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Preface

This preface introduces the Design Simulation Model (DSM). It contains the following 
sections:

• About this manual on page viii

• Feedback on page xi.
ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. vii



Preface 
About this manual

This User Guide provides information on the ARM Design Simulation Models (DSMs) 
covering the following subjects:

• the use of DSMs

• their features

• simulator interfacing and implications

• timing issues

• limitations of DSMs when compared to the use of native HDL code.

Intended audience

This book is written for experienced hardware/software engineers and chip designers 
who might have experience of ARM products, but who have experience of Verilog or 
VHDL, and who want to integrate an ARM DSM into their design and simulation flow.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for a description of the DSM, the main features, and the 
contents of a DSM package.

Chapter 2 Interfacing and DSM behavioral differences 

Read this chapter for information on simulator interfacing, the Model 
Manager, event and interface semantics, the differences and implications 
arising from the use of compiled models verses RTL, and the 
programmer’s model.

Chapter 3 Timing Issues 

Read this chapter for information on DSM timing issues. It describes 
SDF annotation, templates, and SDFremap. It also describes pin-to-pin 
timing, interconnect delays, negative timing checks, static timing 
analysis, and limitations of the timing model.

Chapter 4 Limitations 

Read this chapter for information on DSM limitations. It describes the 
restart, save and restore procedures, scan chain modeling, caches, and 
zero delay simulation.
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Preface 
Typographical conventions

The following typographical conventions are used in this book:

italic  Highlights important notes, introduces special terminology, 
denotes internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes 
ARM processor signal names. Also used for terms in descriptive 
lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as 
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or 
option name.

monospace italic Denotes arguments to commands and functions where the 
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Further reading

This section lists publications from both ARM Limited and third parties that provide 
additional information on developing code for ARM models.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets, addenda, and the ARM Frequently Asked 
Questions list.

ARM publications

This section contains useful information for engineers using the DSM Flow Integration 
Guide.

• ARM Design Signoff Models: Timing Annotation (EDA QPRO 0001 A).

Other publications

This section lists relevant documents by third parties:

• IEEE std. 1076.4 - 1995 IEEE Standard for VITAL Application-Specific 
Integrated Circuit (ASIC) Modeling Specification (also known as VITAL-95)

• IEEE std. 1364 - 1995 IEEE Standard Hardware Description Language based on 
the Verilog Hardware Description Language
ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. ix



Preface 
• OVI SDF2.1 Open Verilog International Standard Delay Format Specification 
Version 2.1 (February, July 1994)

• SDFremap Manpage (UNIX command: man sdfremap).
x Copyright © 2003 ARM Limited. All rights reserved. ARM DUI 0219A



Preface 
Feedback

ARM Limited welcomes feedback on both the DSMs and the documentation.

Feedback on the DSMs

If you have any problems with the DSMs, contact your supplier. To help us provide a 
rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform, 
operating system type, and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any comments on this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. xi
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Chapter 1 
Introduction

This chapter describes the DSMs. It contains the following sections:

• About DSMs on page 1-2

• DSM package contents on page 1-4.
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Introduction 
1.1 About DSMs

DSMs are back-annotation-capable (timing accurate) simulation models that can be 
included within a range of target HDL simulators. Each DSM is specific to a simulator 
and host platform. The DSM fully matches the architecture and functionality of the 
ARM core design. ARM ensures this by certifying the DSM against the entire 
Architecture Validation Suite (AVS) and Device Validation Suite (DVS) associated with 
that ARM core. 

Being derived directly from the ARM core RTL design DSMs are able to function with 
a wide-range of industry-standard Verilog and VHDL simulators, and can accept timing 
data through the SDF annotation facility on the simulator. DSM execution speeds are in 
the range of 5 - 500 cycles per second, depending on the simulator interface efficiency 
and the complexity of the design in which it is instantiated.

The DSM consists of two parts:

• A functional core block.

• A Verilog or VHDL wrapper, which includes the timing shell.

The wrapper uses the foreign language interface of the host simulator to 
instantiate the functional model. 

The DSM is generally derived from the RTL source of the ARM design using a 
compiler such as the Verilog Model Compiler (VMC) from Synopsys. This is 
augmented with some extra functionality, such as instruction disassembly, added 
by ARM. 

The DSM interfaces to the wrapper using technology developed by ARM to 
enable a single compiled model to function with a variety of logic simulators. The 
technology developed by ARM also facilitates the addition of a timing shell.

The DSMs typically include behavioral debug facilities, such as an instruction 
disassembler that are difficult to provide in an RTL model. When you use compiled 
models it enables distribution of models without compromising the intellectual property 
that they embody.

Note
 For synthesizable cores the DSM is a pre-implementation model and not a sign-off 
model.

1.1.1 Potential simulation inaccuracies

The compiled nature of these models, and the use of a pin-to-pin timing wrapper 
introduce several differences in the way these models are used and behave, compared to 
RTL code used in similar circumstances. Some of these differences are subtle, such as 
1-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DUI 0219A



Introduction 
changes to the order in which simultaneous events are processed by a model, and some 
of them are more obvious, such as the requirement to characterize the core as a single 
block for timing purposes.

1.1.2 Features of ARM DSMs

The main features of ARM DSMs are:

Full device functionality 

The DSM fully matches the architecture and functionality of the ARM 
core design.

Phase accuracy 

You can expect the DSM to exhibit the same intra-cycle timing as your 
chosen ARM core. The DVS for the ARM core provides much of the 
certification of phase accuracy. 

Register visibility 

The DSM provides debug visibility of the registers within the core. The 
register set of the core for all modes represented in the architecture is 
visible in a special layer of VHDL or Verilog hierarchy inside the DSM. 
These registers are available for tracing in your simulation. 

Cache and memory size configuration 

You can configure the size of the cache, or TCM, for each particular DSM 
instance, where applicable.

Timing and back-annotation  

ARM supports back-annotation from SDF using either VITAL 95 or 
Verilog SDF standards. 

Note
 The SDF can require post-processing using tools included with the DSM.

Disassembler 

Some DSMs also provide a built-in disassembler. The availability of the 
disassembler varies from core to core and depends on the availability of 
a suitable execution tracer built into the RTL of the core from which the 
DSM is derived. 
ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. 1-3



Introduction 
1.2 DSM package contents

Each DSM contains the following components:

• Template timing files, .sdft.

• Test model that enables ARM Condensed Reference Format (CRF) production 
test vectors to be run.

• A set of CRF test vectors for verifying the model function, .crf, .ctrm.

• Documentation.

• Utility to ensure correct back-annotation of SDF to timing shells, sdfremap.

• Model Manager, one or more shared libraries, .so or .sl file.

• The DSM itself comprising of:

— a compiled core (a shared library) .so or sl file

— one or more compiled SWIFT or Open Model Interface (OMI) modules 
generated using a third party compiler, when applicable

— an HDL (Verilog or VHDL) wrapper, .v or .vhd

— any additional files specifically for use with that simulator.
1-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DUI 0219A



Chapter 2 
Interfacing and DSM behavioral differences

This chapter describes using a DSM. It contains the following sections:

• Simulator interfacing on page 2-2

• Differences arising from use of compiled models on page 2-5.
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Interfacing and DSM behavioral differences 
2.1 Simulator interfacing

VHDL and Verilog simulators provide an interface through which so-called foreign 
code can be included in a simulation. For Verilog simulators, this is usually the 
Programming Language Interface (PLI). VHDL simulators use a simulator-specific 
interface, but they generally provide similar functionality. These interfaces generally 
enable control and interaction with the simulator on a low level. If you use them 
appropriately, you can enable foreign code to mimic a component written in HDL. 
ARM DSMs use this mechanism to enable a compiled model to behave as though it was 
a component of an HDL/RTL simulation.

The following sections describe simulator interfacing in more detail:

• Model to simulator linkage

• DSM event and interface semantics on page 2-4.

2.1.1 Model to simulator linkage

The core of an ARM DSM, while specific to the host platform for which it is compiled 
(Linux or Solaris, for example), is simulator and language-independent. The model 
interfaces to the simulator through the use of a simulator-specific Model Manager 
supplied with the DSM, which handles the event transactions between the model and 
simulator. The simulator invokes Model Manager through an HDL wrapper that is also 
supplied. The HDL wrapper presents the outside module/entity (the connections to the 
core, as described in the appropriate TRM) for that core into the logic simulator.

The Model Manager and the DSM are distributed as Operating System (OS) specific 
shared-object files. The HDL simulator loads the Model Manager and the Model 
Manager loads the DSMs in a system, see Figure 2-1 on page 2-3. 
2-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DUI 0219A



Interfacing and DSM behavioral differences 
Figure 2-1 Simulation structure

VMC-compiled components are included in a simulation through the use of a Synopsys 
interface standard called SWIFT that allows the simulators to integrate the VMC and 
other model types. ARM Model Managers do not use the SWIFT interface of the 
simulator. They contain their own SWIFT interface from the one provided by the host 
simulator.Do not use the SWIFT interface in the simulator to call the DSM SWIFT 
object. No special action is required to register the VMC model with the host simulator, 
although the environment must be correctly set in order for the ARM model manager to 
locate these models.

The simulator never deals with the DSMs directly because the Model Manager handles 
the DSM shared objects. A single Model Manager manages all DSMs in a simulation, 
even if there are several different DSMs, and presents the personality of each one to the 
simulator. From the point of view of the simulator, the Model Manager is the foreign 
model.

You have to register the Model Manager with the host simulator as foreign compiled 
code. The way you do this varies from simulator to simulator. The simulator is invoked 
with special switches, or a configuration file is used. Read the installation notes 
provided with the DSMs for detailed instructions. More information is provided in the 
user documentation for your simulator.
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Interfacing and DSM behavioral differences 
Note
 Because a single Model Manager is used to interface to multiple DSMs, it is not usually 
necessary to take extra steps to register the Model Manager multiple times with the host 
simulator. If your simulation involves compiled code from another vendor, there can be 
additional complexity involved in setting up and using the simulator so that they 
co-exist.

For more information, see the appropriate Model Manager application note in the DOCS 
directory of the DSM release and also the simulator documentation of the vendor.

2.1.2 DSM event and interface semantics

While DSMs support back-annotatable-timing, any delay on a signal driven out from 
the compiled core is actually applied at the timing shell by delaying an event that the 
compiled core has already driven. The core itself is constrained to being strictly 
zero-delay by the interface semantics between the Model Manager and host simulator.

Input events (that is, changes to the value of an input signal) are registered with the 
Model Manager by the host simulator. The DSM is essentially a single behavioral 
process. When invoked it calculates any changes to the value of its outputs on the basis 
of its input values. 

The Model Manager is activated by the host simulator, however, the simulator has no 
control until the new outputs from the DSM are driven back into the simulation. The 
DSM is a reactive model that drives new outputs immediately when presented with new 
inputs. Driven outputs, and incoming input events, can be delayed by the timing shell, 
which operates within the domain of the host simulator.

HDL simulators use various mechanisms to simulate the concurrent nature of hardware. 
In certain circumstances this concurrency can give rise to a so called race condition, 
where the order in which simultaneous events are evaluated can have an effect on the 
outcome of a simulation.

Race conditions are removed from HDL simulations through the use of specified 
event-queueing semantics. The behavior of the simulator with respect to handling 
events that nominally happen at the same simulation time is specified as part of the 
hardware description language (either VHDL or Verilog). VHDL, for example, deals 
with any potential problems through the use of delta-sweeping, where any evaluation of 
logic occurs in successive simulation deltas. Nodes in the netlist are only permitted to 
change between deltas, to ensure consistent behavior. Verilog does not use this precise 
mechanism, but its effects can be emulated through the use of so-called nonblocking 
assignments.
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Interfacing and DSM behavioral differences 
2.2 Differences arising from use of compiled models

When you use compiled models you can encounter some problems that do not occur 
when using native HDL code. These problems relate to the additional complexities of 
using a simulation that includes compiled foreign code, in addition to subtle issues 
regarding event semantics across the DSM/HDL boundary. 

The differences are detailed in the following subsections:

• Model to simulator linkage problems

• DSM event and interface semantics problems on page 2-6

• Support implications of compiled models on page 2-7.

2.2.1 Model to simulator linkage problems

One problem that you might encounter with multiple sources of compiled code is that 
they might not co-exist successfully and so interfere with the operation of other 
compiled code. There are normally two ways in which this can happen:

• A compiled object can function correctly by itself, but interfere with the use of 
another compiled object.

This is typically something that Verilog PLI objects are more prone to, because 
the PLI normally does not enforce as much contextual separation as typical 
VHDL interfaces. The ARM Model Managers are written in such a way that they 
set the simulator to a known state when they are invoked, but not all PLI models 
are as rigorous in their approach. Problems that arise from this issue tend to 
manifest themselves as timescale oddities.

This kind of problem can also occur if the DSM contains a VMC-compiled 
component when other VMC components are present in the simulation through 
the native SWIFT interface of the simulator. In particular, the ARM-supplied 
VMC component is inoperable if instantiated both through a DSM and directly in 
the host simulator.

• A bug in one compiled object can corrupt the stack or heap in another, causing 
erratic behavior or crashes.

This is normally difficult to diagnose and debug. This is because in all currently 
supported simulators, the simulator, Model Manager, DSM, any VMC models 
they include and any other foreign code, all operate in the same address space. A 
bug in any one can cause corruption in any of the others. It is also possible, and 
likely, that because of the way the heap is managed, problems like this can go 
undetected, until you add more code to the simulation.

If a simulation including a DSM and other foreign code seems to be functioning 
incorrectly, then you should attempt the simulation without the foreign code 
present, if possible. This helps to determine if one of the foreign objects is 
responsible for the unusual behavior. If problems persist, then contact your DSM 
provider for technical support.
ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. 2-5
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2.2.2 DSM event and interface semantics problems

While the processing of events inside a DSM is governed by similar semantics to the 
host simulator outside, you might find that problems can arise at the level of the foreign 
language interface. Simulators vary in the extent to which they support and preserve 
their own event semantics when dealing with passing events to and from foreign objects. 
VHDL simulators, in general, tend to apply the same delta-sweeping semantics to 
foreign objects as they do to VHDL code although the numerous types of foreign 
interfaces found in VHDL simulators do not make this universal.

The Verilog language specifies a foreign object interface (the PLI) as part of its 
standard, but this does not appear to be sufficient to guarantee consistency because 
different Verilog simulators handle the propagation of events to foreign objects 
differently, even though both are nominally executing the same code. One implication 
of this is that a test harness that relies only on event queueing semantics of the simulator 
to separate a clock and the data signals being sampled, instead of inserting a simulation 
delay between them, cannot function consistently when used with a DSM. This is 
because some simulators present the events from before nonblocking assignments and 
the events from after nonblocking assignments to the DSM as a single set of changes. 
For example:

module top ();

reg CLK;
reg I;

initial
begin
#10;
CLK <= 0;
#10;
CLK <= 1;
end

always @(posedge CLK)
begin
I <= 1;
end

ARMDSM theDSM (CLK, I);

endmodule

Some Verilog simulators present the changes that occur to CLK and I at 20 picoseconds 
as a single set of events, despite the use of a non blocking assignment. In such cases, 
you must use a small simulation delay for example,1 ps, instead of a nonblocking 
assign, to ensure correct separation of events. This has implications for the way in which 
behavioral test benches are designed.
2-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DUI 0219A



Interfacing and DSM behavioral differences 
2.2.3 Support implications of compiled models

DSMs are typically derived from the RTL source for the device that they model through 
the use of a model compiler such as Synopsys VMC. The use of compiled RTL in a 
DSM has implications about the level of support for:

• configuration

• visibility of internal nodes.

Some ARM cores, particularly those that are synthesizable, can be configured during 
compilation or synthesis through the use of parameters or Verilog 'define directives. 
When compiled, any configuration performed this way is fixed and cannot be 
subsequently changed. It is therefore not generally possible to configure the RTL code 
within a DSM in the same way that it can be configured for other uses. Certain DSMs 
have configuration options introduced through adding behavioral C to the DSM. See the 
DSM release documentation for your specific model for more details about the 
configuration options that it supports.

Because the model is compiled, the host simulator is unable to probe its simulation 
structure. Consequently, you cannot examine nodes within the model for debug 
visibility. However, DSMs are built with certain internal nodes exported into the 
simulation wrapper but not as pins on the device. These nodes typically include the 
register set in addition to other pertinent information. They map to Verilog registers or 
VHDL signals inside the HDL wrapper, and can be examined by the logic simulator. 

Note
 Because the DSM is representative of the actual design, these exported signals typically 
show the actual values present in registers, at any given simulation time. This might not 
agree with the abstract programmer's model because of optimizations in the 
implementation. Updated register values can be in the pipeline to update a register bank, 
when accessed by other blocks using forwarding paths. So the programmer’s model 
does not always reflect the true status of the core.
ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. 2-7
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Chapter 3 
Timing Issues

ARM simulation and sign-off models integrate into back-annotation flows through the 
use of the SDF timing annotation facilities present in VHDL and Verilog simulators. 
These models are large, single components with a zero delay execution model. 
Difficulties can be encountered in successfully integrating them into a timing flow, and 
there are implications for the level of timing accuracy that can be achieved. This chapter 
describes these issues and some of the facilities provided to help in the annotation 
process. It contains the following sections:

• The pin-to-pin timing model on page 3-2

• Multiple timing paths on page 3-7

• SDF annotation on page 3-9

• Interconnect delays on page 3-17

• Use of negative timing checks on page 3-19

• Static Timing Analysis and HDL annotated simulation differences on page 3-22

• Limitations of the timing model on page 3-25.
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3.1 The pin-to-pin timing model

From the point of view of the simulator, the ARM model core is a large single 
component within the simulation. It is sensitive to all its inputs and can theoretically 
drive output values as a response to any one of them changing (that is, it is treated as a 
large combinatorial block). The model and simulator provide no special treatment to 
clock signals. They are considered as input signals, like any other, that can cause output 
events to be generated.

Timing annotation is achieved by placing an HDL timing wrapper around this model. 
The model is specified as a zero-delay model so that the timing behavior can be entirely 
determined through the use of back-annotation from an SDF file. To illustrate the 
behavior of a timing shell the following three scenarios are described:

• Zero delay model core

Initially, the behavior of a simple synchronous block with no timing functionality 
is described.

• Addition of timing shell on page 3-3

The model has an external pin-to-pin timing shell added around it, implementing 
setup and hold checks, in addition to a delay on the output. It demonstrates that 
the addition of the timing shell does not affect the functionality of the model.

• Negative timing constraints on page 3-6

The implications of negative timing constraints, for example, negative setup and 
hold times are examined. It shows you that a simple pin-to-pin timing shell, used 
in conjunction with a zero-delay core, cannot be used to model negative timing 
constraints. To support negative timing constraints, a modification to the basic 
implementation is described in Use of negative timing checks on page 3-19.

3.1.1 Zero delay model core

The first example is a simple synchronous block with:

• a clock, CLK
• an input signal IN, which is sampled on the rising edge of the clock

• an output OUT, which is driven on the falling edge of the clock.

Figure 3-1 shows a simple synchronous block with clock.

Figure 3-1 A simple synchronous block with clock

CLK

IN

OUT
3-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DUI 0219A



Timing Issues 
The sequence of events from the point of view of the model, without a timing shell is:

1. All signals are set to zero.

2. At 10ps, the input, IN, rises to 1. Because the block is sensitive to changes on IN, 
it is evaluated but the behavior of the block is such that no action is taken.

3. At 20ps the clock, CLK, rises to 1. The model is evaluated and latches the value 
of IN internally.

4. At 25ps, IN falls to 0. The model is evaluated, but takes no action.

5. At 30ps, CLK falls to 0. The model is evaluated and determines that a drive to 
OUT is required.

6. Still at 30ps, but in a subsequent simulation evaluation, the output OUT, rises to 
1 as a result of the drive from the block model.

The above sequence of events is for a zero-delay, behavioral model (that is, a DSM) with 
no timing shell. The model is sensitive to all its inputs and drives its outputs 
immediately. Because of the simulation semantics of a DSM, no other part of the 
simulation is evaluated in parallel with the DSM evaluation. Consequently other 
functional blocks in a simulation cannot insert values between individual DSM 
evaluation steps even if they are set to drive its inputs at the same simulation time.

3.1.2 Addition of timing shell

In this case a pin-to-pin timing shell is placed around the periphery of the model. The 
timing shell, like the model is also behavioral code. It monitors input events without 
affecting their passage, this is only true in the simple case, see Use of negative timing 
checks on page 3-19 and Interconnect delays on page 3-17 for more details, and inserts 
a delay-buffer through which output events propagate. Assume that the timing shell is 
annotated from the following SDF fragment:

(SETUP (POSEDGE CLK) IN (5))
(HOLD (POSEDGE CLK) IN (6))
(IOPATH (NEGEDGE CLK) OUT (3))

The timing shell has no special information about the behavior of the device that it is 
wrapped around. It also does not have any special knowledge of what the signals are 
used for (for example, clocks versus synchronously sampled inputs). 

The sequence of events and their consequences is modified as follows:

1. Initially all signals are set to zero.

2. At 10ps, the input, IN, rises to 1. The timing shell notes the current simulation 
time 10ps as being the time at which IN changes and passes the change through 
to the underlying model. This behaves exactly as before with no action taken.
ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. 3-3
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3. At 20ps the clock, CLK, rises to 1. The timing shell notes the current simulation 
time 20ps as being the time at which the clock rose. A setup check is now 
performed of IN against the positive edge of the clock by subtracting the stored 
time at which IN changed 10ps from the current simulation time, 20ps. This value 
10ps is greater than the setup time of 5ps so no warning is emitted. The timing 
shell passes the clock change event through to the underlying model which 
latches the value of IN as before.

4. At 25ps, IN falls to 0. The timing shell notes the current simulation time at which 
IN changed and replaces its previous value, 10ps. It then performs a hold check 
by subtracting the stored time at which the clock rose 20ps from the current 
simulation time 25ps, and notes that the actual hold time of IN against the positive 
edge of the clock was 5ps. This is less than the 6ps indicated in the SDF file, and 
so a hold violation message is printed in the simulation log. The event on IN is 
passed through to the model as before and the hold violation has no effect on the 
underlying model behavior. The output is not forced to X because of the timing 
violation.

5. At 30ps, CLK falls to 0. The timing shell notes this time as being the time at 
which the clock fell. No more action is necessary. The model is evaluated and 
determines that a drive to OUT is required.

6. Still at 30ps, but in a subsequent simulation evaluation, the output OUT, rises to 
1 as a result of the drive from the block model. The timing shell intercepts this 
drive from the model and notes that the negative edge of the clock happened at the 
current simulation time, even though this occurred from a previous simulation 
evaluation. It therefore inserts a delay on the propagation of OUT to the outer 
edge of the timing shell of 3ps.

7. At 33ps, the delayed version of OUT propagates from the outer edge of the timing 
shell, and into the wider simulation, see Figure 3-2 on page 3-5.

Note
 The model core actually drives this output at 30ps simulation time, the subsequent 

delay is implemented entirely by the timing shell.
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Figure 3-2 A modified sequence of events

As an event simulation, the above behavior differs from physical hardware in a number 
of ways. Firstly, if we examine the point where the hold-window for the sampling of IN 
by the device was violated:

• In physical hardware, this renders the subsequent behavior of the device 
unpredictable because it cannot be guaranteed that the correct value of IN was 
actually sampled and used in the evaluation of the output. 

• In the event simulation, the sampling of synchronous inputs occurs as a discrete 
event at the clock edge. The resultant hold violation is a cosmetic warning that 
does not affect the subsequent behavior of the simulation, and must be taken to 
indicate that the simulation can no longer be assumed to match reality after this 
point. 

Note
 ARM DSMs do not drive outputs to X in response to a timing violation.

Secondly, in this example, the model evaluates its outputs as soon as it has all pertinent 
information. This is when it receives the negative-edge event on the clock. 

• In physical hardware, the delay of 3ps on the output OUT, is partly because of 
internal path delays in the device and partly because of the load to be driven by 
the output.

• In this event simulation, the new value is calculated immediately and the timing 
shell simulates the cumulative delays after the fact. This works for the purposes 
of simulation provided the output value really can be calculated at the point the 
clock edge which drives them occurs. This might not always be the case, an 
explanation is provided in the next section.

CLK

IN

OUT

external OUT

Setup/hold

window

Delay inserted

by timing shell

10ps 20ps 40ps30ps

Hold violation
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3.1.3 Negative timing constraints

In this example there in a high performance device where a sampled input has a 
negative-setup time, and the output it affects is driven by the same clock edge on which 
the input is sampled. This situation is shown in Figure 3-3.

Figure 3-3 A high performance device with negative setup time

In this situation, the value of IN can change for a certain time after the clock edge, and 
still affect the value of the derived output. For example, this can be because of a delay 
in propagating the clock around the inside of a large device. In reality the output OUT 
is driven at a point some time after the input clock edge is nominally said to have 
occurred because of propagation delays inside the device. A DSM-style model does not 
model these delays. The output is driven immediately and delayed by the timing shell. 
A subsequent change on IN, even if it occurs before the final drive of OUT by the timing 
shell, cannot affect the simulation because the model has already driven the result and 
cannot revoke it.

Simulating this type of behavior in a pin-to-pin timing shell is therefore quite 
complicated, and if applied to the scenario outlined does not work. See Use of negative 
timing checks on page 3-19 for information on how the timing shell behavior is 
modified by the simulator to handle these situations.
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Setup/hold window
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3.2 Multiple timing paths

In Addition of timing shell on page 3-3 it assumed that the timing shell determines that 
the positive edge of the clock was the causal event for the output delay. Of course the 
timing shell cannot work this out for itself because it has no understanding of the logic 
and state inside the model. In that example, this is not significant because there is only 
a single possible causal input event from which the output can change.

In larger devices it is often the case that an output can change because of multiple causal 
input events. Examples include multiple clocks such as a memory clock and a test clock, 
or an asynchronous reset signal. When ARM constructs the timing shell, there is a list 
of possible causal events for each output. If more than one possible causal event occurs 
at the same simulation time, the timing shell can potentially pick the wrong event, 
because it has no understanding of the actual behavior of the model and therefore no 
way of knowing which event truly was causal. Inaccuracies can be avoided in one of two 
ways:

• ARM can construct the timing shell so that additional information, exported by 
the model, can be used to enable only certain timing arcs dynamically depending 
on the internal state of the model. These timing arcs are enabled and disabled 
through the use of the conditional timing arc facility (COND construct) present in 
SDF.

• The timing constraints on the model might be arranged so that it is not valid for 
the input events in question to occur at the same time (enforced through setup and 
hold checks).

A special case is described in State-dependent timing.

3.2.1 State-dependent timing

A special case involving multiple timing arcs that can be problematic is when two or 
more timing arcs for a given output delay (that is, an SDF IOPATH construct, see SDF 
annotation on page 3-9) have the same causal event specified (for example, negedge 
CLK) and differ only through their use of the SDF COND facility. These are referred to as 
state-dependent delays and present a particular problem for SDF timing flows. Unless 
the vendor software generating the SDF data to be annotated can differentiate between 
the multiple arcs, then a single set of delay times are annotated onto all of them. This 
results in the delays being the same regardless of the state.

Static timing analysis cannot normally determine which state a device being modeled is 
in when calculating delay values. Certain ARM devices (ARM7TDMI, for example) 
exhibit state-dependent timing. STA based timing flows can be used with such a device, 
but state-dependency is not modeled in these simulations. An alternative flow that is 
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able to model state-dependent timing behavior is supported, but a description of this 
flow is beyond the scope of this document. See ARM Design Signoff Models: Timing 
Annotation for more details.

Note
 The use of the SDF COND facility does not indicate that state-dependent timing is in 
effect. True state dependency arises when the use of the COND facility is all that 
distinguishes otherwise identical timing arcs. COND is also used by the timing shell to 
disable individual timing arcs when they are not appropriate.
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3.3 SDF annotation

VHDL and Verilog logic simulators perform SDF annotation in similar ways, although 
there are differences in the specific details between the two languages. 

Figure 3-4 shows the structure of a simple timing shell.

Figure 3-4 Simple timing shell structure

A timing shell is a block of behavioral VHDL or Verilog code although most of the 
actual behavior is inferred in Verilog implementations, where timing constructs are 
provided as language features. This code is organized into a routine for each signal in 
the design, that is invoked when an event occurs on that signal.

For input signals, the code checks that an event is happening at a permitted time, that is, 
it is not violating a timing check associated with the signal in question. The passage of 
the input signal is not impeded by timing check code, which only monitors. However, 
input signals can be delayed for other reasons, See Interconnect delays on page 3-17 
and Use of negative timing checks on page 3-19 for more information.

Output signals are responded to by a buffer that inserts a delay in the propagation of the 
event into the outside world.

In both of these cases, the timing shell requires time values to work with. Input checks 
require the setup time and hold time to compare against events. Output delays have to 
know how long to delay the drive. Unlike normal HDL code, these values are not 
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present in the code itself and instead a place-holder value is used for each timing arc that 
the timing shell is interested in. These placeholders are set to some nominal value in the 
HDL source (typically zero), and filled in automatically at the start of the simulation 
from an SDF file.

When inserting values from an SDF file into a timing shell, the simulator has to know 
which placeholders must be used to hold the values. It does this by using a standard 
mapping so that a timing arc in an SDF file has a defined equivalent in the Verilog or 
VHDL source. In VHDL this is done by mapping timing arcs to the names of VHDL 
generics (as described in IEEE 1076.4), where the name encodes the signals and edges 
involved in the timing arc, in addition to any conditions. The Verilog language is slightly 
different in that the language contains special system tasks for timing arcs that include 
edge and conditional information, in their specification. The SDF annotator within the 
simulator overrides the default values (those which are specified in the source code) of 
any timing arcs that match the arcs that it finds in an SDF file.

Potential difficulties can arise in SDF annotation when there is a mismatch between 
what is present in an SDF file and the placeholders in the timing shell. Because an SDF 
file comes from a source that is generally not under the control of the supplier of the 
timing shell, the potential for mismatches exists. SDF is sufficiently syntactically rich 
that a timing arc that obviously matches a particular construct in the timing shell might 
not be found as a match by the SDF annotator. For example, assuming that the timing 
shell is constructed so that there is a setup check between a signal, IN, and the positive 
edge of a clock, CLK, then the following SDF code might be expected:

(SETUP (POSEDGE CLK) IN ...)

If, however, the SDF file contains a single setup check between CLK and IN:

(SETUP CLK IN ...)

A setup check on a nonspecified edge of a clock is a superset of a setup check on a 
positive edge, and so is theoretically a valid construct to annotate onto the appropriate 
check in the timing shell. The OVI SDF2.1 standard suggests that, in this situation, 
annotation must proceed. However, in practice, different simulators handle this situation 
differently. Verilog simulators generally annotate a specific timing arc from a 
less-specific SDF construct like this. VHDL, however, is less flexible and requires an 
exact match. Also, if the SDF file contains timing arcs that are not in the timing shell, a 
VHDL annotator generally halts the simulation with an error.

In general, ensuring a match between the SDF file and the timing shell must be regarded 
as a requirement when performing SDF annotation, although Verilog simulators are 
typically more flexible in these requirements. This requirement can be achieved with 
the use of the following:

• Templates

• SDFremap tool on page 3-13.
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3.3.1 Templates 

As described in SDF annotation on page 3-9, it is generally assumed that the SDF file 
to be annotated is a match for the timing constructs specified in the timing shell. ARM 
models are supplied with a template file that assists in ensuring this match. The template 
file, typically named <device>.sdft, is structurally an SDF file but contains no 
numerical information. Instead it contains the names of timing parameters as used by 
the device. The primary intent of the template is to serve as a definitive reference for the 
arcs present in the timing shell. However, this does not mean that the SDF file to be 
annotated has to precisely match the template file. The order of timing arcs is not 
generally important, and there are other subtle ways in which the template file can differ 
from the annotated SDF: 

• SDF treats setup and hold timing checks as two separate timing arcs. Generally, 
they are represented by SETUP and HOLD arcs in an SDF file, and there are two 
placeholders in the simulation. However, SDF also enables the use of the 
SETUPHOLD construct. ARM models are generally written in such a way that 
SETUPHOLD can be used as a shorthand form of separate SETUP and HOLD arcs with no 
ill effects.

Note
 There are some timing checks where a setup check is performed on one clock 

edge, a hold check on the following edge, and the data signal must be held stable 
in the clock-phase between them. This is sometimes referred to as a nochange 
timing check. Some ARM models contain these type of checks, and they can be 
represented in an SDF file by unpaired SETUP or HOLD arcs. Unpaired arcs must not 
be replaced with a SETUPHOLD construct, because this causes the simulator to try to 
annotate a timing check which does not exist in the timing shell, resulting in an 
error.

• SDF enables the specification of single values, or triple values (representing 
minimum, typical, and maximum times). Templates always use the triple form for 
their placeholders, but this is not a requirement. In addition, IOPATH entries in the 
template can contain up to 12 sets of placeholders, but there is no requirement to 
provide 12-value SDF for annotation. The placeholders in an SDF template are of 
secondary importance to the structure of the file, and the actual SDF to be 
annotated can contain up to six values, representing the six possible transitions a 
signal can make between the three logic values, 1, 0 and Z. ARM tools that 
generate SDF from template files SDFremap and SDFgen write no more than six 
values for an IOPATH, regardless of the contents of the template. It is also 
permissible for the annotated SDF to contain fewer than six values in IOPATH arcs.

• For timing arcs that apply to vector signals, the template includes a bit-range for 
the arc, for example:

(IOPATH (NEGEDGE CLK) A[31:0] ... 
ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. 3-11



Timing Issues 
Note
 . . . indicates more line data but not relevant to the point being made.

In effect, this is a shorthand way of representing 32 different timing arcs:
 
(IOPATH (NEGEDGE CLK) A[31] ...(IOPATH (NEGEDGE CLK) A[30] ...(IOPATH 
(NEGEDGE CLK) A[29] ...(IOPATH (NEGEDGE CLK) A[28] ...- - - 

Note
 - - - indicates more lines of SDF.

When generating an SDF file for annotation, it is acceptableto use separate arcs 
for individual bits of a vector signal, in addition to bundling-up ranges, or using 
a mixture:

(IOPATH (NEGEDGE CLK) A[31:24] ...
(IOPATH (NEGEDGE CLK) A[23] ...
(IOPATH (NEGEDGE CLK) A[22] ...
- - -

Even though you can omit certain arcs from an SDF file if you do not want them to be 
annotated, it is a requirement for VHDL that if a timing arc involving a vector is being 
annotated, then both ends of the vector must be mentioned in the SDF file, otherwise it 
fails to annotate. Verilog simulators generally have no such requirement.

To summarize, you must ensure that the SDF annotated on to the model is a good match 
for the timing shell. The supplied SDF template file provides the definitive reference for 
the complete set of timing arcs and the form they must take. The following set of 
guidelines assists you in the annotation process:

• Timing arcs that are more general versions of the same arcs in the template 
usually annotate anyway when using Verilog, but not VHDL. This means that you 
can omit edge specifiers and COND qualifiers where present in the template, and the 
SDF still annotates correctly in Verilog.

• Not all arcs present in the template have to be present in the SDF file to be 
annotated. Arcs that are not present in the SDF, but are present in the template, 
default to the zero-delay behavior of the model. Parameters for timing checks 
which have no value annotated onto them also default to zero.

• There must be no arcs present in the section of the SDF file belonging to the 
model that are not present in the template. This does not include 
INTERCONNECT or PORT delays. See SDFremap tool for more details.
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3.3.2 SDFremap tool

If you have problems with a generated SDF file not annotating because it does not 
provide a good match for the template then you can use the SDFremap tool, provided 
with the model. SDFremap reads an SDF file containing data for a complete system and 
a template file and rewrites the cell pertaining to the model so that it matches the 
template in structure.

The tool works through the template, line by line. For each arc in the template it 
searches for an arc in the SDF file that matches the type of arc under consideration and 
uses the same signal(s). Because SDFremap is more flexible than an SDF annotator, it 
considers arcs that would otherwise be rejected.

If multiple possible matches for an arc are found, SDFremap selects between them by 
comparing them to see which is the closest match. However, this might not always 
resolve the situation. Consider the situation where the template contains the following:

(SETUPHOLD (POSEDGE CLK) IN (Ts:Ts:Ts) (Th:Th:Th))

and the SDF file has the following two entries:

(SETUPHOLD (POSEDGE CLK) (POSEDGE IN) (5) (2))
(SETUPHOLD (POSEDGE CLK) (NEGEDGE IN) (4) (2))

In this case, the timing software that produced the SDF splits one setup-hold check into 
two arcs by considering signal IN rising and IN falling separately. This does not 
annotate because the template, and therefore the timing shell is less specific than the 
provided SDF. If you reverse the situation, annotation works on a Verilog simulator but 
not on a VHDL simulator, because the timing shell is designed for a single setup-hold 
check that does not take the transition type of IN into account.

In this case, SDFremap considers both arcs as being an equally good match for the arc 
in the template, based on the arc type, signals, and edge information. In this situation, it 
selects the most pessimistic arc from the SDF file. The selected output for this arc is:

(SETUPHOLD (POSEDGE CLK) IN (5) (2))

To provide a proper audit trail, SDFremap writes a log file which explains for each arc 
in the template:

• which arcs (if any) it considered

• what decisions it made.

In addition to correcting edge specifications, SDFremap also adds any COND entries that 
are present in the template (this might not be necessary for Verilog, but has no harmful 
effect), and removes extra constructs that are not necessary for annotation. 

The SDF file can specify a timing arc between two vectors, for example:
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(IOPATH IN[31:0] OUT[31:0]...

Note
 The value of 31 above is an example only.

Typically this refers to a combinatorial path where IN[0] drives OUT[0], IN[1] drives 
OUT[1], and continues in this manner. As described in Templates on page 3-11, vector 
ranges in SDF are shorthand for a set of timing arcs for each bit in the range. Expanding 
out the IOPATH above, initially produces the following:

(IOPATH IN[31:0] OUT[0]...
(IOPATH IN[31:0] OUT[1]...
- - -

(IOPATH IN[31:0] OUT[30]...
(IOPATH IN[31:0] OUT[31]...

However, because the input half of the IOPATH is also a vector, each one of the arcs above 
is also a shorthand for 32 more arcs:

(IOPATH IN[0] OUT[0]...
(IOPATH IN[1] OUT[0]...
- - -

(IOPATH IN[31] OUT[0]...

(IOPATH IN[0] OUT[1]...
(IOPATH IN[1] OUT[1]...
- - -

(IOPATH IN[31] OUT[1] ...

This procedure continues, leading up to 1024 (32 squared) arcs in total. The assumption 
is that each bit on the output vector can be driven by any of 32 bits on the input vector. 
This is generally not the case, however, and the DSM model implements only 32 arcs, 
not 1024. In this case the template for the above arc actually reads:

(IOPATH IN OUT[31:0]...

Here, IN is now represented as a single signal so that only 32 timing arcs are inferred 
by the simulator, giving the required behavior. One common misunderstanding is that 
this representation somehow results in the wrong behavior because it is specifying the 
entire vector, IN, as the causal signal. However, the timing shell does not specify 
behavior, only timing (see Addition of timing shell on page 3-3 and Multiple timing 
paths on page 3-7). If, for example, the model drove OUT[5] because IN[5] has changed, 
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then the timing shell recognizes this as the path, IN -> OUT[5], because if one bit of IN 
has changed, then the vector signal itself has also changed and the timing shell functions 
as required.

Note
 See Vector to vector IOPATH arcs on page 3-27 for details of difficulties that can arise 
from vector->vector IOPATHs during annotation in VHDL simulations.

The precise behavior of SDFremap is configurable through its preferences files. You 
must be aware that the default behavior of the tool might not produce useful results, 
depending on the input, you must read through the supplied Unix man page for 
SDFremap before using the tool. Common reasons for problems include:

• The tool does not find any cells to remap. SDFremap matches on the cell type 
entry in the SDF file. If the cell type in the input SDF does not match the celltype 
used in the template file, the tool is unable to recognize the cell as the one it is 
interested in. In this case, you can use the <celleq> facility in the preferences file 
to make SDFremap aware of the correct celltype. See the SDFremap man page 
(UNIX) for details of how to use the preferences file.

• The remapped SDF refers to the wrong hierarchy level. At the time of writing, 
ARM models place the timing shell one level below the top-level of their wrapper. 
Most SDF files are generated with the expectation that the timing shell is at the 
level at which the ARM model is instantiated. In the future ARM models might 
be generated with the timing shell at this level, resolving this problem. For the 
moment, this issue can be resolved using the <pathtrails> facility in the 
SDFremap preferences file.

Note
 The use of the <pathtrails> facility does not fix the hierarchy in any interconnect 

delays, because these are specified outside the cell to which they refer and are 
therefore untouched by SDFremap. Currently, hierarchy problems with 
interconnect delays either require resolving manually or by using a text 
processing tool such as the UNIX sed utility.

• SDFremap does not correctly choose the most pessimistic timing arc. There are a 
number of reasons why this happen. For input checks, matching on the type of 
check takes higher priority than pessimistic time matching, so the tool might 
select a more optimistic timing check that is a closer match to the format of the 
template over a more pessimistic check that is a poor match.

For IOPATHs which can contain up to six sets of values, SDFremap regards the 
most pessimistic delay as being the one with the highest average (mean) of the 
values given.
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For three-value SDF, SDFremap defaults to calculating which arc is the most 
pessimistic by considering the typical timing values (that is, those in the middle 
of the value-triples). An unhelpful case is where SDF files contain empty typical 
values for all triples, for example:

(SETUPHOLD (POSEDGE CLK) IN (1::2) (2::2))

In this case, the default behavior of SDFremap effectivelyturns pessimistic value 
matching off, because it regards all timing arcs as specifying zero as their value. 
You can configure SDFremap to use any of the three values for the purpose of 
calculating pessimistic delays through the use of the preferences file. See the 
SDFremap man page (UNIX) for more detail.
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3.4 Interconnect delays

The timing checks and delays explicitly built in to a timing shell and referenced in an 
SDF template file are applied at the boundary of the model and do not interact directly 
with other cells in the design.

The timing shells also have provision for interconnect delays from neighboring cells to 
be annotated. In the simple case (a so called single-source interconnect delay, where an 
interconnect wire between cells has a single driver and a single reader), interconnect 
delays are modeled by HDL simulators by placing a delay buffer on the input side of a 
wire. Timing shells place a buffer on every input to the model. As with IOPATH delays, 
the buffer has a placeholder-delay associated with it that is initially set to zero.

During SDF annotation, the placeholder is overridden by SDF INTERCONNECT or PORT 
timing arcs (in the simple case, PORT and INTERCONNECT are treated identically by SDF 
annotators). Any input signals that are subject to interconnect delays are then held by 
the buffer for an appropriate amount of time. After this delay, the event is registered by 
any timing checks and the model itself. Interconnect delay buffers can therefore be 
regarded as an extra shell around the timing shell that delays input events before passing 
them through to the normal timing shell where they are processed as usual. Setup and 
hold, in addition to any other timing checks, occur on the delayed value of the input 
signal, not the undelayed version. If a signal used as the reference signal in an IOPATH 
delay is subject to an interconnect delay, it is the delayed version of the event which is 
regarded as causal.

Output events driven by the model propagate into other components within the wider 
design which can also choose to add interconnect delays in addition to any IOPATH delay 
added by the timing shell of the model. These delays are applied downstream by 
whatever is consuming the events, and do not affect the timing shell.

3.4.1 Multi-source interconnect delays

In some cases, an input to the model can have more than one possible driver (a databus 
is a common example which can be driven by memory or a DMA peripheral). In such 
cases, a single value for the interconnect delay, annotated at the site where the signal is 
read, is insufficient because the interconnect delay can differ according to the driver 
(See the section on interconnect delays in OVI SDF2.1, for an example. For reference 
details see Further reading on page ix). 

In the case of these multi-source interconnect delays, Verilog SDF annotators, when 
invoked with the correct options (see your simulator vendor manual for more detail) 
attempt to spread the delays around. They annotate part of the delay on the input part of 
the signal, and part of the delay on the output buffers where the signal is driven. ARM 
Verilog timing shells function with multi-source interconnect delays if the models 
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driving them have the appropriate output buffers. ARM Verilog timing shells also 
provide the appropriate buffer constructs on their own outputs to enable them to be used 
as annotation sites for multi-source interconnect delays.

ARM VHDL timing shells only support single-source interconnect delays.
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3.5 Use of negative timing checks

The simple zero delay behavior outlined in Zero delay model core on page 3-2 is 
generally suitable for simulating the typical case. Synchronous inputs are required to be 
stable at some point before a clock edge, the setup time, and held stable for some time 
afterwards, the hold time. Figure 3-5 shows that sometimes a setup time can be 
negative.

Figure 3-5 Negative setup time

In this case, the input signal IN, is allowed to change for some time after the clock edge 
on which it is nominally sampled. This can occur because of clock-tree distribution 
delays inside the device. The clock reaches some parts of the hardware before it reaches 
others. In these cases, the logic inside the device that is working with these inputs is 
effectively using a delayed version of the clock. The timing behavior of the device, as 
specified in an SDF file, is still relative to the boundary of the device. Relative to the 
clock as seen at the device boundary, the setup time of the input, IN, is negative.

The zero-delay model with a boundary timing shell cannot directly handle this situation 
because it does not use distributed delays inside the device directly (pin-to-pin timing 
annotation is not possible if it does), but models them by delaying a driven output by the 
total of all the delays involved in producing it. This cumulative delay is the value used 
in IOPATH directives in the SDF file.

Any behavior in the model that depends on the sampled value of IN, but which is 
determined as a response to the clock edge therefore runs the risk of sampling the wrong 
value of IN and diverging from the behavior of the real device.

A solution to this problem is for certain events to be delayed inside the timing shell, 
before they are presented to the model. In the above case, the clock signal is delayed to 
produce a new signal, CLK’. Figure 3-6 on page 3-20 shows this process.
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Setup/hold window

Negative setup time

Hold time
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Figure 3-6 Delaying a clock signal to produce a new signal

Any timing checks are still performed relative to the original clock, but the model sees 
the delayed version, and therefore samples IN at a time when it is known to be stable 
(inside its setup and hold window).

In isolation, this is all that is required. However, the clock is delayed as the model sees 
it, therefore any outputs driven from that clock are also delayed. If the time by which 
the clock is delayed is subtracted from all IOPATH times from the clock to any outputs, 
the behavior outside the timing shell is still correct. In addition, delaying the clock can 
potentially move the point at which other synchronous inputs are sampled to beyond the 
end of their hold time. Figure 3-7 shows how this occurs.

Figure 3-7 Input signals sampled beyond hold time

To accommodate this, adding a delay to the clock means that IOPATH delays must be 
reduced by a corresponding amount. Also, other input signals might require a delay 
applying to them, similar to the clock delay, so that they are sampled within their setup 
and hold windows.
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The Verilog SDF annotator provides a facility where it automatically delays input 
signals by an appropriate amount and adjust the output delays to compensate. This is 
typically enabled with an appropriate switch to the Verilog simulator when it is invoked 
(see your simulator manual for more information). If this switch is not specified, 
negative timing checks are typically set to zero.

ARM timing shells for Verilog simulators are constructed in such a way that the 
simulator can perform this adjustment for negative timing constraints. As a result, 
negative timing checks can be used with Verilog models. However, there can be cases 
where it is not possible to adjust the timing behavior to ensure that all IOPATHs and 
timing checks function as defined, because there can be an IOPATH delay which is 
smaller than the amount by which the clock requires to be delayed to accommodate a 
negative setup time. As a result, some timing checks might still be overly-pessimistic.

ARM VHDL models do not support negative timing checks.
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3.6 Static Timing Analysis and HDL annotated simulation differences

This section describes any potential differences between the results of Static Timing 
Analysis (STA) of a design that uses an ARM core and the timing behavior of its DSM 
during dynamic HDL simulation of the design. An STA model of a core represents the 
timing reference model of that core and the timing shell of the DSM must match it as 
faithfully as possible.

The STA timing model (Synopsys library view) of an ARM core is a pin-to-pin 
black-box timing model. These models contain timing arcs and lookup tables that are 
used to calculate the values used in the timing arcs, given the context of the usage of the 
core in a system. Consequently, the STA tool has no knowledge of the internal structure 
of the core, which is the same situation for the HDL timing shell provided with a DSM. 
Therefore it is theoretically possible for the timing shell to contain an exact equivalent 
set of timing arcs to the STA model, although for some models this is not the case.

There are various reasons why the timing arcs might not match between the two model 
types and these are described in Missing arcs. There are also cases where the timing 
results can be different because limitations of HDL simulators with respect to STA, 
these are described in HDL simulation limitations on page 3-23. Some mismatches 
between STA and HDL simulation can result in the simulation timing behavior being 
more optimistic than STA and others cause it to be more pessimistic. In the optimistic 
case, an HDL simulation of a design does not report timing violations found by STA 
(assuming the failing arcs are exercised during the simulation). In the pessimistic case, 
an HDL simulation issues false timing errors and therefore, error free, full speed 
simulation is not possible.

3.6.1 Missing arcs

In this case timing arcs that are present in the STA model of a core are not in its DSM 
timing shell. This causes the DSM to be more optimistic than the STA model. This can 
be caused by: 

• version mismatches

• output to output delays

• output setup and hold checks

• a DSM not matching the implementation of a synthesizable core from a 
core-licensee (these are cores with the -S suffix and ETMs).

Version mismatches

In some cases a core has had a design change that results in timing arcs being added to 
the STA model and equivalent changes were not made to its DSM timing shell. When 
this is identified it can easily be remedied by a minor update to the DSM.
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Output to output delays

In some cases implementations of synthesizable devices have output signals that are 
directly fed-back internally and pass through some logic that drives another output pin. 
Currently these arcs are not implemented in DSMs. The core-licensee can solve this 
problem by resynthesizing the device using the set_fix_multiple_port_nets command 
during synthesis with Synopsys tools.

Output setup and hold checks

This is similar to output to output delays and also applies to synthesizable devices. It 
occurs when output signals are directly fed back internally to flip-flop inputs. You can 
resolve this problem in the same manner as that used to resolve the output to output 
delays.

DSM does not match the implementation of a core from a core-licensee

This is an issue for synthesizable devices only. The timing arcs in the DSMs for these 
cores are developed from test chip implementations of the associated cores. When 
synthesizable devices are implemented by core-licensees, arcs can vary slightly from 
implementation to implementation because of modeling differences between 
technology libraries, synthesis methodologies, and tool versions used. For 
synthesizable devices, silicon vendors generate their own STA view that matches their 
implementation of a core, which ARM has no knowledge of. The solution to this is for 
a core-licensee to also generate the DSM timing shell for their implementation of a core.

3.6.2 HDL simulation limitations

These are related to how the SDF data is treated in the simulation back-annotation flow. 
These limitations lead to the simulation being more pessimistic than STA. These can 
occur in negative timing checks, rising and falling setup and hold checks, and single 
negative setup or hold checks.

Negative timing check issues

This is described in Use of negative timing checks on page 3-19 where the output delay 
for some ports can be smaller than the amount by which the clock is required to be 
delayed. HDL simulators honour the output delay requirements and zeros any 
conflicting negative setup checks. STA does not have these constrains and can consider 
each arc individually, but simulation must take into account the relationships between 
output delays and setup and hold checks.
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Rising and falling setup and hold checks

As described in SDFremap tool on page 3-13 the SDFremap tool combines edge 
specific pairs of setup and hold statements in SDF files into single non-edge specific 
statements. In doing so it chooses the most pessimistic values from the original file. 
Synthesis and STA uses the rising and falling values independently. The implemented 
design can rely on the fact that there is more setup margin for the rising edge of an input 
verses the falling edge and also in the reverse case. This can cause a simulation to falsely 
report a setup or hold violation.

Note
 This only applies to edge-specifiers on the data signal. Clock-edge specific timing 
checks are implemented in the timing shell.

Single negative setup or hold checks

In rare cases the STA model can contain a single setup check without a corresponding 
hold check or a hold check without a corresponding setup check. This is not a problem 
if the check value is positive but if it is negative then the check is set to zero in 
simulation. This occurs because only compound Verilog $setuphold checks can be 
annotated with negative values and if one of the pair of values is missing then the default 
value in the timing is used, which is zero. Consequently, one half of the check is 
negative and the other zero, which is invalid because the sum of the two values must be 
positive. The Verilog simulator overrides the value in the SDF file and sets it to zero. It 
also issues a warning message informing you that it has set the timing check value to 
zero.
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3.7 Limitations of the timing model

The discussion of limitations of the timing model is subdivided into:

• IOPATH retain

• Vector to vector IOPATH arcs on page 3-27.

3.7.1 IOPATH retain

Previously, transitions on delayed outputs have been represented as a single transition 
from the old value to the new value at a point in simulation time. In reality, the latest 
time at which the old value is guaranteed to be valid and the earliest time at which the 
new value is guaranteed to be valid can be separated by a period of uncertainty, where 
the value is unknown, this is shown in Figure 3-8 below.

Figure 3-8 Uncertainty of value

In a simulation, the above behavior is modeled by driving the output to X at 15ps, and 
to 1 at 20ps.

The delays in a DSM have to operate within the limits of a timing shell, and so this 
behavior cannot be modeled directly. All delays are applied by the code in the timing 
shell and the model drives the output directly to the new value at the time when the 
model is invoked. Any modeling of the unknown-period must be performed in the 
timing shell.

The SDF file format contains support for the specification of the time for which the 
previous value of an output remains valid, as distinct from the time at which the new 
value becomes valid. This facility is called IOPATH RETAIN and enables up to three times 
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ARM DUI 0219A Copyright © 2003 ARM Limited. All rights reserved. 3-25



Timing Issues 
to be specified for the retain time (that is the time for which the previous value is known 
to be valid). These three times represent a transition from HIGH, LOW, and 
high-impedance respectively.

At the time of writing, it is understood that none of the Verilog simulators supported by 
ARM Limited make use of the IOPATH RETAIN facility during SDF annotation, it is 
ignored. As a result, Verilog models do not support retain times on output delays.

VHDL has recently added some support for IOPATH RETAIN in its SDF annotator, but the 
way this is accomplished requires the timing shell to know how many delay values (up 
to six) the corresponding IOPATH entry in the SDF file is going to provide at the time the 
timing shell is generated. Because of this limitation, ARM VHDL timing shells do not 
support IOPATH RETAIN at this time.

Simulation inaccuracies

An important implication of the lack of support for IOPATH RETAIN is that you must 
choose whether to put the transition to the new value at the point at which the old value 
ceases to be valid, or at the point at which the new value is known to be valid when 
performing SDF back-annotation.

If a device that uses the output values from the DSM samples one during the period at 
which the value is not defined, it either gets the old value or the new value, depending 
on which of the two possible times for the transition is in use. In reality, the values must 
not be sampled during this period, and support for IOPATH RETAIN ensures that anything 
sampled in that period reads an X.

In the absence of support for IOPATH RETAIN this situation can potentially lead to a 
divergence between the simulation and the behavior of the physical device. 
Furthermore, this divergence is not reported with a warning message, the simulation 
silently uses the wrong value. One way of detecting this situation is to perform two 
simulations, one using an SDF file containing minimum values and the other using an 
SDF file containing maximum values. The SDF files must be generated by an STA tool 
using the minimum and maximum timing views of a device, respectively. The results of 
the two simulations are expected to be identical provided outputs are not sampled in the 
undefined period.

3.7.2 Vector to vector IOPATH arcs

VHDL, through the 1995 VITAL standard, mandated an annotation scheme for IOPATHs 
where both signals are vectors, which requires annotation placeholders for the cartesian 
product of the two vectors. For example, two 32 bit vectors requires 32 * 32 (1024) 
annotation points. As mentioned in see SDFremap tool on page 3-13, this is inefficient 
so ARM SDF template files represent one of these signals as a scalar.
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The newer, VITAL 2000 standard, recognized that the earlier mechanism was not 
suitable in situations where there is a one-to-one relationship between an element on the 
input vector and the same element on the output vector:

IN[0] drives OUT[0]

IN[1] drives OUT[1]

_ _ _ 

This being the case, newer VHDL simulators permit a special case where both input 
vectors are the same size.

Note
 Some devices have vector to vector combinatorial paths where both vectors are not the 
same size, and this can cause problems with some VITAL 2000 compliant simulator 
versions.

ARM Limited is investigating ways to work around this difficulty. If you do have a 
problem with annotation of vector to vector IOPATHs on a VITAL 2000 compliant 
simulator, the current recommended work-around is to use a previous version of the 
simulator which implements VITAL 95 only.

This problem does not affect Verilog simulators.
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Limitations

This chapter describes the limitations of DSMs. It contains the following section:

• DSM limitations on page 4-2.
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4.1 DSM limitations

Although DSMs fully match the architecture and functionality of the ARM core design, 
they are subject to the following limitations:

Simulator functions not supported 

The following functions are not supported:

Restart Return the simulation back to time zero without terminating 
the simulation.

Save and Restore (also known as checkpointing) 
Save the simulation at a point of time (snapshot), and restore 
the simulation to that point of time.

The SWIFT components included in many DSMs cannot be restarted, or 
their simulation state saved or restored. Consequently DSMs do not 
support these functions, because the majority of DSMs include SWIFT 
components.

Internal scan chain modeling 

A DSM is derived from the RTL description of the core that it models. 
The final netlist for the core might contain internal scan chains that were 
added during synthesis. It is not possible to use DSMs to model these 
scan chains, because they do not exist in the device RTL. The scan chains 
are however modeled by the Sign-Off Model (SOM) of a device.

Caches and Registers 

Although it is possible to view the register values contained within the 
DSM simulation, it is not possible for the engineer or designer to 
introduce any test data directly into the caches or registers, because this 
cannot be performed in the RTL from which the DSM is derived.

Zero delay simulation 

This limitation is described in DSM event and interface semantics 
problems on page 2-6. 

Limitations of the timing model 

These limitations are described in Limitations of the timing model on 
page 3-25. 
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This glossary describes some of the terms used in this document. Where terms can have 
several meanings then the meaning provided in this glossary is intended.

Back-annotation The process of applying timing characteristics from the implementation process onto a 
model.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implements 
boundary scan technology using a standard JTAG TAP interface. Each device contains 
at least one TAP controller containing shift registers that form the chain connected 
between TDI and TDO, through which test data is shifted. Processors can contain 
several shift registers to enable you to access selected parts of the device.

Clock gating Gating a clock signal for a macrocell with a control signal, and using the modified clock 
that results to control the operating state of the macrocell.

CRF See Condensed Reference Format.

Condensed Reference Format (CRF)
An ARM proprietary file format for specifying test vectors.

Delta cycle A simulation cycle in which the simulation time at the beginning of the cycle is the same 
as at the end of the cycle. That is, simulation time is not advanced in a delta cycle.
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Design Simulation Model (DSM)
A back-annotation-capable simulation model that can be included within a range of 
target HDL simulators. It consists of a functional core block and a Verilog or VHDL 
wrapper.

Delta-sweeping The process by which the VHDL simulator advances through delta cycles. A sweep 
covers many delta cycles.

Direct Memory Access
An operation that accesses main memory directly, without the processor performing any 
accesses to the data concerned.

DVS See Device Validation Suite.

Device Validation Suite
A set of tests to check the functionality of a device against the functionality defined in 
the Technical Reference Manual. Also stresses Bus Interface Unit (BIU), and low-level 
memory sub-system, pipleline, cache and Tightly Coupled Memory (TCM) behavior. 

Internal scan chain A series of registers connected together to form a path through a device, used during 
production testing to import test patterns into internal nodes of the device and export the 
resulting values.

Model Manager A software control manager that handles the event transactions between the model and 
simulator.

Programming Language Interface (PLI)
For Verilog simulators, an interface by which so-called foreign code (code written in a 
different language) can be included in a simulation.

SDF See Standard Delay Format.

Standard Delay Format (SDF) 
The format of a file that contains timing information to the level of individual bits of 
buses and is used in SDF back-annotation. An SDF file can be generated in a number 
of ways, but most commonly from a delay calculator.

TAP See Test Access Port.

Test Access Port (TAP)
The collection of four mandatory terminals and one optional terminal that form the 
input/output and control interface to a JTAG boundary-scan architecture. The 
mandatory terminals are TDI, TDO, TMS, and TCK. The optional terminal is TRST.
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