menu, right click one of the values in the Watch window.

The menu has these options:

Paste
Insert a copied memory, register, or variable into the Watch window.

2 Using Model Debugger
2.6 Watch window and Expression Evaluator

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-58
Non-Confidential

Copy
Copy an item and its value from the Watch window.

Insert Breakpoint
Insert a breakpoint on the selected watched item.

Enable Breakpoint
Enable the breakpoint at the selected watched item.

Breakpoint Properties
If a breakpoint is present on the selected watched item, selecting this option displays the
Breakpoint properties dialog box.

Edit Value
Edit the contents for the selected watched item.

Select and show memory at nnn
Select a memory space and update the Memory view to display the memory contents at the
address that the contents of the watched item specify.

Show memory at nnn
Update the Memory view to display the memory contents at the address that the contents of the
watched item specify.

Format
Choose the number base to use to display the watched item. The options are Default Format,
Unsigned Decimal, Signed Decimal, Hexadecimal, Binary, Float, or ASCII.

Increment number of bytes
Increment the number of memory addresses to display.

Decrement number of bytes
Decrement the number of memory addresses to display.

Select all
Select all of the watched items.

2 Using Model Debugger
2.6 Watch window and Expression Evaluator

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-59
Non-Confidential

2.7 Breakpoints in Model Debugger
This section describes how to work with breakpoints in Model Debugger.

This section contains the following subsections:
• 2.7.1 Setting breakpoints in the debug views on page 2-60.
• 2.7.2 Setting conditional breakpoints on page 2-61.
• 2.7.3 Removing and disabling breakpoints on page 2-62.
• 2.7.4 Breakpoint Manager dialog box on page 2-62.
• 2.7.5 Breakpoint Properties dialog box on page 2-62.

2.7.1 Setting breakpoints in the debug views

This section describes how to set different kinds of breakpoint in the debug views.

Source code view
The second column contains small bullets for each source line. To set a breakpoint, double click
on a bullet.

Figure 2-44 Source view breakpoint

Disassembly view
To set a breakpoint on a line, double click on any column.

Figure 2-45 Disassembly view breakpoint

2 Using Model Debugger
2.7 Breakpoints in Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-60
Non-Confidential

Register view
To set breakpoints, double click on the first column, the register name column.

Figure 2-46 Register view breakpoint

Memory view
To set breakpoints, select Insert Breakpoint from the context menu. It is not possible to set a
memory breakpoint by double clicking on an address.

Local variables view
It is not possible to set these breakpoints.

Global variables view
It is not possible to set these breakpoints.

Call stack view
To set breakpoints, double click on items in the first column.

 Note

To use this view, the architecture must have a definition of the DWARF register mapping and
the model must have DWARF register mapping too. The loaded application must be an ELF file
that contains a .debug_frame section.

Pipeline Table
To set breakpoints, double click on the name in the first column.

Figure 2-47 Pipeline table breakpoint

Watch view
If you copy an item from another view into the Watch view, you can set breakpoints in either the
original view or the Watch view.

2.7.2 Setting conditional breakpoints

Some breakpoint objects support conditional breakpoints.

To create a conditional breakpoint:

2 Using Model Debugger
2.7 Breakpoints in Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-61
Non-Confidential

Procedure
1. Set an unconditional breakpoint.
2. Set the conditions for the breakpoint with the Breakpoint Properties dialog box.

Related references
2.7.5 Breakpoint Properties dialog box on page 2-62.

2.7.3 Removing and disabling breakpoints

This section describes how to inactivate breakpoints.

You can quickly remove a breakpoint by double clicking on it. To inactivate a breakpoint without
removing it, disable the breakpoint by right-clicking on the breakpoint and selecting Disable breakpoint
in the resulting context menu. A disabled breakpoint is shown as a gray, rather than red, circle symbol.
Other breakpoint dialog boxes and menus also permit you to configure your breakpoints.

2.7.4 Breakpoint Manager dialog box

Control and maintain all breakpoints through the Breakpoint Manager.

This dialog box lists all breakpoints and provides the breakpoint target location, condition, and target
details.

Breakpoints that are hit are highlighted in the breakpoint list with an orange background. The breakpoint
is also highlighted in the original view for the item.

In the breakpoint list, select an item to:
• Enable, disable, or remove breakpoints.
• Locate the breakpoint target location in the respective debug view.
• Modify breakpoint conditions using the Properties button.

Figure 2-48 Breakpoint Manager dialog box

2.7.5 Breakpoint Properties dialog box

Open the Breakpoint Properties dialog box by right clicking on a breakpoint and then selecting
Properties from the resulting context menu, or with the Breakpoint Manager.

Select the breakpoint criteria with the Breakpoint Properties dialog box:

Ignore count
Enter the number of occurrences to ignore before triggering the breakpoint. Enter 0 to trigger a
breakpoint for every occurrence.

Enable breakpoint
To enable the breakpoint, check this box. If unchecked, the breakpoint location and type is
stored, but occurrences do not trigger a breakpoint.

Continue Execution after hit
To enable the continuation of execution after breakpoint hit, check this box. If checked the
execution of the debugged application does not stop when the breakpoint is being hit.

2 Using Model Debugger
2.7 Breakpoints in Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-62
Non-Confidential

Resource
Select the condition that results in a breakpoint being triggered. Conditional breakpoints are not
supported for some types of breakpoint object.

Value
If the Resource type is not breaks unconditional, select the comparison value that is to trigger
the breakpoint.

Trigger Type
Select whether a Read, Write, or Modify operation triggers the breakpoint. These check boxes
are not enabled for some types of breakpoint object.

Hexadecimal value display
Check to display the contents of the Value field in hexadecimal format. If unchecked, decimal
format is used.

Figure 2-49 Breakpoint Properties dialog box

2 Using Model Debugger
2.7 Breakpoints in Model Debugger

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-63
Non-Confidential

2.8 Model Debugger sessions
Model Debugger session files enable saving and restoring debugging sessions and provide a convenient
way to specify the session parameters.

Session files have the extension *.mvs.

 Note

The session files are only available for directly loaded models. They cannot be used for connections to
Model Shell or SystemC simulations.

The information that can be saved and restored includes:
• Debugger main window geometry.
• Layout of all debug views.
• Target model being loaded.
• Application file.
• Breakpoints.

Session files also enable configuring the individual layout of debugger windows for cluster systems. You
could, for example, then use the project with SoC Designer.

To save a session, select Save Session, or Save Session As, from the File menu.

To load a session and restore the original model connection and window layout, select Load Session
from the File menu.

2 Using Model Debugger
2.8 Model Debugger sessions

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-64
Non-Confidential

2.9 Preferences dialog box
Configure the behavior of Model Debugger with the Preferences dialog box.

Figure 2-50 Preferences dialog box

To display the options for that category, select an entry in the list on the left side of the dialog box:

Appearance
Each option has a checkbox:
• Show tool tips enables display of pop-up help for a control.
• Display toolbar text labels displays text below the icon.
• Word wrap in source window wraps long lines to fit the window.
• Show splash screen on startup displays the information screen.
• Reload recent layout on startup keeps your last used layout.

Use the controls in the Recent files and directories to control how many previously used files
and directories are displayed.

External Tools
The use operating system file associations checkbox is only available on Windows, and is
selected by default. This setting inactivates the external tool edit fields and buttons. To activate
these fields, clear the checkbox.

 Note

The default external tools are different on Linux.

Configure the display of the documentation with these settings. Access the documentation
through:
• The Help menu item. You access the PDFs for the Model Debugger and Fast Models this

way.
• The documentation_file property in a component property listing. This property might point

to a PDF file, a text file, an HTML file, or http:// link.

You can change the default external tools. Click the folder icon to open a browser, or use the
drop-down list to choose a previously selected executable.

Fonts
You can specify the fonts for each of the windows.

To control the fonts with the $DISPLAY variable, check Fonts depend on $DISPLAY variable.

2 Using Model Debugger
2.9 Preferences dialog box

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-65
Non-Confidential

Suppressed Messages
Lists the suppressed messages and enables you to specify an action for each message.

Verbose Messages
Turn on or off verbose message setting for the message IDs. To turn on or off individual
messages, click Selective.

Other settings
Each option has a checkbox:
• Load all Compilation Units at Startup: load all required files.
• Show Parameter Dialog at Startup: display the dialog box to configure model parameters.
• Show Target Dialog at Startup: display dialog that normally appears when a model is

loaded. If unchecked, Model Debugger automatically connects to targets that have the
executes_software flag set.

• Enable SMP Application Loading: have Model Debugger load the application once into
memory and load only debug information for all processors. The PC is set to the value of the
first processor in all processors.

After displaying the dialog box and modifying preferences:
• Click Apply to apply the settings and keep the dialog box open.
• Click OK to apply the settings and close the dialog box.
• Click Close to close the dialog box. Unapplied settings changes are lost.

2 Using Model Debugger
2.9 Preferences dialog box

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-66
Non-Confidential

Chapter 3
Installation and Configuration

This chapter describes how to install and configure a standalone version of Model Debugger. Model
Debugger is automatically installed with Fast Models.

It contains the following sections:
• 3.1 Linux installation procedure on page 3-68.
• 3.2 Windows installation procedure on page 3-70.

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-67
Non-Confidential

3.1 Linux installation procedure
This section describes the procedure for installing Model Debugger on Linux.

This section contains the following subsections:
• 3.1.1 Linux software requirements on page 3-68.
• 3.1.2 Linux installation on page 3-68.
• 3.1.3 Linux environment configuration scripts on page 3-68.

3.1.1 Linux software requirements

Model Debugger needs certain software.

Operating system
• Red Hat Enterprise Linux 6 or 7.
• Ubuntu 14.04 LTS, Ubuntu 16.04 LTS.

PDF reader
Adobe Acrobat Reader.

License management utilities
The latest version of the FlexNet software that is available for download from

https://developer.arm.com/products/software-development-tools/license-management/downloads

3.1.2 Linux installation

This section describes how to install Model Debugger.

Unpack the archive and run the setup program:

gunzip ModelDebugger_version.tgz
tar -xvf ModelDebugger_version.tar
cd ModelDebugger_version./setup.bin

In the sequence of commands, version is the version of Model Debugger you are installing.

The installer prompts you for the target installation directory and creates the following subdirectories:

bin
Executables.

doc
Documentation.

etc
Model Debugger setup scripts.

lib
Libraries and tool-specific files.

3.1.3 Linux environment configuration scripts

Model Debugger provides setup scripts in the etc directory. The appropriate setup script must be
executed to configure your environment for Model Debugger.

• For Bourne and related shells, use:

. installation_directory/etc/setup.sh

• For C and related shells, use:

source installation_directory/etc/setup.csh

You might find it more convenient to add a reference to the Model Debugger configuration script to your
usual startup script.

The setup script sets the following environment variables:

3 Installation and Configuration
3.1 Linux installation procedure

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-68
Non-Confidential

https://developer.arm.com/products/software-development-tools/license-management/downloads

Table 3-1 Environment variables

Variable Description

$PATH The PATH environment variable is updated to include installation_directory/bin.

$MAXVIEW_HOME Set to the Model Debugger installation directory. Model Debugger was previously named MaxView.

$ARMLMD_LICENSE_FILE Set to the location of the license file or license server (using port@host syntax) for Model Debugger.
See the ARM License Management documentation for more information. If necessary, you can change
this environment variable after installation by editing the setup.[c]sh script.

3 Installation and Configuration
3.1 Linux installation procedure

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-69
Non-Confidential

https://developer.arm.com/products/software-development-tools/license-management/

3.2 Windows installation procedure
This section describes the procedure for installing Model Debugger on Windows.

This section contains the following subsections:
• 3.2.1 Windows software requirements on page 3-70.
• 3.2.2 Windows installation on page 3-70.

3.2.1 Windows software requirements

Model Debugger needs certain software.

Operating system
Microsoft Windows 7 with Service Pack 1 on 64-bit architectures.

PDF reader
Adobe Acrobat Reader.

License management utilities
The latest version of the FlexNet software that is available for download from

https://developer.arm.com/products/software-development-tools/license-management/downloads

3.2.2 Windows installation

This section describes how to install Model Debugger.

Procedure
1. Open the distribution archive ModelDebugger_version.zip and extract the complete contents into a

temporary directory. version is the version of Model Debugger you are installing.
2. To start the installer, run the Setup.exe program in the temporary directory.
3. When prompted by the installer, specify the target directory for the installation or accept the default

directory.
The installer creates subdirectories in the specified installation directory.

bin
Executables.

doc
Documentation.

 Note

The installer configures the environment variables for the user who installed the tools. Other users
might need to use Model Debugger on the same computer. Either copy the value of the
%MAXVIEW_HOME% environment variable to the System variables, or have them define the environment
variable themselves in Control Panel. Both operations need administrator privileges.

3 Installation and Configuration
3.2 Windows installation procedure

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-70
Non-Confidential

https://developer.arm.com/products/software-development-tools/license-management/downloads

Chapter 4
Shortcuts

This chapter describes shortcuts available in Model Debugger.

It contains the following section:
• 4.1 Keyboard shortcuts on page 4-72.

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-71
Non-Confidential

4.1 Keyboard shortcuts
This section describes the keyboard shortcuts.

Table 4-1 Keyboard shortcuts

Modifier Key Function

Esc Close the current dialog.

F1 Help.

F3 Find next.

Shift F3 Find previous.

F5 Run target.

Shift F5 Stop target.

F10 Source-level step over.

Ctrl F10 Source-level step out. This action leaves the current function.

F11 Source-level step into.

Shift F11 Instruction-level step.

Shift F10 Instruction-level step over.

Ctrl+Shift F11 Instruction-level step out.

Ctrl F11 Cycle step.

Ctrl+Shift F11 Cycle step N.

Ctrl B Open the breakpoint manager.

Ctrl+Shift C Connect to model.

Ctrl+Shift D Load debug information from application code.

Ctrl F Search (find) operation.

Ctrl+Shift L Load model library.

Ctrl+Shift M Go to function main().

Ctrl O Multi-functional open. If no target is loaded, a dialog is displayed to select the model library and application code. If
a target is loaded, the source file is opened.

Ctrl+Shift O Load application code.

Ctrl P Open the Model Parameter dialog.

Ctrl+Shift P Pause or continue source step.

Ctrl Q Close Model Debugger.

Ctrl R Reset target only.

Ctrl+Shift R Reset target and reload application.

Ctrl S Save the current session.

Ctrl T Select target.

Ctrl U User preferences dialog.

Ctrl W Close model.

4 Shortcuts
4.1 Keyboard shortcuts

ARM 100968_1100_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-72
Non-Confidential

	Model Debugger for Fast Models User Guide
	Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction
	1.1 : About Model Debugger
	1.2 : Key features
	1.3 : Retargetable debugger
	1.4 : Cluster debugging

	2 : Using Model Debugger
	2.1 : Launching Model Debugger
	2.1.1 : Launching from the command line
	String syntax
	Configuration file syntax
	Running Model Debugger without a GUI

	2.1.2 : Launching from System Canvas
	Using the Configure Model Parameters dialog box
	Using the Select Targets dialog box
	Using the Load Application dialog box

	2.1.3 : Launching Model Debugger separately
	2.1.4 : Starting simulations and connecting automatically

	2.2 : Model Debugger application windows
	2.2.1 : Workspace
	2.2.2 : Main toolbar
	2.2.3 : Menu bar
	2.2.4 : Dock windows
	2.2.5 : Moving or copying views
	2.2.6 : Saving the window layout
	2.2.7 : Opening new debug views
	2.2.8 : Closing windows and views
	2.2.9 : Output window

	2.3 : Debug views for source code and disassembly
	2.3.1 : Source view
	2.3.2 : Disassembly view
	2.3.3 : Call Stack view

	2.4 : Debug views for registers and memory
	2.4.1 : Register views
	2.4.2 : Memory view
	2.4.3 : Variables view

	2.5 : Debug views for pipelines
	2.5.1 : Pipeline Overview window
	2.5.2 : Pipeline Table window

	2.6 : Watch window and Expression Evaluator
	2.6.1 : Context menu for Watch window

	2.7 : Breakpoints in Model Debugger
	2.7.1 : Setting breakpoints in the debug views
	2.7.2 : Setting conditional breakpoints
	2.7.3 : Removing and disabling breakpoints
	2.7.4 : Breakpoint Manager dialog box
	2.7.5 : Breakpoint Properties dialog box

	2.8 : Model Debugger sessions
	2.9 : Preferences dialog box

	3 : Installation and Configuration
	3.1 : Linux installation procedure
	3.1.1 : Linux software requirements
	3.1.2 : Linux installation
	3.1.3 : Linux environment configuration scripts

	3.2 : Windows installation procedure
	3.2.1 : Windows software requirements
	3.2.2 : Windows installation

	4 : Shortcuts
	4.1 : Keyboard shortcuts

