
ARM® Compiler
Version 6.01

armasm User Guide
Copyright © 2014 ARM. All rights reserved.
ARM DUI 0801B (ID121814)

ARM Compiler
armasm User Guide

Copyright © 2014 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

14 March 2014 A Non-Confidential ARM Compiler v6.00 Release

15 December 2014 B Non-Confidential ARM Compiler v6.01 Release
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. ii
ID121814 Non-Confidential

Contents
ARM Compiler armasm User Guide

Chapter 1 Conventions and Feedback

Chapter 2 Overview of armasm
2.1 About the ARM Compiler toolchain assemblers .. 2-2
2.2 Key features of the assembler .. 2-3
2.3 How the assembler works .. 2-4
2.4 Directives that can be omitted in pass 2 of the assembler 2-6

Chapter 3 Overview of the ARM Architecture
3.1 About the ARM architecture ... 3-2
3.2 A64, A32, and T32 instruction sets .. 3-3
3.3 Changing between AArch64 and AArch32 states .. 3-4
3.4 Advanced SIMD ... 3-5
3.5 Floating-point hardware ... 3-6

Chapter 4 Overview of AArch32 state
4.1 Changing between A32 and T32 instruction set states ... 4-2
4.2 Processor modes, and privileged and unprivileged software execution 4-3
4.3 Registers in AArch32 state .. 4-4
4.4 General-purpose registers in AArch32 state .. 4-6
4.5 Register accesses in AArch32 state .. 4-7
4.6 Predeclared core register names in AArch32 state ... 4-8
4.7 Predeclared extension register names in AArch32 state ... 4-9
4.8 Program Counter in AArch32 state .. 4-10
4.9 Application Program Status Register ... 4-11
4.10 The Q flag in AArch32 state ... 4-12
4.11 Current Program Status Register in AArch32 .. 4-13
4.12 Saved Program Status Registers (SPSRs) in AArch32 state 4-14
4.13 A32 instruction set overview .. 4-15
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. iii
ID121814 Non-Confidential

Contents
4.14 Media processing instructions ... 4-17
4.15 Access to the inline barrel shifter in AArch32 state ... 4-18

Chapter 5 Overview of AArch64 state
5.1 Registers in AArch64 state .. 5-2
5.2 Exception levels ... 5-3
5.3 Link registers ... 5-4
5.4 Stack Pointer register .. 5-5
5.5 Predeclared core register names in AArch64 state ... 5-6
5.6 Predeclared extension register names in AArch64 state ... 5-7
5.7 Program Counter in AArch64 state .. 5-8
5.8 Conditional execution in AArch64 state ... 5-9
5.9 The Q flag in AArch64 state ... 5-10
5.10 Process State .. 5-11
5.11 Saved Program Status Registers (SPSRs) in AArch64 state 5-12
5.12 A64 instruction set overview .. 5-13

Chapter 6 Structure of Assembly Language Modules
6.1 Syntax of source lines in assembly language .. 6-2
6.2 Literals ... 6-4
6.3 ELF sections and the AREA directive .. 6-5
6.4 An example assembly language module ... 6-6

Chapter 7 Writing A32/T32 Assembly Language
7.1 Unified Assembler Language ... 7-3
7.2 Syntax differences between UAL and A64 assembly language 7-4
7.3 Subroutine calls ... 7-5
7.4 Load immediates into registers .. 7-6
7.5 Load immediate values using MOV and MVN ... 7-7
7.6 Load 32-bit values to a register using MOV32 ... 7-10
7.7 Load immediate 32-bit values to a register using LDR Rd, =const 7-11
7.8 Literal pools ... 7-12
7.9 Load addresses into registers .. 7-14
7.10 Load addresses to a register using ADR ... 7-15
7.11 Load addresses to a register using ADRL ... 7-17
7.12 Load addresses to a register using LDR Rd, =label .. 7-18
7.13 Other ways to load and store registers .. 7-20
7.14 Load and store multiple register instructions ... 7-21
7.15 A32 and T32 load and store multiple instructions .. 7-22
7.16 Stack implementation using LDM and STM ... 7-23
7.17 Stack operations for nested subroutines ... 7-25
7.18 Block copy with LDM and STM .. 7-26
7.19 Memory accesses .. 7-28
7.20 Read-Modify-Write procedure .. 7-29
7.21 Optional hash ... 7-30
7.22 Use of macros .. 7-31
7.23 Test-and-branch macro example ... 7-32
7.24 Unsigned integer division macro example ... 7-33
7.25 Instruction and directive relocations .. 7-35
7.26 Symbol versions .. 7-37
7.27 Frame directives .. 7-38
7.28 Exception tables and Unwind tables .. 7-39

Chapter 8 Condition Codes
8.1 Conditional instructions .. 8-2
8.2 Conditional execution in A32 code .. 8-3
8.3 Conditional execution in T32 code ... 8-4
8.4 Conditional execution in A64 code .. 8-5
8.5 Condition flags ... 8-6
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. iv
ID121814 Non-Confidential

Contents
8.6 Updates to the condition flags in A32/T32 code .. 8-7
8.7 Updates to the condition flags in A64 code ... 8-8
8.8 Floating-point instructions that update the condition flags 8-9
8.9 Carry flag ... 8-10
8.10 Overflow flag .. 8-11
8.11 Condition code suffixes .. 8-12
8.12 Comparison of condition code meanings in integer and floating-point code 8-14
8.13 Benefits of using conditional execution in A32 and T32 code 8-16
8.14 Illustration of the benefits of conditional instructions in A32 and T32 code 8-17
8.15 Optimization for execution speed .. 8-20

Chapter 9 Using armasm
9.1 armasm command-line syntax ... 9-2
9.2 armasm commands listed in groups .. 9-3
9.3 Specify command-line options with an environment variable 9-5
9.4 Using stdin to input source code to armasm .. 9-6
9.5 Built-in variables and constants ... 9-7
9.6 Versions of armasm ... 9-10
9.7 Diagnostic messages ... 9-11
9.8 Interlocks diagnostics .. 9-12
9.9 Automatic IT block generation in T32 code ... 9-13
9.10 T32 branch target alignment .. 9-14
9.11 T32 code size diagnostics ... 9-15
9.12 A32 and T32 instruction portability diagnostics ... 9-16
9.13 T32 instruction width .. 9-17
9.14 Two pass assembler diagnostics ... 9-18
9.15 Address alignment in A32/T32 code .. 9-19
9.16 Address alignment in A64 code ... 9-20
9.17 Instruction width selection in T32 code .. 9-21

Chapter 10 Symbols, Literals, Expressions, and Operators
10.1 Symbol naming rules ... 10-3
10.2 Variables .. 10-4
10.3 Numeric constants ... 10-5
10.4 Assembly time substitution of variables ... 10-6
10.5 Register-relative and PC-relative expressions ... 10-7
10.6 Labels .. 10-8
10.7 Labels for PC-relative addresses ... 10-9
10.8 Labels for register-relative addresses .. 10-10
10.9 Labels for absolute addresses ... 10-11
10.10 Numeric local labels ... 10-12
10.11 Syntax of numeric local labels ... 10-13
10.12 String expressions ... 10-14
10.13 String literals .. 10-15
10.14 Numeric expressions ... 10-16
10.15 Numeric literals .. 10-17
10.16 Floating-point literals .. 10-18
10.17 Logical expressions ... 10-19
10.18 Logical literals .. 10-20
10.19 Unary operators ... 10-21
10.20 Binary operators .. 10-22
10.21 Multiplicative operators .. 10-23
10.22 String manipulation operators .. 10-24
10.23 Shift operators ... 10-25
10.24 Addition, subtraction, and logical operators ... 10-26
10.25 Relational operators ... 10-27
10.26 Boolean operators ... 10-28
10.27 Operator precedence ... 10-29
10.28 Difference between operator precedence in assembly language and C 10-30
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. v
ID121814 Non-Confidential

Contents
Chapter 11 Advanced SIMD and Floating-point Programming
11.1 Architecture support for Advanced SIMD and floating-point 11-3
11.2 Extension register bank mapping in AArch32 state ... 11-4
11.3 Extension register bank mapping in AArch64 state ... 11-6
11.4 Views of the Advanced SIMD register bank in AArch32 state 11-8
11.5 Views of the Advanced SIMD register bank in AArch64 state 11-9
11.6 Views of the floating-point extension register bank in AArch32 state 11-10
11.7 Views of the floating-point extension register bank in AArch64 state 11-11
11.8 Differences between A32/T32 and A64 Advanced SIMD and floating-point instruction

syntax .. 11-12
11.9 Load values to SIMD and floating-point registers .. 11-14
11.10 Conditional execution of A32/T32 Advanced SIMD and floating-point instructions

11-15
11.11 Floating-point exceptions in A32/T32 instructions ... 11-16
11.12 Advanced SIMD and floating-point data types in A32/T32 instructions 11-17
11.13 Advanced SIMD vectors .. 11-18
11.14 Normal Advanced SIMD instructions ... 11-19
11.15 Long Advanced SIMD instructions ... 11-20
11.16 Wide Advanced SIMD instructions .. 11-21
11.17 Narrow Advanced SIMD instructions ... 11-22
11.18 Saturating Advanced SIMD instructions .. 11-23
11.19 Advanced SIMD scalars .. 11-24
11.20 Extended notation in A32/T32 code ... 11-25
11.21 Polynomial arithmetic over {0,1} .. 11-26
11.22 Advanced SIMD and floating-point system registers in AArch32 state 11-27
11.23 Flush-to-zero mode .. 11-28
11.24 When to use flush-to-zero mode .. 11-29
11.25 Operations not affected by flush-to-zero mode .. 11-30
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. vi
ID121814 Non-Confidential

Chapter 1
Conventions and Feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• your name and company
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 1-1
ID121814 Non-Confidential

Conventions and Feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0801B
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center http://infocenter.arm.com/help/index.jsp
• ARM Technical Support Knowledge Articles

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html

• ARM Support and Maintenance
http://www.arm.com/support/services/support-maintenance.php

• ARM Glossary
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 1-2
ID121814 Non-Confidential

Chapter 2
Overview of armasm

The following topics introduce the assemblers provided with ARM® Compiler toolchain:
• About the ARM Compiler toolchain assemblers on page 2-2
• Key features of the assembler on page 2-3
• How the assembler works on page 2-4
• Directives that can be omitted in pass 2 of the assembler on page 2-6.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 2-1
ID121814 Non-Confidential

Overview of armasm
2.1 About the ARM Compiler toolchain assemblers
ARM Compiler toolchain provides:

• The freestanding legacy assembler, armasm. Use armasm to assemble existing A32 and T32
assembly language code.

• The armclang integrated assembler. Use this to assemble assembly language code written
in GNU syntax.

• An optimizing inline assembler built into armclang. Use this to assemble assembly
language code written in GNU syntax that is used inline in C or C++ source code.

Note
 Be aware of the following:
• Generated code might be different between two ARM Compiler releases.
• For a feature release, there might be significant code generation differences.

Note
 The command-line option descriptions and related information in the individual ARM Compiler
tools documents describe all the features supported by ARM Compiler. Any features not
documented are not supported and are used at your own risk. You are responsible for making
sure that any generated code using unsupported features is operating correctly.

2.1.1 See also

Concepts
Software Development Guide:
• Using inline assembly code

http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1383748162225.html

• Assembling assembly code
http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1382606255397.html.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 2-2
ID121814 Non-Confidential

Overview of armasm
2.2 Key features of the assembler
armasm supports:

• Unified Assembly Language (UAL) for both A32 and T32 code.

• Assembly language for A64 code.

• Advanced SIMD instructions in A64, A32, and T32 code.

• Floating-point instructions in A64, A32, and T32 code.

• Directives in assembly source code.

• Processing of user defined macros.

2.2.1 See also

Concepts
• How the assembler works on page 2-4
• Unified Assembler Language on page 7-3
• Advanced SIMD on page 3-5
• Use of macros on page 7-31
• Architecture support for Advanced SIMD and floating-point on page 11-3.
Getting Started Guide:
• About ARMv8 terminology

http://infocenter.arm.com/help/topic/com.arm.doc.dui0741-/chr1375353547214.html

Reference
armasm Reference Guide:
• Chapter 4 Advanced SIMD and Floating-point Programming (32-bit)
• Chapter 10 Directives Reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 2-3
ID121814 Non-Confidential

Overview of armasm
2.3 How the assembler works
armasm is a 2 pass assembler that outputs object code from the assembly language source code.
This means that it reads the source code twice. Each read of the source code is called a pass.

This is because assembly language source code often contains forward references. A forward
reference occurs when a label is used as an operand, for example as a branch target, earlier in
the code than the definition of the label. The assembler cannot know the address of the forward
reference label until it reads the definition of the label. During each pass, the assembler performs
different functions.

During the first pass, the assembler:

• Checks the syntax of the instruction or directive. It faults if there is an error in the syntax,
for example if a label is specified on a directive that does not accept one.

• Determines the size of the instruction and data being assembled and reserves space.

• Determines offset of labels within sections.

• Creates a symbol table containing label definitions and their memory addresses.

During the second pass, the assembler:

• Faults if an undefined reference is specified in an instruction operand or directive.

• Encodes the instructions using the label offsets from pass 1, where applicable.

• Generates relocations.

• Generates debug information if requested.

• Outputs the object file.

Memory addresses of labels are determined and finalized in the first pass. Therefore, the
assembly code must not change during the second pass. All instructions must be seen in both
passes. Therefore you must not define a symbol after a :DEF: test for the symbol. The assembler
faults if it sees code in pass 2 that was not seen in pass 1. Example 2-1 shows that num EQU 42 is
not seen in pass 1 but is seen in pass 2.

Example 2-1 Line not seen in pass 1

 AREA x,CODE
[:DEF: foo

num EQU 42
]

foo DCD num
END

Assembling the code in Example 2-1 generates the error:

A1903E: Line not seen in first pass; cannot be assembled.

Example 2-2 on page 2-5 shows that MOV r1,r2 is seen in pass 1 but not in pass 2.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 2-4
ID121814 Non-Confidential

Overview of armasm
Example 2-2 Line not seen in pass 2

 AREA x,CODE
[:LNOT: :DEF: foo
MOV r1, r2
]

foo MOV r3, r4
END

Assembling the code in Example 2-2 generates the error:

A1909E: Line not seen in second pass; cannot be assembled.

2.3.1 See also

Concepts
• Directives that can be omitted in pass 2 of the assembler on page 2-6
• Two pass assembler diagnostics on page 9-18
• Instruction and directive relocations on page 7-35.

Reference
armasm Reference Guide:
• --diag_error on page 2-20
• --debug on page 2-17.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 2-5
ID121814 Non-Confidential

Overview of armasm
2.4 Directives that can be omitted in pass 2 of the assembler
Most directives must appear in both passes of the assembly process. There are a number of
directives that can be omitted from pass 2, but doing this is strongly discouraged. Directives that
can be omitted from pass 2 are:
• GBLA, GBLL, GBLS
• LCLA, LCLL, LCLS
• SETA, SETL, SETS
• RN, RLIST
• CN, CP
• SN, DN, QN
• EQU

• MAP, FIELD
• GET, INCLUDE
• IF, ELSE, ELIF, ENDIF
• WHILE, WEND
• ASSERT

• ATTR

• COMMON

• EXPORTAS

• IMPORT

• EXTERN

• KEEP

• MACRO, MEND, MEXIT
• REQUIRE8

• PRESERVE8.

Note
 Macros that appear only in pass 1 and not in pass 2 must contain only these directives.

For example, the code in Example 2-3 assembles without error although the ASSERT directive
does not appear in pass 2.

Example 2-3 ASSERT directive appears in pass 1 only

AREA ||.text||,CODE
x EQU 42

IF :LNOT: :DEF: sym
ASSERT x == 42

ENDIF
sym EQU 1

END

Directives that appear in pass 2 but do not appear in pass 1 cause an assembly error. However,
this does not cause an assembly error when using the ELSE and ELIF directives if their matching
IF directive appears in pass 1. Example 2-4 on page 2-7 assembles without error because the IF
directive appears in pass 1.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 2-6
ID121814 Non-Confidential

Overview of armasm
Example 2-4 Use of ELSE and ELIF directives

AREA ||.text||,CODE
x EQU 42

IF :DEF: sym
ELSE

ASSERT x == 42
ENDIF

sym EQU 1
END

2.4.1 See also

Concepts
• How the assembler works on page 2-4
• Two pass assembler diagnostics on page 9-18
• Instruction and directive relocations on page 7-35.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 2-7
ID121814 Non-Confidential

Chapter 3
Overview of the ARM Architecture

The following topics give an overview of the ARMv8 architecture:
• About the ARM architecture on page 3-2
• A64, A32, and T32 instruction sets on page 3-3
• Changing between AArch64 and AArch32 states on page 3-4
• Advanced SIMD on page 3-5
• Floating-point hardware on page 3-6
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 3-1
ID121814 Non-Confidential

Overview of the ARM Architecture
3.1 About the ARM architecture
ARM processors are typical of RISC processors in that they implement a load and store
architecture. Only load and store instructions can access memory. Data processing instructions
operate on register contents only.

ARMv8 is the next major architectural update after ARMv7. It introduces a 64-bit architecture,
but maintains compatibility with existing 32-bit architectures. It uses two execution states:

AArch32 In AArch32 state, code has access to 32-bit general purpose registers.
Code executing in AArch32 state can only use the A32 and T32 instruction sets.
This state is broadly compatible with the ARMv7-A architecture.

AArch64 In AArch64 state, code has access to 64-bit general purpose registers. The
AArch64 state exists only in the ARMv8 architecture.
Code executing in AArch64 state can only use the A64 instruction set.

In the AArch32 execution state, there are the following instruction set states:
A32 state The state that executes A32 instructions.
T32 state The state that executes T32 instructions.

Note
 Detailed information about the ARMv8 architecture is available under license. Contact your
ARM Account Representative for details.

3.1.1 See also

Concepts
• A64, A32, and T32 instruction sets on page 3-3.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 3-2
ID121814 Non-Confidential

Overview of the ARM Architecture
3.2 A64, A32, and T32 instruction sets
The A32 instruction set is a set of 32-bit instructions providing a comprehensive range of
operations.

ARMv4T and later define a 16-bit instruction set called Thumb, or T32. Most of the
functionality of the 32-bit A32 instruction set is available, but some operations require more
instructions. The T32 instruction set provides better code density, at the expense of
performance.

ARMv6T2 introduces Thumb-2 technology. This is a major enhancement to the T32 instruction
set by providing 32-bit T32 instructions. The 32-bit and 16-bit T32 instructions together provide
almost exactly the same functionality as the A32 instruction set. This version of the T32
instruction set achieves the high performance of A32 code along with the benefits of better code
density.

ARMv7 includes Thumb-2 technology. ARMv7-M only supports the T32 instruction set.
Therefore, interworking instructions in ARMv7-M must not attempt to change to A32 state.
ARMv7-A and ARMv7-R support both A32 and T32 instruction sets.

Note
 You cannot assemble code for architectures earlier than ARMv7, and for ARMv7-M and
ARMv7-R profiles in this release.

ARMv8 introduces a new set of 32-bit instructions called A64, with new encodings and
assembly language. A64 is only available when the processor is in AArch64 state. It provides
similar functionality to the A32 and T32 instruction sets, but gives access to a larger virtual
address space, and has some other changes, including less conditionality.

In ARMv8, the A32 and T32 instruction sets are largely unchanged from ARMv7. They are only
available when the processor is in AArch32 state. The main changes in ARMv8 are the addition
of a few new instructions and the deprecation of some behavior, including many uses of the IT
instruction.

ARMv8 also defines an optional Crypto Extension, which provides cryptographic and hash
instructions in both the A32 and A64 instruction sets.

Note
 • The term A32 is an alias for the ARM instruction set.
• The term T32 is an alias for the Thumb instruction set.

3.2.1 See also

Concepts
• A32 instruction set overview on page 4-15
• A64 instruction set overview on page 5-13
• About the ARM architecture on page 3-2.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 3-3
ID121814 Non-Confidential

Overview of the ARM Architecture
3.3 Changing between AArch64 and AArch32 states
A processor that is executing A64 instructions is operating in AArch64 state. In this state, the
instructions can access both the 64-bit and 32-bit registers.

A processor that is executing A32 or T32 instructions is operating in AArch32 state. In this state,
the instructions can only access the 32-bit registers, and not the 64-bit registers.

A processor based on ARMv8 can run applications built for AArch32 and AArch64 states but
a change between AArch32 and AArch64 states can only happen at exception boundaries.

ARM Compiler toolchain builds images for either the AArch32 state or AArch64 state.
Therefore, an image built with ARM Compiler toolchain can either contain only A32 and T32
instructions or only A64 instructions.

A processor can only execute instructions from the instruction set that matches its current
execution state. A processor in AArch32 state cannot execute A64 instructions, and a processor
in AArch64 state cannot execute A32 or T32 instructions. You must ensure that the processor
never receives instructions from the wrong instruction set for the current execution state.

3.3.1 See also

Concepts
• About the ARM architecture on page 3-2
• Exception levels on page 5-3.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 3-4
ID121814 Non-Confidential

Overview of the ARM Architecture
3.4 Advanced SIMD
Advanced SIMD is a 64-bit and 128-bit hybrid Single Instruction Multiple Data (SIMD)
technology targeted at advanced media and signal processing applications and embedded
processors. It is implemented as part of the ARM core, but has its own execution pipelines and
a register bank that is distinct from the ARM core register bank.

Advanced SIMD instructions are available in both A32 and A64. The A64 Advanced SIMD
instructions are based on those in A32. The main differences are the following:

• Different instruction mnemonics and syntax.

• Thirty-two 128-bit vector registers, increased from sixteen in AArch32 state.

• A different register packing scheme. In AArch64 state, smaller registers occupy the low
order bits of larger registers. For example, S31 maps to bits[31:0] of D31. In AArch32
state, smaller registers are packed into larger registers. For example, S31 maps to
bits[63:32] of D15.

• A64 Advanced SIMD instructions support both single-precision and double-precision
floating-point data types and arithmetic. A32 Advanced SIMD instructions support only
single-precision floating-point data types.

3.4.1 See also

Concepts
• Architecture support for Advanced SIMD and floating-point on page 11-3
• Views of the Advanced SIMD register bank in AArch32 state on page 11-8
• Chapter 11 Advanced SIMD and Floating-point Programming.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 3-5
ID121814 Non-Confidential

Overview of the ARM Architecture
3.5 Floating-point hardware
The floating-point hardware, together with associated support code, provides single-precision
and double-precision floating-point arithmetic, as defined by IEEE Std. 754-2008 IEEE
Standard for Floating-Point Arithmetic. This document is referred to as the IEEE 754 standard.

The floating-point hardware uses a register bank that is distinct from the ARM core register
bank.

Note
 The floating-point register bank is shared with the SIMD register bank.

In AArch32 state, floating-point support is largely unchanged from VFPv4, apart from the
addition of a few instructions for compliance with the IEEE 754 standard.

The floating-point architecture in AArch64 state is also based on VFPv4. The main differences
are the following:

• In AArch64 state, the number of 128-bit SIMD and floating-point registers increases from
sixteen to thirty-two.

• Single-precision registers are no longer packed into double-precision registers, so register
Sx is Dx[31:0].

• The presence of floating-point hardware is mandated, so software floating-point linkage
is not supported.

• Earlier versions of the floating-point architecture, for instance VFPv2, VFPv3, and
VFPv4, are not supported in AArch64 state.

• VFP vector mode is not supported in either AArch32 or AArch64 state. Use Advanced
SIMD instructions for vector floating-point.

• Some new instructions have been added, including:
— Direct conversion between half-precision and double-precision.
— Load and store pair, replacing load and store multiple.
— Fused multiply-add and multiply-subtract.
— Instructions for IEEE 754-2008 compatibility.

3.5.1 See also

Concepts
• Architecture support for Advanced SIMD and floating-point on page 11-3
• Views of the floating-point extension register bank in AArch32 state on page 11-10
• Views of the floating-point extension register bank in AArch64 state on page 11-11
• Chapter 11 Advanced SIMD and Floating-point Programming.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 3-6
ID121814 Non-Confidential

Chapter 4
Overview of AArch32 state

The following topics give an overview of the AArch32 state of ARMv8:
• Changing between A32 and T32 instruction set states on page 4-2
• Processor modes, and privileged and unprivileged software execution on page 4-3
• Registers in AArch32 state on page 4-4
• General-purpose registers in AArch32 state on page 4-6
• Register accesses in AArch32 state on page 4-7
• Predeclared core register names in AArch32 state on page 4-8
• Predeclared extension register names in AArch32 state on page 4-9
• Program Counter in AArch32 state on page 4-10
• Application Program Status Register on page 4-11
• The Q flag in AArch32 state on page 4-12
• Current Program Status Register in AArch32 on page 4-13
• Saved Program Status Registers (SPSRs) in AArch32 state on page 4-14
• A32 instruction set overview on page 4-15
• Media processing instructions on page 4-17
• Access to the inline barrel shifter in AArch32 state on page 4-18.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-1
ID121814 Non-Confidential

Overview of AArch32 state
4.1 Changing between A32 and T32 instruction set states
A processor that is executing A32 instructions is operating in A32 instruction set state. A
processor that is executing T32 instructions is operating in T32 instruction set state. For brevity,
this document refers to them as the A32 state and T32 state respectively.

A processor in A32 state cannot execute T32 instructions, and a processor in T32 state cannot
execute A32 instructions. You must ensure that the processor never receives instructions of the
wrong instruction set for the current state.

The initial state after reset depends on the processor being used and its configuration.

To direct armasm to generate A32 or T32 instruction encodings, you must set the assembler mode
using an ARM or THUMB directive. Assembly code using CODE32 and CODE16 directives can still be
assembled, but ARM recommends you use ARM and THUMB for new code.

These directives do not change the instruction set state of the processor. To do this, you must
use an appropriate instruction, for example BX or BLX to change between A32 and T32 states
when performing a branch.

4.1.1 See also

Reference
armasm Reference Guide:
• B, BL, BX, and BLX on page 3-44
• Instruction set and syntax selection directives on page 10-8.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-2
ID121814 Non-Confidential

Overview of AArch32 state
4.2 Processor modes, and privileged and unprivileged software execution
ARM processors support the processor modes shown in Table 4-1.

User mode is an unprivileged mode, and has restricted access to system resources. All other
modes have full access to system resources in the current security state, can change mode freely,
and execute software as privileged.

Applications that require task protection usually execute in User mode. Some embedded
applications might run entirely in any mode other than User mode. An application that requires
full access to system resources usually executes in System mode.

Modes other than User mode are entered to service exceptions, or to access privileged resources.

Code can run in either a secure state or in a non-secure state. Hypervisor (Hyp) mode has
privileged execution in non-secure state.

4.2.1 See also

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.

Table 4-1 ARM processor modes

Processor mode Mode number

User 0b10000

FIQ 0b10001

IRQ 0b10010

Supervisor 0b10011

Abort 0b10111

Undefined 0b11011

System 0b11111

Monitor 0b10110

Hypervisor 0b11010
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-3
ID121814 Non-Confidential

Overview of AArch32 state
4.3 Registers in AArch32 state
In all ARM processors in AArch32 state, the following registers are available and accessible in
any processor mode:
• 15 general-purpose registers R0-R12, the Stack Pointer (SP), and Link Register (LR).
• 1 Program Counter (PC).
• 1 Application Program Status Register (APSR).

Note
 • SP and LR can be used as general-purpose registers, although ARM deprecates using SP

other than as a stack pointer.

Additional registers are available in privileged software execution. ARM processors have a total
of 43 registers. The registers are arranged in partially overlapping banks. There is a different
register bank for each processor mode. The banked registers give rapid context switching for
dealing with processor exceptions and privileged operations.

The additional registers in ARM processors are:
• 2 supervisor mode registers for banked SP and LR.
• 2 abort mode registers for banked SP and LR.
• 2 undefined mode registers for banked SP and LR.
• 2 interrupt mode registers for banked SP and LR.
• 7 FIQ mode registers for banked R8-R12, SP and LR.
• 2 monitor mode registers for banked SP and LR.
• 1 Hyp mode register for banked SP.
• 7 Saved Program Status Register (SPSRs), one for each exception mode.
• 1 Hyp mode register for ELR_Hyp to store the preferred return address from Hyp mode.

Note
 In privileged software execution, CPSR is an alias for APSR and gives access to additional bits.

Figure 4-1 on page 4-5 shows how the registers are banked in the ARM architecture.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-4
ID121814 Non-Confidential

Overview of AArch32 state
Figure 4-1 Organization of general-purpose registers and Program Status Registers

4.3.1 See also

Concepts
• General-purpose registers in AArch32 state on page 4-6
• Program Counter in AArch32 state on page 4-10
• Application Program Status Register on page 4-11
• Saved Program Status Registers (SPSRs) in AArch32 state on page 4-14
• Current Program Status Register in AArch32 on page 4-13
• Processor modes, and privileged and unprivileged software execution on page 4-3
• Registers in AArch64 state on page 5-2.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.

APSR

R12
SP
LR
PC

R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

‡ Exists only in Secure state.

User System Supervisor Abort Undefined IRQ FIQ
R0_usr
R1_usr
R2_usr
R3_usr
R4_usr
R5_usr
R6_usr
R7_usr
R8_usr
R9_usr
R10_usr
R11_usr
R12_usr
SP_usr
LR_usr
PC

CPSR
SPSR_svc SPSR_abt SPSR_irq SPSR_fiq

LR_svc LR_abt LR_irq LR_fiq
SP_svc SP_abt SP_irq SP_fiq

R8_fiq
R9_fiq
R10_fiq
R11_fiq
R12_fiq

LR_und
SP_und

SPSR_und

Monitor ‡

SPSR_mon

LR_mon
SP_mon

Application
level view System level view

Hyp †

SP_hyp

SPSR_hyp

† Exists only in Non-secure state.

ELR_hyp

C ll ith t i di t th t th U d i t i d
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-5
ID121814 Non-Confidential

Overview of AArch32 state
4.4 General-purpose registers in AArch32 state
There are 33 general-purpose 32-bit registers, including the banked SP and LR registers. Fifteen
general-purpose registers are visible at any one time, depending on the current processor mode.
These are R0-R12, SP, and LR. The PC (R15) is not considered a general-purpose register.

SP (or R13) is the stack pointer. The C and C++ compilers always use SP as the stack pointer.
ARM deprecates most uses of SP as a general purpose register. In T32 state, SP is strictly
defined as the stack pointer. The instruction pages in the armasm Reference Guide describe
when SP and PC can be used.

In User mode, LR (or R14) is used as a link register to store the return address when a subroutine
call is made. It can also be used as a general-purpose register if the return address is stored on
the stack.

In the exception handling modes, LR holds the return address for the exception, or a subroutine
return address if subroutine calls are executed within an exception. LR can be used as a
general-purpose register if the return address is stored on the stack.

4.4.1 See also

Concepts
• Program Counter in AArch32 state on page 4-10
• Register accesses in AArch32 state on page 4-7
• Predeclared core register names in AArch32 state on page 4-8
• Link registers on page 5-4
• Stack Pointer register on page 5-5.

Reference
armasm Reference Guide:
• MRS (PSR to general-purpose register) on page 3-105
• MSR (general-purpose register to PSR) on page 3-108.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-6
ID121814 Non-Confidential

Overview of AArch32 state
4.5 Register accesses in AArch32 state
Most 16-bit T32 instructions can only access R0 to R7. Only a small number of T32 instructions
can access R8-R12, SP, LR, and PC. Registers R0 to R7 are called Lo registers. Registers
R8-R12, SP, LR, and PC are called Hi registers.

All 32-bit T32 instructions can access R0 to R12, and LR. However, apart from a few designated
stack manipulation instructions, most T32 instructions cannot use SP. Except for a few specific
instructions where PC is useful, most T32 instructions cannot use PC.

In A32 state, all instructions can access R0 to R12, SP, and LR, and most instructions can also
access PC (R15). However, the use of the SP in an A32 instruction, in any way that is not
possible in the corresponding T32 instruction, is deprecated. Explicit use of the PC in an A32
instruction is not usually useful, and except for specific instances that are useful, such use is
deprecated. Implicit use of the PC, for example in branch instructions or load (literal)
instructions, is never deprecated.

The MRS instructions can move the contents of a status register to a general-purpose register,
where they can be manipulated by normal data processing operations. You can use the MSR
instruction to move the contents of a general-purpose register to a status register.

4.5.1 See also

Concepts
• General-purpose registers in AArch32 state on page 4-6
• Program Counter in AArch32 state on page 4-10
• Application Program Status Register on page 4-11
• Current Program Status Register in AArch32 on page 4-13
• Saved Program Status Registers (SPSRs) in AArch32 state on page 4-14
• Predeclared core register names in AArch32 state on page 4-8
• Read-Modify-Write procedure on page 7-29.

Reference
armasm Reference Guide:
• MRS (PSR to general-purpose register) on page 3-105
• MSR (general-purpose register to PSR) on page 3-108.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-7
ID121814 Non-Confidential

Overview of AArch32 state
4.6 Predeclared core register names in AArch32 state
Table 4-2 shows the predeclared core registers:

With the exception of a1-a4 and v1-v8, you can write the register names either in all upper case
or all lower case.

4.6.1 See also

Concepts
• General-purpose registers in AArch32 state on page 4-6
• Predeclared core register names in AArch64 state on page 5-6.

Table 4-2 Predeclared core registers in AArch32 state

Register names Meaning

R0-R15 General purpose registers.

a1-a4 Argument, result or scratch registers. These are synonyms for R0 to
R3.

v1-v8 Variable registers. These are synonyms for R4 to R11.

SB Static base register. This is a synonym for R9.

IP Intra-procedure call scratch register. This is a synonym for R12.

SP Stack pointer. This is a synonym for R13.

LR Link register. This is a synonym for R14.

PC Program counter. This is a synonym for R15.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-8
ID121814 Non-Confidential

Overview of AArch32 state
4.7 Predeclared extension register names in AArch32 state
Table 4-3 shows the predeclared extension register names:

You can write the register names either in upper case or lower case.

4.7.1 See also

Concepts
• Extension register bank mapping in AArch32 state on page 11-4
• Predeclared extension register names in AArch64 state on page 5-7.

Table 4-3 Predeclared extension registers in AArch32 state

Register names Meaning

Q0-Q15 Advanced SIMD quadword registers

D0-D31 Advanced SIMD doubleword registers, floating-point
double-precision registers

S0-S31 Floating-point single-precision registers
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-9
ID121814 Non-Confidential

Overview of AArch32 state
4.8 Program Counter in AArch32 state
The Program Counter (PC) is accessed as PC (or R15). It is incremented by the size of the
instruction executed, which is always four bytes in A32 state. Branch instructions load the
destination address into the PC. You can also load the PC directly using data operation
instructions. For example, to branch to the address in a general purpose register, use:

 MOV PC,R0

During execution, the PC does not contain the address of the currently executing instruction.
The address of the currently executing instruction is typically PC–8 for A32, or PC–4 for T32.

Note
 ARM recommends you use the BX instruction to jump to an address or to return from a function,
rather than writing to the PC directly.

4.8.1 See also

Concepts
• Register-relative and PC-relative expressions on page 10-7
• Program Counter in AArch64 state on page 5-8.

Reference
• B, BL, BX, and BLX on page 3-44.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-10
ID121814 Non-Confidential

Overview of AArch32 state
4.9 Application Program Status Register
The Application Program Status Register (APSR) holds copies of the N, Z, C, and V condition
flags. The processor uses them to determine whether or not to execute conditional instructions.

The APSR also holds the Q (saturation) flag and the GE (Greater than or Equal) flags. The GE
flags can be set by the parallel add and subtract instructions. They are used by the SEL instruction
to perform byte-based selection from two registers.

Note
 The APSR exists only in AArch32 state. In AArch64 state, the Q and GE flags cannot be read
or written to, and the condition flags are held in a special-purpose register called the NZCV
register.

These flags are accessible in all modes, using the MSR and MRS instructions.

4.9.1 See also

Concepts
• Updates to the condition flags in A32/T32 code on page 8-7
• Conditional execution in AArch64 state on page 5-9
• Conditional instructions on page 8-2.

Reference
armasm Reference Guide:
• MRS (PSR to general-purpose register) on page 3-105
• MSR (general-purpose register to PSR) on page 3-108
• SEL on page 3-131
• Parallel add and subtract on page 3-114.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-11
ID121814 Non-Confidential

Overview of AArch32 state
4.10 The Q flag in AArch32 state
The Q flag is set to 1 when saturation occurs in saturating arithmetic instructions, or when
overflow occurs in certain multiply instructions.

The Q flag is a sticky flag. Although the saturating and certain multiply instructions can set the
flag, they cannot clear it. You can execute a series of such instructions, and then test the flag to
find out whether saturation or overflow occurred at any point in the series, without having to
check the flag after each instruction.

To clear the Q flag, use an MSR instruction to read-modify-write the APSR:

MRS r5, APSR
BIC r5, r5, #(1<<27)
MSR APSR_nzcvq, r5

The state of the Q flag cannot be tested directly by the condition codes. To read the state of the
Q flag, use an MRS instruction.

MRS r6, APSR
TST r6, #(1<<27); Z is clear if Q flag was set

4.10.1 See also

Concepts
• Read-Modify-Write procedure on page 7-29
• The Q flag in AArch64 state on page 5-10.

Reference
armasm Reference Guide:
• MRS (PSR to general-purpose register) on page 3-105
• MSR (general-purpose register to PSR) on page 3-108
• QADD, QSUB, QDADD, and QDSUB on page 3-123
• SMULxy and SMLAxy on page 3-146
• SMULWy and SMLAWy on page 3-145.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-12
ID121814 Non-Confidential

Overview of AArch32 state
4.11 Current Program Status Register in AArch32
The Current Program Status Register (CPSR) holds:
• The APSR flags.
• The processor mode.
• The interrupt disable flags.
• Either:

— The instruction set state for ARMv8 (A32 or T32).
— The instruction set state for ARMv7 (ARM or Thumb).

• The endianness state.
• The execution state bits for the IT block.

The execution state bits control conditional execution in the IT block.

Only the APSR flags are accessible in all modes. ARM deprecates using an MSR instruction to
change the endianness bit (E) of the CPSR, in any mode. Each exception level can have its own
endianness, but mixed endianness within an exception level is deprecated. The SETEND
instruction is deprecated in A32 and T32 and has no equivalent in A64.

The execution state bits for the IT block (IT[1:0]) and the T32 bit (T) can be accessed by MRS
only in Debug state.

4.11.1 See also

Concepts
• Application Program Status Register on page 4-11
• Updates to the condition flags in A32/T32 code on page 8-7
• Saved Program Status Registers (SPSRs) in AArch32 state on page 4-14
• Process State on page 5-11.

Reference
armasm Reference Guide:
• IT on page 3-66
• SETEND on page 3-133
• MSR (general-purpose register to PSR) on page 3-108
• MRS (PSR to general-purpose register) on page 3-105.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-13
ID121814 Non-Confidential

Overview of AArch32 state
4.12 Saved Program Status Registers (SPSRs) in AArch32 state
The SPSR stores the current value of the CPSR when an exception is taken so that it can be
restored after handling the exception. Each exception handling mode can access its own SPSR.
User mode and System mode do not have an SPSR because they are not exception handling
modes.

The execution state bits, including the endianness state and current instruction set state can be
accessed from the SPSR in any exception mode, using the MSR and MRS instructions. You cannot
access the SPSR using MSR or MRS in User or System mode.

4.12.1 See also

Concepts
• Current Program Status Register in AArch32 on page 4-13
• Saved Program Status Registers (SPSRs) in AArch64 state on page 5-12.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-14
ID121814 Non-Confidential

Overview of AArch32 state
4.13 A32 instruction set overview
All A32 instructions are 32 bits long. Instructions are stored word-aligned, so the least
significant two bits of instruction addresses are always zero in A32 state.

T32 instructions are either 16 or 32 bits long. Instructions are stored half-word aligned. Some
instructions use the least significant bit of the address to determine whether the code being
branched to is T32 or A32.

Before the introduction of 32-bit T32 instructions, the T32 instruction set was limited to a
restricted subset of the functionality of the A32 instruction set. Almost all T32 instructions were
16-bit. Together, the 32-bit and 16-bit T32 instructions provide functionality that is almost
identical to that of the A32 instruction set.

Table 4-4 describes some of the functional groupings of the available instructions.

4.13.1 See also

Concepts
• Load and store multiple register instructions on page 7-21
• A64 instruction set overview on page 5-13.

Table 4-4 A32 instruction groups

Instruction
group Description

Branch and
control

These instructions do the following:
• Branch to subroutines.
• Branch backwards to form loops.
• Branch forward in conditional structures.
• Make the following instruction conditional without branching.
• Change the processor between A32 state and T32 state.

Data
processing

These instructions operate on the general-purpose registers. They can
perform operations such as addition, subtraction, or bitwise logic on the
contents of two registers and place the result in a third register. They can also
operate on the value in a single register, or on a value in a register and an
immediate value supplied within the instruction.
Long multiply instructions give a 64-bit result in two registers.

Register load
and store

These instructions load or store the value of a single register from or to
memory. They can load or store a 32-bit word, a 16-bit halfword, or an 8-bit
unsigned byte. Byte and halfword loads can either be sign extended or zero
extended to fill the 32-bit register.
A few instructions are also defined that can load or store 64-bit doubleword
values into two 32-bit registers.

Multiple
register load
and store

These instructions load or store any subset of the general-purpose registers
from or to memory.

Status
register
access

These instructions move the contents of a status register to or from a
general-purpose register.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-15
ID121814 Non-Confidential

Overview of AArch32 state
Reference
armasm Reference Guide:
• Chapter 3 A32 and T32 Instructions.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-16
ID121814 Non-Confidential

Overview of AArch32 state
4.14 Media processing instructions
Media processing instructions were introduced in the media extension for ARMv6. The
following media processing instructions are available:

Parallel add and subtract instructions:
• Parallel add and subtract on page 3-114.

Extend instructions:
• SXT, SXTA, UXT, and UXTA on page 3-157.

Multiply instructions:
• SMLAD and SMLSD on page 3-137
• SMLALD and SMLSLD on page 3-140
• SMMUL, SMMLA, and SMMLS on page 3-142
• SMUAD{X} and SMUSD{X} on page 3-144.

Packing, unpacking, saturation, and reversal instructions:
• PKHBT and PKHTB on page 3-117
• REV, REV16, REVSH, and RBIT on page 3-125
• SEL on page 3-131
• SSAT and USAT on page 3-150
• SSAT16 and USAT16 on page 3-152.

Absolute sum and bit field instructions:
• BFC and BFI on page 3-47
• SBFX and UBFX on page 3-129
• USAD8 and USADA8 on page 3-167.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-17
ID121814 Non-Confidential

Overview of AArch32 state
4.15 Access to the inline barrel shifter in AArch32 state
The ARM arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and rotate
operations. The second operand to many A32 and T32 data-processing and single register
data-transfer instructions can be shifted, before the data-processing or data-transfer is executed,
as part of the instruction. This supports, but is not limited to:
• Scaled addressing.
• Multiplication by an immediate value.
• Constructing immediate values.

32-bit T32 instructions give almost the same access to the barrel shifter as A32 instructions.

16-bit T32 instructions only allow access to the barrel shifter using separate instructions.

4.15.1 See also

Concepts
• Load immediates into registers on page 7-6
• Load immediate values using MOV and MVN on page 7-7.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 4-18
ID121814 Non-Confidential

Chapter 5
Overview of AArch64 state

The following topics give an overview of the AArch64 state of ARMv8:
• Registers in AArch64 state on page 5-2
• Exception levels on page 5-3
• Link registers on page 5-4
• Stack Pointer register on page 5-5
• Predeclared core register names in AArch64 state on page 5-6
• Predeclared extension register names in AArch64 state on page 5-7
• Program Counter in AArch64 state on page 5-8
• Conditional execution in AArch64 state on page 5-9
• The Q flag in AArch64 state on page 5-10
• Process State on page 5-11
• Saved Program Status Registers (SPSRs) in AArch64 state on page 5-12
• A64 instruction set overview on page 5-13.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-1
ID121814 Non-Confidential

Overview of AArch64 state
5.1 Registers in AArch64 state
In AArch64 state, the following registers are available:
• Thirty-one 64-bit general-purpose registers X0-X30, the bottom halves of which are

accessible as W0-W30.
• Four stack pointer registers SP_EL0, SP_EL1, SP_EL2, SP_EL3.
• Three exception link registers ELR_EL1, ELR_EL2, ELR_EL3.
• Three saved program status registers SPSR_EL1, SPSR_EL2, SPSR_EL3.
• One program counter.

All these registers are 64 bits wide except SPSR_EL1, SPSR_EL2, and SPSR_EL3, which are
32 bits wide.

Most A64 integer instructions can operate on either 32-bit or 64-bit registers. The register width
is determined by the register identifier, where W means 32-bit and X means 64-bit. The names
Wn and Xn, where n is in the range 0-30, refer to the same register. When you use the 32-bit
form of an instruction, the upper 32 bits of the source registers are ignored and the upper 32 bits
of the destination register are set to zero.

There is no register named W31 or X31. Depending on the instruction, register 31 is either the
stack pointer or the zero register. When used as the stack pointer, you refer to it as SP. When
used as the zero register, you refer to it as WZR in a 32-bit context or XZR in a 64-bit context.

5.1.1 See also

Concepts
• Registers in AArch32 state on page 4-4
• Link registers on page 5-4
• Program Counter in AArch64 state on page 5-8
• Conditional execution in AArch64 state on page 5-9
• Saved Program Status Registers (SPSRs) in AArch64 state on page 5-12
• Process State on page 5-11
• Exception levels on page 5-3
• Stack Pointer register on page 5-5.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-2
ID121814 Non-Confidential

Overview of AArch64 state
5.2 Exception levels
ARMv8 defines four exception levels, EL0 to EL3, where EL3 is the highest exception level
with the most execution privilege. When taking an exception, the exception level can either
increase or remain the same, and when returning from an exception, it can either decrease or
remain the same.

The following is a common usage model for the exception levels:
EL0 Applications.
EL1 OS kernels and associated functions that are typically described as privileged.
EL2 Hypervisor.
EL3 Secure monitor.

When taking an exception to a higher exception level, the execution state can either remain the
same, or change from AArch32 to AArch64.

When returning to a lower exception level, the execution state can either remain the same or
change from AArch64 to AArch32.

The only way the execution state can change is by taking or returning from an exception. It is
not possible to change between execution states in the same way as changing between A32 and
T32 code in AArch32 state.

On powerup and on reset, the processor enters the highest implemented exception level. The
execution state for this exception level is a property of the implementation, and might be
determined by a configuration input signal.

For exception levels other than EL0, the execution state is determined by one or more control
register configuration bits. These bits can be set only in a higher exception level.

For EL0, the execution state is determined as part of the exception return to EL0, under the
control of the exception level that the execution is returning from.

5.2.1 See also

Concepts
• Link registers on page 5-4
• Saved Program Status Registers (SPSRs) in AArch64 state on page 5-12
• Changing between AArch64 and AArch32 states on page 3-4
• Process State on page 5-11.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-3
ID121814 Non-Confidential

Overview of AArch64 state
5.3 Link registers
In AArch64 state, the Link Register (LR) stores the return address when a subroutine call is
made. It can also be used as a general-purpose register if the return address is stored on the stack.
The LR maps to register 30. Unlike in AArch32 state, the LR is distinct from the Exception Link
Registers (ELRs) and is therefore unbanked.

There are three Exception Link Registers, ELR_EL1, ELR_EL2, and ELR_EL3, that
correspond to each of the exception levels. When an exception is taken, the Exception Link
Register for the target exception level stores the return address to jump to after the handling of
that exception completes. If the exception was taken from AArch32 state, the top 32 bits in the
ELR are all set to zero. Subroutine calls within the exception level use the LR to store the return
address from the subroutine.

For example when the exception level changes from EL0 to EL1, the return address is stored in
ELR_EL1.

When in an exception level, if you enable interrupts that use the same exception level, you must
ensure you store the ELR on the stack because it will be overwritten with a new return address
when the interrupt is taken.

5.3.1 See also

Concepts
• Program Counter in AArch64 state on page 5-8
• Predeclared core register names in AArch64 state on page 5-6
• General-purpose registers in AArch32 state on page 4-6.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-4
ID121814 Non-Confidential

Overview of AArch64 state
5.4 Stack Pointer register
In AArch64 state, SP represents the 64-bit Stack Pointer. SP_EL0 is an alias for SP. Do not use
SP as a general purpose register. You can only use SP as an operand in the following
instructions:

• As the base register for loads and stores. In this case it must be quadword-aligned before
adding any offset, or a stack alignment exception occurs.

• As a source or destination for arithmetic instructions, but it cannot be used as the
destination in instructions that set the condition flags.

• In logical instructions, for example in order to align it.

There is a separate stack pointer for each of the three exception levels, SP_EL1, SP_EL2, and
SP_EL3. Within an exception level you can either use the dedicated stack pointer for that
exception level or you can use SP_EL0, the stack pointer associated with EL0. You can use the
SPSel register to select which stack pointer to use in the exception level.

The choice of stack pointer is indicated by the letter t or h appended to the exception level name,
for example EL0t or EL3h. The t suffix indicates that the exception level uses SP_EL0 and the
h suffix indicates it uses SP_ELx, where x is the current exception level number. EL0 always
uses SP_EL0 so cannot have an h suffix.

5.4.1 See also

Concepts
• General-purpose registers in AArch32 state on page 4-6
• Registers in AArch64 state on page 5-2
• Process State on page 5-11
• Exception levels on page 5-3.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-5
ID121814 Non-Confidential

Overview of AArch64 state
5.5 Predeclared core register names in AArch64 state
In AArch64 state, the predeclared core registers are different from those in AArch32 state.

Table 5-1 shows the predeclared core registers in AArch64 state:

You can write the register names either in all upper case or all lower case.

Note
 In AArch64 state, the PC is not a general purpose register and you cannot access it by name.

5.5.1 See also

Concepts
• Predeclared core register names in AArch32 state on page 4-8
• Registers in AArch64 state on page 5-2
• Link registers on page 5-4
• Stack Pointer register on page 5-5
• Program Counter in AArch64 state on page 5-8.

Table 5-1 Predeclared core registers in AArch64 state

Register names Meaning

W0-W30 32-bit general purpose registers.

X0-X30 64-bit general purpose registers.

WZR 32-bit RAZ/WI register. This is the name for register 31 when it is
used as the zero register in a 32-bit context.

XZR 64-bit RAZ/WI register. This is the name for register 31 when it is
used as the zero register in a 64-bit context.

WSP 32-bit stack pointer. This is the name for register 31 when it is used as
the stack pointer in a 32-bit context.

SP 64-bit stack pointer. This is the name for register 31 when it is used as
the stack pointer in a 64-bit context.

LR Link register. This is a synonym for X30.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-6
ID121814 Non-Confidential

Overview of AArch64 state
5.6 Predeclared extension register names in AArch64 state
Table 5-2 shows the predeclared extension register names in AArch64 state:

You can write the register names either in upper case or lower case.

5.6.1 See also

Concepts
• Predeclared extension register names in AArch32 state on page 4-9
• Extension register bank mapping in AArch64 state on page 11-6
• Registers in AArch64 state on page 5-2.

Table 5-2 Predeclared extension registers in AArch64 state

Register names Meaning

V0-V31 Advanced SIMD 128-bit vector registers.

Q0-Q31 Advanced SIMD registers holding a 128-bit scalar.

D0-D31 Advanced SIMD registers holding a 64-bit scalar, floating-point
double-precision registers.

S0-S31 Advanced SIMD registers holding a 32-bit scalar, floating-point
single-precision registers.

H0-H31 Advanced SIMD registers holding a 16-bit scalar, floating-point
half-precision registers.

B0-B31 Advanced SIMD registers holding an 8-bit scalar.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-7
ID121814 Non-Confidential

Overview of AArch64 state
5.7 Program Counter in AArch64 state
In AArch64 state, the Program Counter (PC) contains the address of the currently executing
instruction. It is incremented by the size of the instruction executed, which is always four bytes.

In AArch64 state, the PC is not a general purpose register and you cannot access it explicitly.
The following types of instructions read it implicitly:
• Instructions that compute a PC-relative address.
• PC-relative literal loads.
• Direct branches to a PC-relative label.
• Branch and link instructions, which store it in the procedure link register.

The only types of instructions that can write to the PC are:
• Conditional and unconditional branches.
• Exception generation and exception returns.

Branch instructions load the destination address into the PC.

5.7.1 See also

Concepts
• Program Counter in AArch32 state on page 4-10
• Register-relative and PC-relative expressions on page 10-7.

Reference
• B, BL, BX, and BLX on page 3-44.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-8
ID121814 Non-Confidential

Overview of AArch64 state
5.8 Conditional execution in AArch64 state
In AArch64 state, the NZCV register holds copies of the N, Z, C, and V condition flags. The
processor uses them to determine whether or not to execute conditional instructions. The NZCV
register contains the flags in bits[31:28].

The condition flags are accessible in all exception levels, using the MSR and MRS instructions.

A64 makes less use of conditionality than A32. For example, in A64:
• Only a few instructions can set or test the condition flags.
• There is no equivalent of the T32 IT instruction.
• The only conditionally executed instruction, which behaves as a NOP if the condition is

false, is the conditional branch, B.cond.

5.8.1 See also

Concepts
• Application Program Status Register on page 4-11
• Updates to the condition flags in A32/T32 code on page 8-7
• Updates to the condition flags in A64 code on page 8-8
• Conditional instructions on page 8-2.

Reference
armasm Reference Guide:
• MRS (PSR to general-purpose register) on page 3-105
• MSR (general-purpose register to PSR) on page 3-108.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-9
ID121814 Non-Confidential

Overview of AArch64 state
5.9 The Q flag in AArch64 state
In AArch64 state, you cannot read or write to the Q flag because in A64 there are no saturating
arithmetic instructions that operate on the general purpose registers.

The Advanced SIMD saturating arithmetic instructions set the QC bit in the floating-point status
register (FPSR) to indicate that saturation has occurred. You can identify such instructions by
the Q mnemonic modifier, for example SQADD.

5.9.1 See also

Concepts
• The Q flag in AArch32 state on page 4-12.

Reference
armasm Reference Guide:
• A64 SIMD scalar instructions in alphabetical order on page 8-2
• A64 SIMD vector instructions in alphabetical order on page 9-2.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-10
ID121814 Non-Confidential

Overview of AArch64 state
5.10 Process State
In AArch64 state, there is no Current Program Status Register (CPSR). You can access the
different components of the traditional CPSR independently as the following Process State
fields:
• N, Z, C, and V condition flags (NZCV).
• Current register width (nRW).
• Stack pointer selection bit (SPSel).
• Interrupt disable flags (DAIF).
• Current exception level (EL).
• Single step process state bit (SS).
• Illegal exception return state bit (IL).

You can use MSR to write to:
• The N, Z, C, and V flags in the NZCV register.
• The interrupt disable flags in the DAIF register.
• The SP selection bit in the SPSel register, in EL1 or higher.

You can use MRS to read:
• The N, Z, C, and V flags in the NZCV register.
• The interrupt disable flags in the DAIF register.
• The exception level bits in the CurrentEL register, in EL1 or higher.
• The SP selection bit in the SPSel register, in EL1 or higher.

When an exception occurs, all Process State fields associated with the current exception level
are stored in a single register associated with the target exception level, the SPSR. You can
access the SS, IL, and nRW bits only from the SPSR.

5.10.1 See also

Concepts
• Current Program Status Register in AArch32 on page 4-13
• Saved Program Status Registers (SPSRs) in AArch32 state on page 4-14
• Updates to the condition flags in A32/T32 code on page 8-7
• Updates to the condition flags in A64 code on page 8-8
• Saved Program Status Registers (SPSRs) in AArch64 state on page 5-12.

Reference
armasm Reference Guide:
• MSR (general-purpose register to PSR) on page 3-108
• MRS (PSR to general-purpose register) on page 3-105.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-11
ID121814 Non-Confidential

Overview of AArch64 state
5.11 Saved Program Status Registers (SPSRs) in AArch64 state
The SPSRs are 32-bit registers that store the process state of the current exception level when
an exception is taken to an exception level that uses AArch64 state. This allows the process state
to be restored after the exception has been handled.

In AArch64 state, each target exception level has its own SPSR:
• SPSR_EL1.
• SPSR_EL2.
• SPSR_EL3.

When taking an exception, the process state of the current exception level is stored in the SPSR
of the target exception level. On returning from an exception, the exception handler uses the
SPSR of the exception level that is being returned from to restore the process state of the
exception level that is being returned to.

Note
 On returning from an exception, the preferred return address is restored from the ELR
associated with the exception level that is being returned from.

The SPSRs store the following information:
• N, Z, C, and V flags.
• D, A, I, and F interrupt disable bits.
• The register width.
• The execution mode.
• The IL and SS bits.

5.11.1 See also

Concepts
• Stack Pointer register on page 5-5
• Process State on page 5-11
• Saved Program Status Registers (SPSRs) in AArch32 state on page 4-14.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-12
ID121814 Non-Confidential

Overview of AArch64 state
5.12 A64 instruction set overview
Table 5-3 describes some of the functional groupings of the instructions in A64.

5.12.1 See also

Concepts
• A32 instruction set overview on page 4-15.

Reference
armasm Reference Guide:
• A64 general instructions in alphabetical order on page 5-2
• A64 data transfer instructions in alphabetical order on page 6-2.

Table 5-3 A64 instruction groups

Instruction
group Description

Branch and
control

These instructions do the following:
• Branch to and return from subroutines.
• Branch backwards to form loops.
• Branch forward in conditional structures.
• Generate and return from exceptions.

Data
processing

These instructions operate on the general-purpose registers. They can
perform operations such as addition, subtraction, or bitwise logic on the
contents of two registers and place the result in a third register. They can also
operate on the value in a single register, or on a value in a register and an
immediate value supplied within the instruction.
The addition and subtraction instructions can optionally left shift the
immediate operand, or can sign or zero-extend and shift the final source
operand register.
A64 includes signed and unsigned 32-bit and 64-bit multiply and divide
instructions.

Register load
and store

These instructions load or store the value of a single register or pair of
registers from or to memory. You can load or store a single 64-bit
doubleword, 32-bit word, 16-bit halfword, or 8-bit byte, or a pair of words
or doublewords. Byte and halfword loads can either be sign-extended or
zero-extended to fill the 32-bit register. You can also load and sign-extend a
signed byte, halfword or word into a 64-bit register, or load a pair of signed
words into two 64-bit registers.

System
register
access

These instructions move the contents of a system register to or from a
general-purpose register.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 5-13
ID121814 Non-Confidential

Chapter 6
Structure of Assembly Language Modules

Assembly language is the language that the assembler (armasm) parses and assembles to produce
object code. The following topics describe the structure of the assembly source files:
• Syntax of source lines in assembly language on page 6-2
• Literals on page 6-4
• ELF sections and the AREA directive on page 6-5
• An example assembly language module on page 6-6.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 6-1
ID121814 Non-Confidential

Structure of Assembly Language Modules
6.1 Syntax of source lines in assembly language
The general form of source lines in assembly language is:

{symbol} {instruction|directive|pseudo-instruction} {;comment}

All three sections of the source line are optional.

symbol is usually a label. In instructions and pseudo-instructions it is always a label. In some
directives it is a symbol for a variable or a constant. The description of the directive makes this
clear in each case.

symbol must begin in the first column. It cannot contain any white space character such as a
space or a tab unless it is enclosed by bars (|).

Labels are symbolic representations of addresses. You can use labels to mark specific addresses
that you want to refer to from other parts of the code. Numeric local labels are a subclass of
labels that begin with a number in the range 0-99. Unlike other labels, a numeric local label can
be defined many times. This makes them useful when generating labels with a macro.

Directives provide important information to the assembler that either affects the assembly
process or affects the final output image.

Instructions and pseudo-instructions make up the code a processor uses to perform tasks.

Note
 Instructions, pseudo-instructions, and directives must be preceded by white space, such as a
space or a tab, irrespective of whether there is a preceding label or not.

Some directives do not allow the use of a label.

A comment is the final part of a source line. The first semicolon on a line marks the beginning
of a comment except where the semicolon appears inside a string literal. The end of the line is
the end of the comment. A comment alone is a valid line. The assembler ignores all comments.
You can use blank lines to make your code more readable.

Instruction mnemonics, pseudo-instructions, directives, and symbolic register names (except
a1-a4 and v1-v8 in A32 instructions) can be written in all uppercase or all lowercase, but not
mixed. Labels and comments can be in uppercase or lowercase, or mixed.

Example 6-1

 AREA A32ex, CODE, READONLY
 ; Name this block of code A32ex
 ENTRY ; Mark first instruction to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; A32 semihosting (formerly SWI)
 END ; Mark end of file
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 6-2
ID121814 Non-Confidential

Structure of Assembly Language Modules
To make source files easier to read, a long line of source can be split onto several lines by placing
a backslash character (\) at the end of the line. The backslash must not be followed by any other
characters (including spaces and tabs). The assembler treats the backslash followed by
end-of-line sequence as white space. You can also use blank lines to make your code more
readable.

Note
 Do not use the backslash followed by end-of-line sequence within quoted strings.

The limit on the length of lines, including any extensions using backslashes, is 4095 characters.

6.1.1 See also

Concepts
• Labels on page 10-8
• Numeric local labels on page 10-12
• Symbol naming rules on page 10-3
• Numeric literals on page 10-17
• String literals on page 10-15
• Literals on page 6-4
• Syntax differences between UAL and A64 assembly language on page 7-4.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 6-3
ID121814 Non-Confidential

Structure of Assembly Language Modules
6.2 Literals
In assembly source files, literals can be expressed as:
• Decimal numbers, for example 123.
• Hexadecimal numbers, for example 0x7B.
• Numbers in any base from 2 to 9, for example 5_204 is a number in base 5.
• Floating-point numbers, for example 123.4.
• Boolean values {TRUE} or {FALSE}.
• Single character values enclosed by single quotes, for example ‘w’.
• Strings enclosed in double quotes, for example "This is a string".

Note
 In most cases, a string containing a single character is accepted as a single character value. For
example ADD r0,r1,#”a” is accepted, but ADD r0,r1,#”ab” is faulted.

You can also use variables and names to represent the literals.

6.2.1 See also

Concepts
• Syntax of source lines in assembly language on page 6-2.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 6-4
ID121814 Non-Confidential

Structure of Assembly Language Modules
6.3 ELF sections and the AREA directive
ELF sections are independent, named, indivisible sequences of code or data. A single code
section is the minimum required to produce an application.

The output of an assembly or compilation can include:

• One or more code sections. These are usually read-only sections.

• One or more data sections. These are usually read-write sections. They might be zero
initialized (ZI).

The linker places each section in a program image according to section placement rules.
Sections that are adjacent in source files are not necessarily adjacent in the application image

In a source file, the AREA directive marks the start of a section. This directive names the section
and sets its attributes. The attributes are placed after the name, separated by commas.

You can choose any name for your sections. However, names starting with any non-alphabetic
character must be enclosed in bars, or an AREA name missing error is generated. For example,
|1_DataArea|.

Example 6-2 defines a single read-only section called A32ex that contains code.

Example 6-2

 AREA A32ex, CODE, READONLY
 ; Name this block of code A32ex

6.3.1 See also

Concepts
• An example assembly language module on page 6-6.
armlink User Guide:
• Chapter 8 Scatter-loading Features.

Reference
armasm Reference Guide:
• AREA on page 10-13.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 6-5
ID121814 Non-Confidential

Structure of Assembly Language Modules
6.4 An example assembly language module
Example 6-3 and Example 6-4 illustrate some of the core constituents of an assembly language
module. They are written in A32 and A64 assembly language respectively.

The constituent parts of these examples are:
• ELF sections (defined by the AREA directive)
• Application entry (defined by the ENTRY directive).
• Application execution.
• Application termination.
• Program end (defined by the END directive).

Example 6-3 defines a single section called A32ex that contains code and is marked as being
READONLY. This example uses the A32 instruction set.

Example 6-3 Constituents of an A32 assembly language module

 AREA A32ex, CODE, READONLY
 ; Name this block of code A32ex
 ENTRY ; Mark first instruction to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; A32 semihosting (formerly SWI)
 END ; Mark end of file

Example 6-4 defines a single section called A64ex that contains code and is marked as being
READONLY. This example uses the A64 instruction set.

Example 6-4 Constituents of an A64 assembly language module

AREA A64ex, CODE, READONLY
; Name this block of code A64ex

ENTRY ; Mark first instruction to execute
start

MOV w0, #10 ; Set up parameters
MOV w1, #3
ADD w0, w0, w1 ; w0 = w0 + w1

stop
MOV x1, #0x26
MOVK x1, #2, LSL #16
STR x1, [sp,#0] ; ADP_Stopped_ApplicationExit
MOV x0, #0
STR x0, [sp,#8] ; Exit status code
MOV x1, sp ; x1 contains the address of parameter block
MOV w0, #0x18 ; angel_SWIreason_ReportException
HLT 0xf000 ; AArch64 semihosting
END ; Mark end of file
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 6-6
ID121814 Non-Confidential

Structure of Assembly Language Modules
6.4.1 Application entry

The ENTRY directive declares an entry point to the program. It marks the first instruction to be
executed. In applications using the C library, an entry point is also contained within the C library
initialization code. Initialization code and exception handlers also contain entry points.

6.4.2 Application execution

The application code begins executing at the label start, where it loads the decimal values 10
and 3 into registers R0 and R1 or W0 and W1. These registers are added together and the result
placed in R0 or W0.

6.4.3 Application termination

After executing the main code, the application terminates by returning control to the debugger.
You do this in A32 using the A32 semihosting SVC (0x123456 by default), or in A64, using HLT
0xF000 to invoke the semihosting interface.

A32 code uses the following parameters:
• R0 equal to angel_SWIreason_ReportException (0x18).
• R1 equal to ADP_Stopped_ApplicationExit (0x20026).

A64 code uses the following parameters:
• W0 equal to angel_SWIreason_ReportException (0x18).
• X1 is the address of a block of 2 parameters. The first is the exception type,

ADP_Stopped_ApplicationExit (0x20026) and the second is the exit status code.

6.4.4 Program end

The END directive instructs the assembler to stop processing this source file. Every assembly
language source module must finish with an END directive on a line by itself. Any lines following
the END directive are ignored by the assembler.

6.4.5 See also

Concepts
• ELF sections and the AREA directive on page 6-5.

Reference
armasm Reference Guide:
• ENTRY on page 10-34
• END on page 10-32.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 6-7
ID121814 Non-Confidential

Chapter 7
Writing A32/T32 Assembly Language

The following topics describe the use of a few basic A32 and T32 instructions and the use of
macros:
• Unified Assembler Language on page 7-3
• Syntax differences between UAL and A64 assembly language on page 7-4
• Subroutine calls on page 7-5
• Load immediates into registers on page 7-6
• Load immediate values using MOV and MVN on page 7-7
• Load 32-bit values to a register using MOV32 on page 7-10
• Load immediate 32-bit values to a register using LDR Rd, =const on page 7-11
• Load addresses into registers on page 7-14
• Load addresses to a register using ADR on page 7-15
• Load addresses to a register using ADRL on page 7-17
• Load addresses to a register using LDR Rd, =label on page 7-18
• Other ways to load and store registers on page 7-20
• Load and store multiple register instructions on page 7-21
• A32 and T32 load and store multiple instructions on page 7-22
• Stack implementation using LDM and STM on page 7-23
• Stack operations for nested subroutines on page 7-25
• Block copy with LDM and STM on page 7-26
• Memory accesses on page 7-28
• Read-Modify-Write procedure on page 7-29
• Optional hash on page 7-30
• Use of macros on page 7-31
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-1
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
• Test-and-branch macro example on page 7-32
• Unsigned integer division macro example on page 7-33
• Instruction and directive relocations on page 7-35
• Symbol versions on page 7-37
• Frame directives on page 7-38
• Exception tables and Unwind tables on page 7-39.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-2
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.1 Unified Assembler Language
Unified Assembler Language (UAL) is a common syntax for A32 and T32 instructions. It
supersedes earlier versions of both the ARM and Thumb assembler languages.

Code that is written using UAL can be assembled for A32 or T32 for any ARM processor. armasm
faults the use of unavailable instructions.

armasm can assemble code that is written in pre-UAL and UAL syntax.

By default, armasm expects source code to be written in UAL. armasm accepts UAL syntax if any
of the directives CODE32, ARM, or THUMB is used or if you assemble with any of the --32, --arm, or
--thumb command-line options. armasm also accepts source code that is written in pre-UAL ARM
assembly language when you assemble with CODE32 or ARM.

armasm accepts source code that is written in pre-UAL Thumb assembly language when
you assemble using the --16 command-line option, or the CODE16 directive in the source code.

Note
 The pre-UAL Thumb assembly language does not support 32-bit T32 instructions.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-3
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.2 Syntax differences between UAL and A64 assembly language
UAL is the assembler syntax that is used by the A32 and T32 instruction sets. A64 assembly
language is the assembler syntax that is used by the A64 instruction set.

UAL in ARMv8 is unchanged from ARMv7.

The general statement format and operand order of A64 assembly language is the same as UAL,
but there are some differences between them. Table 7-1 describes the main differences:

7.2.1 See also

Concepts
• Syntax of source lines in assembly language on page 6-2
• Instruction width selection in T32 code on page 9-21
• Differences between A32/T32 and A64 Advanced SIMD and floating-point instruction

syntax on page 11-12.

Table 7-1 Syntax differences between UAL and A64 assembly language

UAL A64

You make an instruction conditional by
appending a condition code suffix directly to the
mnemonic, with no delimiter. For example:
BEQ label

For conditionally executed instructions, you
separate the condition code suffix from the
mnemonic using a . delimiter. For example:
B.EQ label

Apart from the IT instruction, there are no
unconditionally executed integer instructions that
use a condition code as an operand.

A64 provides several unconditionally executed
instructions that use a condition code as an
operand. For these instructions, you specify the
condition code to test for in the final operand
position. For example:
CSEL w1,w2,w3,EQ

The .W and .N instruction width specifiers control
whether the assembler generates a 32-bit or 16-bit
encoding for a T32 instruction.

A64 is a fixed width 32-bit instruction set so does
not support .W and .N qualifiers.

The core register names are R0-R15. Qualify register names to indicate the operand
data size, either 32-bit (W0-W31) or 64-bit
(X0-X31).

You can refer to registers R13, R14, and R15 as
synonyms for SP, LR, and PC respectively.

In AArch64, there is no register that is named
W31 or X31. Instead, you can refer to register 31
as SP, WZR, or XZR, depending on the context.
You cannot refer to PC either by name or number.
LR is an alias for register 30.

A32 has no equivalent of the extend operators. You can specify an extend operator in several
instructions to control how a portion of the second
source register value is sign or zero extended. For
example, in the following instruction, UXTB is the
extend type (zero extend, byte) and #2 is an
optional left shift amount:
ADD X1, X2, W3, UXTB #2
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-4
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.3 Subroutine calls
A subroutine is a block of code that performs a task that is based on some arguments and
optionally returns a result. By convention, you use registers R0 to R3 to pass arguments to
subroutines, and R0 to pass a result back to the callers. A subroutine that requires more than four
inputs uses the stack for the additional inputs.

To call subroutines, use a branch and link instruction. The syntax is:

 BL destination

where destination is usually the label on the first instruction of the subroutine.

destination can also be a PC-relative expression.

The BL instruction:
• Places the return address in the link register.
• Sets the PC to the address of the subroutine.

After the subroutine code is executed, you can use a BX LR instruction to return.

Note
 Calls between separately assembled or compiled modules must comply with the restrictions and
conventions that are defined by the Procedure Call Standard for the ARM Architecture.

Example 7-1 shows a subroutine, doadd, that adds the values of two arguments and returns a
result in R0.

Example 7-1 Add two arguments

 AREA subrout, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
start MOV r0, #10 ; Set up parameters
 MOV r1, #3
 BL doadd ; Call subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; ARM semihosting
doadd ADD r0, r0, r1 ; Subroutine code
 BX lr ; Return from subroutine
 END ; Mark end of file

7.3.1 See also

Concepts
• Stack operations for nested subroutines on page 7-25.
• Register-relative and PC-relative expressions on page 10-7.

Reference
• B, BL, BX, and BLX on page 3-44.

Other information
• Procedure Call Standard for the ARM Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-5
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.4 Load immediates into registers
You can load an immediate from a range of values into a register using a MOV or MVN instruction.
The range depends on the instruction set. Certain 32-bit values cannot be represented as an
immediate operand to a single 32-bit instruction, although these values can be loaded from
memory in a single instruction.

You can load any 32-bit immediate value into a register with two instructions, a MOV followed by
a MOVT. Or, you can use a pseudo-instruction, MOV32, to construct the instruction sequence for you.

You can also use the LDR pseudo-instruction to load immediate values into a register.

You can include many commonly used immediate values directly as operands within data
processing instructions, without a separate load operation. The range of immediate values that
you can include as operands in 16-bit T32 instructions is much smaller.

7.4.1 See also

Concepts
• Load immediate values using MOV and MVN on page 7-7
• Load 32-bit values to a register using MOV32 on page 7-10
• Load immediate 32-bit values to a register using LDR Rd, =const on page 7-11
• Load values to SIMD and floating-point registers on page 11-14.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-6
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.5 Load immediate values using MOV and MVN
In A32 state:

• MOV can load any 8-bit immediate value, giving a range of 0x0-0xFF (0-255).
It can also rotate these values by any even number.
These values are also available as immediate operands in many data processing
operations, without being loaded in a separate instruction.

• MVN can load the bitwise complements of these values. The numerical values are -(n+1),
where n is the value available in MOV.

• MOV can load any 16-bit number, giving a range of 0x0-0xFFFF (0-65535).

Table 7-2 shows the range of 8-bit values that can be loaded in a single A32 MOV or MVN
instruction (for data processing operations). The value to load must be a multiple of the value
that is shown in the Step column.

Table 7-3 shows the range of 16-bit values that can be loaded in a single MOV A32 instruction.

Note
 These notes give extra information on Table 7-2 and Table 7-3.

a The MVN values are only available directly as operands in MVN instructions.

b These values are available in A32 state only. All the other values in this table are
also available in 32-bit T32 instructions.

c These values are not available directly as operands in other instructions.

Table 7-2 A32 state immediate values (8-bit)

Binary Decimal Step Hexadecimal MVN valuea Notes

000000000000000000000000abcdefgh 0-255 1 0-0xFF –1 to –256 -

0000000000000000000000abcdefgh00 0-1020 4 0-0x3FC –4 to –1024 -

00000000000000000000abcdefgh0000 0-4080 16 0-0xFF0 –16 to –4096 -

000000000000000000abcdefgh000000 0-16320 64 0-0x3FC0 –64 to –16384 -

... -

abcdefgh000000000000000000000000 0-255 x 224 224 0-0xFF000000 1-256 x –224 -

cdefgh000000000000000000000000ab (bit pattern) - - (bit pattern) See b in Note

efgh000000000000000000000000abcd (bit pattern) - - (bit pattern) See b in Note

gh000000000000000000000000abcdef (bit pattern) - - (bit pattern) See b in Note

Table 7-3 A32 state immediate values in MOV instructions

Binary Decimal Step Hexadecimal MVN value Notes

0000000000000000abcdefghijklmnop 0-65535 1 0-0xFFFF - See c in Note
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-7
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
In T32 state:

• The 32-bit MOV instruction can load:
— Any 8-bit immediate value, giving a range of 0x0-0xFF (0-255).
— Any 8-bit immediate value, shifted left by any number.
— Any 8-bit pattern that is duplicated in all 4 bytes of a register.
— Any 8-bit pattern that is duplicated in bytes 0 and 2, with bytes 1 and 3 set to 0.
— Any 8-bit pattern that is duplicated in bytes 1 and 3, with bytes 0 and 2 set to 0.
These values are also available as immediate operands in many data processing
operations, without being loaded in a separate instruction.

• The 32-bit MVN instruction can load the bitwise complements of these values. The
numerical values are -(n+1), where n is the value available in MOV.

• The 32-bit MOV instruction can load any 16-bit number, giving a range of 0x0-0xFFFF
(0-65535). These values are not available as immediate operands in data processing
operations.

The 16-bit T32 MOV instruction can load any immediate value in the range 0-255.

Table 7-4 shows the range of values that can be loaded in a single 32-bit T32 MOV or MVN
instruction (for data processing operations). The value to load must be a multiple of the value
that is shown in the Step column.

Table 7-5 shows the range of 16-bit values that the MOV 32-bit T32 instruction can load.

Note
 These notes give extra information on Table 7-4 and Table 7-5.

a The MVN values are only available directly as operands in MVN instructions.

Table 7-4 32-bit T32 immediate values

Binary Decimal Step Hexadecimal MVN valuea Notes

000000000000000000000000abcdefgh 0-255 1 0-0xFF –1 to –256 -

00000000000000000000000abcdefgh0 0-510 2 0-0x1FE –2 to –512 -

0000000000000000000000abcdefgh00 0-1020 4 0-0x3FC –4 to –1024 -

... -

0abcdefgh00000000000000000000000 0-255 x 223 223 0-0x7F800000 1-256 x –223 -

abcdefgh000000000000000000000000 0-255 x 224 224 0-0xFF000000 1-256 x –224 -

abcdefghabcdefghabcdefghabcdefgh (bit pattern) - 0xXYXYXYXY 0xXYXYXYXY -

00000000abcdefgh00000000abcdefgh (bit pattern) - 0x00XY00XY 0xFFXYFFXY -

abcdefgh00000000abcdefgh00000000 (bit pattern) - 0xXY00XY00 0xXYFFXYFF -

00000000000000000000abcdefghijkl 0-4095 1 0-0xFFF - See b in Note

Table 7-5 32-bit T32 immediate values in MOV instructions

Binary Decimal Step Hexadecimal MVN value Notes

0000000000000000abcdefghijklmnop 0-65535 1 0-0xFFFF - See c in Note
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-8
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
b These values are available directly as operands in ADD, SUB, and MOV instructions,
but not in MVN or any other data processing instructions.

c These values are only available in MOV instructions.

In both A32 and T32, you do not have to decide whether to use MOV or MVN. armasm uses whichever
is appropriate. This feature is useful if the value is an assembly-time variable.

If you write an instruction with an immediate value that is not available, armasm reports the error:
Immediate n out of range for this operation.

7.5.1 See also

Concepts
• Load immediates into registers on page 7-6.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-9
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.6 Load 32-bit values to a register using MOV32
Both A32 and T32 instruction sets include:

• A MOV instruction that can load any value in the range 0x00000000 to 0x0000FFFF into a
register.

• A MOVT instruction that can load any value in the range 0x0000 to 0xFFFF into the most
significant half of a register, without altering the contents of the least significant half.

You can use these two instructions to construct any 32-bit immediate value in a register.
Alternatively, you can use the MOV32 pseudo-instruction. armasm generates the MOV, MOVT
instruction pair for you.

You can also use the MOV32 pseudo-instruction to load addresses into registers by using a label
or any PC-relative expression in place of an immediate value. armasm puts a relocation directive
into the object file for the linker to resolve the address at link time.

7.6.1 See also

Concepts
• Register-relative and PC-relative expressions on page 10-7.

Reference
armasm Reference Guide:
• MOV32 pseudo-instruction on page 3-102.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-10
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.7 Load immediate 32-bit values to a register using LDR Rd, =const
The LDR Rd,=const pseudo-instruction can construct any 32-bit numeric value in a single
instruction. You can use this pseudo-instruction to generate constants that are out of range of the
MOV and MVN instructions.

The LDR pseudo-instruction generates the most efficient single instruction for the specified
immediate value:

• If the immediate value can be constructed with a single MOV or MVN instruction, armasm
generates the appropriate instruction.

• If the immediate value cannot be constructed with a single MOV or MVN instruction, armasm:
— Places the value in a literal pool (a portion of memory that is embedded in the code

to hold constant values).
— Generates an LDR instruction with a PC-relative address that reads the constant from

the literal pool.
For example:
 LDR rn, [pc, #offset to literal pool]
 ; load register n with one word
 ; from the address [pc + offset]

Ensure that there is a literal pool within range of the LDR instruction that is generated by
armasm.

7.7.1 See also

Concepts
• Literal pools on page 7-12.

Reference
armasm Reference Guide:
• LDR pseudo-instruction on page 3-86.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-11
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.8 Literal pools
armasm uses literal pools to hold certain constant values that are to be loaded into registers.
armasm places a literal pool at the end of each section. The end of a section is defined either by
the END directive at the end of the assembly or by the AREA directive at the start of the following
section. The END directive at the end of an included file does not signal the end of a section.

In large sections, the default literal pool can be out of range of one or more LDR instructions. The
offset from the PC to the constant must be:

• Less than 4KB in A32 or T32 code, when the 32-bit LDR instruction is available, but can
be in either direction.

• Forward and less than 1KB when only the 16-bit T32 LDR instruction is available.

When an LDR Rd,=const pseudo-instruction requires the immediate value to be placed in a literal
pool, armasm:

• Checks if the value is available and addressable in any previous literal pools. If so, it
addresses the existing constant.

• Attempts to place the value in the next literal pool if it is not already available.

If the next literal pool is out of range, armasm generates an error message. In this case, you must
use the LTORG directive to place an extra literal pool in the code. Place the LTORG directive after
the failed LDR pseudo-instruction, and within the valid range for an LDR instruction.

Place literal pools where the processor does not attempt to execute them as instructions. Place
them after unconditional branch instructions, or after the return instruction at the end of a
subroutine. Example 7-2 shows how to do this.

The instructions that are listed as comments are the A32 instructions that armasm generates.

Example 7-2 Placing literal pools

 AREA Loadcon, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start

BL func1 ; Branch to first subroutine
 BL func2 ; Branch to second subroutine
stop

MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; ARM semihosting
func1
 LDR r0, =42 ; => MOV R0, #42
 LDR r1, =0x55555555 ; => LDR R1, [PC, #offset to
 ; Literal Pool 1]
 LDR r2, =0xFFFFFFFF ; => MVN R2, #0
 BX lr
 LTORG ; Literal Pool 1 contains
 ; literal Ox55555555
func2
 LDR r3, =0x55555555 ; => LDR R3, [PC, #offset to
 ; Literal Pool 1]
 ; LDR r4, =0x66666666 ; If this is uncommented it
 ; fails, because Literal Pool 2
 ; is out of reach
 BX lr
LargeTable
 SPACE 4200 ; Starting at the current location,
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-12
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
 ; clears a 4200 byte area of memory
 ; to zero
 END ; Literal Pool 2 is inserted here,

; but is out of range of the LDR
; pseudo-instruction that needs it

7.8.1 See also

Concepts
• Load immediate 32-bit values to a register using LDR Rd, =const on page 7-11.

Reference
armasm Reference Guide:
• LTORG on page 10-65.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-13
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.9 Load addresses into registers
It is often necessary to load an address into a register. You might have to load the address of a
variable, a string literal, or the start location of a jump table.

Addresses are normally expressed as offsets from a label, or from the current PC or other
register.

You can load an address into a register either:
• Using the instruction ADR.
• Using the instruction ADRL.
• Using the instruction MOV32.
• From a literal pool using the pseudo-instruction LDR Rd, =Label.

7.9.1 See also

Concepts
• Load addresses to a register using ADR on page 7-15
• Load addresses to a register using ADRL on page 7-17
• Load 32-bit values to a register using MOV32 on page 7-10
• Load addresses to a register using LDR Rd, =label on page 7-18.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-14
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.10 Load addresses to a register using ADR
The ADR instruction enables you to generate an address, within a certain range, without
performing a data load. ADR accepts a PC-relative expression, that is, a label with an optional
offset where the address of the label is relative to the current PC.

Note
 The label used with ADR must be within the same code section. armasm faults references to labels
that are out of range in the same section.

The available range of addresses for the ADR instruction depends on the instruction set and
encoding:

A32 Any value that can be produced by rotating an 8-bit value right by any even
number of bits within a 32-bit word. The range is relative to the PC.

32-bit T32 encoding
±4095 bytes to a byte, halfword, or word-aligned address.

16-bit T32 encoding
0 to 1020 bytes. label must be word-aligned. You can use the ALIGN directive to
ensure this.

7.10.1 Example of a jump table implementation with ADR

Example 7-3 shows A32 code that implements a jump table. Here, the ADR instruction loads the
address of the jump table.

Example 7-3 Implementing a jump table (A32)

 AREA Jump, CODE, READONLY ; Name this block of code
 ARM ; Following code is A32 code
num EQU 2 ; Number of entries in jump table
 ENTRY ; Mark first instruction to execute
start ; First instruction to call
 MOV r0, #0 ; Set up the three parameters
 MOV r1, #3
 MOV r2, #2
 BL arithfunc ; Call the function
stop

MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; ARM semihosting
arithfunc ; Label the function
 CMP r0, #num ; Treat function code as unsigned integer
 BXHS lr ; If code is >= num then return
 ADR r3, JumpTable ; Load address of jump table
 LDR pc, [r3,r0,LSL#2] ; Jump to the appropriate routine
JumpTable
 DCD DoAdd
 DCD DoSub
DoAdd

ADD r0, r1, r2 ; Operation 0
 BX lr ; Return
DoSub
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-15
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
SUB r0, r1, r2 ; Operation 1
 BX lr ; Return
 END ; Mark the end of this file

In Example 7-3 on page 7-15, the function arithfunc takes three arguments and returns a result
in R0. The first argument determines the operation to be carried out on the second and third
arguments:

argument1=0 Result = argument2 + argument3.

argument1=1 Result = argument2 – argument3.

The jump table is implemented with the following instructions and assembler directives:

EQU Is an assembler directive. You use it to give a value to a symbol. In Example 7-3
on page 7-15 it assigns the value 2 to num. When num is used elsewhere in the code,
the value 2 is substituted. Using EQU in this way is similar to using #define to
define a constant in C.

DCD Declares one or more words of store. In Example 7-3 on page 7-15 each DCD stores
the address of a routine that handles a particular clause of the jump table.

LDR The LDR PC,[R3,R0,LSL#2] instruction loads the address of the required clause of
the jump table into the PC. It:
• Multiplies the clause number in R0 by 4 to give a word offset.
• Adds the result to the address of the jump table.
• Loads the contents of the combined address into the PC.

7.10.2 See also

Concepts
• Load addresses to a register using LDR Rd, =label on page 7-18
• Load addresses to a register using ADR on page 7-15.

Reference
armasm Reference Guide:
• ADR (PC-relative) on page 3-32.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-16
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.11 Load addresses to a register using ADRL
The ADRL pseudo-instruction enables you to generate an address, within a certain range, without
performing a data load. ADRL accepts a PC-relative expression, that is, a label with an optional
offset where the address of the label is relative to the current PC.

Note
 The label used with ADRL must be within the same code section. armasm faults references to labels
that are out of range in the same section.

armasm converts an ADRL rn,label pseudo-instruction by generating:
• Two data processing instructions that load the address, if it is in range.
• An error message if the address cannot be constructed in two instructions.

The available range depends on the instruction set and encoding:

A32 Any value that can be generated by two ADD or two SUB instructions. That is, any
value that can be produced by the addition of two values, each of which is 8 bits
rotated right by any even number of bits within a 32-bit word. The range is
relative to the PC.

32-bit T32 encoding
±1MB to a byte, halfword, or word-aligned address.

16-bit T32 encoding
ADRL is not available.

7.11.1 See also

Concepts
• Load addresses to a register using LDR Rd, =label on page 7-18
• Load addresses to a register using ADR on page 7-15.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-17
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.12 Load addresses to a register using LDR Rd, =label
The LDR Rd,= pseudo-instruction can load any 32-bit numeric value into a register. It also accepts
PC-relative expressions such as labels, and labels with offsets.

armasm converts an LDR R0, =label pseudo-instruction by:

• Placing the address of label in a literal pool (a portion of memory embedded in the code
to hold constant values).

• Generating a PC-relative LDR instruction that reads the address from the literal pool, for
example:
 LDR rn [pc, #offset to literal pool]
 ; load register n with one word
 ; from the address [pc + offset]

You must ensure that there is a literal pool within range (see Literal pools on page 7-12
for more information).

Unlike the ADR and ADRL pseudo-instructions, you can use LDR with labels that are outside the
current section. armasm places a relocation directive in the object code when the source file is
assembled. The relocation directive instructs the linker to resolve the address at link time. The
address remains valid wherever the linker places the section containing the LDR and the literal
pool.

Example 7-4 shows how this works.

The instructions listed in the comments are the A32 instructions generated by armasm.

Example 7-4 Loading using LDR Rd, =label

 AREA LDRlabel, CODE,READONLY
 ENTRY ; Mark first instruction to execute
start
 BL func1 ; Branch to first subroutine
 BL func2 ; Branch to second subroutine
stop

MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; ARM semihosting
func1
 LDR r0, =start ; => LDR R0,[PC, #offset into
 ; Literal Pool 1]
 LDR r1, =Darea + 12 ; => LDR R1,[PC, #offset into
 ; Literal Pool 1]
 LDR r2, =Darea + 6000 ; => LDR R2, [PC, #offset into
 ; Literal Pool 1]

BX lr ; Return
 LTORG ; Literal Pool 1
func2
 LDR r3, =Darea + 6000 ; => LDR r3, [PC, #offset into
 ; Literal Pool 1]
 ; (sharing with previous literal)
 ; LDR r4, =Darea + 6004 ; If uncommented, produces an error
 ; because Literal Pool 2 is out of range
 BX lr ; Return
Darea SPACE 8000 ; Starting at the current location,
 ; clears a 8000 byte area of memory
 ; to zero
 END ; Literal Pool 2 is automatically inserted
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-18
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
 ; after the END directive.
; It is out of range of all the LDR
; instructions in this example.

7.12.1 An LDR Rd, =label example: string copying

Example 7-5 shows an A32 code routine that overwrites one string with another string. It uses
the LDR pseudo-instruction to load the addresses of the two strings from a data section. The
following are particularly significant:

DCB The DCB directive defines one or more bytes of store. In addition to integer values,
DCB accepts quoted strings. Each character of the string is placed in a consecutive
byte.

LDR, STR The LDR and STR instructions use post-indexed addressing to update their address
registers. For example, the instruction:
LDRB r2,[r1],#1

loads R2 with the contents of the address pointed to by R1 and then increments R1
by 1.

Example 7-5 String copy

 AREA StrCopy, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start

LDR r1, =srcstr ; Pointer to first string
 LDR r0, =dststr ; Pointer to second string
 BL strcopy ; Call subroutine to do copy
stop

MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; ARM semihosting
strcopy
 LDRB r2, [r1],#1 ; Load byte and update address
 STRB r2, [r0],#1 ; Store byte and update address
 CMP r2, #0 ; Check for zero terminator
 BNE strcopy ; Keep going if not
 MOV pc,lr ; Return
 AREA Strings, DATA, READWRITE
srcstr DCB "First string - source",0
dststr DCB "Second string - destination",0
 END

7.12.2 See also

Concepts
• Load immediate 32-bit values to a register using LDR Rd, =const on page 7-11.

Reference
armasm Reference Guide:
• LDR pseudo-instruction on page 3-86
• DCB on page 10-23.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-19
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.13 Other ways to load and store registers
You can load any 32-bit value from memory into a register with an LDR data load instruction. To
store registers into memory you can use the STR data store instruction.

You can use the MOV instruction to move any 32-bit data from one register to another.

7.13.1 See also

Concepts
• Load and store multiple register instructions on page 7-21
• A32 and T32 load and store multiple instructions on page 7-22.

Reference
armasm Reference Guide:
• Memory access instructions on page 3-9
• MOV and MVN on page 3-98.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-20
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.14 Load and store multiple register instructions
The A32 and T32 instruction sets include instructions that load and store multiple registers to
and from memory.

Multiple register transfer instructions provide an efficient way of moving the contents of several
registers to and from memory. They are most often used for block copy and for stack operations
at subroutine entry and exit. The advantages of using a multiple register transfer instruction
instead of a series of single data transfer instructions include:

• Smaller code size.

• A single instruction fetch overhead, rather than many instruction fetches.

• On uncached ARM processors, the first word of data transferred by a load or store
multiple is always a nonsequential memory cycle, but all subsequent words transferred
can be sequential memory cycles. Sequential memory cycles are faster in most systems.

Note
 The lowest numbered register is transferred to or from the lowest memory address accessed, and
the highest numbered register to or from the highest address accessed. The order of the registers
in the register list in the instructions makes no difference.

You can use the --diag_warning 1206 armasm command-line option to check that registers in
register lists are specified in increasing order.

7.14.1 See also

Concepts
• A32 and T32 load and store multiple instructions on page 7-22
• Stack implementation using LDM and STM on page 7-23
• Stack operations for nested subroutines on page 7-25
• Block copy with LDM and STM on page 7-26.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-21
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.15 A32 and T32 load and store multiple instructions
The following instructions are available in both A32 and T32 instruction sets:
LDM Load Multiple registers.
STM Store Multiple registers.
PUSH Store multiple registers onto the stack and update the stack pointer.
POP Load multiple registers off the stack, and update the stack pointer.

In LDM and STM instructions:

• The list of registers loaded or stored can include:
— In A32 instructions, any or all of R0-R12, SP, LR, and PC.
— In 32-bit T32 instructions, any or all of R0-R12, and optionally LR or PC (LDM only)

with some restrictions.
— In 16-bit T32 instructions, any or all of R0-R7.

• The address must be word-aligned. It can be:
— Incremented after each transfer.
— Incremented before each transfer (A32 instructions only).
— Decremented after each transfer (A32 instructions only).
— Decremented before each transfer (not in 16-bit encoded T32 instructions).

• The base register can be either:
— Updated to point to the next block of data in memory.
— Left as it was before the instruction.

When the base register is updated to point to the next block in memory, this is called writeback,
that is, the adjusted address is written back to the base register.

In PUSH and POP instructions:

• The stack pointer (SP) is the base register, and is always updated.

• The address is incremented after each transfer in POP instructions, and decremented before
each transfer in PUSH instructions.

• The list of registers loaded or stored can include:
— In A32 instructions, any or all of R0-R12, SP, LR, and PC.
— In 32-bit T32 instructions, any or all of R0-R12, and optionally LR or PC (POP only)

with some restrictions.
— In 16-bit T32 instructions, any or all of R0-R7, and optionally LR (PUSH only) or PC

(POP only).

Note
 Use of SP in the list of registers in any of these A32 instructions is deprecated.

A32 STM and PUSH instructions that use PC in the list of registers, and A32 LDM and POP instructions
that use both PC and LR in the list of registers are deprecated.

7.15.1 See also

Concepts
• Load and store multiple register instructions on page 7-21.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-22
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.16 Stack implementation using LDM and STM
The load and store multiple instructions can update the base register. For stack operations, the
base register is usually the stack pointer, SP. This means that you can use these instructions to
implement push and pop operations for any number of registers in a single instruction.

The load and store multiple instructions can be used with several types of stack:

Descending or ascending
The stack grows downwards, starting with a high address and progressing to a
lower one (a descending stack), or upwards, starting from a low address and
progressing to a higher address (an ascending stack).

Full or empty
The stack pointer can either point to the last item in the stack (a full stack), or the
next free space on the stack (an empty stack).

To make it easier for the programmer, stack-oriented suffixes can be used instead of the
increment or decrement, and before or after suffixes. Table 7-6 shows the stack-oriented
suffixes and their equivalent addressing mode suffixes for load and store instructions.

Table 7-7 shows the load and store multiple instructions with the stack-oriented suffixes for the
various stack types.

For example:

 STMFD sp!, {r0-r5} ; Push onto a Full Descending Stack
 LDMFD sp!, {r0-r5} ; Pop from a Full Descending Stack

Note
 The Procedure Call Standard for the ARM Architecture (AAPCS), and armclang always use a
full descending stack.

Table 7-6 Stack-oriented suffixes and equivalent addressing mode suffixes

Stack-oriented suffix For store or push
instructions

For load or pop
instructions

FD (Full Descending stack) DB (Decrement Before) IA (Increment After)

FA (Full Ascending stack) IB (Increment Before) DA (Decrement After)

ED (Empty Descending stack) DA (Decrement After) IB (Increment Before)

EA (Empty Ascending stack) IA (Increment After) DB (Decrement Before)

Table 7-7 Suffixes for load and store multiple instructions

Stack type Store Load

Full descending STMFD (STMDB, Decrement Before) LDMFD (LDM, increment after)

Full ascending STMFA (STMIB, Increment Before) LDMFA (LDMDA, Decrement After)

Empty descending STMED (STMDA, Decrement After) LDMED (LDMIB, Increment Before)

Empty ascending STMEA (STM, increment after) LDMEA (LDMDB, Decrement Before)
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-23
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
The PUSH and POP instructions assume a full descending stack. They are the preferred synonyms
for STMDB and LDM with writeback.

7.16.1 See also

Concepts
• Load and store multiple register instructions on page 7-21.

Other information
• Procedure Call Standard for the ARM Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-24
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.17 Stack operations for nested subroutines
Stack operations are very useful at subroutine entry and exit. At the start of a subroutine, any
working registers required can be stored on the stack, and at exit they can be popped off again.

In addition, if the link register is pushed onto the stack at entry, additional subroutine calls can
be made safely without causing the return address to be lost. If you do this, you can also return
from a subroutine by popping PC off the stack at exit, instead of popping LR and then moving
that value into PC. For example:

subroutine PUSH {r5-r7,lr} ; Push work registers and lr
 ; code
 BL somewhere_else
 ; code
 POP {r5-r7,pc} ; Pop work registers and pc

7.17.1 See also

Concepts
• Subroutine calls on page 7-5.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-25
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.18 Block copy with LDM and STM
Example 7-6 is an A32 code routine that copies a set of words from a source location to a
destination by copying a single word at a time.

Example 7-6 Block copy without LDM and STM

 AREA Word, CODE, READONLY ; name this block of code
num EQU 20 ; set number of words to be copied
 ENTRY ; mark the first instruction called
start
 LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy
wordcopy

LDR r3, [r0], #4 ; load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; decrement the counter
 BNE wordcopy ; ... copy more
stop

MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; ARM semihosting
 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END

You can make this module more efficient by using LDM and STM for as much of the copying as
possible. Eight is a sensible number of words to transfer at a time, given the number of available
registers. You can find the number of eight-word multiples in the block to be copied (if R2 is the
number of words to be copied) using:

 MOVS r3, r2, LSR #3 ; number of eight word multiples

You can use this value to control the number of iterations through a loop that copies eight words
per iteration. When there are fewer than eight words left, you can find the number of words left
(assuming that R2 has not been corrupted) using:

 ANDS r2, r2, #7

Example 7-7 lists the block copy module rewritten to use LDM and STM for copying.

Example 7-7 Block copy using LDM and STM

 AREA Block, CODE, READONLY ; name this block of code
num EQU 20 ; set number of words to be copied
 ENTRY ; mark the first instruction called
start
 LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy
 MOV sp, #0x400 ; Set up stack pointer (sp)
blockcopy

MOVS r3,r2, LSR #3 ; Number of eight word multiples
 BEQ copywords ; Fewer than eight words to move?
 PUSH {r4-r11} ; Save some working registers
octcopy

LDM r0!, {r4-r11} ; Load 8 words from the source
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-26
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
 STM r1!, {r4-r11} ; and put them at the destination
 SUBS r3, r3, #1 ; Decrement the counter
 BNE octcopy ; ... copy more
 POP {r4-r11} ; Don't need these now - restore
 ; originals
copywords

ANDS r2, r2, #7 ; Number of odd words to copy
 BEQ stop ; No words left to copy?
wordcopy

LDR r3, [r0], #4 ; Load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; Decrement the counter
 BNE wordcopy ; ... copy more
stop

MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; ARM semihosting
 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END

Note
 The purpose of this example is to show the use of the LDM and STM instructions. There are other
ways to perform bulk copy operations, the most efficient of which depends on several factors
and is outside the scope of this document.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-27
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.19 Memory accesses
The following addressing modes are commonly permitted for memory access instructions:

Offset addressing
The offset value is applied to an address obtained from the base register. The
result is used as the address for the memory access. The base register is
unchanged. The assembly language syntax for this mode is:
[Rn, offset]

Pre-indexed addressing
The offset value is applied to an address obtained from the base register. The
result is used as the address for the memory access, and written back into the base
register. The assembly language syntax for this mode is:
[Rn, offset]!

Post-indexed addressing
The address obtained from the base register is used, unchanged, as the address for
the memory access. The offset value is applied to the address, and written back
into the base register. The assembly language syntax for this mode is:
[Rn], offset

In each case, Rn is the base register and offset can be:
• An immediate constant.
• An index register, Rm.
• A shifted index register, such as Rm, LSL #shift.

7.19.1 See also

Concepts
• Registers in AArch32 state on page 4-4
• Address alignment in A32/T32 code on page 9-19.

Reference
armasm Reference Guide:
• Memory access instructions on page 3-9.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-28
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.20 Read-Modify-Write procedure
When you want to modify specific bits in a system register, you must ensure that you do not
modify the other bits in the same register. This is because individual bits in a system register
control different system functionality, and modifying them might cause your program to behave
incorrectly. You must use a read-modify-write procedure to ensure that you modify only the bits
you want to change.

To read-modify-write a system register, the instruction sequence must be:

1. The first instruction copies the value from the target system register to a temporary
general-purpose register.

2. The next one or more instructions modify the required bits in the general-purpose register.
This can be one or both of:
• BIC to clear the bits that must be cleared to 0.
• ORR to set the bits that must be set to 1.

3. The final instruction writes the value from the general-purpose register to the target
system register.

7.20.1 Example

This example shows the read-modify-write procedure to change some bits of a SIMD and
Floating-Point Status and Control Register (FPSCR) without affecting the other bits.

 VMRS r10,FPSCR ; copy FPSCR into the general-purpose r10
 BIC r10,r10,#0x00370000 ; clears STRIDE bits[21:20] and LEN bits[18:16]
 ORR r10,r10,#0x00030000 ; sets bits[17:16] (STRIDE =1 and LEN = 4)
 VMSR FPSCR,r10 ; copy r10 back into FPSCR

7.20.2 See also

Concepts
• Register accesses in AArch32 state on page 4-7
• The Q flag in AArch32 state on page 4-12.

Reference
armasm Reference Guide:
• VMRS and VMSR on page 4-75
• MRS (PSR to general-purpose register) on page 3-105
• MSR (general-purpose register to PSR) on page 3-108.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-29
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.21 Optional hash
You do not need to specify a hash before immediate constants in any instruction syntax
(including A32, T32, Advanced SIMD, and floating-point instructions). For example, the
following are valid instructions:

BKPT 100
MOVT R1, 256
VCEQ.I8 Q1, Q2, 0

By default, armasm warns if you do not specify a hash:

WARNING: A1865W: ‘#’ not seen before constant expression.

This can be suppressed with --diag_suppress=1865.

If you use the assembly code with another assembler, you are advised to use the # before all
immediates. The disassembler always shows the # for clarity.

7.21.1 See also

Reference
armasm Reference Guide:
• A32 and T32 instruction summary on page 3-2
• Advanced SIMD and floating-point instruction summary on page 4-2.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-30
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.22 Use of macros
A macro definition is a block of code enclosed between MACRO and MEND directives. It defines a
name that can be used as a convenient alternative to repeating the block of code. The main uses
for a macro are:

• To make it easier to follow the logic of the source code by replacing a block of code with
a single meaningful name.

• To avoid repeating a block of code several times.

7.22.1 See also

Concepts
• Test-and-branch macro example on page 7-32
• Unsigned integer division macro example on page 7-33.

Reference
armasm Reference Guide:
• MACRO and MEND on page 10-66.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-31
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.23 Test-and-branch macro example
In A32 code, a test-and-branch operation requires two instructions to implement.

You can define a macro definition such as this:

 MACRO
$label TestAndBranch $dest, $reg, $cc
$label CMP $reg, #0
 B$cc $dest
 MEND

The line after the MACRO directive is the macro prototype statement. This defines the name
(TestAndBranch) you use to invoke the macro. It also defines parameters ($label, $dest, $reg,
and $cc). Unspecified parameters are substituted with an empty string. For this macro you must
give values for $dest, $reg and $cc to avoid syntax errors. armasm substitutes the values you give
into the code.

This macro can be invoked as follows:

test TestAndBranch NonZero, r0, NE
 ...
 ...
NonZero

After substitution this becomes:

test CMP r0, #0
 BNE NonZero
 ...
 ...
NonZero

7.23.1 See also

Concepts
• Use of macros on page 7-31
• Unsigned integer division macro example on page 7-33
• Numeric local labels on page 10-12.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-32
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.24 Unsigned integer division macro example
Example 7-8 shows a macro that performs an unsigned integer division. It takes four
parameters:

$Bot The register that holds the divisor.

$Top The register that holds the dividend before the instructions are executed. After the
instructions are executed, it holds the remainder.

$Div The register where the quotient of the division is placed. It can be NULL ("") if only
the remainder is required.

$Temp A temporary register used during the calculation.

Example 7-8 Unsigned integer division with a macro

 MACRO
$Lab DivMod $Div,$Top,$Bot,$Temp
 ASSERT $Top <> $Bot ; Produce an error message if the
 ASSERT $Top <> $Temp ; registers supplied are
 ASSERT $Bot <> $Temp ; not all different
 IF "$Div" <> ""
 ASSERT $Div <> $Top ; These three only matter if $Div
 ASSERT $Div <> $Bot ; is not null ("")
 ASSERT $Div <> $Temp ;
 ENDIF
$Lab
 MOV $Temp, $Bot ; Put divisor in $Temp
 CMP $Temp, $Top, LSR #1 ; double it until
90 MOVLS $Temp, $Temp, LSL #1 ; 2 * $Temp > $Top
 CMP $Temp, $Top, LSR #1
 BLS %b90 ; The b means search backwards
 IF "$Div" <> "" ; Omit next instruction if $Div is null
 MOV $Div, #0 ; Initialize quotient
 ENDIF
91 CMP $Top, $Temp ; Can we subtract $Temp?
 SUBCS $Top, $Top,$Temp ; If we can, do so
 IF "$Div" <> "" ; Omit next instruction if $Div is null
 ADC $Div, $Div, $Div ; Double $Div
 ENDIF
 MOV $Temp, $Temp, LSR #1 ; Halve $Temp,
 CMP $Temp, $Bot ; and loop until
 BHS %b91 ; less than divisor
 MEND

The macro checks that no two parameters use the same register. It also optimizes the code
produced if only the remainder is required.

To avoid multiple definitions of labels if DivMod is used more than once in the assembly source,
the macro uses numeric local labels (90, 91).

Example 7-9 on page 7-34 shows the code that this macro produces if it is invoked as follows:

ratio DivMod R0,R5,R4,R2
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-33
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
Example 7-9 Output from division macro

 ASSERT r5 <> r4 ; Produce an error if the
 ASSERT r5 <> r2 ; registers supplied are
 ASSERT r4 <> r2 ; not all different
 ASSERT r0 <> r5 ; These three only matter if $Div
 ASSERT r0 <> r4 ; is not null ("")
 ASSERT r0 <> r2 ;
ratio
 MOV r2, r4 ; Put divisor in $Temp
 CMP r2, r5, LSR #1 ; double it until
90 MOVLS r2, r2, LSL #1 ; 2 * r2 > r5
 CMP r2, r5, LSR #1
 BLS %b90 ; The b means search backwards
 MOV r0, #0 ; Initialize quotient
91 CMP r5, r2 ; Can we subtract r2?
 SUBCS r5, r5, r2 ; If we can, do so
 ADC r0, r0, r0 ; Double r0
 MOV r2, r2, LSR #1 ; Halve r2,
 CMP r2, r4 ; and loop until
 BHS %b91 ; less than divisor

7.24.1 See also

Concepts
• Use of macros on page 7-31
• Test-and-branch macro example on page 7-32
• Numeric local labels on page 10-12.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-34
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.25 Instruction and directive relocations
A relocation is a directive embedded in the object file that enables source code to refer to a label
whose target address is unknown or cannot be calculated at assembly time. armasm emits a
relocation in the object file, and the linker resolves this to the address where the target is placed.

armasm relocates the data directives DCB, DCW, DCWU, DCD, and DCDU if their syntax contains an
external symbol, that is a symbol declared using IMPORT or EXTERN. This causes the bottom 8, 16,
or 32 bits of the address to be used at link-time.

The REQUIRE directive emits a relocation to signal to the linker that the target label must be
present if the current section is present.

armasm is permitted to emit a relocation for these instructions:

LDR (PC-relative)
All A32 and T32 instructions, except the T32 doubleword instruction, can be
relocated.

PLD, PLDW, and PLI
All A32 and T32 instructions can be relocated.

B, BL, and BLX
All A32 and T32 instructions can be relocated.

CBZ and CBNZ
All T32 instructions can be relocated but this is discouraged because of the
limited branch range of these instructions.

LDC and LDC2
Only A32 instructions can be relocated.

VLDR
Only A32 instructions can be relocated.

armasm emits a relocation for these instructions if the label used meets any of the following
requirements, as appropriate for the instruction type:
• The label is WEAK.
• The label is not in the same AREA.
• The label is external to the object (IMPORT or EXTERN).

For B, BL, and BX instructions, armasm emits a relocation also if:
• The label is a function.
• The label is exported using EXPORT or GLOBAL.

Note
 You can use the RELOC directive to control the relocation at a finer level, but this requires
knowledge of the ABI.

7.25.1 Example

IMPORT sym ; sym is an external symbol
DCW sym ; Because DCW only outputs 16 bits, only the lower 16 bits

; of the address of sym are inserted at link-time.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-35
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.25.2 See also

Reference
armasm Reference Guide:
• AREA on page 10-13
• EXPORT or GLOBAL on page 10-36
• IMPORT and EXTERN on page 10-57
• REQUIRE on page 10-77
• RELOC on page 10-76
• DCB on page 10-23
• DCD and DCDU on page 10-24
• DCW and DCWU on page 10-31
• LDR (PC-relative) on page 3-82
• ADR (PC-relative) on page 3-32
• PLD, PLDW, and PLI on page 3-119
• B, BL, BX, and BLX on page 3-44
• CBZ and CBNZ on page 3-49
• LDC and STC on page 3-69
• VLDR and VSTR on page 4-55.

Other information
• ELF for the ARM Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-36
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.26 Symbol versions
The ARM linker conforms to the Base Platform ABI for the ARM Architecture (BPABI) and
supports the GNU-extended symbol versioning model.

To add a symbol version to an existing symbol, you must define a version symbol at the same
address. A version symbol is of the form:
• name@ver if ver is a non default version of name
• name@@ver if ver is the default version of name.

The version symbols must be enclosed in vertical bars.

For example, to define a default version:

|my_versioned_symbol@@ver2| ; Default version
my_asm_function PROC
 ...
 BX lr
 ENDP

To define a non default version:

|my_versioned_symbol@ver1| ; Non default version
my_old_asm_function PROC
 ...
 BX lr
 ENDP

7.26.1 See also

Concepts
armlink User Guide:
• Chapter 7 Accessing and managing symbols with armlink.

Other information
• Base Platform ABI for the ARM Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-37
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.27 Frame directives
You must use frame directives to describe the way that your code uses the stack if you want to
be able to do either of the following:
• Debug your application using stack unwinding.
• Use either flat or call-graph profiling.

armasm uses frame directives to insert DWARF debug frame information into the object file in
ELF format that it produces. This information is required by a debugger for stack unwinding
and for profiling.

Be aware of the following:

• Frame directives do not affect the code that armasm produces.

• armasm does not validate the information in frame directives against the instructions
emitted.

7.27.1 See also

Concepts
• Exception tables and Unwind tables on page 7-39.

Reference
armasm Reference Guide:
• About frame directives on page 10-6.

Other information
• Procedure Call Standard for the ARM Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-38
ID121814 Non-Confidential

Writing A32/T32 Assembly Language
7.28 Exception tables and Unwind tables
Exception tables are necessary to handle exceptions thrown by functions in high-level languages
such as C++. Unwind tables contain debug frame information which are also necessary for the
handling of such exceptions. An exception can only propagate through a function with an
unwind table.

Functions written in C++ have unwind information by default. However, for assembly language
functions (code encased by PROC/ENDP or FUNC/ENDFUNC) that are called from C++ code, you must
ensure that there are exception tables and unwind tables to enable the exceptions to propagate
through them.

An exception cannot propagate through a function with a nounwind table. The exception
handling runtime environment terminates the program if it encounters a nounwind table during
exception processing.

armasm can generate nounwind table entries for all functions and non-functions. It can generate
an unwind table for a function only if the function contains sufficient FRAME directives to describe
the use of the stack within the function. To be able to create an unwind table for a function, each
POP or PUSH instruction must be followed by a FRAME POP or FRAME PUSH directive respectively.
Functions must conform to the conditions set out in the Exception Handling ABI for the ARM
Architecture (EHABI), section 9.1 Constraints on Use. If armasm cannot generate an unwind
table, it generates a nounwind table.

7.28.1 See also

Concepts
• Frame directives on page 7-38.

Reference
armasm Reference Guide:
• About frame directives on page 10-6
• --no_exceptions_unwind on page 2-50
• --exceptions on page 2-30
• --no_exceptions on page 2-49
• FRAME UNWIND ON on page 10-50
• FRAME UNWIND OFF on page 10-51
• FUNCTION or PROC on page 10-52
• ENDFUNC or ENDP on page 10-33.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 7-39
ID121814 Non-Confidential

Chapter 8
Condition Codes

The following topics describe condition codes and conditional execution of A64, A32, and T32
code:
• Conditional instructions on page 8-2
• Conditional execution in A32 code on page 8-3
• Conditional execution in T32 code on page 8-4
• Conditional execution in A64 code on page 8-5
• Condition flags on page 8-6
• Updates to the condition flags in A32/T32 code on page 8-7
• Updates to the condition flags in A64 code on page 8-8
• Floating-point instructions that update the condition flags on page 8-9
• Carry flag on page 8-10
• Overflow flag on page 8-11
• Condition code suffixes on page 8-12
• Comparison of condition code meanings in integer and floating-point code on page 8-14
• Benefits of using conditional execution in A32 and T32 code on page 8-16
• Illustration of the benefits of conditional instructions in A32 and T32 code on page 8-17
• Optimization for execution speed on page 8-20.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-1
ID121814 Non-Confidential

Condition Codes
8.1 Conditional instructions
You can execute an instruction conditionally, based on the condition flags set by another
instruction, either:
• Immediately after the instruction that updated the flags.
• After any number of intervening instructions that have not updated the flags.

In AArch32 state, whether an instruction can be conditional or not depends on the instruction
set state that the processor is in. Few A64 instructions can be conditionally executed.

To make an instruction conditional, you add a condition code suffix to the instruction
mnemonic. The condition code suffix enables the processor to test a condition that is based on
the flags. If the test fails, the instruction:
• Does not execute.
• Does not write any value to its destination register.
• Does not affect any of the flags.
• Does not generate any exception.

8.1.1 See also

Concepts
• Condition code suffixes on page 8-12
• Conditional execution in A32 code on page 8-3
• Conditional execution in T32 code on page 8-4
• Conditional execution in A64 code on page 8-5.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-2
ID121814 Non-Confidential

Condition Codes
8.2 Conditional execution in A32 code
Almost all A32 instructions can be executed conditionally on the value of the condition flags in
the APSR. You can either add a condition code suffix to the instruction or you can conditionally
skip over the instruction using a conditional branch instruction.

Using conditional branch instructions to control the flow of execution can be more efficient
when a series of instructions depend on the same condition.

Example 8-1 Conditional instructions to control execution

; flags set by a previous instruction
LSLEQ r0, r0, #24
ADDEQ r0, r0, #2
;…

Example 8-2 Conditional branch to control execution

; flags set by a previous instruction
BNE over
LSL r0, r0, #24
ADD r0, r0, #2

over
;…

8.2.1 See also

Concepts
• Conditional execution in T32 code on page 8-4.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-3
ID121814 Non-Confidential

Condition Codes
8.3 Conditional execution in T32 code
In T32 code, there are several ways to achieve conditional execution. You can conditionally skip
over the instruction using a conditional branch instruction. Instructions can also be conditionally
executed by using either of the following:
• CBZ and CBNZ.
• The IT (If-Then) instruction.

The T32 CBZ (Conditional Branch on Zero) and CBNZ (Conditional Branch on Non-Zero)
instructions compare the value of a register against zero and branch on the result.

IT is a 16-bit instruction that enables a single subsequent 16-bit T32 instruction from a restricted
set to be conditionally executed, based on the value of the condition flags, and the condition
code suffix specified.

Example 8-3 Conditional instructions using IT block

; flags set by a previous instruction
IT EQ
LSLEQ r0, r0, #24
;…

The use of the IT instruction is deprecated when any of the following are true:
• There is more than one instruction in the IT block.
• There is a 32-bit instruction in the IT block.
• The instruction in the IT block references the PC.

8.3.1 See also

Concepts
• Conditional execution in A32 code on page 8-3.

Reference
• IT on page 3-66
• CBZ and CBNZ on page 3-49.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-4
ID121814 Non-Confidential

Condition Codes
8.4 Conditional execution in A64 code
In the A64 instruction set, there are a few instructions that are truly conditional. Truly
conditional means that when the condition is false, the instruction advances the program counter
but has no other effect. The conditional branch, B.cond is a truly conditional instruction. The
condition code is appended to the instruction with a '.' delimiter, for example B.EQ.

There are other truly conditional branch instructions that execute depending on the value of the
Zero condition flag. You cannot append any condition code suffix to them. These instructions
are:
• CBNZ.
• CBZ.
• TBNZ.
• TBZ.

There are a few A64 instructions that are unconditionally executed but use the condition code
as a source operand. These instructions always execute but the operation depends on the value
of the condition code. These instructions can be categorized as:
• Conditional data processing instructions, for example CSEL.
• Conditional comparison instructions, CCMN and CCMP.

In these instructions, you specify the condition code in the final operand position, for example
CSEL Wd,Wm,Wn,NE.

8.4.1 See also

Concepts
• Condition flags on page 8-6.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-5
ID121814 Non-Confidential

Condition Codes
8.5 Condition flags
The condition flags are:

N Set to 1 when the result of the operation is negative, cleared to 0 otherwise.

Z Set to 1 when the result of the operation is zero, cleared to 0 otherwise.

C Set to 1 when the operation results in a carry, cleared to 0 otherwise.

V Set to 1 when the operation causes overflow, cleared to 0 otherwise.

8.5.1 See also

Concepts
• Updates to the condition flags in A32/T32 code on page 8-7
• Condition code suffixes on page 8-12
• Read-Modify-Write procedure on page 7-29
• Floating-point instructions that update the condition flags on page 8-9
• Updates to the condition flags in A64 code on page 8-8
• Carry flag on page 8-10
• Overflow flag on page 8-11.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-6
ID121814 Non-Confidential

Condition Codes
8.6 Updates to the condition flags in A32/T32 code
In AArch32 state, the condition flags are held in the Application Program Status Register
(APSR). You can read and modify the flags using the read-modify-write procedure.

Most A32 and T32 data processing instructions have an option to update the condition flags
according to the result of the operation. Instructions with the optional S suffix update the flags.
Conditional instructions that are not executed have no effect on the flags.

Which flags are updated depends on the instruction. Some instructions update all flags, and
some update a subset of the flags. If a flag is not updated, the original value is preserved. In the
armasm Reference Guide, the description of each instruction mentions the effect that it has on
the flags.

Note
 Most instructions update the condition flags only if the S suffix is specified. The instructions
CMP, CMN, TEQ, and TST always update the flags.

8.6.1 See also

Concepts
• Condition code suffixes on page 8-12
• Read-Modify-Write procedure on page 7-29
• Floating-point instructions that update the condition flags on page 8-9
• Updates to the condition flags in A64 code on page 8-8
• Carry flag on page 8-10
• Overflow flag on page 8-11.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-7
ID121814 Non-Confidential

Condition Codes
8.7 Updates to the condition flags in A64 code
In AArch64 state, the N, Z, C, and V condition flags are held in the NZCV system register,
which is part of the process state. You can access the flags using the MSR and MRS instructions.

Note
 An instruction updates the condition flags only if the S suffix is specified, except the instructions
CMP, CMN, CCMP, CCMN, and TST, which always update the condition flags. The instruction also
determines which flags get updated. If a conditional instruction does not execute, it does not
affect the flags.

8.7.1 Example

This example shows the read-modify-write procedure to change some of the condition flags in
A64 code.

MRS x1, NZCV ; copy N, Z, C, and V flags into general-purpose x1
MOV x2, #0x30000000
BIC x1,x1,x2 ; clears the C and V flags (bits 29,28)
ORR x1,x1,#0xC0000000 ; sets the N and Z flags (bits 31,30)
MSR NZCV, x1 ; copy x1 back into NZCV register to update the condition flags

8.7.2 See also

Concepts
• Condition code suffixes on page 8-12
• Read-Modify-Write procedure on page 7-29
• Floating-point instructions that update the condition flags on page 8-9
• Updates to the condition flags in A32/T32 code on page 8-7.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-8
ID121814 Non-Confidential

Condition Codes
8.8 Floating-point instructions that update the condition flags
The only A32/T32 floating-point instructions that can update the condition flags are VCMP and
VCMPE. Other floating-point or Advanced SIMD instructions cannot modify the flags.

VCMP and VCMPE do not update the flags directly, but update a separate set of flags in the
Floating-Point Status and Control Register (FPSCR). To use these flags to control conditional
instructions, including conditional floating-point instructions, you must first update the
condition flags yourself. To do this, copy the flags from the FPSCR into the APSR using a VMRS
instruction:

VMRS APSR_nzcv, FPSCR

All A64 floating-point comparison instructions can update the condition flags. These
instructions update the flags directly in the NZCV register.

8.8.1 See also

Concepts
• Read-Modify-Write procedure on page 7-29
• Floating-point instructions that update the condition flags
• Updates to the condition flags in A64 code on page 8-8
• Carry flag on page 8-10
• Overflow flag on page 8-11.

Reference
• VCMP, VCMPE on page 4-40
• VMRS and VMSR on page 4-75.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-9
ID121814 Non-Confidential

Condition Codes
8.9 Carry flag
The carry (C) flag is set when an operation results in a carry, or when a subtraction results in no
borrow.

In A32/T32 code, C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is set to 1 if the addition

produced a carry (that is, an unsigned overflow), and to 0 otherwise.
• For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction

produced a borrow (that is, an unsigned underflow), and to 1 otherwise.
• For non-additions/subtractions that incorporate a shift operation, C is set to the last bit

shifted out of the value by the shifter.
• For other non-additions/subtractions, C is normally left unchanged, but see the individual

instruction descriptions for any special cases.
• The floating-point compare instructions, VCMP and VCMPE set the C flag and the other

condition flags in the FPSCR to the result of the comparison.

In A64 code, C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is set to 1 if the addition

produced a carry (that is, an unsigned overflow), and to 0 otherwise.
• For a subtraction, including the comparison instruction CMP and the negate instructions

NEGS and NGCS, C is set to 0 if the subtraction produced a borrow (that is, an unsigned
underflow), and to 1 otherwise.

• For the integer and floating-point conditional compare instructions CCMP, CCMN, FCCMP, and
FCCMPE, C and the other condition flags are set either to the result of the comparison, or
directly from an immediate value.

• For the floating-point compare instructions, FCMP and FCMPE, C and the other condition
flags are set to the result of the comparison.

• For other instructions, C is normally left unchanged, but see the individual instruction
descriptions for any special cases.

8.9.1 See also

Concepts
• Condition flags on page 8-6
• Predeclared core register names in AArch32 state on page 4-8
• Predeclared core register names in AArch64 state on page 5-6
• Condition code suffixes on page 8-12
• Updates to the condition flags in A32/T32 code on page 8-7
• Updates to the condition flags in A64 code on page 8-8
• Overflow flag on page 8-11.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-10
ID121814 Non-Confidential

Condition Codes
8.10 Overflow flag
In A32/T32 code, overflow occurs if the result of an add, subtract, or compare is greater than or
equal to 231, or less than –231.

In A64 instructions that use the 64-bit X registers, overflow occurs if the result of an add,
subtract, or compare is greater than or equal to 263, or less than –263.

In A64 instructions that use the 32-bit W registers, overflow occurs if the result of an add,
subtract, or compare is greater than or equal to 231, or less than –231.

8.10.1 See also

Concepts
• Condition flags on page 8-6
• Condition code suffixes on page 8-12
• Updates to the condition flags in A32/T32 code on page 8-7
• Updates to the condition flags in A64 code on page 8-8
• Carry flag on page 8-10.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-11
ID121814 Non-Confidential

Condition Codes
8.11 Condition code suffixes
Instructions that can be conditional have an optional condition code, which is shown in syntax
descriptions as {cond}. This condition is encoded in A32 instructions and in A64
instructions. For T32 instructions, the condition is encoded in a preceding IT instruction. An
instruction with a condition code is only executed if the condition flags meet the specified
condition.

The following table shows the condition codes that you can use and the flags they depend on.

The following example shows conditional execution in A32 code.

Example 8-4

 ADD r0, r1, r2 ; r0 = r1 + r2, don't update flags
 ADDS r0, r1, r2 ; r0 = r1 + r2, and update flags
 ADDSCS r0, r1, r2 ; If C flag set then r0 = r1 + r2, and update flags
 CMP r0, r1 ; update flags based on r0-r1.

8.11.1 See also

Concepts
• Updates to the condition flags in A32/T32 code on page 8-7
• Updates to the condition flags in A64 code on page 8-8
• Comparison of condition code meanings in integer and floating-point code on page 8-14

Table 8-1 Condition code suffixes

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always. This suffix is normally omitted.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-12
ID121814 Non-Confidential

Condition Codes
• Conditional instructions on page 8-2.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-13
ID121814 Non-Confidential

Condition Codes
8.12 Comparison of condition code meanings in integer and floating-point code
The meaning of the condition code mnemonic suffixes depends on whether the condition flags
were set by a floating-point instruction or by an integer data processing instruction. This is
because:

• Floating-point values are never unsigned, so the unsigned conditions are not required.

• Not-a-Number (NaN) values have no ordering relationship with numbers or with each
other, so extra conditions are required to account for unordered results.

The meanings of the condition code mnemonics are shown in Table 8-2.

Note
 The type of the instruction that last updated the condition flags determines the meaning of the
condition codes.

8.12.1 See also

Concepts
• Floating-point instructions that update the condition flags on page 8-9
• Condition code suffixes on page 8-12.

Table 8-2 Condition codes

Mnemonic Meaning after integer data processing
instruction

Meaning after floating-point
instruction

EQ Equal Equal

NE Not equal Not equal, or unordered

CS Carry set Greater than or equal, or unordered

HS Unsigned higher or same Greater than or equal, or unordered

CC Carry clear Less than

LO Unsigned lower Less than

MI Negative Less than

PL Positive or zero Greater than or equal, or unordered

VS Overflow Unordered (at least one NaN operand)

VC No overflow Not unordered

HI Unsigned higher Greater than, or unordered

LS Unsigned lower or same Less than or equal

GE Signed greater than or equal Greater than or equal

LT Signed less than Less than, or unordered

GT Signed greater than Greater than

LE Signed less than or equal Less than or equal, or unordered

AL Always (normally omitted) Always (normally omitted)
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-14
ID121814 Non-Confidential

Condition Codes
Reference
armasm Reference Guide:
• IT on page 3-66
• VMRS and VMSR on page 4-75.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-15
ID121814 Non-Confidential

Condition Codes
8.13 Benefits of using conditional execution in A32 and T32 code
You can use conditional execution of A32 instructions to reduce the number of branch
instructions in your code, and improve code density. The IT instruction in T32 achieves a similar
improvement.

Branch instructions are also expensive in processor cycles. On ARM processors without branch
prediction hardware, it typically takes three processor cycles to refill the processor pipeline each
time a branch is taken.

Some ARM processors have branch prediction hardware. In systems using these processors, the
pipeline only has to be flushed and refilled when there is a misprediction.

8.13.1 See also

Concepts
• Illustration of the benefits of conditional instructions in A32 and T32 code on page 8-17.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-16
ID121814 Non-Confidential

Condition Codes
8.14 Illustration of the benefits of conditional instructions in A32 and T32 code
This example illustrates the difference between using branches and using conditional
instructions. It uses the Euclid algorithm for the Greatest Common Divisor (gcd) to demonstrate
how conditional instructions improve code size and speed.

In C the gcd algorithm can be expressed as:

int gcd(int a, int b)
{
 while (a != b)
 {
 if (a > b)
 a = a - b;
 else
 b = b - a;
 }
 return a;
}

The following examples show implementations of the gcd algorithm with and without
conditional instructions.

Note
 The detailed analysis of execution speed only applies to an ARM7™ processor. The code density
calculations apply to all ARM processors.

8.14.1 Example of conditional execution using branches in A32 code

This example is an A32 code implementation of the gcd algorithm. It achieves conditional
execution by using conditional branches, rather than individual conditional instructions:

gcd CMP r0, r1
 BEQ end
 BLT less
 SUBS r0, r0, r1 ; could be SUB r0, r0, r1 for A32
 B gcd
less
 SUBS r1, r1, r0 ; could be SUB r1, r1, r0 for A32
 B gcd
end

The code is seven instructions long because of the number of branches. Every time a branch is
taken, the processor must refill the pipeline and continue from the new location. The other
instructions and non-executed branches use a single cycle each.

The following table shows the number of cycles this implementation uses on an ARM7
processor when R0 equals 1 and R1 equals 2.

Table 8-3 Conditional branches only

R0: a R1: b Instruction Cycles (ARM7)

1 2 CMP r0, r1 1

1 2 BEQ end 1 (not executed)

1 2 BLT less 3

1 2 SUB r1, r1, r0 1
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-17
ID121814 Non-Confidential

Condition Codes
8.14.2 Example of conditional execution using conditional instructions in A32 code

This example is an A32 code implementation of the gcd algorithm using individual conditional
instructions in A32 code. The gcd algorithm only takes four instructions:

gcd
 CMP r0, r1
 SUBGT r0, r0, r1
 SUBLE r1, r1, r0
 BNE gcd

In addition to improving code size, in most cases this code executes faster than the version that
uses only branches.

The following table shows the number of cycles this implementation uses on an ARM7
processor when R0 equals 1 and R1 equals 2.

Comparing this with the example that uses only branches:

• Replacing branches with conditional execution of all instructions saves three cycles.

• Where R0 equals R1, both implementations execute in the same number of cycles. For all
other cases, the implementation that uses conditional instructions executes in fewer cycles
than the implementation that uses branches only.

1 2 B gcd 3

1 1 CMP r0, r1 1

1 1 BEQ end 3

Total = 13

Table 8-3 Conditional branches only (continued)

R0: a R1: b Instruction Cycles (ARM7)

Table 8-4 All instructions conditional

R0: a R1: b Instruction Cycles (ARM7)

1 2 CMP r0, r1 1

1 2 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1

1 1 BNE gcd 3

1 1 CMP r0,r1 1

1 1 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1 (not executed)

1 1 BNE gcd 1 (not executed)

Total = 10
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-18
ID121814 Non-Confidential

Condition Codes
8.14.3 Example of conditional execution using conditional instructions in T32 code

You can use the IT instruction to write conditional instructions in T32 code. The T32 code
implementation of the gcd algorithm using conditional instructions is similar to the
implementation in A32 code. The implementation in T32 code is:

gcd
 CMP r0, r1
 ITE GT
 SUBGT r0, r0, r1
 SUBLE r1, r1, r0
 BNE gcd

These instructions assemble equally well to A32 or T32 code. The assembler checks the IT
instructions, but omits them on assembly to A32 code.

It requires one more instruction in T32 code (the IT instruction) than in A32 code, but the overall
code size is 10 bytes in T32 code, compared with 16 bytes in A32 code.

8.14.4 Example of conditional execution code using branches in T32 code

In architectures before ARMv6T2, there is no IT instruction and therefore T32 instructions
cannot be executed conditionally except for the B branch instruction. The gcd algorithm must be
written with conditional branches and is similar to the A32 code implementation using branches,
without conditional instructions.

The T32 code implementation of the gcd algorithm without conditional instructions requires
seven instructions. The overall code size is 14 bytes. This figure is even less than the A32
implementation that uses conditional instructions, which uses 16 bytes.

In addition, on a system using 16-bit memory this T32 implementation runs faster than both A32
implementations because only one memory access is required for each 16-bit T32 instruction,
whereas each 32-bit A32 instruction requires two fetches.

8.14.5 See also

Concepts
• Benefits of using conditional execution in A32 and T32 code on page 8-16
• Condition code suffixes on page 8-12
• Optimization for execution speed on page 8-20.

Reference
armasm Reference Guide:
• IT on page 3-66.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
• Technical Reference Manual for your processor.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-19
ID121814 Non-Confidential

Condition Codes
8.15 Optimization for execution speed
To optimize code for execution speed you must have detailed knowledge of the instruction
timings, branch prediction logic, and cache behavior of your target system.

8.15.1 See also

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
• Technical Reference Manual for your processor.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 8-20
ID121814 Non-Confidential

Chapter 9
Using armasm

The following topics describe how to use armasm:
• armasm command-line syntax on page 9-2
• armasm commands listed in groups on page 9-3
• Specify command-line options with an environment variable on page 9-5
• Using stdin to input source code to armasm on page 9-6
• Built-in variables and constants on page 9-7
• Versions of armasm on page 9-10
• Diagnostic messages on page 9-11
• Interlocks diagnostics on page 9-12
• Automatic IT block generation in T32 code on page 9-13
• T32 branch target alignment on page 9-14
• T32 code size diagnostics on page 9-15
• A32 and T32 instruction portability diagnostics on page 9-16
• T32 instruction width on page 9-17
• Two pass assembler diagnostics on page 9-18
• Address alignment in A32/T32 code on page 9-19
• Address alignment in A64 code on page 9-20
• Instruction width selection in T32 code on page 9-21.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-1
ID121814 Non-Confidential

Using armasm
9.1 armasm command-line syntax
The command for invoking armasm is:

armasm {options} {inputfile}

where inputfile is an assembly source file and options instruct armasm how to assemble the
inputfile. You can invoke armasm with any combination of options separated by spaces.

The armasm command line is case-insensitive, except in filenames and where specified. If the
command line contains options that conflict with each other, then the last option found always
takes precedence.

9.1.1 See also

Reference
• armasm commands listed in groups on page 9-3.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-2
ID121814 Non-Confidential

Using armasm
9.2 armasm commands listed in groups
See the following command-line options in the armasm Reference Guide.

Help
• --help on page 2-35
• --version_number on page 2-69
• --vsn on page 2-71.

Source
• --16 on page 2-5
• --32 on page 2-6
• --arm on page 2-9
• --arm_only on page 2-10
• -i on page 2-36
• --maxcache on page 2-44
• --no_esc on page 2-47
• --no_regs on page 2-53
• --pd on page 2-58
• --predefine on page 2-59
• --reduce_paths on page 2-60
• --regnames on page 2-61
• --thumb on page 2-64
• --unsafe on page 2-67.

Output
• --debug on page 2-17
• --depend on page 2-18
• --depend_format on page 2-19
• --dllexport_all on page 2-25
• --dwarf2 on page 2-26
• --dwarf3 on page 2-27
• --execstack on page 2-29
• -g on page 2-34
• --keep on page 2-37
• --length on page 2-38
• --list on page 2-41
• -m on page 2-43
• --md on page 2-45
• --no_code_gen on page 2-46
• --no_execstack on page 2-48
• --no_hide_all on page 2-51
• --no_terse on page 2-54
• -o on page 2-57
• --width on page 2-72
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-3
ID121814 Non-Confidential

Using armasm
• --xref on page 2-73
• --untyped_local_labels on page 2-68.

Target
• --apcs on page 2-7
• --bi on page 2-11
• --bigend on page 2-12
• --cpu on page 2-15
• --fpmode on page 2-32
• --fpu on page 2-33
• --li on page 2-39
• --littleend on page 2-42
• --no_unaligned_access on page 2-55
• --unaligned_access on page 2-66.

Diagnostics
• --brief_diagnostics on page 2-13
• --checkreglist on page 2-14
• --diag_error on page 2-20
• --diag_remark on page 2-21
• --diag_warning on page 2-24
• --diag_suppress on page 2-23
• --diag_style on page 2-22
• --errors on page 2-28
• --no_warn on page 2-56
• --report-if-not-wysiwyg on page 2-62.

Exception table generation
• --exceptions on page 2-30
• --exceptions_unwind on page 2-31.

Command-line options in a text file
• --via on page 2-70.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-4
ID121814 Non-Confidential

Using armasm
9.3 Specify command-line options with an environment variable
You can specify command-line options by setting the value of the ARMCOMPILER6_ASMOPT
environment variable. The syntax is identical to the command-line syntax. The assembler reads
the value of ARMCOMPILER6_ASMOPT and inserts it at the front of the command string. This means
that options specified in ARMCOMPILER6_ASMOPT can be overridden by arguments on the command
line.

9.3.1 See also

Concepts
• armasm command-line syntax on page 9-2.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-5
ID121814 Non-Confidential

Using armasm
9.4 Using stdin to input source code to armasm
Instead of creating a file for your source code, you can use stdin to pipe output from another
program into armasm or to input source code directly on the command line. This is useful if you
want to test a short piece of code without having to create a file for it.

To use stdin to pipe output from another program into armasm, invoke the program and the
assembler using the pipe character (|). Use the minus character (-) as the source filename to
instruct the assembler to take input from stdin. You must specify the output filename using the
-o option. You can specify the command-line options you want to use. For example to pipe
output from fromelf:

fromelf --disassemble A32input.o | armasm --cpu=8-A.32 -o A32output.o -

To use stdin to input source code directly on the command line:

1. Invoke the assembler with the command-line options you want to use. Use the minus
character (-) as the source filename to instruct the assembler to take input from stdin. You
must specify the output filename using the -o option. For example:
armasm --cpu=8-A.32 -o output.o -

2. Enter your input. For example:
 AREA A32ex, CODE, READONLY
 ; Name this block of code A32ex
 ENTRY ; Mark first instruction to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop

MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SVC #0x123456 ; ARM semihosting
END ; Mark end of file

3. Terminate your input by entering:
• Ctrl+Z then Return on Microsoft Windows systems
• Ctrl+D on Unix-based operating systems.

Note
 The source code from stdin is stored in an internal cache that can hold up to 8 MB. You can
increase this cache size using the --maxcache command-line option.

9.4.1 See also

Reference
• armasm command-line syntax on page 9-2
• armasm commands listed in groups on page 9-3.
armasm Reference Guide:
• --maxcache on page 2-44.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-6
ID121814 Non-Confidential

Using armasm
9.5 Built-in variables and constants
Table 9-1 lists the built-in variables defined by armasm.

Built-in variables cannot be set using the SETA, SETL, or SETS directives. They can be used in
expressions or conditions, for example:

 IF {ARCHITECTURE} = "8-A"

Table 9-1 Built-in variables

{ARCHITECTURE} Holds the name of the selected ARM architecture.

{AREANAME} Holds the name of the current AREA.

{ARMASM_VERSION} Holds an integer that increases with each version of armasm. The format of the version number is
PVbbbb where:
P is the major version
V is the minor version
bbbb is the build number.

Note
 The built-in variable |ads$version| is deprecated.

{CODESIZE} Is a synonym for {CONFIG}.

{COMMANDLINE} Holds the contents of the command line.

{CONFIG} Has the value:
• 64 if the assembler is assembling A64 code
• 32 if the assembler is assembling A32 code
• 16 if the assembler is assembling T32 code.

{CPU} Holds the name of the selected processor. The value of {CPU} is derived from the value specified in
the --cpu option on the command line.

{ENDIAN} Has the value “big” if the assembler is in big-endian mode, or “little” if it is in little-endian mode.

{FPU} Holds the name of the selected FPU. The default in AArch32 state is "FP-ARMv8". The default in
AArch64 state is "A64".

{INPUTFILE} Holds the name of the current source file.

{INTER} Has the boolean value {True} if --apcs=/inter is set. The default is {False}.

{LINENUM} Holds an integer indicating the line number in the current source file.

{LINENUMUP} When used in a macro, holds an integer indicating the line number of the current macro. The value
is the same as {LINENUM} when used in a non-macro context.

{LINENUMUPPER} When used in a macro, holds an integer indicating the line number of the top macro. The value is
the same as {LINENUM} when used in a non-macro context.

{OPT} Value of the currently-set listing option. You can use the OPT directive to save the current listing
option, force a change in it, or restore its original value.

{PC} or . Address of current instruction.

{PCSTOREOFFSET} Is the offset between the address of the STR PC,[…] or STM Rb,{…, PC} instruction and the value of
PC stored out. This varies depending on the processor or architecture specified.

{VAR} or @ Current value of the storage area location counter.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-7
ID121814 Non-Confidential

Using armasm
The names of the built-in variables can be in uppercase, lowercase, or mixed. For example:

 IF {CpU} = "Generic ARM"

Note
 All built-in string variables contain case-sensitive values. Relational operations on these built-in
variables do not match with strings that contain an incorrect case. Use the command-line options
--cpu and --fpu to determine valid values for {CPU}, {ARCHITECTURE}, and {FPU}.

Table 9-2 lists the built-in Boolean constants defined by armasm.

Table 9-3 lists the target processor related built-in variables that are predefined by armasm.
Where the value field is empty, the symbol is a boolean value and the meaning column describes
when its value is {TRUE}.

Table 9-2 Built-in Boolean constants

{FALSE} Logical constant false.

{TRUE} Logical constant true.

Table 9-3 Predefined macros

Name Value Meaning

{TARGET_ARCH_AARCH32} boolean {TRUE} when assembling for AArch32 state. {FALSE} when assembling
for AArch64 state.

{TARGET_ARCH_AARCH64} boolean {TRUE} when assembling for AArch64 state. {FALSE} when assembling
for AArch32 state.

{TARGET_ARCH_ARM} num The number of the ARM base architecture of the target processor
irrespective of whether the assembler is assembling for A32 or T32.
The value is defined as zero when assembling for A64, and eight
when assembling for A32/T32.

{TARGET_ARCH_THUMB} num The number of the T32 base architecture of the target processor
irrespective of whether the assembler is assembling for A32 or T32.
The value is defined as zero when assembling for A64 and five when
assembling for A32/T32.

{TARGET_FEATURE_EXTENSION_REGISTER_

COUNT}

num The number of SIMD or floating-point 64-bit extension registers
available.

{TARGET_FEATURE_CLZ} – If the target processor supports the CLZ instruction.

{TARGET_FEATURE_DIVIDE} – If the target processor supports the hardware divide instructions SDIV
and UDIV.

{TARGET_FEATURE_DOUBLEWORD} – If the target processor supports doubleword load and store
instructions, for example the A32 and T32 instructions LDRD and STRD.

{TARGET_FEATURE_DSPMUL} – If the DSP-enhanced multiplier (for example the SMLAxy instruction)
is available.

{TARGET_FEATURE_MULTIPLY} – If the target processor supports long multiply instructions, for
example the A32 and T32 instructions SMULL, SMLAL, UMULL, and UMLAL.

{TARGET_FEATURE_MULTIPROCESSING} – If assembling for a target processor with Multiprocessing Extensions.

{TARGET_FEATURE_NEON} – If the target processor has Advanced SIMD.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-8
ID121814 Non-Confidential

Using armasm
9.5.1 See also

Reference
armasm Reference Guide:
• --cpu on page 2-15
• --fpu on page 2-33
• Versions of armasm on page 9-10.

{TARGET_FEATURE_NEON_FP16} – If the target processor has Advanced SIMD with half-precision
floating-point operations.

{TARGET_FEATURE_NEON_FP32} – If the target processor has Advanced SIMD with single-precision
floating-point operations.

{TARGET_FEATURE_NEON_INTEGER} – If the target processor has Advanced SIMD with integer operations.

{TARGET_FEATURE_UNALIGNED} – If the target processor has support for unaligned accesses.

{TARGET_FPU_SOFTVFP} – If assembling with the option --fpu=softvfp.

{TARGET_FPU_SOFTVFP_VFP} – If assembling for a target processor with softvfp and floating-point
hardware, for example --fpu=softvfp+fp-armv8.

{TARGET_FPU_VFP} – If assembling for a target processor with floating-point hardware,
without using softvfp, for example --fpu=fp-armv8.

{TARGET_FPU_VFPV2} – If assembling for a target processor with VFPv2.

{TARGET_FPU_VFPV3} – If assembling for a target processor with VFPv3.

{TARGET_PROFILE_A} – If assembling for a Cortex™-A profile processor.

{TARGET_PROFILE_M} – If assembling for a Cortex-M profile processor.

{TARGET_PROFILE_R} – If assembling for a Cortex-R profile processor.

Table 9-3 Predefined macros (continued)

Name Value Meaning
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-9
ID121814 Non-Confidential

Using armasm
9.6 Versions of armasm
You can use the built-in variable {ARMASM_VERSION} to distinguish between versions of armasm.
The format of the version number is PVbbbb where:
P is the major version
V is the minor version
bbbb is the build number

Note
 The built-in variable |ads$version| is deprecated.

9.6.1 See also

Concepts
• Built-in variables and constants on page 9-7.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-10
ID121814 Non-Confidential

Using armasm
9.7 Diagnostic messages
In addition to the default error, warning, and remark messages, armasm can provide more
diagnostic messages. By default, these additional diagnostic messages are not displayed.
However, you can enable them using the command-line options --diag_error, --diag_warning
and --diag_remark.

9.7.1 See also

Concepts
• Interlocks diagnostics on page 9-12
• Automatic IT block generation in T32 code on page 9-13
• T32 branch target alignment on page 9-14
• T32 code size diagnostics on page 9-15
• A32 and T32 instruction portability diagnostics on page 9-16
• T32 instruction width on page 9-17
• Two pass assembler diagnostics on page 9-18.

Reference
armasm Reference Guide:
• --diag_error on page 2-20.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-11
ID121814 Non-Confidential

Using armasm
9.8 Interlocks diagnostics
You can get warning messages about possible interlocks in your code caused by the pipeline of
the processor chosen by the --cpu option. To do this, use the following command-line option
when invoking armasm:

armasm --diag_warning 1563

Note
 • armasm does not have an accurate model of the target processor, so these messages are not

reliable when used with a multi-issue processor such as Cortex-A8.

• Interlocks diagnostics apply to A32 and T32 code, but not to A64 code.

9.8.1 See also

Concepts
• Diagnostic messages on page 9-11
• Automatic IT block generation in T32 code on page 9-13
• T32 branch target alignment on page 9-14
• T32 instruction width on page 9-17.

Reference
armasm Reference Guide:
• --diag_warning on page 2-24.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-12
ID121814 Non-Confidential

Using armasm
9.9 Automatic IT block generation in T32 code
If you write the following code:

 AREA x, CODE
 THUMB
 MOVNE r0,r1
 NOP
 IT NE
 MOVNE r0,r1
 END

armasm generates the following instructions:

IT NE
MOVNE r0,r1
NOP
IT NE
MOVNE r0,r1

You can receive warning messages about the automatic generation of IT blocks when
assembling T32 code. To do this, use the following command-line option when invoking armasm:

armasm --diag_warning 1763

9.9.1 See also

Concepts
• Diagnostic messages on page 9-11.

Reference
armasm Reference Guide:
• --diag_warning on page 2-24.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-13
ID121814 Non-Confidential

Using armasm
9.10 T32 branch target alignment
On some processors, non word-aligned T32 instructions sometimes take one or more additional
cycles to execute in loops. This means that it can be an advantage to ensure that branch targets
are word-aligned. armasm can issue warnings when branch targets in T32 code are not
word-aligned. To do this, use the following command-line option when invoking armasm:

armasm --diag_warning 1604

9.10.1 See also

Concepts
• Diagnostic messages on page 9-11.

Reference
armasm Reference Guide:
• --diag_warning on page 2-24.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-14
ID121814 Non-Confidential

Using armasm
9.11 T32 code size diagnostics
In T32 code, some instructions, for example a branch or LDR (PC-relative), can be encoded as
either a 32-bit or 16-bit instruction. armasm chooses the size of the encoding as described in
Instruction width selection in T32.

armasm can issue warnings when an instruction is assembled to a 32-bit T32 instruction where a
16-bit T32 instruction could have been used. To enable this warning, use the following
command-line option when invoking armasm:

armasm --diag_warning 1813

9.11.1 See also

Concepts
• Diagnostic messages on page 9-11
• Instruction width selection in T32 code on page 9-21
• A64, A32, and T32 instruction sets on page 3-3.

Reference
armasm Reference Guide:
• --diag_warning on page 2-24.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-15
ID121814 Non-Confidential

Using armasm
9.12 A32 and T32 instruction portability diagnostics
There are a few UAL instructions that can assemble as either A32 code or T32 code, but not
both. You can identify these instructions in the source code using the following command-line
option when invoking armasm:

armasm --diag_warning 1812

It warns for any instruction that cannot be assembled in the other instruction set. This is only a
hint, and other factors, like relocation availability or target distance might affect the accuracy of
the message.

9.12.1 See also

Concepts
• Diagnostic messages on page 9-11
• A64, A32, and T32 instruction sets on page 3-3.

Reference
armasm Reference Guide:
• --diag_warning on page 2-24.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-16
ID121814 Non-Confidential

Using armasm
9.13 T32 instruction width
If you use the .W specifier, the instruction is encoded in 32 bits even if it could be encoded in 16
bits. You can use a diagnostic warning to detect when a branch instruction could have been
encoded in 16 bits, but has been encoded in 32 bits. To do this, use the following command-line
option when invoking armasm:

armasm --diag_warning 1607

Note
 This diagnostic does not produce a warning for relocated branch instructions, because the final
address is not known. The linker might even insert a veneer, if the branch is out of range for a
32-bit instruction.

9.13.1 See also

Concepts
• Diagnostic messages on page 9-11.

Reference
armasm Reference Guide:
• --diag_warning on page 2-24.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-17
ID121814 Non-Confidential

Using armasm
9.14 Two pass assembler diagnostics
armasm is a two pass assembler and the input code that it reads must be identical in both passes.
If a symbol is defined after the :DEF: test for that symbol, then the code read in pass one might
be different from the code read in pass two. armasm can warn in this situation.

To do this, use the following command-line option when invoking armasm:

armasm --diag_warning 1907

Example 9-1 shows that the symbol foo is defined after the :DEF: foo test. Assembling this code
with --diag_warning 1907 generates the message:

Warning A1907W: Test for this symbol has been seen and may cause failure in the second
pass.

Example 9-1 Symbol test before symbol definition

 AREA x,CODE
[:DEF: foo
]

foo MOV r3, r4
END

9.14.1 See also

Concepts
• How the assembler works on page 2-4
• Diagnostic messages on page 9-11
• Automatic IT block generation in T32 code on page 9-13
• T32 branch target alignment on page 9-14
• T32 instruction width on page 9-17.

Reference
armasm Reference Guide:
• --diag_warning on page 2-24.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-18
ID121814 Non-Confidential

Using armasm
9.15 Address alignment in A32/T32 code
In ARMv7-A and ARMv7-R, the A bit in the System Control Register (SCTLR) controls
whether alignment checking is enabled or disabled. In ARMv7-M, the UNALIGN_TRP bit, bit 3, in
the Configuration and Control Register (CCR) controls this.

If alignment checking is enabled, all unaligned word and halfword transfers cause an alignment
exception. If disabled, unaligned accesses are permitted for the LDR, LDRH, STR, STRH, LDRSH, LDRT,
STRT, LDRSHT, LDRHT, STRHT, and TBH instructions. Other data-accessing instructions always cause
an alignment exception for unaligned data.

For STRD and LDRD, the specified address must be word-aligned.

If all your data accesses are aligned, you can use the --no_unaligned_access command-line
option, to avoid linking in any library functions that support unaligned accesses.

9.15.1 See also

Reference
armasm Reference Guide:
• --no_unaligned_access on page 2-55.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-19
ID121814 Non-Confidential

Using armasm
9.16 Address alignment in A64 code
If alignment checking is not enabled, then unaligned accesses are permitted for all load and store
instructions other than exclusive load, exclusive store, load acquire, and store release
instructions. If alignment checking is enabled, then unaligned accesses are not permitted. This
means all load and store instructions must use addresses that are aligned to the size of the data
being accessed. In other words, addresses for 8-byte transfers must be 8-byte aligned, addresses
for 4-byte transfers are 4-byte word aligned, and addresses for 2-byte transfers are 2-byte
aligned. Unaligned accesses cause an alignment exception.

For any memory access, if the stack pointer is used as the base register, then it must be quadword
aligned. Otherwise it generates a stack alignment exception.

9.16.1 See also

Reference
armasm Reference Guide:
• --no_unaligned_access on page 2-55.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-20
ID121814 Non-Confidential

Using armasm
9.17 Instruction width selection in T32 code
Some T32 instructions can have either a 16-bit encoding or a 32-bit encoding.

If you do not specify the instruction size, by default:

• For forward reference LDR, ADR, and B instructions, armasm always generates a 16-bit
instruction, even if that results in failure for a target that could be reached using a 32-bit
instruction.

• For external reference LDR and B instructions, armasm always generates a 32-bit instruction.

• In all other cases, armasm generates the smallest size encoding that can be output.

If you want to override this behavior, you can use the .W or .N width specifier to ensure a
particular instruction size. armasm faults if it cannot generate an instruction with the specified
width.

The .W specifier is ignored when assembling to A32 code, so you can safely use this specifier in
code that might assemble to either A32 or T32 code. However, the .N specifier is faulted when
assembling to A32 code.

9.17.1 See also

Concepts
• T32 code size diagnostics on page 9-15.

Reference
armasm Reference Guide:
• Instruction width specifiers on page 3-8.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 9-21
ID121814 Non-Confidential

Chapter 10
Symbols, Literals, Expressions, and Operators

The following topics describe how you can use symbols to represent variables, addresses and
constants in code. It also describes how you can combine these with operators to create numeric
or string expressions:
• Symbol naming rules on page 10-3
• Variables on page 10-4
• Numeric constants on page 10-5
• Assembly time substitution of variables on page 10-6
• Register-relative and PC-relative expressions on page 10-7
• Labels on page 10-8
• Labels for PC-relative addresses on page 10-9
• Labels for register-relative addresses on page 10-10
• Labels for absolute addresses on page 10-11
• Numeric local labels on page 10-12
• Syntax of numeric local labels on page 10-13
• String expressions on page 10-14
• String literals on page 10-15
• Numeric expressions on page 10-16
• Numeric literals on page 10-17
• Floating-point literals on page 10-18
• Logical expressions on page 10-19
• Logical literals on page 10-20
• Unary operators on page 10-21
• Binary operators on page 10-22
• Multiplicative operators on page 10-23
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-1
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
• String manipulation operators on page 10-24
• Shift operators on page 10-25
• Addition, subtraction, and logical operators on page 10-26
• Relational operators on page 10-27
• Boolean operators on page 10-28
• Operator precedence on page 10-29
• Difference between operator precedence in assembly language and C on page 10-30.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-2
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.1 Symbol naming rules
The following general rules apply to symbol names:

• Symbol names must be unique within their scope.

• You can use uppercase letters, lowercase letters, numeric characters, or the underscore
character in symbol names. Symbol names are case-sensitive, and all characters in the
symbol name are significant.

• Do not use numeric characters for the first character of symbol names, except in numeric
local labels.

• Symbols must not use the same name as built-in variable names or predefined symbol
names.

• If you use the same name as an instruction mnemonic or directive, use double bars to
delimit the symbol name. For example:
||ASSERT||

The bars are not part of the symbol.

• You must not use the symbols |$a|, |$t|, or |$d| as program labels. These are mapping
symbols that mark the beginning of A32, T32, and A64 code, and data within the object
file. You must not use |$x|in A64 code.

• Symbols beginning with the characters $v are mapping symbols that relate to
floating-point code. ARM recommends you avoid using symbols beginning with $v in
your source code.

If you have to use a wider range of characters in symbols, for example, when working with
compilers, use single bars to delimit the symbol name. For example:

|.text|

The bars are not part of the symbol. You cannot use bars, semicolons, or newlines within the
bars.

10.1.1 See also

Concepts
• Numeric local labels on page 10-12
• Predeclared core register names in AArch32 state on page 4-8
• Predeclared core register names in AArch64 state on page 5-6
• Predeclared extension register names in AArch32 state on page 4-9
• Predeclared extension register names in AArch64 state on page 5-7
• Built-in variables and constants on page 9-7.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-3
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.2 Variables
The value of a variable can be changed as the assembly proceeds. Variables are local to the
assembler. This means that in the generated code or data, every instance of the variable has a
fixed value.

Variables are one of the following types:
• Numeric.
• Logical.
• String.

The type of a variable cannot be changed.

The range of possible values of a numeric variable is the same as the range of possible values
of a numeric constant or numeric expression.

The possible values of a logical variable are {TRUE} or {FALSE}.

The range of possible values of a string variable is the same as the range of values of a string
expression.

Use the GBLA, GBLL, GBLS, LCLA, LCLL, and LCLS directives to declare symbols representing
variables, and assign values to them using the SETA, SETL, and SETS directives.

10.2.1 Example

a SETA 100;
L1 MOV R1, #(a*5) ; In the object file, this is MOV R1, #500
a SETA 200 ; Value of ‘a’ is 200 only after this point.

; The previous instruction is always MOV R1, #500
…
BNE L1 ; When the processor branches to L1, it executes MOV R1, #500

10.2.2 See also

Concepts
• Numeric constants on page 10-5
• Numeric expressions on page 10-16
• String expressions on page 10-14
• Logical expressions on page 10-19.

Reference
armasm Reference Guide:
• GBLA, GBLL, and GBLS on page 10-54
• LCLA, LCLL, and LCLS on page 10-64
• SETA, SETL, and SETS on page 10-83.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-4
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.3 Numeric constants
Numeric constants are 32-bit integers in A32 and T32 code. You can set them using unsigned
numbers in the range 0 to 232–1, or signed numbers in the range –231 to 231 –1. However, armasm
makes no distinction between –n and 232–n.

In A64 code, numeric constants are 64-bit integers. You can set them using unsigned numbers
in the range 0 to 264–1, or signed numbers in the range –263 to 263–1. However, armasm makes
no distinction between –n and 264–n.

armasm produces a Numeric Overflow message if you use a constant too large for the instruction
set.

Relational operators such as >= use the unsigned interpretation. This means that 0 > –1 is
{FALSE}.

Use the EQU directive to define constants. You cannot change the value of a numeric constant
after you define it. You can construct expressions by combining numeric constants and binary
operators.

10.3.1 See also

Concept
• Numeric expressions on page 10-16
• Numeric literals on page 10-17
• Relational operators on page 10-27.

Reference
armasm Reference Guide:
• EQU on page 10-35.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-5
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.4 Assembly time substitution of variables
You can use a string variable for a whole line of assembly language, or any part of a line. Use
the variable with a $ prefix in the places where the value is to be substituted for the variable. The
dollar character instructs armasm to substitute the string into the source code line before checking
the syntax of the line. armasm faults if the substituted line is larger than the source line limit.

Numeric and logical variables can also be substituted. The current value of the variable is
converted to a hexadecimal string (or T or F for logical variables) before substitution.

Use a dot to mark the end of the variable name if the following character would be permissible
in a symbol name. You must set the contents of the variable before you can use it.

If you require a $ that you do not want to be substituted, use $$. This is converted to a single $.

You can include a variable with a $ prefix in a string. Substitution occurs in the same way as
anywhere else.

Substitution does not occur within vertical bars, except that vertical bars within double quotes
do not affect substitution.

10.4.1 Example

 ; straightforward substitution
 GBLS add4ff
 ;
add4ff SETS "ADD r4,r4,#0xFF" ; set up add4ff
 $add4ff.00 ; invoke add4ff
 ; this produces
 ADD r4,r4,#0xFF00
 ; elaborate substitution

GBLS string1
GBLS string2
GBLS fixup
GBLA count
;

count SETA 14
string1 SETS "a$$b$count" ; string1 now has value a$b0000000E
string2 SETS "abc"
fixup SETS "|xy$string2.z|" ; fixup now has value |xyabcz|
|C$$code| MOV r4,#16 ; but the label here is C$$code

10.4.2 See also

Concept
• Syntax of source lines in assembly language on page 6-2
• Symbol naming rules on page 10-3.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-6
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.5 Register-relative and PC-relative expressions
armasm supports PC-relative and register-relative expressions.

A register-relative expression evaluates to a named register combined with a numeric
expression.

You write a PC-relative expression in source code as a label or the PC, optionally combined with
a numeric expression. Some instructions can also accept PC-relative expressions in the form
[PC, #number].

If you specify a label, the assembler calculates the offset from the PC value of the current
instruction to the address of the label. The assembler encodes the offset in the instruction. If the
offset is too large, the assembler produces an error. The offset is either added to or subtracted
from the PC value to form the required address.

ARM recommends you write PC-relative expressions using labels rather than PC because the
value of PC depends on the instruction set.

Note
 • In A32 code, the value of the PC is the address of the current instruction plus 8 bytes.

• In T32 code:
— For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current

instruction plus 4 bytes.
— For all other instructions that use labels, the value of the PC is the address of the

current instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it
word-aligned.

• In A64 code, the value of the PC is the address of the current instruction.

10.5.1 Example

 LDR r4,=data+4*n ; n is an assembly-time variable
 ; code
 MOV pc,lr
data DCD value_0
 ; n-1 DCD directives
 DCD value_n ; data+4*n points here
 ; more DCD directives

10.5.2 See also

Concepts
• Labels on page 10-8.

Reference
armasm Reference Guide:
• MAP on page 10-69.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-7
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.6 Labels
Labels are symbols representing the memory addresses of instructions or data. The address can
be PC-relative, register-relative, or absolute. Labels are local to the source file unless you make
them global using the EXPORT directive.

The address given by a label is calculated during assembly. armasm calculates the address of a
label relative to the origin of the section where the label is defined. A reference to a label within
the same section can use the PC plus or minus an offset. This is called PC-relative addressing.

Addresses of labels in other sections are calculated at link time, when the linker has allocated
specific locations in memory for each section.

10.6.1 See also

Concept
• Labels for PC-relative addresses on page 10-9
• Labels for register-relative addresses on page 10-10
• Labels for absolute addresses on page 10-11.

Reference
armasm Reference Guide:
• EXPORT or GLOBAL on page 10-36.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-8
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.7 Labels for PC-relative addresses
These represent the PC, plus or minus a numeric value. Use them as targets for branch
instructions, or to access small items of data embedded in code sections. You can define
PC-relative labels using a label on an instruction or on one of the data definition directives.

You can also use the section name of an AREA directive as a label for PC-relative addresses. In
this case the label points to the first byte of the specified AREA. ARM does not recommend using
AREA names as branch targets because when branching from A32 to T32 state or T32 to A32 state
in this way, the processor does not change the state properly.

10.7.1 See also

Reference
armasm Reference Guide:
• AREA on page 10-13
• DCB on page 10-23
• DCD and DCDU on page 10-24
• DCFD and DCFDU on page 10-26
• DCFS and DCFSU on page 10-27
• DCI on page 10-28
• DCQ and DCQU on page 10-30
• DCW and DCWU on page 10-31.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-9
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.8 Labels for register-relative addresses
These represent a named register plus a numeric value. They are most commonly used to access
data in data sections. You can define them with a storage map. You can use the EQU directive to
define additional register-relative labels, based on labels defined in storage maps.

Note
 Register-relative addresses are not supported in A64 code.

Example 10-1 Storage map definitions

 MAP 0,r9
 MAP 0xff,r9

10.8.1 See also

Reference
armasm Reference Guide:
• MAP on page 10-69
• SPACE or FILL on page 10-85
• DCDO on page 10-25
• EQU on page 10-35.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-10
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.9 Labels for absolute addresses

These are numeric constants. In A32 and T32 code they are integers in the range 0 to 232–1. In
A64 code, they are integers in the range 0 to 264–1. They address the memory directly. You can
use labels to represent absolute addresses using the EQU directive. You can specify the absolute
address as A32, T32, or data to ensure that the labels are used correctly when referenced in code.

Example 10-2 Defining labels for absolute address

abc EQU 2 ; assigns the value 2 to the symbol abc.
xyz EQU label+8 ; assigns the address (label+8) to the
 ; symbol xyz.
fiq EQU 0x1C, CODE32 ; assigns the absolute address 0x1C to
 ; the symbol fiq, and marks it as A32 code

10.9.1 See also

Concepts
• Labels on page 10-8
• Labels for PC-relative addresses on page 10-9
• Labels for register-relative addresses on page 10-10.

Reference
armasm Reference Guide:
• EQU on page 10-35.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-11
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.10 Numeric local labels
Numeric local labels are a subclass of label. A numeric local label is a number in the range 0-99,
optionally followed by a name. Unlike other labels, a numeric local label can be defined many
times and the same number can be used for more than one numeric local label in an area.

Numeric local labels do not appear in the object file. This means that, for example, a debugger
cannot set a breakpoint directly on a numeric local label, like it can for named local labels kept
using the KEEP directive.

A numeric local label can be used in place of symbol in source lines in an assembly language
module:
• On its own, that is, where there is no instruction or directive.
• On a line that contains an instruction.
• On a line that contains a code- or data-generating directive.

A numeric local label is generally used where you might use a PC-relative label.

Numeric local labels are typically used for loops and conditional code within a routine, or for
small subroutines that are only used locally. They are particularly useful when you are
generating labels in macros.

The scope of numeric local labels is limited by the AREA directive. Use the ROUT directive to limit
the scope of numeric local labels more tightly. A reference to a numeric local label refers to a
matching label within the same scope. If there is no matching label within the scope in either
direction, armasm generates an error message and the assembly fails.

You can use the same number for more than one numeric local label even within the same scope.
By default, armasm links a numeric local label reference to:

• the most recent numeric local label with the same number, if there is one within the scope

• the next following numeric local label with the same number, if there is not a preceding
one within the scope.

Use the optional parameters to modify this search pattern if required.

10.10.1 See also

Concepts
• Syntax of numeric local labels on page 10-13
• Labels on page 10-8
• Syntax of source lines in assembly language on page 6-2.

Reference
armasm Reference Guide:
• MACRO and MEND on page 10-66
• KEEP on page 10-63
• ROUT on page 10-82.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-12
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.11 Syntax of numeric local labels
The syntax of a numeric local label is:

n{routname}

The syntax of a reference to a numeric local label is:

%{F|B}{A|T}n{routname}

where:
n is the number of the numeric local label in the range 0-99.
routname is the name of the current scope.
% introduces the reference.
F instructs armasm to search forwards only.
B instructs armasm to search backwards only.
A instructs armasm to search all macro levels.
T instructs armasm to look at this macro level only.

If neither F nor B is specified, armasm searches backwards first, then forwards.

If neither A nor T is specified, armasm searches all macros from the current level to the top level,
but does not search lower level macros.

If routname is specified in either a label or a reference to a label, armasm checks it against the
name of the nearest preceding ROUT directive. If it does not match, armasm generates an error
message and the assembly fails.

10.11.1 See also

Concepts
• Numeric local labels on page 10-12.

Reference
armasm Reference Guide:
• ROUT on page 10-82.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-13
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.12 String expressions
String expressions consist of combinations of string literals, string variables, string
manipulation operators, and parentheses.

Characters that cannot be placed in string literals can be placed in string expressions using the
:CHR: unary operator. Any ASCII character from 0 to 255 is permitted.

The value of a string expression cannot exceed 5120 characters in length. It can be of zero
length.

10.12.1 Example

improb SETS "literal":CC:(strvar2:LEFT:4)
 ; sets the variable improb to the value "literal"
 ; with the left-most four characters of the
 ; contents of string variable strvar2 appended

10.12.2 See also

Concepts
• Variables on page 10-4
• String literals on page 10-15
• Unary operators on page 10-21
• String manipulation operators on page 10-24.

Reference
armasm Reference Guide:
• SETA, SETL, and SETS on page 10-83.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-14
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.13 String literals
String literals consist of a series of characters or spaces contained between double quote
characters. The length of a string literal is restricted by the length of the input line.

To include a double quote character or a dollar character within the string literal, include the
character twice as a pair. For example, you must use $$ if you require a single $ in the string.

C string escape sequences are also enabled and can be used within the string, unless --no_esc is
specified.

10.13.1 Examples

abc SETS "this string contains only one "" double quote"
def SETS "this string contains only one $$ dollar symbol"

10.13.2 See also

Concepts
• Syntax of source lines in assembly language on page 6-2.

Reference
armasm Reference Guide:
• --no_esc on page 2-47.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-15
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.14 Numeric expressions
Numeric expressions consist of combinations of numeric constants, numeric variables, ordinary
numeric literals, binary operators, and parentheses.

Numeric expressions can contain register-relative or program-relative expressions if the overall
expression evaluates to a value that does not include a register or the PC.

Numeric expressions evaluate to 32-bit integers in A32 and T32 code. You can interpret them
as unsigned numbers in the range 0 to 232–1, or signed numbers in the range –231 to 231–1.
However, armasm makes no distinction between –n and 232–n.

In A64 code, numeric expressions evaluate to 64-bit integers. You can interpret them as
unsigned numbers in the range 0 to 264–1, or signed numbers in the range –263 to 263–1.
However, armasm makes no distinction between –n and 264–n.

Relational operators such as >= use the unsigned interpretation. This means that 0 > –1 is
{FALSE}.

10.14.1 Example

a SETA 256*256 ; 256*256 is a numeric expression
 MOV r1,#(a*22) ; (a*22) is a numeric expression

10.14.2 See also

Concepts
• Numeric constants on page 10-5
• Variables on page 10-4
• Numeric literals on page 10-17
• Relational operators on page 10-27
• Binary operators on page 10-22.

Reference
armasm Reference Guide:
• SETA, SETL, and SETS on page 10-83.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-16
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.15 Numeric literals
Numeric literals can take any of the following forms:

decimal-digits

0xhexadecimal-digits

&hexadecimal-digits

n_base-n-digits

'character'

where:

decimal-digits Is a sequence of characters using only the digits 0 to 9.

hexadecimal-digits Is a sequence of characters using only the digits 0 to 9 and the letters
A to F or a to f.

n_ Is a single digit between 2 and 9 inclusive, followed by an underscore
character.

base-n-digits Is a sequence of characters using only the digits 0 to (n –1)

character Is any single character except a single quote. Use the standard C escape
character (\') if you require a single quote. The character must be enclosed
within opening and closing single quotes. In this case the value of the
numeric literal is the numeric code of the character.

You must not use any other characters. The sequence of characters must evaluate to an integer.

In A32/T32 code, the integer range is 0 to 232–1, except for the DCQ, DCQU, DCO, and DCOU
directives.

In A64 code, the integer range is 0 to 264–1, except for the DCO and DCOU directives.

Note
 • In the DCQ and DCQU directives, the integer range is 0 to 264 –1.
• In the DCO and DCOU directives, the integer range is 0 to 2128 –1.

10.15.1 Examples

a SETA 34906
addr DCD 0xA10E
 LDR r4,=&1000000F
 DCD 2_11001010
c3 SETA 8_74007
 DCQ 0x0123456789abcdef
 LDR r1,='A' ; pseudo-instruction loading 65 into r1
 ADD r3,r2,#'\'' ; add 39 to contents of r2, result to r3

10.15.2 See also

Concepts
• Numeric constants on page 10-5.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-17
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.16 Floating-point literals
Floating-point literals can take any of the following forms:

{-}digitsE {-}digits {-}{digits}.digits {-}{digits}.digitsE {-}digits 0xhexdigits
&hexdigits 0f_hexdigits 0d_hexdigits.

where:

digits Are sequences of characters using only the digits 0 to 9. You can write E in
uppercase or lowercase. These forms correspond to normal floating-point
notation.

hexdigits Are sequences of characters using only the digits 0 to 9 and the letters A to F or
a to f. These forms correspond to the internal representation of the numbers in the
computer. Use these forms to enter infinities and NaNs, or if you want to be sure
of the exact bit patterns you are using.

The 0x and & forms allow the floating-point bit pattern to be specified by any number of hex
digits.

The 0f_ form requires the floating-point bit pattern to be specified by exactly 8 hex digits.

The 0d_ form requires the floating-point bit pattern to be specified by exactly 16 hex digits.

The range for half-precision floating-point values is:
• maximum 65504 (IEEE format) or 131008 (alternative format)
• minimum 0.00012201070785522461.

The range for single-precision floating-point values is:
• maximum 3.40282347e+38
• minimum 1.17549435e–38.

The range for double-precision floating-point values is:
• maximum 1.79769313486231571e+308
• minimum 2.22507385850720138e–308.

Floating-point numbers are only available if your system has Advanced SIMD or floating-point
support.

10.16.1 Examples

 DCFD 1E308,-4E-100
 DCFS 1.0

DCFS 0.02
DCFD 3.725e15

 DCFS 0x7FC00000 ; Quiet NaN
 DCFD &FFF0000000000000 ; Minus infinity

10.16.2 See also

Concepts
• Numeric constants on page 10-5
• Numeric literals on page 10-17.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-18
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.17 Logical expressions
Logical expressions consist of combinations of logical literals ({TRUE} or {FALSE}), logical
variables, Boolean operators, relations, and parentheses.

Relations consist of combinations of variables, literals, constants, or expressions with
appropriate relational operators.

10.17.1 See also

Concepts
• Boolean operators on page 10-28
• Relational operators on page 10-27.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-19
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.18 Logical literals
The logical or boolean literals can have one of two values:
• {TRUE}

• {FALSE}.

10.18.1 See also

Concepts
• Numeric literals on page 10-17
• String literals on page 10-15.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-20
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.19 Unary operators
Unary operators have the highest precedence and are evaluated first. A unary operator precedes
its operand. Adjacent operators are evaluated from right to left.

Table 10-1 lists the unary operators that return strings.

Table 10-2 lists the unary operators that return numeric values.

10.19.1 See also

Concepts
• Binary operators on page 10-22.

Table 10-1 Unary operators that return strings

Operator Usage Description

:CHR: :CHR:A Returns the character with ASCII code A.

:LOWERCASE: :LOWERCASE:string Returns the given string, with all uppercase characters converted to
lowercase.

:REVERSE_CC: :REVERSE_CC:cond_code Returns the inverse of the condition code in cond_code, or an error if
cond_code does not contain a valid condition code.

:STR: :STR:A In A32 and T32 code, returns an 8-digit hexadecimal string
corresponding to a numeric expression, or the string "T" or "F" if used
on a logical expression. In A64 code, returns a 16-digit hexadecimal
string.

:UPPERCASE: :UPPERCASE:string Returns the given string, with all lowercase characters converted to
uppercase.

Table 10-2 Unary operators that return numeric or logical values

Operator Usage Description

? ?A Number of bytes of executable code generated by line defining symbol
A.

+ and - +A

-A

Unary plus. Unary minus. + and – can act on numeric and PC-relative
expressions.

:BASE: :BASE:A If A is a PC-relative or register-relative expression, :BASE: returns the
number of its register component. :BASE: is most useful in macros.

:CC_ENCODING: :CC_ENCODING:cond_code Returns the numeric value of the condition code in cond_code, or an error
if cond_code does not contain a valid condition code.

:DEF: :DEF:A {TRUE} if A is defined, otherwise {FALSE}.

:INDEX: :INDEX:A If A is a register-relative expression, :INDEX: returns the offset from that
base register. :INDEX: is most useful in macros.

:LEN: :LEN:A Length of string A.

:LNOT: :LNOT:A Logical complement of A.

:NOT: :NOT:A Bitwise complement of A (~ is an alias, for example ~A).

:RCONST: :RCONST:Rn Number of register. In A32/T32 code, 0-15 corresponds to R0-R15. In
A64 code, 0-30 corresponds to W0-W30 or X0-X30.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-21
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.20 Binary operators
Binary operators are written between the pair of sub-expressions they operate on.

Binary operators have lower precedence than unary operators. Binary operators appear in this
section in order of precedence.

Note
 The order of precedence is not the same as in C.

10.20.1 See also

Concepts
• Multiplicative operators on page 10-23
• String manipulation operators on page 10-24
• Shift operators on page 10-25
• Addition, subtraction, and logical operators on page 10-26
• Relational operators on page 10-27
• Boolean operators on page 10-28
• Difference between operator precedence in assembly language and C on page 10-30.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-22
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.21 Multiplicative operators
Multiplicative operators have the highest precedence of all binary operators. They act only on
numeric expressions.

Table 10-3 shows the multiplicative operators.

You can use the :MOD: operator on PC-relative expressions to ensure code is aligned correctly.
These alignment checks have the form PC-relative:MOD:Constant. For example:

AREA x,CODE
ASSERT ({PC}:MOD:4) == 0
DCB 1

y DCB 2
ASSERT (y:MOD:4) == 1
ASSERT ({PC}:MOD:4) == 2
END

10.21.1 See also

Concepts
• Register-relative and PC-relative expressions on page 10-7
• Binary operators on page 10-22
• Numeric literals on page 10-17
• Numeric expressions on page 10-16.

Table 10-3 Multiplicative operators

Operator Alias Usage Explanation

* A*B Multiply

/ A/B Divide

:MOD: % A:MOD:B A modulo B
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-23
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.22 String manipulation operators
Table 10-4 shows the string manipulation operators. In CC, both A and B must be strings. In the
slicing operators LEFT and RIGHT:
• A must be a string.
• B must be a numeric expression.

10.22.1 See also

Concepts
• String expressions on page 10-14
• Numeric expressions on page 10-16.

Table 10-4 String manipulation operators

Operator Usage Explanation

:CC: A:CC:B B concatenated onto the end of A

:LEFT: A:LEFT:B The left-most B characters of A

:RIGHT: A:RIGHT:B The right-most B characters of A
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-24
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.23 Shift operators
Shift operators act on numeric expressions, shifting or rotating the first operand by the amount
specified by the second.

Table 10-5 shows the shift operators.

Note
 SHR is a logical shift and does not propagate the sign bit.

10.23.1 See also

Concepts
• Binary operators on page 10-22.

Table 10-5 Shift operators

Operator Alias Usage Explanation

:ROL: A:ROL:B Rotate A left by B bits

:ROR: A:ROR:B Rotate A right by B bits

:SHL: << A:SHL:B Shift A left by B bits

:SHR: >> A:SHR:B Shift A right by B bits
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-25
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.24 Addition, subtraction, and logical operators
Addition and subtraction operators act on numeric expressions.

Logical operators act on numeric expressions. The operation is performed bitwise, that is,
independently on each bit of the operands to produce the result.

Table 10-6 shows addition, subtraction, and logical operators.

The use of | as an alias for :OR: is deprecated.

10.24.1 See also

Concepts
• Binary operators on page 10-22.

Table 10-6 Addition, subtraction, and logical operators

Operator Alias Usage Explanation

+ A+B Add A to B

- A-B Subtract B from A

:AND: & A:AND:B Bitwise AND of A and B

:EOR: ^ A:EOR:B Bitwise Exclusive OR of A and B

:OR: A:OR:B Bitwise OR of A and B
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-26
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.25 Relational operators
Table 10-7 shows the relational operators. These act on two operands of the same type to
produce a logical value.

The operands can be one of:
• Numeric.
• PC-relative.
• Register-relative.
• Strings.

Strings are sorted using ASCII ordering. String A is less than string B if it is a leading substring
of string B, or if the left-most character in which the two strings differ is less in string A than in
string B.

Relational operators interpret arithmetic values as unsigned. So the value of 0>-1 is {FALSE}.

10.25.1 See also

Concepts
• Binary operators on page 10-22
• Numeric constants on page 10-5
• Numeric expressions on page 10-16.

Table 10-7 Relational operators

Operator Alias Usage Explanation

= == A=B A equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

/= <> != A/=B A not equal to B
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-27
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.26 Boolean operators
These are the operators with the lowest precedence. They perform the standard logical
operations on their operands.

In all three cases both A and B must be expressions that evaluate to either {TRUE} or {FALSE}.

Table 10-8 shows the Boolean operators.

10.26.1 See also

Concepts
• Binary operators on page 10-22.

Table 10-8 Boolean operators

Operator Alias Usage Explanation

:LAND: && A:LAND:B Logical AND of A and B

:LEOR: A:LEOR:B Logical Exclusive OR of A and B

:LOR: || A:LOR:B Logical OR of A and B
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-28
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.27 Operator precedence
armasm includes an extensive set of operators for use in expressions. Many of the operators
resemble their counterparts in high-level languages such as C.

There is a strict order of precedence in their evaluation:
1. Expressions in parentheses are evaluated first.
2. Operators are applied in precedence order.
3. Adjacent unary operators are evaluated from right to left.
4. Binary operators of equal precedence are evaluated from left to right.

10.27.1 See also

Concepts
• Unary operators on page 10-21
• Binary operators on page 10-22
• Multiplicative operators on page 10-23
• String manipulation operators on page 10-24
• Shift operators on page 10-25
• Addition, subtraction, and logical operators on page 10-26
• Relational operators on page 10-27
• Boolean operators on page 10-28
• Difference between operator precedence in assembly language and C on page 10-30.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-29
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.28 Difference between operator precedence in assembly language and C
armasm does not follow exactly the same order of precedence when evaluating operators as a C
compiler.

For example, (1 + 2 :SHR: 3) evaluates as (1 + (2 :SHR: 3)) = 1 in assembly language. The
equivalent expression in C evaluates as ((1 + 2) >> 3) = 0.

ARM recommends you use brackets to make the precedence explicit.

If your code contains an expression that would parse differently in C, and you are not using the
--unsafe option, armasm gives a warning:

A1466W: Operator precedence means that expression would evaluate differently in C

Table 10-9 shows the order of precedence of operators in assembly language, and a comparison
with the order in C (see Table 10-10).

From these tables:
• The highest precedence operators are at the top of the list.
• The highest precedence operators are evaluated first.
• Operators of equal precedence are evaluated from left to right.

Table 10-9 Operator precedence in armasm

armasm precedence equivalent C operators

unary operators unary operators

* / :MOD: * / %

string manipulation n/a

:SHL: :SHR: :ROR: :ROL: << >>

+ - :AND: :OR: :EOR: + - & | ^

= > >= < <= /= <> == > >= < <= !=

:LAND: :LOR: :LEOR: && ||

Table 10-10 Operator precedence in C

C precedence

unary operators

* / %

+ - (as binary operators)

<< >>

< <= > >=

== !=

&

^

ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-30
ID121814 Non-Confidential

Symbols, Literals, Expressions, and Operators
10.28.1 See also

Concepts
• Operator precedence on page 10-29.

|

&&

||

Table 10-10 Operator precedence in C (continued)

C precedence
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 10-31
ID121814 Non-Confidential

Chapter 11
Advanced SIMD and Floating-point Programming

The following topics describe Advanced SIMD and floating-point assembly language
programming:
• Architecture support for Advanced SIMD and floating-point on page 11-3
• Extension register bank mapping in AArch32 state on page 11-4
• Extension register bank mapping in AArch64 state on page 11-6
• Views of the Advanced SIMD register bank in AArch32 state on page 11-8
• Views of the Advanced SIMD register bank in AArch64 state on page 11-9
• Views of the floating-point extension register bank in AArch32 state on page 11-10
• Views of the floating-point extension register bank in AArch64 state on page 11-11
• Differences between A32/T32 and A64 Advanced SIMD and floating-point instruction

syntax on page 11-12
• Load values to SIMD and floating-point registers on page 11-14
• Conditional execution of A32/T32 Advanced SIMD and floating-point instructions on

page 11-15
• Floating-point exceptions in A32/T32 instructions on page 11-16
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17
• Advanced SIMD vectors on page 11-18
• Normal Advanced SIMD instructions on page 11-19
• Long Advanced SIMD instructions on page 11-20
• Wide Advanced SIMD instructions on page 11-21
• Narrow Advanced SIMD instructions on page 11-22
• Saturating Advanced SIMD instructions on page 11-23
• Advanced SIMD scalars on page 11-24
• Extended notation in A32/T32 code on page 11-25
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-1
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
• Polynomial arithmetic over {0,1} on page 11-26
• Advanced SIMD and floating-point system registers in AArch32 state on page 11-27
• Flush-to-zero mode on page 11-28
• When to use flush-to-zero mode on page 11-29
• Operations not affected by flush-to-zero mode on page 11-30.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-2
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.1 Architecture support for Advanced SIMD and floating-point
Advanced SIMD is optionally available for the ARMv8 architecture. All Advanced SIMD
instructions are available on systems that support Advanced SIMD. In A32, some of these
instructions are also available on systems that implement the floating-point extension without
Advanced SIMD. These are called shared instructions.

The floating-point instruction set supported in A32 is based on VFPv4, but with the addition of
some new instructions, including the following:
• Floating-point round to integral.
• Conversion from floating-point to integer with a directed rounding mode.
• Direct conversion between half-precision and double-precision floating-point.
• Floating-point conditional select.

In AArch32 state, Advanced SIMD and floating-point instructions share the same register bank.
It consists of thirty-two 64-bit registers, and smaller registers are packed into larger ones, as in
ARMv7 and earlier.

In AArch64 state, the SIMD and floating-point register bank is shared, as in AArch32 state, but
it includes thirty-two 128-bit registers and has a new register packing model.

Advanced SIMD and floating point instructions in A64 are closely based on VFPv4 and A32,
but with new instruction mnemonics and some functional enhancements.

11.1.1 See also

Concepts
ARM C and C++ Libraries and Floating-Point Support User Guide:
• Chapter 4 Floating-point support.

Other information
• Technical Reference Manual for your processor.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-3
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.2 Extension register bank mapping in AArch32 state
Advanced SIMD and floating-point instructions use the same extension register bank, which is
distinct from the ARM register bank. The extension register bank is a collection of registers
which can be accessed as either 32-bit, 64-bit, or 128-bit, depending on whether the instruction
is Advanced SIMD or floating-point.

Figure 11-1 on page 11-5 shows the three views of the extension register bank, and the overlap
between the different size registers. For example, the 128-bit register Q0 is an alias for two
consecutive 64-bit registers D0 and D1, and is also an alias for four consecutive 32-bit registers
S0, S1, S2, and S3. The 128-bit register Q8 is an alias for 2 consecutive 64-bit registers D16 and D17
but does not have an alias using the 32-bit Sn registers.

Note
 If your processor supports both Advanced SIMD and floating-point, all the Advanced SIMD
registers overlap with the floating-point registers.

The aliased views enable half-precision, single-precision, and double-precision values, and
Advanced SIMD vectors to coexist in different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and
double-precision values, and Advanced SIMD vectors at different times.

Do not attempt to use overlapped 32-bit and 64-bit, or 128-bit registers at the same time because
it creates meaningless results.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-4
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
Figure 11-1 Extension register bank in AArch32 state

The mapping between the registers is as follows:
• S<2n> maps to the least significant half of D<n>
• S<2n+1> maps to the most significant half of D<n>
• D<2n> maps to the least significant half of Q<n>
• D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by
referring to D12, and the most significant half of the elements by referring to D13.

11.2.1 See also

Concepts
• Views of the Advanced SIMD register bank in AArch32 state on page 11-8
• Views of the floating-point extension register bank in AArch32 state on page 11-10.

D0

D3

D31

D30

S0

S1

S2

S3

S4

S5

S28

S29

S6

S7

S30

S31

...

D1

D2

D14

D15

D16

D17

...

Q0

Q1

Q7

Q8

Q15

...

...

...
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-5
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.3 Extension register bank mapping in AArch64 state
Advanced SIMD and floating-point instructions use the same extension register bank, which is
distinct from the ARM register bank. The extension register bank is a collection of registers
which can be accessed as 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit, depending on whether the
instruction is Advanced SIMD or floating-point.

Figure 11-2 shows the views of the extension register bank, and the overlap between the
different size registers.

Figure 11-2 Extension register bank in AArch64 state

The mapping between the registers is as follows:
• D<n> maps to the least significant half of V<n>
• S<n> maps to the least significant half of D<n>
• H<n> maps to the least significant half of S<n>
• B<n> maps to the least significant half of H<n>.

For example, you can access the least significant half of the elements of a vector in V7 by
referring to D7.

Registers Q0-Q31 map directly to registers V0-V31.

D0

D31

S0

S1

S7

...

D1

D7

D8

...

V0

V1

V7

V8

V31

...

...

...

S8

S31

...

H0

H1

H7

...

H8

H31

...

B0

B1

B7

...

B8

B31

...
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-6
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.3.1 See also

Concepts
• Extension register bank mapping in AArch32 state on page 11-4
• Views of the Advanced SIMD register bank in AArch64 state on page 11-9
• Views of the floating-point extension register bank in AArch64 state on page 11-11.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-7
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.4 Views of the Advanced SIMD register bank in AArch32 state
Advanced SIMD can view the extension register bank as:
• Sixteen 128-bit registers, Q0-Q15.
• Thirty-two 64-bit registers, D0-D31.
• A combination of registers from these views.

Advanced SIMD views each register as containing a vector of 1, 2, 4, 8, or 16 elements, all of
the same size and type. Individual elements can also be accessed as scalars.

In Advanced SIMD, the 64-bit registers are called doubleword registers and the 128-bit registers
are called quadword registers.

11.4.1 See also

Concepts
• Views of the floating-point extension register bank in AArch32 state on page 11-10
• Extension register bank mapping in AArch32 state on page 11-4.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-8
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.5 Views of the Advanced SIMD register bank in AArch64 state
Advanced SIMD can view the extension register bank as:
• Thirty-two 128-bit registers V0-V31.
• Thirty-two 64-bit registers D0-D31.
• Thirty-two 32-bit registers S0-S31.
• Thirty-two 16-bit registers H0-H31.
• Thirty-two 8-bit registers B0-B31.
• A combination of registers from these views.

11.5.1 See also

Concepts
• Views of the floating-point extension register bank in AArch64 state on page 11-11
• Extension register bank mapping in AArch64 state on page 11-6.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-9
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.6 Views of the floating-point extension register bank in AArch32 state
The floating-point extension register bank can be viewed as:
• Thirty-two 64-bit registers, D0-D31.
• Thirty-two 32-bit registers, S0-S31. Only half of the register bank is accessible in this view.
• A combination of registers from these views.

64-bit floating-point registers are called double-precision registers and can contain
double-precision floating-point values. 32-bit floating-point registers are called single-precision
registers and can contain either a single-precision or two half-precision floating-point values.

11.6.1 See also

Concepts
• Views of the Advanced SIMD register bank in AArch32 state on page 11-8
• Extension register bank mapping in AArch32 state on page 11-4.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-10
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.7 Views of the floating-point extension register bank in AArch64 state
The floating-point extension register bank can be viewed as:
• Thirty-two 64-bit registers D0-D31.
• Thirty-two 32-bit registers S0-S31.
• Thirty-two 16-bit registers H0-H31.
• A combination of registers from these views.

11.7.1 See also

Concepts
• Views of the Advanced SIMD register bank in AArch64 state on page 11-9
• Extension register bank mapping in AArch64 state on page 11-6.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-11
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.8 Differences between A32/T32 and A64 Advanced SIMD and floating-point
instruction syntax

The syntax and mnemonics of A64 Advanced SIMD and floating-point instructions are based
on those in A32/T32 but with some differences. Table 11-1 describes the main differences.

11.8.1 See also

Concepts
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17
• Conditional execution of A32/T32 Advanced SIMD and floating-point instructions on

page 11-15

Table 11-1 Differences in syntax and mnemonics between A32/T32 and A64

A32/T32 A64

All Advanced SIMD and floating-point instruction
mnemonics begin with V, for example VMAX.

The first letter of the instruction mnemonic indicates the data
type of the instruction. For example, SMAX, UMAX, and FMAX
mean signed, unsigned, and floating-point respectively. No
suffix means the type is irrelevant and P means polynomial.

A mnemonic qualifier specifies the type and width of
elements in a vector. For example, in the following
instruction, U32 means 32-bit unsigned integers:
VMAX.U32 Q0, Q1, Q2

A register qualifier specifies the data width and the number
of elements in the register. For example, in the following
instruction .4S means 4 32-bit elements:
UMAX V0.4S, V1.4S, V2.4S

The 128-bit vector registers are named Q0-Q15 and the
64-bit vector registers are named D0-D31.

All vector registers are named Vn , where n is a register
number between 0 and 31. You only use one of the qualified
register names Qn, Dn, Sn, Hn or Bn when referring to a
scalar register, to indicate the number of significant bits.

You load a single element into one or more vector registers
by appending an index to each register individually, for
example:
VLD4.8 {D0[3], D1[3], D2[3], D3[3]}, [R0]

You load a single element into one or more vector registers
by appending the index to the register list, for example:
LD4 {V0.B, V1.B, V2.B, V3.B}[3], [X0]

You can append a condition code to most floating-point and
Advanced SIMD instruction mnemonics to make them
conditional.

A64 has no conditionally executed floating-point or
Advanced SIMD instructions.

The floating-point select instruction, VSEL, is unconditionally
executed but uses a condition code as an operand. You
append the condition code to the mnemonic, for example:
VSELEQ.F32 S1,S2,S3

There are several floating-point instructions that use a
condition code as an operand. You specify the condition code
in the final operand position, for example:
FCSEL S1,S2,S3,EQ

L, W and N suffixes indicate long, wide and narrow variants of
Advanced SIMD data processing instructions. A32/T32
Advanced SIMD does not include vector narrowing or
widening second part instructions.

L, W and N suffixes indicate long, wide and narrow variants of
Advanced SIMD data processing instructions. You can
additionally append a 2 to implement the second part of a
narrowing or widening operation, for example:
UADDL2 V0.4S, V1.8H, V2.8H ; take input from 4
high-numbered lanes of V1 and V2

A32/T32 Advanced SIMD does not include vector reduction
instructions.

The V Advanced SIMD mnemonic suffix identifies vector
reduction instructions, in which the operand is a vector and
the result a scalar, for example:
ADDV S0, V1.4S

The P mnemonic qualifier which indicates pairwise
instructions is a prefix, for example, VPADD.

The P mnemonic qualifier is a suffix, for example ADDP.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-12
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
• Advanced SIMD scalars on page 11-24
• Long Advanced SIMD instructions on page 11-20
• Wide Advanced SIMD instructions on page 11-21
• Narrow Advanced SIMD instructions on page 11-22
• Syntax differences between UAL and A64 assembly language on page 7-4.

Reference
• VSEL on page 4-90
• FCSEL on page 7-10.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-13
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.9 Load values to SIMD and floating-point registers
To load a register with a floating-point immediate value, use VMOV in A32 or FMOV in A64. Both
instructions exist in scalar and vector forms.

The A32 Advanced SIMD instructions VMOV and VMVN can also load integer immediates. The A64
Advanced SIMD instructions to load integer immediates are MOVI and MVNI.

You can load any 64-bit integer, single-precision, or double-precision floating-point value from
a literal pool using the VLDR pseudo-instruction.

11.9.1 See also

Reference
armasm Reference Guide:
• VMOV, VMVN (immediate) on page 4-68
• VMOV on page 4-67
• FMOV (scalar, immediate) on page 7-32
• MOVI (vector) on page 9-135
• MVNI (vector) on page 9-139
• VLDR pseudo-instruction on page 4-62.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-14
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.10 Conditional execution of A32/T32 Advanced SIMD and floating-point
instructions

You cannot use any of the following Advanced SIMD and floating-point instructions in an IT
block:
• VRINT{A, N, P, M} (floating-point).
• VSEL (floating-point).
• VCVT{A, N, P, M} (Advanced SIMD and floating-point).
• VMAXNM (Advanced SIMD and floating-point).
• VMINNM (Advanced SIMD and floating-point).
• VRINT{N, X, A, Z, M, P} (Advanced SIMD).
• All instructions in the Crypto extension.

In addition, specifying any other Advanced SIMD or floating-point instruction in an IT block is
deprecated.

Most A32 floating-point instructions can be conditionally executed, by appending a condition
code suffix to the instruction. ARM deprecates conditionally executing any Advanced SIMD
instruction unless it is a shared Advanced SIMD and floating-point instruction.

11.10.1 See also

Reference
armasm Reference Guide:
• IT on page 3-66.
• Summary of shared Advanced SIMD and floating-point instructions on page 4-4.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-15
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.11 Floating-point exceptions in A32/T32 instructions
The Advanced SIMD and floating-point extensions record the following floating-point
exceptions in the FPSCR cumulative flags:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or
cannot be represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend
that is not zero, an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation,
produced after rounding, is greater than the maximum positive normalized
number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation,
produced before rounding, is less than the minimum positive normalized number
for the destination precision, and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value
that would be produced if the operation were performed with unbounded
precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the
computation by a zero.

In the armasm Reference Guide, in the descriptions of the instructions that can cause
floating-point exceptions, there is a subsection listing the exceptions. If there is no such
subsection, that instruction cannot cause any floating-point exception.

11.11.1 See also

Concepts
• Flush-to-zero mode on page 11-28.

Other information
• Technical Reference Manual for your floating-point hardware
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-16
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.12 Advanced SIMD and floating-point data types in A32/T32 instructions
Data type specifiers in Advanced SIMD and floating-point instructions consist of a letter
indicating the type of data, usually followed by a number indicating the width. They are
separated from the instruction mnemonic by a point. Table 11-2 shows the data types available
in Advanced SIMD instructions. Table 11-3 shows the data types available in floating-point
instructions.

The datatype of the second (or only) operand is specified in the instruction.

Note
 • Most instructions have a restricted range of permitted data types. See the instruction

descriptions for details. However, the data type description is flexible:
— If the description specifies I, you can also use the S or U data types.
— If only the data size is specified, you can specify a type (I, S, U, P or F).
— If no data type is specified, you can specify a data type.

11.12.1 See also

Concepts
• Polynomial arithmetic over {0,1} on page 11-26.

Table 11-2 Advanced SIMD data types

8-bit 16-bit 32-bit 64-bit

Unsigned integer U8 U16 U32 U64

Signed integer S8 S16 S32 S64

Integer of unspecified type I8 I16 I32 I64

Floating-point number not available F16 F32 (or F) not available

Polynomial over {0,1} P8 P16 not available not available

Table 11-3 Floating-point data types

16-bit 32-bit 64-bit

Unsigned integer U16 U32 not available

Signed integer S16 S32 not available

Floating-point number F16 F32 (or F) F64 (or D)
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-17
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.13 Advanced SIMD vectors
An Advanced SIMD operand can be a vector or a scalar. An Advanced SIMD vector can be a
64-bit doubleword vector or a 128-bit quadword vector.

In A32/T32 Advanced SIMD instructions, the size of the elements in an Advanced SIMD vector
is specified by a datatype suffix appended to the mnemonic. In A64 Advanced SIMD
instructions, the size and number of the elements in an Advanced SIMD vector are specified by
a suffix appended to the register.

Doubleword vectors can contain:
• Eight 8-bit elements.
• Four 16-bit elements.
• Two 32-bit elements.
• One 64-bit element.

Quadword vectors can contain:
• Sixteen 8-bit elements.
• Eight 16-bit elements.
• Four 32-bit elements.
• Two 64-bit elements.

11.13.1 See also

Concepts
• Advanced SIMD scalars on page 11-24
• Extension register bank mapping in AArch32 state on page 11-4
• Extended notation in A32/T32 code on page 11-25
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-18
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.14 Normal Advanced SIMD instructions
Many A32/T32 and A64 Advanced SIMD data processing instructions are available in Normal,
Long, Wide, Narrow, and saturating variants.

Normal instructions can operate on any of the vector types, and produce result vectors the same
size, and usually the same type, as the operand vectors.

You can specify that the operands and result of a normal A32/T32 Advanced SIMD instruction
must all be quadwords by appending a Q to the instruction mnemonic. If you do this, armasm
produces an error if the operands or result are not quadwords.

11.14.1 See also

Concepts
• Advanced SIMD vectors on page 11-18
• Long Advanced SIMD instructions on page 11-20
• Wide Advanced SIMD instructions on page 11-21
• Narrow Advanced SIMD instructions on page 11-22
• Saturating Advanced SIMD instructions on page 11-23.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-19
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.15 Long Advanced SIMD instructions
Long instructions operate on doubleword vector operands and produce a quadword vector
result. The elements of the result are usually twice the width of the elements of the operands,
and the same type.

Long instructions are specified using an L appended to the instruction mnemonic.

11.15.1 See also

Concepts
• Advanced SIMD vectors on page 11-18
• Normal Advanced SIMD instructions on page 11-19
• Wide Advanced SIMD instructions on page 11-21
• Narrow Advanced SIMD instructions on page 11-22
• Saturating Advanced SIMD instructions on page 11-23.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-20
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.16 Wide Advanced SIMD instructions
Wide instructions operate on one doubleword vector operand and one quadword vector operand.
They produce a quadword vector result. The elements of the result and the first operand are
twice the width of the elements of the second operand.

Wide instructions are specified using a W appended to the instruction mnemonic.

11.16.1 See also

Concepts
• Advanced SIMD vectors on page 11-18
• Normal Advanced SIMD instructions on page 11-19
• Long Advanced SIMD instructions on page 11-20
• Narrow Advanced SIMD instructions on page 11-22
• Saturating Advanced SIMD instructions on page 11-23.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-21
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.17 Narrow Advanced SIMD instructions
Narrow instructions operate on quadword vector operands, and produce a doubleword vector
result. The elements of the result are half the width of the elements of the operands.

Narrow instructions are specified using an N appended to the instruction mnemonic.

11.17.1 See also

Concepts
• Advanced SIMD vectors on page 11-18
• Normal Advanced SIMD instructions on page 11-19
• Long Advanced SIMD instructions on page 11-20
• Wide Advanced SIMD instructions on page 11-21
• Saturating Advanced SIMD instructions on page 11-23.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-22
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.18 Saturating Advanced SIMD instructions
Saturating instructions saturate the result to the value of the upper limit or lower limit if the
result overflows or underflows. The saturation limits depend on the datatype of the instruction.
See Table 11-4 for the ranges that Advanced SIMD saturating instructions saturate to, where x
is the result of the operation.

Saturating advanced SIMD arithmetic instructions set the QC bit in the floating-point status
register (FPSCR in AArch32 or FPSR in AArch64) to indicate that saturation has occurred.

Saturating instructions are specified using a Q prefix. In A32/T32 Advanced SIMD instructions,
this is inserted between the V and the instruction mnemonic, or between the S or U and the
mnemonic in A64 Advanced SIMD instructions.

11.18.1 See also

Concepts
• Advanced SIMD vectors on page 11-18
• Normal Advanced SIMD instructions on page 11-19
• Long Advanced SIMD instructions on page 11-20
• Wide Advanced SIMD instructions on page 11-21
• Narrow Advanced SIMD instructions on page 11-22.

Reference
armasm Reference Guide:
• Saturating instructions on page 3-19.

Table 11-4 Advanced SIMD saturation ranges

Data type Saturation range of x

Signed byte (S8) –27 <= x < 27

Signed halfword (S16) –215 <= x < 215

Signed word (S32) –231 <= x < 231

Signed doubleword
(S64)

–263 <= x < 263

Unsigned byte (U8) 0 <= x < 28

Unsigned halfword
(U16)

0 <= x < 216

Unsigned word (U32) 0 <= x < 232

Unsigned doubleword
(U64)

0 <= x < 264
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-23
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.19 Advanced SIMD scalars
Some Advanced SIMD instructions act on scalars in combination with vectors. Advanced
SIMD scalars can be 8-bit, 16-bit, 32-bit, or 64-bit. In A32/T32 Advanced SIMD instructions,
the instruction syntax refers to a single element in a vector register using an index, x, into the
vector, so that Dm[x] is the xth element in vector Dm. In A64 Advanced SIMD instructions, you
append the index to the element size specifier, so that Vm.D[x] is the xth doubleword element in
vector Vm.

In A64 Advanced SIMD scalar instructions, you refer to registers using a name that indicates
the number of significant bits. The names are Bn, Hn, Sn, or Dn, where n is the register number
(0-31). The unused high bits are ignored on a read and set to zero on a write.

Other than A32/T32 Advanced SIMD multiply instructions, instructions that access scalars can
access any element in the register bank.

A32/T32 Advanced SIMD multiply instructions only allow 16-bit or 32-bit scalars, and can only
access the first 32 scalars in the register bank. That is, in multiply instructions:
• 16-bit scalars are restricted to registers D0-D7, with x in the range 0-3.
• 32-bit scalars are restricted to registers D0-D15, with x either 0 or 1.

11.19.1 See also

Concepts
• Extension register bank mapping in AArch32 state on page 11-4
• Advanced SIMD vectors on page 11-18.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-24
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.20 Extended notation in A32/T32 code
armasm implements an extension to the architectural Advanced SIMD and floating-point
assembly syntax, called extended notation. This extension allows you to include datatype
information or scalar indexes in register names. If you do this, you do not need to include the
datatype or scalar index information in every instruction.

Register names can be any of the following:

Untyped The register name specifies the register, but not what datatype it contains, nor any
index to a particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It
specifies an index to a particular scalar within the register.

Typed The register name specifies the register, and what datatype it contains, but not any
index to a particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index
to a particular scalar within the register.

Use the SN, DN, and QN directives to create typed and scalar registers.

Note
 Extended notation is not supported for A64 code.

11.20.1 See also

Concepts
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17
• Advanced SIMD vectors on page 11-18
• Advanced SIMD scalars on page 11-24.

Reference
armasm Reference Guide:
• QN, DN, and SN on page 10-74.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-25
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.21 Polynomial arithmetic over {0,1}
The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:

• 0 + 0 = 1 + 1 = 0

• 0 + 1 = 1 + 0 = 1

• 0 * 0 = 0 * 1 = 1 * 0 = 0

• 1 * 1 = 1.

That is, adding two polynomials over {0,1} is the same as a bitwise exclusive OR, and
multiplying two polynomials over {0,1} is the same as integer multiplication except that partial
products are exclusive-ORed instead of being added.

11.21.1 See also

Concepts
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-26
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.22 Advanced SIMD and floating-point system registers in AArch32 state
For exception levels using AArch32, the following Advanced SIMD and floating-point system
registers are accessible in all Advanced SIMD and floating-point implementations:
• FPSCR, the floating-point status and control register.
• FPEXC, the floating-point exception register.
• FPSID, the floating-point system ID register.

A particular Advanced SIMD or floating-point implementation can have additional registers.

11.22.1 See also

Concepts
• Read-Modify-Write procedure on page 7-29.

Other information
• Technical Reference Manual for your floating-point hardware
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-27
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.23 Flush-to-zero mode
Some floating-point implementations use support code to handle denormalized numbers. The
performance of such systems, in calculations involving denormalized numbers, is much less
than it is in normal calculations.

Flush-to-zero mode replaces denormalized numbers with 0. This does not comply with IEEE
754 arithmetic, but in some circumstances can improve performance considerably.

Advanced SIMD and floating-point flush-to-zero mode preserves the sign bit.

Advanced SIMD always uses flush-to-zero mode.

11.23.1 See also

Concepts
• When to use flush-to-zero mode on page 11-29
• Operations not affected by flush-to-zero mode on page 11-30.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-28
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.24 When to use flush-to-zero mode
You must select flush-to-zero mode if all the following are true:

• IEEE 754 compliance is not a requirement for your system.

• The algorithms you are using sometimes generate denormalized numbers.

• Your system uses support code to handle denormalized numbers.

• The algorithms you are using do not depend for their accuracy on the preservation of
denormalized numbers.

• The algorithms you are using do not generate frequent exceptions as a result of replacing
denormalized numbers with 0.

You select flush-to-zero mode in one of the following ways:

• In A32 code, by setting the FZ bit in the FPSCR to 1. You do this using the VMRS and VMSR
instructions.

• In A64 code, by setting the FZ bit in the FPCR to 1. You do this using the MRS and MSR
instructions.

You can change between flush-to-zero and normal mode at any time, if different parts of your
code have different requirements. Numbers already in registers are not affected by changing
mode.

11.24.1 See also

Concepts
• Flush-to-zero mode on page 11-28.

Reference
armasm Reference Guide:
• VMRS and VMSR on page 4-75
• MRS on page 5-104
• MSR (register) on page 5-106

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-29
ID121814 Non-Confidential

Advanced SIMD and Floating-point Programming
11.25 Operations not affected by flush-to-zero mode
The following Advanced SIMD and floating-point operations can be carried out on
denormalized numbers even in flush-to-zero mode, without flushing the results to zero:
• copy, absolute value, and negate (VMOV, VMVN, V{Q}ABS, and V{Q}NEG)
• duplicate (VDUP)
• swap (VSWP)
• load and store (VLDR and VSTR)
• load multiple and store multiple (VLDM and VSTM)
• transfer between extension registers and ARM general-purpose registers (VMOV).

11.25.1 See also

Concepts
• Flush-to-zero mode on page 11-28.

Reference
armasm Reference Guide:
• VDUP on page 4-50
• VSWP on page 4-95
• VLDR and VSTR on page 4-55
• VLDM, VSTM, VPOP, and VPUSH on page 4-54
• VMOV, VMVN (register) on page 4-69
• VABS, VNEG, and VSQRT on page 4-29
• V{Q}ABS and V{Q}NEG on page 4-20
• VMOV (between two ARM registers and one or two extension registers) on page 4-70
• VMOV (between an ARM register and a scalar) on page 4-71
• VMOV (between one ARM register and single precision floating-point register) on

page 4-72.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference.
ARM DUI 0801B Copyright © 2014 ARM. All rights reserved. 11-30
ID121814 Non-Confidential

	ARM Compiler armasm User Guide
	Contents
	1: Conventions and Feedback
	2: Overview of armasm
	2.1 About the ARM Compiler toolchain assemblers
	2.1.1 See also

	2.2 Key features of the assembler
	2.2.1 See also

	2.3 How the assembler works
	2.3.1 See also

	2.4 Directives that can be omitted in pass 2 of the assembler
	2.4.1 See also

	3: Overview of the ARM Architecture
	3.1 About the ARM architecture
	3.1.1 See also

	3.2 A64, A32, and T32 instruction sets
	3.2.1 See also

	3.3 Changing between AArch64 and AArch32 states
	3.3.1 See also

	3.4 Advanced SIMD
	3.4.1 See also

	3.5 Floating-point hardware
	3.5.1 See also

	4: Overview of AArch32 state
	4.1 Changing between A32 and T32 instruction set states
	4.1.1 See also

	4.2 Processor modes, and privileged and unprivileged software execution
	4.2.1 See also

	4.3 Registers in AArch32 state
	4.3.1 See also

	4.4 General-purpose registers in AArch32 state
	4.4.1 See also

	4.5 Register accesses in AArch32 state
	4.5.1 See also

	4.6 Predeclared core register names in AArch32 state
	4.6.1 See also

	4.7 Predeclared extension register names in AArch32 state
	4.7.1 See also

	4.8 Program Counter in AArch32 state
	4.8.1 See also

	4.9 Application Program Status Register
	4.9.1 See also

	4.10 The Q flag in AArch32 state
	4.10.1 See also

	4.11 Current Program Status Register in AArch32
	4.11.1 See also

	4.12 Saved Program Status Registers (SPSRs) in AArch32 state
	4.12.1 See also

	4.13 A32 instruction set overview
	4.13.1 See also

	4.14 Media processing instructions
	4.15 Access to the inline barrel shifter in AArch32 state
	4.15.1 See also

	5: Overview of AArch64 state
	5.1 Registers in AArch64 state
	5.1.1 See also

	5.2 Exception levels
	5.2.1 See also

	5.3 Link registers
	5.3.1 See also

	5.4 Stack Pointer register
	5.4.1 See also

	5.5 Predeclared core register names in AArch64 state
	5.5.1 See also

	5.6 Predeclared extension register names in AArch64 state
	5.6.1 See also

	5.7 Program Counter in AArch64 state
	5.7.1 See also

	5.8 Conditional execution in AArch64 state
	5.8.1 See also

	5.9 The Q flag in AArch64 state
	5.9.1 See also

	5.10 Process State
	5.10.1 See also

	5.11 Saved Program Status Registers (SPSRs) in AArch64 state
	5.11.1 See also

	5.12 A64 instruction set overview
	5.12.1 See also

	6: Structure of Assembly Language Modules
	6.1 Syntax of source lines in assembly language
	6.1.1 See also

	6.2 Literals
	6.2.1 See also

	6.3 ELF sections and the AREA directive
	6.3.1 See also

	6.4 An example assembly language module
	6.4.1 Application entry
	6.4.2 Application execution
	6.4.3 Application termination
	6.4.4 Program end
	6.4.5 See also

	7: Writing A32/T32 Assembly Language
	7.1 Unified Assembler Language
	7.2 Syntax differences between UAL and A64 assembly language
	7.2.1 See also

	7.3 Subroutine calls
	7.3.1 See also

	7.4 Load immediates into registers
	7.4.1 See also

	7.5 Load immediate values using MOV and MVN
	7.5.1 See also

	7.6 Load 32-bit values to a register using MOV32
	7.6.1 See also

	7.7 Load immediate 32-bit values to a register using LDR Rd, =const
	7.7.1 See also

	7.8 Literal pools
	7.8.1 See also

	7.9 Load addresses into registers
	7.9.1 See also

	7.10 Load addresses to a register using ADR
	7.10.1 Example of a jump table implementation with ADR
	7.10.2 See also

	7.11 Load addresses to a register using ADRL
	7.11.1 See also

	7.12 Load addresses to a register using LDR Rd, =label
	7.12.1 An LDR Rd, =label example: string copying
	7.12.2 See also

	7.13 Other ways to load and store registers
	7.13.1 See also

	7.14 Load and store multiple register instructions
	7.14.1 See also

	7.15 A32 and T32 load and store multiple instructions
	7.15.1 See also

	7.16 Stack implementation using LDM and STM
	7.16.1 See also

	7.17 Stack operations for nested subroutines
	7.17.1 See also

	7.18 Block copy with LDM and STM
	7.19 Memory accesses
	7.19.1 See also

	7.20 Read-Modify-Write procedure
	7.20.1 Example
	7.20.2 See also

	7.21 Optional hash
	7.21.1 See also

	7.22 Use of macros
	7.22.1 See also

	7.23 Test-and-branch macro example
	7.23.1 See also

	7.24 Unsigned integer division macro example
	7.24.1 See also

	7.25 Instruction and directive relocations
	7.25.1 Example
	7.25.2 See also

	7.26 Symbol versions
	7.26.1 See also

	7.27 Frame directives
	7.27.1 See also

	7.28 Exception tables and Unwind tables
	7.28.1 See also

	8: Condition Codes
	8.1 Conditional instructions
	8.1.1 See also

	8.2 Conditional execution in A32 code
	8.2.1 See also

	8.3 Conditional execution in T32 code
	8.3.1 See also

	8.4 Conditional execution in A64 code
	8.4.1 See also

	8.5 Condition flags
	8.5.1 See also

	8.6 Updates to the condition flags in A32/T32 code
	8.6.1 See also

	8.7 Updates to the condition flags in A64 code
	8.7.1 Example
	8.7.2 See also

	8.8 Floating-point instructions that update the condition flags
	8.8.1 See also

	8.9 Carry flag
	8.9.1 See also

	8.10 Overflow flag
	8.10.1 See also

	8.11 Condition code suffixes
	8.11.1 See also

	8.12 Comparison of condition code meanings in integer and floating-point code
	8.12.1 See also

	8.13 Benefits of using conditional execution in A32 and T32 code
	8.13.1 See also

	8.14 Illustration of the benefits of conditional instructions in A32 and T32 code
	8.14.1 Example of conditional execution using branches in A32 code
	8.14.2 Example of conditional execution using conditional instructions in A32 code
	8.14.3 Example of conditional execution using conditional instructions in T32 code
	8.14.4 Example of conditional execution code using branches in T32 code
	8.14.5 See also

	8.15 Optimization for execution speed
	8.15.1 See also

	9: Using armasm
	9.1 armasm command-line syntax
	9.1.1 See also

	9.2 armasm commands listed in groups
	9.3 Specify command-line options with an environment variable
	9.3.1 See also

	9.4 Using stdin to input source code to armasm
	9.4.1 See also

	9.5 Built-in variables and constants
	9.5.1 See also

	9.6 Versions of armasm
	9.6.1 See also

	9.7 Diagnostic messages
	9.7.1 See also

	9.8 Interlocks diagnostics
	9.8.1 See also

	9.9 Automatic IT block generation in T32 code
	9.9.1 See also

	9.10 T32 branch target alignment
	9.10.1 See also

	9.11 T32 code size diagnostics
	9.11.1 See also

	9.12 A32 and T32 instruction portability diagnostics
	9.12.1 See also

	9.13 T32 instruction width
	9.13.1 See also

	9.14 Two pass assembler diagnostics
	9.14.1 See also

	9.15 Address alignment in A32/T32 code
	9.15.1 See also

	9.16 Address alignment in A64 code
	9.16.1 See also

	9.17 Instruction width selection in T32 code
	9.17.1 See also

	10: Symbols, Literals, Expressions, and Operators
	10.1 Symbol naming rules
	10.1.1 See also

	10.2 Variables
	10.2.1 Example
	10.2.2 See also

	10.3 Numeric constants
	10.3.1 See also

	10.4 Assembly time substitution of variables
	10.4.1 Example
	10.4.2 See also

	10.5 Register-relative and PC-relative expressions
	10.5.1 Example
	10.5.2 See also

	10.6 Labels
	10.6.1 See also

	10.7 Labels for PC-relative addresses
	10.7.1 See also

	10.8 Labels for register-relative addresses
	10.8.1 See also

	10.9 Labels for absolute addresses
	10.9.1 See also

	10.10 Numeric local labels
	10.10.1 See also

	10.11 Syntax of numeric local labels
	10.11.1 See also

	10.12 String expressions
	10.12.1 Example
	10.12.2 See also

	10.13 String literals
	10.13.1 Examples
	10.13.2 See also

	10.14 Numeric expressions
	10.14.1 Example
	10.14.2 See also

	10.15 Numeric literals
	10.15.1 Examples
	10.15.2 See also

	10.16 Floating-point literals
	10.16.1 Examples
	10.16.2 See also

	10.17 Logical expressions
	10.17.1 See also

	10.18 Logical literals
	10.18.1 See also

	10.19 Unary operators
	10.19.1 See also

	10.20 Binary operators
	10.20.1 See also

	10.21 Multiplicative operators
	10.21.1 See also

	10.22 String manipulation operators
	10.22.1 See also

	10.23 Shift operators
	10.23.1 See also

	10.24 Addition, subtraction, and logical operators
	10.24.1 See also

	10.25 Relational operators
	10.25.1 See also

	10.26 Boolean operators
	10.26.1 See also

	10.27 Operator precedence
	10.27.1 See also

	10.28 Difference between operator precedence in assembly language and C
	10.28.1 See also

	11: Advanced SIMD and Floating-point Programming
	11.1 Architecture support for Advanced SIMD and floating-point
	11.1.1 See also

	11.2 Extension register bank mapping in AArch32 state
	11.2.1 See also

	11.3 Extension register bank mapping in AArch64 state
	11.3.1 See also

	11.4 Views of the Advanced SIMD register bank in AArch32 state
	11.4.1 See also

	11.5 Views of the Advanced SIMD register bank in AArch64 state
	11.5.1 See also

	11.6 Views of the floating-point extension register bank in AArch32 state
	11.6.1 See also

	11.7 Views of the floating-point extension register bank in AArch64 state
	11.7.1 See also

	11.8 Differences between A32/T32 and A64 Advanced SIMD and floating-point instruction syntax
	11.8.1 See also

	11.9 Load values to SIMD and floating-point registers
	11.9.1 See also

	11.10 Conditional execution of A32/T32 Advanced SIMD and floating-point instructions
	11.10.1 See also

	11.11 Floating-point exceptions in A32/T32 instructions
	11.11.1 See also

	11.12 Advanced SIMD and floating-point data types in A32/T32 instructions
	11.12.1 See also

	11.13 Advanced SIMD vectors
	11.13.1 See also

	11.14 Normal Advanced SIMD instructions
	11.14.1 See also

	11.15 Long Advanced SIMD instructions
	11.15.1 See also

	11.16 Wide Advanced SIMD instructions
	11.16.1 See also

	11.17 Narrow Advanced SIMD instructions
	11.17.1 See also

	11.18 Saturating Advanced SIMD instructions
	11.18.1 See also

	11.19 Advanced SIMD scalars
	11.19.1 See also

	11.20 Extended notation in A32/T32 code
	11.20.1 See also

	11.21 Polynomial arithmetic over {0,1}
	11.21.1 See also

	11.22 Advanced SIMD and floating-point system registers in AArch32 state
	11.22.1 See also

	11.23 Flush-to-zero mode
	11.23.1 See also

	11.24 When to use flush-to-zero mode
	11.24.1 See also

	11.25 Operations not affected by flush-to-zero mode
	11.25.1 See also

