
Fast Models
Version 11.10

User Guide

Copyright © 2014–2020 Arm Limited or its affiliates. All rights reserved.
100965_1110_00_en

Fast Models
User Guide
Copyright © 2014–2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 31 May 2014 Non-Confidential New document for Fast Models v9.0, from DUI0370R for v8.3.

B 30 November 2014 Non-Confidential Update for v9.1.

C 28 February 2015 Non-Confidential Update for v9.2.

D 31 May 2015 Non-Confidential Update for v9.3.

E 31 August 2015 Non-Confidential Update for v9.4.

F 30 November 2015 Non-Confidential Update for v9.5.

G 29 February 2016 Non-Confidential Update for v9.6.

H 31 May 2016 Non-Confidential Update for v10.0.

I 31 August 2016 Non-Confidential Update for v10.1.

J 11 November 2016 Non-Confidential Update for v10.2.

K 17 February 2017 Non-Confidential Update for v10.3.

1100-00 31 May 2017 Non-Confidential Update for v11.0. Document numbering scheme has changed.

1101-00 31 August 2017 Non-Confidential Update for v11.1.

1102-00 17 November 2017 Non-Confidential Update for v11.2.

1103-00 23 February 2018 Non-Confidential Update for v11.3.

1104-00 22 June 2018 Non-Confidential Update for v11.4.

1104-01 17 August 2018 Non-Confidential Update for v11.4.2.

1105-00 23 November 2018 Non-Confidential Update for v11.5.

1106-00 26 February 2019 Non-Confidential Update for v11.6.

1107-00 17 May 2019 Non-Confidential Update for v11.7.

1108-00 05 September 2019 Non-Confidential Update for v11.8.

1108-01 03 October 2019 Non-Confidential Update for v11.8.1.

1109-00 28 November 2019 Non-Confidential Update for v11.9.

1110-00 12 March 2020 Non-Confidential Update for v11.10.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has

 Fast Models

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2014–2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

 Fast Models

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://www.arm.com

Contents
Fast Models User Guide

Preface
About this book 7

Chapter 1 Introduction to Fast Models
1.1 What is Fast Models? .. 1-10
1.2 What does Fast Models consist of? 1-12
1.3 Fast Models glossary 1-16
1.4 Fast Models design 1-20
1.5 Data collection in Fast Models 1-27

Chapter 2 Installing Fast Models
2.1 Requirements for Fast Models 2-30
2.2 Installing Fast Models .. 2-33
2.3 Dependencies for Red Hat Enterprise Linux 2-34

Chapter 3 Building Fast Models
3.1 System Generator (SimGen) 3-37
3.2 SimGen command-line options 3-38
3.3 Select the build target .. 3-41
3.4 Building an EVS platform 3-42
3.5 Steps for building an EVS platform .. 3-43
3.6 Bridge between LISA+ and SystemC .. 3-46
3.7 Libraries required to run the EVS platform 3-47
3.8 Building an SVP 3-48

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.9 Building an ISIM 3-49

Chapter 4 System Canvas Tutorial
4.1 About this tutorial 4-51
4.2 Starting System Canvas .. 4-52
4.3 Creating a new project 4-53
4.4 Add and configure components 4-55
4.5 Connecting components .. 4-59
4.6 View project properties and settings .. 4-60
4.7 Changing the address mapping 4-63
4.8 Building the system 4-65
4.9 Debugging with Model Debugger 4-66
4.10 Building SystemC ISIM targets .. 4-69

Chapter 5 System Canvas Reference
5.1 Launching System Canvas .. 5-71
5.2 System Canvas GUI .. 5-72
5.3 System Canvas dialogs 5-86

Chapter 6 SystemC Export with Multiple Instantiation
6.1 About SystemC Export with Multiple Instantiation 6-119
6.2 Auto-bridging 6-120
6.3 SystemC Export generated ports 6-121
6.4 SystemC Export API .. 6-125
6.5 Scheduler API .. 6-143
6.6 SystemC Export limitations .. 6-160

Chapter 7 Graphics Acceleration in Fast Models
7.1 Introduction to GGA 7-162
7.2 GGA modes 7-163
7.3 Prerequisites .. 7-167
7.4 GGA contents .. 7-168
7.5 Configuration 7-170
7.6 Feedback 7-172
7.7 Enabling GGA .. 7-173
7.8 Using GGA 7-179

Chapter 8 Timing Annotation
8.1 Enabling and disabling timing annotation .. 8-185
8.2 CPI files 8-186
8.3 CPI file syntax .. 8-187
8.4 BNF specification for CPI files 8-192
8.5 Instruction and data prefetching 8-194
8.6 Configuring cache and TLB latency 8-196
8.7 Timing annotation tutorial 8-197

Appendix A SystemC Export generated ports
A.1 About SystemC Export generated ports Appx-A-213

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Fast Models User Guide.

It contains the following:
• About this book on page 7.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This document describes how to install, build, and use Fast Models.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction to Fast Models
This chapter provides a general introduction to Fast Models.

Chapter 2 Installing Fast Models
This chapter describes the system requirements for Fast Models and how to install and uninstall
Fast Models.

Chapter 3 Building Fast Models
This chapter explains the process for using Fast Models to build different types of platform
models.

Chapter 4 System Canvas Tutorial
This chapter describes using System Canvas to build a system model.

Chapter 5 System Canvas Reference
This chapter describes the windows, menus, dialogs, and controls in System Canvas.

Chapter 6 SystemC Export with Multiple Instantiation
This chapter describes the Fast Models SystemC Export feature with Multiple Instantiation (MI)
support.

Chapter 7 Graphics Acceleration in Fast Models
Generic Graphics Acceleration (GGA) is a Fast Models framework for using host resources to
perform graphics rendering on behalf of a GPU model. This chapter gives an introduction to
GGA, describes how to enable it on a target platform model, and describes the main use cases.

Chapter 8 Timing Annotation
This chapter describes timing annotation, which enables you to perform high-level performance
estimation on Fast Models.

Appendix A SystemC Export generated ports
This appendix describes Fast Models SystemC Export generated ports.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

 Preface
 About this book

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Fast Models User Guide.
• The number 100965_1110_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introduction to Fast Models

This chapter provides a general introduction to Fast Models.

It contains the following sections:
• 1.1 What is Fast Models? on page 1-10.
• 1.2 What does Fast Models consist of? on page 1-12.
• 1.3 Fast Models glossary on page 1-16.
• 1.4 Fast Models design on page 1-20.
• 1.5 Data collection in Fast Models on page 1-27.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-9

Non-Confidential

1.1 What is Fast Models?
The Fast Models product comprises a library of Programmer's View (PV) models and tools that enable
partners to build, execute, and debug virtual platforms. Virtual platforms enable the development and
validation of software without the need for target silicon. The same virtual platform can be used to
represent the processor or processor subsystem in SoC validation.

Fast Models are delivered in two ways:
• As a portfolio of Arm IP models and tools to let you generate a custom model of your exact system.
• As standalone models of complete Arm platforms that run out-of-the-box to let you test your code on

a generic system quickly.

The benefits of using Fast Models include:

Develop code without hardware

Fast Models provides early access to Arm IP, well ahead of silicon being available. Virtual
platforms are suitable for OS bring-up and for driver, firmware, and application development.
They provide an early development platform for new Arm technology and accelerate time-to-
market.

High performance

Fast Models uses Code Translation (CT) processor models, which translate Arm instructions
into the instruction set of the host dynamically, and cache translated blocks of code. This and
other optimization techniques, for instance temporal decoupling and Direct Memory Interface
(DMI), produce fast simulation speeds for generated platforms, between 20-200 MIPS on a
typical workstation, enabling an OS to boot in tens of seconds.

Customize to model your exact system

Fast Models provides a portfolio of models that are flexible and can easily be customized using
parameters to test different configurations. Using the System Canvas tool you can model your
own IP and integrate it with existing model components.

You can also export components and subsystems from the Fast Models portfolio to SystemC for
use in a SystemC environment. Such an exported component is called an Exported Virtual
Subsystem (EVS). EVSs are compliant with SystemC TLM 2.0 specifications to provide
compatibility with Accellera SystemC and a range of commercial simulation solutions.

Run standalone or debug using development tools

Generated platform models are equipped with Component Architecture Debug Interface
(CADI). This allows them to be used standalone or with development tools such as Arm
Development Studio or Arm Keil® MDK, as well as providing an API for third party tool
developers.

Test architecture compliance

Fast Models provides Architecture Envelope Models (AEMs) for Armv8‑A, Armv8‑R, and
Armv8‑M. These are specialist architectural models that are used by Arm and by Arm
architecture licensees to validate that implementations are compliant with the architecture
definition.

Trace and debug interfaces

Fast Models provides the Model Trace Interface (MTI) and CADI for trace and debug. These
APIs enable you to write plug-ins to trace and debug software running on models. Fast Models
also provides some pre-built MTI plug-ins, for example Tarmac Trace, that you can use to
output trace information.

1 Introduction to Fast Models
1.1 What is Fast Models?

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-10

Non-Confidential

Build once, run anywhere

Since the same binary runs on the model, the target development hardware, and the final
product, you only need to build it using the Arm toolchain.

Host platform compatibility

Fast Models can be used on both Linux and Microsoft Windows hosts.

Related references
5.2 System Canvas GUI on page 5-72
Related information
LISA+ Language for Fast Models Reference Manual
About Model Debugger

1 Introduction to Fast Models
1.1 What is Fast Models?

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

https://developer.arm.com/docs/101092/0100
https://developer.arm.com/docs/100968/1110/introduction/about-model-debugger

1.2 What does Fast Models consist of?
The Fast Models package contains the tools and model components that are needed to model a system.
The tools and the portfolio of models are installed under separate directories, FastModelsTools_n.n and
FastModelsPortfolio_n.n respectively, where n.n is the Fast Models version number.

Arm also supplies a wide range of pre-built Fixed Virtual Platforms (FVPs), including a free of charge
FVP called the Foundation Platform, separately from the Fast Models package.

This section contains the following subsections:
• 1.2.1 Fast Models tools on page 1-12.
• 1.2.2 Fast Models portfolio on page 1-13.
• 1.2.3 Other Fast Models products on page 1-14.

1.2.1 Fast Models tools

Fast Models tools is a set of tools that enable you to create custom models.

It consists of the following:

System Canvas
A GUI design tool for developing new model components written in LISA+ and for building
and launching system models. It displays the model as either LISA+ source code, or graphically,
in a block diagram editor:

Figure 1-1 System Canvas

1 Introduction to Fast Models
1.2 What does Fast Models consist of?

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

System Generator
A backend tool that handles system generation. System Generator can either be invoked from
the System Canvas GUI, or by using the simgen command-line utility. System models that are
created using System Generator can be used with other Arm development tools, for example
Arm Development Studio or Model Debugger, or can be exported to SystemC for integration
with proprietary models.

Model Debugger
A GUI debugger that connects to a model through the CADI interface. It enables you to debug
code running on the model:

Figure 1-2 Model Debugger

Model Shell
A command-line tool for launching simulations. It can also run a CADI debug server to enable
debuggers to connect to the model. Some models, called ISIMs, are launched as standalone
executables rather than from Model Shell, and have the same command-line options as Model
Shell.

 Note

Arm deprecates Model Shell in Fast Models version 11.2 and later.

1.2.2 Fast Models portfolio

Fast Models portfolio consists of a variety of components, including the following:

• A collection of models and protocols, provided as LISA+ components. You can use them to model a
system using the Fast Models tools. Ports and protocols are used for communication between
components. Some models are of Arm IP, while others are not. Examples of Arm IP models include:

— Processors, including models of all Arm Cortex® processors and architectural models for Armv8,
called AEMs.

— Models of Arm media IP such as GPUs, video processors, and display processors.
— Peripherals, for instance Arm CoreLink™ interconnect, interrupt controllers, and memory

management units.

1 Introduction to Fast Models
1.2 What does Fast Models consist of?

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

Some models are abstract components that do not model specific Arm IP, but are required by the
software modeling environment. For example:
— PVBus components to model bus communication between components.
— Emulated I/O components to allow communication between the simulation and the host, such as a

terminal, a visualization window, and an ethernet bridge.
• Platform model examples supplied as project files, so must first be built using System Generator.

Examples are provided for both standalone simulation and for SystemC export, and include:
— Arm Versatile™ Express development boards for Armv7‑A and Armv7‑R processors.
— Armv8‑A and Armv8‑R Base Platform.
— MPS2 development boards for Armv6‑M, Armv7‑M, and Armv8‑M processors.

• Accellera SystemC and TLM header files and libraries, which are required to build FVPs and the
platform model examples.

• Model Trace Interface (MTI) plug-ins. MTI is the interface used by Fast Models to emit trace events
during execution of a program, for example branches, exceptions, and cache hits and misses. Fast
Models provides some pre-built MTI plug-ins that you can load into a model to capture trace data,
without having to write your own plug-ins. For example:
— TarmacTrace can trace all processor activity or a subset of it, for instance only branch instructions

or memory accesses.
— GenericTrace allows you to trace any of the MTI trace sources that the models can produce.
— Fastline generates traces in .apc format that you can import into Arm Streamline for analysis.

Some trace plug-ins are provided in source form as programming examples. They can also be
compiled and used.

• Some ELF images that you can run on models for evaluation purposes.
• Networking setup scripts to bridge network traffic from the simulation to the host machine’s network.

1.2.3 Other Fast Models products

The following Fast Models products are available separately from the main package:

Fixed Virtual Platforms (FVPs)

FVPs are models of Arm platforms, including processors, memory and peripherals. They are
supplied as standalone executables for Linux and Windows. Their composition is not
customizable, although you can configure some aspects of their behavior through command-line
parameters. FVPs can be based on Arm Versatile Express development boards, called VE FVPs,
on the Armv8‑A Base Platform, called Base FVPs, or on Arm MPS2 and Arm MPS2+
platforms, for Cortex‑M series processors. They are available with a wide range of Armv7 and
Armv8 processors and support the CADI and MTI interfaces, so can be used for debugging and
for trace output. For more information, see Arm Developer website.

Arm provides validated Linux and Android deliverables for the Armv8‑A AEM Base Platform
FVP and for the Foundation Platform. These are available on the Arm Community website at
Arm Development Platforms. To get started with Linux on Armv8‑A FVPs, see Armv8-A FVPs
also on Arm Community.

Foundation Platform

A simple FVP that includes an Armv8‑A AEM processor model, that is suitable for running
bare-metal applications and for booting Linux. It is available for Linux hosts only and can be
downloaded free of charge from the Arm® Self-Service Portal, registration and login are
required.

System Guidance platforms

FVPs that include documentation to guide SoC design and a reference software stack that is
validated on the FVP. They were formerly known as Reference Data FVPs. Details can be
requested from your Arm account team.

1 Introduction to Fast Models
1.2 What does Fast Models consist of?

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

https://developer.arm.com/products/system-design/fixed-virtual-platforms
https://community.arm.com/dev-platforms/
https://community.arm.com/dev-platforms/w/docs/228/armv8-a-fvps
http://silver.arm.com/

Third party IP

A package that contains third party add-ons for Fast Models. These include some additional
ELF images, including Dhrystone.

1 Introduction to Fast Models
1.2 What does Fast Models consist of?

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.3 Fast Models glossary
This glossary defines some of the Arm-specific technical terms and acronyms that are used in the Fast
Models documentation.

AMBA-PV

A set of classes and interfaces that model AMBA® buses. They are implemented as an extension
to the TLM v2.0 standard.

See AMBA-PV extensions.

Architecture Envelope Model (AEM)

A model of the Arm architecture that aims to expose software bugs by modeling the extremes of
behavior that the Arm architecture allows.

Auto-bridging

A Fast Models feature that SimGen uses to automatically convert between LISA+ protocols and
their SystemC equivalents. It helps to automate the generation of SystemC wrappers for LISA+
subsystem models.

See 6.2 Auto-bridging on page 6-120.

Base Platform

An example platform that is provided as part of Fast Models. It is capable of booting Linux and
Android. Variations of this platform are available for various core types, and with additional
system IP. They are often used together with Linux images that Linaro provides.

See Base Platform.

Component Architecture Debug Interface (CADI)

A C++ interface that is used by debuggers to control a model. CADI enables convenient and
accurate debugging of Fast Models and Cycle Models.

See About the Component Architecture Debug Interface.

Code Translation (CT)

A technique that processor models use to enable fast execution of code. CT models translate
code dynamically and cache translated code sequences to achieve fast simulation speeds.

Cycle Models

Cycle-accurate software models of Arm IP, for example processors or peripherals. They are
cycle-accurate and functionally accurate, so are usable for benchmarking. Cycle Models is a
separate product from Fast Models, but they can be used alongside each other, in particular by
using the Cycle Models Swap-and-Play feature.

Direct Memory Interface (DMI)

A TLM 2.0 interface that provides direct access to memory. It accelerates memory transactions,
which improves model performance.

Exported Virtual Subsystem (EVS)

A SystemC module that is generated by using the SystemC Export feature to export a Fast
Models subsystem.

See 6.1 About SystemC Export with Multiple Instantiation on page 6-119.

1 Introduction to Fast Models
1.3 Fast Models glossary

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

https://developer.arm.com/docs/100962/latest/introduction/amba-pv-extensions
https://developer.arm.com/docs/100964/1110/base-platform
https://developer.arm.com/docs/100963/latest/introduction/about-the-component-architecture-debug-interface

Fast Models

High performance software models of components of Arm SoCs, for example processors or
peripherals. Components might have subcomponents to form a hierarchy, and might be
connected together to form a platform model. Fast Models are functionally accurate, but not
cycle-accurate.

Fixed Virtual Platform (FVP)

A pre-built platform model that enables applications and operating systems to be written and
debugged without the need for real hardware. FVPs are also referred to as Fixed Virtual
Prototypes. They were formerly known as RTSMs.

See About FVPs.

Foundation Model

See Foundation Platform.

Foundation Platform

A freely available, easy-to-use FVP for application developers that models the Armv8‑A
architecture. It can be downloaded from the Arm® Self-Service Portal, registration and login are
required. Foundation Platform was formerly known as Foundation Model.

IMP DEF

Used in register descriptions in the Fast Models Reference Manual to indicate behavior that the
architecture does not define. Short for Implementation Defined.

Integrated Simulator (ISIM)

An executable model binary that can run standalone, without the need for Model Shell or Model
Debugger. ISIMs are generated by simgen by statically linking a model with the SystemC
framework. ISIMs simplify model debugging and profiling.

See 4.10 Building SystemC ISIM targets on page 4-69.

Iris

An interface for debug and trace of model behavior.

See Iris Developer Guide

Language for Instruction Set Architectures (LISA, LISA+)

LISA is a language that describes instruction set architectures. LISA+ is an extended form of
LISA that supports peripheral modeling. LISA+ is used for creating and connecting model
components. The Fast Models documentation does not always distinguish between the two
terms, and sometimes uses LISA to mean both.

See LISA+ Language for Fast Models Reference Manual.

Microcontroller Prototyping System (MPS2)

Arm Versatile Express V2M-MPS2 and V2M-MPS2+ are motherboards that enable software
prototyping and development for Cortex‑M processors. The MPS2 FVP models a subset of the
functionality of this hardware.

See MPS2 - about.

Model Debugger

A Fast Models debugger that enables you to execute, connect to, and debug any CADI-
compliant model. You can run Model Debugger using a GUI or from the command line.

See About Model Debugger.

1 Introduction to Fast Models
1.3 Fast Models glossary

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

https://developer.arm.com/docs/100966/1110/introduction/about-fvps
http://silver.arm.com/
https://developer.arm.com/docs/101196/0100
https://developer.arm.com/docs/101092/0100
https://developer.arm.com/docs/100964/1110/microcontroller-prototyping-system-2/mps2-about
https://developer.arm.com/docs/100968/1110/introduction/about-model-debugger

Model Shell

A command-line utility for configuring and running CADI-compliant models. Arm deprecates
Model Shell from Fast Models version 11.2. Use ISIM executables instead.

See About Model Shell.

Model Trace Interface (MTI)

A trace interface that is used by Fast Models to expose real-time information from the model.

See Model Trace Interface Reference Manual.

Platform Model

A model of a development platform, for example an FVP.

Programmers' View (PV) Model

A high performance, functionally accurate model of a hardware platform. It can be used for
booting an operating system and executing software, but not to provide hardware-accurate
timing information.

See Timing Annotation.

PVBus

An abstract, programmers view model of the communication between components. Bus masters
generate transactions over the PVBus and bus slaves fulfill them.

See PVBus components.

Quantum

A set of instructions that the processor issues at the same point in simulation time. The
processor then waits until other components in the system have executed the instructions for the
same time slice, before executing the next quantum.

Real-Time System Model (RTSM)

An obsolete term for Fixed Virtual Platform (FVP).

SimGen

An alternative term for System Generator.

Synchronous CADI (SCADI)

An interface that provides a subset of CADI functions to synchronously read and write registers
and memory. You can only call SCADI functions from the model thread itself, rather than from
a debugger thread. SCADI is typically used from within MTI or by peripheral components to
access the model state and to perform run control.

See About SCADI.

syncLevel

Each processor model has a syncLevel with four possible values. It determines when a
synchronous watchpoint or an external peripheral breakpoint can stop the model, and the
accuracy of the model state when it is stopped.

See syncLevel definitions.

System Canvas

An application that enables you to manage and build model systems using components. It has a
block diagram editor for adding and connecting model components and setting parameters.

See 5.2 System Canvas GUI on page 5-72.

1 Introduction to Fast Models
1.3 Fast Models glossary

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

https://developer.arm.com/docs/100969/1110/introduction-to-model-shell/about-model-shell
https://developer.arm.com/docs/DUI0819/latest
https://developer.arm.com/docs/100964/1110/fast-models-components/bus-components
https://developer.arm.com/docs/100964/1110/introduction/scadi/about-scadi
https://developer.arm.com/docs/100964/1110/introduction/non-cadi-sync-watchpoints/synclevel-definitions

SystemC Virtual Platform (SVP)

A platform model that consists of LISA+ components or subsystems that are individually
exported to SystemC as multiple EVSs, using the Multiple Instantiation (MI) feature.

System Generator

A utility that uses a project file containing configuration information to generate a platform
model. You can run System Generator from the command line, by invoking the simgen
executable, or from the System Canvas GUI.

See 3.1 System Generator (SimGen) on page 3-37.

System Model

An alternative term for Platform Model.

Tarmac

A textual trace of the program that is executing on the model. Fast Models provides a Tarmac
plugin to produce this trace format.

See Tarmac Trace.

Timing Annotation

A set of Fast Models features that allow timing configuration for various operations, for instance
instruction execution and branch prediction. This allows the model to be used for basic
benchmarking.

See Chapter 8 Timing Annotation on page 8-183.

Versatile Express (VE)

A family of Arm hardware development boards. The term is abbreviated to VE when used in
model names. For example, FVP_VE_Cortex-A5x1 is an FVP model of the Versatile Express
hardware platform, containing a single Cortex‑A5 processor.

Related information
Arm Glossary

1 Introduction to Fast Models
1.3 Fast Models glossary

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

https://developer.arm.com/docs/100964/1110/plug-ins-for-fast-models/tarmactrace
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

1.4 Fast Models design
This section describes the design of Fast Models systems.

This section contains the following subsections:
• 1.4.1 Fast Models design flow on page 1-20.
• 1.4.2 Project files on page 1-21.
• 1.4.3 Repository files on page 1-22.
• 1.4.4 File processing order on page 1-23.
• 1.4.5 Hierarchical systems on page 1-23.

1.4.1 Fast Models design flow

The basic design flow for Fast Models is:

1. Create or buy standard component models.
2. Use System Canvas to connect components and set parameters in the LISA+ source code.
3. Generate a new model using System Generator either from the command line (SimGen) or from

within the System Canvas GUI.
4. Use the new model as input to a more complex system or distribute it as a standalone simulation

environment.

System Generator
(SimGen)

C++

Component
source

Fast Models
Portfolio

component
libraries

CADI-enabled
debugger, for

example Model
Debugger
or DS-5

Debugger

SystemC ISIM
(standalone
executable)

CT model

Other

LISA

Peripherals

Model Shell
(command line)

Generate

Load

Load

RPC

CADI library (shared
object or DLL)Generate

System Canvas

Project file
(.sgproj)

EVS (shared object
or DLL)

Generate
and export

Third-party
SystemC system

Link

Link

Figure 1-3 Fast Models design flow

The input to System Generator consists of:

C++ library objects

Typically these are models of processors or standard peripherals.

LISA+ source code

The source code files define custom peripheral components. They can be existing files in the
Fast Models portfolio or new LISA+ files that were created in System Canvas. The LISA+
descriptions can be located in any directory. One LISA+ file can contain one or more component
descriptions.

Project file
System Generator requires a .sgproj project file to configure the build.

1 Introduction to Fast Models
1.4 Fast Models design

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

After the required components have been added and connected, System Generator uses gcc or the Visual
Studio C++ compiler to produce the output object as one of the following:
• One or more CADI libraries, which you can load into Model Shell or Model Debugger.
• An ISIM executable, for instance an FVP. You could run this standalone, or you could connect a

CADI-enabled debugger to it, such as Model Debugger or Arm Development Studio Debugger.
• An EVS, which can be used as a building block for a SystemC system. It is generated using the Fast

Models SystemC Export feature.

 Note

To build ISIM executables or EVSs, a SystemC environment must be installed, and the SYSTEMC_HOME
environment variable must be set.

1.4.2 Project files

System Canvas uses one project file (.sgproj) to describe the build options used for each host platform
and the files that are required to build the model.

• There is no requirement to provide a makefile and a set of configuration files for each new project.
• Each project file references all files that System Canvas needs to build and run a simulation,

including LISA, C, and C++ sources, libraries, files to deploy to the simulation directory, and nested
repository files.

Repository files have the same format as project files.

You can add single files or a complete repository, such as the Fast Models Portfolio, to the project file.

D:

\Program Files\ARM\FastModelsPortfolio_x.y

etc
sglib.sgrepo

LISA
ctmodel.sgrepo
components.sgrepo
PL011_Uart.lisa
SMSC_91C111.lisa

Work_directory

My_Projects

My_System.sgproj

Win64-Debug-VC2015

My_System.lisa
My_System.sgcanvas
My_custom_component.lisa

My_custom_component.sgcanvas

lib
Win64_VC2015

Debug

1

2

4
5

7

3

components.lib

cadi_system_Win64-Debug-VC2015.dll

3

Figure 1-4 Example organization of project directories and files on Microsoft Windows

1 Introduction to Fast Models
1.4 Fast Models design

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

The My_Projects directory contains the My_System.sgproj project file:
1. My_System.sgproj points to the standard Fast Models Portfolio repository file sglib.sgrepo.
2. The sglib.sgrepo repository file contains a list of repository locations such as components.sgrepo.
3. components.sgrepo lists the locations of the LISA files for the components and the location and

type of libraries that are available for the components.
4. The project file lists My_System.lisa as the top-level LISA file for the system. The top-level LISA

file lists the components in the system and shows how they interconnect.
5. This project uses a custom component in addition to the standard Fast Models Portfolio components.

Custom components can exist anywhere in the directory structure. In this case, only the My_System
component uses the custom component, so the My_custom_component.lisa file is in the same
directory.

6. System Canvas generates the My_System.sgcanvas and My_custom_component.sgcanvas files to
save display changes in the Workspace window. These files describe the display settings for a
component such as:
• Component location and size.
• Label text, position and formatting.
• Text font and size.
• The moving of or hiding of ports.
• Grid spacing.

The build process does not use .sgcanvas files. System Canvas uses them for its Block Diagram
view.

7. My_System.sgproj defines Win64-Debug-VC2015 as the build directory for the selected platform.
Other build options in the project file include:
• The host platform, for instance "Win64".
• The compiler, for example "VC2015" and compiler options.
• Additional linker options.
• Additional options to be passed to SimGen.
• The type of target to build, for example an ISIM executable, a CADI library, or a SystemC

component.
Related references
5.3.17 Project Settings dialog on page 5-104
Project file contents on page 5-111

1.4.3 Repository files

Repository files group together references to commonly used files, eliminating the need to specify the
path and library for each component in a project.

Repository files contain:

• A list of components.
• The paths to the LISA sources for the components.
• A list of library objects for the components.
• Optionally, lists of paths to other repository files. This enables a hierarchical structure.

System Canvas adds the default model repositories to a project when creating it. Changing these
repository settings does not affect existing projects. The project_name.sgproj files contain the paths to
the repositories as hard code. To change the repositories for an existing project, open the file and edit the
paths.

Default repositories can also preset required configuration parameters for projects that rely on the default
model library. These parameters are:
• Additional Include Directories.
• Additional Compiler Settings.
• Additional Linker Settings.

1 Introduction to Fast Models
1.4 Fast Models design

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

1.4.4 File processing order

The processing order enables a custom implementation of a Fast Models component.

An example of a project file

/// project file
sgproject "MyProject.sgproj"
{
files
{
 path = "./MyTopComponent.lisa";
 path = "./MySubComponent1.lisa";
 path = "./repository.sgrepo";
 path = "./MySubComponent2.lisa";
}
}

An example of a repository file

/// subrepository file
sgproject "repository.sgrepo"
{
files
{
 path = "../LISA/ASubComponent1.lisa";
 path = "../LISA/ASubComponent2.lisa";
}
}

System Canvas processes the files in sequence, expanding sub-repositories as it encounters them:

1. ./MyTopComponent.lisa
2. ./MySubComponent1.lisa
3. ./repository.sgrepo

a. ../LISA/ASubComponent1.lisa
b. ../LISA/ASubComponent2.lisa

4. ./MySubComponent2.lisa

Changing the processing order allows customization. If MySubComponent1.lisa and ../LISA/
ASubComponent1.lisa both list a component with the same name, the application uses only the first
definition.

The File List view of System Canvas shows the order of components in the project file. Use the
application controls to re-order the files and repositories:
• The Up and Down context menu entries in the File List view of the Component window. The

commands have keyboard shortcuts of Alt+Arrow Up and Alt+Arrow Down.

You can also drag-and-drop files inside a repository or between repositories.
• The Up and Down buttons on the Default Model Repository tab in the Properties dialog, for

repositories in new projects.

1.4.5 Hierarchical systems

The terms system and component are both used to describe the output from System Canvas. The main
difference is whether the output is intended as a standalone system or is to be used within a larger
system.

The block diagram shows the advantage of using a hierarchical system with a complex model.

1 Introduction to Fast Models
1.4 Fast Models design

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-23

Non-Confidential

Figure 1-5 Block diagram of top-level VE model

The main component in the system is a VE motherboard component. To open this item, select it and
select Open Component from the Object menu. It is a complex object with many subcomponents.

1 Introduction to Fast Models
1.4 Fast Models design

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-24

Non-Confidential

Figure 1-6 Contents of VE motherboard component

Hiding the complexity of the VE motherboard in a component simplifies the drawing and enables the VE
motherboard component to be shared between different FVP models.

For example, the ClockDivider component located at the top-left of Figure 1-6 Contents of VE
motherboard component on page 1-25 has a connection to an external port called masterclk.

Figure 1-7 Self port detail

By double-clicking a component, in this case a clock divider, you can open it to see the LISA code, and
the resulting Block Diagram window displays the external ports for that subcomponent.

1 Introduction to Fast Models
1.4 Fast Models design

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-25

Non-Confidential

Figure 1-8 Clock divider component external ports

The clock divider component contains only external ports, and it has no subcomponents. The behavior
for this component is determined by the LISA code.

A component communicates with components in the higher-level system through its self ports. Self ports
refer to ports in a system that are not part of a subcomponent, and are represented by a hollow rectangle
with triangles to indicate data flow, and a text label in the rectangle.

Self ports can be internal or external.

Internal ports

These ports communicate with subcomponents and are not visible if the component is used in a
higher-level system. Unlike hidden external ports, you cannot expose internal ports outside the
subcomponent. Right-click on a port and select Object Properties... to identify or create
internal ports. Set the port attributes to Internal for an internal self port.

External ports

These ports communicate with components in a higher-level system, and by default are external.

If you use the Block Diagram editor to make a connection between an external port and a subcomponent,
the LISA code uses the keyword self to indicate the standalone port:

self.clk_in_master => clkdiv_ref25.clk_in;

1 Introduction to Fast Models
1.4 Fast Models design

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-26

Non-Confidential

1.5 Data collection in Fast Models
Arm periodically collects anonymous information about the usage of our products to understand and
analyze what components or features you are using, with the goal of improving our products and your
experience with them. Product usage analytics contain information such as system information, settings,
and usage of specific features of the product. They do not include any personal information.

Host information includes:
• Operating system name, version, and locale.
• Number of CPUs.
• Amount of physical memory.
• Screen resolution.
• Processor and GPU type.

Feature tracking information includes:

Table 1-1 Fast Models analytics data points

Name Description Since

Platform name • Tracked:
— Name of the platform model being run
— Fast Models version and build number that was used to build the platform model.
— Whether the platform model is a standalone product or was supplied as part of the

Fast Models product. a

• Reported: Percentage of users using the different platforms.
• Data type: Text.
• Send policy: Every invocation.
• Trigger points: On starting the simulation.

v11.8

Session length • Tracked: Length of time the platform was used.
• Reported: Average time the different platforms are used.
• Data type: Text.
• Send policy: Every invocation.
• Trigger points: On exiting the simulation.

v11.9

Debug server • Tracked: Whether a CADI or Iris debugger was connected.
• Reported: Type of debug server that was started, either CADI or Iris.
• Data type: Text.
• Send policy: Every invocation.
• Trigger points: Debug server startup.

v11.10

Arm IP • Tracked: Names of Fast Models core, System IP, and GPU components that are included
in the simulation.

• Reported: Component names, for example DP500 or SMMUv3AEM. These are not
hierarchical names.

• Data type: Text.
• Send policy: Every invocation.
• Trigger points: Component instantiation.

v11.10

a This feature is tracked since v11.10.

1 Introduction to Fast Models
1.5 Data collection in Fast Models

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-27

Non-Confidential

 Note

• Analytics gathering is enabled by default. Use the --disable-analytics command-line option to
disable it for the current invocation, or set the ARM_DISABLE_ANALYTICS environment variable to a
non-zero value to disable it for all invocations.

• Querying the list of parameters with --list-params or the available options using --help does not
trigger reporting.

• The names of non-Arm platforms or components are obfuscated.

1 Introduction to Fast Models
1.5 Data collection in Fast Models

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

1-28

Non-Confidential

Chapter 2
Installing Fast Models

This chapter describes the system requirements for Fast Models and how to install and uninstall Fast
Models.

It contains the following sections:
• 2.1 Requirements for Fast Models on page 2-30.
• 2.2 Installing Fast Models on page 2-33.
• 2.3 Dependencies for Red Hat Enterprise Linux on page 2-34.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

2.1 Requirements for Fast Models
This section describes the host hardware and software requirements for using Fast Models.

Platform

Memory
At least 2GB RAM, preferably 4GB.

Processor
2GHz Intel Core2Duo, or similar, that supports the MMX, SSE, SSE2, SSE3, and SSSE3
instruction sets.

Linux

Operating system

Red Hat Enterprise Linux 6 or 7 (for 64-bit architectures), Ubuntu 16.04 or 18.04 Long Term
Support (LTS).

Shell
A shell compatible with sh, such as bash or tcsh.

2 Installing Fast Models
2.1 Requirements for Fast Models

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

Compiler
GCC 4.9.2, GCC 6.4.0, GCC 7.3.0.

Table 2-1 Supported GCC versions on Linux

OS GCC versions supported

RHEL 6 GCC 4.9.2, GCC 6.4

RHEL 7 GCC 4.9.2, GCC 6.4, GCC 7.3

Ubuntu 16.04 LTS GCC 6.4, GCC 7.3

Ubuntu 18.04 LTS GCC 7.3

 Note

For full compatibility, it is highly recommended that all code that links against the Fast Models
is compiled with C++11 support enabled. There are no known issues when linking non-C++11
code with the Fast Models. However, the compiler does not guarantee that the ABI is the same
for both types of code. Compiling models with C++11 support disabled might cause data
corruption or other issues when using them.

The following combinations of GCC and GNU binutils were used to build Fast Models libraries:

Table 2-2 GCC and binutils versions

GCC version GNU binutils version

4.9.2 2.17.50.0.17

6.4.0 2.27

7.3.0 2.29

 Note

Fast Models FVPs were built on Red Hat Enterprise Linux 6 and therefore were built against
GLIBC 2.12.

PDF Reader
Adobe does not support Adobe Reader on Linux. Arm recommends system provided
equivalents, such as Evince, instead.

License management utilities

The latest version of the FlexNet software that is available for download from

https://developer.arm.com/products/software-development-tools/license-management/downloads

 Note

• Set up a single armlmd license server. Spreading Fast Models license features over servers can cause
feature denials.

• To run armlmd and lmgrd, install these libraries:

Red Hat
lsb, lsb-linux

Ubuntu
lsb

2 Installing Fast Models
2.1 Requirements for Fast Models

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

https://developer.arm.com/products/software-development-tools/license-management/downloads

Microsoft Windows

Operating system
Microsoft Windows 7 64-bit RTM or Service Pack 1, Professional, or Enterprise editions,
Microsoft Windows 10 64-bit.

Compiler
Microsoft Visual Studio 2015 update 3, Microsoft Visual Studio 2017 version 15.9.11 or later.
Fast Models libraries were built with Windows SDK version 8.1.

Table 2-3 Supported Visual Studio versions on Windows

OS Visual Studio versions supported

Windows 7 SP1 Visual Studio 2015

Windows 10 Visual Studio 2015, Visual Studio 2017

PDF Reader
Adobe Reader 8 or higher.

License management utilities

The latest version of the FlexNet software that is available for download from

https://developer.arm.com/products/software-development-tools/license-management/downloads

 Note

• To build models using Visual Studio 2015 requires you to install the Visual Studio redistributable
package which contains the runtime libraries for Visual Studio. Fast Models does not provide these
libraries. Download the libraries for Visual Studio 2015 free of charge from Microsoft, from https://
www.microsoft.com/en-gb/download/details.aspx?id=48145.

• On Windows, Fast Models libraries are built with one of the following MSVC compiler options:
— /MD for release builds
— /MDd for debug builds

Any objects or libraries that link against the Fast Models libraries must also be built with the
same /MD or /MDd option.

• Fast Models does not support Express or Community editions of Visual Studio.
• Set up a single armlmd license server. Spreading Fast Models license features over servers can cause

feature denials.
• If you use Microsoft Windows Remote Desktop (RDP) to access System Canvas (or a simulation that

it generated), your license type can restrict you:
— Floating licenses require a license server, and have no RDP restrictions. Arm issues them on

purchase.
— Node locked licenses apply to specific workstations. Existing node locked licenses and evaluation

licenses do not support running the product over RDP connections. Contact
license.support@arm.com for more information.

Related information
Installing floating licenses
Installing node locked licenses

2 Installing Fast Models
2.1 Requirements for Fast Models

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

https://developer.arm.com/products/software-development-tools/license-management/downloads
https://www.microsoft.com/en-gb/download/details.aspx?id=48145
https://www.microsoft.com/en-gb/download/details.aspx?id=48145
mailto:mailto:license.support@arm.com
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3861.html
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3510.html

2.2 Installing Fast Models
This section describes how to install Fast Models.

Procedure
1. Unpack the installation package, if necessary, and execute ./setup.sh on Linux or Setup.exe on

Windows.
If the installer finds an existing installation, it displays a dialog to enable re-installation or
uninstallation.
On Windows, the installer automatically defines the following environment variables:

MAXCORE_HOME
Points to the installation directory of the Fast Models Tools. It is set by installing the Fast
Models Tools package.

PVLIB_HOME
Points to the installation directory of the Fast Models Portfolio. It is set by installing the Fast
Models Portfolio package.

SYSTEMC_HOME
Points to the Accellera SystemC library installation directory. It is set by installing the
Accellera SystemC Library package. This package includes the SystemC and TLM header
files and libraries that you need to build an EVS, FVP, or SVP.

2. On Linux, source the appropriate script for your shell to set up these environment variables. Ideally,
include it for sourcing into the user environment on log-in:

bash/sh

. <install_directory>/FastModelTools_x.x/source_all.sh

csh

source <install_directory>/FastModelTools_x.x/source_all.csh

3. Optionally, install the Third Party IP (TPIP) add-on package. It contains third party add-ons for Fast
Models, including some ELF images that you can run on models for evaluation purposes and the
GDB Remote Connection plug-in.

 Note

On Microsoft Windows, the Fast Models examples are installed in %PVLIB_HOME%\examples\. The
installer makes a copy of them in %USERPROFILE%\ARM\FastModelsPortfolio_%FM-VERSION%
\examples\. This copy allows you to save configuration changes to these examples without requiring
Administrator permissions.

2 Installing Fast Models
2.2 Installing Fast Models

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

2.3 Dependencies for Red Hat Enterprise Linux
This section describes the dependencies for the supported versions of Red Hat Enterprise Linux.

This section contains the following subsections:
• 2.3.1 About Red Hat Enterprise Linux dependencies on page 2-34.
• 2.3.2 Dependencies for Red Hat Enterprise Linux 6 on page 2-34.

2.3.1 About Red Hat Enterprise Linux dependencies

Some library objects or applications depend on other library files. Fast Models requires some packages
that are part of Red Hat Enterprise Linux, which you might need to install.

If you subscribed your Red Hat Enterprise Linux installation to the Red Hat Network, or if you are using
CentOS rather than Red Hat Enterprise Linux, you can install dependencies from the internet. Otherwise,
use your installation media.

Some packages might depend on other packages. If you install with the Add/Remove software GUI tool
or the yum command line tool, these dependencies resolve automatically. If you install packages directly
using the rpm command, you must resolve these dependencies manually.

To display the package containing a library file on your installation, enter:

rpm -qf library_file

For example, to list the package containing /lib/tls/libc.so.6, enter the following on the command
line:

rpm -qf /lib/tls/libc.so.6

The following output indicates that the library is in version 2.3.2-95.37 of the glibc package:

glibc-2.3.2-95.37

2.3.2 Dependencies for Red Hat Enterprise Linux 6

Some package dependencies for Red Hat Enterprise Linux 6 are part of a base installation.

Table 2-4 Dependencies for Red Hat Enterprise Linux 6

Package Required for

glibc Fast Models tools and virtual platforms

glibc-devel Fast Models tools

libgcc Fast Models tools and virtual platforms

make Fast Models tools

libstdc++ Fast Models tools and virtual platforms

libstdc++-devel Fast Models tools

libXext Fast Models tools and virtual platforms

libX11 Fast Models tools and virtual platforms

libXau Fast Models tools and virtual platforms

libxcb Fast Models tools and virtual platforms

libSM Fast Models tools and virtual platforms

libICE Fast Models tools and virtual platforms

libuuid Fast Models tools and virtual platforms

2 Installing Fast Models
2.3 Dependencies for Red Hat Enterprise Linux

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

Table 2-4 Dependencies for Red Hat Enterprise Linux 6 (continued)

Package Required for

libXcursor Fast Models tools and virtual platforms

libXfixes Fast Models tools and virtual platforms

libXrender Fast Models tools and virtual platforms

libXft Fast Models tools and virtual platforms

libXrandr Fast Models tools and virtual platforms

libXt Fast Models tools and virtual platforms

alsa-lib Fast Models virtual platforms

xterm Fast Models virtual platforms

telnet Fast Models virtual platforms

2 Installing Fast Models
2.3 Dependencies for Red Hat Enterprise Linux

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

Chapter 3
Building Fast Models

This chapter explains the process for using Fast Models to build different types of platform models.

It assumes a Linux host and GCC 6.4, although Windows hosts and other versions of GCC are also
supported, see 2.1 Requirements for Fast Models on page 2-30 for details.

It refers to some EVS and ISIM platform examples. Fast Models includes a range of example platform
models that you can examine, modify, and build. The following types of platform model examples are
provided:
• EVSs and SVPs, located in $PVLIB_HOME/examples/SystemCExport/EVS_Platforms/ and

$PVLIB_HOME/examples/SystemCExport/SVP_Platforms/
• ISIMs, located in $PVLIB_HOME/examples/LISA/FVP_*/

It contains the following sections:
• 3.1 System Generator (SimGen) on page 3-37.
• 3.2 SimGen command-line options on page 3-38.
• 3.3 Select the build target on page 3-41.
• 3.4 Building an EVS platform on page 3-42.
• 3.5 Steps for building an EVS platform on page 3-43.
• 3.6 Bridge between LISA+ and SystemC on page 3-46.
• 3.7 Libraries required to run the EVS platform on page 3-47.
• 3.8 Building an SVP on page 3-48.
• 3.9 Building an ISIM on page 3-49.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

3.1 System Generator (SimGen)
All types of platform model are built using a utility called SimGen with a Fast Models project.

You can use SimGen in the following ways:
• By building the project in System Canvas, which invokes SimGen indirectly.
• By invoking simgen on the command line.

 Note

SimGen requires GCC or Visual Studio C++ compiler to be installed. On Windows, if SimGen cannot
find devenv.exe for Visual Studio, the build fails. You can specify the path to devenv.exe in the System
Canvas Preferences dialog or using the --devenv-path command-line option.

To build a project from the command line, use the following syntax:

simgen -p <projectfile>.sgproj --configuration <configuration_name> -b

The configuration_name variable identifies the host OS, the build mode (debug or release), and the
toolchain. For example, Linux64-Release-GCC-6.4 or Win64-Debug-VC2017.

To see all the available SimGen options, type simgen --help.

SimGen supports the following build targets:

EVS (Exported Virtual Subsystem)
A Fast Models component or subsystem that is exported as a single SystemC object for
integration into a SystemC simulation.

ISIM (Integrated SIMulator)
A standalone executable platform model that SimGen creates by building an EVS library and
statically linking it with the SystemC framework.

Related references
Chapter 4 System Canvas Tutorial on page 4-50
3.2 SimGen command-line options on page 3-38

3 Building Fast Models
3.1 System Generator (SimGen)

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

3.2 SimGen command-line options
System Generator (SimGen) options, short forms, and descriptions.

Table 3-1 SimGen command-line options

Option Short
form

Description

--bridge-conf-file
FILENAME

- Set auto-bridging JSON configuration file FILENAME.

--build -b Build targets.

--build-directory DIR - Set build directory DIR.

--clean -C Clean targets.

--code-for-msvc -m Generate code and projects for Microsoft Visual Studio.

--config FILENAME - Set SimGen configuration file FILENAME. By default, simgen.conf.

--configuration NAME - The name for the configuration.

--cpp-flags-start - Ignore all parameters between this and --cpp-flags-end, except -D and -I.

--cpp-flags-end - See --cpp-flags-start.

--cxx-flags-start - Ignore all parameters between this and --cxx-flags-end, except -D.

--cxx-flags-end - See --cxx-flags-start.

--debug -d Enable debug mode.

--define SYMBOL -D Define preprocessor SYMBOL. You can also use SYMBOL=DEF.

--devenv-path ARG - Path to Visual Studio development environment, devenv.

--disable-warning NUM - Disable warning number NUM.

This overrides the --warning-level LEVEL option.

--dumb-term - The terminal in which SimGen is running is dumb, so instead of fancy progress
indicators, use simpler ones.

--enable-warning NUM - Enable warning number NUM.

This overrides the --warning-level LEVEL option.

--gcc-path PATH - Under Linux, the GCC C++ compiler that builds the model. Passes the full path of the
chosen g++ executable to SimGen. Match this GCC version to the GCC version in the
model configuration. By default, SimGen uses the g++ in the search path.

--gen-sysgen-lib - Generate system library.

--help -h Print help message with a list of command-line options then exit.

--ignore-compiler-
version

- Do not stop on a compiler version mismatch. Try to build anyway.

--include INC_PATH -I Add include path INC_PATH.

3 Building Fast Models
3.2 SimGen command-line options

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

Table 3-1 SimGen command-line options (continued)

Option Short
form

Description

--indir_tpl DIR - Set directory DIR where SimGen finds its template data files.

--link-against LIBS - Final executable will be linked against debug or release libraries. LIBS can be debug or
release, does certain consistency checks.

--MSVC-debuginfo-type
ARG

- Set the debug info type for MSVC projects. ARG can be one of:

none No debug info.
/Zi Program Database.
/Zd Line numbers only.

--no-deploy - Prevent SimGen from copying deployed files from their original location to the
location of the model. For example, when this option is specified, SimGen does not
copy armctmodel.dll or libarmctmodel.so from the model library to the
location of the generated model.

This option is for advanced users who are building models in a batch system, or as part
of another tool where they are taking responsibility for making sure all the required
libraries are present.

--no-lineinfo -c Do not generate line number redirection in generated source and header files.

--num-build-cpus NUM - The number of processors used during the build.

--num-comps-file NUM - The number of components generated into one file.

--outdir_arch DIR - Set output directory DIR for file with variable filenames.

--outdir_fixed DIR - Set output directory DIR for file with constant filenames.

--override-config-
parameter PARAM=VALUE

-P Override the configuration parameter from the *.sgproj file.

--print-config - Print out configuration parameters in file .ConfigurationParameters.txt.

--print-preprocessor-
output

-E Print preprocessor output, then exit.

--print-resource-
mapping

- Print flat resource mapping when generating a simulator.

--project-file FILENAME -p Set SimGen project file FILENAME.

--replace-strings - Replace strings in files, then exit. Ignore binary files. Usage:

simgen --replace-strings FOO BAR [FOO2 BAR2]… -- FILES…

--replace-strings-bin - Replace strings in files, then exit. Do not ignore binary files. Usage:

simgen --replace-strings-bin FOO BAR [FOO2 BAR2]… -- FILES…

--top-component COMP - Top level component (system).

--user-MSVC-libs-start - Set additional libraries for MSVC projects. The list is terminated by --user-MSVC-
libs-end.

3 Building Fast Models
3.2 SimGen command-line options

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

Table 3-1 SimGen command-line options (continued)

Option Short
form

Description

--user-MSVC-libs-end - See --user-MSVC-libs-start.

--user-sourcefiles-
start

- Add source files listed between this option and --user-sourcefiles-end to the
executable.

--user-sourcefiles-end - See --user-sourcefiles-start.

--verbose ARG -v Verbosity. ARG can be: on, sparse (default), off.

--version -V Print the version and exit.

--warning-level LEVEL -w Warning level LEVEL.

--warnings-as-errors - Treat LISA parsing and compiler warnings as errors.

3 Building Fast Models
3.2 SimGen command-line options

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

3.3 Select the build target
The first step in building either an EVS or an ISIM is to specify the build target.

You can do this either:
• In the System Canvas Project Settings dialog, by selecting either:

— For an EVS, SystemC component
— For an ISIM, SystemC integrated simulator

Figure 3-1 System Canvas Project Settings
• On the command line, by including one of the following lines in the project file:

— For an EVS, TARGET_SYSTEMC = "1";
— For an ISIM, TARGET_SYSTEMC_ISIM = "1";

For example, see any of the example sgproj files under $PVLIB_HOME/examples/.

 Note

Both ISIMs and EVSs use the SystemC scheduler, so to build them, SimGen requires a SystemC
installation, and requires the SYSTEMC_HOME environment variable to be set to it. When you install Fast
Models, you have the option of also installing Accellera SystemC. On Windows, the installer
automatically sets SYSTEMC_HOME to the location of the SystemC installation. On Linux, you need to run
the appropriate setup script.

3 Building Fast Models
3.3 Select the build target

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

3.4 Building an EVS platform
For an EVS platform, you must provide an sc_main() function and integrate the EVS into a SystemC
simulation. Because of these steps, you cannot build an EVS entirely within System Canvas.

The following diagram shows the build process for an EVS. The shaded area represents SimGen and its
output. The rest of the diagram is the responsibility of the user:

Fast Models Portfolio
components

Component source

System Generator
(SimGen)LISA+

C++

Cores

Peripherals

Other

Project file (.sgproj)

SystemC
executable

SystemC source
(sc_main())

GCCEVS library

Generated
header

#include

Fast Models and
SystemC libraries

Figure 3-2 Build process for an EVS platform

The steps to build an EVS platform are:
1. Export the Fast Model as an EVS library. You can either use System Canvas or invoke SimGen

directly to do this.
2. Define an sc_main() function that uses the SystemC Export API to initialize and configure the EVS.

The file that defines sc_main() must #include the header file that SimGen generates in step 1,
scx_evs_<top_level_component>.h.

 Note

The top-level component is specified in the sgproj file entry TOP_LEVEL_COMPONENT.

3. Invoke the C++ compiler, specifying the required Fast Models and SystemC header files and
libraries.

The EVS platform examples, located in $PVLIB_HOME/examples/SystemCExport/EVS_Platforms/ use
a Makefile to perform steps 1 and 3.

Related references
6.4 SystemC Export API on page 6-125

3 Building Fast Models
3.4 Building an EVS platform

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

3.5 Steps for building an EVS platform
This section describes in more detail each step to build an EVS. It uses the Cortex-A65x1
EVS_Dhrystone platform as an example. This example platform is in $PVLIB_HOME/examples/
SystemCExport/EVS_Platforms/EVS_Dhrystone/Build_Cortex-A65x1/.

This section contains the following subsections:
• 3.5.1 Export the Fast Model as an EVS library on page 3-43.
• 3.5.2 Define an sc_main() function to initialize and configure the simulation on page 3-43.
• 3.5.3 Specify the header files and libraries for the build on page 3-44.

3.5.1 Export the Fast Model as an EVS library

To build an EVS library, invoke SimGen using a command like this:

$(MAXCORE_HOME)/bin/simgen \
 -p $(PROJECT_PATH)/EVS_Dhrystone_Cortex-A65x1.sgproj
 --configuration $(CONFIG) \
 $(SIMGENFLAGS) -b

Where:

• MAXCORE_HOME is set by the Linux setup script or Windows installer to the installation directory of the
Fast Models tools.

• The -p option specifies the project file. This file must contain the entry:

TARGET_SYSTEMC = "1";

• The --configuration option specifies the build configuration name, for example Linux64-
Release-GCC-6.4. This is used as the name of the build directory and in some output filenames.

• -b performs the build.

This step generates:
• The EVS library, for example ./Linux64-Release-GCC-6.4/libscx-Dhrystone-Linux64-

Release-GCC-6.4.a
• The EVS header file, for example ./Linux64-Release-GCC-6.4/gen/scx_evs_Dhrystone.h

3.5.2 Define an sc_main() function to initialize and configure the simulation

Carry out the following steps inside the SystemC source file. For example, see $PVLIB_HOME/examples/
SystemCExport/EVS_Platforms/EVS_Dhrystone/Source/main.cpp.

Procedure
1. Include the EVS header file that was generated by SimGen:

Example:

#include <scx_evs_Dhrystone.h>

2. In sc_main(), initialize the simulation, giving it a name:
Example:

scx::scx_initialize("Dhrystone");

3. Instantiate the generated SystemC component:
Example:

scx_evs_Dhrystone dhrystone("Dhrystone");

4. Configure the simulation using command-line arguments set by the user, for example to load an
application or to set parameters:
Example:

scx::scx_parse_and_configure(argc, argv, help_quantum);

See 6.4.13 scx::scx_parse_and_configure on page 6-129 for the supported arguments.

3 Building Fast Models
3.5 Steps for building an EVS platform

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

EVS_Dhrystone loads the application using this function, but you could use
scx::scx_load_application() instead.

5. Optionally, set parameters for Fast Models components within the simulation:
Example:

scx::scx_set_parameter("*.Core.cpu0.semihosting-enable", true);

where semihosting-enable is the parameter and *.Core.cpu0 is the instance name (* means all
EVSs in the platform).

 Note

The Dhrystone example uses semihosting to read user input (the number of runs through the
benchmark) and to print statistics to the console at the end of the simulation.

6. Bind the ports of the generated SystemC component to the ports of the other components in the
SystemC simulation. This step is described in 3.6 Bridge between LISA+ and SystemC
on page 3-46.

7. Start the simulation:
Example:

sc_core::sc_start();

Related concepts
3.6 Bridge between LISA+ and SystemC on page 3-46
Related references
6.4 SystemC Export API on page 6-125

3.5.3 Specify the header files and libraries for the build

The following header file locations are required by all EVS platforms unless stated otherwise:

$PVLIB_HOME/include/fmruntime/
Standard Fast Models utility code.

$PVLIB_HOME/include/fmruntime/eslapi/
CADI-related header files.

$PVLIB_HOME/Iris/include/
Iris debug and trace header files.

$SYSTEMC_HOME/include/
SystemC header files.

$MAXCORE_HOME/AMBA-PV/include/
AMBA-PV header files. Only required if AMBA-PV protocols are used.

./$CONFIG/gen/
Contains the generated EVS header file, scx_evs_<top_level_component>.h, which defines
the SystemC wrapper class.

The following static libraries are required by all EVS platforms:

./Linux64-Release-GCC-6.4/libscx-<top_level_component>-Linux64-Release-GCC-6.4.a
Generated EVS platform library.

./Linux64-Release-GCC-6.4/libscx.a
Generated library containing the default implementations of the SystemC report handler,
simulation controller, and scheduler.

$PVLIB_HOME/lib/Linux64_GCC-6.4/libcomponents.a
Fast Models components library.

3 Building Fast Models
3.5 Steps for building an EVS platform

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

$PVLIB_HOME/lib/Linux64_GCC-6.4/libpvbus.a
PVBus components library.

$PVLIB_HOME/lib/Linux64_GCC-6.4/libarmctmodel.a
Core and cluster models library.

$PVLIB_HOME/lib/Linux64_GCC-6.4/libfmruntime.a
Standard Fast Models utility code.

$PVLIB_HOME/Iris/Linux64_GCC-6.4/libIrisSupport.a
Iris support library.

$SYSTEMC_HOME/lib/Linux64_GCC-6.4/libsystemc.a
SystemC library.

 Note

• On Windows, Fast Models libraries are built with one of the following MSVC compiler options:
— /MD for release builds
— /MDd for debug builds

Any objects or libraries that link against the Fast Models libraries must also be built with the
same /MD or /MDd option.

• On Windows, the following additional libraries are needed: user32.lib, ws2_32.lib,
imagehlp.lib, and advapi32.lib.

• On Windows, use the /vmg compiler option to correctly compile source code for use with SystemC.

Related information
IrisSupportLib Reference Manual

3 Building Fast Models
3.5 Steps for building an EVS platform

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

https://developer.arm.com/docs/101319/latest

3.6 Bridge between LISA+ and SystemC
The EVS_Dhrystone examples consist of an Arm core and some simple peripherals that are written in
LISA+, some memory that is defined in SystemC, and a bridge between the exported LISA+ subsystem
and the SystemC code.

The following block diagram from System Canvas shows the Fast Models LISA+ components that are
defined in the top-level Dhrystone component and the connections between them. The amba_pv_m port
at the right-hand side will be used to connect the Dhrystone component to the memory, which is defined
in SystemC:

Figure 3-3 System Canvas block diagram for EVS_Dhrystone

The PVBus2AMBAPV component is a bridge that converts signals from the PVBus protocol to the AMBA-PV
protocol. After exporting the Dhrystone component as an EVS, the amba_pv_m port can be connected to
a SystemC component, in this example, to the slave port of the memory model, in main.cpp, as follows:

amba_pv::amba_pv_memory<64> memory("Memory", 0x34000100);
scx_evs_Dhrystone dhrystone("Dhrystone");
…
dhrystone.amba_pv_m(memory.amba_pv_s);

3 Building Fast Models
3.6 Bridge between LISA+ and SystemC

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

3.7 Libraries required to run the EVS platform
When you run the output EVS executable, some of the following DSOs must be present in the same
directory as the executable.

You can copy all except the first one from $PVLIB_HOME/lib/Linux64_GCC-6.4/:

lib<top_level_component>-Linux64-Release-GCC-6.4.so
Shared library that is created when generating the EVS.

libMAXCOREInitSimulationEngine.3.so
Required for initializing the platform.

libarmctmodel.so
Required if your platform contains any core or cluster models.

libSDL2-2.0.so.0.4.0
Required if your platform uses the PL041 AACI component or any visualization components.

librui_5.2.0.x64.so
Required if analytics gathering is enabled.

 Note

The equivalent library on Windows is called ruiSDK_5.2.0.x64.dll.

libarmfastmodelsanalytics.1.0.0.so
Required if analytics gathering is enabled.

3 Building Fast Models
3.7 Libraries required to run the EVS platform

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

3.8 Building an SVP
An SVP (SystemC Virtual Platform) is a platform model that consists of LISA+ components or
subsystems that are individually exported to SystemC as multiple EVSs, using the Multiple Instantiation
(MI) feature.

The build process for an SVP is the same as for an EVS platform, except you must build and link
multiple EVS libraries.

SVPs can provide more flexibility than EVS platforms because components in an SVP can be replaced
without the need to modify any LISA+ code.

For more information, see the SVP examples under $PVLIB_HOME/examples/SystemCExport/
SVP_Platforms/.

3 Building Fast Models
3.8 Building an SVP

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

3.9 Building an ISIM
Building an ISIM is more straightforward than an EVS and can be done either entirely within System
Canvas or from the command line.

The following diagram shows the process. The shaded area represents the work that SimGen does for
you:

Fast Models
Portfolio

components

Component source
System Canvas or System Generator

(SimGen)LISA+

C++

Cores

Project file (.sgproj)
ISIM

executable
(isim_system)

Generated
sc_main()

EVS library

Fast Models
and SystemC

libraries

GCC

Generated
header

#include

Peripherals

Other

Figure 3-4 Build process for an ISIM

SimGen takes as input the LISA+ or C++ source code for the platform and its components, and a project
file. It generates:
• An EVS library
• A header file, ./Linux64-Release-GCC-6.4/gen/scx_evs_<top_level_component>.h, which

defines a SystemC wrapper class
• A SystemC source file, ./Linux64-Release-GCC-6.4/gen/scx_main_system.cpp which defines a

default sc_main() function. This function is the entry point for the simulation. It initializes the
simulation, constructs the SystemC wrapper, parses the command-line options, and starts the
simulation.

SimGen then links the EVS library with the Fast Models and SystemC libraries, and outputs a standalone
executable, called isim_system.

3 Building Fast Models
3.9 Building an ISIM

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

Chapter 4
System Canvas Tutorial

This chapter describes using System Canvas to build a system model.

It contains the following sections:
• 4.1 About this tutorial on page 4-51.
• 4.2 Starting System Canvas on page 4-52.
• 4.3 Creating a new project on page 4-53.
• 4.4 Add and configure components on page 4-55.
• 4.5 Connecting components on page 4-59.
• 4.6 View project properties and settings on page 4-60.
• 4.7 Changing the address mapping on page 4-63.
• 4.8 Building the system on page 4-65.
• 4.9 Debugging with Model Debugger on page 4-66.
• 4.10 Building SystemC ISIM targets on page 4-69.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-50

Non-Confidential

4.1 About this tutorial
This tutorial describes how to perform some basic operations in System Canvas to build a standalone
system model that can run an application image.

It demonstrates how to:
• Create a System Canvas project.
• Add, connect, and modify components in the project. You can use the Block Diagram view in System

Canvas to do this. You do not need to edit LISA source code directly.
• Build the project.
• Debug an application on the model using Model Debugger.

4 System Canvas Tutorial
4.1 About this tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-51

Non-Confidential

4.2 Starting System Canvas
This section describes how to start the application.

To start System Canvas:

• On Linux, enter sgcanvas in a terminal window and press Return.
• On Microsoft Windows, open the System Canvas application from the Start menu.

The application contains the following subwindows:
• A blank diagram window on the left-hand side of the application window.
• A component window at the right-hand side.
• An output window across the bottom.

Figure 4-1 System Canvas at startup

Related references
Preferences - Applications group on page 5-100
Chapter 5 System Canvas Reference on page 5-70

4 System Canvas Tutorial
4.2 Starting System Canvas

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-52

Non-Confidential

4.3 Creating a new project
This section describes how to create a new project. The project will be used to create a new system
model.

Prerequisites

Make sure you have write permission for the directory in which you will create the project.

Procedure
1. Select New Project from the File menu. Alternatively, click the New button on the toolbar.

Results: The New Project dialog appears.

Figure 4-2 New Project dialog
2. Navigate to the directory to use for your project. Enter MyProject in the filename box and click the

Select button.
Results: A dialog appears for you to enter the name and location of the LISA+ file that represents
your new system.

4 System Canvas Tutorial
4.3 Creating a new project

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-53

Non-Confidential

Figure 4-3 Select Top Component LISA File dialog
3. Enter MyTopComponent.lisa in the filename box and click the Select button.

The component name for the top component is, by default, set to the name of the LISA+ file.

Results: The Workspace area contains a blank block diagram with scroll bars. The Component
window, to the right of the Workspace area, lists the components in the default repositories.

These steps create a project file, MyProject.sgproj and a LISA+ source file, MyTopComponent.lisa.
The project file contains:
• System components.
• Connections between system components.
• References to the component repositories.
• Settings for model generation and compilation.

Do not edit the project file. System Canvas modifies it if you change project settings.

The block diagram view of your system is a graphical representation of the LISA+ source. To display the
contents of MyTopComponent.lisa, click the Source tab. This file is automatically updated if you add or
rename components in the block diagram.

You can view the LISA+ source for many of the supplied components. To do so, double-click on a
component in the Block Diagram. Alternatively, right click on a component in the Components window
and select Open Component.

4 System Canvas Tutorial
4.3 Creating a new project

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-54

Non-Confidential

4.4 Add and configure components
This section describes how to add and configure the components required for the example system.

This section contains the following subsections:
• 4.4.1 Adding the Arm® processor on page 4-55.
• 4.4.2 Naming components on page 4-56.
• 4.4.3 Resizing components on page 4-56.
• 4.4.4 Hiding ports on page 4-56.
• 4.4.5 Moving ports on page 4-57.
• 4.4.6 Adding components on page 4-57.
• 4.4.7 Using port arrays on page 4-57.

4.4.1 Adding the Arm® processor

This section describes how to add an Arm processor component to the system model.

Procedure
1. Click the Block Diagram tab in the Workspace window, unless the block diagram window is already

visible.
Results: A blank window with grid points appears.

2. Select the Components tab in the Components window to display the Fast Models Repository
components.

3. Move the mouse pointer over the ARMCortexA8CT processor component in the Component window
and press and hold the left mouse button.

4. Drag the component to the middle of the Workspace window.
 Note

If you move the component within the Workspace window, the component automatically snaps to the
grid points.

5. Release the left mouse button when the component is in the required location.
Results:

The system receives the component.

Figure 4-4 ARMCortexA8CT processor component in the Block Diagram window
6. Save the file by selecting File > Save File or using Ctrl+S.

The asterisk (*) at the end of the system name, in the title bar, shows unsaved changes.

These steps create a System Canvas file, MyTopComponent.sgcanvas, in the same location as the project
and LISA+ files. It contains the block diagram layout information for your system. Do not edit this file.

4 System Canvas Tutorial
4.4 Add and configure components

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-55

Non-Confidential

4.4.2 Naming components

This section describes how to change the name of a component, for example the processor.

 Note

Component names cannot have spaces in them, and must be valid C identifiers.

Procedure
1. Select the component and click the Properties button on the toolbar to display the Component

Instance Properties dialog.
You can also display the dialog by either:
• Right-clicking on the component and select Object Properties from the context menu.
• Selecting the component and then selecting Object Properties from the Object menu.

2. Click the General tab on the Component Instance Properties dialog.
3. Enter Arm in the Instance name field.
4. Click OK to accept the change. The instance name of the component, that is the name displayed in

the processor component title, is now Arm.

4.4.3 Resizing components

This section describes how to resize components.

Procedure
1. Select the processor component and move the mouse pointer over one of the green resize control

boxes on the edges of the component.
2. Hold the left mouse button down and drag the pointer to resize the component.
3. Release the mouse button to end the resize operation.

To vertically resize the component title bar to avoid truncating text, click the component and drag the
lower handle of the shaded title bar.

4.4.4 Hiding ports

This section describes how to hide ports, for instance because they are not connected to anything.

If there are only a few ports to hide, use the port context menu. Right click on the port and select Hide
Port. To hide multiple ports:

Procedure
1. Select the component and then select Object Properties from the Object menu.
2. Click the Ports tab on the dialog.
3. Click Select All to select all of the ports.
4. Click Hide selected ports.
5. Select the boxes next to clk_in and pvbus_m.
6. Click OK to accept the change, so that all ports except clk_in and pvbus_m are hidden in the Block

Diagram view.

Figure 4-5 Processor component after changes

4 System Canvas Tutorial
4.4 Add and configure components

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-56

Non-Confidential

Related tasks
4.4.7 Using port arrays on page 4-57

4.4.5 Moving ports

This section describes how to move ports, for example to improve readability.

Procedure
1. Place the mouse pointer over the port. The mouse pointer changes shape to a hand with a pointing

finger. This is the move-port mouse pointer.
2. Press and hold the left mouse button down over the port, and drag the port to the new location.

This can be anywhere along the inner border of the component that is not on top of an existing port. If
you select an invalid position, the port returns to its original location.

3. When the port is in position, release the mouse button.

Arrange any other ports as needed. The clk_in port must be on the left side.

4.4.6 Adding components

This section describes how to add components to a project.

Procedure
1. Drag and drop the following components onto the Block Diagram window:

• ClockDivider.
• MasterClock.
• PL340_DMC.
• PVBusDecoder.
• RAMDevice.

The PL340_DMC component is included to demonstrate some features of System Canvas and is not
part of the final example system.

2. Select the new components individually and use the General tab of the Component Instance
Properties dialog to rename them to:
• Divider.
• Clock.
• PL340.
• BusDecoder.
• Memory.

4.4.7 Using port arrays

This section describes how to expand, collapse, and hide port arrays.

Procedure
1. Right click on one of the axi_if_in ports in the PL340 component to open a context menu. Select

Collapse Port to reduce the port array to a single visible item in the component.
2. Select the PL340 component and then select Object Properties from the Object menu.
3. Select the Ports tab in the Component Instance Properties dialog.

The axi_if_in port is a port array as indicated by the + beside the port name. Click the + to expand
the port tree view.

4. Deselect the checkboxes beside axi_if_in[2] and axi_if_in[3] to hide the chosen array ports so
that expanding the port array still does not display them. Click OK to close the dialog.
You can also hide a port by using the port context menu and selecting Hide Port.

5. To expand the axi_if_in port in the PL340 component, you can:

4 System Canvas Tutorial
4.4 Add and configure components

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-57

Non-Confidential

• Right click on the port and select Expand Port from the port context menu.
• 1. Display the Component Instance Properties dialog.

2. Select the Ports tab.
3. Click the + next to the port array to expand the port tree view.
4. Select the Show as Expanded radio button.

Results: Only the axi_if_in[0] and axi_if_in[1] ports are shown.
6. To redisplay the axi_if_in[2] and axi_if_in[3] ports, you can:

• Use the port context menu and select Show All Ports.
• Reverse the deselection step, selecting the checkboxes next to the hidden ports, in the

Component Instance Properties dialog.

Ports with more than eight items are shown collapsed by default.

Next Steps

The rest of this tutorial does not require the PL340 component, so you can delete it.

Figure 4-6 Example system with added components

4 System Canvas Tutorial
4.4 Add and configure components

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-58

Non-Confidential

4.5 Connecting components
This section describes how to connect components.

Procedure
1. Select connection mode, by doing either of the following:

• Click the Connect button.
• Select Connect Ports Mode from the Edit menu.

2. Move the mouse pointer around in the Block Diagram window:
Option Description

Not over an object The pointer changes to the invalid pointer, a circle with a diagonal line through
it.

Over an object The pointer changes to the start connection pointer and the closest valid port is
highlighted.

3. Move the cursor so that it is over the Clock component and close to the clk_out port.
4. Highlight the clk_out port, then press and hold the left mouse button down.
5. Move the cursor over the clk_in port of the Divider component.
6. Release the mouse button to connect the two ports.

The application remains in connect mode after the connection is made.
7. Make the remaining connections.

Figure 4-7 Connected components

Connections between the addressable bus ports have bold lines.

4 System Canvas Tutorial
4.5 Connecting components

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-59

Non-Confidential

4.6 View project properties and settings
Before building the model, verify the toolchain configuration and top component using the Project
Settings dialog.

This section contains the following subsections:
• 4.6.1 Viewing the project settings on page 4-60.
• 4.6.2 Specifying the Active Project Configuration on page 4-61.
• 4.6.3 Selecting the top component on page 4-62.

4.6.1 Viewing the project settings

Use the Project Settings dialog to view and edit the project configuration. Although no changes are
required for this tutorial, this section demonstrates the steps to use if changes were necessary.

Procedure
1. Open the Project Settings dialog to inspect the project settings for the system, by doing either of the

following:
• Click the Settings button.
• Select Project Settings from the Project menu.

Results:

The Project Settings dialog appears:

4 System Canvas Tutorial
4.6 View project properties and settings

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-60

Non-Confidential

Figure 4-8 Project settings for the example

The Category View, List View, and Tree View tabs present different views of the project
parameters.

4.6.2 Specifying the Active Project Configuration

Use the Select Active Project Configuration drop-down menu on the main toolbar to display the
configuration options that control how the target model is generated.

You can choose to build:

• Models with debug support.
• Release models that are optimized for speed.

4 System Canvas Tutorial
4.6 View project properties and settings

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-61

Non-Confidential

Display and edit the full list of project settings by selecting Project Settings from the Project menu.
Inspect and modify a configuration for your operating system by selecting it from the Configuration
drop-down list and clicking the different list elements to view the settings.

 Note

• The configuration options available, including compilers and platforms, depend on the operating
system.

• Projects that were created with earlier versions of System Generator might not have the compiler
version specified in the Project Settings dialog, but are updateable.

4.6.3 Selecting the top component

The top component defines the root component of the system. Any component can be set as the top
component. This flexibility enables building models from subsystems.

In the Project Settings dialog, click the Select From List... button. The Select Top Component dialog
opens and lists all the components in the system.

 Note

If the value in the Type column is System, the component has subcomponents.

Figure 4-9 Select Top Component dialog showing available components

4 System Canvas Tutorial
4.6 View project properties and settings

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-62

Non-Confidential

4.7 Changing the address mapping
Addressable bus mappings, connections that have bold lines, have editable address maps.

Follow this procedure to change the address mapping.

Procedure
1. Double-click the pvbus_m_range port of the BusDecoder component to open the Port Properties

dialog.
Results:

Figure 4-10 Viewing the address mapping from the Port Properties dialog
2. Open the Edit Connection dialog by doing either of the following:

• Select the Memory.pvbus Slave Port line, and click Edit Connection....
• Double click on the entry.

Results:

Figure 4-11 Edit Connection dialog
3. Select the Enable address mapping checkbox to activate the address text fields.

The address mapping for the master port is shown on the left side of the Edit Connection dialog.
Start, End, and Size are all editable. If one value changes, the other values are automatically updated
if necessary. The equivalent LISA statement is displayed at the bottom of the Edit Connection
dialog.

4 System Canvas Tutorial
4.7 Changing the address mapping

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-63

Non-Confidential

4. Enter a Start address of 0x00000000 and an End address of 0x10FFFFFF in the active left-hand side
of the Edit Connection dialog. The Size of 0x11000000 is automatically calculated.
This step maps the master port to the selected address range. If mapping the master port to a different
address range on the slave port is required, select Enable slave port address range. Checking it
makes the parameters for the slave port editable. The default values are the same as for the master
port when the slave address range is enabled. Disabling the slave address range is equivalent to
specifying the address range 0...size-1, and not the master address range. In this case, a slave port
address range is not required, so deselect the Enable slave port address range checkbox.
Results:

Figure 4-12 Edit address map for master port
5. Click OK to close the Edit Address Mapping dialog for the Memory.pvbus slave port.
6. Click OK to close the Port Properties dialog.

4 System Canvas Tutorial
4.7 Changing the address mapping

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-64

Non-Confidential

4.8 Building the system
This section describes how to build the model as an .so or .dll library.

Procedure
1. Click the Build icon on the System Canvas toolbar to build the model.

System Canvas might perform a system check, depending on your preference setting. If warnings or
errors occur, a window might open. Click Proceed to start the build.
Results:

The progress of the build is displayed in the log window.

Figure 4-13 Build process output

Depending on the speed of your computer and the type of build selected, this process might take
several minutes.

You can reduce compilation time by setting the SimGen options --num-comps-file and --num-
build-cpus in the Project Settings dialog.

Related tasks
4.10 Building SystemC ISIM targets on page 4-69

4 System Canvas Tutorial
4.8 Building the system

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-65

Non-Confidential

4.9 Debugging with Model Debugger
This section describes how to use Model Debugger to debug the model.

Procedure
1. Click the Debug button on the System Canvas toolbar to open the Debug Simulation dialog:

Results:

Figure 4-14 Debug Simulation dialog
2. Select the CADI library radio button to attach Model Debugger to your CADI target.

The radio buttons that are available depend on the target settings.
3. Specify the location of the application that you want to run in the Application field.

This example uses dhrystone.axf, which is part of the Third-Party IP add-on package for the Fast
Models Portfolio.

4. Click OK to start Model Debugger.
Results:

An instance of Model Debugger starts. The debugger loads the model library from the build
directory of the active configuration. Model Debugger displays the Configure Model Parameters
dialog containing the instantiation parameters for the top-level components in the model:

4 System Canvas Tutorial
4.9 Debugging with Model Debugger

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-66

Non-Confidential

Figure 4-15 Configure Model Parameters dialog

To display parameter sets:
• Select a Parameter category in the left-hand side of the dialog.
• Click a + next to a component name in the right-hand side.

For different views of the system parameters, select the List View or Tree View tabs.
5. Click OK to close the dialog.

Results:

Figure 4-16 Select Targets dialog

The Select Targets dialog displays the components to use in Model Debugger. The Arm processor
component is the default.

6. Click OK to close the dialog.

4 System Canvas Tutorial
4.9 Debugging with Model Debugger

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-67

Non-Confidential

7. Click Run to start the simulation.
Results:

The Application Input window appears:

Figure 4-17 Model Debugger Application Input window
8. Enter the required number of runs through the benchmark in the Application input field and click

OK.
Results:

After a short pause, the benchmark results are shown in the StdIO window.

Figure 4-18 Model Debugger StdIO window
Related information
Model Debugger for Fast Models User Guide

4 System Canvas Tutorial
4.9 Debugging with Model Debugger

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-68

Non-Confidential

https://developer.arm.com/docs/100968/1110

4.10 Building SystemC ISIM targets
An alternative to building the model as a CADI library is to build it as a standalone executable SystemC
Integrated SIMulator (ISIM). To do this, tick the SystemC integrated simulator checkbox under the
Targets option in the Project Settings dialog.

Figure 4-19 Building a SystemC integrated simulator target

System Canvas generates a SystemC ISIM target by statically linking the model with the SystemC
framework.

The output executable is called isim_system, and is generated in the build directory.

Related references
Chapter 3 Building Fast Models on page 3-36

4 System Canvas Tutorial
4.10 Building SystemC ISIM targets

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

4-69

Non-Confidential

Chapter 5
System Canvas Reference

This chapter describes the windows, menus, dialogs, and controls in System Canvas.

It contains the following sections:
• 5.1 Launching System Canvas on page 5-71.
• 5.2 System Canvas GUI on page 5-72.
• 5.3 System Canvas dialogs on page 5-86.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-70

Non-Confidential

5.1 Launching System Canvas
Start System Canvas from the Microsoft Windows Start menu or from the command line on all supported
platforms.

To start System Canvas from the command line, at the prompt type sgcanvas.

Table 5-1 System Canvas command line optional parameters

Short form Long form Description

-h --help Print help text and exit.

-v --version Print version and exit.

5 System Canvas Reference
5.1 Launching System Canvas

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-71

Non-Confidential

5.2 System Canvas GUI
This section describes System Canvas, the GUI to the Fast Models tools, which shows the components in
a system, component ports, external ports (if the system itself is a component), and connections between
ports.

This section contains the following subsections:
• 5.2.1 Application window on page 5-72.
• 5.2.2 Menu bar on page 5-73.
• 5.2.3 Toolbar on page 5-80.
• 5.2.4 Workspace window on page 5-82.
• 5.2.5 Component window on page 5-84.
• 5.2.6 Output window on page 5-85.

5.2.1 Application window

The main window of System Canvas contains several windows and various graphical elements.

Figure 5-1 Layout of System Canvas

Main menu

The available options with their corresponding keyboard shortcuts.

Toolbar

Buttons for frequently-used features.

Workspace

Tabs to select the views:

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-72

Non-Confidential

Block Diagram
The components, ports, and connections.

Source
The LISA code of the component.

You can edit every part of the system using these views.

Component list

All of the components and their protocols and libraries in the current project.

Output window

Displays status messages that are output from the build process.

Status bar

Displays information about menu items, commands, buttons, and component information.

The block diagram editor creates graphical representations of systems. It provides a rapid way to create
and configure components or systems consisting of multiple components.

You can add new components to a single project or to a component repository for use in multiple
projects. The Language for Instruction Set Architectures+ (LISA+) describes the components.

5.2.2 Menu bar

The main bar provides access to System Canvas functions and commands.

File menu

The File menu lists file and project operations.

New Project

Create a new model project.

Load Project

Open an existing project.

Close Project

Close a project. If there are pending changes, the Save changes dialog appears.

Save Project

Save the changes made to a project.

Save Project As

Save a project to a new location and name.

New File

Create a new file. The New File dialog appears. Select the type from the File type drop-down
list.

Open File

This displays the Open File dialog. Filter the types to display by selecting the type from the File
type drop-down list. Non-LISA files open as text in the source editor.

Close File

Close a LISA file. A dialog prompts to save any changes.

Save File

Save the changes made to the current LISA file.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-73

Non-Confidential

Save File As

Save a LISA file to a new location and name.

Save All

Save the changes made to the project and the LISA files.

Print

Print the contents of the Block Diagram window.

Preferences

Modify the user preferences.

Recently Opened Files

Display the 16 most recently opened LISA files. Click on a list entry to open the file.

To remove a file from the list, move the mouse cursor over the filename and press the Delete
key or right click and select Remove from list from the context menu.

Recently Opened Projects

Display the 16 most recently opened projects. Click on a list entry to open the project.

To remove a project from the list, move the mouse cursor over the project name and press the
Delete key or right click and select Remove from list from the context menu.

Exit

Close System Canvas. A dialog prompts to save any changes. Disable it by selecting Do not
show this message again. Re-enable it in the preferences.

Related references
5.3.13 New project dialogs on page 5-98
Preferences - Suppressed messages group on page 5-104

Edit menu

The Edit menu lists content operations.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-74

Non-Confidential

Undo
Undo up to 42 of the latest changes to a file in the Source view or to the layout in the Block
Diagram view. These actions are undoable:
• Add an object such as a component, label, or connection.
• Paste or duplicate.
• Cut or delete.
• Edit object properties.
• Move.
• Resize.

 Note

Undo and Redo operations can affect Block Diagram view zoom and scroll actions.

Undo and Redo typically work normally. For example:
1. Change the system in the Block Diagram view by adding a RAMDevice component with

name RAM.
2. Switch to Source view. The text RAM : RAMDevice(); is present in the composition section.
3. Change the code by removing the line RAM : RAMDevice();.
4. Change the code by adding, for example, the line PVS : PVBusSlave();.
5. Click on the Block Diagram tab. The change to the source code is reflected by the RAM

component being replaced by the PVS component.
6. Select Undo from the Edit menu. The Block Diagram view shows that RAM is present but

PVS is not.
7. Select Redo from the Edit menu. The Block Diagram view shows that PVS is present but

RAM is not.

Redo

Redo the last undone change. This cancels the result of selecting Undo. Selecting Redo multiple
times cancels multiple Undo actions.

Cut

Cut the marked element into the copy buffer.

Copy

Copy the marked element into the copy buffer.

Paste

Paste the content of the copy buffer at the current cursor position.

Duplicate

Duplicate the marked content.

Delete

Delete the marked element.

Select All

Select all elements.

Edit Mode

Change the Workspace to Edit mode. The cursor can select components.

Connect Ports Mode

Select Connection mode. The cursor can connect components.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-75

Non-Confidential

Pan Mode

Select Movement mode. The cursor can move the entire system in the Workspace window.

Search menu

The Search menu lists find, replace and go to functions.

Find

Search for a string in the active window (with a thick black frame).

Find Next

Repeat the last search.

Find Previous

Repeat the last search, backwards in the document.

Replace

In the Source view, search for and replace strings in a text document.

Go To Line

In the Source view, specify a line number in the currently open LISA file to go to.

 Note

Use the search icons at the top right of the application window to search for text. Entering text in the
search box starts an incremental search in the active window.

Related references
5.3.10 Find and Replace dialogs on page 5-96

View menu

The View menu lists the Workspace window display options.

Show Grid

Using the grid simplifies component alignment.

Zoom In

Show more detail.

Zoom Out

Show more of the system.

Zoom 100%

Change the magnification to the default.

Zoom Fit

Fit the entire system into the canvas area.

Zoom Fit Selection

Fit the selected portion into the canvas area.

Object menu

The Object menu lists system and system component operations.

Open Component

Open the source for the selected component.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-76

Non-Confidential

Add Component

Display all of the components available for adding to the block diagram.

Add Label

The mouse cursor becomes a default label. To add the label, move it to the required location in
the Block Diagram window and click the left mouse button. The Label Properties dialog
appears.

Add Port

Display the External Port dialog. Specify the type of port to add.

Mirror Self Port

Switch the direction that the external port image points in. It does not reverse the signal
direction, so a master port remains a master port. If an unconnected port is not selected, this
option is disabled.

Expand Port
For a port array, display all of the individual port elements. Expanded is the default for port
arrays with eight or fewer ports. Collapsed is the default for port arrays with more than eight
elements.

 Note

Ports with many elements might expand so that elements appear on top of one another. Either:
click and drag them apart, or collapse the port, increase the component size, then expand the
port again.

Collapse Port

For a port array, hide the individual port elements and only display the top-level port name.

Hide Port

Disable the selected port and make it invisible.

Hide All Unconnected Ports

Hide all ports that are not connected to a component.

Show/Hide Ports of Protocol Types...

Hide all ports that use a specified protocol. The Show/Hide Connection Types dialog appears.
Select the protocols to filter.

Show All Ports

Show all ports. Some might overlap if there is not enough space.

Autoroute Connection

Redraw the selected connection.

Autoroute All Connections

Redraw all of the connections.

Documentation

Open the documentation for the selected component.

Object Properties

Display the Component Instance Properties dialog to view and edit the properties for the
selected component.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-77

Non-Confidential

Project menu

The Project menu lists build, check, configure, run, and set options.

Check System

Check for errors or missing information. This feature does not check everything, but does give
useful feedback.

Generate System

Generate the C++ source code, but do not compile it. After generation, click Build System and
Debug to run the model.

Build System

Generate and compile the generated C++ source code, producing a library or a runnable model.

Stop Build

Cancel the active build process.

Clean

Delete all generated files.

Launch Model Debugger

Execute the simulation under the control of Model Debugger.

Run

Run...

Open the Run dialog to specify the run command.

Run in Model Shell

Execute the simulation under the control of Model Shell with command-line options
taken from project settings and user preferences.

Run ISIM system

Execute the simulation as an ISIM executable with Model Shell command-line options
taken from project settings and user preferences.

Clear History

Clear all recent run command entries.

Recent Command Entries (up to 10)

Call recent command entries.

Kill Running Command

Stop the running synchronous command.

Launch Host Debugger

Microsoft Windows
Launch Microsoft Visual Studio. Build the system there, and start a debug session.

 Note

You can take the command-line arguments for ISIM systems or Model Shell from
Microsoft Visual Studio by selecting Project > Properties > Configuration
Properties > debugging .

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-78

Non-Confidential

Linux

Launch the executable or script set in the application preferences. The target must be an
ISIM executable. Arm recommends this method for debugging at source-level.

Add Files

Add files to the system.

Add Current File

Add the currently open file to the system.

Refresh Component List

Update the Component List window to show all available components.

Setup Default Repository
Display the Default Model Repository section of the Preferences window, and select the
default repositories for the next new project.

 Note

This does not affect the currently open project.

Set Top Level Component

Displays the Select Top Component dialog that lists all available components in the system.

The top component defines the root component of the system. It can be any component. This
enables building of models from subsystems.

 Note

If the value in the Type column is System, the component has subcomponents.

Active Configuration

Select the system build configuration from the project file list.

Project Settings

Display the Project Settings dialog.

Related references
Preferences - Applications group on page 5-100

Help menu

The Help menu lists documentation, software and system information links.

Fast Model Tools User Guide

Display the Fast Models User Guide.

Model Shell Reference Manual

Display the Model Shell for Fast Models Reference Manual.

LISA+ Language Reference Manual

Display the LISA+ Language for Fast Models Reference Manual.

AMBA-PV Developer Guide

Display the AMBA-PV Extensions to TLM 2.0 Developer Guide.

CADI Developer Guide

Display the Component Architecture Debug Interface v2.0 Developer Guide.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-79

Non-Confidential

Release Notes

Display this document.

Documents in $PVLIB_HOME/Docs

List the PDF files in the directory $PVLIB_HOME/Docs. The location syntax is the same on
Microsoft Windows and Linux. The Fast Models Portfolio installation sets the PVLIB_HOME
environment variable.

End User License Agreement (EULA)

Display the license agreement.

About

Display the version and license information.

System Information

Display information about the tools and loaded models.

5.2.3 Toolbar

The toolbar sets out frequently used menu functions.

New

Create a new project or LISA file.

Open

Open an existing project or file.

Save

Save current changes to the file.

All

Save project and all open files.

Undo

Undo the last change in the Source or Block Diagram view.

Redo

Undo the last undo.

Properties
Display the Properties dialog for the selected object:

Nothing
The Component Model Properties dialog, with the properties for the top-level
component.

Component
The Component Instance Properties dialog.

Connection
The Connection Properties dialog.

Port
The Port Properties dialog.

Self port
The Self Port Properties dialog.

Label
The Label Properties dialog.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-80

Non-Confidential

 Note

The Properties button only displays properties for items in the block diagram.

Settings

Display the project settings.

Select Active Project Configuration

Select the build target for the project.

Refresh

Refresh the component and protocol lists.

Check

Perform a basic model error and consistency check.

Build

Generate a virtual system model using the project settings.

Stop

Stop the current generation process.

Clean

Delete all generated files.

Debug

Start Model Debugger to debug the generated simulator.

Run

Execute the most recent run command. The down arrow next to the button opens the Run
dialog.

Kill

Stop Model Shell and end the simulation.

Edit

Edit mode: the cursor selects and moves components.

Connect

Connection mode: the cursor connects components.

Pan

Movement mode: the cursor moves the entire system in the Workspace window.

Zoom

Use the In, Out, 100%, and Fit buttons to change the system view zoom factor in the
Workspace window.

Related tasks
4.6.1 Viewing the project settings on page 4-60
Related references
Edit menu on page 5-74
5.3.4 Component Instance Properties dialog on page 5-88
5.3.5 Component Model Properties dialog for the system on page 5-90
5.3.7 Connection Properties dialog on page 5-93

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-81

Non-Confidential

5.3.11 Label Properties dialog on page 5-96
5.3.12 New File dialog (File menu) on page 5-97
5.3.14 Open File dialog on page 5-98
5.3.15 Port Properties dialog on page 5-99
5.3.20 Self Port dialog on page 5-116

5.2.4 Workspace window

This section describes the Workspace window, which displays editable representations of the system.

Source view

The Source view displays the LISA source code of components. It can also display other text files.

The source text editor features:
• Similar operation to common Microsoft Windows text editors.
• Standard copy and paste operations on selected text, including with an external text editor.
• Undo/redo operations. Text changes can be undone by using Ctrl-Z or Edit > Undo. Repeat text

changes with Ctrl-Y or Edit > Redo.
• Syntax highlighting for LISA, C++, HTML, Makefiles, project (*.sgproj) and repository

(*.sgrepo) files.
• Auto-indenting and brace matching. Indenting uses four spaces not single tab characters.
• Auto-completion for LISA source. If you type a delimiter such as “.” or “:”, a list box with

appropriate components, ports, or behaviors appears. Icons indicate master and slave ports.
• Call hint functionality. If you type a delimiter such as “(“, a tooltip appears with either a component

constructor or behavior prototype, depending on the context. Enable call hints by enabling tooltips in
the Appearance pane of the Preferences dialog.

 Note

Every time System Canvas parses a LISA file, it updates lexical information for auto-completion and call
hint functionality. This occurs, for example, when switching between the views.

Source view context menu

The Source view context menu lists text operations.

Undo

Undo the last change.

Redo

Undo the last undo.

Cut

Cut the selected text.

Copy

Copy the selected text.

Paste

Paste text from the global clipboard.

Delete

Delete the selected text.

Select All

Selects all of the text in the window.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-82

Non-Confidential

Block Diagram view

The Block Diagram view displays a graphical representation of components. It enables the addition of
components, connections, ports and labels to the system.

This view supports copy and paste operations on selected components, connections, labels, and self
ports:

• Use the cursor to draw a bounding rectangle around the box.
• Press and hold shift while clicking on the components to copy.

Copied components will have different names. To copy connections, select both ends of the connection.

 Note

Changes made in one view immediately affect the other view.

Open files have a named workspace tab at the top of the Workspace window. An asterisk after the name
indicates unsaved changes. A question mark means that the file is not part of the project.

Click the right mouse button in the workspace to open the context menu for the view.

Displaying the block diagram fails if:
• The file is not a LISA file.
• The syntax of the LISA file is incorrect.
• The LISA file contains more than one component.
• The LISA file contains a protocol.

Block Diagram view context menu

The Block Diagram view context menu lists object operations.

Open Component

Open a new workspace tab for the selected component.

Delete

Delete the object under the mouse pointer.

Add Port...

Add a port to the component.

Mirror Self Port

Mirror the port image.

Expand Port
For a port array, display all of the individual port elements.

Collapse Port

For a port array, hide the individual port elements.

Hide Port

Disable the selected port and make it invisible.

Hide All Unconnected Ports

Hide all ports that are not connected to a component.

Show/Hide Ports of Protocol Types...

Hide all ports that use a specified protocol.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-83

Non-Confidential

Show All Ports

Show all ports of the component.

Autoroute connection

Redraw the selected connection.

Documentation

Open the documentation for the selected component.

Object Properties

Open the object properties dialog.

Related references
5.3.14 Open File dialog on page 5-98
5.3.16 Preferences dialog on page 5-100

5.2.5 Component window

This section describes the Component window, which lists the available components and their protocols
and libraries.

Component window views

The Component window has view tabs.

Components

The components, and their version numbers, types, and file locations. Drag and drop to place in
the block diagram. Double click to open in the workspace.

Protocols

The protocols of these components, and their file locations. Double click to open in the
workspace.

Files
The project files, in a fully expanded file tree with the project file as the root. Double click to
open in the workspace. The project file can contain LISA files and component repositories. A
repository can itself contain a repository.

 Note

The order of file processing is from the top to the bottom. To move objects:
• Select and use Up and Down in the context menu, or use Alt + Arrow Up or Alt + Arrow

Down.
• Drag and drop.

Component window context menu

The Component window context menu lists file operations and a documentation link.

Open

Open the associated file.

Add...

Add a repository, component or protocol file, or a library.

Add New...

Add a new file.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-84

Non-Confidential

Add Directory...

Add an include path to be used by the compiler (Files tab only). To simplify navigation, the add
dialog also shows the filename.

Remove

Remove an item.

Up

Move a file up the file list (Files tab only).

Down

Move a file down the file list (Files tab only).

Reload

Reload a component or protocol.

Refresh Component List

Refresh the entire component list.

Documentation

Open the documentation for the component.

Properties

Show the properties of the item.

5.2.6 Output window

The Output window displays the build or script command output.

The left side of the window has controls:

First

Go to the first message.

Previous

Go to the previous message.

Stop

Do not scroll automatically.

Next

Go to the next message.

Last

Go to the last message.

The right side of the window has controls:

Scroll bar

Move up and down in the output.

Stick

Force the window to show the latest output, at the bottom.

5 System Canvas Reference
5.2 System Canvas GUI

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-85

Non-Confidential

5.3 System Canvas dialogs
This section describes the dialog boxes of System Canvas.

This section contains the following subsections:
• 5.3.1 Add Existing Files and Add New File dialogs (Component window) on page 5-86.
• 5.3.2 Add Files dialog (Project menu) on page 5-87.
• 5.3.3 Add Connection dialog on page 5-88.
• 5.3.4 Component Instance Properties dialog on page 5-88.
• 5.3.5 Component Model Properties dialog for the system on page 5-90.
• 5.3.6 Component Properties dialog for a library component on page 5-92.
• 5.3.7 Connection Properties dialog on page 5-93.
• 5.3.8 Edit Connection dialog on page 5-94.
• 5.3.9 File/Path Properties dialog on page 5-94.
• 5.3.10 Find and Replace dialogs on page 5-96.
• 5.3.11 Label Properties dialog on page 5-96.
• 5.3.12 New File dialog (File menu) on page 5-97.
• 5.3.13 New project dialogs on page 5-98.
• 5.3.14 Open File dialog on page 5-98.
• 5.3.15 Port Properties dialog on page 5-99.
• 5.3.16 Preferences dialog on page 5-100.
• 5.3.17 Project Settings dialog on page 5-104.
• 5.3.18 Protocol Properties dialog on page 5-115.
• 5.3.19 Run dialog on page 5-115.
• 5.3.20 Self Port dialog on page 5-116.

5.3.1 Add Existing Files and Add New File dialogs (Component window)

This section describes these dialogs that add components, protocols, libraries, repositories, or source
code to a project.

Displaying the Add Existing Files and Add New File dialogs (Component window)

This section describes how to display dialogs that add components, protocols, libraries, repositories, or
source code to a project.

Procedure
1. Display a dialog by right-clicking in the Component window and selecting from the context menu:

• Add.
• Add New.

Using the Add Existing Files and Add New File dialogs (Component window)

This section describes how to add a file using the Component window context menu.

Procedure
1. Select the Components, Protocols, or Files tab in the Component window.

To add a file at the top level of the file list, select the top entry. To add a file to an existing repository
in the file list, select the repository.

2. Right-click in the Component window and select Add or Add New from the context menu.
Option Description

Add In the Add Existing Files dialog, go to the file and select it.

Add New In the Add New File dialog, go to the directory to contain the file and enter the name.

Save time with the Recently selected files drop-down list. To remove a file, mouse over it and press
Delete, or right-click and select Remove from list from the context menu.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-86

Non-Confidential

3. Click Open to add the file and close the dialog.

Next Steps

Library files, those with .lib or .a extensions, need build actions and a platform.

Related references
5.3.9 File/Path Properties dialog on page 5-94

Using environment variables in filepaths

Environment variables in filepaths enable switching to new repository versions without modifying the
project.

For example, using $(PVLIB_HOME)/etc/sglib.sgrepo as the reference to the components of the Fast
Models Portfolio enables migration to future versions of the library by modifying environment variable
PVLIB_HOME.

 Note

On Microsoft Windows, Unix syntax is valid for environment variables and paths, for example
$PVLIB_HOME/etc/my.sgrepo.

Edit a filepath through the File Properties dialog:

Procedure
1. Select the file and click select Properties from the context menu.
2. Edit the File entry to modify the filepath.
Related references
5.3.9 File/Path Properties dialog on page 5-94

Assigning platforms and compilers for libraries

This section describes how to set the operating system that a library is for, and the compiler that built it.

Procedure
1. Use the File Properties dialog to specify the operating system and compilers by checking the

appropriate boxes in the Supported platforms pane.

Microsoft Visual Studio distinguishes between debug and release versions.
Related references
5.3.9 File/Path Properties dialog on page 5-94
5.3.17 Project Settings dialog on page 5-104
Related references
5.3.2 Add Files dialog (Project menu) on page 5-87
5.3.12 New File dialog (File menu) on page 5-97

5.3.2 Add Files dialog (Project menu)

Add files to a project with this dialog.

Select Add File from the Project menu to add a new file to the project.

The behavior of this dialog is identical to that of the Add Existing Files dialog.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-87

Non-Confidential

To create a new file from code in the Source view, select Add Current File from the Projects menu to
add the file to the project. No dialog appears.

 Note

Save time with the Recently selected files drop-down list. To remove a file, mouse over it and press
Delete, or right-click and select Remove from list from the context menu.

Related references
5.3.1 Add Existing Files and Add New File dialogs (Component window) on page 5-86
5.3.9 File/Path Properties dialog on page 5-94

5.3.3 Add Connection dialog

This dialog adds a connection to a component port.

To open the dialog:

1. Select a component port.
2. Display the Port Properties dialog by selecting Object Properties from the context menu or from

the Object menu.
3. Click the Add Connection button.
The enabled fields for the dialog depend on whether a slave or master was displayed in the Port
Properties dialog.

 Note

This dialog also appears if you use the cursor in connect mode to connect two ports in the block diagram
and one or more of the ports is a port array.

Related references
5.3.8 Edit Connection dialog on page 5-94

5.3.4 Component Instance Properties dialog

This dialog displays the properties of a component.

To open the dialog, select a component in the block diagram, and click on the Properties button in the
toolbar or select Object Properties from the Object menu.

General

The component name, instance name, filename and path, and repository.

The Instance name field is editable.
 Note

To view the properties of the top-level component, double-click in an area of the workspace that
does not contain a component.

Properties

All properties for the component. If the properties are not editable, the tab says Properties
(read only).

If the property is a Boolean variable, a checkbox appears next to it.

Parameters

All editable parameters for this component. Enter a new value in the Value edit box.

The following controls are present:

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-88

Non-Confidential

Parameter name

The parameters for this component.

Value

Select a parameter and then click the text box in the Value column to set the default
value for the parameter.

Integer parameters in decimal format can contain binary multiplication suffixes. These
left-shift the bits in parameter value by the corresponding power of two.

Table 5-2 Suffixes for parameter values

Suffix Name Multiplier

K Kilo 210

M Mega 220

G Giga 230

T Tera 240

P Peta 250

Ports

All the ports in the component.

For port arrays, display all of the individual ports or only the port array name by selecting Show
as Expanded or Collapsed.

The properties of individual ports are editable:

1. Select a port from the list.
2. Click Edit and change the properties of the port.
3. Click OK to save the changes.

 Note

If you click OK, the changes apply immediately.

Enable/disable individual ports with the checkboxes:
• Click Show selected ports to display the checked ports.
• Click Hide selected ports to hide the checked ports.

 Note

Hiding the top level of a port array hides all of the individual ports but they retain their
check mark setting.

Methods

All the behaviors (component functions) that the component implements.

Related references
5.3.5 Component Model Properties dialog for the system on page 5-90
5.3.6 Component Properties dialog for a library component on page 5-92
5.3.11 Label Properties dialog on page 5-96
5.3.15 Port Properties dialog on page 5-99
5.3.18 Protocol Properties dialog on page 5-115
5.3.20 Self Port dialog on page 5-116

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-89

Non-Confidential

5.3.5 Component Model Properties dialog for the system

This dialog displays the properties for the system.

To open the dialog, select a blank area in the block diagram, right-click and select Object Properties
from the context menu to display the properties for the system or select Object Properties from the
Object menu.

General

The system name, filename and path, and repository.

The Component name field is editable.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-90

Non-Confidential

Properties

If the property is a Boolean variable, a checkbox appears next to it.

Changes in these dialogs alter the LISA code in the model.

Double-click in the Value column to change the property.

Table 5-3 Component properties

Property ID Default Description

Component name component_name "" A string containing the name
for the component.

Component category component_type "" A string describing the type of
component. This can be
"Processor", "Bus",
"Memory", "System", or any
free-form category text.

Component description description "" A textual component
description.

Component documentation documentation_file "" A filepath or an HTTP link to
documentation. Supported file
formats are PDF, TXT, and
HTML.

Executes software executes_software 0 The component executes
software and can load
application files. 1 for
processor-like components, 0
for other components.

Hidden hidden 0 1 for components hidden from
the Component window.
Otherwise, hidden components
behave exactly as normal
components, and they do
appear in the Workspace
window.

Has CADI interface has_cadi 1 1 for components with a CADI
interface, permitting
connection to the target with a
CADI-compliant debugger. 0
for components with no CADI
interface.

Icon pixmap file icon_file "" The XPM file that contains the
system icon.

License feature license_feature "" The license feature string
required to run this system
model.

Load file extension loadfile_extension "" The application filename
extension for this target.
Example: ".elf" or ".hex".

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-91

Non-Confidential

Table 5-3 Component properties (continued)

Property ID Default Description

Small icon pixmap file small_icon_file "" The XPM file that contains the
12x12 pixel system icon.

Component version version "1.0" The version of the component.

Parameters

Parameter name

The parameters for this component.

Value

Select a parameter and then click the text box in the Value column to set the default
value. Integer parameters in decimal format can contain binary multiplication suffixes.
These left-shift the bits in parameter value by the corresponding power of two.

Table 5-4 Suffixes for parameter values

Suffix Name Multiplier

K Kilo 210

M Mega 220

G Giga 230

T Tera 240

P Peta 250

Parameter ID in LISA code

The LISA ID for the component parameters.

Add

Click to add a new parameter.

Edit

Select a parameter and then click to change the name.

Delete

Select a parameter and then click to delete it.

Ports

All external ports.

If a port contains an array of ports, the Size column displays the number of ports in the array.

Enable/disable individual ports with the checkboxes:
• Click Show selected ports to display the checked ports.
• Click Hide selected ports to hide the checked ports.

Methods

The available LISA prototypes. The list is for reference only. It is not editable.

5.3.6 Component Properties dialog for a library component

This dialog displays the properties of a library component.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-92

Non-Confidential

To open the dialog, select a component from the Components list, and right-click and select Properties
from the context menu or select Object Properties from the Object menu.

General

Component name

The name of the component.

Type

The component category, for example Core or Peripheral.

Version

The revision number for the component.

File

The file that defines the component.

Repository

The repository that contains the component.

Description

Information about the component.

Properties (read only)
All the usable properties of the component.

 Note

A valid license_feature string allows this component to work in a model.

Parameters (read only)

All the parameters for the component.

Ports (read only)
All the ports in the component.

 Note

No port arrays are expandable here.

Methods

The LISA prototypes of the methods, that is, behaviors, of the component. The list is for
reference only. It is not editable.

5.3.7 Connection Properties dialog

This dialog displays port connection properties.

To open the dialog, double click on a connection between components in the workspace.

Name

The name of the port.

Type

The type of port and the protocol.

To change the address mapping, click Master Port Properties or Slave Port Properties.

Related references
5.3.15 Port Properties dialog on page 5-99

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-93

Non-Confidential

5.3.8 Edit Connection dialog

This dialog controls port connection properties.

To open the dialog and change the connected port or the address mapping, select a connection from the
Port Properties dialog and click Edit Connection....

Component

For a slave port, the source component is editable. For a master port, the destination component
is editable.

Port

For a slave port, the master port is editable. For a master port, the slave port is editable.

Array index

For port arrays, an index value for the element to use.

Enable address mapping

Set the port address range with the Start and End boxes.

Start

The start address for the port.

End

The end address for the port.

Size

The size of the address region. Given the Start and End values, System Canvas calculates this
value.

OK/Cancel

Click OK to modify the connection. Click Cancel to close the dialog without changing the
connection.

LISA statement
The code equivalent to the address range.

5.3.9 File/Path Properties dialog

This dialog displays properties for the file and controls build and compile options.

 Note

• On Microsoft Windows, the / and \ directory separators both appear as /. This simplification does
not affect operation.

• Avoid using Japanese or Korean characters in filepaths. They can cause failure to find libraries.

Select a component from the Component window Files tab, right click on it to open the context menu,
then click Properties to display the dialog.

General

File or path
The name of the file.

 Note

The File Properties dialog is modeless. You can select a different file without closing
the dialog. A warning message prompts to save any changes.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-94

Non-Confidential

Absolute path
The full path to the file.

Repository
The repository file that contains this component entry.

Type
A brief description of the component type.

Info
The status of the file. For example, file does not exist.

Supported platforms
Select the platforms that the component supports:
• Linux64.
• Win64 (Release runtime library).
• Win64D (Debug runtime library).

Compiler
Select the compiler for this component from the drop-down list:
• No preference.
• Specific Microsoft Visual C++ compiler.
• gcc version found in $PATH at compile time.
• Specific gcc version.

Build actions

Default actions depending on file extension

.lisa
A LISA source file that SimGen parses.

.c .cpp .cxx
A C or C++ source file that the compiler compiles.

.a .o
A Linux object file that SimGen links to.

.lib .obj
A Microsoft Windows object file that SimGen links to.

.sgproj
A project file that SimGen parses.

.sgrepo
A component repository file that SimGen parses.

directory_path/
An include directory for the search path that the compiler uses. The trailing
slash identifies it as an include path. For example, to add the directory that
contains the *.sgproj file, specify ./ (dot slash), not only the dot.

All other files
Copy a deploy file to the build directory.

 Note

Simulation Generator (SimGen) is one of the Fast Models tools.

Ignore
Exclude the selected file from build and deploy. This feature can be useful for
examples, notes, or temporarily disabled files.

Customize actions

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-95

Non-Confidential

Ignore the file extension. Specify the actions with the check boxes:

LISA - input file passed to Simulator Generator as LISA
System Canvas passes the file to SimGen as a LISA file. Do not use this option
for non-LISA files.

Compile - compile as C/C++ source code
To compile a file as C/C++ code during the build process, add it to this list of
files.

Link - input file for linker
Link the file with the object code during the build process.

Deploy - copy to build directory
Copy the file into the build directory. This option can, for example, add
dynamic link libraries for running the generated system model.

Include path - add the file’s path to additional include directories
Add the path of the parent directory that holds the file to the list of include
directories for the compiler.

Library path - add the file’s path to additional library directories
Add the path of the parent directory that holds the file to the list of library
directories for the compiler.

Related references
Project parameter IDs on page 5-109

5.3.10 Find and Replace dialogs

This dialog enables searching for and replacement of text in an editor window.

The Find dialog and the Find and Replace dialog are essentially the same dialog in two modes, find
only, and find and replace. Switch modes by clicking the Find mode or Find and replace mode buttons.
By default, matches are case sensitive but matches can appear as part of longer words. Change the
default behavior by setting or clearing the relevant checkboxes in the dialog.

Open the Find dialog by clicking Search > Find... in the main menu. Type the text to find in the box and
click the Find Next or Find Previous buttons to search upwards or downwards from the current cursor
position. You can re-use previous search terms by clicking on the drop-down arrow on the right of the
text entry box.

Open the Find and Replace dialog by clicking Search > Replace in the main menu. Replace the current
match with new text by clicking the Replace button, or all matches by clicking the Replace All button.
You can re-use previous find or replacement terms by clicking on the drop-down arrow on the right of
the text entry boxes.

Find and Replace mode is only available if the current active window is a source editor. In that mode,
additional replace controls appear. The dialog is modeless, so you can change views without closing it.

5.3.11 Label Properties dialog

This dialog controls the text and display properties for a label.

Double-click on a label to display the dialog. Select Add Label from the Object menu to add a label to
the component.

Label

Specify the text to display on the label.

Font

The text font. Click Select Font... to change it.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-96

Non-Confidential

Select Text Color...

Click to select a color for the text.

Select Background Color...

Click to select the background color for the label.

Check Transparent Background

Check to make objects behind the label visible, and to ignore the background color setting.

Horizontal

Set the horizontal justification for the label text.

Vertical

Set the vertical justification for the label text.

Rotation

Set the orientation for the label.

Frame Thickness

Set the thickness of the label border.

Shadow Thickness

Set the thickness of the label drop shadow.

Display on Top

Check to display the label on top of any components below it.

Use these settings as default

Check to use the current settings as the default settings for any new labels.

5.3.12 New File dialog (File menu)

This dialog creates new projects and LISA source files.

To display the dialog, select New File from the File menu or click the New button.

Look in

Specify the directory for the new file.

File name

Enter the name for the new file.

File type
• If a project is not open, this box displays .sgproj by default to create a project.
• If a project is open, this box displays .lisa by default to create a LISA source file.

Add to

Active for non-.sgproj files. Check to enable the adding of the created file to the open project.

Select

Click to accept the name and path.

If the new file is of type .sgproj, System Canvas prompts for the top level LISA file.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-97

Non-Confidential

 Note

Save time with the Recently selected files drop-down list. To remove a file, mouse over it and press
Delete, or right-click and select Remove from list from the context menu.

Related references
Select Top Component LISA File dialog on page 5-98

5.3.13 New project dialogs

This section describes the dialogs that create new projects.

New Project dialog

This dialog creates new projects.

To display the dialog, select New Project from the File menu.

Look in

Specify the directory for the new project file.

File name

Enter the name for the new project.

If you select an existing file, the new project replaces the existing project.

File type

The default type for Fast Models projects is .sgproj.

Select

Click to accept the name and path.

For existing projects, System Canvas queries the replacement of the existing project with a new
project of the same name.

After you click Select, the Select Top Component LISA File dialog appears.

 Note

The project file includes the path to the model repositories from the Default Model Repositories pane of
the Preferences dialog.

Related references
Preferences - Default Model Repository group on page 5-102

Select Top Component LISA File dialog

This dialog controls the name of the top-level LISA file for a project.

After clicking Select in the New Project dialog, this dialog appears. By default, the filename for the top-
level LISA file is the same as the project name. You can, however, specify a different name in this
dialog.

5.3.14 Open File dialog

This dialog opens project files, LISA source files, and text documents.

To display the dialog:
• Select Open File from the File menu.
• Select a file in the Component window and select Open from the context menu.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-98

Non-Confidential

Look in

Specify the directory.

File name

Enter the name of the file.

File type

Select the type of file.

Open

Click to open the file.

Open project file as text in source editor
Active for non-.lisa and for .sgproj files. Check to enable the opening of the file as plain text
in the Source window.

 Note

• Use this option, for example, for a .sgproj file to manually edit the list of repositories. Such
changes take effect after you close and reopen the file.

• If you select a .sgproj file without checking this box, the project loads.

 Note

Save time with the Recently selected files drop-down list. To remove a file, mouse over it and press
Delete, or right-click and select Remove from list from the context menu.

5.3.15 Port Properties dialog

This dialog controls port properties.

To display the Port Properties dialog, select a port or a connection.
• Select a component port in the Block Diagram view and:

— Double-click on the port.
— Click the Properties button.
— Select Object Properties from the Object menu.
— Right-click and select Object Properties from the context menu.

• Select a connection in the Block Diagram view and double-click to display the Connection
Properties dialog. To display the Port Properties dialog:
— Click the Master Port Properties button to display the properties for the master port.
— Click the Slave Port Properties button to display the properties for the slave port.

Name

The name of the port.

Type

The type of port and the protocol.

Array size

For port arrays, the number of elements.

Show connections for port array index

For port arrays, enter an index value in the integer box to display only that element.

For individual ports of port arrays, this box displays the index for the selected port.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-99

Non-Confidential

Port connections
• Sort the connections: click on the column headings.
• Change the connected port or address mapping: select a connection and click Edit

Connection.
• Add a connection: select a connection and click Add Connection.
• Delete a connection: select it and click Remove.
• Change the priority of a single connection: select it and click Increase Priority or Decrease

Priority.

Related references
5.3.7 Connection Properties dialog on page 5-93

5.3.16 Preferences dialog

This section describes the Preferences dialog (File > Preferences), which configures the working
environment of System Canvas.

Preferences - Appearance group

This group sets the appearance of System Canvas.

Show Tool Tips

Display all tool tips.

Display tool bar text labels

Display the status bar labels.

Word wrap in source windows

Wrap long lines to display them within the source window.

Show splash screen on startup

Show the splash screen on startup.

Reload recent layout on startup

Reload the layout settings from the last modified project.

Recent files and directories

Set the number of directories and files shown in System Canvas file dialogs and menus, up to 32
directories and 16 files.

Preferences - Applications group

This group sets the application paths.

 Note

• On Microsoft Windows, environment variables appear as $MAXxxxx_HOME. You can use this format
instead of %MAXxxxx_HOME%.

• The different path specifications enable the use of different versions of Model Debugger and provide
more flexibility for installing Model Debugger separately from System Canvas.

Simulator Generator Executable

SimGen
Set the path to the simgen.exe file.

Command arguments
Set additional command-line options.

Model Debugger Executable

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-100

Non-Confidential

Model Debugger
Set the path to the Model Debugger executable.

Command arguments
Set additional command-line options.

Model Shell Executable

Model Shell
Set the path to the Model Shell executable.

Command arguments
Set additional command-line options.

Run Model Shell asynchronously with output to console in separate window
Check to enable starting a separate Model Shell instance with its own output window.

 Note

To start the simulation, select the Run in Model Shell entry on the Projects menu.

Path to Microsoft Visual Studio application ‘devenv.com’

Select the path to the Microsoft Visual Studio devenv.com file. This application is the
development environment and builds the model.

Reset to Defaults
Click to reset the application paths.

Apply
Click to save the changes.

Run Model Shell asynchronously

On Linux, check to use the command line:

xterm -e <Model Shell Executable> optional_command_arguments_list -m model.so

Host Debugger Command Line

On Linux, set the command-line options. The default text is:

xterm -e gdb --args %ISIM%

where %ISIM% is a placeholder for the isim_system executable file.

 Note

On Linux, select the GCC compiler to build the model by using the SimGen command-line option --
gcc-path.

Related references
3.2 SimGen command-line options on page 3-38
5.3.17 Project Settings dialog on page 5-104
Related information
Model Debugger for Fast Models User Guide
Model Shell for Fast Models Reference Manual

Preferences - External Tools group

This group sets the tools that display the documentation.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-101

Non-Confidential

https://developer.arm.com/docs/100968/1110
https://developer.arm.com/docs/100969/1110

use operating system file associations
Check to inactivate the external tool edit fields and buttons. Clear to activate them.

 Note

This checkbox is not available on Linux.

Preferences - Fonts group

This group sets the application fonts.

Application

The application font.

Base fixed font

The Source view font.

Block Diagram Component Name

The component title block font.

Fonts depend on $DISPLAY variable

Check to use the font set in the $DISPLAY variable.

Reset to base size

Reset all font sizes to the selected value.

Reset to defaults

Click to reset the fonts to the factory settings.

 Note

If non-Latin characters are used in LISA code, the base fixed font must support them. The default font
might not support non-Latin characters.

Preferences - Default Model Repository group

This group sets the default model repositories for new projects.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-102

Non-Confidential

Figure 5-2 Preferences dialog, Setup Default Model Repository

To incorporate components into a system, System Canvas requires information about them, such as their
ports, protocols, and library dependencies. For convenience, model repositories, such as sglib.sgrepo,
group multiple components together and specify the location of the LISA files and the libraries that are
needed to build them.

Default repositories are added by default to new projects. To add a repository to an existing project, use
the Component window context menu.

 Note

To enable the immediate use of models in new projects, System Canvas has a default entry $
(PVLIB_HOME)/etc/sglib.sgrepo. This entry is not deletable, but clearing the checkbox deactivates it.

Add

Click Add to open a file selection dialog and add a new .sgrepo repository file to the list.

Select a directory to add all of the repositories in that directory to the list of repositories.

Edit Path

Select a repository and click Edit to edit the path to it.

The path to the default repository $(PVLIB_HOME)/etc/sglib.sgrepo is not editable.

Remove

Select a repository and click Remove to exclude the selected repository from new projects. This
does not affect the repository itself.

The default repository $(PVLIB_HOME)/etc/sglib.sgrepo is not deletable.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-103

Non-Confidential

File checkboxes

Check to automatically include the repository in new projects. Clear to prevent automatic
inclusion, but to keep the path to the repository available.

Up/Down

Use the Up and Down buttons to change the order of repositories. File processing follows the
repository order.

Related references
1.4.3 Repository files on page 1-22

Preferences - Suppressed messages group

This group lists the suppressed messages and controls their re-enabling.

Enable selected messages

Click to enable selected suppressed messages.

5.3.17 Project Settings dialog

This section describes the dialog (Project > Project Settings , or Settings toolbar button) that sets the
project settings and customizes the generation process.

Project top-level settings

This part of the dialog sets the project build options.

Top level component
• Enter a name into the Top Level Component edit box.
• Click Use Current to set the component in the workspace as the top component.
• Click Select From List to open a dialog and select any component in the system.

Configuration
• Select an entry from the drop-down list to use an existing configuration.
• Click Add New to create a new configuration. A dialog prompts for the name and a

description. Use Copy values from to select a configuration to copy the settings values
from. This can be an existing configuration or a default set of configuration settings.

• Click Delete to delete the selected configuration from the list.

The values default to those of the active configuration.

Selecting a configuration in this dialog does not set the configuration in the Select Active
Project Configuration drop-down box on the main window. System Canvas stores the
configuration set in this dialog in the project file, to use if you specify it for a build. You can use
this control to specify all of the configurations for a project, to simplify switching active
configurations.

 Note

If you build systems on Microsoft Windows workstations, other Microsoft Windows workstations need
the matching support libraries to run the systems:

Debug builds
Microsoft Visual Studio.

Release builds
Microsoft Visual Studio redistributable package.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-104

Non-Confidential

Parameter category panel

This section describes the Parameter category panel, which lists parameters for the selected build,
under different views.

Parameters - Category View

This view lists categories and the parameters for the selected category.

Top-level configuration details

Select the top-most category item to configure the project settings.

Table 5-5 Configuration parameters in the Category View

Control name Parameter

Configuration name CONFIG_NAME

Platform/Linkage PLATFORM

Compiler COMPILER

Configuration description CONFIG_DESCRIPTION

Build directory BUILD_DIR

Targets

Select the Targets item to configure the build target parameters.

Table 5-6 Target parameters in the Category View

Control name Parameter

Integrated simulator with deprecated scheduler TARGET_ISIM_DEPRECATED

CADI libraryb TARGET_MAXVIEW
 Note

Arm deprecates TARGET_MAXVIEW.

SystemC component TARGET_SYSTEMC

SystemC component with auto-bridging TARGET_SYSTEMC_AUTO

SystemC integrated simulatorb TARGET_SYSTEMC_ISIM

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-105

Non-Confidential

Debugging

Select the Debugging item in the panel to configure the debug parameters.

Table 5-7 Debugging parameters in the Category View

Control name Parameter

Enable model debugging ENABLE_DEBUG_SUPPORT

Source reference GENERATE_LINEINFO

Verbosity VERBOSITY

Model Debugger MODEL_DEBUGGER_COMMAND_LINE

Model Shell and ISIM MODEL_SHELL_COMMAND_LINE

SystemC executable SYSTEMC_EXE

SystemC arguments SYSTEMC_COMMAND_LINE

Sim Generator

Select the Sim Generator item in the panel to configure the Simulation Generator parameters.

Table 5-8 Simulation Generator parameters in the Category View

Control name Parameter

Simgen options SIMGEN_COMMAND_LINE

Warnings as errors SIMGEN_WARNINGS_AS_ERRORS

Using namespace std ENABLE_NAMESPACE_STD

Make options MAKE_OPTIONS

Compiler

Select the Compiler item in the panel to configure the compiler parameters.

Table 5-9 Compiler parameters in the Category View

Control name Parameter

Pre-Compile Actions PRE_COMPILE_EVENT

Include Directories INCLUDE_DIRS

Preprocessor Defines PREPROCESSOR_DEFINES

Compiler Settings ADDITIONAL_COMPILER_SETTINGS

Enable pre-compiling ENBALE_PRECOMPILE_HEADER

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-106

Non-Confidential

Linker

Select the Linker item in the panel to configure the linker parameters.

Table 5-10 Linker parameters in the Category View tab

Control name Parameter

Pre-Link Actions PRE_LINK_EVENT

Linker Settings ADDITIONAL_LINKER_SETTINGS

Post-Build Actions POST_BUILD_EVENT

Post-Clean Actions POST_CLEAN_EVENT

Disable suppression of symbols DISABLE_SYMBOL_SUPRESSION

Parameters - List View

This view lists the parameters and their values. Reorder them by clicking on a column heading.

Parameters - Tree View

This view displays parameters in a tree structure, with expandable categories.

Parameters - setting the release options

This section describes how to set the build options for a project configuration using the Project Settings
dialog.

Procedure
1. Click the Category View tab.
2. Select the Windows-Release entry and choose the operating system/link options from the Platform/

Linkage drop-down menu.
Option Description

Linux64 64-bit model for Linux.

Win64 64-bit model using the release run-time library for Microsoft Windows.

Win64D 64-bit model using the debug run-time library for Microsoft Windows.

3. Select the compiler from the Compiler drop-down menu.
4. Enter a path into the Build directory field to select the directory to perform the builds in.

This directory contains the source code and the build library for the system model. If the path is not
absolute, System Canvas treats it as being relative to the directory that contains the project file.

5. Enter text into the Configuration description box that describes the configuration.

Parameters - overloading the main() function in the target

This section describes how to replace the default main() of an ISIM with a user-supplied main().

 Caution

If you use the option USER_DEFINED_ISIM_MAIN and a user-supplied main(), you cannot build a CADI
shared library from the project.

If a CADI shared library is required:
• Add a new configuration for isim_system that defines USER_DEFINED_MAIN.
• Add an #ifdef USER_DEFINED_MAIN test block around the main() in the user source file.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-107

Non-Confidential

Procedure
1. Define the USER_DEFINED_ISIM_MAIN preprocessor option for the compiler in the Project Settings

dialog.
Results:

Figure 5-3 Specifying user-defined main() option
2. Supply a C++ file or a library with a user-defined main() function.

A fragment of the standard IsimMain.cpp file:

#ifdef USER_DEFINED_ISIM_MAIN // opposite logic to standard IsimMain.cpp
#include "SimGenTplMacros.h"
// function that performs command line parsing
// CADI system initialization and run
extern int LoadInitAndRunCADIModel(int argc, char *argv[],
 const char* topComponent,
 const char* pvLibVersion);
int main(int argc, char *argv[])
{
 return LoadInitAndRunCADIModel(argc, argv, SIMGEN_TOP_COMPONENT,
 PVLIB_VERSION_STRING);
}
#endif // #ifdef USER_DEFINED_ISIM_MAIN

You might define the USER_DEFINED_ISIM_MAIN preprocessor option, for example, so that you can
implement processing of your own command-line options but must, after filtering out all user-defined
switches, pass the remaining options to the Model Shell entry function
LoadInitAndRunCADIModel().

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-108

Non-Confidential

3. Add the new source file containing the custom main() to the project.
Related references
5.3.1 Add Existing Files and Add New File dialogs (Component window) on page 5-86

Project parameter IDs

The parameters that configure a project, with IDs, names, defaults, and descriptions.

Table 5-11 Full list of parameters shown in List View

Parameter ID Parameter name Default Description

ADDITIONAL_COMPILER_SETTINGS Compiler settings "" Compiler settings. If your C++ source code uses C+
+11 syntax, specify -std=c++11 in this parameter.
For Microsoft Windows, consult the Visual Studio
documentation.

ADDITIONAL_LINKER_SETTINGS Linker settings "" Linker settings. For Microsoft Windows, consult the
Visual Studio documentation.

BUILD_DIR Build directory "" Build directory. If this path is not absolute, it is
relative to the position of the project file.

For Microsoft Windows, .\Windows-Debug
or .\Windows-Release.

COMPILER Compiler - VC2017
Microsoft Visual Studio 2017.

VC2015
Microsoft Visual Studio 2015.

gcc
The first gcc version in the Linux search
path.

gcc-4.9
GCC 4.9.2.

gcc-6.4
GCC 6.4.

gcc-7.3
GCC 7.3.

CONFIG_DESCRIPTION Configuration
description

"" Description of the configuration, CONFIG_NAME.

CONFIG_NAME Configuration name "" Name of the configuration.

ENABLE_DEBUG_SUPPORT Enable model
debugging

"0" Use implementation defined debug support.

ENBALE_NAMESPACE_STD Enable namespace
std

"1" Use namespace std:

1 (true)
Generate using namespace std and
place in the code.

0 (false)
Specify the namespace. This setting might
reduce compilation time.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-109

Non-Confidential

Table 5-11 Full list of parameters shown in List View (continued)

Parameter ID Parameter name Default Description

ENBALE_PRECOMPILE_HEADER Enable
precompiling

"0" Precompile headers if true/1.

GENERATE_LINEINFO Source reference "LISA Code
(incl
headers)"

Control line redirection in the generated model source
code:

"LISA Code"
Source code.

"LISA Code (incl. headers)"
Source and header.

"Generated Code"
No line redirection at all.

INCLUDE_DIRS Include directories "" Include directories. Separate multiple entries with
semicolons.

MODEL_DEBUGGER_COMMAND_LINE Model Debugger "" Options to pass on the command line.

MODEL_SHELL_COMMAND_LINE Model Shell "" Options to pass on the command line.

PLATFORM Platform/linkage - "Linux64"
64-bit Linux.

"Win64"
64-bit Microsoft Windows release.

"Win64D"
64-bit Microsoft Windows debug.

POST_BUILD_EVENT Postbuild actions "" Commands to execute after building the model.
Separate multiple entries with semicolons.

PRE_COMPILE_EVENT Precompile actions "" Commands to execute before starting compilation.
Applies to Microsoft Windows only. Separate
multiple entries with semicolons.

PREPROCESSOR_DEFINES Preprocessor defines "" Preprocessor defines. Separate multiple entries with
semicolons.

PRE_LINK_EVENT Prelink actions "" Commands to execute before starting linking. Applies
to Microsoft Windows only. Separate multiple entries
with semicolons.

SIMGEN_COMMAND_LINE SimGen options "" Options to pass on the command line.

SIMGEN_WARNINGS_AS_ERRORS Warnings as errors "1" If 1 (true), treat LISA parsing and compiler
warnings as errors.

SYSTEMC_COMMAND_LINE SystemC arguments "" Command-line arguments for System C executable.

SYSTEMC_EXE SystemC executable "" Name of final SystemC executable. Call the file with
‘Run SystemC executable’.

TARGET_ISIM_DEPRECATED Integrated simulator
with deprecated
scheduler

"0" If 1 (true), build an executable with a statically
linked CADI system and Model Shell, using the
deprecated scheduler.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-110

Non-Confidential

Table 5-11 Full list of parameters shown in List View (continued)

Parameter ID Parameter name Default Description

TARGET_MAXVIEW
 Note

Arm deprecates TARGET_MAXVIEW.

b

CADI library "1" If 1 (true), build a CADI system dynamic library for
running from Model Debugger.

TARGET_SYSTEMC SystemC component "0" If 1 (true), build a SystemC component library.

TARGET_SYSTEMC_AUTO SystemC component
with auto-bridging

"0" If 1 (true), build a SystemC component library with
auto-bridging.

TARGET_SYSTEMC_ISIMb SystemC integrated
simulator

"0" If 1 (true), build a SystemC ISIM executable.

VERBOSITY Verbosity "Off" Verbosity level: "Sparse", "On", or "Off".

Related concepts
6.2 Auto-bridging on page 6-120

Project file contents

Project files describe the settings for each platform and the required files to build models.

System Generator generates the project file from the specified configuration options. File and directory
names can be either absolute or relative to the project or repository file. You can use environment
variables in filenames.

File or directory entries in project files can include filters to specify the following build options:

Host platform

"Linux64"
64-bit Linux.

"Win64"
64-bit Microsoft Windows release.

"Win64D"
64-bit Microsoft Windows debug.

Compiler

"VC2017"
Microsoft Visual Studio 2017.

"VC2015"
Microsoft Visual Studio 2015.

"gcc"
The first gcc version in the Linux search path.

"gcc-4.9"
GCC 4.9.2.

"gcc-6.4"
GCC 6.4.

b If you select both TARGET_MAXVIEW and TARGET_SYSTEMC_ISIM, SimGen only generates an ISIM executable, not a CADI library.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-111

Non-Confidential

"gcc-7.3"
GCC 7.3.

 Note

For Linux, the compiler version only affects the files that the project file and repositories
identify. It does not select the gcc found in the search path. To enable the System Generator to
automatically select the libraries that match the current gcc compiler, use the compiler option
gcc.

Action

"lisa"
Process the file as a LISA file. This action is not applicable to directories.

"compile"
Process the file as a C++ file. If acting on a directory, the compiler compiles all *.c,
*.cpp, and *.cxx files in the directory.

"ignore"
Exclude the file or directory from the build and deploy process, such as a disabled file
or project notes.

"link"
Link the file with existing files. If acting on a directory on Microsoft Windows, System
Generator adds all *.lib and *.obj files in the directory to the linker input. On Linux,
it adds all *.a and *.o files.

"deploy"
Produce a deployable file. If acting on a directory, System Generator copies the entire
directory and its subdirectories to the destination. This action is the only action that acts
recursively on subdirectories.

"incpath"
Include the directory in the list of include search paths that the -I option for the
compiler specifies. This action is the default action for directories.

"libpath"
Include the directory in the list of library search paths that the -L option for the
compiler specifies. This action is the default action for directories.

The build options for the file or directory entries are not sensitive to case.

For example, the my_file.lib file can specify host, compiler, and action as:

path = my_file.lib, platform="WIN64|Win64D", compiler="VC2015", action="link|deploy";

Do not OR the compiler options together. Instead, omit them to permit more than one compiler:

path = ../src/my_windows_code.cpp, platform = "win64";

File entries in the project file can have a compiler filter in addition to the platform and action filters:

path = ../lib/release_2015/my_lib.lib, platform = "win64", compiler="VC2015";
path = ../lib/my_lib.lib, platform = "win64", compiler="VC2015";
path = ../src/my_windows_code.cpp, platform = "win64"; // Not specifying the compiler allows
 // more than one.

Directories in path statements

Differentiate directories from files with a trailing / character.

Project files can contain directories in the path statement. Platform and compiler filters might apply.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-112

Non-Confidential

If you apply directory actions to files, System Generator applies them to the directories that contain the
files, forming the directory path by removing the filename from the full path. This path specification:

path = MyFile.lisa, actions="lisa|incpath|libpath";

makes System Generator treat MyFile.lisa as the LISA source and add the parent directory of
MyFile.lisa to the include and library search paths. If, for example, MyFile.lisa is in the directory
C:/ARM/MyProjects/Project_1/, System Generator adds that directory path to the include and library
search paths.

Example project file

An example project file that shows the use of different configuration sections.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-113

Non-Confidential

Typical project file

sgproject "exampleSystem.sgproj"
{
 TOP_LEVEL_COMPONENT = "exampleSystem";
 ACTIVE_CONFIG_LINUX = "Linux64-Release-GCC-4.9";
 ACTIVE_CONFIG_WINDOWS = "Win64-Release-VC2015";
 config "Linux64-Debug-GCC-4.9"
 {
 ADDITIONAL_COMPILER_SETTINGS = "-march=core2 -ggdb3 -Wall -std=c++11";
 ADDITIONAL_LINKER_SETTINGS = "-Wl,--no-undefined";
 BUILD_DIR = "./Linux64-Debug-GCC-4.9";
 COMPILER = "gcc-4.9";
 CONFIG_DESCRIPTION = "Default x86_64 Linux configuration for GCC 4.9 with debug information";
 CONFIG_NAME = "Linux64-Debug-GCC-4.9";
 ENABLE_DEBUG_SUPPORT = "1";
 PLATFORM = "Linux64";
 SIMGEN_COMMAND_LINE = "--num-comps-file 10";
 SIMGEN_WARNINGS_AS_ERRORS = "0";
 }
 config "Linux64-Release-GCC-4.9"
 {
 ADDITIONAL_COMPILER_SETTINGS = "-march=core2 -O3 -Wall -std=c++11";
 ADDITIONAL_LINKER_SETTINGS = "-Wl,--no-undefined";
 BUILD_DIR = "./Linux64-Release-GCC-4.9";
 COMPILER = "gcc-4.9";
 CONFIG_DESCRIPTION = "Default x86_64 Linux configuration for GCC 4.9, optimized for speed";
 CONFIG_NAME = "Linux64-Release-GCC-4.9";
 PLATFORM = "Linux64";
 PREPROCESSOR_DEFINES = "NDEBUG";
 SIMGEN_COMMAND_LINE = "--num-comps-file 50";
 SIMGEN_WARNINGS_AS_ERRORS = "0";
 }
 config "Linux64-Debug-GCC-6.4"
 {
 ADDITIONAL_COMPILER_SETTINGS = "-march=core2 -ggdb3 -Wall -std=c++11 -Wno-deprecated -Wno-unused-
function";
 ADDITIONAL_LINKER_SETTINGS = "-Wl,--no-undefined";
 BUILD_DIR = "./Linux64-Debug-GCC-6.4";
 COMPILER = "gcc-6.4";
 CONFIG_DESCRIPTION = "Default x86_64 Linux configuration for GCC 6.4 with debug information";
 CONFIG_NAME = "Linux64-Debug-GCC-6.4";
 ENABLE_DEBUG_SUPPORT = "1";
 PLATFORM = "Linux64";
 SIMGEN_COMMAND_LINE = "--num-comps-file 10";
 SIMGEN_WARNINGS_AS_ERRORS = "0";
 }
 config "Linux64-Release-GCC-6.4"
 {
 ADDITIONAL_COMPILER_SETTINGS = "-march=core2 -O3 -Wall -std=c++11 -Wno-deprecated -Wno-unused-
function";
 ADDITIONAL_LINKER_SETTINGS = "-Wl,--no-undefined";
 BUILD_DIR = "./Linux64-Release-GCC-6.4";
 COMPILER = "gcc-6.4";
 CONFIG_DESCRIPTION = "Default x86_64 Linux configuration for GCC 6.4, optimized for speed";
 CONFIG_NAME = "Linux64-Release-GCC-6.4";
 PLATFORM = "Linux64";
 PREPROCESSOR_DEFINES = "NDEBUG";
 SIMGEN_COMMAND_LINE = "--num-comps-file 50";
 SIMGEN_WARNINGS_AS_ERRORS = "0";
 }
 config "Win64-Debug-VC2015"
 {
 ADDITIONAL_COMPILER_SETTINGS = "/Od /RTCsu /Zi";
 ADDITIONAL_LINKER_SETTINGS = "/DEBUG";
 BUILD_DIR = "./Win64-Debug-VC2015";
 COMPILER = "VC2015";
 CONFIG_DESCRIPTION = "Default x86_64 Windows configuration for Visual Studio 2015 with debug
information";
 CONFIG_NAME = "Win64-Debug-VC2015";
 ENABLE_DEBUG_SUPPORT = "1";
 PLATFORM = "Win64D";
 SIMGEN_COMMAND_LINE = "--num-comps-file 10";
 SIMGEN_WARNINGS_AS_ERRORS = "0";
 }
 config "Win64-Release-VC2015"
 {
 ADDITIONAL_COMPILER_SETTINGS = "/O2";
 BUILD_DIR = "./Win64-Release-VC2015";
 COMPILER = "VC2015";
 CONFIG_DESCRIPTION = "Default x86_64 Windows configuration for Visual Studio 2015, optimized for
speed";
 CONFIG_NAME = "Win64-Release-VC2015";
 PLATFORM = "Win64";

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-114

Non-Confidential

 SIMGEN_COMMAND_LINE = "--num-comps-file 50";
 SIMGEN_WARNINGS_AS_ERRORS = "0";
 }
 files
 {
 path = "$(PVLIB_HOME)/etc/sglib.sgrepo";
 path = "../LISA/exampleSystem.lisa";
 path = "../LISA/exampleComponent.lisa";
 }
}

Related references
1.4.4 File processing order on page 1-23
5.3.9 File/Path Properties dialog on page 5-94

5.3.18 Protocol Properties dialog

This dialog displays the properties of protocols.

Select a protocol from the Protocols list, right-click on it and select Properties to display the properties.

Protocol name

The name of the protocol.

File

The file that defines the protocol.

Repository

The repository that contains the reference to the file path.

Description

A description dating from the addition of the file to the project.

Methods
A panel that displays the LISA prototypes of methods, or behaviors, available for the protocol.
The values are for reference only. They are not editable.

Properties
A panel that displays the properties for protocol. The values are for reference only. They are not
editable.

5.3.19 Run dialog

This dialog specifies the actions that execute to run a selected target.

There are actions for different targets, and additional options.

To display the dialog, click Run from the Project menu.

Select command to run

Select the executable to run.

Full command line

Adjust the command line that System Canvas generates, for example, add parameters or change
the location of the application to load onto the executable.

Effective command line

Shows the complete command line with expanded macros and environment variables, ready for
execution.

Model Debugger

Run the model in Model Debugger. The initial command line options come from project settings
and user preferences.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-115

Non-Confidential

Model Shell

Run the model with Model Shell. The initial command line options come from project settings
and user preferences.

ISIM system

Run the model as an ISIM system. The initial command line options come from project settings
and user preferences.

Custom

Specify the command line in Full command line.

Recent

Select a recent command.

Insert Placeholder Macro

Insert a macro or environment variable from drop-down list at the current cursor position in Full
command line. System Generator expands them to build the complete command line.

%CADI%

The full absolute path of the CADI dynamic library.

%ISIM%

The full absolute path of the ISIM executable.

%BUILD_DIR%

The relative path to the build directory (relative to project path).

%DEPLOY_DIR%

The relative path to the deploy directory (identical to %BUILD_DIR%).

%PROJECT_DIR%

The full absolute path to the directory of the project.

Launch in background

Run an application asynchronously in a separate console window. Use this if the application
requests user input or if the output is long.

Clear History

Remove all the recent entries from command history. This also removes corresponding items
from the System Canvas main menu.

5.3.20 Self Port dialog

Use this dialog to add a port to the top-level component.

To display the dialog, without having anything selected in the Block Diagram view, click Add Ports, or
click Add Port from the Object menu.

Instance name

The name of the port.

Array size

The number of ports, for a port array. Leave the box empty, or enter 1, for normal ports.

Protocol

The name of the protocol for the port. To display a list of protocols, click Select....

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-116

Non-Confidential

Type

Master port or Slave Port.

Attributes
• Addressable for bus ports.
• Internal for ports between subcomponents. The port is not visible if the component is added

to a system.

Create LISA method templates according to selected protocol
Select an option from the drop-down list to create implementation templates for methods, or
behaviors, for the selected protocol:
• Do not create method templates.
• Create only required methods. This is the default.
• Create all methods, including optional behaviors.

This creates only methods corresponding to the selected port type, that is, for either master or
slave.

Editing the existing port might create new methods, but does not delete existing methods.

Mirror port image

Reverse the direction of the port image.

5 System Canvas Reference
5.3 System Canvas dialogs

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

5-117

Non-Confidential

Chapter 6
SystemC Export with Multiple Instantiation

This chapter describes the Fast Models SystemC Export feature with Multiple Instantiation (MI) support.

It contains the following sections:
• 6.1 About SystemC Export with Multiple Instantiation on page 6-119.
• 6.2 Auto-bridging on page 6-120.
• 6.3 SystemC Export generated ports on page 6-121.
• 6.4 SystemC Export API on page 6-125.
• 6.5 Scheduler API on page 6-143.
• 6.6 SystemC Export limitations on page 6-160.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-118

Non-Confidential

6.1 About SystemC Export with Multiple Instantiation
SystemC Export wraps the components of a SystemC-based virtual platform into an Exported Virtual
Subsystem (EVS). Multiple Instantiation (MI) enables the generation and integration of multiple EVS
instances into a single SystemC simulation.

SystemC Export with MI enables the generation of EVSs as first-class SystemC components:

• Capable of running any number of instances, alongside other EVSs.
• Providing one SC_THREAD per core component (that is, one SC_THREAD per core component in a

cluster Code Translation (CT) model).

MI enables the generation and integration of multiple EVS instances into a virtual platform with
SystemC as the single simulation domain. A single EVS can appear in multiple virtual platforms.
Equally, multiple EVSs can combine to create a single platform. A platform that consists of multiple
EVSs is called an SVP (SystemC Virtual Platform).

SystemC components (including Fast Models ones) can exchange data via the Direct Memory Interface
(DMI) or normal (blocking) Transaction Level Modeling (TLM) transactions.

Fast Models supports SystemC 2.3.2, including integrated TLM 2.0.4. In this version, the TLM and
SystemC headers are in the same place, and some filenames are different.

Before using SimGen to build a SystemC simulation, the environment variable SYSTEMC_HOME must be
set to the directory containing the Accellera SystemC library installation.

When running a SystemC simulation, the following environment variables might be useful:

FM_SCX_VERBOSITY_LEVEL
Set to 1 to enable tracing of the default scheduler mapping implementation.

SCX_EVS_VERBOSE
Set to one of the following values to set the verbosity level for debug messages from the
SystemC simulation:

0 None
100 Low
200 Medium
300 High
400 Full
500 Debug

 Note

When loading an image on an EVS, you might see the following warning:

Warning: Base.cluster0.cpu0: Uncaught exception, thread terminated
In file: gen/scx_scheduler_mapping.cpp:523
In process: Base.thread_p_5 @ 0 s

This warning means that the image is attempting to run from DRAM, but this is access-controlled by the
TZC_400 component. To disable security checking by the TZC_400, specify
-C Base.bp.secure_memory=false when running the EVS.

Related information
Fast Models Reference Manual
Accellera Systems Initiative (ASI)
IEEE Std 1666-2005, SystemC Language Reference Manual, 31 March 2006
Accellera, TLM 2.0 Language Reference Manual, July 2009

6 SystemC Export with Multiple Instantiation
6.1 About SystemC Export with Multiple Instantiation

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-119

Non-Confidential

https://developer.arm.com/docs/100964/1110
http://www.accellera.org/
http://standards.ieee.org/findstds/standard/1666-2005.html
http://www.accellera.org/downloads/standards/systemc/

6.2 Auto-bridging
Auto-bridging is a Fast Models feature that SimGen uses to automatically convert between LISA+
protocols and their SystemC equivalents. It helps to automate the generation of SystemC wrappers for
LISA+ subsystem models.

A bridge is a LISA component that converts transactions from one protocol to another. A wide variety of
bridges are available to convert between various LISA+ protocols and their SystemC equivalents. For
example, PVBus2AMBAPV converts from PVBus to AMBA-PV protocols.

When auto-bridging is enabled, you do not need to manually add bridges to your LISA+ file. Auto-
bridging causes SimGen to apply the protocol-to-bridge mappings that are defined in a configuration file
to the LISA+ components and generate a single EVS component.

Enable auto-bridging by selecting both the TARGET_SYSTEMC and TARGET_SYSTEMC_AUTO build targets in
the .sgproj file. Or, in System Canvas Project Settings, select both targets SystemC component and
SystemC component with auto-bridging.

Use the --bridge-conf-file SimGen command-line option to select your own auto-bridging
configuration file. Alternatively, edit the file $PVLIB_HOME/etc/bridges_conf.json, which SimGen
uses if you do not specify this option. The syntax is:

 "<protocol_name>" : {
 "master" : {
 "name" : "<bridge_name>"
 },
 "slave" : {
 "name" : "<bridge_name>"
 },
 "peer" : {
 "name" : "<bridge_name>"
 }
 },

 Note

• SimGen ignores any bridges whose name is empty in the configuration file.
• Auto-bridging is not applied to any ports that are marked as internal in the LISA+ file.
• SimGen reports an error if auto-bridging is enabled and a top-level port in a LISA+ component uses a

protocol that is not listed in the configuration file.
• SimGen reports an error if auto-bridging is enabled and it cannot find the configuration file.
• You do not need to specify bridges for the following LISA+ protocols. When ports that use these

protocols are exported to SystemC, SimGen can automatically generate the TLM sockets for them,
without the need for bridging:
— AudioControl
— ClockRateControl
— ClockSignal
— CounterInterface
— GICv3Comms
— InstructionCount
— KeyboardStatus
— LCD
— MouseStatus
— PChannel
— SystemCoherencyInterface
— VECBProtocol
— VirtualEthernet

To access the generated TLM sockets from SystemC, you must #include the appropriate header files
from under $PVLIB_HOME/examples/SystemCExport/Common/Protocols/.

6 SystemC Export with Multiple Instantiation
6.2 Auto-bridging

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-120

Non-Confidential

6.3 SystemC Export generated ports
This section describes the generated ports and the associated port protocols.

This section contains the following subsections:
• 6.3.1 Protocol definition on page 6-121.
• 6.3.2 TLM 1.0 protocol for an exported SystemC component on page 6-121.
• 6.3.3 TLM 2.0 bus protocol for an exported SystemC component on page 6-121.
• 6.3.4 Properties for TLM 1.0 based protocols on page 6-122.
• 6.3.5 Properties for TLM 2.0 based protocols on page 6-123.

6.3.1 Protocol definition

The ports of the top level Fast Models component, used to create SystemC ports, have protocols.

The behaviors in a Fast Models protocol definition must match exactly the functions in the SystemC port
class. System Canvas does not check this for consistency, but the C++ compiler can find inconsistencies
when compiling the generated SystemC component.

The set of functions and behaviors, their arguments, and their return value must be the same. The order
of the functions and behaviors does not matter.

All behaviors in the Fast Models protocol must be slave behaviors. There is no corresponding concept of
master behaviors.

The protocol definition also contains a properties section that contains the properties that describe the
SystemC C++ classes that implement the corresponding ports on the SystemC side.

Related information
LISA+ Language for Fast Models Reference Manual

6.3.2 TLM 1.0 protocol for an exported SystemC component

Here is an example of a TLM 1.0 signal protocol.

protocol MySignalProtocol
{
 includes
 {
 #include <mySystemCClasses.h>
 }
 properties
 {
 sc_master_port_class_name = "my_signal_base<bool>";
 sc_slave_base_class_name = "my_slave_base<bool>";
 sc_slave_export_class_name = "my_slave_export<bool>";
 }
 slave behavior set_state(const bool & state);
}

6.3.3 TLM 2.0 bus protocol for an exported SystemC component

Here is an example of a TLM 2.0 bus protocol.

protocol MyProtocol
{
 includes
 {
 #include <mySystemCClasses.h>
 }
 properties
 {
 sc_master_base_class_name = "my_master_base";
 sc_master_socket_class_name = "my_master_socket<64>";
 sc_slave_base_class_name = "my_slave_base<64>";
 sc_slave_socket_class_name = "my_slave_socket<64>";
 }
 slave behavior read(uint32_t addr, uint32_t &data);
 slave behavior write(uint32_t addr, uint32_t data);

6 SystemC Export with Multiple Instantiation
6.3 SystemC Export generated ports

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-121

Non-Confidential

https://developer.arm.com/docs/101092/0100

 master behavior invalidate_dmi(uint32_t addr);
}

This protocol enables declaring ports that have read() and write() functions. This protocol can declare
master and slave ports.

6.3.4 Properties for TLM 1.0 based protocols

TLM 1.0 based protocols map to their SystemC counterparts using properties in the LISA protocol
definition. The protocol description must set these properties.

sc_master_port_class_name

The sc_master_port_class_name property is the class name of the SystemC class that the generated
SystemC component instantiates for master ports on the SystemC side. This class must implement the
functions defined in the corresponding protocol, for example:

void my_master_port<bool>::set_state(bool state)

sc_slave_base_class_name

The sc_slave_base_class_name property is the class name of the SystemC class that the generated
SystemC component specializes for slave ports on the SystemC side. This class must declare the
functions defined in the corresponding protocol, for example:

void my_slave_base<bool>::set_state(const bool &state)

The SystemC component must define it to forward the protocol functions from the SystemC component
to the Fast Models top level component corresponding port. It must also provide a constructor taking the
argument:

const std::string &name

sc_slave_export_class_name

The sc_slave_export_class_name property is the class name of the SystemC class that the generated
SystemC component instantiates for slave ports (exports) on the SystemC side. The component binds to
the derived sc_slave_base_class_name SystemC class, and forwards calls from the SystemC side to
the bound class.

AMBAPV Signal protocol in Fast Models
protocol AMBAPVSignal {

 includes {
 #include <amba_pv.h>
 }

 properties {
 description = "AMBA-PV signal protocol";
 sc_master_port_class_name = "amba_pv::signal_master_port<bool>";
 sc_slave_base_class_name = "amba_pv::signal_slave_port<bool>";
 sc_slave_export_class_name = "amba_pv::signal_slave_export<bool>";
 }
...

sc_slave_export_class_name and sc_master_port_class_name describe the type of the port
instances in the SystemC domain.

sc_slave_base_class_name denotes the base class from which the SystemC component publicly
derives.

AMBAPV Signal protocol in SystemC component class

The SystemC module ports must use the corresponding names in the SystemC code.

class pv_dma: public sc_module,
 public amba_pv::signal_slave_base<bool> {

6 SystemC Export with Multiple Instantiation
6.3 SystemC Export generated ports

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-122

Non-Confidential

 /* Module ports */
 amba_pv::signal_master_port<bool> signal_out;
 amba_pv::signal_slave_export<bool> signal_in;
 ...

The SystemC port names must also match the Fast Models port names. For example, signal_out is the
instance name for the master port in the Fast Models AMBAPVBus component and the SystemC port.

Figure 6-1 SGSignal component in System Canvas

6.3.5 Properties for TLM 2.0 based protocols

The TLM 2.0 protocol provides forward and backward paths for master and slave sockets. Protocols that
use TLM 2.0 must specify properties in the protocol declaration.

sc_master_socket_class_name
This is the class name of the SystemC class that the generated SystemC component instantiates for
master sockets on the SystemC side. The component binds to the derived sc_master_base_class_name
SystemC class and forwards calls from:
• The bound class to SystemC (forward path).
• The SystemC side to the bound class (backward path).

sc_master_base_class_name

This is the class name of the SystemC class that the generated SystemC component specializes for master
sockets on the SystemC side. This class must declare the master behavior functions defined in the
corresponding protocol, for example:

my_master_base::invalidate_dmi(uint32_t addr)

The SystemC component must define it to forward the protocol functions from the SystemC component
(backward path) to the System Generator top level component corresponding socket. It must also provide
a constructor taking the argument:

const std::string &

sc_slave_socket_class_name
This is the class name of the SystemC class that the generated SystemC component instantiates for slave
sockets on the SystemC side. The component binds to the derived sc_slave_base_class_name
SystemC class and forwards calls from:
• The bound class to SystemC (backward path).
• The SystemC side to the bound class (forward path).

6 SystemC Export with Multiple Instantiation
6.3 SystemC Export generated ports

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-123

Non-Confidential

sc_slave_base_class_name

This is the class name of the SystemC class that the generated SystemC component specializes for slave
sockets on the SystemC side. It must also provide a constructor taking the argument:

const std::string &

AMBAPV protocol in System Generator
protocol AMBAPVSignal {
 includes {
 #include <amba_pv.h>
 }

 properties {
 description = "AMBA-PV protocol";
 sc_master_base_class_name = "amba_pv::amba_pv_master_base";
 sc_master_socket_class_name = "amba_pv::amba_pv_master_socket<64>";
 sc_slave_base_class_name = "amba_pv::amba_pv_slave_base<64>";
 sc_slave_socket_class_name = "amba_pv::amba_pv_slave_socket<64>";
 }

AMBAPV protocol in SystemC component class

The SystemC module sockets must use the corresponding names in the SystemC code.

class pv_dma: public sc_module,
 public amba_pv::amba_pv_slave_base<64>,
 public amba_pv::amba_pv_master_base {

/* Module ports */
 amba_pv::amba_pv_slave_socket<64> amba_pv_s;
 amba_pv::amba_pv_master_socket<64> amba_pv_m;
 ...
}

Related concepts
A.1 About SystemC Export generated ports on page Appx-A-213

6 SystemC Export with Multiple Instantiation
6.3 SystemC Export generated ports

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-124

Non-Confidential

6.4 SystemC Export API
This section describes the SystemC eXport (SCX) API provided by Fast Models Exported Virtual
Subsystems (EVSs). Each description of a class or function includes the C++ declaration and the use
constraints.

This section contains the following subsections:
• 6.4.1 SystemC Export header file on page 6-126.
• 6.4.2 scx::scx_initialize on page 6-126.
• 6.4.3 scx::scx_load_application on page 6-126.
• 6.4.4 scx::scx_load_application_all on page 6-127.
• 6.4.5 scx::scx_load_data on page 6-127.
• 6.4.6 scx::scx_load_data_all on page 6-127.
• 6.4.7 scx::scx_set_parameter on page 6-128.
• 6.4.8 scx::scx_get_parameter on page 6-128.
• 6.4.9 scx::scx_get_parameter_list on page 6-129.
• 6.4.10 scx::scx_set_cpi_file on page 6-129.
• 6.4.11 scx::scx_cpulimit on page 6-129.
• 6.4.12 scx::scx_timelimit on page 6-129.
• 6.4.13 scx::scx_parse_and_configure on page 6-129.
• 6.4.14 scx::scx_start_cadi_server on page 6-131.
• 6.4.15 scx::scx_enable_cadi_log on page 6-132.
• 6.4.16 scx::scx_prefix_appli_output on page 6-132.
• 6.4.17 scx::scx_print_port_number on page 6-132.
• 6.4.18 scx::scx_print_statistics on page 6-132.
• 6.4.19 scx::scx_load_trace_plugin on page 6-132.
• 6.4.20 scx::scx_load_plugin on page 6-133.
• 6.4.21 scx::scx_get_global_interface on page 6-133.
• 6.4.22 scx::scx_evs_base on page 6-133.
• 6.4.23 scx::load_application on page 6-133.
• 6.4.24 scx::load_data on page 6-134.
• 6.4.25 scx::set_parameter on page 6-134.
• 6.4.26 scx::get_parameter on page 6-134.
• 6.4.27 scx::get_parameter_list on page 6-135.
• 6.4.28 scx::constructor on page 6-135.
• 6.4.29 scx::destructor on page 6-135.
• 6.4.30 scx::before_end_of_elaboration on page 6-135.
• 6.4.31 scx::end_of_elaboration on page 6-135.
• 6.4.32 scx::start_of_simulation on page 6-135.
• 6.4.33 scx::end_of_simulation on page 6-135.
• 6.4.34 scx::scx_simcallback_if on page 6-135.
• 6.4.35 scx::notify_running on page 6-136.
• 6.4.36 scx::notify_stopped on page 6-136.
• 6.4.37 scx::notify_debuggable on page 6-136.
• 6.4.38 scx::notify_idle on page 6-136.
• 6.4.39 scx::simcallback_if destructor on page 6-136.
• 6.4.40 scx::scx_simcontrol_if on page 6-136.
• 6.4.41 scx::get_scheduler on page 6-137.
• 6.4.42 scx::get_report_handler on page 6-137.
• 6.4.43 scx::run on page 6-137.
• 6.4.44 scx::stop on page 6-137.
• 6.4.45 scx::is_running on page 6-138.
• 6.4.46 scx::stop_acknowledge on page 6-138.
• 6.4.47 scx::process_debuggable on page 6-138.
• 6.4.48 scx::process_idle on page 6-138.
• 6.4.49 scx::shutdown on page 6-138.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-125

Non-Confidential

• 6.4.50 scx::add_callback on page 6-139.
• 6.4.51 scx::remove_callback on page 6-139.
• 6.4.52 scx::destructor on page 6-139.
• 6.4.53 scx::scx_get_default_simcontrol on page 6-139.
• 6.4.54 scx::scx_report_handler_if on page 6-139.
• 6.4.55 scx::scx_get_default_report_handler on page 6-140.
• 6.4.56 scx::scx_get_curr_report_handler on page 6-140.
• 6.4.57 scx::scx_sync on page 6-140.
• 6.4.58 scx::scx_set_min_sync_latency on page 6-140.
• 6.4.59 scx::scx_get_min_sync_latency on page 6-141.
• 6.4.60 scx::scx_simlimit on page 6-141.
• 6.4.61 scx::scx_create_default_scheduler_mapping on page 6-141.
• 6.4.62 scx::scx_get_curr_scheduler_mapping on page 6-141.
• 6.4.63 scx::scx_enable_iris_server on page 6-141.
• 6.4.64 scx::scx_set_iris_server_port_range on page 6-141.
• 6.4.65 scx::scx_set_iris_server_port on page 6-142.
• 6.4.66 scx::scx_enable_iris_log on page 6-142.
• 6.4.67 scx::scx_get_iris_connection_interface on page 6-142.
• 6.4.68 scx::scx_register_synchronous_thread on page 6-142.

6.4.1 SystemC Export header file

To use the SystemC Export feature, an application must include the C++ header file scx.h at appropriate
positions in the source code as required by the scope and linkage rules of C++.

The header file $PVLIB_HOME/include/fmruntime/scx/scx.h adds the namespace scx to the
declarative region that includes it. This inclusion declares all definitions related to the SystemC Export
feature of Fast Models within that region.

#include "scx.h"

6.4.2 scx::scx_initialize

This function initializes the simulation.

Initialize the simulation before constructing any exported subsystem.

void scx_initialize(const std::string &id,
 scx_simcontrol_if *ctrl = scx_get_default_simcontrol());

id
an identifier for this simulation.

ctrl
a pointer to the simulation controller implementation. It defaults to the one provided with Arm
models.

 Note

Arm recommends specifying a unique identifier across all simulations running on the same host.

6.4.3 scx::scx_load_application

This function loads an application in the memory of an instance.

void scx_load_application(const std::string &instance,
 const std::string &application);

instance
the name of the instance to load into. The parameter instance must start with an EVS instance
name, or with "*" to load the application into the instance on all EVSs in the platform. To load
the same application on all cores of an SMP processor, specify "*" for the core instead of its
index, in parameter instance.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-126

Non-Confidential

application
the application to load.

 Note

The loading of the application happens at start_of_simulation() call-back, at the earliest.

6.4.4 scx::scx_load_application_all

This function loads an application in the memory of instances that execute software, across all EVSs in
the platform.

void scx_load_application_all(const std::string &application);

application
the application to load.

 Note

The loading of the application happens at start_of_simulation() call-back, at the earliest.

6.4.5 scx::scx_load_data

This function loads binary data in the memory of an instance at a memory address.

void scx_load_data(const std::string &instance,
 const std::string &data,
 const std::string &address);

instance
the name of the instance to load into. The parameter instance must start with an EVS instance
name, or with "*" to load data into the instance on all EVSs in the platform. On an SMP
processor, if instance specifies "*" for the core instead of its index, the binary data loads only
on the first processor.

data
the filename of the binary data to load.

address
the memory address at which to load the data. The parameter address might start with a
memory space specifier.

 Note

The loading of the binary data happens at start_of_simulation() call-back, at the earliest.

6.4.6 scx::scx_load_data_all

This function loads binary data in the memory of instances that execute software, across all EVSs in the
platform, at a memory address. On SMP processors, the data loads only on the first core.

void scx_load_data_all(const std::string &data,
 const std::string &address);

data
the filename of the binary data to load.

address
the memory address at which to load the data. The parameter address might start with a
memory space specifier.

 Note

The loading of the binary data happens at start_of_simulation() call-back, at the earliest.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-127

Non-Confidential

6.4.7 scx::scx_set_parameter

This function sets the value of a parameter in components present in EVSs or in plug-ins.

• bool scx_set_parameter(const std::string &name, const std::string &value);

• template<class T>
bool scx_set_parameter(const std::string &name, T value);

name
the name of the parameter to change. The parameter name must start with an EVS instance name
for setting a parameter on this EVS, or with "*" for setting a parameter on all EVSs in the
platform, or with a plug-in prefix (defaults to "TRACE") for setting a plug-in parameter.

value
the value of the parameter.

This function returns true when the parameter exists, false otherwise.
 Note

• Changes made to parameters within System Canvas take precedence over changes made with
scx_set_parameter().

• You can set parameters during the construction phase, and before the elaboration phase. Calls to
scx_set_parameter() after the construction phase are ignored.

• You can change run-time parameters after the construction phase with the debug interface.
• Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their

parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

6.4.8 scx::scx_get_parameter

This function retrieves the value of a parameter from components present in EVSs or from plug-ins.

• bool scx_get_parameter(const std::string &name, std::string &value);

• template<class T>
bool scx_get_parameter(const std::string &name, T &value);

• bool scx_get_parameter(const std::string &name, int &value);

• bool scx_get_parameter(const std::string &name, unsigned int &value);

• bool scx_get_parameter(const std::string &name, long &value);

• bool scx_get_parameter(const std::string &name, unsigned long &value);

• bool scx_get_parameter(const std::string &name, long long &value);

• bool scx_get_parameter(const std::string &name, unsigned long long &value);

• std::string scx_get_parameter(const std::string &name);

name
the name of the parameter to retrieve. The parameter name must start with an EVS instance
name for retrieving an EVS parameter or with a plug-in prefix (defaults to "TRACE") for
retrieving a plug-in parameter.

value
a reference to the value of the parameter.

The bool forms of the function return true when the parameter exists, false otherwise. The
std::string form returns the value of the parameter when it exists, empty string ("") otherwise.

 Note

Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their
parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-128

Non-Confidential

6.4.9 scx::scx_get_parameter_list

This function retrieves a list of all parameters in all components present in all EVSs and from all plug-
ins.

std::map<std::string, std::string> scx_get_parameter_list();

The parameter names start with an EVS instance name for EVS parameters or with a plug-in prefix
(defaults to "TRACE") for plug-in parameters.

 Note

• Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their
parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

• If scx_set_parameter() is called after the simulation elaboration phase, the new value is not set in
the model, although it is returned by scx_get_parameter_list().

6.4.10 scx::scx_set_cpi_file

Sets the Cycles Per Instruction (CPI) file for CPI class functionality.

void scx_set_cpi_file(const std::string & cpi_file_path);

cpi_file_path
the path to the CPI file.

Use this function to activate the CPI class functionality.
 Note

This function must be called before any call to a platform parameter function.

6.4.11 scx::scx_cpulimit

Sets the maximum number of CPU (User + System) seconds to run, excluding startup and shutdown.

void scx_cpulimit(double t);

t

the number of seconds to run. Defaults to unlimited.

6.4.12 scx::scx_timelimit

Sets the maximum number of seconds to run, excluding startup and shutdown.

void scx_timelimit(double t);

t

the number of seconds to run. Defaults to unlimited.

6.4.13 scx::scx_parse_and_configure

This function parses command-line options and configures the simulation accordingly.

void scx_parse_and_configure(int argc,
 char *argv[],
 const char *trailer = NULL,
 bool sig_handler = true);

argc
the number of command-line options listed with argv[].

argv
command-line options.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-129

Non-Confidential

trailer
a string that follows the option list when printing the help message (--help option).

sig_handler
whether to enable signal handler function. true to enable (default), false to disable.

The application must pass the values of the options from function sc_main() as arguments to this
function.

-a, --application
application to load, format: -a [INST=]FILE. For SMP cores: -a INST*=FILE.

-A, --iris-allow-remote
allow remote connections from another machine to the Iris server. Defaults to not allowed.

-b, --break
set a breakpoint, format: -b [INST=]ADDRESS. This option can be specified multiple times.

-C, --parameter
set a parameter, format: -C INST.PARAM=VALUE. This option can be specified multiple times.

--check-regs
the same as --list-regs but does more consistency checks on the CADI register API.

--cpi-file
use FILE to set Cycles Per Instruction (CPI) classes, format: --cpi-file FILE

--cpulimit
maximum number of CPU (User + System) seconds to run, excluding startup and shutdown,
format: --cpulimit NUM. Defaults to unlimited.

--cyclelimit
number of cycles to run, ignored if the debug server has started, format: --cyclelimit NUM.
Defaults to unlimited.

-D, --allow-debug-plugin
allow a plug-in to debug the simulation.

--data
raw data to load, format: --data [INST=]FILE@[MEMSPACE:]ADDRESS

--disable-analytics
disable product analytics gathering for the current run.

--dump
dump a section of memory into FILE, format: --dump
[INST=]FILE@[MEMSPACE:]ADDRESS,SIZE. This option can be specified multiple times.

-f, --config-file
load model parameters from configuration file FILE, format: --config-file FILE

-h, --help
print help message and exit.

-i, --iris-log
Iris log level. This option can be specified multiple times, for example: -ii for log level 2.

-I, --iris-server
start an Iris server, allowing debuggers to connect to targets in the simulation.

--iris-port
set a specific port to use for the Iris server, format: --iris-port PORT

--iris-port-range
set the range of ports to scan when starting an Iris server. The first available port found is used,
format: --iris-port-range MIN:MAX

-K, --keep-console
keep the console window open after completion. This option applies to Microsoft Windows
only.

-l, --list-params
print the list of platform parameters to standard output and exit.

-L, --cadi-log
log all CADI calls to XML log files.

--list-instances
print list of target instances to standard output.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-130

Non-Confidential

--list-memory
print model memory information to standard output.

--list-regs
print model register information to standard output.

-o, --output
redirect parameters, memory and instance lists to output file FILE, format: --output FILE

-p, --print-port-number
print the TCP port number the CADI server is listening to.

-P, --prefix
prefix semihosting output with the name of the instance.

--plugin
plug-in to load, format: --plugin [NAME=]FILE

-q, --quiet
suppress informational output.

-r, --restore
restore a checkpoint from DIR on simulation startup, format: --restore DIR

-R, --run
run the simulation immediately after the CADI server starts.

-s, --save
save a checkpoint to DIR on simulation exit, format: --save DIR

-S, --cadi-server
start a CADI server, allowing debuggers to connect to targets in the simulation.

--simlimit
maximum number of seconds to simulate, ignored if the debug server has started, format: --
simlimit NUM. Defaults to unlimited.

--start
set initial PC to application start address, format: --start [INST=]ADDRESS

--stat
print run statistics on simulation exit.

-T, --timelimit
maximum number of seconds to run, excluding startup and shutdown, ignored if the debug
server has started, format: --timelimit NUM. Defaults to unlimited.

--trace-plugin
deprecated, use --plugin instead.

This function treats all other command-line arguments as applications to load.

This function calls std::exit(EXIT_SUCCESS) to exit, for options --list-params and --help. It calls
std::exit(EXIT_FAILURE) if there was an error in the parameter specification, or an invalid option was
specified, or if the application or plug-in was not found.

6.4.14 scx::scx_start_cadi_server

This function specifies whether to start a CADI server.

void scx_start_cadi_server(bool start = true, bool run = true, bool debug = false);

start
true to start a CADI server, false otherwise.

run
true to run the simulation immediately after CADI server has been started, false otherwise.

debug
true to enable debugging through a plug-in, false otherwise.

Starting a CADI server enables the attachment of a debugger to debug targets in the simulation.

When debug is set to true, the CADI server does not start, but a plug-in can implement an alternative
debugging mechanism in place of it.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-131

Non-Confidential

When start is set to true, it overrides debug.
 Note

• A CADI server cannot start once simulation starts.
• You do not need to call this function if you have called scx_parse_and_configure() and parsed at

most one of -S or -D into sc_main().

6.4.15 scx::scx_enable_cadi_log

This function specifies whether to log all CADI calls to XML files.

void scx_enable_cadi_log(bool log = true);

log
true to log CADI calls, false otherwise.

 Note

You cannot enable logging once simulation starts.

6.4.16 scx::scx_prefix_appli_output

This function specifies whether to prefix semihosting output with the name of the CADI target instance.

void scx_prefix_appli_output(bool prefix = true);

prefix
true to prefix semihosting output, false otherwise.

6.4.17 scx::scx_print_port_number

This function specifies whether to enable printing of the TCP port number that the CADI server is
listening to.

void scx_print_port_number(bool print = true);

print
true to enable printing of the TCP port number, false otherwise.

 Note

You cannot enable printing of the TCP port number once simulation starts.

6.4.18 scx::scx_print_statistics

This function specifies whether to enable printing of simulation statistics at the end of the simulation.

void scx_print_statistics(bool print = true);

print
true to enable printing of simulation statistics, false otherwise.

 Note

• You cannot enable printing of statistics once simulation starts.
• The statistics include LISA reset() behavior run time and application load time. A long simulation

run compensates for this.

6.4.19 scx::scx_load_trace_plugin

Arm deprecates this function. Use scx_load_plugin() instead.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-132

Non-Confidential

6.4.20 scx::scx_load_plugin

This function specifies a plug-in to load.

void scx_load_plugin(const std::string &file);

file
the file of the plug-in to load.

The plug-in loads at end_of_elaboration(), at the latest, or as soon as a platform parameter function is
called.

 Note

Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their
parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

6.4.21 scx::scx_get_global_interface

This function accesses the global interface.

eslapi::CAInterface *scx_get_global_interface();

The global interface allows access to all of the registered interfaces in the simulation.

6.4.22 scx::scx_evs_base

This class is the base class for EVSs. EVSs are the principal subsystems of the Fast Models SystemC
Export feature.

class scx_evs_base {
 public:
 void load_application(const std::string &, const std::string &);
 void load_data(const std::string &, const std::string &, const std::string &);
 bool set_parameter(const std::string &, const std::string &);
 template<class T>
 bool set_parameter(const std::string &, T);
 bool get_parameter(const std::string &, std::string &) const;
 template<class T>
 bool get_parameter(const std::string &, T &) const;
 std::string get_parameter(const std::string &) const;
 std::map<std::string, std::string> get_parameter_list() const;
 protected:
 scx_evs_base(const std::string &, sg::ComponentFactory *);
 virtual ~scx_evs_base();
 void before_end_of_elaboration();
 void end_of_elaboration();
 void start_of_simulation();
 void end_of_simulation();
};

6.4.23 scx::load_application

This function loads an application in the memory of an instance.

void load_application(const std::string &instance, const std::string &application);

instance
the name of the instance to load into.

application
the application to load.

 Note

The application loads at start_of_simulation(), at the earliest.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-133

Non-Confidential

6.4.24 scx::load_data

This function loads raw data in the memory of an instance at a memory address.

void load_data(const std::string &instance,
 const std::string &data,
 const std::string &address);

instance
the name of the instance to load into.

data
the file name of the raw data to load.

address
the memory address at which to load the raw data. The parameter address might start with a
memory space specifier.

 Note

The raw data loads at start_of_simulation(), at the earliest.

6.4.25 scx::set_parameter

This function sets the value of a parameter from components present in the EVS.

• bool set_parameter(const std::string &name, const std::string &value);

• template<class T>
bool set_parameter(const std::string &name, T value);

name
the name of the parameter to change.

value
the value of the parameter.

This function returns true when the parameter exists, false otherwise.
 Note

• Changes made to parameters within System Canvas take precedence over changes made with
set_parameter().

• You can set parameters during the construction phase, and before the elaboration phase. Calls to
set_parameter() after the construction phase are ignored.

• You can change run-time parameters after the construction phase with the debug interface.

6.4.26 scx::get_parameter

This function retrieves the value of a parameter from components present in the EVS.

• bool get_parameter(const std::string &name, std::string &value) const;

• template<class T>
bool get_parameter(const std::string &name, T &value) const;

• std::string get_parameter(const std::string &name);

name
the name of the parameter to retrieve.

value
a reference to the value of the parameter.

The bool forms of the function return true when the parameter exists, false otherwise. The
std::string form returns the value of the parameter when it exists, empty string ("") otherwise.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-134

Non-Confidential

6.4.27 scx::get_parameter_list

This function retrieves a list of all parameters in all components present in the EVS.

std::map<std::string, std::string> get_parameter_list();

6.4.28 scx::constructor

This function constructs an EVS.

scx_evs_base(const std::string &, sg::ComponentFactory *);

name
the name of the EVS instance.

factory
the sg::ComponentFactory to use to instantiate the corresponding LISA subsystem. The
factory initializes within the generated derived class.

EVS instance names must be unique across the virtual platform. The EVS instance name initializes using
the value passed as an argument to the constructor of the generated derived class.

6.4.29 scx::destructor

This function destroys an EVS including the corresponding subsystem, and frees the associated
resources.

~scx_evs_base();

6.4.30 scx::before_end_of_elaboration

This function calls the instantiate(), configure(), init(), interconnect(), and
populateCADIMap() LISA behaviors of the corresponding exported subsystem.

void before_end_of_elaboration();

The generated derived class calls this function, after the SystemC simulation call-backs.

6.4.31 scx::end_of_elaboration

This function initializes the simulation framework.

void end_of_elaboration();

The generated derived class calls this function, after the SystemC simulation call-backs.

6.4.32 scx::start_of_simulation

This function calls the reset() LISA behaviors of the corresponding exported subsystem. It then loads
applications.

void start_of_simulation();

The generated derived class calls this function, after the SystemC simulation call-backs.

6.4.33 scx::end_of_simulation

This function shuts down the simulation framework.

void end_of_simulation();

The generated derived class calls this function, after the SystemC simulation call-backs.

6.4.34 scx::scx_simcallback_if

This interface is the base class for simulation control call-backs.

class scx_simcallback_if {
 public:

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-135

Non-Confidential

 virtual void notify_running() = 0;
 virtual void notify_stopped() = 0;
 virtual void notify_debuggable() = 0;
 virtual void notify_idle() = 0;
 protected:
 virtual ~scx_simcallback_if() {
 }
};

The simulation framework implements this interface. The simulation controller uses the interface to
notify the simulation framework of changes in the simulation state.

6.4.35 scx::notify_running

This function notifies the simulation framework that the simulation is running.

void notify_running();

The simulation controller calls this function to notify the simulation framework that the simulation is
running. The simulation framework then notifies debuggers of the fact.

6.4.36 scx::notify_stopped

This function notifies the simulation framework that the simulation has stopped.

void notify_stopped();

The simulation controller calls this function to notify the simulation framework that the simulation has
stopped. The simulation framework then notifies debuggers of the fact.

6.4.37 scx::notify_debuggable

This function notifies the simulation framework that the simulation is debuggable.

void notify_debuggable()

The simulation controller periodically calls this function to notify that the simulation is debuggable. This
typically occurs while the simulation is stopped, to allow clients to process debug activity, for instance
memory or breakpoint operations.

This version of the function does nothing.

6.4.38 scx::notify_idle

This function notifies the simulation framework that the simulation is idle.

void notify_idle();

The simulation controller periodically calls this function to notify the simulation framework that the
simulation is idle, typically while the simulation is stopped, to allow clients to process background
activity, for example, GUI events processing or redrawing.

6.4.39 scx::simcallback_if destructor

This function destroys simulation callback interfaces.

~scx_simcallback_if();

This version of the function does not allow destruction of instances through the interface.

6.4.40 scx::scx_simcontrol_if

This is the simulation control interface.

class scx_simcontrol_if {
 public:
 virtual eslapi::CAInterface *get_scheduler() = 0;
 virtual scx_report_handler_if *get_report_handler() = 0;
 virtual void run() = 0;
 virtual void stop() = 0;

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-136

Non-Confidential

 virtual bool is_running() = 0;
 virtual void stop_acknowledge(sg::SchedulerRunnable *runnable) = 0;
 virtual void process_debuggable() = 0;
 virtual void process_idle() = 0;
 virtual void shutdown() = 0;
 virtual void add_callback(scx_simcallback_if *callback_obj) = 0;
 virtual void remove_callback(scx_simcallback_if *callback_obj) = 0;
 protected:
 virtual ~scx_simcontrol_if();
};

The simulation controller, which interacts with the simulation framework, must implement this interface.
The simulation framework uses this interface to access current implementations of the scheduler and
report handler, as well as to request changes to the state of the simulation.

Unless otherwise stated, requests from this interface are asynchronous and can return immediately,
whether the corresponding operation has completed or not. When the operation is complete, the
corresponding notification must go to the simulation framework, which in turn notifies all connected
debuggers to allow them to update their states.

Unless otherwise stated, an implementation of this interface must be thread-safe, that is it must not make
assumptions about threads that issue requests.

The default implementation of the simulation controller provided with Fast Models is at:
$MAXCORE_HOME/lib/template/tpl_scx_simcontroller.{h,cpp}.

6.4.41 scx::get_scheduler

This function returns a pointer to the implementation of the simulation scheduler.

eslapi::CAInterface *get_scheduler();

The simulation framework calls the get_scheduler() function to retrieve the scheduler implementation
for the simulation at construction time.

 Note

Implementations of this function need not be thread-safe.

6.4.42 scx::get_report_handler

This function returns a pointer to the current implementation of the report handler.

scx_report_handler_if *get_report_handler();

scx_initialize() calls the get_report_handler() function to retrieve the report handler
implementation for the simulation at construction time.

 Note

Implementations of this function need not be thread-safe.

6.4.43 scx::run

This function requests to run the simulation.

void run();

The simulation framework calls run() upon receipt of a CADI run request from a debugger.

6.4.44 scx::stop

This function requests to stop the simulation as soon as possible, that is at the next wait().

void stop();

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-137

Non-Confidential

The simulation framework calls stop() upon receipt of a CADI stop request from a debugger, a
component, or a breakpoint hit.

6.4.45 scx::is_running

This function returns whether the simulation is running.

bool is_running();

The return value is true when the simulation is running, false when it is paused or stopped.

The simulation framework calls is_running() upon receipt of a CADI run state request from a
debugger.

6.4.46 scx::stop_acknowledge

This function blocks the simulation while the simulation is stopped.

void stop_acknowledge(sg::SchedulerRunnable *runnable);

runnable
a pointer to the scheduler thread calling stop_acknowledge().

The scheduler thread calls this function to effectively stop the simulation, as a side effect of calling
stop() to request that the simulation stop.

An implementation of this function must call clearStopRequest() on runnable (when not NULL).

6.4.47 scx::process_debuggable

This function processes debug activity while the simulation is at a debuggable point.

void process_debuggable()

This function is called by the scheduler thread whenever the simulation is at a debuggable point, to
enable debug activity to be processed.

An implementation of this function might simply call scx_simcallback_if::notify_debuggable() on
all registered clients.

This version of the function does nothing.

6.4.48 scx::process_idle

This function processes idle activity while the simulation is stopped.

void process_idle();

The scheduler thread calls this function whenever idle to enable the processing of idle activity.

An implementation of this function might simply call scx_simcallback_if::notify_idle() on all
registered clients.

6.4.49 scx::shutdown

This function requests to stop the simulation.

void shutdown();

The simulation framework calls shutdown() to notify itself that it wants the simulation to stop. Once the
simulation has shut down it cannot run again.

 Note

There are no call-backs associated with shutdown().

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-138

Non-Confidential

6.4.50 scx::add_callback

This function registers call-backs with the simulation controller.

void add_callback(scx_simcallback_if *callback_obj);

callback_obj
a pointer to the object whose member functions serve as call-backs.

Clients call this function to register with the simulation controller a call-back object that handles
notifications from the simulation.

6.4.51 scx::remove_callback

This function removes call-backs from the simulation controller.

void remove_callback(scx_simcallback_if *callback_obj);

callback_obj
a pointer to the object to remove.

Clients call this function to unregister a call-back object from the simulation controller.

6.4.52 scx::destructor

This function destroys simulation controller interfaces.

~scx_simcontrol_if();

This version of the function does not allow destruction of instances through the interface.

6.4.53 scx::scx_get_default_simcontrol

This function returns a pointer to the default implementation of the simulation controller provided with
Fast Models.

scx_simcontrol_if *scx_get_default_simcontrol();

6.4.54 scx::scx_report_handler_if

This interface is the report handler interface.

class scx_report_handler_if {
 public:
 virtual void set_verbosity_level(int verbosity) = 0;
 virtual int get_verbosity_level() const = 0;
 virtual void report_info(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_info _verb(int verbosity,
 const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_warning(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_error(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_fatal(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 protected:
 virtual ~scx_report_handler_if() {
 }
};

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-139

Non-Confidential

This interface provides run-time reporting facilities, similar to the ones provided by SystemC. It has the
additional ability to specify a format string in the same way as the std::vprintf() function, and
associated variable arguments, for the report message.

The Fast Models simulation framework for SystemC Export uses this interface to report various
messages at run-time.

The default implementation of the report handler provided with Fast Models is in: $MAXCORE_HOME/lib/
template/tpl_scx_report.cpp.

Related information
IEEE Std 1666-2005, SystemC Language Reference Manual, 31 March 2006

6.4.55 scx::scx_get_default_report_handler

This function returns a pointer to the default implementation of the report handler provided with Fast
Models.

scx_report_handler_if *scx_get_default_report_handler();

6.4.56 scx::scx_get_curr_report_handler

This function returns a pointer to the current implementation of the report handler.

scx_report_handler_if *scx_get_curr_report_handler();

6.4.57 scx::scx_sync

This function adds a future synchronization point.

void scx_sync(double sync_time);

sync_time
the time of the future synchronization point relative to the current simulated time, in seconds.

SystemC components call this function to hint to the scheduler when a system synchronization point will
occur.

The scheduler uses this information to determine the quantum sizes of threads.

Threads that have run their quantum are unaffected; all other threads (including the current thread) run to
the sync_time synchronization point.

Calling scx_sync() again adds another synchronization point.

Synchronization points automatically vanish when the simulation time passes.

6.4.58 scx::scx_set_min_sync_latency

This function sets the minimum synchronization latency for this scheduler.

void scx_set_min_sync_latency(double t);
void scx_set_min_sync_latency(sg::ticks_t t);

t
the minimum synchronization latency. Measured in seconds.

The minimum synchronization latency helps to ensure that sufficient simulated time has passed between
two synchronization points for synchronization to be efficient.

A small latency increases accuracy but decreases simulation speed.

A large latency decreases accuracy but increases simulation speed.

The scheduler uses this information to compute the next synchronization point as returned by
sg::SchedulerInterfaceForComponents::getNextSyncPoint().

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-140

Non-Confidential

http://standards.ieee.org/findstds/standard/1666-2005.html

Related references
6.4.59 scx::scx_get_min_sync_latency on page 6-141

6.4.59 scx::scx_get_min_sync_latency

This function returns the minimum synchronization latency, measured in seconds, for this scheduler.

double scx_get_min_sync_latency();
sg::ticks_t scx_get_min_sync_latency(sg::Tag<sg::ticks_t> *);

Related references
6.4.58 scx::scx_set_min_sync_latency on page 6-140

6.4.60 scx::scx_simlimit

This function sets the maximum number of seconds to simulate.

void scx_simlimit(double t);

t
the number of seconds to simulate. Defaults to unlimited.

6.4.61 scx::scx_create_default_scheduler_mapping

This function returns a pointer to a new instance of the default implementation of the scheduler mapping
that is provided with Fast Models.

sg::SchedulerInterfaceForComponents * scx_create_default_scheduler_mapping(scx_simcontrol_if
* simcontrol);

simcontrol
pointer to an existing simulation controller. When this is NULL, this function returns NULL.

6.4.62 scx::scx_get_curr_scheduler_mapping

This function returns a pointer to the current implementation of the scheduler mapping interface.

sg::SchedulerInterfaceForComponents * scx_get_curr_scheduler_mapping();

6.4.63 scx::scx_enable_iris_server

This function specifies whether to start an Iris server. If a server is started, it listens on the first available
port found in the range DefaultIrisServerPortMin to DefaultIrisServerPortMax.

void scx_enable_iris_server(bool enable = true);

enable
true to start an Iris server (default), otherwise false.

6.4.64 scx::scx_set_iris_server_port_range

This function starts an Iris server and sets the range of ports to scan. The server uses the first available
port found in the range.

void scx_set_iris_server_port_range(uint16_t port_min, uint16_t port_max);

port_min

the port number at the start of the range.

port_max

the port number at the end of the range.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-141

Non-Confidential

6.4.65 scx::scx_set_iris_server_port

This function starts an Iris server and sets a specific port for it to listen on.

inline void scx_set_iris_server_port(uint16_t port)

port
The port number for the Iris server to listen on.

6.4.66 scx::scx_enable_iris_log

This function enables Iris message logging and specifies the log level.

void scx_enable_iris_log(unsigned level = 0);

level

the log level. The possible values are:

0
Logging is disabled, the default.

1
Log messages in JSON format.

2
Additionally, log U64JSON data in hex.

6.4.67 scx::scx_get_iris_connection_interface

This function retrieves the IrisConnectionInterface for the simulation. This can be used to create and
register IrisInstances.

iris::IrisConnectionInterface *scx_get_iris_connection_interface();

6.4.68 scx::scx_register_synchronous_thread

This function registers a new thread in the simulation engine which is implicitly synchronized with the
simulation thread.

void scx_register_synchronous_thread(std::thread::id thread_id);

thread_id
ID of the newly registered thread.

The caller must make sure that the simulation thread and the newly registered thread do not run
concurrently.

Calling this function for a thread X completely disables the thread synchronization for thread X, that is,
marshaling of function calls from the calling thread onto the simulation thread, for example Iris calls.

This function is useful for debugger threads which are blocking the simulation thread and which still
want to issue Iris calls while the simulation thread is blocked.

6 SystemC Export with Multiple Instantiation
6.4 SystemC Export API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-142

Non-Confidential

6.5 Scheduler API
This section describes the Fast Models Scheduler API. To explain the API, this section also describes the
intended use, some simple use cases, and the relationship of this API to other APIs.

This section contains the following subsections:
• 6.5.1 Scheduler API - about on page 6-143.
• 6.5.2 Scheduler API - use cases and implementation on page 6-144.
• 6.5.3 sg::SchedulerInterfaceForComponents class on page 6-146.
• 6.5.4 sg::SchedulerRunnable class on page 6-152.
• 6.5.5 sg::SchedulerThread class on page 6-155.
• 6.5.6 sg::ThreadSignal class on page 6-156.
• 6.5.7 sg::Timer class on page 6-157.
• 6.5.8 sg::TimerCallback class on page 6-158.
• 6.5.9 sg::FrequencySource class on page 6-158.
• 6.5.10 sg::FrequencyObserver class on page 6-158.
• 6.5.11 sg::SchedulerObject class on page 6-158.
• 6.5.12 sg::scx_create_default_scheduler_mapping on page 6-159.
• 6.5.13 sg::scx_get_curr_scheduler_mapping on page 6-159.

6.5.1 Scheduler API - about

This API makes modeling components and systems accessible in different environments, with or without
a built-in scheduler. Examples are a SystemC environment or a standalone simulator.

The Fast Models Scheduler API is a C++ interface consisting of a set of abstract base classes. The header
file that defines these classes is $PVLIB_HOME/include/fmruntime/sg/
SGSchedulerInterfaceForComponents.h. This header file depends on other header files under
$PVLIB_HOME/include.

All Scheduler API constructs are in the namespace sg.

The interface decouples the modeling components from the scheduler implementation. The parts of the
Scheduler API that the modeling components use are for the scheduler or scheduler adapter to
implement. The parts that the scheduler or scheduler adapter use are for the modeling components to
implement.

class SchedulerInterfaceForComponents
The scheduler (or an adapter to the scheduler) must implement an instance of this interface class
for Fast Models components to work. Fast Models components use this interface to talk to the
scheduler, for example, to create threads and timers. This class is the main part of the interface.

class SchedulerThread
An abstract Fast Models thread class, which createThread() creates instances of. For example,
CT core models use this class. The scheduler implements it. Threads have co-routine semantics.

class SchedulerRunnable
The counterpart of the SchedulerThread class. The modeling components, which contain the
thread functionality, implement it.

class ThreadSignal
A class of event that threads can wait on. It has wait() and notify() but no timing functions.
The scheduler implements it.

class Timer
An abstract interface for one-shot or continuous timed events, which createTimer() creates
instances of. The scheduler implements it.

class TimerCallback
The counterpart of the Timer class. The modeling components, which contain the functionality
for the timer callback, implement it. Arm deprecates this class.

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-143

Non-Confidential

class SchedulerCallback
A callback function class. The modeling components, which use addCallback() (asynchronous
callbacks), implement it.

class FrequencySource
An abstract interface class that provides a frequency in Hz. The modeling components
implement it. The scheduler uses it to determine the time intervals for timed events. Arm
deprecates this class.

class FrequencyObserver
An abstract interface class for observing a FrequencySource and changes to the frequency
value. The scheduler implements it for objects that have access to a FrequencySource (Timer
and SchedulerThread). Arm deprecates this class.

class SchedulerObject
The base class for all scheduler interface objects, which provides getName().

6.5.2 Scheduler API - use cases and implementation

This section describes uses of the Scheduler API.

Accessing the SchedulerInterfaceForComponents from within a modeling component

This section describes ways of accessing the global interfaces.

LISA component for accessing the SchedulerInterfaceForComponents

A way to access the global interfaces with getGlobalInterface().

includes
{
 #include "sg/SGSchedulerInterfaceForComponents.h"
 #include "sg/SGComponentRegistry.h"
}

behavior init
{
 sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (getGlobalInterface(), "scheduler");
}

C++ component for accessing the SchedulerInterfaceForComponents

A way to access the global interfaces with simulationContext->getGlobalInterface(). C++
components have an sg::SimulationContext pointer passed into their constructor.

#include "sg/SGSchedulerInterfaceForComponents.h"
#include "sg/SGComponentRegistry.h"

sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (simulationContext->getGlobalInterface(), "scheduler");

SystemC component for accessing the SchedulerInterfaceForComponents

A way to access the global interfaces with scx::scx_get_global_interface().

#include "sg/SGSchedulerInterfaceForComponents.h"
#include "sg/SGComponentRegistry.h"

sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (scx::scx_get_global_interface(), "scheduler");

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-144

Non-Confidential

Using the default scheduler mapping in the SystemC export use case

Call the global function scx_initialize() to initialize the simulation infrastructure.

scx_initialize(const std::string & id,
 scx_simcontrol_if *ctrl = scx_get_default_simcontrol());

If you do not specify the ctrl parameter, the default implementations of the simulation controller and of
the scheduler mapping onto SystemC apply.

 Note

The namespace for interfaces, classes, and functions in this SystemC export case is scx, except for those
of the Scheduler API.

Providing a custom mapping of the scheduler functionality onto SystemC

This section describes how to map the SchedulerInterfaceForComponents onto SystemC scheduling
primitives by passing a custom system controller, scx::scx_simcontrol_if, as the second parameter,
ctrl, into scx_initialize(). The system controller must return the custom scheduler mapping in
get_scheduler().

Minimalistic example of a custom mapping of the scheduler functionality onto SystemC

This section describes how to register a custom scheduler mapping, using the default scheduler mapping
for simplicity. A realistic scheduler mapper would reimplement all functionality.

It consists of:
• A custom scheduler mapping implementation, my_scheduler_mapping.

— Forwards all calls to the default scheduler mapping.
— The wait() function prints a verbose message in addition, to make the effect visible.

• A custom simulation controller implementation, my_simulation_controller.
— Forwards all calls to the default scx::scx_simcontrol_if implementation.
— Implements only get_scheduler()differently and returns an instance of

my_scheduler_mapping.
• Creating an instance of my_simulation_controller, my_sim_controller.
• Passing a pointer to my_sim_controller to scx_initialize() as the second parameter, ctrl.

This example adds a verbose message to sg::SchedulerInterfaceForComponents::wait() calls.

Intended mapping of the Scheduler API onto SystemC/TLM

How Scheduler API functionality might map onto SystemC functionality.

sg::SchedulerInterfaceForComponents::wait(time)
Call sc_core::wait(time) and handle all pending asynchronous events that are scheduled with
sg::SchedulerInterfaceForComponents::addCallback() before waiting.

sg::SchedulerInterfaceForComponents::wait(sg::ThreadSignal)
Call sc_core::wait(sc_event) on the sc_event in sg::ThreadSignal and handle all
pending asynchronous events that are scheduled with
sg::SchedulerInterfaceForComponents::addCallback() before waiting.

sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime()
Return the current SystemC scheduler time in seconds as in
sc_core::sc_time_stamp().to_seconds().

sg::SchedulerInterfaceForComponents::addCallback(), removeCallback()
SystemC has no way to trigger simulation events from alien (non-SystemC) host threads in a
thread-safe way: buffer and handle these asynchronous events in all regularly re-occurring
scheduler events. Handling regular simulation wait() and timerCallback()calls is sufficient.

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-145

Non-Confidential

sg::SchedulerInterfaceForComponents::stopRequest(), stopAcknowledge()
Pause and resume the SystemC scheduler. This function is out of scope of SystemC/TLM
functionality, but in practice every debuggable SystemC implementation has ways to pause and
resume the scheduler. Do not confuse these functions with sc_core::sc_stop(), which exits
the SystemC simulation loop. They work with the sg::SchedulerRunnable instances and the
scx::scx_simcontrol_if interface.

sg::SchedulerInterfaceForComponents::createThread(), createThreadSignal(),
createTimer()

Map these functions onto SystemC threads created with sc_spawn() and sc_events. You can
create and destroy sg::SchedulerThread, sg::ThreadSignal, and sg::Timer objects during
elaboration, and delete them at runtime, unlike their SystemC counterparts. This process
requires careful mapping. For example, consider what happens when you remove a waited-for
sc_event.

sg::ThreadSignal
Map onto sc_event, which is notifiable and waitable.

sg::SchedulerThread
Map onto a SystemC thread that was spawned with sc_core::sc_spawn(). The thread function
can call sg::SchedulerThread::threadProc().

sg::QuantumKeeper
Map onto the tlm_quantumkeeper utility class because the semantics of these classes are
similar. Arm deprecates this class.

sg::Timer
Map onto a SystemC thread that, after the timer is set(), issues calls to the call-backs in the
intervals (according to the set() interval).

6.5.3 sg::SchedulerInterfaceForComponents class

This section describes the main scheduler interface class.

About sg::SchedulerInterfaceForComponents

The modeling components use this interface class, which gives access to all other parts of the Scheduler
API, directly or indirectly. The scheduler must implement this class.

// Main scheduler interface class
class sg::SchedulerInterfaceForComponents
{
public:
 static eslapi::if_name_t IFNAME() { return "sg.SchedulerInterfaceForComponents"; }
 static eslapi::if_rev_t IFREVISION() { return 1; }
 virtual eslapi::CAInterface * ObtainInterface(eslapi::if_name_t, eslapi::if_rev_t,
eslapi::if_rev_t *) = 0;
 virtual sg::Timer * createTimer(const char *, sg::TimerCallback *) = 0;
 virtual sg::SchedulerThread * createThread(const char *, sg::SchedulerRunnable *) = 0;
 virtual sg::SchedulerThread * currentThread();
 virtual sg::ThreadSignal * createThreadSignal(const char *) = 0;
 virtual void wait(sg::ticks_t);
 virtual void wait(sg::ThreadSignal *) = 0;
 virtual void setGlobalQuantum(sg::ticks_t);
 virtual sg::ticks_t getGlobalQuantum(sg::Tag<sg::ticks_t> *);
 virtual double getGlobalQuantum();
 virtual void setMinSyncLatency(sg::ticks_t);
 virtual sg::ticks_t getMinSyncLatency(sg::Tag<sg::ticks_t> *);
 virtual double getMinSyncLatency();
 virtual void addSynchronisationPoint(sg::ticks_t);
 virtual sg::ticks_t getNextSyncPoint(sg::Tag<sg::ticks_t> *);
 virtual double getNextSyncPoint();
 virtual void getNextSyncRange(sg::ticks_t &, sg::ticks_t &);
 virtual void getNextSyncRange(double&, double&);
 virtual void addCallback(sg::SchedulerCallback *) = 0;
 virtual void removeCallback(sg::SchedulerCallback *) = 0;
 virtual sg::ticks_t getCurrentSimulatedTime(sg::Tag<sg::ticks_t> *);
 virtual double getCurrentSimulatedTime();
 virtual double getSimulatedTimeResolution();
 virtual void setSimulatedTimeResolution(double resolution);
 virtual void stopRequest() = 0;

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-146

Non-Confidential

 virtual void stopAcknowledge(sg::SchedulerRunnable *) = 0;
 };

 Note

Pass a null pointer to the extra Tag<> argument in getGlobalQuantum(), getMinSyncLatency(),
getNextSyncPoint(), and getCurrentSimulatedTime().

Arm deprecates these API functions:

virtual void wait(sg::ticks_t, sg::FrequencySource *)
virtual void setGlobalQuantum(sg::ticks_t, sg::FrequencySource *)
virtual void setMinSyncLatency(sg::ticks_t, sg::FrequencySource *)
virtual void addSynchronisationPoint(sg::ticks_t, sg::FrequencySource *)

Arm deprecates classes sg::FrequencySource and sg::FrequencyObserver. Modeling components
must not use these classes to directly communicate with the Scheduler API. Use the sg::Time class
instead.

Modeling components use this interface to create threads, asynchronous and timed events, system
synchronization points, and to request a simulation stop. Examples of components that access this
interface are:
• CT core models.
• Timer peripherals.
• Peripheral components with timing or that indicate system synchronization points.
• Peripheral components that can stop the simulation for certain conditions (external breakpoints).
• GUI components.

Passive components that do not interact with the scheduler (and that do not need explicit scheduling)
usually do not access this interface.

Related references
Accessing the SchedulerInterfaceForComponents from within a modeling component on page 6-144
Providing a custom mapping of the scheduler functionality onto SystemC on page 6-145

eslapi::CAInterface and eslapi::ObtainInterface

The CAInterface base class and the ObtainInterface() function make the interface discoverable at
runtime through a runtime mechanism. All interfaces in Fast Models that must be discoverable at runtime
derive from CAInterface.

The functions IFNAME(), IFREVISION(), and ObtainInterface() belong to the base class
eslapi::CAInterface. IFNAME() and IFREVISION() return static information (name and revision)
about the interface (not the interface implementation). An implementation of the interface cannot re-
implement these functions. To access this interface, code must pass these two values to the
ObtainInterface() function to acquire the SchedulerInterfaceForComponents.

Use ObtainInterface() to access the interfaces that the scheduler provides. As a minimum
requirement, the implementation of ObtainInterface() must provide the
SchedulerInterfaceForComponents interface itself and also the eslapi::CAInterface interface. The
easiest way to provide these interfaces to use the class eslapi::CAInterfaceRegistry and register
these two interfaces and forward all ObtainInterface() calls to this registry. See the default
implementation of the Scheduler API over SystemC for an example.

 Note

CAInterface and ObtainInterface() are not part of the scheduler functionality but rather of the
simulation infrastructure. The information here is what is necessary to understand and implement
ObtainInterface(). For more details on the eslapi::CAInterface class, see the header file
$PVLIB_HOME/include/fmruntime/eslapi/CAInterface.h.

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-147

Non-Confidential

sg::SchedulerInterfaceForComponents::addCallback

This method schedules a callback in the simulation thread. AsyncSignal uses it.

virtual void addCallback(SchedulerCallback *callback)=0;

callback
Callback object to call. If callback is NULL, the call has no effect.

Any host thread can call this method. It is thread safe. It is always the simulation thread (host thread
which runs the simulation) that calls the callback function (callback->schedulerCallback()). The
scheduler calls the callback function when it can respond to the addCallback() function.

Multiple callbacks might be pending. The scheduler can call them in any order. Do not call
addCallback() or removeCallback() from a callback function.

Callbacks automatically vanish once called. Removing them deliberately is not necessary unless they
become invalid, for example on the destruction of the object implementing the callback function.

Related references
sg::SchedulerInterfaceForComponents::removeCallback on page 6-150

sg::SchedulerInterfaceForComponents::addSynchronisationPoint

This method adds synchronization points.

virtual void addSynchronisationPoint(ticks_t ticks);

ticks
Simulated time for synchronization relative to the current simulated time, in ticks relative to
simulated time resolution.

Modeling components can call this function to hint to the scheduler when a potentially useful system
synchronization point will occur. The scheduler uses this information to determine the quantum sizes of
threads.

Calling this function again adds another synchronization point.

Synchronization points automatically vanish when reached.

sg::SchedulerInterfaceForComponents::createThread

CT core models and modeling components call this method to create threads. This method returns an
object implementing SchedulerThread. (Not NULL except when runnable is NULL.)

virtual SchedulerThread *createThread(const char *name, SchedulerRunnable *runnable)=0;

name
Instance name of the thread. Ideally, the hierarchical name of the component that owns the
thread is included in the name. If name is NULL, it receives the name '(anonymous thread)'. The
function makes a copy of name.

runnable
Object that implements the SchedulerRunnable interface. This object is the one that contains
the actual thread functionality. The returned thread uses this interface to communicate with the
thread implementation in the modeling component. If runnable is NULL, the call returns NULL,
which has no effect.

Having created the thread, start it with a call to SchedulerThread::start().

Destroying the returned object with the SchedulerThread destructor might not kill the thread.

Related concepts
sg::SchedulerRunnable - about on page 6-152
sg::SchedulerThread - about on page 6-155

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-148

Non-Confidential

Related references
sg::SchedulerInterfaceForComponents::currentThread on page 6-149
sg::SchedulerThread::destructor on page 6-155
sg::SchedulerThread::start on page 6-156

sg::SchedulerInterfaceForComponents::createThreadSignal

CT core models use this method to create thread signals. A thread signal is a nonschedulable event that
threads wait for. Giving the signal schedules all waiting threads to run.

virtual ThreadSignal* createThreadSignal(const char* name)=0;

name
Instance name of the thread. Ideally, the hierarchical name of the component that owns the
thread is included in the name. If name is NULL, it receives the name '(anonymous thread
signal)'. The function makes a copy of name.

Destroying the returned object while threads are waiting for it leaves the threads unscheduled.

sg::SchedulerInterfaceForComponents::createTimer

Modeling components call this method to create objects of class Timer. They use timers to trigger events
in the future (one-shot or repeating events).

virtual Timer* createTimer(const char* name, TimerCallback* callback)=0;

sg::SchedulerInterfaceForComponents::currentThread

This method returns the currently running scheduler thread, which createThread() created, or null if
not in any threadProc() call.

virtual SchedulerThread* currentThread();

Related references
sg::SchedulerInterfaceForComponents::createThread on page 6-148

sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime

This method returns the simulated time in ticks relative to simulated time resolution, since the creation
of the scheduler. ClockDivider and MasterClock(ClockSignalProtocol::currentTicks()) use it.

virtual ticks_t getCurrentSimulatedTime(Tag<ticks_t>*);

This clock accurately reflects the time on the last timer callback invocation or the last return from
SchedulerThread::wait(), whichever was last. The return values monotonically increase over (real or
simulated) time.

sg::SchedulerInterfaceForComponents::getGlobalQuantum

This method returns the global quantum in ticks relative to simulated time resolution.

virtual ticks_t getGlobalQuantum(Tag<ticks_t>*);

Related references
sg::SchedulerInterfaceForComponents::setGlobalQuantum on page 6-150

sg::SchedulerInterfaceForComponents::getMinSyncLatency

This method returns the minimum synchronization latency in ticks relative to simulated time resolution.

virtual ticks_t getMinSyncLatency(Tag<ticks_t>*);

Related references
sg::SchedulerInterfaceForComponents::setMinSyncLatency on page 6-150

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-149

Non-Confidential

sg::SchedulerInterfaceForComponents::getNextSyncPoint

This method returns the next synchronization point relative to the current simulated time. The next
synchronization point is expressed in ticks relative to simulated time resolution.

virtual ticks_t getNextSyncPoint(Tag<ticks_t>*);

Modeling components can call this function for a hint about when a potentially useful system
synchronization point will occur. Core threads use this information to determine when to synchronize.

sg::SchedulerInterfaceForComponents::getSimulatedTimeResolution

This method returns the simulated time resolution in seconds.

virtual double getSimulatedTimeResolution();

sg::SchedulerInterfaceForComponents::removeCallback

This method removes all callbacks that are scheduled using addCallback() for this callback object.
AsyncSignal uses it.

virtual void removeCallback(SchedulerCallback *callback)=0;

callback
The callback object to remove. If callback is NULL, an unknown callback object, or a called
callback, then the call has no effect.

Any host thread can call this method. It is thread safe.

The scheduler will not call the specified callback after this function returns. It can, however, call it while
execution control is inside this function.

Callbacks automatically vanish after being called. Removing them deliberately is not necessary unless
they become invalid, for example on the destruction of the object implementing the callback function.

Related references
sg::SchedulerInterfaceForComponents::addCallback on page 6-148

sg::SchedulerInterfaceForComponents::setGlobalQuantum

This method sets the global quantum.

virtual void setGlobalQuantum(ticks_t ticks);

ticks
Global quantum value, relative to simulated time resolution. The global quantum is the
maximum time that a thread can run ahead of simulation time.

All threads must synchronize on timing points that are multiples of the global quantum.

Related references
sg::SchedulerInterfaceForComponents::getGlobalQuantum on page 6-149

sg::SchedulerInterfaceForComponents::setMinSyncLatency

This method sets the minimum synchronization latency.

virtual void setMinSyncLatency(ticks_t ticks);

ticks
Minimum synchronization latency value, relative to simulated time resolution.

The minimum synchronization latency helps to ensure that sufficient simulated time has passed between
two synchronization points for synchronization to be efficient. A small latency increases accuracy but
decreases simulation speed. A large latency decreases accuracy but increases simulation speed.

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-150

Non-Confidential

The scheduler uses this information to set the minimum synchronization latency of threads with
sg::SchedulerRunnable::setThreadProperty(), and to compute the next synchronization point as
returned by getNextSyncPoint().

Related references
sg::SchedulerInterfaceForComponents::getMinSyncLatency on page 6-149

sg::SchedulerInterfaceForComponents::setSimulatedTimeResolution

This method sets the simulated time resolution in seconds.

virtual void setSimulatedTimeResolution(double resolution);

resolution
Simulated time resolution in seconds.

Setting simulated time resolution after the start of the simulation or after setting timers is not possible.

sg::SchedulerInterfaceForComponents::stopAcknowledge

This function blocks the simulation thread until being told to resume.

virtual void stopAcknowledge(SchedulerRunnable *runnable)=0;

runnable
Pointer to the runnable instance that called this function, or NULL when not called from a
runnable instance. If not NULL this function calls runnable->clearStopRequest() once it is
safe to do so (with respect to non-simulation host threads).

CT core models call this function from within the simulation thread in response to a call to
stopRequest() or spontaneously (for example, breakpoint hit, debugger stop). The call must always be
from the simulation thread. The scheduler must block inside this function. The function must return
when the simulation is to resume.

The scheduler usually implements a thread-safe mechanism in this function that allows blocking and
resuming of the simulation thread from another host thread (usually the debugger thread).

Calling this function from a nonsimulation host thread is wrong by design and is forbidden.

This function must clear the stop request that led to calling this function by calling runnable-
>clearStopRequest().

This function must have no effects other than blocking the simulation thread.

sg::SchedulerInterfaceForComponents::stopRequest

This function requests the simulation of the whole system to stop (pause).

virtual void stopRequest()=0;

You can call this function from any host thread, whether the simulation is running or not. The function
returns immediately, possibly before the simulation stops. This function will not block the caller until the
simulation stops. The simulation stops as soon as possible, depending on the syncLevel of the threads in
the system. The simulation calls the function stopAcknowledge(), which blocks the simulation thread to
pause the simulation. This function must not call stopAcknowledge() directly. It must only set up the
simulation to stop at the next sync point, defined by the syncLevels in the system. Reset this state with
stopAcknowledge(), which calls SchedulerRunnable::clearStopRequest().

Debuggers and modeling components such as CT cores and peripherals use this function to stop the
simulation from within the simulation thread (for example for external breakpoints) and also
asynchronously from the debugger thread. Calling this function again (from any host thread) before

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-151

Non-Confidential

stopAcknowledge() has reset the stop request, using SchedulerRunnable::clearStopRequest() is
harmless. The simulation only stops once.

 Note

The simulation can stop (that is, call stopAcknowledge()) spontaneously without a previous
stopRequest(). This stop happens for example when a modeling component hits a breakpoint. A
stopRequest() is sufficient, but not necessary, to stop the simulation.

The scheduler implementation of this function is to forward this stopRequest() to the running runnable
object, but only for stopRequest() calls from the simulation thread. When the runnable object accepts
the stopRequest() (SchedulerRunnable::stopRequest() returns true), the scheduler need do
nothing more because the runnable object will respond with a stopAcknowledge() call. If the runnable
object did not accept the stopRequest() (SchedulerRunnable::stopRequest() returns false) or if
this function call is outside of the context of a runnable object (for example, from a call-back function) or
from a non-simulation host thread, then the scheduler is responsible for handling the stopRequest()
itself by calling stopAcknowledge() as soon as possible.

The stop handling mechanism should not change the scheduling order or model behavior (non-intrusive
debugging).

Related references
sg::SchedulerRunnable::stopRequest on page 6-155

sg::SchedulerInterfaceForComponents::wait(ThreadSignal)

This method waits on a thread signal.

virtual void wait(ThreadSignal* threadSignal)=0;

threadSignal
Thread signal object to wait for. A call with threadSignal of NULL is valid, but has no effect.

wait() blocks the current thread until it receives ThreadSignal::notify(). This function returns when
the calling thread can continue to run.

Only call this method from within a SchedulerRunnable::threadProc() context. Calling this method
from outside of a threadProc() context is valid, but has no effect.

sg::SchedulerInterfaceForComponents::wait(ticks_t)

This method blocks the running thread and runs other threads for a specified time.

virtual void wait(ticks_t ticks);

ticks
Time to wait for, in timebase units. ticks can be 0.

Only call this method from within a SchedulerRunnable::threadProc() context. Calls from outside of
a threadProc() context are valid, but have no effect.

This method blocks a thread for a time while the other threads run. It returns when the calling thread is to
continue, at the co-routine switching point. Typically, a thread calls wait(ticks) in its loop when it
completes ticks ticks of work. ticks is a “quantum”.

6.5.4 sg::SchedulerRunnable class

This section describes the SchedulerRunnable class.

sg::SchedulerRunnable - about

This class is a thread interface on the runnable side. The modeling components create and implement
SchedulerRunnable objects and pass a pointer to a SchedulerRunnable interface to

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-152

Non-Confidential

SchedulerInterfaceForComponents::createThread(). The scheduler uses this interface to run the
thread.

Related references
sg::SchedulerInterfaceForComponents::createThread on page 6-148

sg::SchedulerRunnable::breakQuantum

This function breaks the quantum. Arm deprecates this function.

sg::SchedulerRunnable::clearStopRequest

This function clears stop request flags.

void clearStopRequest();

Only SchedulerInterfaceForComponents::stopAcknowledge() calls this function, so calls are
always from the simulation thread.

Related references
sg::SchedulerRunnable::stopRequest on page 6-155

sg::SchedulerRunnable::getName

This function returns the name of the instance that owns the object.

const char *getName() const;

By convention, this is the name that createThread() received. SchedulerRunnable inherits this
function from sg::SchedulerObject.

sg::SchedulerRunnable::setThreadProperty, sg::SchedulerRunnable::getThreadProperty

These functions set and get thread properties.

bool setThreadProperty(ThreadProperty property, uint64_t value);
bool getThreadProperty(ThreadProperty property, uint64_t &valueOut);

Scheduler-configures-runnable properties
TP_BREAK_QUANTUM

Arm deprecates this property.
SchedulerInterfaceForComponents::getNextSyncPoint() gives the next quantum
size.

TP_DEFAULT_QUANTUM_SIZE
Arm deprecates this property. Use SchedulerInterfaceForComponents::set/
getGlobalQuantum().

TP_COMPILER_LATENCY

set
Compiler latency, the maximum interval in which generated straight-line code
checks for signals and the end of the quantum.

get
Compiler latency.

default
1024 instructions.

TP_MIN_SYNC_LATENCY

set
Synchronization latency, the minimum interval in which generated straight-line
code inserts synchronization points.

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-153

Non-Confidential

get
Synchronization latency.

default
64 instructions.

TP_MIN_SYNC_LEVEL

set
syncLevel to at least N (0-3).

get
Minimum syncLevel.

default
min_sync_level CADI parameter and the syncLevel* registers also
determine the syncLevel. If nothing else is set, the default is 0 (SL_OFF).

TP_LOCAL_TIME

set
Local time of temporally decoupled thread.

get
Current local time.

TP_LOCAL_QUANTUM

set
Local quantum of temporally decoupled thread.

get
Current local quantum.

 Note

The temporally decoupled thread usually retrieves the local quantum by calling
SchedulerInterfaceForComponents::getNextSyncPoint().

Runnable-configures-scheduler properties
TP_STACK_SIZE

set
Return false and ignore the value. Not for a scheduler to call.

get
Intended stack size for the thread in bytes. If this field returns false or a low
value, this field uses the default stack size that the scheduler determines. Not
all schedulers use this field. If a scheduler supports setting the stack size, it
requests this field from
SchedulerInterfaceForComponents::createThread() or
SchedulerThread::start(). Is to return a constant value.

default
2MB.

Schedulers need not use all fields, and runnable objects need not provide all fields. If a runnable object
does not support a property or value, it must return false.

Related references
sg::SchedulerRunnable::breakQuantum on page 6-153

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-154

Non-Confidential

sg::SchedulerRunnable::stopRequest

This function requests the simulation of the whole system to stop (pause) as soon as possible by setting a
request flag. This might be to inspect a runnable, for example to pause at an instruction boundary to
inspect a processor component with a debugger.

bool stopRequest();

You can call this function from any host thread, whether the simulation is running or not. The function
returns immediately, before the simulation stops. This function will not block the caller until the
simulation stops. The simulation stops as soon as possible, depending on the syncLevel of the
runnable.The simulation calls the function SchedulerInterfaceForComponents::stopAcknowledge(),
which blocks the simulation thread to pause the simulation. The function must not call
stopAcknowledge() directly but only set up a state such that the simulation stops at the next sync point,
defined by the syncLevel of this runnable. Reset this state with stopAcknowledge(), which calls
clearStopRequest().

Modeling components use this function to stop the simulation from within the simulation thread (for
example for external breakpoints) and also asynchronously from from the debugger thread. Calling this
function again (from any host thread) before stopAcknowledge() has reset the stop request using
clearStopRequest() is harmless. The simulation only stops once.

Returns true when the runnable accepts the stop request and will stop later. Returns false when the
runnable does not accept the stop request. In this case, the scheduler must stop the simulation when the
runnable returns control to the scheduler (for example, by use of wait()).

Related references
sg::SchedulerRunnable::clearStopRequest on page 6-153

sg::SchedulerRunnable::threadProc

This is the main thread function, the thread entry point.

void threadProc();

When threadProc() returns, the thread no longer runs and this SchedulerThread instance will not call
threadProc() again. The thread usually does not return from this function while the thread is running.

threadProc() is to call SchedulerInterfaceForComponents::wait(0, ...) after completing
initialization. threadProc() is to call SchedulerInterfaceForComponents::wait(t>=0, ...) after
completing t ticks worth of work.

Do not create/destroy any other threads or scheduler objects within the context of this function.

6.5.5 sg::SchedulerThread class

This section describes the SchedulerThread class.

sg::SchedulerThread - about

This class is a thread interface on the thread instance/scheduler side. The
SchedulerInterfaceForComponents::createThread() function creates the SchedulerThread
objects. Modeling components use this interface to talk to the scheduler

Related references
sg::SchedulerInterfaceForComponents::createThread on page 6-148

sg::SchedulerThread::destructor

This method destroys SchedulerThread objects.

~SchedulerThread();

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-155

Non-Confidential

This destructor kills threads if the underlying scheduler implementation supports it. Killing threads
without their cooperation is unclean because it might leak resources. To end a thread cleanly, signal the
thread to return from its threadProc() function, for example by using an exception that is caught in
threadProc(). Destroying this object before calling start() must not start the thread. Destroying this
object after calling start() might kill the thread immediately or leave it running until it returns from its
threadProc().

SchedulerThread inherits this method from sg::SchedulerObject.

Related references
sg::SchedulerInterfaceForComponents::createThread on page 6-148

sg::SchedulerThread::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createThread() received.

SchedulerThread inherits this method from sg::SchedulerObject.

sg::SchedulerThread::setFrequency

This method sets the frequency source to be the parent clock for the thread. Arm deprecates this function.

sg::SchedulerThread::start

This method starts the thread.

void start();

This method calls the threadProc() function immediately, which must call wait(0, ...) after
initialization in order for start() to return. start() only runs the threadProc() of the associated
thread and no other threads. Calling start() on a running thread has no effect. Calling start() on a
terminated thread (threadProc() returned) has no effect.

 Note

The modeling component counterpart of the sg::SchedulerThread class is sg::SchedulerRunnable.
Runnable objects must call sg::QuantumKeeper::sync() regularly to pass execution control on to other
threads.

Related references
sg::SchedulerInterfaceForComponents::createThread on page 6-148

6.5.6 sg::ThreadSignal class

This section describes the ThreadSignal class. It represents a nonschedulable event on which threads
can wait. When the event is signaled, all waiting threads can run.

sg::ThreadSignal::destructor

This method destroys ThreadSignal objects, thread signals.

~ThreadSignal();

Destroying these objects while threads are waiting for them leaves the threads unscheduled.

sg::ThreadSignal::notify

This method notifies the system of the event, waking up any waiting threads.

void notify();

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-156

Non-Confidential

SchedulerRunnable::threadProc() can call this method, but calls can come from outside of
threadProc(). Calling this method when no thread is waiting for the signal is valid, but has no effect.

sg::ThreadSignal::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createThreadSignal() received.

ThreadSignal inherits this method from sg::SchedulerObject.

6.5.7 sg::Timer class

This section describes the Timer interface class. The
SchedulerInterfaceForComponents::createTimer() method creates Timer objects.

sg::Timer::cancel

This method unsets the timer so that it does not fire.

void cancel();

If the timer is not set, this method has no effect.

sg::Timer::destructor

This method destroys Timer objects.

~Timer();

The timer must not call TimerCallback::timerCallback() after the destruction of this object.

sg::Timer::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createTimer() received.

Timer inherits this method from sg::SchedulerObject.

sg::Timer::isSet

This method returns true if the timer is set and queued for call-back, otherwise false.

bool isSet();

This method has no side effects.

sg::Timer::remaining

This method requests the remaining number of ticks relative to simulated time resolution until a timer
makes a signal.

ticks_t remaining();

This method returns 0 if there are no ticks remaining or if the timer is not set.

This method has no side effects.

sg::Timer::set

This method sets a timer to make a signal.

bool set(ticks_t ticks);

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-157

Non-Confidential

ticks
the number of ticks after which the timer is to make a signal.

The signal that this method makes is a call to the user call-back function. If the return value t is 0, the
timer does not repeat, otherwise it repeats after t ticks. The latest set() overrides the previous one.

This method returns false if ticks is too big to schedule the timer.

sg::Timer::setFrequency

This method sets the frequency source clock for the timer. Arm deprecates this function. Simulated time
is relative to global time resolution. See
SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

6.5.8 sg::TimerCallback class

This section describes the TimerCallback base class. This interface does not allow object destruction.

sg::TimerCallback::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

Conventionally, this is the name that createTimer() received.

TimerCallback inherits this method from sg::SchedulerObject.

sg::TimerCallback::timerCallback

The createTimer() method receives a timerCallback instance. This timerCallback() method is
called whenever the timer expires. This method returns a value t. If t is 0, the timer does not repeat,
otherwise it is to call timerCallback() again after t ticks.

ticks_t timerCallback();

6.5.9 sg::FrequencySource class

FrequencySource objects provide clock frequencies, and notify frequency observers of frequency
changes. This interface does not allow object destruction. Arm deprecates this class. Simulated time is
relative to global time resolution. See
SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

6.5.10 sg::FrequencyObserver class

FrequencySource instances notify FrequencyObserver instances of FrequencySource instance
changes. This interface does not allow object destruction. Arm deprecates this class. Simulated time is
relative to global time resolution. See
SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

6.5.11 sg::SchedulerObject class

This section describes the SchedulerObject class. It is the base class for scheduler objects and
interfaces. This interface does not allow object destruction.

sg::SchedulerObject::getName

This method returns the name of the instance that implements the object or interface. The intended use is
debugging.

const char *getName() const;

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-158

Non-Confidential

Although Arm does not guarantee this name to be unique or hierarchical, Arm recommends including or
using the hierarchical component name. The caller must not free/delete the returned string. This object
owns the string. The pointer is valid as long as the object implementing this interface exists. If the caller
cannot track the lifetime of this object and wants to remember the name, it must copy it.

6.5.12 sg::scx_create_default_scheduler_mapping

This function returns a pointer to a new instance of the default implementation of the scheduler mapping
provided with Fast Models.

sg::SchedulerInterfaceForComponents *scx_create_default_scheduler_mapping(scx_simcontrol_if
*simcontrol);

simcontrol
a pointer to an existing simulation controller. If this is NULL, this function returns NULL.

6.5.13 sg::scx_get_curr_scheduler_mapping

This function returns a pointer to the scheduler mapping interface.

sg::SchedulerInterfaceForComponents *scx_get_curr_scheduler_mapping();

6 SystemC Export with Multiple Instantiation
6.5 Scheduler API

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-159

Non-Confidential

6.6 SystemC Export limitations
This section describes the limitations of the current release of SystemC Export.

The Exported Virtual Subsystems (EVSs) are deliberately not time or cycle accurate, although they are
accurate on a functional level.

This section contains the following subsections:
• 6.6.1 SystemC Export limitation on reentrancy on page 6-160.
• 6.6.2 SystemC Export limitation on calling wait() on page 6-160.
• 6.6.3 SystemC Export limitation on code translation support for external memory on page 6-160.
• 6.6.4 SystemC Export limitation on Fast Models versions for MI platforms on page 6-160.

6.6.1 SystemC Export limitation on reentrancy

Processor models, and the CCI400, MMU_400, and MMU_500 component models support reentrancy.

Reentrancy occurs when a component in an EVS issues a blocking transaction to a SystemC peripheral
that in turn generates another blocking transaction back into the same component. This generation might
come directly or indirectly from a call to wait() or by another SystemC peripheral.

Virtual platforms including EVSs that comprise a processor model do support such reentrancy.

For models that do not support reentrancy, the virtual platform might show unpredictable behavior
because of racing within the EVS component.

6.6.2 SystemC Export limitation on calling wait()

Arm only supports calling wait() on bus transactions.

When a SystemC peripheral must really issue a wait() in reaction to a signal that is changing, buffer the
signal in the bridge between the EVS and SystemC. On the next activation of the bridge, set the signal
with the thread context of the EVS.

 Note

The EVS runs in a temporally decoupled mode using a time quantum. Transaction Level Modeling
(TLM) 2.0 targets using the Loosely-Timed coding style do not call wait().

6.6.3 SystemC Export limitation on code translation support for external memory

EVS core components use code translation for speed. Not enabling Direct Memory Interface (DMI)
reduces performance.

The core components in EVSs use code translation for high simulation speed. Therefore they fetch data
from external memory to translate it into host machine code. Changing the memory contents outside of
the scope of the core makes the data inconsistent.

Enable DMI accesses to instruction memory to avoid dramatic performance reductions. Otherwise,
EVSs:
• Model all accesses.
• Perform multiple spurious transactions.
• Translate code per instruction not per block of instructions.

6.6.4 SystemC Export limitation on Fast Models versions for MI platforms

SystemC Export with Multiple Instantiation (MI) supports virtual platforms with multiple EVSs made
with the same version of Fast Models. Integrating EVSs from different versions of Fast Models might
result in unpredictable behavior.

6 SystemC Export with Multiple Instantiation
6.6 SystemC Export limitations

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

6-160

Non-Confidential

Chapter 7
Graphics Acceleration in Fast Models

Generic Graphics Acceleration (GGA) is a Fast Models framework for using host resources to perform
graphics rendering on behalf of a GPU model. This chapter gives an introduction to GGA, describes how
to enable it on a target platform model, and describes the main use cases.

It contains the following sections:
• 7.1 Introduction to GGA on page 7-162.
• 7.2 GGA modes on page 7-163.
• 7.3 Prerequisites on page 7-167.
• 7.4 GGA contents on page 7-168.
• 7.5 Configuration on page 7-170.
• 7.6 Feedback on page 7-172.
• 7.7 Enabling GGA on page 7-173.
• 7.8 Using GGA on page 7-179.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-161

Non-Confidential

7.1 Introduction to GGA
Fast Models provides various models of Mali™ GPUs, including Mali‑G51, Mali-G72, and Mali-G76.

You can run one of the OpenGL ES or Vulkan demo applications that are provided at https://
developer.arm.com/solutions/graphics/resources/sdks on a Fast Models platform that contains one of
these Mali GPU models, a compatible Mali driver, and an Android or Linux distribution, but no pixels
are rendered to the screen. This is because the GPU models are register models, which means they avoid
the costly performance overhead of directly modeling the shader cores which perform the rendering
operations in real hardware.

However, there are many use cases for Fast Models for which you might want to compare and validate
actual rendering output from a simulated GPU. For example:

• Debugging a graphical application on a target platform.
• Validating graphical applications for target hardware in a continuous integration environment.
• Debugging or validating graphics driver integration.
• Booting Android OS version 8.0 or later on a target platform. These versions require hardware

acceleration for graphics.

To enable these use cases, Fast Models provides a framework called Generic Graphics Acceleration
(GGA) for using host resources to perform the rendering that is requested of the GPU model.

GGA enables Fast Models to:
1. Intercept graphics APIs within the model system
2. Mirror the graphics APIs on the host
3. Pass the results that are rendered by the host resources back into the modeled system

The GGA framework can also be configured to replace the Mali driver, by acting as a generic
implementation of a graphics driver.

Related information
Media components

7 Graphics Acceleration in Fast Models
7.1 Introduction to GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-162

Non-Confidential

https://developer.arm.com/solutions/graphics/resources/sdks
https://developer.arm.com/solutions/graphics/resources/sdks
https://developer.arm.com/docs/100964/1110/fast-models-components/media-components

7.2 GGA modes
GGA can be used with or without a GPU Register Model (GRM).

• If you use GGA with a GRM, this is referred to as GGA+GRM mode.
• If you use GGA without a GRM, this is referred to as GGA-only mode. In this mode, GGA acts as a

generic graphics driver.

You can use also use a GRM without GGA, although in this mode, no pixels are displayed.

This section contains the following subsections:
• 7.2.1 Using a GPU register model without GGA on page 7-163.
• 7.2.2 Using GGA with a GPU register model on page 7-164.
• 7.2.3 Using GGA without a GPU register model on page 7-166.

7.2.1 Using a GPU register model without GGA

The following figure shows a simplified view of a graphics and display driver stack running inside a Fast
Model, without using GGA.

Host environment (Linux or Windows)

Fast Model

OpenGL ES or
Vulkan application

Mali driver stack

Mali GPU model

1

3 2

Display driver
stack

Display

4

Modeled hardware

Software running on model

Figure 7-1 Simplified view of a graphics stack without GGA

 Note

In this figure, blue arrows represent the data path of API calls, or data traveling to the GPU and orange
arrows represent uninitialized data moving to the display.

7 Graphics Acceleration in Fast Models
7.2 GGA modes

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-163

Non-Confidential

The workflow shown in this figure is:
1. An application makes OpenGL ES or Vulkan API calls to a Mali driver.
2. The Mali driver stack issues rendering jobs to a GPU.
3. In hardware, the GPU would return the pixels, rendered through the shader cores, to the Mali driver.

The model GPU returns uninitialized data.
4. The Mali driver, working together with the display driver stack, writes uninitialized data back to the

display, when prompted by the application.

7.2.2 Using GGA with a GPU register model

The GGA framework consists of the following components:

Shim library
A user space library within the model that intercepts graphics API calls before they reach the
driver.

Reconciler
A host library that receives the intercepted calls and forwards them to the graphics driver on the
host.

Mali emulator
A freely available Arm product that translates the OpenGL ES calls for the Mali driver into
OpenGL calls for the host driver.

Sidechannel
A Fast Models plug-in that enables communication between the Shim library and the
Reconciler.

The following figure shows a Fast Models platform that contains a GPU register model, a graphics and
display driver stack, and uses the GGA framework:

7 Graphics Acceleration in Fast Models
7.2 GGA modes

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-164

Non-Confidential

Host environment (Linux or Windows)

Fast Model

OpenGL ES or
Vulkan application

Mali driver stack

Mali GPU model

1

6Display driver
stack

Display

Modeled hardware

Software running on model

Shim library

2

Reconciler

Mali emulator

Host GPU

4

3

2

S
id

ec
ha

nn
el

5

Host hardware

Figure 7-2 Using GGA with a GPU register model

 Note

In this figure, blue arrows represent the data path of API calls, or data traveling to the GPU and orange
arrows represent rendered pixels moving to the display.

The workflow shown in this figure is:
1. A graphical application calls the Shim library’s implementation of the required OpenGL ES or

Vulkan function.
2. The Shim library calls the Mali driver within the model, and also sends the call to the Reconciler on

the host.
3. The Reconciler makes the OpenGL ES call on the Mali emulator.
4. The Mali emulator converts the OpenGL ES call to OpenGL and makes the OpenGL call on the host

driver.
 Note

For Vulkan applications, the Mali emulator is not required. The Reconciler calls the host GPU
directly because no translation is needed.

5. The rendered pixels are returned from the host GPU to the Reconciler, which inserts the pixels into
the GPU model’s memory.

6. When requested, the Mali driver passes the rendered pixels through the display stack.

7 Graphics Acceleration in Fast Models
7.2 GGA modes

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-165

Non-Confidential

7.2.3 Using GGA without a GPU register model

Some use cases for GGA do not require a GPU register model or simulation of the execution of Mali
driver code.

For example:

• To bring up Android v8.0 or a later distribution on a platform model. These versions require hardware
acceleration.

• To simulate a system that is under development. You might not have access to the final Mali driver
configuration and only need a basic OpenGL ES or Vulkan implementation to perform initial
validation of applications.

These use cases only require a generic implementation of OpenGL ES or Vulkan, to satisfy target
software dependencies. By omitting the GPU and driver, you can reduce the amount of simulated
software in the model, and improve model performance.

You can configure the Shim library to pass graphics API calls directly to the Reconciler, bypassing the
Mali driver and GPU model. The Reconciler then passes the rendering results directly to the display
driver stack of the model, as shown here:

Host environment (Linux or Windows)

Fast Model

OpenGL ES or
Vulkan application

1

Display driver
stack

Display

Modeled hardware

Software running on model

Shim library Reconciler

Mali emulator

Host GPU

4

3

2

S
id

ec
ha

nn
el

5

Host hardware

Figure 7-3 Using GGA without a GPU register model

 Note

• In this figure, blue arrows represent the data path of API calls, or data traveling to the GPU and
orange arrows represent rendered pixels moving to the display.

• For a description of the GGA framework components shown in this figure, see 7.2.2 Using GGA with
a GPU register model on page 7-164

7 Graphics Acceleration in Fast Models
7.2 GGA modes

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-166

Non-Confidential

7.3 Prerequisites
GGA is available for both Windows and Linux hosts.

Host requirements:

• GGA requires the Arm Mali OpenGL ES Emulator version 3.0.4 or later. See 7.7.1 Install the Arm®

Mali™ OpenGL ES Emulator on page 7-173 for instructions.
 Note

The emulator is not required for Vulkan applications.

• Nvidia host graphics implementations are supported, provided the driver implements OpenGL 4.3 or
greater. GGA has been validated on NVIDIA GTX 1050 graphics cards, with driver versions 390.77
or later.

Target requirements:
• GGA supports Android and Linux targets:

— Android version 8.0 or 9.0.
— On Linux, either or both fbdev and Wayland window systems are supported, depending on the

mode:

GGA-only mode
fbdev only

GGA+GRM mode
fbdev and Wayland

• GGA supports the following APIs in both GGA-only and GGA+GRM modes:
— EGL 1.4
— OpenGL ES 2.0, 3.0, 3.1
— Vulkan 1.0 (Android targets only)

• For GGA+GRM mode, the target platform model must include a Fast Models Mali GPU model and a
Mali driver installation.

 Note

GGA-only mode is a generic implementation which does not integrate with the Mali driver stack, so
it does not require a Mali driver or a GPU model in the target platform.

For details about the available GPU models, see Media components in Fast Models Reference
Manual. The Mali driver must have the following characteristics:
— For Bifrost series GPUs, the driver version must be greater than r11p0.
— For Midgard series GPUs, the driver version must be greater than r23p0.
— The Mali driver must be built from the Mali Driver Development Kit with the Mali Descriptor

Tag option enabled. You can enable this option:
◦ For scons-based builds, by adding mali_descriptor_tag=1 to the build arguments
◦ For Blueprint-based builds, by setting DESCRIPTOR_TAG=y in the Blueprint build options

Related references
2.1 Requirements for Fast Models on page 2-30

7 Graphics Acceleration in Fast Models
7.3 Prerequisites

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-167

Non-Confidential

https://developer.arm.com/docs/100964/1110/fast-models-components/media-components

7.4 GGA contents
The components that you need to run Fast Models with host-accelerated graphics are installed in the
$PVLIB_HOME/GGA/ directory.

The contents of the GGA directory are shown here:

$PVLIB_HOME/GGA/
shim/

<target_OS>/
rel/

libGLES.so
reconciler/

<host_OS>/
<compiler>/

rel/
checkerrcode.ini
libReconciler.so or Reconciler.dll
settings.ini

examples/
<target_OS>/

Cube.apk
HAL

readme.txt

jni/
<gralloc-config>

Android.mk
Application.mk
src/

shim_hal.cc
nw_hal.h

Figure 7-4 Locations of GGA components

The following topics describe each of the subdirectories within the GGA directory.

This section contains the following subsections:
• 7.4.1 Shim directory on page 7-168.
• 7.4.2 Reconciler directory on page 7-169.
• 7.4.3 Examples directory on page 7-169.
• 7.4.4 HAL directory on page 7-169.

7.4.1 Shim directory

The shim directory contains different versions of the Shim library, which intercepts graphics APIs for
rendering on the host.

Each Shim library version is compiled for a specific target environment, for example:

android-armv7sfl
For 32-bit Android targets with software-emulated floating point

7 Graphics Acceleration in Fast Models
7.4 GGA contents

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-168

Non-Confidential

android-armv8l_64
For 64-bit Android targets

linux-armv7hf
For Linux distributions with 32-bit hardware-enabled floating point

linux-armv8l_64
For Linux distributions with 64-bit Arm binaries

 Note

• Shim libraries are not interchangeable between environments.
• The Shim library is named in the package as libGLES.so. Despite the name, the Android variants of

the Shim library support Vulkan.

7.4.2 Reconciler directory

The reconciler directory contains the host library component of the GGA framework, which accepts
incoming graphics APIs from the Shim library, and executes them on the host.

This directory also includes two example configuration files:
• settings.ini
• checkerrcode.ini

These files are used to set runtime configuration options, such as the GGA mode (GGA-only or GGA
+GRM), and the verbosity level of log output.

Related references
7.5 Configuration on page 7-170

7.4.3 Examples directory

The examples directory contains a simple OpenGL ES spinning cube example. You can use it to verify
the GGA framework installation on a model running Android.

Related tasks
7.7.7 Test the Android setup on page 7-177

7.4.4 HAL directory

The HAL directory contains example source files for building a libnwhal.so library.

On Android targets, libnwhal.so is required by the Shim library to translate from a particular version of
the Android Gralloc module, available at Android Gralloc Module on Arm Developer.

Related concepts
Generate libnwhal.so on page 7-175

7 Graphics Acceleration in Fast Models
7.4 GGA contents

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-169

Non-Confidential

https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/android-gralloc-module

7.5 Configuration
Use the configuration file settings.ini to choose between GGA+GRM mode or GGA-only mode, and
to select which information is logged by GGA.

You must copy settings.ini from the following directory into the directory containing the model:
• On Linux, $PVLIB_HOME/GGA/reconciler/linux-x86_64/gcc-x.x.x/rel/, where x.x.x is the

GCC version number.
• On Windows, %PVLIB_HOME%\GGA\reconciler\win_32-x86_64\cl-19.xx.xxxxx\rel\, where

19.xx.xxxxx is the MSVC compiler version number.

The configuration options are:

callOnTargetAPI

Specifies the mode in which GGA operates. The possible values are:

0 GGA-only mode. In other words, GGA acts as a generic OpenGL ES or Vulkan
implementation.

2 GGA+GRM mode. In other words, GGA integrates with a Mali driver stack and Mali model
in the target system.

LogLevel
Specifies the level of information to be logged to standard output by GGA. The possible values
are:

0 or LOG_LEVEL_OFF
Disable logging.

1 or LOG_LEVEL_FATAL
Log the fatal issues from GGA. This is the default value.

2 or LOG_LEVEL_ERROR
Log the errors generated by GGA.

3 or LOG_LEVEL_WARN
Log the warnings generated by GGA.

6565 or LOG_LEVEL_INFO
Log the OpenGL ES API execution sequences.

6566 or LOG_LEVEL_DEBUG
Log the names of executed APIs and parameters.

6567 or LOG_LEVEL_TRACE
Log more detailed information generated by GGA.

 Note

Each log level is a superset of all lower levels. For example, output for log level 6567 includes
the output for all other levels.

checkErrorCode
Enables or disables the Error code check function. This function examines the execution of
OpenGL ES APIs in the target graphics driver. This option is only valid if callOnTargetAPI is
set to 2. The possible values are:

0 Disable Error code check.
1 Enable Error code check.

enableErrorCheckWhiteList

7 Graphics Acceleration in Fast Models
7.5 Configuration

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-170

Non-Confidential

Specifies whether the Error code check function should check errors from specific OpenGL ES
APIs or from all of them. This option is only valid if callOnTargetAPI is set to 2 and
checkErrorCode is set to 1. The possible values are:

0 Examine all APIs
1 Examine specific APIs

For more details about the Error code check function, see 7.8.2 Examine OpenGL ES execution
in the graphics driver on page 7-179.

7 Graphics Acceleration in Fast Models
7.5 Configuration

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-171

Non-Confidential

7.6 Feedback
To report issues or bugs in GGA, contact Arm Technical Support.

Send the following information to support-esl@arm.com for diagnostic purposes:
• The version of Fast Models
• The Fast Models virtual platform
• The host OS
• The OS of the target system, including the version number
• The graphics card that is used on the host
• Driver information for the graphics card
• A brief description of the application, including the language that it is written in
• A description of the issue, with the expected output and the output you observed
• If possible, the application that is failing, or a cutdown application that reproduces the issue
• Debug logs

7 Graphics Acceleration in Fast Models
7.6 Feedback

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-172

Non-Confidential

mailto:license.support@arm.com

7.7 Enabling GGA
This section describes how to enable GGA in your system. Follow these instructions for both GGA-only
and GGA+GRM modes.

In summary, the goal of the GGA setup process is to:
• Ensure that client applications find the GGA implementation of libGLES.so before the Mali DDK

implementation, if present
• Ensure that the GGA implementation can call the Mali DDK implementation after it has recorded the

details of the API calls

 Note

• These instructions assume that you have a file system image of your target operating system.
• Before enabling GGA, ensure you can correctly boot the operating system on the Fast Models target:

Android
You can bring up Android using the Mali graphics driver together with the GPU models. See
the Mali DDK documentation on how to install the driver in Android 8.

 Note

In this configuration, no graphics are visible. Follow the steps in this section to enable
graphics rendering using GGA.

Linux
Linux can be brought up to command-line boot without the need of a graphics stack.

This section contains the following subsections:
• 7.7.1 Install the Arm® Mali™ OpenGL ES Emulator on page 7-173.
• 7.7.2 Preparing your image on page 7-174.
• 7.7.3 Prepare an Android image on page 7-174.
• 7.7.4 Prepare a Linux image on page 7-176.
• 7.7.5 Choose the GGA mode on page 7-176.
• 7.7.6 Boot the model with the Android or Linux image on page 7-176.
• 7.7.7 Test the Android setup on page 7-177.

7.7.1 Install the Arm® Mali™ OpenGL ES Emulator

You must install the Mali OpenGL ES Emulator on the host to translate OpenGL ES calls for the Mali
driver into OpenGL calls for the host driver.

Procedure
1. Download the installation package for Windows or Linux from OpenGL ES Emulator.
2. Install and configure the emulator. For instructions, see the Mali OpenGL ES Emulator User Guide,

contained in the installation package.
3. Verify the installation by running the mali-cube application. For details, see the user guide.

Results:

If the installation is successful, you will see a spinning cube:

7 Graphics Acceleration in Fast Models
7.7 Enabling GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-173

Non-Confidential

http://malideveloper.arm.com/resources/tools/opengl-es-emulator/

Figure 7-5 Mali Cube application

7.7.2 Preparing your image

Before enabling GGA in your target Android or Linux system, you must prepare your target file system
image. For both Android and Linux, perform this step on the host machine.

Mount your Android or Linux file system on your host machine and make the necessary changes before
booting the model. We recommend that you back up your file system before making any changes.

There are several ways to mount and modify your file system:
• On a Linux host, you can use the mount command as a root user
• On a Windows host, either:

— Use one of the freely available utilities that are available for editing filesystem images
— Edit the filesystem within a Linux virtual machine

7.7.3 Prepare an Android image

For Android, modify both the system and the vendor partitions.

For details about Android partitions, see Partitions and Images.

Because the mounting points for system and vendor partitions can differ depending on your setup and the
Android version that you are running, the file paths provided in these instructions are relative to the
mount point of the partition.

Mount and modify your system partition

The term <system_mount_point> in these instructions refers to the directory in which your system
partition is mounted on the host, for example /mnt/system/.

Procedure
1. Disable the OpenGL ES driver preload feature in the target by adding the following line to the end of

the file <system_mount_point>/build.prop:

ro.zygote.disable_gl_preload=true

2. Enable hardware rendering through the host GPU by replacing all occurrences of the string
ro.kernel.qemu with No.kernel.qemu in the files <system_mount_point>/lib/libEGL.so and
<system_mount_point>/lib64/libEGL.so.

3. Insert the Shim library into the target file system. The Shim intercepts API calls from a target
application:

7 Graphics Acceleration in Fast Models
7.7 Enabling GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-174

Non-Confidential

https://source.android.com/devices/bootloader/partitions-images

1. Copy $PVLIB_HOME/GGA/shim/android-armv7sfl/rel/libGLES.so to
<system_mount_point>/lib/egl/libGLES_gga.so.

2. Copy $PVLIB_HOME/GGA/shim/android-armv8l_64/rel/libGLES.so to
<system_mount_point>/lib64/egl/libGLES_gga.so.

4. In the directories <system_mount_point>/lib/egl/ and <system_mount_point>/lib64/egl/,
create symbolic links named libGLES.so that point to the newly added libGLES_gga.so libraries.

5. Insert the window handle library into your image:
 Note

If Android uses customized native window handles, you must generate a customized library first. For
details, see Generate libnwhal.so on page 7-175.

1. Copy $PVLIB_HOME/GGA/shim/android-armv7sfl/rel/<HAL>/libnwhal.so to
<system_mount_point>/lib/.

2. Copy $PVLIB_HOME/GGA/shim/android-armv8l_64/rel/<HAL>/libnwhal.so to
<system_mount_point>/lib64/.

 Note

The folder name <HAL> can be either of the following:
• stock, if the Android version used is the standard Android Open Source Project.
• The Gralloc version number used, such as bfst-r7p0-01rel0, if the Android version uses a

Gralloc module provided from https://developer.arm.com/products/software/mali-drivers/
android-gralloc-module.

6. Set the file access permission for the Shim library libGLES_gga.so, and the native window handle
library libnwhal.so in your Android file system to the value 0644.

Generate libnwhal.so

Create a customized libnwhal.so file for an Android target if it uses customized native window
handles.

This file parses and transfers the target OpenGL ES data from the Android HAL to the Shim library.
Create it using these instructions, before you push the Shim libraries to the Android target:

1. Open the file $PVLIB_HOME/GGA/HAL/<subdirectory>/jni/src/nw_hal.h.

Where subdirectory can be the folder stock or a folder named with a Gralloc version number.
2. Follow the instructions in the file to define a customized data structure android_private_handle_t.
3. From the directory $PVLIB_HOME/GGA/HAL/<subdirectory>/, run the following build command to

generate the libnwhal.so file:

<ANDROID_NDK_HOME>/ndk-build

If you have access to the Mali DDK source for a Bifrost r17 or later driver, and the AOSP of your
system, you can autogenerate the appropriate libnwhal.so of your system through the bfst-custom
project:
1. Create a build directory.
2. Within the build directory, run:

cmake $PVLIB_HOME/GGA/HAL/bfst-custom -DAOSP_ROOT=/path/to/aosp/src/ -DMALI_DDK_SRC=/path/to/mali/ddk/root/

Mount and modify your vendor partition

The term <vendor_mount_point> in these instructions refers to the directory in which your vendor
partition is mounted on the host.

7 Graphics Acceleration in Fast Models
7.7 Enabling GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-175

Non-Confidential

https://developer.arm.com/products/software/mali-drivers/android-gralloc-module
https://developer.arm.com/products/software/mali-drivers/android-gralloc-module

Procedure
1. In GGA+GRM mode, if the file libmali.so is not present in the directories

<vendor_mount_point>/lib/egl/ and <vendor_mount_point>/lib64/egl/, create a symbolic
link named libmali.so in both directories that points to libGLES_mali.so.

2. If you are using Vulkan:
• Remove the files vulkan.<ro.board.platform>.so from the image. They are located in:

— <vendor_mount_point>/lib/hw/
— <vendor_mount_point>/lib64/hw/

• Create two symbolic links that point to the Shim libraries <system_mount_point>/lib/egl/
libGLES_gga.so and <system_mount_point>/lib64/egl/libGLES_gga.so:
— <vendor_mount_point>/lib/hw/vulkan.<ro.board.platform>.so
— <vendor_mount_point>/lib64/hw/vulkan.<ro.board.platform>.so

3. To test that GGA is enabled, copy the test application $PVLIB_HOME/GGA/examples/linux-
armv8l_64/Cube.apk to your file system. You can install this application on the target after the
model has booted. Note the directory where Cube.apk is copied to, because it will be needed after the
model has booted.

7.7.4 Prepare a Linux image

Follow these steps to prepare a Linux file system image to use GGA.

Procedure
1. After mounting your Linux file system image, copy the Shim library $PVLIB_HOME/GGA/shim/

linux-armv8l_64/rel/libGLES.so to /home/<user>/libGLES.so.
2. To enable GGA on your Linux target, ensure that all dynamic libraries for graphics APIs that are

needed by a target application are symbolic links that point to the Shim library in /home/<user>/
libGLES.so. Example commands:

ln -s libGLES.so libEGL.so
ln -s libGLES.so libEGL.so.1
ln -s libGLES.so libEGL.so.1.4.0
ln -s libGLES.so libGLESv1_CM.so
ln -s libGLES.so libGLESv1_CM.so.1
ln -s libGLES.so libGLESv1_CM.so.1.1.0
ln -s libGLES.so libGLESv2.so
ln -s libGLES.so libGLESv2.so.2
ln -s libGLES.so libGLESv2.so.2.1.0
ln -s libGLES.so libGLESv3.so
ln -s libGLES.so libGLESv3.so.3
ln -s libGLES.so libGLESv3.so.3.1.0

3. Before running a graphical application on the Linux target, add the directory that contains the Shim
and the symlinks to the front of your LD_LIBRARY_PATH environment variable.

7.7.5 Choose the GGA mode

Use the settings.ini file to select the GGA mode.

Procedure
1. The settings.ini file can be found in $PVLIB_HOME/GGA/reconciler/<OS>/<gcc-version>/

rel/. Copy it to the directory from which you will boot the model.
2. Before booting the model, select between GGA-only mode and GGA+GRM mode:

• For GGA-only mode, set callOnTargetAPI to 0
• For GGA+GRM mode, set callOnTargetAPI to 2

7.7.6 Boot the model with the Android or Linux image

Boot the target model, specifying some extra options to enable GGA.

7 Graphics Acceleration in Fast Models
7.7 Enabling GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-176

Non-Confidential

Procedure
1. Before booting the model, add the Mali emulator to your host path.
2. In your boot command, specify the Reconciler as the interceptor, and load the Sidechannel as a plug-

in:
• To load the Sidechannel plug-in, add this option to the boot command:

--plugin $PVLIB_HOME/plugins/<compiler_version>/Sidechannel.so

• To load the interceptor, add this parameter to the boot command:

-C DEBUG.Sidechannel.interceptor=$PVLIB_HOME/GGA/reconciler/<OS>/<gcc-version>/
libReconciler.so

One or two Fast Models CLCD displays appear on the screen, depending on the platform, along with one
or two xterm consoles. The xterm console can be used to interact with the target OS.

 Note

If SELinux is enabled on your Android target, you might observe in your xterm window that the system
is stuck in a loop, repeatedly trying to restart several applications, including zygote, audioserver, and
mediaserver. You can resolve this issue by switching to permissive mode to allow access to the Shim, in
either of the following ways:
• Add the line androidboot.selinux=permissive to U-boot
• Press ENTER in the xterm window to check whether you have a command prompt. When you have

a prompt, enter the following commands:

su root
setenforce 0

7.7.7 Test the Android setup

To test that GGA is enabled in your system, we provide an example graphical application, Cube.apk, that
shows a spinning cube in a Fast Models window.

Procedure
1. Install the example application in your target operating system, by running the following command in

your xterm window:

pm install <Cube_install_dir>/Cube.apk

Cube_install_dir is the directory into which you previously copied the application.
2. Run the spinning cube application with the following command:

am start -n com.arm.malideveloper.openglessdk.cube64/.Cube

You should see a spinning cube in the CLCD window:

7 Graphics Acceleration in Fast Models
7.7 Enabling GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-177

Non-Confidential

Figure 7-6 Spinning cube rendered using GGA

7 Graphics Acceleration in Fast Models
7.7 Enabling GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-178

Non-Confidential

7.8 Using GGA
This section describes some useful features of GGA to help you view and debug the execution of
graphics APIs in the model.

This section contains the following subsections:
• 7.8.1 Log execution of graphics APIs on page 7-179.
• 7.8.2 Examine OpenGL ES execution in the graphics driver on page 7-179.
• 7.8.3 Error messages from Error code check on page 7-180.
• 7.8.4 Trace driver accesses to the GPU registers on page 7-180.

7.8.1 Log execution of graphics APIs

To log the execution of target graphics APIs, set the log level in the GGA configuration file, then reboot
the target.

In settings.ini, set LogLevel to either of the following values:

• 6565: Represents LOG_LEVEL_INFO to show information about the important stages in executing
APIs.

• 6566: Represents LOG_LEVEL_DEBUG to show the names and parameters of each API that is called.

For more details about settings.ini, see 7.5 Configuration on page 7-170.
 Note

If you find issues, try to reproduce them using a different platform model. Report bugs in GGA to the
support team as described in 7.6 Feedback on page 7-172.

7.8.2 Examine OpenGL ES execution in the graphics driver

Use the Error code check function in GGA to report OpenGL ES APIs for which the host driver and the
target driver return different error codes. Enable it using the settings.ini configuration file.

Procedure
1. The Error code check function works in GGA+GRM mode only, so callOnTargetAPI must be set to

2.
2. Assign a value to LogLevel other than 0 or 1. For the allowed values, see 7.5 Configuration

on page 7-170.
3. Set checkErrorCode to 1 to enable Error code check.
4. To examine all OpenGL ES APIs, set enableErrorCheckWhiteList to 0.
5. To only examine specific APIs:

a. Set enableErrorCheckWhiteList to 1.
b. Set the APIs listed in checkerrcode.ini that you are interested in to 1.

 Note

checkerrcode.ini is located in the same directory as settings.ini.

6. Reboot the target to show the API execution in the driver.

If abnormal APIs are detected, the host shows errors like this:

ERROR [RECONCILER] gles20_glCopyTexSubImage2D Inconsistent error code detected. host=0x0501, target=0x0502

For more details about this and other error messages, see 7.8.3 Error messages from Error code check
on page 7-180.

7 Graphics Acceleration in Fast Models
7.8 Using GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-179

Non-Confidential

7.8.3 Error messages from Error code check

The error messages show OpenGL ES APIs for which the host driver and the target driver return
different error codes.

Errors can be generated by the target graphics driver, GGA, or the Mali OpenGL ES Emulator:
• Errors from the target graphics driver:

ERROR [RECONCILER] gles20_glCopyTexSubImage2D Inconsistent error code detected. host=0x0501, target=0x0502

Here:
— gles20_glCopyTexSubImage2D is the problematic API.
— 0x0501 and 0x0502 are the error codes retrieved from the host driver and the target driver

respectively. These error codes are defined in the OpenGL ES header file.
• Errors from GGA:

FATAL [RECONCILER] glProgramParameteri() Could not find program object descriptor for target-side program id
[0]

Here, glProgramParameteri() is the problematic API. Report GGA bugs directly to Arm Technical
Support. For more details, see 7.6 Feedback on page 7-172.

• Errors from the Mali OpenGL ES Emulator:

FATAL-Exception thrown in GLES32Api::glUniformMatrix4fv -> Underlying OpenGL error in GL33Backend.
See Fatal error logs for full details. This is probably a programming error, please report it.

Report Mali emulator errors directly to Arm Technical Support.

7.8.4 Trace driver accesses to the GPU registers

Use the Trace and dump function provided by GGA to trace accesses by the graphics driver to the
registers of the GPU register model.

Prerequisites

• The Trace and dump function works in GGA+GRM mode only, so you must have integrated the
graphics driver with the GPU register model in your target.

• You need to use the ListTraceSources plug-in to list the available trace sources and the GenericTrace
plug-in to specify which events should be traced. They are located in $PVLIB_HOME/plugins/
<OS_compiler>/.

Procedure
1. On the host, run the platform model with the ListTraceSources plug-in to list the trace sources that

the model provides:

${PATH_Model} --plugin $PVLIB_HOME/plugins/Linux64_GCC-6.4/ListTraceSources.so

Results: The terminal shows:
• The GPU model, for example:

Component (292) providing trace: Kits3_Subsys.css.gpu

• Trace sources provided by the GPU model, for example:

INFO_ReadRegister
Access time, addresses, data, and names of the registers that were read.

INFO_Reset
GPU reset data.

INFO_WriteRegister
Access time, addresses, and names of the registers that were updated, and the data before
and after the update.

7 Graphics Acceleration in Fast Models
7.8 Using GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-180

Non-Confidential

INFO_IrqGpuControl
ID, name, and state of the IRQ signal from the GPU. The state can be Y for Set, or N for
Clear.

INFO_IrqJobControl
ID, name, and state of the IRQ signal from the Job Manager on the GPU. The state can
be Y for Set, or N for Clear.

INFO_IrqMmuControl
ID, name, and state of the IRQ signal from the MMU on the GPU. The state can be Y for
Set, or N for Clear.

WARN_ReadToWriteOnlyRegister
Warning messages and addresses for the write-only registers that have been read by the
graphics driver.

WARN_WriteToReadOnlyRegister
Warning messages and addresses for the read-only registers that have been written by the
graphics driver.

WARN_AccessToUnimplementedRegister
Warning messages and addresses for the invalid registers that have been accessed by the
graphics driver.

2. Boot the Android target with the following additional options to trace all events from the GPU model:

--plugin $PVLIB_HOME/plugins/Linux64_GCC-6.4/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=Kits3_Subsys.css.gpu.* \
-C TRACE.GenericTrace.enabled=1 \
-C TRACE.GenericTrace.verbose=1 \
-C TRACE.GenericTrace.print-timestamp=1 \
-C TRACE.GenericTrace.trace-file=dp-trace-generic.log

In these options:
• Kits3_Subsys.css.gpu is the GPU model obtained from Step 1.

— To trace all the GPU-supported trace sources, add the suffix '*' to this GPU. For instance,
Kits3_Subsys.css.gpu.*.

— To output one GPU trace source only, add it as a suffix to the GPU. For instance,
Kits3_Subsys.css.gpu.INFO_ReadRegister.

— To output multiple trace sources, use a comma-separated list. For instance,
Kits3_Subsys.css.gpu.INFO_ReadRegister,
Kits3_Subsys.css.gpu.INFO_WriteRegister

• The trace-file option specifies the log file in which to save the trace output. If the trace-file
option is not used, the trace results are shown on the host terminal.

For more details, see GenericTrace in Fast Models Reference Manual.

The host terminal or the log file shows details about the driver-accessed registers, such as the register
addresses, data, and the access time. For example:

HOST_TIME=1557460.545195s INFO_ReadRegister: REG_OFFSET=0x0000000000000000 VALUE=0x60000000 REG_NAME="GPU_ID"
HOST_TIME=1557460.545266s INFO_ReadRegister: REG_OFFSET=0x0000000000000004 VALUE=0x07130206
REG_NAME="L2_FEATURES"
HOST_TIME=1557460.545279s INFO_ReadRegister: REG_OFFSET=0x0000000000000008 VALUE=0x00000000
REG_NAME="SUSPEND_SIZE"
HOST_TIME=1557460.545291s INFO_ReadRegister: REG_OFFSET=0x000000000000000c VALUE=0x00000809
REG_NAME="TILER_FEATURES"
HOST_TIME=1557460.545303s INFO_ReadRegister: REG_OFFSET=0x0000000000000010 VALUE=0x00000001
REG_NAME="MEM_FEATURES"
HOST_TIME=1557460.545316s INFO_ReadRegister: REG_OFFSET=0x0000000000000014 VALUE=0x00002830
REG_NAME="MMU_FEATURES"
HOST_TIME=1557460.545325s INFO_ReadRegister: REG_OFFSET=0x0000000000000018 VALUE=0x000000ff
REG_NAME="AS_PRESENT"
HOST_TIME=1557460.545334s INFO_ReadRegister: REG_OFFSET=0x000000000000001c VALUE=0x00000007
REG_NAME="JS_PRESENT"
HOST_TIME=1557460.545345s INFO_ReadRegister: REG_OFFSET=0x00000000000000c0 VALUE=0x0000020e
REG_NAME="JS0_FEATURES"
HOST_TIME=1557460.545362s INFO_ReadRegister: REG_OFFSET=0x00000000000000c4 VALUE=0x000001fe
REG_NAME="JS1_FEATURES"
HOST_TIME=1557460.545364s INFO_ReadRegister: REG_OFFSET=0x00000000000000c8 VALUE=0x0000007e

7 Graphics Acceleration in Fast Models
7.8 Using GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-181

Non-Confidential

https://developer.arm.com/docs/100964/1110/plug-ins-for-fast-models/generictrace

REG_NAME="JS2_FEATURES"
HOST_TIME=1515565849.690948s gpu.INFO_WriteRegister: REG_OFFSET=0x0000000000001870 VALUE=0x00000000
UPDATED_VALUE=0x00000000 REG_NAME="JOB_SLOT0_JS_FLUSH_ID_NEXT"
HOST_TIME=1515565849.691304s gpu.INFO_WriteRegister: REG_OFFSET=0x0000000000001860 VALUE=0x00000000
UPDATED_VALUE=0x00000001 REG_NAME="JOB_SLOT0_JS_COMMAND_NEXT"
HOST_TIME=1515565849.691322s gpu.INFO_IrqJobControl: IRQ_ID=0x01 IRQ_NAME="JOB Control" IRQ_STATE=Y
HOST_TIME=1515565849.691561s gpu.INFO_ReadRegister: REG_OFFSET=0x000000000000100c VALUE=0x00000001
REG_NAME="JOB_IRQ_STATUS"
HOST_TIME=1515565849.691643s gpu.INFO_WriteRegister: REG_OFFSET=0x0000000000001004 VALUE=0x00000000
UPDATED_VALUE=0x00000001 REG_NAME="JOB_IRQ_CLEAR"
HOST_TIME=1515565849.691647s gpu.INFO_IrqJobControl: IRQ_ID=0x01 IRQ_NAME="JOB Control" IRQ_STATE=N

7 Graphics Acceleration in Fast Models
7.8 Using GGA

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

7-182

Non-Confidential

Chapter 8
Timing Annotation

This chapter describes timing annotation, which enables you to perform high-level performance
estimation on Fast Models.

Fast Models are Programmers View (PV) models that are targeted at software development. They
sacrifice timing accuracy to achieve fast simulation execution speeds. By default, each instruction takes a
single simulator clock cycle, with no delays for memory accesses.

Timing annotation enables you to perform more accurate performance estimation on SystemC models
with minimal simulation performance impact. You can use it to show performance trends and to identify
test cases for further analysis on approximately timed or cycle-accurate models.

You can configure the following aspects of timing annotation:
• The time that processors take to execute instructions. This can be modeled in either of the following

ways:
— As an average Cycles Per Instruction (CPI) value, using the cpi_mul and cpi_div model

parameters.
— By assigning CPI values to different instruction classes, using CPI files.

• Branch predictor type and misprediction latency. For details, see BranchPrediction in the Fast
Models Reference Manual

• Instruction and data prefetching.
• Cache and TLB latency.
• Latency caused by pipeline stalls. For details, see PipelineModel in the Fast Models Reference

Manual.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-183

Non-Confidential

https://developer.arm.com/docs/100964/1110/plug-ins-for-fast-models/branchprediction
https://developer.arm.com/docs/100964/1110/plug-ins-for-fast-models/pipelinemodel

 Note

Timing annotation is supported on all SystemC-based platforms. However, it is disabled by default on
ISIMs. To enable timing annotation for an ISIM, set the environment variable FASTSIM_DISABLE_TA to
0.

It contains the following sections:
• 8.1 Enabling and disabling timing annotation on page 8-185.
• 8.2 CPI files on page 8-186.
• 8.3 CPI file syntax on page 8-187.
• 8.4 BNF specification for CPI files on page 8-192.
• 8.5 Instruction and data prefetching on page 8-194.
• 8.6 Configuring cache and TLB latency on page 8-196.
• 8.7 Timing annotation tutorial on page 8-197.

8 Timing Annotation

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-184

Non-Confidential

8.1 Enabling and disabling timing annotation
Use the environment variable FASTSIM_DISABLE_TA to enable or disable timing annotation latency.

By default, timing annotation is disabled for ISIMs. To enable it, set FASTSIM_DISABLE_TA to 0. If it is
disabled and you load a timing annotation plug-in, or use a timing annotation feature, for example CPI or
cache latency modeling, none of the timing annotation latencies that are computed are injected into the
model. In other words, the simulated CPU time is the same for all instructions, that is one cycle per
instruction.

Disabling timing annotation does not prevent timing annotation plug-ins from working. For example, the
PipelineModel plug-in continues to process instructions and generate statistics, and the BranchPrediction
plug-in continues to predict branches and generate statistics. However, the Fast Models simulation
engine ignores any pipeline stall latencies or branch misprediction penalties that they calculate.

 Tip

To print timing statistics on simulation exit, run the simulation with the --stat parameter.

8 Timing Annotation
8.1 Enabling and disabling timing annotation

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-185

Non-Confidential

8.2 CPI files
CPI files define classes of instructions and assign CPI values to them. They increase the accuracy of the
estimated number of cycles required to run a binary on a SystemC model.

 Note

• An alternative to using CPI files is to use the cpi_mul and cpi_div parameters on a core component
within the model. These parameters are integers that represent a CPI multiplication or division factor.
They can also be used together to represent non-integer values. For example, use cpi_mul = 5,
cpi_div = 4 for a CPI of 1.25.

• If a CPI file is present, it overrides the cpi_mul and cpi_div parameters.
• If you do not set these parameters and do not specify a CPI file, a CPI value of 1.0 is used for all

instructions.

A CPI file can support multiple instruction sets, including A64, A32, and T32. It can also support multiple
processor types, including pre-defined and user-defined types.

Arm provides pre-defined CPI instruction classes which you can include in your CPI files, or you can
define your own classes. The following files are located in $PVLIB_HOME/etc/CPIPredefines/:

• ARMv8A_A64_Predefines.txt
• ARMv8A_A32_Predefines.txt
• ARMv8A_T32_Predefines.txt
• ARMv7M_Thumb_Predefines.txt

You can find typical CPI values and instruction groups in the Arm Software Optimization Guides, which
are available at https://developer.arm.com/.

Specify a CPI file when launching a platform model by using the --cpi-file command-line parameter,
for example:

./EVS_Base_Cortex-A73x1 … --cpi-file /CPI_file.txt --stat

 Note

The --stat parameter displays timing statistics on simulation exit.

Alternatively, specify a CPI file in your SystemC code by calling the function
6.4.10 scx::scx_set_cpi_file on page 6-129.

CPIValidator is a command-line tool provided in $MAXCORE_HOME/bin/ to help you create valid CPI
files. Use the --help switch to list the available options. For example, the following command parses
and builds the evaluation tree for CPI_file.txt, and prints it in plain text to a file called
CPIEvaluationTree.txt:

$MAXCORE_HOME/bin/CPIValidator --input-file ./CPI_file.txt --output-file ./CPIEvaluationTree.txt

Related references
8.3 CPI file syntax on page 8-187
8.4 BNF specification for CPI files on page 8-192

8 Timing Annotation
8.2 CPI files

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-186

Non-Confidential

https://developer.arm.com/

8.3 CPI file syntax
CPI files are plain text files that contain a series of statements, one per line. Lines that begin with a #
character are ignored.

In the following syntax definitions, square brackets [] enclose optional attributes. An ellipsis … indicates
attributes that can be repeated.

The valid statements in a CPI file are:

DefineCpi

Defines the CPI value to use for an instruction class or group. The syntax is:

DefineCpi class_or_group ISet=iset [CpuType=cputype] Cpi=cpi

where:

class_or_group

The name of an instruction class or group. This name can contain wildcards.

A decoded instruction is matched against all DefineCpi statements in the order they
appear in the CPI file from top to bottom. The first instruction class match is used and
all following statements are ignored.

ISet=iset

Specifies which instruction set this CPI value refers to. This parameter is one of A32,
A64, Thumb, or T2EE, or use the * character to specify all instruction sets.

CpuType=cputype
Specifies which Arm processor type this CPI value refers to. This parameter can be a
user-defined type, or one of the following pre-defined types:
• ARM_Cortex-A12
• ARM_Cortex-A17
• ARM_Cortex-A15
• ARM_Cortex-A7
• ARM_Cortex-A5MP
• ARM_Cortex-M4
• ARM_Cortex-M7
• ARM_Cortex-A57
• ARM_Cortex-A72
• ARM_Cortex-A53
• ARM_Cortex-R7
• ARM_Cortex-R5
• ARM_Cortex-A9MP
• ARM_Cortex-A9UP
• ARM_Cortex-A8
• ARM_Cortex-R4
• ARM_Cortex-M3
• ARM_Cortex-M0+
• ARM_Cortex-M0

Use the * character to specify any processor type. Specifying no CpuType is equivalent
to specifying CpuType=*.

Cpi=cpi
The CPI value to assign to this instruction class or group.

For example:

DefineCpi Load_instructions ISet=A64 CpuType=ARM_Cortex-A53 Cpi=2.15

8 Timing Annotation
8.3 CPI file syntax

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-187

Non-Confidential

DefineClass

Defines an instruction class. The syntax is:

DefineClass class Mask=mask Value=value [ProhibitedMask=pmask
ProhibitedValue=pvalue …] ISet=iset [CpuType=cputype]
where:

class
The name of the instruction class to define. It must be unique in the CPI file. It can be
used in a subsequent DefineCpi statement.

Mask=mask

A bitmask to apply to an instruction encoding before comparing the result with the
Value attribute. This parameter identifies which bits in the encoding are relevant for
comparing with Value.

For example, the value 0000xxxx1xxx100x is represented as Mask=0xF08E
Value=0x0088.

Value=value

The binary value to compare with the instruction encodings. A match indicates that the
instruction belongs to this class, unless the encoding also matches the
ProhibitedValue.

ProhibitedMask=pmask

A bitmask to apply to an instruction encoding before comparing the result with the
ProhibitedValue attribute. It identifies which bits in the encoding are relevant for
comparing with ProhibitedValue.

ProhibitedValue=pvalue

The binary value to compare with the instruction encodings. A match indicates that the
instruction does not belong to this class.

ISet=iset

Specifies which instruction set this class refers to. See DefineCpi for the possible
values.

CpuType=cputype

Specifies which Arm processor type this class refers to. See DefineCpi for the possible
values.

 Note

A DefineClass statement must include a single Mask and Value attribute pair, but can include
any number of ProhibitedMask and ProhibitedValue attribute pairs.

For example:

DefineClass Media_instructions Mask=0x0E000010 Value=0x06000010
ProhibitedMask=0xF0000000 ProhibitedValue=0xF0000000 ISet=A32

DefineGroup

Defines a group of instruction classes. The syntax is:

DefineGroup group Classes=class[,class,…] ISet=iset [CpuType=cputype]
[Mix=mix[,mix,…]]

where:

8 Timing Annotation
8.3 CPI file syntax

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-188

Non-Confidential

group
The name of the group to define. It must be unique in the CPI file. It can be used in a
subsequent DefineCpi statement.

Classes=class[,class,…]

A comma-separated list of instruction classes that belong to this group.

ISet=iset

Specifies which instruction set this group refers to. See DefineCpi for the possible
values.

CpuType=cputype

Specifies which Arm processor type this group refers to. See DefineCpi for the
possible values.

Mix=mix[,mix,…]
A comma-separated list of mixin names that cause additional instruction groups and
classes to be automatically defined.

For example:

DefineGroup Divide_instructions Classes=SDIV,UDIV CpuType=ARM_Cortex-A73 ISet=A32

DefineMixIn

Defines a single mask/value pair and suffix that can optionally be used in DefineGroup
statements to automatically define new instruction groups and classes. Applying a mixin to a
group causes a new instruction group or class to be defined for every instruction group or class
that is included in the group, and also for the group itself. The names of these newly-defined
groups and classes is the original group or class name followed by an underscore character, then
the mixin suffix.

The syntax is:

DefineMixIn mix Mask=mask Value=value Suffix=suffix

where:

mix
The name of the mixin to define. It must be unique in the CPI file. It can be used in
subsequent DefineGroup statements.

Mask=mask

A bitmask to apply to an instruction encoding before comparing the result with the
Value attribute.

Value=value

The binary value to compare with the instruction encodings. A match indicates that the
instruction belongs to this group or class.

Suffix=suffix

After applying a mixin to a group, this suffix is appended to the names of the
automatically-defined groups and classes.

In the following example, the DefineGroup statement defines my_group, but also automatically
defines my_group_AL and my_class_AL:

DefineMixIn my_mixin Mask=0xF0000000 Value=0xE0000000 Suffix=AL
…
DefineClass my_class Mask=0x0FF00000 Value=0x03000000 ISet=A32
DefineGroup my_group Classes=my_class ISet=A32 Mix=my_mixin

DefineCpuType

8 Timing Annotation
8.3 CPI file syntax

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-189

Non-Confidential

Defines a processor type. The syntax is:

DefineCpuType cputype ISets=iset[,iset,…]

where:

cputype
The name of the processor type to define. It must be unique in the CPI file. It can be
used in subsequent DefineCpi, DefineClass, DefineGroup, and MapCpu statements.

ISets=iset[,iset,…]

A comma-separated list of instruction sets that this processor type supports. See
DefineCpi for the possible values.

For example:

DefineCpuType ARM_Cortex-A73 ISets=*

MapCpu

Maps a CPU instance by name to a CPU type. The syntax is:

MapCpu cpuinstance ToCpuType=cputype

where:

cpuinstance

The name of the CPU instance to map to a processor type. It can contain wildcards.

ToCpuType=cputype

The processor type to map the CPU instance onto. See the list of CpuTypes in
DefineCpi for the possible values.

For example:

MapCpu SVP_Base_AEMv8A-AEMv8A.AEMv8A_Primary.cluster.cpu0 ToCpuType ARM_Cortex-A73

Defaults

Defines the default CPI value to be used for instructions that do not match any class or group.
This statement is optional and can occur more than once in the CPI file. The syntax is:

Defaults ISet=iset [CpuType=cputype] Cpi=cpi

where:

ISet=iset

Specifies which instruction set this value refers to. See DefineCpi for the possible
values.

CpuType=cputype
Specifies which Arm processor type this value refers to. See DefineCpi for the possible
values.

Cpi=cpi
The default CPI value for the specified instruction set and processor type.

For example:

Defaults ISet=* CpuType=* Cpi=0.82

8 Timing Annotation
8.3 CPI file syntax

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-190

Non-Confidential

Include

Includes a supplementary CPI file at this point in the file. This is equivalent to the #include
preprocessor directive in C. The evaluation of the FilePath attribute is to first treat it as an
absolute path, then as a relative path, and finally as relative to the PVLIB_HOME environment
variable. The syntax is:

Include FilePath=path

For example:

Include FilePath=etc/CPIPredefines/ARMv8A_A32_Mnemonics.txt

8 Timing Annotation
8.3 CPI file syntax

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-191

Non-Confidential

8.4 BNF specification for CPI files
CPI files have the following BNF specification:

 <CPIFile> ::= <Statements>
 <Statements> ::= <Statement> <Statements>
 | <Statement>
 <Statement> ::= <Comment>
 | <DefineCpiStatement>
 | <DefaultsStatement>
 | <DefineCpuTypeStatement>
 | <MapCpuStatement>
 | <DefineClassStatement>
 | <DefineGroupStatement>
 | <IncludeStatement>
 | <DefineMixInStatement>
 <DefineCpiStatement ::= "DefineCpi" <InstructionClassOrGroup> <DefineCpiAttributes>
<EOL>
 <DefaultsStatement> ::= "Defaults" <DefineCpiAttributes> <EOL>
 <DefineCpuTypeStatement ::= "DefineCpuType" <UserCpuType> <DefineCpuTypeAttributes> <EOL>
 <MapCpuStatement ::= "MapCpu" <CpuInstance> <MapCpuAttributes> <EOL>
 <DefineClassStatement ::= "DefineClass" <InstructionClass> <DefineClassAttributes> <EOL>
 <DefineGroupStatement ::= "DefineGroup" <InstructionGroup> <DefineGroupAttributes> <EOL>
 <IncludeStatement> ::= "Include" <IncludeAttributes> <EOL>
 <DefineMixInStatement> ::= "DefineMixIn" <MixInType> <DefineMixInAttributes> <EOL>
 <DefineCpiAttributes> ::= <DefineCpiAttribute> <DefineCpiAttributes>
 | <DefineCpiAttribute>
 <DefineCpiAttribute> ::= <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 | <CpiAttribute> { Mandatory }
 <ISetAttribute> ::= "ISet" "=" <ISetOrStar>
 <ISetOrStar> ::= <ISet> | "*"
 <ISet> ::= "A32" | "A64" | "Thumb" | "T2EE"
 <CpuTypeAttribute> ::= "CpuType" "=" <CpuType>
 <CpuType> ::= "ARM_Cortex-A12" | "ARM_Cortex-A17"
 | "ARM_Cortex-A15" | "ARM_Cortex-A7"
 | "ARM_Cortex-A5MP" | "ARM_Cortex-M4"
 | "ARM_Cortex-M7" | "ARM_Cortex-A57"
 | "ARM_Cortex-A72" | "ARM_Cortex-A53"
 | "ARM_Cortex-R7" | "ARM_CortexR5"
 | "ARM_Cortex-A9MP" | "ARM_Cortex-A9UP"
 | "ARM_Cortex-A8" | "ARM_Cortex-R4"
 | "ARM_Cortex-M3" | "ARM_Cortex-M0+"
 | "ARM_Cortex-M0" | <UserCpuType> | "*"
 <CpiAttribute> ::= "Cpi" "=" <Cpi>
 <DefineCpuTypeAttributes> ::= <ISetsAttribute>
 <ISetsAttribute> ::= "ISets" "=" <ISetsOrStar>
 <ISetsOrStar> ::= <ISets> | "*"
 <ISets> ::= <ISet> "," <ISets> | <ISet>
 <MapCpuAttributes> ::= <ToCpuTypeAttribute>
 <ToCpuTypeAttribute> ::= "ToCpuType" "=" <CpuType>
 <DefineClassAttributes> ::= <DefineClassAttribute> <DefineClassAttributes>
 | <DefineClassAttribute>
 <DefineClassAttribute> ::= <MaskAttribute> { Mandatory }
 | <ValueAttribute> { Mandatory }
 | <ProhibitedPairsAttribute> { Optional }
 | <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 <MaskAttribute> ::= "Mask" "=" <Mask>
 <ValueAttribute> ::= "Value" "=" <Value>
<ProhibitedPairsAttribute> ::= <ProhibitedPairAttribute> <ProhibitedPairsAttribute>
 | <ProhibitedPairAttribute>
 <ProhibitedPairAttribute> ::= <ProhibitedMaskAttribute> <ProhibitedValueAttribute>
 <ProhibitedMaskAttribute> ::= "ProhibitedMask" "=" <Mask>
<ProhibitedValueAttribute> ::= "ProhibitedValue" "=" <Value>
 <DefineGroupAttributes> ::= <DefineGroupAttribute> <DefineGroupAttributes>
 | <DefineGroupAttribute>
 <DefineGroupAttribute> ::= <ClassesAttribute> { Mandatory }
 | <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 | <MixAttribute> { Optional }
 <ClassesAttribute> ::= "Classes" "=" <InstructionClassOrGroups>
 <MixAttribute> ::= "Mix" "=" <MixInTypes>
<InstructionClassOrGroups> ::= <InstructionClassOrGroup> "," <InstructionClassOrGroups>
 <instructionClasses> ::= <InstructionClass>
 <InstructionClassOrGroup> ::= <InstructionClass>
 | <InstructionGroup>
 <MixInTypes> ::= <MixInType> "," <MixInTypes>
 <MixInType> ::= <Symbol>
 <IncludeAttributes> ::= <FilePathAttribute>
 <FilePathAttribute> ::= "FilePath" "=" <FilePath>
 <DefineMixInAttributes> ::= <DefineMixInAttribute> <DefineClassAttributes>

8 Timing Annotation
8.4 BNF specification for CPI files

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-192

Non-Confidential

 <DefineMixInAttribute> ::= <MaskAttribute>
 | <ValueAttribute>
 | <SuffixAttribute>
 <SuffixAttribute> ::= "Suffix" "=" <String>
 <FilePath> ::= <String>
 <InstructionClass> ::= <Symbol>
 <InstructionGroup> ::= <Symbol>
 <UserCpuType> ::= <Symbol>
 <CpuInstance> ::= <QuotedString> { Supports use of wild cards }
 <Cpi> ::= <Double>
 <Mask> ::= <UnsignedInteger>
 <Value> ::= <UnsignedInteger>

8 Timing Annotation
8.4 BNF specification for CPI files

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-193

Non-Confidential

8.5 Instruction and data prefetching
Arm Cortex‑A series processors implement prefetching instructions and data into caches to improve the
cache hit rate and improve performance. Fast Models supports prefetching instructions and data
independently, by using model parameters.

This section contains the following subsections:
• 8.5.1 Configuring instruction prefetching on page 8-194.
• 8.5.2 Configuring data prefetching on page 8-194.

8.5.1 Configuring instruction prefetching

Configure instruction cache prefetching by using the following cluster-level parameters:

icache-prefetch_enabled
true to enable simulation of instruction cache prefetching, false otherwise. Defaults to false.
The execution of a branch instruction causes the model to prefetch instructions from the
memory region starting at the branch target address into a number of sequential cache lines. If
true, the following extra parameters are available:

icache-prefetch_level
Specifies the zero-indexed cache level into which instructions are prefetched. Defaults to 0,
which means L1.

icache-nprefetch
Specifies the number of additional, sequential instruction cache lines to prefetch. Defaults to 1.

 Note

These parameters only have an effect when cache state modeling is enabled, which is controlled by the
model parameter icache-state_modelled or cache_state_modelled.

Example

The following command line enables instruction cache prefetching and prints WAYPOINT trace events to
the console. A WAYPOINT is a point at which instruction execution by the processor might change the
program flow.

./FVP_Base_AEMv8A …
-C cache_state_modelled=1 \
-C cluster0.icache-prefetch_enabled=1 \
--plugin $PVLIB_HOME/plugins/Linux64_GCC-6.4/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=WAYPOINT

Related information
Loading a plug-in into a model

8.5.2 Configuring data prefetching

The purpose of data prefetch modeling is to make the contents of the data cache more closely resemble
those on a system with a hardware prefetcher. A default data prefetcher is supplied, which is relatively
configurable. It is not intended to match any specific processor.

To run the model with data prefetch modeling enabled, using the default data prefetcher with default
parameters, use the following parameters:

-C cache_state_modelled=true --plugin "<<internal><DataPrefetch>>" -C cluster0.dcache-prefetch_enabled=1

When the model exits, it reports how many prefetches were issued and how many cache hits on recently-
prefetched data were detected. The performance impact is about 10% compared to running with cache
state modeling enabled.

8 Timing Annotation
8.5 Instruction and data prefetching

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-194

Non-Confidential

https://developer.arm.com/docs/100964/1110/plug-ins-for-fast-models/loading-a-plug-in

By default, a data prefetch plug-in attaches to all processors and clusters in a system, and maintains
independent internal state for each processor. To change this, for example if you want a different number
of tracked streams on big and LITTLE cores, load the plug-in twice and pass a different .cluster
parameter to each instance, for example:

--plugin "DP_BIG=<<internal><DataPrefetch>>" --plugin "DP_LITTLE=<<internal><DataPrefetch>>" \
 -C DataPrefetch.DP_BIG.cluster=0 -C DataPrefetch.DP_LITTLE.cluster=1 \
 -C DataPrefetch.DP_BIG.lfb_entries=16 -C DataPrefetch.DP_LITTLE.lfb_entries=4

The names DP_BIG and DP_LITTLE are examples. They can be any names you choose.

The example prefetcher is a basic stride-detecting prefetcher, but relatively configurable using the
following parameters:

Table 8-1 Parameters for the example prefetcher

Parameter Description

history_length Length of history to maintain.

history_threshold Number of misses to allow in history before issuing a prefetch.

lfb_entries Number of access streams to track.

mbs_expire Number of non-hitting loads to allow before the prefetcher stops tracking a potential access stream.

pf_count Number of prefetch streams available.

pf_tracker_count Number of prefetches tracked.

pf_initial_number Initial number of prefetches to issue for a new stream.

prefetch_all_levels Prefetch to all cache levels rather than just the lowest level.

An access stream is created whenever a load is made to an address that is not within three cache lines of
a previously observed load. This might overwrite a previously created access stream. When a consistent
stride has been observed, that is, when addresses N, N+delta, N+2*delta are seen, a prefetch stream is
allocated with stride delta and a lifetime of pf_initial_number.

Prefetches are issued in a round-robin fashion from active prefetch streams (the lifetime goes down by
one each time a prefetch is issued) whenever there have been fewer than history_threshold cache
misses among the last history_length loads. The rationale is that if lots of cache hits are occurring,
there should be available bandwidth on the memory interface to be used by prefetching.

Issued prefetches are tracked in a circular list of size pf_tracker_count, and if the prefetcher sees a
load to an address in this circular list, it increments the lifetime of the prefetch stream that issued the
successful prefetch.

 Note

Prefetches are to physical addresses, and as a result, a prefetch stream expires when it reaches the end of
a 4KB region.

8 Timing Annotation
8.5 Instruction and data prefetching

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-195

Non-Confidential

8.6 Configuring cache and TLB latency
You can configure latency for different cache operations for Cortex‑A processor models by setting model
parameters.

The following parameters are available:
• Read access latency for L1 D-cache, L1 I-cache, or L2 cache. For example dcache-

read_access_latency.
• Separate latencies for read hits and misses in L1 D-cache, L1 I-cache, or L2 cache. For example

dcache-hit_latency and dcache-miss_latency. The total latency for a read access is the sum of
the read access latency and the hit or miss latency.

• Write access latency for L1 D-cache or L2 cache. For example dcache-write_access_latency.
• Latency for cache maintenance operations for L1 D-cache, L1 I-cache, or L2 cache. For example

dcache-maintenance_latency.
• Latency for snoop accesses that perform a data transfer for L1 D-cache or L2 cache. For example

dcache-snoop_data_transfer_latency.
• Latency for snoop accesses that are issued by L2 cache. For example l2cache-

snoop_issue_latency.
• TLB and page table walk latencies. For example tlb_latency.

 Note

• These parameters only take effect when cache state modeling is enabled. This is controlled using
parameters, for example dcache-state_modelled and icache-state_modelled.

• All of these latency values are measured in clock ticks.
• For reads and writes, latency can be specified per access, for example dcache-

read_access_latency, or per byte, for example dcache-read_latency. If both parameters are set,
the per-access value takes precedence over the per-byte value.

8 Timing Annotation
8.6 Configuring cache and TLB latency

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-196

Non-Confidential

8.7 Timing annotation tutorial
This tutorial shows how to use the Cycles Per Instruction (CPI) specification and branch prediction
modeling features with a Fast Models example platform model, and how to measure their impact on code
execution time. The commands shown are for Linux, although the process is the same on Windows.

This section contains the following subsections:
• 8.7.1 Setting up the environment on page 8-197.
• 8.7.2 Modeling Cycles Per Instruction (CPI) on page 8-199.
• 8.7.3 Modeling branch prediction on page 8-204.

8.7.1 Setting up the environment

This tutorial runs some example applications on the EVS_Base_Cortex-A73x1 example virtual platform
to show different timing annotation features.

Prerequisites

To use timing annotation, you require the following:

• A SystemC virtual platform.
• An application that enables caches.
• A way of calculating the execution of time of individual instructions.
• A way of determining the total execution time of the simulation.
• A way of calculating the average Cycles Per Instruction (CPI) value for the simulation.

Building the EVS_Base_Cortex-A73x1 example

The EVS_Base_Cortex-A73x1 example includes a single EVS that is connected to SystemC components
that model a timer, and an application memory component that supports individual configuration of read
and write latencies.

The platform is not provided pre-built in the Fast Models Portfolio installation, so you must first build it,
for example:

cd $PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/
./build.sh

Calculating the execution time of an instruction

The INST MTI trace source displays every instruction that is executed while running a program. When
timing annotation is enabled, it also displays the current simulation time after an instruction has
completed executing.

The number of ticks an instruction takes to execute is the difference between the times of two
consecutive instructions. The default is one tick (on the core) for each instruction. With the default clock
speed of 100MHz, this gives a default execution time for an instruction of 10000 picoseconds. Any
changes to latency due to branch mispredictions, memory accesses, or CPI specifications can be
observed by comparison with this value.

This tutorial uses the INST trace source to measure the time it takes to execute an instruction. To generate
trace, it uses the GenericTrace plug-in. This plug-in allows you to output any number of MTI trace
sources to a text file.

Use the following extra parameters when launching the model to collect the INST trace source:

--plugin=$PVLIB_HOME/plugins/Linux64_GCC-6.4/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=/path/to/trace/file.txt

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-197

Non-Confidential

If timing annotation is enabled, the trace that is produced for the first two instructions might look like
this:

INST: PC=0x0000000080000000 OPCODE=0x58001241 SIZE=0x04 MODE=EL3h ISET=AArch64
PADDR=0x0000000080000000 NSDESC=0x00 PADDR2=0x0000000080000000 NSDESC2=0x00 NS=0x00
ITSTATE=0x00 INST_COUNT=0x0000000000000001 LOCAL_TIME=0x0000000000001388
CURRENT_TIME=0x0000000000001388 CORE_NUM=0x00 DISASS="LDR x1,{pc}+0x248 ;
0x80000248"

INST: PC=0x0000000080000004 OPCODE=0xd518c001 SIZE=0x04 MODE=EL3h ISET=AArch64
PADDR=0x0000000080000004 NSDESC=0x00 PADDR2=0x0000000080000004 NSDESC2=0x00 NS=0x00
ITSTATE=0x00 INST_COUNT=0x0000000000000002 LOCAL_TIME=0x0000000000003a98
CURRENT_TIME=0x0000000000003a98 CORE_NUM=0x00 DISASS="MSR VBAR_EL1,x1"

The CURRENT_TIME value for the first instruction is 0x1388, or 5000ps. This value shows that the
instruction took 0.5 ticks to execute. Timing annotation has halved the execution time of this instruction.

The difference between the CURRENT_TIME values of the two instructions is 0x2710, or 10000
picoseconds. This value shows that the second instruction took one tick to execute.

Related concepts
8.1 Enabling and disabling timing annotation on page 8-185
Related references
MTI trace sources on page 8-206
Related information
GenericTrace

Displaying the total execution time of the simulation

You can use MTI trace to calculate the execution time of individual instructions, but to determine the
overall simulation time, use the command-line option --stat instead.

This option causes the model to print performance statistics to the terminal on exiting. The statistics
include Simulated time, which is the total simulation time in seconds. For example:

--- Base statistics: --
Simulated time : 0.001206s
User time : 0.276000s
System time : 0.136000s
Wall time : 0.700834s
Performance index : 0.00
Base.cluster0.cpu0 : 0.42 MIPS (172289 Inst)

 Note

The MIPS value is based on the host system time, not the simulated time.

This tutorial uses the --stat option to compare the model's performance in different timing annotation
configurations.

Calculating the average CPI value

Calculate the average CPI value for the simulation by using the instruction count and the simulated time
value, as displayed by the --stat option.

Use the following formula:

average_cpi = simulated_time_in_picoseconds / (10000 * instruction_count)

This example calculates an average CPI value of 0.69999:

average_cpi = (0.001206 * 10^12) / (10000 * 172289) = 0.69999

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-198

Non-Confidential

https://developer.arm.com/docs/100964/1110/plug-ins-for-fast-models/generictrace

8.7.2 Modeling Cycles Per Instruction (CPI)

This section demonstrates how to precisely model the simulated time per instruction by using the CPI
timing annotation feature.

CPI parameters

You can specify a single CPI value for all instructions that execute within a cluster. This value is referred
to as a fixed CPI value. Alternatively, use a custom CPI file to define individual CPI values for specific
instructions. Use a fixed CPI value instead of a CPI file when precise per-instruction modeling is not
required.

When running a simulation with either of these options, you can calculate the average CPI value using
the formula that is shown in Calculating the average CPI value on page 8-198.

 Note

You can combine the CPI specification with other timing annotation features. Therefore, the average CPI
value that you observe can be different from the fixed CPI value that you specify.

Specifying a fixed CPI value

Specify a fixed CPI value by using the per-cluster model parameters cpi_mul and cpi_div.

These parameters are documented in the Fast Models Reference Manual. By default, a fixed CPI value of
1.00 is used. The values that you specify in these parameters must be integers. Using them, any arbitrary
value can be generated and is applied to all instructions during execution within that cluster. The value is
used in a way that core_clock_period * fixed_cpi_value is rounded to the nearest picosecond.

Related concepts
Running the example with a fixed CPI value on page 8-203

Example CPI file

CPI files can be large because they have to cover multiple encodings for many of the instructions that are
included. Various predefined encodings are provided under $PVLIB_HOME/etc/CPIPredefines/ that can
help you to create CPI files. This tutorial does not use predefined encodings.

The following example defines CPI values for the instructions ADRP, ADR, ADD, CMP, ORR, LDP, STR,
branches, exception generating instructions, and system instructions. It defines a default CPI value of
0.75 for all other instructions. It applies to the A64 instruction set, and does not restrict the values to a
specific core.

 Note

These CPI values are for demonstration purposes only. They are arbitrary and are not representative of
any Arm processor.

Instruction classes

PC-relative addressing
DefineClass ADRP Mask=0x9F000000 Value=0x90000000 ISet=A64
DefineClass ADR Mask=0x9F000000 Value=0x10000000 ISet=A64
Arithmetic
DefineClass ADD_ext_reg Mask=0x7FE00000 Value=0x0B200000 ISet=A64
DefineClass ADD_sft_reg Mask=0x7F200000 Value=0x0B000000 ISet=A64
DefineClass ADD_imm Mask=0x7F000000 Value=0x11000000 ISet=A64
DefineClass CMP_ext_reg Mask=0x7FE0001F Value=0x6B20001F ISet=A64
DefineClass CMP_sft_reg Mask=0x7F20001F Value=0x6B00001F ISet=A64
DefineClass CMP_imm Mask=0x7F00001F Value=0x7100001F ISet=A64
Logical
DefineClass ORR_sft_reg Mask=0x7F200000 Value=0x2A000000 ISet=A64
DefineClass ORR_imm Mask=0x7F800000 Value=0x32000000 ISet=A64
Branches, exception generating and system instructions
DefineClass B_gen_except_sys Mask=0x1C000000 Value=0x14000000 ISet=A64
Load register pair

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-199

Non-Confidential

https://developer.arm.com/docs/100964/1110

DefineClass LDP_post_idx Mask=0x7FC00000 Value=0x28C00000 ISet=A64
DefineClass LDP_pre_idx Mask=0x7FC00000 Value=0x29C00000 ISet=A64
DefineClass LDP_sgn_off Mask=0x7FC00000 Value=0x29400000 ISet=A64
Store register
DefineClass STR_reg Mask=0xBFE00C00 Value=0xB8200000 ISet=A64
DefineClass STR_imm_post_idx Mask=0xBFE00C00 Value=0xB8000400 ISet=A64
DefineClass STR_imm_pre_idx Mask=0xBFE00C00 Value=0xB8000C00 ISet=A64
DefineClass STR_imm_usg_off Mask=0xBFC00000 Value=0xB9000000 ISet=A64

Instruction groups

DefineGroup PC_rel_addr_instr Classes=ADRP,ADR ISet=A64
DefineGroup ADD_instr Classes=ADD_ext_reg,ADD_sft_reg,ADD_imm ISet=A64
DefineGroup CMP_instr Classes=CMP_ext_reg,CMP_sft_reg,CMP_imm ISet=A64
DefineGroup ORR_instr Classes=ORR_sft_reg,ORR_imm ISet=A64
DefineGroup B_gen_except_sys_instr Classes=B_gen_except_sys ISet=A64
DefineGroup LDP_instr Classes=LDP_post_idx,LDP_pre_idx,LDP_sgn_off ISet=A64
DefineGroup STR_instr Classes=STR_reg,STR_imm_post_idx,STR_imm_pre_idx,STR_imm_usg_off ISet=A64

CPI values

DefineCpi PC_rel_addr_instr ISet=A64 Cpi=0.25
DefineCpi ADD_instr ISet=A64 Cpi=0.50
DefineCpi CMP_instr ISet=A64 Cpi=0.75
DefineCpi ORR_instr ISet=A64 Cpi=0.50
DefineCpi B_gen_except_sys_instr ISet=A64 Cpi=1.00
DefineCpi LDP_instr ISet=A64 Cpi=2.00
DefineCpi STR_instr ISet=A64 Cpi=1.00

Defaults

Defaults ISet=* Cpi=0.75

Related references
8.3 CPI file syntax on page 8-187

Defining CPI values in a CPI file

To define CPI values in a CPI file, use the following procedure for each instruction or set of instructions:

Procedure
1. Create an instruction class for each encoding of an instruction or set of instructions by using the

DefineClass keyword.
2. Group instruction classes by using the DefineGroup keyword.
3. Set a CPI value for each instruction class or group of classes by using the DefineCpi keyword.

The encodings for each instruction in the A64 instruction set are provided by the Armv8‑A Architecture
Reference Manual, section C6.2. Also, groups of instructions that share encodings are described in
chapter C4. You can use these encodings to define the Mask and Value fields in the CPI file.

The Mask field must cover all bits that are fixed in the encoding of an instruction. The Value field must
specify the value of these bits. For example, section C4.2.6 of the Armv8‑A Architecture Reference
Manual defines a set of instructions called PC-rel. addressing. In the example CPI file, the following
statements specify a common CPI value for these instructions:

DefineClass ADRP Mask=0x9F000000 Value=0x90000000 ISet=A64
DefineClass ADR Mask=0x9F000000 Value=0x10000000 ISet=A64
DefineGroup PC_rel_addr_instr Classes=ADRP,ADR ISet=A64
DefineCpi PC_rel_addr_instr ISet=A64 Cpi=0.25

For both instruction classes, the Mask value has bit[31] set to 0b1 and bits [28:24] set to 0b11111. As
shown in the reference manual, a value of 0b10000 for bits [28:24] identifies the instruction as being ADR
or ADRP. Therefore, both Value fields set bits [28:24] to 0b10000. Bit[31] distinguishes between ADR and
ADRP, so bit[31] in the Value field for ADR is set to 0b0 and to 0b1 for ADRP.

This specification allows the model to specify a CPI value of 0.25 for the PC_rel_addr_instr group of
instructions. A similar process has been followed to determine the Mask and Value fields for the other
instructions in the CPI file example.

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-200

Non-Confidential

Related references
8.3 CPI file syntax on page 8-187
Related information
Arm Architecture Reference Manual

Validating a CPI file

To validate CPI files, use the CPIValidator tool. You can find this tool in a Fast Models Tools
installation under $MAXCORE_HOME/bin/. The tool can detect missing or incompatible instruction groups
and classes, but cannot validate the encodings themselves.

For example, if you remove the DefineClass statement for the B_gen_except_sys instruction class, and
validate the example CPI file by using the following command:

CPIValidator --input-file /path/to/custom_cpi.txt --output-file cpi_evaluation.txt

the tool produces the following output:

ERROR: Instruction Class 'B_gen_except_sys' has no definition, when Instruction Set is 'A64'
and the CPU Type is 'Default ARM Core'.
ERROR: Processing error in file /path/to/custom_cpi.txt

Using the tool with the complete CPI file produces the following output:

Core Performance Profile: Default ARM Core
--
Instruction Set: A32 Default Cpi:0.75
Instruction Set: A64 Default Cpi:0.75
 (0x1c000000|0x14000000) Cpi:1 Name:B_gen_except_sys
 (0x7f000000|0x11000000) Cpi:0.5 Name:ADD_imm
 (0x7f00001f|0x7100001f) Cpi:0.75 Name:CMP_imm
 (0x7f200000|0x0b000000) Cpi:0.5 Name:ADD_sft_reg
 (0x7f200000|0x2a000000) Cpi:0.5 Name:ORR_sft_reg
 (0x7f20001f|0x6b00001f) Cpi:0.75 Name:CMP_sft_reg
 (0x7f800000|0x32000000) Cpi:0.5 Name:ORR_imm
 (0x7fc00000|0x28c00000) Cpi:2 Name:LDP_post_idx
 (0x7fc00000|0x29400000) Cpi:2 Name:LDP_sgn_off
 (0x7fc00000|0x29c00000) Cpi:2 Name:LDP_pre_idx
 (0x7fe00000|0x0b200000) Cpi:0.5 Name:ADD_ext_reg
 (0x7fe0001f|0x6b20001f) Cpi:0.75 Name:CMP_ext_reg
 (0x9f000000|0x10000000) Cpi:0.25 Name:ADR
 (0x9f000000|0x90000000) Cpi:0.25 Name:ADRP
 (0xbfc00000|0xb9000000) Cpi:1 Name:STR_imm_usg_off
 (0xbfe00c00|0xb8000400) Cpi:1 Name:STR_imm_post_idx
 (0xbfe00c00|0xb8000c00) Cpi:1 Name:STR_imm_pre_idx
 (0xbfe00c00|0xb8200000) Cpi:1 Name:STR_reg
Instruction Set: Thumb Default Cpi:0.75
Instruction Set: T2EE Default Cpi:0.75

CPI class example program

This example program is designed to show the effect of the CPI values specified in the example CPI file.

The example consists of two source files, main.c and asm_func.s.

main.c contains the following code:

#include <stdio.h>
#include <string.h>

extern void asm_cpi(volatile int *value0, volatile int *value2);

volatile int values[2] = {1, 2};

int main(void) {
 asm_cpi(&values[0], &values[1]);
 return 0;
}

asm_func.s defines an embedded assembly language function asm_cpi() which uses instructions with
defined CPI values:

 .section asm_func, "ax"
 .global asm_cpi

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-201

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

 .type asm_cpi, "function"
asm_cpi:
 ldp w1, w2, [x0]
 cmp w1, w2
 b.gt skip
 orr w1, w1, w2
 str w1, [x0]
skip:
 ret

This sequence of instructions checks if the second value in a two-element array pointed to by the address
in x0 is greater than the first value. If so, it performs a bitwise OR operation using the two values, storing
the result as the new first value. The rest of this section examines this sequence by running this code on a
platform model with the following CPI configurations:
• Using the default CPI value.
• Using the custom CPI file that was described earlier in the tutorial.
• Using a fixed CPI value.

The name of the executable used in these examples is ta_cpi.axf and the platform is
EVS_Base_Cortex-A73x1.x.

Running the example with the default CPI value

If you do not specify any CPI parameters, a default CPI value of 1.00 is used. This value establishes a
baseline to compare with the other CPI configurations.

To use the default CPI value of 1.00, launch the model using the following command:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-A73x1.x \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-6.4/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_cpi.axf \
--stat

In the trace file that the GenericTrace plug-in produces, find the instruction at address 0x800005a4. The
trace for this instruction and the one before it is as follows:

INST: PC=0x00000000800005a0 OPCODE=0x910003fd SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x00000000800005a0 NSDESC=0x01 PADDR2=0x00000000800005a0 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000000b7bc LOCAL_TIME=0x0000000000007530
CURRENT_TIME=0x000000001c091fc0 CORE_NUM=0x00 DISASS="MOV x29,sp"

INST: PC=0x00000000800005a4 OPCODE=0x90000020 SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x00000000800005a4 NSDESC=0x01 PADDR2=0x00000000800005a4 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000000b7bd LOCAL_TIME=0x0000000000009c40
CURRENT_TIME=0x000000001c0946d0 CORE_NUM=0x00 DISASS="ADRP x0,{pc}+0x4000 ; 0x800045a4"

Using the CURRENT_TIME values, it can be observed that the instruction took 10000ps or 1 tick to
complete, which shows the default CPI value of 1.00 is being used. You can verify that all other
instructions are also using the default CPI value by examining the trace.

Running the example with a custom CPI file

To use the custom CPI file, launch the model using the following command:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-A73x1.x \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-6.4/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_cpi.axf \
--cpi-file $PVLIB_HOME/images/source/ta_cpi/custom_cpi.txt \
--stat

Using the trace output that the GenericTrace plug-in produces for the 10 instructions starting at address
0x800005a4, and the --stat output, the following information can be obtained for the embedded
assembly code sequence in the example program:

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-202

Non-Confidential

Table 8-2 CPI values for embedded assembly instructions

Address Instruction Simulated time (ps) CPI value observed

0x800005a4 ADRP x0,{pc}+0x4000 2500 0.25

0x800005a8 ADD x0,x0,#0x9f0 5000 0.50

0x800005ac ADD x1,x0,#4 5000 0.50

0x800005b0 BL {pc}+0x4294 10000 1.00

0x80004844 LDP w1,w2,[x0,#0] 20000 2.00

0x80004848 CMP w1,w2 7500 0.75

0x8000484c B.GT {pc}+0xc 10000 1.00

0x80004850 ORR w1,w1,w2 5000 0.50

0x80004854 STR w1,[x0,#0] 10000 1.00

0x80004858 RET 10000 1.00

This table shows that the CPI values that are defined in the example CPI file have been applied to the
appropriate instructions.

The following information can be obtained for the simulation as a whole:

Table 8-3 Statistics for the whole simulation

Total number of instructions Overall simulated time in seconds Average CPI value

47701 0.000362 0.75889

 Note

The average CPI value being close to the default CPI value specified in the CPI file does not signify
anything by itself. To draw any conclusions from it, further analysis on the distribution of instructions
would be required.

Running the example with a fixed CPI value

The average CPI value that was observed when running the example program with the custom CPI file is
approximately 0.75889. Fractionally, the exact value is 36200/47701.

This fraction can be applied to the simulation by using the cpi_mul and cpi_div model parameters as
follows:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-A73x1.x \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-6.4/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-C Base.cluster0.cpi_mul=36200 \
-C Base.cluster0.cpi_div=47701 \
-a $PVLIB_HOME/images/ta_cpi.axf \
--stat

For each instruction, a simulated time of 7589ps or 0.7589 ticks can be observed using the
GenericTrace plugin. The --stat output is as follows and shows the same simulated time value as that
obtained using the custom CPI file:

--- Base statistics: --
Simulated time : 0.000362s
User time : 0.171601s
System time : 0.015601s
Wall time : 0.196000s

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-203

Non-Confidential

Performance index : 0.00
Base.cluster0.cpu0 : 0.25 MIPS (47701 Inst)

In this case, because the same application was run with the custom CPI file and with the average CPI
value, an approximation of the average CPI value shows the same overall simulated time. However, the
average CPI value for one application is not necessarily an accurate approximation of the average CPI
value for a different application.

For example, running the branch prediction example application, described in the next section, clearly
shows this difference. Specifying a branch misprediction latency increases the overall simulated time,
and therefore gives a different average CPI value to the fixed CPI value that was specified. Using the
custom CPI file produces a more accurate average CPI value for the branch prediction example.

Table 8-4 CPI values for simulation with branch prediction latency

Branch prediction example CPI configuration Overall simulated time in
seconds

Average CPI value

Using the average CPI value that was observed in the CPI class example
program.

0.001726 1.00754

Using the custom CPI file. 0.001945 1.13538

Related concepts
Branch prediction example program on page 8-207

8.7.3 Modeling branch prediction

This section demonstrates various techniques for measuring the effectiveness of different branch
prediction algorithms.

Branch predictor types and parameters

The BranchPrediction plug-in allows you to select the branch prediction algorithm to use, the type of
statistics to collect, and the misprediction latency.

The plug-in parameters that are used in this tutorial are as follows:

Table 8-5 BranchPrediction plug-in parameters

Plug-in parameter Purpose in this example Values that are used in this example

predictor-type Comparing the impact of different branch
prediction algorithms.

• FixedDirectionPredictor
• BiModalPredictor
• GSharePredictor
• CortexA53Predictor

mispredict-latency Simulating the additional latency due to a
pipeline flush that is caused by a branch
misprediction.

11. This value is the minimum pipeline flush length for a
Cortex‑A73 processor.

bpstat-
pathfilename

Providing statistics about the branch prediction
behavior, to determine per-branch and overall
predictor accuracy.

stats.txt

The different predictor types that are used in this example behave as follows:

FixedDirectionPredictor

Always predicts branches as TAKEN.

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-204

Non-Confidential

BiModalPredictor

Uses a 2-bit state machine to classify branches as one of STRONGLY_NOT_TAKEN,
WEAKLY_NOT_TAKEN, WEAKLY_TAKEN, or STRONGLY_TAKEN, and predicts accordingly. Tracks up to
512 individual branch instructions by address.

GSharePredictor

Uses the history of the eight most recently executed branch instructions to classify a set of
branch instructions, based on the instruction address, as one of STRONGLY_NOT_TAKEN,
WEAKLY_NOT_TAKEN, WEAKLY_TAKEN, or STRONGLY_TAKEN, and predicts accordingly. Unlike the
BiModalPredictor, it is not limited to a specific number of branch instruction addresses, but it
is less precise than BiModalPredictor.

CortexA53Predictor

Implements the Cortex‑A53 branch prediction algorithm.

To help you understand the algorithms in more detail, the source code for these branch predictors, except
CortexA53Predictor, is provided under $PVLIB_HOME/plugins/source/BranchPrediction/.

Related information
BranchPrediction

Generating branch misprediction statistics

There are two ways to trace branch mispredictions when running an application:

• Use the statistics that are produced by the BranchPrediction plug-in to get an overall picture,
without context about the execution order.

• Load the BranchPrediction plug-in and use the MTI trace sources INST, BRANCH_MISPREDICT, and
WAYPOINT to see branch misprediction details for individual instructions in execution order.

BranchPrediction plug-in statistics

The statistics feature of the BranchPrediction plug-in provides overall and per-branch statistics, which
are saved to a file when the model exits. You can specify the filename and location using the
bpstat-pathfilename parameter.

The overall branch prediction statistics are described in the following table:

Table 8-6 Overall statistics

Statistic Description Example

Processor Core Name of the core to which the branch prediction plug-in was
connected.

ARM_Cortex-A73

Cluster instance The cluster number in the processor. 0

Core instance The core number in the cluster. 0

Mispredict Latency The branch misprediction latency as specified using the
mispredict-latency parameter.

11

Image executed The name of the application file that was executed. ta_brpred.axf

PredictorType The branch prediction algorithm as specified using the
predictor-type parameter.

FixedDirectionPredictor

Total branch calls The total number of times all branch instructions were executed. 37434

Total Mispredictions The total number of mispredictions for all executed branch
instructions.

5106

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-205

Non-Confidential

https://developer.arm.com/docs/100964/1110/plug-ins-for-fast-models/branchprediction

Table 8-6 Overall statistics (continued)

Statistic Description Example

Average prediction
accuracy

The fraction of all branch instructions that were correctly
predicted.

0.8636

Conditional Branches The total number of unique conditional branch instructions. This
figure does not include the instructions CBZ and CBNZ.

123

Total unique branch
instructions

The total number of unique conditional and unconditional branch
instructions.

300

The following table shows the BranchPrediction plug-in statistics for each unique branch instruction.
They can be used to analyze how a given branch prediction algorithm behaves with a particular type of
branch instruction. The branch prediction example program uses this information to determine how
effectively the different branch prediction algorithms predict different types of branches.

Table 8-7 Per-branch statistics

Statistic Description Example

PC Addr The address of the branch instruction. 0x8000062c

Calls The total number of times the branch was called. 2100

Mispredict The total number of times the branch was mispredicted. 260

Accuracy The fraction of calls to the branch instruction that were correctly predicted. 0.87619

Related concepts
Branch prediction example program on page 8-207
Related references
Branch predictor types and parameters on page 8-204

MTI trace sources

INST, BRANCH_MISPREDICT, and WAYPOINT are trace sources that can be used in combination to get useful
information about branch mispredictions.

Whenever the BranchPrediction plug-in makes a branch misprediction, the BRANCH_MISPREDICT trace
source prints the address of the branch instruction that was mispredicted. This address can be compared
with the address from the corresponding INST trace event to determine the exact branch instruction
involved. The number of BRANCH_MISPREDICT entries for a given branch address at the end of the
simulation matches the Mispredict count for that address that is shown in the BranchPrediction plug-
in statistics file.

The WAYPOINT trace source prints an event whenever an effective branch operation takes place. This
event includes the address of the branch instruction, the target address of the branch, whether the branch
is conditional, and whether it was taken. This trace source requires instruction prefetching to be enabled.
Combined with a BRANCH_MISPREDICT trace event, it can be used to determine whether a branch was
mispredicted as TAKEN or NOT_TAKEN.

To collect trace from these sources, run the model with the GenericTrace and BranchPrediction plug-
ins. For example:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-A73x1.x \
-C Base.bp.secure_memory=0 \
-C Base.cache_state_modelled=1 \
-C Base.cluster0.icache-prefetch_enabled=1 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-6.4/BranchPrediction.so \
-C BranchPrediction.BranchPrediction.predictor-type=FixedDirectionPredictor \
-C BranchPrediction.BranchPrediction.mispredict-latency=11 \
-C BranchPrediction.BranchPrediction.bpstat-pathfilename=stats.txt \

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-206

Non-Confidential

--plugin=$PVLIB_HOME/plugins/Linux64_GCC-6.4/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST,BRANCH_MISPREDICT,WAYPOINT \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_brpred.axf \
--stat

Related concepts
Calculating the execution time of an instruction on page 8-197

Example trace for a branch misprediction

The following example trace is for a branch misprediction with a misprediction latency of 11 ticks:

INST: PC=0x0000000080000628 OPCODE=0x7100655f SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x0000000080000628 NSDESC=0x01 PADDR2=0x0000000080000628 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080b LOCAL_TIME=0x000000000003f7a0
CURRENT_TIME=0x000000002eab53a0 CORE_NUM=0x00 DISASS="CMP w10,#0x19"

INST: PC=0x000000008000062c OPCODE=0x54000168 SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x000000008000062c NSDESC=0x01 PADDR2=0x000000008000062c NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080c LOCAL_TIME=0x0000000000041eb0
CURRENT_TIME=0x000000002eab7ab0 CORE_NUM=0x00 DISASS="B.HI {pc}+0x2c ; 0x80000658"

WAYPOINT: PC=0x000000008000062c ISET=AArch64 TARGET=0x0000000080000658
TARGET_ISET=AArch64 TAKEN=N IS_COND=Y CORE_NUM=0x00

BRANCH_MISPREDICT: PC=0x000000008000062c

INST: PC=0x0000000080000630 OPCODE=0x7100151f SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x0000000080000630 NSDESC=0x01 PADDR2=0x0000000080000630 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080d LOCAL_TIME=0x000000000005f370
CURRENT_TIME=0x000000002ead4f70 CORE_NUM=0x00 DISASS="CMP w8,#5"

The following information can be gathered from this trace:
• The branch instruction at address 0x8000062c was mispredicted, as shown by the

BRANCH_MISPREDICT trace event.
• The branch was conditional, and was incorrectly predicted as TAKEN, as shown by the TAKEN=N field

in the WAYPOINT trace event. The PC field value from this source must correspond to the PC field value
from the BRANCH_MISPREDICT source.

• As a result of the misprediction, the instruction following the branch instruction took 120,000
picoseconds, or 12 ticks to complete. The misprediction latency was defined as 11 ticks, so the
instruction would have taken only 1 tick to complete if the branch had been predicted correctly. The
execution time is the difference between:
— The CURRENT_TIME value for the INST trace before the BRANCH_MISPREDICT trace.
— The CURRENT_TIME value for the INST trace after the BRANCH_MISPREDICT trace.

The branch instruction itself took 10,000 picoseconds, or one tick to complete. This is important, as it
shows that the misprediction latency is added to the instruction after the mispredicted branch
instruction, not to the branch instruction itself. The execution time is the difference between the
CURRENT_TIME values for the INST traces corresponding to the branch instruction and the instruction
before.

The rest of this tutorial uses these techniques to compare the different branch prediction algorithms.

Branch prediction example program

This example is designed to use various types of branch operations that can take place during the
execution of a program.

These operations are:
• A branch to skip a loop after a fixed number of iterations has completed.
• A branch to skip a code sequence, depending on the value of a variable.
• A branch to skip a code sequence, which can only be executed a limited number of times

consecutively, if a previous branch was taken.
• A branch for a condition that is always true if the conditions for two previous branches were true.
• A branch for a condition that is always true if the conditions for two previous branches were false.

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-207

Non-Confidential

The code operation is trivial. It looks for acronyms within the following constant string, and loops over
this operation a set number of times:

Timing annotation can be used with an SVP, Split Virtual Platform, or an EVS, Exported
Virtual Subsystem.

The following code shows the branch operations of interest:

#define MAX_LENGTH 5
#define LOOP_COUNT 20
…
// A: loop not entered 1/LOOP_COUNT times
for(j = 0; j < LOOP_COUNT; j++) {
 printf("Starting iteration #%d\n", j);
 blockCount = 0;
 c = 0;
 resetOnly(&acronymLength, acronym);
 // B: loop not entered 1/length times
 for(i = 0; i < length; i++) {
 c = string[i];
 // C: condition true
 // (number_of_block_letters)/(total_characters_in_string) times
 if (c >= 'A' && c <= 'Z') {
 blockCount++;
 // D: condition true up to MAX_LENGTH times consecutively
 if (acronymLength < MAX_LENGTH) {
 acronym[acronymLength] = c;
 }
 // E: condition true up to MAX_LENGTH+1 times consecutively
 if (acronymLength <= MAX_LENGTH) {
 acronymLength++;
 }
 }
 else {
 // F: condition true if E was true then C was false
 if (acronymLength > 1 && acronymLength <= MAX_LENGTH) {
 printAndReset(&acronymLength, acronym);
 }
 // G: condition true if E was false then C was false
 else if (acronymLength != 0) {
 resetOnly(&acronymLength, acronym);
 }
 }
 }
}

The branch instructions that are assembled for the conditions A to G in this code snippet can be
examined using branch prediction statistics and trace sources.

The conditions are described in the following table. The branch behavior column describes the
relationship between the condition and the associated branch instruction.

Table 8-8 Branch behavior for each condition

Condition Description Compiled instruction Branch behavior

A Outer loop for processing string
LOOP_COUNT times. Loop not
entered 1/LOOP_COUNT times.

B.NE 0x800005f4 at address
0x80000698.

Backwards branch. Taken to start of loop if more
iterations remain.

B Inner loop for iterating through
characters in the string.

B.NE 0x80000618 at address
0x8000068c.

Backwards branch. Taken to start of loop if more
iterations remain.

C Condition true if the character being
processed is upper case.

B.HI 0x80000658 at address
0x8000062c.

Forwards branch. Taken if the condition is false.
Skips code that handles upper case characters.

D Condition true up to MAX_LENGTH
times consecutively.

B.GE 0x80000644 at address
0x80000634.

Forwards branch. Taken if the condition is false.
Skips code that appends a letter to an acronym.

E Condition true up to MAX_LENGTH
+1 times consecutively.

B.GT 0x80000684 at address
0x80000648.

Forwards branch. Taken if the condition is false.
Skips code that increments the acronym length.

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-208

Non-Confidential

Table 8-8 Branch behavior for each condition (continued)

Condition Description Compiled instruction Branch behavior

F Condition true if E was true, after
which C was false.

B.HI 0x80000674 at address
0x80000660.

Forwards branch. Never taken if the condition
was true, that is, branch E was not taken and
then branch C was taken. Skips the code to print
a completed acronym.

G Condition true if E was false, after
which C was false.

CBZ w8,0x80000684 at
address 0x80000674.

Forwards branch. Never taken if the condition
was true, that is, branch E was taken then branch
C was taken. Skips the code to clear the saved
acronym.

Running the simulation

To generate trace and statistics for comparing the performance of the different branch predictors, run the
simulation with the BranchPrediction plug-in parameters shown here.

For example, to use the FixedDirectionPredictor, launch the model using the following command,
where ta_brpred.axf is the name of the executable and EVS_Base_Cortex-A73x1.x is the platform:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-A73x1.x \
-C Base.bp.secure_memory=0 \
-C Base.cache_state_modelled=1 \
-C Base.cluster0.icache-prefetch_enabled=1 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-6.4/BranchPrediction.so \
-C BranchPrediction.BranchPrediction.predictor-type=FixedDirectionPredictor \
-C BranchPrediction.BranchPrediction.mispredict-latency=11 \
-C BranchPrediction.BranchPrediction.bpstat-pathfilename=stats.txt \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-6.4/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST,BRANCH_MISPREDICT,WAYPOINT \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_brpred.axf \
--stat

The program prints the following output to the terminal:

Looking for acronyms of maximum length 5 in the string:
Timing annotation can be used with an SVP, Split Virtual Platform, or an EVS, Exported
Virtual Subsystem.

Starting iteration #0
SVP
EVS
…
Starting iteration #19
SVP
EVS

Info: /OSCI/SystemC: Simulation stopped by user.

--- Base statistics: --
Simulated time : 0.002275s
User time : 0.343203s
System time : 0.202801s
Wall time : 0.642064s
Performance index : 0.00
Base.cluster0.cpu0 : 0.31 MIPS (171308 Inst)

You can now analyze the end of simulation statistics, the branch prediction statistics file stats.txt, and
the MTI trace file trace.txt, that are generated for each branch predictor type.

Related references
Branch predictor types and parameters on page 8-204

Comparison of branch predictor types

Statistics about the accuracy of the different branch predictors for the various types of branch instructions
can now be compared.

These statistics are shown in the following table:

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-209

Non-Confidential

Table 8-9 Comparison of branch predictor accuracy

Branch instruction

Branch predictor Statistic A B C D E F G

All Calls 20 2100 2100 260 260 1840 1800

TAKEN 19 2080 1840 0 0 1800 1800

NOT_TAKEN 1 20 260 260 260 40 0

FixedDirectionPredictor Mispredictions 1 20 260 260 260 40 0

Mispredicted as TAKEN 1 20 280 260 260 40 0

Mispredicted as NOT_TAKEN 0 0 0 0 0 0 0

Accuracy (%) 95 99 88 0 0 98 100

BiModalPredictor Mispredictions 1 20 341 1 1 40 0

Mispredicted as TAKEN 1 20 220 1 1 40 0

Mispredicted as NOT_TAKEN 0 0 121 0 0 0 0

Accuracy (%) 95 99 84 100 100 98 100

GSharePredictor Mispredictions 1 20 279 241 241 40 0

Mispredicted as TAKEN 1 20 260 241 241 40 0

Mispredicted as NOT_TAKEN 0 0 19 0 0 0 0

Accuracy (%) 95 99 87 7 7 98 100

CortexA53Predictor Mispredictions 1 23 324 2 1 49 0

Mispredicted as TAKEN 1 20 221 2 1 40 0

Mispredicted as NOT_TAKEN 0 3 103 0 0 9 0

Accuracy (%) 95 99 85 99 100 97 100

The accuracy figures have been rounded to the nearest percentage. For each branch instruction type, A to
G, the entry for the best accuracy is shown in gray. As expected, different branch prediction algorithms
are better suited to different types of branch instructions.

With the FixedDirectionPredictor, all branches are predicted as TAKEN, so the accuracy is equal to the
percentage of calls to that branch that were TAKEN.

With the BiModalPredictor and GSharePredictor algorithms, only the random branch C was
mispredicted both as TAKEN and NOT_TAKEN. With the other systematic branches, the misprediction was
always in one direction. The result is different for the more complex algorithm of the
CortexA53Predictor, which has mispredictions in both directions for systematic branches as well.

The BiModalPredictor is able to store the history of individual branches, and is therefore most accurate
with predicting branches with a deterministic ratio between the number of times they are TAKEN and
NOT_TAKEN. This accuracy can be seen with branches A, B, D, and E. With a more random branch, such
as C, which depends entirely on the contents of a user-defined string, relying on the history of the branch
proves ineffective.

Interestingly, the GSharePredictor appears to be highly inaccurate at predicting branches D and E.
These branches are NOT_TAKEN a fixed number of times consecutively. However, since there are calls to
many other branches between consecutive calls to these branches, the GSharePredictor’s global history
is not able to use the specific outcome of these branches to update their prediction values effectively.

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-210

Non-Confidential

Overall, the BiModalPredictor and the CortexA53Predictor have predicted these branch instructions
most accurately, as shown in the following table:

Table 8-10 Overall branch predictor accuracy

Predictor type Overall accuracy (%)

FixedDirectionPredictor 86

BiModalPredictor 98

GSharePredictor 86

CortexA53Predictor 98

Impact of branch misprediction on simulation time

You can directly observe the impact of mispredictions on the overall simulation time, as shown in the
--stat output after the model exits.

The simulated execution times with the different branch predictors are shown in the following table.
 Note

The execution times also include the impact of branch mispredictions that occur in other parts of the
code, as well as in the startup and shutdown sequences.

Table 8-11 Overall simulation time for each predictor type

Predictor type Simulation time with mispredict-
latency=11

Simulation time with mispredict-
latency=0

FixedDirectionPredictor 0.002275s 0.001713s

BiModalPredictor 0.001805s 0.001713s

GSharePredictor 0.002289s 0.001713s

CortexA53Predictor 0.001806s 0.001713s

8 Timing Annotation
8.7 Timing annotation tutorial

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

8-211

Non-Confidential

Appendix A
SystemC Export generated ports

This appendix describes Fast Models SystemC Export generated ports.

It contains the following section:
• A.1 About SystemC Export generated ports on page Appx-A-213.

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-212

Non-Confidential

A.1 About SystemC Export generated ports
The generated SystemC component must have SystemC ports to communicate with the SystemC world.
The SystemC Export feature automatically generates these ports from the Fast Models ports of the top-
level component.

 Caution

Although it is possible to export your own protocols, Arm strongly recommends using the AMBA-PV
protocols provided and bridge from these in SystemC, if needed.

The SystemC export feature automatically generates port wrappers that bind the SystemC domain to the
Fast Models virtual platform.

System Generator Virtual Platform SystemC Environment

Top-level system
DMA

(SystemC
master)

MEM
(SystemC

slave)

MEM

CPU

External
slave port

External
master port

Port
wrapper

Port
wrapper

Figure A-1 Port wrappers connect Fast Models and SystemC components

Each master port in the Fast Models top level component results in a master port on the SystemC side.
Each slave port in the Fast Models top level component results in a slave port (export) on the SystemC
side.

For Fast Models to instantiate and use the ports, it requires protocol definitions that:
• Correspond to the equivalent SystemC port classes.
• Refer to the name of these SystemC port classes.

This effectively describes the mapping from Fast Models port types (protocols) to SystemC port types
(port classes).

Related information
Fast Models Reference Manual

A SystemC Export generated ports
A.1 About SystemC Export generated ports

100965_1110_00_en Copyright © 2014–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-213

Non-Confidential

https://developer.arm.com/docs/100964/1110

	Fast Models User Guide
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction to Fast Models
	1.1 : What is Fast Models?
	1.2 : What does Fast Models consist of?
	1.2.1 : Fast Models tools
	1.2.2 : Fast Models portfolio
	1.2.3 : Other Fast Models products

	1.3 : Fast Models glossary
	1.4 : Fast Models design
	1.4.1 : Fast Models design flow
	1.4.2 : Project files
	1.4.3 : Repository files
	1.4.4 : File processing order
	1.4.5 : Hierarchical systems

	1.5 : Data collection in Fast Models

	2 : Installing Fast Models
	2.1 : Requirements for Fast Models
	2.2 : Installing Fast Models
	2.3 : Dependencies for Red Hat Enterprise Linux
	2.3.1 : About Red Hat Enterprise Linux dependencies
	2.3.2 : Dependencies for Red Hat Enterprise Linux 6

	3 : Building Fast Models
	3.1 : System Generator (SimGen)
	3.2 : SimGen command-line options
	3.3 : Select the build target
	3.4 : Building an EVS platform
	3.5 : Steps for building an EVS platform
	3.5.1 : Export the Fast Model as an EVS library
	3.5.2 : Define an sc_main() function to initialize and configure the simulation
	3.5.3 : Specify the header files and libraries for the build

	3.6 : Bridge between LISA+ and SystemC
	3.7 : Libraries required to run the EVS platform
	3.8 : Building an SVP
	3.9 : Building an ISIM

	4 : System Canvas Tutorial
	4.1 : About this tutorial
	4.2 : Starting System Canvas
	4.3 : Creating a new project
	4.4 : Add and configure components
	4.4.1 : Adding the Arm® processor
	4.4.2 : Naming components
	4.4.3 : Resizing components
	4.4.4 : Hiding ports
	4.4.5 : Moving ports
	4.4.6 : Adding components
	4.4.7 : Using port arrays

	4.5 : Connecting components
	4.6 : View project properties and settings
	4.6.1 : Viewing the project settings
	4.6.2 : Specifying the Active Project Configuration
	4.6.3 : Selecting the top component

	4.7 : Changing the address mapping
	4.8 : Building the system
	4.9 : Debugging with Model Debugger
	4.10 : Building SystemC ISIM targets

	5 : System Canvas Reference
	5.1 : Launching System Canvas
	5.2 : System Canvas GUI
	5.2.1 : Application window
	5.2.2 : Menu bar
	File menu
	Edit menu
	Search menu
	View menu
	Object menu
	Project menu
	Help menu

	5.2.3 : Toolbar
	5.2.4 : Workspace window
	Source view
	Source view context menu
	Block Diagram view
	Block Diagram view context menu

	5.2.5 : Component window
	Component window views
	Component window context menu

	5.2.6 : Output window

	5.3 : System Canvas dialogs
	5.3.1 : Add Existing Files and Add New File dialogs (Component window)
	Displaying the Add Existing Files and Add New File dialogs (Component window)
	Using the Add Existing Files and Add New File dialogs (Component window)
	Using environment variables in filepaths
	Assigning platforms and compilers for libraries

	5.3.2 : Add Files dialog (Project menu)
	5.3.3 : Add Connection dialog
	5.3.4 : Component Instance Properties dialog
	5.3.5 : Component Model Properties dialog for the system
	5.3.6 : Component Properties dialog for a library component
	5.3.7 : Connection Properties dialog
	5.3.8 : Edit Connection dialog
	5.3.9 : File/Path Properties dialog
	5.3.10 : Find and Replace dialogs
	5.3.11 : Label Properties dialog
	5.3.12 : New File dialog (File menu)
	5.3.13 : New project dialogs
	New Project dialog
	Select Top Component LISA File dialog

	5.3.14 : Open File dialog
	5.3.15 : Port Properties dialog
	5.3.16 : Preferences dialog
	Preferences - Appearance group
	Preferences - Applications group
	Preferences - External Tools group
	Preferences - Fonts group
	Preferences - Default Model Repository group
	Preferences - Suppressed messages group

	5.3.17 : Project Settings dialog
	Project top-level settings
	Parameter category panel
	Parameters - Category View
	Parameters - List View
	Parameters - Tree View
	Parameters - setting the release options
	Parameters - overloading the main() function in the target

	Project parameter IDs
	Project file contents
	Directories in path statements
	Example project file

	5.3.18 : Protocol Properties dialog
	5.3.19 : Run dialog
	5.3.20 : Self Port dialog

	6 : SystemC Export with Multiple Instantiation
	6.1 : About SystemC Export with Multiple Instantiation
	6.2 : Auto-bridging
	6.3 : SystemC Export generated ports
	6.3.1 : Protocol definition
	6.3.2 : TLM 1.0 protocol for an exported SystemC component
	6.3.3 : TLM 2.0 bus protocol for an exported SystemC component
	6.3.4 : Properties for TLM 1.0 based protocols
	6.3.5 : Properties for TLM 2.0 based protocols

	6.4 : SystemC Export API
	6.4.1 : SystemC Export header file
	6.4.2 : scx::scx_initialize
	6.4.3 : scx::scx_load_application
	6.4.4 : scx::scx_load_application_all
	6.4.5 : scx::scx_load_data
	6.4.6 : scx::scx_load_data_all
	6.4.7 : scx::scx_set_parameter
	6.4.8 : scx::scx_get_parameter
	6.4.9 : scx::scx_get_parameter_list
	6.4.10 : scx::scx_set_cpi_file
	6.4.11 : scx::scx_cpulimit
	6.4.12 : scx::scx_timelimit
	6.4.13 : scx::scx_parse_and_configure
	6.4.14 : scx::scx_start_cadi_server
	6.4.15 : scx::scx_enable_cadi_log
	6.4.16 : scx::scx_prefix_appli_output
	6.4.17 : scx::scx_print_port_number
	6.4.18 : scx::scx_print_statistics
	6.4.19 : scx::scx_load_trace_plugin
	6.4.20 : scx::scx_load_plugin
	6.4.21 : scx::scx_get_global_interface
	6.4.22 : scx::scx_evs_base
	6.4.23 : scx::load_application
	6.4.24 : scx::load_data
	6.4.25 : scx::set_parameter
	6.4.26 : scx::get_parameter
	6.4.27 : scx::get_parameter_list
	6.4.28 : scx::constructor
	6.4.29 : scx::destructor
	6.4.30 : scx::before_end_of_elaboration
	6.4.31 : scx::end_of_elaboration
	6.4.32 : scx::start_of_simulation
	6.4.33 : scx::end_of_simulation
	6.4.34 : scx::scx_simcallback_if
	6.4.35 : scx::notify_running
	6.4.36 : scx::notify_stopped
	6.4.37 : scx::notify_debuggable
	6.4.38 : scx::notify_idle
	6.4.39 : scx::simcallback_if destructor
	6.4.40 : scx::scx_simcontrol_if
	6.4.41 : scx::get_scheduler
	6.4.42 : scx::get_report_handler
	6.4.43 : scx::run
	6.4.44 : scx::stop
	6.4.45 : scx::is_running
	6.4.46 : scx::stop_acknowledge
	6.4.47 : scx::process_debuggable
	6.4.48 : scx::process_idle
	6.4.49 : scx::shutdown
	6.4.50 : scx::add_callback
	6.4.51 : scx::remove_callback
	6.4.52 : scx::destructor
	6.4.53 : scx::scx_get_default_simcontrol
	6.4.54 : scx::scx_report_handler_if
	6.4.55 : scx::scx_get_default_report_handler
	6.4.56 : scx::scx_get_curr_report_handler
	6.4.57 : scx::scx_sync
	6.4.58 : scx::scx_set_min_sync_latency
	6.4.59 : scx::scx_get_min_sync_latency
	6.4.60 : scx::scx_simlimit
	6.4.61 : scx::scx_create_default_scheduler_mapping
	6.4.62 : scx::scx_get_curr_scheduler_mapping
	6.4.63 : scx::scx_enable_iris_server
	6.4.64 : scx::scx_set_iris_server_port_range
	6.4.65 : scx::scx_set_iris_server_port
	6.4.66 : scx::scx_enable_iris_log
	6.4.67 : scx::scx_get_iris_connection_interface
	6.4.68 : scx::scx_register_synchronous_thread

	6.5 : Scheduler API
	6.5.1 : Scheduler API - about
	6.5.2 : Scheduler API - use cases and implementation
	Accessing the SchedulerInterfaceForComponents from within a modeling component
	LISA component for accessing the SchedulerInterfaceForComponents
	C++ component for accessing the SchedulerInterfaceForComponents
	SystemC component for accessing the SchedulerInterfaceForComponents

	Using the default scheduler mapping in the SystemC export use case
	Providing a custom mapping of the scheduler functionality onto SystemC
	Minimalistic example of a custom mapping of the scheduler functionality onto SystemC
	Intended mapping of the Scheduler API onto SystemC/TLM

	6.5.3 : sg::SchedulerInterfaceForComponents class
	About sg::SchedulerInterfaceForComponents
	eslapi::CAInterface and eslapi::ObtainInterface
	sg::SchedulerInterfaceForComponents::addCallback
	sg::SchedulerInterfaceForComponents::addSynchronisationPoint
	sg::SchedulerInterfaceForComponents::createThread
	sg::SchedulerInterfaceForComponents::createThreadSignal
	sg::SchedulerInterfaceForComponents::createTimer
	sg::SchedulerInterfaceForComponents::currentThread
	sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime
	sg::SchedulerInterfaceForComponents::getGlobalQuantum
	sg::SchedulerInterfaceForComponents::getMinSyncLatency
	sg::SchedulerInterfaceForComponents::getNextSyncPoint
	sg::SchedulerInterfaceForComponents::getSimulatedTimeResolution
	sg::SchedulerInterfaceForComponents::removeCallback
	sg::SchedulerInterfaceForComponents::setGlobalQuantum
	sg::SchedulerInterfaceForComponents::setMinSyncLatency
	sg::SchedulerInterfaceForComponents::setSimulatedTimeResolution
	sg::SchedulerInterfaceForComponents::stopAcknowledge
	sg::SchedulerInterfaceForComponents::stopRequest
	sg::SchedulerInterfaceForComponents::wait(ThreadSignal)
	sg::SchedulerInterfaceForComponents::wait(ticks_t)

	6.5.4 : sg::SchedulerRunnable class
	sg::SchedulerRunnable - about
	sg::SchedulerRunnable::breakQuantum
	sg::SchedulerRunnable::clearStopRequest
	sg::SchedulerRunnable::getName
	sg::SchedulerRunnable::setThreadProperty, sg::SchedulerRunnable::getThreadProperty
	sg::SchedulerRunnable::stopRequest
	sg::SchedulerRunnable::threadProc

	6.5.5 : sg::SchedulerThread class
	sg::SchedulerThread - about
	sg::SchedulerThread::destructor
	sg::SchedulerThread::getName
	sg::SchedulerThread::setFrequency
	sg::SchedulerThread::start

	6.5.6 : sg::ThreadSignal class
	sg::ThreadSignal::destructor
	sg::ThreadSignal::notify
	sg::ThreadSignal::getName

	6.5.7 : sg::Timer class
	sg::Timer::cancel
	sg::Timer::destructor
	sg::Timer::getName
	sg::Timer::isSet
	sg::Timer::remaining
	sg::Timer::set
	sg::Timer::setFrequency

	6.5.8 : sg::TimerCallback class
	sg::TimerCallback::getName
	sg::TimerCallback::timerCallback

	6.5.9 : sg::FrequencySource class
	6.5.10 : sg::FrequencyObserver class
	6.5.11 : sg::SchedulerObject class
	sg::SchedulerObject::getName

	6.5.12 : sg::scx_create_default_scheduler_mapping
	6.5.13 : sg::scx_get_curr_scheduler_mapping

	6.6 : SystemC Export limitations
	6.6.1 : SystemC Export limitation on reentrancy
	6.6.2 : SystemC Export limitation on calling wait()
	6.6.3 : SystemC Export limitation on code translation support for external memory
	6.6.4 : SystemC Export limitation on Fast Models versions for MI platforms

	7 : Graphics Acceleration in Fast Models
	7.1 : Introduction to GGA
	7.2 : GGA modes
	7.2.1 : Using a GPU register model without GGA
	7.2.2 : Using GGA with a GPU register model
	7.2.3 : Using GGA without a GPU register model

	7.3 : Prerequisites
	7.4 : GGA contents
	7.4.1 : Shim directory
	7.4.2 : Reconciler directory
	7.4.3 : Examples directory
	7.4.4 : HAL directory

	7.5 : Configuration
	7.6 : Feedback
	7.7 : Enabling GGA
	7.7.1 : Install the Arm® Mali™ OpenGL ES Emulator
	7.7.2 : Preparing your image
	7.7.3 : Prepare an Android image
	Mount and modify your system partition
	Generate libnwhal.so
	Mount and modify your vendor partition

	7.7.4 : Prepare a Linux image
	7.7.5 : Choose the GGA mode
	7.7.6 : Boot the model with the Android or Linux image
	7.7.7 : Test the Android setup

	7.8 : Using GGA
	7.8.1 : Log execution of graphics APIs
	7.8.2 : Examine OpenGL ES execution in the graphics driver
	7.8.3 : Error messages from Error code check
	7.8.4 : Trace driver accesses to the GPU registers

	8 : Timing Annotation
	8.1 : Enabling and disabling timing annotation
	8.2 : CPI files
	8.3 : CPI file syntax
	8.4 : BNF specification for CPI files
	8.5 : Instruction and data prefetching
	8.5.1 : Configuring instruction prefetching
	8.5.2 : Configuring data prefetching

	8.6 : Configuring cache and TLB latency
	8.7 : Timing annotation tutorial
	8.7.1 : Setting up the environment
	Prerequisites
	Building the EVS_Base_Cortex-A73x1 example
	Calculating the execution time of an instruction
	Displaying the total execution time of the simulation
	Calculating the average CPI value

	8.7.2 : Modeling Cycles Per Instruction (CPI)
	CPI parameters
	Specifying a fixed CPI value
	Example CPI file
	Defining CPI values in a CPI file
	Validating a CPI file
	CPI class example program
	Running the example with the default CPI value
	Running the example with a custom CPI file
	Running the example with a fixed CPI value

	8.7.3 : Modeling branch prediction
	Branch predictor types and parameters
	Generating branch misprediction statistics
	BranchPrediction plug-in statistics
	MTI trace sources
	Example trace for a branch misprediction

	Branch prediction example program
	Running the simulation
	Comparison of branch predictor types
	Impact of branch misprediction on simulation time

	A : SystemC Export generated ports
	A.1 : About SystemC Export generated ports

